TU Clausthal

Clausthal University of Technology

Proceedings of the 11th Workshop on
Nonmonotonic Reasoning

Jurgen Dix & Anthony Hunter

Ifl Technical Report Series If1-06-04

Department of Informatics
Clausthal University of Technology

Impressum

Publisher: Institut fiir Informatik, Technische Universitit Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany
Editor of the series: Jiirgen Dix

Technical editor: Wojciech Jamroga

Technical editor of this issue: Tristan Marc Behrens

Contact: jamroga@in.tu-clausthal.de
URL: http://www.in.tu-clausthal.de/forschung/technical-reports/
ISSN: 1860-8477

The IfI Review Board

Prof.
Prof.
Prof.
Prof.
Prof.
Prof.
Prof.
Prof.

Dr.
Dr.
Dr.
Dr.
Dr.
Dr.
Dr.
Dr.

Jiirgen Dix (Theoretical Computer Science/Computational Intelligence)
Klaus Ecker (Applied Computer Science)

Barbara Hammer (Theoretical Foundations of Computer Science)

Kai Hormann (Computer Graphics)

Gerhard R. Joubert (Practical Computer Science)

Ingbert Kupka (Theoretical Computer Science)

Wilfried Lex (Mathematical Foundations of Computer Science)

Jorg Miiller (Agent Systems)

Dr. Frank Padberg (Software Engineering)
Prof. Dr.-Ing. Dr. habil. Harald Richter (Technical Computer Science)
Prof. Dr. Gabriel Zachmann (Computer Graphics)

Proceedings of the 11th Workshop on Nonmonotonic
Reasoning

Jiirgen Dix & Anthony Hunter

Clausthal University of Technology and University College London

Abstract

These are the proceedings of the 11th Nonmonotonic Reasoning Workshop. The
aim of this series http://www.kr.org/NMR/|is to bring together active re-
searchers in the broad area of nonmonotonic reasoning, including belief revision,
reasoning about actions, planning, logic programming, argumentation, causality,
probabilistic and possibilistic approaches to KR, and other related topics.

As part of the program of the 11th workshop, we have assessed the status of the
field and discussed issues such as: Significant recent achievements in the theory
and automation of NMR; Ceritical short and long term goals for NMR; Emerging
new research directions in NMR; Practical applications of NMR; Significance of
NMR to knowledge representation and Al in general.

http://www.kr.org/NMR/

. TU Clausthal
11TH NMR WORKSHOP

[Prefacel 5
I Answer Set Programming| 7
|I.1 ~ Modular Equivalence for Normal Logic Programs| 10
|I1.2 A Tool for Advanced Correspondence Checking in Answer-Set Pro- |
| SIAMMING| « . .« « v v v v v e e e e e e e e e e e e e e e e e 20
1.3 On Probing and Multi-Threading in Platypus| 30
|1.4 Towards Efficient Evaluation of HEX-Programs| 40
|1.5 Tableaux Calculi for Answer Set Programming| 48
1.6 Approaching the Core of Unfounded Sets| 58
|17 Elementary Sets for Logic Programs| 68
1.8 Debugging inconsistent answer set programs|. 77
1.9 Forgetting and Conflict Resolving in Disjunctive Logic Programming| 85
|1.10 Analysing the Structure of Definitions in ID-logic| 94
|1.1T Well-Founded semantics for Semi-Normal Extended Logic Programs|. . 103
2 Theory of NMR and Uncertainty| 109
2.1 Three views on the revision of epistemic states|. 114
2.2 A revision-based approach for handling inconsistency in description |
................................... 124
2.3 Merging stratified knowledge bases under constraints| 134
2.4 Merging Optimistic and Pessimistic Preferences| 144
[2.5 Distance-Based Semantics for Multiple-Valued Logics| 153
2.6~ On Compatibility and Forward Chaining Normality| 163
2.7 Incomplete knowledge in hybrid probabilistic logic programs| 173
2.8 Extending the role of causality in probabilistic modeling| 183
2.9 Model and experimental study of causality ascriptions|. 193
[2.10 Decidability of a Conditional-probability Logic with Non-standard Val- |
[ued Probabilities] 201
[2.11 About the computation of forgetting symbols and literals| 209
[2.12 Handling (un)awareness and related 1ssues in possibilistic logic: A pre- |
| liminary discussion| L L 219
2.13 On the Computation of Warranted Arguments within a Possibilistic |
| Logic Framework with Fuzzy Unification| 227
[2.14 Preference reasoning for argumentation: Non-monotonicity and algo- |
[rthmsl 237
3 NMR Systems and Applications| 245
[3.1 DR-Prolog: A System for Reasoning with Rules and Ontologies on the |
[SemanticWebl. 248
3.2 An Application of Answer Set Programming: Superoptimisation A Pre- |
[Aminary REport] o v o i i e 258
3.3 COBA 2.0: A Consistency-Based Belief Change System| 267
3.4 Modelling biological networks by action languages via answer set pro- |
| GAMMING| « . .« o v v v e v v e e e e e e e e e e e e e e e e 275
3.5 A Non-Monotonic Reasoning System for RDF Metadata] 285
[3.6 Relating Defeasible Logic to the Well-Founded Semantics for Normal |
[Logic Programs| oo 295
3.7 ProLoglICA: a practical system for Abductive Logic Programming| . . . 304

2 Technical Report IfI-06-04

4 Action and Change|

DEPARTMENT OF INFORMATICS

4.1 Model Checking Meets Theorem Proving| 317

. esigning a ent for the Dynamic Wumpus World| 326

| emantics for as Progression in the Situation Calculus| 334
4.4 Planning ramifications: When ramifications are the norm, not the "prob- |
L Tem’ . oo e 343
4.5 Resolving Conflicts in Action Descriptions] 353

. n Extended Query Language for Action Languages| 362

|5 Argumentation, Dialogue, and Decision Making| 371
|§.1 On Formalising Dialog Systems for Argumentation in Event Calculus| . 374
roximate Arguments for Efficiency in Logical Argumentatio 383

. n Complexity of DeLP through Game Semantics| 390

5.4 An Argumentation Framework for Concept Learning| 400
[5.5 An Abstract Model for Computing Warrant in Skeptical Argumentation |
[Frameworksl 409
|§.6 Managing Deceitful Arguments with X-logics| 418

. omparing Decisions in an Argumentation-based Setting| 426

5.8 Defeasible Reasoning about Beliefs and Desires| 433
[5.9 Refining SCC Decomposition in Argumentation Semantics: A First In- |

[VESHZATON| . . o o v v v v e e e e e 442
|6 Belief Change and Updates| 451
[6.1 About ime, revisionand update| 455
[6.3 Elaboraing domain descriptions| 472

A Mergimg RUles . . - . - oo 482
6.5 A reversible framework for propositional bases merging(. 490

6.6 Mutual Enrichment for Agents Through Nested Belief Change| 498

6. etting Possibilities from the Impossible|. 505

6. ethinking Semantics of Dynamic Logic Programming| 515

.TU Clausthal
11TH NMR WORKSHOP

4 Technical Report IfI-06-04

Preface

Preface

This informal proceedings is for the Eleventh International Workshop on Non-Monotonic
Reasoning. Its aim is to bring together active researchers in the broad area of nonmono-
tonic reasoning, including belief revision, reasoning about actions, planning, logic pro-
gramming, argumentation, causality, probabilistic and possibilistic approaches to KR,
and other related topics.

As part of the program we will be considering the status of the field and discussing
issues such as: Significant recent achievements in the theory and automation of NMR;
Critical short and long term goals for NMR; Emerging new research directions in NMR;
Practical applications of NMR; Significance of NMR to knowledge representation and
Al in general.

The workshop programme is chaired by Jiirgen Dix and Anthony Hunter, and the
programme is composed of the following sessions (with session chairs).

1. Answer Set Programming (Ilkka Niemela and Mirek Truszczynski),

2. Theory of NMR and Uncertainty (Salem Benferhat and Gabriele Kern-Isberner),
3. NMR Systems and Applications (Jim Delgrande and Torsten Schaub),

Action and Change (Antonis Kakas and Gerhard Lakemeyer),

Belief Change and Updates (Andreas Herzig and Maurice Pagnucco),

AN

Argumentation, Dialogue, and Decision Making (Leila Amgoud and Guillermo
Simari).

Authors have been invited to submit papers directly to any of the above sessions, and
all papers have been reviewed by two or three experts in the field. The programme chairs
are very grateful to the session chairs for organizing each session, and for arranging
the reviewing of the submissions. The programme chairs are also very grateful to the
reviewers for their hard work in assessing the submissions and for providing excellent
feedback to the authors.

We would also like to thank Mirek Truszczynski for his financial support for the
workshop.

Our special thanks go to Tristan Marc Behrens, who put these Proceedings together.
This turned out to be an enormous effort and we appreciate his work very much.

May 2006 Jiirgen Dix (Germany)
dix@tu-clausthal.de

Anthony Hunter (United Kingdom)

a.hunter@cs.ucl.ac.uk

DEPARTMENT OF INFORMATICS 5

dix@tu-clausthal.de
a.hunter@cs.ucl.ac.uk

.TU Clausthal
11TH NMR WORKSHOP

6 Technical Report IfI-06-04

Answer Set Programming

1 Answer Set Programming

The papers in this collection were presented at the Special Session on Answer Set
Programming. This one-day event was a part of the 11th Non-monotonic Reasoning
Workshop (NMR 2006) held in collocation with the 10th International Conference on
Principles of Knowledge Representation and Reasoning (KR 2006) in the Lake District
area of the UK on May 30 - June 1, 2006.

In the 1980s researchers working in the area of nonmonotonic reasoning discovered
that their formalisms could be used to describe the behavior of negation as failure in
Prolog. This work resulted in logic programming systems of a new kind — answer-set
solvers, and led to the emergence of a new approach to solving search problems, called
answer-set programming or ASP, for short. The aim of the session on ASP at NMR
2006 was to facilitate interactions between researchers designing and implementing
ASP languages and solvers, and researchers working in the areas of knowledge repre-
sentation and nonmonotonic reasoning.

The program included 11 papers selected after a review process out of 18 submis-
sions. We thank the program committee members and additional reviewers for careful
and unbiased evaluation of the submitted papers. We also want to acknowledge Leng-
ning Liu for his help with the preparation of the papers for the proceedings.

Session chairs

Ilkka Niemeld, Helsinki University of Technology
(Ilkka.Niemela@tkk.f1i)

Mirostaw Truszczynski, University of Kentucky
(mirek@cs.uky.edu)

Program committee

Marc Denecker, K.U.Leuven, Belgium
(Marc.Denecker@cs.kuleuven.ac.be)

Wolfgang Faber, University of Calabria, Italy
(wf@wfaber.com)

Tomi Janhunen, Helsinki University of Technology, Finland
(ttj@tcs.hut.fi)

Fangzhen Lin, Hong Kong University of Science and Technology, Hong Kong
(flin@cs.ust .hk)

Inna Pivkina, New Mexico State University, USA
(ipivkinal@cs.nmsu.edu)

Chiaki Sakama, Wakayama University, Japan
(sakama@sys.wakayama-u.ac. jp)

Hans Tompits, Technische Universitidt Wien, Austria
(tompits@kr.tuwien.ac.at)

Kewen Wang, Griffith University, Australia
(K.Wang@cit.gu.edu.au)

DEPARTMENT OF INFORMATICS 7

Ilkka.Niemela@tkk.fi
mirek@cs.uky.edu
Marc.Denecker@cs.kuleuven.ac.be
wf@wfaber.com
ttj@tcs.hut.fi
flin@cs.ust.hk
ipivkina@cs.nmsu.edu
sakama@sys.wakayama-u.ac.jp
tompits@kr.tuwien.ac.at
K.Wang@cit.gu.edu.au

.TU Clausthal
11TH NMR WORKSHOP

Additional reviewers

Huan Chen Kathrin Konczak Roman Schindlauer
Yin Chen Marco Maratea Joost Vennekens
Alvaro Cortés Calabuig ~ Maarten Marién Johan Wittocx
Phan Minh Dung Emilia Oikarinen Stefan Woltran
Thomas FEiter Hou Ping Yuting Zhao
Katsumi Inoue Francesco Ricca

Schedule

Wednesday 31 May 2006 (Thirlmere-Wastwater Room)
Session Chairs: I. Niemeld and M. Truszczynski

10.30 E. Oikarinen and T. Janhunen, Modular Equivalence for Normal Logic
Programs

11:00 J. Oetsch, M. Seidl, H. Tompits and S. Woltran, A Tool for Advanced
Correspondence Checking in Answer-Set Programming

11:30 J. Gressmann, T. Janhunen, R.Mercer, T. Schaub, S. Thiele and R. Ticky,
On Probing and Multi-Threading in Platypus

12.00 T. Eiter, G. Ianni, R. Schindlauer and H. Tompits, Towards Efficient Eval-
uation of HEX-Programs

12.30 Lunch
14.00 M. Gebser and T. Schaub, Tableaux Calculi for Answer Set Programming

14.30 C. Anger, M. Gebser and T. Schaub, Approaching the Core of Unfounded
Sets

15.00 M. Gebser, J. Lee and Y. Lierler, Elementary Sets for Logic Programs
15.30 Coffee
16.00 T. Syrjanen, Debugging inconsistent answer set programs

16.30 T. Eiter and K. Wang Forgetting and Conflict Resolving in Disjunctive
Logic Programming

17.00 J. Vennekens and M. Denecker Analysing the Structure of Definitions in
ID-logic

17.30 M. Caminada Well-Founded semantics for Semi-Normal Extended Logic
Programs

Technical Report IfI-06-04

Answer Set Programming

DEPARTMENT OF INFORMATICS 9

.TU Clausthal
11TH NMR WORKSHOP

1.1 Modular Equivalence for Normal Logic Programs

Modular Equivalence for Normal Logic Programs*

Emilia Oikarinen T and Tomi Janhunen
Department of Computer Science and Engineering
Helsinki University of Technology (TKK)
P.O. Box 5400, FI-02015 TKK, Finland
Emilia.Oikarinen@tkk.fi and Tomi.Janhunen@tkk.fi

Abstract

A Gaifman-Shapiro-style architecture of program modules is
introduced in the case of normal logic programs under sta-
ble model semantics. The composition of program mod-
ules is suitably limited by module conditions which ensure
the compatibility of the module system with stable models.
The resulting module theorem properly strengthens Lifschitz
and Turner's splitting set theorem (1994) for normal logic
programs. Consequently, the respective notion of equiva-
lence between modules, i.e. modular equivalence, proves to
be a congruence relation. Moreover, it is analyzed (i) how
the translation-based verification technique from (Janhunen
& Oikarinen 2005) is accommodated to the case of modu-
lar equivalence and (ii) how the verification of weak/visible
equivalence can be reorganized as a sequence of module-level
tests and optimized on the basis of modular equivalence.

Introduction

Answer set programmin(ASP) is a very promising con-
straint programming paradigm (Niendell999; Marek &
Truszczyiski 1999; Gelfond & Leone 2002) in which prob-
lems are solved by capturing their solutionsaaswer sets
or stable model®f logic programs. The development and

2004) suggest that the translation-based method can be
fective and sometimes much faster than performing a sim|
cross-check of stable models.

As a potential limitation, the translation-based methc
as described above treats programs as integral entities
therefore no computational advantage is sought by break
programs into smaller parts, sayodulef some kind. Such
an optimization strategy is largely preempted by the faat tF
weak equivalence, denoted by, fails to be acongruence
relation for U, i.e. weak equivalence is not preserved ur
der substitutions in unions of programs. More formally pu
P = @ does notimplyPUR = QU R ingeneral. The same
can be stated abouiniform equivalencg¢Sagiv 1987) but
not aboutstrong equivalencélLifschitz, Pearce, & Valverde
2001) which admits substitutions by definition.

From our point of view, strong equivalence seems ina
propriate forfully modularizingthe verification task of weak
equivalence. This is simply because two progrdfrend(
may be weakly equivalent even if they build on respecti
modulesP; C P and@; C @ which are not strongly equiv-
alent. For the same reason, program transformations t
are known to preserve strong equivalence (Egteal. 2004)
do not provide an inclusive basis for reasoning about we
equivalence. Nevertheless, there are cases where one

optimization of logic programs in ASP gives rise to a meta- jjize the fact that strong equivalence implies weak equi
level problem of verifying whether subsequent programs are 3jence. For instance, # and(Q are composed of strongly
equivalent. To solve this problem, a translation-based ap- equivalent pairs of moduleg; and(; for all 4, thenP and

proach has been proposed and extended further (Janhunen &, can, pe directly inferred to be strongly and weakly equivi
Oikarinen 2002; Turner 2003; Oikarinen & Janhunen 2004; et These observations about strong equivalence metiv

Woltran 2004). The underlying idea is to combine two logic ¢ strive for a weaker congruence relation that is comeatil
programsP and @ under conS|derat|or_1 into two logic pro- \yith weak equivalence at program-level.
gramsEQT(P, Q) and EQT(Q, P) which have no stable To address the lack of a suitable congruence relation

models iff P and @) are \{veakly equivalenti.e. have the he context of ASP, we propose a new design in this ¢
zglr\r;grstsaub éﬁ rgg\jgsﬁigl?seir%%ﬂss lingrrl@le ggginsiﬁrerf ASI:):icle. The_ design superficially resembles that _of Gaifme
2002)’DLV (Leoneet al. 2006) OI"GNT (Ja’nhuneret al and.Sha_puo (1989) but sta.ble model semantics (Gelf_o
2006), for the equivaleﬁce verification problem as for. the & Lifschitz 1988) and special module conditions are in

’ corporated. The feasibility of the design is crystallized i

search of stable models in general. First experimental re- ;
o RPN a module theorenwhich shows the module system fully
sults (Janhunen & Oikarinen 2002; Oikarinen & Janhunen compatible with stable models. In fact, the module the:

“The research reported in this paper has been partially funded f€mM established here is a proper strengthening of the st
by the Academy of Finland (project #211025). ting set theorem established by Lifschitz and Turner (199

"The financial support from Helsinki Graduate School in Com- !n the case of normal logic programs. The main differenc
puter Science and Engineering, Nokia Foundation, and Finnish is that our result allows negative recursion between mc
Cultural Foundation is gratefully acknowledged. ules. Moreover, it enables the introduction of a notion «

10 Technical Report IfI-06-04

Answer Set Programming

equivalence, i.emodular equivalencevhich turns out to be Herbrand base. Moreovelb(P) is supposed to be finite
a proper congruence relation and reduces to weak equiva- wheneverP is.

lence for program modules which have a completely speci- Given a normal logic progran?, aninterpretationM of
fied input and no hidden atoms. This kind of modules cor- P is a subset ofib(P) defining which atoms oHb(P) are
respond to normal logic programs with completely visible true @ € M) and which are falsea(¢ M). An interpre-
Herbrand base. If normal progransand(@ are composed tation M C Hb(P) is a(classical) modebf P, denoted by
of modularly equivalent moduleB; and @, for all 4, then M Piff BPC MandB~NM = Qimply h € M
P and Q are modularly equivalent or equivalently stated for each ruleh — B+, ~B~ € P. For a positive program
weakly equivalent. The notion of modular equivalence P, M C Hb(P) is the (unique)east modebf P, denoted
opens immediately new prospects as regards the translation by LM(P), iff there is noM’ = P such thatM’ C M.
based verification method (Janhunen & Oikarinen 2002; Stable modelas proposed by Gelfond and Lifschitz (1988
Oikarinen & Janhunen 2004). First of all, the method can generalize least models for normal logic programs.

be tuned for the task of verifying modular equivalence by at- pefinition 2 Given a normal logic progran® and an inter-

taching acontext generatoto program modules in analogy pretation)/ C Hb(P) the Gelfond-Lifschitz reduct
to (Woltran 2004). Second, we demonstrate how the verifi- ~_ -
&P ={h— BY|h— Bt ,~B~€ Pand MNB~ = (},

cation of weak equivalence can be reorganized as a sequenc
of tests, each of which concentrates on a pair of respective and M is a stable model of iff M = LM (P).

modules in the programs subject to the verification task. Stable models are not necessarily unique in general: a r

The plan for the rest of this article is as follows. As a 5 logic program may have several stable models or no s
preparatory step, we briefly review the syntax and seman- ;o models at all. The set of stable models of a NBRS
tics of normal logic programs and define notions of equiva- yenoted bySM(P).

lence addressed in the sequel. After that we specify program = \ye define goositive dependency relationC Hb(P) x
modules as well as establish the module theorem discussede(P) as the reflexive and transitive closure of a relatic
above. Next, we define the notion of modular equivalence, — qefined as follows. Given,b ¢ Hb(P), we say thab
prove the congruence property for it, and give a brief actoun aepends directly o, denotech7<1 b, iff there is a ruleh —

of computational complexity involved in the respective-ver p+ _ p- c P suchthaw ¢ B+ Thepositive dependency
ification problem. Connections between modular equiva- grabhof P, Dep™(P), is a graph withiIb(P) as the set of
lence and the translation-based method for verifying fasib o tices ar’1d{<a,b> |’a,b € Hb(P) and a < b} as the

equivalence (Janhunen & Oikarinen 2005) are also worked . =
out. Finally, we briefly contrast our work with earlier ap- set of edges. Thaegative dependency graplep (P) can

proaches and present our conclusions.

Normal Logic Programs

We will considerpropositional normal logic program
this paper.

Definition 1 A normal logic program (NLP) is a (finite) set
of rules of the formh <+ B*,~B~, whereh is an atom,
Bt and B~ are sets of atoms, andB = {~b | b € B} for
any set of atoms.

The symbol ~" denotesdefault negationor negation as
failure to prove (Clark 1978). Atomsg and their default
negations~a are calleddefault literals A rule consists
of two parts: h is the headand the rest is thbody Let
Head(P) denote the set of head atoms appearing jmne.

Head(P) = {h | h«— B*,~B~ € P}.

If the body of a rule is empty, the rule is calledact and

the symbol “-" can be omitted. IfB~ = @, the rule is

positive A program consisting only of positive rules is a

positive logic program
Usually theHerbrand baséib(P) of a normal logic pro-

gram P is defined to be the set of atoms appearing in the

rules of P. We, however, use a revised definitiolb(P)

is any fixed set of atoms containing all atoms appearing in
the rules ofP. Under this definition the Herbrand base of

P can be extended by atoms having no occurrenceB.in
This aspect is useful e.g. whénis obtained as a result of

be defined analogously. strongly connected componenft
Dep™(P) is a maximal subsef’ C Hb(P) such that for all
a,b € C, {a,b) is in Dep™(P). Thus strongly connected
components oDep*(P) partition Hb(P) into equivalence
classes. The dependency relatidrran then be generalized
for the strongly connected components; < Cj, i.e.C}
depends oi’;, iff ¢; < ¢; for anyc; € C; andc; € C;.

A splitting setfor a NLP P is any setU C Hb(P) such
that for every ruleh «— B* ~B~ ¢ P, if h € U then
BTUB~ CU. Thesetofruleg «+ BT, ~B~ ¢ P such
that{h} U BT U B~ C U is thebottomof P relative to
U, denoted byby (P). The setty;(P) = P\ by (P) is the
top of P relative toU. The top can be partially evaluatec
with respect to an interpretatioXi C U resulting a program
e(ty(P), X) that contains arulgé « (BT\U),~(B~\U)
for eachh «— BT ,~B~ € ty(P) suchthatB™NU C X
and(B~NU)N X =). Given a splitting set/ for a NLP
P, asolutionto P with respect taU is a pair(X,Y’) such
that X C U, Y C Hb(P)\ U, X € SM(by(P)), and
Y € SM(e(ty(P), X)). Thesplitting set theorenelates
solutions with stable models.

Theorem 1 (Lifschitz & Turner 1994) Let/ be a splitting
set for a NLPP and M C Hb(P). ThenM < SM(P) iff
the pair(M NU, M \ U) is a solution toP with respect to

Notions of Equivalence
The notion ofstrong equivalencevas introduced by Lifs-

optimization and there is a need to keep track of the original chitz, Pearce and Valverde (2001) wheraagorm equiva-

DEPARTMENT OF INFORMATICS

11

.TU Clausthal
11TH NMR WORKSHOP

lencehas its roots in the database community (Sagiv 1987); QU R for all normal logic programsR over the set of atoms
cf. (Eiter & Fink 2003) for the case of stable models. A; uniformly equivalent relative tal, denoted by =4 @,

Definition 3 Normal logic programsP and) are (weakly) iff PUF = QU F for all sets of facts” < A.
equivalent, denote® = Q, iff SM(P) = SM(Q); strongly SettingA = () in the above reduces both relativized notion

equivalent, denote® =; Q, iff PU R = @Q U R for any to weak equivalence, and thus neither is a congruence.
normal logic programR; and uniformly equivalent, denoted Eiter et al. (2005) introduce a very general frameworl
P=,Q,iff PUF = QU F for any set of factg". based onequivalence frame$o capture various kinds of

equivalence relations. Most of the notions of equivalen
defined above can be defined using the framework. V
ible equivalence is exceptional in the sense that it do
not fit into equivalence frames based projected answer
sets A projective variant of Definition 4 would simply
equate{ M NHb,(P) | M € SM(P)} to {N NHb,(Q) |
N € SM(Q)}. As aconsequence, the number of answer st
may not be preserved which we find somewhat unsatisf:
tory because of the general nature of ASP as discussed &
Definition 4. Consider, for instance prografis= {a «
~b. b «— ~a. } andQn =PU {Ci — ~d;. dy — ~c;. |
Example 1 (Eiter et al. 2004, Example 1) Consider normal 0 < ¢ < n} with Hb,(P) = Hb,(Q.,,) = {a,b}. Whenever

Clearly, P =5 Q impliesP =, Q, andP =, @ implies

P = @, but not vice versa (in both cases). Strongly equiv-
alent logic programs are semantics preserving substitdites
each other and the relatiaa, can be understood ascan-
gruence relatiormmong normal programs, i.e. B =, Q,
thenP U R =, Q U R for all normal programsk. On

the other hand, uniform equivalence is not a congruence, as
shown in Example 1 below. Consequently, the same applies
to weak equivalence and thesand=,, are best suited for
the comparison of complete programs, and not for modules.

logic programsP = {a.} and@ = {a « ~b. a « b.}. It n > 0 these programs are not visibly equivalent but the

holdsP =, Q,butPUR # QU R for R = {b « a.}. would be equivalent under the projective definition. Wit

ThusP #; @ and=, is not a congruence relation fas. sufficiently large values af it is no longer feasible to count
the number of different stable models (i.e. solutions)jf

For P = @ to hold, the stable models §M (P) andSM(Q)
have to be identical subsets Hb(P) andHb(Q), respec-
tively. The same can be stated about strong and uniform)
equivalence. This makes these notions of equivalence less Modular Logic Programs

useful ifHb(P) andHb(Q) differ by some atoms which are e define dogic program modulsimilarly to Gaifman and
not terla”y false in all stable models. Such atoms mlght, Shapiro (1989), but consider the case of normal |0gic pr

however, be of use when formalizing some auxiliary con- grams instead of positive (disjunctive) logic programs.
cepts. Following the ideas from (Janhunen 2003) we par-

tition Hb(P) into two partsHb, (P) and Hby,(P) which Definition 6 AtripleP = (P, I, O) is a (propositional logic
determine thevisible and thehidden parts of Hb(P), re- program) module, if

spectively. Invisible equivalencéhe idea is that the hidden 1 pis 5 fini £ rul fthe f — Bt ~B—
atoms inHby, (P) and Hby (@) are local toP and @ and - Plsafinite setofrules o F_e orm ’ '
negligible as regards the equivalence of the two programs. 2- { @ndO are sets of propositional atoms such that

Definition 4 (Janhunen 2003) Normal logic progranid 10 =0:and

and @ are visibly equivalent, denoted by =, Q, iff 3. Head(P) N1 =0.

Hb, (P) = Hb,(Q) and there is a bijectiorf : SM(P) — The Herbrand base of moduke Hb(P), is the set of atoms
SM(Q) such that for all interpretationsM € SM(P), appearing inP combined with/ U O. Intuitively the setl
M N Hby(P) = f(M) N Hby(Q). defines thénputof a module and the sét is theoutput The
Note that the number of stable models is preserved under iNPutand output atoms are considered visible, i.e. thelesi
=,. Such a strict correspondence of models is much dic- Herbrand base of moduleis Hb, (P) = I U O. Notice that
tated by the ASP methodology: the stable models of a pro- / @hdO can also contain atoms not appearing’irsimilarly
gram usually correspond to the solutions of the problem be- {0 the possibility of having additional atoms in the Herftan
ing solved and thuss, preserves the number of solutions, ~Pases of normal logic programs. All other atoms are hidde
too. In the fully visible case, i.dIby,(P) = Hby,(Q) = 0, i.e. Hby, (P) = Hb(P) \ Hby (P). _
the relation=, becomes very close ts. The only differ- As regards the composition of modules, we follow (Gai
ence is the additional requiremédiib(P) = Hb(Q) insisted man & Shapiro 1989) and take the union of the disjoint se
by =,. This is of little importance as Herbrand bases can al- ©f rules involved in them. The conditions given by Gaifma
ways be extended to meBih(P) = Hb(Q). Since weak and Shapiro are not yet sufficient for our purposes, and
equivalence is not a congruence, visible equivalence ¢anno impose a further restriction denying positive recursion b
be a congruence either. tween modules.

The relativized variants of strong and uniform equiva- pefinition 7 Consider modules?; = (Py,I,,0,) and
lenceintroduced by Woltran (2004) allow the context to be Py = (P3,15,05) and letCy,...,C, be the7 str’ongly con-

constrained using a set of atoms nected components Bep (P, UP,). There is a positive re-
Definition 5 Normal logic programsP and @ are strongly cursion betweef®; andPs, if C; N0 # handC; N Oz # 0
equivalent relative tod, denoted byP? =2 Q, iff PUR = for some componeidt;.

is used.

12 Technical Report IfI-06-04

Answer Set Programming

The idea is that all inter-module dependencies go through Definition 9 Given a modulé® = (P, I,0) and a set of
the input/output interface of the modules, i.e. the output atomsA C [the instantiation ofP with the inputA is

of one module can serve as the input for another and hid-

P(A) = PUF 4, whereF4 = ({a. | a € A},0,1).

den atoms are local to each module. Now, if there is a e thatP(A) = (PU{a. | a € A},0, TUO) is essentially

strongly connected componefi in Dep (P, U P,) con-
taining atoms from botl®; and O5, we know that, if pro-
gramsP; and P, are combined, some output atenof P;
depends positively on some output atbwf P, which again
depends positively oa. This yields a positive recursion.
Definition 8 LetP, = (Pl, Il, 01) and]PQ = (PQ, IQ, 02)
be modules such that

1. 01 N0y =0;

2. Hby(P;) N Hb(P) = Hby, (P2) N Hb(P;) = (); and

3. there is no positive recursion betwdnandP,.

Then the join ofP; andP», denoted byP; U P, is defined,
andP, UP, = (Pl U Ps, (Il \ 02) @] (.[2 \01),01 @] 02)
Remark. Condition 1 in Definition 8 is actually redundant
as it is implied by condition 3. Also, condition 2 can be

circumvented in practice using a suitable scheme, e.gdbase
on module names, to rename the hidden atoms uniquely for

each module.

Some observations follow. Since each atom is defined in

one module, the sets of rulesfy andP, are disjoint, i.e.
PiNP = 0. Also,

Hb(P, UP,) =
Hb, (P, UPy) =
Hb, (P, UPy) =

Hb(P;) U Hb(Py),
Hb, (P) U Hb, (P), and
Hby, (Py) U Hby (Py).

Note that the module conditions above impose no restric-
tions onnegativedependencies or on positive dependencies

insidemodules. The input dP; L P, might be smaller than
the union of inputs of individual modules. This is illustedt
by the following example.
Example 2 Consider module® = ({a «— ~b.},{b}, {a})
andQ = ({b <« ~a.},{a},{b}). The join ofP andQ is
defined, an® U Q = ({a «+ ~b. b« ~a.},0,{a,b}).
The following hold for the intersections of Herbrand bases
under the conditions 1 and 2 in Definition 8:
Hb, (P;) N Hby (Py)
= Hb(Py) N Hb(Py)
= (Il N IQ) U (Il N 02) U (Ig N 01), and
Hby, (P1) N Hby (Py) = 0.
Join operation has the following properties:
e Identity: PU (0,0,0) = (0,0,0) UP = P for all P.
e Commutativity: P; LI Py = Py U Py for all modulesPy
andP, such thaf?; U P, is defined.
e Associativity: (P; U Ps) U Py = Py U (Py LI P3) for all
modulesP,, P, andP3 such that the joins are defined.

Note that equality sign=" used here denotes syntactical

equivalence, whereas semantical equivalence will be dg&fine
in the next section.

a normal logic program witlf U O as the visible Herbrand
base. We can thus generalize the stable model semantics
modules. In the sequel we identi(A) with the respective
set of rulesP U F4, whereFy = {a. | a € A}. Inthe
following M N I acts as a particular input with respect t
which the module is instantiated.

Definition 10 An interpretationd/ C Hb(P) is a stable
model of a modul® = (P, I, 0), denoted by\/ € SM(P),
iff M = LM(PM U FJWQI).

We define a concept aompatibilityto describe when a sta-
ble model)M; of moduleP; can be combined with a stable
model M, of another modulé,. This is exactly when\/;
and M, share the common (visible) part.

Definition 11 Let P; and P, be modules, and\/; ¢
SM(P,) and Ms € SM(IPy) their stable models which are
compatible, iffAMf; N Hby (P2) = My N Hb, (Py).

If a program (module) consists of several modules, its stal
models are locally stable for the respective submodules; ¢
on the other hand, local stability implies global stabibity

long as the stable models of the submodules are compaitil

Theorem 2 (Module theorem). LeP; and P, be modules
such thatP; U P, is defined. NowM € SM(P; U Py) iff
M, = M NHb(P;) € SM(P,), My = M N Hb(P,) €
SM(P5), and M; and M, are compatible.

Proof sketch. “=" M; and M- are clearly compatible and
it is straightforward to show that conditions 1 and 2 in Def
nition 8 imply M; € SM(P,) andMy € SM(PPy).

“<" ConsiderP; = (Pl,Il,Ol), Py, = (PQ,IQ,OQ) and
their joinP =P, UPy, = (P, I,0). Let M; € SM(P,), and
My € SM(IPy) be compatible and definkl = M; U Ma.
There is a strict total ordering for the strongly connected
componentsC; of Dep™(P) such that ifC; < Cj, then
C; < Cj ande ﬁ C;; or C; ﬁ Cj ande ﬁ C;. Let
C; < --- < C, be such an ordering. Show that exactl
one of the following holds for eacty;: (i) C; C I, (ii)
C; € O1 UHby(Py), or (i) C; € Oy U Hby(P2). Finally,
show by induction that

k k
Mn (UG = LM(PM U Fyar) N (,U,C)

holds for0 < k£ < n by applying the splitting set theorem

(Lifschitz & Turner 1994). O
Example 3 shows that condition 3 in Definition 8 is nece:

sary to guarantee that local stability implies global dibi

Example 3 ConsiderP; = ({a « b.},{b},{a}) and

Py = ({b « a.},{a},{b}) with SM(P;) = SM(P;) =
{0,{a,b}}. The join ofP; and P, is not defined because

The stable semantics of a module is defined with respect of positive recursion (conditions 1 and 2 in Definition 8 ar

to a given input, i.e. a subset of the input atoms of the mod-

satisfied, however). ForaNLP = {a < b. b < a.}, we

ule. Input is seen as a set of facts (or a database) to be addedyet SM(P) = {@}. Thus, the positive dependency betwes

to the module.

DEPARTMENT OF INFORMATICS

a andb excludes{a, b} from SM(P).

13

.TU Clausthal
11TH NMR WORKSHOP

14

Theorem 2 is strictly stronger than the splitting set theore
(Lifschitz & Turner 1994) for normal logic programs. Uf
is a splitting set for a NLAP, then

Definition 12 Logic program module® = (P,Ip,0Op)
andQ = (Q,Ig,0q) are modularly equivalent, denoted
byP =, Q, iff

P=BUT= (by(P).0.U) U (tw(P).UHP)\U), L1 Ip=Ig=1IandOp =0q =0,and

. 2. P(A) =, Q(A) forall AC .
and it follows from Theorems 1 and 2 thaf; € SM(B) (4) Q() T o _
and M, € SM(T) iff (M, M, \ U) is a solution forP with l_/IoduIar equivalence is very close to v!S|bIe.qu|vaIe.nce d
respect td/. On the other hand the splitting set theorem can- fined for modules. As a matter a fact, if Definition 4 is ger
not be applied to e.g? LU Q from Example 2, since neither e_rz_;\hzed for program modules, the second Condltlo_n in De
{a} nor {b} is a splitting set. Our theorem also strength- hition 12 can be revised =, Q. HoweverP =, Q is not
ens a module theorem given in (Janhunen 2003, Theorem €nough to cover the first condition in Definition 12, as vis
6.22) to cover normal programs that involve positive body ble equivalence only enforcé, (P) = Hb, (Q). If I =0,
literals, too. Moreover, Theorem 2 can easily be general- modular equivalence coincides with visible equivalende.
ized for modules consisting of several submodules. Con- O = 0, thenP =,, Q means thaP andQ have the same

sider a collection of moduleB,, ..., P, such that the join
P, U---UP, is defined (recall that! is associative). We say
that a collection of stable mode{d\/, ..., M, } for mod-
ulesPy,...,P,, respectively, icompatible iff M; andM;
are pairwise compatible for all < i, j < n.

Corollary 1 LetPy,...,P, be acollection of modules such
thatP, U --- U P, is defined. Now/ € SM(P, U---UP,)

iff M; = M NHb(P;) € SM(P;) forall 1 <14 <n, and the
set of stable modelgMy, . .., M, } is compatible.

Corollary 1 enables the computation of stable models on a
module-by-module basis, but it leaves us the task of exclud-

ing mutually incompatible combinations of stable models.
Example 4 Consider modules

P, = ({a — Nb'}v{b}v{a})7
P, = ({b« ~c},{c}, {b}), and
Ps = ({c = ~aj,{a} {c}).

The joinP = P, LI P, LI P5 is defined,
P = ({a« ~b. b+ ~c.c+ ~a.},0,{a,b,c}).

Now SM(P;) = {{a},{b}}, SM(P2) = {{b},{c}} and
SM(Ps) = {{a},{c}}. To apply Corollary 1 for finding
SM(P), one has to find a compatible triple of stable models
My, M5, and M3 for Py, Py, andPs, respectively.

e Now{a} € SM(P,) and{c} € SM(P3) are compatible,
since{a} N Hb,(P2) = 0 = {c} N Hb,(P1). However,
{a} € SM(P3) is not compatible with{c} € SM(PPy),
since{c} N Hby(P3) = {c} # 0 = {a} N Hb,(P2).
On the other hand{c} € SM(Ps) is not compatible with
{a} € SM(P,), since{a} N Hb,(P3) = {a} # 0 =
{c} NHby (Py).

e Also{b} € SM(P,) and {b} € SM(P;) are compatible,
but {b} € SM(P,) is incompatible with{a} € SM(Ps3).
Nor is {b} € SM(PPz) compatible with{c} € SM(PPs3).

Thus it is impossible to seled; € SM(P,), My €

SM(P;) and M3 € SM(Ps) such that{M;, My, M3} is

compatible, which is understandable $i8[(P) = (.

Modular Equivalence

The definition ofmodular equivalenceombines features
from relativized uniform equivalence (Woltran 2004) and
visible equivalence (Janhunen 2003).

number of stable models on each input.

Furthermore, if one considers tlfiglly visible casei.e.
Hby (P) = Hby(Q) = 0, modular equivalence can be see
as a special case of-uniform equivalence fod = I. Re-
call, however, the restrictiondead(P) NI = Head(Q) N
I = () imposed by module structure. With a further restric
tion I = (), modular equivalence coincides with weak equi\
alence becauséb(P) = Hb(Q) can always be satisfied by
extending Herbrand bases. Basically, setting= Hb(P)
would give us uniform equivalence, but the additional col
dition Head(P) N I = () leaves room for the empty module
only.

Since=, is not a congruence relation far, neither is
modular equivalence. The situation changes, however,
one considers the join operationwhich suitably restricts
possible contexts. Consider for instance the programs
and @ given in Example 1. We can define modules bast
on them:PP = (P, {b},{a}) andQ = (Q, {b},{a}). Now
P =, Q and it is not possible to define a modRebased
onR = {b « a.} such thatQ U R is defined.

Theorem 3 Let P, Q and R be logic program modules. If
P =, Q and bothP UR andQ LI R are defined, thei® LI
R=,QUR.

Proof. LetP = (P,I,0) andQ = (Q,I,0) be modules
such thatP =, Q. LetR = (R, Ig,Og) be an arbitrary
module such thaP U R andQ L R are defined. Consider
an arbitraryM € SM(P UR). By Theorem 2Mp = M N
Hb(PP) € SM(P) andMp = M N Hb(R) € SM(R). Since
P =, Q, there is a bijectiory : SM(P) — SM(Q) such
thatMp € SM(P) < f(Mp) € SM(Q), and

MpNn(OUI)= f(Mp)N(OUI). (1)

Let Mg = f(Mp). Clearly, Mp and My are compatible.
Since (1) holds, alsd/y and M are compatible. Applying
Theorem 2 we getdo UMpr € SM(QUR). Define function
g:SM(PLUR) — SM(QUR) as

g(M) = f(M NnHb(P)) U (M NHb(R)).
Clearly, g restricted to the visible part is an identity function

e MN(IUIRUOUOR) =g(M)N(ITUIrUOUOR).
Functiong is a bijection, since

e gis an injection:M # N impliesg(M) # g(N) for all
M,N € SM(P U R), sincef(M NnHb(P)) # f(NN
Hb(P)) or M N Hb(R) # N N Hb(R).

Technical Report IfI-06-04

e gisasurjection: forany/ € SM(QUR), N = f~1(MnN
Hb(Q)) U (M NnHb(R)) € SM(PUR) andg(N) = M,
sincef is a surjection.

The inverse functiog~! : SM(Q LU R) — SM(P LI R) can
be defined ag=!(N) = f~1(N NHb(Q)) U (N NHb(R)).
ThusPUR =, QUR. O

It is instructive to consider a potentially stronger vatian
of modular equivalence defined in analogy to strong equiva-
lence (Lifschitzet al. 2001):P =5, Qiff PUR =, QUR
holds for allR such thaf” LR andQ LR are defined. How-
ever, Theorem 3 implies that], adds nothing te=,, since
P=5 Qiff P=, Q.

Complexity Remarks

Answer Set Programming

2002) for deciding=,. Although verifying the EVA prop-
erty can be hard in general, there are syntactic subclas
of normal programs (e.g. those for whiéh /M, is always
stratified) with the EVA property. It should be stressed th
the use of visible atoms remains unlimited and thus the fi
expressiveness of normal rules remains at our disposal.
So far we have discussed the role of the EVA assumpti
in the verification ofs,. It is equally important in conjunc-
tion with =,,. This becomes evident once we work out th
interconnections of the two relations in the next section.

Application Strategies

The objective of this section is to describe ways in whic
modular equivalence can be exploited in the verification

Let us then make some observations about the computa- Visible/weak equivalence. One concrete step in this resp

tional complexity of verifying modular equivalence of nor-
mal logic programs. In general, decidirg, is cONP-
hard, since deciding the weak equivalenBe= @ re-
duces to deciding P,#,Hb(P)) =, (Q,0,Hb(Q)). In
the fully visible caselib,(P) = Hby,(Q) = §, deciding
P =, Q can be reduced to deciding relativized uniform
equivalence? =! @ (Woltran 2004) and thus decidirsg,,
is coNP-complete in this restricted case. In the other ex-
treme,Hb,(P) = Hb,(Q) = § andP =, Q iff P and

is to reduce the problem of verifying,, to that of=, by
introducing a special modulé; that acts as a context gen-
erator. A similar technique is used by Woltran (2004) in tr
case of relativized uniform equivalence.

Theorem 4 Let P and Q be program modules such thai
Hb,(P) = Hb,(Q) = OUI. ThenP =, Qiff PUG; =,
QUG whereG; = ({a — ~a.a — ~a|a€cl},01)is

a module generating all possible inputs and Q.

Q have the same number of stable models. This suggests aProof sketch. Note thatG; has2!!/ stable models of the

much higher computational complexity of verifyirg, in
general because classical models can be captured witke stabl
models (Niemed 1999) and counting stable models cannot
be easier thag:SAT which is#P-complete (Valiant 1979).

A way to govern the computational complexity of ver-
ifying =, is to limit the use of hidden atoms as done in
the case ofs, by Janhunen and Oikarinen (2005). There-
from we adopt the property of havirenough visible atoms
(the EVA property for short) defined as follows. For a nor-
mal programP and an interpretatiod/, C Hb, (P) for
the visible part ofP, the hidden partP, /M, of P relative
M, contains for each rulé «— B*,~B~ € P such that
h € Hby(P) and M, = B} U~B;, the respective hid-
den parth — B;",~B, . The construction of the hidden
part P, /M, is closely related to the simplification operation
simp(P, T, F) proposed by Cholewinski and Truszéeki
(1999), but restricted in the sense thiaand F' are subsets
of Hb, (P) rather thartHb(P). More precisely put, we have
P, /M, = simp(P, M, Hb, (P) — M,) for any programp.

Definition 13 A normal logic programP has enough vis-
ible atoms iff P, /M, has a unique stable model for every
interpretationM, C Hb, (P).

The intuition behind Definition 13 is that the interpreta-
tion of Hby, (P) is uniquely determined for each interpreta-
tion of Hb, (P) if P has the EVA property. Consequently,
the stable models aP can be distinguished on the basis of
their visible parts. By the EVA assumption (Janhunen &
Oikarinen 2005), the verification of, becomes a&oNP-
complete problem fosMODELS programs involving hid-
den atoms. This complexity result enables us to generalize
the translation-based method from (Janhunen & Oikarinen

1This class of programs includes normal logic programs.

DEPARTMENT OF INFORMATICS

fom AU {a | a € I\ A} for eachA C I. ThusP =,
PuUGr andQ =, QU Gy follow by Definitions 2 and 4 and
Theorem 2. It follows thaP =, Q iff P(A) =, Q(A) for
a”AinﬁPUG[EVQUG]. O

As a consequence of Theorem 4, the translation-bas
technique from (Janhunen & Oikarinen 2005, Theorem 5.
can be used to veriff =,, Q given thatP andQ have
enough visible atoms¥; has the EVA property trivially).
More specifically, the task is to show tHaQT(PUG,, QU
Gr) andEQT(Q U G, P U Gy) have no stable models.

The introduction of modular equivalence was much mot
vated by the need of modularizing the verification of wee
equivalencé We believe that such a modularization coul
be very effective in a setting wherg is an optimized ver-
sion of P. Typically @ is obtained by making some local
modifications toP. In the following, we propose a further
strategy to utilize modular equivalence in the task of yerif
ing the visible/weak equivalence &fandq@.

An essential prerequisite is to identify a module stru
ture for P and@. Basically, there are two ways to achiew
this: either the programmer specifies modules explicitly
strongly connected componentsép(P) andDep T(Q)
are computed to detect them automatically. Assuming t
relationship ofP and@ as described above, it is likely that
these components are pairwise compatible and we can ps
tion P and@ so thatP = P,U- - -LP,, and@ = Q- - -UQ,
where the respective modul®s andQ; have the same in-
put and output. Note thdt; andQ; can be the same for a
number ofi’s under the locality assumption.

In this setting, the verification d; =, Q; for each pair
of modulesP; andQ; is not of interest a®; #,, Q; does

%Recall that=, coincides with= for programsP and@ having
equal and fully visible Herbrand bases.

15

.TU Clausthal
11TH NMR WORKSHOP

16

not necessarily imply° #, Q. However, the verification of
P =, Q can still be organized as a sequence tésts at the
level of modules, i.e. it is sufficient to show

Qlu"'l—l(@i—ll—lpil—l"'l—lpnEm

(@1|_|-~|_|Qi|—|Pi+1U"'|—|P” (2)

for eachl < ¢ < n and the resulting chain of equalities
conveysP =, @ under the assumption th&tand@ have a
completely specified input. If not, then,, can be addressed
using a similar chaining technique based on (2).

Example 5 Consider normal logic programg and @ both
consisting of two submodules, iB.= P, U Py and@Q =
Q1 U Q2 wherePy, P, Qq, andQ, are defined by

Py ({c & ~a.},{a, b}, {c}),

P, = ({a — b'}v 0, {CL, b})v

Q1 = ({ec ~b},{a,b},{c}), and
Q. ({b —a.},0,{a,b}).

Now,P; #,, Qq, butP; andQ, are visibly equivalent in all
contexts produced by both, and Qs (in this case actually
Py = Q5 holds, but that is not necessary). Thus

PyuPy =, QUPs =4 Q1 UQ2,
which verifiesP =, @ as well asP = Q.

It should be stressed that the programs involved in each

test (2) differ inlP; and Q; for which the other modules
form a common context, sa§;. A way to optimize the
verification of P; U C;, =, Q; U C; is to view C; as

a module generating input fdP; and Q; and to adjust

the translation-based method from (Janhunen & Oikarinen
2005) for such generators. More specifically, we seek com-

putational advantage from usifgQT(P;, Q;) U C; rather
thanEQT(P; U C;, Q; U C;) and especially when the con-
text C; is clearly larger than the modulds andQ;. By
symmetry, the same strategy is applicabl@tcandP;.

Related Work

The notion of modular equivalence is already contrasted
with other equivalence relations in previous sections.
Bugliesi, Lamma and Mello (1994) present an extensive
survey of modularity in conventional logic programming.
Two mainstream programming disciplines can be identified:
programming-in-the-largewhere programs are composed
with algebraic operators (O’Keefe 1985) ammbgramming-
in-the-smallwith abstraction mechanisms (Miller 1986).

Definition 8. However, their approach covers only positiv
programs and the least model semantics. Etalle and G
brielli (1996) restrict the composition afonstraint logic
program (CLP) modules with a condition that is close tc
ours:Hb(P)NHb(Q) € Hb, (P) NHb,(Q) but no distinc-
tion between input and output is made; e N O¢g # 0

is allowed according to their definitions. They also strive f
congruence relations but in the case of CLPs.

Eiter, Gottlob, and Mannila (1997) consider the class
disjunctive Datalogused as query programs over rela-
tional databases. As regards syntax, such programs are
junctive programs which cover normal programs (involvin
variables though) as a special case. The rough idea is 1
m is instantiated with respect to an input databBstor the
given input schem®. The resulting models of[D], which
depend on the semantics chosenfpare projected with re-
spect to an output schen$a To link this approach to ours,
it is possible to viewr as a program modul@ with input
I and outpuiO based orR and$, respectively. Ther|[D]
is obtained a¥(D). In contrast to our work, their mod-
ule architecture is based on bqgtbsitive and negative de-
pendenciesnd no recursion between modules is tolerate
These constraints enable a straightforward generalizafio
the splitting set theorem for the architecture.

Faberet al. (2005) apply thenagic set methoith the eval-
uation of Datalog programs with negation, i.e. effectivel
normal programs. This involves the concept of inde-
pendent seb of a programP which is a specialization of
a splitting set (recall Theorem 1). Roughly speaking, tt
idea is that the semantics of an independeniSsistnot af-
fected by the rest oP and thusS gives rise to anodule
T ={h+— B",~B~ € P | heS}of Psothatl C P
andHead(T) = S. Due to close relationship to splitting
sets, independent sets are not that flexible as regardd-pai
ing normal programs. For instance, the splittings dema
strated in Examples 2 and 4 are impossible with independ
sets. In certain cases, the distinctiondaingerous rulesn
the definition of independent sets pushes negative recurs
inside modules which is unnecessary in view of our resul
Finally, the module theorem of Fabetral. (2005) is weaker
than Theorem 2.

Eiter, Gottlob and Veith (1997) address modularity withi
ASP and view program modules generalized quantifiers
the definitions of which are allowed to nest, if¢can refer
to another modul&) by using it as a generalized quantifier
This is an abstraction mechanism typical to programmin
in-the-small approaches.

Our approach can be classified in the former discipline due Conclusion
to resemblance to that of Gaifman and Shapiro (1989). But In this article, we a propose a module architecture for log
stable model semantics and the denial of positive recursion programs in answer set programming. The compatibili
between modules can be pointed out as obvious differences of the module system and stable models is achieved
in view of their approach. allowing positive recursion to occur inside modules onl
A variety of conditions on modules have also been intro- The current design gives rise to a number of interesting |
duced. For instance, in contrast to our work, Maher (1993) sults. First, the splitting set theorem by Lifschitz andienr
forbids all recursion between modules and considers Przy- (1994) is generalized to the case where negative recurs
musinski'sperfect modelsather than stable models. Brogi is allowed between modules. Second, the resulting noti
et al. (1994) employ operators for program composition and of modular equivalencé a proper congruence relation fol
visibility conditions that correspond to the second item in the join operation between modules. Third, the verificatic

Technical Report IfI-06-04

of modular equivalence can be accomplished with existing

methods so that specialized solvers need not be developed.

Last but not least, we have a preliminary understanding how
the task of verifying weak equivalence can be modularized
using modular equivalence.

Yet the potential gain from the modular verification strat-
egy has to be evaluated by conducting experiments. A fur-
ther theoretical question is how the existing model theory
based orSE-modeland UE-modelgEiter & Fink 2003) is
tailored to the case of modular equivalence. There is also a
need to expand the module architecture and module theorem
proposed here to cover other classes of logic programs such
as e.g. weight constraint programs, disjunctive programs,
and nested programs.

References

Brogi, A.; Mancarella, P.; Pedreschi, D.; and Turini, F.
1994. Modular logic programmingdACM Transactions on
Programming Languages and Systelf$4):1361—-1398.
Bugliesi, M.; Lamma, E.; and Mello, P. 1994. Modular-
ity in logic programming.Journal of Logic Programming
19/20:443-502.

Cholewinski, P., and Truszciagki, M. 1999. Extremal
problems in logic programming and stable model compu-
tation. Journal of Logic Programmin88(2):219-242.
Clark, K. L. 1978. Negation as failure. In Gallaire, H., and
Minker, J., eds.L.ogic and Data BasedNew York: Plenum
Press. 293-322.

Eiter, T., and Fink, M. 2003. Uniform equivalence of logic
programs under the stable model semantic®rbrt. of the
19th International Conference on Logic Programmixgl-
ume 2916 oLNCS 224-238. Mumbay, India: Springer.
Eiter, T.; Fink, M.; Tompits, H.; and Woltran, S. 2004.
Simplifying logic programs under uniform and strong
equivalence. InProc. of the 7th International Confer-
ence on Logic Programming and Nonmonotonic Reason-
ing, volume 2923 oL NAI, 87-99. Fort Lauderdale, USA:
Springer.

Eiter, T.; Gottlob, G.; and Mannila, H. 1997. Disjunc-
tive datalog. ACM Transactions on Database Systems
22(3):364-418.

Eiter, T.; Gottlob, G.; and Veith, H. 1997. Modular logic
programming and generalized quantifiers. Pioc. of the
4th International Conference on Logic Programming and
Nonmonotonic Reasoningolume 1265 ofLNCS 290-
309. Dagstuhl, Germany: Springer.

Eiter, T.; Tompits, H.; and Woltran, S. 2005. On solution
correspondences in answer-set programmingPrbt. of
19th International Joint Conference on Atrtificial Intelli-
gence 97-102. Edinburgh, UK: Professional Book Center.
Etalle, S., and Gabbrielli, M. 1996. Transformations
of CLP modules. Theoretical Computer Sciend®6(1-
2):101-146.

Faber, W.; Greco, G.; and Leone, N. 2005. Magic sets
and their application to data integration. Pmoc. of 10th
International Conference on Database Theory, ICDT'05
volume 3363 oL.NCS 306—320. Edinburgh, UK: Springer.

DEPARTMENT OF INFORMATICS

Answer Set Programming

Gaifman, H., and Shapiro, E. 1989. Fully abstract cor
positional semantics for logic programs. Mioc. of the
16th ACM SIGPLAN-SIGACT symposium on Principles
programming languagesl34-142. Austin, Texas, USA:
ACM Press.

Gelfond, M., and Leone, N. 2002. Logic programmin
and knowledge representation — the A-Prolog perspecti
Artificial Intelligence138:3—-38.

Gelfond, M., and Lifschitz, V. 1988. The stable mode
semantics for logic programming. Rroc. of the 5th Inter-
national Conference on Logic Programmint070-1080.
Seattle, Washington: MIT Press.

Janhunen, T., and Oikarinen, E. 2002. Testing the equi
lence of logic programs under stable model semantics.
Proc. of the 8th European Conference on Logics in Artif
cial Intelligence volume 2424 of NAI, 493-504. Cosenza,
Italy: Springer.

Janhunen, T., and Oikarinen, E. 2005. Automated veri
cation of weak equivalence within treMODELS system.
Submitted to Theory and Practice of Logic Programminc

Janhunen, T.; Niem&] |.; Seipel, D.; Simons, P.; and You,
J.-H. 2006. Unfolding partiality and disjunctions in sta
ble model semanticA\CM Transactions on Computational
Logic 7(1):1-37.

Janhunen, T. 2003. Translatability and intranslatabili
results for certain classes of logic programs. Series A: k
search report 82, Helsinki University of Technology, Lak
oratory for Theoretical Computer Science, Espoo, Finlar

Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.
and Scarcello, F. 2006. The DLV system for knowledc
representation and reasoninCM Transactions on Com-
putational Logic Accepted for publication.

Lifschitz, V., and Turner, H. 1994. Splitting a logic
program. InProc. of the 11th International Conference
on Logic Programming23-37. Santa Margherita Ligure,
Italy: MIT Press.

Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongl
equivalent logic programsACM Transactions on Compu-
tational Logic2(4):526-541.

Maher, M. J. 1993. A transformation system for deducti
database modules with perfect model semanii¢eoreti-
cal Computer Scienc&l0(2):377-403.

Marek, W., and Truszchski, M. 1999. Stable models anc
an alternative logic programming paradigm. The Logic
Programming Paradigm: a 25-Year Perspecti@pringer-
Verlag. 375-398.

Miller, D. 1986. A theory of modules for logic program-
ming. InProc. of the 1986 Symposium on Logic Prograrn
ming, 106-114. Salt Lake City, USA: IEEE Computer Sa
ciety Press.

Niemeh, |. 1999. Logic programming with stable mode
semantics as a constraint programming paradigmnals
of Math. and Artificial Intelligenc@5(3-4):241-273.
Oikarinen, E., and Janhunen, T. 2004. Verifying the equi
alence of logic programs in the disjunctive casePtac. of
the 7th International Conference on Logic Programmin

17

.TU Clausthal
11TH NMR WORKSHOP

18

and Nonmonotonic Reasoninglume 2923 of NAI, 180—
193. Fort Lauderdale, USA: Springer.

O’Keefe, R. A. 1985. Towards an algebra for constructir
logic programs. IrProc. of the 1985 Symposium on Logi
Programming 152—-160.

Sagiv, Y. 1987. Optimizing datalog programs.Rroc. of

the 6th ACM SIGACT-SIGMOD-SIGART Symposium
Principles of Database System349-362. San Diego,
USA: ACM Press.

Simons, P.; Niemé, |.; and Soininen, T. 2002. Extendin¢
and implementing the stable model semantidstificial
Intelligencel38(1-2):181-234.

Turner, H. 2003. Strong equivalence made easy: Nes
expressions and weight constrainfBheory and Practice
of Logic Programming(4-5):609-622.

Valiant, L. G. 1979. The complexity of enumeration and re
liability problems.SIAM Journal on Computing(3):410—
421.

Woltran, S. 2004. Characterizations for relativized nt
tions of equivalence in answer set programmingioc. of
the 9th European Conference on Logics in Artificial Inte
ligence volume 3229 of.NAI, 161-173. Lisbon, Portugal:
Springer.

Technical Report IfI-06-04

Answer Set Programming

DEPARTMENT OF INFORMATICS 19

.TU Clausthal
11TH NMR WORKSHOP

1.2 A Tool for Advanced Correspondence Checking in Answer-Set

Programming

A Tool for Advanced Correspondence Checking in Answer-Set Programming

Johannes Oetsch

Martina Seidl|

Hans Tompits and Stefan Woltran

Institut fur Informationssysteme 184/3, Institut fur Softwaretechnik 188/3, Institut fur Informationssysteme 184/3,

Technische Universit Wien,
Favoritenstraf3e 9-11,
A-1040 Vienna, Austria
oetsch@kr.tuwien.ac.at

Abstract

In previous work, a general framework for specify-
ing correspondences between logic programs under the
answer-set semantics has been defined. The framework
allows to define different notions of equivalence, in-
cluding well-known notions likestrong equivalencas

well as refined ones based on t®jectionof answer
sets, where not all parts of an answer set are of rele-
vance (like, e.g., removal of auxiliary letters). In the
general case, deciding the correspondence of two pro-
grams lies on the fourth level of the polynomial hier-
archy and therefore this task can (presumably) not be
efficiently reduced to answer-set programming. In this
paper, we describe an implementation to verify program
correspondences in this general framework. The sys-
tem, called c@, relies on linear-time constructible re-
ductions toquantified propositional logiaising extant
solvers for the latter language as back-end inference en-
gines. We provide some preliminary performance eval-
uation which shed light on some crucial design issues.

Introduction

Technische Universit Wien,
Favoritenstraf3e 9-11,
A-1040 Vienna, Austria
seidl@big.tuwien.ac.at

Technische Universit Wien,
Favoritenstraf3e 9-11,
A-1040 Vienna, Austria
{tompits,stefah@kr.tuwien.ac.at

have been studied in the literature, including the recen
proposed framework by Eiter, Tompits, & Woltran (2005]
which subsumes most of the previously introduced notior
Within this framework, correspondence between two pr
grams, P and), holds iff the answer sets d® U R and
Q@ U R satisfy certain criteria, for any prograRin a spec-
ified class, called theontext We shall focus here on cor-
respondence problems where both the context and the c«
parison between answer sets are determined in terrak of
phabets This kind of program correspondence includes, i
special instances, the well-known notionsstfong equiva-
lence(Lifschitz, Pearce, & Valverde 2001yniform equiv-
alence(Eiter & Fink 2003), its relativised variants thereo
(Woltran 2004), as well as the practicably important ca:
of program comparison underojectedanswer sets. In the
last setting, not a whole answer set of a program is of i
terest, but only its intersection on a subset of all lett#is;
includes, in particular, removal of auxiliary letters.

For illustration, consider the following two programs
which both express the selection of exactly one of the atol
a, b. An atom can only be selected if it can be derived tc
gether with the context:

Nonmonotonic logic programs under the answer-set seman-
tics (Gelfond & Lifschitz 1991), with which we are dealing
with in this paper, represent the canonical and, due to the
availability of efficient answer-set solvers, arguably mos
widely used approach to answer-set programming (ASP).
The latter paradigm is based on the idea that problems are
encoded in terms of theories such that the solutions of a
given problem are determined by the models (“answer sets”)
of the corresponding theory. Logic programming under the
answer-set sgmantigs has E)/econgwe eE)n irgnportantghost for solv- sel(a) V sel(b) < b; }.
ing many Al problems, including planning, diagnosis, and Both programs use “local” atomsyt(-) andfail, respec-
inheritance reasoning (cf. Gelfond & Leone (2002) for an tively, which are expected not to appear in the context.
overview). order to compare the programs, we could specify an alpt
To support engineering tasks of ASP solutions, an im- pet, A, for the context, for instancé = {a, b}, or, more
portant issue is to determine the equivalence of different generally, any sefl of atoms not containing the local atoms
problem encodings. To this end, various notions of equiv- out(a), out(b), and fail. On the other hand, we want to
alence between programs under the answer-set semanticscheck whether, for each addition of a context program ov
A, the answer sets correspond when taking only atoms fr

P = { sel(b) < b, not out(b);
sel(a) < a, not out(a);
out(a) V out(b) «— a,b; }.

Q = { fail — sel(a), not a, not fail;
fail — sel(b), not b, not fail,
sel(a) V sel(b) — a;

*This work was partially supported by the Austrian Science .
Fund (FWF) under grant P18019; the second author was also sup- B = tsel(a), sel(b)} into account. .
ported by the Austrian Federal Ministry of Transport, Innovation, In this paper, we report about an implementation of sur
and Technology (BMVIT) and the Austrian Research Promotion correspondence problems together with some initial exp
Agency (FFG) under grant FIT-IT-810806. imental results. The overall approach of the system, whi

20 Technical Report IfI-06-04

we call ccT (“correspondence-checking tool”), is to reduce
the problem of correspondence checking to the satisfigbilit
problem ofquantified propositional logican extension of
classical propositional logic characterised by the caolit
that its sentences, usually referred togasntified Boolean
formulas (QBFs), are permitted to contain quantifications
over atomic formulas.

The motivation to use such an approach is twofold. First,
complexity results (Eiter, Tompits, & Woltran 2005) show
that correspondence checking within this framework is hard
lying on the fourth level of the polynomial hierarchy. This

indicates that implementations of such checks cannot be re-
alised in a straightforward manner using ASP systems them-

selves. In turn, it is well known that decision problems from
the polynomial hierarchy can be efficiently represented in
terms of QBFs in such a way that determining the valid-
ity of the resultant QBFs is not computationally harder than
checking the original problem. In previous work (Tompits
& Woltran 2005), such translations from correspondence

Answer Set Programming

discussion how these encodings (and thus the present :
tem) behave in the case the specified correspondence ¢
cides with special equivalence notions. Then, we addre
some technical questions which arise when applying the ¢
codings to QBF solvers which require its input to be in
certain normal form. Finally, we present the concrete syste
ccT and illustrate its usage. The penultimate section is ¢
voted to experimental evaluation and comparisons. We c(
clude with some final remarks and pointers to future work

Preliminaries

Throughout the paper, we use the following notation: For i
interpretation/ (i.e., a set of atoms) and a sebf interpre-
tations, we writeS|; = {Y NI | Y € S}. For a singleton
setS = {Y'}, we writeY|; instead ofS|;, if convenient.

Logic Programs
We are concerned withropositional disjunctive logic pro-

checking to QBFs have been developed; moreover, they are 9@ms(DLPs) which are finite sets of rules of form

constructible idinear time and spaceSecond, various prac-
ticably efficient solvers for quantified propositional logire
currently available (see, e.g., Le Begtal. (2005)). Hence,

a1V -V ag < aui1y ...y Gy MOt Gty ..., n0t ay, (1)

n>m>1>0, where alla; are propositional atoms from

such tools are used as back-end inference engines in our sys-some fixed universé/ and not denotes default negation.
tem to verify the correspondence problems under considera- If all atoms occurring in a prograr® are from a given set

tion.

A C U of atoms, we say thaP is a progranover A. The

We note that reduction methods to QBFs have been suc- set of all programs oved is denoted byP 4.

cessfully applied already in the field of nonmonotonic rea-
soning (Eglyet al. 2000; Delgrandet al. 2004), paracon-
sistent reasoning (Besnaed al. 2005; Arieli & Denecker
2003), and planning (Rintanen 1999).

Previous systems implementing different forms of equiv-

alence, being special cases of correspondence notions in

the framework of Eiter, Tompits, & Woltran (2005), also

Following Gelfond & Lifschitz (1991), an interpretatidn
is ananswer sebf a program iff it is a minimal model of
thereduct P7, resulting fromP by

e deleting all rules containing default negated atomsa
such that € I, and

o deleting all default negated atoms in the remaining rule

based on a reduction approach, are SELP (Chen, Lin, & The collection of all answer sets of a progrdis denoted

Li 2005) and DLPEQ (Oikarinen & Janhunen 2004). Con-

by AS(P).

cerning SELP, here the problem of checking strong equiva- In order to semantically compare programs, different n
lence is reduced to propositional logic, making use of SAT tions of equivalence have been introduced in the conte
solvers as back-end inference engines. Our system gener-of the answer-set semantics. Besidedinary equivalence
alises SELP in the sense thafichandles a correspondence between programs, which checks whether two prograi
problem which coincides with a test for strong equivalence have the same answer sets, the more restrictive notions
by the same reduction as used in SELP. The system DLPEQ, strong equivalencfLifschitz, Pearce, & Valverde 2001) anc
on the other hand, is capable of comparing disjunctive logic uniform equivalencéEiter & Fink 2003) have been intro-
programs under ordinary equivalence. Here, the reducfion o duced. Two programs? and@, are strongly equivalent iff
a correspondence problem results in further logic programs AS(P U R) = AS(Q U R), for any programR, and they
such that the latter have no answer set iff the encoded prob- are uniformly equivalent ifAS(P U R) = AS(Q U R), for
lem holds. Hence, this system uses answer-set solvers them-any setR of facts i.e., rules of forru «, for some atona.
selves in order to check for equivalence. Also, relativised equivalence notions, taking the alphaibe
The methodologies of both of the above systems have the extension sek into account, have been defined (Woltra
in common that their range of applicability is restricted to 2004).
very special forms of program correspondences, while our In abstracting from these notions, Eiter, Tompits, ¢
new system c€ provides a wide range of more fine-grained Woltran (2005) introduced a general framework for spec

equivalence notions, allowing practical comparisons ulsef
for debugging and modular programming.
The outline of the paper is as follows. We start with re-

fying differing notions of program correspondence. In thi
framework, one parameterises, on the one hand;aheext
i.e., the class of programs used to be added to the progre

capitulating the basic facts about logic programs under the under consideration, and, on the other hand, the relatain t

answer-set semantics and quantified propositional logic. |

has to hold between the collection of answer sets of the ¢

describing how to implement correspondence problems, we tended programs. More formally, the following definitior
first give a detailed review of the encodings, followed by a has been introduced:

DEPARTMENT OF INFORMATICS 21

.TU Clausthal
11TH NMR WORKSHOP

22

Definition 1 A correspondence framg, is a triple (U, C,
p), wherel/ is a set of atoms, called theniverse ofF, C C
Py, called thecontext of 7, andp C 22 5 92"

Two programsP, Q € Py, are calledF-correspondingin
symbolsP ~x Q, iff, forall R € C, (AS(P U R), AS(Q U
R)) € p.

Clearly, the equivalence notions mentioned above are spe-

cial cases offF-correspondence. Indeed, for any univdise
and anyA C U, strong equivalence relative t# coincides

with (U, P4, =)-correspondence, and ordinary equivalence

coincides with(/, {0}, =)-correspondence.

Following Eiter, Tompits, & Woltran (2005), we are con-
cerned with correspondence frames of fofbh P4, Cg)
and(U,Pa,=g), where A, B C U are sets of atoms and

Cp and=gp are projections of the standard subset and set-

equality relation, respectively, defined as follows: foyan
setS, S’ of interpretationsS Cp S’ iff S| C S|, and
S=p§iff S|p=5'|5.

A correspondence problenil, (overi{) is a quadruple
(P,Q,C,p), whereP,Q € P, and(U,C, p) is a correspon-
dence frame. We say théat holdsiff P ~¢ ¢) @ holds.
For a correspondence problerh = (P,Q,C, p) overl,
we usually leaveé/ implicit, assuming that it consists of all
atoms occurring inP, @, andC. We callIl anequivalence
problemif p is given by=g, and aninclusion problenif p
is given byCpg, for someB C Y. Note that(P, Q,C,=p)
holds iff (P, @,C, Cr) and(Q, P,C, Cg) jointly hold.

The next proposition summarises the complexity land-

scape within this framework (Eiter, Tompits, & Woltran
2005; Pearce, Tompits, & Woltran 2001; Woltran 2004).

Proposition 1 Given programsP and @, sets of atomsi
and B, andp € {Cp,=p}, deciding whether a correspon-
dence probleniP, Q, P4, p) holds is:

1. If’-complete, in general;

2. I1f’-complete, ford = §;

3. TI¥-complete, forB = U;

4. coNRcomplete ford = U.

tain quantifications over propositional variables. In jgart
lar, this language contains, for any at@munary operators
of form Vp and3dp, calleduniversalandexistential quanti-
fiers respectively, wherép is defined as-Vp—. Formulas
of this language are also callgdantified Boolean formulas
(QBFs), and we denote them by Greek upper-case letters

Given a QBFQp ¥, for Q € {3,V}, we call ¥ thescope
of Qp. An occurrence of an atomis freein a QBF @ if it
does not occur in the scope of a quantif@rin ®. In what
follows, we tacitly assume that every subform@a ® of a
QBF contains a free occurrencefn @, and for two dif-
ferent subformula®p @, Qq ¥ of a QBF, we require # q.
Moreover, given a finite s&t of atoms QP ¥ stands for any
QBF Qp1Qp- ... Qp, V¥ such that the variables, ..., p,
are pairwise distinct an® = {p1,...,p,}. Finally, for an
atomp (resp., a seP of atoms) and a sdtof atoms,®[p/]
(resp.,®[P/I]) denotes the QBF resulting frofnby replac-
ing each free occurrence pf(resp., eaclp € P)in ® by T
if p € I and by L otherwise.

For an interpretatiod and a QBF®, the relation] =
® is inductively defined as in classical propositional logic
whereby universal quantifiers are evaluated as follows:

I =Vp ®iff I = ®p/{p}] andI = B[p/0)].

A QBF @ istrue underl iff I = @, otherwised is false
underi. A QBF issatisfiableff it is true under at least one
interpretation. A QBF iwalid iff it is true under any inter-
pretation. Note that alosedQBF, i.e., a QBF without free
variable occurrences, is either true under any interpogtat
or false under any interpretation.

A QBF @ is said to be irprenex normal fornfPNF) iff it
is closed and of the form

QnPn-~-Q1P1¢a (2)

wheren > 0, ¢ is a propositional formulaQ; € {3,V}
such thatQ; # Q;11 forl1 < i <n-—-1, (P,...,BP,)is
a partition of the propositional variables occurringsinand
P; #), for eachl < i < n. We say thafb is in prenex con-
junctive normal form{(PCNF) iff ® is of the form (2) and is

While Case 1 provides the result in the general setting, for in conjunctive normal form. Furthermore, a QBF of form (2
the other cases we have the following: Case 2 amounts to is also referred to as gm, Q,,)-QBF. Any closed QBF® is

ordinary equivalence with projectione., the answer sets of
two programs relative to a specified ¢&bf atoms are com-
pared. Case 3 amounts $trong equivalence relative té
and includes, as a special case, viz. for= (), ordinary
equivalence Finally, Case 4 includestrong equivalence
(for B = U) as well as strong equivalence with projection.

easily transformed into an equivalent QBF in prenex norm
form such that each quantifier occurrence from the origin
QBF corresponds to a quantifier occurrence in the pren
normal form. Let us call such a QBF theesnex normal form

of ®. However, there are different ways to obtain an equi
alent prenex QBF (cf. Eglgt al. (2004) for more details on

TheII}’-hardness result shows that, in general, checking this issue). The following property is essential:

the correspondence of two programs cannot (presumably)
be efficiently encoded in terms of ASP, which has its basic
reasoning tasks located at the second level of the polydomia

hierarchy (i.e., they are containedi or I1}’). However,

correspondence checking can be efficiently encoded in terms

of quantified propositional logicwhose basic concepts we
recapitulate next.

Quantified Propositional Logic

Quantified propositional logic is an extension of classical
propositional logic in which formulas are permitted to con-

Proposition 2 For everyk > 0, deciding the truth of a

given(k, 3)-QBF (resp.,(k, ¥)-QBF) is ©F-completeresp.,
17 -completg.

Hence, any decision problefin - (resp.,I1)) can be
mapped in polynomial time to &, 3)-QBF (resp.,(k,V)-
QBF) @ such thatD holds iff ® is valid. In particular any
correspondence proble(®, Q, P4, p), for p € {Cp,=5},
can be reduced in polynomial time tdq4 V)-QBF. Our im-
plemented tool, described next, relies on two such mappin
which are actually constructible Imear space and time

Technical Report IfI-06-04

Computing Correspondence Problems
We now describe the systemTTcwhich allows to verify

Answer Set Programming

Formally, we have the following relation: L&t be a pro-
gram over atomd/, I an interpretation, and(,Y C V

the correspondence of two programs. It relies on efficient Such that, for some, j, I|y, = X; andI[y, =Y. Then,
reductions from correspondence problems to QBFs as de- X = PY iff I = P; ;. Hence, we are able to characteris
veloped by Tompits & Woltran (2005). These encodings models ofP (in case that = j) as well as models of certain
are presented in the first subsection. Then, we discuss how reducts ofP (in case that # j).

the encodings behave if the specified correspondence prob- Having defined these building blocks, we proceed wi
lem coincides with special forms of inclusion or equivalenc the first encoding.

problems, viz. those restricted cases discussed in Proposi Definition 2 Let P, Q be programs oveV, let A, B C V,

tion 1. Afterwards, we give details concerning the transfor o ; ;
mation of the resultant QBFs into PCNF, which is necessary andletll = (P, Q, P4, C5) be an inclusion problem. Then,

because most extant QBF solvers rely on input of this form.
Finally, we give some details concerning the general syntax
and invocation of the ¢ tool.

S[I] := -3V, (PM ASL(P, A)A
¥Va(S2(Q, A, B) — S3(P,Q, A))),

Basic Encodings

Following Tompits & Woltran (2005), we consider two dif- 1 . _ .
ferent reductions from inclusion problems to QB&§] and) SHUP, A) =91a(((A2 = A) A (Vs < V1)) =2 2),
T[], whereT[] can be seen as an explicit optimisation of > (@4, B) := ((AUB)s = (AU B)1) AQss, and
S[-]. Recall that equivalence problems can be decided by the S*(P,Q, A) :=3Vy((Va < V3) A Qu3 A ((Ag < Ay) —
composition of two inclusion problems. Thus, a composed VVs(((As=A)A (Vs < V1)) ——P5 1))).
encoding for equivalence problems is easily obtained via a

In fact, the scope, of 3V; encodes the conditions for

conjunction of two particular instantiations 8f] (or T[-]). deciding whether a so-callezhrtial spoiler (Eiter, Tompits

For our encodings, we use the following building blocks. A - ;
The idea hereby is to use sets of globally new atoms in or- & Woltran 2005) for the inclusion probler exists. Such
spoilers test certain relations on the reducts of the twe pi

der to refer to different assignments of the atoms from the - -) ut /
compared programs within a single formula. More formally, 9rams involved, in (_)rgler to avoid an explicit enumeration (
for IT exists iff IT doesnot hold. Hence, the resulting encod-

joint copiesV; = {v; | v € V'}, for everyi > 1. Further- _ : _— _

more, we introduce the following abbreviations: ing ¢ is unsatisfiable ifff holds, and thus the closed QBF
1 (V. <V e , S[I] = =3V, @ is valid iff IT holds.

- (Vi< V)= Npev (vi = v5); In more concrete terms, given a correspondence pre
2. (Vi< V) =(V; < V) A=(V; <£V;); and lem IT and its encoding[II] = —3V;®, the general task
3.(Vi=Vy) = (V; V) A(V; < V). of the QBF & is to test, for an answer-set candidafeof

L o S P, that noY with Y|z = X|p becomes an answer set o

Observe that the latter is equivalentg ., (v; < v;). @ under some implicitly considered extension (in fact, it i

Roughly speaking, these three “operators” allow us to

. sufficient to check only potential candidatgésof the form
compare different subsets of atoms from a commoniset,

. ; : _ Y|aus = X|aup). Now, the subformuld? ; A ST(P, A)
under subset inclusion, proper-subset inclusion, andlequa a5 whetherX is such a candidate foP. with X being
ity, respectively. The comparison takes place withisira '

! : i ; represented by;. In the remaining part of the encoding
gle interpretation while evaluating a formula. As an ex- g2 4 B)retums as its models those potential candidat
ample, considel’ = {v,w,u} and an interpretatiod = Y (represented by) for being answer set of). These
{v1, v, wo}, implicitly representing set&” = {v} (via the candidates are now checked to be non-minimal and whet|
relationI|y, = {v1}) andY = {v,w} (via the relation

here is a furth I f th f
Ilv, = {vs,ws}). Then, we have thi; < V3) as well as there is a further model (representedityy of the reduct o

X) with respect taY” surviving an extension af), for which
(Vi < Va) are true undef which matches the observation @ b - av

2 . 3 X turns into an answer set of the extensiornfof
that X is indeed a proper subset &f, while (V1 = V2) is In what follows, we review a more compact encodin
false under reflecting the fact thak” # Y.

| d hi) ¢ b which, in particular, reduces the number of universal qua
n accordance to this renaming of atoms, we use sub- ifications. The idea is to save on the fixed assignments,
scripts as a general renaming schema for formulas and rules.e.g. inS2(Q, A, B), where we havéA U B); = (AU B),.
That is, for each > 1, oy expresses the result of rgplacmg Thatis, inS2’(Q:A, B), we implicitly ignore all assignments
?aCh :)ccurrelnceFof ?]n atomin fo‘ by pi’e V\;hferea '13 any to V3 where atoms frond or B have different truth values
dorp“gm rule. Furt ermc;;(i, or a ruteof form (1), Wg as the corresponding assignment¥toTherefore, it makes
efineH(r) = a1 V---Va, BT (r) = aip1 A~ Ny, an sense to consider only atoms frdfg\ (A3 U Bs) and using
B (T) = B TN _‘(l»,}. We Ident!fy empty dlS]UnC' A; U By instead Ong U B3 in Q3 3.
tions with | and empty conjunctions with. Finally, for a This calls for a more subtle 7renaming schema for pr
program?, we define grams, however. LeY be a set of indexed atoms, and le
— V .
P = /\ ((B*(ri) AB~(r;)) — H(ri)). r Ipe arule. Thenf;z’_k results fromr by replacing gach atom
rcP x in r by x;, providingz; € V, and byz, otherwise. For a

where

DEPARTMENT OF INFORMATICS 23

.TU Clausthal
11TH NMR WORKSHOP

24

programP, we define

P'B,jj,k = /\ ((BJF(?"Xk) A Bi(r;j,k)) — H(Tyk))
repP
Moreover, for every > 1, every sef of atoms, and every
setC, VC = (V\ O);.

Definition 3 Let P, Q be programs ovel and A, B C V.
Furthermore, lefl = (P, Q, P, Cp) be an inclusion prob-
lemandV = V; U VA U VAYB UV, U VA Then,

T == -3n; (PM ATYP, A, VA
WAYE (QYan — THP,Q.AV)),

where
THP, A V) =YV (V5 < Vi) — -PY, ;) and
T3(P,Q,AV):= 3V4((V4 < ((AuB)1 U V}SAUB))/\
QY31 A ((As < Ap) —
vV5A((V£’>A < VlA) - _‘P5‘f1,4)))-
Note that the subformuld;, < ((AUB); U Vi*YP) in
T3(P,Q, A, V) denotes
(((AUB)s < (AUB)y) A (VAYB < VAYB) A
=(((AUB); < (AU B)4) A (V5'VB < VAYB)).
Also note that, compared to our first encodBi@l], we do

not have a pendant to subformua here, which reduces
simply toQ3V73,1 due to the new renaming schema.

Proposition 3 (Tompits & Woltran 2005) For any inclu-
sion problemIl, the following statements are equivalent:
(1) I holds; (ii) S[II] is valid; and(iii) T[II] is valid.

In what follows, let, for every equivalence probldin=
(P, Q, P4, =p), II" andIl” denote the associated inclusion
prOblems(Pa Q7 PAv gB) and (Q’ Pa PA7 gB)i respec-
tively.

Corollary 1 For any equivalence probleit, the following
statements are equivalent) IT holds; (ii) S[IT']A S[IT"] is
valid; and (iii) T[II')A T[II"] is valid.

Special Cases

We now analyse how our encodings behave in certain in-
stances of the equivalence framework which are located at

lower levels of the polynomial hierarchy (cf. Proposition 1
We point out that the following simplifications are corre-
spondingly implemented within our system.

In the case oftrong equivalencéLifschitz, Pearce, &
Valverde 2001), i.e., problems of forfh= (P, Q, P4, =4)
with A = U, the encoding§ [II'] andT[II"] can be drasti-
cally simplified, since/;* = VA = VA = (). In particular,
T[II'] is equivalent to

-3V (P171 N (Q171 — E|V4((V4 < Vl) A\ Q471 A —|P471))).

Now, the composed encoding for strong equivalence, ie., th

QBF T[II'] A T[IT”], amounts to a single propositional un-

satisfiability test, withessing the coNP-completeness-com

plexity for checking strong equivalence (Pearce, Tomgits,

Woltran 2001; Lin 2002). This holds also for problems ¢
the form (P, Q, Py, =g) with arbitrary B. One can show
that similar reductions (Pearce, Tompits, & Woltran 200
Lin 2002) for testing strong equivalence in terms of propos
tional logic are simple variants thereof. Indeed, the methc
ology of the tool SELP (Chen, Lin, & Li 2005) is basically
mirrored in our approach, in case the parameterisationeof
given problem corresponds to a test for strong equivalenc

Strong equivalenceelative to a setA of atoms (Woltran
2004), i.e., problems of forrP, Q, P4, =p) with B = U,
also yields simplifications withinl [II'] and T[II”], since
VAYE = (). In fact, T[IT'] can be rewritten to

—3Vi (Pra AV (VS < Vi) — =Py 1) A
(Q11 — AVa((Va < Vi) AQaaA

((As < A1) = VVA((VA < V) — =PYL D))

When putting this QBF into prenex normal form (see b
low), it turns out that the resulting QBF amounts t(2av)-
QBF, again reflecting the complexity of the encoded tas
Notice that for equivalence probleni®, Q, P4,=p) with
AU B = U, we also have that;'“? = (. Thus, the same
simplifications also apply for this special case.

The case of ordinary equivalence, i.e., considering prc
lems of formIl = (P, Q, P4, =) with A = {), is, indeed, a
special case of relativised strong equivalence. As an ac
tional optimisation we can drop the subformula

(A < A1) = V(' < V) = =P ,) (3

from partT? of T[II']. This is becausd = (), and therefore

(A4<A1) = /\ (a4—>a1)/\—| /\ (a1—>a4)

acA a€A

reduces tol A =T, and thus talL. Hence, the validity of
the implication (3) follows. However, this does not affec
the number of quantifier alternations compared to the c:
of relativised strong equivalence. Indeed, this is in agcc
with theTIZ’-completeness for ordinary equivalence. Puttir
things together, and observing that for= () we havel;! =
V4, the encodingl [IT'] results for ordinary equivalence in

=% (Pl,l /\VVQ((VQ < Vi) — ﬁPQ,l)/\
(@i — IVa((Va < Vi) A Q4,1)))~

This encoding is related to encodings for computing ansv
sets via QBFs, as discussed by Egtyal. (2000). Indeed,
taking the two main conjuncts fromi[II'], viz.

Py AVVa((Va < Vi) — =Py 1) and (4)
Qi1 — IVa(Va < Vi) A Qun), (5)

we get, for any assignmeif, C V7, thatY; is a model of
(4) iff Y is an answer set aP, andY; is a model of (5) only
if Y is not an answer set @j.

Finally, we discuss the case of ordinary equivalence w
projection, i.e., problems of foriP, Q, P4, =p) with A =
(. Problems of this form arél{-complete, and thus we
expect our system (after transformation to prenex form)

Technical Report IfI-06-04

Answer Set Programming

yield (3, ¥)-QBFs. Here, the only simplification isto getrid Here, the left branch results from the subformsitaand the
off the subformula (3). We can do this for the same reason, right one results from the subformué/’sz(S?(Q, A, B) —
viz. sinceA = (), as above. The simplifications are then as S3(P,Q, A)).

follows (once again using the fact thiy* = V5 as well as Inspecting these quantifier dependencies, we can grc

VAYE = VB 3V; either together witidV; or with 3V5. This yields the
-~V (Pl,l A VVQ((VQ < W) — ﬁP2,1)/\ following two basic ways for prenexing our encodings:
VWP (QY s, — IVa((Va < (BLUVE)) AQY51))). 10 WA 3(Va U Va)VVa3Vs; and | VV33VaYVA3(Vs U V).

Compared to the case of relativised equivalence, as dis-
cussed above, this time we haVg'“? £ () and thus an
additional quantifier alternation “survives” the simplific
tion. After bringing the encoding into its prenex form, we
therefore get3, V)-QBFs, once again reflecting the intrinsic e ; .
complexitg o(f t7he) e?\coded problgem. g show their different performance behaviour (relative te tt
For the encoding|-], the structure of the resulting QBF ~ €Mployed QBF solver and the benchmarks).

always reflects the complexity of the correspondence prob- ~Concerning the transformation of the propositional pa
lem according to Proposition 1. This does not hold for for- ©Of @ prenex QBF into CNF, we use a method followin
mulas stemming fron$[-], however. In any case, our tool ISeitin (1968) in which new atoms are introduced abbrevi
implements both encodings in order to provide interesting ing subformula occurrences and which has the property tl
benchmarks for QBF solvers with respect to their capability the resultant CNFs are always polynomial in the size of ti

Together with the two encodings:] and T[-], we thus get
four different alternatives to represent an inclusion peob
in terms of a prenex QBF; we will denote them By][-],
Si[], T+[-], andT [-], respectively. Our experiments below

to find implicit optimisations for equivalent QBFs. input formula. Recall that a standard translation of a prop
sitional formula into CNF based on distributivity laws ydsl
Transformations into Normal Forms formulas of exponential size in the worst case. However, t

Most available QBF solvers require its input formula to be Normal form translation into CNF using labels is not valid
in a certain normal form, viz. in prenex conjunctive normal Ity Preserving like the one based on distributivity laws bt

form (PCNF). Hence, in order to employ these solvers for only satisfiability equivalent In the case of closed QBFs,
our tool, the translations described above have to be trans- the following result holds:

formed by a further two-phased normalisation step: Proposition 4 Let® = Q,, P, Q1 P16, for Q; € {3,}
- ntn-..-141¢, [’

1. translation of the QBF into prenex normal form (PNF); andn > 0, be either an(n, v)-QBF withn being even or
2. translation of the propositional part of the formula inPN an (n, 3)-QBF withn being odd. Furthermore let’ be the
into CNF. CNF resulting from the propositional pas of ® by intro-

ducing new labels following Tseiti(l969. Then,® and
Q. P, ... QP IV ¢ are logically equivalent, wher& are
the new labels introduced by the CNF transformation.

Both steps require to address different design issues. In
what follows, we describe the fundamental problems, and
then briefly provide our solutions in some detalil.

First, the step of prenexing is not deterministic. As shown Note that for® as in the above proposition, we have the
by Egly et al. (2004), there are numerous so-calfgenex- Q; = 3. Hence, in this cas®,, P, ... Q; P, 3V ' is the de-
ing strategies The concrete selection of such a strategy (also gjreq PCNF, equivalent t, used as input for QBF solvers
depending on the concrete solver used) crucially influences requiring PCNF format for evaluating. In order to trans-
the running times (see also our results below). In prenex- ¢5rm a QBF¥ = Q,P,...Q: ¢ which is an(n,V)-
ing a QBF, certairdependenciebetween quantifiers have GgF withy, being odd or arfn, 3)-QBF with n being even,

to be respected, when combining the quantifiers of different . Lo
subformulas to one linear prefix. For our encodings, these we just apply the above proposition @. . . . ‘.lelﬂ./]’
dependencies are rather simple and analogous for both en-WhereQ; = 3if Q; = v andQ; = Vv otherwise, which
codingsS[-] andT[]. First, observe, however, that both en- IS €quivalent to-0. That is, in order to evaluat& by
codings have a negation as their main connective which has Méans of a QBF solver requiring PCNF input, we compu
to be shifted into the formula by applying the usual equiva- QnPn ... Qi1P1—¢ and “reverse” the output. This is ac-
lence preserving transformations as known from first-order commodated in c€ that either the original correspondenc
logic. In what follows, we implicitly assume that this step Problem or the complementary problem is encoded whe
has already been performed. This allows us to consider the €ver an input yields a QBF liké.
quantifier dependencies cleansed with respect to theirpola For the entire normal-form transformation, one can u
ities. The dependencies for the encodB{g can then be the quantifier-shifting tooyist (Zolda 2004). It accepts ar-
illustrated as follows: bitrary QBFs inboole format (see below) as input and re-
turns an equivalent PCNF QBF gdimacsformat, which is
/Vvl\ nowadays a de-facto standard for PCNF-QBF solvers. T
IV, E|7A tool gst implements 14 different strategies (among thel
' 1 and | we use here) to obtain a PCNF and uses the me
YWy tioned structure-preserving normal-form transformafion

Vs the transformation to CNF.

DEPARTMENT OF INFORMATICS 25

.TU Clausthal
11TH NMR WORKSHOP

The Implemented Tool

The system c€ implements the reductions from inclu-
sion problems(P, @, P4,Cp) and equivalence problems
(P,Q,Pa,=g) to corresponding QBFs, together with the
potential simplifications discussed above. It takes astinpu
two programs,P and @, and two sets of atoms} and B,
where A specifies the alphabet of the context abdhe set

of atoms for projection on the correspondence relation. The
reduction §[-] or T[:]) and the type of correspondence prob-
lem (C g or =pg) are specified via command-line arguments:
-S, -T to select the kind of reduction; and , -e to check

for inclusion or equivalence between the two programs.

In general, the syntax to specify the programs it cor-
responds to the basBLV syntax! PropositionaDLV pro-
grams can be passed tolc@and programs processible for
ccT can be handled bRLV. Considering the example from
the introduction, the two programs would be expressed as:

P: sel(b) :- b, not out(b).
sel(a) :- a, not out(a).
out(a) v out(b) :- a, b.

Q: fail :- sel(a), not a, not fail.

fail :- sel(b), not b, not fail.
sel(a) v sel(b) :- a.
sel(a) v sel(b) :- b.

We suppose that file.dl contains the code for program
P and, accordingly, fil&.dl contains the code fap. If we
want to check whetheP is equivalent ta)) with respect to
the projection to the output predicatel(-), and restricting
the context to programs ovéa, b}, then we need to specify

o the context set, stored in a file, sAycontaining the string
“(a, b) ", and

e the projection set, also stored in a file, #ycontaining
the string (sel(a), sel(b)) "

The invocation syntax for ¢ is as follows:
ccT -e P.dl Qd A B

By default, the encoding|-] is chosen. Note that the order
of the arguments is important: first, the programsnd @
appear, then the context sét and at last the projection set
B. An alternative call of c@ for our example would be

ccT -e -A "(a,b)" -B "(sel(a),sel(b))"

P.dl Q.
specifying setsA and B directly from the command line.
After invocation, the resulting QBF is written to the stardla
output device and can be processed further by QBF solvers.
The output can be piped, e.g., directly to the BDD-based
QBF solverboole 2 by means of the command

ccT -e P.dl Q.dl A B | boole
which yieldsO or 1 as answer for the correspondence prob-

lem (in our case, the correspondence holds and the output

1Seehttp://www.dlvsystem.com/ for more informa-
tion aboutDLV.
This solver is available ahttp://www.cs.cmu.edu/

“modelcheck/bdd.html

26

is 1). To employ further QBF solvers, the output has to
processed according to their input syntax.

If the setA (resp.,B) is omitted in invocation, then eack
variable occurring inP or @) is assumed to be id (resp.,
B);if“0”is passed instead of a filename, then the empty !
is assumed for set (resp.,B). Thus, checking for strong
equivalence betweeR and(is done by

ccT -e P.dl Q.dl | boole
while ordinary equivalence (with projection ovB) by
ccT -e P.dl Q.dl 0 B | boole

We developed ct entirely inANSI G hence, it is highly
portable. The parser for the input data was written usi
LEX and YACC The complete package in its current vel
sion consists of more than 2000 lines of code. For furtr
information about c¢ and the benchmarks below, see

http://www.kr.tuwien.ac.at/research/eq/

Experimental Results

Our experiments were conducted to determine the behavi
of different QBF solvers in combination with the encoding
S[-] andT[] for inclusion checking, or, if the employed QBF
solver requires the input in prenex form, wish[-], S, [,
T;[], and T [-]. To this end, we implemented a genere
tor of inclusion problems which emanate from the proof «
the IT1{ -hardness of inclusion checking (Eiter, Tompits, ¢
Woltran 2005), and thus provides us with benchmark prc
lems capturing the intrinsic complexity of this task.
The strategy to generate such instances is as follows:

1. generate &,V)-QBF ® in PCNF by random;

2. reduced to an inclusion problenil = (P,Q,P4,Cp)
such thatfl holds iff ® is valid;

3. apply cd to derive the corresponding encodirgor I1.

Incidentally, this procedure also yields a simple meth
for verifying the correctness of the overall implementatic
by simply checking whethe¥ is equivalent todb. We use
here a parameterisation for the generation of random QE
such that the benchmark set yields a nearly 50% distrit
tion between the true and false instances. Therefore, the
is neither over- nor underconstrained and thus presuma
located in a hard region, having easy-hard-easy pattern:
mind.

The reduction from the generated QEFto the corre-
sponding inclusion problem is obtained as follows: Col
sider® of form VIW3XVY3Z¢, wherep = A\ | C;is a
formula in CNF over atom% = (W U X UY U Z) with
Ci=c¢i1V---Vcig. Now, letV = {5 | v € V} be a set
of new atoms, and defin€; = c; ..., ¢} ., v* = v, and
(—v)* = v. We generate

P={vVvi—|veV}lU
{ve—u,t; 0 —u,al|v,uecV\W}H
{« notwv; «— notv | ve V\W}HU
{v=Crv—Cf|lveV\IWV; 1<i<n}

For program@ we use further atom&” = {2’ | € X},
X' ={z' | x € X} and generate:

Technical Report IfI-06-04

Answer Set Programming

100,00 4
90,00 4
80,00 4
70,00 4
60,00 4
40,00 4
40,00 4
30,00 4
20,00 4
10,00 4

0,00 4

100,00 =5 st
90,00
80,00
70,00
60,00 4 Tt
50,00
40,00 - a1
30,00 5

o000 LT 5] T
10,00 1 Tl o T
! TSl
0,00 4 | = :
fube-by SEMProp sKizZo opro

Figure 1: Results for true (left chart) and false (right ¢hproblem instances subdivided by solvers and encodings.

skizzo

fube-bj semprop pro

Each QBF is reduced to a program following Eiter & Got
tlob (1995), such that the latter possesses an answer se
the original QBF is valid. The idea of the benchmarks is 1
compare each such program with one in which one randon
selected rule is dropped, simulating a “sloppy” programme
in terms of ordinary equivalence.

Average running times are shown in Table 1. The nur
bern of variables in the original QBF varies from 10 to 24
and, for each, 100 such program comparisons are gene
ated for which the portion of cases where equivalence ho
- _ is between 40% and 50% (for details about the benchmar

A=B={XUXUYUY} cf. Oikarinen & Janhunen (2004)). We set a time-out of 12
It can be shown tha is valid iff (P,Q, P4,) holds. seconds, and both the one-phased mode (DLPEQ1) as \

We have set up a test series comprising 1000 instances of &S the two-phased mode (DLPEQ?Z) of DLPEQ were teste

inclusion problems generated that way (465 of them evaluat- For cCT’, we compared the same back-end solvers as abc

Q={vVvi—lve XUY}U
{ve—u,u; O —u,a|v,ue XUY}U
{—2",%'; — notx’, notT |z € X}U
{ve—2a'; 02
ve—T; T |veXUY,xe X}U
{2/ — Z,notT'; ¥ «— x,nota’ |z € X}

Finally, setsA and B are defined as:

ing to true), where the first programhas 620 rules, the sec-
ond program@ has 280 rules, using a total of 40 atoms, and
the setsA and B of atoms are chosen to contain 16 atoms.

using encodingTl'[]. Recall that for ordinary equivalence
ccT provides(2, V)-QBFs, thus we can resign on the distinc
tion between prenexing strategies. The dedicated DLPI

approach turns out to be faster, but, interestingly, amo
the tested QBF solvergpro is the most competitive one,
while the PCNF-QBF solvers perform bad even for small ii
stances. This result is encouraging as regards furthet-de'
opment of the non-normal form approach of QBF solvers.

After employing cd’, the resulting QBFs possess, in case
of translatiorS[-], 200 atoms and, in case of translatibp,

152 atoms. The additional prenexing step (together with the
translation of the propositional part into CNF) yields, ase

of S[-], QBFs with 6575 clauses over 2851 atoms and, in case
of T[], QBFs with 6216 clauses over 2555 atoms.

We compared four different state-of-the-art QBF solvers,
namely qube-bj (Giunchiglia, Narizzano, & Tacchella
2003),semprop (Letz 2002),skizzo (Benedetti 2005),
andqgpro (Egly, Seidl, & Woltran 2006). The former three
require QBFs in PCNF as input (thus, we tested them using
encodingsS;[-], S, [-], T[], andT [-]), while gpro admits
arbitrary QBFs as input (we tested it with the non-prenex en-
codingsS|[-] andT[-]). Our results are depicted in Figure 1.
The y-axis shows the (arithmetically) average running time
in seconds (time-out was 100 seconds) for each solver (with
respect to the chosen translation and prenexing strategy).

As expected, for all solvers, the more compact encodings
of form T[] were evaluated faster than the QBFs stemming
from encodings of forng[-]. The performance of the prenex-
form solversqube-bj , semprop , andskizzo is highly
dependent on the prenexing strategy, amminatesf.

For the special case of ordinary equivalence, we com-
pared our approach against the system DLPEQ (Oikarinen
& Janhunen 2004) which is based on a reduction to disjunc-
tive logic programs, usingnt (Janhuneret al. 2006) as
answer-set solver. The benchmarks rely on randomly gen-
erated(2,3)-QBFs using Model A (Gent & Walsh 1999).

Conclusion

In this paper, we discussed an implementation for advanc
program comparison in answer-set programming via encc
ings into quantified propositional logic. This approach we
motivated by the high computational complexity we have
face for correspondence checking, making a direct reali
tion via ASP hard to accomplish. Since currently practigab
efficient solvers for quantified propositional logic arei&va
able, they can be employed as back-end inference engi
to verify the correspondence problems under considerat
using the proposed encodings. Moreover, since such pr
lems are one of the few natural ones lying above the secc
level of the polynomial hierarchy, yet still part of the pely
nomial hierarchy, we believe that our encodings also peovi
valuable benchmarks for evaluating QBF solvers, for whic
there is currently a lack of structured problems with moi
than one quantifier alternation (cf., Le Beatal. (2005)).

References

Arieli, O., and Denecker, M. 2003. Reducing Preferenti
Paraconsistent Reasoning to Classical Entailm#mirnal

DEPARTMENT OF INFORMATICS 27

.TU Clausthal
11TH NMR WORKSHOP

28

qube-bj [semprop [skizzo | qpro |DLPEQI1/DLPEQ2 qube-bj [semprop [skizzo |gpro |DLPEQI1/DLPEQ2
10 120.0Q 120.00 14.71 0.05 0.05 0.04 10 0.29 56.00 12.27 0.01 0.03 0.03
12| 120.00 120.00 18.45 0.17 0.06 0.06 12 1.49 65.06 18.24 0.02 0.05 0.03
14 120.00Q 120.00 48.70 0.51 0.09 0.08 14 5.35 69.35 33.17 0.07 0.05 0.04
16| 120.00 120.00 120.00 1.54 0.13 0.11 16 25.48 86.53 120.00 0.23 0.07 0.06
18 120.00Q 120.00 120.00 4.85 0.19 0.15 18 46.10 65.74 120.00 0.50 0.09 0.07
20| 120.00 120.00 120.00 15.07 0.31 0.25 20 82.06 90.34 120.00 1.95 0.20 0.15
22 120.00Q 120.00 120.00 46.23 0.50 0.39 22 76.77 86.95 120.00 6.11 0.20 0.15
24| 120.00 120.00 120.00120.0Q 0.84 0.64 24 83.68 92.43 120.0Q 14.81 0.40 0.34

Table 1: Comparing ¢t against DLPEQ on true (left table) and false (right tabl@ppem instances subdivided by solvers.

of Logic and Computatiofh3(4):557-580.

Benedetti, M. 2005. sKizzo: A Suite to Evaluate and Cer-
tify QBFs. InProc. CADE’05 volume 3632 of NCS 369—
376. Springer.

Besnard, P.; Schaub, T.; Tompits, H.; and Woltran, S.
2005. Representing Paraconsistent Reasoning via Quan-
tified Propositional Logic. Itnconsistency Toleranggol-

ume 3300 oLLNCS 84-118. Springer.

Chen, Y.; Lin F; and Li, L. 2005. SELP - A Sys-
tem for Studying Strong Equivalence Between Logic Pro-
grams. InProc. LPNMR’05 volume 3552 olLNAI, 442—
446. Springer.

Delgrande, J.; Schaub, T.; Tompits, H.; and Woltran, S.
2004. On Computing Solutions to Belief Change Scenar-
ios. Journal of Logic and Computatiob4(6):801—826.

Egly, U.; Eiter, T.; Tompits, H.; and Woltran, S.
2000. Solving Advanced Reasoning Tasks using Quanti-
fied Boolean Formulas. IRroc. AAAI'0Q 417-422. AAAI
Press.

Egly, U.; Seidl, M.; Tompits, H.; Woltran, S.; and Zolda,
M. 2004. Comparing Different Prenexing Strategies for
Quantified Boolean Formulas. Rroc. SAT'03. Selected
Revised Papersolume 2919 of NCS 214-228. Springer.

Egly, U.; Seidl, M.; and Woltran, S. 2006. A Solver for
QBFs in Nonprenex Form. IRroc. ECAI'06

Eiter, T., and Fink, M. 2003. Uniform Equivalence of
Logic Programs under the Stable Model Semantics.
Proc. ICLP’03 volume 2916 of NCS 224-238. Springer.

Eiter, T., and Gottlob, G. 1995. On the Computational
Cost of Disjunctive Logic Programming: Propositional
Case. Annals of Mathematics and Artificial Intelligence
15(3/4):289-323.

Eiter, T.; Tompits, H.; and Woltran, S. 2005. On Solution
Correspondences in Answer Set Programming.Pioc.
IJCAI'05, 97-102.

Gelfond, M., and Leone, N. 2002. Logic Programming
and Knowledge Representation - The A-Prolog Perspec-
tive. Artificial Intelligence138(1-2):3—-38.

Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databastew Genera-
tion Computingd:365-385.

Gent, |., and Walsh, T. 1999. Beyond NP: The QSAT Phase
Transition. InProc. AAAI'99 648—653. AAAI Press.

In

Giunchiglia, E.; Narizzano, M.; and Tacchella, A. 200:
Backjumping for Quantified Boolean Logic Satisfiability
Artificial Intelligencel145:99-120.

Janhunen, T.; Niema] |.; Seipel, D.; and Simons, P.
2006. Unfolding Partiality and Disjunctions in Stable
Model Semantics.ACM Transactions on Computational
Logic 7(1):1-37.

Le Berre, D.; Narizzano, M.; Simon, L.; and Tacchella, A
2005. The Second QBF Solvers Comparative Evaluatic
In Proc. SAT’04. Revised Selected Papgmdume 3542 of
LNCS 376-392. Springer.

Letz, R. 2002. Lemma and Model Caching in Decisio
Procedures for Quantified Boolean Formulas. Proc.
TABLEAUX'02 volume 2381 of NCS 160-175. Springer.

Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strong|
Equivalent Logic ProgramsACM Transactions on Com-
putational Logic2(4):526-541.

Lin, F. 2002. Reducing Strong Equivalence of Logic Prc
grams to Entailment in Classical Propositional Logic. |
Proc. KR'02 170-176. Morgan Kaufmann.

Oikarinen, E.; and Janhunen, T. 2004. Verifying the Equi
alence of Logic Programs in the Disjunctive Cag&oc.
LPNMR’04 volume 2923 of. NCS 180-193. Springer.

Pearce, D.; Tompits, H.; and Woltran, S. 2001. Encodin
for Equilibrium Logic and Logic Programs with Nestec
Expressions. IrProc. EPIA’0] volume 2258 ofLNCS
306-320. Springer.

Rintanen, J. 1999. Constructing Conditional Plans by
Theorem ProverJAIR10:323-352.

Tompits, H., and Woltran, S. 2005. Towards Implemetr
tations for Advanced Equivalence Checking in Answer-S
Programming. IrProc. ICLP’05 volume 3668 oLLNCS
189-203. Springer.

Tseitin, G. S. 1968. On the Complexity of Derivation ir
Propositional CalculusStudies in Constructive Mathemat:
ics and Mathematical Logic, Part.l1234—259.

Woltran, S. 2004. Characterizations for Relativized Nc
tions of Equivalence in Answer Set ProgrammingPhoc.
JELIA'04, volume 3229 o£.NCS 161-173. Springer.

Zolda, M. 2004. Comparing Different Prenexing Strategie
for Quantified Boolean Formulas. Master’s Thesis, Vienr
University of Technology.

Technical Report IfI-06-04

Answer Set Programming

DEPARTMENT OF INFORMATICS 29

.TU Clausthal
11TH NMR WORKSHOP

1.3 On Probing and Multi-Threading in Platypus

On Probing and Multi-Threading in P LATYPUS

Tomi Janhunen Robert E. Mercer
Helsinki University of Technology Department of Computer Science
Department of Computer Science and Engineering Middlesex College

Jean Gressmann
Institut fur Informatik
Universitt Potsdam

Postfach 900327 P.O. Box 5400 The University of Western Ontario
D-14439 Potsdam FI-02015 TKK London, Ontario
Germany Finland Canada N6A 5B7
Torsten Schaub* Sven Thiele Richard Tichy

Institut fir Informatik Institut fir Informatik
Universitit Potsdam Universitit Potsdam Universitit Potsdam
Postfach 900327 Postfach 900327 Postfach 900327

D-14439 Potsdam, Germany D-14439 Potsdam, Germany D-14439 Potsdam, Germany

Institut fir Informatik

Abstract via different types of inter- and intra-process distributi

techniques like MPI (Gropp, Lusk, & Thakur 1999), Unix
fork mechanism, and (as discussed in the sequel) mu
threading. In addition, the generic approach permits a-fle

ble instantiation of all parts of the design.

More precisely, the EATYPUS design incorporates two
distinguishing features: First, it modularises (and issthi
independent of) the propagation engine (currently exe
plified by snmodel s’ and nonor e++’ expansion proce-
dures). Second, the search space is represented explic
This representation allows a flexible distribution scheme
be incorporated, thereby accommodating different digtrit

; tion policies and architectures. For instance, the previc
Introduction pl at ypus system (Gressmanet al. 2005) supported a
The success of Answer Set Programming (ASP) has been multiple process (by forking) and a multiple processor (k
greatly enhanced by the availability of highly efficient ASP MPI (Gropp, Lusk, & Thakur 1999)) architecture. Thi
solvers (Simons, Niemé&) & Soininen 2002; Leonet al. two particular contributions discussed in this paper take
2006). But, more complex applications are requiring com- vantage of these two aspects of the generic design phil
putationally more powerful devices. Distributing parts of ophy. The first extension toLRTYPUS, probing refines
the search space among cooperating sequential solvers perthe encapsulated module for propagation. Probing is a
forming independent searches can provide increased compu-to the concept ofestarting in the related areas of satis:
tational power. To accomplish this distribution of the prob fiability checking (SAT) (Baptista & Marques-Silva 2000
lem solving process, we have proposed a generic approachGomes, Selman, & Kautz 1998) and constraint process

The R.ATYPUS approach offers a generic platform for dis-
tributed answer set solving, accommodating a variety of dif-
ferent modes for distributing the search for answer sets over
different processes and/or processors. In this paper, we de-
scribe two major extensions ofLRrypuUs. First, we present

its probing approach which provides a controlled non-linear
traversal of the search space. Second, we present its new
multi-threadingarchitecture allowing for intra-process distri-
bution. Both contributions are underpinned by experimental
results illustrating their computational impact.

to distributed answer set solving, calledA?ypPus (Gress-
mannet al. 2005)*

The R.ATYPUS approach differs from other pioneering
work in distributed answer set solving (Finket al. 2001,
Hirsimaki 2001; Pontelli, Balduccini, & Bermudez 2003),

by accommodating in a single design a variety of different

architectures for distributing the search for answer sets o
different processes and processors. The resulting phaffor

pl at ypus, allows one to exploit the increased computa-
tional power of clustered and/or multi-processor machines

*Affiliated with the School of Computing Science at Simon
Fraser University, Burnaby, Canada.

platypus small densely furred aquatic monotreme of Australia

and Tasmania having a broad bill and tail and webbed feet.
2\We uset ypewr i t er font when referring to actual systems.

30

(CSP) (Gomeet al. 2000; Walsh 1999). The introduction
of probing demonstrates one aspect of the flexibility in o
PLATYPUS design: by having a modularised generic desig
we can easily specify parts of the generic design to gi
different computational properties to tipd at ypus sys-
tem. Our second improvementpb at ypus is the integra-
tion of multi-threading into our software packagevulti-
threading expands the implemented architectural options
delegating the search space and adds several new featur
pl at ypus: (1) the single- and multi-threaded versions ce
take advantage of new hardware innovations such as mt
core processors, as well as primitives to implement loc
free data structures, (2) a hybrid architecture which alo\

SAvailable at (platypus, website undated).

Technical Report IfI-06-04

the mixing of inter- and intra-process distribution, andl (3
the intra-process distribution provides a lighter patisite
tion mechanism than forking.

In the remainder of this paper we highlight our two con-
tributions,probingandmulti-threading by focussing on the
appropriate aspects of the abstractPrpPus algorithm re-
produced from (Gressmaret al. 2005) below. As well,

Answer Set Programming

programlIl and the program’s alphabegt as global param-
eters. Communication between/ArYPUs instances is lim-
ited to delegating partial assignments as representatives
parts of the search space. The set of partial assignme
provided in the input variablé delineates the search spac
given to a specific instance ofLRTYPUS. Although this
explicit representation offers an extremely flexible asdes

their computational impact is exposed in data provided by a the search space, it must be handled with care since it grc

series of experiments.

Definitions and notation

In Answer Set Programming, a logic progrdiis asso-
ciated with a setd S(II) of answer setswhich are distin-

guished models of the rules in the program. Since we do not
elaborate upon theoretical aspects here, we refer therreade

to the literature for a formal introduction to ASP (cf. (Gel-
fond & Lifschitz 1991; Lifschitz 1996; Baral 2003)).

For computing answer sets, we rely partial assign-
ments mapping atoms in an alphahdtonto true, false, or
undefined. We represent such assignments as (Hirs)
of sets of atoms, in whiclX’ contains all true atoms arid
all false ones. An answer sét is then represented by the
total assignmentX, .4 \ X). In general, a partial assign-

ment(X,Y") aims at capturing a subset of the answer sets of

a logic progranil, viz.

ASxyy(IT) = {Z € AS(IT) | X € Z,ZNY #0} .

The PLATYPUS approach and itsprobing mode

To begin, we recapitulate the major features of ther -
PUS approach (Gressmaret al. 2005). To enable a dis-

tributed search for answer sets, the search space is decom
posed by means of partial assignments. This method works

because partial assignments that differ with respect tosto
notin the undefined set represent different parts of thekear
space. To this end, Algorithm 1 is based on an explicit rep-

Algorithm 1: PLATYPUS
Global : A logic programII over alphabet.

Input : A nonempty sefS of partial assignments.
Output : Print a subset of the answer setd bf
repeat
1 (X,Y) < CHOOSHYS)
2 | § —S\{(X,Y)}
3 (X',Y") « EXPAND((X,Y))
4 if X’NY’ ={then
5 if X’UY’ = Athen
6 | print X’
else
7 A «— CHOOSHA\ (X' UY"))
8 S — SU{(X'U{A},Y"), (X", Y'U{A})}
S « DELEGATE(S)
until S =10

resentation of the search space in terms of &sgftpartial
assignments, on which it iterates unfil becomes empty.
The algorithm relies on the omnipresence of a given logic

DEPARTMENT OF INFORMATICS

exponentially in the worst case. Without Line 9, Algo
rithm 1 computes all answer setslif} v yyc s 45 (x,v) (1D).
With Line 9 each RPATYPUS instance generates a subset ¢
the answer sets. KWOSEand DELEGATE are in principle
non-deterministic selection functionsHOOSEyields a sin-
gle element, BLEGATE communicates a subset §fto a
PLATYPUS instance and returns a subset%f Clearly, de-
pending on what these subsets are, this algorithm is subj
to incomplete and redundant search behaviours. Tke E
PAND function hosts the deterministic part of Algorithm 1
This function is meant to be implemented with an off-the
shelf ASP-expander that is used as a black-box providi
both sufficiently strong as well as efficient propagation o)
erations. See (Gressmaehal. 2005) for further details.

Let us now turn to specific design issues beyond tl
generic description of Algorithm 1. To reduce the size «
partial assignments and thus that of passed messages; we
low (Pontelli, Balduccini, & Bermudez 2003) in represent
ing partial assignments only by atofshose truth values
were assigned by choice operations (cf. atdrm Lines 7
and 8). Given an assignmefX,Y’) along with its sub-
setsX, C X andY,. C Y of atoms assigned by a choice
operation, we havéX,Y) = EXPAND((X,,Y.)). Conse-
quently, the expansion of assignméat, Y) to (X’,Y”) in
Line 3 does not affect the representation of the search sp
in S.5 Furthermore, the design includes the option of usir
a choice proposed by thexBAND component for imple-
menting Line 7. Additionally, the currently used expander
snodel s andnonor e++, also supply golarity, indicat-
ing a preference for assigning true or fafse.

Thread architecture.

The overall design of thpl at ypus platform splits Algo-
rithm 1 into two salient components: tlé st ri buti on
and thecor e. While the former encapsulates inter-proces
distribution, the latter handles intra-process distitmuand
all (sequential) answer set computation methods. Fortbe!
hardware adaption, theor e comes in asingle-andmulti-
threadedversion. A thread amounts to a sequentiahPy -
pPusinstance. Since multi-threading and all other distribt
tion aspects are dealt with in the next section, we concentr
in what follows on the non-distributive features of ther e
(equivalent to the single-threaded version).

Each (answer set computing) thread inside dloe e of
a pl at ypus process has an explicit representation of i

4Assignments are not a priori restricted to atoms. This is e
ploited when usingnonor e++.

5Also, some care must be taken when implementing the tests
Lines 4 and 5; see (Gressmagtral. 2005).

We rely on this information in Algorithm 3.

31

.TU Clausthal
11TH NMR WORKSHOP

32

(part of the) search space in its varialle This set of par-
tial assignments is implemented as a tree. Whenever more
convenient, we describ& in terms of a set of assignments

of jumpsin the search space is limited BYj; each jump
changes the active branch in the search space. We lise
nary exponential back-offcf. (Tanenbaum 2001)) scheme

or a search tree and its branches. In contrast to stack-basedo heed unsuccessful jumps. The idea is as follows. Injtial

ASP-solvers, likesnodel s or nonor e++, whose search
space contains a single branch at a time, this tree normally
contains several independent branches. The two major com-

core

expander

4

Figure 1: Inner structure of a (single-threaded) e mod-
ule.

=]

ponents of a (single-threadeddr e along with their inter-
relationship are depicted in Figure 1. The triangle on tfte le
hand side represents the search tree contained in va§able
of Algorithm 1. The vector represents thetive partial as-
signment (or branch, respectively) selected in Line 1, and
being currently treated by the expander (see below). The
square on the right hand side stands for the&ND mod-

ule; the state of the expander is characterised by the con-
tents of its stack, given on the left within the square. The
contents of the stack corresponds to the active branch in the
search tree (indicated by the usage of an arrow within the
stack). While the stack contains the full assignmenty’),

the search tree’s active branch only contains the pair of sub
sets(X,, Y.) having been assigned by choice operations.

The box4] symbolises the fact that expanders (relying on
snodel s or nonor e++) also provide a candidate for the
choiceA made in Line 7 of Algorithm 1.

Probing.

The explicit representation of the (partial) search spakte,
though originally devised to enable the use of a variety of
strategies for delegating parts of the search space in $he di
tributed setting, appears to be beneficial in some sequientia
contexts, as well. Of particular interest, when looking for
a single answer set, is limiting fruitless searches in pafrts
the search tree that are sparsely populated with answer sets

probing initiates a jump in the search space whenever the i
tial conflict limit #c is reached. If no solution is found after
#7j jumps, then the problem appears to be harder than
pected. In this case, the permissible number of conflfats

is doubled and the allowed number of jumgtg is halved.

The former is done to prolong systematic search, the I
ter to reduce gradually to zero the number of jumps in ti
search space. We refer to this treatment of the search sg
asprobing Probing is made precise in Algorithm 2, whick
is a refinement of the @oOSE operation in Line 1 of Al-

gorithm 1. Note that probing continues until the paramet

Algorithm 2: CHOOSE(in Line 1 of Algorithm 1) in

probingmode.
Global : Positive integerstc, #7, initially supplied via
command line.
Integerse, 7, initially ¢ = 0 andj = #j.
Selection policyP, supplied via command
line.

: A set S of partial assignments with an active
assignmenb € S.

Output : A partial assignment.

begin
/I Counterc is incremented by one in Line 4 of
Algorithm 1.
if (¢ < #£c¢) then // no jumping
| return b
if (#7 = 0) then // no jumping
| return b
else
c+—0
J—Jj—1
if (=0) then
#e — (#c x 2)
#i = (#i div2)

J—#j _

let’ «— SELECT(P, S) in
makeb’ the active partial assignment ifi
return v’

Input

end

In such cases, it seems advantageous to leave a putatively?J Pecomes zero. When probing stops, search proceed
sparsely populated part and continue at another location in the usual depth-first manner by considering only one brar

the search space. il at ypus, this decision is governed
by two command line options#c and #j. A part of the
search is regarded as fruitless, whenever the numbzoref
flicts (as encountered in Line 4) exceeds the valuetof
The corresponding conflict counter is incremented each
time a conflict is detected in Line 4 in Algorithm 1. The
counterc is resetto zero whenever an answer set is found
in Line 5 or the active branch i§ is switched (and thus
the expander is reinitialised; see Algorithm 2). The number

"Each thread has its own conflict and jump counters.

at a time by means of the expander’s stack. Clearly, this
also the case during the phases when the conflict limit t
not been reached K #c).

At the level of implementation, the expander must
reinitialised whenever the active branch of the searchesp:
changes. Reinitialisation is unnecessary when extentimg
active branch by the choice (obtained in Line 7) in Line
of Algorithm 1 or when backtracking is possible in case
conflict or an answer set is obtained. In the first case, the |
pander’s choice (that is, an atom along with a truth value)
simply pushed on top of the expander’s stack (and markec

Technical Report IfI-06-04

Answer Set Programming

a possible backtracking point). At the same time, the active which is bound by2 x 13. Thereby, a branch is considere:
branch inS is extended by the choice and a copy of the ac- as different if it is not obtainable from another’s subbianc

tive branch extended by the complementary choice is added by switching the assigned value of a single elemént.

to S. The probing refinement of Line 8 in Algorithm 1 is
made precise in Algorithm 3.

Algorithm 3: Assignment (in Line 8 of Algorithm 1) in
probingmode.
Global : A setS of partial assignments with active
assignmentX’,Y").
: An atom A and a constanP € {true, false}.

Input

begin

S—SU{(X'U{A}LY"), (X, Y'u{4})}

if P = truethen

‘ make(X’ U {A},Y”) the active partial

assignment irt

else
make(X’, Y’ U {A}) the active partial
assignment it

end

In the case that a conflict occurs or an answer set is ob-

tained, the active branch ifiis replaced by the branch cor-

responding to the expander’s stack after backtrackingt If i

exists, this is the largest branchdnthat equals a subbranch
of the active branch after switching the truth value of itfle

element. If backtracking is impossible, the active branch

is chosen by means of the given poli®2 If this, too, is
impossible,S must be empty and theLRTYPUS instance
terminates.

The policy-driven selection of a branch, expressed by S
LECT(P, S) in Algorithm 2, is governed by another com-
mand line optior? #n and works in two steps.

1. Among all existing branche¥) the #n best ones,
bi,...,bun, are identified according to policy.
To be precise, lep be a mapping of branches to or-
dinal values, used by for evaluating branches. For
b e {by,...,bg,}andd’ € S\ {b1,...,bx,}, we then
have that! p(b) < p(').

2. Abranchb is randomly selected frorb,, . . ., buy, }

The random selection from the beg&t branches counter-
acts the effect of a rigid policy by arbitrarily choosing sem
close alternatives.

Thread Architecture

In the RLATYPUS algorithm, DELEGATE allows the assign-
ing of answer set computation tasks to otheAPrpPus in-
stances. In the following, we detail the multi-threaded &
chitecture extension to th@ at ypus platform which adds
intra-process distribution delegation capacities to tkiste
ing inter-process distribution delegation capabilitiesjch
are optionally realised via Unix’ forking mechanistor
MPI (Gropp, Lusk, & Thakur 1999) (described in (Gress
mannet al. 2005)). This enlarged architecture opens up tl
possibility of hybrid delegation methods, for instancdeede
gatingpl at ypus via MPI on a cluster of multi-processor
workstations, with delegation among the multi-procesebrs
the workstation accomplished by means of multi-threadin

The architecture is split into more or less two parts: t
cor e and thedi stri buti on components. The config-
uration of both components inside a process is depictec
Figure 2. Thecor e encapsulates the search for answ
sets, and the BLEGATE function is encapsulated in the
di stri buti on component. Theor e anddi stri bu-
ti on components have well-defined interfaces that loc:
ize the communication between the components. This
sign allows us to incorporate, for instance, single- andimul
threaded cores, as well as inter-process distributionsekge
like MPI and forking, with ease.

Eachpl at ypus process hosts an instance of tar e,
the core object, which cooperates with one instance of 1
di stri buti on component, the distribution object. Com
munication is directed from core to distribution objectslar
is initiated by the core object. During execution the maji
flow of control lies with the core objects.

The multi-threaded core flow of control works accordin
to the master/slave principle. The master coordinates a nt
ber of slave threads (vizhread, andthread, to thread,,
respectively, in Figure 2). Each slave thread executes
PLATYPUS algorithm on its thread-local search space, inc
cated by the respective triangles and boxes as was don
the previous section. The master thread handles commu
cation (through the distribution object) with othgrat y-
pus processes on behalf of the slave threads. Commu
cation between the master thread and its slave thread

To see that this approach guarantees completeness, it isbased on counters (symbolised by and queues (repre-

sufficient to see that no partial assignment is ever elirethat

sented by[[[IIIII1]). Similarly to the previous section, we

from the search space. Also, when probing, the number of use arrows to indicate partial assignments. Events of

different branches in the search sp&ceannot exceed twice
the number of initially permitted jumps, vi2. x #j. For
instance, if the command line option seétg to 13, we may
develop at most3 + 6 + 3 + 1 different branches irb,

8To this end,pl at ypus supports three policies, picking a
largest, a smallest, or a random assignment.

®Option#:n can be zero, indicating the use of all branches.

%This includes all backtracking points.

terest (e.g. statistics, answer sets, etc.) are commaeunlic:
by the slave threads to the master thread by increment
the appropriate counter or adding to the respective que
The master thread periodically polls the counters and caie
for any change. If the change requires information to |
transmitted to othepl at ypus processes the master threa

2This would simply be a backtracking point.
BForking creates duplicafe at ypus processes, collaborating

"That is, branches sharing the worst value among the ones in in the search. Communication among them is done using PO¢

{b1,...,bxn} may also occur it \ {b1,...,bgn}.

DEPARTMENT OF INFORMATICS

IPC (handling shared memory and message queues).

33

.TU Clausthal
11TH NMR WORKSHOP

34

process

distribution

[ot

core
thready

P
[DE0

thread;

thread,,

Figure 2: Inner structure of a single process with a multi-
threadectore

forwards this information via the distribution object. The
search ends (followed by termination of {hleat ypus pro-
gram) if there is agreement among the distribution objects
that either all participating processes are in need of work
(indicating all the work is done) or the requested number of
answer sets has been computed.

Let us now illustrate the communication among core and
distribution objects by detailing the major counters and
queues. Intheor e, theidle thread counteof the master
thread (indicated b@ in Figure 2) serves two purposes: It
indicates the number of idle slave threads in the core gbject
and it shows the number of partial assignments irthinead
delegation queuef the master thread (indicated by Slave

zero during one of its periodic checks. If this is the cas
it splits off a subpart of its local search space according
a distribution policy*, puts the partial assignment that rep
resents the subspace into the thread delegation queue,
decrements the idle thread counter. As this may happen
multaneously in several working slave threads, more part
assignments can end up in the thread delegation queue 1
there exist idle slaves. These extras are used subseque
by idle threads.

When all slave threads are idle (that is, the idle thre:
counter equals the number of slave threads.) the mas
thread initiates communication via the distribution objec
acquire more work from othertRTypPUs processes. To this
end, the master thread operates poding model The mas-
ter thread periodically queries the associated distidiouib-
ject for work until it either gets some work or is requeste
to terminate’® Once work is available, the master threa
adds it to the thread delegation queue, decrements the
thread countet® and wakes up a slave thread. The awoke
slave thread will find the branch there, take it out, and st:
working again. From there on, the core enters its nornmr
thread-to-thread mode of work sharing.

Conversely, when pl at ypus process receives notifica-
tion that another process has run out of work, it attempts
delegate a piece of its search space. To this end, it sets

other-process-needs-wofliag (indicated b@) of the mas-
ter thread in its core object. All slave threads noticing th
flag clear the flag and delegate a piece of their search sp
according to the delegation policy by adding it to thenote
delegation queuéndicated byr). The master thread takes
one branch out of the queue and forwards it to the request
pl at ypus process (via the distribution object). Because
the multi-threaded nature any number of threads can end
delegating. Items left in the remote delegation queue ¢
used by the master thread to fulfil subsequent requests
work by otherpl at ypus processes or work requests by it:
slave threads.

The conceptual difference between the thread delegat
and the remote delegation queues is that the former hanc
intra-core delegations, while the latter deals with exivee
delegation, although non-delegated work can return to t
core. This is reflected by the fact that master and sla
threads are allowed to insert partial assignments into t
thread delegation queue, whereas only slave threads rem
items from this queue. In contrast, only the master thre
is allowed to eliminate items from the remote delegatic
gueue, while insertions are performed only by slave threa

Implementation

threads share their search space automatically among them-An important aspect of the multi-threaded core implement
selves as long as one thread has some work left. A slave tionis the use ofock-free data structure/alois 1995; Her-
thread running out of work (reaching an empty search space lihy 1991; 1993) for synchronizing communication amon

S) checks the availability of work via the idle thread counter

and if possible removes a partial assignment from the thread |,

delegation queue. Otherwise, it waits until new work is as-
signed to it.

A slave thread can become aware of the existence of an

Currently, pl at ypus supports three policies, picking a
gest, a smallest, or a random assignment.
5For instance, if the required number of answer sets has alre:
been computed.

8The inserting thread is always responsible for decrementi

idle thread by noting that the idle thread counter exceeds the idle thread counter.

Technical Report IfI-06-04

master and slave threads. To be more precise,

e queues (such as the answer set, the thread delegation, ancg
the remote delegation queues) are based on Michael and

Scott’s FIFO queue (Michael & Scott 1996), and

e counters utilize atomic primitives to implement lock-
freedom.

The major benefits of lock-free data structures are that,
first, they avoid well-known problems of lock-based ap-

Answer Set Programming

snodel s times!’ as well as the ones for single-threade
| at ypus without probing in the first two columns, la-
elledsmandst The remaining columns are labelled witt
the used command line options, Vi#c, #j. A blank entry
represents a timeout after 240 seconds.

First of all, we notice that the systems using standa
depth first-search are unable to solve 12 instances witl
the given time limit, whereas when using probing, apa
for a few exceptions, all instances are solved. We see t

proaches such as deadlock, livelock, starvation, and the p! at ypus without probing does best 8 timé%,as indi-

priority inversion problem (Tanenbaum 2001) and, second,
they often provide better performance when contention is
high (Michael & Scott 1996). A drawback is that they need
hardware support in the form afniversal atomic primi-
tives (Herlihy 1993). Although not all known data struc-

cated in boldface, and worst 24 times, whersa®del s
does best 2 times and worst 24 times. Compared to e:
specific probing configuratiop| at ypus without probing
performs better among 9 to 18rfodel s, 6 to 8) times out
of 38. In fact, there seems to be no clear pattern indici

tures have efficient and general-purpose implementations ing @ best probing configuration. However, looking at tr

since they require rather powerful atomic primitives (Her-
lihy 1993), the lock-free data structures usedpinat y-

pus support Intel 1A-32, 1A-32 with AMD64/EM64T ex-
tensions, and SPARC V8/V9 architectures running Linux,
Solaris, or Windows, ensuring a broad coverage of major
hardware architectures and operating systems.

Experimental Results

The following experiments aim at providing some indica-
tions on the computational value of probing and multi-
threading. A more detailed empirical evaluation can be
found in (Gressmann 2005), being partly mirrored at (platy-
pus, website undated).

All experiments were conducted with some fixed param-
eters.

e snodel s (2.28) was used as propagation engine and for
delivering the (signed) choice in Line 7 of Algorithm 1,

e the choice in Line 1 of Algorithm 1 was fixed to the pol-

icy selecting assignments with the largest number of unas-

signed atoms,

¢ all such selections were done in a deterministic way by
setting command-line optiosn to 1 (cf. the previous
section).

All tests were conducted withpl atypus ver-
sion 0.2.2 (platypus, website undated). Our results
reflect the average times of 5 runs for finding the first or all
answer sets, respectively, of the considered instancengim

excludes parsing and printing. The data was obtained on a
quad processor (4 Opteron 2.2GHz processors, 8 GB shared

RAM) underLi nux.

lower part of Table 1, we observe thalt at ypus without
probing E6nodel s) times out 12 times, while probing still
gives a solution under all but three configurations. In adi, w
see that probing allows for a significant speed-up for findir
the first answer set. This is particularly valuable whenev
answer sets are hard to find with a systematic backtracki
procedure, as witnessed by the entries in the lower part
Table 1.

This improvement is even more impressive when usit
multi-threading!® where further speed-ups were observe
on 20 benchmarks, most of which were among the more si
stantial ones in the lower part of Table 1. The most signit
cant one was observed on clumpy graph 09,09,04 which v
solved in 4.66 and 4.26 seconds, respectively, when sett
#c,#j t0 10,512 and using 3 and 4 slave threads, respi
tively. Interestingly, even the multi-threaded varianthout
probing cannot solve the last seven benchmarks within t
time limit, except for clumpy 09,09,07, whighl at ypus
with 4 slave threads was able to solve in 13.8 seconds. T
illustrates that probing and multi-threading are two cagapl
mentary techniques that can be used for accelerating the |
formance of standard ASP-solvers. A way to tackle benc
marks that are even beyond the reach of probing with mul
threading is to use randomisation via command-line opti
#n. Unlike the search for a single answer set, probing h
generally no positive effect on the computation of all answ
sets. In fact, on more common benchmarks (cf. (asparag
website undated)) probing rarely kicks in because the cc
flict counter is reset to zero whenever an answer set is fou

Table 2 displays the effect of multi-threading. For consi:
tency, we have taken a subset of the benchm@ikgGress-
mannet al. 2005), used when evaluating the speed-ups c

For illustrating the advantage of probing, we have chosen t@ined with the (initial) forking and MP! variant qfl at y-

the search for one Hamiltonian cycledlumpy graphspro-
posed in (Ward & Schlipf 2004) as a problem set being prob-

These times are only of an indicative nature since they inclu

lematic for systematic backtracking. These benchmarks are pjnting one answer set; this cannot be disablesiindel s.

available at (platypus, website undated). Table 1 shows the

timings for probing running the single-threaded core, with
all combinations of settings for the numbers of confligis
(10, 50, 100, 200) and jump#; (32, 64, 128, 256, 512),

respectively. The entries give the aforementioned average

time. For comparison, we also provide the corresponding

DEPARTMENT OF INFORMATICS

18The six cases differ by only 0.01sec which is due to slightl
different timing methods (see Footnote 17).

9The complete set of tests on multi-threading with and withor
probing are provided at (platypus, website undated).

2These benchmarks stem mainly from (asparagus, website
dated).

35

.TU Clausthal
11TH NMR WORKSHOP

36

[clumpy [[sm | st []10,3410,6410,12§10,25610,51450,3750,6450,12450,2550,514100,33100,64100,12§100,256100,513200,34200,64200,12§200,25¢200,512

06,06,02| 0.01| 0.01{| 0.01| 0.01| 0.01 | 0.01| 0.01|0.01/0.01| 0.01| 0.01| 0.01| 0.01| 0.01| 0.01 | 0.01 | 0.01 | 0.01| 0.01| 0.01 | 0.01 | 0.01
06,06,03|| 0.10{ 0.10{| 0.05| 0.05| 0.05| 0.05 | 0.05|0.07|0.07| 0.07 | 0.07| 0.07| 0.11| 0.11| 0.11 | 0.11 | 0.11 | 0.17| 0.16| 0.16 | 0.16 | 0.16
06,06,04| 0.61| 0.63|| 0.08| 0.08| 0.08 | 0.08 | 0.08 | 0.14| 0.14| 0.14 | 0.14| 0.14| 0.24| 0.24| 024 | 0.24 | 0.24 | 0.34| 0.34| 0.34 | 0.34 | 0.34
06,06,05|| 6.30{ 6.61| 1.24| 1.79| 0.95| 0.84 | 0.84|0.78| 0.66| 0.66 | 0.66 | 0.66 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 2.29 | 2.14| 214 | 214 | 214
06,06,06/| 0.38]| 0.39|| 0.05| 0.05| 0.05| 0.05| 0.05|0.04| 0.04| 0.04 | 0.04| 0.04| 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.10| 0.10| 0.10 | 0.10 | 0.10
06,06,07|| 0.04| 0.03|| 0.14| 0.14| 0.14 | 0.14 | 0.14|0.08| 0.08| 0.08 | 0.08 | 0.08 | 0.03 | 0.03| 0.03 | 0.03 | 0.03 | 0.03| 0.03| 0.03 | 0.03 | 0.03
06,06,08| 0.08| 0.08|| 0.01| 0.01| 0.01| 0.01| 0.01|0.02|0.02| 0.02| 0.02| 0.02| 0.02| 0.02| 0.02 | 0.02 | 0.02 | 0.03| 0.03| 0.03 | 0.03 | 0.03
06,06,09|| 11.3| 11.8{| 0.47| 0.52| 0.62 | 0.62 | 0.62|1.07|1.01| 1.01 | 1.01| 1.01| 2.23 | 2.06 | 2.06 | 2.06 | 2.06 | 3.06 | 3.46| 3.46 | 3.46 | 3.46
06,06,10| 0.06| 0.05|| 0.03| 0.03| 0.03 | 0.03 | 0.03|0.02| 0.02| 0.02 | 0.02| 0.02| 0.03 | 0.03| 0.03 | 0.03 | 0.03 | 0.05| 0.05| 0.05 | 0.05 | 0.05
07,07,01)| 0.02| 0.01{ 0.01| 0.01| 0.01| 0.01 | 0.01|0.01{0.01| 0.01| 0.01| 0.01| 0.01| 0.01| 0.01 | 0.01 | 0.01 | 0.01| 0.01| 0.010 | 0.01 | 0.01
07,07,02|| 0.05| 0.04|| 0.61| 0.74| 0.71| 0.71| 0.71|1.76| 1.45| 1.45| 1.45| 1.45| 2.01| 292 | 291 | 291 | 290 | 0.04| 0.04| 0.04 | 0.04 | 0.04
07,07,03|| 8.98| 9.60(| 18.7| 9.56| 14.5| 3.75| 3.26 | 4.79|4.72| 16.9 | 6.11| 6.05| 5.02 | 33.8| 184 | 9.71 | 103 | 23.3| 9.75| 22.1 | 145 | 145
07,07,04/| 1.37| 1.38|| 0.98| 2.05| 2.01 | 3.49| 3.38|1.57|1.79| 1.54| 1.54| 1.53| 2.87 | 219| 219 | 220 | 219 | 2.76 | 3.30| 3.30 | 3.30 | 3.28
07,07,05/| 0.03| 0.02{| 0.04| 0.04| 0.04 | 0.04 | 0.04|0.03|0.03| 0.03 | 0.03| 0.03| 0.03| 0.03| 0.03 | 0.03 | 0.03 | 0.02| 0.02| 0.02 | 0.02 | 0.02
07,07,06| 0.38| 0.38|| 0.41| 0.38| 0.38 | 0.38 | 0.38|0.61| 0.61| 0.61| 0.61| 0.61| 0.69| 0.69| 0.69 | 0.69 | 0.69 | 0.86| 0.86| 0.86 | 0.86 | 0.86
07,07,07|| 0.04| 0.03{| 0.08| 0.08| 0.08 | 0.08 | 0.08 | 0.03| 0.03| 0.03 | 0.03| 0.03| 0.03| 0.03| 0.03 | 0.03 | 0.03 | 0.03| 0.03| 0.03 | 0.03 | 0.03
07,07,08)| 0.11| 0.11}| 0.11| 0.11| 0.11| 0.11| 0.110.10{ 0.10| 0.10| 0.10| 0.10| 0.10| 0.10| 0.10 | 0.10 | 0.10 | 0.14| 0.14| 0.14 | 0.14 | 0.14
07,07,09| 0.40| 0.40(| 0.08| 0.08| 0.08 | 0.08 | 0.08 | 0.35/0.35| 0.35| 0.35| 0.35| 0.35| 0.35| 0.35 | 035 | 0.35 | 055| 0.55| 055 | 0.55 | 0.55
07,07,10/|124.5126.4| 15.8| 6.32| 2.17 | 1.96 | 1.97 | 31.7| 13.4| 6.01 | 5.27 | 5.27 | 59.3 | 72.0| 949 | 874 | 8.74 | 188 | 21.5| 204 | 141 | 141

08,08,01 5.07|1.64| 2.44 | 4.68| 5.23|225|2.84| 3.21 | 3.22| 3.20| 109 | 481 | 476 | 472 | 468 | 45.1| 154 | 103 | 10.2 | 10.0
08,08,02 7.04|11.1| 242 | 2.44| 243 |8.01|6.22| 561 | 6.64| 6.61| 23.0| 12.0| 9.74 | 9.05 | 898 | 44.0| 155| 13.7 | 13.8 | 13.7
08,08,03 14.8/9.39| 13.1| 5.31| 552 (61.9/84.9| 7.57| 140 13.1|105.8| 51.8| 9.17 | 8.71 | 8.66 | 32.8|205.8 159 | 153 | 153
08,08,05|| 36.7| 37.0||231.2 16.1 | 33.6 | 43.6 (176.§24.1| 36.1 | 53.5| 96.5| 48.3| 29.2| 47.7 | 84.1 | 129.2| 70.0| 39.4| 87.3 | 189 240

08,08,06|| 8.15| 8.22{| 0.05| 0.05| 0.05| 0.05 | 0.05|0.10{0.10| 0.10 | 0.10| 0.10| 0.16 | 0.17| 0.17 | 0.17 | 0.16 | 0.26 | 0.26| 0.26 | 0.26 | 0.26
08,08,07|| 4.17| 4.10|| 0.44| 0.44| 0.44| 0.44| 0.43|1.23|1.24| 1.23| 1.23| 1.23| 0.48| 0.48| 048 | 0.48 | 0.47 | 0.89| 0.90| 0.90 | 0.90 | 0.89
08,08,08 0.85|71.6| 145 6.33| 13.5|2.16|1.73| 1.73 | 1.72| 1.72| 3.69 | 2.77 | 2.77 | 277 | 2.76 | 6.40| 4.76 | 476 | 477 | 4.75
08,08,09 1.29|0.87| 0.88 | 0.88 | 0.87 | 1.07|1.08| 1.08 | 1.08 | 1.07 | 2.03 | 2.03| 2.03 | 2.03 | 2.02 | 3.02| 3.04| 3.03 | 3.03 | 3.02
08,08,10/| 1.66| 1.67|| 17.3| 11.5| 4.24 | 4.37 | 4.02|1.87|2.24| 224 | 224 | 2.23| 493 | 2.72| 272 | 272 | 272 | 597 | 7.41| 741 | 740 | 7.37
09,09,01{| 24.9| 25.0|| 0.34/ 0.34| 0.34 | 0.34| 0.34|0.10(0.10| 0.10| 0.10| 0.10| O0.11| 0.112| 0.11 | O0.11 | 0.11 | 0.12| 0.12| 0.12 | 0.12 | 0.12

09,09,02 1.66|1.82| 2.84| 2.64| 2.63|0.85/0.85/ 0.85| 0.85(0.84| 1.48| 1.49| 149 | 149 | 148 | 2.31| 232 | 233 | 232 | 231
09,09,03 13.3| 4.24| 7.33 74.3|0.82/0.82| 0.82| 0.82| 0.82| 1.67| 1.68| 168 | 1.68 | 1.68 | 251 | 2.52| 252 | 252 | 251
09,09,04 143.9 50.9 81.6 95.7

09,09,05 2.60|2.08| 2.66 | 2.66 | 2.66 | 4.03| 3.98| 4.68 | 4.68 | 4.67| 3.96 | 480| 481 | 480 | 479 | 6.49| 6.32| 6.31 | 6.33 | 6.31
09,09,06 4.00| 2.59| 159.6| 6.40 | 5.89 |11.5/8.62| 551 | 551 | 550 | 7.35| 21.5| 6.45 | 6.46 | 6.44 | 128| 20.1| 174 | 174 | 17.4
09,09,07 0.75(28.4| 3.23| 3.01| 3.01|2.16/2.03| 2.04 | 2.03| 2.03| 3.05| 3.07| 3.07 | 3.06 | 3.05 | 6.70 | 595| 595 | 595 | 5.90
09,09,09 0.73{0.71| 0.71 | 0.71| 0.71|1.95{2.40| 2.40| 2.40| 2.39| 391 | 3.50| 351 | 350 | 3.48 | 125| 9.68| 9.67 | 9.69 | 9.63

Table 1: Experimental results fprobing (with the single-threaded core).

pus.?! Unlike above, we measure the average time (of 5
runs) for computing all answer sets. Comparing the sum
of the average times, the currepl at ypus variant run-
ning multi-threading is 2.64 times faster than its predeces
sor using forking, reported in (Gressmaginal. 2005). In
more detail, the columns reflect the timegpbfat ypus run
with the multi-threaded core restricted to 1, 2, 3, and 4eslav
threads, (with probing disabled. When looking at each
benchmark, the experiments show a qualitatively condisten
2-, 3-, and 4-times speed-up when doubling, tripling, and
quadrupling the number of processors, with only minor ex-

(2.24, 3.43, 4.6). The average speed-ups observed on thi
of benchmarks is 1.96, 2.89, and 3.75. However, when t:
ing the weighted average, whose weight is given by the
spective average time, we obtain even a slightly supeadini
speed-up: 2.07, 3.18, 4.24. Such super-linear speed-aps
observed primarily on time-demanding benchmarks and,
though less significant, have also been observed in (Gre
mannet al. 2005) when forking. In all, we observe tha
the more substantial the benchmark, the more clear-cut
speed-up. Given that the experiments were run on a qt
processor, it is worth noting that we observe no drop in pt

ceptions. For instance, the smallest speed-up was observedfiormance when increasing the number of slave threads fr

onschur-11-51.52, 1.73, 1.75); among the highest speed-
ups, we findschur-19-4(2.17, 3.43, 4.75) andigeon-7-11

2IThe forking tests were also run on the same machine.

22The numbers in column ‘mt #1’ are comparable with the ones
obtained withsnodel s or the single-threaded core, respectively.
To be more precise, when runnisgrodel s andpl at ypus in
mode ‘mt #1’ while printing td dev/ nul | , we observe an over-
all factor of 1.59 on the benchmarks in Table 2.

3 to 4, despite having a fifth (master) thread. Finally, w
note that the multi-threaded core, when restricted to desin
slave thread, exhibits only slightly poorer performanamnth
the single-threaded version: the latter is on average ab
2% faster than the former.

At last, we would like to mention that the performanc
of pl at ypus is currently—under similar circumstances—
slightly better when using Unix’ fork (along with POSIX
IPC for communication) than when using multi-threadin

Technical Report IfI-06-04

Answer Set Programming

| problem [mt#1]| mt#2 | mt#3 | mt#4 | & Marques-Silva 2000; Gomes, Selman, & Kautz 1998
color-5-10 153 | 0.84 | 0.62 | 0.53 probing keeps previously abandoned parts of the sea
color-5-15 60.9 | 31.1 | 205 | 15.7 space, so that they can be revisited subsequently. Her
hamcomp8 | 3.66 | 1.99 | 1.38 | 1.10 the principal difference between our probing scheme a
hamcomp9 | 85.2 | 436 | 29.0 | 225 restarting, known from SAT and CSP, is that probingam-
pigeon-7-8 138 | 0.73 | 057 | 0.48 pletein the sense that it allows the enumeration of all soli
pigeon-7-9 | 4.22 | 2.19 | 1.46 | 1.17 tions and the detection of no solution. Nonetheless, it dot
pigeon-7-10 | 13.2 | 6.31 | 4.12 | 3.08 be interesting to see how the various restart strategie&lin &
pigeon-7-11 | 36.5 | 16.3 | 10.6 | 7.94 and CSP could be adapted for probing. Restart is imp
pigeon-7-12| 88.2 | 39.9 | 25.8 | 19.0 melntEd irr‘f nglps- ar(‘g.i”"eS“@IJateg ig‘.éhe. C%r(‘)tg;)t °“S'£’1‘

: a- cal search in in (Dimopoulos ideris .
g:gggg_g_io iég 227; ifg i08j based ASP-solvers, suchassat (Lin & Zhao 2004) and
pigeon9-10 | 1284 | 61.8 | 39.5 | 29.4 cnodel s (Glunchlglla,_LlerIer, & Maratea 2004), can take
schuri44 T 100 1 063 | 047 | 042 advantage of restarts via their embedded SAT-solver.
schur-15-2 538 [1.30 | 091 | 0.73 Second, we have presentptiat ypus’ multi-threaded

architecture. Multi-threading complements the previol
process-oriented distribution schemes pifat ypus by

providing further intra-process distribution capacitigis

is of great practical value since it allows us to take adva
tage of recent hardware developments, offering multi-ca
processors. In a hybrid setting, consisting of clusters
such machines, we may use multi-threading for distrib

schur-16-4 404 | 214] 141 | 1.11
schur-17-4 9.13 | 458 | 3.04 | 2.28
schur-18-4 16.7 | 8.34 | 531 | 3.92
schur-19-4 39.3 | 181 | 115 | 8.28
schur-20-4 441]| 219 | 13.8 | 10.1
schur-11-5 056 | 0.37 | 0.32 | 0.32

schur-12-5 | 1.49 | 0.83 | 0.63 | 0.54 tion on the multi-core processors, while distribution amor
schur-13-5 | 569 | 2.90 | 1.97 | 1.51 different workstations is done with previously establishe
schur-14-5 | 186 | 9.05 | 6.00 | 4.42 distribution techniques ipl at ypus, like MPI. Further-
more, the modular implementation of there anddistribu-
Table 2: Experimental results onulti-threading tion component allow for easy modifications in view of nev

distribution concepts, like grid computing, for instan@le
pl at ypus platform is freely available on the web (platy-
We see two reasons for this. First, forking does not need pus, website undated).
a master. Second, the current implementation of forking Our experiments have concentrated on highlighting tl
also utilises lock-free data structures where possibld tan individual merits of probing and multi-threading. Furthe

thus improves over the one described in (Gressnetral. systematic studies are needed to investigate their iBtgrp
2005)). in addition to experiments with different strategies whic
would include approaches similar to those found in SAT at

Discussion CSP. Similarly, the relationship between our approach a

the work described in (Finkedt al. 2001; Hirsimaki 2001;
Pontelli, Balduccini, & Bermudez 2003) needs to be studit
in more detalil.

At the heart of the PATYPUS design is its generality and
modularity. These two features allow a great deal of flexi-
bility in any instantiation of the algorithm, making it unig
among related approaches. Up to now, this flexibility

was witnessed by the possibility to use different off-the- acknowledgments The first, fourth, fifth, and sixth author
shelf solvers, different process-oriented distributioechn was supported by DFG under grant SCHA 550/6-4. All by
anisms, and a variety of choice policies. In this paper we tne third author were also funded by the EC through IS
have presented two significant configurable enhancements 2001-37004 WASP project. The third and last authors we
toplatypus. o _ , funded by NSERC (Canada) and SHARCNET.

First, we have described its probing mode, relying on \we are furthermnore grateful to Christian Anger, Marti

an explicit yet restricted representation of the searck&pa grain. Martin Gebser Benjamin Kaufmann, and the anon
This provides us with a global view of the search space mousy referees for ma{ny helpful suggestion’s.

and allows us to have different threads working on differ-
ent subspaces. Although probing does not aim at a sequen-
tial setting, we have experimentally demonstrated its com- References

putational value on a specific class of benchmarks, which htt p: // aspar agus. cs. uni - pot sdam de.
is problematic for standard ASP-solvers. Probing offers a
non-lineaf® exploration of the search space that can be ran-
domised while remaining complete. Unlike restart straggi

in SAT, which usually draw on learnt information (Baptista

Baptista, L., and Marques-Silva, J. 2000. Using randor
ization and learning to solve hard real-world instances
satisfiability. In Dechter, R., edBroceedings of the Sixth
International Conference on Principles and Practice c
ZBThat is, the traversal of the search space does not follow a Constraint Programming (CP’00yolume 1894 ot ecture
given strategy like depth-first search. Notes in Computer Scienc#89—-494. Springer-Verlag.

DEPARTMENT OF INFORMATICS 37

.TU Clausthal
11TH NMR WORKSHOP

38

Baral, C. 2003Knowledge Representation, Reasoning and
Declarative Problem SolvingCambridge University Press.

Dimopoulos, Y., and Sideris, A. 2002. Towards local
search for answer sets. In Stuckey, P., &tqceedings
of the Eighteenth International Conference on Logic Pro-
gramming (ICLP’02) volume 2401 ofLecture Notes in
Computer Scien¢863—-377. Springer-Verlag.

Finkel, R.; Marek, V.; Moore, N.; and Truszczynski, M.
2001. Computing stable models in parallel. In Provetti, A.,
and Son, T., edsRroceedings of AAAI Spring Symposium
on Answer Set Programming (ASP’0IP—75. AAAI/MIT
Press.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databaddsw Generation
Computing9:365—-385.

Giunchiglia, E.; Lierler, Y.; and Maratea, M. 2004. A SAT-
based polynomial space algorithm for answer set program-
ming. In Delgrande, J., and Schaub, T., e@sgceedings

of the Tenth International Workshop on Non-Monotonic
Reasoning (NMR’04)189-196.

Gomes, C. P.; Selman, B.; Crato, N.; and Kautz,
H. A. 2000. Heavy-tailed phenomena in satisfiability
and constraint satisfaction problemk.Autom. Reasoning
24(1/2):67-100.

Gomes, C.; Selman, B.; and Kautz, H. 1998. Boosting
combinatorial search through randomization.Piroceed-
ings of the Fifteenth National Conference on Artificial In-
telligence (AAAI'98)431-437. AAAI Press.

Gressmann, J.; Janhunen, T.; Mercer, R.; Schaub, T.;
Thiele, S.; and Tichy, R. 2005. Platypus: A platform
for distributed answer set solving. In Baral, C.; Greco,
G.; Leone, N.; and Terracina, G., ed®roceedings of
the Eighth International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR;0&)lume
3662 ofLecture Notes in Artificial Intelligen¢e227—239.
Springer-Verlag.

Gressmann, J. 2005. Design, implementierung und vali-
dierung einer modularen mulithreaded architektur fr platy
pus. Diplomarbeit, Institutifr Informatik, Universiat Pots-
dam.

Gropp, W.; Lusk, E.; and Thakur, R. 1998sing MPI-2:
Advanced Features of the Message-Passing Interfabe
MIT Press.

Herlihy, M. 1991. Wait-free synchronization.ACM
Transactions on Programming Languages and Systems
13(1):124-149.

Herlihy, M. 1993. A methodology for implementing highly
concurrent data objectsACM Transactions on Program-
ming Languages and Systefry(5):745—770.

Hirsimaki, T. 2001. Distributing backtracking search trees.
Technical report, Helsinki University of Technology.

Leone, N.; Faber, W.; Pfeifer, G.; Eiter, T.; Gottlob, G.;
Koch, C.; Mateis, C.; Perri, S.; and Scarcello, F. 2006. The
DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logito appear.

Lifschitz, V. 1996. Foundations of logic programming. I
Brewka, G., ed.Principles of Knowledge Representation
CSLI Publications. 69-127.

Lin, F., and Zhao, Y. 2004. ASSAT: computing answer se
of a logic program by SAT solversArtificial Intelligence
157(1-2):115-137.

Michael, M. M., and Scott, M. L. 1996. Simple, fast, an
practical non-blocking and blocking concurrent queue ¢
gorithms. InSymposium on Principles of Distributed Com
puting, 267-275.

http://ww. cs. uni - pot sdam de/ pl at ypus.

Pontelli, E.; Balduccini, M.; and Bermudez, F. 2003. Nor
monotonic reasoning on beowulf platforms. In Dahl, V
and Wadler, P., eds€2roceedings of the Fifth International
Symposium on Practical Aspects of Declarative Languag
(PADL’03), volume 2562 ot_ecture Notes in Atrtificial In-
telligence 37-57.

Simons, P.; Niemd, |.; and Soininen, T. 2002. Extending
and implementing the stable model semantiéstificial
Intelligencel38(1-2):181-234.

Tanenbaum, A. S. 200Modern Operating Systemblew
Jersey, USA: Prentice Hall, 2nd edition.

Valois, J. D. 1995. Lock-Free Data Structures Ph.D.
Dissertation, Rensselaer Polytechnic Institute, TroywNe
York.

Walsh, T. 1999. Search in a small world. In Dean, T., ec
IJCAI, 1172-1177. Morgan Kaufmann.

Ward, J., and Schlipf, J. 2004. Answer set programmil
with clause learning. In Lifschitz, V., and Niengell.,
eds.,Proceedings of the Seventh International Conferen
on Logic Programming and Nonmonotonic Reasoning (L!
NMR’04), volume 2923 of_ecture Notes in Artificial Intel-
ligence 302-313. Springer-Verlag.

Technical Report IfI-06-04

Answer Set Programming

DEPARTMENT OF INFORMATICS 39

.TU Clausthal
11TH NMR WORKSHOP

1.4 Towards Efficient Evaluation of HEX-Programs

Towards Efficient Evaluation of HEX-Programs®

Thomas Eiter, Giovambattista lanni, Roman Schindlauer, and Hans Tompits
Institut fur Informationssysteme, Technische Univéxsitvien,
Favoritenstrale 9—11, A-1040 Vienna, Austria
{eiter, ianni, roman, tompi}gkr.tuwien.ac.at

Abstract

We briefly report on the development status difhex, a
reasoning engine foHEX-programs, which are nonmono-
tonic logic programs with higher-order atoms and external
atoms. Higher-order features are widely acknowledged as
useful for various tasks and are essential in the context of
meta-reasoning. Furthermore, the possibility to exchange
knowledge with external sources in a fully declarative frame-
work such as answer-set programming (ASP) is particularly
important in view of applications in the Semantic-Web area.
Through external atomsiEx-programs can deal with exter-
nal knowledge and reasoners of various nature, such as RDF
datasets or description logics bases.

Introduction

Nonmonotonic semantics is often requested by Semantic-

computes the predicatetaking values from the predicate
&RDF. The latter extracts RDF statements from the set
URIs specified by the extension of the predicate; this
task is delegated to an external computational source (e
an external deduction system, an execution library, ef).
ternal atoms allow for a bidirectional flow of information tc
and from external sources of computation such as desci
tion logics reasoners. By means W Xx-programs, power-
ful meta-reasoning becomes available in a decidable getti
e.g., not only for Semantic-Web applications, but also fi
meta-interpretation techniques in ASP itself, or for defini
policy languages.

Other logic-based formalisms, like TRIPLE (Sintek &
Decker 2002) or F-Logic (Kifer, Lausen, & Wu 1995),
feature also higher-order predicates for meta-reasoming
Semantic-Web applications. Our formalism is fully declar:

Web designers in cases where the reasoning capabilities oftive and offers the possibility of nondeterministic preati

the Ontology layerof the Semantic Web turn out to be too
limiting, since they are based on monotonic logics. The

widely acknowledged answer-set semantics of nhonmono-

tonic logic programs (Gelfond & Lifschitz 1991), which is
arguably the most important instance of #ireswer-set pro-
gramming(ASP) paradigm, is a natural host for giving non-
monotonic semantics to theulesand Logic layers of the
Semantic Web.

In order to address problems suchrasta-reasoningn
the context of the Semantic Web and interoperability with
other software, in (Eiteet al. 2005), we have extended the
answer-set semantics HeX-programs which arehigher-
order logic programgwhich accommodate meta-reasoning
throughhigher-order atompwith exernal atomsfor soft-
ware interoperability. Intuitively, a higher-order atottoas

to quantify values over predicate names, and to freely ex-
change predicate symbols with constant symbols, like in the

rule
C(X) « subClassOf (D, C), D(X).
An external atom facilitates the assignment of a truth value

of an atom through an external source of computation. For

instance, the rule
t(Sub, Pred, Obj) «— & RDF[uri](Sub, Pred, Obj)
*This work was partially supported by the Austrian Science

Fund (FWF) under grant P17212-N04, and by the European Com-

mission through the IST Networks of Excellence REWERSE (IST-
2003-506779).

40

definitions with higher complexity in a decidable settinc
This proved already useful for a range of applications wi
inherent nondeterminism, such as ontology merging (Wa
et al. 2005) or matchmaking, and thus provides a rich bas
for integrating these areas with meta-reasoning.

HEX-Programs
Syntax

HEX programs are built on mutually disjoint se&tsX’, and
G of constant namesvariable namesand external predi-
cate namesrespectively. Unless stated otherwise, elemer
from X' (resp.,C) are written with first letter in upper case
(resp., lower case), and elements frghare prefixed with
“&”. Constant names serve both as individual and prec
cate names. Importantlg, may be infinite.

Elements fromC U X are calledterms A higher-order
atom(or atom) is a tuple(Yo, Y1, ..., Y,), whereYy, ..., Y,
are terms anch > 0 is its arity. Intuitively, Y, is the
predicate name; we thus also use the familiar notati
Yo (Y1, ...,Y,). The atom isordinary, if Y; is a constant.
For example,(z, rdf :type, c) and node(X) are ordinary
atoms, whileD(a,b) is a higher-order atom. Apxternal
atomis of the form

&g[YI7~-~>Yn](X11-~-
whereYy,... Y, and X, ..

s Xm), 1)

., X,, are two lists of terms

Technical Report IfI-06-04

(calledinput listandoutput list respectively), andzg is an
external predicate name
It is possible to specifynoleculesof atoms in F-Logic-
like syntax. For instancegi|[father — X,Z — iu]is a
shortcut for the conjunctiofuther(gi, X), Z(gi, iu).
HEX-programs are sets of rules of the form

u/B’rH not ﬂn+17 sy not ﬁm7 (2)

wherem,k > 0, aq,...,«a, are higher-order atoms, and
51, - .., Bm are either higher-order atoms or external atoms.
The operator fiot” is negation as failurgor default nega-
tion).

041\/"'\/Oék<—ﬁ1,...

Semantics

The semantics aiEX-programs is given by generalizing the
answer-set semantics (Eigtral. 2005). TheHerbrand base
of a programP, denotedHB p, is the set of all possible
ground versions of atoms and external atoms occurrirfg in
obtained by replacing variables with constants fronThe
grounding of a rule, grnd(r), is defined accordingly, and
the grounding of prograr® by grnd(P) = |, . p grnd(r).
An interpretation relative taP is any subsef C HB p con-
taining only atoms.

We say that an interpretatioh C HBp is a modelof
an atoma € HBp iff acI. Furthermore,l is a model
of a ground external atom = &g[y1, ..., yn) (@1, ..., Tm)
iff feog(L, Y15 Un,T1,-..,2m) =1, Where fg, is an
(n+m+1)-ary Boolean function associated witly, called
oracle function assigning each element pfi8r x cntm
eitherQ or 1.

Let » be a ground rule. We define (= H(r) iff
there is some: € H(r) such thatl =a, (i) I = B(r) iff
I'=aforall ae BY(r) andI f£a for all ae B~ (r), and
(iii) I =riff I =H(r)wheneved = B(r). We say thaf is
amodelof a HEX-programP, denoted! |= P, iff I }=r for
all r € grnd(P).

TheFLP-reductof P w.r.t. I C HB p, denotedfP’, is the
set of allr € grnd(P) such thatl = B(r). I C HBpis an
answer set of iff I is a minimal model offP!. By ans(P)
we denote the set of answer setgof

Note that the answer-set semantics may yield no, one, or
multiple models (i.e., answer sets) in general. Therefore,
for query answeringyraveandcautious reasoningtruth in
some resp. all models) is considered in practice, depending
on the application.

We have seen that the truth value of an external atom is de-
termined with respect to a specific interpretation, via the d
main of the associated Boolean function. As a consequence,
the satisfiability of an external atom in general cannot be
stated apriori, but only regarding an entire model of a pro-
gram. This implies not only that external atoms influence
the truth values of ordinary atoms by occuring in rule bod-
ies, but also that ordinary atoms can have an effect on the
evaluation of external atoms. Henecesx-programs facili-
tate a bidirectional flow of knowledge between the answer
set program and the external evaluation function.

In practice, it is useful to differentiate between two kinds
of input attributes for external atoms. For an external pred
cate&g (exploited, say, in an atorkg[p](X)), a term ap-

DEPARTMENT OF INFORMATICS

Answer Set Programming

pearing in an attribute position of typaredicate (in this
casep) means that the outcomes fif , are dependent from
the current interpretatio, for what the extension of the
predicate nameg in [is concerned. An input attribute
of type constantdoes not imply a dependency 6§, from
some portion ofl. An external predicate whose input at
tributes are all of type constant does not depend from 1
current interpretation.

Example 1 The external predicat& RDF introduced be-
fore is implemented with a single input argument of tyf
predicate because its associated function finds the RD
URIs in the extension of the predicate::

tr(S, P,0) «— &RDF[uri|(S, P,0),
uri(“file:llfoaf .rdf”) — .

Should the input argument be of type constant, an equival
program would be:

tr(S, P,0) — &RDF[“file:llfoaf .rdf"](S, P, O).
or

tr(S, P,O) — &RDF[X](S, P,O),uri(X),
uri(“file:llfoaf .rdf”) «— .

Usability of HEX-Programs

An interesting application scenario, where several festu
of HEX-programs come into play, isntology alignment
Merging knowledge from different sources in the context
the Semantic Web is a crucial task (Calvanese, Giacomo
Lenzerini 2001) that can be supported Hogx-programs in
various ways:

Importing external theories. This can be achieved by
fragments of code such as:

triple(X,Y, Z) «— &RDF[uri](X,Y, Z),
triple(X,Y, Z) — &RDF[uri2|(X,Y, Z),
proposition(P) « triple(P, rdf :type, rdf :statement).

Searching in the space of assertiondn order to choose
nondeterministically which propositions have to be ir
cluded in the merged theory and which not, statemel
like the following can be used:

pick(P) V drop(P) «— proposition(P).

Translating and manipulating reified assertions. For in-
stance, it is possible to choose how to put RDF tripl
(possibly including OWL assertions) in an easier manip
lable and readable format, and to make selected prop
tions true such as in the following way:

(X,Y, Z) « pick(P), triple(P, rdf :subject, X),
triple(P, rdf :predicate,Y),
triple(P, rdf :object, Z),
C(X) « (X, rdf :type, C).

Defining ontology semantics.The semantics of the ontol-
ogy language at hand can be defined in terms of enti
ment rules and constraints expressed in the language it
or in terms of external knowledge, like in

D(X) < subClassOf (D, C),C(X
— &inconsistent|pick],

)7

41

.TU Clausthal
11TH NMR WORKSHOP

42

where the external predicateinconsistent takes a set

of assertions as input and establishes through an external

reasoner whether the underlying theory is inconsistent.

Inconsistency of the CWA can be checked by pushing
back inferred values to the external knowledge base:

set_false(C, X) «— cwa(C,C"),C"(X),
inconsistent «— & DL1 [set_false](b),

where& DL1[N](X) effects a check whether a knowl-
edge base, augmented with all negated faets) such
that N (¢, a) holds, entails the empty concept (entail-
ment of L (b), for any constand, is tantamount to incon-
sistency).

Implementation
The challenge of implementing a reasoner fgEx-pro-

4. a is an external predicate of forikrg[X](Y) whereX =
X1,...,X,, and b is of form p(Z), and, for some;,
X; = p and of type predicatée.qg., &count[item|(N)

is externally dependent atern(X)).

Moreover, a depends negativelpn b (a—,b), if there is
some ruler € P such thate € H(r) andb € B~ (r).
We say that depends o, if a—b, where— = —, U —,,.
The relation—* denotes the transitive closure ©f.

These dependency relations let us construct a gra
which we calldependency grapbf the corresponding pro-
gram.

Example 2 Consider the program of Figure 1, modeling
the search for personal contacts that stem frofQRAF-
ontology® which is accessible by a URL.

grams lies in the interaction between external atoms and The first two facts specify the URLs of the FOAF ontologie

the ordinary part of a program. Due to the bidirectional
flow of information represented by its input list, an extérna

atom cannot be evaluated prior to the rest of the program.

we want to query. Rules 3 and 4 ensure that each ans\
set will be based on a single URL only. Rule 5 extracts ¢
triples from an RDF file specified by the extensionput.

However, the existence of established and efficient reason- Rule 6 converts triples that assign names to individuats ir

ers for answer-set programs led us to the idea of splittiinig an
rewriting the program such that an existing answer-seesolv
can be employed alternatingly with the external atoms’-eval
uation functions. In the following, we will outline methods
that are already implemented in our prototyyEex reasoner
divhex. We will partly refer to (Eiteret al. 2006), modify-

the predicaterame. Finally, the last rule traverses the RDF
graph to construct the relatidgmows.
Figure 2 shows the dependency graptPof

Evaluation Strategy

ing the algorithms and concepts presented there where it is The principle of evaluation of aEx-program relies on the

appropriate in the view of an actual implementation.

Dependency Information

Taking the dependency between heads and bodies into ac-{ M, .

theory of splitting sets Intuitively, given a programpP,
a splitting setS is a set of ground atoms that induce
sub-programgrnd(P’) C grnd(P) whose modelsM =
.., M,} can be evaluated separately. Then, an ac

count is a common tool for devising an operational seman- quatesplitting theorenmshows how to plug in\ in a mod-

tics for ordinary logic programs, e.g., by means of the no-
tions of stratification or local stratification (Przymusinski
1988), or throughmodular stratification(Ross 1994) or
splitting sets(Lifschitz & Turner 1994). In (Eiteret al.

2006), we defined novel types of dependencies, consider-

ified version of P \ P’ so that the overall models can be
computed. Here, we use a modified notion of splitting s¢
accomodating non-ground programs and suited to our d¢
nition of dependency graph.

ing that inHEX programs, dependency between heads and pefinition 2 A global splitting sefor a HEX-program P is

bodies is not the only possible source of interaction betwee
predicates. Contrary to the traditional notion of depeiggien
based on propositional programs, we consider relatiosship

a set of atoms! appearing inP, such that whenever ¢ A
anda—b for some atond appearing inP, then alsd € A.

between nonground, higher-order atoms. In the view of an |n (Eiter et al. 2006), we already defined an algorithn
actual implementation of a dependency graph processing al- based on splitting sets. However, there we used a gene

gorithm, we will present in the following a generalized defi-
nition of atom dependency of (Eitet al. 2006).

Definition 1 Let P be a program and:, b atoms occurring
in some rule of?. Then,a depends positivelpn b (a—pb),
if one of the following conditions holds:

1. There is some rule € P such thate € H(r) andb €
BT (r).

2. There are some rules,r; € P such thata € B(ry)
andb € H(ry) and there exists a partial substitutiéyof
variables ina such that eithewf = b or a = b. E.g.,
H(a,Y) unifies withp(a, X).

3. There is some rule € P such thata,b € H(r). Note

that this relation is symmetric.

approach, decomposing into strongly connected compo-
nents (SCC in the following), which leads to a potentiall
large number of splitting sets (considering that a singbenat
that does not occur in any cycle is a SCC by itself). Hov
ever, since the evaluation of each splitting set requires
interaction with an answer-set solver (i.e., one or morksca
to the solver, depending on the nature of the program as
ciated with the splitting set), in a practical setting thgeab

must be to identify as few splitting sets as possible in c
der to minimize the number of actual reasoning steps a

“FOAF” stands for “Friend Of A Friend”, and is an RDF vo-
cabulary to describe people and their relationships.

2Long constant names have been abbreviated for the sake
compactness.

Technical Report IfI-06-04

Answer Set Programming

(1) wrl(“hitpHwww.kr.tuwien. ac. atl staff Iromanl foaf .rdf”) —;
(2) wrl(“http:llwww.mat.unical.itliannil foaf .rdf”) —;

(3) —input(X) V —input(Y) «— url(X),url(Y),X £Y;

4) input(X) — not—input(X), url(X);

(5) triple(X,Y,Z) «— &RDF[A|(X,Y, Z), input(A);

(6) name(X,Y) «— triple(X, “http:llzmins.comlfoaf0.1/name” Y);

@) knows(X,Y) «— name(A, X),name(B,Y), triple(A, “http:llxmins.comlfoafl0.11knows”, B).

Figure 1: Example program using theR DF-atom.

increase overall efficiency. Therefore, we now modify and e A strongly connected compone6t without any weakly

specialize the notions and methods given there. negated atoms and only monotonic external atoms.
simple method for computing the (unique) model of suc
Definition 3 A local splitting setfor a HEX-program P is a component is given by the fixpoint operation of the of
a set of atomsA appearing inP, such that for each atom eratorA : 2"'5r — 215r defined byA(I) = M (Phe, U
a € Athere is no atonb ¢ A such thata—b andb—Ta. Dp(I)) N HBp, where:
— Py, is an ordinary logic program as defined above

Thus, contrary to a global splitting set, a local splittired s

does not necessarily include the lowest layer of the program with P = be.
but it never “breaks’ a cycle. - ngl)js the set of all factsly.(y, ¢) < such thatl =
&gly](e) for all external atomg:g in P; and

Definition 4 Thebottomof P w.r.t. set of atoms is the set -]1\)4 (?)e'xs% cDe 1;3(1))i;S;tTZtﬁiigglﬁh?gzvgg\:vgratsghie; Ldar
of rulesba(P) = {r € P | H(r)n A # 0}. anliee(j’ to existhggﬁd to be unidue ’
We define the concept ekternal componentvhich rep- e A strongly connected compone@itwith negative depen-
resents a part of thg_dependency graph mcludmg_atleast_one dencies or nonmonotonic external atoms. In this cas
external atom. Intuitively, an external component is the-mi we cannot rely on an iterative approach, but are force

imal local splitting set that contains one or more external 5 gyess the value of each external atom beforehand ¢
atoms. We distinguish between different types of external gjigate each guess w.r.t. the remaining atoms:

components, each with a specific procedure of evaluation,

i.e., computing its model(s) w.r.t. to a set of ground atdms — ConstructPy, from P = bc as before and add for
Before these are laid out, we need to introduce some auxil- each replacement atodfy., (7, 7) all rules
iary notions. _ _

From the viewpoint of program evaluation, it turns out dicg(9:€) V ~dig(7,) (3)
to b_e impractical to define the seman_tics of an exter_nal such that&g[7](@) is a ground instance dtg7.
predicate by means of a Boolean function. Again restrict- Intuitively, the rules (3) “guess” the truth values of the
ing the concepts presented in (Eiter al. 2006) for our external atoms of’. Denote the resulting program by
practical needs, we definy, : 2787 x D;,...,D, Pyucss.

— 2B with Fg,(Iyi,...,yn) = (T1,...,2y) if _ _
f&g(Lyh.--,yn,xi,.--,xm) =1, where R is the set I(iompute the answer seténs = {My,..., M,} of
of all tuples of aritym that can be built with symbols from guess:

C. If the input listyy, . ..,y is not ground in the original — For each answer s € Ans Of Py,.cs;, test whether
program, safety restrictions fofEx-programs ensure that the original “guess” of the value af., (¥, ¢) is compli-
its values can be determined from the remaining rule body. ant with fgq. That is, for each external atom check

A ground external atonig is monotonic providing = whetherM |= &g[y](c). If this condition does not
&g impliesI’ |= &g, for I CI' C HBp. hold, removeM from Ans.

With Py.., we denote the ordinary logic program having — Each remainingl/ € Ans is an answer set af iff M
each external atog[y](Z) in P replaced byl (7, T) (we is a minimal model off P/ .

call this kind of atomseplacement atomswheredy, is a Note that a cyclic subprogram must preserve certain saft

fresh predicate symbol. . rules in order to bound the number of symbols to be take
The categories of external components we consider are: inio account to a finite extent. To this end, we define

e A single external atong:g that does not occur in any in (Eiter et al. 2006) the notion oéxpansion-safefywhich
cycle. Its evaluation method returns for each tuple avoids a potentially infinite ground program while still al-

(T1,...,Tm) N Fgy(I,y1,...,y,) agroundreplacement lowing external atoms to bring in additional symbols to th
atomdg,(y1, ..., Yn,1,...,%m) as result. The external ~ program.

atom in Figure 2, surrounded by a rectangular box, repre- The evaluation algorithm in (Figure 3) uses the followin
sents such a component. subroutines:

DEPARTMENT OF INFORMATICS 43

.TU Clausthal
11TH NMR WORKSHOP

EVALUATION ALGORITHM
(Input: aHEX-programP; Output: a set of models)

1. Determine the dependency gragtior P.
2. Find all external components of P and buildComp =
{Cy,...,CL}.

3. Setl" := Comp andM := {F}, whereF is the set of all
facts originally contained i#. The setM will eventually
containans(P) (which is empty, in case inconsistency is
detected).

4. While P # () do

(@) LetT :={C €T |Va € C :if Ja—bthenb € C}.
(b) Let M’ := {0}, for eachC from T
-let M :={AUB | (A,B) € M x eval(C, M)},
- removeC from Comp and
- letP:= P\ b.(P).
Let M := M’.
(c) if M = 0 then halt.
(d) Let M := [y epq sS0lve(P’, M), whereP' = Py, \
bz andC is the set of all nodes such that eithes— ¢

with ¢ € C oru € C foranyC € Comp;
let P := P\ P’ and remove all atoms from the grapt

that are not irC.

name(B,Y) @

Figure 3: Evaluation algorithm.

largest possible subprogram that does not depend on any
maining external component, computes its models and |
moves it from the program resp. dependency graph.
Seen from a more general perspective, the iteration ti
verses the program graph by applying two different evalu
tion functions each turn. Whileval computes minimal sub-
programs containing external atomsymp solves maximal
non-external subprograms.
) Let us exemplarily step through the algorithm with Exarr
Figure 2: FOAF program graph. ple 2 as input progran®. First, the graptG is constructed
as shown in Figure 2. Sind@ contains only a single exter-
nal atom, the se€omp constructed in Step 2 contains jus

eval(comp,T) Computes the models of an external compo- One external componeft, the& RDF-atom itself. Step (a)
nentcomyp (which is of one of the types described above) extracts those components@bmp that form a global split-

for each interpretatiod € Z; eachl is added as a set of ting set, i.e., that do not depend on any atom not in the col
facts to the respective models. ponent. Clearly, this is not the case f6rand hencel is

empty. Step (d) constructs an auxiliary progréthby re-
moving the bottom of”, which contains each componen
that is still in Comp and every atom “above” it in the depen-
dency graph:

solve(P,T) Returns the answer setsBfJ A, whereP does
not contain any external atom adds the set of facts that
corresponds ta@.

Intuitively, the algorithm traverses the dependency graph . .
from bottom to top, gradually pruning it while computing ~ Put(X) V minput(Y) < url(X), url(Y), X # Y
the respective models. Step (a) singles out all externat com input(X) « not—input(X), url(X);
ponents that do not depend on any further atom or compo- solve(P’, M) in Step (d) yields the answer setsif, where
nent, i.e., that are on the “bottom” of the dependency graph. M is the set of the original facts fron? (the two URISs).
Those components are evaluated against the current known P’ is removed fromP and C from the dependency graph
models in Step (b) and can be removed from the list of exter- (the resulting subgraph is shown in Figure 4). Contint
nal components that are left to be solved. Moreover, Step (b) ing with (a), now the external compone6t is contained
ensures that all rules of these components are removed fromin 7, and therefore in Step (b) evaluated for each setfin
the program. From the remaining part, Step(d) extracts the After removingC from Comp, C is empty in Step (d) and

44 Technical Report IfI-06-04

@ name(B,Y)

| &RDFIAI(X.Y.2) |

Figure 4: Pruned dependency graph.

P’ = Py, i.e., an ordinary, stratified program, which is
evaluated against each setM1 - note that these sets now

Answer Set Programming

rently, we implemented th&DF plugin the Description
Logics Pluginand theString Plugin

The RDF Plugin RDF (Resource Description Frame:
work) is a language for representing information about r
sources in the World-Wide Web and is intended to repres¢
meta-data about Web resources which is machine-reade
and -processable. RDF is based on the idea of identi
ing objects using Web identifiers (call&éthiform Resource
Identifiers or URIs), and describing resources in terms ¢
simple properties and property values. RieF pluginpro-
vides a single external atom, tlieR DF-atom, which en-
ables the user to import RDF-triples from any RDF know
edge base. It takes a single constant as input, which denc
the RDF-source (a file path or Web address).

The Description-Logics Plugin Description logics are an
important class of formalisms for expressing knowledg
about concepts and concept hierarchies (often denotec
ontologie3. The basic building blocks amonceptsroles

and individuals Concepts describe the common prope
ties of a collection of individuals and can be considered
unary predicates interpreted as sets of objects. Rolesare
terpreted as binary relations between objects. In previc
work (Eiter et al. 2004), we introducedil-programsas a

method to interface description-logic knowledge basek w
answer-set programs, allowing a bidirectional flow of infol

also contain the result of the external atom, represented asmation. To model dl-programs in terms BEx-programs,

ground replacement atoms. At this poiifit,is empty and
the algorithm terminates, havinyt as result.
We obtain the following property:

Theorem 1 Let P be aHEX-program andM the output of
the evaluation algorithm from Figure 3. Theh/ is an an-
swer set of? iff M € M.

Proof 1 (Sketch). The given algorithm is actually a re-
peated application of the splitting set theorem as intreduc
in (Lifschitz & Turner 1994) and extended to programs with
external atoms in (Eitest al. 2006). Basically, the theorem
allows to state that it/ is a splitting set for a progran®,
then, a setd is an answer set of prograi iff A is an an-
swer set ofP’ = (P \ by) U B whereB contains the facts
corresponding to some answer sebgf

Given the current value oP, Step (a) of the algorithm

we developed thdescription-logics pluginwhich includes
three external atoms (these atoms, in accord to the sermar
of dl-programs, also allow for extending a description togi
knowledge base, before submitting a query, by means of-
atoms’ input parameters):

e the&dIC atom, which queries a concept (specified by &
input parameter of the atom) and retrieves its individual

e the&dIR atom, which queries a role and retrieves its ir
dividual pairs, and

o the &diConsistent atom, which tests the (possibly ex-
tended) description logic knowledge base for consisten

The description-logics plugin can access OWL ontol
gies, i.e., description logic knowledge bases in the la
guageSHOIN (D), utilizing the RACER reasoning engine
(Haarslev & Moller 2001).

finds splitting sets corresponding to external componeits o The String Plugin For simple string manipulation rou-
P. The splitting set theorem is applied by computing the tines, we provide the string plugin. It currently consists ¢
answer sets of the bottoms of each of these components. If two atoms:

onte_\ of the compon(?[rg)ts IS foun_dtto tbe |gcon5|stent, th?” t_h(ta e the &concat atom, which lets the user specify two con
enure program must be inconsistent and no answer SeLexXISIS — giant strings in the input list and returns their concaten
(Step (c)). Step (d) again applies the splitting set theayem tion as a sinal

- . e . gle output value, and
the remaining program. In this case, the splitting set which]))
is searched for does not contain external atoms. After each ® the &strstr atom, which tests two strings for substring
iteration of the algorithm, the set of final answer sets is up- inclusion.
dated, whileP is reduced. Finally, all answer sets Bfare
left. Current Prototype
. dlvhex has been implemented as a command-line applic
Available External Atoms tion. It takes one or morelEx-programs as input and di-
External Atoms are provided by so-callptugins i.e., li- rectly prints the resultant models as output. Both inp
braries that define one or more external atom functions. Cur- and output are given in classical textual logic-prograngmir

DEPARTMENT OF INFORMATICS 45

.TU Clausthal
11TH NMR WORKSHOP

46

notation. For the core reasoning procedshex itself
needs the answer-set solver DLV (Leagteal. 2005) (and
DLT (lanni et al. 2004) if F-Logic syntax is used).

Assuming that the program from Example 2 is repre-
sented by the filedf.lp , dlvhex is called as follows:

user@host:™> dlvhex --filter=friend rdf.lp

The -filter switch reduces the output of facts to the
given predicate names. The result contains two answer sets:

{knows("Giovambattista lanni",
"Axel Polleres"),
{knows("Giovambattista lanni",
"Francesco Calimeri"),
{knows("Giovambattista lanni",
"Wolfgang Faber"),
{knows("Giovambattista lanni",
"Roman Schindlauer")}

{knows("Roman Schindlauer",
"Giovambattista lanni"),

{knows("Roman Schindlauer",
"Wolfgang Faber"),

{knows("Roman Schindlauer",
"Hans Tompits")}

We will make dlvhex available both through source and
binary packages. To ease becoming familiar with the sys-
tem, we also offer a simple Web-interface available at

http://www.kr.tuwien.ac.at/research/dlvhex
It allows for entering aiEX-program and filter predicates

and displays the resultant models. On the same Web-page,

we also supply a toolkit for developing custom plugins, em-
bedded in the GNU autotools environment, which takes care
for the low-level, system-specific build process and legs th
plugin author concentrate his or her efforts on the implemen
tation of the plugin’s actual core functionality.

References

Calvanese, D.; Giacomo, G. D.; and Lenzerini, M. 2001.
A Framework for Ontology Integration. IRroceedings of
the First Semantic Web Working SymposiGe8—-316.

Eiter, T.; lanni, G.; Schindlauer, R.; and Tompits, H. 2004.
Nonmonotonic Description Logic Programs: Implementa-
tion and Experiments. lhogic for Programming, Artifi-
cial Intelligence, and Reasoning, 11th International Con-
ference, LPAR 2004611-527.

Eiter, T.; lanni, G.; Schindlauer, R.; and Tompits, H. 2005.
A Uniform Integration of Higher-Order Reasoning and Ex-
ternal Evaluations in Answer Set Programming. Fro-
ceedings of the 19th International Joint Conference on Ar-
tificial Intelligence (IJCAI-05) Morgan Kaufmann.

Eiter, T.; lanni, G.; Schindlauer, R.; and Tompits, H. 2006.
Effective Integration of Declarative Rules with external
Evaluations for Semantic Web Reasoning. Baropean
Semantic Web Conference 2006, Proceedifigsappear.

Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databaséew Genera-
tion Computing?:365-385.

Haarslev, V., and Nller, R. 2001. RACER System De-
scription. InProceedings IJCAR-200¥0olume 2083 of
LNCS 701-705.

lanni, G.; lelpa, G.; Pietramala, A.; Santoro, M. C.; an
Calimeri, F. 2004. Enhancing Answer Set Programmir
with Templates. In Delgrande, J. P., and Schaub, T., ec
Proceedings NMR233-239.

Kifer, M.; Lausen, G.; and Wu, J. 1995. Logical Founde
tions of Object-Oriented and Frame-Based Languades.
ACM42(4):741-843.

Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.
Perri, S.; and Scarcello, F. 2005. The DLV System ft
Knowledge Representation and Reason#gM Transac-
tions on Computational LogicTo appear.

Lifschitz, V., and Turner, H. 1994. Splitting a Logic Pro-
gram. InProceedings ICLP-9423-38. Santa Margherita
Ligure, Italy: MIT-Press.

Przymusinski, T. 1988. On the declarative semantics
deductive databases and logic programs.Fdandations
of Deductive Databases and Logic Programmiktprgan
Kaufmann. 193-216.

Ross, K. A. 1994. Modular stratification and magic sets fi
datalog programs with negatioh. ACM41(6):1216-1266.

Sintek, M., and Decker, S. 2002. TRIPLE - A Query
Inference, and Transformation Language for the Semar
Web. Ininternational Semantic Web Conferen864—378.

Wang, K.; Antoniou, G.; Topor, R. W.; and Sattar, A. 200¢t
Merging and Aligning Ontologies in dI-Programs. In Adi
A.; Stoutenburg, S.; and Tabet, S., ed&gceedings First
International Conference on Rules and Rule Markup La
guages for the Semantic Web (RuleML 2005), Galway, |
land, November 10-12, 200%olume 3791 o£ NCS 160-
171. Springer.

Technical Report IfI-06-04

Answer Set Programming

DEPARTMENT OF INFORMATICS 47

.TU Clausthal
11TH NMR WORKSHOP

1.5 Tableaux Calculi for Answer Set Programming

Tableau Calculi for Answer Set Programming

Martin Gebser and Torsten Schaub
Institut fur Informatik
Universitat Potsdam
Postfach 900327
D-14439 Potsdam

Abstract

We introduce a formal proof system based on tableau meth-
ods for analyzing computations made in Answer Set Pro-
gramming (ASP). Our approach furnishes declarative and
fine-grained instruments for characterizing operations as well
as strategies of ASP-solvers. First, the granulation is detailed
enough to capture the variety of propagation and choice op-
erations of algorithms used for ASP; this also includes SAT-
based approaches. Second, it is general enough to encom-
pass the various strategies pursued by existing ASP-solvers.
This provides us with a uniform framework for identifying
and comparing fundamental properties of algorithms. Third,
the approach allows us to investigate the proof complexity
of algorithms for ASP, depending on choice operations. We
show that exponentially different best-case computations can
be obtained for different ASP-solvers. Finally, our approach
is flexible enough to integrate new inference patterns, so to
study their relation to existing ones. As a result, we obtain
a novel approach to unfounded set handling based on loops,
being applicable to non-SAT-based solvers. Furthermore, we
identify backward propagation operations for unfounded sets.

Our approach furnishes declarative and fine-grained inst
ments for characterizing operations as well as stratedies
ASP-solvers. In fact, we relate the approachesasdgat
cmodels dlv, nomore+, smodels etc. (Lin & Zhao 2004;
Giunchigliaet al. 2004; Leoneet al. 2006; Angeret al.
2005; Simonset al. 2002) to appropriate tableau calculi
in the sense that computations of an aforementioned sol
comply with tableau proofs in a corresponding calculu
This provides us with a uniform proof-theoretic framewor
for analyzing and comparing different algorithms, which i
the first of its kind for ASP.

Based on proof-theoretic concepts, we are able to der
general results, which apply to whole classes of algorithr
instead of only specific ASP-solvers. In particular, we gwe
tigate the proof complexity of different approaches, depen
ing on choice operations. It turns out that, regarding tin
complexity, exponentially different best-case compotai
can be obtained for different ASP-solvers. Furthermore, ¢
proof-theoretic framework allows us to describe and stuu
novel inference patterns, going beyond implemented s
tems. As a result, we obtain a loop-based approach to |
founded set handling, which is not restricted to SAT-basi
solvers. Also we identify backward propagation operatiol
for unfounded sets.

Our work is motivated by the desire to converge the vai
ous heterogeneous characterizations of current ASP¥solv
on the basis of a canonical specification of principles undt
lying the respective algorithms. The classic example fisr tr
is DPLL (Davis & Putnam 1960; Davist al. 1962), the
most widely used algorithm for SAT, which is based on re
olution proof theory (Mitchell 2005). By developing proof-
theoretic foundations for ASP and abstracting from impli
mentation details, we want to enhance the understanding
solving approaches as such. The proof-theoretic perspec

I ntroduction

Answer Set Programming (ASP; (Baral 2003)) is an ap-
pealing tool for knowledge representation and reasoning.
Its attractiveness is supported by the availability of effi-
cient off-the-shelf ASP-solvers that allow for computing a
swer sets of logic programs. However, in contrast to the
related area of satisfiability checking (SAT), ASP lacks a
formal framework for describing inferences conducted by
ASP-solvers, such as the resolution proof theory in SAT-
solving (Mitchell 2005). This deficiency led to a great het-
erogeneity in the description of algorithms for ASP, raggin
over procedural (Lin & Zhao 2004; Giunchiglk al. 2004),
fixpoint (Simonset al. 2002), and operational (Faber 2002;
Anger et al. 2005) characterizations. On the one hand, also allows us to state results in a general way, rather thar
this complicates identifying fundamental properties gfoal a solver-specific one, and to study inferences by their adm
rithms, such as soundness and completeness. On the othesibility, rather than from an implementation point of view.

hand, it almost disables formal comparisons among them.
We address this deficiency by introducing a family of
tableau calculi (D’Agostineet al. 1999) for ASP. This al-

Our work is inspired by the one of Jarvisalo, Junttila, ar
Niemeh, who use tableau methods id&Jisaloet al. 2005;
Junttila & Nieme# 2000) for investigating Boolean circuit

lows us to view answer set computations as derivations in satisfiability checking in the context of symbolic mode
an inference system: A branch in a tableau corresponds to checking. Although their target is different from ours, ot
a successful or unsuccessful computation of an answer set;approaches have many aspects in common. First, both
an entire tableau represents a traversal of the search.spacetableau methods for characterizing DPLL-type technique

48 Technical Report IfI-06-04

Answer Set Programming

body™*(r) N U # 0. Thegreatest unfounded sef IT wrt
A, denotedGUS(I1, A), is the union of all unfounded sets
of IT wrt A. Loopsare sets of atoms that circularly de
pend upon one another in a program’s positive atom dep
dency graph (Lin & Zhao 2004). In analogy to external suj
port (Lee 2005) of loops, we define tlegternal bodieof
aloopLinIlasEB(L) = {body(r) | r € II, head(r) €
L, body™ (r) N L = (}. We denote the set of all loops I
by loop(1).

Second, using cut rules for characterizing DPLL-type split
operations is the key idea for analyzing the proof complex-
ity of different inference strategies. General investmya in
propositional proof complexity, in particular, the one af-s
isfiability checking (SAT), can be found in (Beame & Pitassi
1998). From the perspective of tableau systems, DPLL is
very similar to the propositional version of the KE tableau
calculus; both are closely related to weak connection table
with atomic cut (as pointed out in @hnle 2001)). Tableau-
based characterizations of logic programming are elabdrat
upon in (Fitting 1994). Pearce, Guam, and Valverde pro- i
vide in (Pearcet al. 2000) a tableau calculus for automated Tableau calculi

theorem proving in equilibrium logic based on its 5-valued We describe calculi for the construction of answer sets frc
semantics. Other tableau approaches to nonmonotonic log-0gic programs. Such constructions are associated with
ics are summarized in (Olivetti 1999). Bonatti describes nary trees calledableaux(D'Agostino et al. 1999). The
in (Bonatti 2001) a resolution method for skeptical answer nodes of the trees are (mainigigned propositionsthat is,
set programming. Operator-based characterizations pfpro Ppropositions preceded by eith&t or F, indicating an as-
agation and choice operations in ASP can be found in (Faber sumed truth value for the proposition. tAbleaufor a logic

2002; Angetret al. 2005; Calimeriet al. 2001).

Answer Set Programming

Given an alphabet P, a (normal) logic pro-
gram is a finite set of rules of the formp, <«
D1y -5 Pm, MOt Ppi1, - .., not p,, wheren > m > 0 and
eachp; € P (0 < i < n)isanatom A literal is an atonp or
its negatiomot p. For aruler, lethead(r) = py be thehead

of r and body(r) = {p1,...,Pm, "ot Dmi1,...,n0t pp}
be the body of r; and let body™(r) = {p1,...,pm}
and body™ (r) = {pm+1,-.--,Pn}t. The set of atoms

occurring in a progranil is given by atom(II). The
set of bodies inll is body(II) = {body(r) | r € II}.
For regrouping rule bodies with the same head let
body(p) = {body(r) | r € 11, head(r) = p}. A programIl
is positiveif body ™ (r) = @ for all » € TI. Cn(II) denotes
the smallest set of atoms closed under positive prodidam
Thereduct IT%, of I1 relative to a sefl of atoms is defined
by TIX = {head(r) « body™* (r) | r € I, body ™ (r)NX =
0}. A setX of atoms is aranswer sebf a logic program
IIif Cn(II*) = X. As an example, consider Program
IT; = {a «; ¢ < not b,not d; d — a,not ¢} and its two
answer set$a, ¢} and{a, d}.

An assignmen# is a partial mapping of objects in a pro-
gramII into {T', F'}, indicating whether a member of the
domainof A4, dom(A), is true or false, respectively. In order

to capture the whole spectrum of ASP-solving techniques,

we fix dom(A) to atom(II) U body(II) in the sequel. We
defineAT = {v € dom(A) | A(v) = T} andAF = {v €
dom(A) | A(v) = F}. We also denote an assignmehby
a set of signed object§Tv | v € AT} U {Fv | v € AF}.
For instance witfil;, the assignment mapping bodyf rule
a«— to T and atomb to F' is represented byT'0, Fb}; all
other atoms and bodies off, remain undefined. Following
up this notation, we call an assignmemhptyif it leaves all
objects undefined.

We define a setU of atoms as anunfounded sefvan
Gelder, Ross, & Schlipf 1991) of a progrdihwrt a partial
assignment, if, for every ruler € II such thathead(r) €
U, either (body™ (r) N AF) U (body~ (r) N AT) # (or

DEPARTMENT OF INFORMATICS

programII and an initial assignmemt is a binary tree such
that the root node of the tree consists of the ruleH iand
all members ofA. The other nodes in the tree agatries
of the formT'v or Fv, wherev € dom(A), generated by
extending a tableau using the rules in Figure 1 in the follov
ing standard way (D’Agostinet al. 1999): Given a tableau
rule and a branch in the tableau such that the prerequis
of the rule hold in the branch, the tableau can be extenc
by adding new entries to the end of the branch as specif
by the rule. If the rule is theut rule in (m), then entries
Tv and F'v are added as the left and the right child to th
end of the branch. For the other rules, the consequent of
rule is added to the end of the branch. For convenience,
application of tableau rules makes use of two conjugatit
functions,t and f. For a literall, define:

0 - TI ifleP
- Fp ifl=notpforapeP

T
fio= {Fll)

Some rule applications are subject to provig@$ stipulates
that By, ..., B,, constitute all bodies of rules with head
(1) requires thap belongs to the greatest unfounded set it
duced by all rules whose body is not amoRBg, . .., B,,.
(1) makes sure that belongs to a loop whose external bod
ies areBy, ..., B,,. Finally, (£{X]) guides the application
of the Cut rule by restricting cut objects to members o
X.! Different tableau calculi are obtained from differen
rule sets. When needed this is made precise by enume
ing the tableau rules. The following tableau calculi are «
particular interest:

if | =notpforapeP
ifleP

Teomp = {(@)-(h), Cuiatom(II) U body(I1)]} (1)
Tsmodeis = {(a)-(1), Cutiatom(IT)] } (2)
Tnomore = {(@)-(i), Cut{body (II)] } ©)

Tnomore+ = {(a)-()), Cufatom(II) U body(I1)]} (4)

The Cut rule (m)in Figure 1) may, in principle, introduce
more general entries; this would however necessitate additional
composition rules, leading to extended tableau calculi.

49

.TU Clausthal
11TH NMR WORKSHOP

pe—li,... 0y
tly,. .., tl,
T{l1,...,l,}

(a) Forward True Body (FTB)
p—li,....ly
T{ly,...,l,}

Tp

(c) Forward True Atom (FTA)

alia"'7ln

p<—l1,...
fli
F{ly, . L 0la)

(e) Forward False Body (FFB)

FB,,...,FB,,
p ()

(g) Forward False Atom (FFA)

FB,,... FB,
Fp ()

(i) Well-Founded Negation (WFN)

F{l,,...
t, .

iy

.. 7tli—17tli+17 e
Il

(b) Backward False Body (BFB)

yIn}

st

sln

p—l,...
Fp
i (—;

(d) Backward False Atom (BFA)

iy
t;

(f) Backward True Body (BTB)

T{llv - 7ln}

Tp
'7FBi717FBi+17 s

(h) Backward True Atom (BTA)

FB,.. ,FB.,

Tp
FBi_1,FBjyq,. ..
TB;

() Well-Founded Justifica (WFJ)

FBl,.. ,FBm

()

Tp

FBy,...,FBy, FBy,...,FB; 1,FB;1,...,FBy,

7 1) : B 1)
(k) Forward Loop (FL) () Backward Loop (BL)

Tv | Fu (#[X])
(m) Cut (Cufx])
(8) : body(p) ={Bi,..., Bm}
(t) : {Bi,...,Bm} C body(Il), pe GUS({r € I1 | body(r) € {B1,...,Bm}} 0)
(f) : peL,Leloop(Il), EB(L)={Bi,...,Bm
#X]) : veX

Figure 1: Tableau rules for answer set programming.

50

Technical Report IfI-06-04

a <—
¢« not b,not d
d «— a,not ¢

Answer Set Programming

T0 (a)
Ta (¢)
Fb (9)
Tc Fc (Cut[atom(II)])
T{not b,not d} (h) F{not b,not d} (d)
Fd (f) Td (b)
F{a,not c} (e) T{a,not c} (a)

Figure 2: Tableau 0fgmogeisfor 11

An exemplary tableau 0fgmnogesiS given in Figure 2,
where rule applications are indicated by either lettersita r
names, like(a) or (Cut[atom(II)]). Both branches com-
prise II; along with a total assignment fartom(II;) U
body(I1;); the left one represents answer §etc}, the right
one gives answer sét, d}.

A branch in a tableau isontradictory if it contains both
entriesT'v and F'v for somev € dom(A). A branch iscom-
plete if itis contradictory, or if the branch contains either the
entryTv or F'v for eachv € dom(A) and is closed under all
rules in a given calculus, except for tii&¢ rule in (m). For
instance, both branches in Figure 2 are non-contradictory
and complete.

For eachv € dom(A), we say that entril'v (or F'v) can
be deduced by a s& of tableau rules in a branch, if the
entryTv (or F'v) can be generated from nodes in the branch
by applying rules iR only. Note that every branch corre-
sponds to a paifll, A) consisting of a progranil and an
assignmentd, and vice versg;we draw on this relationship
for identifying branches in the sequel. Accordingly, we let
Dx(I1, A) denote the set of all entries deducible by rule set
R in branch(II, A). Moreover,Dx(II, A) represents the
set of all entries in the smallest branch extendifigA) and
being closed undeR. When dealing with tableau calculi,
like 7, we slightly abuse notation and wrifer (11, A) (or
D7(I1, A)) instead ofD (my (I1, A) (Or D7\ (myy (11, A)),
thus ignoringCut We mention thatD7,))) @} (Il 4
corresponds to Fitting’s operator (Fitting 2002). Simitar
we detail in the subsequent sections thaf, . (I, 4)
coincides with unit propagation on a program’s comple-
tion (Clark 1978; Aptgt al. _1987)’Djf(a),(c),(e),(g),(i}(H’.A)
amounts to propagation via well-founded semantics (van
Gelder, Ross, & Schlipf 1991), anﬂ)?(a)_(i)}(r[, A) cap-
tures smodels propagation (Simongt al. 2002), that is,
well-founded semantics enhanced by backward propagation.
Note that all deterministic rules in Figure 1 are answer set
preserving; this also applies to tli&:t rule when consider-
ing both resulting branches.

A tableau iscompleteif all its branches are complete. A
complete tableau for a program and the empty assignment
such that all branches are contradictory is calleefatation

2Given a branciil1, A) in a tableau foiT and initial assignment
Ao, we havedy C A.

DEPARTMENT OF INFORMATICS

1 and the empty assignment.

for the program; it means that the program has no answ
set, as exemplarily shown next femodelgtype tableaux.

Theorem 1 LetII be a logic program and lefi denote the
empty assignment. Then, the following holds for table:
calculusZsmodels

1. II has no answer set iff any complete tableaulfcand
0 is a refutation.

2. If I has an answer seX, then every complete tableau
for IT and has a unique non-contradictory bran¢H, A)
such thatX = AT N atom(II).

3. If a tableau forII and) has a non-contradictory com-
plete branch(I1, A), thenAT N atom(I1) is an answer set
of I1.

The same results are obtained for other tableau calcudi, li
Tromore@Nd Tnomore+ , all of which are sound and complete
for ASP.

Characterizing existing ASP-solvers

In this section, we discuss the relation between the table
rules in Figure 1 and well-known ASP-solvers. As it turn
out, our tableau rules are well-suited for describing the a
proaches of a wide variety of ASP-solvers. In particular, w
cover all leading approaches to answer set computation
(normal) logic programs. We start with SAT-based solve
assatand cmodels then go on with atom-based solvers
smodelsand dlv, and finally turn tohybrid solvers, like
nomore+, working on atoms as well as bodies.

SAT-based solvers. The basic idea of SAT-based solver:
is to use some SAT-solver as model generator and to .
terwards check whether a generated model contains an
foundedloop. Lin and Zhao show in (Lin & Zhao 2004)
that the answer sets of a logic progréhtoincide with the
models of thecompletionof IT and the set of alloop for-
mulasof II. The respective propositional logic translation i:
Comp(IT) U LF(IT), where?

Comp(Il) = {p=Vyz1.m /\ngkl) |
p € atom(II), body(p) = {B1,...,Bm}}
FII) = {~(Viz1.m /\leBkl) - /\peL |
L € loop(ll), EB(L) ={By,...,Bn}}

3Note that a negative default literabt p is translated asp.

51

.TU Clausthal
11TH NMR WORKSHOP

52

This translation constitutes the backbone of SAT-based side. We first concentrate on characterizsrgodelsand

solversassat(Lin & Zhao 2004) andcmodelgGiunchiglia then sketch how our characterization appliedlto

et al. 2004). However, loop formulas F(IT) require ex- Given that only literals are explicitly representegsinod-
ponential space in the worst case (Lifschitz & Razborov els assignments, whereas truth and falsity of bodies are ¢
2006). Thusassatadds loop formulas frond F'(II) incre- termined implicitly, one might consider rewriting tableai
mentally to Comp(IT), whenever some model @fomyp (1) rules to work on literals only, thereby, restricting the dom
not corresponding to an answer set has been generated by thef assignments to atoms. For instance, tableaufrialé ((g)
underlying SAT-solvef. The approach otmodelsavoids in Figure 1) would then turn into:

storing loop formulas by exploiting the SAT-solver’s inner
backtracking and learning scheme. Despite the differences Sl fl ({r € 1T head(r) = p,
betweenassatandcmodels we can uniformly characterize Fp body(r) N {la,...,ln} =0} =0)
their model generation and verification steps. We first de-
scribe tableaux capturing the proceeding of the underlying
SAT-solver and then go on with unfounded set checks.

In analogy to Theorem 1, models @fomp(II) corre-
spond to tableaux df ¢, -

Observe that, in such a reformulation, one again refers
bodies by determining their values in the proviso assoi
ated with the inference rule. Reformulating tableau rubes
work on literals only thus complicates provisos and does r
substantially facilitate the descriptidnln (Giunchiglia &

Theorem 2 LetII be a logic program. Then/ is a model Maratea 2005), additional variables for bodies, one fohea
of Comp(T) iff every complete tableau @, for IT and rulg of a program, are even gxphcnly mtroduceg:l for cormr
? has a unique non-contradictory branchl, A) such that paring smodelswith DPLL. Given that propagation, even
M = AT 0 atom(IT). within atom-based solvers, has to consider the truth sta

N))) of rules’ bodies, the only saving in the computation of ar
Intuitively, tableau rulega)-(h) describe unit propagation swer sets is limiting branching to atoms, which is express
on a program's completion, represented in CNF as required by Cut[atom (I1)] in Temogeis(Cf. (2)).

by most SAT-solvers. Note thatssatand cmodelsintro- Propagation ismodelss accomplished by two functions,
duce propositional variables for bodies in order to obtain a called aticast and atmost (Simonset al. 2002)® The
polynomially-sized set of clauses equivalent to a progsam’ former computes deterministic consequences by applyi
completion (Babovich & Lifschitz 2003). Due to the fact completion-based forward and backward propagatiar (
that atoms and bodies are represented as propositional vari (h) in Figure 1); the latter falsifies greatest unfounded se
ables, allowing both of them as branching variableZin,, (WFN: (i) in Figure 1).
(via Cut[atom(I1) U body(II)]; cf. (1)) makes sense. The following result captures propagation vidleast in
Once a model o€omp(I1) has been generated by the un- terms Of T omp-
derlying SAT-solverassatandcmodelsapply an unfounded
set check for deciding whether the model is an answer set. _. T T
If it fails, unfounded loops whose atoms are true (so-called sgnmenﬂt ZUCh éhjﬂ _UDé QH %OmEfHQLIT Leftljfs 0
terminating loopgLin & Zhao 2004)) are determined. Their ~ @/lcast(Il, 4) and A7 = .Tcmn,p(,A). s NAg # 0,
loop formulas are used to eliminate the generated model. thenAT N A% +# (); otherwise, we havels C Ar.

Theorem 4 LetII be a logic program and lefl be an as-

Unfounded set checks, as performedasgatandcmodels This result shows that anything derived bgleast can also
can be captured by tableau ruleSB andFL ((e) and(k) in be derived byZ.,,,, (without Cut). In fact, if atleast detects
Figure 1) as follows. an inconsistencyA% N AL + 0), then7,,,,,, can derive it
Theorem 3 Let I be a logic program, let\/ be a model as well AT N AE +£ (). Otherwise, 7., can derive at
of Comp(Il), and letA = {Tp | p € M} U{Fp | p € least as much astleast (As C Ar). This subsumption
atom(II) \ M}. Then,M is an answer set dfl iff M N does not only originate from the (different) domains of a
(Dyrpry (I, Dypppy (I, ANF =0. signments, that is, only atoms fatieast but also bodies for

. . Teomp. Rather, it is the redundant representation of rule
With SAT-based approaches, sophisticated unfounded sety, o g ithinsmodelghat inhibits possible derivations ob-

checks, able to detect unfounded loops, are applied only to tained WithZ,,,,,,. To see this, consider rules« ¢, d and
non-contradictory complete branches. Unfortunately; pro b — ¢,d and an assignment that containsFa but leaves
grams may yield exponentially many loops (Lifschitz & = 4ioms. andd undefined. For such ad, atleast can only
Razborov 2006). This can !ead to exponentially many mod- determine that rule < ¢, d must not be,applied but it does
els of a program’s completion that turn out to be no answer recognize that rule —ed sharing body{c ,d} is in-
sets (Giunchiglia & Maratea 2005). In view of Theorem 3, 5 iicapie as well. 16 — c,d is the only ruie with head
it means that exponentially many branches may have to be ;07in the underlying prdgram, the®,,.,,p Can, in con-
completed by final unfounded set checks. _ trast to atleast, derive Fb via FFA ((g) in Figure 1). A

Atom-based so_lvers. We now describe the relation be- 56.t0-0ne correspondence betwegftast and T, on
tweensmodelqSimonset al. 2002) anddlv (Leoneet al. -
2006) on the one side and our tableau rules on the other °Restricting the domain of assignments to atoms would al

disable the analysis of differeidtut variants done below.

“Note that every answer set bfis a model ofComp(II), but SHere, atleast and atmost are taken as defined on signec

not vice versa (Fages 1994). propositions instead of literals (Simoasal. 2002).

Technical Report IfI-06-04

derived atoms could be obtained by distinguishing differen

occurrences of the same body. However, for each deriva-

tion of atleast, there is a corresponding onedq,,,,. That
is, every propagation done hyleast can be described with
Fupnction atmost returns the maximal set of potentially
true atoms, that isatom(I1) \ (GUS(II, A) U AF) for a
programlIl and an assignment. Atoms in the complement
of atmost, that is, the greatest unfounded et/S(I1, A)
augmented witlrdF', must be false. This can be described
by tableau ruled’FB and WFN ((e)and(i) in Figure 1).

Theorem5 Let II be a logic program and
A be an assignment such that”? U AF

atom(II). We have atom(II) \ atmost(II, A)
(Dywreny(IL Dypppy (11, A))F U AF.

Note thatsmodelsadds literals{Fp | p € atom(II) \
atmost(Il, A)} to an assignmend. If this leads to an in-
consistency, so dod3; yyry} (I1, Dy prpy (11, A)).

We have seen thamodelspropagation functionsgtieast
and atmost, can be described by tableau rul@s-(i). By
adding Cut[atom (1I1)], we thus get tableau calculsmodels
(cf. (2)). Note thatlookahead(Simonset al. 2002) can
also be described by means 6fit[atom(II)]: If smodels
lookahead derives some liter#l], a respective branch can
be extended by’ut applied to the atom involved ih The
subbranch containing! becomes contradictory by closing
it under Zsmogels Als0, if smodelspropagation detects an
inconsistency orl, then both subbranches created®@yt,
fl andtl, become contradictory by closing them; the sub-
tableau under consideration becomes complete.

After having discussedmodels we briefly turn todlv:

In contrast tosmodels atmost, greatest unfounded set de-

let

N

tection is restricted to strongly connected components of

programs’ atom dependency graphs (Calineral. 2001).
Hence, tableau rulé/FN has to be adjusted to work on
such components.n the other aspects, propagation within
div (Faber 2002) is (on normal logic programs) similar to
smodels atleast. Thus, tableau calculu®mogeisalso char-
acterizegllv very closely.

Hybrid solvers. Finally, we discuss similarities and dif-
ferences between atom-based ASP-sohsmmmdelanddlv,
andhybrid solvers, working on bodies in addition to atoms.
Let us first mention that SAT-based solvaassatandcmod-

els are in a sense hybrid, since the CNF representation of a

program’s completion contains variables for bodies. Thus,

underlying SAT-solvers can branch on both atoms and bod-

ies (viaCut[atom (II) U body(II)] in Zcomp). The only gen-
uine ASP-solver (we know of) explicitly assigning truthval
ues to bodies, in addition to atoms,riemore+ (Anger et
al. 2005)8

In (Anger et al. 2005), propagation rules applied by
nomore+ are described in terms of operator®: for for-
ward propagationi3 for backward propagatiod for falsi-
fying greatest unfounded sets, addfor lookahead. Sim-

"However, iterated application of suchiEFN variant leads to
the same result g§ in Figure 1.

8Complementing atom-based solvers, th®MoRe sys-
tem (Konczalet al. 2006) is rule-based (cfnomorein (3)).

DEPARTMENT OF INFORMATICS

Answer Set Programming

ilar to our tableau rules, these operators apply to bc
atoms and bodies. We can thus show direct correspt
dences between tableau rulgg, (c), (e), (g)and P, (b),
(d), (f), (h)and B, and (i) and{. Similar to smodels
lookahead, derivations of can be described by means o
Cut[atom (1) U body(IT)]. So by replacingCut[atom (I1)]
with Cut[atom(II) U body(II)], we obtain tableau calcu-
lus Tnomore+ (Cf. (4)) from Zgmogels IN the next section, we
show that this subtle difference, also observed on SAT¢bax
solvers, may have a great impact on proof complexity.

Proof complexity

We have seen that genuine ASP-solvers largely coincide
their propagation rules and differ primarily in the usage «
Cut. In this section, we analyze the relative efficiency c
tableau calculi with differenCut rules. Thereby, we take
Tsmodels ZnoMore @NA7nomore+ iNt0 account, all using tableau
rules(a)-(i) in Figure 1 but applying th&'ut rule either to
atom(11), body(IT), or both of them (cf. (2—4)). These three
calculi are of particular interest: On the one hand, they c
be used to describe the strategies of ASP-solvers, as shi
in the previous section; on the other hand, they also rep
sent different paradigms, either atom-based, rule-based
hybrid. So by considering these particular calculi, we ol
tain results that, on the one hand, are of practical relevar
and that, on the other hand, apply to different approaches
general.

For comparing different tableau calculi, we use wel
known concepts fronproof complexity(Beame & Pitassi
1998; arvisaloet al. 2005). Accordingly, we measure
the complexity of unsatisfiable logic programs, that is,-pr
grams without answer sets, in terms wiinimal refuta-
tions. The size of a tableau is determined in the sta
dard way as the number of nodes in it. A tableau calc
lus 7 is notpolynomially simulatedBeame & Pitassi 1998;
Jarvisaloet al. 2005) by another tableau calcul@s if
there is an infinite (witnessing) familyII"} of unsatisfi-
able logic programs such that minimal refutations Zof
for IT are asymptotically exponential in the size of minime
refutations of7 for II. A tableau calculug is exponen-
tially strongerthan a tableau calculdg’ if 7 polynomially
simulates7”’, but not vice versa. Two tableau calculi ar
efficiency-incomparabl& neither one polynomially simu-
lates the other. Note that proof complexity says nothir
about how difficult it is to find a minimal refutation. Rather
it provides a lower bound on the run-time of proof-findiny
algorithms (in our context, ASP-solvers), independentnfro
heuristic influences.

In what follows, we provide families of unsatisfiable logic
programs witnessing that neith@&ogeispolynomially sim-
ulatesZhomoreNOr Vice versa. This means that, on certain ir
stances, restricting th€ut rule to either only atoms or bod-
ies leads to exponentially longer minimal run-times of @ith
atom- or rule-based solvers in comparison to their count
parts, no matter which heuristic is applied.

Lemma6 There is an infinite family{II"} of logic pro-
grams such that

53

.TU Clausthal
11TH NMR WORKSHOP

1. the size of minimal refutations Gfomore IS linear in
n and

2. the size of minimal refutations @§moqelsiS €Xponential
inn.

Lemma?7 There is an infinite famil{II"} of logic pro-
grams such that

1. the size of minimal refutations GEmogeisis linear in
n and
2. the size of minimal refutations GfomoreiS €Xponential
inn.
Family {II; UII? } witnesses Lemma 6 addI} UII7 } wit-
nesses Lemma 7(see Figure 3).
The next result follows immediately from Lemma 6 and 7.

Theorem 8 Tgmodels and are efficiency-
incomparable.

Given that any refutations dfsmogeis@nd Znomore are as
well refutations of7,omore+ , We have thafnomere+ pOlyNo-
mially simulates botlWgmoedeis@Nd Znomore SO the following
is an immediate consequence of Theorem 8.

Corollary 9 Tnomore+ IS €xponentially stronger than both
Tsmodelsand%oMoRe

The major implication of Corollary 9 is that, on certain logi
programs, a priori restricting th€'ut rule to either only

TnoMoRe

in Figure 1). In particular, SAT-based and genuine ASI
solvers differ only in the treatment of unfounded sets: Whi
the former apply (loop-detecting) unfounded set checks
total assignments only, the latter incorporate (greatast)
founded set falsificationWWFN; (i) in Figure 1) into their
propagation. However, tableau ruléF'N, as it is currently
applied by genuine ASP-solvers, has several peculiarities

A. WFN is partly redundant, that is, it overlaps witr
completion-based tableau rulBFA ((g) in Figure 1),
which falsifies atoms belonging to singleton unfounde
sets.

B. WFN deals with greatest unfounded sets, which can
(too) exhaustive.

C. WFN is asymmetrically applied, that is, solvers appl
no backward counterpart.

In what follows, we thus propose and discuss alternati
approaches to unfounded set handling, motivated by S/
based solvers and results in (Lin & Zhao 2004). Befo
we start, let us briefly introduce some vocabulary. Give
two sets of tableau rule$; andR», we say thatR, is at
least as effectivas R if, for any branch(II, 4), we have
D%, (I, A) € D% (I, A). We say thatR, is more effec-
tivethanR, if R is at least as effective d8,, but not vice
versa. IfR; is at least as effective a8, and vice versa,

atoms or bodies necessitates the traversal of an exponen-thenR, andR, areequally effective Finally, R, andR,

tially larger search space than with unrestrictéet. Note

areorthogonalif they are not equally effective and neithe

ity in comparison tdZ omere+ does not, depending on the
program family, apply to one 0FsmodelsOr Znomore alONE.
Rather, families{II? }, {II}'}, and{II? } can be combined
such that botlgmegeisand Znomore @re e€xponentially worse
thanZnomore+ - FOr certain logic programs, the unrestricted

tween two rule setfk; U R and R, U R means that the
correspondence betwe®y andR, holds whenD* takes
auxiliary rulesR into account as well.

We start with analyzing the relation betwe&W/'N and
FFA, both falsifying unfounded atoms in forward direction

Cut rule is thus the only way to have at least the chance of The role of FF'B ((e) in Figure 1) is to falsify bodies that

finding a short refutation. Empirical evidence for the expo-

nentially different behavior is given in (Anget al. 2006b).

Finally, note that our proof complexity results are robust.

positively rely on falsified atoms. Intuitively, this all@wv
to capture iterated applications & FN and FFA, respec-
tively, in which FF'B behaves neutrally. Taking up item A.

That is, they apply to any possible ASP-solver whose pro- above, we have the following result.
ceeding can be described by corresponding tableaux. For proposition 1 Set of rules{ WFN, FFB} is more effective

instance, any computation sfnodelsan be associated with
a tableau offgmegeis A computation obmodelghus requires
time proportional to the size of the corresponding tabléau;
particular, the magnitude of a minimal tableau constitates
lower bound on the run-time afmodels This correlation

than{FFA, FFB}.

This tells us that”’FA is actually redundant in the presenc
of WFN. However, all genuine ASP-solvers apply'A as a
sort of “local” negation (e.gatleast of smodeland operator

is independent from whether an assignment contains only 7 of nomore+) and separatelyV’/'N as “global” negation
atoms or also bodies of a program: The size of any branch (€-9.atmost of smodelsand operatot/ of nomore+). Cer-

(not containing duplicate entries) is tightly bound by tiees

of a logic program. Therefore, exponential growth of min-

imal refutations is, for polynomially growing program fam-

tainly, applying F'FA is reasonable as applicability is eas'
to determine. (Thus, SAT-based solvers applA, but not
WFN.) But with FFA at hand, Proposition 1 also tells us

ilies as the ones in Figure 3, exclusively caused by the in- that greatest unfounded sets are too unfocused to desc

crease of necessayut applications, introducing an expo-
nential number of branches.

Unfounded sets

We have analyzed propagation techniques and proof com-
plexity of existing approaches to ASP-solving. We have
seen that all approaches exploit propagation techniques Theorem 10 Sets of

amounting to inferences from program completi¢a){(h)

the sort of unfounded sets that truly require a dedicated-tre
ment: The respective tableau rulé;F'N, subsumes a sim-
pler one,FFA.

A characterization oV F'N's effect, not built upon great-
est unfounded sets, is obtained by putting results in (Lin
Zhao 2004) into the context of partial assignments.

rules {WFN, FFB}
{FFA, FL, FFB} are equally effective.

and

Technical Report IfI-06-04

T <« notx T < C1,..
n r <« ai, bl n C1 — ax
T < Qp, bn Cp < Qp

Answer Set Programming

ay < not bl
.,Cp,n0t T
bi «— nota
C1 — b1
n __ .
I = :
a, < notb
Cn — bn bn «— not an
n

Figure 3: Families of programdI’ }, {II;' }, and{II7 }.

Hence, one may safely substitutéF'N by FFA andF'L ((k)

in Figure 1), without forfeiting atoms that must be false due
to the lack of (non-circular) support. Thereliy#A concen-
trates on single atoms anfdl on unfounded loops. Since
both tableau rules have different scopes, they do not qverla
but complement each other.

Proposition 2 Sets of rule§ FFA, FFB} and{FL, FFB}
are orthogonal.

Proposition 4 Set of rules{ WF.J, BTB} is more effective
than{BTA, BL, BTB}.

We conclude by discussing different approaches to u
founded set handling. Both SAT-based and genuine AS
solvers apply tableau ruldsFA and BTA, both focusing on
single atoms. In addition, genuine ASP-solvers agply N
to falsify more complex unfounded sets. HowevBrFN
gives an overestimation of the parts of unfounded sets tl
need a dedicated treatment: SAT-based approaches s

SAT-based approaches provide an explanation why con- that concentrating on loops, VigL, is sufficient. However,

centrating on cyclic structures, namely loops, besidagiain

the latter apply loop-detecting unfounded set checks anly

atoms is sufficient: When falsity of unfounded atoms does total assignments or use loop formulas recorded in react

not follow from a program’s completion drFA, then there

to previously failed unfounded set checks. Such a recorc

is a loop all of whose external bodies are false. Such a loop |oop formula is then exploited by propagation within SAT

(calledterminating loopin (Lin & Zhao 2004)) is a subset

of the greatest unfounded set. So in view of item B. above,

based solvers in both forward and backward direction, whi
amounts to applying”L and BL. A similar kind of back-

loop-oriented approaches allow for focusing unfounded set ward propagation, by eithd#’F.J or BL, is not exploited by

computations on the intrinsically necessary parts. In,fact genuine ASP-solvers, so unfounded set treatment is asy
the more sophisticated unfounded set techniques applied by metric. We however believe that bridging the gap betwe:
genuine ASP-solvers aim at circular structures induced by SAT-based and genuine ASP-solvers is possible by puitti

loops. That is, botlsmodelsapproach, based on “source
pointers” (Simons 2000), as well altv's approach, based

on strongly connected components of programs’ atom de-

pendency graphs (Calimest al. 2001), can be seen as re-
strictions of WF'N to structures induced by loops. However,
neither of them takes loops as such into account.

Having considered forward propagation for unfounded
sets, we come to backward propagation, thaBis4A, WFJ,
and BL ((h), (j), and(l) in Figure 1). Although no genuine
ASP-solver currently integrates propagation techniqoes c
responding toWFJ or BL, as mentioned in item C. above,
both rules are answer set preserving.

Proposition 3 Let IT be a logic program and letd be
an assignment. LeB < body(Il) such thatTB €
Dywry(ILLA) (or TB € Dypry(I1, A), respectively).
Then, branchIl, AU D wpny (I, AU{F B})) (or (I, AU
D¢y (I, AU { F B})), respectively) is contradictory.

Both WFJ and BL ensure that falsifying some body does
not lead to an inconsistency due to applying their forward
counterparts. In factiWFJ and BL are contrapositives of
WFN andFL, respectively, in the same way as simpler rule
BTA is for FFA.

A particularity of supporting true atoms by backward
propagation is that “global” rulé/F.J is more effective than
“local” ones,BTA and BL. Even adding tableau rulBTB
((f) in Figure 1), for enabling iterated application of back-

the concept of loops into the context of partial assignmen
For instance, a loop-oriented unfounded set algorithm-s ¢
scribed in (Angeet al. 2006a).

Discussion

In contrast to the area of SAT, where the proof-theorel
foundations of SAT-solvers are well-understood (Mitche
2005; Beame & Pitassi 1998), the literature on ASP-solve
is generally too specific in terms of algorithms or solver:
existing characterizations are rather heterogeneousfterd o
lack declarativeness. We address this deficiency by prop
ing a tableau proof system that provides a formal fram
work for analyzing computations of ASP-solvers. To ot
knowledge, this approach is the first uniform proof-theioret
account for computational techniques in ASP. Our table
framework allows to abstract away implementation detal
and to identify valid inferences; hence, soundness and cc
pleteness results are easily obtained. This is accomplisl
by associating specific tableau calculi with the approach
of ASP-solvers, rather than with their solving algorithms.

The explicit integration of bodies into assignments hi
several benefits. First, it allows us to capture completio
based and hybrid approaches in a closer fashion. Secon
allows us to reveal exponentially different proof compiex
ties of ASP-solvers. Finally, even inferences in atom-tas
systems, likesmodelsanddlv, are twofold insofar as they
must take program rules into account for propagation. Tt

ward rules setting bodies to true, does not compensate for feature is simulated in our framework through the corr

the global character ofV'F.J.

DEPARTMENT OF INFORMATICS

sponding bodies. Although this simulation is sufficient fc

55

.TU Clausthal
11TH NMR WORKSHOP

56

establishing formal results, it is worth noting that deglin
with rules bears more redundancy than dealing with their
bodies. Related to this, we have seen that rule-wise consid-
eration of bodies, as for instance donesimodels atleast,

can forfeit derivations that are easily obtained based on no
duplicated bodies (cf. Theorem 4). The tableau rules un-
derlying atom-based and hybrid systems also reveal that the
only major difference lies in the selection of program olgec

to branch upon.

The branching ruleCut, has a major influence on proof
complexity. It is well-known that an uncontrolled applica-
tion of Cut is prone to inefficiency. The restriction of ap-
plying Cut to (sub)formulae occurring in the input showed
to be an effective way to “tame” the cut (D’Agostimb al.
1999). We followed this by investigatingut applications to
atoms and bodies occurring in a program. Our proof com-
plexity results tell us that the minimal number of required
Cut applications may vary exponentially when restricting
Cut to either only atoms or bodies. For not a priori de-
grading an ASP-solving approach, tid&t rule must thus
not be restricted to either only atoms or bodies. Note that
these results hold for any ASP-solver (or algorithm) whose
proceeding can be described by tableaux of a corresponding
calculus.

Regarding the relation between SAT-based and genuine

ASP-solvers, we have seen that unfounded set handling con-

stitutes the major difference. Though both approaches, as
practiced by solvers, appear to be quite different, the aims
and effects of underlying tableau rules are very similar. We
expect that this observation will lead to convergence of-SAT

Calimeri, F.; Faber, W.; Leone, N.; and Pfeifer, G. 2001. Prunii
operators for answer set programming systems. INFSYS R
1843-01-07, TU Wien.

Clark, K. 1978. Negation as failure. In Gallaire, H., and Minke
J., eds.Logic and Data Base®lenum. 293-322.

D’Agostino, M.; Gabbay, D.; Hhnle, R.; and Posegga, J., ed:
1999. Handbook of Tableau MethodKluwer.

Davis, M., and Putnam, H. 1960. A computing procedure fi
quantification theoryd. ACM 7:201-215.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A machir
program for theorem-provingC. ACM 5:394-397.

Faber, W. 2002. Enhancing Efficiency and Expressiveness
Answer Set Programming Systerfssertation, TU Wien.
Fages, F. 1994. Consistency of clark's completion and the e»
tence of stable modeld. MLCS 1:51-60.

Fitting, M. 1994. Tableaux for logic programmingJ. AR
13(2):175-188.

Fitting, M. 2002. Fixpoint semantics for logic programming: #
survey. TCS 278(1-2):25-51.

Giunchiglia, E., and Maratea, M. 2005. On the relation betwe
answer set and SAT procedures (or, cmodels and smodels).
Gabbrielli, M., and Gupta, G., ed$CLP, 37-51. Springer.
Giunchiglia, E.; Lierler, Y.; and Maratea, M. 2004. A SAT-
based polynomial space algorithm for answer set programmi
In Delgrande, J., and Schaub, T., etdVJR, 189-196.

Hahnle, R. 2001. Tableaux and related methods. In Robins
J., and Voronkov, A., edshandbook of Automated Reasoning
Elsevier and MIT Press. 100-178.

Jarvisalo, M.; Junttila, T.; and Nien#l I. 2005. Unrestricted
vs restricted cut in a tableau method for Boolean circuMslAl,

based and genuine ASP-solvers, in the sense that the next 44(4):373-399.

generation of genuine ASP-solvers will directly incorgera

the same powerful reasoning strategies that are already ex-

ploited in the area of SAT (Mitchell 2005).
Acknowledgments. This work was supported by DFG
(SCHA 550/6-4). We are grateful to Christian Anger,
Philippe Besnard, Martin Brain, Yulyia Lierler, and the
anonymous referees for many helpful suggestions.

References
Anger, C.; Gebser, M.; Linke, T.; Neumann, A.; and Schaub,
T. 2005. Thenonor e++ approach to answer set solving. In
Sutcliffe, G., and Voronkov, A., edd.PAR 95-109. Springer.
Anger, C.; Gebser, M.; and Schaub, T. 2006a. Approaching the
core of unfounded sets. In Dix, J., and Hunter, A., ed8R
Anger, C.; Gebser, M.; and Schaub, T. 2006b. What's a head
without a body. In Brewka, G., edECA|, to appear.
Apt, K.; Blair, H.; and Walker, A. 1987. Towards a theory of
declarative knowledge. In Minker, J., edfoundations of De-
ductive Databases and Logic Programmimdorgan Kaufmann.
89-148.
Babovich, Y., and Lifschitz, V. 2003. Computing answer sets
using program completion. Unpublished draft.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem SolvingCambridge University Press.
Beame, P., and Pitassi, T. 1998. Propositional proof complexity:
Past, present, and futureATCS 65:66—89.
Bonatti, P. 2001. Resolution for skeptical stable model semantics.
J. AR 27(4):391-421.

Junttila, T., and Niemél, I. 2000. Towards an efficient tableat
method for boolean circuit satisfiability checking. In Lloyd, J.; €
al., eds.CL, 553-567. Springer.

Konczak, K.; Linke, T.; and Schaub, T. 2006. Graphs and colc
ings for answer set programmin@PLP, 6(1-2):61-106.

Lee, J. 2005. A model-theoretic counterpart of loop formula
In Kaelbling, L., and Saffiotti, A., edslJCAI, 503-508. Profes-
sional Book Center.

Leone, N.; Faber, W.; Pfeifer, G.; Eiter, T.; Gottlob, G.; Koch, C
Mateis, C.; Perri, S.; and Scarcello, F. 2006. The DLV system 1
knowledge representation and reasonid@M TOCL, to appear.
Lifschitz, V., and Razborov, A. 2006. Why are there so mar
loop formulas?ACM TOCL, to appear.

Lin, F., and Zhao, Y. 2004. ASSAT: computing answer sets of
logic program by SAT solversAlJ, 157(1-2):115-137.

Mitchell, D. 2005. A SAT solver primefEATCS 85:112-133.
Olivetti, N. 1999. Tableaux for nonmonotonic logics. Ir
D’Agostino et al. (1999), 469-528.

Pearce, D.; de Guzam, |.; and Valverde, A. 2000. A
tableau calculus for equilibrium entailment. In Dyckhoff, R., ed
TABLEAUX 352-367. Springer.

Simons, P.; Niemé, |.; and Soininen, T. 2002. Extending an
implementing the stable model semanticalJ, 138(1-2):181—
234,

Simons, P. 2000. Extending and implementing the stable mo
semantics. Dissertation, Helsinki UT.

van Gelder, A.; Ross, K.; and Schlipf, J. 1991. The well-foundt
semantics for general logic progrands ACM 38(3):620-650.

Technical Report IfI-06-04

Answer Set Programming

DEPARTMENT OF INFORMATICS 57

.TU Clausthal
11TH NMR WORKSHOP

1.6 Approaching the Core of Unfounded Sets

Approaching the Core of Unfounded Sets

Christian Anger and Martin Gebser and Torsten Schaub*
Institut fur Informatik
Universitt Potsdam
Postfach 90 03 27, D-14439 Potsdam
{christian, gebser, torst¢@cs.uni-potsdam.de

Abstract

We elaborate upon techniques for unfounded set computa-
tions by building upon the concept of loops. This is driven
by the desire to minimize redundant computations in solvers
for Answer Set Programming. We begin by investigating
the relationship between unfounded sets and loops in the
context of partial assignments. In particular, we show that
subset-minimal unfounded sets correspond to active elemen-
tary loops. Consequentially, we provide a new loop-oriented
approach along with an algorithm for computing unfounded
sets. Unlike traditional techniques that compute greatest un-
founded sets, we aim at computing small unfounded sets
and rather let propagation (and iteration) handle greatest un-
founded sets. This approach reflects the computation of un-
founded sets employed in thmore++ system. Beyond
that, we provide an algorithm for identifying active elemen-
tary loops within unfounded sets. This can be used by SAT-
based solvers, likassaf cmodels or ppmodelsfor optimiz-

ing the elimination of invalid candidate models.

Introduction
Search strategies of solvers fBnswer Set Programming

(ASP) naturally decompose into a deterministic and a non-

deterministic part. While the non-deterministic part isltea
ized through heuristically driven choice operations, tke d

terministic one is based on advanced propagation opegation

often amounting to the computationwéll-founded seman-
tics (van Gelderet al. 1991). The latter itself can be bro-
ken up into techniques realizirfgtting’s operator (Fitting
2002) and the computation ainfounded setévan Gelder

et al. 1991). The notion of an unfounded set captures the

intuition that its atoms might circularly support themsdv

but have no support from “outside.” Hence, there is no rea-
son to believe in the truth of an unfounded set, and the con-
tained atoms must be false. The opposites of unfounded sets

areexternally supported sefkee 2005), their atoms have a
non-circular support.

While genuine ASP-solvers, likdlv (Leoneet al. 2006)
and smodels(Simonset al. 2002), aim at determining
greatestunfounded sets, SAT-based ASP-solvers, Hiksat
(Lin & Zhao 2004),cmodelqLierler & Maratea 2004), and

* Affiliated with the School of Computing Science at Simon
Fraser University, Canada.

58

pbmodelgLiu & Truszczyhski 2005), uséoopsand associ-
atedloop formulas(Lin & Zhao 2004; Lee 2005) for elimi-
nating models containing unfounded sets. Both approac
comprise certain redundancies: For instance, not all €
ments of a greatest unfounded set need to be determi
by special-purpose unfounded set techniques. Alterrgtive
one may restrict attention to crucial unfounded sets and h
dle the remaining ones via simpler forms of propagation a
iteration. In fact, we show that a subset of a program’s loc
grants the same propagation strength as obtained with-gr
est unfounded sets. Further on, the problem with the st
dard concept of loops is that it tolerates the generation
ineffective loop formulas within SAT-based solvers. Ttgt i
unfounded subsets of a loop might recur, causing the ne
to generate additional loop formulas. Both redundancy
sues are addressed (active) elementary loop&ebser &
Schaub 2005), on which the computational approaches
sented in this paper build upon.

We consider two diametrical computational tasks de:
ing with unfounded sets: first, falsification of greatest ul
founded sets and, second, identification of subset-minir
unfounded sets. Greatest unfounded sets are worthw
when the aim is setting unfounded atoms to false, as dc
within genuine ASP-solvers. Subset-minimal unfounde
sets can serve best when one needs to eliminate an ul
sired model of a program’sompletion(Clark 1978) by a
loop formula, which is important for SAT-based solvers.

First, we turn our attention to greatest unfounded st
computed by genuine ASP-solvers. div, operatorR,,.
is applied to so-callethead-cycle-free components of a
disjunctive progranil, where! is a (partial) interpretation
(Calimeriet al. 2001)* The fixpoint, Rf;, ;(C), of this
operator is the greatest unfounded set with respectt te-
stricted to atoms insid€'.> Component-wise unfounded se
identification is indlv achieved by computing complements

'Such a componertt is a strongly connected component of th
atom dependency graph, where positive as well as negative dej
dencies (throughot) contribute edges. Head-cycle-freeness adc
tionally assures tractability of unfounded set checks, which oth
wise are intractable for disjunctive programs.

Note that a “global” greatest unfounded set is not guarante
to exist for a disjunctive program (Leoret al. 1997). How-
ever, a head-cycle-free component always has a “local” greal
unfounded set, which can be computed in linear time.

Technical Report IfI-06-04

Answer Set Programming

thatis,C' \ Ry, ;(C). This setis externally supported, all
other atoms o’ form the greatest unfounded set.

In smodelsunfounded set computation follows a similar
idea. The respective function, callédmost is based on
source pointergSimons 2000). Each non-false atom has
a source pointer indicating a rule that provides an external

greatest unfounded sets, also we present the strategylyece
implemented innomore++ (Anger et al. 2005). On the
other hand, we point out how our approach can be exploit
by SAT-based solvers for determining more effective loc
formulas. The overall contributions are:

e We relate the notion of elementary loops to unfounde

support for that atom. When some source pointers are inval-
idated (in effect of a choiceAtmostproceeds as follows:

Iterate over the strongly connected components of a pro-
gram’s (positive) atom dependency grafgee next sec-
tion). For the current component, do:

1. Remove source pointers that point to rules whose bod- o

ies are false.

2. Remove further source pointers that point to rules
whose positive bodies contain some atoms currently
not having source pointers themselves.

3. Determine new source pointers if possible. That is,
re-establish source pointers of atoms that are heads of
rules with non-false bodies such that all atoms in the
positive parts have source pointers themselves.

4. All atoms without a new source pointer are unfounded.
Set them to false (possibly invalidating source pointers
of other components’ atoms) and proceed.

Essentially, Step 1 and 2 check for atoms that might be un-
founded due to rules whose bodies have recently become
false. Afterwards, Step 3 determines the atoms that are
still externally supported and, hence, not unfounded. Ob-
serve that the atoms to falsify as a result of Step 4 are pre-
cisely the ones that are not found externally supported in
the step before. Thus, boimodelsanddlv compute great-
est unfounded sets as complements of externally supported
sets. Notably, computations are modularized to strongly
connected components of atom dependency graphs.

Having considered the falsification of greatest unfounded
sets, we now turn to the diametrical problem: determin-
ing subset-minimal unfounded sets. The ability to com-

sets in the context of partial assignments. Thereby, \
reveal unfounded sets that must intrinsically be consi
ered by both SAT-based and genuine ASP-solvers. T
developed theoretical fundament fortifies new approact
to computational tasks dealing with unfounded sets.

We describe a novel algorithm for computing unfounde
sets in a loop-oriented way. The algorithm determine
unfounded sets directly, avoiding the complementation
externally supported sets. This approach allows us to il
mediately propagate falsity of atoms in a detected u
founded set and to postpone unprocessed unfounded
checks. We thereby achieve a tighter coupling of ui
founded set checks with simpler forms of propagation ai
localize the causes and effects of operations. The al¢
rithm has recently been implementedriomore++, but
may be integrated into other solvers, edjv, as well.

We present an algorithm for extracting active elementa
loops from unfounded sets. The algorithm, which is tF
first of its kind, exploits particular properties of activie e
ementary loops, building the “cores” of unfounded set
Active elementary loops can replace terminating loops
SAT-based solvers. Note that a terminating loop is n
guaranteed to be elementary, hence, a respective loop
mula might be redundant (Gebser & Schaub 2005). O
algorithm can be integrated in solvers likgesat cmodels
and pbmodels Such an integration could form the bas
for an empirical evaluation of the effectiveness of activ
elementary loops.

Background

pute subset-minimal unfounded sets is attractive for SAT-
based solvers, which compute (propositional) models of a
program’s completion. Whenever a computed candidate
model does not correspond to an answer®satloop for-
mula that eliminates the model is added to the completion.
For the loop formula eliminating the model, the respective
loop must be unfounded. SAT-based solessatdetermines
so-calledterminatingloops (Lin & Zhao 2004), which are ~ For a ruler as in (1), lethead(r) = po be thehead
subset-maximal unfounded loops. Terminating loops are Of r and body(r) = {pi,...,Pm,not pmy1,...,n0t py}
easy to compute: They are strongly connected components be thebody of . Given a setX of literals, let X+ =
of the (positive) atom dependency graph induced by the {p € P | p € X} andX~ = {p € P | not p € X}.
greatest unfounded set. Given that terminating loops dre no For body(r), we then getb0dy(r)+ = {p1,...,pm} and
necessarily subset-minimal unfounded sets, their loop for pody(r)™ = {p,.41,...,pn}. The set of atoms occur-

mulas condense the reason why a model is invalid less pre- ring in a logic programil is denoted byatom(II). The
cisely than the ones of subset-minimal unfounded sets. set of bodies inll is body(IT) = {body(r) | r € II}.

In this paper, we present a novel approach to achieving the For regrouping rule bodies sharing the same hgatefine
aforementioned computational tasks. In fact, both tasks ar body(p) = {body(r) | r € I, head(r) = p}. A programIl

settled on the same theoretical fundament. On the one hand, g calledpositiveif body(r)~ = 0 for all r € II. Cn(II)

we can explain strategies of genuine ASP-solvers to handle janotes the smallest set of atoms closed under positive
3Any answer set of a program is a model of the program’s com- gramIL. Thereduct IT¥, of TI relative to a sef¥ of atoms

pletion, whereas the converse does generally not hold (Fages 1994).is defined byllX = {head(r) « body(vﬂ)Jr | r € II,

Given an alphabeP, a (normal)ogic programis a finite set
of rules of the form

PO < Ply---sPms MOt Dy, - - ., NOL Py (1)

where0 < m < n and eachp; € P (0 < ¢ < n)
is anatom A literal is an atomp or its negationnot p.

DEPARTMENT OF INFORMATICS 59

.TU Clausthal
11TH NMR WORKSHOP

60

body(r)” N X = (}. A setX of atoms is aranswer set
of a logic progranil if Cn(I1¥) = X.
An unfounded set is defined relative to amsignment

We now come to unfounded sets. For a progidnwe
define a setV C atom(II) as anunfounded setvith respect
to an assignmem if, for every ruler € II, we have either

In nomore++, values are assigned to both atoms and bod- head(r) ¢ U

ies, whereasmodelsand dlv explicitly assign values only
to atoms (from which the (in)applicability of rules is de-
termined).

Note that an assignment to atoms and bodies
can reflect any state resulting from an assignment to atoms,

o A(body(r)) =6, or
e body(r)" NU # 0.

whereas the converse does not hold because a body might beOur definition is close to the original one (van Geldsr

false without yet containing a false literal. Also, the rist

al. 1991), but differs regarding the second condition, whic

tion of assignments to atoms limits search to branching on aims at inapplicable rules. With the original definitionclku

atoms, which may lead to exponentially worse proof com-
plexity than obtained when branching on both atoms and
bodies (Gebser & Schaub 2006). Given that assignments

rules are determined from atoms, that is,
o {p€body(r)" | A(p) =0} #0 or

to both atoms and bodies provide extra value, we define an e {p € body(r)” | A(p) = ® or A(p) = &} # 0.

assignmentA for a prograniI as a (total) function:
A : atom(IT) U body(IT) — {6,0, R, ®}

The four values correspond to those useddby (Faber
2002); that is,© stands forfalse ©® for undefined @ for
must-be-trueand& for true.* We also assume that the ab-
stract ASP-solver, invoking the algorithms presented & th
following sections, propagates the four values ldte ap-

plied to normal programs (which approximates propagation

within nomore++) and do not provide any details hergVe
call an assignmen#A positive-body-saturatedabbreviated
pb-saturated if for every B € body(II), A(B) = o if
A(p) = © for somep € BT. An arbitrary assignment is
easily turned into a pb-saturated one by propagation.

What is important to note is the difference between
(must-be-true) and> (true). For our unfounded set check
to work, the following invariant must hold for any assign-
mentA:

{p € atom(I) | A(p) = ®} U (Upepoay).am)—eBT)
C On({r e | A(body(r)) = @}") (2)

The invariant stipulates that all atoms and (positive pafits
bodies assigned are bottom-up derivable within the part

of IT assignedd. This guarantees that no unfounded set

ever contains an atom assignedand we can safely exclude
such atoms as well as bodies assigaedfom unfounded

The reason for not determining inapplicable rules froi
atoms is that, with our definition of an assignment, a bot
assignedo needs not necessarily contain a false litere
Rather, a body might be inapplicable, that is, assigped
due to any reason (such as a choice or an inference by loc
head). Still it holds that normal programs (in contrast & di
junctive ones (Leonet al. 1997)) enjoy the property that
the union of distinct unfounded sets is itself an unfoundt
set. Hence, there always igeeatest unfounded setenoted
GUS(A), for any progranil and any assignme.
Finally, we come to loops, which are sets of atoms i
volved in cyclic program structures. Traditionally, pro
gram structure is described by means of atom depende
graphs (Aptet al. 1987). When we restrict attention to un-
founded sets, it is sufficient to consideositiveatom de-
pendency graphs. For a progrdithe (positive) atom de-
pendency graplis the directed grapbatom(II), E) where
E={(p,p) | r € I,p = head(r),p’ € body(r)*}. That
is, the head of a rule has an edge to each atom in the p
itive body. Following (Lee 2005), we definel@op L in a
programll as a non-empty subset eforn (IT) such that, for
any two elementp € L andp’ € L, there is a path from
to p’ in the atom dependency graphafall of whose ver-
tices belong td.. In other words, the subgraph of the ator
dependency graph @f induced byL is strongly connected.
Note that each set consisting of a single atom is a loop,

set checks. Hence, the invariant helps in avoiding useless every atom is connected to itself via a path of length zero.

work. It also allows for “lazy” unfounded set checks, on

The significance of loops has first been recognized in (L

which we will come back when discussing the relation of g zhao 2002), where the concept was also originally d

our unfounded set algorithm wmodels Invariant (2) can

be maintained by assignirgto an atom, only if some of its
bodies is already assigned and to a body, only if all atoms
in the positive part are already assigned Otherwise,®

fined® In fact, program completion and loop formulas cag
ture answer sets in terms of propositional models. The ¢
vantage of loops and their formulas, in comparison to oth
SAT-reductions (e.g. (Janhunen 2003; Lin & Zhao 2003
is that the reduction can be done incrementally (SAT-bas

must be assigned instead®f

“Note that the concept of an assignment is to be understood in Solversassaf cmodels andpbmodelspursue this strategy);
the sense of a constraint satisfaction problem, rather than an inter- the increase in problem size is very small in the best ca
pretation. This is because answer sets are defined as models that ard he downside is that a program may yield exponential
represented by their entailed atoms. By assigning values to bodies, many loops, leading to exponential worst-case space cc
which can be viewed as conjunctions, we do not construct such a plexity of loop-based SAT-reductions (Lifschitz & Razbero

model but deal with problem-relevant variables. For this reason, 2006). Genuine ASP-solvers can, however, exploit loo
we use symbolic values instead of ascribed truth values.

SWhen referring to propagation, we mean any technique that ®Note that in (Lin & Zhao 2002) loops’ atoms must be con
deterministically extends assignments except for unfounded set nected via paths afon-zerdength. By dropping this requirement,
checks, to be detailed in the following sections. we can relate loops and unfounded sets more directly.

Technical Report IfI-06-04

Answer Set Programming

without explicitly representing loop formulas. In what ol pb-saturating the resulting assignment, we eventually fi
lows, we relate loops to unfounded sets paving the way to sify all atoms in a greatest unfounded set. Clearly, ma
loop-oriented unfounded set computations. The difference advanced propagation techniques (such as contrapositi
to SAT-based approaches is that we consider loops in the can be applied in addition to pb-saturation. Theorem 1 si
context of partial assignments, and not with respect td tota grants that there always is an unfounded loop whose ata

(propositional) models. are not assignee, as long as there are non-false aton
left in the greatest unfounded set. Note that all answer :
Relating Unfounded Sets and L oops solvers we know of apply propagation techniques that are

Recall the definition of an unfounded set given in the pre- |€astasstrong as Fitting's operator (Fitting 2002). Whene\
vious section. It states that any rule whose head belongs to this operator has reached a fixpoint, all singleton lofyps
an unfounded set is either inapplicable or contains an un- Such that all bodies ithody(p) are assigneeb are already
founded atom in the positive part of the body. Since un- S€t 0 false. More sophisticated unfounded set checks «
founded sets are finite, the following is a consequence. thus concentrate on loops as defined in (Lin & Zhao 2004
Up to now, we have considered loops, which are defin
by means of atom dependency graphs. Such graphs do
: . reflect program-specific connection via the bodies of rule
If U # 0, we havel, C U for some loopL in II that is Given Fhatgwe arpe interested in intrinsically relevant ur
unfounded w.r.tA. founded sets, loops are not yet fine-grained enough. To:
This result establishes that any non-empty unfounded set this, consider the following programs:
is a superset of some loop that is itself unfounded. Note
that Proposition 1 would not hold, if we had defined loops I, = {a« bea,c ce—b}
according to (Lin & Zhao 2004), where the contained atoms Iy = {a« bea bec c<b}
must be connected via paths of non-zero length. Omitting
this, a singleton unfounded sé&pb} such that all bodies in
body(p) are assignee is a loop. Otherwise, some element
from an unfounded séf must be contained iB™, if B is ‘)
the body of a rule whose head ishand not assigned. rules,b — a,cin Il as well ash < a andb — cin Iy,
The latter condition gives rise to inherent cyclicity. contribute the same edges to an atom dependency grz
When dealing with greatest unfounded sets, one usually However, ruleb — a provides an external support for the
concentrates on the part of an assignment not assignéu set{b, c}, whereas rulé — a, c does not. .
fact, for an atonp assigned and a set/ of atoms such that For distinguishing between putative and virtual extern
p € U, any bodyB such thap € B+ satisfies the conditon ~ SUpports, we have to consider elementary loops (Gebse
of containing an element froii as well as the condition of ~ Schaub 2005). We define a lodpin a programil asele-
containing a false literal. Since the latter condition isyea ~ Mentaryif, for each non-empty proper subsktof L, there
to verify, it is reasonable to exclude atoms assigneshen is a ruler € II such that
looking for the relevant part of a greatest unfounded set. e head(r) € K,
However, our definition of an unfounded set does not look
“through” bodies for determining inapplicability. As a min e body(r)" NK =0, and
imum requirement, we thus need an assignment to be pb- +
saturated, before a relevant unfounded set is determined.® b0dy(r)" N L #0.
Certainly this requirement is reasonable, while working on In words, a loop is elementary if each of its non-empi
“unsynchronized” assignments of atoms and bodies would proper subsets has a rule whose head is in the subset
be rather weird. For a pb-saturated assignment, the nea-fal whose body positively relies on the loop, but not on the su

Proposition 1 LetII be a logic program,A be an assign-
ment, andJ be an unfounded set w.rA.

Though sharing the same atom dependency graph, the
gle answer set ofl; is {a}, whereas we obtaifa, b, c}
for II;. The reason for this is that the apparently differei

part of the greatest unfounded set is an unfounded set. set itself” A particular property of elementary loops, rathe
Lemmal Let IT be a logic program andA be a pb- than general ones, is that they potentially provide an ext
saturated assignment. nal support to any of their non-empty proper su_bsets, ev

Then{p € GUSn(A) | A(p) # &} is an unfounded set ~ When they are unfounded. If such a situation arises, we ¢
W.rt. A. that an elementary loop is active. Formally, an elemente

Combining Proposition 1 and Lemma 1 yields the following. loop L in a programiT is activew.r.t. an assignment if

Theorem 1 LetII be a logic programA be a pb-saturated ~ ® 1S an unfounded set w.r and

assignment, ant/ = {p € GUSn(A) | A(p) #6}. e Liselementary ifr € I | A(body(r)) # &},
If U # (), we haveL C U for some loopL in II that is ! L)
unfounded w.rtA. Due to the first condition, an active elementary loop alwa:

The above result is the “partial assignment counterpart” 's unfounded. The next result tells us that any non-emy
; unfounded set contains an active elementary loop.
of (Lin & Zhao 2004, Theorem 2), where the latter refers to yloop

total (propositional) models. Due to Theorem 1, we cancon- 7|n analogy to general loops, every singleton is an elementz
centrate greatest unfounded set computation on loops: BY loop by definition. This is different from (Gebser & Schaub 2005
successively falsifying the atoms of unfounded loops and where loops are defined according to (Lin & Zhao 2004).

DEPARTMENT OF INFORMATICS 61

.TU Clausthal
11TH NMR WORKSHOP

62

Proposition 2 LetIT be a logic program,A be an assign- is assignedp if all atoms in its positive part are assignec
ment, and’/ be an unfounded set w.rA. @ and all atoms in the negative past

_IfU # 0, we havel, C U for some elementary loop Due to the first assumption, the external support of ator
in IT that is active w.r.tA. and bodies assigned is granted. Furthermore, atoms an
This result strengthens Proposition 1. For a pb-saturated bodies already assigned need not be considered anyway
assignment, it together with Lemma 1 grants the existence We can thus restrict attention to atoms and bodies assig|
of an active elementary loop none of whose atoms is as- either® or ®. The second and third assumption grant th
signeds, whenever the greatest unfounded set contains non- anything decidable by Fitting’s operator is already assign
false atoms. Itis thus sufficient to concentrate unfounééd s (Note that this implies assignments to be pb-saturated:) F

computations on active elementary loops. Going beyond is points of Fitting’s operator are computed Hiv, smodels
impossible: Any non-empty proper subset of an active ele- andnomore++ before an unfounded set check is initiated.
mentary loop is externally supported. The unfounded sets we are aiming at are loops. Loops
bound from above by the strongly connected componel
of a program’s atom dependency graph. For convenien
Then, any non-empty proper subsefd not unfounded arranging both atoms and bodies into strongly connect
Wrt A components, we e_xtend dep_endency graphs to bodies. F
programIl, we define thepositive) atom-body dependenc

The following is a “partial assignment counterpart” of re- graphas the directed graptutom (IT) U body(I1), E U Fy)

Proposition 3 LetII be a logic program,A be an assign-
ment, andl be an active elementary loop Ihw.r.t. A.

sults on t(_)tal (propositional) interpreta}t_ions in (Gebesteal. where E = {(head(r), body(r)) | » € I} and By =

2006)8 It is a consequence of Proposition 2 and 3. {(body(r),p) | 7 € I,p € body(r)+}.9 The strongly

Theorem 2 LetII be a logic program A be an assignment, connected components of such graphs are understood in

and L C atom(II). standard graph-theoretical sense, loops are the atoms ¢
Then,L is an active elementary loop ifi w.r.t. A iff L is tained in strongly connected subgraphs.

a subset-minimal non-empty unfounded set wAr.t. We are now ready to describe our algorithm for computir

This result shows that active elementary loops form in fact an unfounded set. It accesses the following global varsabl

the “cores” of unfounded sets. Any proper superset of an II: The underlying logic program.
active elementary loop contains atoms that are unnecessaryA: The current assignment.

non-empty proper subset of an active elementary loop can the atom-body dependency graphibf
be identified as unfounded. Active elementary loops moti- Set: A set of atoms such th&et C SCC N atom (I1)

vate novel computational approaches in two aspects: First, _ 4
they can be used to make unfounded set computations lessEXt: The seExt = U, s {B € body(p) | BT N Set = 0,

exhaustive by not aiming at greatest unfounded sets; second A(B) # ©} of bodies.
they reveal intrinsically relevant unfounded sets and oule Source: A subset ofbody(IT).
superfluous ones. In the next sections, we provide resgectiv Sink: A subset ofatom (I1).

computational approaches. . .
P PP Variable Set contains the atoms to be extended to an u

founded set. All atoms iSet belong to the same strongly

Greatest Unfounded Sets connected componentSCC. SetExt of bodies can be
We now exploit Theorem 1 and Proposition 2, granting the thought of as a todo list. It comprises bodies that provide €
existence of an active elementary loop as a subset of the non-ternal supports for the atoms$et, hence, some atoms from
false part of a greatest unfounded set, and design an algo-their positive parts must be added Set. Synonymously
rithm aiming at such loops. In order to restrict computagion to smodelssource pointers, sedource contains bodies for
to necessary parts, we make the following assumptions: which it is known that external supports for their positiv

e Invariant (2) on assignments holds. It guarantees that nei- Parts exist. S&ink contains atoms some of whose non-fals

ther an atom assigned nor an atom from the positve Podies are inSource or in a different strongly connected
part of a body assigned is unfounded. component; such atoms are not contained in any unfounc

)) set. A source pointer ismodelscan be thought of as a link
e If, for an atom, the bodies of all rules with the atom as f.om an atom irSink to a body inSource or outsideSCC.

head are assigned, then the atom is assigned Vice Our unfounded set algorithm is shown in Algorithm 1
versa, an atom is assignedif it has a body assigned. The designated initial situation is that some atom, assigr
e Abody is assigned if some of its literals is false, thatis, either® or ®, has been chosen to start an unfounded ¢
an atom from the positive part is assigrnedr one from check from. This atom is initially contained iet, its
the negative part is assigned eitlieior ©. Also, a body “external bodies” inExt. For the computation being rea-

— _ _ sonable, each external body is supposed to be containe:
Please note that the reformulation of (active) elementary loops

provided here is inspired by the notion of elementary sefGeb- °So-calledbody-head graphsire used in (Linke & Sarsakov
seret al. 2006), for which similar results in the context of total ~ 2005) for describing isomorphisms between dependency gra|
(propositional) interpretations were developed first. and syntactically restricted program classes.

Technical Report IfI-06-04

Algorithm 1: UNFOUNDED SET

1 whileExt # 0 do

2 Ext « Ext \ {B} for someB € Ext
3 if there is some € B N SCC such thap ¢ Sink and A(p) # @ then
J— {B € body(p) | B¢ SCC,A(B) #6}U
4 {B € body(p) | B € Source, A(B) # ©}
5 if J = 0 then
6 Set «— Set U {p}
7 Ext «— Ext\ {B € Ext |p€ BT}
8 Ext < Ext U {B € body(p) | B* NSet = 0, A(B) # ©}
9 ese
10 Sink < Sink U {p}
11 Ext «— Ext U {B}
12 else
13 Source «— Source U {B}
14 R« {p € Set | B € body(p)}
15 whileR # 0 do
16 Set < Set \ R
17 Sink < Sink UR
J — {B € body(II)NSCC | Bt NR # 0, A(B) # &,
18 {p € Bt NSCC | p & Sink, A(p) # ®} = 0}
19 Source «— Source U J
20 R «— {p € Set | body(p) NJ # 0}
21 | Ext — U,csa{B € body(p) | BY NSet = 0, A(B) # O}

SCC \ Source. The outer while-loop from line 1 to 21 is

Answer Set Programming

atoms are either not contained $€C, contained inSink,
or assignedp. In a bottom-up fashion, we derive such ex
ternally supported bodies and add then$Starce (line 19),
respective head atoms are successively removed $&m
and added t&ink (lines 16, 17, and 20). Finally, we update
in line 21 the external bodies of the atoms stilSiet.

Like unfounded set detection algorithmsdh¥ andsmod-
els Algorithm 1 can be implemented such that it works i
linear time. The distinguishing element to other algorishrr
is that it extends the set of considered atoms on dema
that s, if there are bodies from whose positive parts no atc
is included yet. The algorithm stops and does not explc
any more atoms when such bodies do not exist. The a
is to keep a computed unfounded set as small as possi
This is motivated as follows: Propagation of single aton
and bodies can be done very efficiently and does, in contr
to unfounded set checks, not risk “wasted” work yieldin
no inferences. Simpler forms of propagation, like Fittsg’
operator, are thus inomore++ applied as soon as possi-
ble, in the hope that pending unfounded set checks can
avoided in effect. For enabling such “early” propagatian,
is important that we compute unfounded sets directly, as
is done by Algorithm 1, and do not complement external
supported sets, as done witldlv andsmodels

Let us now consider ways of integrating Algorithm 1 int
solvers. Any solver using Algorithm 1 has to grant that pc
tential external support for bodies Bource and atoms in
Sink really exists, since the elements of these sets are
examined by the algorithm. The same applies to atoms &

iterated as long as there are external bodies. Note that we pgies assigned. Systemadlv andnomore++ assure the

haveExt = () whenevelSet = ; in this case, the empfet

latter by assigningnust-be-trueor ®, when later unfound-

indicates that no unfounded set contains any atom that has ggness of a true atom or body cannot be excluded. Detect

temporarily been irbet.

If Ext # 0, we select in line 2 an external bo@yfrom
whose positive part an atom should be adde@donext.
Such an atonp must be contained i6CC, but not inSink,
and not be assigned (line 3). If there is such an atom
we determine in line 4 all bodies of atoprithat are not as-
signede and either not contained iBCC or contained in
Source. If such bodies exist, that ig, # 0, p is externally
supported, and we add it ®ink (line 10). Otherwise, we
can extendbet with atomp (line 6). All bodies that were
formerly external but positively rely op are then removed
from Ext (line 7). Finally, we add bodies of rules with head
to Ext if they do not positively rely orbet and are not as-
signeds (line 8).

From line 12 to 21, we handle the case that no atom from

the positive part of body8 can be added t6et. Then, we
add B to Source as it is externally supported (line 13). In
line 14, we determine the atoms frdat that occur as heads
of rules with bodyB. These atoms are as well externally sup-
ported and must be removed fr@st. Note that we always
haveR # () becauseB occurs as body of at least one atom
in Set. From line 15 to line 20, we remove atoms fréet
and add them tS&ink as long as further bodies and associ-

unfoundedness of program parts that must be true leads"
conflict, which has to be detected for soundness reasons.

The strategy o§modelss different, it does not use an ana
log for ®. Unfounded program parts, whether they conta
true elements or not, are determined from source pointe
Such source pointers correspond to elemen&oafce and
Sink. They are maintained during the solving process, al
invalid ones are removed during the “first stage” of functio
Atmost before it performs the actual unfounded set chec
For a true atom, the removal of its source pointer can be s¢
as turning the value fromp to ®, in order to make the atom
accessible to a pending unfounded set check.

In contrast tsmodels Atmost dlv andnomore++do not
have a “first stage” for canceling outdated external suppt
information. They simply start their unfounded set compt
tations from head atoms of rules whose bodies have becc
false since the last unfounded set check. (Such atoms
also the starting points foktmostto remove source point-
ers.) Unfounded set checks are done locally for strong
connected components of the respective dependency gra
After processing a component, no information is kept, at
no updates are necessary upon a revisit. Another para
betweerndlv andnomore++ is that the former propagates ¢

ated head atoms are found externally supported. The crucial component’s greatest unfounded set before initiatindnéurrt

line is 18: Here we determine bodiésfrom SCC, not as-

unfounded set checks (Faber 2006). Though not the sal

signedo, such that some atoms in the positive part have this is quite similar totnomore++ immediately propagating

recently been removed froBet (B NR # () and all other

DEPARTMENT OF INFORMATICS

an unfounded set determined by Algorithm 1.

63

.TU Clausthal
11TH NMR WORKSHOP

64

The discussion above shows that Algorithm 1 can poten-
tially be put into various contexts, using different stopss
to maintain acquired information and to combine unfounded
set checks with propagation. Concerning the latter, Algo-
rithm 1 is designed to stop as soon as an unfounded set is
detected. In this way, a solver can immediately propagate
falsity of the contained atoms. This allows unfounded set
checks to always work on an up-to-date assignment, possi-
bly reducing the overall efforts of a computation. Finalkt,
us mention that Algorithm 1, though aiming at loops, only

If L # (), L is an elementary loop ifl iff the elementary
subgraph ofL in IT is strongly connected.

If a loop is elementary, its elementary subgraph has t
following property (Gebser & Schaub 2005, Proposition 12

Proposition 4 LetII be a logic program,L be an elemen-
tary loop inIl, and(L U B(L), E(L) U EC(L)) be the ele-
mentary subgraph af in IT.

Then, every subgrapfl. U B(L), E(L) U EC'(L)) such
that EC'(L) € EC(L) and{B | (B,p) € EC'(L)} =

guarantees that the atoms of a computed unfounded set be-B(L) is strongly connected.

long to the same strongly connected component. They do
not necessarily form a loop because of the inherent sensitiv
ity to the order in which atoms are assumed to belong to an
unfounded set (the order in which they are adde$kt).

Subset-Minimal Unfounded Sets

Having considered the falsification of greatest unfounded
sets, we now turn to the diametrical problem: determin-
ing subset-minimal unfounded sets, which, by Theorem 2,
are active elementary loops. The ability to determine activ
elementary loops is attractive for SAT-based ASP-solvers,
computing (propositional) models of a program’s comple-
tion and adding loop formulas to eliminate invalid candi-
date models. To this end, the SAT-based sohssatde-
termines terminating loops, which are subset-maximal un-
founded loops. Clearly, terminating loops are not neces-
sarily active elementary loops. However, the loop formula
of an active elementary loop eliminates an invalid candidat
model, like the one of a terminating loop. In addition, un-
desired models that are not eliminated by the loop formula
of a terminating loop might be excluded in future invoca-
tions of the underlying SAT-solver (cf. Section 5 in (Gebser
& Schaub 2005) for an example). In this section, we show
how an active elementary loop can be extracted from a given
unfounded set, which might be a terminating loop. Within
SAT-based solvers, active elementary loops can thus replac
terminating loops.

Though elementary loops, as defined before, suggest that
all subsets of a loop must be examined, deciding whether a
loop is elementary is tractable. Indeed, elementary loops
can also be characterized by elementary subgraphs of a
program’s atom-body dependency graph (Gebser & Schaub
2005). For a prograril and a sef. C atom(II), we define
B(L) = {body(r) | r € I, head(r) € L, body(r)" N L #

0} andE(L) ={(p,B) |p€ L,B € B(L),p — B € I1}.
The elementary subgrapbf L in II is the directed graph
(LUB(L),E(L)U EC(L)) where:

ECY(L) =10
EC™Y(L) = ECY(L)U{(B,p) | B€ B(L),pe BtNL,
eachp’ € BT N L has a path tp
in (LUB(L), E(L)U EC* (L))}
EC(L) = Ui>0ECi(L)

By (Gebser & Schaub 2005, Theorem 10), the elementary
subgraph allows for deciding elementariness.

Theorem 3 LetII be a logic program and. C atom(II).

Due to the above property, considering only a single ed
from a body to a contained loop atom is sufficient for de
ciding elementariness by elementary subgraph constructi
This “don’t care” character of elementary subgraphs gyea
facilities elementary loop computation: Instead of consi
ering all edges in an atom-body dependency graph, we ¢
select one contained atom as a canonical representatiee t
reached from a body. Considering the definition of eleme
tary subgraphs, this representative should be a body at
that is reached from all other body atoms under conside
tion. Proceeding in this way, we can compute active eleme
tary loops by implicitly constructing elementary subgraph
where bodies reach canonical representatives, refled¢tang
single edges required to obtain a strongly connected grag

We have now settled the fundament of Algorithm 2 fc
extracting an active elementary loop from an unfounded s
Algorithm 2 uses the global variablget, containing the
atoms of an unfounded set. Initiallget might be the re-
sult of Algorithm 1 (which is not necessarily a loop) or ¢
terminating loop. In effect of Algorithm Zet will contain
the atoms of an active elementary loop, obtained through
moving superfluous atoms. The variables, Q, andN are
local to Algorithm 2. SetAct contains the atoms that are
temporarily assumed to be elements of the final active e
mentary loop. Variabl® is a priority queue of atoms that
need to be visited. Each atomhas an associatad, ac-
cessible vig.id, atoms inQ are then sorted by theids in
increasing order. Via operatioQ.rem(), the first element
of Q is removed fronQ and returned. OperatioR.add(p)
inserts an atom into Q at the appropriate position, the oper
ation has no effect ip is already contained iQ. VariableN
is a counter, used to assignidrio an atom when it is visited
for the first time. Besides thid, each atonp is associated
with two more variablesroot andexp. Integer valueoot
stores thed of the first visited atom that positively depend:
on p in the elementary subgraph 6&t. The setexp corre-
sponds to a todo list of atoms that positively depencbpn
but have not yet been explored. Similargad, we access
root andexp of an atomp via p.root andp.exp.

Before we start describing the algorithm, let us sketch |
fundamental idea. The initial value f& will be |Set|, and
we decremeniN whenever an atom is visited for the firs
time. That is, an atom with a greatelris visited before the
atoms with smalleids. While exploring atoms, we make
sure that an atom with a smallet reaches all atoms with
greaterids in the elementary subgraph $4t. In this way,
we can safely select the contained atom with the greates
to explore a body from. In fact, this atom is a canonici

Technical Report IfI-06-04

Answer Set Programming

Algorithm 2: ACTIVE ELEMENTARY LooP the first time. We then initialize.id andp.root with N, and
L A0 p-exp with _thg empty set (lines 10 to 1_2). Addiqngto Act
2 Qe o in line 13 indicates thap has bgen VISI'Fed. In line 14, we
3 N [Set| decremenN to the number of still unvisited atoms $et.
4 whileN # 0do Due to visiting an atonp for the first time, a bod{8 such
thatp € B andB*™ N Set C Act becomes accessible, a
5 | pid—Oforsomep € Set there is an atom iAct that is reached from all atoms Bft N
6 | Qadlp) Act in the elementary subgraph 6&t. Of course,A(B)
7 whileQ # ¢ do must not beS since we are interested in an active elemente
8 p — Q.rem() loop w.r.t. A. These conditions are checked in line 15. F
9 if p.id = 0 then each body satisfying the conditions, some atgne B N
10 bid N Act has the greatest; _this atompf is determined i_n line 16.
n b.root — N As discussed above; is a canonical representative to reac
12 p.exp — 0 B from. Thus, we add the head atoms of bdithat are in
13 Act — Act U {p} Set to p’.exp and re-add’ to Q (lines 17 and 18). Recall
14 Ne—N-1 that the latter has no effectpf is already contained iQ.
15 foreach B € body(I1) such thap € B, B M Set C Act, After having updated atoms to be explored, we proce
and A(B) # © do p.exp for the current atonp from line 19 to 34. Ifp.exp is
letp’ € B+ N Act such that non-empty, we re-adplto Q, making sure that is re-visited
16 o.id = maz{p.id | p € B N Act} later on, and remove some elemehto be processed next
17 p.exp — p'.exp U {p € Set | B € body(p)} from p.exp (lines 20 and 21). The atopl can be already
18 Q.add(p’) visited, in which case we maximizds of atoms reaching
L p amongp.root andp’.root (line 22). If p’ is unvisited and
19 if p.exp # 0 then has not been removed frofet since it was added tp.exp,
20 Q.add(p) we setp’.id to zero and adg’ to the front ofQ (lines 24
21 p.exp — p.exp \ {p’} for somep’ € p.exp and 25). On re-entering the outer while-loop from ling?7,
22 if p’ € Act then p.root — maz{p.root, p’.root} is the atom visited next. The else-case from line 26 to 34
23 dseif p’ € Set then flects that no more atom reacheslf p is not reached from
on o id 0 an atom with a greated (p.id = p.root in line 27) and there
25 Q.add(p’) are atoms not reaching(Q # @ or N # 0 in line 28), we
- remove all atoms irf\ct whoseids are not greater thanid
23 dse o — « then from bothSet andAct (lines 29 and 30). The residual atom
pie = poroo of Set still form an unfounded set (otherwise some of the
8 ifQ # 0 orN = 0then would have reached one of the removed atoms), contain
2 Set « Set\ {p € Act | p.id < p.id} an active elementary loop by Theorem 2. Finally, the els
30 Act —— Act \ {p € Act | p.id < p.id} case from lines 31 to 34 applies wheiis reached by some
31 dse atom with a greateid. In this case, we hav@ # 0, since
32 p’ — Q.rem() at least the atom picked in line 5 is still containedidnFor
33 p’.root < maz{p.root, p’.root} not mistakenly considering an atom unreached, we pro
34 | Q-add(p’) gate the greatestl of an atom reaching to the atomp’
L - that succeeds in Q (line 33). Atomp’, removed fromQ in

. . N line 32 and re-added in line 34, is then re-visited in the ne
representative, as discussed below Proposition 4. Wheneveriteration of the outer while-loop from line 7.

an atom is not reached from any atom with a greatén Regarding complexity of Algorithm 2, note that a bod
the elementary subgraph 6ét or there are unvisited atoms 5 explored only once, when the last of its atoms contain
in Set, we can safely remove all atoms with smalkgs than in Set is visited for the first time. Also, atoms are added |
that of the current atom froret. The residual atoms ifet Act only once, upon re-visits only path information is ex

still form an unfounded set. We are done wHémeaches changed viaoot. Visits of bodies and accompanying up
zero, indicating that all atoms ifiet have been inspected {ates of reached atoms are bound by the number of ec

and form an active elementary loop. in the part of the atom-body dependency graph that conts
We now describe Algorithm 2. Give$et as global vari- atoms inSet and their connecting bodies.
able,Act andQ are initialized to be empty, and is set to Extracting active elementary loops from unfounded s¢

the cardinality ofSet (lines 1 to 3). The outer while-loop might not be important for genuine ASP-solvers, like,
from line 4 to 34 is iterated untN reaches zero, indicating smodels and nomore++, only aiming at falsification of
that all atoms irbet have been inspected. As long as thisis unfounded sets. But active elementary loops can play

not the case, we pick an arbitrary atgnfrom Set, assign role in SAT-based ASP-solvers, such assat cmodels
p.id zero, and adg to the front ofQ (lines 5 and 6). The andpbmodelssince their loop formulas eliminate undesire
atomp with the smallestd is removed fromQ in line 8. In completion models more effectively than those of terming
line 9, we detect fronp.id being zero thap is visited for ing loops (Gebser & Schaub 2005).

DEPARTMENT OF INFORMATICS 65

.TU Clausthal
11TH NMR WORKSHOP

66

Discussion
This paper contributes to computational approaches to un-
founded set handling, both theoretically and practically-
like already done in the literature (cf. (Lin & Zhao 2004;
Lee 2005)), where loops are related to total propositional
models, we have put loops into the context of partial assign-
ments. The major result is that active elementary loops form
the “cores” of unfounded sets. Hence, they must intrinsi-
cally be dealt with by any ASP-solver.

Based on active elementary loops, traditional approaches
to unfounded set computation can be explained. Beyond
that, new algorithms exploiting active elementary loopes ar
fortified. We have presented an algorithm that allows for
computing unfounded sets directly, avoiding the comple-
mentation of externally supported sets. This approach is
currently implemented in theomore++ system. However,
it can also be incorporated into other ASP-solvers. In fact,
using assignments to both atoms and bodies is not an obli-
gation for our theoretical results and algorithms to apiply,
merely allows us to state them in a way that accounts for
nomore++ as well. For brevity, we do not provide experi-
mental results and just report that the usage of Algorithm 1
has greatly improved the performance of ttoenore++sys-
tem. This improvement is of course of relative nature and
does not indicate any superiority of the approach.

Finally, we have provided an algorithm that exploits the
properties of elementary subgraphs to extract active gleme
tary loops from unfounded sets. This algorithm, which is
the first of its kind, can be used by SAT-based ASP-solvers
to replace terminating loops with active elementary loops.

Acknowledgments. This work was supported by DFG
(SCHA 550/6-4). We are grateful to Martin Brain, Wolf-
gang Faber, Joohyung Lee, Yuliya Lierler, and the anony-
mous referees for many helpful suggestions.

References

Anger, C.; Gebser, M.; Linke, T.; Neumann, A.; and
Schaub, T. 2005. Thaonor e++ approach to answer
set solving. In Sutcliffe, G., and Voronkov, A., edsBAR
95-109. Springer-Verlag.

Apt, K.; Blair, H.; and Walker, A. 1987. Towards a theory
of declarative knowledge. In Minker, J., eflgundations
of Deductive Databases and Logic ProgrammiNgprgan
Kaufmann. Chapter 2, 89-148.

Calimeri, F.; Faber, W.; Leone, N.; and Pfeifer, G. 2001.
Pruning operators for answer set programming systems.
Report INFSYS RR-1843-01-07, TU Wien.

Clark, K. 1978. Negation as failure. In Gallaire, H., and
Minker, J., eds.lL.ogic and Data Base$’lenum. 293-322.

Faber, W. 2002. Enhancing efficiency and expressive-
ness in answer set programming systems. Dissertation,
TU Wien.

Faber, W. 2006. Personal communication.

Fages, F. 1994. Consistency of Clark’s completion and the
existence of stable model§. MLCS1:51-60.

Fitting, M. 2002. Fixpoint semantics for logic program
ming: A survey. TCS278(1-2):25-51.

Gebser, M., and Schaub, T. 2005. Loops: Relevant
redundant? In Baral, C.; Greco, G.; Leone, N.; and Te
racina, G., edsLPNMR 53-65. Springer-Verlag.
Gebser, M., and Schaub, T. 2006. Tableau calculi for &
swer set programming. In Dix, J., and Hunter, A., eds
NMR This volume.

Gebser, M.; Lee, J.; and Lierler, Y. 2006. Elementary se
for logic programs. In Dix, J., and Hunter, A., eddiMR
This volume.

Janhunen, T. 2003. Translatability and intranslatabili
results for certain classes of logic programs. Report A8
Helsinki UT.

Lee, J. 2005. A model-theoretic counterpart of loop fo
mulas. In Kaelbling, L., and Saffiotti, A., ed$JCAI, 503—
508. Professional Book Center.

Leone, N.; Faber, W.; Pfeifer, G.; Eiter, T.; Gottlob, G.
Koch, C.; Mateis, C.; Perri, S.; and Scarcello, F. 2006. TI
DLV system for knowledge representation and reasonir
ACM TOCL To appear.

Leone, N.; Rullo, P.; and Scarcello, F. 1997. Disjunc
tive stable models: Unfounded sets, fixpoint semantics, a
computation.Inf. Comput.135(2):69-112.

Lierler, Y., and Maratea, M. 2004. Cmodels-2: SAT
based answer sets solver enhanced to non-tight progra
In Lifschitz, V., and Niemd, I., eds.LPNMR 346—350.
Springer-Verlag.

Lifschitz, V., and Razborov, A. 2006. Why are there s
many loop formulas ACM TOCL To appear.

Lin, F., and Zhao, Y. 2002. ASSAT: computing answe
sets of a logic program by SAT solvers. AdAl, 112-118.
AAAI/MIT Press.

Lin, F., and Zhao, J. 2003. On tight logic programs and y
another translation from normal logic programs to prop
sitional logic. In Gottlob, G., and Walsh, T., edkICAI,
853-858. Morgan Kaufmann.

Lin, F., and Zhao, Y. 2004. ASSAT: computing answer se
of a logic program by SAT solver#\lJ 157(1-2):115-137.

Linke, T., and Sarsakov, V. 2005. Suitable graphs for a
swer set programming. In Baader, F., and Voronkov, A
eds. LPAR 154-168. Springer-Verlag.

Liu, L., and Truszczgiski, M. 2005. Pbmodels - software
to compute stable models by pseudoboolean solvers.
Baral, C.; Greco, G.; Leone, N.; and Terracina, G., ed
LPNMR 410-415. Springer-Verlag.

Simons, P.; Niemé), |.; and Soininen, T. 2002. Extending
and implementing the stable model semanti&kl 138(1-
2):181-234.

Simons, P. 2000. Extending and implementing the stat
model semantics. Dissertation, Helsinki UT.

van Gelder, A.; Ross, K.; and Schlipf, J. 1991. The wel
founded semantics for general logic program. ACM
38(3):620-650.

Technical Report IfI-06-04

Answer Set Programming

DEPARTMENT OF INFORMATICS 67

.TU Clausthal
11TH NMR WORKSHOP

1.7 Elementary Sets for Logic Programs

Elementary Sets for Logic Programs

Martin Gebser
Institut fur Informatik
Universitt Potsdam, Germany

Abstract

By introducing the concepts of a loop and a loop formula,
Lin and Zhao showed that the answer sets of a nondisjunctive
logic program are exactly the models of its Clark’s comple-
tion that satisfy the loop formulas of all loops. Recently, Geb-
ser and Schaub showed that the Lin-Zhao theorem remains
correct even if we restrict loop formulas to a special class of
loops called “elementary loops.” In this paper, we simplify
and generalize the notion of an elementary loop, and clarify
its role. We propose the notion of an elementary set, which
is almost equivalent to the notion of an elementary loop for
nondisjunctive programs, but is simpler, and, unlike elemen-
tary loops, can be extended to disjunctive programs without
producing unintuitive results. We show that the maximal un-
founded elementary sets for the “relevant” part of a program
are exactly the minimal sets among the nonempty unfounded
sets. We also present a graph-theoretic characterization of el-
ementary sets for nondisjunctive programs, which is simpler
than the one proposed in (Gebser & Schaub 2005). Unlike the
case of nondisjunctive programs, we show that the problem of
deciding an elementary setaisNP-complete for disjunctive
programs.

Introduction
By introducing the concepts of a loop and a loop formula,

Lin and Zhao (2004) showed that the answer sets (a.k.a. sta-

ble models) of a nondisjunctive logic program are exactly
the models of its Clark’s completion (Clark 1978) that sat-
isfy the loop formulad.F (L) of all loopsL for the program.

This important result has shed new light on the relationship
between answer sets and completion, and allowed us to com-
pute answer sets using SAT solvers, which led to the design

of answer set solversssAT! (Lin & Zhao 2004) anccMOD-
ELS? (Giunchiglia, Lierler, & Maratea 2004).

The concepts of a loop and a loop formula were fur-
ther clarified in (Lee 2005). By slightly modifying the
definition of a loop, Lee observed that adding loop for-

mulas can be viewed as a generalization of completion,

which allows us to characterize the stability of a model
in terms of loop formulas: A model is stable iff it sat-
isfies the loop formulas of all loops. He also observed

'http://assat.cs. ust. hk/
2http: //wwv. cs. ut exas. edu/ user s/ t ag/ cnodel s/

68

Joohyung Lee
Computer Science and Engineering Department of Computer Science
Arizona State University, USA Universitat Erlangen-Nrnberg, Germany

Yuliya Lierler

that the mappind-F, which turns loops into loop formu-
las, can be applied to arbitrary sets of atoms, not only
loops: AddingLF(Y") for a non-loopY does not affect
the models of the theory becausg(Y) is always entailed
by LF(L) for some loopL. Though this reformulation
of the Lin-Zhao theorem, in whichF is not restricted to
loops, is less economical, it is interesting to note thas it
essentially a theorem on assumption sets (&&&Zaniolo
1990), or unfounded sets (Van Gelder, Ross, & Schlipf 19¢
Leone, Rullo, & Scarcello 1997) which has been known fi
many years. In this sense, the most original contributir
of (Lin & Zhao 2004) was not the mapping that turns loog
into loop formulas, but the definition of a loop, which yield
a relatively small class of sets of atoms for the mapjiRg

However, for nondisjunctive programs, even the defir
tion of a loop turned out still “too generous.” Gebser ar
Schaub (2005) showed that restricting the mapping e\
more to a special class of loops called “elementary loop
yields a valid modification of the Lin-Zhao theorem (or th
Sac@-Zaniolo theorem). That is, some loops are identifit
as redundant, just as all non-loops are redundant. Theg nc
that the notion of a positive dependency graph, which is us
for defining a loop, is not expressive enough to distingui:
between elementary and non-elementary loops, and inst
proposed another graph-theoretic characterization baisec
the notion of a so-called “body-head dependency graph.”

Our work is motivated by the desire to understand the rc
of an elementary loop further and to extend the results
disjunctive programs. For nondisjunctive programs, we pt
pose a simpler notion corresponding to an elementary lo
which we call an “elementary set,” and provide a further e
hancement of the Lin-Zhao theorem based on it. Unlil
elementary loops, elementary sets can be extended to
junctive programs without producing unintuitive resulfge
show that a special class of unfounded elementary sets
incides with the minimal sets among nonempty unfound
sets. Instead of relying on the notion of a body-head depi
dency graph, we present a simpler graph-theoretic charac
ization of elementary sets based on a subgraph of a posi
dependency graph.

Elementary Sets for Nondisjunctive Programs
Review of Loop Formulas: Nondisjunctive Case

Technical Report IfI-06-04

A nondisjunctive rulés an expression of the form

@)

wheren > m > 1 anday,...,a, are propositional atoms.
A nondisjunctive prograns a finite set of nondisjunctive
rules.

We will identify a nondisjunctive rule (1) with the propo-
sitional formula

aj < ag,...,0am,N0tam41,...,N0ta,

(ag A+ ANam A =Gy A+ Aay) — ar
and will often write (1) as

ai %B7F (2)

whereBis as, . ..,a,, andF isnota,,+1,...,nota,. We
will sometimes identifyB with its corresponding set.

Let IT be a nondisjunctive program. The rediltt of II
with respect to a seX of atoms is obtained frorfi by

e deleting each rule (2) such that (-~ F', and
¢ replacing each remaining rule (2) by — B.

Set X is ananswer set (stable modafj 11 if it is minimal
among the models that satigfiy~ .

The (positive) dependency graptt 11 is the directed
graph such that

e its vertices are the atoms occurringlin and
e its edges go frona; to as, .. ., a,, for all rules (1) ofIl.

A nonempty set, of atoms is called doop of IT if, for ev-

ery pairp, ¢q of atoms inL, there exists a path (possibly of
length0) from p to ¢ in the dependency graph Bfsuch that

all vertices in this path belong tb. In other words,L is

a loop ofII iff the subgraph of the dependency graphibf
induced byL is strongly connected. Clearly, any set consist-
ing of a single atom is a loop. For instance, Figure 1 shows
the dependency graph of the following prograint

p < nots
pe=r
q—r
rT—=Dp;q.

ProgramlIl; has seven loops{p}, {q}, {r}, {s}, {p,7},
{a.r}.{p,q, 7}

For any selt’” of atoms, theexternal support formulaf Y
for II, denoted b¥ES; (Y), is the disjunction of conjunctions

BAF

for all rules (2) ofII such that
e a; €Y,and
e BNY =10.

The first condition expresses that the atom “supported”
by (2) is an element of". The second condition ensures
that this support is “external”: The atoms ihthat it relies

on do not belong t&". ThusY is calledexternally supported
by IT w.r.t. a setX of atoms ifX satisfieES;(Y).

3We identify an interpretation with the set of atoms that are true
init.

DEPARTMENT OF INFORMATICS

Answer Set Programming

D s U S
Pw_ T _~q S

Figure 1: The dependency graph of Progidm

For any set” of atoms, byLF;(Y") we denote the follow-

ing formula:
N\ a—ESu(Y).
acY
Formula (3) is called thgconjunctive) loop formulaf Y
for 114 Note that we still call (3) a loop formula even
whenY is not a loop.

The following reformulation of the Lin-Zhao theorem
which characterizes the stability of a model in terms of loc
formulas, is a part of the main theorem from (Lee 2005) f(
the nondisjunctive case.

Theorem 1 (Lee 2005) LetlI be a nondisjunctive program,
and X a set of atoms occurring ifl. If X satisfiedl, then
the following conditions are equivalent:

(a) X is stable;

(b) X satisfies Lig(Y) for all nonempty set¥” of atoms
that occur inlI;

(c) X satisfies Lig(Y") for all loopsY of II.

According to the equivalence between conditions (.
and (b) in Theorem 1, a model @f; is stable iff it satis-
fies the loop formulas of all fifteen nonempty sets of aton
occurring inIl;. On the other hand, condition (c) tells us
that it is sufficient to restrict attention to the followingv&n
loop formulas:

©)

p — —sVr
q — T
r — pAgq
s — L 4)
pATr — 8
gNhr — L
pPAgNANT — —8

ProgramIl; has six models: {p}, {s}, {p,s}, {q, s},
{p,q,r}, and{p, q,r, s}. Among them{p} is the only sta-
ble model, which is also the only model that satisfies all loc
formulas (4). In the next section, we will see that in fact th
last loop formula can be disregarded as well, if we take el
mentary sets into account.

As noted in (Lee 2005), the equivalence between con
tions (a) and (c) is a reformulation of the Lin-Zhao theoren
the equivalence between conditions (a) and (b) is a reforn
lation of Corollary 2 of (Sacz & Zaniolo 1990), and Theo-
rem 4.6 of (Leone, Rullo, & Scarcello 1997) (for the nondis
junctive case), which characterizes the stability of a nhoc
in terms ofunfounded setd~or setsX, Y of atoms, we say
thatY is unfoundedby IT w.r.t. X if Y is not externally sup-
ported byIT w.r.t. X. Condition (b) can be stated in terms o
unfounded sets as follows:

4If the conjunction in the antecedent is replaced with the di
junction, the formula is calledlisjunctive loop formulglLin &
Zhao 2004). Our results stated in terms of conjunctive loop fc
mulas can be stated in terms of disjunctive loop formulas as wel

69

.TU Clausthal
11TH NMR WORKSHOP

70

(b') X contains no nonempty unfounded subsets Tfor
w.rt. X.

Elementary Sets for Nondisjunctive Programs

As mentioned in the introduction, (Gebser & Schaub 2005)
showed thalF in Theorem 1 can be further restricted to
“elementary loops.” In this section, we present a simpler re
formulation of their results. We will compare our reformu-
lation with the original definition from (Gebser & Schaub
2005) later in this paper.

The following proposition tells us that a loop can be de-
fined even without referring to a dependency graph.

Proposition 1 For any nondisjunctive prograrl and any
nonempty set” of atoms occurring idl, Y is a loop ofII iff,
for every nonempty proper subsgiof Y, there is a rule (2)
in II such that

e a1 €7, and
e BN(Y\ Z)#0.

For any sefY” of atoms and any subsét of Y, we say
thatZ is outboundn Y for II if there is a rule (2) il such
that

e a € 7,
e BN(Y\Z)#0,and
e BNZ =1.

Let IT be a nondisjunctive program. For any nonempty
setY of atoms that occur ifil, we say that” is elementary
for IT if all nonempty proper subsets Bfare outbound i’
for I1. As with loops, itis clear from the definition that every
set consisting of a single atom occurringlins elementary
for II. It is also clear that every elementary set fbis a
loop of I1, but a loop is not necessarily an elementary set:

set forll iff all loops Z of IT such thatZ C Y are outbound
inY for I1.°

Note that a subset of an elementary set, even if that suk
is a loop, is not necessarily elementary. For instance, |
program

pb—D0q
q D9
per
q—r
r<p
r<—9q,
set{p, ¢, r} is elementary, bufp, ¢} is not.

The following proposition describes a relationship be
tween loop formulas of elementary sets and those of ar
trary sets.

Proposition 3 LetII be a nondisjunctive programy a set
of atoms, and” a nonempty set of atoms that occurin If

X satisfies LI (Z) for all elementary set& of I such that
Z CY,thenX satisfies L (Y).

Proposition 3 suggests that condition (¢) of Theorem
can be further enhanced by taking only loop formulas of €
ementary sets into account. This yields the following the
rem, which is a reformulation of Theorem 3 from (Gebser
Schaub 2005) in terms of elementary sets.

Theorem 1(d) The following condition is equivalent to con-
ditions (a)—(c) of Theorem 1.
(d) X satisfies Lig(Y") for all elementary set¥” of I1.

According to Theorem 1(d), a model oF, is stable iff
it satisfies the first six formulas in (4); the loop formula o
non-elementary seip, ¢, r} (the last one in (4)) can be dis-
regarded.

Maximal Elementary Sets and Elementarily

The conditions for being an elementary set are stronger than Unfounded Sets for Nondisjunctive Programs

the conditions for being a loop as given in Proposition 1. For
instance, one can check that fdx, {p, ¢, r} is not elemen-
tary since{p, r} (or {q, r}) is not outbound i{p, ¢, r}. All

the other loops ofI; are elementary. Note that an elemen-

tary set may be a proper subset of another elementary set

(both{p} and{p, r} are elementary sets fol).
The following program replaces the last rulelbf by two
rules:
p < nots
pe=r
q—rT
r<p
r<—q.

This program has the same dependency graph as pro-

If we modify condition (c) of Theorem 1 by replacing
“loops” in its statement with “maximal loops,” the conditio
becomes weaker, and the modified statement of Theorer
does not hold. For instance, progrdhn has only two max-
imal loops, {p, ¢, 7} and{s}, and their loop formulas are
satisfied by the non-stable modgl, ¢, r}. In fact, maximal
loop {p, ¢, r} is not even an elementary set fids.

This is also the case with maximal elementary sets: Tt
orem 1(d) does not hold if “elementary sets” in its stateme
is replaced with “maximal elementary sets” as the followin
program shows:

p < ¢, notp
g < p,notp
p.

(5)

gramIl; and thus has the same set of loops. However, its program (5) has two modelfp} and{p, ¢}, but the latter is

elementary sets are different: All its loops are elementary

not stable. Yet, both models satisfy the loop formula of tt

From the definition of an elementary set above, we get an only maximal elementary sép, ¢} for (5) (p A ¢ — T).

alternative, equivalent definition by requiring that orthet
loops contained ifY” be outbound, instead of requiring that
all nonempty proper subsets Bfbe outbound.

Proposition 2 For any nondisjunctive prograril and any
nonempty set” of atoms that occur ifil, Y is an elementary

However, in the following we show that if we consider th
“relevant” part of the program w.r.t. a given interpretatid
is sufficient to restrict attention to maximal elementarngse

°Note that Proposition 2 remains correct even after replaci
“all loops” in its statement with “all elementary sets.”

Technical Report IfI-06-04

Given a nondisjunctive prograih and a setX of atoms,
by IIx we denote the set of rules (2) dI such that
X E B,F. The following proposition tells us that all
nonempty proper subset of an elementary selffgrare ex-
ternally supported w.r.tX.

Proposition 4 For any nondisjunctive progranil, any
setX of atoms, and any elementary éffor I1y, X satis-
fies ESi(Z) for all nonempty proper subsefsofY'.

From Proposition 4, it follows that every unfounded ele-
mentary se” for IIx w.r.t. X is maximal among the ele-
mentary sets fofl x. One can show that ¥ is a nonempty
unfounded set fall w.r.t. X that does not contain a maximal
elementary set foll x, thenY consists of atoms that do not
occur inIlx. From this, we obtain the following result.

Theorem 1(e) The following condition is equivalent to con-
ditions (a)—(c) of Theorem 1.

(e) X satisfies LI (Y) for every set” of atoms such that

e Y is a maximal elementary set foky, or
e Y is a singleton whose atom occurslin

According to Theorem 1(e), moddl, ¢q,r} of II; is

not stable because it does not satisfy the loop formula

of {¢,7}, which is one of the maximal elementary sets
for (Hl){p7q77‘} =1II;.

Note that the analogy does not apply to loops: If we re-
place “maximal elementary sets” in the statement of Theo-
rem 1(e) with “maximal loops,” then the modified statement
does not hold. The non-stable model ¢, } still satisfies
the loop formula of the maximal loofp, ¢, r} of (II;)
(the last one in (4)).

We say that a sét’ of atoms occurring ifl is elementar-
ily unfoundedby T w.r.t. X if

e Y is an elementary set fdiyx that is unfounded byl
w.r.t. X, or

e Y is a singleton that is unfounded byw.r.t. X .°

From Proposition 4, every non-singleton elementarily un-
founded set forll w.r.t. X is a maximal elementary set
forIIx.

It is clear from the definition that every elementarily un-
founded set fofl w.r.t. X is an elementary set faf and that
itis also an unfounded set fofw.r.t. X. However, a set that
is both elementary fofl and unfounded byl w.r.t. X is not
necessarily an elementarily unfounded set forv.r.t. X.
For example, consider the following program:

{p.q.r}

p < q,notr
q < p,notr .

(6)

Set{p, ¢} is both elementary for (6), and unfounded by (6)
w.r.t. {p,q,r}, but it is not an elementarily unfounded set
w.r.t. {p,q,7}.

The following corollary, which follows from Proposi-
tion 4, tells us that all nonempty proper subsets of an el-
ementarily unfounded set are externally supported. It is
essentially a reformulation of Theorem 5 from (Gebser &
Schaub 2005).

®Elementarily unfounded sets are closely related to “active ele-
mentary loops” in (Gebser & Schaub 2005).

DEPARTMENT OF INFORMATICS

Answer Set Programming

Corollary 1 LetII be a nondisjunctive progrank’ a set of
atoms, and” an elementarily unfounded set firw.r.t. X.
Then

e X does not satisfy E]Y), and

e X satisfies E§(Z) for all nonempty proper subsets
of Y.

Corollary 1 tells us that elementarily unfounded sets for
an “anti-chain”: One of them cannot be a proper subset
another’ In combination with Proposition 4, this tells us tha
elementarily unfounded sets are minimal among nonem;
unfounded sets. Interestingly, the converse also holds.

Proposition 5 For any nondisjunctive prograrfl and any
setsX, Y of atomsyY is an elementarily unfounded set fidr
w.r.t. X iff Y is minimal among the nonempty sets of aton
occurring inII that are unfounded b w.r.t. X.

Theorem 1(e) can be stated in terms of elementarily v
founded sets, thereby restricting attention to minimal u
founded sets:

(¢) X contains no elementarily unfounded subsetsTior
w.rt. X.

The notion of an elementarily unfounded set may he
improve computation performed by SAT-based answer
solvers. Since there are exponentially many loops in t
worst case, SAT-based answer set solvers do not add all I
formulas at once. Instead, they check whether a model
turned by a SAT solver is an answer set. If not, a loop fo
mula that is not satisfied by the current model is added, a
the SAT solver is invoked agafh.This process is repeated
until an answer set is found, or the search space is exhaus
In view of condition (€), when loop formulas need to be
added, it is sufficient to add loop formulas of elementaril
unfounded sets only. This guarantees that loop formul
considered are only those of elementary sets. Since ev
elementary set is a loop, but not vice versa, the process n
involve fewer loop formulas overall than the case when &
bitrary loops are considered. In view of Proposition 3 ar
Corollary 1, this would yield reasonably the most econorr
cal way to eliminate non-stable models.

Deciding Elementary Sets: Nondisjunctive Case

The above definition of an elementary set involves all i
nonempty proper subsets (or at least all loops that are
subsets). This seems to imply that deciding whether a
is elementary is a computationally hard problem. But i
fact, Gebser and Schaub (2005) showed that, for nonc
junctive programs, deciding an elementary loop can be dc
efficiently. They noted that positive dependency grap!
are not expressive enough to distinguish between elem
tary and non-elementary loops, and instead introduced
called “body-head dependency graphs” to identify eleme
tary loops. In this section, we simplify this result by stil

"Recall that the anti-chain property does not hold for eleme
tary sets foldl: An elementary set may contain another elementa
set as its proper subset.

8To be precisecMoDELS adds “conflict clauses.”

71

.TU Clausthal
11TH NMR WORKSHOP

72

p r q
Figure 2: The elementary subgraph{ef ¢, r} for IT;

referring to positive dependency graphs. We show that re-
moving some “unnecessary” edges from the dependency

graph is just enough to distinguish elementary sets from non
elementary sets.

For any nondisjunctive prograrfl and any setY” of
atoms,

ECh(Y)=0,

EC{ ! (Y) = ECL(Y) U{(a1,b) | there is a rule (2) il
such thab € B and the graphilY, EC5(Y)) has a
strongly connected subgraph containing all atoms
inBNY},

ECn(Y) = U»oECn(Y) -

Note that this is a “bottom-up” construction. We call the
graph(Y, EC(Y)) the elementary subgrapsf Y for II. It

is clear that an elementary subgraph is a subgraph of a de-
pendency graph and that it is not necessarily the same as the

subgraph of the dependency graph induced’byFigure 2
shows the elementary subgraph{pf ¢, r} for IT;, which is
not strongly connected.

The following theorem is similar to Theorem 10
from (Gebser & Schaub 2005), but instead of referring to

the notion of a body-head dependency graph, it refers to an

elementary subgraph as defined above.

Theorem 2 For any nondisjunctive progranil and any
setY of atoms occurring ifl, Y is an elementary set fdil
iff the elementary subgraph ®f for IT is strongly connected.

Clearly, constructing an elementary subgraph and check-

ing whether it is strongly connected can be done in poly-
nomial time. Therefore, the problem of deciding whether a
given set of atoms is elementary is tractable.

Elementary Sets for Disjunctive Programs
Review of Loop Formulas: Disjunctive Case
A disjunctive rulés an expression of the form

ai;...;QK < Gg41,-..,0;,N0ta;41,...,N0ta,,,
not nota,, 1, . .., Not nota,,

@)

wheren > m > 1 > k > 0anday,...,a, are propositional
atoms. Adisjunctive programs a finite set of disjunctive
rules.

We will identify a disjunctive rule (7) with the proposi-
tional formula

(akﬂ/\--~/\al/\ﬁal+1/\~-~/\ﬁam/\
g1 A Aay) — (@ V- Vag)

and will often write (7) as

A+~ B, F (8)
wheredisay,...,ax, BiSagt1,...,a;, andF'is
nota;.1,...,nota,,,not nota,, .1, ...,Not nota,, .

We will sometimes identifyd and B with their correspond-
ing sets.

LetII be a disjunctive program. The redde of II with
respect to a seX of atoms is obtained frofl by

e deleting each rule (8) such that (- F, and
e replacing each remaining rule (8) by— B.

Similarly as with a nondisjunctive program, a 3ébf atoms
is ananswer set (stable modef) 11 if X is minimal among
the models that satisii~ .

The definition of a dependency graph is extended to a d
junctive program in a straightforward way: The vertices ¢
the graph are the atoms occurring in the program, and
edges go from the elements 4fto the elements aoB for all
rules (8) of the program. The definition of a loop in term
of the dependency graph remains the same as in the cas
nondisjunctive programs.

For any sel” of atoms, theexternal support formulaf Y
for I, denoted b¥eS; (Y), is the disjunction of conjunctions

BAF A /\ —a
a€A\Y

for all rules (8) oflI such that
e ANY # 0, and
e BNY = 0.

WhenlI is nondisjunctive, this definition reduces to the del
inition of ESy for nondisjunctive programs given earlier.

The notion ofLF; and the term(conjunctive) loop for-
mulasimilarly apply to formulas (3) whefil is a disjunc-
tive program. As shown in (Lee 2005), Theorem 1 remair
correct after replacing “nondisjunctive program” in itatst
ment with “disjunctive program.”

Elementary Sets for Disjunctive Programs

In this section, we generalize the definition of an elemgnta
set to disjunctive programs.

Note that a loop of a disjunctive program can be also d
fined without referring to a dependency graph: Proposition
remains correct after replacing “nondisjunctive” in itatst
ment with “disjunctive,” “(2)" with “(8),” and ‘a; € Z” with
“ANZ £0

Let IT be a disjunctive program. For any Sétof atoms,
we say that a subset of Y is outboundn Y for II if there
is a rule (8) inll such that

e ANZ #0,

e BN(Y\ Z)#£10,

e AN(Y\ Z)=190,and
e BNZ=1.

Note that wherlI is nondisjunctive, this definition reduces
to the corresponding definition given before.

As with nondisjunctive programs, for any nonemptyset
of atoms that occur ifl, we say thal” is elementaryor 11 if
all nonempty proper subsets Bfare outbound irt” for II.
Similarly, every set consisting of a single atom occurrin
in IT is an elementary set fdi, and every elementary set

Technical Report IfI-06-04

for IT is a loop ofIl. The definition of an elementary set for
a disjunctive program is stronger than the alternative defin
tion of a loop provided in Proposition 1 for the disjunctive
case: It requires that the rules satisfy two additional ¢ond
tions,AN (Y \ Z) =0andBn Z = 0.

With these extended definitions, Propositions 2 and 3 re-

main correct after replacing “nondisjunctive program” in
their statements with “disjunctive program.” Theorem 1(d)
holds even wheffl is disjunctive.
To illustrate the definition, consider the following pro-
gram:
p;q <—Pp
b <—4q
p <« notr.

Among the four loops of the programip}, {q}, {r},
and {p,q}, the last one is not an elementary set be-
cause{q} is not outbound in{p,q}: The first rule con-
tains ¢ in the head ang in the body, but it also contains
{p,qa} N ({p,q} \ {¢}) = {p} in the head. According to the
extension of Theorem 1(d) to disjunctive programs, the loop
formula of {p, ¢} can be disregarded.

Maximal Elementary Sets and Elementarily
Unfounded Sets for Disjunctive Programs

LetIT be a disjunctive program. For any séfsY of atoms,
by IIx v we denote the set of all rules (8) of such that
X EB,FandX N (A\Y) = (. Programllx y contains
all rules ofII that can provide supports faf w.r.t. X.

The following proposition tells us hodl x y is related
to ITx whenlII is nondisjunctive.

Proposition 6 LetII be a nondisjunctive program, and a
set of atoms, antl” a set of atoms such that every element
in Y has a rule (2) inIl such thatX &= B, F. ThenY is
elementary follx y iff it is elementary fodly.

It follows from the proposition that for any non-singleton
setY of atoms)Y is elementary fofl x y iff it is elementary
for I1x.

We extend the definition of an elementarily unfounded set
to disjunctive programs by replacingI'x” with “IIx y”
and by identifyinglIl as a disjunctive program. It is clear
from the definition that every elementarily unfounded set
for IT w.r.t. X is an elementary set fdif and that it is also
an unfounded set fdd w.r.t. X.

Propositions 4, 5, Corollary 1, and Theorems 1(e);)1(e
remain correct after replacing “nondisjunctive program” i
their statements with “disjunctive program” and x” with
“IIxy.” For preserving the intended meaning of Theo-
rem 1(e), Y is a maximal elementary set féfx” can be
alternatively replaced withY" is maximal among all set&
of atoms that are elementary firy z.”

Deciding Elementary Sets: Disjunctive Case

Although deciding an elementary set can be done efficiently

for nondisjunctive programs, it turns out that the corre-
sponding problem for (arbitrary) disjunctive programsis i
tractable.

DEPARTMENT OF INFORMATICS

Answer Set Programming

Proposition 7 For any disjunctive prograril and any set”
of atoms, deciding whethéf is elementary foil is cONP-
complete.

This result can be explained by the close relationship to t
problem of deciding whether a set of atomauisfounded-
free (Leone, Rullo, & Scarcello 1997), which means the
the set contains no nonempty unfounded subsets. In fe
the reduction from deciding unfounded-freeness to degidil
elementariness is straightforward.

However, for the class of disjunctive programs calle
“head-cycle-free” (Ben-Eliyahu & Dechter 1994), decidin¢
an elementary set is tractable. A disjunctive progfdris
calledhead-cycle-fredf, for every rule (8) inIl, there is no
loop L of IT such thatANL| > 1. For instance, the program

piq<—
b—4q

is head-cycle-free, while the program

p;q—
p—q
q<—Pp

is not.

The definition of an elementary subgraph for a nondi
junctive program can be extended to a head-cycle-free p
gram by replacing “(2)” with “(8)" and b € B” with
“a; € A, b € B”in the equation forEC;*. With this
extended definition of an elementary subgraph, Theoren
remains correct after replacing “nondisjunctive program”
its statement with “head-cycle-free program.”

Comparison with the Gebser-Schaub
Definition
In this section, we compare our reformulation of elementa
loops with the original definition given in (Gebser & Schaul
2005) for nondisjunctive programs.

Let IT be a nondisjunctive program. A loop Hfis called
trivial if it consists of a single atom such that the dependen
graph ofII does not contain an edge from the atom to itsel
Non-trivial loops were called simply loops in (Lin & Zhao
2004; Gebser & Schaub 2005). For a non-trivial ldopf IT,
let

Rp(L)={(2)ell | a1 € L, BNL =0},

Ri(L)={(2) €l | a1 € L, BNL#0}.

Definition 1 (Gebser & Schaub 2005, Definition 1) Giver
a nondisjunctive prograrfi and a non-trivial loopL of I1, L

is called aGS-elementary loofor 11 if, for each non-trivial
loop L’ of Il such that’ C L, R (L") N R (L) # 0.°

Proposition 8 For any nondisjunctive prograrfl and any
non-trivial loop L of I1, L is a GS-elementary loop faf iff
L is an elementary set fdil.

°A GS-elementary loop was called an “elementary loop” il
(Gebser & Schaub 2005). Here we put “GS-" in the name, to di
tinguish it from a loop that is elementary under our definition.

73

.TU Clausthal
11TH NMR WORKSHOP

74

There are a few differences between Definition 1 and our Unlike elementary loops proposed in (Gebser & Schal
definition of an elementary set. First, the definition of an el 2005), elementary sets and the related results are extémde
ementary set does not assume a priori that the set is a loop.disjunctive programs in a straightforward way. For nondi:
Rather, the fact that an elementary set is a loop is a conse- junctive and head-cycle-free programs, we have provide«
quence of our definition. Second, our definition is simpler graph-theoretic characterization of elementary sets;hvisi
because it does not refer to a dependency graph. Third, the simpler than the one proposed in (Gebser & Schaub 200
two definitions do not agree on trivial loops: A trivial loop For disjunctive programs, we have shown that deciding e
is an elementary set, but not a GS-elementary loop. This mentariness isoNP-complete, which can be explained by
originates from the difference between the definition of a the close relationship to deciding unfounded-freeness o
loop given in (Lin & Zhao 2004) and its reformulation given given interpretation.
in (Lee 2005). As shown in the main theorem of (Lee 2005), Elementary sets allow us to identify relevant unfounde
identifying a trivial loop as a loop provides a simpler re- sets more precisely than what loops allow. An apparent ¢
formulation of the Lin-Zhao theorem by omitting reference plication is to consider elementarily unfounded sets ic@la
to completion. Furthermore, in the case of elementary sets, of arbitrary unfounded loops as considered in the curre
this reformulation also enables us to see a close relatipnsh SAT-based answer set solvers, at least for the tractabdsca
between maximal elementary sets (elementarily unfounded For nondisjunctive programs, an efficient algorithm for eon
sets) and minimal nonempty unfounded sets. It also allows puting elementarily unfounded sets is described in (Ang:
us to extend the notion of an elementary set to disjunctive Gebser, & Schaub 2006), which can be extended to he
programs without producing unintuitive results, unliketwi cycle-free programs as well. Based on the theoretical fot
GS-elementary loops. To see this, consider the following dations provided in this paper, we plan to integrate eleme
program: tarily unfounded set computation intMoODELS for an em-

D g1 pirical evaluation.
p;Teyq 9)
q;Tr—p. Acknowledgments

The non-trivial loops of this program argp, ¢}, {p,r},

{¢,r}, and {p,q,r}, but not singletons{p}, {¢}, and
{r}. If we were to extend GS-elementary loops to dis-

We are grateful to Selim Erdman, Vladimir Lifschitz,
Torsten Schaub, and anonymous referees for their use
comments. Martin Gebser was supported by DFG unc

junctive programs, a reasonable extension would say that grant SCHA 550/6-4, TP C. Yuliya Lierler was partially sup
{p, q,r} is a GS-elementary loop for program (9) because all ported by the National Science Foundation under Grant ||

its non-trivial proper subloops are “outbound” {p, ¢, r}.
Note that{p,q¢,r} is unfounded w.rt{p,q,r}. More-
over, every singleton is unfounded w.fp,q,r} as well.
This is in contrast with our Proposition 4, according to
which all nonempty proper subsets of an elementary set
for program (9) w.r.t.{p,q,r} are externally supported
w.r.t. {p,q,7}. This anomaly does not arise with our defi-
nition of an elementary set singe, ¢, v} is not elementary
for (9). More generally, an elementary set is potentially el
ementarily unfounded w.r.t. some model, which is not the
case with GS-elementary loops extended to disjunctive pro-
grams.

Conclusion

We have proposed the notion of an elementary set and pro-
vided a further refinement of the Lin-Zhao theorem based on
it, which simplifies the Gebser-Schaub theorem and extends
it to disjunctive programs.

We have shown properties of elementary sets that allow
us to disregard redundant loop formulas. One property is
that, if all elementary subsets of a given set of atoms are ex-
ternally supported, the set is externally supported as. well
Another property is that, for a maximal set that is elemen-
tary for the relevant part of the program w.r.t. some inter-
pretation, all its nonempty proper subsets are externafly s
ported w.r.t. the same interpretation. Related to this, axeh
proposed the concept of elementarily unfounded sets, which
turn out to be precisely the minimal sets among nonempty
unfounded sets.

0412907.

References

Anger, C.; Gebser, M.; and Schaub, T. 2006. Approachil
the core of unfounded sets. Broc. NMR 2006

Ben-Eliyahu, R., and Dechter, R. 1994. Propositional s
mantics for disjunctive logic program#nnals of Mathe-
matics and Atrtificial Intelligencé&2(1-2):53-87.

Clark, K. 1978. Negation as failure. In Gallaire, H., an
Minker, J., eds.Logic and Data BasedNew York: Plenum
Press. 293-322.

Gebser, M., and Schaub, T. 2005. Loops: Relevant
redundant? IfProc. LPNMR 200553-65.

Giunchiglia, E.; Lierler, Y.; and Maratea, M. 2004. SAT-
based answer set programming. Hroc. AAAI 200461—
66.

Lee, J. 2005. A model-theoretic counterpart of loop fo
mulas. InProc. IJCAI 2005503-508.

Leone, N.; Rullo, P.; and Scarcello, F. 1997. Disjunc
tive stable models: Unfounded sets, fixpoint semantics, a

computation. Information and Computatio135(2):69—
112.

Lin, F., and Zhao, Y. 2004. ASSAT: Computing answer se
of a logic program by SAT solverdAtrtificial Intelligence
157(1-2):115-137.

Sac@, D., and Zaniolo, C. 1990. Stable models and no
determinism in logic programs with negation. Pnoceed-

Technical Report IfI-06-04

ings of ACM Symposium on Principles of Database Sy
tems (PODS)205-217.

Van Gelder, A.; Ross, K.; and Schlipf, J. 1991. The wel
founded semantics for general logic progrardsurnal of
ACM 38(3):620-650.

DEPARTMENT OF INFORMATICS

Answer Set Programming

75

.TU Clausthal
11TH NMR WORKSHOP

76 Technical Report IfI-06-04

Answer Set Programming

1.8 Debugging inconsistent answer set programs

Debugging Inconsistent Answer Set Programs

Tommi Syrj anen
Helsinki University of Technology, Dept. of Computer Saerand Eng.,
Laboratory for Theoretical Computer Science,
P.0.Box 5400, FIN-02015 HUT, Finland
Tommi . Syrj anen@kk. fi

Abstract In this discussion we leave out syntactical errors sincg tr

are generally easy to remedy: the ASP system notes that

In this paper we examine how we can find contradictions
from Answer Set Programs (ASP). One of the most impor-
tant phases of programming is debugging, finding errors that
have crept in during program implementation. Current ASP
systems are still mostly experimental tools and their support
for debugging is limited. This paper addresses one part of
ASP debugging, finding the reason why a program does not
have any answer sets at all. The basic idea is to compute di-
agnoses that are minimal sets of constraints whose removal
returns consistency. We compute also conflict sets that are
sets of mutually incompatible constraints. The final possible
source of inconsistency in an ASP program comes from odd
negative loops and we show how these may also be detected.
We have created a prototype for the ASP debugger that is it-
self implemented using ASP.

Introduction

program is not valid and outputs an error message telli
where the problem occurred.

The semantical errors are more difficult to handle. In tl
context of ASP, they too can be roughly divided into tw
classes:

e typographical errorssuch as misspelling predicate o
variable names, using a constant in place of a variable
vice versa; and

¢ logical errorswhere a rule behaves differently from wha
was intended.

The intuition of the division is that an error is typographi
cal if it is caused by a simple misspelling of a single syi
tactical element. For example, usingrec{ X) instead of

correc{ X'). On the other hand, a logical error is one whei
the programmer writes a rule that does not do what he
she expects it to do. For example, a programmer writil

One of the most important phases in computer programming
is always debugging; no matter how much care is used in
program writing, some errors will creep in. For this reason

a practical Answer Set Programming (ASP) system should
have support for program debugging. It is not possible to
detect all errors automatically since a construct may be an
error in one case but correct code in another.

The current ASP systems (NieraelSimons, & Syignen
2000; Dell’Armi et al. 2001; East & Truszcyski 2001;
Anger, Konczak, & Linke 2001; Babovich 2002; Lin & Zhao
2002) are still on experimental level and their support for
debugging is limited. In this paper we examine how we can
debug one class of program errors, namely finding the con-
tradictions in a program. We have developed a prototype
debugger implementation for thew®DELS input language
but the same principles are applicable for most ASP systems.

Program defects can be roughly divided into two
classes (Aho, Sethi, & Ullman 1986):

e syntax errorsthe program does not conform with the for-
mal syntax of the language; and

an encoding for a planning problem might want to state t
constraint that an object may be at one place at a time
using the rule:

—at(O,Lq,1),at(O, Ly, I).

The problem is that the values @f; and L, are not con-
strained and may take the same value. Thus, for each
ject o, locationz, and time step, there will be a ground
instance:

— at(o,x,1), at(o, X, i).

which causes a contradiction no matter where the object
In this case the programmer should have added atest
Lo to the rule body.

Our experience is that finding the reason for a contrad
tion is one of the most laborious tasks in ASP debuggir
Currently the most practical approach is to remove rul
from the program until the resulting program has an answ
set and then examining the removed rules to see what cat
the error.

In this paper we examine how we can automate this pi
cess using ASP meta-programming. When we have a ¢
tradictory program, we create several new ASP progra
based on it such that their answer sets reveal the poss
places of error.

e semantic errorsthe program is syntactically correct but
does not behave as the programmer intended.

*This research has been funded by the Academy of Finland
(project number 211025).

DEPARTMENT OF INFORMATICS 71

.TU Clausthal
11TH NMR WORKSHOP

78

We borrow our basic idea from the model-based diagno- to true, the body of the rule is not satisfied so we do not he
sis (Reiter 1987) field. There we have a system that does a justification fora and we have to set it false.
not behave like it should and a diagnosis is a set of com- Not all odd loops are errors since they may be used
ponents whose failure explains the symptoms. In our ap- prune out unwanted answer sets. Since it is difficult to det
proach adiagnosisis a set of rules whose removal returns mine which odd loops are intentional and which are erro
consistency to the program. However, we do not attempt we take the approach that all odd loops are considered tc
construct a standard diagnostic framework. The reason for errors.
this is pragmatic: our aim is to create a practical tool that This means that the programmer has to use some ol
helps answer set programmers to debug their programs. It is construct to replace the odd loops. Im&DELS the alterna-
not reasonable to expect that a programmer would have antive approach is to first generate the possible model car
existing system description that could be analyzed sirate th dates usinghoice rulesof the form:
would in effect be a correct program. On the other hand,
we are not willing to leave the debugger completely with- {head — body
out of formal semantics. One of the strengths of ASP is that Here the intuition is that ibodyis true, therheadmay be
all programs have declarative semantics so it seems natu-trye but it may be also false. The pruning is then done usi
ral that also their diagnoses have one. Thus, we construct constraintsof the form:
our own formal framework that shares some features with
model-based diagnosis but is different in other areas. « body.

When we construct diagnoses, we are interested in min-
imal ones. There are several possible ways to define min-
imality and we will usecardinality minimality a diagno-
sis is minimal if there is no diagnosis that contains fewer
rules than it. Another possibility would mibset minimal- f « body; not f.
ity where a diagnosis is minimal if it does not contain an-

other diagnosis as its subset. We chose cardinality minimal .. i .
minimal diagnoses. In many cases some constraints oct

ity mainly because it was easier to implement in the proto- .7 ™ th lated t h other. F le. i
type and also because it is possible that smaller diagnosesgrsrr'l':‘ em are related to each other. For example, In p|

are easier to handle in practical debugging.

A constraint asserts that thmdy must be false. Note that
a constraint is actually an odd loop in a disguise: we cot
replace a constraint by the equivalent rule:

In general, a program may have a number of differe

Not all minimal diagnoses are equally good for debugging {a} .
purposes. For example, consider the program: —a Q)
{a}. 1) «— not a 2
b—a (2) — not b. 3)
C— nota @) there are two different diagnoses$t, 3} and {2, 3}. Here
—1{b,c}. (4) the constraints (1) and (2) both depend on the value df
) a is chosen to be true, then (1) fails, if not, (2) fails. In effe
Here (1) says that may be true or false, (2) tells thatis we can have either (1) or (2) in the program, but not bot
true if a is true, (3) that is true ifa is not, and finally (4) is The constraint (3) is independent from the other two anc
a constraint stating that it is an error if eitheor c is true. always fails.
No matter what truth value we choose fareitherb or A conflict setis a way of formalizing the concept of re-

clis true, so we have a contradiction. The minimum num- |ated constraints. The intuition is that a set of constsair
ber of rules that we have to remove to repair consistency is s a conflict set if every diagnosis of the program contail
one: removing either (2), (3), or (4) results in a consistent exactly one member from the setWe use the conflict sets
program. Removing (4) gives the most information to the to give more information to the programmer. In the abo
programmer since neithér— a nor c < not a can cause program the two conflict sets afe, 3} and{4}. In general,
the contradiction by themselves. On the other hand, (4) is a f two rules belong in the same conflict set, the truth valu
constraint telling that its body should not become true 8o th of the literals that occur in their bodies depend on sama tri
connection to the contradiction is immediate. values of same atoms: choosing one value leads to one
We take the approach that we include only constraints in tradiction and choosing the other leads to another. Graup
minimal diagnoses. Examining just them is not enough since them together may lead the programmer to the place of et
a contradiction can arise also fromaad loop An odd loop faster.
is a program fragment where an atom depends recursively Note that there are programs whose constraints canno
on itself through an odd number of negations. The simplest divided into conflict sets. In those cases we cannot use ¢
example is: flict sets to help debugging and have to use other methc

Fortunately, those cases seem to be quite rare in practice
a < not a. - -

. o . i} "Note that conflict sets are different from conflicts. In mode
This rule causes a contradiction since i set to false, we based diagnosis a conflict is a set of components that contain

have to conclude thatis true. On the other hand, dfis set least one malfunctioning component.

Technical Report IfI-06-04

Related Work

Brain et. al. (Brain, Watson, & De Vos 2005) presented an
interactive way for computing answer sets. A programmer

can use the interactive system as a debugging aid since it can

be used to explain why a given atom is either included in an

answer set or left out from it. Their approach is very similar

to our method of computing explanations for diagnoses.
The NoMoRe system (Anger, Konczak, & Linke 2001)

Answer Set Programming

The basic building block of a program is atomthat en-
codes a single proposition that may be either true or false.
literal is either an atoma or its negatiomot a.

A basic ruleis of the form:

h<—l1,...

bl ln

where theheadh is an atom and, ..., /,, in thebodyare
literals. The intuition is that if all literalg,, . . ., [,, are true,

utilizes blocking graphs that can be used to examine why thenk has to be also true. If the body is empty+ 0), then
a given rule is applied or blocked and thus they provide a the rule is gact A choice rulehas the form:

visual method for debugging ASP programs.
The consistency-restoring rules of Balduccini and Gel-
fond (Balduccini & Gelfond 2003) are another related ap-

{h} — ll, N
whereh and/; are defined as above. The intuition of a choic

) ln

proach. They define a method that allows a reasoning sys- rule is that if the body is true, then the head may be true t

tem to find the best explanation for conflicting observations

it may also be false. If an atom does not occur in the head

The main difference between our approaches is that we do any rule that has a satisfied body, it has to be false.

not try to fix the contradictory program but instead try to
help the programmer to find the places that are in error.

There has been a lot of previous work on the properties

of odd and even cycles in a program (for example, (You &
Yuan 1994; Lin & Zhao 2004; Costantini & Provetti 2005;

Constantini 2005)) and how they affect the existence and
number of answer sets. In this work we propose methodol-

Basic and choice rules are together callgeherating
rules. The other possibility is@onstraintthat is a rule with-
out a head. If the body of a constraint becomes true, then
model candidate is rejected. l8gic programP = (G,C) is
a pair whergj is a finite set of generating rules afic finite
set of constraints.

Before we can define the formal ASP semantics fi

ogy where even loops are replaced by choice rules and odd these programs, we need to define notation that allo

loops by constraints, so our viewpoint is slightly diffeten
However, the theoretical results of previous work stilldhol

Let = h

us to refer to the parts of a rule. —

since our programs could be translated back to normal logic b; are atoms. Then,

programs. In particular, constraints are equivalent to-one
rule odd loops.

The most closely related area of odd loop research is Con-

statini’s work on static program analysis (Constantini200

She notes that there are two different ways to escape the in- o _
consistency caused by an odd loop: either there has to be The same notation is used for choice rules.

one unsatisfied literal in the body of at least one rule of the
loop or there has to be a non-circular justification for some

atom in the loop. The literals that are present in rule bodies

ai,...,an,not by,...,not b, be abasic rule wherg; and
headr) = h
body" (r) = {a1,...,a,}
body (r) = {b1,...,bm} .

We u
Atomg P) to denote the set of atoms that occur in a pr
gramP.

A set of atomsS satisfiesan atonmu (denoted bys F a) iff

but are not part of the loop are called AND-handles and the a € S and a negative literalot a iff a ¢ S. A setS satisfies

extra rules are OR-handles. In every answer set of the pro- _
gram there has to be an applicable handle for every odd loop constraint— [y, . ..
in it. Since the handles are purely syntactic properties, we

a set of literalsL iff VI € L : S E [. A setS satisfies
L 1ff S E [; for somel <i <n.
The ASP semantics is defined using the concept of

can statically analyze the rules to see what conditions have reduct(Gelfond & Lifschitz 1988). The redude® of a pro-
to be met so that all loops are satisfied. This approach seemsgramP = (G, C) with respect of a set of atontsis:

promising but there is currently the limitation that the-def
initions demand that the program is in kernel normal form.
This is not an essential limitation from theoretical poifit o
view since every normal logic program can be systemati-
cally translated to the normal form, but it will cause an axtr

step in practical debugger since the results have to be-trans

lated back to the original program code.

Language

In this paper we construct a debugger for a subseM S
ELS language. We will consider only finite ground pro-
grams that do not have cardinality constraint literals bat t
may have choice rules.

’The actual debugger implementation handles the complete lan-

guage.

DEPARTMENT OF INFORMATICS

PS =(G%,C), where

G% = {headr) — body" (r) | r € G, S k body™ (r),
andr is either a basic rule or a
choice rule and hedd) € S} .

Note that all rules that belong to the generator part of
reduct P are basic rules and all literals that occur in thel
are positive. Such rules are monotonicGo has a unique

least model (Gelfond & Lifschitz 1988) that we denot
with MM (G#). If this least model happens to coincide witt
S and it also satisfies all constraints, thgiis an answer set
of P.

Definition 1 Let P = (G, C) be a program. A set of ground
atomsS is ananswer setf P if and only if:

79

.TU Clausthal
11TH NMR WORKSHOP

1. MM (G¥) = S; and
2. VreC:SkEr.

A programP is consistentf it has at least one answer set
andinconsistentf it has none.

Theory for Debugging
Odd Loops
Definition 2 Thedependency grappGp = (V, E*, E~)
of a programP = (G, C) is a triple whereV = AtomgP)
and Et,E~ C V x V are sets ofpositive and negative
edges such that:
ET ={(h,a) | Ir € G : headr) = h anda € body" (r)}
E~ ={(h,b) | 3r € G : headr) = h andb € body (r)} .

Definition 3 Let DGp = (V, E™,E~) be a dependency

graph. Then the twdependency relations OdandEvenp

are the smallest relations ovi such that:

1. forall {(ay,a2) € E~ itholds that{a;, as) € Oddp;

2. forall (a1, as) € ET it holds that(a;, as) € Evenp;

3. if <CL1,CLQ> e EF~ and <a2,a3> € Evenp, then(al,a3> €
Oddp;

4. if <CL1,CL2> € F~ and <CL2,CL3> € Oddp, then<a1,a3> €
Evenp;

5. if (a1,a2) € E* and (a2, a3) € Evenp, then(ay,a3) €
Evenp; and

6. if (a1,a2) € ET and (as,a3) € Oddp, then(a;,as3) €
Oddp.

The reason for the interleaved definition is that the refegtio

Odd and Even are then easy to compute: we start by ini-
tializing them with the edges of the dependency graph, and
then compute the transitive closure of the graph where every

negative edge changes the parity of the dependenéyddf
pends orc evenly and there is a negative edge frarto b,
thena depends oddly on.

Definition 4 Let P be a program. Then, aodd loopis a set
L = {ai,...,a,} of atoms such thata,,a;) € Oddp for
all 1 < 4,5 < n. An atoma € AtomgP) occurs in an odd
loopiff (a,a) € Oddp. The programP is odd loop freef
Va € AtomgP) : (a,a) ¢ Oddp.

Diagnoses and Conflict Sets

Definition 5 Let P = (G, C) be an odd loop free program.
Then, adiagnosiof P is a setD C C such that the program
(G,C \ D) is consistent. A diagnosis minimal iff for all
diagnosesD’ of P it holds that|D’| > |D|. The set of all
minimal diagnoses aP is denoted byD (P).

Example 1 Consider the program:

{a}.
—a Q)
< not a. (2)
< not h.)

This program has two minimal diagnose®; = {1,3} and
D, = {2,3}. To see thaD, is really a diagnosis, note that
when its rules are removed, we are left with:

{a}.

<~ not a.

that has the answer s¢t}.

We can observe two properties of diagnoses from Defit
tion 5. First, if P is consistent, then it has a uniqgue minime
diagnosis that is the empty set. The second observatior
that every inconsistent program has at least one minimal
agnosis.

Theorem 1 LetP = (G,C) be an inconsistent odd loop free
program. Then there exists at least one minimal diagnbsis
for it.

Proof 1 The rules ing can be systematically translated intc
an equivalent normal logic program@’ where every choice
rule is replaced by an even loop (see (Niem&l Simons
2000) for details). Sinc€’ is odd loop free, it is consis-
tent (You & Yuan 1994). Thus, the 9ot = C is a diagno-
sis. Since’ is finite, there has to exist at least one minime
diagnosisD C D'.

Definition 6 Let P = (G,C) be a program andD(P) the
set of its minimal diagnoses. Then¢anflict setC C Cis a
set of constraints such that:

1. for all diagnosesD € ©(P) it holds that|D N C| = 1;

and

2. for all constraintsr € C there exists a diagnosi® €

D(P) suchthat- € D.
The set of all conflict sets @ is denoted by'(P).

Intuitively, constraints that belong in a conflict set are-mt
tually exclusive in the sense that it is impossible to have i
of them satisfied at the same time. Note that with this defir
tion it is possible that a program does not have any confl
sets at all.

Example 2 In Example 1 we had two diagnosés®, =
{1,3} and D, = {2,3}. We can partition the constraints
that occur in them into two conflict sets:

C: ={1,2}
Cy ={3} .
Example 3 The program:
{a}. — not a. (1) —a,b. (4)
{b}. —not b. (2) —b,c. (5)
{c}. — not ¢. (3) — a,c. (6)

has six minimal diagnoses{1, 2}, {1,3}, {1,5}, {2,3},
{2,6}, and{3,4}. We see that there is no way to partitior
the constraints so that every diagnosis contains exacty ¢
rule for each set.

Technical Report IfI-06-04

The ASP Programs
In this section we create three different ASP programs that

can be used to debug contradictory programs. We express

these programs using the fulM®DELS syntax so we need
to introduce a few new constructs. We do not give here the
full formal semantics but the interested reader may consult
(Syrjanen 2004) for details.

A cardinality constraint literal is of the form
L {ly,...,l,} U where L and U are integral lower
andupper boundsindi; are literals. A cardinality constraint
literal is true if the number of satisfied literdlsis between
U and L, inclusive. Next, aconditional literal has the
form a(X) d(X) This construct denotes the set of
literals {a(t) | d(¢)istrue}. Finally, a fact may have a
numeric rangein it and a(1..n) denotes the set of facts

{a(1),...,a(n)}.

Odd Loop Detection

When we do the odd loop detection, we will use the standard
meta-programming encoding of logic programs (Sterling &
Shapiro 1994). A rule:

r=~h<«<a,notb

is encoded using the facts:

rule(r). pos-bodyr, a).
headr, h). neg-bodyr, b).

We start the odd loop program by extracting the atoms from
the program representation:

atomH) — headR, H).
atomA) — pos-bodyR, A).
atomB) < neg-bodyR, B).
Next, we construct the dependency graph for the program:
pos-edgéH, A) — headR, H),
pos-bodyR A).
neg-edgéH, B) «+ headR H),
neg-bodyR, B).
One step positive dependency is even, negative odd:
evertX,Y) < pos-edgéX, Y).
odd X, Y) < neg-edgéX,Y).
Adding a new positive edge preserves parity:
ever{X, Z) «— pos-edgéX, Y), evertY, Z), atomZ).
odd X, Z) « pos-edgéX, Y),odd'Y, Z), atom(Z).
Adding a negative edge flips parity:
oddX, Z) — neg-edgéX, Y), evertY, Z), atomZ).
evertX, Z) — neg-edgéX, Y),oddY, Z), atom(Z).
There is an odd loop if a predicate depends oddly on itself:
odd-loogX) « odd(X; X).

DEPARTMENT OF INFORMATICS

Answer Set Programming

Two atomsX andY are in same odd loop iX depends
oddly onY andY depends evenly oX:

in-odd-looX, Y) < odd(X, Y), evertY, X).

The above rules correspond directly to the Definitions 1-4.
We could stop here, but we can make debugging a bit easie
if we also identify which rules belong to which loops. We
start by choosing one of the atoms that occur in a loop tc
act as an identifier for the loop. We take the atom that is
lexicographically the first one:
first-in-loop(A) < odd-loogA), not has-predecessoh).
has-predecess@h) < in-odd-looB, A), B < A.
The final part of the odd loop detection is to compute which
rules belong to the loop. The idea is thatXifandY are in
the same loop, then a rule that h&sin the head and” in
the body participates in the loop. We also have to extract the
identifier of the particular loop.
rule-in-loop(R, Z) + in-odd-loof X, Y),
in-odd-loofX;, 2),
first-in-loop(Z),
headR, X),
pos-bodyRY).
rule-in-loop(R, Z) + in-odd-loof X, Y),
in-odd-loof(X, Z),
first-in-loop(Z),
headR, X),
neg-bodyR,Y).

Example 4 Consider the program:

a <+ not b.
b—a

1)
2)
This program is expressed with facts:
headl,a). neg-bodyl, b).
head?2, b). pos-body2, a).
When these facts are given as an input for the odd loop de
tection program, we have a unique answer set. The relevar
atoms from it are:
S = {odd-loofda), odd-loogb), first-in-loop(a),
rule-in-loop(2, a), rule-in-loop(1,a)} .
This answer set tells that the rules (1) and (2) form an odd
loop whose identifier is.

Finding Diagnoses

We could use the meta-representation of the previous sec
tion for also diagnosis computation but it is more efficient
in practice to use a more direct translation. The basic islea i
that we add a new literal to the bodies of constraint to céntro
whether it is applied or not. For example, a constraint:

r =< a, not b.

81

.TU Clausthal
11TH NMR WORKSHOP

82

is translated into two rules: Initialization
— not removedr), a, not b.
constrain{r).

All generating rules are kept as they were. Next, we add the 0dd
rule:

loops

{removedR) : constrain{R)} n.

This rule asserts that at mostof the constraints may be
removed. Here: is a numeric constant whose value is set
from the command line.

The actual diagnoses are then computed by first setting
then to zero and then increasing the value until the trans- Debug
lated program has an answer set. The diagnosis can then be | Explanations Loop Critical sets
extracted by noting theemoved1 atoms that are true in the
answer.

Diagnoses

Figure 1: The debugger workflow

Example 5 The program from program from Example 1 is
translated into:

{a}. Example 6 From Example 5 we get the facts:
« not removedl), a. in-diagnosig1, 1). in-diagnosigl, 3).
«— not removed2), not a. in-diagnosig2, 2). in-diagnosis2, 3).

«— not removed3), not b.
constrain{1..3).
{removedR) :constraintR)} n.

When we start computing the answer sets for the trans-
formed program we note that there are no answer sets when
n =0 andn = 1. Withn = 2 there are two answer sets:

S; = {removedl), removed3), a}
Sy = {removed2), removed3)}

With these facts we find an answerisehens = 2. This
answer set is:

S = {in-se(1,1),in-se(1, 2),in-se(2, 3) }
corresponding ta&(P) = {{1, 2}, {3}}.

Debugger Implementation

The two diagnoses can then be read directly fi&nand Ss. We have created a prototype implementation for tt
o _ ASP debugger,sndebug, by combining the Bo0D-
Finding Conflict Sets ELS programs with a driver program that is written witt
Once we have Computed all diagnoses, we can check Perl. The debugger implementation is included withi
whether the program has conflict sets. We use a fact the Iparse instantiator that is available for download a

http://ww.tcs. tkk. fi/Software/snodels.
o , i The general system architecturesafdebug is shown in

to denote that the constrainis in thedth diagnosis. Figure 1. The debugger has four main components:

First, we initialize several type predicates:
conflict-set1..s).

diagnosigS) < in-diagnosigS R).
rule(R) « in-diagnosigs, R). 2. Diagnosis compytation v_vheserdebug calls SVODELS

to compute all minimal diagnoses of the program;

in-diagnosigd, r).

1. Odd loop detection. If the input program has an odd loc
sndebug issues an error message and terminates;

Heres is again a constant that is set during the instantiation
of the program. 3. Conflict set computation wherendebug tries to find
We need two rules to compute the sets. The first one states conflict sets of the program; and

that each rule belongs to exactly one conflict set, and the . .
9 y 4. Explanation computation whersnmdebug computes

second states that every diagnosis should have exactly one™ dJorvation trees for constraints that occur in diagnoses
rule in each conflict set:; vati I ur in diag .

1 {in-se{S,R) : conflict-setS)} 1 — rule(R). We did not examine the fourth phase in this work but its ide

- R ; .y is to give the programmer more detailed knowledge abc
1{in-se(SR) : in-diagnosigX, R)} 1 « Cf)nﬂ'Ct §e¢S), the reasons of the contradictions. The user selects one d
diagnosigX). nosis, and the debugger computes which set of choices le

The conflict sets are computed in a same way as the diag- to this particular contradiction and presents the inforamat
noses: we start with only one conflict set, and increase their in the form of a derivation tree.
number until we either find a partition or we know that none
exists. 3More precisely, we have two isomorphic answer sets.

Technical Report IfI-06-04

Answer Set Programming

Conclusions and Further Work ence on Logic Programming and Nonmonotonic Reasoni

In this work we applied the techniques from the symbolic (LPNMR 01) 406-410.)
diagnosis (Reiter 1987) field to ASP debugging. The main Babovich, Y. 2002. Cmodels, a system computing answ
concepts have a natural mapping into ASP programs where a Sets for tight logic programs.

diagnosis is a set of constraints whose removal returns con- Balduccini, M., and Gelfond, M. 2003. Logic program:
sistency to the program. We restrict these diagnoses to pro- with consistency-restoring rules. IAAAI Spring 2003
grams that are created in such a way that they do not have Symposiumn9-18.

odd loops. We use another ASP program to find the odd Brain, M.; Watson, R.; and De Vos, M. 2005. An inter
|00pS that occur in a program and to warn about them. Fi- active approach to answer set programming_Ah’BWGr
nally, we defined the concept of the conflict set that can be Set Programming: Advances in Theory and Implement

used to check which constraints are mutually exclusive. tion ASP-05190 — 202.

We have created a prototype implementatemgebug, Constantini, S. 2005. Towards static analysis of answer
thatimplements the three debugging techniques of thisrpape programs. Computer Science Group Technical Reports €
for the full SMODELS input language. Additionallys mde- 2005-03, Dipartimento di Ingegneria, Universita‘ di Fer

bug also can compute derivation trees to act as explanations

for the contradictions. . .
The main limitation for the current version ehdebug gr?ss\;[vaenrtg]el’tssqroanrirﬁrrr% etg,Lg.ség).(;Sh_l\;%romal forms fc

is that it can be used to find only contradictions. However, i Prog g ’ '

some of the techniques can be adapted to also explain why Dell’Armi, T.; Faber, W.; lelpa, G.; Koch, C.; Leone, N.;

a given atom is or is not in an answer set. In particular, the Perri, S.; and Pfeifer, G. 2001. System description: Dlv.

method of computing explanations should generalize to this Proceedings of the 6th International Conference on Log

direction quite easily. P_rogrammlng_and N(_)nmonotonlc Reasoning (LPNMR'01
The next step in continuing with trendebug develop- Vienna, Austria: Springer-Verlag.

ment is to add support for handling non-contradictory pro- East, D., and Truszcigki, M. 2001. Propositional satis-

grams. This means that we have to add support for comput- fiability in answer-set programming. Proceedings of K

rara.

ing and analyzing answer sets of the program. 2001: Advances in Artificial Intelligenc&38-153.
There are several avenues of further research for improv- Gelfond, M., and Lifschitz, V. 1988. The stable mode
ing the current system. The algorithm tlsatdebug uses semantics for logic programming. Rroceedings of the 5th

for finding the minimal diagnoses and conflict sets is rather International Conference on Logic Programmjnt070—
naive: iteratively increasing the size of the parameter un- 1080. The MIT Press.
til we get a program that has an answer set. Itis possible |y F and Zhao, Y. 2002. ASSAT: Computing answe
that some other approach could get us equally useful results sets of a logic program by SAT solvers. Rroceedings
faster. Also, using some other minimality condition, like of the 18th National Conference on Artificial Intelligence
subset minimality, might give better results in some cases. 112_118. Edmonton, Alberta, Canada: The AAAI Press
This debugger has not been used to debug large answer ;. ¢ and Zhao, Y. 2004. On odd and even cycles
set programs, yet. The largest debugged program thus far ,ma jogic programs. IProceedings of the 19th Na-

has _been the part of th_e debugger_ itself. One of its_early tional Conference on Artificial Intelligence (AAAI-Q80—
versions of the explanation generation program contained a 85. The AAAI Press.

bug that caused it to be contradictory. The debugger not
only identified the place of the error immediately, but itals
uncovered two bugs in tHparseinstantiator.

NiemehR, 1., and Simons, P. 2000. Extending the smode
system with cardinality and weight constraints. In Minke

It may be that the current debugging support is not strong é.z,led.,Logm-Based Artificial IntelligenceKluwer. 491—
enough to handle really large programs. In those cases prob- “%~ . .
ably the best way to proceed is to try to manually find the ~Niemeg, I.; Simons, P.; and Sgmen, T. 2000. Smodels: A
smallest input program where the error happens and to de- System for answer set programming.Aroceedings of the

bug that one. 8th International Workshop on Non-Monotonic Reasonin
In conclusion, this approach seems promising for ASP Reiter, R. 1987. A theory of diagnosis from first principles
development but only time will tell if it will fulfill those Artificial Intelligence32:57-95.
promises. Sterling, L., and Shapiro, E. 199Fhe Art of Prolog MIT
press.
References Syrjanen, T. 2004. Cardinality constraint logic program:
Aho, A. V.; Sethi, R.; and Uliman, J. D. 1986 ompil- In The Proceedings of the 9th European Conference

Logics in Artificial Intelligence (JELIA'04)187-200. Lis-
bon, Portugal: Springer-Verlag.

You, J.-H., and Yuan, L. Y. 1994. A three-valued semanti
for deductive database and logic programsJaurnal of
Computer and System Sciert®334—-361.

ers: Principles, Techniques, and Tool#\ddison-Wesley
Publishing Company.

Anger, C.; Konczak, K.; and Linke, T. 2001. Nomore :
A system for non-monotonic reasoning under answer set
semantics. IfProceedings of the 6th International Confer-

DEPARTMENT OF INFORMATICS 83

.TU Clausthal
11TH NMR WORKSHOP

84 Technical Report IfI-06-04

Answer Set Programming
1.9 Forgetting and Conflict Resolving in Disjunctive Logic Program-
ming

Forgetting and Conflict Resolving in Disjunctive Logic Programming'

Thomas Eiter

Technische Universit Wien, Austria
eiter@kr.tuwien.ac.at

Kewen Wang
Griffith University, Australia
k.wang@agriffith.edu.au

Abstract

We establish a declarative theory of forgetting for disjunc-
tive logic programs. The suitability of this theory is justi-
fied by a number of desirable properties. In particular, one of
our results shows that our notion of forgetting is completely
captured by the classical forgetting. A transformation-based
algorithm is also developed for computing the result of for-
getting. We also provide an analysis of computational com-
plexity. As an application of our approach, a fairly general
framework for resolving conflicts in inconsistent knowledge
bases represented by disjunctive logic programs is defined.
The basic idea of our framework is to weaken the preferences
of each agent by forgetting certain knowledge that causes in-
consistency. In particular, we show how to use the notion of
forgetting to provide an elegant solution for preference elici-
tation in disjunctive logic programming.

an ontology is often represented as a logical theory, and
removal of one term may influence other terms in the ont
ogy. Thus, more advanced methods are needed.

Disjunctive logic programming (DLP) under the answe
set semantics (Gelfond & Lifschitz 1990) is now widel
accepted as a major tool for knowledge representation ¢
commonsense reasoning (Baral 2002). DLP is expressive
that it allows disjunction in rule heads, negation as failu
in rule bodies and strong negation in both heads and bod
Studying forgetting within DLP is thus a natural issue, ar
we make in this paper the following contributions:

¢ We establish a declarative, semantically defined notion
forgetting for disjunctive logic programs, which is a ger
eralization of the corresponding notion for nondisjuneti
programs proposed in (Wang, Sattar, & Su 2005). T

suitability of this theory is justified by a number of de
sirable properties.

e We present a transformation-based algorithm for comp
ing the result of forgetting. This method allows to obtai
the result of forgetting a literdl in a logic program via
a series of program transformations and other rewriting
In particular, for any disjunctive prograit and any lit-
erall, a syntactic representatidorget (P, [) for forgetting
lin P always exists. The transformation is novel and do
not extend a previous one in (Wang, Sattar, & Su 200!
which as we show is incomplete.

e Connected with the transformation algorithm, we sett
some complexity issues for reasoning under forgettir

Introduction

Forgetting (Lin & Reiter 1994; Lang, Liberatore, & Mar-
quis 2003) is a key issue for adequately handle a range of
classical tasks such as query answering, planning, deecisio
making, reasoning about actions, or knowledge update and
revision. It is, moreover, also important in recently emerg
ing issues such as design and engineering of Web-based on-
tology languages. Suppose we start to design an ontology
of Pets which is a knowledge base of various pets (like
cats, dogs but not lions or tigers). Currently, there are nu-
merous ontologies on the Web. We navigated the Web and
not a good idea to download the whole ontology Animals. ° °rget“”9' ,)
The approach in the current Web ontology language standard ® AS an application of our approach, we present a fair
OWL! is to discard those terminologies that are not desired ~ general framework for resolving conflicts in inconsistel
(although this function is still very limited in OWL). For ex- knowledge bases. The basic idea of this framework is
ample, we may discard (or forget) tigers and lions from the ~ Weaken the preferences of each agent by forgetting c
ontologyAnimals If our ontology is only a list of relations, tain knowledge that causes inconsistency. In particul
we can handle the forgetting (or discarding) easily. Howeve ~ We show how to use the notion of forgetting to provid
. an elegant solution for preference elicitation in DLP.

*This work was partially supported by the Austrian Science
Funds (FWF) projects P17212 and 18019, the European Commis-
sion project REWERSE (IST-2003-506779) and the Australia Re-
search Council (ARC) Discovery Project 0666107.

tPart of the work was done while this author was working at
Technische Universit Wien.

*http:/Amvww.w3.0rg/2004/OWL/

Preliminaries
We briefly review some basic definitions and notation us
throughout this paper.
A disjunctive progranis a finite set of rules of the form
,not ¢y, (1)

a1 V---Vas+—by,...,bp,not cq, ..

DEPARTMENT OF INFORMATICS 85

.TU Clausthal
11TH NMR WORKSHOP

86

s,m,n > 0, wherea, b's andc’s are classical literals in a
propositional language. Ateral is a positive literalp or a
negative literal-p for some atonp. An NAFliteral is of the
form not [wherenot is for the negation as failure arid
is a (ordinary) literal. For an atom, p and —p are called
complementaryFor any literall, its complementary literal

is denoted.

To guarantee the termination of some program transfor-
mations, the body of a rule is a set of literals rather than a

multiset.
Given a ruler of form (1), head(r) = a; V -+ V
as and body(r) = body™ (r) U not body~ (r) where

body™ (r) = {b1,...,bm}, body~(r) = {ci,..
not body ™~ (r) = {not q | g € body™ (r)}.

A rule r of the form (1) isnormal or non-disjunctiveif
s < 1; positive if n = 0; negative if m = 0; constraint if
s = 0; fact, if m = 0 andn = 0, in particular, a rule with
s =n =m = 0is the constantalse

A disjunctive programP is callednormal program(resp.
positive programnegative prograr if every rule in P is
normal (resp. positive, negative).

Let P be a disjunctive program and Iéf be a set of
literals. A disjunctiona; V --- V a, is satisfied byX, de-
notedX £ a; V- Va, if a; € X for somei with
1 < ¢ < s. Arulerin P is satisfied byX, denoted
X | r, iff " body™(r) € X andbody (r) N X = @ im-
ply X E head(r)". X is a model ofP, denotedX |= P if
every rule ofP is satisfied byX.

An interpretation X is a set of literals that contains no
pair of complementary literals.

The answer set semantics Thereductof P on X is de-
fined asPX = {head(r) « body™ (r) | r € P, body~ (r) N
X = 0}. An interpretationX is ananswer sebf P if X
is a minimal model ofPX (by treating each literal as a new
atom). AS(P) denotes the collection of all answer sets of
P. Pis consistentf it has at least one answer set.

Two disjunctive programg® and P’ are equivalent de-
notedP = P, if AS(P) = AS(P').

As usual,Bp is theHerbrand baseof logic programP,
that is, the set of all (ground) literals iA.

.,¢n}, and

Forgetting in Logic Programming
In this section, we want to define what it means to forget
about a literal in a disjunctive progran®. The idea is to
obtain a logic program which is equivalent to the original
disjunctive program, if we ignore the existence of the éter

if we examine the classical forgetting in model-theoret
point of view, we can obtain the models fafget(7", p) in
this way: first compute all models @ and removep from
each model if it containg. The resulting collection of sets
{M\ {p} | M | T} is exactly the set of all models of
forget(T, p).

Similarly, given a consistent disjunctive prograthand
a literal [, we naively could define the result of forgetting
about/ in P as an extended disjunctive progrd?h whose
answer sets are exactyS(P) \ I = {X \ {l} | X €
AS(P)}. However, this notion of forgetting cannot guaran
tee the existence aP’ for even simple programs. For ex-
ample, consideP = {a «— . pVq <}, thenAS(P) =
{{a.p}, {a,q}} and thusAS(P) \p = {{a}, {a. q}}. Since
{a} C {a,q} and, as well-known, answer sets are incon
parable under set inclusiodS(P) \ p cannot be the set of
answer sets of any disjunctive program.

A solution to this problem ia suitable notion of minimal
answer sesuch that the definition of answer sets, minima
ity, and forgetting can be fruitfully combined. To this end
we call a setX’ ani-subset of a seX, denotedX’ C; X,
if X'\ {i} € X\ {l}. Similarly, a setX’ is a strict/-subset
of X, denotedX’ c; X, if X'\ {I} ¢ X \ {l}. Two sets
X and X' of literals arel-equivalent, denoted ~; X, if
(X\X)U(X'\ X) C {1}.

Definition 1 Let P be a consistent disjunctive program, le
[be aliteral in P and letX be a set of literals.

1. For acollectionS of sets of literalsX € S isl-minimalif
there is noX’ € S such thatX’ C; X. min,;(S) denotes
the collection of all-minimal elements it5.

2. An answer seX of disjunctive progran® is ani-answer
setif X is I-minimal in AS(P). AS;(P) consists of all
l-answer sets aP.

To makeAS(P)\ ! incomparable, we could take either min
imal elements or maximal elements frodS (P) \ I. How-
ever, selecting minimal answer sets is in line with seman
principles to minimize positive information.

For exampleP = {a < . pV ¢ <}, has two answer
setsX = {a,p} and X’ = {a,q}. X is ap-answer set of
P, but X’ is not. This example shows that, for a disjunctiv
programP and a literal, not every answer set is &answer
set.

In the rest of this paper, we assume ttiais a consis-
tent program. The following proposition collects some ea:
properties of-answer sets.

Proposition 1 For any consistent prograrf? and a literall

1. We believe that forgetting should go beyond syntactic re- in P, the following four items are true:

moval of rules/literals and be close to classical forggtind

answer set semantics (keeping its spirit) at the same time._’

Thus, the definition of forgetting in this section is given in

semantics terms, i.e., based on answer sets, and naturall
generalizes the corresponding one in (Wang, Sattar, & Su

2005).

In propositional logic, the result of forgettidgrget(T’, p)
about a propositiorp in a theoryT is conveniently de-
fined asT(p/true) vV T'(p/ false). This way cannot be di-

5,
a,

1. Anl-answer sefX of P must be an answer set 6%

2. For any answer seX of P, there is an-answer sef{’ of
P suchthatX’ C; X.

Any answer seX of P with (€ X is anl/-answer set oP.

If an answer seX of P is not anl-answer set, then (1)
[¢ X; (2) there exists ai-answer set” of P such that
leY ¢ X.

Having the notion of minimality about forgetting a literal,

rectly generalized to logic programming since there is no we are now in a position to define the result of forgettin

notion of the "disjunction” of two logic programs. However,

about a literal in a disjunctive program.

Technical Report IfI-06-04

Definition 2 Let P be a consistent disjunctive program and
[be a literal. A disjunctive progran®’ is a result offorget-
ting about! in P, if P’ representd-answer sets oP, i.e.,
the following conditions are satisfied:

1. Bp: C Bp\ {l} and
2. For any setX’ of literals withl ¢ X', X’ is an answer

set of P’ iff there is anl-answer setX of P such that
X'~ X.

Notice that the first condition implies thatloes not appear
in P’. An important difference of the notion of forgetting

here from existing approaches to updating and merging logic

programs is that only and possibly some other literals are
removed. In particular, no new symbol is introduced’n

For a consistent extended progradtand a literal, some
programP’ as in the above definition always exists (cf. Al-
gorithm 1 for details). However, different such prograffis
might exist. It follows from the above definition that theyar
all equivalent under the answer set semantics.

Proposition 2 Let P be a disjunctive program arich literal
in P. If P’ and P” are two results of forgetting abouin P,
thenP’ and P are equivalent.

We useforget(P,) to denote a possible result of forgetting
about/ in P.

Example 11. If P, = {q «— not p}, thenforget(Py,q) =
(0 andforget(Py,p) = {q < }.

2. If P, = {pV q <}, thenforget(Pz, p) = 0.

3. P3 = {pVq < not p. c < ¢} has the unique answer set
{q, c} andforget(Ps,p) = {q — . ¢ —}.

4. P, = {aVp « not b.c « not p. b «—}. Then
forget(Py,p) = {c— . b}

We will explain how to obtairforget(P,[) in the next sec-
tion. The following proposition generalizes Proposition 2

Proposition 3 Let P and P’ be two equivalent disjunc-
tive programs and a literal in P. Thenforget(P,l) and
forget(P’,1) are also equivalent.

However, forgetting here does not preserve some spe-
cial equivalences of logic programs stronger than ordi-

nary equivalence like strong equivalence (Lifschitz, Taag
Turner 1999) or uniform equivalence (Eiter & Fink 2003).

A notion of forgetting which preserves strong equivalence
is interesting for some applications, but beyond the scope
of this paper. In addition, our approach may be easily re-
fined to preserve equivalences stronger than ordinary equiv

alences by a canonical form for the result of forgetting.(e.g
the output of Algorithm 1).

Proposition 4 For any consistent progran? and a literall

in P, the following items are true:

1. AS(forget(P,1)) = {X \ {I} | X € AS;(X)}.

2. If X € AS;(X) withl ¢ X, thenX € AS(forget(P,1)).

3. Forany X € AS(P) such thatl € X, X \ {I} €
AS (forget(P,1)).

4. ForanyX'’ € AS(forget(P,1)), eitherX’ or X’ U {l} is
in AS(P).

DEPARTMENT OF INFORMATICS

Answer Set Programming

5. ForanyX € AS(P), there existsX’ € AS(forget(P, 1))
such thatX’ C X.

6. Ifl does not appear i, thenforget(P, 1) = P.

Let =, and|=. be the skeptical and credulous reasoning d
fined by the answer sets of a disjunctive progrBmespec-
tively: for any literall,

P =, liff | € SforeveryS € AS(P).

P . Liff | € S for someS € AS(P).

Proposition 5 Let! be a specified literal in disjunctive pro-
gram P. For any literall” # [,

1. P =, U iff forget(P,1) =, I'.
2. P =, Uif forget(P,1) =c U.

This proposition says that, if is ignored,forget(P,1) is
equivalent toP under skeptical reasoning, but weaker ur
der credulous reasoning (i.e., inferences are lost).

Similar to the case of normal programs, the above defil
tions of forgetting about a literélcan be extended to forget-
ting about a set’ of literals. Specifically, we can similarly
defineX; Cr X5, X; ~r X, and F-answer sets of a dis-
junctive program. The properties of forgetting about alging
literal can also be generalized to the case of forgettingiab:
a set Moreover, the result of forgetting about a $&tan be
obtained one by one forgetting each literaliin

Proposition 6 Let P be a consistent disjunctive prograrr
andF ={ly,...,l,»} be asetof literals. Then

forget(P, F) = forget(forget(forget(P,11),12),...),lm).

We remark that for removing a propositiprentirely from a
programp, it is suggestive to remove both the literaland
—pin P (i.e., all positive and negative information ab@it
This can be easily accomplished fayget(P, {p, —p}).

Letlcomp(P) be Clark’s completion plus the loop formu-
las for an ordinary disjunctive prograf (Lee & Lifschitz
2003; Lin & Zhao 2004). ThetX is an answer set aP iff
X is a model oficomp(P).

Now we have two kinds of operatorfrget(,) and
lcomp(). Thus for a disjunctive program and an atprwe
have two classical logical theoriésomp(forget(P, p)) and
forget(lcomp(P), p) on the signaturé3p \ {p}. It is natu-
ral to ask what the relationship between these two theor
is. Intuitively, the models of the first theory are all minima
models while the models of the second theory may not
minimal 2. Let P = {p < not q. ¢ «— not p}. Then
Icomp(forget(P,p)) = {—q} andforget(lcomp(P),p) =

T ~qVF = T, which has two model§q}
and@p.

However, we have the following result. However, na
tice that for this programP, the minimal modelsof
forget(lcomp(P),p) are the same as thenodels of
lcomp(forget(P, p)). In fact, this result is true for ordinary
disjunctive programs in general.

Theorem 1 Let P be a logic program without strong nega-
tion and p an atom inP. Then X is an answer set of

2Thanks to Esra Erdem and Paolo Ferraris for pointing this ¢
to us.

87

.TU Clausthal
11TH NMR WORKSHOP

88

forget(P, p) if and only if X is a minimal model of the result
of classical forgettingorget(lcomp(P), p). That is,

AS (forget(P,p)) = MMod(forget(lcomp(P), p))

Here MMod(T') denotes the set of all minimal models of a
theoryT in classical logic.

This result means that the answer setdwget(P, p) are

exactly the minimal models of the result of forgetting about

p in the classical theorigomp(P). Thusforget(P, p) can be
characterized by forgetting in classical logic. Noticettha
would not make much sense if we repldcemp(P) with
a classical theory which is not equivalentltomp(P) in

Theorem 1. In this sense, the notion of forgetting for answer

set programming is unique.
We useforget,,,,;,,(T, p) to denote a set of classical for-

mulas whose models are the minimal models of the classical

forgettingforget(T', p). Then the conclusion of Theorem 1is
reformulated as

Icomp(forget(P, p)) = forget,,,;,,(Icomp(P),p).

This result is graphically represented in the following eom
mutative diagram

forget(.,
P get(p) forget(P, p)
lcomp(.) lcomp(.)
fi o
lcomp(P) et (1) Icomp(forget(P, p)) ‘

The result is a nice property, since it means that one can
"bypass” the use of an LP engine entirely, and represent also

the answer sets dbrget(P, p) in terms of a circumscription
of classical forgetting, applied teomp(P). In fact, we can

Step 4.ConstructP’ whose answer sets are exacty:
Let A” = {A4,...,A,} and for eachd;, P, = {l! «
not A; | e Az} P = U1§igan‘- HereA; = Bp \ A;.

Step 50utput P’ asforget(P,1).

This algorithm is complete w.r.t. the semantic forgettin
defined in Definition 2.

Theorem 3 For any consistent disjunctive prograf and
a literal [, Algorithm 1 always output®rget (P, 1).

Basic Program Transformations

The above algorithm is semantic, and does not describe h
to syntactically compute the result of forgetting in DLF
In this subsection, we develop an algorithm for computir
the result of forgetting inP using program transformations
and other modifications. Here we use the Bg}:5 of pro-

gram transformations investigated in (Brass & Dix 199¢
Wang & Zhou 2005). In our algorithm, an input progran
P is first translated into a negative program and the res
of forgetting is represented as a nested program (under
minimal answer sets defined by Lifschitz et al. (1999)).

Elimination of Tautologies: P’ is obtained fromP by the
elimination of tautologies if there is a ruke head(r) —
body™ (r),not body (r) in P such that head(r) N
body™ (r) # O andP’ = P\ {r}.
Elimination of Head Redundancy P’ is obtained fromP
by the elimination of head redundancy if there is a nula
P such that an atora is in bothhead(r) andbody ™ (r) and
P’ =P\ {r}U{head(r) — a — body(r)}.

The above two transformations guarantee that those ru
whose head and body have common literals are removed

Positive Reduction P’ is obtained fromP by pos-

itive reduction if there is a ruler: head(r) <«

express combined forgetting and minimal model reasoning body™ (r), not body™(r) in P andc¢ € body™ (r) such

by a circumscription ofcomp(P).

Theorem 2 Let P be a logic program without strong nega-
tion and p an atom inP. ThenS’ is an answer set of
forget(P, p) if and only if eitherS = S’ or S = 5" U {p} is

a model ofCirc(Bp \ {p}, {p}, lcomp(P)).

Computation of Forgetting

As we have notedprget(P,[) exists for any consistent dis-
junctive programP and literall. In this section, we discuss
some issues on computing the result of forgetting.

Naive Algorithm

By Definition 2, we can easily obtain a naive algorithm for
computingforget(P,) using some ASP solvers for DLP,
like DLV (Leoneet al.2004) or GnT (Janhunegt al. 2000).

Algorithm 1 (Computing a result of forgetting)
Input disjunctive progran® and a literal in P.
Procedure:

Step 1Using DLV computedS(P);

Step 2Remove the literal from every element QLS (P)
and denote the resulting collection 45

Step 3.0btain A” by removing non-minimal elements
from A’.

thatc ¢ head(P) and P’ is obtained fromP by remov-
ing not ¢ fromr. Thatis,P’ = P\ {r} U {head(r) —
body ™ (r), not (body ™ (r) \ {c})}.
Negative Reduction P’ is obtained fromP by neg-
ative reduction if there are two rules: head(r)
body ™ (r), not body ™ (r) andr’: head(r') « in P such that
head(r") C body™ (r) andP’ = P\ {r}.

To define our next program transformation, we need t|
notion of s-implicationof rules. This is a strengthened ver
sion of the notion ofmplicationsin (Brass & Dix 1999).

Definition 3 Letr andr’ be two rules. We say that is an

s-implication ofr if 7/ # r and at least one of the following

two conditions is satisfied:

1. r"is an implication ofr: head(r) C head(r"), body(r) C
body(r') and at least one inclusion is proper; or

2. r can be obtained by changing some negative body liter:
of 7’ into head atoms and removing some head atoms &
body literals fromr’ if necessary.

«—

Elimination of s-Implications: P; is obtained fromP; by
elimination of s-implications if there are two distinct esl-
andr’ of P; such that”’ is an s-implication of and P, =

P\ {r'}.

Technical Report IfI-06-04

Unfolding: P’ is obtained fromP by unfolding if there is a
rule r such that

P\ {r}uU{head(r) V (head(r') — b) —

(body+(7’) \ {b}), not body ™ (r), body(r")) |
b € body™(r),Ir' € Ps.t.b € head(r")}.

P =

Herehead(r") — b is the disjunction obtained froread (')
by removingp.

Since an implication is always an s-implication, the fol-
lowing result is a direct corollary of Theorem 4.1 in (Brass
& Dix 1999).

Lemma 1 Each disjunctive progran® can be equivalently
transformed into a negative prograiVv via the program
transformations inTy,es, such that on no rule- in IV, a
literal appears in both the head and the body-of

Transformation-Based Algorithm

We are now in a position to present our syntax-based algo-

rithm for computing forgetting in a disjunctive program.
Algorithm 2 (Computing a result of forgetting)

Input disjunctive progran® and a literal in P.
Procedure:

Step 1Fully apply the program transformations Ty ¢
on programP’ and then obtain a negative prograyy.

Step 2Separaté from head disjunction via semi-shifting:
For each (negative) rule € N, such thathead(r) =1V A
andA is a non-empty disjunction, it is replaced by two rules:
I «— not A, body(r) andA «— not 1, body(r). Herenot A
is the conjunction of alhot I’ with I’ in A. The resulting
disjunctive program is denote¥.

Step 3Suppose thalV hasn rules with head:

rj 1 not ljy,...,not lj,,, wheren > 0,5 =1,...,n
andm; > 0 for all j.

If n = 0, then letQ) denote the program obtained frak
by removing all appearances obt [.

If n = 1andm; = 0, thenl « is the only rule inN
having head. In this case, remove every rule i¥ whose
body containsiot I. Let Q) be the resulting program.

Forn > 1andm; > 0, let Dy,..., D, be all possible
conjunctions(not not lyk,,- -, not not L.,) whereQ <
k1 <myq, ...,0 < k, < m,. Replace inV each occurrence
of not L in N by all possibleD;. Let @ be the result.

Step 4.Remove all rules with heatfrom @ and output
the resulting progran¥’.

Answer Set Programming

(4) Algorithm 2 above essentially improves the correspon
ing algorithm (Algorithm 1) in (Wang, Sattar, & Su 2005) a
least in two ways: (i) our algorithm works for a more expres
sive class of programs (i.e. disjunctive programs) andh@)
next result shows that our algorithm is complete under tl
minimal answer set semantics of nested logic programs.

Theorem 4 Let P be a consistent disjunctive program anc
[aliteral. ThenX is an answer set dbrget(P, 1) iff X is a
minimal answer set aV'.

Example 2 ConsiderP, = {c¢c « not q. p < not q.

q < not p}. Then, by Algorithm 2forget(Py,p) is the
nested progran{c < not q. ¢ < not not ¢}, whose min-
imal answer sets are exactly the same as the answer ¢
of forget(Py, p). Note that Algorithm 1 in (Wang, Sattar, &
Su 2005) outputs a progralN’ = {¢ < not q. ¢ «— q}
which has a unique answer sgt}. Howeverforget(Py, p)
has two answer sefg'} and{q}. This implies that the algo-
rithm there is incomplete.

The above algorithm is worst case exponential, and mic
also output an exponentially large program. As follows frol
complexity considerations, there is no progr&tthat rep-
resents the result of forgetting which can be constructed
polynomial time, even if auxiliary literals might be usec
which are projected from the answer setsitf This is a
consequence of the complexity results below.

However, the number of rules containihgnay not be
very large and some conjunctioi$; may be omitted be-
cause of redundancy. Moreover, the splitting technique
logic programs (Lifschitz & Turner 1994) can be used t
localize the computation of forgetting. That is, an inpud-pr
gram P is split into two parts so that the part irrelevant ti
forgetting is separated from the process of forgetting.

Resolving Conflicts in Multi-Agent Systems

In this section, we present a general framework for resglvii
conflicts in multi-agents systems, which is inspired from tt
preference recovergroblem (Lang & Marquis 2002). Sup-
pose that there ane agents who may have different prefer
ences on the same issue. In many cases, these preference
constraints) have conflicts and thus cannot be satisfie@ at
same time. It is an important issue in constraint reasoni
to find an intuitive criteria so that preferences with highe
priorities are satisfied. Consider the following example.

Example 3 (Lang & Marquis 2002) Suppose that a group ¢

Some remarks: (1) This is only a general algorithm. Some four residents in a complex tries to reach an agreement
program transformations could be omitted for some special Puilding aswimming pooland/or atennis courtThe prefer-
programs and various heuristics could also be employed to €nces and constraints are as follows.

make the algorithm more efficient; (2) In this process, are- 1.

sult of forgetting is represented by a logic program allayvin

nested negation as failure. This form seems more intuitive

than using ordinary logic programs; (3) In the construction
of D;, not not l;; cannot be replaced with; (even for
a normal logic program). As one can see, if they are re-

placed, the resulting program represents only a subset of4.

AS;(P) (see Example 2). This also implies that Algorithm
1 in (Wang, Sattar, & Su 2005) is incomplete in general.

DEPARTMENT OF INFORMATICS

Building a tennis court or a swimming pool costs eac
one unit of money.

2. A swimming pool can be eithezdor blue
3. The first resident would not like to spend more than o

money unit, and prefers a red swimming pool.

The second resident would like to build at least one
tennis court and swimming pool. If a swimming pool i
built, he would prefer a blue one.

&9

.TU Clausthal
11TH NMR WORKSHOP

. The third resident would prefer a swimming pool but ei-
ther colour is fine with him.

. The fourth resident would like both tennis court and swim-
ming pool to be built. He does not care about the colour
of the pool.

Obviously, the preferences of the group are jointly incensi
tent and thus it is impossible to satisfy them at the same time

In the following, we will show how to resolve this kind of
preference conflicts using the theory of forgetting.

An n-agent systens is ann-tuple (Py, Ps,...,P,) of
disjunctive programs; > 0, whereP; represents ageni's
knowledge (including preferences, constraints).

As shown in Example 3P, U P, U --- U P, may be in-
consistent. The basic idea in our approach is to forget some
literals for each agent so that conflicts can be resolved.
Definition 4 Let S (P1, Ps,...,P,) be ann-agent
system. Acompromise of S is a sequenceC
(Fy, Fs, ..., F,)where eaclF; is a set of literals. Armgree-
mentof S on C is an answer set of the disjunctive pro-
gramforget(S, C') whereforget(S, C') = forget(Py, Fy) U
forget(Py, Fy) U - - - U forget(Py, F),).

For a specific application, we may need to impose certain
conditions on eaclt;.

Example 4 (Example 3 continued) The scenario can be en-
coded as a collection of five disjunctive prograns §tands
for general constraints)S = (P, Pi, P>, P3, P;) where

Py={redV blue — s. « red, blue.
Uy <— not s,t. uy < s, not t.
ug «— 8, t. ug < not s, not t};
Py ={ugVu —. red — s};
Py={sVt«—. blue — s};
Py={s—};and Py = {s «— . t «}.
Since this knowledge base is jointly inconsistent, eadh res

Computational Complexity

In this section we address the computational complexity
forgetting for different classes of logic programs. Oumutes
show that for general disjunctive programs, (1) the mod
checking of forgetting i$15-complete; (2) the credulous rea-
soning of forgetting is=4-complete. However, for normal
programs or negative disjunctive programs, the complex
levels are lower: (1) the model checking of forgetting is cc
NP-complete; (2) the credulous reasoning of forgetting
¥:¥-complete. The design of Algorithm 2 in Section is heay
ily based on the complexity analysis here. Our complexi
results for forgetting are summarized in the following &bl
and formally stated after the table.

disjunctive negative normal
model checking| 115 co-NP co-NP
‘:c Eg Z127 2127

Theorem 5 Given a disjunctive progran®, a literal /, and
a set of literalsX, deciding whetheX is ani/-answer set of
P isII5-complete.

Intuitively, in order to show thafX is ani-answer set, we
have to witness thak is an answer set (which is coNP-
complete to test), and that there is no answer)sebf P
such thatX’ ¢; X. Any X’ disproving this can be guessec
and checked using an NP-oracle in polynomial time. Tht
l-answer set checking is i}, as stated in Theorem 5.

Proof (Sketch)II5 membership holds since checking
whether a set of literal&(’ is an answer set of a disjunc-
tive programP is in co-NP. The hardness result is shown b
a reduction from deciding whether a given disjunctive pr¢
gram P (without strong negations) has no answer set, whi
is IT5-complete (Eiter & Gottlob 1995). Construct a logic

dent may have to weaken some of her preferences so that anProgramp”’ = {head(r) « p,body(r) | r € P} U {q <

agreement is reached. Some possible compromises are:

1. C, = (0, F,F,F, F) where F' = {s,blue,red}: Every
resident would be willing to weaken her preferences on
the swimming pool and its colour. Sinfeget(S,C;) =
Py U {ug Vuy «— .t <}, S has a unique agreement
{t,u1} onCy. That is, only a tennis court is built.

. Cy= (0, F,F,F,F)whereF = {ug, u1, us, blue, red}:
Every resident can weaken her preferences on the price
and the pool colour. Sinderget(S, Cs) = PoU{sVt «—

. 8 < . t <}, S has two possible agreemes, ¢, red }
and {s, t, blue} on Cs. That is, both a tennis court and
a swimming pool will be built but the pool colour can be
either red or blue.

. Cy = (0,{blue, red},0,0,{t}): The first resident can
weaken her preference on pool colour and the fourth res-
ident can weaken her preference on tennis court. Since
forget(S,Cg) =P UPUPU {U() Vaup «—. sVt «—

. s <}, S has a unique agreemefit, blue,u;} on Cs.

That is, only a swimming pool will be built and its colour

is blue.

As shown in the example, different compromises lead to
different results. We do not consider the issue of how to
reach compromises here, which is left for future work.

90

not p. p < not q}U{a «— | a appears irP}, wherep and
g are two fresh atoms. This prografi has one answer set
Xo inwhichp is false and all other atoms are true; all othe
answer sets are of the formi U {p}, whereX € AS(P). It
holds thatX, € AS,(P’) iff P has no answer set. [

The construction in the above proof can be extended
showX%-hardness of credulous inference.

Theorem 6 Given a disjunctive progran® and literals!
and!’, deciding whetheforget(P, [) |=. I’ is ¥%-complete.

In Theorem 6 a suitablé-answer set containing can be
guessed and checked, by Theorem 5 uslifigracle. Hence,
credulous inferencéorget(P, 1) =, I" is in X%. The match-
ing lower boundsJI5- resp.X%-hardness can be shown by
encodings of suitable quantified Boolean Formulas (QBF:
In Theorems 5 and 6, the complexity is coONP- aut
complete, respectively, P is either negative or normal.

Theorem 7 Given anegativeprogram N, a literal [, and a
set of literalsX, decidingX € AS;(N) is co-NP-complete.

Proof (Sketch) The co-NP membership holds sinc
checking whether a set of literal&¥’ is an answer set
of a negative progranP is polynomial. As for co-NP-
hardness, leC = C; A --- A C), be a CNF over atoms

Technical Report IfI-06-04

Yi,- - - Ym, Where eacld’; is non-empty. Fot < i < m, let
N; ={y; < not y.. y} <« not y;. y; < not l. y; < not 1},
and forl < j < k,letZ; = {y; | vi € C;} U{y, |
—Y; € CJ} DefineN = U?il(Ni U{ «— not Zl}) U {l —
not y1. | — not yi}. Then, X = {y;,y; | 1 <i < m}is
an answer set aV. Moreover,X is ani-answer set, ifl” is
unsatisfiable. The satisfiable assignments corresponetto th
answer sets oV containingl. [|

This construction can be lifted to show that credulous in-
ferencel=. of a literal from thel-answer sets ofV is X&-
hard.

Theorem 8 Given a negative progray and literals/ and
I, deciding whetheforget(N, 1) |=. I’ is ¥5-complete.

Proof (Sketch). By Theorem 75 membership is easy.
As for XL -hardness, take a QBEXYVZ E, whereFE is a DNF
on X and Z and contains some variable frof in each

clause. Construct the same program as above in Theorem 7

for C = —-F and whereY” = X U Z andy; is from Z, but
(1) omit the clauses; <« not [andz; — not [. (2) add a
clausel’ < not I. For each subse&t C X, the set

SU{r; |z € X\STUZU{2) |z € ZyU{l'}
is an answer set aV. These are also all answer setsNof
that contain’ (and do not contai). Furthermore, this set
is anl-answer set, iff there is no satisfying assignment for
C (=—F) which corresponds oX to S. Overall, this means
that there is someanswer set of the program in whié¢his
true, iff the formulad XVZF is true. [|

In the proof of Theorem 7, a CNF is actually reduced to a
normal program. It is thus easy to see the following result.

Theorem 9 Given anormal program P, a literal [, and a
set of literalsX, deciding whethelX is anl-answer set of
P is co-NP-complete.

Similarly, we can show the credulous reasoning with forget-
ting for normal program i&5-complete.

Theorem 10 Given anormal program P, a literal [, and
a literal I’, deciding whethefforget(P,l) . I’ is ¥5-
complete.

By applying techniques that build on non-uniform complex-
ity classes similar as in (Cadadt al. 2000), we conjecture
that there is no prograrferget(P,) of polynomial size un-
less the polynomial hierarchy collapses, even if auxiliary
literals might be used (which are projected off). Thus, the
exponential blow up oforget(P,!) is, to some extent, un-
avoidable in general.

Related Work and Conclusion

We have proposed a theory of forgetting literals in disjunc-
tive programs. Although our approach is purely declarative
we have proved that it is coupled by a syntactic counterpart
based on program transformations. The properties of forget
ting show that our approach captures the classical notion of
forgetting. As we have explained before, the approach # thi
paper naturally generalizes the forgetting for normal pro-
grams investigated in (Wang, Sattar, & Su 2005).

Another approach to forgetting for normal programs is
proposed in (Zhang, Foo, & Wang 2005), which is purely

DEPARTMENT OF INFORMATICS

Answer Set Programming

procedural since the result of forgetting is obtained by r
moving some rules and/or literals. A shortcoming of that a
proach is that there is, intuitively, no semantic justificat
for the removal.

As an application of forgetting, we have also presentec
fairly general framework for resolving conflicts in disjunc
tive logic programming. In particular, this framework pro
vides an elegant solution to the preference recovery pmoble
There are some interesting issues to be pursued. First,
are currently improving and implementing the algorithm fc
computing the result of forgetting. Second, we will explor
the application of forgetting in various scenarios of cantfli
resolving, such as belief merging, update of disjunctive pr
grams, inheritance in disjunctive programs.

References

Baral, C. 2002. Knowledge Representation, Reasoning ar
Declarative Problem SolvingCambridge University Press.
Ben-Eliyahu, R., and Dechter, R. 1994. Propositional semant
for disjunctive logic programsAnn. Math. and AlL2(1-2):53-87.
Brass, S., and Dix, J. 1999. Semantics of disjunctive loc
programs based on partial evaluatiod. Logic Programming
38(3):167-312.

Cadoli, M.; Donini, F.; Liberatore, P.; and Schaerf, M. 200(
Space Efficiency of Propositional Knowledge Representation F
malisms.J. Artif. Intell. Res13:1-31.

Eiter, T., and Fink, M. 2003. Uniform equivalence of logic pro
grams under the stable model semantics.Ptac. 19th ICLR
224-238.

Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001. Conr
plexity and expressive power of logic programmifgCM Com-
puting Survey83(3):374-425.

Eiter, T., and Gottlob, G. 1995. On the computational cost
disjunctive logic programming: Propositional cas&nn. Math.
and Al15(3-4):289-323.

Gelfond, M., and Lifschitz, V. 1990. Logic programs with classi
cal negation. IrProc. ICLP, 579-597.

Janhunen, T.; Niema] I.; Simons, P.; and You, J.-H. 2000. Pat
tiality and Disjunctions in Stable Model Semantics. Rmoc.
KR 200Q 411-419.

Lang, J., and Marquis, P. 2002. Resolving inconsistencies
variable forgetting. IProc. 8th KR 239-250.

Lang, J.; Liberatore, P.; and Marquis, P. 2003. Propositional inc
pendence: Formula-variable independence and forgeftidgtif.
Intell. Res18:391-443.

Lee, J., and Lifschitz, V. 2003. Loop formulas for disjunctiv:
logic programs. IrProc. ICLP, 451-465.

Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri, S
and Scarcello, F. 2004. The DLV System for Knowledge Repr
sentation and ReasoningCM TOCL(to appear).

Lifschitz, V.; Tang, L.; and Turner, H. 1999. Nested expressio
in logic programs Ann. Math. and AR5:369-389.

Lifschitz, V., and Turner, H. 1994. Splitting a logic program. i
Proc. ICLP, 23-37.

Lin, F., and Reiter, R. 1994. Forget it. Froc. AAAlI Symp. on
Relevancegl54-159.

Lin, F., and Zhao, Y. 2004. ASSAT: Computing answer set of
logic program by sat solvergrtif. Intell. 157(1-2): 115-137.
Wang, K., and Zhou, L. 2005. Comparisons and computati
of well-founded semantics for disjunctive logic programsCM
TOCL6(2):295-327.

91

.TU Clausthal
11TH NMR WORKSHOP

92

Wang, K.; Sattar, A.; and Su, K. 2005. A theory of forgetting i
logic programming. IrProc. 20th AAA|682—-687. AAAI Press.
Zhang, Y.; Foo, N.; and Wang, K. 2005. Solving logic progral
conflicts through strong and weak forgettings. Rroc. 1JCA|
627-632.

Technical Report IfI-06-04

Answer Set Programming

DEPARTMENT OF INFORMATICS 93

.TU Clausthal
11TH NMR WORKSHOP

1.10 Analysing the Structure of Definitions in ID-logic

Analyzing the Structure of Definitions in ID-logic*

Joost Vennekensand Marc Denecker

{j oost . vennekens,

mar c. denecker }@s. kul euven. be

Dept. of Computer Science, K.U.Leuven
Celestijnenlaan 200A
B-3001 Leuven, Belgium

Abstract

ID-logic uses ideas from logic programming to extend classi-
cal logic with non-monotone inductive definitions. Here, we
study the structure of definitions expressed in this formalism.
We define the fundamental concept of a dependency relation,
both in an abstract, algebraic context and in the concrete set-
ting of ID-logic. We also characterize dependency relations
in a more constructive way. Our results are used to study
the relation between ID-logic and known classes of inductive
definitions and to show the correctness of ID-logic semantics
in these cases.

Introduction
Inductive definitions are a distinctive and well-understoo

as the stable model semantics, as well as several diffel
semantics for other non-monotonic reasoning formalisn
such as auto-epistemic logic and default logic. Approxim
tion theory provides an abstract framework in which genel
properties of a variety of different semantics for differer
logics can be succinctly proven.

In this paper, we analyze the structure of definitions
ID-logic. This analysis takes place at three different leve
Firstly, we use approximation theory to analyze definitiot
in ID-logic by studying the internal structure of certairt-la
tice operators. To this end, we define the algebraic conc
of a dependency relatiofor an operator. It turns out that
this can be related to a theory of modularity in approxim
tion theory (Vennekens, Gilis, & Denecker 2005), allowin
a number of quite general results to easily be derived. S

kind of knowledge, which occurs often in mathematical onqly, we also define a similar concept at the more spec
practice. The roots of ID-logic lie in the observation that |eyej of ID-logic and relate this to its algebraic countetpa
logic programs under the well-founded semantics can be \yhen instantiated to this level, the properties proven in ¢
seen as a formal equivalent of this mformal_ mathematical proximation theory immediately provide us with several ir
construct (Denecker 1998). This result is particularlyfulse teresting results, such as a splitting theorem for ID-log
because inductive definitions cannot be easily represented Finally, we also present a constructive characterizatfcm o
in classical logic. ID-logic uses a form of logic programs specific kind of dependency relation for an ID-logic defin
under the well-founded semantics to extend classical logic tjon based on the syntactical structure of its rules.

with a new “inductive definition” primitive. In the resultin As an application of these results, we study several clas
formalism, all kinds of definitions regularly found inmathe ¢y ctive definitions known from mathematical literagur
matical practice can be represented in a uniform way. More- g concept of dependency relations can be used to off
over, the rule-based representation of a definitionin IGId0 44,5 definition for each of these classes. The fact that |
neatly corresponds to the form such a definition would take |ogic correctly formalizes the semantics of definitions b
Ina m_athematlcal text. ID-logic also has interesting agepli longing to these classes can then be proven in approxima
tions in common-sense reasoning. For instance, (Denecker oo Finally, our constructively characterized depsmay

& Ternovska 2004a) gives a natural representation of situa- g|ations lead to some semi-syntactical ways of identdyir
tion calculus as an iterated inductive definition in ID-logi members of each of these classes.

The resulting theory correctly handles tricky issues sueh a The work in this paper is part of a larger project (Ver

recursive ramifications, and is, as far as we know, the most nekens & Denecker 2005: Denecker & Ternovska 2004b)
general representation of this calculus to date. establish firm mathematical foundations for ID-logic. Whil

h The lrln?ln '(ée‘és behmci_ID-Iog&c_ agd tthe rgla}t_lq? betv;een our results are largely theoretical, they are meant to sesve
€ well-lounded semantics and inductive definitions ave 5 paqis for more practical work. In particular, they shou

been further generalized approximation theoryDenecker, h ;

. AN elp to more clearly establish the knowledge represemtat
Marek, & Truszczynski 2003; 2000), an algebraic fixpoint meFt)hodology of IDy—Iogic, offer some ma%emgtical tool
theoryl for arbltranr/] ope:ﬁors.d Idnterestlngly,fthlls tbeor with which to analyze theories in this logic and prove the
not only captures the well-founded semantics for logic pro- correctness, and contribute to the development of effici

grams, but also other logic programming semantics, such reasoning algorithms for (decidable fragments of) ID-togi
*This work was supported by FWO-Vlaanderen, European The importance of this kind of research can be motivat
Framework 5 Project WASP, and by GOA/2003/08. by looking at its accomplishments in logic programming

94 Technical Report IfI-06-04

Answer Set Programming

where the use of concepts such as dependency graphs datesratorC 4 is <,-monotone. IfA is symmetric, then its lower

back at least as far as (Apt, Blair, & Walker 1988). As we

will see, the same kind of techniques can be applied in the

more complex setting of ID-logic. More recently, Answer

and upper stable operators are equal, ©¢.= C'.
An approximationA defines a number of different fix-
points: the least fixpoint of an approximatighis called its

Set Programming has seen more results in a similar vein, gripke-Kleene fixpointfixpoints of its partial stable oper-
with work being done to identify interesting subclasses of ator ¢, arestable fixpointsand the least fixpoint of 4 is

programs, such agght logic programgErdem & Lifschitz
2003). This work is very similar in spirit to the analysis

of various subclasses of inductive definitions, that we will

present later in this paper.

Preliminaries
Approximation theory

Our presentation of approximation theory is based on (De-

necker, Marek, & Truszczynski 2000; 2003). Lt, <)
be a lattice. We consider the squaké of the domain
of this lattice. The obvious point-wise extension of
to L? is called theproduct order<g on L2, i.e., for all
(z,9), (a,y") € L? (z,y) <g (2',y) iff = < 2’ and
y < y'. An element(z,y) of L? can be seen as denoting
an interval[z,y] = {z € L | = < z < y}. Using this
intuition, we can derive a second order, tirecision order
<, On L2 for each(z,y), (z/,y') € L%, (z.y) <, («,3/)
iff + < 2’ andy’ < y. Indeed, if(z,y) <, («/,y'), then
[z,y] 2 [2/,y']. It can easily be seen that?, <) is also
a lattice. The structurél? <g, <,) is thebilattice corre-
sponding toL. If L is complete, then so ard.?, <) and
(L?,<,). Elementgz,) of L? are callecexact The set of
exact elements forms a natural embedding afi L.

Approximation theory is based on the study of operators

which are monotone w.r.&,. Such operators are calleg-
proximations For an approximatiod andz,y € L, we de-
note byA*(z,y) andA?(z,y) the unique elements df, for
which A(z,y) = (Al(x,y), A%(x,y)). An approximation
approximatesn operatot on L if for eachzx € L, A(x, x)
containsO(z), i.e. Al(z,z) < O(z) < A%*(z,z). Anex-

act approximation maps exact elements to exact elements,

i.e. AY(z,x) = A%(z,x) for all z € L. Each exact approx-
imation approximates a unigue operatoron L, namely
that which maps eack € L to Al(z,z) = A?(z,x).
An approximation issymmetricif for all (z,y) € L2, if
A(z,y) = (2/,y') thenA(y, z) = (v, 2’). Each symmetric
approximation is exact.

For an approximatiom on L2, we define the operator
Al(-,y) on L that maps an element € L to Al(z,y),
i.e. Al(-,y) = \x.A'(x,y), and A%(z,) that maps an el-
ementy € L to A%(x,y). These are monotone operators

and, therefore, they each have a unique least fixpoint. We

define an operatoa*:‘i1 on L, which maps eacly € L to
Lfp(A'(-,y)) and, similarly, an operataf’,, which maps
r € Ltolfp(A%(x,-)). Ci‘ is called thelower stable op-

erator of A, while Cll is the upper stable operatoof A.
Both these operators are anti-monotone. We defingaine
tial stable operatorC, on L? as mapping eaclir,y) to

(CL(y),Cl(x)). Because the lower and upper partial op-

eratorsC'; andC', are anti-monotone, the partial stable op-

DEPARTMENT OF INFORMATICS

called thewell-founded fixpointvf(A) of A. As shown in
(Denecker, Marek, & Truszczynski 2000; 2003), these fi.
points correspond to various semantics of logic prograt
ming, auto-epistemic logic and default logic. Finally, i
should also be noted that the concept of an approximati
as defined in these works corresponds to our definition o
symmetri@approximation.

ID-logic
ID-logic (Denecker & Ternovska 2004b; 2004a) extenc
classical logic with non-monotone inductive definitiong-A
tually, the term “ID-logic” refers to a family of logics, de-
pending on which particular version of classical logic ssrv
as a base, i.e., we have the extengian(I D) of first-order
logic with inductive definitions, the extensigfiO(ID) of
second-order logic with inductive definitions, and so o B
cause the results of this paper concern the structure of
inductive definitions, it does not really matter which bas
logic is considered. For generality, we will uS&(ID).
Following (Denecker & Ternovska 2004a), we start b
presenting standard second-order logic in a slightly no
standard way. In particular, no distinction is made b
tween constant symbols and variables. We assume
infinite supply of object symbolst, y, ..., function sym-
bols f/n, g/n,... of every arityn, andpredicate symbols
P/n,Q/n,...of every arityn. As usual, object symbols are
identified with function symbols of arit§. A vocabulary®
is a set of symbols. We denote By, the object symbols
in 3, by ¢ the function symbols, and by p the predicate
symbols. Termsand atomsof ¥ are defined as usual. A
formula ofX is inductively defined as:

e aX-atomP(ty,...,t,)is aX-formula;

e if ¢ is aX-formula, then so is¢;
o if ¢1 andg, areX-formulas, then so igp; V ¢2);

o if ¢ is a (X U {o})-formula for some symbob, then
(3o ¢) is aX-formula.

If in all quantifications3o of a formula¢, o is an object
symbol, ¢ is calledfirst order*. We also use the usual ab-
breviationsvV and A. LetV be a set of truth values. Most
commonly,V is Ly = {t,f}. Given a certain domaid,

a symbolo can be assigned\aluein D: if o/n € ¥, a
value foro in D is a function of arityn in D; if o/n € Xp,

a value foro in D is a function fromD™ to V.

A (V-valued) structures for vocabularyX:, or (V-valued)
Y-structure S, consists of a domain, denotddg, and a
mapping from each symbelin X to a values® in D for .
TherestrictionS’|s; of aX’-structureS’ to a sub-vocabulary

The first-order versio"O(ID) of ID-logic can be defined
by requiring that all formulas be first-order. All other definition:
would remain the same.

95

.TU Clausthal
11TH NMR WORKSHOP

96

¥ C ¥/, is theX-structureS for which Dg = Dg. and, for
each symbob of 3, 0% = ¢". Under the same conditions,
S’ is called arextensiorof S to ¥’. For each value in Dg
for a symbolo, we denote by5[o/a] the extensiors’ of S

to X U {o}, such thav>" = a. We also use this notation for
tupless of symbols andi of corresponding values.

The value of a X-term ¢ in a X-structureS, also de-
noted t°, is inductively defined as:(f(t1,...,t,))°
57, ...,t3), for a function symbol f and terms
t1,...,tn. We now assume that the set of truth-valoes
is partially ordered by somgy, s.t. (V, <y,) is a complete
lattice. Moreover, we assume that for eacle V', acom-
plementv~! € V exists. ForLy, f <;, t andf~! = t,
t~! = f. We inductively define the truth value of -
formula¢ in aV-valuedX:-structuresS:

P(t,...,tn)% = PS(t7, ..., t3);

(=¢)° = (¢°)7";

(¢ V)® = lube, (6%, 9);

(3o ¢)% = lub<,, {¢%1#/7 | a is a value foro in Dg}.

Given a domainD, adomain atomis a pair(P, @), with
P/n apredicate oE andad € D™. We also write such a pair
asP(d@). The set of all domain atoms is denotedA4is, or,
if D is clear from the context, simpbA¢. For a structure,
we also writeAtg for Atp,. A pre-interpretationH for X
is a structure for the language, i.e., one which interprets
only the object and function symbols &f. A structureS
extendingH to X is called anH-interpretation Clearly,
eachy-valuedX-structure can be seen as consisting of a pre-
interpretation and a mapping fromdty to V. The set of
all H-interpretations is a complete lattice w.r.t. to the order
<, defined as:S <; S iff for all P(a) € At, P(@)° <y
P(a@)".

We now define the syntax used for inductive definitions in
ID-logic. LetX be a vocabulary. Aefinitional ruler of X is
aformula 'V A — ¢,” with A a(XUZ)-atom and a first-
order(X U &)-formula, i.e., no second-order quantifications
are allowed within a definition. The aton is called the
headof r and ¢ is the body of ». The symbol +" is a
new language primitive, thdefinitional implication which
is different from material implication. Alefinition A is a
set of definitional rules, enclosed in curly brackéls A
predicateP for which there is a rulee € A with P in its
head is adefined predicatef A. Predicates that are not
defined inA areopenin A. Given a domainD, we denote
the set of all domain atomB(@) € Atp for which P is
defined inA by Def2, while its complementdt, \ Def?
is denoted a®penX. Once againD is omitted if it is clear
from the context. AX-definition A is a set of definitional
rules. Given a pre-interpretatial, a ruler is a defining
rule of a domain atomP(d) € Defa under a substitution
[#/8] iff risVi P(t) — ¢ with t7[#/d = ¢,

Definition 1. Let ¥ be a vocabulary. AmD-logic formula
of ¥ is inductively defined by extending the definition of a
formula with the additional base case:

e A definition A of X is an ID-logic formula of>.

Examplel. We consider a game played with a pile »of
stones. Two players subsequently remove either one st¢
or two. The player to make the last move wins. The wir
ning positions of this game can be inductively defined k
the following definitionAgame:

Va Win(x) «— Jy Move(x,y) A =Win(y).
Va,y Move(z,y) «—y >0
ANy=z-1)V(y=1z-2).

The second rule defines the legal moves of the game. 1
first rule expresses that a winning position has a move tc
position in which the opponent loses. This rule has be:
around in logic programming since, at least, (Gelder, Ros
& Schlipf 1991) and it therefore illustrates that the conner
tion between inductive definitions and logic programs thi
underlies ID-logic has been implicitly present in the domai
for some time.

To formally state the semantics of such a definition, w
can either work in Belnap’s latticé, = {u,t,f,i} or in
the latticeL3 of pairs of elements of.,. These settings are
known to be equivalent under the mappingrom L2 to L,
defined by: h(f,t) = u, h(t,t) = t, h(f,f) = £, and
h(t,f) = i. For the remainder of this section, we assumr
a certain fixed pre-interpretatio and identify the set of
V-valued H-interpretations withV4?, i.e., with the set of
all V-valued functions odt. We use symbol®, S, . .. for
L,-valued structures anA, S, . .. for Ly-valued structures.
The correspondende betweenZ2 and L, induces an iso-
morphism betweell s-valued structures and paifs,, S2)
of Lo-valued structures: we denote By @ S, the struc-
ture S which assigns to eacP(ad) € At the truth-value
h(P(a@)%, P(@)°2). The set of allS & S with S a L,-valued
structure forms a natural embeddinglofin Ly.

To make it more convenient to relate the semantics of I
logic to approximation theory, we will define this in the lat-
tice L3. The truth value of a formula can be evaluated i
pairs of Lo-valued structures as follows:

Definition 2. Let S; and.S; be L,-valuedX-structures and
¢ a X-formula. Thevalueof ¢ in (Sy,S2) is inductively
defined by:

o P(f)(51:52) = p(§)S1;

o () (51:52) = (()(52:51))~ 1
o (pV 1/))(51,32) — ZUb§L2 (¢(S1,Sz)’w(51’52));

o (Jo ¢)5152) = lube, ({pS1lo/al:52lo/al) | ¢ is a value
foroin Hp}).

Observe that in the rule fofg, the roles ofS; andS; are
switched. It is worth mentioning that for all pai(s$, S2)
of Ly-valued structures, the standaktd-valued evaluation
$31992 is equal toh(p(51:92) | ¢(52:51)) The evaluation in
pairs of Ly-valued structures also has an intuitive appe
of its own: let us consider a structufe approximated by
(51,52), i.e., such thats; <; S <; S,. In the evaluation
of ¢in (S1, S2), all positively occurring atoms are evaluate
with respect to the underestimafie of S, and all negatively
occurring atoms are evaluated with respect to the overe:
mateS; of S. Therefore, the truth value @f in (51, S2) is

Technical Report IfI-06-04

an underestimate of the value 6fin S. Vice versa, in the
evaluation of¢ in (S3, S1), all positively occurring atoms
are evaluated in the overestimatgwhile all negatively oc-
curring atoms are evaluated in the underestin$aténence,
the truth value ofp in (Ss,S1) is an overestimate of the
value of¢ in S.

Intuitively, an inductive definition describes a process by
which, given some fixed interpretation of the open predi-
cates, new truth values for the defined atoms can be derived
from some current truth values for these atoms. We will de-

fine an immediate consequence operdd that maps an

estimate(Sy, S2) of the defined relations to a more precise

estimate7 X (51, S2) = (S7,5%). The new lower bound;

is constructed by underestimating the truth of the bodies of

the rules inA, i.e., by evaluating these if61, .52). When
constructing the new upper bouid, on the other hand, the
truth of the bodies of these rules is overestimated, i.al-ev
uated in(Sz, S1).

Definition 3. Let A be a definition and R;, Rz) a pair
of Ls-valued structures which interprets at leéjtena .

We define a functio’ %) from (LD¢/2)2 to LD/ as
U(ARI’RQ)(Sl, S3) = S, with for eachP(a@) € Defa:

P(a’)s = lub<, ({¢((31U51)[f/ﬂv(RzUSﬂ[f/a]) |
“Vi P(t) « ¢”is a defining rule ofP(a@) in S under(z/c]}).

We define TA(RI’R"’)(Sl,Sg) as
(U(ARI’Rz) (S1, S2), UL (8, 51)).

Each such operator is an approximation. Moreover, for

every Ly-valued R, T\ is symmetric. Everyr{"")
approximates the operatdngl’RQ) on LfefA, defined as
T8 () = &, with (87, 97) = T 72)(3, 5). Some-

times, it will be convenient to use an equivalent operator on

the latticeL,, i.e., for everyR = R; ® Ry andS = 51 @ 5o,
we defineT R (S) = U™ (8, 8,) @ US> (8,, 91).

We now use the well-founded fixpoint of the approximation

TA(R“RQ) to define the semantics of ID-logic.

Definition 4. A Ls-valued structureS' satisfies an ID-logic
formula¢, denotedS = ¢, if ¢° = t, where¢® is defined
by the standard inductive definition of tHg-valued truth
value, extended by the additional base case:

e for a definition A, AS = t if Si|pefa = S|pefa =
SalDefar With (S1, S2) = wf(T5); otherwiseAS =
f.

Even though this definition uses the operaféfcl’RZ) on
pairs of Ly-valued structures (or, equivalently,,-valued

structures), the eventual models of a definition are always
single Lo-valued structures. The intuition here is that a def-

inition should completely and consistently define its define
predicates, i.e., no defined domain atoms shouldx b

i. For alL,-valued structureS, we therefore only say that
S E ¢ iff there exists al»-valuedS, such thatS = S & S
andsS = ¢.

DEPARTMENT OF INFORMATICS

Answer Set Programming

Algebraic dependency relations

This section studies dependency relations in an algebr
context. We assume the following setting. Llebe some
index set and, for eache I, let (L;, <;) be a lattice. LefL
be the produc§?), . ; L; of the set§L;);c7, i.e.,L consists of
all functionsf : I — J,c; L, suchthavi € I : f(i) € L;.
The product ordek g on LisdefinedasVz,y € L,z <g y

iff Vi € I, z(i) <; y(i). Clearly,(L,<g) is also a lattice,
which is complete if all latticegL;, <;) are complete. For
a subset/ C I, we denote byL|; the part®,c;L; of L,
which is equal to the set of all restrictior$;, with x € L.
Now, let O be an operator oi.. We are interested in the
internal structure o w.r.t. the component latticefs; of L.
For instance, what information aboutis used byO to de-
termine the valu¢O(x))(i) of someO(z) in a component
L;? Does such afO(z))(¢) depend on the valug(j) of

x in eachL;? Or is there somg C I, such that the re-
striction x| ; of x to this J already completely determines
what (O(x))(¢) will be? The following concept captures
these basic dependencies expressed by an operator. F
binary relationd on a setS andy € S, we write (fy) for
{z € S| z0y}.

Definition 5. Let O be an operator on a lattide= ®;cL;.

A binary relation~+ on I is a dependency relatioof O
iff for eachi € I andxz,y € L, if |.;) = yl|s), then
(O@))(@) = (O(y))(@)-

An operator can have many dependency relations. In fa
any superset of a dependency relation of an oper@t®s
also a dependency relation ©f Therefore, smaller depen-
dency relations are more informative. An operator does r
necessarily have a least dependency relation.

In (Vennekens, Gilis, & Denecker 2005; Vennekens
Denecker 2005), an algebraic theory of modularity was d
veloped. This theory focuses on the studtratifiableop-
erators, i.e., operators on a latti®, ., L; whose index set
1 can be partially ordered by som¢ such that the value of
(O(x))(7) depends only on the value ofin L <;).

Definition 6. An operatorO on a latticelL. = ®;c;L; is
stratifiablew.r.t. a partial order< on [iff for all =,y € L
andi € I :if 1"(57) = y|(ji) thenO(:L')|(5i) = O(y)|(j7)
The main results from (Vennekens & Denecker 200!

concern the relation between a stratifiable operéiand
certain smaller operators which can be derived f@nfor

J € Iandu € L|p s, we denote by)'; the operator ord|
which maps eaclr € L[; to O(y)[s, with y|p ; = u and
yls = . SuchOY are calleccomponentsf O.

Theorem 1 ((Vennekens & Denecker 2005))Let O be
an operator on a lattice. = ®,;<;L; which is stratifiable
w.r.t. a well-foundetipartial order < on I. Let .7 be a par-
tition of 1. For eachz € L, x is a fixpoint (least fixpoint,
stable fixpoint, or well-founded fixpoint) ©f(assuming that
O is monotone or an approximation, where appropriate) i
for eachJ € 7, z|; is a fixpoint (least fixpoint, stable fix-
JU\I\J

point, or well-founded fixpoint) a?;

2A binary relationd on a setS is well-foundedff there exists
no infinite sequenceo, 1, 2,... € S, S.t.xz;4+10z; for all 4.

97

.TU Clausthal
11TH NMR WORKSHOP

98

We now show that there exists a uniform way of stratify-
ing an operato€), given one of its dependency relations
Let <., be the reflexive, transitive closure ef. For each
i € I, we denote by the equivalencecladg € I | j <., ¢
andi <., j} of i. We denote byF.., the set{i | i € I}
of all equivalence classes &f.. and by=... the partial or-
der onE.., derived from<.., i.e.,foralli,j € I,7 <., J
iff i <., j. Now, O can also be viewed as an operator on
®iep.. Llz. This follows from the fact that any product lat-
tice ®;erL; is isomorphic to® jc 7 ®;c s L;, for any parti-
tion 7 of I. This allows us to relate the concept of a depen-
dency relation to that of stratifiability.

Proposition 1. Let O be an operator orl = ®;<;L;. Ifa
binary relation~+ on I is a dependency relation @, then
O is stratifiable on®;cg_ L|z w.r.t. <.

It can easily be seen that.. is well-founded iff ~ is.
Theorem 1 now implies the following corollary:

Corollary 1. LetO be an operatoron alatticé = ®;c7L;,
with a well-founded dependency relatien. Let 7 be a
partition of I, such that for each equivalence classf <.,
there exists a/ € 7, such that C J. For eachz € L, =
is a fixpoint (least fixpoint, stable fixpoint, or well-foudde
fixpoint) of O (assuming tha© is monotone or an approx-
imation, where appropriate) iff for eacli € 7, z|; is a
fixpoint (least fixpoint, stable fixpoint, or well-founded fix

point) ofoﬁ‘f\".
This results shows that if we know a dependency relation

for an operator, we will be able to split this operator into
components, while still preserving its (various kinds of} fi

Clearly, for a binary relation~ and an interpretatiofk
of someA C At, R is a dependency relation of a definitior
A in R iff for all interpretationsR’ of Opena, such that
R'|a = Rlopena, ~ is a dependency relation df in R'.
This notion of an dependency relation for a definition coir
cides with the previously defined concept of a dependen
relation for an operator.

Proposition 2. If ~~ is a dependency relation &f in some
interpretationR of Opena, then(~~) N DefZ is a depen-
dency relation of .

(Vennekens & Denecker 2005) proves some results abc
dependency relations for ID-logic. Perhaps the most impc
tant one is that a definitiol can be split into any partition
which does not split up the equivalence classes associa
with a dependency relation.

Definition 8. Let A be a definition and let~ be a binary
relation onAt. A partition {Aq,...,A,} of Ais a(~)-
partition iff, for each1 < j < n, if A; contains a rule
defining a predicaté’, thenA ; also contains all rules defin-
ing a predicat&), for which there exist tuples, ¢ of domain
elements, s.1Q(¢) <.. P(d@) andP(ad) <., Q(?).

The algebraic splitting results then show that:
Theorem 2 ((Vennekens & Denecker 2005))Let A be a
Y-definition, R a Ly-valued interpretation oOpena, and
~» a dependency relation &f in R. Let{A;,...,A,} bea

(~)-partition. For eachL,-valuedX-structureS, such that
Slopena = Rlopena: SEAIMSE=ALA---ANA,.

Let us illustrate this by looking at our exampe;,e-

points. Indeed, as long as the stratification is done in such a We take the natural numbeksas our domain and interpret
way that none of the equivalence classes of this dependencythe function— /2 and the object symbol§ 1, 2 in the usual

relation is split over different levels, we know that thidlwi
be the case.

Dependency Relations in ID-logic

In this section, we apply our algebraic results to ID-logic.
We fix a vocabulary and a pre-interpretatiof for 3. We
restrict our attention td{-interpretations, which can there-

fore be viewed as assignments of truth values to domain

atoms. We study properties of ID-logic in the following
product lattice:

Q Li=Li"= Q) Li=(Q L2)°= (L")

P(@)EAt P(@)eAt P(@)EAt

We define the following concept of a dependency relation
for a definition. In (Denecker & Ternovska 2004a), the term
reduction relatiorwas used for such a relation.

Definition 7. Let A be aX-definition andR a L,-valued
H-interpretation which interprets some subdet Aty. A
binary relation~ on Aty is adependency relationf A in

R iff for all Ls-valuedH-interpretationsR’ of Opena, such
thatR'|4 = R|opena. for all Ly-valued H-interpretations

S andS’ of ¥ such thatS|open, = S'opens = R/, for
every rule(VZ P(f) <« ¢) in A, and every valuei for

B i S| pmzrayy = S| p(miz/ay, thengS#/ad =
¢S'[§c’/d’]_

way. We will define a rather coarse dependency relation f
this definition, which only takes into account the predical
symbols of domain atoms. Concretely, letbe the binary
relation onAty, consisting of(k < 1) ~» Move(m,n),
(k = 1) ~ Move(m,n), Move(k,l) ~ Win(m), and
Win(m) ~» Win(n), for all [, k,m,n € N. Because this
~ is dependency relation adhggme, the above theorem
shows thatA game IS equivalent taA yope A Awin, With:

Awin = {Vz Win(z) «— Jy Move(z,y) N -Win(y).};
Aprove =

Va,y Move(x,y) <y >0
{ A((?J:’I—l)v(y:x—?))}

In the next section, a more fine-grained dependency relati
will be used to further analyzAyy;,,.

Constructing dependency relations

So far, we have only considered dependencies at a sem
tical level. In this section, we develop a constructive eha
acterization of certain dependency relations. Recall gha
definition can have many dependency relations. In fact, a
superset of a dependency relation is also a dependency r
tion. While large dependency relations, such as the one u:
to split Agame, Can be easy to find, they are not very infor
mative. In this section, we present a method of constructil

Technical Report IfI-06-04

Answer Set Programming

smaller, more useful dependency relations. We first intro- which Dep4(¢) # {}. The intuition here is that in the first

duce the concept of basefor a formula¢. Intuitively, a
base forg is a setB of domain atoms, s.t. the truth value of
all atoms inB completely determines the truth valuedof

Definition 9. Let ¢ be aX-formula andS a L4-valuedX-
structure. A setB C At is abasefor ¢ in S iff for all
y-structuresS’, s.t.8'|p = S|p, ¢ = ¢°.

case, the truth o is already completely determined by the
truth values of the atoms i, i.e., byS| 4.

Lemma 1. Let ¢ be a formula,A a set of domain atoms,
andS a L,-valuedX-structure. If Dep4(¢) = {}, thenA
is a base fow in S.

It follows from a simple induction over the constructior

Clearly, any superset of a base is also a base. The problemgiven in Definition 10 that, for alb andS’ s.t. S|4 = &’|a,

of finding a dependency relation for a definitidncan be
reduced to that of finding bases for bodies of rules.

Proposition 3. Let A be a definition,R a structure inter-
preting at leastOpena, and ~» a binary relation on.At.
If for all X-structuresS, s.t.S|openn = Rlopena. fOr ev-
ery rule “vz P(i) «— ¢”in A and every tuple, the set
(~ P(t"17/9)) is a base forp in S[F/é], then~ is a de-
pendency relation oA in R.

Pos3(¢) = Poss (¢) and Neg4(¢) = Negs (o). We
now show that this definition indeed captures the desir
concepts.

Proposition 4. Let¢ be a formula,A a set of domain atoms,
andS = (51, 52), 8’ = (57,55) Ly-valued structures such
that (S1,52)[a = (51, 9%)|a. LetP = Pos§ o (¢) =
Pos?i@sé(qﬁ) and N = Negﬁl@sz(gzﬁ) = Negé{@35(¢)'
If Silp <: Si|p and Sa|ny > Sh|n, thenp(S1:52) <,

We now define a method which can be used to extend any ¢(51.52),

set A of domain atoms to a base for a formuyla The fol-
lowing definition introduces both a sébs4 (¢) of domain
atoms which, given some fixed interpretati®for the atoms
in A, influenceg in apositiveway (i.e., greater truth values
for all P(@) € Pos4(¢) lead to a greater truth value for
¢ itself) and a sefVeg4 (¢) of domain atoms which, given
the interpretatiois for A, influencey is anegativeway (i.e.,
greater truth values for the atomsifeg4 (¢) lead to a lesser
truth value for¢ itself). The unionDep4(¢) of these two
sets will contain all atoms which influence the truth value of
¢, givensS.

Definition 10. Let ¢ be a formulaA a set of domain atoms,
and S a Ly-valued X-structure. We definéos4(¢) and
Neg#(¢) by simultaneous inductionDep4 (¢) is used to
abbreviatePos4 (¢) U Negs (¢).

e Forall P(t),s.t. P(t%) € A,
Posg(P(t)) = Negg (P(1)) = {};
o for all other P(%),
PosA(P(#) = {P(i)} andNegd (P(@) = {};
o for all (¢1 V ¢2), S.t. Depa(¢1) = {} and¢$ = t or
Depg(¢2) = {} andgs = t:
Posg(¢1V ¢2) = Negg (¢ V ¢a) = {};
e for all other(¢; V ¢2):
Posf(¢1 V ¢2) = Posa(¢1) U Posa(pz) and
Negg (1 V ¢2) = Negd (¢1) U Negg (¢2);
o forall (3z ¢), s.t. for some: € D, Depgy, ,(¢) = {}
and¢S/d = ¢:
Posd(3x ¢) = Negd(3z 6) = {1
o for all other(3z ¢):
Pos2(3z ¢) = Uuep Posé[x/d](aﬁ) and
Negs(3a ¢) = Uaen Negé‘[r/d] (9);
o forall (—¢):
Posi(—¢) = Neg4(¢) andNegs (—¢) = Poss(¢).

In a number of places, this definition distinguishes be-
tween formulasp for which Dep4 (¢) = {} and those for

DEPARTMENT OF INFORMATICS

It follows that, for all A, AU Depz (¢) is a base 0b in S.
We can now derive a dependency relation for a definition
from the bases of the bodies of its rules. This constructi
works by extending aa priori relation— to a dependency
relation. The point of thig priori relation is to express de-
pendencies from defined predicates on open predicates.
ten, the simple relation~ consisting of allP(a@) — Q(¢)
with P(@) € Opena andQ(¢) € Defa will be used. In
the following definition, we write{— -) to denote the set
Up(a)ea:(— P(@)) of all domain atoms that directly influ-
ence some other atom accordingta

Definition 11. Let A be a definitions— a binary relation on
At, andS a L,-valued structure interpreting at ledst>).
We define the relatior- (respectively—) on At as: for
all P(a@), Q(b), P(@) —% Q(b) iff P(@) — Q(b) or there
is a rule(Vi P(t) «— ¢) € A, such that there exists@&e
Hp, i517/d = g andQ(b) € Posg[_zlfa(“))(qﬁ) (respectively,
Q(b) € Negsz5(¢)). Finally, we define—% as—§
U—g.

The following result now follows directly from Proposi-
tions 3 and 4.

Proposition 5. Let A be a definition and let— be a binary
relation on.At, such that(— -) C Opena. Then for each
structure R interpreting at least(— -), —% is a depen-
dency relation oA in R.

We now further analyze the definitioml\y;, =
{Va Win(z) «— 3y Move(z,y) AN =Win(y)}. Intuitively,
it is clear that, forn € N, Win(n) is influenced by all
Win(m), s.t. there is a move from to m, i.e., Win(0)
influencesWin(1) and, forn > 2, bothWin(n — 1) and
Win(n — 2) influenceWin(n). Moreover, all these influ-
ences are negative, singds winningif n — 1 orn — 2 are
losing

We now show how this information can be derived usin
the concepts defined above. et be the binary relation on
Aty consisting ofM ove(n, m) — Win(n) for all n,m €

99

.TU Clausthal
11TH NMR WORKSHOP

N. LetS be al»-valued structure interpreting the open pred-
icate Move/2. By Definition 11, for everyn € N, the set
{P(d@) € Aty | P(d) —% Win(n)} of domain atoms in-
fluencing Win(n) is precisely equal tmmeNDepg‘: (9),
with 4, = {Move(n,k) |k €N}, S, = Slz/n] and

¢ = Jy Move(x,y) AN ~-Win(y) = Jy ~(—~Move(x,y) V
Win(y)). Letm € N and letS?* = S,[y/m]. Because
(z,y)5" (n,m) and Move(n,m) € A,, itis clear
thatDepg:?(—\Move(x,y)) = Dep?ﬁ (Move(z,y)) = {}.
From this, it now follows that if(—~Move(z,y))%" = t,
i.e., MoveS(n,m) = f, thenDepgr. (¢) = {}. This cor-
responds to the intuition that if there is no move franto

m (according to the chosen interpretatimf M ove/2), m
does not affect whether is winning. On the other hand, if
Move®(n,m) = t, i.e., thereis a move fromn to m, we
see tha’rPos’gi:z(gb) = Neg?ﬁ(Win(y)) andNeg?i; (¢)
Posgr (Win(y)). BecauseNegg: (Win(y)) = {} and
Posgr (Win(y)) = {Win(m)}, we find that in this case
Posgr(¢) = {} and Neggr () = {Win(m)}. Putting
all of this together, we see thgt—%) (—=3)
{(Win(m), Win(n)) | Move®(n,m) =t} U (—). More-
over, if S = Ajpzove, this reduces t¢—g) = {(Win(n —
1), Win(n)) | n > 1} U {(Win(n — 2), Win(n)) | n >
2} U (=).

ID-logic and mathematical induction

ID-logic aims to formalize the principle of inductive defini
tion. As such, the relation between this logic and the kirfds o
inductive definitions regularly found in mathematical prac
tice is an important research topic. (Denecker & Ternovska
2004a) showed that two known classes of definitions—
monotone definitions and definitions over a well-founded
order—correspond to certain classes of ID-logic definitions
Informally speaking, a definition is monotone if its associ-
ated operator is monotone w.r.t. tlig-valued truth-order

<, or, equivalently, the point-wise extensigfy, to L3 of

the order<y,. A definition is a definition by induction over

a well-founded order if there exists a well-founded order on
its domain atoms, s.t. the truth of every atom depends only
on the truth of strictly lower atoms.

Definition 12. Let A be a definition. LeR interpret at least

Opena.

e Aismonotonén R iff 7T is <g-monotone.

e A is adefinition by induction over a well-founded order
in R iff A has a dependency relation in R, such that
the transitive closure of- is a well-founded strictorder.

In (Denecker & Ternovska 2004a), it was shown that the
ID-logic semantics of such definitions coincides with their
usual meaning. Here, we extend this analysis in two ways.
We first characterize a third class, namely thaterated in-
ductive definitionsin a similar way. We then show that the
results of the previous section can be used to develop syn-
tactic criteria by which members of all three of these classe
can be identified. Informally, an iterated inductive defini-
tion consists of a well-founded order of definitions, which

100

are structured in such a way that an atom may depend eit
positively or negatively on an atom defined in a strictly lowe
level, but may only depend positively on atoms defined

the same level. As such, each of these definitionscan be
duced to a monotone definition, by fixing an interpretatic
for all lower levels. In our setting, this corresponds to:

Definition 13. Let A be a definition andR a structure in-
terpreting at leasOpena. A is aniterated inductive def-
inition in R iff there exists a dependency relatien of
7% such that the transitive closure ef is well-founded
and each componef?)Y __is <y-monotone, with/ =

» P(a)
wf(T)l . By
Because every constant operatomigortiori monotone,

the following proposition shows that this class contains ¢
definitions over a well-founded order.

Proposition 6. Let O be an operator on a latticd.
®ierL;. Let~~ be a dependency relation 6f, s.t. the tran-
sitive closure of~ is a strict well-founded order. Léte I,

x € Landu = z|«_;. Then the componetf©)¥ is con-
stant.

Because an iterated inductive definition is nothing mo
than a sequence of monotone definitions, its models can
constructed by incrementally constructing the least firfoi
of the operators associated with each level, given all low
levels. The fact that this also holds in ID-logic, followsifin
the following results:

Proposition 7. Let A be an exact approximation of an oper-
ator O, such thatd is <g-monotone. The® is a monotone

operator andw f (A) = (Ifp(0),1fp(0)).
Proposition 8. Let A be an exact approximation of an oper-
ator O, such thatA is stratifiable w.r.t. a well-founded order

=< and each componen47;”f<A)|<"' of A is <g-monotone.
Then (z,y) wf(A) iff for eachi € I, z|; = y|; =

Lp(O] ™).

It follows directly that, for an iterated inductive defini-
tion A and structureS, S = A iff for all P(a) € At,

Sl = lfp((Tf’S))i‘(;;*m), with ~ a dependency re-

lation satisfying the conditions of Definition 13. In othe
words, models of such definitions can be constructed by
erating a least fixpoint construction, using thevalued im-
mediate consequence operafty.

The constructively defined dependency relations from t
previous section can now be used to complement this
mantical analysis with a more syntactical way of identifyin
members of these three classes of definitions.

Proposition 9. Let A be a definition and let— be a bi-
nary relation on.At, such that(— -) C Opena. LetR
interpret at least(—). If (—%z) C (=), thenAis a
monotone definition. If the transitive closufé&” (—7%,) of
—, is a well-founded strict order, theA is a definition by
induction over a well-founded order. FC(—%,) is well-
founded and-7 is such that for al{ P(a@), Q(¢)) € (—%).
(Q(6), P(d@)) ¢ TC(—%), thenA is an iterated inductive
definition.

Technical Report IfI-06-04

For Aw ., we previously defined a relation», consist-
ing of Move(m,n) — Win(m) with m,n € N, and used
this to construct a dependency relatiesi; for this defini-
tion. It was shown that, for an§ = Arope, <% CONSIsts
of {{n—1,n) | n>1}U{(n—2,n) | n > 2} U (—=).
Because the transitive closure of such(an¥) is clearly a
strict well-founded order, this shows thaty;,, is a defini-
tion over a well-founded order if. Note that, for a struc-
tureS’, such that there existse N with Move® (n,n) = t
(and therefore” = Ansove), Awin is Of course not a defi-
nition over a well-founded order if’. Indeed, in this case,
Win(n) —g Win(n) and therefore none of the above cri-
teria is satisfied.

Conclusion

We have studied the structure of definitions in ID-logic, us-
ing the basic concept of a dependency relation, both at the
concrete level of ID-logic and at the algebraic level of ap-
proximation theory. These results extend work from (De-
necker & Ternovska 2004a) in various ways. Firstly, we
have offered a method for constructing dependency rektion
in ID-logic. Secondly, we extended results concerning the
relation between ID-logic and inductive definitions over a
well-founded order to the more general class of iterated in-
ductive definitions. Finally, we also showed how members
of both these classes can be identified.

This work is part of a larger research effort into mathemat-
ical foundations for ID-logic, which aims to lay the ground-
work for more practical results. We briefly sketch the im-
portance of our work from this point of view. Firstly, the
results presented in the previous section offer additisnpd
port for the hypothesis underlying the entire knowledge rep
resentation methodology of ID-logic, namely that the “in-
ductive definition”-construct of this logic can be undeosto
as the formal equivalent of inductive definitions as they ap-
pear in mathematical texts. Moreover, the concepts we in-
troduced and our taxonomy of inductive definitions will be
useful when applying this methodology to a specific domain.
Secondly, our results can be used to prove properties of the-
ories in ID-logic, such as, e.g., their correctness w.spec-
ification. Finally, we suspect they will also have an impact
on algorithms for reasoning with ID-logic. While ID-logic
is, in general, undecidable, there is ongoing work on iden-
tifying decidable fragments. One trivial such fragmentfis o
course the propositional case. For this, a model generator
is currently being developed. We are investigating how our
work can help to improve its performance. Concretely, we
are considering two complementary approaches. The first
is that, during the generation of the well-founded model,
knowledge about dependency relation can be exploited to
avoid a number of superfluous checks and computations.
The second is that, if a definition is known to belong to some
specific class, then a model generation algorithm can be se-
lected that is tailored specifically to this class. This aagh
seems especially promising in combination with a “prepro-
cessing step” to transform definitions into a more manage-
able form.

This process was already illustrated by our treatment of

DEPARTMENT OF INFORMATICS

Answer Set Programming

the exampleAg.ne. Even a coarse dependency relatio
already shows that this can be split into the conjunctic
Artove N Awin. NOW, Arove IS @ NON-inductive definition
and its well-founded model can therefore be found as a cl
sical model of its completion, which means we can simp
use a SAT-solver for this task. Once the modelof;,,. is
known, a better dependency relation fagy;,, can be con-
structed, which allows us to conclude that this is now a de
inition over a well-founded order. An algorithm specific tc
this class of definitions can then be applied.

As already mentioned in the introduction, the kind c
work presented here has a rich tradition in logic prograr
ming. The use of constructs similar to dependency rel
tions to analyze the structure of programs, identify inte
esting subclasses of programs, and clarify semanticatéss
dates back at least as far as (Apt, Blair, & Walker 198¢
More recently, work such as (Erdem & Lifschitz 2003) ol
the topic oftight logic programsand variants thereof per-
forms an analysis of Answer Set Programs that is very sin
lar to our analysis for ID-logic, studying criteria that Bcé
to conclude that a program belongs to a certain specific,cle
for which interesting properties hold.

References

Apt, K.; Blair, H.; and Walker, A. 1988. Towards a theory
of Declarative Knowledge. Ifoundations of Deductive
Databases and Logic Programming

Denecker, M., and Ternovska, E. 2004a. Inductive situati
calculus. InProc. KR '04 545-553. AAAI Press.

Denecker, M., and Ternovska, E. 2004b. A logic of nor
monotone inductive definitions and its modularity prope
ties. InProc. LPNMR '04

Denecker, M.; Marek, V.; and Truszczynski, M. 2000. Ap
proximating operators, stable operators, well-founded fi
points and applications in non-monotonic reasoning.
Logic-based Artificial IntelligenceKluwer Academic Pub-
lishers. 127-144.

Denecker, M.; Marek, V.; and Truszczynski, M. 2003. Uni
form semantic treatment of default and autoepistemic lo
ics. Artificial Intelligencel43(1):79-122.

Denecker, M. 1998. The well-founded semantics is tt
principle of inductive definition. IrProc. JELIA98 vol-
ume 1489 oL NAI, 1-16.

Erdem, E., and Lifschitz, V. 2003. Tight logic programs
Theory and Practice of Logic Programmii3g499-518.
Gelder, A. V.; Ross, K.; and Schlipf, J. 1991. The well
founded semantics for general logic progrardsurnal of
the ACM38(3):620-650.

Vennekens, J., and Denecker, M. 2005. An algebraic ¢
count of modularity in ID-logic. IrProc. LPNMR’05
Vennekens, J.; Gilis, D.; and Denecker, M. 2005. Splittir
an operator: Algebraic modularity results for logics witl
fixpoint semanticsACM TOCL To appear.

101

.TU Clausthal
11TH NMR WORKSHOP

102 Technical Report IfI-06-04

Answer Set Programming

1.11 Well-Founded semantics for Semi-Normal Extended Logic Pro-
grams

Well-Founded semantics for Semi-Normal Extended Logic Programs

Martin Caminada *
Utrecht University

Abstract Definition 1. Anextended logic prograr® is a finite set of

clauses of the form:
In this paper we present a new approach for apply-

ing well-founded semantics to extended logic programs. C @i, ..., @, Otby, ..., notby(n >0, m >0)

The main idea is not to fundamentally change the def- where eacthc, a; andb; is a positive/negative literal and
inition of well-founded semantics (as others have at- not stands for negation as failure. In the above rule
tempted) but rather to define a few restrictions on the b;(1 < j < m) is called aweakly negated literal The
c%r;tetnt of t'?e‘fi’“iq.ded :?g'clﬂogr"’(‘jmathat ma{‘.e It pos- literal c is called theheadof the rule, and the conjunction
sibie to apply traditional“well-founded semantics in a ai,...,an,notby,... not by is called thebodyof the rule.

very straightforward way. A rule is calledstrictiff it contains no weakly negated liter-

als (that is, ifm = 0), otherwise, the rule idefeasible

Introduction Notice that the head of a rule is never empty, although t

. . body can be empty. If is a literal, then we identify-—1
Well-founded semantics (van Gelder, Ross, & Schlipf 1991) it 1. If P is an extended logic program, thetrict(P)

has originally been stated as an alternative for stable mode gtands for the set of strict rules iR, and defeasible(P)
semantics in normal logic programs. Due to its skeptical na- gtands for the set of defeasible rulesin

ture, it has sometimes been regarded as an easily computable The closureof a set of strict rules consists of all literals
lower bound for the more credulous stable model seman- that can be derived with it, as is stated in the following def
tics. At the same time, well-founded semantics avoids some pition.

of the problems of stable model semantics, in which rela- Definition 2. Let S be a set of strict rules. We defigd(S)

g\;ﬂ% :S;Z”tr? éet%?; gfb?gcr)]::rgeg;()s?agllléer: o:juelsz not a) as the smallest set of literals such thaiSifcontains a rule
) c« ay,...,aganday,...,a, € Ci(S) thenc € CI(S).

With the emergence of extended logic programming (Gel- , , .
fond & Lifschitz 1991), several researchers have attempted T S IS a set of strict rules anfl a set of literals, then we
to apply well-founded semantics to extended logic pro- Write CI(S U L) as an abbreviation afi(SU{1 — | 1 €
grams (Sakama 1992; Brewka 1996). The introduction of L})-
strong negation, however, introduces additional problems Definition 3. We say that a set of literals is consisteniff L
not present in normal (non-extended) logic programming. does not contain a literal and its negation-1. We say that
In this paper, we approach the issue of how to apply well- a set of strict rulesS is consistentff C(.S) is consistent.

founded semantics for extended logic programs not by giv- The idea of P~ (the Gelfond-Lifschitz reduct of a logic
ing another complex and advanced specification of what program P under a set of literals L) is to remove each rt
well-founded semantics for extended logic programs should from P that is “defeated” byL (that is, to remove each

look like, but instead We state a few restrictions onc¢ha- rule Containing a Weak|y negated |itera|[r) and then from
tentof the extended logic programs. We then show that un- the remaining rules to remove all remaining occurrences
der these restrictions, a relatively simple and straightéod weak negation.

definition of well-founded semantics yields a decent and un-

problematic well-founded model Definition 4. Let P be an extended logic program and le

L be a set of literals. We define” as {c « ay,...,a, |
) o c < aj,...,ap,n0tby,...,n0tb, € P(n,m > 0) and
Basic Definitions —-3b;(1 < j <m):b; € L}.
A programconsidered in this paper is ertended logic pro- Well-founded semantics (van Gelder, Ross, & Schlij
gram (ELP) (Gelfond & Lifschitz 1991) containing rules ~ 1991) is a concept originally proposed for non-extende
with weak as well as strong negation. logic programs. As its original description is quite com
plex, we will use the following definition instead (inspirec
*This work has been supported by the EU ASPIC project. by (Brewka 1996)).

DEPARTMENT OF INFORMATICS 103

.TU Clausthal
11TH NMR WORKSHOP

Definition 5. Let P be an extended logic program aiidbe e An argument A based on P is a finite tree of
a set of literals. We defing(L) (the standard stable oper- rules from P such that each node (of the form
ator) asCi(PL). We defind’(L) as~(y(L)). Thewell- Cc < aj,...,ap,notby,...,notb, withn > 0andm >
founded modebf P is the smallest fixpoint df. 0) has exactlyn children, each having a different heac
a; € {ai,...,a}. Theconclusionof A (Conc(A)) is the
The Problem head of its root.

e We say that an argument; defeatsan argumentA, iff

Well-founded semantics (WFS) has been applied success- A, has conclusiore and 4, has a rule containingot c.

fully in non-extended logic programs (Dix 1995a; 1995b).)
Applying WFS for extended logic programs, however, intro- e definedrguments » as the set of arguments that can b
duces the problem that the well-founded model is not guar- constructed using’, and Defeat p as the defeat relation un-
anteed to be consistent. Consider the following example, der P. Let Args C Arguments p. We defin€oncs(Args)
taken from (Caminada & Amgoud 2005). as{Conc(A) | A € Args}.

We say that argumemnt is asubargumenof argumentB
iff Ais a subtree oB. We say that argumemt is adirect
subargumenof argumentB iff A is a subtree oB and there
does not exist an argumefitsuch that” # A, C # B, C
is a subtree oB, andA is a subtree of’.

Example 1.

“John wears something that looks like a wedding ring.”
“John parties with his friends until late.”

“Someone wearing a wedding ring is usually married.”
“A party-animal is usually a bachelor”

“A married person, by its definition, has a spouse” Definition 7. We say that:
“A bachelor, by definition, does not have a spouse” e a set of argumentslrys is conflict-freeiff Args does not
These sentences are represented by the program contain two argumentd and B such thatA defeatsB

r P

e a set of argumentslrgs defendsan argumentA iff for
m < r,not—m b« p,not—b each argumenB that defeatsd, Args contains an argu-

hs «— m —hs « b. mentC that defeats3.

. . Definition 8. Let Args be a set of arguments. We defin
For example 1, applying the unaltered version of WFS ¢ 4,45) as {A | Args does not contain an argument tha

yields a well-founded model dfr, p,m, b, hs, —hs}, which defeatsA} and F'(Args) as f(f(Args)).
is inconsistent.

To cope with this problem, many approaches have been f };(‘zrgshcan %e seelnggg the set of arguments that are
stated. Brewka, for instance, proposes to define the fumctio ¢ 0€d PYATYS (Dung)-
I'(L) not asy(y(L)) but asy(Cn(y(L))), whereCn(L) is Lemma 1. Let P be an extended logic program and Bt
L if L is consistent, ofit if L is not consistent (Brewka be the smallest fixpoint df under P. £ is conflict-free.
1996). Another approach would be to apply paraconsistent
reasoning, as for instance has been done in (Sakama 1992).

An alternative approach would be not to redefine she
manticsof an ELP, but instead to state some additional con-
dglons on thecI;ontfentpf the extendeg |Ogll<zj prografm. lThe conflict-free butF*+1() is not conflict-free. From defini-
above example, for instance, would yield a perfectly ac- 5, 7t then follows that™+1(() contains two arguments$

ceptable outcome if the rulesm « —hs and-b «— hs . 4p qch thatd defeatsB. The fact thatd defeatsB and
were added (which are essentially the contraposed versions ;- Fi+L(()) means that there is an argumeite F%(0)

of hs — mand—hs < b). In that case, the well-founded .+ qofeatsd. The fact thaC defeatsA and A e FitL()
model would be{x, p}. This approach would be quite sim- 00 ihat there is an argumedt € F*()) that defeats

llar to the work that Caminada and Amgoud have done in - “g, then F*(()) would not be conflict-free. Contradic-
the field of formal argumentation, where similar difficuttie tion O

occur (Caminada & Amgoud 2005).

Proof. As E is the smallest fixpoint of” underP, it holds
that (Dung 1995)F = U F*((). Suppose thak is not
conflict-free. AsF is a monotonic function ané™®(9) = 0,
there must be some smallesti > 0) such thatf(() is

The following property follows from definition 6 and 2.
Logic Programming as Argumentation Property 1. LetS be a set of strict rules antl be a literal.
In this section, we will state some theory that allows us to Itholds thatl € C1(S) iff there exists an argument, based

link logic programming to formal argumentation. Using this " S, such th-a'Conc(A) =1 o
theory, we will be able to apply the solution of (Caminada The following property follows from definition 4 and 6.

& Amgoud 2005) in the context of extended logic program- property 2. Let P be an extended logic program addbe
ming. _ _ _ a set of literals. There exists an argumehtbased onP*,
The first thing to do is to define the set of arguments and jith Conc(A) = 1 iff there exists an argumen, based

the defeat relation, given an (extended) logic proglBm on P, with Conc(B) = 1, such thatB does not contain a
We choose a form of arguments that is different from (Dung weakly negated literat € L.

1995) and better suited to our purpose. The functiorry is actually quite similar to the functiofj,

Definition 6. Let P be an extended logic program. as is stated in the following theorem.

104 Technical Report IfI-06-04

Theorem 1. Let L be a set of literals and4drgs be a
set of arguments. L = Concs(Args) then~y(L) =
Concs(f(Args)).

Proof. We need to prove two things:

1. (L) C Concs(f(Args))
Let1 € ~(L). This, by definition 5, means that
CI(P*). From property 1 it follows that there exists an ar-
gument @), based onP”, with Conc(A) = 1. Then, ac-
cording to property 2, there exists an argumé?), pased
on P, with Conc(B) = 1, such thatB does not contain a
weakly negated literak € L. As L = Concs(Arys),
the argumentB is not defeated bydrgs. Therefore,
B € f(Args). As B has conclusiorl it holds that
1 € Concs(f(Args))

2. Concs(f(Args)) C v(L)
Let 1 € Concs(f(Args)) C ~(L). This means that
f(Args) contains some argument (sBY with conclusion
1. That is, there exists an argumeit)(with conclusion
1 that is not defeated bylrgs. From property 2 it then
follows that there exists an argumett based onP” (as
L = Concs(Args)), with Conc(A) = 1. This, by prop-
erty 1, means that € CI(PY), which by definition 5
means that € v(L).

O

The following theorem states that the well-founded
model of a programP coincides with the conclusions
of the grounded extension (Dung 1995) of the argument-
interpretation ofP.

Theorem 2. Let P be an extended logic program. The
grounded extension GE dfdrguments p, Defeat p) coin-
cides with the smallest fixpoint (WFM) &f. That is:
concs(GE) = WFM.

Proof. From theorem 1 it follows that, if = Concs(Arys),
then y(y(L)) = Concs(f(f(Args))), so (L) =
Concs(F'(L)). Therefore, the smallest fixpoint bfis equal
to the conclusions of the smallest fixpointif which is the
grounded extension. O

Semi-Normal Extended Logic Programs

In this section, we define some restrictions on an extended
logic program. An extended logic program that satisfies
these restrictions is calledsami-normakxtended logic pro-
gram (a term inspired by semi-normal default theories). We
then show that a semi-normal extended logic program avoids
problems like illustrated in example 1 by always having a
consistent well-founded model.

Definition 9. Lets; andss be strict rules. We say tha is
a transpositiorof s, iff:

$1 =cC <« ajy,...,a, and
§2 = 7@ < a1,...,3i-1,C, 85 41,--.,8y (L <@ <n).

The intuition behind transposition can be illustrated by
translating a strict rulec < ay,...,a, to a material im-

plicationc C a; A--- A a,. This implication is equivalent
t0—|ai Cal/\-~-/\ai,1/\—|c/\ai+1/\---/\an, which is

DEPARTMENT OF INFORMATICS

Answer Set Programming

again translated tera; «— ajy,...,a;-1,7C, @541, -.,an.
Notice that, whem = 1, transposition coincides with clas-
sical contraposition.

Definition 10. A defeasible rule isemi-normaliff it is of
the form
C < ag,...,ay,notby,...,notby,,not —c.

Definition 11. An extended logic prograrR is calledsemi-
normaliff:

1. strict(P) is consistent,
2. strict(P) is closed under transposition, and
3. defeasible(P) consists of semi-normal rules only

If Ais an argument, then trdepthof A is the number of
nodes on the longest root-originated pathdin If A is an
argument and is a rule inA then thedepth ofr in A is the
number of nodes on the shortest path from the root to a nou
labeled withr.

Lemma 2. Let P be a semi-normal extended logic pro-
gram, Ass (the assumptions) be a nonempty set of stric
rules with empty antecedenfs; «,...,a, <} and A an
argument with conclusioa based orstrict(P)U Ass, such
that A contains an assumptioa; «— (1 < i < n) that
does not occur inP. There exists an argume, based on
strict(P) U Ass U {—c «} such thatB has a conclusion

—aj.
Proof. We prove this by induction on the depth af

basis Let's assume that the depth dfis 1. In that cased
consists of a single rule, which must then have an empit
antecedent. Therefore, the rootémust bec . It then
follows thatc = a;. Therefore, there exists an argument
(A itself) based orstrict(P) U Ass U {—c «} that has
conclusion—a;.

step Suppose the above lemma holds for all strict argumen
of depth< j. We now prove that it also holds for all strict
arguments of deptli+ 1. Let A be an argument of depth
j + 1, based omstrict(P) U Ass, with conclusionc. Let
¢ « Conc(Ay),...,Conc(A,,) be the root ofA. Let A;
be a direct subargument of that contains the assump-
tion a; «. Because the set of strict rules ihis closed
under transposition, there exists a rul€onc(A4;) «—
Conc(Ay),...,Conc(4;_1);¢,Conc(A;t1), ..., Conc(d,,).
The fact that A; has a depth< j means that
we can apply the induction hypothesis. That
is, there exists an argument (sa®’), based on
strict(P) U Ass U {—Conc(4;) «}, with conclusion
—a;. Now, in B’, substitute-Conc(A4;) « by the subar-
gumentﬂConc(Ai) — Aq,..., A1, e, Ai+l7 AL
The resulting argument (call iB) is a strict argument,
based orstrict(P) U Ass U {—c <}, with conclusion

—aj.
O

Theorem 3. Let (Arguments p, Defeat p) be an argumen-
tation framework built from a semi-normal extended logic
program P, and letE be the smallest fixpoint df. It holds
thatConcs(E) is consistent.

105

.TU Clausthal
11TH NMR WORKSHOP

ay, ..., a, it follows without any possible exception thiat
then it also holds that frora,, ..., a; 1, -b,a;41,...,a, it
follows without any possible exception tha;.

c -C -e
ransd D
9 0Sel
A O R,

AL

Figure 1: The working of theorem 3

Proof. Let E be the grounded extension of
(Arguments p, Defeat p). Suppose the conclusions of
E are not consistent. Theld contains an argument (s&)
with conclusionc and an argument (say) with conclusion
—ic. As strict(P) is consistent, at least one of these two

arguments must contain a defeasible rule. Let us, without

loss of generality, assume that contains at least one
defeasible rule. Letl be a defeasible rule ial that has
minimal depth. Notice that the depth @f must be at
least 1, for if d were the top-rule ofA4, then B would
defeatA and E would not be conflict-free (which conflicts
with lemma 1). It now holds that every rule iA with

a smaller depth thad is a strict rule (see also figure 1).
Let A; be a subargument ofl that hasd as its top-rule.
We will now prove that there exists an argument’) in
E that defeatsd;. Let Aq,..., A, be the subarguments
of A that are at the same level a§ in A. Lemma 2
tells us that with the conclusions ofy,..., A,, B it is

possible to construct an argument with a conclusion that is

the opposite of the conclusion of;. Call this argument
D. Now, let D’ be equal toD, but with the assumptions
Conc(A;y) <, ...,Conc(4,) <, Conc(B) « substituted
by the underlying argumentd,, ..., A,, B. It holds that
D’ € FE (this is because each defeater bf is also a
defeater ofd,,...,A,,B € FE, and the fact that’ is a
fixpoint of F' means it defends itself against this defeater,
which means thaD’ € E). D’, however, defeatsl; ond,

so the fact thaD’, A; € E means thaF is not conflict-free,
and (lemma 1) also no fixpoint df. Contradiction. O

Theorem 4. Let P be a semi-normal extended logic pro-
gram. The smallest fixpoint WFM (the well-founded model)
of I" is consistent.

Proof. This follows directly from theorem 2 and theorem
3. O

Discussion

Many scholars in the field of defeasible reasoning distin-
guish two types of abstract rulestrict rules and defeasi-
ble rules(Pollock 1992; Nute 1994; Prakken & Sartor 1997;
Garda & Simari 2004). A strict ruleay,...,a, — b ba-
sically means that i, ..., a, hold, then it iswithout any
possible exceptionlso the case that holds. A defeasible
ruleay,...,a, = b basically means that i, ..., a, hold,
then it isusually(or normally) the case that holds.

One possible application of strict rules is to describe
things that hold by definition (like ontologies). For instan
a cow is by definition a mammal and someone who is mar-
ried by definition has a spouse. For this kind of rules, it ap-
pears that transposition is quite naturally applicablé.olfn

106

In essence, one could say that the problems of exam
1 are caused by the fact that two conclusiansuidb) are
conflicting (asn implieshs, andb implies—hs) but the stan-
dard entailment of ELP is too weak to discover this conflic
Transposition (for strict rules) can thus be seen as a w
of strengthening the entailment, so that this kinds of hidd:
conflicts become explicit, and therefore manageable.

Some formalisms for defeasible reasoning, like (Polloc
1992; 1995), have strict rules that coincide with classic
(propositional or first order) reasoning. That is, there e
ists a strict ruleay,...,a, — biff a;,...,ap, F b. In
such a formalism, example 1 could be represented by !
defeasible rules = m andp = b and by the proposi-
tionsr, p, m D hs andb D —hs. Using these propositions
one can then construct the strict rule§m D hs) — hs
andb,(b D —hs) — —hs, as well as the strict rules
—hs, (m D hs) — —mandhs, (b D —hs) — —b. These
rules can be used not only to construct arguments: famd
b but also to construct the much needed counterargume
deriving—m and—b. By basing strict rules on classical en
tailment, Pollock is able to specify a formalism that avoic
many of the difficult issues that have been plaguing the fie
of extended logic programming.

It is not difficult to see that transposition is a valid prin
ciple in classical logic (fronay, ..., a, F b it follows that
ag,...,ai—1,b,ait+1,...,a, - —a;y). INngeneral, the set of
strict rules generated by classical entailment satisfiggym:
interesting properties. With transposition we have isulat
the specific property of classical logic that is actuallydese
to avoid problems like illustrated by example 1. We simpl
apply the part of classical logic that we actually need, witl
out having to go through the complexities of having to i
plement a full-blown classical logic theorem prover to ger
erate the set of strict rules, as is for instance done in (P
lock 1995). The main cost of our approach is in generatil
the transpositions of the strict rules. For each strict,rale
transpositions are generated, wheris the number of liter-
als in the body of the rule.

As for the defeasible rules, Pollock distinguishes tw
ways in which these can be argued against: rebutting &
undercutting (Pollock 1992; 1995). Rebutting essential
means deriving the opposite consequent (head) of the
whereas undercutting basically means that there is some
ditional information under which the antecedent (body) ¢
the rule is no longer a reason for the consequent (head)
the rule. For instance, suppose that we have the defeas
rule that an object that looks red usually is red. A rebutt
would be that the object is not red, because it is known to
blue. An undercutter would be that the object is illuminate
by a red light. This is not a reason forribt being red, but
merely means that the fact that it looks red can no longer
regarded as a valid reason for it actually being red. Tht
rebutting attacks the consequent (head) of a rule, wher
undercutting attacks merely the connection between the .
tecedent (body) and the consequent (head) of a rule. Poll¢
claims, based on his philosophical work regarding episi

Technical Report IfI-06-04

Answer Set Programming

mology, all forms of defeat can be reduced to rebutting and program and then examines a model generated by an E
undercutting (Pollock 1992). This observation is impottan inference engine. If the ELP inference engine would (in e
as both of these forms of defeat can be modeled using semi- ample 1) provide a model containiadut not containings
normal defeasible rules in extended logic programs. (thus violating closedness) then the user may conclude t
Many problems in logic programming are caused by spe- the ELP inference engine apparently “forgot” somethin
cific logic programs containing anomalous information (a Worse yet, if the ELP inference engine provides a mod
rule like a < not a could for instance cause the absence of containingm andb (thus violating indirect consistency) ther
stable models). If one wants to apply standard and relgtivel the user may reason like: “My inference engine says tr
straightforward semantics then one needs to make sure thatm, and | know that fromm it always follows thats, there-
a logic program does not contain such anomalies. If one fore hs. My inference engine also says thatand | know
provides anomalous input (like stating that a married per- that fromb it always follows that-hs, therefore—hs.” It is
son always has a spouse, without stating that someone whoour view that, from an agent perspective, a formalism th
does not have a spouse is not married, using a formalism does not satisfy indirect consistency cannot be used to g
(ELP) that is not powerful enough to make this inference it- erate the beliefs of an agent, as we think that an agent shc
self) then one should not be surprised that the outcome (the never run into inconsistencies once it starts to do additior
well-founded model) is anomalous as well. For reasons de- reasoning on its own beliefs.
scribed above, we think that that the concept of semi-normal Although ELP-models should ideally be closed under tt
extended logic programs can serve as a quite natural and rea-strict rules ofP, they should not necessarily be closed und
sonable restriction of which programs can be regarded to be the defeasible rules aP. If a is given and there exists a
free of anomalies. rule “if a then normallyb”, then one cannot simply deriue
since the situation may not be normal. The quality postule
of closedness is thus only relevant with respect to striestu
A fourth quality postulate that has, as far as we know, n
been published earlier is that of crash-resistancy:

Quality Postulates

One way to evaluate the different approaches for providing a
suitable semantics for ELP is by providing quality postesat
(Caminada & Amgoud 2005). The idea is to state a number
of general properties that should be satisfied by any formal-
ism for defeasible reasoning, including ELP. In (Caminada
& Amgoud 2005; ASPIC-consortium 2005) the following
quality postulates have been stated:

e crash-resistancy. There should not exist an extended lo
programP, with strict(P) consistent, such that fany
extended logic progran®’, with strict(P’) consistent,
that does not share any atoms withit holds thatP has
the same models (under some specific semanticg)as
P
Crash-resistancy basically states that it should not be p

sible for an extended logic program to contain some piec

of information (P) that makes other totally unrelated piece
of information (P’) totally irrelevant when added.

The above four quality postulates are violated by vai
ous approaches that aim to provide extended logic progra
with a suitable semantics. Indirect consistency, for incta

e direct consistency. LeP be an extended logic program
such thaktrict(P) is consistent, and Ié¢/ be a model of
P (under some specified semantics). It must hold fi7at
is consistent.

e closedness. LeP be an extended logic program and let
M be a model undeP (under some specified semantics).
It must hold thatCi(strict(P) U M) = M.

e indirect consistency. LeP be an extended logic program
such thatstrict(P) is consistent, and let/ be a model
of P (under some specified semantics). It must hold that
Cl(strict(P) U M) is consistent.

The quality postulate of direct consistency is quite
straightforward and is satisfied by most formalisms that we
know of. The quality postulate of closedness basicallyestat

is problematic in approaches that are based on paracon
tent reasoning. When the approach of, for instance, (Saka
1992) is applied to example 1, it produces a well-founde
model ({r,p,m,b,hs, -hs}, {-r,-p, m,—b}). Using
Ginsberg’s 7-valued default bilattice, this means that/on
r, p, m andb (but noths or —hs) are considered true, thus
violating closedness and indirect consistency.

that, as far as the strict rules are concerned, the model is Brewka's approach to well-founded semantics (Brewl
“complete”. The quality postulate of indirect consistency 1996), on the other hand, violates direct consistency als w
does by itself not require that the model is closed under the as crash-resistancy. In examplesiyict(P) is consistent,

strict rules, but instead requires the more modest property but Brewka’s approach nevertheless yields the incongist
that if one would compute the closure of the model under set Lit, which violates direct consistency. As the outcom

the strict rules, the result would at least not contain any in
consistencies.

The above three quality postulates are not completely in-

dependent. Indirect consistency, for instance, impliesotli
consistency. Similarly, closedness and direct consigtenc
imply indirect consistency.

To illustrate the value of the above three quality postu-

of Lit is obtained even when one adds syntactically total
unrelated rules t@, crash-resistancy is violated as well.
The quality postulate of crash-resistancy is violated ley tl
stable model semantics of answer set programming, wh
a simple rule likea <« not a yields no stable models at
all, regardless of what additional (unrelated) informati®
contained in the logic program. A common opinion in th

lates, consider a person who knows a set of strict and defea- ELP-research community is that programs that have no <
sible rules, encodes these as a semi-normal extended logicble models are by definition anomalous and unnatural. \

DEPARTMENT OF INFORMATICS

107

.TU Clausthal
11TH NMR WORKSHOP

hereby would like to argue against this view. Consider a sit-
uation in where persons are usually believed in what they
say, unless information of the contrary is available (rgbut
the person is known to be unreliable (undercut). Now con-
sider the following three persons, who give the following
statements:

e Bert: “Ernie is unreliable.”
e Ernie: “Elmo is unreliable.”
o Elmo: “Bertis unreliable.”

This would correspond with the following extended logic
program:

e bert_says_u_ernie <

e u_ernie < bert_says_u_ernie,not —u_ernie,notu_bert
e ernie_says_u_elmo <

e u_elmo < ernie_says_u_elmo,not —u_elmo,notu_ernie
e elmo_says_u_bert <«

e u_bert < elmo_says_u_bert,not —u_bert,notu_elmo

It is perfectly possible for a situation to occur in which
three persons, sitting in a circle, claim their direct néighr
is unreliable. How this conflict should be dealt with is an
issue open for discussion, but it should at least not cagse th
hearer to enter a state of total ignorence in which also all
other entailment is completely blocked. It is our opinion,
also for reasons described in (Dung 1995) that the problems
of stable model semantics are very often caused by the na-
ture of the semantics itself, and not by an “anomalous” ex-
tended logic program.

Summary and Conclusions

One of the advantages of the approach as sketched in the cur-
rent paper is that it satisfies each of the quality postuldites
rect consistency, indirect consistency, closedness asher
resistancy. Furthermore, it does so without the need of an
advanced semantics that is complex and potentially difficul
to understand. Although the approach only works for the
somewhat restricted notion of semi-normal extended logic
programs, we believe that these restrictions are in essence
quite natural and can be given a decent philosophical justifi
cation.

References

ASPIC-consortium. 2005. Deliverable D2.5: Draft formal
semantics for ASPIC system.

Brewka, G. 1996. Well-founded semantics for extended
logic programs with dynamic preferences. Artif. Intell.
Res. (JAIR%:19-36.

Caminada, M., and Amgoud, L. 2005. An axiomatic
account of formal argumentation. Proceedings of the
AAAI-2005 608—-613.

Dix, J. 1995a. A classification theory of semantics of nor-
mal logic programs: |. strong propertiegsundam. Inform.
22(3):227-255.

108

Dix, J. 1995b. A classification theory of semantics of no
mal logic programs: li. weak propertieBundam. Inform.
22(3):257-288.

Dung, P. M. 1995. On the acceptability of argumen
and its fundamental role in nonmonotonic reasoning, loc
programming anch-person gamesaArtificial Intelligence
77:321-357.

Garda, A., and Simari, G. 2004. Defeasible logic progran
ming: an argumentative approachheory and Practice of
Logic Programming}(1):95-138.

Gelfond, M., and Lifschitz, V. 1991. Classical negation i
logic programs and disjunctive databasdsw Generation
Computing9(3/4):365—-385.

Nute, D. 1994. Defeasible logic. In Gabbay, D.; Hog
ger, C. J.; and Robinson, J. A., eddandbook of Logic
in Artificial Intelligence and Logic Programmingxford:
Clarendon Press. 253-395.

Pollock, J. L. 1992. How to reason defeasibBrtificial
Intelligenceb7:1-42.

Pollock, J. L. 1995.Cognitive Carpentry. A Blueprint for
How to Build a PersonCambridge, MA: MIT Press.
Prakken, H., and Sartor, G. 1997. Argument-based ¢
tended logic programming with defeasible prioritideur-
nal of Applied Non-Classical Logic&25-75.

Sakama, C. 1992. Extended well-founded semantics -
paraconsistent logic programs. FGCS 592-599.

van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991

The well-founded semantics for general logic prograds.
ACM 38(3):620-650.

Technical Report IfI-06-04

Theory of NMR and Uncertainty

2 Theory of NMR and Uncertainty

Nonmonotonic and uncertain reasoning are both aiming at making optimal use of avail-
able information even if it is neither complete nor certain. Whereas the former is in-
fluenced mainly by symbolic or qualitative logics, the latter often uses numbers such
as probabilities or possibilities to specify degrees of uncertainty. For intelligent agents
living in a complex environment, both frameworks provide interesting and powerful
approaches to help them realizing their intentions and goals in a particular effective and
flexible way. Many approaches have been developed in Artificial Intelligence in order
to formalize reasoning under uncertainty, as well as reasoning under incomplete infor-
mation with rules having potential exceptions. Some of them are symbolic and based
on a logical framework or on logic programming. Others are more numerically oriented
and make use of probabilities, or possibilistic logic.

This is the special session on Theory of NMR and Uncertainty, held in Lake District,
England, on June 1st, 2006, in the framework of the 11th International Workshop on
Nonmonotonic Reasoning (NMR’2006).

It gathers 14 contributions that covers various facets of recent researches which are at
the junction between nonmonotonic reasoning and the symbolic and numerical handling
of uncertainty.

The five first papers deal with fusion and revision of (possibily inconsistent) beliefs
and preferences. Didier Dubois’ paper is on the issue of iterated belief revision, dis-
cussing Three views on the revision of epistemic states emerging from three different
paradigms. He elaborates relationships to prioritized merging and to conditional belief
revision, and reveals clashes between some approaches to iterated belief revision and
the famous claim by Gérdenfors and Makinson, that belief revision and nonmonotonic
reasoning are two sides of the same coin.

Guilin Qi, Weiru Liu, and David A. Bell deal in A revision-based approach for han-
dling inconsistency in description logics with revision operators for description logics.
They first investigate their logical properties, and then make use of them to cope with
inconsistency in stratified description logic bases.

In Merging stratified knowledge bases under constraints, Guilin Qi, Weiru Liu,
and David A. Bell propose a family of merging operators for combining stratified
knowledge bases under integrity constraints. These knowledge bases need not be self-
consistent, nor do they have to share a common scale.

In their paper Merging Optimistic and Pessimistic Preferences, Souhila Kaci and
Leon van der Torre distinguish between controllable and uncontrollable variables for
decision making, where the first ones are considered under an optimistic perspective
while the second ones are seen more pessimistic, taking the worst case into account.

Similarity between worlds is a crucial notion for many nonmonotonic consequence
relations, and distance measures are a proper means to make this notion more precise.
Ofer Arieli pursues this idea in his paper Distance-Based Semantics for Multiple-Valued
Logics in the context of paraconsistent logics.

The next two papers concern default rules having exceptions, and logic programming
with default negations.

On Compatibility and Forward Chaining Normality is on extensions of the class of
normal default theories. Mingyi Zhang, Ying Zhang, and Yisong Wang study weakly
auto-compatible default theories and their relationships to auto-compatible default the-
ories and Forward Chaining normal default theories. The latter ones generalize normal
default theories but share most desirable properties with these.

In Incomplete knowledge in hybrid probabilistic logic programs, Emad Saad presents
a probabilistic answer set semantics for annotated extended logic programs, allowing
both classical and default negation in their syntax.

DEPARTMENT OF INFORMATICS 109

.TU Clausthal
11TH NMR WORKSHOP

The two next papers address the formalisation of causality in probabilistic and possi-
bilistic framework. Joost Vennekens, Marc Denecker, and Maurice Bruynooghe present
in Extending the role of causality in probabilistic modeling a logic that uses conditional
probabilistic events as atomic constructs and that is based on two fundamental causal
principles. They show interesting relationships between their work and the theories of
Bayesian networks and probabilistic logic programming, respectively.

The paper Model and experimental study of causality ascriptions by Jean-Francois
Bonnefon, Rui Da Silva Neves, Didier Dubois, and Henri Prade discusses an agent’s
capability of recognizing causal relationships (and related notions of facilitation and
justification) from a psychological point of view. Background knowledge in an uncer-
tain world is here represented by means of nonmonotonic consequence relations.

Miodrag Raskovic, Zoran Markovic, and Zoran Ognjanovic prove in Decidability
of a Conditional-probability Logic with Non-standard Valued Probabilities the decid-
ability of their probabilistic logic that allows the representation of vague or imprecise
probabilistic statements. Their framework covers also the case when conditioning is
done on events of zero probability, and can be used for default reasoning as well.

Nonmonotonic reasoning basically centers around the question how consequences
may change when knowledge is enlarged or shrunken. Technically, this often comes
down to inserting or forgetting chunks of information, represented e.g. by literals. About
the computation of forgetting symbols and literals by Yves Moinard considers this issue
from a computational point of view.

The last three papers deal with argumentation and possibilistic reasoning. In Han-
dling (un)awareness and related issues in possibilistic logic: A preliminary discussion,
Henri Prade sheds some light on the investigation of unawareness in the possibilistic
framework. He points out how different graded modalities here can prove to be useful
for capturing forms of (un)awareness.

Possibilistic Defeasible Logic Programming is already quite a rich framework for
knowledge representation, combining features both from logic programming and argu-
mentation theory, and also allowing possibilistic uncertainty. In On the Computation of
Warranted Arguments within a Possibilistic Logic Framework with Fuzzy Unification,
Teresa Alsinet, Carlos Chesnevar, Lluis Godo, Sandra Sandri, and Guillermo Simari
extend this approach once again by incorporating elements of fuzzy logic.

Finally, in their second paper, Preference reasoning for argumentation: Non-monotonicity
and algorithms, Souhila Kaci and Leon van der Torre apply preference reasoning to ar-
gumentation theory, making it possible to compare the acceptability of arguments via
ordered values.

Session chairs
Salem Benferhat
(benferhat@cril.univ—-artois.fr)

Gabriele Kern-Isberner
(gabriele.kern-isberner@cs.uni-dortmund.de)

Program committee

Gerd Brewka
(brewka@informatik.uni-leipzig.de)

Alexander Bochman
(bochmana@hit.ac.il)

110 Technical Report IfI-06-04

 benferhat@cril.univ-artois.fr
 gabriele.kern-isberner@cs.uni-dortmund.de
brewka@informatik.uni-leipzig.de
bochmana@hit.ac.il

Theory of NMR and Uncertainty

Jim Delgrande
(Jim@cs.sfu.ca)

Marc Denecker
(Marc.Denecker@cs.kuleuven.be)
Angelo Gilio
(gilio@dmmm.uniromal.it)

Lluis Godo

(godo@iiia.csic.es)

Rolf Haenni

(haenni@iam.unibe.ch)

Weiru Liu

(W.Liu@qub.ac.uk)

Thomas Lukasiewicz
(Thomas.Lukasiewicz@dis.uniromal.it)

David Makinson
(david.makinson@kcl.ac.uk)
Robert Mercer
(mercer@csd.uwo.ca)

Henri Prade

(prade@irit. fr)

Bernd Reusch
(Bernd.Reusch@udo.edu)
Karl Schlechta

(kslabQweb.de)

Guillermo Simari
(grs@cs.uns.edu.ar)

Paul Snow
(paulsnow@verizon.net)
Choh Man Teng
(cmteng@ai.uwf.edu)

Leon Van der Torre
(leon.vandertorre@uni. lu)
Emil Weydert
(emil.weydert@uni.lu)

Nic Wilson
(n.wilson@4c.ucc.ie)

Schedule Thursday 1 June 2006 (Thirlmere-Wastwater Room)
Session Chairs: S Benferhat and G Kern-Isberner

e 10.30MRaskovic, Z Markovic, and Z Ognjanovic, Decidability of a conditional-
probability logic with non-standard valued probabilities

e 10.55 Y Moinard, About the computation of forgetting symbols and literals

e 11.20 H Prade, Handling (un)awareness and related issues in possibilistic logic:
A preliminary discussion

DEPARTMENT OF INFORMATICS 111

 jim@cs.sfu.ca
Marc.Denecker@cs.kuleuven.be
 gilio@dmmm.uniroma1.it
 godo@iiia.csic.es
 haenni@iam.unibe.ch
 W.Liu@qub.ac.uk
Thomas.Lukasiewicz@dis.uniroma1.it
 david.makinson@kcl.ac.uk
 mercer@csd.uwo.ca
 prade@irit.fr
 Bernd.Reusch@udo.edu
ks1ab@web.de
 grs@cs.uns.edu.ar
 paulsnow@verizon.net
 cmteng@ai.uwf.edu
 leon.vandertorre@uni.lu
emil.weydert@uni.lu
 n.wilson@4c.ucc.ie

.TU Clausthal
11TH NMR WORKSHOP

112

11.45 T Alsinet, C Chesnevar, L Godo, S Sandri, and G Simari, On the compu-
tation of warranted arguments within a possibilistic logic framework with fuzzy
unificiation

12.10 S Kaci and L van der Torre, Preference reasoning for argumentation: Non-
monotonicity and algorithms

12.35 Lunch
13.50 O Arieli, Distance-based semantics for multiple-valued logics
14.15 E Saad, Incomplete knowledge in hybrid probabilistic logic programs

14.40 J Vennekens, M Denecker, and M Bruynooghe, Extending the role of
causality in probabilistic modeling

15.05 J Bonnefon, R Da Silva Neves, D Dubois, and H Prade, Causality ascrip-
tions: Model and experimental study of

15.30 Coffee
16.00 D Dubois, Three views on the revision of epistemic states

16.25 G Qi, W Liu, and D Bell, A revision-based approach for handling incon-
sistency in description logics

16.50 G Qi, W Liu, and D Bell, Merging stratified knowledge bases under con-
straints

17.15 S Kaci and L van der Torre, Merging optimistic and pessimistic preferences

17.40 M Zhang, Y Zhang andW Yisong, On compatibility and forward chaining
normality

Technical Report IfI-06-04

Theory of NMR and Uncertainty

DEPARTMENT OF INFORMATICS 113

.TU Clausthal
11TH NMR WORKSHOP

2.1 Three views on the revision of epistemic states

Three scenariosfor therevision of epistemic states *

Didier Dubois
IRIT-CNRS
Université Paul Sabatier

Toulouse, France
dubois@rit.fr

Abstract

This position paper discusses the difficulty of interpreting it-
erated belief revision in the scope of the existing literature.
Axioms of iterated belief revision are often presented as ex-
tensions of the AGM axioms, upon receiving a sequence of
inputs. More recent inputs are assumed to have priority over
less recent ones. We argue that this view of iterated revision
is at odds with the claim, made by Gérdenfors and Makin-
son, that belief revision and non-monotonic reasoning are two
sides of the same coin. We lay bare three different paradigms
of revision based on specific interpretations of the epistemic
entrenchment defining an epistemic state and of the input
information. If the epistemic entrenchment stems from de-
fault rules, then AGM revision is a matter of changing plau-
sible conclusions when receiving specific information on the
problem at hand. In such a paradigm, iterated belief revi-
sion makes no sense. If the epistemic entrenchment encodes
prior uncertain evidence and the input information is at the
same level as the prior information and possibly uncertain,
then iterated revision reduces to prioritized merging. A third
problem is one of the revision of an epistemic entrenchment
by means of another one. In this case, iteration makes sense,
and it corresponds to the revision of a conditional knowledge
base describing background information by the addition of
new default rules.

Introduction

The interest in belief revision as a topic of investigation in ar-
tificial intelligence was triggered by Gérdenfors (1988) book
and the axiomatic approach introduced by C. Alchourrén, P.
Girdenfors and D. Makinson (1985) in the setting of propo-
sitional logic. This approach assumes that the set of ac-
cepted beliefs held by an agent is a deductively closed set
of propositions. On this basis, axioms of belief change (re-
vision, but also contraction) formulate constraints that gov-
ern the “flux” of information, i.e. that relate one belief set
to the next one upon receiving a new piece of information.
An important assumption is that belief revision takes place
in a static world, so that the input information is supposed to
bring insight to a case that the agent deals with, but is never

*This position paper was triggered by discussions with Jerome
Lang and Jim Delgrande at a Belief Revision seminar in Dagstuhl,
in August 2005

114

meant to indicate that the world considered by the agent re-
ceiving it has evolved.

The crucial point of the AGM theory is that the axiomatic
framework enforces the existence of a so-called epistemic
entrenchment relation between propositions of the language.
This relation acts like a priority assignment instrumental to
determine the resulting belief set after revision. It is also
similar (even if purely ordinal) to a probability measure.
More specifically, an epistemic entrenchment is a complete
preordering between propositions which looks like a com-
parative probability relation (Fishburn 1986), even if it has
different properties. Properties of an epistemic entrench-
ments make it expressible in terms of a complete plausibility
ordering of possible worlds, such that the resulting belief set
after receiving input A is viewed as the set of propositions
that are true in the most plausible worlds where A holds.

The AGM theory leaves the issue of iterated revision as
an open problem. Since then, iterated revision has been the
topic of quite a number of works (Nayak 1994), (Williams
1995), (Darwiche & Pearl 1997), (Lehmann 1995), (Jin &
Thielscher 2005). However it also seems to have created
quite a number of misunderstandings, due to the lack of in-
sight into the nature of the problem to be solved.

A typical question that results from studying the AGM
theory is: What becomes of the epistemic entrenchment af-
ter the belief set has been revised by some input informa-
tion? Some researchers claimed it was simply lost, and that
the AGM theory precludes the possibility of any iteration.
Others claimed that it changes along with K, and tried to
state axioms governing the change of the plausibility order-
ing of the worlds, viewing them as an extension of the AGM
axioms. This trend led to envisage iterated belief revision as
a form of prioritized merging where the priority assignment
to pieces of input information reflected their recency.

However, this notion of iterated belief revision seems to
be at odds with Girdenfors and Makinson (1994) view of
belief revision as the other side of non-monotonic reasoning,
where the epistemic entrenchment relation is present from
the start and describes the agent’s expectations in the face
of the available evidence. Such an epistemic entrenchment
may also derive from the analysis of a set of conditionals, in

Technical Report IfI-06-04

the style of (Lehmann & Magidor 1992), yielding a ranking
of worlds via the so-called rational closure.

The revised belief set is then the result of a simple infer-
ence step of conditionals from conditionals, whereby propo-
sitional conclusions tentatively drawn are altered by the ar-
rival of new pieces of evidence. In this framework, the con-
ditional information, hence the plausibility ordering, is never
revised and iteration comes down to inference of new con-
clusions and dismissal of former ones, in the spirit of non-
monotonic reasoning.

Solving the clash of intuitions between iterated revision
and non-monotonic reasoning leads us to considering that
the AGM view of belief revision (related to non-monotonic
reasoning) has more to do with inference under incomplete
information than with iterated revision as studied by many
subsequent researchers (see a critical discussion of Dar-
wiche and Pearl(1997) axioms along this line in (Dubois,
Moral, & Prade 1998)). Two settings for revision, namely
revision as defeasible inference, and revision as prioritized
merging emerge, that deal with distinct problems.

This note is also in the spirit of a former position paper by
Friedman and Halpern (1996a). In that note, they complain
that iterated belief revision research relies too much on the
finding of new axioms justified by toy-examples, and repre-
sentation results, while more stress should be put on laying
bare an appropriate “ontology”, that is, describing a concrete
problem or scenario that iterated revision is supposed to ad-
dress. Friedman and Halpern suggest two such ontologies,
that basically differ by the meaning of the input information.
According to the first one, the agent possesses knowledge
and beliefs about the state of the world, knowledge being
more entrenched than beliefs, and receives inputs consid-
ered as true observations. This view is similar to a form
of conditioning in the sense of uncertainty theories. In the
other scenario, the input information is no longer system-
atically held for true and competes with prior beliefs, thus
corresponding to a kind of merging bearing much similarity
to the combination of uncertainty in the theory of evidence
(Shafer 1976).

In this paper, we somewhat pursue this discussion by
pointing out that the status of the epistemic entrenchment
itself may also be understood differently: in some scenar-
ios, it represents background information about the world,
telling what is normal from what it is not, in a refined way. In
that case, the plausibility ordering underlying the epistemic
entrenchment is similar to a statistical probability distribu-
tion, except that the underlying population is ill-specified,
and statistical data is not directly accessible. In other sce-
narios, the plausibility ordering expresses beliefs about un-
reliable observations about the solution to a problem at hand,
the pieces of evidence gathered so far from witnesses on a
whodunit case, for instance. In the latter situation, the result-
ing epistemic entrenchment is fully dependent on the case at
hand and has no generic value.

It leads to propose three change problems that have little
to do with each other even if they may share some technical

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

tools. If we take it for granted that belief revision and non-
monotonic reasoning are two sides of the same coin and if
we rely on technical equivalence results between Lehmann
and Magidor(1992) conditional logic under rational closure,
and the AGM theory, then we come up with a qualitative
counterpart of statistical reasoning, with inputs taken as in-
complete but sure information about a case at hand. We call
it Belief Revision as Defeasible Inference (BRDI). On the
other hand, if we take it for granted that the epistemic en-
trenchment gathers uncertain evidence about a case, likely
to evolve when new uncertain pieces of evidence are col-
lected, we speak of Belief Revision as Prioritized Merging
(BRPM). Finally, we consider the situation where our back-
ground knowledge is modified by new pieces of knowledge,
whereby states of fact that we used to think as normal turn
out not to be so, or conversely. We then speak of Revision of
Background Knowledge by Generic Information (RBKGI).
In the latter case, inputs take the form of conditionals.

It may be that other scenarios for belief change could be
pointed out. However, we claim that iterated revision in
each of the above scenarios corresponds to very different
problems. A companion paper (Delgrande, Dubois, & Lang
20006) proposes a formal framework for the BRPM situation
in full details. Here, we propose an informal comparative
discussion of the three scenarios.

Belief Revision as Defeasible Inference (BRDI)

In the first setting, the AGM theory and non-monotonic rea-
soning are really regarded as two sides of the same coin.
However, while in the AGM approach, only a flat belief
set denoted K, composed of logical formulas, is explicitly
available (since the epistemic entrenchment is implicit in
the axioms of the theory), the nonmonotonic logic approach
lays bare all the pieces of information that allows an agent
to reason from incomplete reliable evidence and background
knowledge. While in the AGM paradigm, the primitive ob-
ject is the belief set, in the following, everything derives
from conditional information, synthetized in the form of a
partial ordering of propositions, and the available evidence.
This view is fully developed by Dubois Fargier and Prade
(2004) (2005) as a theory of accepted beliefs.

In the following, we consider a classical propositional lan-
guage, and we do not distinguish between logically equiva-
lent propositions. Hence, we consider propositions as sub-
sets of possible worlds, in other words, events (to borrow
from the probabilistic literature). The influence of syntax on
revision is out of the scope of this paper. Under such a pro-
viso, it is assumed that the agent’s epistemic state is made of
three components:

1. A confidence relation, in the form of a partial ordering >
on propositions A, B, ... expressed in a given language.
This relation, which should be in agreement with logi-
cal deduction, expresses that some propositions are more
normally expected (or less suprizing) than others. It en-
codes the background information of the agent, which de-

115

.TU Clausthal
11TH NMR WORKSHOP

scribes how (s)he believes the world behaves in general.
It reflects the past experience of the agent. Such a con-
fidence relation may directly stem from a set of condi-
tionals A. A contains pieces of conditional knowledge
of the form A — B where — is a nonclassical implica-
tion, stating that in the context where all that is known is
A, B is generally true. Each such conditional is then en-
coded as the constraint A A B = A A =B, understood as
the statement that A A B is generally more plausible (that
is, less surprizing) than A A =B (Friedman & Halpern
1996b). A plausibility ordering of worlds >, can be de-
rived from such constraints via some information mini-
mization principle (like rational closure of Lehmann and
Magidor (1992), or equivalently, the most compact rank-
ing compatible with the constraints(Pearl 1990), or yet the
principle of minimal specificity of possibilistic logic (see
(Benferhat, Dubois, & Prade 1997) for instance).

2. A set of contingent observations concerning a case of in-

terest for the agent, under the form of a propositional for-
mula A. The observations are sure evidence about this
case, not general considerations about similar cases. Such
pieces of evidence are sure facts (or at least accepted as
such), hence consistent with each other. It means that a
preliminary process is capable of handling conflicting ob-
servations and come up with a consistent report.

3. The belief set K = A of the agent. It is made of propo-

116

sitions tentatively accepted as true by the agent about the
case, in the face of the current observations. Propositions
in K x A are inferred from the observations and the back-
ground knowledge (so it is not an independent part of the
epistemic state). K is the belief set of the agent before
hearing about A. That input information is safe explains
why the success postulate (4 € K x A) makes sense.

For instance consider a medical doctor about to diagnose
a patient. It is assumed that the aim is to determine what
the patient suffers from within a time-period where the dis-
ease does not evolve. The plausibility ordering reflects the
medical knowledge of the medical doctor in general. Before
seeing the patient, (s)he may have some idea of which dis-
eases are more plausible than others. Observations consist
of reports from medical tests and information provided by
the patient on his state of health. The resulting belief set
contains the diagnosis of the patient that will be formulated
by the doctor on the basis of the available observations. This
belief set concerns the patient, not people’s health in general.

Formally, under this view, the original belief set K is in-
ferred from A, or from >, or from >, (according to the
choice of a representation) and from the tautology as input
(A = T, assuming no observations). K x A is derived like-
wise from input A. In terms of conditionals, the change from
K to K x A stems from the fact that the conditionals T — K
and A — K x A, respectively, can be inferred from A under
some inferential system. In terms of a confidence relation
> between propositions K * A = {B,AANB = AN -B}.
Dubois et al. (2005) show that requiring the deductive clo-
sure of K % A is enough to recover system P of Kraus et
al.(1990). Moreover if > is the strict part of a complete

preordering, one recovers the setting of possibility theory
(Dubois, Fargier, & Prade 2004) and all the AGM axioms
of belief revision (restricted to consistent inputs). In other
words, > is a comparative possibility relation in the sense
of Lewis(1973), that derives from a plausibility ordering > .
of possible worlds. Under a plausibility ordering >, it is
well-known after Grove(1988) that K (resp. K = A) are the
set of propositions true in the most plausible worlds (resp.
where A is true).

This approach is very similar to probabilistic reasoning as
emphasized by Pearl (1988), Dubois and Prade (1994). A
set of conditionals A is the qualitative counterpart of a set of
conditional probabilities of the form P(B | A) = « defin-
ing a family of probability measures. There is no need to re-
sort to infinitesimals for bridging the gap between nonmono-
tonic reasoning and probabilistic reasoning. Recent works
by Gilio and colleagues (2002) indicate that probabilistic
reasoning with conditionals of the form P(B | A) = 1,
precisely behaves like system P of Kraus et al. Benferhat et
al. (1999), show that if we restrict to so-called big-stepped
probabilities, conditionals can be interpreted by constraints
P(AAB) > P(AA-B).

Along the same lines, extracting a minimally informative
plausibility ordering of worlds >, from a set of condition-
als is very similar to the application of the maximal entropy
principle from a set of conditional probabilities, an approach
advocated by Paris (1994). This similarity has been stud-
ied by Maung(1995). So reasoning according to a plausi-
bility ordering is also similar to probabilistic reasoning with
Bayes nets (Pearl 1988). In this approach, the background
knowledge is encoded by means of a (large) joint probabil-
ity distribution on the state space defined by a set of (often
Boolean) attributes. This probability distribution embodies
statistical data pertaining to a population (e.g. of previously
diagnosed patients, for instance) in the form of a directed
acyclic graph and conditional probability tables. The ad-
vantage of the Bayes net format is to lay bare conditional
independence assumptions and simplify the computation of
inference steps accordingly. The network is triggered by the
acquisition of observations on a case. Inferring a conclu-
sion C based on observing A requires the computation of a
conditional probability P(C' | A), and interpreting it as the
degree of belief that C' is true for the current situation for
which all that is known is A. Apart from computing degrees
of belief, one is interested in determining the most probable
states upon learning A.

It is clear that the plausibility ordering in the above view
of the AGM framework plays the same role as a Bayes net.
Especially, >, might compile a population of cases, even
if this population is ill-defined in the non-monotonic set-
ting (the agent knows that “Birds fly” but it is not entirely
clear which population of birds is referred to). It means that
the input observations, since pertaining only to the case at
hand, are not of the same nature as the plausibility ordering,
and are not supposed to alter it, just like a Bayes net is not
changed by querying it. In this framework, iterating belief
change just means accumulating consistent observations and

Technical Report IfI-06-04

reasoning from them using the background knowledge. In-
terestingly, plausibility orderings, encoded as possibility dis-
tributions can be represented using the same graphical struc-
tures as joint probability distributions (see (Benferhat et al.
2002a)), and local methods for reasoning in such graphs can
be devised (BenAmor, Benferhat, & Mellouli 2003). These
graphical representations are equivalent to the use of possi-
bilistic logic, but not necessarily more computationally effi-
cient. In the purely ordinal case, CP-nets are also the coun-
terparts of Bayes nets, and it is strange they are only pro-
posed for preference modeling, while they could also im-
plement a form of plausible reasoning compatible with the
above “ontology” of qualitative reasoning under incomplete
observations using background knowledge.

Belief Revision as Prioritized Merging

A radically different view is to consider that an epistemic
state is made of uncertain evidence about a particular world
of interest (a static world, again). It gathers the past uncer-
tain observations obtained so far about a single case. So the
belief set K is actually a completely ordered set (ordered by
the epistemic entrenchment), and the underlying plausibility
ordering on worlds describes what is the most plausible so-
lution to the problem at hand. The epistemic entrenchment
describes what should be more or less believed about the
current case. In the BRPM view, the plausibility ordering is
no longer like a statistical distribution.

The new observations A have the same status as the plau-
sibility ordering, and are likely to modify it. They are testi-
monies or sensor measurements. They could be unreliable,
uncertain.

So this kind of belief change is particularly adapted to the
robotics environment for the fusion of unreliable measure-
ments. It also accounts for the problem of collecting evi-
dence, where the main issue is to validate facts relevant to
a case on the basis of unreliable testimonies and incomplete
observations. As an example, consider a criminal case where
the guilty person is to be found on the basis of (more or less
unreliable) testimonies and clues. The investigator’s beliefs
reflect all evidence gathered so far about the case. The input
information consists of an additional clue or testimony.

Under this view, belief revision means changing the pair
(K, >,) into another pair (K * A,>,,). Again the belief
set K is induced by the plausibility ordering, but here there
is no background knowledge at work. A new input should
be merged with the existing information, with its own relia-
bility level. If this level is too weak, it may be contradicted
by the original belief set. Note that K cannot be viewed as
knowledge (as opposed to belief). It is just what the agent
thinks is more likely. Here, iterating the revision process
makes sense, and comes down to a merging process because
the a priori information and the input information are of the
same nature. The success postulate just expresses the fact
that the newest information is the most reliable. Not ques-
tioning this postulate has led to a view of iterated belief revi-

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

sion where the newest piece of information is always more
reliable than the previous ones.

One may argue that iterated belief revision can be more
convincingly considered as a form of prioritized merging.
Indeed, it seems that assigning priorities on the sole basis of
the recency of observations in a static problem about which
information accumulates is not always a reasonable assump-
tion. Sherlock Holmes would not dismiss previously estab-
lished facts on the basis of new evidence just because such
evidence is new.

At the computational level, an epistemic state (K, >)
is best encoded as an ordered belief base using possibilis-
tic logic (Dubois, Lang, & Prade 1994) or kappa rankings
(Williams 1995). However the meaning of a prioritized be-
lief base differs according to whether it is viewed as a partial
epistemic entrenchment (what Williams calls an “ensconce-
ment”) or as a set of constraints on a family of possible epis-
temic entrenchments (possibilistic logic). Practical methods
for merging ordered belief bases were devised in (Benferhat
et al. 1999), (Benferhat et al. 2000) and in the special case
when the success postulate is acknowledged see (Benferhat
et al. 2002c).

The numerical counterpart to this view of iterated revision
here is to be found in Shafer(1976)’s mathematical theory
of evidence. In this theory, an unreliable testimony takes
the form of a proposition E and a weight m(E) reflecting
the probability that the source providing E is reliable. It
means that with probability 1 —m(E), the input information
is equivalent to receiving no information at all. More gen-
erally, a body of evidence is made of a set of propositions
E; along with positive masses m(E;) summing to 1. m(E;)
is the probability that proposition E; correctly reflects the
agent’s evidence about the case at hand. The degree of belief
Bel(C) of a proposition C' is the probability that C' can be
logically inferred from the agent’s body of evidence (sum-
ming the masses of propositions E; that imply C'). Revising
the agent belief upon arrival of a sure piece of information A
(m/(A) = 1) comes down to a conditioning process ruling
out all states or worlds that falsify A. If the input informa-
tion is not fully reliable, Dempster’s rule of combination, an
associative and commutative operation, carries out the merg-
ing process. Note that the symmetry of the operation is due
to the fact that the new pair (A, m’(A)) is merged with the
body of evidence. The smaller m'(A), the less effective is
the input information A in the revision process.

When the input information is legitimately considered as
more reliable than what has been acquired so far, merging
the plausibility ordering and the new observation in a non-
commutative way is a possible option. A similar view was
advocated by (Dubois & Prade 1992) where the plausibility
ordering was encoded by means of a possibility distribution.
The AGM axioms were extended to plausibility orderings
>, and are thus discussed in terms of their relevance for
characterizing the revision of possibility distributions by in-
put information. The success postulate led us to consider
belief revision as a form of conditioning, in the tradition of

117

.TU Clausthal
11TH NMR WORKSHOP

probability kinematics (Domotor 1980).

Darwiche and Pearl (1997) axioms of iterated belief
change embody the principle of minimal change of the or-
dering that is expected when the priority is always given
to the new information. Among revision operations sat-
isfying these postulates (applied to plausibility orderings)
Boutilier’s natural revision (Boutilier 1993) can be viewed
as iterated revision of a plausibility ordering >, with pri-
ority to the new input A. In this scheme, the resulting most
plausible worlds are the > -best A-worlds, all other things
remaining equal, while possibilistic conditioning flatly elim-
inates worlds not in agreement with the input information
(thus not obeying the Darwiche-Pearl postulates). Papini
and colleagues (Benferhat et al. 2002b) adopt the view that
in the resulting plausibility ordering all A-worlds are more
plausible than any —A-world all things being equal. This
method also satisfies the Darwiche-Pearl postulates.

The case of uncertain inputs is discussed in (Dubois &
Prade 1992). It is pointed out that two situations may oc-
cur: one whereby the degree of certainty of the new piece of
information is considered as a constraint. Then, this piece
of information is to be entered into the a priori ordered be-
lief set with precisely this degree of certainty. If this degree
of certainty is low it may result in a form of contraction (if
the source reliably claims that a piece of information can-
not be known, for instance). In probability theory this is at
work when using Jeffrey’s revision rule (Jeffrey 1965). Dar-
wiche and Pearl (1997) propose one such revision operation
in terms of kappa-functions. The other view is that the de-
gree of uncertainty attached to the input is an estimation of
the reliability of the source, and then the piece of informa-
tion is absorbed or not into the belief set. The latter view is
more in line with the prioritized merging setting.

The companion paper (Delgrande, Dubois, & Lang 2006)
reconsiders postulates for iterated revision without making
any recency assumption: there is a certain number of more
less reliable pieces of information to be merged, one of them
being the new one. If we postulate that all uncertain obser-
vations play the same role and have the same reliability, a
symmetric (and possibly associative) merging process can
take place.

Reliability degrees are no longer a matter of recency, but
can be decided on other grounds. In (Delgrande, Dubois,
& Lang 2006), four axioms, for the prioritized merging of
unreliable propositions into a supposedly accepted one are
proposed. They embody the BRPM scenario of evidence
collection and sorting producing a clearly established fact (a
propositional formula representing a belief set). Informally
they express the following requirements:

e A piece of information at a given reliability level should
never make us disbelieve something we accepted after
merging pieces of information at strictly higher reliabil-
ity levels.

e The result of merging should be consistent.

e Vacuous evidence does not affect merging.

118

e Optimism: The result of merging consistent propositions
is the conjunction thereof.

The important postulate is optimism, which suggests that
if supposedly reliable pieces of information do not conflict,
we can take them for granted. In case of conflicts, one may
then assume as many reliable pieces of information as pos-
sible so as to maintain local consistency. It leads to opti-
mistic assumptions on the number of truthful sources, and
justify procedures for extracting maximal consistent subsets
of items of information, see (Dubois & Prade 2001). This
may be viewed as an extended view of the minimal change
postulate, via the concern of keeping as many information
items as possible. A restricted form of associativity stat-
ing that merging can be performed incrementally, from the
most reliable to the least reliable pieces of information is
proposed as optional. These axioms for prioritized merging
recover Darwiche and Pearl postulates (except the contro-
versial C2 dealing with two successive contradictory inputs)
as well as two other more recent postulates from (Nayak
et al. 1996; Nayak, Pagnucco, & Peppas 2003), and from
(Jin & Thielscher 2005), when the reliability ordering corre-
sponds to recency. It also recovers the setting of Konieczny
and Pino-Perez (2002) for flat merging under integrity con-
straints for the fusion of equally reliable items in the face
of more reliable ones. The prioritized merging setting of
(Delgrande, Dubois, & Lang 2006) can also be viewed as
a framework for extracting a set of preferred models from
a potentially inconsistent prioritized belief base. Extending
the postulates to outputs in the form of an ordered belief set
is a matter of further research.

Interestingly, the BRPM scenario can be articulated with
the previous BRDI scenario. One may see the former as a
prerequisite for the latter: first evidence must be sorted out
using a BRPM step, and then once a fact has been suffi-
ciently validated, the agent can revise plausible conclusions
about the world, based on this fact using BRDI (in order to
suggest the plausible guilty person in a case, thus guiding
further evidence collection).

AGM = BRDI or BRPM ?

Considering the relative state of confusion in the iterated re-
vision literature, it is not completely clear what the AGM
theory is talking about: BRDI or BRMP. Due to the stress
given subsequently by Girdenfors and Makinson (1994) to
the similarity between non-monotonic reasoning and belief
revision, it is natural to consider that BRDI is the natural
framework for understanding their results. But then it fol-
lows that iterated revision deals with a different problem,
and the above discussion suggests it can be BRMP.

1. In the AGM theory you never need K to derive K * A,
you only need the revision operation * (in other words the
plausibility ordering) and A. So the notation K * A is
in some sense misleading, since it suggests an operation
combining K and A. This point was also made by Fried-
man and Halpern (1996a) In the BRPM view, the result-

Technical Report IfI-06-04

ing epistemic state is also a function of the prior epistemic
state and the input information only.

. The AGM postulates of belief revision are in some sense
written from a purely external point of view, as if an ob-
server had access to the agent’s belief set from outside,
would notice its evolution under input information viewed
as stimuli, and describe its evolution laws (the AGM the-
ory says: if from the outside, an agent’s beliefs seem to
evolve according to the postulates, then it is as if there
were a plausibility ordering that drives the belief flux). In
this view, the background knowledge remains hidden to
the observer, and its existence is only revealed through
the postulates (like small particles are revealed by theo-
ries of microphysics, even if not observed yet). In the
BRPM problem, the prior plausibility ordering is explic-
itly stated. Under the BRDI view, for practical purposes, it
also looks more natural to use the plausibility ordering as
an explicit primitive ingredient (as done by (Gérdenfors
& Makinson 1994) and to take an insider point of view
on the agent’s knowledge, rather than observing beliefs
change from the outside.

. The belief revision step in the AGM theory leaves the or-
dering of states unchanged under the BRDI view. This is
because inputs and the plausible ordering deal with differ-
ent matters, resp. the particular world of interest, and the
class of worlds the plausible ordering refers to. The AGM
approach, in the BRDI view is a matter of “querying” the
epistemic entrenchment relation, basically, by focusing it
on the available observation. Under this point of view,
axioms for revising the plausibility ordering, as proposed
by (Darwiche & Pearl 1997), for instance, cannot be seen
as additional axioms completing the AGM axioms. On
the contrary, the prioritized merging view understands the
AGM axioms as relevant for the revision of epistemic
states and apply them to the plausibility ordering. As such
they prove to be insufficient for its characterization, hence
the necessity for additional axioms.

. In BRDI, while belief sets seem to evolve (from K to K *
Ato (K x A) x B ...) as if iterated belief revision would
take place, (K % A) * B is really obtained by gathering the
available observations A and B and inferring plausible
beliefs from them. Again we do not compute (K x A) x B
from K x A. But (K * A)x B means K x (A A B) (itself not
obtained from K), with the proviso that A and B should
be consistent. And indeed, within the BRDI view,

(KxA)xB=Kx*x(AANB)ifAANB# L

is a consequence of AGM revisions (especially Axioms 7
and 8), if we consider that after revision by A the plausi-
bility ordering does not change (we just restrict it to the
A-worlds). Strictly speaking, these axioms say that the
identity holds if B is consistent with K % A (not with
A). However, if the relative plausibility of worlds is not
altered after observing A, the subsequent revision step
by observation B will further restrict >, to the A A B-
worlds since A A B # L, and the corresponding belief
set is thus exactly K = (A A B) corresponding the most
plausible among A A B-worlds. It underlies an optimistic

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

assumption about input information, namely that both A
and B are reliable if consistent (a postulate of prioritized
merging). This situation is similar to probabilistic con-
ditioning whereby iterated conditioning (P(C | A | B))
comes down to simple conditioning on the conjunction of
antecedents (P(C | A A B)). Of course this is also a re-
stricted view of the AGM theory, forbidding not only the
revision by L, but also by a sequence of consistent in-
puts that are globally inconsistent. But we claim that this
restriction is sensible in the BRDI scenario.

5. If in the AGM setting, observations A, B are inconsistent

then the BRDI scenario collapses, because it means that
some of the input facts are wrong. In this case, even if the
AGM theory proposes something, the prospect it offers is
not so convincing, as this is clearly a pathological situ-
ation. Similarly, in probabilistic reasoning, conditioning
on a sequence of contradicting pieces of evidence makes
no sense. Within the BRDI view, the natural approach is
to do a merging of observations so as to restore a con-
sistent context prior to inferring plausible beliefs (and as
suggested above, the BRPM could be applied to the merg-
ing of such inconsistent input observations). In the med-
ical example, it is clear that the physician receiving con-
tradictory reports about the patient will first try to sort out
the correct information prior to formulating a diagnosis.
In the BRPM view, there is nothing anomalous with the
situation of several conflicting inputs, because this con-
flict is expected as being of the same nature as the pos-
sible conflict between the agent’s epistemic state and one
piece of input information.

In summary, under the BRDI view, the belief revision
problem (moving from K to K * A) is totally different from
the problem of revising the plausible ordering of states of na-
ture, while in the BRPM view both are essentially the same
problem and must be carried out conjointly. In particular, it
makes no sense to “revise an ordering by a formula”, in the
AGM framework. In the BRPM view, the input proposition
A is viewed as an ordering of worlds such that at least one
world where A is true is more likely than any world where
A is false. In other words, belief revision can be cast within
a more general setting of merging uncertain pieces of evi-
dence (encoded by plausibility orderings).

Revision of Background Knowledge by
Generic Information (RBK GI)

In the BRDI view, apart from the (contingent) belief revi-
sion problem addressed by the non-pathological part of the
AGM theory and non-monotonic inference, there remains
the problem of revising the generic knowledge itself (en-
coded or not as a plausibility ordering) by means of input
information of the same kind. The AGM theory tells noth-
ing about it. This problem is also the one of revising a set of
conditionals by a new conditional (Boutilier & Goldszmidt
1993). Comparing again to probabilistic reasoning, contin-
gent belief revision is like computing a conditional probabil-
ity using observed facts instantiating some variables, while

119

.TU Clausthal
11TH NMR WORKSHOP

revising a plausibility ordering is like revising a Bayes net
(changing the probability tables and/or the topology of the
graph). In the medical example, the background knowledge
of the physician is altered when reading a book on medicine
or attending a specialized conference on latest developments
of medical practice.

One interesting issue is the following: since background
knowledge can be either encoded as a plausibility ordering
>, or as a conditional knowledge base A, should we pose
the RBKGI problem in terms of revising A or revising > ?

Suppose A is a conditional knowledge base, which, using
rational closure, delivers a plausibility ordering > of possi-
ble worlds. Let A — B be an additional generic rule that is
learned by the agent. If A U {A — B} is consistent (in the
sense that a plausibility ordering >,/ can be derived from
it), it is natural to consider that the revision of > yields the
plausibility ordering >, obtained from A U {A — B} via
rational closure. Viewed from the conditional knowledge
base this form of revision is just an expansion process. The
full-fledged revision would take place when the conditional
A — B contradicts A, so that no plausibility ordering is
compatible with AU {A — B} (Freund 2004). This kind of
knowledge change needs specific rationality postulates for
the revision of conditional knowledge bases, in a logic that
is not classical logic, but the logic of conditional assertions
of Kraus et al.(1990).

Alternatively, one may attempt to revise the plausibil-
ity ordering >, (obtained from A via a default informa-
tion minimisation principle), using a constraint of the form
AAB > AN—-B. To do so, Darwiche-Pearl postulates can be
a starting point, but they need to be extended in the context
of this particular type of change. Results of (Freund 2004)
and (Kern-Isberner 2001) seem to be particularly relevant
in this context. For instance it is not clear that the change
process should be symmetric. One might adopt a principle
of minimal change of the prior beliefs under the constraint
of accepting the new conditional or ordering as a constraint
(Domotor 1980). A set of postulates for revising a plausibil-
ity ordering (encoded by a kappa-function) by a conditional
input information of the form A A B >~ A A =B is pro-
posed by Kern-Isberner (2001). They extend the Darwiche-
Pearl postulates and preserve the minimal change require-
ment in the sense that they preserve the plausibility ordering
> among the examples A A B of the input conditionals, its
counterexamples A A =B, and its irrelevant cases —A.

Some insights can also be obtained from the probabilistic
literature (van Fraassen 1980) (Domotor 1985). For instance
Jeffrey’s rule consists in revising a probability distribution
P, enforcing a piece of knowledge, of the form P(A) = a,
as a constraint which the resulting probability measure P*
must satisfy. The probability measure “closest” to P in the
sense of relative entropy, and obeying P*(A4) = « is of
the form P*(.) = a.P(. | A) + (1 — «)P(. | ~A). The
problem of revising a probability distribution by means of a
conditional input of the form P(A|B) = « has been consid-
ered in the probabilistic literature by (van Fraassen 1981).

120

Rules for revising a plausibility ordering can be found in
(Williams 1995), (Weydert 2000), (Kern-Isberner 2001) (us-
ing the kappa functions of (Spohn 1988)) and (Dubois &
Prade 1997) using possibility distributions.

However it is not clear that revising the plausibility or-
dering >, obtained from A by a constraint of the form
AN B = A A -B has any chance to always produce the
same result as deriving the plausibility ordering >! from
the revised conditional knowledge base A after enforcing a
new rule A — B.

While our aim is not to solve this question, at least our
paper claims that revising generic knowledge whether in the
form of a conditional knowledge base, or in the form of a
plausibility ordering, is a problem distinct from the one of
contingent belief revision (BRDI, which is only a problem
of inferring plausible conclusions), and from the prioritized
merging of uncertain information. The RBKGI problem can
be subject to iterated revision, as well. One may argue that
RBKGI underlies an evolving world in the sense of account-
ing for a global evolution of the context in which we live.
In some respects, the normal course of things to-day is not
the same as it used to be fifty years ago, and we must adapt
our generic knowledge accordingly. The distinction between
updates and revision is not so clear when generic knowledge
is the subject of change.

Conclusion

This position paper tried to lay bare three problems of be-
lief change corresponding to different scenarios. Results in
the literature of iterated belief change should be scrutinized
further in the context of these problems. It is clear that ad-
dressing these problems separately is a simplification. For
instance in the BRDI approach, observations are always con-
sidered as sure facts, but one may consider the more com-
plex situation of inferring plausible conclusions from uncer-
tain contingent information using background knowledge.
Also the assumption that in the BRDI approach, contingent
inputs never alter the background knowledge is also an ideal-
ization: some pieces of information may destroy part of the
agent’s generic knowledge, if sufficiently unexpected (think
of the destruction of the Twin Towers); moreover, an intel-
ligent agent is capable of inducing generic knowledge from
a sufficient amount of contingent observations. The latter
is a matter of learning, and the question of the relationship
between learning and belief revision is a natural one even if
beyond the scope of this paper.

References

Alchourrén, C.; Girdenfors, P.; and Makinson, D. 1985.
On the logic of theory change : partial meet contraction
and revision functions. J. Symbolic Logic 50:510-530.

BenAmor, N.; Benferhat, S.; and Mellouli, K. 2003.
Anytime propagation algorithm for min-based possibilistic
graphs. Soft Computing 8:150-161.

Technical Report IfI-06-04

Benferhat, S.; Dubois, D.; Prade, H.; and Williams, M.
1999. A practical approach to fusing prioritized knowledge
bases. In Proc. 9th Portuguese Conference on Artificial
Intelligence, Lecture Notes in Artificial Intelligence, 222—
236. Springer.

Benferhat, S.; Dubois, D.; Kaci, S.; and Prade, H. 2000.
Encoding information fusion in possibilistic logic:a general
framework for rational syntactic merging. In Proc.14th Eu-
rop.Conf.on Artificial Intelligence (ECAI2000), 3-7. 10S
Press.

Benferhat, S.; Dubois, D.; Garcia, L.; and Prade., H.
2002a. On the transformation between possibilistic logic
bases and possibilistic causal networks. Int. J. Approximate
Reasoning 29:135-173.

Benferhat, S.; Dubois, D.; Lagrue, S.; and Papini, O.
2002b. Making revision reversible: an approach based on
polynomials. Fundamenta Informaticae 53:251-280.
Benferhat, S.; Dubois, D.; Prade, H.; and Williams, M.
2002c. A practical approach to revising prioritized knowl-
edge bases. Studia Logica 70:105-130.

Benferhat, S.; Dubois, D.; and Prade, H. 1997. Nonmono-
tonic reasoning, conditional objects and possibility theory.
Artificial Intelligence 92:259- 276.

Benferhat, S.; Dubois, D.; and Prade, H. 1999. Possi-
bilistic and standard probabilistic semantics of conditional
knowledge. J. Logic and Computation 9:873-895.
Biazzo, V.; Gilio, A.; Lukasiewicz, T.; and Sanfilippo,
G. 2002. Probabilistic Logic under Coherence, Model-
Theoretic Probabilistic Logic, and Default Reasoning in
System P. J. Applied Non-Classical Logics 12(2):189-213.
Boutilier, C., and Goldszmidt, M. 1993. Revision by con-
ditionals beliefs. In Proc. of the 11th National Conf. on
Artificial Intelligence (AAAI’93).

Boutilier, C. 1993. Revision sequences and nested condi-
tionals. In Proceedings of IJCAI’93.

Darwiche, A., and Pearl, J. 1997. On the logic of iterated
belief revision. Artificial Intelligence 89:1-29.

Delgrande, J.; Dubois, D.; and Lang, J. 2006. Iterated
belief revision as prioritized merging. In Proceedings of
KR’06, Windermere, U.K.

Domotor, Z. 1980. Probability kinematics and representa-
tion of belief change. Philosophy of Science 47:284-403.
Domotor, Z. 1985. Probability kinematics - conditional
and entropy principles. Synthese 63:74-115.

Dubois, D., and Prade, H. 1992. Belief change and possi-
bility theory. In Gérdenfors, P., ed., Belief Revision. Cam-
bridge University Press. 142-182.

Dubois, D., and Prade, H. 1994. Non-standard theories
of uncertainty in knowledge representation and reasoning.
The Knowledge Engineering Review 9:399-416.

Dubois, D., and Prade, H. 1997. A synthetic view of belief
revision with uncertain inputs in the framework of possi-
bility theory. Int. J. Approximate Reasoning 17:295-324.

Dubois, D., and Prade, H. 2001. Possibility theory in in-

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

formation fusion. In Data Fusion and Perception, volume
431 of CISM Courses and Lectures. Springer. 53-76.

Dubois, D.; Fargier, H.; and Prade, H. 2004. Ordinal and
probabilistic representations of acceptance. J. Artificial In-
telligence Research 22:23-56.

Dubois, D.; Fargier, H.; and Prade, H. 2005. Acceptance,
conditionals, and belief revision. In Conditionals, Infor-
mation, and Inference, volume 3301 of Lecture Notes in
Artificial Intelligence. Springer. 38-58.

Dubois, D.; Lang, J.; and Prade, H. 1994. Possibilistic
logic. In Gabbay, D.; Hogger, C.; and Robinson, J., eds.,
Handbook of logic in Artificial Intelligence and logic pro-
gramming, volume 3. Clarendon Press - Oxford. 439-513.

Dubois, D.; Moral, S.; and Prade, H. 1998. Belief change
rules in ordinal and numerical uncertainty theories. In Be-
lief Change. Kluwer. 311-392.

Fishburn, P. C. 1986. The axioms of subjective probabili-
ties. Statistical Science 1:335-358.

Freund, M. 2004. On the revision of preferences and ra-
tional inference processes. Artificial Intelligence 152:105—
137.

Friedman, N., and Halpern, J. 1996a. Belief revision: A
critique. In Proceedings of KR’96, 421-631.

Friedman, N., and Halpern, J. Y. 1996b. Plausibility mea-
sures and default reasoning. In Proceedings of AAAI’96,
1297-1304.

Girdenfors, P., and Makinson, D. 1994. Nonmonotonic
inference based on expectations. Atrtificial Intelligence
65:197-245.

Girdenfors, P. 1988. Knowledge in Flux: Modeling the
Dynamics of Epistemic States. MIT Press.

Grove, A. 1988. Two modellings for theory change. J.
Philos. Logic 17:157-170.

Jeffrey, R. 1965. The logic of decision. McGraw-Hill.

Jin, Y., and Thielscher, M. 2005. Iterated revision, revised.
In Proc. IJCAI’05, 478-483.

Kern-Isberner, G. 2001. Conditionals in Nonmonotonic
Reasoning and Belief Revision, volume 2087 of Lecture
Notes in Artificial Intelligence. Springer.

Konieczny, S., and Pino Pérez, R. 2002. Merging informa-
tion under constraints: a qualitative framework. J. Logic
and Computation 12(5):773-808.

Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Non-
monotonic reasoning, preferential models and cumulative
logics. Artificial Intelligence 44(1-2):167-207.

Lehmann, D., and Magidor, M. 1992. What does a condi-
tional knowledge base entail? Artificial Intelligence 55:1—
60.

Lehmann, D. 1995. Belief revision, revised. In Proceed-
ings of IJCAI’95, 1534-1540.

Lewis, D. 1973. Counterfactuals. Basil Blackwell, U.K.
Maung, I. 1995. Two characterizations of a minimum in-
formation principle for possibilistic reasoning. Int. J. Ap-
proximate Reasoning 12:133-156.

121

.TU Clausthal
11TH NMR WORKSHOP

Nayak, A.; Foo, N.; Pagnucco, M.; and Sattar, A. 1996.
Changing conditional beliefs unconditionally. In Proceed-
ings of TARK96, 119-135.

Nayak, A.; Pagnucco, M.; and Peppas, P. 2003. Dynamic
belief revision operators. Atrtificial Intelligence 146:193—
228.

Nayak, A. 1994. Iterated belief change based on epistemic
entrenchment. Erkenntnis.

Paris, J. 1994. The Uncertain Reasoner’s Companion.
Cambridge University Press, Cambridge.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann.

Pearl, J. 1990. System z: A natural ordering of defaults
with tractable applications to default reasoning. In Proc. of
the 3rd Conf. on Theoretical Aspects of Reasoning about
Knowledge (TARK’90), 121-135. Morgan & Kaufmann,
San Mateo, CA.

Shafer, G. 1976. A mathematical theory of evidence.
Princeton University Press.

Spohn, W. 1988. Ordinal conditional functions: a dynamic
theory of epistemic states. In Harper, W. L., and Skyrms,
B., eds., Causation in Decision, Belief Change and Statis-
tics, volume 2. Kluwer Academic Pub. 105-134.

van Fraassen, B. 1980. Rational belief and probability
kinematics. Philosophy of Science 47:165-187.

van Fraassen, B. 1981. A problem for relative information
minimizers. British J. Philosophy of Science 33:375-379.

Weydert, E. 2000. How to revise ranked probabili-
ties. In Proc.14th Europ.Conf.on Artificial Intelligence
(ECAI2000), 38—44. TOS Press.

Williams, M. 1995. Iterated theory-based change. In Proc.
of the 14th Inter. Joint Conf. on Artificial Intelligence (13-
CAI’95), 1541-1550.

122 Technical Report IfI-06-04

Theory of NMR and Uncertainty

DEPARTMENT OF INFORMATICS 123

.TU Clausthal
11TH NMR WORKSHOP

2.2 A revision-based approach for handling inconsistency in de-
scription logics

A revision-based approach for handling inconsistency in descriptiondgics

Guilin Qi, Weiru Liu, David A. Bell
School of Electronics, Electrical Engineering and Comp8igence
Queen’s University Belfast
Belfast, BT7 1NN, UK
{G.Qi, W.Liu, DA.Bell} @qub.ac.uk

Abstract logics, such as propositional logic and nonmonotonic legi
)] o (Schlobach and Cornet 2003; Parsia, Sirin, and Kalyang
Recently, the problem of inconsistency handling in de- 2005; Huang, Harmelen, and Teije 2005).

scription logics has attracted a lot of attention. Many ap-
proaches were proposed to deal with this problem based
on existing techniques for inconsistency management.
In this paper, we first define two revision operators in

It is well-known that priority or preference plays an im
portant role in inconsistency handling (Baader and Hollu
der; Benferhat and Baida 2004; Meyer, Lee, and Boo

description logics, one is called the weakening-based 2005). In (Baader and Hollunder), the authors introduct
revision operator and the other is its refinement. The priority to default terminological logic such that more spe
logical properties of the operators are analyzed. Based cific defaults are preferred to more general ones. When ct
on the revision operators, we then propose an algorithm flicts occur in reasoning with defaults, defaults which ai
to handle inconsistency insratified description Iogic. more specific should be applied before more general on
knowledge base. We show that when the weakening- In (Meyer, Lee, and Booth 2005), an algorithm, calted

based revision operator is chosen, the resulting knowl- fined conjunctive maxi-adjustme(RCMA for short) was

edge base of our algorithm is semantically equivalent to

the knowledge base obtained by applyiegned con- proposed to weaken conflicting information instatified

junctive maxi-adjustmentRCMA) which refines the DL knowledge b{ise and some consistent DL knowle.d'
disjunctive maxi-adjusment (DMA), a good strategy for base_s were obtained. To wgaken a termmqlogmal axio
inconsistency handling in classical logic. they introduced a DL expression, calledrdinality restric-
tions on concepts. However, to weaken an assertional ¢
iom, they simply delete it. An interesting problem is to ex
Introduction plore other DL expressions to weakemanflictingDL ax-

Ontologies play a crucial role for the success of the Seman- 10 (Poth terminological and assertional). .

tic Web (Berners-Lee, Hendler, and Lassila 2001). There !N this paper, we first define two revision operators in d
are many representation languages for ontologies, such asSCfiPtion logics, one is called a weakening-based revisi
description logics (or DLs for short) and F-logic (Staab operator an_d the ot_her is its refinement. The revision ope
and Studer 2004). Recently, the problem of inconsistency ftorsl ar_(rahde.f(ljned. b)t/r:n:ro?]ucmgta DL c?nstruc'gor caﬂem-l
(or incoherence) handling in ontologies has attracted a lot mats._ i €ldeals ﬂ?‘ tW ena ?rmldndo ogyl'azzlom Ort;u\;)aL
of attention and research addressing this problem has been'®S rll(c '0.? IS IS contlic ’\t’\r’]e tSItrk?pya b epr'C' exct_ep .
reported in many papers (Baader and Hollunder; Baader WEaKeN it and assume that the number ot exceptions IS Ir
and Hollunder 1995; Parsia, Sirin, and Kalyanpur 2005; mal. Based on the revision operators, we then propose
Haase et. al 2005.' Schlobéch 20’05. Schlobach and Cc;r- algorithm to handle inconsistency irstratifieddescription
net 2003; Flouris, Plexousakis and Antoniou 2005; Huang, |°9i¢ knowledge base. We show that when the weakenir
Harmelen, and Teije 2005: Meyer, Lee, and Booth 2005; based revision operator is chosep, the resultmg knowlec
Friedrich and Shchekotykhin 2005). Inconsistency can oc- Pase of our algorithm is semantically equivalent to that |
cur due to several reasons, such as modelling errors, migra- fjhf? RC'Y'A algorithm. However, their syntactical forms ar
tion or merging ontologies, and ontology evolution. Cur- ierent.
rent DL reasoners, such as RACER (Haarslev aridlév This paper is organized as follows. Section 2 gives a bri
2005) and FaCT (Horrocks 1998), can detect logical incon- feView of description fogics. W then define two revisio
sistency. However, they only provide lists of unsatisfiable CPErators in Section 5. 1he revision-based algorithm tor |
classes. The process @solvinginconsistency is left to consistency handllng_ls proposgd in Section 4. Before cc
the user or ontology engineers. The need to improve DL clusion, we have a brief discussion on related work.
reasoners to reason with inconsistency is becoming urgent _— .

to make them more applicable.Many approaches were pro- Description logics

posed to handle inconsistency in ontologies based on exist- In this section, we introduce some basic notions of Descri
ing techniques for inconsistency management in traditiona tion Logics (DLs), a family of well-known knowledge rep-

124 Technical Report IfI-06-04

Theory of NMR and Uncertainty

resentation formalisms (Baader et al. 2003). To make our sistent. Given a DL knowledge basé and a DL axiomyp,

approach applicable to a family of interesting DLs, we con-
sider the well-known DLALC (Schmidt-Schauf3and Smolka
1991), which is a simple yet relatively expressive DL. Let
N¢ and Ny be pairwise disjoint and countably infinite sets
of concept nameandrole namegespectively. We use the
letters A and B for concept names, the lettdt for role
names, and the lettexS and D for concept. The set of

ALC concepts is the smallest set such that: (1) every con-

cept name is a concept; (2)df and D are conceptsR is a

role name, then the following expressions are also concepts

-C,CNnD, CUD,VR.C and3R.C.

An interpretationZ = (AZ,.7) consists of a sef\Z,
called thedomainof Z, and a function? which maps ev-
ery conceptC to a subsetC” of AT and every roleR to a
subsetR? of AT x AT such that, for all concepts, D, role
R, the following properties are satisfied:

(1) (-C)F = AT\ 7,

(2) (cnD)t = ¢InD?, (CuD)? = CTuD?,

() BR.C)T = {z|3y s.t.(z,y)eRT andycC?},

(4) (VR.C)* = {z|Vy(z,y)e R impliesyeCT}.

We introduce an extra expression of DLs calledninals
(also calledindividual name} (Schaerf 1994). A nominal
has the form{a}, wherea is an individual name. It can be
viewed as a powerful generalization of DL Abox individu-
als. The semantics dfa} is defined by{a}? = {aZ} for
an interpretatior?. Nominals are included in many DLs,
such asSHOQ (Horrocks and Sattler 2001) a#HOZ Q
(Horrocks and Sattler 2005).

A general concept inclusion axiom (GCI) tarminology
is of the formCC D, whereC andD are two (possibly com-
plex) ALC concepts. An interpretatiofi satisfies a GCI
CCD iff CTCD*. A finite set of GCIs is called aTbox

We can also formulate statements about individuals. We de-

note individual names as b, c. A concepf(role) assertion
axiom has the fornC(a) (R(a,b)), whereC'is a concept
description,R is a role name, and, b areindividual names

To give a semantics to Aboxes, we need to extend interpre-

tations to individual names. For each individual name?
maps it to an element’ ¢ AZ. The mapping? should
satisfy theunique name assumptigNA)?, that is, ifa and

b are distinct names, thetf #b”. An interpretationZ sat-
isfies a concept axion®'(a) iff aZ€C?, it satisfies a role
axiom R(a,b) iff (aZ,b?)eRZ. An Aboxcontains a finite
set of concept and role axioms. A DL knowledge b&se
consists of a Thox and an Abox, i.e. itis a set of GCls and
assertion axioms. An interpretatidnis a modelof a DL
(Tbox or Abox) axiom iff it satisfies this axiom, and it is a
model of a DL knowledge bask if it satisfies every axiom
in K. In the following, we useM (¢) (or M(K)) to de-
note the set of models of an axiapr(or DL knowledge base
K). K is consistent iffM (K')#0). Let K be an inconsistent
DL knowledge base, a sé&’C K is aconflictof K if K’ is
inconsistent, and any sub-knowledge b&Séc K is con-

1In some very expressive DLs, such &0 Q, this assump-
tion is dropped. Instead, they usequality assertionsf the form
a#b for individual names: andb, with the semantics that an inter-
pretationZ satisfiesasb iff aZ#£b7.

DEPARTMENT OF INFORMATICS

we say Kentails¢, denoted a¢{ = ¢, iff M (K)CM ().

Revision Operators for DLs
Definition
Belief revision is a very important topic in knowledge repre
sentation. It deals with the problem of consistently accor
modating new information received by an existing know
edge base. Recently, Flouris et al. discuss how to ap
the famous AGM theory (Gardenfors 1988) in belief rev
sion to DLs and OWL (Flouris, Plexousakis and Antonio
2005). However, they only evaluate the feasibility of appl
the AGM postulates for contractiom DLs. There is no ex-
plicit construction of a revision operator in their papen. |
this subsection, we propose a revision operator for DLs a
provide a semantic explanation of this operator.

We need some restrictions on the knowledge base
be revised. First, the original DL knowledge base shou
be consistent. Second, we only consider inconsistenc
arising due to objects explicitly introduced in the Abox
That is, supposds and K’ are the original knowledge
base and the newly received knowledge base respectiv
then for each conflict,. of KUK’, K. must contain an
Abox statement. For example, we exclude the followin
case: T C dJR.C € KandT C VR-C € K'. The
handling of conflicting axioms in the Thox has been dit
cussed in much work recently (Schlobach and Cornet 20(
Parsia, Sirin, and Kalyanpur 2005). In this section, we di
cuss the resolution of conflicting information which contai
assertional axioms in the context of knowledge revision.

We give a method to weaken a GCI first. To weaken
GCl, we simply add some explicit exceptions, and the nur
ber of exceptions is called the degree of the weakened Gi

Definiton1 Let CCD be a GCl. A weak-
ened GCIl (CCD)yearr Of CCD has the form
(Cn—{a1}M...n={a,})CD, wheren is the number of indi-
viduals to be removed fro@. We usel((CCD)yeqr) = n
to denote the degree 0€C D) eak-

It is clear that whenl((CCD)year) = 0, (CED)weak =
CCD. The idea of weakening a GCI is similar to weake
an uncertain rule in (Benferhat and Baida 2004). That
when a GClI is involved in conflict, instead of dropping i
completely, we remove those individuals which cause tl
conflict.

The weakening of an assertion is simpler than that of
GCI. The weakened assertign,.., of an Abox assertion
¢ is of the form eitherdeqx = T OF dyearr = ¢. That
is, we either delete it or keep it intact. The degre@of,x,
denoted ad(¢yeak), Is defined ad(dwear) = 1if dwear =
T and 0 otherwise.

Next, we consider the weakening of a DL knowledg
base.

Definition 2 Let K and K’ be two consistent DL knowledge
bases. SupposBUK’ is inconsistent. A DL knowledge
baseKycqr, k1S @ weakened knowledge basefofw.r.t
K’ if it satisfies:

o Kyeak,x U K'is consistent, and

125

.TU Clausthal
11TH NMR WORKSHOP

e There is a bijectionf from K to Ky,cqr,x+ such that for
each¢c K, f(¢) is a weakening ob.

The set of all weakened base §fw.r.t K’ is denoted by
Weaky: (K).

In Definition 2, the first condition requires that the wealene
base should be consistent wifti. The second condition
says that each element if,..x, & IS uniquely weakened
from an element ink.

Example 1 Let K {bird(tweety), birdC flies}
and K’ {~flies(tweety)}, where bird and
flies are two concepts andtweety is an indi-
vidual name. It is easy to check thak U K’
is inconsistent. Let K’ {T, birdC flies},
K" {bird(tweety), bird—{tweety }C flies}, then
both K’ and K"’ are weakened bases Af w.r.t K'.

Definition 5 Letw be a pre-interpretation7 € I™, ¢ a DL
axiom, andK a multi-set of DL axioms. If is an assertion,
the number of-exceptions?(Z) is 0 if Z satisfiesp and 1
otherwise. If¢ is a GCI of the formCC D, the number of
¢-exceptions fof is:

e?(T) = {

The number of -exceptions fof is e (Z) = Sy ke? (7).
The ordering=" onI™ is: Z <7 7' iff & (7)<eX(Z").

|CTN(=D?)| if CTN(-~D?) is finite
00 otherwise.

1)

We give a proposition to show that our weakening-based
revision operator captures some kind of minimal change.

Proposition 1 Let K be a consistent DL knowledge base.
K’ is a newly received DL knowledge base. L[Ebe the

The degree of a weakened base is defined as the sum ofclass of all pre-interpretationso,, is the weakening-based

the degrees of its elements.

Definition 3 Let K cqr k- be a weakened base of a DL
knowledge basé w.r.t K'. The degree of,..\ is de-
fined as

d(¢

1.

A(Kweak, k') = LpeK your v

In Example 1, we havé(K') = d(K")

We now define a revision operator.
Definition 4 Let K be a consistent DL knowledge base.
K’ is a newly received DL knowledge base. The result
of weakening-based revision @& w.r.t K’, denoted as
Ko, K’,is defined as

Ko, K' {K'UK; : K;eWeakg (K), and A

KjEWGCLkK/(K), d(K]) < d(K;)}-
The result of revision ofC by K’ is a set of DL knowledge
bases, each of which is the uniongf and a weakened base
of K with the minimal degreeKo,, K’ is adisjunctive DL
knowledge bagedefined in (Meyer, Lee, and Booth 2005).

We now consider the semantic aspect of our revision op-
erator.

In (Meyer, Lee, and Booth 2005), an ordering relation was
defined to compare interpretations. It was claimed that only
two interpretations having the same domain and mapping
the same individual names to the same element in the do-
main can be compared. Given a domdin a denotation
functiond is an injective mapping which maps every indi-
vidual a to a differenta in A. Then apre-interpretation
was defined as an ordered pai= (A™,d™), whereA™ is
a domain andi™ is a denotation function. For each inter-
pretationZ = (AZ,.7), its denotation function is denoted
asd”. Given a pre-interpretation = (A™,d™), I" is used
to denote the class of interpretatiahsith A* = A™ and
d? = d". Itis also assumed that a DL knowledge base is a
multi-sef of GCls and assertion axioms.We now introduce
the ordering between two interpretations defined in (Meyer,
Lee, and Booth 2005).

2A disjunctive DL knowledge (or DKB) is a set of DL knowl-
edge bases. A DKEK is satisfied by an interpretatichiff Z is a
model of at least one of the elementstaf

A multi-set is a set in which an element can appear more than
once.

126

revision operator. We then have
M (Ko, K') = Upenmin(M(K'), =7%).

Proposition 1 says that the models of the resulting knowl-
edge base of our revision operator are model& bfvhich
are minimalw.r.t the ordering=<!% induced byK. The
proofs of proposition 2 and other propositions can be found
in the appendix.

Let us look at an example.

Example 2 Let K {VhasChild.Rich Human(Bob),
hasChild(Bob, Mary), RichHuman(Mary), hasChild
(Bob,Tom)}. Suppose we now receive new information
K’ = {hasChild (Bob, John), ~RichHuman(John)}.

It is clear that KUK’ is inconsistent. Since
VhasChild. RichHuman(Bob) is the only assertion
axiom involved in conflict withK’, we only need to
delete it to restore consistency, that id{o, K’
{hasChild(Bob, Mary), RichHuman(Mary), hasChild
(Bob, Tom), hasChild(Bob, John), ~Rich Human(John)}.

Refined weakening-based revision

In weakening-based revision, to weaken a conflicting
assertion axiom, we simply delete it. However, this
may result in counterintuitive conclusions. In Example
2, after revising K by K’ using the weakening-based
operator, we cannot infer thaRichHuman(Tom) be-
causevhasChild. Rich Human(Bob) is discarded, which
is counterintuitive. FromhasChild(Bob, Tom) and
VhasChild.Rich Human(Bob) we should have known that
RichHuman(Tom) and this assertion is not in conflict
with information in K’. The solution for this problem is to
treatJohnas anexceptiorand that all children oBob other
thanJohnare rich humans.

Next, we propose a new method for weakening Abox as-
sertions. For an Abox assertion of the fokR.C(a), it is
weakened by dropping some individuals which are related
to the individuala by the relationR, i.e. its weakening has
the formVR.(C U {by, ...,b, })(a), whereb; (i = 1,n) are
individuals to be dropped. For other Abox assertighsve
either keep them intact or replace themby

Technical Report IfI-06-04

Theory of NMR and Uncertainty

Definition 6 Let¢ be an assertion in an Abox. A weakened Proposition 3 Let K be a consistent DL knowledge base
assertionp,.q1 of ¢ is defined as: K’ is a newly received DL knowledge base. We then have

Suenk = { VR.(CU{by,....,b,})(a) if ¢ =VR.C(a) KoK’ = ¢, Vo Ko, K'.
2

Tor ¢ otherwise.
The degree Otﬁweak is d(d)weak) = nif ¢ = VYR.C
and ¢year = YR.(C U {b1,...,b,})(a), d(Pwear) = 1 if
¢p#AYR.C and gy, = T andd(¢pyear,) = 0 Otherwise.

We call the weakened base obtained by applying weakening Logical properties of the revision operators

of GCls in Definition 1 and weakening of assertions in Def- |n belief revision theory, a set of postulates or logicalgpro
inition 6 as a refined weakened base. We then replace the erties are proposed to characterize a “rational” revisipn c
weakened base by the refined weakened base in Definition erator. The most famous postulates are so-called AGM pi
4 and get a new revision operator, which we call a refined tulates (Gardenfors 1988) which were reformulated in (Ke

By Example 3, the converse of Proposition 3 is false. Tht
we have shown that the resulting knowledge base of the
fined weakening-based revision contains more important
formation than that of the weakening-based revision.

weakening-based revision operator and is denoteg,as
Let us have a look at Example 2 again.

Example 3 (Example 2 Continued) According to our
discussion before, YhasChild.RichHum- an(Bob)
is the only assertion axiom involved in conflict in
K and John is the onlyexception which makes
VhasChild.Rich Human(Bob) conflicting, soKo,.,, K’ =
{VhasChild.(RichHumanU{John})(Bob), hasChild
(Bob, Mary), RichHuman(Mary), hasChild(Bob, Tom),
hasChild(Bob, John), ~RichHuman(John)}. We then
can infer that RichHuman(Tom) frofdo,.,, K.

To give a semantic explanation of the refined weakening-
based revision operator, we need to define a new ordering

between interpretations.

Definition 7 Letn be a pre-interpretation7 € I, ¢ a DL
axiom, andK a multi-set of DL axioms. kb is an assertion
of the formvR.C/(a), the number of-exceptions fof is:

o _ | IRE(aD)N(=C?)| if RE(aT)N(=C7) is finite
er(Z) = 00 otherwise,
(3)

where RT(a?) = {beAT : (a?,b)eR?}. If ¢ is an as-
sertion which is not of the foridR.C(a), the number of
p-exceptions:? (1) is 0 if T satisfiesp and 1 otherwise. 1§
is a GCI of the formCCD, the number of-exceptions for
Zis:

etz = |

The number of<-exceptions fof is e () = X ye xef (T).
The refined ordering=7, on I" is: Z =7, 7' iff
eK(T)<e&(T).

T

\Cfﬂ(ﬁDI)\ if CIﬂ(ﬁDZ) is finite
- (4)
00 otherwise.

We have the following propositions for the refined
weakening-based revision operator.

Proposition 2 Let K be a consistent DL knowledge base.
K’ is a newly received DL knowledge base. L[kbe the
class of all pre-interpretationsz,.,, is the weakening-based
revision operator. We then have

M(KOT”LUK/) = Uﬂ'GHmin(M(K/)? j:,K)

suno and Mendelzon 1992). We now generalize AGM pac
tulates for revision to DLs.

Definition 8 Given two DL knowledge baséS and K’. A
revision operatoe is said to be AGM-compliant if it satisfies
the following properties:

(R1) KoK' E¢forall ¢ € K’

(R2) If KUK is consistent, thed! (KoK') = M(KUK")
(R3) If K’ is consistent, the oK is also consistent

(R4 If M(K) = M(K;) and M(K') = M(K3), then
M(KoK') = M(K;0K>)

(R5) M (KoK)NM(K")CM (Ko(K'UK"))

(R6) If M(KoK')NM(K") is not empty,
M(Ko(K'UK"))CM (KoK)NM(K")

(R1) says that the new information must be accepted. (F
requires that the result of revision be equivalent to themini
of the existing knowledge base and the newly arrived knov
edge base if this union is satisfiable. (R3) is devoted to t
satisfiability of the result of revision. (R4) is the syntax
irrelevance condition. (R5) and (R6) together are used
ensure minimal change. (R4) states that the operator is in
pendent of the syntactical form of both the original know
edge base and the new knowledge base. The following pr
erty is obviously weaker than (R4)

(R4) If M(K,) = M(K,;), then M(KoK;) =
M(KoKy).

Definition 9 A revision operatop is said to be quasi-AGM
compliant if it satisfies (R1)-(R3), (R4"), (R5-R6).

The following proposition tells us the logical propertie:
of our revision operators.

Proposition 4 Given two DL knowledge basd$ and K.
Both the weakening-based revision operator and the refin
weakening-based revision operator are not AGM-complia
but they satisfy postulates (R1), (R2), (R3), (R4), (R%) a
(R6), that is, they are quasi-AGM compliant.

Proposition 4 is a positive result. Our revision operatais s
isfy all the AGM postulates except (R4), i.e. the synta
irrelevant condition.

then

A Revision-based Algorithm
It is well-known that priorities or preferences play an impo

Proposition 2 says that the refined weakening-based operato tant role in inconsistency handling (Baader and Hollunde

can be accomplished with minimal change.

DEPARTMENT OF INFORMATICS

Benferhat and Baida 2004; Benferhat et al. 2004; Mey:

127

.TU Clausthal
11TH NMR WORKSHOP

Lee, and Booth 2005). In this section, we define an algo-
rithm for handling inconsistency in a stratified DL knowl-

Based on Proposition 3, it is easy to prove the followin
proposition.

edge base, i.e. each ele_ment of the _b_ase is assigned roposition 5 Let ¥ = {Kj,...,K,} be a stratified DL
rank, based on the weakening-based revision operator. More knowledge base and be a DL khowledge base. Sup

precisely, a stratified DL knowledge base is of the form
¥ = KjU..UK,, where for eache{1,...,n}, K; is a fi-

poselC; and K; are disjunctive DL knowledge bases result
ing from R-Algorithm using the weakening-based operat

nite multi-set of DL sentences. Sentences in each stratum and refined weakening-based operator respectively. We tt

K; have the same rank or reliability, while sentences con-
tained ink; such thatj > ¢ are seen as less reliable.

Revision-based algorithm

have, for each DL axiom, if 1 = ¢ thenKs = ¢.

Proposition 5 shows that the resulting knowledge base of
Algorithm w.r.t the refined weakening-based operator co
tains more important information than that of R-Algorithn

We first need to generalize the (refined) weakening-based «.r.¢t the weakening-based operator.

revision by allowing the newly received DL knowledge base

In the following we show that if the weakening-based re

to be a disjunctive DL knowledge base. That is, we have the visjon operator is chosen, then our revision-based appro:

following definition.

Definition 10 Let K be a consistent DL knowledge base.

K’ is a newly received disjunctive DL knowledge base. The

result of (refined) weakening-based revisiontofw.r.t X',
denoted ad< o, K, is defined as

KOwK:/ = {K/UKweak,K’ : KIEK:/; Kweak,K’E
Weakr (K) & AK;eWeaky: (K),

d(Kl) < d(Kweak.,K')}'

Revision-based Algorithm (R-Algorithm)
Input: a stratified DL knowledge base= { K}, ..., K,}, a
(refined) weakening-based revision operatgre. o = o,
or o), @ new DL knowledge baskE
Result: a disjunctive DL knowledge bake
begin

K—K oK;

for i = 2ton do

K—K;ol;

return X
end

The idea originates from the revision-based algorithms
proposed in (Qi, Liu, and Bell 2005). That is, we start by

revising the set of sentences in the first stratum using the

new DL knowledge bas&’, and the result of revision is a

disjunctive knowledge base. We then revise the set of sen-

tences in the second stratum using the disjunctive knowledg
base obtained by the first step, and so on.

Example 4 Let ¥ = (K;,K;) and K = {T}, where
K, = {W(t),-F(t),B(c)} and Ky = {BCF,WLCB}

(W, F, B, t and c¢ abbreviate Wing, Flies,
Bird, Tweety and Chirpy). Let o = o, in
R-Algorithm. Since K; is consistent, we have

K = Kj0,{T} = {K;1}. SinceK;UK, is inconsistent,
we need to weakeR,. Let K) = {BN—-{¢t}CF,WCB}
and KY = {BCF,Wn—{¢t}CB}, soK}, KfeWeak(K>)
and d(K}) = d(KY) = 1. Itis easy to check that
KjUK, and KjUK; are both consistent and they
are the only weakened bases ff, which are consis-
tent with K;. S0 Kyo0,K = {K UK}, KUK} =
{{W(t),-F(t), B(c), BN—{t}CF, WCB},
{W(t),-F(t),B(c), BCF,Wn—{t}CB}}.

to check that?(c) can be inferred fronf(50,,K.

It is easy

128

is equivalent to the refined conjunctive maxi-adjustme
(RCMA) approach (Meyer, Lee, and Booth 2005). Th
RCMA approach is defined in a model-theoretical way :
follows.

Definition 11 (Meyer, Lee, and Booth 2005) Léet =
(Ky,...,K,) be a stratified DL knowledge base. Létbe
the class of all pre-interpretations. Lete II,Z, 7' € I".
The lexicographically combined preference orderif,, is
defined asT <7, 7" iff Vje{l,...,n}, I=% 7’ or I<% T’
for somei < j. Then the set of models of the consiste
DL knowledge base extracted fromby means o7 is

; - - —lex
U'frEHmZ’n’(I) j[ez)'

The following proposition shows that our revision-base
approach is equivalent to the RCMA approach when tl
weakening-based revision operator is chosen.

Proposition 6 Let ¥ = (K3,...,K,) be a stratified DL
knowledge base anl’ = {T}. LetK be the resulting DL
knowledge base of R-Algorithm. We then have

M(K) = Urenrmin(I™, <7..).

—lex

In (Meyer, Lee, and Booth 2005), an algorithm was prc
posed to compute the RCMA approach in a syntactical wi
The main difference between our algorithm and the RCM
algorithm is that the strategies for resolving terminolog
cal information are different. The RCMA algorithm use
a preprocess to transform all the GCISZ D; to cardinality
restrictions (Baader, Buchheit, and Hollander 1996) of ti
form <,C;M-D,, i.e. the concept§’;1-D; do not have
any elements. Then those conflicting cardinality restri
tions <o C;MD; are weakened by relaxing the restriction
on the number of elements may have, i.e. a weakening of
<oC;MD; is of the form<,,C;MD; wheren > 1. The re-
sulting knowledge base contains cardinality restrictiand
assertions and is no longer a DL knowledge base in a st
sense. By contrast, our algorithm weakens the GCls by
troducingnominal and role constructors. So the resultin
DL knowledge base of our algorithm still contains GCls an
assertions.

Application to revising a stratified DL knowledge
base

We can define two revision operators based on R-Algorithi
Let¥ = (Ky,..., K,) be a stratified knowledge base an

Technical Report IfI-06-04

K be a new DL knowledge base. Letbe the (refined)
weakening-based revision operator. The prioritized (eefjn
weakening-based revision operator, denoted' ais defined
in a model-theoretic way ad/ (309 K) = Uyenrmin({Z €
I" : 7 = K}, =<].,). We now look at the logical properties
of the newly defined operator.

Proposition 7 Let X be a stratified DL knowledge bask,
and K’ be two DL knowledge bases. The revision operator
oY satisfies the following properties:

(P1) If K is satisfiable, theixio? K is satisfiable.

(P2) Yo9K = ¢, forall ¢ € K.

(P3) If M(E)NM(K) s
M(ZIK)=M(Z)NM(K).

(P4) Given a stratified DL knowledge bas&
{S1,...,Sn}, and two DL knowledge basds and K’, if
K=K',thenMod(309K) = Mod(X9K").

(P5) M(Zo9K"\NM(K")CM (Xo9(K'UK")).

(P6) If M(Z9K')NM(K") is not empty,
M(Z9(K'UK"))CM (X9 K')NM (K").
(P1)-(P3) correspond to Conditions (R1)-(R3) in Definition
8. (P4) is a generalization of the weakening condition (R4’)
of the principle of irrelevance of syntax. (P5) and (P6) are
generalization of (R5) and (R6).

not empty, then

then

Related Work

This work is closely related to the work on inconsistency
handling in propositional and first-order knowledge bases
in (Benferhat et al. 2004; Benferhat and Baida 2004), the
work on knowledge integration in DLs in (Meyer, Lee, and
Booth 2005) and the work on revising-based inconsistency
handling approaches in (Qi, Liu, and Bell 2005). In (Ben-
ferhat et al. 2004), a very powerful approach, called dis-
junctive maxi-adjustment (DMA) approach, was proposed
for weakening conflicting information in a stratified propo-
sitional knowledge base. The basic idea of the DMA ap-
proach is that starting from the information with the lowest
stratum where formulae have highest level of priority, when
inconsistency is encountered in the knowledge base, itweak
ens the conflicting information in those strata. When applied
to a first-order knowledge base directly, the DMA approach
is not satisfactory because some important information is

Theory of NMR and Uncertainty

deal with inconsistency in a stratified knowledge base w
proposed in (Qi, Liu, and Bell 2005). However, this work i:
only applicable in propositional stratified knowledge tsase
The R-Algorithm is a successful application of the algarith
to DL knowledge bases.

There are many other work on inconsistency handling
DLs (Baader and Hollunder; Baader and Hollunder 199
Parsia, Sirin, and Kalyanpur 2005; Quantz and Royer 19¢
Haase et. al. 2005; Schlobach 2005; Schlobach and C
net 2003; Flouris, Plexousakis and Antoniou 2005; Huan
Harmelen, and Teije 2005; Friedrich and Shchekotykh
2005). In (Baader and Hollunder 1995; Baader and Hc
lunder), Reiter's default logic (Reiter 1987) is embedde
into terminological representation formalisms, where-co
flicting information is treated asxceptions To deal with
conflicting default rules, each rule is instantiated usimg i
dividuals appearing in an Abox and two existing methoc
are applied to compute all extensions. However, in pra
tical applications, when there is a large number of ind
vidual names, it is not advisable to instantiate the defa
rules. Moreover, only conflicting default rules are dea
with and it is assumed that information in the Abox is alk
solutely true. This assumption is dropped in our algorithr
that is, an assertion in an Abox may be weakened wher
is involved in a conflict. Another work on handling con-
flicting defaults can be found in (Quantz and Royer 199
The authors proposed a preference semantics for default
terminological logics. As pointed out in (Meyer, Lee, an
Booth 2005), this method does not provide a weakening
the original knowledge base and the formal semantics is 1
cardinality-based. Furthermore, it is also assumed that
formation in the Abox was absolutely true. In recent year
several methods have been proposed to debug erroneous
minologies and have them repaired when inconsistenc
are detected (Schlobach and Cornet 2003; Schlobach 2C
Parsia, Sirin, and Kalyanpur 2005; Friedrich and Shchek
tykhin 2005). A general framework for reasoning with in
consistent ontologies based ooncept relevanceas pro-
posed in (Huang, Harmelen, and Teije 2005). The idea
to select from an inconsistent ontology some consistent si
theories based on selection functionwhich is defined on
the syntactic or semantic relevance. Then standard reas
ing on the selected sub-theories is applied to fir@hningful

lost. A new approach was proposed in (Benferhat and Baida answers. A problem with debugging of erroneous terminol

2004). For a first-order formula, called amcertain rule
with the formva P(z) = Q(x), whenitis involved in a con-
flictin the knowledge base, instead of deleting it compigtel

gies methods in (Schlobach and Cornet 2003; Schlobe
2005; Parsia, Sirin, and Kalyanpur 2005; Friedrich ar
Shchekotykhin 2005) and the reasoning method in (Huar

the formula is weakened by dropping some of the instances Harmelen, and Teije 2005) is that both approaches del

of this formula that are responsible for the conflict. Theaide
of weakening GCls in Definition 1 is similar to this idea. In

(Meyer, Lee, and Booth 2005), the authors proposed an algo-

rithm for inconsistency handling by transforming every GCI
in a DL knowledge base into a cardinality restriction, and a
cardinality restriction responsible for a conflict is weakd

by relaxing the restrictions on the number of elements it may
have. So their strategy of weakening GCls is different from

terminologies in a DL knowledge base to obtain consiste
subbases, thus the structure of DL language is not exploit

Conclusions and Further Work

In this paper, we propose a revision-based algorithm for he
dling inconsistency in description logics. We mainly cahsi
ered the following issues:

ours. Furthermore, we proposed a refined revision operatorl. A weakening-based revision operator was defined in bc

which not only weakens the GCls but also assertions of the

form VR.A(a). The idea of applying revision operators to

DEPARTMENT OF INFORMATICS

syntactical and semantic ways. Since the weakenir
based revision operator may result in counter-intuitiv

129

.TU Clausthal
11TH NMR WORKSHOP

130

conclusions in some cases, we defined a refined version d(K! ... k) < d(Kweak,x+), Which is a contradiction. So

of this operator by introducing additional expressions in
DLs.

Thus they have good logical properties.

ing knowledge base of our algorithm is semantically
equivalent to that of the RCMA algorithm. The main dif-
ference between our algorithm and the RCMA algorithm
is that the strategies for resolving terminological infarm
tion are different.

. Two revision operators were defined on stratified DL

knowledge bases and their logical properties were ana-

lyzed.

There are many problems worthy of further investigation.
Our R-Algorithm is based on two particular revision oper-
ators. Clearly, if a normative definition of revision opera-
tors in DLs is provided, then R-Algorithm can be easily ex-

tended. Unfortunately, such a definition does not exist now.

As far as we know, the first attempt to deal with this problem

can be found in (Flouris, Plexousakis and Antoniou 2005).

However, the authors only studied the feasibility of AGM’s
postulates for @ontractionoperator and their results are not

so positive. That is, they showed that in many important

DLs, such asSHOZN (D) andSHZQ, it is impossible to

define a contraction operator that satisfies the AGM postu-

lates. Moreover, they didn't apply AGM’s postulates for a
revision operator and explicit construction of a revisign o

erator was not considered in their paper. We generalized

AGM postulates for revision in Definition 8 and we showed

that our operators satisfied most of the generalized postu-

lates. An important future work is to construct a revision
operator in DLs which satisfies all the generalized AGM
postulates.

Proofs

Proof of Proposition 1: Before proving Proposition 1, we
need to prove two lemmas.

Lemmal Let K and K’ be two consistent DL knowledge
bases andl be an interpretation such th& = K’. Sup-
poseK U K’ is inconsistent. Let = min(d(Kyeak k") :
Kweak’K/GWGU,kK/(K),I ’: Kweak,K/)- TheneK(I)
L.

Proof: We only need to prove that for each
Kyeak, k' €Weaky (K) such that T = Kyeak,k'
andd(Kweak,K’) = l1 eK (I) = d(Kweak7K’)-

(1) Letp € K be an assertion axiom. Suppasd) = 1,
thenZ bé (,25 SinceZ ': Kweak,K’i ¢ € Kweak,K’ So
dweak = T and thend(dyeqr) = 1. Conversely, sup-
posed(puyear) = 1, then guear = T. We must have
T % ¢. Otherwise, leK) ... xr = (Kweak,x/ \{T })U{¢}.
SinceZ = ¢, then K ., . is consistent. It is clear

. A revision-based algorithm was presented to handle in-
consistency in a stratified knowledge base. When the
weakening-based revision operator is chosen, the result-

T |~ ¢, we then have?(Z) = 1. Thus,e? = 1iff d(¢) = 1.
(2) Let ¢ = CCD be a GCI axiom antpeqr =

. The well-known AGM postulates are reformulated andwe (CED)weak € Kweak,ic'- SUPPOS&l(pueqk) = n. That
showed that our operators satisfy most of the postulates. ? bweak = CM—{ay,...;an}ED. SinceZ = Kyeak, k'

dweak- Moreover, for any other weakening, .,
of ¢1 if d(iuea,k) <n, thenZ Pé iueak (because other-

wise, we find another weakenidg, ;. x+ = (Kweak, k' \
{¢weak})u{¢iueak} such thad(K{ueak,K’) < d(KwGakyK’)
and 7 ': Kvlyeak,K/)' Since 7 d)weaky CI \
{af,...,aZ} C DZT. For eacha;, we must havey,,cC
and a;¢D. Otherwise, we can delete suah and obtain

éueak = C’I‘I{al,...,ai_l,ai+1,...,an} C D such that
AP pear) < A(Pwear) andZ = ¢, .., Which is a contra-
diction. So|C*N-D*|<n. Since for eactu;, let¢! .., =
C’I‘I{al,...,ai_l,ai+1,...,an} C D, thenT % (b;ueak' SO
|CTN=D*|>n. Therefore, we havgCZN-D*| = n =

d(¢weak)-
(1) and (2) together show thaf< (Z) = I.

Lemma?2 Let K and K’ be two consistent knowledge
bases andZ be an interpretation such thaZ |
K’'. SupposeK U K’ is inconsistent. Letd,,
min(d(Kweak’K/) Kweak,KleWeakKr(K)). Then
Te Unen min(M(K'), <7 iff eK(I) =d,,.

Proof: “If Part”

Suppose®(Z) = d,,. By Lemma 1, for eacii’ such
thatZ' = K’, e&(Z') = I, wherel = min(d(Kyeak i) :
Kyeak, k' €EWeaky (K),T' = Kyeak k). Thatis, there
exits K yeak, k7 € Weakg:(K) such thatl’ = Kyeqk, k'
and eX(7') = d(Kyeak.1')- Sinced(Kyeak 1c) <dpm, We
havee (I')<eX (I). SoZe |, cfy min(M(K'), <%).

“Only If Part”

SupposeZe |, .y min(M(K'), %%). We need to
prove that for allZ’ = K’, eX(Z)<eX(Z’). Suppose
T € I™ for somer = (A7™,d™). ltis clear thatvVZ'eI™,
eK(T)<eX(Z'). Now suppos&’cl™ for somer’ # =
such that ' (A™,d™"). We further assume that
K (T =min(eX(Z;) : T, = K'). LetInd(K) and
Ind(K') be sets of individual names appearing is
and K’ respectively. By unique name assumption, fi
each individual names in Ind(K)Ulnd(K’), there is
a unique element; in AT and a unique element, in
A" such thata? = a; andaZ = ay. For notational
simplicity, we assume thatZ=a? =qa for every indi-
vidual namea. So Ind(K)UInd(K')CA™NA™. We
take anZ” € I™ which satisfies the following condi-
tions: 1) for each concep€ appearing in K, suppose
A = CT n (Ind(K) U Ind(K")), then ACCT"; 2)
eK(T") = min(eX(Z) : T = K' T € T™). We now prove
Ypere?(T') = Sgexe?(I”). By 1) and 2), suppose is
an assertion of the fornd’(a), whereC is a concept, then
aZ' eCT iff a¥'eC?”’, s0e?(T') = e?(T"). Supposep
is a GCI of the formCCD and beCT'N-DZ". Then we
must havebeInd(K)UInd(K'). Otherwise, if we define
7" = (AT"\ {b},-T") such that for each concept nare

Technical Report IfI-06-04

CT" = T\ {b} and forall R, RT" = RZ'\ ({(b,a;) :
a;€AT'} U {(a;,b) : a;€AT'}). Itis easy to check that
I" &= K' and ef(7") < eX(Z'), which is a contra-
diction. SobeCT N-DT'N(Ind(K)UInd(K')). Since
CT'N(Ind(K)UInd(K")) = CT'N(Ind(K)UInd(K'))
and DT N(Ind(K)UInd(K')) DT N(Ind(K)U
Ind(K')), we haveCZ' n—DT N(Ind(K)UInd(K'))
CT' =D N(Ind(K)UInd(K")). It follows that
beCT'N-DT ' N(Ind(K)UInd(K')). We then have
CT'N-DT' ccT’'n-DT". Similarly, we can prove that
CT'n-DT'ccTn-DT. SoCT'N-DT'=CT'N-DT.

That is, e?(Z) = e?("). Thus, we can conclude
that e (I’) = e (I”) SinceeX(7") = X(I), we
have eX (I) = e&(T'). Therefore, for allZ’ = K,
ef(7)<e (). Itis clear that there exists af’ = K’
such thateI =dp. S0eX(T) = d,y,.

We continue the proof of Proposition 1. Suppose
I E Ko,K', thenZ = K'UKyeqr k', fOr some

Kweak,K’eweakK/(
is defined in Lemma 2).
ef(T) = dpn
). Conversely, supposgéc |,y min(M(K'),
Lemma 2,7 = K’ ande®(Z) = d,,. By Lemma 1,7 |
K'UK yeak, k', for someK y,eqk, k- €W eak o (K) such that
d(Kyeak, k') = dm. SOZ |= Ko, K'. This completes the
proof.
Proof of Proposition 2: The proof of Proposition 2 is simi-
lar to that of Proposition 1. The only problem is that we need
to extend the proofs of Lemma 1 and Lemma 2 by consider-
ing the weakening of assertion axioms of the farR.C'(a),
which can be proved similar to the case of GCls.
Proof of Proposition 3: We only need to prove that
M(Ko.,K'YCM(Ko,K'). SupposeZ):KomK’ then
by Proposition 27 = K’ andeX(Z) = min(eX(Z') :
A K’). We now prove that for anﬂ’;éI,
K(T)<eX(Z'). Supposep is an assertion of the form
VR.C(a) ande?(Z)>1, then there exists such that? ¢
RI(a?)N(=D?T). SinceT £ VR.C(a), we havee?(Z) = 1.
Since e?(Z')>e?(Z), we havee?(Z')>1. Similarly, we
havee?(Z') = 1. Soe?(T)=e?(Z’). Suppose?(Z)=0
ande?(Z')>1, thene?(Z) = 0 < 1 = e?(Z’). Thus,
e?(IT)<e?(I'). If ¢ is an assertion which is not of the
form VR.C(a) or a GCI, then it is easy to prove that
e?(I)=e?(Z'). ThereforeeX (7)<eX (Z"). By Proposition
1,7eM (Ko, K').
Proofs of Proposition 4 and Proposition 5:Proposition 4
and Proposition 5 are easily to be checked and we do not
provide their proofs here.
Proof of Proposition 6: LetIf = min(I", 2%), andI] =
min(I7_;, 2%) for alli > 1. Itis clear thatM (K) = I7.
So we only need to prove th&f = min(I™, <7). Sup-
poseZel?, then we must hav@emin(I™, <7). Other-
wise, there exist§’cI™ such thatZ’<;.,Z. That is, there
existsi such thatZ’ <% 7 andZ’~7} T for all j < i, where

T'~% T meansl’ =} T andZ=}% I’ SinceZ’~} 7, itis
cIearthatZ I'ell_ bythe definition offl7_,. SinceZ € I7

K) such thatd(Kyeak, i) = dm (dim,
By Lemma I = K’ and

. By Lemma 2,Z€J, .y min(M(K'), <%
=%)- By

n’?

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

we haveZ € I = min(I]_,, X%,), which is contradic-
tory to the assumption that'<% 7. Thus we prove that
ITCmin(I™, <7,.). Conversely, supposBemin(I™, <7
), then we must hav&elI”. Otherwise, there exists an
such thatZ¢I7 andZ€lIf for all j < i. SupposeZ’eI?,
thenZ’elf for all j < i. We then havel’ ~7 7 for all
j<i. SlnceI’eI” andZ¢I7, it follows thatI’<KlI That
is, Z'<].,Z, which is a contradiction. Thus we prove tha
min(I™, <T CIT. This completes the proof.

—lex

References

F. Baader and B. Hollunder. Embedding defaults into te
minological knowledge representation formalisdmjrnal
of Automated Reasoning4(1):149-180, 1995.

F. Baader and B. Hollunder. Priorities on defaults with prt
requisites, and their application in treating specifiaityar-
minological default logicJournal of Automated Reason-
ing, 15(1): 41-68, 1995.

F. Baader, M. Buchheit, and B. Hollander. Cardinality re
strictions on conceptgirtificial Intelligence 88:195-213,
1996.

F. Baader, D.L. McGuiness, D. Nardi, and Peter Pate
Schneider.The Description Logic Handbook: Theory.
implementation and applicatignCambridge University
Press, 2003.

S. Benferhat, C. Cayrol, D. Dubois, L. Lang, and H. Prad
Inconsistency management and prioritized syntax-bas
entailment. IfProceedings of IJCAI'93640-645, 1993.

S. Benferhat, and R.E. Baida. A stratified first order log
approach for access contrbtternational Journal of Intel-
ligent Systemsl9:817-836, 2004.

S. Benferhat, S. Kaci, D.L. Berre, and M.A. Williams
Weakening conflicting information for iterated revisiordan
knowledge integrationArtificail Intelligence vol. 153(1-
2):339-371, 2004.

T. Berners-Lee, J. Hendler, and O. Lassila. The semar
web, Scientific American284(5):3443, 2001.

G. Flouris, D. Plexousakis and G. Antoniou. On applyin
the AGM theory toDLs andOWTL, In Proc. of 4th Interna-
tional Conference on Semantic Web (ISWC,(8)6-231,
2005.

G. Friedrich and K.M. Shchekotykhin. A General Diagnc
sis Method for Ontologies, IfProc. of 4th International
Conference on Semantic Web (ISWC,@®32-246, 2005.

P. Gardenfors Knowledge in Flux-Modeling the Dynamic
of Epistemic StatesThe MIT Press, Cambridge, Mass
1988.

V. Haarslev and R. Nller, RACER System Description,
In IJCAR’0L, 701-706, 2001.

P. Haase, F. van Harmelen, Z. Huang, H. Stuckenschmi
and Y. Sure. A framework for handling inconsistency i
changing ontologies, Ih'SWC’05, LNCA3729353-367,
2005.

I. Horrocks. The FaCT system, In de Swart, H., ed
Tableaux'98, LNAI 1397307-312, 1998.

131

.TU Clausthal
11TH NMR WORKSHOP

I. Horrocks, and U. Sattler. Ontology reasoning in th
SHOQ(D) description logic, IrProceedings of IJCAI'01
199-204, 2001.

I. Horrocks and U. Sattler. A tableaux decision procedu
for SHOZQ, In Proc. of 19th International Joint Confer-
ence on Artificial Intelligence (IJCAI'05%148-453, 2005.

Z. Huang, F. van Harmelen, and A. ten Teije. Reasonii
with inconsistent ontologies, IRroceedings of IJCAI'05
254-259, 2005.

H. Katsuno and A.O. Mendelzon. Propositional Know!
edge Base Revision and Minimal Changetificial Intelli-
gence 52(3): 263-294, 1992.

C. Lutz, C. Areces, |. Horrocks, and U. Sattler. Keys, non
inals, and concrete domaindournal of Artificial Intelli-
gence Resear¢l23:667-726, 2005.

T. Meyer, K. Lee, and R. Booth. Knowledge integration fc
description logics, InProceedings of AAAI'05645-650,
2005.

B. Nebel.What is Hybrid in Hybrid Representation anc
Reasoning Systemd®d F. Gardin and G. Mauri and M. G.
Filippini, editors, Computational Intelligence II: Proc. of
the International Symposium Computational Intelligenc
1989 North-Holland, Amsterdam, 217-228, 1990.

B. Parsia, E. Sirin and A. Kalyanpur. Debuggi®dVL on-
tologies, InProc. of WWW’05633-640, 2005.

J. Quantz and V. Royer. A Preference Semantics for C
faults in Terminological Logics, IRroc. of the 3th Confer-
ence on Principles of Knowledge Representation and R«
soning (KR'92) 294-305, 1992.

G. Qi, W. Liu, and D.A. Bell. A revision-based approacl!
to resolving conflicting information, IrProceedings of
twenty-first Conference on Uncertainty in Artificial Intel:
ligence (UAI'05) 477-484.

R. Reiter. A Theory of Diagnosis from First Principlés;
tificial Intelligence 32(1): 57-95, 1987.

A. Schaerf. Reasoning with individuals in concept lar
guagesData and Knowledge Engineerin@3(2):141-176,
1994.

S. Schlobach, and R. Cornet. Non-standard reasoning :
vices for the debugging of description logic terminologie
In Proceedings of IJCAI'’200355-360, 2003.

S. Schlobach. Diagnosing Terminologies, Rroc. of
AAAI'05, 670-675, 2005.

M. Schmidt-Schau3, and G. Smolka. Attributive Cor
cept descriptions with complemengstificial Intelligence
48:1-26, 1991.

S. Staab and R. Studétandbook on Ontologiesnterna-
tional Handbooks on Information Systems, Springer, 20C
H. Wang, A.L. Rector, N. Drummond and J. Seidenber
DebuggingOWL-DL Ontologies: A Heuristic Approach,
In Proc. of 4th International Conference on Semantic W
(ISWC'05) 745-757, 2005.

132 Technical Report IfI-06-04

Theory of NMR and Uncertainty

DEPARTMENT OF INFORMATICS 133

.TU Clausthal
11TH NMR WORKSHOP

2.3 Merging stratified knowledge bases under constraints

Merging stratified knowledge bases under constraints

Guilin Qi, Weiru Liu, David A. Bell
School of Electronics, Electrical Engineering and Comp8igence
Queen’s University Belfast
Belfast, BT7 1NN, UK
{G.Qi, W.Liu, DA.Bell} @qub.ac.uk

Abstract al. 1993), belief revision (&denfors 1988), belief merging
(Benferhat et al. 2002). When explicit priority or prefer
ence information is available, a knowledge base is strétifi

I ; . or ranked. In that case, the merging operators in classi
operators are defined in a model-theorgt.lc way. Our merging logic are not appropriate to merge those knowledge bat
operators can be used to merge stratified knowledge bases)

where no numerical information is available. Furthermore, because the priority information is not used. Merging ¢
the original knowledge bases to be merged can be individu- Stratified knowledge bases is often handled in the frarr

ally inconsistent. In the flat case, our merging operators are ~ Work of possibilistic logic (Dubois, Lang, and Prade 1994
good alternatives of model-based merging operators in the or ordinal conditional function (Spohn 1988). The merg
propositional setting. Both logical properties and computa- ing methods are usually based on the commensurability
tional complexity issues of the operators are studied. sumption, that is, all knowledge bases share a common s¢

.) N (usually ordinal scales such as [0,1]) to order their bslief

Keywords: Belief merging; stratified knowledge base; pref- However, this assumption is too strong in practice-we m:

In this paper, we propose a family of operators for merging
stratified knowledge bases under integrity constraints. The

erence representation only have knowledge bases with a total pre-order relati
) on their elements. Furthermore, different agents may L
Introduction different strategies to order their beliefs or interprietas.

Even a single agent may have different ways of modelit
her preferences for different aspects of a problem (Brew
2004). Without the commensurability assumption, the pr

Fusion of information coming from different sources is cru-
cial to build an intelligent system (Abidi and Gonzalez 1992

Bloch and Hunter 2001). In classical logic, this problem <. . hod hard v F |
is often called belief merging, which defines the beliefs vious merging methods are hard to apply. For example, st

(resp. goals) of a group of agents from their individual be- pose there are two agents whose beliefs are represente
liefs (resp. goals). There are mainly two families of belief by = {(p,3),(4,2), (r, 1)} a.anQ = 1(7¢,2), (r, 1)} re-
merging operators: the model-based ones which select someSpECt'Vely’ yvhere the numbg(z =1 2.3) denotes the Ie_vel
interpretations that are the “closest” to the original lsase ©f rélative importance or priority of a formula. That is,
(Revesz 1997; Konieczny and Pinérez 1998; Konieczny IS more important thag in B; and ~g is more important
and Pino Rrez 2002; Liberatore and Schaerf 1998; Ever- tan” in Bs. Althoughg and~q have the same number (i.e
aere, Konieczny, and Marquis 2005) and the formula-based 2) attached to them, they may not have the same level
ones which pick some formulae in the union of the original importance or priority. In this case, previous merging epe
bases (Baral, Kraus, and Minker 1991: Baral et al. 1992; ators ur!dercommensurablhty assumption cannot be appl
Konieczny 2000). In (Konieczny, Lang, and Marquis 2004), © Mergings; andBs.

a class of distance-based merging operators, calléd op- In this paper, we propose a family of operators for mer
erators, were defined based on two aggregation functions. ing stratified knowledge bases under integrity constrain
D A? operators capture many merging operators (including The operators are defined in a model-theoretic way. We
both model-based ones and syntax-based ones) as speciasume that each stratified knowledge base is assigned tc
cases. In (Everaere, Konieczny, and Marquis 2005), two ordering strategy. First, for each stratified knowledgeeba
families of interesting merging operators are proposece On K, the set() of possible worlds is stratified &3x x ac-
is calledQuotaoperators, which select possible worlds sat- cording to its ordering strateg¥. In this way, a possible
isfying “sufficient many” bases from the given profile (a world has a priority level with regard to each knowledg
multi-set of bases) as the models of the resulting knowledge base which is its priority level if2x x. Second, each possi-
base. The other is call&&minoperators, which are intended ble world or interpretation is associated with a lispaibrity

to refine quota operators to preserve more information. levelsin all the original knowledge bases. Then a possib
Itis well-known that priority or preference (either imptic world is viewed as a model of the resulting knowledge ba
or explicit) plays an important role in many Atrtificial Intel of merging if it is a model of the formula representing th

ligence areas, such as inconsistency handling (Benfethat e integrity constraint and it is minimal among models of th

134 Technical Report IfI-06-04

integrity constraintw.r.t the lexicographical order induced
by the natural order.

Theory of NMR and Uncertainty

is a setK of (finite) propositional formulas together with a
total preordeK on K (a preorder is a transitive and reflexive

The main contributions of this paper are summarized as relation, and< is a total preorder if eithep<t) or 1) < ¢

follows.
(1) First, we define our merging operators in a model-

theoretic way. When original knowledge bases are flat, i.e.

holds for any¢, v K)L. Intuitively, if ¢ < 1, then¢ is
considered to be less important than K can be equiva-
lently defined as a sequenéé = (54, ..., .S,), where each

there is no rank between their elements, some of our opera- S; (i = 1,...,n) is a non-empty set which contains all the

tors are reduced to existing classical merging operators.

(2) Second, the commensurability assumption is not nec- and Marquis 2000), i.eS; = {¢cK \
essary for our operators. Moreover, each knowledge base
can have its own ordering strategy. By considering the pros
and cons of different ordering strategies, we can deal with

merging of knowledge bases in a more flexible way.

(3) Third, the original knowledge bases are not necessary

to be self-consistent and our operators resolve the cangict
information among different knowledge bases and result in
a consistent knowledge base.

(4) Fourth, we provide a family of syntactic methods to
merge stratified knowledge bases under integrity conssrain

These methods are the syntactical counterparts of our merg-

ing operators.

(5) Finally, we generalize the set of postulates proposed E, such thatn = m and for eachk =

in (Konieczny and Pino &ez 2002) for merging operators

applied to stratified knowledge bases and discuss the logica

properties of our operators based on these postulates.
This paper is organized as follows. Some preliminaries

maximal elements ok \ (U;;llSj) w.r.t < (Coste-Marquis
(U521S)) : VoeK \
(Ué.;llsj),wgw. Each subse$; is called a stratum of
and: the priority level of each formula of;. Therefore, the
lower the stratum, the higher the priority level of a formul
in it. There are many ways to generate a stratified knov
edge base (Benferhat et al. 1993; Benferhat and Baida 2C
Brewka 1989; Pearl 1990). A stratified knowledge profil
(SKP) E is a multi-set of stratified knowledge bases. Give
a stratified knowledge badé = (54, ..., S,,), thei-cut of K
is defined ad{>; = S1U...US;, forie{1, ...,n}. A subbase
A of K is also stratified, that isd = (A4, ..., A,,) such that
A;CS;, 1 = 1,...,n. Two SKPsE; and F» are equivalent,
denotedE, =, F, iff there exists a bijection betwedt, and
(517 3z SZ)EEly
fK) = (51, ...,5]) andS;=S; for all ie{1, ..., I}.

There are several inconsistency-tolerant inference me
ods for stratified knowledge bases. In this paper, we u
one defined in (Benferhat, Dubois, and Prade 1998) whi

are introduced in Section 2. In Section 3, we consider the s related to the consequence relation in possibilistiécloc
preference representation of stratified knowledge bases. A (pupois, Lang, and Prade 1994).

new ordering strategy is proposed. ThAEXMIN gperators

are proposed in Section 4. Section 5 analyzes the computa-

tional complexity of our merging operators. We then study
the logical properties of our merging operators in Section 6
Section 7 is devoted to discussing related work. Finally, we
conclude the paper in Section 8.

Preliminaries

Classical logic: In this paper, we consider a propositional
languageC ps from a finite setP.S of propositional symbols.
The classical consequence relation is denoteld. a&n in-
terpretation (or world) is a total function frofS to {0, 1},
denoted by a bit vector whenever a strict total ordef

is specified.) is the set of all possible interpretations. An
interpretationw is a model of a formulap iff w(¢) = 1.
p,q,r,... represent atoms iS. We denote formulae in
Lps by ¢,1,,... For each formula, we useM (¢) to de-
note its set of models. Alassical knowledge base iK a
finite set of propositional formulae (we can also identify
with the conjunction of its elements)K is consistent iff
there exists an interpretation such thatw(¢) = true for

all pe K. A knowledgeprofile Eis a multi-set of knowledge
bases, i.eF = {Kj, ..., K, }, whereK; may be identical to
K fori#j. LetJ(F) = Uj—, K;. Two knowledge profiles
FE; and E, are equivalent, denotell; = F iff there exists a
bijection f betweenE; and F> such that for eacti{ e F,
f(K)=K.

Stratified knowledge base: A stratified knowledge base,

sometimes also called ranked knowledge base (Brewka

2004) or prioritized knowledge base (Benferhat et al. 1993)

DEPARTMENT OF INFORMATICS

Definition 1 Let K = (S54,...,.5,) be a stratified knowl-
edge base. A formula is said to be ani-consequence of
K, denoted byX +; ¢, if and only if: (1) K>, is consis-
tent; (2) K>; - ¢; () Vj < 4, K>; 1/ ¢. We sayg is
a m-consequence ok, denoted byK +, ¢, if ¢ is ani-
consequence df for somei.

Preference Representation of Stratified
Knowledge Base
Ordering strategies

Given a stratified knowledge base, we can define some tc
pre-orders off).

e best out ordering (Benferhat et al. 1993): letzo (w) =
min{i : w £ S;}, for weQ. By convention, we have
minf) = +oo. Then the best out ordering,, on Q is
defined asw=,w' if f rpo(w)>rpo (W)

e maxsat ordering (Brewka 2004): let'y;o (w) = min{i :
w | S}, forweQ. Then the maxsat ordering,,qzsat
onQ is defined asw=,,4esatw’ if f a0 (W) <ryo (W)

e leximin ordering (Benferhat et al. 1993): lek'!(w) =
{¢€S; : w = ¢}. Then the leximin orderingcximin ON
Q is defined as:
wjleacmninw/ iff |KZ(LU)| = |Ki(w’)| for all 4, or there
is ani such that| K¢(w')|<|K%(w)|, and for allj < i:
|K7(w)| = |K7(w")|, where|K;| denote the cardinality
of the setskj;.

For simplicity, we useX to denote a stratified knowledge bas:
and ignore the total preordet.

135

.TU Clausthal
11TH NMR WORKSHOP

Given a preorder on (2, as usual, the associated strict par- AFPEMIN Qperators
tial order is defined byw<w’ iff w=w’ and notw’<w. An Definition

ordering=x is more specific than anothety iff w<x w’
impliesw=<xw’. The total preorders ofi defined above are
not independent of each other.

We use=<x to denote a total preorder db, whereX rep-
resents an ordering strategy. For example it= bo, then
< x is the best-out ordering. We now define thé&' XM IN
Proposition 1 (Brewka 2004) Letv,w’'ef), K a stratified operators.

knowledge base. The following relationships hold: _— .
g A, o 9 . P Definition 4 LetE = {K7y, ..., K,,} be a multi-set of strat-
(1) w=pow’ iIMpliesw=epiminw’; ified k ledae b h g g d
(2) w<pow’ IMPplieS w=mazsarw’ AN W=magsarw’ IM- ified knowledge bases, whefé;, = {Si, ..., Sim,}, an
pliesw—<po 1 be an integrity constraint. LeX = (Xl,.._.,Xn) be
- o a set of ordering strategies, wherg; are ordering strate-
Proposition 1 shows that thieximin ordering is more spe- gies attached toK;. Let <k, x, be the total preorder

cific than the best-out ordering. on Q induced by the ordering strategy¥,. For each in-
) terpretation w, we can associate with it a list of num-
A new ordering strategy bers (Ix, x, (W), ... Ik, x, (w)), wherelx, x,(w) is the

We now define a new ordering strategy by considering the priority level of the stratum of2k, x, wherew belongs
“distance” between an interpretation and a knowledge base. to. Let Lg(w) = (l1(w),...,In(w)) be obtained by sort-

Definition 2 (Everaere, Konieczny, and Marquis 2005) A ing in increasing ordenlr, x, (W), ..., I, x,, (w)), that is,

pseudo-distance between interpretations is a total foncti [1(«)<.--<ln(w). The resulting knowledge base of lexi
d from Q x Q to N such that for every, w.eQ: (1) cographical minimum and preference representation bas

d(wr,w5) = d(ws,n); and (2)d(wr,wz) = Oifand only if MerdIng operaor, denoted hy,/“ /%% (E), is defined as
. . . weM(APFMINX(E)) iff weM(u) and Vw'eM (),
A “distance " between an interpretationand a knowledge () = 7;(w) for all i or 3i such thatl;(w) < 1;(w') and
baseS can then be defined @w, S) = min,—gd(w,w’). 1i(w) = 1;(w') for all j < .

When S is inconsistentd(w, S) = +oo. That is, all the
possible worlds have the same distance with an inconsis-
tent knowledge base. Two common examples of such dis-
tances are thdrastic distancedp and theDalal distance

dy, wheredp(w,ws) = 0 whenw; = wo and 1 otherwise,
anddy (wy,w>) is the Hamming distance between and

W1 = Wa.

In Definition 4, each possible world is associated with
list of numbers consisting of the priority levels of the tdra
of Qg, in an increasing order. Then the models of the r
sulting stratified knowledge base of tie;“*/N-X merg-
ing operator is the models of the integrity constraint th.
are minimalw.r.t the lexicographic order induced by the

w2 natural order. In our definition, different stratified knewl
Definition 3 The distance-based ordering, on {2 is de- edge bases may have different ordering strategies. T
fined as: is, each agent can choose her own strategy to order
w2 iff d(w, S;) = d(w',S;) for all i, or there is ani terpretations. We go back to the example in the Intr
such thatd(w, 5;)<d(w’, 5;), and for all j < i: d(w, S;) = duction section. Suppose the best out ordering strate
d(w', Sj). is attached to bothB; and B,. B; and B, are strati-
It is clear that the distance-based orderings are total pre- fied asBir = ({p}.{q}.{r}) and B> = ({~q},{r}).
orders orf). Supposel = dy, the ordering=<,,, is equiv- Let p = T. We haveM(p) = {w1 = pgr,wz =
alent to the total preordef k 1., Which is defined to char- pgoT W3 = pqr,we = pTgTT, W = TPgT, W =
acterize the minimal change of a revision operator in (Qi, ~P¢~7"wW7 = 7Ppqr,wsg = —pmg-r}. It is easy to

Liu, and Bell 2005). The following proposition states the check thatQp, s, = ({wi}, {w2}, {ws, wa}, {ws, ..., ws})

relationships among distance based orderings and other or-and Qp, po = ({WS’W_?}v {W47W8}; {wi, wa, w5, we}). _30
derings. w1 andws are two minimal possible worlds. That is, the

result of merging i9Ar.

" , -
Proposition 2 Let w,w’e?, and K be a stratified knowl- Let us consider the following example.

edge base. Suppode= dp or dg, then we have:

(1) w=gew' implies w=pw’ and w=gw' implies Example 1 Let E = {K;, K2, K3} be a set of three strati-
W=mazsatw’; (2) w=pow’ iMpliesw= g’ fied knowledge bases, where

2Given a stratified knowledge bagé, 2 can be stratified - Ky = {511, S12, 513}, whereS1; = {p1Vpa, p3}, S12 =
with regard to the total preordet on it obtained by an or- {=p1, P2, p2V—p3,pa}, S13 = {-p3 V —pa}

dering strategyX asQx x = (4, ..., Q) in the same way - Ko = {521,522}, whereSy; = {p1,p2Vps} and Sy =
as stratifying a knowledge base. For two interpretations {=p2,ps}

wa, if w1€Q; andwL€);, wherei < j, thenw; is preferred - K: = {S21. S where S=1 = and Sz =
tow,. We usd k. x (w) to denote the priority level of the stra- {pz}_ {551, Sz} n = P 22

tum wherew belongs to, i.e. ifv € W}, thenlk x (w) = i.)) L
' The integrity constraintis, = {—p; Vp2}. The set of models

2All proofs of this paper can be found at Of pis M(u) = {w; = 0111, ws = 0101,w3 = 0110, wy =
http://www.cs.qub.ac.uk/G.Qi/papers/MergProof.ps 0100,ws = 0011,ws = 0001,w; = 0010,wg =

136 Technical Report IfI-06-04

0000, wy = 1111, w10 = 1101, wy; = 1110, wis = 1100}.

We denote each model by a bit vector consisting of truth val-

ues of(p1, p2, p3, p4). FOr examplew; = 0111 means that
the truth value op, is 0 and the truth values of other atoms
are all 1. LetX = {X;, X5, X3}, whereX; = Xy = bo
and X3 = dy. That is, the best out ordering strategy is
chosen for botliK; and K5, whilst the Dalal distance-based
ordering is chosen fof;. The computations are given in
Table 1 below.

w K1 K2 K3 E
0111 1 3 3 (1,33
0101 2 3 5 (2,3,5)
0110 1 3 3 (1,3,3)
0100 2 3 5 (2,3,5)
0011 2 3 4 (2,34
0001 2 3 6 (2,3,6)
0010 2 3 4 (2,3,4)
0000 2 3 6 (23,6
1111 1 2 1 (1,1,2)
1101 2 2 3 (223
1110 1 2 1 (112
1100 2 2 3 (22,3

Table 1: AFLMINX operator

In Table 1, the column corresponding 6, gives the
priority levels of strata ofQx, wherew,; belongs to {
is stratified by an ordering strategy induced B§). The
column corresponding tdw gives the lists of numbers of
the priority levels of possible worlds in an ascending or-
der. Let us explain how to obtain the column correspond-
ing to K, (other columns can be obtained similarly). Let
wiz = 1011, wyy = 1001, wys = 1010 and wig =
1000. Sincerpo(w;) = 1 for all 1<i<8, rpo(w;) = 2
for 9<i<12 and 14<i<16, rgo(wiz) = +oo, we have
kb0 = ({wis}, {wo, ..., w12, w14, ..., wis}, {wr, ..., ws}).
S0k, po(wi) = 3 for 1<i<8 and Ik, po(w;) = 2 for
9<i<12. By Def. 4, itis easy to see thay andw;; are two
minimal possible worlds in Table 1. S¢(AFLMIN-X(F))

= {1111, 1110}. Thatis, AFEMINX(E) = p) Apy Aps.
The following proposition states relationships between

different APLMIN gperators when considering different or-
dering strategies.

Proposition 3 Let F = {Kj, ..., K,,} be a SKP, and: be
the integrity constraint. LeX; = {X;,..., X,,} and X, =
{X1,..., X/} be two vectors of ordering strategies, where
both X; and X/ are ordering strategies foK;. Suppose
<x, IS more specific thaF_KX;, for all 7, whereX; X, and

X| € Xz, thenAPLMIN.Xz () |z APLMIN. X (),

Proposition 3 shows that the operator with regard to the

set of more specific ordering strategies can result in a knowl

edge base which has stronger inferential power. By Propo-

sition 2 and 3, we have the following result: Suppose
X; = boand X/ = d for all i, then APLMINX2() =
APLILIIN,Xl (E)

M :

dy.

Example 2 (continue Example 1) Suppos&’
{X], X5, X5}, where X bo, X} X}
The computations are given in Table 2 below.

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

w K1 Kg Kg E
0111 1 5 3 (1,3,5)
0101 2 5 5 (2,5,5)
0110 1 6 3 (1,36)
0100 2 6 5 (2,5,6)
0011 2 4 4 (2,4,4)
0001 2 7 6 (2,6,7)
0010 2 5 4 (2,4,5)
0000 2 8 6 (2,6,8)
1111 1 2 1 (1,12
1101 2 2 3 (2,2,3)
1110 1 3 1 (1,1,3)
1100 2 3 3 (2,33)

Table 2: APEMIN.X" operator
According to Table 2wy9 = 1111 is the only mini-
mal model inM(ux). So the result of merging by the

APEMIN.d gperator is M(AFPMINX'(B)) = {1111},
So AELMIN,X'(E) p1/Ap2ApsAps. It is clear that
M(AELMIN’X (E)) ': M(AELMIN,X(E))

Syntactical counterpart of the APLMIN gperators

The APEMIN gperators are defined in a model-theoret
way in Definition 4. In this section, we propose an algc
rithm to compute the\”LMIN operators syntactically.

Definition 5 Let ¢ be a formula andK be a stratified
knowledge base. Let be an ordering strategy foK. The
level of¢ with regard toK and X, denoted ad.(¢, Kx) is
defined as:

L(¢, Kx) = min{lk,x (wi) : w,€M ()}
L(¢, Kx) is the minimum priority level of models af with
regard toK andX.

Given a stratified knowledge bagétogether with an or-
dering strategyX and a formulgu, a revision operator, de-
notedo x can be defined af (Koxpu) = Min(M(u), <x
). We then have the following proposition for the revi-
sion operators.

Proposition 4 Let K be a stratified knowledge base axd
be an ordering strategy for it. Let be a formula. We then
have,

1. for X=bo, let! mazx{i :

KOonb = ¢/\ /\UJGK>I 7p
. for X = maxsat, letl = min{i :
Komaa;sat¢ = ¢/\/\1pes’lw'

3. for X leximin, let SMC(K) {A
AjU..UA,CK Vi, {¢} U A1 U ..UA;
1}. Supposdexr(K) = {A = A1U...UA,eSMC(K) :
VB B1U..UB,eSMC(K), / i, |B;] >
|Az‘ and Vj < Za‘Bj| = ‘AJ|}! thenKolemimin¢ =
ANV A, eLea(K) Npiyea; Vif)-

4. for X = dy, let G4 be the syntactical result of revis-
ing a knowledge bas#& using ¢ by the Dalal revision
method in (Dalal 1988). Theloq¢ = ¢ A Gg, 4 A
Ggyn N NG,y Wherey; = ¢ A Gg, ¢ andy;
N GS1,¢/\"'/\GS@¢F1'

{¢} U K>; I/ L}, then

N

{#} U S; I# L}, then

137

.TU Clausthal
11TH NMR WORKSHOP

By Proposition 4, the operatay,, is the cut base-revision
operator defined in (Nebel 1994) and the operaigfinin
is the lex-revision operator defined in (Benferhat, Dubois,
and Prade 1998).
Algorithm 1
Input: a set of n stratified knowledge base®& =
{K, ..., K,}; a formulay representing the integrity con-
straints; a set of ordering strategigs = (X1, ..., X,),
whereX; is the ordering strategy fak’;.
Result: a formulay g x
Letd = {(u, E)}, | = 400, ind=1
for each(¢;, E;) €
for each K;c€ E;, computeL(¢;, (K;)x;)
let 1451: = minKjEE,-L((ZS% (Kj)Xj); l= min(¢i’Ei)e@l¢i
letd = {(¢;, B;)e®,ly, #1}; D =D\ &
setd’ = ()
foreach (¢;, F;) € @
let I; = {] : L(¢l> (Kj)Xj) = l}
ComputeMCS(IZ) = {Jg[l : /\jeJKj ox; oy |7/ 1
andvkel; \ J, /\jeJKj ox; ¢i NKpox, ¢ - L}
let \; = maz epescn|J’|, wherelJ| is the cardinality
of J
CardM (I;) ={JeMCSI) : |J| = \;}
let A\ = min(@,Ei)eq,)\i; P = {(gbi, EZ') ced:)\ = /\}
for each (¢;, F;) € @
for each JeCardM (I;)
let g = Njes(Kjox; ¢i);
E¢J =F; \ {KjGEi :]GJ}
&' = 'U{(¢s,Ep,) : JeECardM (1)}
letd =d"; 9" =0
ind=ind+1
lety = Vi, ket
return
end
In Algorithm 1, we used to denote the set of pairs con-
sisting of a formulag; and a setE; of knowledge bases,
whereg; is obtained by merging some selected knowledge
bases fromF and F; contains knowledge bases which are
left to be merged under the integrity constraint Initially,
& contains a single elemefit, F). In the “while” step, we
check whether there is a pdip;, ;) in ® such that&; # (.
If not, then the algorithm stops. Otherwise, for each eleémen
(¢4, E;) in @, we compute the priority level,, of ¢; with
regard toF; and let/ be the minimal priority level among
all ly,. We then delete those paitg;, £;) such that,, # I
from ®. For each¢;, E;) € ®, we find all the maximal sub-

knowledge bases in it by;. A new formula¢; is then ob-
tained by taking the conjunction of the resulting formulée ¢
revision. A setly,, which is the complement of this car-
dinally maximal subset by;, is then attached to the new
formula ¢; for further merging. @ is reset to contain all
those pairs of ¢, E,,) and we go back to the “while” step
again.

Example 3 (Continue Example 2) Initially, we have =
{(u = —p1vp2, B = {K;i,K3,K3})} and X1 = bo
and Xo = X3 = dy. We haveL(u, (K1)x,) = 1,
L(p, (K2)x,) = 2 and L(p, (K3)x,) = 2 (which can
be checked by Table 2). So= 1. It is clear that
' = (0. For (u, F) € @, we havel = {1} because
only L(p, (K1)x,) = 1. By Proposition 4,K 0p,u =
(=p1Vp2)A(p1Vp2) Aps. Letp = (=p1Vpa) A(p1Vp2) Ap3
and E, = {Ky, K3}. S0® = {(¢,Ey)}. We then have
L(¢,(K2)x,) = 2 and L(¢,(K3)x,) = 2. Sol = 2.
o' = (). For (¢, E;) € @, we havel = {2,3}. By Proposi-
tion 4, K04, =p1/A\p2/\p3/Aps and K304, $=p1/\p2/\ps.
It is clear that K304, ¢ and K304, ¢ are consistent with
each other, sdWW SC(I) = CardM(I) = {J = {2,3}}.
b5 = (K204,0) N (K20q,¢) = p1Ap2ApsAps and
E;, = 0. We haved = {(¢,,0)}. The algorithm ter-
minates. Sa)g x = pi1Ap2/Ap3Aps, Which is the same as
APEMINX () in Example 2.

Proposition 5 Let F = {K3,, K,,} be a set of strati-
fied knowledge bases aiXl = { X, ..., X,,} be a set of or-
dering strategies, wherd&; is the ordering strategy fof;.

1 is the integrity constraint. Suppose/,“/N-X(E) is the
knowledge base obtained By; under constraintg: using
the AJ/FMIN.X operator andy g x is the knowledge base

obtained by Algorithm 1, theA PLMIN-X(E) = g x .

Proposition 5 tells us that the resulting knowledge base
Algorithm 1 is equivalent to that of tha 72" N.X opera-
tor. Therefore, the syntactical merging methods obtaired
Algorithm 1 are the syntactical counterparts of our mergir
operators.

Flat case

In this section, we apply our merging operators to the clas
cal knowledge bases. Since our merging operators are be
on the ordering strategies, we need to consider the order
strategies for classical knowledge bases.

Proposition 6 Let K be a classical knowledge base. Sur
poseX is an ordering strategy, then

sets of E; which contains those stratified knowledge bases 1. for X = bo and X = maxsat, we havev=<xw' iff w =

such that the levels af; w.r.t them are equal tband whose
revised formulae byp; are consistent altogether, i.e. their

union is consistent. This step is a competition step. That
is, the knowledge bases are defeated and will be left to be

dealt with in another “while” loop when either the level of
¢; w.r.t them are not equal tbor they are not chosen in a

K

2. for X = leximin, let K (w) = {¢p€K : w = ¢}, we have

wxxw iff | K(w)|>| K (w')]

3. for X = d, we havev=<xw' iff d(w, K)<d(w, K').

By Proposition 6, the best out ordering and the maxsat t

cardinally maximal subset. We then compare the cardinal- dering are reduced to the same ordering when knowlec
ity of the maximal subsets and only keep those pairs whose base is classical. Furthermore, the leximin ordering can

maximal subsets have the maximal cardinality. After that,

used to order possible worlds when the knowledge base

for each such cardinally maximal subset, we revise all the inconsistent.

138

Technical Report IfI-06-04

Proposition 7 Let F be a knowledge profile andbe a for-
mula. LetM AXCONS(E,p) = {FCE : | J(F)J{u} =
L, and if FCE'CE, then |J(E') U {u} = L}. That
is, MAXCONS(E, u) is the set of maximal subsets Bf
which are consistent withy. Let CardM (E,pu) = {F €
MAXCONS(E,u) : AFFe MAXCONS(E,n),|F| <
|F'|}. SupposeX; = bo or maxsat for all i, then

AJEMINX(E) = V recaran(m,p (Noerd A 1)

Proposition 7 shows that the”=MIN.X gperator is equiv-

Theory of NMR and Uncertainty

110 1 2 12
111 1 1 (1))
011 1 2 12

Table 3: APLMIN.X gperator
According to Table 3ws = 111 is the only minimal
model inM (p). SoM(AFEMINX(E)) = {111}. That

iS, AleLMIN,X(E) = P1AP2ADs.

Computational Complexity

alent to theA* operator defined in (Konieczny, Lang, and e now discuss the complexity issue. First we need to cc
Marquis 2004), which selects the set of consistent subsets giger the computational complexity of stratifyiiyfrom a

of EU{u} that contain the constrainisand that are maxi-

stratified knowledge base. In (Lang 2004), two importa

mal with respect to cardinality, when each knowledge base proplems for logical preference representation languag

is viewed as a formula and ordering strategy of it istlest
out strategy omaxsaistrategy.
When X; = d for all i, the correspondingh /LA /N.X

operators are similar to thAf;G””” operators defined as
follows.

Definition 6 (Everaere, Konieczny, and Marquis 2005) Let

d be a pseudo-distancey an integrity constraint,E/ =
{Kj, ..., K, } a profile and letw be an interpretation. The
“distance” betweenw and E, denoted byly gmin(w, E), IS
defined as the list of numbe(d,, ..., d,,) obtained by sort-
ing in increasing order the sefd(w, K;) : K;€E}. The
models ofA%-S™in(E) are the models of: that are mini-
mal w.r.t the lexicographical order induced by the natural
order.

Our APEMIN operators and thé\!-“" operators differ

in that the lists of numbers attached to models are different

The former uses the priority levels of a model-.t all the

were considered. We express them as follows.

Definition 7 Given a stratified knowledge bagé and two
interpretationsw andw’, the COMPARISON problem con-
sists of determining whether=< xw’, where X denotes an
ordering strategy. The NON-DOMINANCE problem cor
sists of determining whether is non-dominatedor <y,
that is, there is not’ such thaty’ < xw.

It was shown in (Lang 2004) that the NON-
DOMINANCE problem is usually a hard problem, i.e
coNP-complete. We have the following proposition ot
NON-DOMINANCE problem for ordering strategies in
Section 3.

Proposition 9 Let K be a stratified knowledge base. Foi
X = bo, maxsat, or lexmin:

(1) COMPARISON is i, whereP denotes the class of
problems decidable in determini-

knowledge bases and the latter uses the distance between a stic polynomial time.

model and each knowledge base.

Proposition 8 Let £ = {Ki,...,K,} a profile and u
an integrity constraint. dp is the drastic distance and
X = (Xi,...,X,) is a set of ordering strategies attached
to K; ¢t = 1,...,n), where X; = dp for all i. Then
AIIL)LA{IN’X(E) = AzD,Gmin(E)_

Proposition 8 shows that tha//“*N-X operator and the

AﬁD»Gmm operator are equivalent when theastic distance
is chosen.
Propositions 7 and 8 only considér!-“™" operators

where all knowledge bases have the same ordering strategy.
When hybrid ordering strategies are used, we can get more

operators. For example, if we use theimin ordering for

those knowledge bases which are inconsistent, then our op-
erators can be applied to merging a set of knowledge bases

which may be individually inconsistent. Now let us look at
an example.

Example4 Let £ = {K;,K}, where K; =
{P1Vp2,p3, —ps} and Kz = {p1,p2,p3}, andp = {(p1 V
p3)Ap2}. SoMod(p) = {wy = 110,ws = 111,w3 = 011}.
LetX = (X3, X2), whereX; = leximin and Xs = bo are
ordering strategies of(; and K, respectively. The compu-
tations are given in Table 3 below.

w K Ky E

DEPARTMENT OF INFORMATICS

(2) NON-DOMINANCE is cP-complete.

To stratify 2, we need to consider the problatatermin-
ing all non-dominated interpretationsvhich is computa-
tional much harder than the NON-DOMINANCE problen
(we believe it is¥5-hard). To simplify the computation of
our merging operators, we assume thais stratified from
each stratified knowledge base during an off-line prepr
cessing stage.

Let A be a merging operator. The following decisiol
problem is denoted as MERGA]:

e Input: a4-tuple(E, u, v, X) whereE = {K,..., K, }
is a multi-set of stratified knowledge basesjs a for-
mula, andy is a formula;X = (X, ..., X,,), whereX;
is the ordering strategy attached &5. Q/(K;, X;) =
(Qi1y e, Qin,) ¢ = 1,..,n), whereQ;; is the non-
empty set which contains all the minimal elements «
Q\ (U/L, Q) with regard to an ordering strategy; of

e Question : DoesA ,(E) = ¢ hold?

Proposition 10 MERGEAFPEMIN.Xy in ©F, where©} is
the class of all languages that can be recognized in polyn
mial time by a deterministic Turing machine using a nun
ber of calls to arNP oracle bounded by a logarithmic func-
tion of the size of the input data. L& = (X, ..., X,),

139

.TU Clausthal
11TH NMR WORKSHOP

where X; = bo, maxsat, leximin, of dp(i = 1,...,n), Proposition 12 SupposeX; = bo or maxsat, then
then MERGEAPLMIN.X) s @F -complete. APLMIN.X gatisfies (IC0), (IC1), {C2), (IC3'), (IC5),
(IéG), (IC7), (IC8). The other postulates are not satisfie

Proposition 10 shows that the computational complexity of ;' a general case.

inference for our merging operators is located at a low level

of the boolean hierarchy under an additional assumption. Related Work

Logical Properties Merging of stratifieq k_noyvledg_e bases i.s often handled int

. . ~ framework of possibilistic logic (Dubois, Lang, and Prad

Many logical properties have been proposed to characterize 1994) or ordinal conditional function (Spohn 1988). In pos

a belief merging operator. We introduce the set of postslate sjpilistic logic, the merging problems are often solved gy a

proposed in (Konieczny and Pin@fz 2002), whichisused gregatingpossibility distributionswhich are mappings from
to characterize Integrlty Constra”“ﬁa merging Operators.) to a common scale such as [0’1]’ using saommbination

—_— - des Then the syntactic counterpart of these combinatic
Definition 8 Let E, F;, F5 be knowledge profiledy;, K. mo 4 : ;
be consistent knowleldge2 bases, fmdxi 52 be for?nulazls modes can be defined accordingly (Benferhat, Dubois, &

; : g - Prade 1997; Benferhat et al. 2002). In (Chopra, Ghose, ¢
from Lpgs. A is an IC merging operator iff it satisfies the i
following postulates: Meyer 2005; Meyer, Ghose, and Chopra 2002), the me

ing is conducted by mergingpistemic stateshich are (to-
(1C0) A,(E) = p tal) functions from the set of interpretationso the set of

(IC1) If puis consistent, the ,(E) is consistent natural numbers. There are man ;
.) ¢ o . y other merging methc
(IC2) If A E is consistent withy, then A, (E)=AEAw, in possibilistic logic (Benferhat, Dubois, and Prade 199:

where/\(E) = Ak,epKi Benferhat et al. 1999; Qi, Liu, and Glass, 2004a; Qi, Lit
(IC3) If Ey=F5 andpi=pa, thenA , (E1)=A,,(Ez) and Glass 2004b) and in ordinal conditional function fram
(IC4) If Ky |= pand K, = p, thenA, ({Ky, Ko })AK is work (Benferhat et al. 2004; Qi, Liu, and Bell 2005). Ou
consistent ifiA , ({ K1, K2 })AK is consistent merging operators differs from previous ones at least in tv
(IC5) AL(E1) AAL(E2) E AL (E1UES) aspects:

(IC6) If AL(E1) N Au(Ez) is consistent, then First, our operators are semantically defined in a mod
A(B1UEs) = AL (E) ANAL(E?) theoretic way and others are semantically defined by disi
(IC7) AL, (B) Ao |E Apyaps (B) bution functions such as possibility distributions. In fre
(IC8) If AL, (E) A o is consistent, them\ ,, ., (E) = case, our merging operators belong to model-based me
Ay (E) A po ing operators, and they capture some notion of minim

change. Whilst other merging operators are usually synt:
based ones in the flat case.

Second, most of previous merging operators are bas
on the commensurability assumption. In (Benferhat et i
: . T 1 , @ mergin roach for stratified knowl
pon5|der merging postulates for_ stratlfled knowledge hases isggrgo)poiedew%ic% 3Poppg?r?e cgm?nSnSl?rC::lbilig/ azggr?mbtﬁ
ie., gICQ), (IC3) should be modified as: ' ' However, their approach is based on the assumption t
(IC2) Let A\ E' = Nk.ek N, ek, @ij- If A Elis consistent there is an ordering relation between two stratified know
with u, thenA , (E)=AEAu edge based; and K, i.e. K, has priority overK,. In
(IC3) If By=,E5 andpu;=ps, thenA,,, (F1)=A,,(Fs) contrast, our merging operators do not require any of abc

(1C3') is stronger than(C'3) because the condition of assumptions and are _fI_eX|bIe enough to merge knowlec
equivalence between two knowledge profiles is generalized P@ses which are stratified by a total pre-ordering on the
to the condition of equivalence between two SKPs. We do €léments. So our merging operators are more general :
not generalize [C'4), the faimess postulate, which says that Practical than other methods. , _
the result of merging of two belief bases should not give _ 1his workis also related to the logical preference descri
preference to one of them. This postulate is controversial tion language (LPD) in (Brewka 2004). The language LP
(Konieczny 2004). And it is hard to be adapted in the pri- US€S binary operatofs, A and> to connect two (or more)
oritized case because a stratified knowledge base may be in-Pasic orderingsand get more complex orderings. In con
consistent and there is no unique consequence relation for atrast, when defining our merging operators, we use an ad
stratified knowledge base (Benferhat et al. 1993). tive method which is based on a lexicographical preferen

to combine orderings assigned to original knowledge bas
Proposition 11 APEMIN.X gatisfies (IC0), (IC1),[C2"),

(IC5), (IC6) (IC7)fL(IC8). The other postulates are not sat- Conclusions and Further Work

isfied in the general case. . . .
In this paper, we proposed a family of model-theoretic 0|
(IC3') is not satisfied because some ordering strategies erators to merge stratified knowledge bases with integr
are syntax-sensitive. However, when the ordering strate- constraints. We also considered the syntactical counter
gies are either best-out ordering or maxsat ordering, then of merging operators. Our operators can be applied to elas
our merging operators satisfy all the generalized postslat cal knowledge bases. In that case, some of our operators

The postulates are used to characterize an IC merging op-

erator in classical logic. Detailed explanation of the abov

postulates can be found in (Konieczny and Pigog2 2002).
Some postulates in Definition 8 need to be modified if we

140 Technical Report IfI-06-04

reduced to existing merging operators. The computational
complexity of our merging operators was analyzed. Under
an additional assumption, the computationof >IN js
equivalent to that oN“M !N in (Everaere, Konieczny, and
Marquis 2005). Finally, we revised the set of postulates de-
fined in (Konieczny and Pino&ez 2002) and shown that
our operators satisfy most of the revised postulates.

There are several problems that will be left as further
work. First, we have applied our merging operators to clas-
sical bases and got some interesting results. By Propositio
11 and Proposition 12, it is easy to conclude that our oper-
ators have good logical properties in flat cases. However,
to have a thorough evaluation of our operators, we need to
consider other important criteria to compare operators su
as the strategy-proofness and discriminating power. SEcon
we revised the set of postulates defined in (Konieczny and
Pino Rerez 2002). However, the revision is a simple exten-
sion of existing postulates. Due to the additional inforiorat
of stratified knowledge bases, the postulates of a “ratfonal
merging operators for stratified knowledge bases should be
much more complex than what we have considered in this
paper. More postulates will be explored in the future.

References

Abidi, M.A., and Gonzalez, R.C. eds. 199Pata Fusion
in Robotics and Machine Intelligenc&cademic Press.

Baral, C.; Kraus, S. and Minker, J. 1991. Combining mul-
tiple knowledge base$EEE Transactions on Knowledge
and Data Engineering3(2):208-220.

Baral, C.; Kraus, S.; Minker, J.; and Subrahmanian, V.S.
1992. Combining knowledge bases consisting in first order
theoriesComputational Intelligenc8(1):45-71.

Benferhat, S.; Cayrol, C.; Dubois, D.; Lang, L. and
Prade, H. 1993a. Inconsistency management and priori-
tized syntax-based entailmentPiroc. IJCAI'93 640-645.

Benferhat, S.; Dubois, D.; and Prade, H. 1997. From se-
mantic to syntactic approaches to information combination
in possibilistic logic. In Bouchon-Meunier, B. eds\g-
gregation and Fusion of Imperfect Informatiob41-151.
Physica. Verlag.

Benferhat, S.; Dubois, D. and Prade, H.: Some syntac-
tic approaches to the handling of inconsistent knowledge
bases: A comparative study. Part 2: The prioritized case.
In Logic at work : essays dedicated to the memory of He-
lena Rasiowd Ewa Orow. - New York : Physica-Verlag,
pp. 473-511, 1998.

Benferhat S.; Dubois, D.; Prade, H. and Williams, M.A.
1999. A Practical Approach to Fusing Prioritized Knowl-
edge BasesProc. 9th Portu. Conf. Artificial Intelligenge
pp. 223-236, 1999.

Benferhat, S.; Dubois, D.; Kaci, S.; and Prade, H. 2002.
Possibilistic merging and distance-based fusion of propo-
sitional information Annals of Mathematics and Atrtificial
Intelligence34:217-252.

Benferhat, S. and Baida, R.E. 2004. A stratified first order
logic approach for access contrbiternational Journal of
Intelligent System<.9:817-836.

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

Benferhat S., Kaci S., Berre D.L., and Williams M.A
Weakening conflicting information for iterated revisiordan
knowledge integrationArtificail Intelligence vol. 153(1-
2), pp.- 339-371, 2004.

Brewka, G. 2004. A rank-based description language 1
qualitative preferences. Proc. of ECAI'04 303-307.

Bloch, I. and Hunter, A. 2001. Fusion: General cor
cepts and characteristicsiternational Journal of Intelli-
gent Systemd46(10):1107-1134 (special issue on Data ar
Knowledge Fusion).

Brewka, G. 1989. Prefered subtheories-an extended lc
cal framework for default reasoning. Rroc. of IJCAI'89
1043-1048.

Brewka, G. 2004. A rank-based description language 1
qualitative preferences. IRroceedings of sixteenth Euro-
pean Conference on Artificial Intelligence (ECAI'Q3D3-
307.

Cholvy, L. 1992. A logical approach to multi-sources re¢
soning. InProceedings of International Conference Logi
at Work on Knowledge Representation and Reasoning L
der Uncertainty, Logic at WorkL83-196. Springer-Verlag.

Chopra, S.; Ghose, A. and Meyer, T. 2003. Non-prioritize
ranked belief changeJournal of Philosophical Logic
32(4):417-443.

Chopra, S.; Ghose, S. and Meyer, T. 2005. Social choi
theory, belief merging, and strategy-proofneksurnal of
Information Fusionto appear.

Coste-Marquis, S. and Marquis, P. 2000. Compiling stra
fied belief bases. IRroc. of ECAI'0Q 23-27.

Coste-Marquis, S.; Lang, J.; Liberatore, P. and Marqu
P. Expressive power and succintness of propositional le
guages for preference representation.Pimceedings of
Ninth International Conference on Knowledge Represe
tation and Reasoning (KR’'04203-213.

Dalal, M. 1988. Investigations into a theory of knowledg
base revision: Preliminary reporoc. of AAAI'88 3-7.

Dubois, D.; Lang, J.; and Prade, H. 1992. Dealing wit
Multi-Source Information in Possibilistic Logic. IRro-
ceedings of 10th European Conference on Atrtificial Intell
gence(ECAI 92)38-42.

Dubois, D.; Lang, J.; and Prade, H. 1994. Possibilist
logic. In Handbook of logic in Aritificial Intelligence and
Logic Programming Volume 3. Oxford University Press,
439-513.

Everaere, P.; Konieczny, S. and Marquis, P. 2005. Quc¢
and Gmin merging operators. IACAI'05, 424-429.

Fagin, R. and Ullman, J.D. 1983. On the semantics
updates in Databases. IAroceedings of Second ACM
SIGACT-SIGMOD Symp. on Principles of Database Sy
tems Atlanta, 352-265.

Gardenfors P. 1988Knowledge in Flux-Modeling the Dy-
namic of Epistemic Statellass.: MIT Press.

Konieczny, S. and Pino&ez, R. 1998. On the logic of
merging. InProceedings of the Sixth International Confer

141

.TU Clausthal
11TH NMR WORKSHOP

ence on Principles of Knowledge Representation and Rea- Spohn, W. 1988. Ordinal conditional functions. In Williarr

soning (KR'98) 488-498. Morgan Kaufmann. L. Harper and Brian Skyrms (edsQausation in Decision,
Konieczny, S. 2000. On the difference between merging Belief Change, and Statisticd1, 105-134. Kluwer Aca-
knowledge bases and combining them. Rroceedings demic Publisher.

of the Seventh International Conference on Principles of
Knowledge Representation and Reasoning (KR'Q3p-
144.

Konieczny, S. and Pino&ez, R. 2002. Merging informa-
tion under constraints: a qualitative framewad&urnal of
Logic and Computatiod2(5):773-808.

Konieczny, S.; Lang, J. and Marquis, P. 2004.2Dgpera-
tors. Artificial Intelligence 157(1-2):49-79.

Konieczny, S. Propositional belief merging and belief ne-
gotiation model, INMR’04, 249-257, 2004.

Liberatore, P. and Schaerf, M. 1998. Arbitration (or How
to Merge Knowledge BasedEEE Transaction on Knowl-
edge and Data Engineerintp(1):76-90.

Lafage, L. and Lang, J. 2000. Logical representation of
preference for group decision making. Froceedings

of the Seventh International Conference on Principles of
Knowledge Representation and Reasoning (KR’@8y-
468. Morgan Kaufmann.

Lang, J. 2004. Logical preference representation and com-
binatorial vote Annals of Mathematics and Artificial Intel-
ligence 4(1-3):37-71.

Meyer, T.; Ghose A. and Chopra S. 2002. Syntactic repre-
sentations of semnatic merging operations?taceedings

of sixth Pacific Rim International Conference on Atrtificial
Intelligence (PRICAI'02)620.

Nebel, B. 1994. Belief Revision operators and schemes:
Semantics representation and complexityPhoceedings

of eleventh European Conference on Atrtificial Intelligence
341-345.

Nebel, B. 1998. How hard is it to revise a belief base? In
Handbook of Defeasible Reasoning and Uncertainty Man-
agement Systemeol. 3: Belief change, Kluwer Academic,
Dubois and Prade (eds.), 77-145.

Pearl, J. 1990. System Z: A natural ordering of defaults
with tractable applications to default reasoningPhoc. of
third International Conference on Theoretical Aspects of
Reasoning about Knowledg#21-135.

Qi, G.; Liu, W. and Glass, D. 2004. A split-combination
methods for merging possibilistic knowledge base®rim
ceedings of the Ninth International Conference on Princi-
ples of Knoweldge Presentation and Reasoning (KR’'04)
348-356. Morgan Kaufmann.

Qi, G.; Liu, W. and Glass, D. 2004. Combining individu-
ally inconsistent prioritized knowledge basesPRroceed-
ings of the 10th International Workshop on Non-Monotonic
Reasoning (NMR’04342-349. Canada.

Qi, G.: Liu, W. and Bell, D.A. 2005. A revision-based ap-
proach to resolving conflicting information. Rroceedings

of twenty-first Conference on Uncertainty in Artificial In-
telligence (UAI'05) 477-484.

Revesz, P.Z. 1997. On the semantics of arbitraticierna-
tional Journal of Algebra and Computatipia(2):133-160.

142 Technical Report IfI-06-04

Theory of NMR and Uncertainty

DEPARTMENT OF INFORMATICS 143

.TU Clausthal
11TH NMR WORKSHOP

2.4 Merging Optimistic and Pessimistic Preferences

Merging Optimistic and Pessimistic Preferences

Souhila K aci
CRIL
Rue de I’Université SP 16
62307 Lens Cedex, France
kaci@cril.univ-artois.fr

Abstract - In this paper we consider the extension of non-
monotonic preference logic with the distinction between control-
lable (or endogenous) and uncontrollable (or exogenous) vari-
ables, which can be used for example in agent decision making
and deliberation. We assume that the agent is optimistic about
its own controllables and pessimistic about its uncontrollables,
and we study ways to merge these two distinct dimensions. We
also consider complex preferences, such asoptimistic preferences
conditional on an uncontrollable, or optimistic preferences con-
ditional on a pessimistic preference.

Keywords: Preference logic, preference merging, non-
monotonic reasoning.

Introduction

In many areas such as cooperative information systems,
multi-databases, multi-agents systems, information comes
from multiple sources. The multiplicity of sources providing
information makes that information is often contradictory
which requires conflict resolution. This problem has been
widely studied in literature where implicit priorities, based
on Dalal’s distance, (Lin 1996; Lin & Mendelzon 1998;
Konieczny & Pérez 1998; Revesz 1993; 1997) or explicit
priorities (Benferhat et al. 1999; 2002) are used in order to
solve conflicts.

Our concern in this paper is the merging of preferences
of a single agent when they are expressed in a logic of
preferences. Logics of preferences attract much attention
in knowledge representation and reasoning, where they are
used for a variety of applications such as qualitative deci-
sion making (Doyle & Thomason 1999). In this paper we
oppose to the common wisdom that the very efficient speci-
ficity algorithms used in some non-monotonic preference
logics are too simple to be used for knowledge represen-
tation and reasoning applications. In that logics we distin-
guish minimal and maximal specificity principles which cor-
respond to a gravitation towards the ideal and the worst re-
spectively. We counter the argument that a user is forced
to chose among minimal and maximal specificity by intro-
ducing the fundamental distinction between controllable and
uncontrollable variables from decision and control theory,
and merging preferences on the two kinds of variables as vi-
sualized in Figure 1. Our work is based on the hypothesis

144

Leendert van der Torre
ILIAS
University of Luxembourg
Luxembourg
leon.vandertorre@uni.lu

that each set of preferences on controllable and uncontrol-
lable variables is consistent. The merging process aims to
cohabit controllable and uncontrollable variables in an intu-
itive way. Preferences on controllable variables are called
optimistic preferences since minimal specificity principle is
used for such variables. This principle is a gravitation to-
wards the ideal and thus corresponds to an optimistic rea-
soning. Preferences on uncontrollable variables are called
pessimistic preferences since maximal specificity principle
is used for such variables. This principle is a gravitation to-
wards the worst and thus corresponds to an pessimistic rea-
soning.

P={p>q, g>r, ...}
‘ step 2

preference
specification

O={x>y,y>z, ...}
‘ step 1

distinguished

pre-orders

@ merged
@ pre-order

Figure 1: Merging optimistic and pessimistic preferences.

A preference specification contains optimistic pref-
erences (O) defined on controllables x,y,z,..., and
pessimistic preferences (P) defined on uncontrollables
q,7,t,..., which are interpreted as constraints on total pre-
orders on worlds. The efficient specificity algorithms (step
1 and 2 in Figure 1) calculate unique distinguished total pre-
orders, which are thereafter merged (step 3) by symmetric or
a-symmetric mergers. If the optimistic and pessimistic pref-
erences in Figure 1 are defined on separate languages, then
for step 1 and 2 we can use existing methods in preference

Technical Report IfI-06-04

logic, such as (Kaci & van der Torre 2005a). In this paper
we also consider more general languages, in which prefer-
ences on controllables are conditional on uncontrollables, or
on preferences on uncontrollables (or vice versa).

The remainder of this paper is organized as follows. Af-
ter a necessary background, we present a logic of optimistic
preferences defined on controllable variables and a logic of
pessimistic preferences defined on uncontrollable variables.
Then we propose some merging approaches of optimistic
and pessimistic preferences. We also introduce a logic of
preferences where pessimistic and optimistic preferences are
merged in the logic itself. Lastly we conclude with future re-
search.

Background

Let W be the set of propositional interpretations of £, and let
> be atotal pre-order on W (called also a preference order),
i.e., a reflexive, transitive and connected (Vw,w’ € W we
have either w = w’ or w’ = w) relation. We write w > w’
forw > w’ withoutw’ > w. Moreover, we write max(z,)
for{weW|wEz,Vo' e W:w Ez=w>w'}, and
analogously we write min(z,>) for {w € W | w
z,VYw e W:w' Ex=w = w}

The following definition illustrates how a preference or-
der can also be represented by a well ordered partition of
W. This is an equivalent representation, in the sense that
each preference order corresponds to one ordered partition
and vice versa. This equivalent representation as an ordered
partition makes the definition of the non-monotonic seman-
tics, defined later in the paper, easier to read.

Definition 1 (Ordered partition) A sequence of sets of
worlds of the form (E4, ..., E,,) is an ordered partition of
W iff

e Vi, F; isS nonempty,

e FHU---UE, =W and

o Vi,j, E;NE; =0fori+#j.

An ordered partition of W is associated with pre-order > on
W iff Vw,w’ € Wwithw € E;,w’ € E; we have i < j iff
w = w.

Preferences for controllables

Reasoning about controllables is optimistic in the sense that
an agent or decision maker can decide the truth value of a
controllable proposition, and thus may expect that the best
state will be realized.

Optimistic reasoning semantics

A preference statement is a comparative statement “x is
preferred to y”, with « and y propositional sentences of a
propositional language on a set of controllable propositional
atoms. A reasoning about a preference can be optimistic or
pessimistic with respect to both its left hand side and right
hand side, indicated by o and p respectively. Formally we
write @y, where a,b € {o,p}. An optimistic reason-
ing focuses on the best worlds while a pessimistic reasoning
focuses on the worst worlds. For example, the preference
x P>y indicates that we are drawing a pessimistic reasoning

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

with respect to z, and an optimistic reasoning with respect
to y. This means that we deal with the worst z-worlds i.e.
min(z, ») and the best y-worlds i.e. max(y, >).

An optimistic reasoning on a preference statement over con-
trollable variables consists of an optimistic reasoning w.r.t.
its right and left hand side. This also includes the case where
the reasoning is pessimistic w.r.t. its left hand side and opti-
mistic w.r.t. its right hand side. This will be explained later
in this subsection. For the sake of simplicity, such a pref-
erence is called optimistic. Indeed we define an optimistic
preference specification as a set of strict and non-strict opti-
mistic preferences:

Definition 2 (Optimistic preference specification) Let L¢
be a propositional language on a set of controllable proposi-
tional atoms C. Let O be a set of optimistic preferences of
theform {z; >y, |i=1,---,n,z;,y; € Lc}. Apreference
specification is a tuple (O | > € { P>°, P>° %0 %>°1}),

We define preferences of x over y as preferences of x A—y
over y A —z. This is standard and known as von Wright’s
expansion principle (Wright 1963). Additional clauses may
be added for the cases in which sets of worlds are nonempty,
to prevent the satisfiability of preferences like = > T and
x > L. To keep the formal exposition to a minimum, we do
not consider this borderline condition in this paper.

Definition 3 (Monotonic semantics) Let > be a total pre-
order on W.

= x> iff Yw € max(zA—y, >) and Vw' € max(—xA
y,>) we have w > w’

2 >0y iff Vw € max(zA—y, =) and Vw' € max(—xzA
y, =) we have w = w’

=« P>y iff Vw € min(zA-y, =) and V' € max(—zA
y, =) we have w > w’

= x P>% iff Vw € min(zA—y, =) and Vw' € max(—xA
y, =) we have w = w’.

A total pre-order > is a model of an optimistic preference
specification O if it is a model of each p; > ¢; € O%.

Note that = P>°y means that each xz-world is preferred
to all y-worlds w.r.t. >=. This preference can be equiva-
lently written as a set of optimistic preferences of the form
{2/ >°y : 2’ isax — world}. This is also true for z >y
preferences.

Example 1 Consider an agent organizing his evening by
deciding whether he goes to the cinema (c), with his friend
(f) and whether he alos goes to the restaurant (r). We
have O = <O o>o,0p>o,01>o>, where O o0 = {C N
[>=(eN)}, Opso = {cArP>c A=}, Opso =
{e¢ A1 P>°=c Ar}. The strict preference ¢ A f ©>°=(c A f)
means that there is at least a situation in which the agent
goes to the cinema with his friend which is strictly preferred
to all situations where the agent does not go to the cinema
with his friend. The strict preference ¢ A r P>°c A —r means
that each situation in which the agent goes to the cinema and
the restaurant is strictly preferred to all situations in which
the agent goes to the cinema but not to the restaurant. Fi-
nally the non-strict preference ¢ A r >°—c¢ A r means that

145

.TU Clausthal
11TH NMR WORKSHOP

each situation in which the agent goes to the cinema and the
restaurant is at least as preferred as all situations in which
the agent goes to the restaurant but not to the cinema.

We compare total pre-orders based on the so-called speci-
ficity principle. Optimistic reasoning is based on the mini-
mal specificity principle, which assumes that worlds are as
good as possible.

Definition 4 (Minimal specificity principle) Let = and =’
be two total pre-orders on a set of worlds T represented by
ordered partitions (E1,---, Ey,) and (E1, - - -, E},) respec-
tively. We say that > is at least as specific as =/, written as
=C>' iff Yvw € W, ifw € E;and w € EJ’ then i < j.
> belongs to the set of the least specific pre-orders among
a set of pre-orders O if thereisno =’ in O s.t. ='C>-, i.e.,
='C > holds but =C =’ does not.

Algorithm 1 gives the (unique) least specific pre-order satis-
fying an optimistic preference specification. All the proofs
can be found in (Kaci & van der Torre 2006).

Following Definition 2 an optimistic preference specifica-
tion contains the following sets of preferences:

OO>O = {C’Ll P&y O>Oyi1}’
OOZO = {012 P Lig OZOyiQ}’
Op>o = {Cis P ig p>0yi3}v
0;120 = {Cu Xy Tzoyi4}.

Moreover, we refer to the constraints of these preferences by

where the left and right hand side of these constraints are
L(Ci) = |z, N ~yi | and R(Cy,) = |7y, Ay, re-
spectively; |¢| denotes the set of interpretations satisfying ¢.

The basic idea of the algorithm is to construct the least
specific pre-order by calculating the sets of worlds of the
ordered partition, going from the ideal to the worst worlds.

At each step of the algorithm, we look for worlds which
can have the current highest ranking in the preference or-
der. This corresponds to the current minimal value [. These
worlds are those which do not falsify any constraint in C.
We first put in E; worlds which do not falsify any strict pref-
erence. These worlds are those which do not appear in the
right hand side of the strict preferences C;, and C;,. Now we
remove from E; worlds which falsify constraints of the non-
strict preferences C;, and C;,. Constraints C;, are violated if
L(Ci,)NE; = 0 and R(C;,)NE; # (), while the constraints
C;, are violated if L(C;,) € E;and R(C;,) N E; # (. Once
E is fixed, satisfied constraints are removed. Note that con-
straints C;, s.t. k € {1,2} are satisfied if L(C;,) N E; # 0
since in this case, worlds of R(C;,) are necessarily in Ej,
with » > [and worlds of R(C;,) are in Ej, with b’ > .
However constraints C;, with k& € {3,4} are satisfied only
when L(C;,) C E; otherwise they should be replaced by
(L(Ci) — Er, R(Cyy,).

146

Algorithm 1: Handling optimistic preferences.

Data: An optimistic preference specification.
Result: A total preorder = on .

begin

[—0;

while W # () do

—l—1l+1,7«1;

[** strict constraints **/

-F = {w : V@l,@3 S E,W ¢ R(C'Ll) U
R(Cz)}
while j =1 do

J<0;

for each C;, and C;, in C do

[** constraints induced by non-strict pref-
erences **/

if (L(Ci,)NE; = 0and R(Cy,)NE; # 0)
or (L(C;,) € Eyand R(C;,) N E; # 0)

then
E;=E; — R(Cy,);
J1

if £, = () then Stop (inconsistent constraints);

— from W remove elements of E ;

/** remove satisfied constraints induced by °>°

preferences **/

- from C remove C;, k € {1,2} such that

L(Czk) NE #0;

/** update constraints induced by P>° constraints

**/

- replace constraints C;, (k € {3,4}) by

(L(Clk) - E17 R(C'Lk)) ;

/** remove satisfied constraints induced by P>°

preferences **/

— from C remove C;, (k € {3,4}) with empty
| L(C;,).

return (Eq,---, E))

end

Example 2 Let us consider again the optimistic preference
specification given in Example 1.

Let W = {wp : menfor,wr @ —enfriwg @ —ef-rws
—cefrywy s enforws e frywe s eforwr s efrt.

We have C = {({cug,w7},{wo,wl,wg,wg,w4,w5})} U
{({w5,u{7},{w4,w6})}u{({w5,w7},{w1,w3})_}. .
We put in E; all worlds which do not appear in the right
hand side of strict constraints, we get F1 = {w7}. The
constraint induced by ¢ A r 7>°—¢ A r is not violated. The
constraint induced by ¢ A f >°=(c A f) is satisfied while
the ones induced by c A7 P>°c A —rand c Ar P>°—c AT are
not. S0 C = {({ws}, {ws,we}) } U {({ws}, {w1,ws})}.

We repeat this process and get E2 = {wo, w1, w2, ws, ws }
and FE3 = {w4,w6}.

Preferences for uncontrollables

Reasoning about uncontrollables is pessimistic in the sense
that an agent cannot decide the truth value of a uncontrol-

Technical Report IfI-06-04

lable proposition, and thus may assume that the worst state
will be realized (known as Wald’s criterion).

Pessimistic reasoning semantics

A pessimistic preference specification contains four sets of
preferences, which are pessimistic on their left and right
hand side. This also includes the case where preferences are
pessimistic with respect to their left hand side and optimistic
with respect to their right side (as in optimistic reasoning se-
mantics). This will be explained later in this section.

Definition 5 (Pessimistic preference specification)

Let L;; be a propositional language on a set of

uncontrollable propositional atoms /. Let Po

be a set of pessimistic preferences of the form

{g>ri | ¢ = 1,---,n,q;,mi € Ly}. A preference

specification is a tuple (P | > € { P>°, P>°, P>P P>P1),

Definition 6 (Monotonic semantics) Let > be a total pre-

order on W.

= ¢ P>Pr iff Vw € min(g A —r,>) and Vw' € min(—g A
r, =) we have w > w’

=k ¢ P>Pr iff Vw € min(g A —r, =) and Vo' € min(—g A
r,>) we have w = w’

=k q P>°r iff Yw € min(g A —r, =) and Vw' € max(—qg A
r, =) we have w >~ w’

=E ¢ P7>°r iff Vw € min(g A —r, =) and V' € max(—g A
r, =) we have w > w’

A total pre-order > is a model of Py iff > satisfies each
preference g; > r; in Py.

Note that ¢ »>°r can be equivalently written as {q P>?r’ :
r’isar — world}. This is also true for ¢ 2>°r preferences.

Pessimistic reasoning is based on the maximal specificity
principle, which assumes that worlds are as bad as possible.

Definition 7 (Maximal specificity principle) > belongs to
the set of the most specific pre-orders among a set of pre-
orders O if there is no =’ in O such that = >'.

Algorithm 2 gives the (unique) most specific preorder satis-
fying a pessimistic preference specification. It is similar to
Algorithm 1.

This algorithm is based on the following four sets of prefer-
ences:

Pp>p = {Oil S iy p>pri1}v

Posp =A{Ci, 1 qiy 2Priy },

P1>O = {C’is P Qig p>o,r.i3},

PPZO = {Ci4 $ iy 120”4}'
Let C = Uk:1,~~~,4{aik = (L(CM)’R(O%))}V where
L(C'Lk) = |qik A _'rik‘ and R(C'Lk) = |_'qik AT, ‘

M erging optimistic and pessimistic preferences

In this section we consider the merger of the least specific
pre-order satisfying the optimistic preference specification,
and the most specific pre-order satisfying the pessimistic

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

Algorithm 2: Handling pessimistic preferences.

Data: A pessimistic preference specification.
Result: A total pre-order = on W.
begin
| —0;
while W # () do
l—=l+1,j =1
E, = {w : VC,;I,CiB in C,w §_Z L(Cll) UL(OiB)};
while j = 1do
g0
for each C,, and C;, inC do
[** constraints induced by non-strict pref-
erences **/
if (L(Cy,)NE; # 0and R(C;,)NE; = 0)
or
(L(Ci,)NE; # 0and R(Cy,) € E;) then
|_ E,=FE _L(Ozk):] — 1

if £, = () then Stop (inconsistent constraints);

— From W remove elements of E};

/** remove satisfied constraints induced by P>P
preferences **/

— From C remove C;, (for k € {1,2})st. B/ N
R(C;,) #0;

[** update constraints induced by P> prefer-
ences **/ _

— Replace C;, (for ¥ € {3,4}) in C by
(L(Cy,), R(Cy) =B

/** remove satisfied constraints induced by P>°
preferences **/

— From C remove C;, (k € {3,4}) with empty
L R(C'Lk)’

return (B, -+, E])st.V1 < h <[E}, = Ej_p11

end

preference specification. From now on, let £ be a propo-
sitional language on disjoint sets of controllable and uncon-
trollable propositional atoms C UU{. A preference specifi-
cation PS consists of an optimistic and a pessimistic pref-
erence specification, i.e., optimistic preferences on control-
lables and pessimistic preferences on uncontrollables. In
general, let > be the merger of >, and >,. We assume that
Pareto conditions hold:

Definition 8 Let >-,, >, and > be three total pre-orders on
the same set. > is a merger of -, and =, if and only if the
following three conditions hold:

If wy >, wo and wy >, wo then wy > wo,

If w1 = W and w1 tp W2 then w1y >~ Wo.

Given two arbitrary pre-orders, there are many possible
mergers. We therefore again consider distinguished pre-
orders in the subsections below. The desideratum of a
merger operator is that the merger satisfies, in some sense,
most of the preference specification. However, it is clearly
unreasonable to ask for an operator that satisfies the whole
preference specification. For example, we may have strong
preferences x P>°—x and p P>°—-p, which can be satisfied

147

.TU Clausthal
11TH NMR WORKSHOP

by a minimal and maximal specific pre-order separately, but
which are contradictory given together. This motivates the
next definition of partial satisfaction, which only considers
some of the preference types.

Definition 9 A pre-order partially satisfies a preference
specification PS when it satisfies PSS, with > €
{0>07 0207 Z>P’ pr}

The merging operators in this section satisfy our desider-
atum that the merger partially satisfies the preference spec-
ification, as a consequence of the following lemma. The
two minimal and maximal specific pre-orders of optimistic
and pessimistic preference specifications satisfy the property
that no two sets are disjoint.

Lemmal Let (Ey,---,FE,) and (E{,---, E!) be the or-
dered partitions of >, and >, respectively. We have for all
1<i<nandalll <j<mthat E; N E". # .

Proof. Due to the fact that >, and >, are defined on disjoint
sets of variables.

Symmetric mergers

Let > be the merger of >, and > . The least and most spe-
cific pre-orders > satisfying Pareto conditions, are unique
and identical, and can be obtained as follows. Given
Lemma 1, thus far nonempty sets E;’ do not exist, but they
may exist in extensions discussed in future sections.

Proposition 1 Let (Eq,---,E,) and (Ef,---, E!,) be the
ordered partitions of >, and >, respectively. The least/most
specific merger of >, and >, is == (EY,---,E .)
such thatifw € E; andw € E} thenw € E,; ;, and
by eliminating nonempty sets E;/ and renumbering the non-
empty ones in sequence.

The symmetric merger, called also the least/most specific
merger, is illustrated by the following example.

Example 3 Consider the optimistic preference specifica-
tion p ®>°—p and the pessimistic preference specification
m P>P—m, where p and m stand respectively for “I will
work on a project in order to get money” and “my boss
accepts to give me money to pay the conference fee”.
Applying Algorithm 1 and Algorithm 2 on
p>°p and m P>P—m respectively gives
o= ({mp, -mp}, {m-p,~-m-p}) and =,=
({mp, m—p}, {—mp,—-m-p}). The least/most specific
merger is == {{mp}, {—mp, m-p}, {-m-p}}.

Proposition 2 The least/most specific merger of two pre-
orders satisfying Lemma 1 partially satisfies the preference
specification.

Proposition 3 The least/most specific merger is not com-
plete, in the sense that there are pre-orders which cannot
be constructed in this way.

Proof. Consider a language with only one controllable
and one uncontrollable p. The minimal and maximal specific
pre-orders consist of at most two equivalence classes, and
the least/most specific merger consists therefore of at most
three equivalence classes. Hence, pre-orders in which all
four worlds are distinct cannot be constructed.

148

We can also consider the product merger, which is a sym-

metric merger, defined by: if w € F; and w € EJ/ then
weER!

ixj"

Dictators

We now consider dictator mergers that prefer one ordering
over the other one. The minimax merger gives priority to the
preorder >, associated to the optimistic preference specifi-
cation, computed following the minimal specificity princi-
ple, over -, associated to the pessimistic preference speci-
fication, computed following the maximal specificity princi-
ple. Dictatorship relation of >, over >, means that worlds
are first ordered with respect to >, and only in the case of
equality >, is considered.

Definition 10 wy = ws iff wy =, wy Or (w1 ~, wo and
w1 »p U)Q).

The minimax merger can be defined as follows.

Proposition 4 Let (Ey,---,E,) and (E},---, E!,) be the
ordered partitions of >, and >, respectively. The result
of merging >, and =, is == (EY,---, E/,,.) such that if

n*xm
/ 1
we Eandw e Ejthenw € Ef_,),,. . ..

Example 4 (continued) The minimax merger of the prefer-
ence specification is {{mp}, {-mp}, {m—p}, {-m—-p}}.

The principle of the maximin merger is similar to minimax
merger. The dictator here is the pre-order associated to the
pessimistic preference specification and computed following
the maximal specificity principle.

Definition 11 w; > wo iff wy =p W2 Or (w1 ~p W2 and
w1 o Wa).

Example 5 (continued) The maximin merger of the prefer-
ence specification is {{mp}, {m-p}, {-mp}, {-m—-p}}.

Conditional preferences

The drawback of handling preferences on controllable and
uncontrollable variables separately is the impossibility to ex-
press interaction between the two kinds of variables. For
example my decision on whether | will work hard to finish a
paper (which is a controllable variable) depends on the un-
controllable variable “money”, decided by my boss. If my
boss accepts to pay the conference fees then | will work hard
to finish the paper. We therefore consider in the remainder
of this paper preference formulas with both controllable and
uncontrollable variables.

A general approach would be to define optimistic and
pessimistic preference specifications on any combination of
controllables and uncontrollables, such as an optimistic pref-
erence p >°x or even g >>°r. However, this approach blurs
the idea that optimistic reasoning is restricted to control-
lables, and pessimistic reasoning is restricted to uncontrol-
lables. We therefore define conditional preferences. Condi-
tional optimistic and pessimistic preferences are defined as
follows.

Definition 12 (Conditional optimistic preference specification)

Let O be a set of conditional optimistic preferences of the
form{q¢; — (zi>wy) |i=1,---,n,q € Ly, xi,y; € Lc},

Technical Report IfI-06-04

where ¢ — (z>y) = (¢Ax)> (¢ Ay). A con-
ditional optimistic preference specification is a tuple
(Op | > € {29, 220 20, 2>},

Definition 13 (Conditional pessimistic preference specification)

Let P be a set of conditional pessimistic preferences of the
form {z; — (gi>ri)|i=1,---,n,2; € Le,qi,mi € Ly},
where x — (¢>r) = (x Ag) > (z Ar). A con-
ditional pessimistic preference specification is a tuple
<P> | > € { P>o’ Zzoa p>p) ZZP}>

In the following examples we merge the two pre-orders
using the symmetric merger operator since there is no reason
to give priority neither to -, nor to >,. We start with some
simple examples to illustrate that the results of the merger
behaves intuitively.

Example 6 The merger of optimistic preference
m — (p%°-p) and pessimistic preference —m P>Pm
is the merger of =,= ({mp,~mp,-m-p}, {m-p})
and x,= ({-=mp, ~m=p}, {mp, m-p}), ie,
== ({_'m_'pa _'mp}v {mp}v {m_‘p})

The merger of optimistic preference m — (p >>°-p)
and pessimistic preference m P>P-m is the
merger of =.= ({mp, -mp, -m-p},{m-p}) and
=p= ({mp,mﬂp} {-mp,-m-p}), e, ==
({mp} {_'mpvm_'pv _'m_'p})

The merger of optimistic preference m — (p %>°-p)

and pessimistic preference p — (mP>P=m) is the
merger of »,= ({mp,—-mp,-m-p},{m-p}) and
> = ({mp} {_'mpvm_'pv _'m_‘p}) ie, =
({mp}, {-mp, ~m-p}, {m-p}).
Proposition 5 The most specific merger of two minimal and
maximal pre-orders of conditional preference specifications
does not necessarily partially satisfy the preference specifi-
cation.

Proof. The merger of optimistic preference m —
(p >°—p) and pessimistic preference —-p — (m P>P—m)
is the merger of =,= ({mp,-mp,-m-p}, {m-p})
and >=,= ({m-p}, {mp, ~mp, =m-p}), i.e.,
== ({mp, m—p,-m~-p,~-mp}). The merger is the
universal relation which does not satisfy any non-trivial
preference.

We now consider an extension of our running example on
working and money.

Example 7 Let’s consider another controllable variable
w which stands for “I will work hard on the paper”. Let
O = {money — (work >>°—work),
—money — (—work *>°work),
—money — (project P>°—project)}.
This is equivalent to
{money N work >>°money A —work,
—money N\ —work °>°—money A work,
—money A project P>°—money A —project}.
Applying Algorithm 1 gives

=o= ({~m—wp, mwp, mw-p}, {m-w-p, m-wp, ~mwp},

{ﬁmﬁwﬁp7 ﬁmw—ip})

All preferences are true in >,. According to these pref-
erences, the best situations for the agent are when there is

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

money and she works hard on the paper, or when there is
no money, she works on a project but does not work hard
on the paper. This is intuitively meaningful since when there
is money the agent is motivated to work hard on the paper
however when there is no money, it becomes necessary to
work on a project which prevents her to work hard on the
paper. The worst situations (as one would expect) are when
there is no money and she does not work on a project.

Example 8 Let

P = {—project — (money P>°—~money),
—work — (—money P>Pmoney)}.

This is equivalent to

{—project A money P>°—project A =money,

—work A ~money P>P—work A money}.

Applying Algorithm 2 gives

=p= ({mw=p, m=w-p}, { =m—w-p, ~m-wp},
{—~mw-p, = mwp, m—wp, mwp}).

Now given a preference specification PS = O U P, the
associated total pre-order is the result of combining -, and
> p using the symmetric merger.

Example 9 The merger of =0 and >p
given in Examples 7 and 8 respectively is
-— ({mw=p}, {=m—wp, m—w—p}, {mwp},
{m—wp, ~“mwp, -m—-w-p}, {-mw-p}). The best
situation is when there is money, the agent works hard on
the paper and does not work on a project and the worst
situation is when the agent works hard on the paper but
unfortunately neither she works on a project nor there is
money.

The following example illustrates how our approach can
be used in qualitative decision making. The distinction
between controllable and uncontrollable variables exists in
many qualitative decision theories, see e.g. (Boutilier 1994),
and most recently preference logic for decision has been pro-
moted in particular by Brewka (Brewka 2004). We use Sav-
age’s famous egg breaking example (Savage 1954), as also
used by Brewka (Brewka 2004) to illustrate his extended
logic programming approach in decision making.

Example 10 An agent is preparing an omelette. 5 fresh
eggs are already in the omelette. There is one more egg.
She does not know whether this egg is fresh or rotten. The
agent can (i) add it to the omelette which means the whole
omelette may be wasted, (ii) throw it away, which means one
egg may be wasted, or (iii) put it in a cup, check whether it is
ok or not and put it to the omelette in the former case, throw
it away in the latter. In any case, a cup has to be washed if
this option is chosen.
There is one controllable variable which consists in putting
the egg in_omelette, in_cup or throw it away. There is
also an uncontrollable variable which is the state of the egg
fresh or rotten. The effects of controllable and uncontrol-
lable variables are the following:

5_omelette «— throw_away,

6_omelette — fresh, in_omelette

0_omelette «+ rotten, in_omelette,

6_omelette — fresh, in_cup,

5_omelette < rotten, in_cup,

149

.TU Clausthal
11TH NMR WORKSHOP

—wash <« notin_cup,

wash «— in_cup.
Agent’s desires are represented as follows:

—wash x wash

6_omelette x 5_omelette x 0_omelette.
We used here notations of logic programming (Brewka
2004). For example 5_omelette «— throw_away is in-
terpreted as: if the egg is thrown away then the agent will
get an omelette with 5 eggs. The desire 6_omelette x
5_omelette x O_omelette is interpreted as: prefer-
ably 6_omelette, if not then 5_omelette and if neither
6_omelette nor 5_omelette then 0_omelette.
Possible solutions are:
Sy = {6_omelette, ~wash, fresh,in_omelette},
So = {0_omelette, ~wash, rotten, in_omelette},
S3 = {6_omelette, wash, fresh,in_cup},
Sy = {5_omelette, wash, rotten, in_cup},
S5 = {5_omelette, ~wash, fresh,throw_away},
Se = {b_omelette, ~wash, rotten, throw_away}.
Each solution is composed of an instantiation of decision
variables and the satisfied desires.

Let us run this example following Brewka’s approach
(Brewka 2004).

Example 10 (Continued) Brewka generates a prefer-
ence order on the solutions (called answer sets in his
framework) following agent’s desires. Indeed S; is the
single preferred solution. S5 and Sg are equally preferred.
They are preferred to S, and .S, but incomparable to Ss.
Ss is preferred to S, and incomparable to S5, Sg and Ss.
Lastly S; and S, are incomparable.

In our approach, controllable and uncontrollable vari-
ables are dealt with separately, respecting their distinct
nature in decision theory. Our approach uses also various
kinds of preferences, and hon-monotonic reasoning (based
on specificity algorithms) to deal with under-specification.

Example 10 (Continued) Let us consider the following
preferences on controllable and uncontrollable variables:

fresh — in_omelette > in_cup

O fresh — in_cup > throw_away
) rotten — throw_away > in_cup
rotten — in_cup > in_omelette

in_omelette — fresh > rotten
P =< in_cup — fresh > rotten
throw_away — rotten > fresh

The set of possible alternatives is W =
{wlv w2, w3, wWyq, Ws, wﬁ} where
w1 = fresh Ain_omelette,
we = rotten A in_omelette,
w3 = fresh A in_cup,
w4 = rotten A in_cup,
ws = fresh A throw_away and
wg = rotten A throw_away.
We apply Algorithm 1 on the set O of optimistic preferences,
we get ({w1, we}, {ws, wa}, {wa, ws}).

150

We apply Algorithm 2 on the set P of pessimistic prefer-
ences, we get ({w1, w3, we }, {w2, w1, ws }).

We merge the two preorders using the symmetric merger, we
get ({wi, we}, {wa}, {wa}, {w2,ws}).

Now agent’s desires may be used to discriminate wy and wg.
Both satisfy —wash however w, satisfies 6_omelette while
weg satisfies 5_omelette so wy is preferred to wg.
Concerning wo and ws, ws is preferred to ws. Indeed
solutions of the previous example are ordered as follows in
our framework: S| = Sg = S3 = S4 = S5 = So.

Our approach may be viewed as an extension of Brewka’s
approach where preferences among alternatives are used in
addition to preferences among desires.

Concluding remarks

The distinction between controllable and uncontrollable
propositions is fundamental in decision and control theory,
and in various agent theories. Moreover, various kinds of op-
timistic and pessimistic reasoning are also present in many
decision theories, for example in the maximin and mini-
max decision rules. However, their role seems to have at-
tracted less attention in the non-monotonic logic of prefer-
ence (Boella & van der Torre 2005; Dastani et al. 2005;
Kaci & van der Torre 2005a; Lang 2004), despite the recent
interest in this area, and the recent recognition that prefer-
ence logic plays a key role in many knowledge representa-
tion and reasoning tasks, including decision making.

In this paper we study non-monotonic preference logic
extended with the distinction between controllable and un-
controllable propositions. We illustrate how the logic can be
used in decision making where preferences on controllables
and preferences on uncontrollables have to be merged.

Our approach may also be used in more complex merg-
ing tasks such as social and group decision making. For
example, one such extension are preferences on control-
lable variables conditional on preferences on uncontrollable
variables, i.e. (¢, 1) — (x>, y), or conversely, i.e.
(x >0 y) — (g >p). This extension can be used for so-
cial decision making where an agent states its preferences
given the preferences of another agent.

The following example illustrates how such social pref-
erences can be used. Roughly, for a conditional optimistic
preference (¢ >,) — (x >, y), we first apply the pes-
simistic ordering on uncontrollables and then use the result
to incorporate preferences on controllables, combining the
two using the maximin merger.

Example 11 Carl and his girlfriend Sandra go the restau-
rant. Menus are composed of meat or fish, wine or jus and
dessert or cheese. Sandra is careful about her fitness so
each menu without cake is preferred for her to all menus
with cake. Even if Carl likes dessert, he does want to
attempt Sandra by choosing a menu composed of a cake
S0, to compensate, he states that there is at least one menu
composed of wine and cheese which is preferred to all
menus composed of neither cake nor wine. Let W = {wy :
Sd-w—m,w; : "d—wm,ws : “dw-m,ws : “dwm,wy :
d—w—m,ws : d—wm,wg : d~w-m,wy : dwm} be the set

Technical Report IfI-06-04

of possible menus where m, w and d stand for meat, wine
and dessert respectively. -m, —w and —d stand for fish, jus
and cheese respectively.

Sandra’s preferences give the following pre-
order >= ({wo, w1, wo, w3}, {ws, ws,ws,wr}) and
Carl’s preferences give the following preorder >='=
({w2, ws, wa, ws, we, w7}, {wo,w1}). We use the maximin
merger and get: ({w2, w3}, {wo, w1}, {wa, ws, we, wr}).
Given a set of preferences of the form {¢,;>,7; — z;i>oy;},
one may be tried to compute the preorders associated to
{g;j>pr;}and {z;>,y;} and then to merge them. However
this way is misleading since each set of preferences may
be inconsistent. The correct way would be to compute the
preorder associated to each rule ¢; >, r; — z; >, ¥; as
explained above and then to merge the different preorders
using the symmetric merger since there is no reason to give
priority to any preorder. The investigation of this idea is left
to a further research.

Other topics for further research are preference specifica-
tions in which strong preferences P>° are defined on both
controllables and uncontrollables to define a stronger no-
tion than weak satisfiability of a preference specification, the
extension with beliefs, and ceteris paribus preferences (see
(Kaci & van der Torre 2005b)).

References

Benferhat, S.; Dubois, D.; Prade, H.; and Williams, M.
1999. A practical approach to fusing and revising prior-
itized belief bases. In Proceedings of EPIA 99, LNAI n°
1695, Springer Verlag, 222-236.

Benferhat, S.; Dubois, D.; Kaci, S.; and Prade, H. 2002.
Possibilistic merging and distance-based fusion of proposi-
tional information. In Annals of Mathematics and Artificial
Intelligence, volume 34(1-3), 217-252.

Boella, G., and van der Torre, L. 2005. A nonmonotonic
logic for specifying and querying preferences. In Proceed-
ings of IJCAI’05.

Boutilier, C. 1994. Toward a logic for qualitative decision
theory. In Proceedings KR94, 75-86.

Brewka, G. 2004. Answer sets and qualitative decision
making. In Synthese.

Dastani, M.; Governatori, G.; Rotolo, A.; and van der
Torre, L. 2005. Preferences of agents in defeasible logic.
In Proceedings AI’05. Springer.

Doyle, J., and Thomason, R. 1999. Background to qualita-
tive decision theory. Al Magazine 20(2):55-68.

Kaci, S., and van der Torre, L. 2005a. Algorithms for a
nonmonotonic logic of preferences. In Eighth European
Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU’05), 281-292.
Kaci, S., and van der Torre, L. 2005b. Non-monotonic rea-
soning with various kinds of preferences. In IJCAI’05 Mul-
tidisciplinary Workshop on Advances in Preference Han-
dling.

Kaci, S., and van der Torre, L. 2006. Merging Optimistic
and Pessimistic Preferences. In C.R.I.L., Technical report.

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

Konieczny, S., and Pérez, R. P. 1998. On the logic of merg-
ing. In Proceedings of the Sixth International Conference
on Principles of Knowledge Representation and Reasoning
(KR’98), Trento, 488-498.

Lang, J. 2004. A preference-based interpretation of other
agents’ actions. In Proceedings of KR04, 644-653.

Lin, J., and Mendelzon, A. 1998. Merging databases under
constraints. International Journal of Cooperative Informa-
tion Systems 7(1):55-76.

Lin, J. 1996. Integration of weighted knowledge bases.
Artificial Intelligence 83:363-378.

Revesz, P. Z. 1993. On the semantics of theory change:
arbitration between old and new information. In 12¢* ACM
SIGACT-SIGMOD-SIGART symposium on Principles of
Databases, 71-92.

Revesz, P. Z. 1997. On the semantics of arbitration. In-
ternational Journal of Algebra and Computation 7(2):133-
160.

Savage, L. 1954. The foundations of Statistics. Dover, New
York.

Wright, G. V. 1963. The Logic of Preference. Edinburg.
University Press.

151

.TU Clausthal
11TH NMR WORKSHOP

152 Technical Report IfI-06-04

Theory of NMR and Uncertainty

2.5 Distance-Based Semantics for Multiple-Valued Logics

Distance-Based Semantics for Multiple-Valued Logics

Ofer Arieli
Department of Computer Science,
The Academic College of Tel-Aviv
4 Antokolski street, Tel-Aviv 61161, Israel.
oarieli@mta.ac.il

Abstract Dottaviano 2002)). One could identify at least four pal
ties with different philosophical attitudes to such logittze
traditionalistsdefend classical logics and deny any need
paraconsistent logics. On the other extreme, dizdethe-
istscontend that the world is fundamentally inconsistent ar
hence the true logic should be paraconsistent. plhelists
view inconsistent structures as fundamental but providjon
and favour their replacement, at least in empirical domair
by consistent counterparts. Finally, theformistsdefend
consistency in ontological matters, but argue that hum
knowledge and thinking necessarily requires inconsisten

We show that the incorporation of distance-based se-
mantics in the context of multiple-valued consequence
relations yields a general, simple, and intuitively ap-
pealing framework for reasoning with incomplete and
inconsistent information.

Introduction

Reasoning with distance functions is a common way of
giving semantics to formalisms that are non-monotonic in ! :
nature. The basic intuition behind this approach is that, and hence that classical logic should be replaced by a pe
given a set of possible worlds (alternatively, interprieta) consistent counterpart. The underlying theme here, follo
that represent the reasoner’s epistemic states or the infor Ing the reformists, is that conflicting data is unavoidable
mation content of different data sources, the similarity be ~Practice, but it corresponds to inadequate informatiorugibc
tween those worlds can be expressed quantitatively (that is the real world, and therefore it should be minimized. As w
in terms of distance measurements), and thus can be evalu-Show below, this intuition is nicely and easily expressed
ated by corresponding distance operators. In this respect, terms of distance semantics. Indeed, the incorporation
there is no wonder that distance semantics has played adistance-based semantics in the context of multiple-vhlu
prominent role in different paradigms for (non-monotonic) consequence relations yields a framework in which a va

information processing. Two remarkable examples for this €ty of paraconsistent multiple-valued logics are definab
are the following: These logics are naturally applied in many situations whe

uncertainty is involved.

The principle of uncertainty minimization by distance
semantics is in fact a preference criterion among diffe
ent interpretations of the premises. In this respect, t
formalisms that are defined here may be considered a

; : . certain kind of preferential logics(Shoham 1987; 1988;
mation (see, e.g., (Lehmann, Magidor, & Schiechta 2001; Makinson 1994). In particular, the intuition and the mc

Peppas, Chopra, & Foo 2004; Delgrande 2004)). tivation behind this work is closely related to other exter

e Database integration systems (Arenas, Bertossi, & sions to multiple-valued semantics of the theory of pre
Chomicki 1999; 2003; Lin & Mendelzon 1999) and merg- erential reasoning (see for instance (Arieli & Avron 199¢

ing operators for independent data-sources (Konieczny, 2000; Konieczny & Marquis 2002; Arieli & Denecker 2003
Lang, & Marquis 2002; Konieczny & Pinoépez 2002), Ben Naim 2005; Arieli 2004; 2006)).

where the basic idea is that the amalgamat_ed information The rest of this paper is organized as follows: in th
should be kept coherent and at the same time as close as

e Formalisms for modeling belief revision, in which dis-
tance minimization corresponds to the idea that the dif-
ference between the reasoner’s new states of belief and
the old one should be kept as minimal as possible, that is,
restricted only to what is really implied by the new infor-

. - e . o > next section we set up the framework; we consider ba:
possible to the collective information as it is depicted by multiple-valued entailments and define their distancestias

the distributed sources. variants. Then we consider different distance metrics a

The goal of this paper is to introduce similar distance con- investigate some of the properties of the induced con:

siderations in the context qfaraconsistent logicsthat is:

quence relations. Finally, we discuss a generalizatiohef t

formalisms that tolerate inconsistency and do not become distance-based entailments to prioritized theories and/sh

trivial in the presence of contradictions (see (da Costa)197

its usefulness for modeling belief revision and for coresist

and (Priest 2002); some collections of papers on this topic query answering in database systems. In the last section

appeat, e.g., in (Bateret al. 2000; Carnielli, Coniglio, &

DEPARTMENT OF INFORMATICS

conclude.

153

.TU Clausthal
11TH NMR WORKSHOP

The Framework
Basic Multiple-Valued Entailments
Definition 1 Let £ be an arbitrary propositional language.
A multiple-valued structurfor £ is a triple (V,0, D),
whereV is set of elements (“truth values™) is a set of

operations otV that correspond to the connectivesdnand
D is a nonempty proper subsetBf

The setD consists of thadesignatedvalues ofV, i.e.,
those that represent true assertions.
true, false, and thatrue € D, false & D.

Definition 2 LetS = (V, O, D) be a multiple-valued struc-
ture for a propositional languagé

a) A (multiple-valuedyaluationv is a function that assigns

an element o’ to each atomic formula if. Extensions

to complex formulae are done as usual. In what follows

we shall sometimes write = {p; : x1,...,pp : Ty} tO
denote that/(p;) = z; fori = 1,...,n. The set of valu-
ations onV is denoted by\Y .

b) A valuationv satisfiesa formulay if v(¢) € D.
¢) A valuationv is amodelof a setl” of formulae inZ, if v

154

satisfies every formula ifi. The set of the models &f is
denoted bymodS (T).

Definition 3 LetS = (V, O, D) be a multiple-valued struc-
ture for a languag€. A basicS-entailments a relation==
between sets of formulae ifiand formulae inZ, defined as
follows: T =5 + if every model ofl" satisfies).

Example 4 In many cases the underlying semantical struc-

ture of a multiple-valued logic is a lattice, and so it is Usua
to include inO (at least) the basic lattice operations. In
such cases a conjunction it is associated with the join,

the disjunction corresponds to the meet, and if the lattice
has a negation operator, it is associated with the negation o
the language. In what follows we use these definitions for

the operators i©. Now, the two-valued structur€wWOo is

defined by the two-valued lattice, and is obtained by taking

V = {true, false} andD = {true}. The corresponding en-
tailment is denote¢=2. For three-valued structures we take
V = {true, false, middle}, the lattice operators i@ are de-
fined with respect to the total ordérlse < middle < true,
and D is either {true} or {true, middle}. The structure
with D = {true} is denoted here by HREE, . The associ-
ated entailment=3+, corresponds to Kleene’s three-valued
logic (Kleene 1950).
THREE~, corresponds to Priest’s logic LP (Priest 1989;
1991)! Note that by different choices of the operators in

O other three-valued logics are obtained, line weak Kleene
logic, strong Kleene logic, and tukasiewicz’s logic (see,
e.g., (Fitting 1990; Avron 1991)). In the four-valued case

there are usually two middle elements, denoted hetsbly
and neither.? In this context it is usual to takerue and

1Also known as g, RMs, and PAC (see (D’ottaviano 1985;
Rozoner 1989; Avron 1991) and chapter IX of (Epstein 1990)).

2The names of the middle elements correspond to their intu-
itive meaning as representing conflicts (‘both true and false’) and

incomplete information (‘neither true nor false’).

In what follows we
shall assume thal’ contains at least the classical values

The other three-valued structure,

both as the designated values. The corresponding str
ture is known as Belnap’s bilattice (see (Belnap 1977
1977b) as well as (Arieli & Avron 1998)), and it is denote:
here byFOUR. Its entailmentis denoted ky*. Entailments
in which V is the unit interval and® = {1} are common in
the context of fuzzy logic (see, e.g., #f¢k 1998)). In this
context it is usual to consider different kinds of operagior
on the unit interval (T-norms, T-conorms, residual implice
tions, etc.), and this is naturally supported in our framewao
as well. The simplest case is obtained by associatiagd
V with the meet and the join operators on the unit interv:
which in this case are the same as the minimum and
maximum functions (respectively), and relating negatimn
the involutive operator-, defined for every) < z <1 by
-z = 1 — z. In what follows we denote the correspondin
structure §) by [0, 1].

Distance-Based Entailments

By their definition, basicS-entailments are monotonic. In
addition, some of them are trivial in the presence of conti
dictions (e.g.p, —p =2 g andp, —p =3+ ¢), or exclude clas-
sically valid rules (e.gp, -pVq ~>T g andp, =pV q ~* q).
Common-sense reasoning, on the other hand, is freque
non-monotonic and tolerant to inconsistency. For assuri
such properties we consider in what follows distance-bas
derivatives of the basic entailments. In the sequel, unle
otherwise stated, we shall considigite sets of premises in
the classical propositional language= {—, A, Vv, —}, the
operators of which correspond, respectively, to a negatis
meet, join, and the material implication on the underlyir
lattice.

Definition 5 A total functiond : U xU — R* is called
pseudo distancen U if it is symmetric (that is,Yu,v €
U d(u,v) = d(v,u)) and preserves identitVu,v € U
d(u,v) = 0iff u = v). A distance functioron U is a
pseudo distance ofi that satisfies the triangular inequality
Vu,v,wel d(u,v) < d(u,w) + d(w, v)).

Definition 6 An aggregation functiory is a total function
that accepts arbitrarily many real numbeed returns a
real number. In addition, the following conditions shoul
be satisfied: (a)f is non-decreasing in each of its argu
ments, (b)f(z1,...,2,) =0if 2y = ... =2, = 0, and
(c)Vz e R, f(z) = =.

Definition 7 An S-distance metricis a quadruple®
(8,d, f,g), whereS = (V, O, D) is a multiple-valued struc-
ture, d is a pseudo distance on the space of Yhealued
interpretations\”, and f andg are aggregation functions.

Definition 8 Given a theoryl' = {¢1,...,v,}, aV-valued
interpretationv, and anS-distance metri® = (S,d, f, g),
define:

4 df(Va lpl) = f,uemods(d}i) d(,LL, V)
o dy(v,T) = g(ds(v, Y1), ... ds (v, ¢n))

3This can be formally handled by associatifignith the set
{fn : R® = R | n € N} of n-ary functions.

Technical Report IfI-06-04

It is common to defing as the minimum function, so that
a distance between an interpretatioto a formulay is the
minimal distance betweenand some model af. Frequent
choices ofy are the summation function (over the distances
to the formulae iM") and the maximal value (among those
distances).

Note 9 Let ® = (S,d, f,g) be anS-distance metric. As

distances are non-negative numbers, by conditions (a) and

(b) in Definition 6,d; is a non-negative function for every
choice of an aggregation functiofi This implies thatd,

is obtained by applying an aggregation functigon non-
negative numbers, and gg is non-negative as well.

Definition 10 An S-distance metric® = (S,d, f,g) is
callednormal if: (a) d¢(v, 1) = 0 for everyr € mod® (),
and (b)g(z1,...,z,) =0o0nlyifz; =... =2, =0.

As easily verified, the standard choicesfondg men-
tioned above preserve the conditions in Definition 10. Thus,
for instance, for every multi-valued structu$eand a pseudo
distanced, ® = (S, d, min, g) is a normal metric for each
g € {2, max, avg, median}.*

Definition 11 Given a finite theoryl' and anS-distance
metric® = (S,d, f, g), define:

AP ={veN |VueN dywT) <dy(puT)}.

Proposition 12 Let® = (S,d, f, g) be a normal metric. If
mod® (') # () thenA® (T') = mod® ().

Proof. If v is amodel of{¢1, ..., v, }, then aso is normal,
ds(v,7;) = 0for everyl <i<n. Thus, ag is an aggrega-
tion function, by condition (b) in Definition G, (v,T') = 0.
Sinced, (11,T') > 0 for everyu € AY (Note 9), it follows that
ve).

For the converse, consider the following lemma:

Lemma 13 In every normal metri¢S, d, f, g) the function
g is strictly positive whenever it has at least one strictlgipo
tive argument and the rest of its arguments are non-negative

Lemma 13 follows from the fact that(z4,...,2,) =0
iff 1 = ... = x, = 0 (by conditions (b) in Defini-
tions 6 and 10) together with the requirements thistnon-
decreasing in each of its arguments (condition (a) in Defini-
tions 6).

To complete the proof of Proposition 12, suppose then:that
is not a model of{ ¢4, ..., ¢, }. As such, it does not satisfy
1y, for somel <k <n, and sad; (v, ¢) >0. By Lemma 13,
dg(v,T') >0 as well. On the other hand, we have shown that
dy(u, T')=0 for everyu € modS ('), thusy g A°(T). O

Now we are ready to define distance-based entailments:

Definition 14 For a metricD, definel’ =® v if every valu-
ation in A® (T") is a model ofy.

“Note that the arguments gfare non-negative numbers, and

so lettingg be the summation, average, or median of such numbers

preserves condition (b) in Definition 10.

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

Example 15 Considerl’ = {p, —q, 7, p — q}, and let
Dy = (TWO, dy,min,) be a (normal) distance metric,
wheredy is the Hamming distance between two-valued va
uations$. The distances between the relevant two-valued v:
uations and” are given in the following table:

model P q r ds;
1z true | true | true 1
Vs true | true | false 2
V3 true | false | true 1
vy true | false | false 2
Vs false | true | true 2
Ve false | true | false 3
vy false | false | true 1
Vg false | false | false 2

Thus,A®2(T) = {vy,v3, 17}, and so, for instancd, =22
r, while ' £®2 p andT' }£®2 ¢. This can be intuitively
explained by the fact that, unlikeandq, the atomic formula
r is not related to the contradictory fragmentlgfthus it is
a reliable information that can be safely deduced fiam

Proposition 16 Let® be a normalS-distance metric, and
letT be a set of formulas if such thatnod® (T') # 0. Then
for every formulay in £, T =5 v iff T =2 <.

Proof. Immediately follows from Proposition 12. m]

Some important particular cases of Proposition 16 are t
following:

Corollary 17 Let® be a normal distance metric ifWO.
For every classically consistent set of formulasand for
every formulap, T =2 ¢ iff T =® .

Proof. By Proposition 16, since every classically consiste
theory has a model.]

Corollary 18 Let® be a normalS-distance metric.
a) If S = THREE+ thenl =37 ¢ iff T =2 4.
b) If S = FOUR thenl" =% ¢ iff T =2 4.

Proof. By Proposition 16, since ifHREE+ and inFOUR,
a valuation that assigns the designated middle element
every atom is a model of every theory in the classical prop
sitional language.]

Example 19 Consider again the distance metf)s of Ex-
ample 15. By Corollary 17|="2 is the same ag=> with
respect to classically consistent sets of premises, bikeunl
the basic two-valued entailment, it does not become trivi
in the presence of contradictions. On the contrary, as E
ample 15 showsi="2 allows to draw conclusion from in-
consistent theories in a non-trivial way, and:s®'2 (as well
as many other distance-based relations that are inducec
Definition 14; see Proposition 22 below) iparaconsistent
consequence relation.

Consider now®3 = (THREE, ,dg, min,¥). The in-
duced entailmenﬂ,zgﬂ, is again paraconsistent, and witt
respect to consistent set of premises it coincides with Kl
nee’s logic,=3+ (note that the latter relation et paracon-

sistent, so in generak3+ and="" arenotthe same). By

®Le., du (v, 1) is the number of atomic formulgs such that
v(p) # wn(p); see also the next section.

155

.TU Clausthal
11TH NMR WORKSHOP

Corollary 18, the three-valued entailmem,@BT, induced

by ©37 = (THREET, d, min, ¥), and the four-valued en-
tailment|=*+, induced by®, = (FOUR, d, min, ¥), are
paraconsistent consequence relations that coincide héth t
consequence relation of Priest’s logic LP and with the conse
quence relation of Belnap's four-valued logic, respetyive

2006)), and so it is a valid rewriting of the truth values. Nov
the distance between two values= (x1,x2), y = (y1,¥y2)
in this pairwise representation is given by

_ |z1 — y1] + |22 — Yo

d*(z,y) 5 :

Note that the above observations still hold when the sum- g the graphic representationdfon the four-valued struc-

mation function in the metrics is replaced, e.g., by maxi-
mum, average, or the median function.

Reasoning with Distance-based Semantics
Distance Functions

A major consideration in the definition of the entailment re-
lations considered in the previous section is the choichef t
distance functions. In this section we consider some useful
definitions of distances in the context of multiple-valued s
mantics. For this, we need the following notation.

Notation 20 Denote byAtoms the set of atomic formulas
of the languageC and byAtoms(T") the set of the atomic
formulae that appear in some formulalaf

ture is the following:

true = (1,0)

d* = d*

N

both =
(1,1)

neither =
(0,0)

d4

[N

false = (0,1)

Now, the generalized Hamming distance between two fol

Many distance definitions have been considered in the lit- Valued interpretations, . is defined by:

erature as quantitative measurements of the level of gimila
ity between given interpretations. For instance, dinestic
distance considered in (Konieczny, Lang, & Marquis 2002),
is defined by

] 0 if v=pu,
dp (v, p1) _{ 1 otherwise.

dy(v,p) = Y d*(v(p), u(p))-

pEAtoms

Clearly, this definition may be applied on any lattice who:t
elements have a pairwise representation (see (Arieli 20
2006)).

It is not difficult to verify that all the functions defined

Another common measurement of the distance between gpove satisfy the conditions in Definition 5. Below are son

two-valued interpretations is given by tHamming distance
that counts the number of atomic formulae that are assigned
different truth values by these interpretations (see dsdg(
1988)):

dp (v, pp) = [{p € Atoms | v(p) # p(p)} |- >

For three-valued logics (such as Kleene’s and Priest’s log-
ics considered above) it is possible to apply the same dis-
tance measurements, or to use a natural extension of the
Hamming distance that considers the distance between the
extreme elementsrue andfalse as strictly bigger than the
distances between each one of them and the middle element.
In this casetrue is associated with the value fh)se is asso-
ciated with 0, and the middle element correspondl?‘.tﬁhe
generalized Hamming distance is then defined as follows:

df(v,p) = Y lv(p) = np)l-

pEAtoms

This function is used, e.g., in (de Amo, Carnielli, & Mar-
cos 2002) as part of the semantics behind (three-valued)
database integration systems.

For four-valued interpretations there is also a naturat gen
eralization of the Hamming distance. The idea here is
that each one of the four truth values is associated with a
pair of two-valued components as followsue = (1,0),
false = (0,1), neither = (0,0), both = (1,1). This
pairwise representation preserves Belnap’s original-four
valued structure (see (Arieli & Denecker 2003; Arieli 2004;

156

further observations on these distance functions:
1.

Given two interpretations, 1 into {true, false}, it holds
_thatd‘}{(z/, 1) :.d%(z/, w) = dg (v, p), thUSd%f andd3,
indeed generalize the standard Hamming distance.

. As the following example shows, the choice of the di

tance function (as well as the choice of the other cor
ponents of a distance metric) has a great impact on
induced entailment.

Example 21 Consider the following two metrics:

®' = (THREE, , dy, min,),
" = (THREE, , d3,, min,).

ForT = {p, —p}, we have

A'(T) = {{p:true}, {p:false} },
A"(T) = {{p:true}, {p:false}, {p:middle} }.

Thus, for instancel] =2 p v —p, while T =2 p v —p.°

3. In (Konieczny, Lang, & Marquis 2002) it is shown tha

the choice of the distance function has also a major affi
on the computational complexity of the underlying for
malism. See Section 4 of that paper for some complex
results of distance-based operators wes TWO.

®This is so, since/(p V —p) = middle whenv(p) = middle,
and iNTHREE ; the middle element is not designated.

Technical Report IfI-06-04

Basic Properties of="

Paraconsistency. In what follows we consider some char-
acteristic properties of the distance-based entailmenes.
begin with the ability to reason with inconsistent theories
a non-trivial way. The following proposition shows thatshi

property is common to many distance-based logics that are

definable within our framework.

Proposition 22 The consequence relatiops®, induced by
the following metrics, are all paraconsistent:

a) ® = (TWO, d,min, g), whered is the drastic distance
(dp) or the Hamming distancelf;) andg is either a sum-
mation or a maximum function.

b) ® = (THREE,,d, min, g), whered € {dp,dy,d%}
andg is either a summation or a maximum function.

c) ® = (THREE~,d,min, g), whered € {dp,dy,d%}
andg is either a summation or a maximum function.

d) © = (FOUR, d, min, g), whered is any distance function
of those considered in the previous section giigl either
a summation or a maximum function.

e) © = ([0,1],d, min, g), whered is the drastic distance or
the Hamming distance anglis either a summation or a
maximum function.

Proof. For any of the items above we shall show that
p,—p #E® ¢, and so it isnot the case that any formula fol-
lows from an inconsistent theory. Indeed, in item (a) we
have that{p: true, ¢:false} (as well as{p:false, ¢:false})
isin A® ({p, ~p}), thusq does not follow from{p, ~p}. For
item (b) note that although different distance functions in
duce different sets of preferred models{gf —p} (see Ex-
ample 21), it is easy to verify that whenevgis the sum-
mation function ther{p: true, ¢:false} is, e.g., an element
of A® ({p, ~p}), and whenevey is the maximum function
{p:middle, ¢:false} is an element of\® ({p, ~p}). Thus,

in both casesqg does not follow from{p, —p}. Part (c)
holds since by Proposition 12 we have tigt ({p, ~p}) =
mod®T ({p, —p}), and so{p: middle, q: false} is an element

in A° ({p, =p}) (recall that inTHREET the middle element
is designated, and @ : middle} is a model of{ p, —p}). We
therefore again have that—p ~® ¢. The proof of part (d)

is similar to that of part (c) with the obvious adjustments to
the four-valued case. Part (e) is similar to part (a) repigci
respectivelytrue andfalse by 1 ando0. a

Monotonicity. Next we consider monotonicity, that is:
whether the set of="-conclusions is non-decreasing in
terms of the size of the premises. As the next two proposi-
tions show, this property is determined by the multi-valued
structure and the distance metric at hand:

Proposition 23 Let ©® be a normal distance metric for

FOUR. Then the corresponding distance-based entailment,

=, is monotonic.

Proof. By Corollary 18(b) = is the same as the basic four-
valued entailment=* of Belnap’s logic. The proposition
now follows from the monotonicity of the latter (see (Arieli
& Avron 1996, Theorem 3.10) and (Arieli & Avron 1998
Proposition 19)).

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

Proposition 24 Let® =(TWO, d, min, g) be a normal dis-
tance metric such thag(z1,...,z,) < g(y1,---,Ym) If
{1,...,20} € {¥1,...,ym}.” Then the corresponding
distance-based entailment™®, is non-monotonic.

Proof. Consider, e.g.I' = {p,—p V ¢}. By Corollary 17,
I'=® ¢. On the other hand, considgf = T'U {-p}, and let
v andvy be two-valued valuations that respectively assig
true andfalse to p. By the assumption o we have that

dg(l/tyrl) g(dmin(yt»_'p)vdmin(yt,_‘p\/q)>

9(dmin(ve, —p))

dmin(l/ta _‘p)

dmin(yfa p)

9(dwmin (v5,p))

dg (Vf, F/).

It follows, then, that every two-valued valuation that as-
signsfalse to p is in A® (T”), no matter what value it assigns
to g (asdy(vf,I") is not affected by (g)). In particular,
A®(T’) contains valuations that assidalse to ¢, and so
I £ q. O
Rationality. In (Lehmann & Magidor 1992), Lehmann
and Magidor consider some properties that a “rational” nor
monotonic consequence relation should satisfy. One pro
erty that is considered as particularly important assurat t
a reasoner will not have to retract any previous conclusic
when learning about a new fact that has no influence on tl
existing set of premises. Consequence relations thafysati:
this property are calledational. Next we show that many
distant-based entailments are indeed “rational”.

Notation 25 An aggregation functioif is calledhereditary
if flz1,.o . 21, 52m) < W1y s Uns 21y« Zm)
wheneverf(zy,...,z,) < f(y1, .-, Yn).

Proposition 26 Let® = (S, d, f, g) be anS-distance met-
ric with a hereditary functiog. If I' = + thenl', ¢ =*)
for every¢ such thatAtoms(I' U {¢}) N Atoms(¢) = 0.

Intuitively, the condition ony in Proposition 26 guaran-
tees that is ‘irrelevant’ forI" andv. The intuitive meaning
of Proposition 26 is, therefore, that the reasoner does n
have to retract) when learning thap holds.

Proof of Proposition 26. Let . € AY be a valuation that
does not satisfy). AsT" =* ¢ while 1(¢) ¢ D, necessarily
pisnotinA® (T'), and so there is a valuatierin A® (T'), for

vl

which d,(v,T') < d4(u,T). Again, sincel’ E® ¢, v(y) €
D. Assummg thal' = {m, ..., ¥n}, we have that
g(df(l/, 1/)1)7 B f(ya wn)) < g(df(/j“a 1/)1)7 oo adf(/jwwn))
Now, consider a valuation, defined for every atomp as
follows:
(») = v(p) if p € Atoms(T'U 1)
W)= up) otherwise

"As the arguments of are non-negative, summation, maxi-
mum, and many other aggregation functions satisfy this property

8Note that heredity, unlike monotonicity, is defined by strict
inequalities. Thus, for instance, the summation is hereditary, whi
the maximum function is not.

157

.TU Clausthal
11TH NMR WORKSHOP

Note thato(p) = v(p) for everyp € Atoms(v), and so
o(v) € D as well. AsAtoms(I' U {¢}) N Atoms(¢) = 0
and sincg is hereditary, we have that

dQ(O—’F U {¢}) g(df(av ¢1)7 ce 7df(0a wn)vdf(gv ¢))
g(df(yv ¢1)7 s 7df(l/’ wn)a df(Ma ¢))
g(df(,uv 1#1)7 sy df(:uv wn)v df(:u» ¢))
dg(p, ' U{9}).
Thus, for every valuation: such thatu(vy) € D there is
a valuationo such thato () € D anddy(o,I' U {¢}) <
dy (1, TU{¢}). It follows that the elements ak® (T U {¢})
must satisfy), and sal’, ¢ =° 1.]

Adaptivity. The ability to handle theories with contra-

A

dictions in a nontrivial way and at the same time to pre-

To formalize the existence of different levels of priorit
in prioritized theories, we consider the following sequen:
of sets: for a metri® = (S,d, f,g) and ann-prioritized
theoryI' =T, U...UT,, define:

o AY(I) = {ve AV [Vue N dy(v.T) < dg(p.T1)}
o foreveryl < i <n,let
AP(D) ={v e AY () |
Ve AP (D) dg(v,Ti) < dg(p,Ty) }
Definition 28 Given anS-distance metri®, define for ev-

ery n-prioritized theoryl" and formulay, T' =° v if every
valuation inA® (T satisfies).

Note that the last definition is a conservative extension
Definition 14, since for non-prioritized theories (i.e., evh

suppose a consistency of all sentences ‘unless and un-7 = 1) the two definitions coincide.

til proven otherwise’, is calledadaptivity (Batens 1989;
1998). Consequence relations with this propextiapt to

the specificinconsistencies that occur in the theories. For

instance, a plausible inference mechanism showidap-
ply the Disjunctive Syllogism for concluding thatfollows
from {p,—p,—p V q}. On the other hand, in the case of
{p,—p,r,—r V q}, applying the Disjunctive Syllogism to
and—r Vv ¢ may be justified by the fact that the subset of for-
mulae to which the Disjunctive Syllogism is applied should

Example 29 Consider the following puzzle, known as thi
Tweety dilemma:

bird(x) — fly(x),
penguin(x) — bird(x),
penguin(x) — —fly(x),
bird(Tweety),
penguin(Tweety)

therefore inference rules that are classically valid caage
plied to it.

The following proposition shows that in many cases
distance-based entailments are adaptive. If a given theory
can be split up to a consistent and an inconsistent parts, the

every assertion that is not related to the inconsisten; pad

which classically follows from the consistent part, must be

entailed by the whole theory.

Proposition 27 Let ® = (S,d, f,g) be a normalS-
distance metric with a hereditary functign Suppose that
I' is a theory that can be representedlds) I'”/, where
mod®(I") # (and Atoms(I'") N Atoms(I'”") = (). Then
for every formulay such thatAtoms(v) N Atoms(I'"") = 0,
it holds that ifT” =5 + thenT' =° 4.

Proof. If I =5 4, then by Proposition 16, =°). Now,
asAtoms(I” U {¢}) N Atoms(I"”) = @), we have, by Propo-
sition 26, thafl’ =* .

Distance-based Entailments for
Prioritized Theories
=®, Generalized

lows from it, including, e.g.f1y(Tweety), which seems a
counter-intuitive conclusion in this case, as penguinsiho
not fly, although they are birds. The reason for this anom:
is that all the formulas above have the same importance
contrast to the intuitive understanding of this case. Iddee

1. The confidence level of strict factsifrd(Tweety) and
penguin(Tweety) in our case) is usually at least as hig
as the confidence level of general rules (implications).

2. As penguinsneverfly, and this is a characteristic fea:

ture of penguins (without exceptions), one would prob
bly like to attach to the assertigenguin(x) — —fly(x)

a higher priority than that ofird(x) — fly(x), which
states only a default property of bir8ls.

Consider now the metri® = (TWO, dy, min,) and
regardl” as a prioritized theory in which the two consid
erations above are satisfied. It is easy to verify that t
unique valuation inA® (T') (wheren > 1 is the number of
priority levels inT") assigngrue to bird(Tweety), true to
penguin(Tweety), andfalse to f1y(Tweety). Thus, e.g.,
I' E® —fly(Tweety), as intuitively expected.

Applications

We now extend the distance-based semantics of the previous!n this section we show how the generalized distance-ba:

section toprioritized theories An n-prioritized theory is a
theoryl' =Ty U ... UT,, where the setf; (1 < i < n)
are pairwise disjoint. Intuitively, when < j the formulas
in I'; are preferred than those In;. A common situation
in which theories are prioritized is, e.g., when data-sesirc

semantics for prioritized theories, introduced in the fes
section, can be naturally applied in related areas. Below
consider two representative examples: database query
tems and belief revision theory.

®The third assertionpenguin(x) — bird(x), could have an

are augmented with integrity constraints. In such cases the jnermediate priority, as again there are no exceptions to the 1

corresponding theory has two priority levels, as the iritegr

that every penguin is a bird, but still penguins aretgptcal birds,

constraints must always be satisfied, while the data facys ma thus they shouldn't inherit all the properties we expect birds

be revised in case of conflicts.

158

have.

Technical Report IfI-06-04

Theory of NMR and Uncertainty

A. Consistent Query Answering in Database Systems

A particularly important context in which reasoning with Lo — i
prioritized theories naturally emerges is consistency- han o5 ={p — atU{p, a7}

dling in database systems. In such systems, it is of prac- This theory is the same as the one considered in Example
tical importance to enforce the validity of the data facts but with one major difference: now — ¢ is preferred over
by a set of integrity constraints. In case of any violation the other formulas, thus only its models are taken into ¢
of some integrity constraint, the set of data-facts is sup- count. Consider the same metric as that of Example 15.
posed to be modified in order to restore the database consis-valuationsvs, v4 in the table of that example do not satisf
tency. It follows, then, that integrity constraints are atipr C, they are excluded. Among the remaining valuations,
than the facts themselves, and so the underlying theory is andwv, are the closest t§ U CWA(Z), and so the consistent
a prioritized one. This also implies that consistent query query answers afZ, C) are the formulas that are satisfied b
answering from possibly inconsistent databases (Arenas, bothy, andv;.

Bertossi, & Chomicki 1999; 2003; Greco & Zumpano 2000;
Bravo & Bertossi 2003; Eiter 2005) or constraint data-
sources (Konieczny, Lang, & Marquis 2002; Konieczny &
Pino Ferez 2002) may be defined in terms of distance-based
entailments on prioritized theories. Moreover, as our flam
work is tolerant to different semantics, such methods of
guery answering, which are traditionally two-valued ones,
may be related to other formalisms that are based on many-
valued semantics like those considered in (Subrahmanian

so the associated theory is

Note 32 Example 31 shows, in particular, thaf® is notre-
flexive, since for instancEpg [=®p althoughp € I'ps. This
can be justified by the fact that one way of restoring the cc
sistency ofDB is by removingp from Z (v, corresponds to
this situation), and sp does not hold in all the consistency
‘repairs’ of I'pp.10 Similarly, the fact thal'ps £ —q al-
though—q € I'ps may be justified by the alternative way
of restoring the consistency @53, in which ¢ is added to
7 (v, corresponds to this situation). Note also that there

1994) and (de Amo, Carnielli, & Marcos 2002).

Let £ be a propositional language witktoms its under-
lying set of atomic propositions. A (propositionddtabase
instanceZ is a finite subset ofAtoms. The semantics

of a database instance is given by the conjunction of the

atoms inZ, augmented with thelosed world assumption

(CWA(Z)) (Reiter 1978) that assures that each atom which

is not explicitly mentioned i is false.

Definition 30 A databaseis a pair (Z,C), whereZ is a
database instance, add— the set ofintegrity constraints
— is afinite and consistent set of formulaednA database
DB = (Z,C) is consistenif every formula inC follows from
Z, that is, there is no integrity constraint that is violatad i
7.

Given a databas®B = (Z,(), the theoryI'pp that is
associated with it contains the components># and im-
poses the closed word assumptionZn In addition, this
theory should reflect the fact that the integrity constsaint

C are of higher priority than the rest of the data. That is,

I'pp should be a two-leveled theory, in whith = C and
'y = Z U CWA(Z). Now, query answering with respect to

DB may be defined in terms of a distance-based entailment

onl'pg.

Suppose, then, th& is a normalS-distance metric for
some multiple-valued structu® and letDB = (Z,C) be a
(possibly inconsistent) database. Its prioritized thesry

I'pgp=T1Ul's=CU (IU CWA(Z)),

and @ is a consistent query answeribs = Q. Now, as
C is classically consistent, by Proposition Y% (I'pg) =
mod(C). It follows, therefore, that is a consistent query
answer of DB if it is satisfied by every model of with
minimal distance (in terms af;) fromZ U CWA(Z).

Example 31 Let DB = ({p,r},{p — ¢}). Here,
TUCWAQZ) =T U{-z |z ¢ I} = {p,~q, T},

DEPARTMENT OF INFORMATICS

no reason to remove from Z, as this will not contribute
to the consistency restoration Bf3. This intuitively justi-
fies the fact that for (unlike the other atomic formulae in
I'ps), we do have thafpi =* r (cf. Example 15). This is
also to the intuition behind the query answering formalisr
for inconsistent databases, considered e.g. in (Aren
Bertossi, & Chomicki 1999; 2003; Greco & Zumpano 200(
Bravo & Bertossi 2003; Eiteet al. 2003; Arieliet al. 2004;
2006).

B. Modeling of Belief Revision
A belief revision theory describes how a belief state is 0
tained by the revision of a belief stat&by some new in-
formation, v». A belief revision operator describes the
kind of information change that should be made in face
the new (possibly contradicting) information depictediy
The new belief state, denotéth ¢, is usually characterized
by the closest worlds t@ in which ¢y holds. This crite-
rion, often calledhe principle of minimal changés one of
the most widely advocated postulates of belief revision tr
ory. Clearly, it is derived by distance considerations, tso
is not surprising that this consideration can be expregse(
our framework. Indeed, the intended meaning of the re
sion operator is to describe ‘how to reviBen order to be
consistent withy)’. In our context the revised belief state
corresponds to the (coherent) set of conclusions that car
derived from the prioritized theoryy} U B, in which ¢
is superior thar3. Indeed, suppose again thatis a nor-
mal S-distance metric for some multiple-valued structsire
and considel” = T'y UTy = {¢} U B. Again, by Propo-
sition 12, A?(T") = mod(z), and so the new belief state
consists of the formulas that are satisfied by every model
1 and that are minimally distant (in terms &f) from B. In
other words,

Boy = AZ(T), (1)

1090r, equivalently,p is involved in contradictions il'ps; see
also the discussion in Example 15 above.

159

set of premises is kept consistent. Moreover, even when the
set of premises becomes inconsistent, the conclusions that

.TU Clausthal
11TH NMR WORKSHOP

wherel' =T, UT,, Ty = {¢}, andl’y = B.

Example 33 For ©®, = (TWO,dy, min,) define a be-
lief revision operatop by Equation (1) above. The revision

operator that is obtained is the same as the one considered

in (Dalal 1988). It is well-known that this operator satisfie
the AGM postulates (Alchoudn, Gardenfors, & Makinson
1985).

Conclusion

In this paper we have introduced a family of multiple-valued

entailments, the underlying semantics of which is based on
It is shown that such entailments
can be incorporated in a variety of deductive systems, me-

distance considerations.

diators of distributed databases, consistent query airsgver
engines, and formalisms for belief revision.

A characteristic property of the entailments considered
here is that, although being paraconsistent in nature, to a
large extent they retain consistency. For instance, the en-
tailments that are defined by normal distance metrics in a

two-valued (respectively§-valued) semantics, are identical
to classical two-valued entailment (respectively, arenide
cal to the corresponding basfentailment), as long as the

are obtained from the fragment of the theory that is not re-
lated to the ‘core’ of the inconsistency, are the same agthos
obtained by the classical two-valued (respectively, the ba
sic S-valued) entailment, when only the consistent fragment
is taken into account. In contrast to the classical entaitme

however, our formalisms are not degenerated in the presence

of contradictions, so the set of conclusions is not ‘exptbde
is such cases.

160

References

Alchourron, C. E.; Girdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet contraction and
revision function.Journal of Symbolic Logi60:510-530.

Arenas, M.; Bertossi, L.; and Chomicki, J. 1999. Con-
sistent query answers in inconsistent database$?radn.
18th Symp. on Principles of Database Syst@r3DS’99),
68-79.

Arenas, M.; Bertossi, L.; and Chomicki, J. 2003. An-

swer sets for consistent query answering in inconsistent

databases. Theory and Practice of Logic Programming
3(4-5):393-424.

Arieli, O., and Avron, A. 1996. Reasoning with logical
bilattices. Journal of Logic, Language, and Information
5(1):25-63.

Arieli, O., and Avron, A. 1998. The value of the four
values.Atrtificial Intelligencel02(1):97-141.

Arieli, O., and Avron, A. 2000. Bilattices and paracon-
sistency. In Batens, D.; Mortenson, C.; Priest, G.; and
Van Bendegem, J., ed&rontiers of Paraconsistent Logic
volume 8 ofStudies in Logic and ComputatioResearch
Studies Press. 11-27.

Arieli, O., and Denecker, M. 2003. Reducing preferenti
paraconsistent reasoning to classical entailmeogic and
Computationl3(4):557-580.

Arieli, O.; Denecker, M.; Van Nuffelen, B.; and
Bruynooghe, M. 2004. Database repair by signed form
lae. In Seipel, D., and Turull Torres, J. M., ed3roc. 3rd

Symp. on Foundations of Information and Knowledge Sy
tems(FolKS’02), number 2942 in LNCS, 14-30. Springel

Arieli, O.; Denecker, M.; Van Nuffelen, B.; and
Bruynooghe, M. 2006. Computational methods fc
database repair by signed formuléewnals of Mathematics
and Artificial Intelligence46(1-2):4-37.

Arieli, O. 2004. Paraconsistent preferential reasoning |
signed quantified Boolean formulae. In dé&aMaras, R.,
and Saitta, L., edsRroc. 16th European Conference or
Artificial Intelligence(ECAI'04), 773-777. 10S Press.

Arieli, O. 2006. Paraconsistent reasoning and preferent
entailments by signed quantified Boolean formula€M
Transactions on Computational Logiéccepted.

Avron, A. 1991. Natural 3-valued logics: Characterizatio
and proof theory. Journal of Symbolic Logi&6(1):276—
294,

Batens, D.; Mortenson, C.; Priest, G.; and Bendegem, J.
eds. 2000.Frontiers of Paraconsistent LogicResearch
Studies Press.

Batens, D. 1989. Dynamic dialectical logics. In Priest, G
Routely, R.; and Norman, J., ed®araconsistent Logic.
Essay on the InconsisteriRhilosophia Verlag. 187-217.

Batens, D. 1998. Inconsistency-adaptive logics. In C
lowska, E., ed.l.ogic at Work Physica Verlag. 445-472.

Belnap, N. D. 1977a. How a computer should think. |
Ryle, G., ed.Contemporary Aspects of Philosopt@riel
Press. 30-56.

Belnap, N. D. 1977b. A useful four-valued logic. In Dunn
J. M., and Epstein, G., edsModern Uses of Multiple-
Valued LogicsReidel Publishing Company. 7-37.

Ben Naim, J. 2005. Preferential and preferentia
discriminative consequence relationisogic and Compu-
tation 15(3):263—-294.

Bravo, L., and Bertossi, L. 2003. Logic programming fo
consistently querying data integration systems. In Gboitlc
G., and Walsh, T., edsProc. 18th Int. Joint Conference on
Artificial Intelligence(IJCAI'03), 10-15.

Carnielli, W. A.; Coniglio, M. E.; and Bttaviano, I., eds.
2002. Paraconsistency: The Logical Way to the Incor
sistent volume 228 ofLecture Notes in Pure and Applied
Mathematics Marcel Dekker.

da Costa, N. C. A. 1974. On the theory of inconsistent fc
mal systemsiNotre Dame Journal of Formal Logit5:497—
510.

Dalal, M. 1988. Investigations into a theory of knowledg
base revision. IProc. National Conference on Atrtificial
Intelligence(AAAI'98), 475-479. AAAI Press.

de Amo, S.; Carnielli, W. A.; and Marcos, J. 2002. /
logical framework for integrating inconsistent infornaati

Technical Report IfI-06-04

in multiple databases. IRroc. 2nd Int. Symp. on Founda-
tions of Information and Knowledge SysteffRelKS'02),
number 2284 in LNCS, 67-84. Springer.

Delgrande, J. 2004. Preliminary considerations on the
modelling of belief change operators by metric spaces.
In Proc. Int. Workshop on Non-Monotonic Reasoning
(NMR’04), 118-125.

D’ottaviano, I. 1985. The completeness and compactness
of a three-valued first-order logidrevista Colombiana de
MatematicasX1X(1-2):31-42.

Eiter, T.; Fink, M.; Greco, G.; and Lembo, D. 2003. Ef-
ficient evaluation of logic programs for querying data inte-
gration systems. IfProc. 19th Int. Conf. on Logic Pro-
gramming (ICLP’03), number 2916 in LNCS, 163-177.
Springer.

Eiter, T. 2005. Data integration and answer set program-
ming. In Baral, C.; Greco, G.; Leone, N.; and Terracina,
G., eds.,Proc. 8th Int. Conf. on Logic Programming and
Nonmonotonic Reasoning PNMR’05), number 3662 in
LNCS, 13-25. Springer.

Epstein, R. L. 1990.The semantic foundation of logic.
Vol.I: propositional logics Kluwer.

Fitting, M. 1990. Kleene’s logic, generalizetlogic and
Computationl:797-810.

Greco, S., and Zumpano, E. 2000. Querying inconsis-
tent databases. IRroc. Int. Conf. on Logic Programming
and Automated ReasonirfgPAR’2000), number 1955 in
LNAI, 308-325. Springer.

Hajek, P. 1998 Metamatematics of Fuzzy Logikluwer.

Kleene, S. C. 1950ntroduction to Metamathematic¥an
Nostrand.

Konieczny, S., and Marquis, P. 2002. Three-valued logics
for inconsistency handling. In Flesca, S.; Greco, S.; Leone
N.; and lanni, G., edsRroc. 8th European Conference on
Logics in Artificial IntelligencgJELIA02), number 2424

in LNAI, 332—-344. Springer.

Konieczny, S., and PinoéPez, R. 2002. Merging infor-
mation under constraints: a logical framewotlogic and
Computationl2(5):773-808.

Konieczny, S.; Lang, J.; and Marquis, P. 2002. Distance-
based merging: A general framework and some complexity
results. InProc 8th Int. Conf. on Principles of Knowledge
Representation and Reasonifi¢R'02), 97-108.

Lehmann, D., and Magidor, M. 1992. What does a condi-
tional knowledge base entailRrtificial Intelligence55:1—

60.

Lehmann, D.; Magidor, M.; and Schlechta, K. 2001. Dis-
tance semantics for belief revisionlournal of Symbolic
Logic66(1):295-317.

Lin, J., and Mendelzon, A. O. 1999. Knowledge base
merging by majority. IrDynamic Worlds: From the Frame
Problem to Knowledge ManagemeKtuwer.

Makinson, D. 1994. General patterns in nonmonotonic
reasoning. In Gabbay, D.; Hogger, C.; and Robinson, J.,
eds. Handbook of Logic in Artificial Intelligence and Logic

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

Programmingvolume 3. Oxford Science Publications. 35-
110.

Peppas, P.; Chopra, S.; and Foo, N. 2004. Distance
mantics for relevance-sensitive belief revision Pirmc 9th
Int. Conf. on Principles of Knowledge Representation ar
ReasonindKR’04), 319-328. AAAI Press.

Priest, G. 1989. Reasoning about trutrtificial Intelli-
gence39:231-244.

Priest, G. 1991. Minimally inconsistent LBtudia Logica
50:321-331.

Priest, G. 2002. Paraconsistent logic. In Gabbay, D., a
Guenthner, F., eddHandbook of Philosophical Logiwol-
ume 6. Kluwer. 287-393.

Reiter, R. 1978. On closed world databasesl.dgic and
DatabasesPlenum Press. 55-76.

Rozoner, L. 1. 1989. On interpretation of inconsistent thi
ories. Information Science47:243—-266.

Shoham, Y. 1987. A semantical approach to noi
monotonic logics. In Ginsberg, M. L., edi?eadings in
Non-Monotonic Reasoninyylorgan Kaufmann Publishers.
227-249.

Shoham, Y. 1988.Reasoning About Change: Time ani
Causation from the Standpoint of Artificial Intelligence
MIT Press.

Subrahmanian, V. S. 1994. Amalgamating knowled
basesACM Transactions on Database Systeri§?2):291—
331.

161

.TU Clausthal
11TH NMR WORKSHOP

162 Technical Report IfI-06-04

2.6

Theory of NMR and Uncertainty

On Compatibility and Forward Chaining Normality

On Compatibility and Forward Chaining Normality *

Mingyi Zhang!? and Ying Zhang'

Yisong Wang?

LGuizhou Academy of Sciences, Guiyang, P. R. ChinaSchool of Computer Science & Engineering,

2School of Information Engineering,
Guizhou University, P. R. China.
zhangmingyi045@yahoo.com.cn

Abstract

In Reiter's default logic, the class of normal default theo-
ries is an important subclass of default theories. All de-
faults in this subclass have a simple syntactic criterion and
the subclass has a number of nice properties, which makes
it a desirable context for belief revision (Reiter 1980). But
this simple syntactic criterion has a side effect — interact-
ing defaults would lead to anomalous conclusions (Reiter &
Criscuolo 1981). Auto-compatible default theories (Mingyi
1992; 1993), which is obtained by introducing the notions of
(strongly) compatibility and auto-compatibility of defaults,
and Forward Chaining normal (FC-normal) default theories
(Marek, Nerode, & Remmel 1994) which employed the no-
tion of normal default theories with respect to a consistency
property are two larger subclasses than normal default the-
ories, and both enjoy all the desirable properties of normal
default theories.

In this paper we extend the class of auto-compatible default
theories to weakly auto-compatible default theories, present
a sound and complete algorithm to compute all of its exten-
sions, and show that weakly auto-compatible theories have
the same nice properties as the auto-compatible default theo-
ries. We argue that every FC-normal default theory is weakly
auto-compatible. Moreover, we also show that this class
properly contains FC-normal default theories, i.e., there are
some weakly auto-compatible default theories which are not
FC-normal. We also point out that it is easy to apply the
notions of (weakly) auto-compatibility to general logic pro-
grams and truth maintenance systems as well.

1 Introduction

Guizhou University, Guiyang, P. R. China.
ys.wangl168@yahoo.com.cn

put forward the formal property of semi-monotonicity be
cause it guarantees the existence of extensions and it all
for incremental construction. And the other variants addre
the expressive power of default logic, which was diminishe
by semi-monotonicity. An important class of default thec
ries enjoying semi-monotonicity is normal default theorie
in Reiter's framework. One particular feature of the cla:
is that a simple syntactic criterion which enables us to ¢
termine easily whether a given default theory is normal
not. The class of normal default theories has the followit
remarkable properties: the existence of extensions, se
monotonicity and a default proof theory. But it has a sic
effect — interacting defaults would lead to a counterintuitiv
conclusion. It is natural to ask that whether one can exte
normal default theories to a larger subclass of default the
ries, which have all the above desirable properties of norn
default theories.

By introducing the notions of (strongly) compatibility anc
auto-compatibility of defaults, we proposed a larger cla
of default theories, so-called auto-compatible default the
ries (Mingyi 1992). We proved that an extension of ar
auto-compatible default theory always exists and the cl:
of auto-compatible default theories strictly contains all «
normal default theories. We also pointed out that aut
compatible default theories have all the desirable propert
of normal default theories (Mingyi 1992; 1994). Then w
detailed some important properties of auto-compatible ¢
fault theories (Mingyi 1996), which are possessed by nc
mal default theories. Marekt al extended the notion of
normal default theories with respect to a consistency pr¢

Default logic (DL) (Reiter 1980) is one of the best known
and most widely studied formalizations of non-monotonic
reasoning due to its very expressive and lucid language
(Marek & Truszczynski 1993; Makinson 2005). However,
the existence of extensions for a default theory (DT) is not
guaranteed and the construction of extensions is quite com-
plex. So many researchers had proposed several variants o
default logic (Lukaszewicz 1985; Brewka 1991; Delgrande,
Schaub, & Jackson 1994; Mikitiuk & Truszczynski 1993;

Przymusinska & Przymusinski 1994; Giordano & Martelli t ;
. : ures of FC-normal non-monotonic rule systems (FC-norn
1994; Brewka & Gottlob 1997). Many of these variants NRS) and we show that every FC-normal default theory

*The work was partially supported by the Natural Science Weakly auto-compatible, but not vice versa. It will not onl
Foundation under grant NSF 60573009 and the stadholder foun- theoretically fertilizes the two notions of auto-compatibilit
dation of Guizhou Province under grant 2005(212). and FC-normality but also, or more importantly, the notior

erty and also got a larger subclass of default theories,

called Forward Chaining normal (FC-normal) default the:
ries (Marek, Nerode, & Remmel 1994), which has the sar
nice properties as normal default theories. In order to stu
the connection between the two notions: auto-compatibil
fand FC-normality, we extend auto-compatible default th
ories to weakly auto-compatible default theories (WACD’
and discover that this subclass has all desired nice proper
of normal default theories. We also explore some new fe

DEPARTMENT OF INFORMATICS 163

.TU Clausthal
11TH NMR WORKSHOP

can be easily applied to general logic programs and truth 2.1 Reiter's DL and Lukaszewicz’s extensions
maintenance systems and then it will surely benefit both of pefinition 1 Let D be a set of defaults. We use the followin
them. notations:

The outline of this paper is as follows. In section 2 we Pre(D)={a|a: 81,...,8./7 € D},
briefly recall some notations of Reiter's DL, Lukaszewic’s Ccs(D)={3;|a: 31,...,08,/7 € D,1 <i < n}and,
modified extension and some key properties of auto- Cns(D)={v|a: 3i,...,0./7 € D}.
compatible default theories. Then in section 3 we explore
some new features of FC-normal nhonm-onotonic rule sys-
tems. In section 4, we establish the relationship between the
class of FC-normal default theories and that of weakly auto-
compatible default theories. For the sake of space, we leave
the proofs of some main propositions at the end of the paper
as appendix.

Here, to avoid confusion with the notati&on of consis-
tency property in (Marek, Nerode, & Remmel 1994), we re
place the notatio€onin (Mingyi 1992) withCns
Different from our previous work, we allow a default to
be justification-free in this paper. It is easy to see that all «
the results previously obtained still are true. A few resuli
different from our one before will be reiterated and som
special results about DT with justification-free will be giver
2 Preliminaries also.
)) _) _)) A defaultd, as a inference rule, is monotonidifs(d) =
Following the notations in (Reiter 1980) with slight differ- ¢: otherwise, it is non-monotonic. For any setof defaults

ence, a default is a rule of the form we denoteD; = {d € D|Ccs(d) = 0}, Dxy = {d €
D|Ces(d) # 0}.
a:B1,..., 00/ 1) To capture the consistency condition of generating an €
,) tension for a default theory, we introduced the notions «
wherea, 3;(1 < i < n) andy are wffs in a underly- compatibility and auto-compatibility (Mingyi 1992), which
ing propositional languagé. If o = true, it is called are still well defined when we allow a default to be
prerequisite-free and it is usually written a8, . .., 8, /7. justification-free.

If n=0, it is called justification-free and is written as: /~. . ,)]
A default theory (DT) is a paifD, W), whereD is a set of Definition 2 LetA = (D, W) be a DT. Amp)’ C D is said
defaults andV a set of formulas. A default isormalif it is to be compatible with respect to (W.ry if WUCns(D') I
of the forma : 3/3. A default issemi-normaif it is of the - for each € Ces(D'). D' is maximally compatible if
forma : B A~/y. ADT (D, W) is normal (semi-normal) it is compatible and t_her? is no compatible subBgt of D
if every defaultd € D is normal (semi-normal). Reiter gave ~ Which properly containg)’".

the fixed-point definition and quasi-inductive characteriza- Note that the empty sétis compatible w.r.t. any default
tion of extensions for a DT. These definitions are based on theory. FurtherD,, is compatible for any DA = (D,W).

infinite and deductively closed set of f las. .
anpl\n m;ekanig ;el:; Zreey Zr?]seedesfz ﬁtr?;?geas hich have Definition 3 LetA = (D, W) be a DT andD’ a compati-
S W W, S u ries whi V€ hle subset of D. A default = (a: By,...,0n/7) is auto-

no extensjon. To avpid _this, (Lukaszewicz 1988) Qefined a incompatible w.r.t.D’ if
new version of application for defaults by employing two .)
operators, whose roles are to keep tracks of the consequents1) W U Cns(D’) i —8; foranyl <i < n and,

and the consistent conditions of being applied defaults re- (2) WUCns(D'U{d}) - -3 for somes € Cecs(D'U{d})

spectively. That is, letF, F') and(E’, F') be pairs of sets (i.e. D’ U {d} is incompatible).

of forlmullas. A defauld = « : 515 - vﬂn//V IS applicable d is auto-incompatible w.r.tA if there is a compatible subset
to (B, F') w.rt. (E, F), denotedl; ., (E', '), whenever ot p sych that d is auto-incompatible w.r.D’. It is
ifa e B'andEU{y} E-BfornoB e FU{B,...,5.}, auto-compatible w.r.t. a compatible subget of D if it is
theny € E' and{3:,...,0,} C F'. LetA = (D, W) not auto-incompatible w.r.t.D’, and it is auto-compatible
be a DT,E and F sets of formulae. Define\} (E, F') w.rt. A if it is auto-compatible w.r.t. any compatible subse

and A% (E, F) to be the smallest set of formulae such that D’ of D. A is auto-compatible if every default of D is auto-
AL (E, F) is deductively closedW C AL (E, F), and if compatible w.r.tA.
\Y 1 2

d€D thgn d(E,F_) (_AA(E’ F)’_AA(E’_F))' Then_ a set of Clearly, foraDTA = (D, W), if D is compatible thez\
formulae is amodified extensioof A iff there exists a set i quto-compatible. But the inverse is not true. For exampl
F of formulae such thatE, F) is a fixed point of a certain the DT({: A/B; :-B/C},0) is auto-compatible bub
operatorAY. o _ ~is not compatible.

We gave a characterization of extensions of a DT, which The following operator is to characterize the derivabilit
is based only on the DT itself. To do this, we introduced of premises of defaults generating an extension.
the notions of (joint) compatibility for a set of defaults and -

. : - .~ Definition 4 Let A = (D, W) be a DT. The operato :

the operatorA, which characterize the conditions of appli 2D _, 9D (the power set of D) is defined as: for amy C

cability of defaults. In the same way, we also got the fi- , -~ ; . . =
nite characterizations of extensions for DUs variants. Now 2 A(D',A) = Uy, Dy(A), wherey is the ordinal of D
we recall some notations and results in (Mingyi 1992; 1992; (Assume thatthe ordering among ordinals is giverepgnd

1994). e D{(A)={de D'|Wt Pre({d})};

164 Technical Report IfI-06-04

e D 1(A) ={d e D'|WuCns(D;(A)) & Pre({d})}
if 7 is a successive ordinal;
e D, (A) =U,e, D.(A),if nis alimit ordinal.

Essentially, an extension of a default theory is determined
by its applicable defaults, which is called the set of generat-
ing defaults (Reiter 1980).

Definition 5 Let A = (D, W) be a DT and E an extension
of A. The set of generating defaults of ED(E, A), is the
set{a: B1,...,0n/7y € Dl € E,=01,...70, & E}.

Obviously, ifE is an extension of a DI\ = (D, W) then

E =Th(WUCns(GD(E, A)), whereT'h is the deductive
closure operator in classical logic.
Definition 6 Let A = (D,W) be a DT,D’ a subset of D.
D’ is strongly compatible w.r.tA if D’ is compatible and
AD,A)=D'.

In the following sections we will omit “w.r.t. D’(A)”

Theory of NMR and Uncertainty

It is worthy of noting that, Marek and Truszczynski
(Marek & Truszczynski 1993) independently obtained
characterization similar to the above theorem, which
slightly different from ours. First, the notion of compati-
bility carries more information about the existence of extel
sions thanS-provability. For example, consider the defaul
theory ({: A/-A},0). LetS = (. : A/=A is S-applicable
but not compatible. This can be also seen from the dew
opment of the class of auto-compatible default theories a
the application to characterize Lukaszewicz's modified e:
tensions. Next, the “overlap” caused by the oper#tbr in
(Marek & Truszczynski 1993) is global, while the “overlap
carried by the operata is local. This property of “localiza-
tion” of a “overlap” makes it simple to find extensions, i.e
verifying a candidate extension by our algorithm, in ger
eral, needs much less logical inference tests than by th
algorithm.

From the above characterization we can get some su

whenever it is not confused from the context. we presented cient conditions for the existence of extension, for instanc

the important features of compatibility concept and the op-
eratorA (Mingyi 1992).

Theorem 1 LetA = (D, W) beaDT. ForanyD’ C D" C
D,

(1) if D" is compatible then also iB’.

(2)if A(D’,A) = D’ thenforanyl € D, A(D'U{d},A) =
D' u{d}iff WU Cns(D') F Pre({d}).

We say that a strongly compatible subdet of D is
maximal if there is no strongly compatible subsbt’
of D such thatD’ ¢ D” (here C implies C and #).
Clearly, for any DT =(D,W)§ is strongly compatible. Let
SC(A) ={D'|D’ C D andD’ is strongly compatibleand
MSC(A) = {D’|D’ C D and D’ is maximally strongly
compatiblé. SC(A) is not empty sincé is strongly com-
patible. By Zorn’s lemma, we have

Corollary 2 Each default theory has a maximally strongly
compatible set of defaults.

Theorem 3 If a DT A = (D, W) has an extension E then
GD(E, A) is maximally strongly compatible.
2.2 Finite Characterization of extensions
Based on the notions of compatibility and the operator

we presented a finite characterization of extensions, which

Theorem 5 Let A = (D, W) be a DT. If D is compatible
(further if A(D, A) is compatible) themA has exactly one
extensionE = Th(W U Cns(A(D, A))).

Theorem 6 Ifa DT A = (D, W) is auto-compatible then it
has an extension.

The notion of strongly compatibility can also depict the
characterization of modified extension.

Theorem 7 Any default theoryA = (D, W) has an mod-
ified extension which is generated by a maximally stror
compatible subset of D.

It is worth to see that Reiter’s conclusion on inconsistel
extension does not hold for a DT with justification-free de
faults. In fact we have

Theorem 8 Any DTA = (D, W) has an inconsistent ex-
tension iffiW U Cns(A(Dys, A)) is inconsistent.

Proof: Itis clear from the fact thah (D,,, A) is the unique
subset ofD satisfying the conditions in Theorem 4. =&

Corollary 9 If a DT A = (D, W) has an inconsistent ex-
tension E then this is its only extension aAd(E, A) =
A(Dpg, A).

enables us to determine whether a default theory has an ex-Without loss of generality, we always assume thatu

tension by checking the default theory itself and to compute
one extension if it exits.

Theorem 4 (Finite characterization of DL extensions)
ADTA = (D,W) has an extension iff there exists a com-
patible subseD’ of D such that

P . A(D',A) = D;

P, Foranya : (y,...,08,/y € D — D', eitherWW U
Cns(D") i/ acor WU Cns(D') + —; for somel < i < n.

In other words, a DTA = (D, W) has an extension iff
there exists a maximally strongly compatible suld3ebf D
such thatl is auto-compatible w.r.tD’ for anyd € D — D',

From the above theorem it is immediate that the set of
generating defaults of an extension faris a maximally
strongly compatible subset of defaults.

DEPARTMENT OF INFORMATICS

Cns(A(Dys, A)) is consistent in the rest of the paper un
less otherwise stated.

3 Weakly Auto-Compatible Default Theory
3.1 Weak auto-compatibility

From the finite characterization of extensions, Theorem
it is easy to see that violating the conditidh (i.e. there

is an auto-incompatible default) might lead to nonexisten:
of extension for a default theory. Using the notion o
auto-compatibility is an approach to avoiding this prok
lem. Extending the notion of auto-compatibility, in this sec
tion, we present a larger class than auto-compatible D1
This class, which we call Weakly Auto-Compatible De
fault Theory, enjoys many nice properties as the class

165

.TU Clausthal
11TH NMR WORKSHOP

auto-compatible default theories. All proofs in the section
are easily done in a way similar to those in (Mingyi 1992;
1994).

Definition 7 LetA = (D, W) be a DT,D’ a strongly com-
patible subset of D and led = (a : (4,...,08./7) be

a default in D. d is weakly auto-compatible w.r.tD’ if
A(D'U{d}, A) = D’'U{d} implies that d is auto-compatible
w.r.t. D’. d is weakly auto-compatible w.rA if d is weakly
auto-compatible w.r.t. any strongly compatible subset of D.
A is weakly auto-compatible if each of its defaults is weakly
auto-compatible w.r.tA.

From the definition and Definition 3 it is clear that the

class of auto-compatible default theories is a subclass of

weakly auto-compatible theories. That is

Corollary 10 Each auto-compatible default theory is also
weakly auto-compatible.

The following example shows that the inverse of the

above result is false and then auto-compatible default the-
ory class is a proper subclass of the weakly auto-compatible

default theory.

Example 1 The default theoryA = ({: A/B; C
D/-A},0) is not auto-compatible but weakly auto-
compatible since the default A/B is auto-incompatible
w.r.t. the compatible set of defaul{&> : D/—A}, which

is not strongly compatible.

So, we have

Normal default theories. auto-compatible default theo-
ries C weakly auto-compatible default theories.

Noting that weak auto-compatibility just actually prevents
generation of an extension from violating conditiéh in
Theorem 4. It is obvious that, for a weakly auto-compatible
default theoryA = (D, W), each maximally strongly com-
patible subset ab is just the set of generating defaults of an
extension forA. In fact, for any maximally strongly com-
patible subseD’ of D (its existence is guaranteed by Corol-
lary 2), E' = Th(W U Cns(D")) is just one extension of
A" = (D', W) by Theorem 5. FurthetzD(E’,A’) = D'.
Clearly, D’ satisfies the conditions in Theorem 4 fawr So,

D’ is the set of generating defaults of an extensionZor
and E’ is an extension ofA. This shows that existence of

extensions for a weakly auto-compatible DT is guaranteed.

That s,

Theorem 11 A weakly auto-compatible DN = (D, W)
has at least one extension and edehe M SC(A) corre-

an extensionE’. Now we state the result, whose proof is
simple by Theorem 5.

Theorem 12 (Semi-monotonicity) Suppose thak =
(D, W) is a weakly auto-compatible default theory and the
D’ is any subset of D. I = (D’,W) has an extension
E’, then A has an extension E such tha& C FE and
GD(E',A") CGD(E,A).

Proof: Clearly, from Theorem 11A’ is weakly auto-
compatible and thelGD(E’, A") € MSC(A'). Fur-
ther there existsD” C D such thatD” € MSC(A)
and GD(E',A’) C D”. ConsequentlyE = Th(W U
Cns(D")) is one extension ofA and obviously,E’ C FE
andGD(E',A") C GD(E, A). [
For a prerequisite-free DTA = (D,W), the inverse
of the above theorem is also true. In fact, we pointe
out that semi-monotonicity is an essential characteriz
tion for a prerequisite-free default theory (Mingyi 1996)
Note that weakly auto-compatibility is equivalent to auto
compatibility for any prerequisite-free default theory. Sc
we have

Theorem 13 A prerequisite-free DT is weakly auto-
compatible iff it enjoys semi-monotonicity.

As a matter of fact, it is not difficult to prove that de-
fault theory is weakly auto-compatible whenever it is sem
monotonic.

Lemmal Let A = (D,W) is a weakly auto-compatible
default theory. Ther\’ = (D', W) is also weakly auto-
compatible, wherd’ C D.

Theorem 14 (Underlying Characterization of Weakly Auto-
compatibility DT) A default theoryA is weakly auto-
compatible if and only if it is semi-monotonic.

Proof: “only if " It is clear from Theorem 12.

“if” Suppose thatA is not weakly auto-compatible, then
we haved = (a : (1,...,08,/7) € D and a strongly
compatible subseb’ C D such thatW U Cns(D’) + «,
W UCns(D")t/ —p; foranyi: 1 <i<nandD’ U{d}is
not compatible. Notice thdtD’, W) has a unique extension
E' = Th(W U Cns(D')) andGD(E',A’) = D’. By
the semi-monotonicity ofA, it follows that A has one
extensionE” such thate” C E” andD’ C GD(E", A).
Clearly,d ¢ D\GD(E",A) sinceD’ U {d} is not com-
patible by the assumption. However, by Theorem 3,
conflicts with the assumption th&t” U Cns(D’) + « and

sponds to a set of generating defaults of an extension E of W U Cns(D') I/ =f; foranyi : 1 <i < n. =

A.

The above analysis on the existence of extensions does

also hold for any strongly compatible subsbt of D.
The only modification is extending)’ to a maximally
strongly compatible subset and generating an exterision
for A such thatE’ C E, whereE’ is an extension for
(D', W). This shows that weak auto-compatibility implies
semi-monotonicitin a sense. Here, a default thedy, W)
enjoys semi-monotonicity if it satisfies the following condi-
tion: for any D’ and D" with D’ C D" C D, (D", W) has
an extensiort” such thatt’ C E” whenever(D’, W) has

166

To check strongly compatibility of a subset bf for a
given weakly auto-compatible DT, starting form the empt
set of defaults, we need the following lemma, whose proof
easy from the definition of strongly compatibility and Theo
rem 1.

Lemma 2 Suppose thatA = (D,W) is weakly auto-
compatible. For any strongly compatible’ C D and any
d € D,ifWUCns(D') b Pre({d}) andWuCns(D’) t/ 3
for eachps € Cces({d}), thenD’ U {d} is strongly compati-
ble.

Technical Report IfI-06-04

Theory of NMR and Uncertainty

The above result shows that we can construct any maximally maximally strongly compatible sets of defaults. That is wh

strongly compatible subset &f starting from the empty set
of defaults. Together with Theorem 11, this lemma also im-
plies the algorithm to compute all of extensions for a given
finite weakly auto-compatible default theories — all of its
maximally strongly compatible defaults are enough.

Algorithm 1 Given a finite default theornA = (D, W)
and D’ C D, compute thé\(D’, A).
function LAMBDA(D, W, D)
begin
result := ()
repeat
new = ()
foreachd = (a: f51,...,8,/7) € D' —result do
if W U Cns(result) - Pre(d) then
new := new U {d}
result := result U new
until new =0
return(result)
end

It is obvious thal AMBDA(D, W, D’) will correctly com-
puteA(D’, A)in O(|D’|?) costs. Please note that, hereafter,
we regards- as one unit time cost.

Algorithm 2 Given a finite default theonA = (D, W),
determine whetheb’ C D is maximally strongly compati-
ble.
boolean functionisMSG D, W, D)
begin
foreachd = (a: f34,...,06,/7) € D' do
if W UCns(D'") F —g; for somel <4 <nthen
return(false)
if LAMBDA(D, W, D) # D’ then
return(false)
foreachd = («: f31,...,8,/7) € D— D’ do
if WU Cns(D')F Pre(d) and
W U Cns(D’) i/ —p; for anyi(1 < i < n) then
return(false)
return(true)
end

This algorithm is to check whethé¥ is maximally strongly
compatible. And it can be implied i@(|D|?).

Algorithm 3 Given a finite WAC default theory
A = (D,W), compute the maximally strongly com-
patible sets of defaults.
function allMSC(D, W)
begin

result := ()

foreachD’ C D do

if isSMSQ D, W, D’) thennew := new U {D'}

result := result U new

return(result)
end

Undoubtedly, by Theorem 11, for a given WAC default the-
ory, we can compute all of its extensions by just find all of its

DEPARTMENT OF INFORMATICS

the above algorithm does. The soundness and completet
of this algorithm are clear, and then we ignore its proof.

In order to compute one extension of a finite WAC defau
theory A = (D, W), we just need to compute one maxi
mally strongly compatible set of defaults. By Lemma 2, th
can be achieved by giving a well-orderirg over D and
starting fromf) as the next algorithm.

Algorithm 4 Given a finite WAC default theorA =
(D, W), to compute one extension fAr.
function one-extensiofD, W, <)

begin
E<:=Th(W); GD< :=0
repeat
new = ()
if there exists the leagtsuch that
dy € {dy|m < |D[} — GD<, where
Pre(diy) € E< and—3 ¢ E< for any
B € Ces(dy) then
begin
new :=newJ{d}
E< :=Th(E<UCns(dy))
GD< :=GD~ U {d;}
end
until new = 0
return(E<)
end

Theorem 15 (Soundness and Completeness) Given a fin
WAC default theonA = (D, W), we have

(1) For any D’ €allMSC(D, W), Th(W U Cns(D’)) is an
extension ofA.

(2) For each extensiorE of A, GD(E,A) must be in
allMSC(D, W).

However, notice that, for FC-normal default theory, th
Forward Chaining Construction algorithm is very similar t
our algorithm and then it is also exhaustive when comes
computing all extensions although it is quite easy to ju
compute one extension. In the next section, we show tl
FC-normal default theories are weakly auto-compatible, a
then this algorithm suits for FC-normal default theory with
out a given consistency property beforehand like FC-norrr
construction.

Also note that, the complexity of checking whether a dt
fault theory is WACDT is still open up to now like FC-
normal default theory. We strongly conjecture that it is san
to the complexity of computing all extensions of any de
fault theory. So, it is interesting to find some subclasses
WACDT, which have simpler criterion which enables us e:
timating weak auto-compatibility.

Based on Theorem 11 we can get the following nice pro
erties of weakly auto-compatible default theories, which a
similar to that of normal default theories.

P,. Updating a weakly auto-compatible default theor
with new defaults cannot effect old belief provided the re
sulted default theory is still weakly auto-compatible.

P,. For a given weakly auto-compatible default theor
there is a proof procedure, which is local w.r.t. the defaul

167

.TU Clausthal
11TH NMR WORKSHOP

so that the proofs can be constructed by ignoring some of that

defaults.

4 Weak Auto-Compatibility and FC-normality

In this section we establish a closed relationship between

auto-compatibility and FC-normality. By analyzing the

proofs of the main results on normal default theories, Marek

et al revealed that the proof does not rely on the particu-
lar syntactic form of the rules but rather on the fact that all

rules have a certain consistency property (Marek, Nerode, &
Remmel 1994). They extended the notion of normal default
theories and proposed so-called Forward Chaining (FC) nor-

mal default theories. They proved FC non-monotonic rule

systems (NRS) have many desirable properties of normal de-
fault theories and a number of other important properties as

well. It is worth to note that the notion and desired prop-
erties of FC-normal default theories are very similar to the

(1) If m = 0 then (a)yp is a conclusion of an axiom,
ro = randGq = 0, or (b) {v} = Cns(r), o = r and
Go = Cons(r), wherer = (: 51,...,08,/7) € N.

(2) If m > 0, << Y0, 70, Go >0, <
Ym—1,Tm-1, Gm—1 >> is a proof scheme of lengtin and
~Ym 1S @ conclusion of, wherePre(r) C {vo0,---, Ym-1}

Tm = 1 andG,, = G,,—1 U Cons(r). The formulay,, is
called the conclusion gf and is writtenclm(p).

For a non-monotonic rule systedi = (U,N), let
mon(T") {r € N|Cons(r) = 0}, nmon(I) =
— mon(T"). We say a setS C U is monotonically

closedif wheneverr = ay,...,a,, : /v € mon(T') and
ai,...,a, € S, theny € S. Given any setA C U, the
monotonic-closure of A, writtenl,,,,,(A), is defined to be
the intersection of all monotonically closed sets containir

ones of (weakly) auto-compatible default theories. This lead Definition 9 LetI' = (U, N) be a non-monotonic rule sys-
us to explore the relationship between these two classes of tem. We say thaf'on C 2Vis a consistency property ovér

default theories. At first we recall some notations of FC-
normality.

4.1 FC-normality

Definition 8 A non-monotonic rule of inference r is an ex-
pression of the form

O By Bn /- @)

For such r we denote the premises of r Bre(r) =
{a1,...,a,m}, the constraints of r byCons(r) =
{f1,-..,0Bn}, and the conclusion of r b§gns(r) = {~} re-
spectively. EithePre(r), or Ces(r), or both may be empty.
If Pre(r) = Ces(r) = 0, then the rule r is called an ax-
iom. A non-monotonic formal system is a pdit;, V), where

gy

U is a nonempty set and N is a set of non-monotonic rules

such that Pre(r), Cons(r) and Cns(r) are subset of U for all
r € N. AsubsetS C U is called deductively closed if for
all » € N, whenever all the premises of r are in S and all the
constraints of r are not in S, then the conclusion of r belongs
to S.

Given S C U andI C U, an S-deductionof v from
I in (U,N) is a finite sequence: ~,...,7; > such that
v, = -y and for alli < k, each; isin I, or is an axiom,
or is the conclusion of a rule € N such thatPre(r) C
{71,...,7i—1} andCons(r) C U — S. An S-consequence
of | is an element o) occurring in some&-deduction from
I. Let Cs(I) be the set of alb-consequences ofin (U,N).

We say thatS C U is groundin | if S C Cs(I). We
say thatS C U is anextensiorof | if Cg(I) = S. Tis an
extensiorof I' = (U, N) if T is an extension of in (U,N).
Let NG(S,T') = {r € N|Pre(r) C SandCons(r)N.S =
f}. ThenNG(T,T) is the set of generating non-monotonic
rules of T if T is an extension ofU,N).

if

1.0 € Con;

2.forall A, B CU(AC B&B € Con = A € Con);
3.forallA € U(A € Con = clpmon(A) € Con);

4. whenevef) C Con has the property thatl, B € Q =
3C € QA C C&B C C)thenJQ € Con.

Note that the conditions 1,2 and 4 are Scott’s cond
tions for information systems. Ld&t = (U,N), A rule
r = (a1,...,am : B1,...,8n/7) € nmon(T) is FC-
normalw.r.t. a consistency proper§onoverl’ = (U, N) if
VU{y} € ConandVU{y,;} € Conforalli:1 <i<n
wheneverV C U is such thal” € Con, clpon(V) = V,
Qaty ..., € V,oandgy, ..., 6,7 € V. We say thal” is
FC-normalw.r.t. Conif, for everyr € nmon(T'), r is FC-
normal w.r.t.Con FinallyT" is FC-normalif it is FC-normal
w.r.t. some consistency propeition C 2Y.

Mareket alproved that any FC-normal NRS has an exter
sion and gave a uniform construction of extensions (Mare
Nerode, & Remmel 1994). Assume is a well-ordering
of nmon(T"), which determines some listing of the rules o
nmon(T"), {r.|a € k}, wherex is some ordinal. LeZ,, be
the least cardinal such that< Z,. They defined the for-
ward chaining construction (FC construction) of extension

Example 2 (Marek, Nerode, & Remmel 1994) Léf =
{a,b, c d e, f}. ConS|der the setof rule¥ = {: /a; c:
/b; /c 2 dfc; : f/e}. Then for the NRS
(U,N), subsetsz{‘”’”} and glabee) | glabed} of oU
are consistency properties ov@J,N). It is easy to check
that (U, N) is FC-normal w.r.t. each of these subsets r¢
spectively. Clearly{a, b, c, e} is the unique extension. Let
Con be defined by the condition:A ¢ Con iff either
{c,d} C Aor{e, f} C A. Obviously,Conis not a con-
sistency property sincéa, b, d, e}, {a,b,d, f} € Con but

Note that a monotonic rule system (MRS) is a special case We have thatl,,., ({a,b,d,e}) = {a,b,c,d,e} ¢ Con,

of NRS, where every non-monotonic rule has no constraints.
So, the above notions can be easily translated into the case

that(U,N) (usually, written(U,M)) is a MRS.
A proof scheme of r is a finite sequence,
p =<< ’707T03G0 >y < Wma/rm7G'm >> such

168

ClmOn({a7 b? da f}) = {CL, bv () d7 f} ¢ Con

4.2 Properties of FC-normal NRS

Now we explore some new features of FC-normal noi
monotonic rule systems. From the definitions of a consi

Technical Report IfI-06-04

tency property and FC-normality the following lemma is
clear.

Lemma 3 Let (U, N) be a NRS.

(1) If Con is a consistency property over (U, N), th€on =
2Uiff U € Con.

(2) 2V (2¢tmon(®) | resp.) is the maximal (minimal, resp.)
consistency properties over (U, N), i2¢!men (@) C Con C
2U for any consistency Con over (U, N).

(3) Given any consistency properti€®n; and Cony over
(U, N),Cony NnCons is also a consistency property over (U,
N). Further, if (U,N) is FC-normal w.r.t.Con; and Consy
respectively then it is also FC-normal w.tfon; N Cons.

(4) If (U,N) is FC-normal w.r.t. a consistency property Con
then there is a minimal consistency propeftyn* such that
Con* C Con and (U,N) is FC-normal w.r.tCon*.

Theorem 16 If I' = (U, N) is FC-normal w.r.t. a consis-
tency property Con, theon* = [J{2F| E is an extension
of '} C Con.

Proof: By the completeness of FC-construction, every
extensionE of I is of the formE< = | J{ES|a € Z,}
for a suitably chosen well-ordering over nmon(T") and
E< € Con. So,Con* C Con.]

It is clear that, for a given default theody = (D, W),
it is easy to translate\ into a non-monotonic rule sys-
tem (U, N) and vice versa. That is, a default rute :
B1,..., 0./ and an element w of W are transformed into
a:=61,...,706, /v and: /w respectively, and’ be the set
of all formulas of the underlying language. Then the notion
of forward chaining normal is applicable for default theory
in the sense that,;,o,,(A) = Th(W U Cns(A(Dpr, A)) U
A) where A is a set of formulas of the underlying language.

Definition 10 (Marek, Nerode, & Remmel 1994) Given a
consistency property Con and a default thedry= (D, W),
we say that a default ruld = (« : (1,...,0./7) in
Dy is FC-normal w.rt. Con ifT’ U {y} € Con and
TU{v,-06;} & Conforanyi : 1 < i < n whenever T
is a theory such thal' € Con, clyon(T) =T, a € T and
=81, ..y 00,y ¢ T. Ais FC-normal w.rt. Con if each de-
fault in Dy, is FC-normal w.r.t. ConA is FC-normal if it

is FC-normal w.r.t. some consistency property ol@r).

From Lemma 3, given an FC-normal default thedyy=

(D, W), we asserts that there is a minimal consistency prop-

erty Con* such thatA is FC-normal w.r.tC'on*. However,

to our best knowledge, neither does there exist feasible al-
gorithm to compute the minimal consistency property even
thought we know it is FC-normal, nor does there exist fea-
sible algorithm to decide whether a given default theory is

FC-normal or not. Because only from the definition of FC-

normality, there is no suggestive approach to exhaust all pos-
sible consistency properties over the given default theory.
The next corollary asserts that, for a candidate minimal con-
sistency property over a given default theory, it is not enough

to just consider its extensions.

Corollary 17 There is an FC-normal DT such th&ton* C
Con.

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

Example 3 Consider the default theosx = ({: A/B;
C/F ANG; : =F/~C},0), whereA, B, C, FandG are
atoms.A is weakly auto-compatible and has two extensior
Th({B, F,G})andTh({B,—-C?}). If A is FC-normal w.r.t.
a consistency propertgon, then{B,G,~C} € Con (In
fact, Th({B,G}) € Con and—-C,F ¢ Th({B,G}). Itis
immediate from the FC-normality of the default F'/-C).
Clearly, there is no any compatible sub>of D such that
{B,G,-C} C Th(Cns(D")). By FC-normality,{T C FE|

E is an extension oA} C Con for any consistency prop-
erty Con This example shows th@ton* C Con is pos-
sible, whereCon* = {T' C E| E is an extension of
A}. However, we can check thak is FC-normal w.r.t.
Con = 2Th{B.F.G}) j9Th({B,G,~C}) though the procedure
is a bit complex.

4.3 Features of consistency property

Marek et al showed that their notion of FC-normal defaul
theories actually extend Reiter’s original notion of norme
default theories and got nice properties for FC-normal d
fault theories (Marek, Nerode, & Remmel 1994), which ar
similar to those of normal default theories, such as the ex
tence of extensions, semi-normality and a proof thesicy
After we establish the relationship between the notions
(weak) auto-compatibility and FC-normality, these becorr
clear from our results on weakly auto-compatible defau
theory. To do this, we give the following results.

Theorem 18 Given a default theory (D,W), let Con be &
consistency property for (D,W).

(1) T is consistent for alll’ € Con iff U ¢ Con iff
Con C 2Y.

(2) If W is inconsistent, thefion = 2V.

(3) If Con = 2Y then any defaull = (a: B, ..., B./7) €
D is not FC-normal w.rt. Con unlessg, = ...—3, =
v = Q.

Proof: (1) Itis clear.

(2) If W is inconsistent, theTh(W) = U € Con since
() € Con. This implies thaCon = 2V

(3) If Con = 2Y, then{a} € Con and—p34,...,-8,,7 ¢
{a} implies thatTh(W U {r U =3;}) ¢ Con for all
i:1 < i< n,which contradict€'on = 2U.]

Theorem 19 Let (D, W) be a DT, where W is consistent
The collection of all consistent setsd C U| A is consis-
tent} (denoted it byC'on*), is a consistency property for (D,
W). Further,Con C Con, whenever Con is a consistenc
property for (D, W) such thaf’on c 2Y.

Proof: It is sufficient to show thaton* is closed under
the union of directed family (condition 4 of Definition
9). Assume that) C Con” has the property that
ABeN=3C€cQACC&BCCO).IfUN ¢ Con™,
thenlJ Q - aA—a for some formulax. By the compactness
of positional logic, there is a finite subsét of |2 such
that¥ - a A —a. So, there ish € Con” such thatl C ®.
Hence® F a A —a, which implies thatd is inconsistent.
This contradiction shows tha Q € Con#. HenceCon™
is a consistent property for (D, W). i€on c 2V is a

169

.TU Clausthal
11TH NMR WORKSHOP

consistency property for (D, W), then it is consistent by (1)
of Theorem 18, which showSon C Con?. [

Example 4 (Continue of Example 3) Clearl is not FC-
normal w.rt. Con”. In fact, {-B} € Con* and
-A,B ¢ Th({-B}). If A is FC-normal w.r.t. Con* ,
thenTh({-B, B}) € Con*, a contradiction.

In the rest of this paper, we always suppose that C
2V for any consistency proper@onover a DT(D, W) un-
less explicitly stated.

4.4 The Connection of FC-normality and Weakly
auto-compatibility

Given a consistency propertyon for a default theory(D,
W), for any increasing chaifT;} in Con |J{T;} € Con,
sinceConis closed under the union of directed family. By
the Kuratowski-Zorn Lemma{Con, C} has a maximal el-
ement. LetM Con = {T'|T is a maximal element o€on
under the set inclusign Now we establish one of the main

results in the paper, that is an FC-normal default theory is

weakly auto-compatible. To do this we need the following
lemmas.

Lemma4 MCon # 0 and MCon C Con. ForanyT €
MCon, Th(WUT)=T.

Lemmab5 LetA = (D, W) be an FC-normal default the-
ory w.rt. Con. For anyl’ € MCon, let Dr = {«a :
Br,....Bu/y € Dla € T,=p1,..., B, ¢ T}. Then
Th(W UCns(Dr)) C T and Dr is compatible. Further, if
Th(W UCns(Dr)) = T thenDr is strongly compatible.

Proof: For anya : Bi1,...,0./v € Dp, if v ¢ T, then
Th(T U {v}) € Con by the FC-normality of (D,W). So,
~ € T by maximality of T. This impliesCns(Dr) C T and
Th(W U Cns(Dr)) C T. Compatibility of Dy is obvious
fromTh(WUCns(Dr)) CT. f Th(WUCns(Dr)) =T
then it is easy to prove thédt(Dr, A) = D by Definition
4. [|

Lemma6 LetA = (D, W) be an FC-normal default the-
ory w.r.t. Con. For anyD’ C D, if D’ is strongly compati-
ble, thenW U Cns(D’) € Con.

Proof: By the strongly compatibility ofD’ we have that
A(D',A) = D" and D' is compatible. SdJ; (A) is com-
patible for anyy € 11, whereA(D', A) =, ., D;,(A) and

w1 is the ordinal of D. By (transfinite) induction we show that
WU Cns(Dy(A)) € Con.

BASE: Consider the casg = 0. SupposeD{(A) =
{dx|r € o}, whereo is the ordinal ofDj(A). Now we
inductively proveW U Cns({d.|x € p}) € Con for any
pEo.

Sub-basep = 0. Sincel) € Con, thenTh(W) € Con
sinceclmon(0) = Th(W U A(Dyr, A) U D) € Con. By
Definition 4, Pre(D{(A)) € Th(W). Fordy = « :
Bi,...,0n/v € D{(A), we have thatx € Th(W) and
=B1,...,70, ¢ Th(W) sinceD’ is compatible. Ify €
Th(W) thenW U {~} € Con sinceW U {~v} C Th(W).

170

Otherwise, by the FC-normality of (D,W) we have tha
W U {v} € Con andW U {v,-8} ¢ Con for any
B € Ces(dp). This shows thatV U Cns({dp}) € Con.

Sub-step. p € o is a successor ordinal. Assume tha
W U Cns({de|lk € p—1}) € Conandd, = (a :
B1,...,08n/7). Clearly,a € Th(WUCns({dx|r € p—1}))
and —01,...,208, ¢ Th(W U Cns({d.|kx € p — 1}))
since Pre(D{(A)) € Th(W) and D’ is compatible. If
v € Th(WUCns({dx|k € p—1})) thenWUCns({d,|k €
p—1}) U {y} € Con. Otherwise, by the FC-normality of
(D,W) we have thatV UCns({dx|x € p—1})U{y} € Con
andW U {v, -8} ¢ Con forany € Ccs(d,).

p is a limit ordinal. ThenW U Cns({dx|x € p}) =
Use, AW U Cns({de|r € A})} andW U Cns({dx|r €
A}) € Conforany\ € p. So,W U Cns({d.|x € A\}) €
Con by the consistency properGonthatConis closed un-
der the union of directed family.

STEP: Itis similar to that in BASE.

Finally, note thatD’ = A(D',A) = U,¢,D,(A)
and D; (A) € D;4(A) foranyn € p. We have that
W U Cns(D") € Con since Con is closed under the unior
of a directed family of Con.]
The following lemma shows that an extension of an FC
normal default theonA = (D, W) can be gotten by en-
larging a strongly compatible subs@t of D.

Lemma7 LetA = (D,W) be an FC-normal default the-
ory. For any strongly compatible subsbt of D, there is an
extension E of such thatD’ C GD(E, A).

Proof: Let p be the ordinal type ob. We fix some well-
order <, which determines some listing of the elements ¢
D, {d,lp € o}, such that{d,|p € ¥} is a listing of the
elements ofD’, where¥ € ¢. By the FC-construction,
we get an extensio®< of A such thatEy; C E<, where
Eg = Th(W UCns(D')), sinceD’ is strongly compatible.
Hence,D' C GD(E<,A). []

It is easy to see that Lemma 4 is a corollary of the abo
lemma sinceW U Cns(GD(E,A)) € Con, that is we
get another proof of Lemma 4. The following theoren
shows that each extension of an FC-normal default thec
A = (D, W) isjust generated by a maximally strongly com
patible subseD’ of D.

Theorem 20 Let A = (D, W) be an FC-normal default
theory. E is an extension ok iff there is a maximally
strongly compatible subs&’ of D such thatE = Th(W U
Cns(D'")).

Proof: “Only If” It is clear sinceGD(E, A) is maximally
strongly compatible by Theorem 3.

“If" From Lemma 5, we getD’ C GD(E,A), whereE is
an extension ofA. SinceGD(E, A) is strongly compati-
ble, thenD’ = GD(E,A) by the maximality ofD’. So,
E =Th(W U Cns(D’)). [|
From the semi-monotonicity of FC-normal default theor
(Marek, Nerode, & Remmel 1994) and the essential che
acterization of weakly auto-compatible default theory (The
orem 14), we have the following important conclusion:

Technical Report IfI-06-04

Theorem 21 If A = (D, W) is an FC-normal default the-
ory then it is weakly auto-compatible.

However, we find a default theoms which is weakly
auto-compatible but not FC-normal.

Example 5 Consider the default theonrA = (D, W),
whereD = {d; =: -B/A; dy = A:/C; d3 =C":
-A/B; dy = BAC: /A} andW = (). Note that, the
strongly compatible sets of defaults &g = 0, So = {d;}
andSs; = {d;,d>}. Itis easy to see that every defadle D
is weakly auto-compatiblé and it has a unique extension
E = Th({A,C}). As a matter of fact, it is not FC-normal.
Otherwise, if it is FC-normal w.r.t. a consisten€yn then
we have

Cmon () = Th(B) € Con (sinced € Con)

= {A} UTh(D) € Con (sincecly,on(Th(D)) = Th(D),
di € Dy, Pre(dl) - Th(@), B ¢ Th(@) and A ¢
Th(0))

= Clmon {AYUTR(D)) = Th({AUC}) € Con

= Th({C}) € Con (sinceTh({C}) C Th({A,C}))

= {B} UTh({C}) € Con (since clyon(Th({C})) =
Th({C}), ds € Dy, PT‘B(dg) - Th({C}), A ¢
Th({C}) andB ¢ Th({C}))

= {A,B}UTh({C}) ¢ Con.

And note that!,,,., { B}UTh({C})) = Th({A, B,C}) €
Con and then{ A, B} U Th({C}) € Con since{A, B} U
Th({C}) C Th({A, B,C}). Itis a paradox.

This example together with Theorem 21 implies that
weakly auto-compatible default theory properly contains
FC-normal default theories. Consequently, we bridge the
two classes of FC-normal default theories and weakly auto-
compatible default theories.

As we pointed out, all extensions of a weakly auto-
compatible default theory are just generated by maximally
strongly compatible subsets &f and vice versa. The set
of generating defaults of any such extension can be gotten,
starting from the empty set, by the facts thaAi{fD’, A) =
D’ then for anyd € D, A(D’' U {d},A) = D" U {d} if
W U Cns(D’) b Pre({d}). This is just FC-construction.

As for the application to logic programs and truth mainte-
nance systems, it is not difficult by the connection between
default logic and them. We will detail this in the future.

5 Conclusion and future work

In the paper, we present a properly larger subclass of default
theory than the class of FC-normal default theory which
we called weakly auto-compatible default theory. Both of
them enjoy many desirable properties of normal default the-
ory. Different from FC-normal default theory, weakly auto-
compatible theory just depends on the default theory itself
without a given consistency property over the default the-
ory. And then it easier to be check than FC-normal default
theory. We also present a sound and complete algorithm to
compute all of its extension of weakly auto-compatible de-
fault theory. Although, to our best knowledge, both of their
complexities are still open up to now. It is worthy of explor-
ing.

Linke and Schaub presented a new approach to reason
with default logic (default reasoning via blocking sets) by

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

shifting the emphasis from application of individual default
to that of the joint application of a default rule together wit
the rules supporting this application (Linke & Schaub 200C
Their compromising approach allows for reasoning (comp
sitional) incremental construction and ensuring the exister
of extensions without semi-monotonicity . In the following
paper, we will explore the relationship between Linke ar
Schaub’ s approach and our characterization.

References

Brewka, G., and Gottlob, G. 1997. Well-founded semanti
for default logic. Fundam. Inform31(3/4):221-236.

Brewka, G. 1991. Cumulative default logic: In defense (
nonmonotonic inference ruleartif. Intell. 50(2):183-205.

Delgrande, J. P.; Schaub, T.; and Jackson, W. K. 19¢
Alternative approaches to default logiartif. Intell. 70(1-
2):167-237.

Giordano, L., and Martelli, A. 1994. On cumulative defau
logics. Artif. Intell. 66(1):161-179.

Linke, T., and Schaub, T. 2000. Alternative foundatior
for reiter's default logic Artif. Intell. 124(1):31-86.

Lukaszewicz, W. 1985. Two results on default logic. |
IJCAI, 459-461.

Lukaszewicz, W. 1988. Considerations on default logic: ¢
alternative approachComputational Intelligencd:1-16.

Makinson, D. 2005.Bridge from Classical to Nonmono-
tonic Logic King’s College.

Marek, V. W., and Truszczynski, M. 199Blon-monotonic
logic: context-dependent reasoningpringer.

Marek, V.; Nerode, A.; and Remmel, J. 1994. A context fc
belief revision: forward chaining-normal nonmonotoni
rules systemsAnnals of Pure and Applied Logi&7:259—
323.

Mikitiuk, A., and Truszczynski, M. 1993. Rational defaul
logic and disjunctive logic programming. LPNMR 283—
299.

Mingyi, Z. 1992. A characterization of extension of gen
eral default theories. Iproceeding of 9th Canadian Con-
ference on Artificial Intelligencel 34—139.

Mingyi, Z. 1993. On extension of general default theorie
Sci China Ser. A16(10):1273-1280.

Mingyi, Z. 1994. Some results on default logit.Comput.
Sci. Technol9(3):267-274.

Mingyi, Z. 1996. A new research into default logitnf.
Comput.129(2):73-85.

Przymusinska, H., and Przymusinski, T. C. 1994. Statio
ary default extensiongzundam. Inform21(1/2):67-87.

Reiter, R., and Criscuolo, G. 1981. On interacting d
faults. InProceedings of the International Joint Confer.
ence on Artificial Intelligence270-276.

Reiter, R. 1980. A logic for default reasoninghrtificial
Intelligencel3:81-132.

171

.TU Clausthal
11TH NMR WORKSHOP

172 Technical Report IfI-06-04

Theory of NMR and Uncertainty

2.7 Incomplete knowledge in hybrid probabilistic logic programs

Incomplete Knowledge in Hybrid Probabilistic L ogic Programs

Emad Saad
College of Computer Science and Information Technology
Abu Dhabi University
Abu Dhabi, UAE
emad.saad@adu.ac.ae

Abstract

Although negative conclusions are presented implicitly in
Normal Hybrid Probabilistic Programs (NHPP) (Saad & Pon-
telli 2005a) through the closed world assumption, represent-
ing and reasoning with explicit negation is needed in NHPP
to allow the ability to reasoning with incomplete knowledge.
In this paper we extend the language of NHPP to explicitly
encode classical negation in addition to non-monotonic nega-
tion. The semantics of the extended language is based on the
answer set semantics of traditional logic programming (Gel-
fond & Lifschitz 1991). We show that the proposed semantics
is a natural extension to the answer set semantics of tradi-
tional logic programming (Gelfond & Lifschitz 1991). In ad-
dition, the proposed semantics is reduced to the stable prob-
abilistic model semantics of NHPP (Saad & Pontelli 2005a).
The importance of that is computational methods devel oped
for NHPP can be applied to the proposed language. Further-
more, we show that some commonsense probabilistic knowl-
edge can be easily represented in the proposed language.

Introduction

Hybrid Probabilistic Programs (HPP) in (Saad & Pontelli
2005b) is a probabilistic logic programming framework
that modifies the original Hybrid Probabilistic Program-
ming framework of (Dekhtyar & Subrahmanian 2000). HPP
(Saad & Pontelli 2005b) enables the user to explicitly en-
code his/her knowledge about the type of dependencies ex-
isting between the probabilistic events being described by
the programs. In addition, it allows the ability to encode the
user’s knowledge about how to combine the probabilities of
the same event derived from different rules. Moreover, it
subsumes Lakshmanan and Sadri’s (Lakshmanan & Sadri
2001) probabilistic implication-based framework as well as
it is a natural extension of traditional logic programming.
As a step towards enhancing its reasoning capabilities, HPP
(Saad & Pontelli 2005b) was extended to cope with non-
monotonic negation (Saad & Pontelli 2005a) by introduc-
ing the notion of Normal Hybrid Probabilistic Programs
(NHPP) and providing two different semantics namely; sta-
ble probabilistic model semantics and well-founded prob-
abilistic model semantics. It was shown in (Saad & Pon-
telli 2005a) that the relationship between the stable prob-
abilistic model semantics and the well-founded probabilis-
tic model semantics preserves the relationship between the
stable model semantics and the well-founded semantics for

DEPARTMENT OF INFORMATICS

normal logic programs (Gelder, Ross, & Schlipf 1991).
More importantly, the stable probabilistic models semantics
and the well-founded probabilistic semantics naturally ex-
tend the stable model semantics (Gelfond & Lifschitz 1988)
and the well-founded semantics (Gelder, Ross, & Schlipf
1991) of normal logic programs.

An important limitation of the language of NHPP (Saad &
Pontelli 2005a) compared to traditional logic programming
(Gelfond & Lifschitz 1991) is its inability to represent and
reason directly in the presence of classical negation to cope
with incomplete knowledge. This is because HPP (Saad &
Pontelli 2005b) and NHPP (Saad & Pontelli 2005a) allow
closed world assumption in defining their semantics. There-
fore, for any event represented by a program in either HPP or
NHPP there is an associated probability interval (probability
interval represents the bounds on the degree of belief a ra-
tional agent has about the truth of an event.) Any event that
cannot be derived from a program is assigned the probability
[0, 0], by default. But, an event that can be derived from the
program is assigned a probability [a, b] # [0,0]. However,
a third possibility, which is unknown or undecidable, is pos-
sible which represents information incompleteness. This is
because assuming that non-derivable events have the proba-
bility interval [0, 0] could lead to serious implications.

Consider a medical doctor who treats his/her patient from
a certain disease (di) by taking specific medication (med)
for that disease. The doctor knows that if the patient took
this medication he will be recovered. But the doctor also
knows that the patient is suffering from a heart disease and
taking that medication could affect the function of his heart
and lead to death, although the medication is very effective.
Therefore, the doctor can give the medication to the patient
with probability [0.87,0.95] if there are no side effects of the
medication on the heart with probability [0.85,0.85]. This
situation can be represented as an NHPP program as follow:

give(di,med) : [0.87,0.95] < not(ef f(med, hrt) : [0.15,0.15]).

If our knowledge regarding the side effects of the medica-
tion on the heart is incomplete because they might have not
been yet clinically proven, then the medication should not
be given to this specific patient, otherwise, he would proba-
bly die. The current semantics of NHPP allows us to assume
that probability interval of the side effects of the medication
on the heart is [0, 0], which is strictly less than [0.15, 0.15],
and hence, medication is given to the patient, although, the
program has no enough knowledge to assume the contrary.

173

.TU Clausthal
11TH NMR WORKSHOP

We propose to overcome this limitation by extending the
language of NHPP to explicitly allow classical negation as
well as non-monotonic negation not, by introducing the no-
tion of Extended Hybrid Probabilistic Programs (EHPP).
The semantics of EHPP is based on the answer set seman-
tics of traditional logic programming (Gelfond & Lifschitz
1991) and employs the Open World Assumption. We show
that some commonsense probabilistic knowledge can be eas-
ily represented in the proposed language. We present that the
proposed semantics is a natural extension to the answer set
semantics (Gelfond & Lifschitz 1991). Moreover, we show
that the proposed semantics is reduced to stable probabilis-
tic model semantics of NHPP (Saad & Pontelli 2005a). The
importance of that is computational methods developed for
NHPP can be applied to the language of EHPP.

Syntax

In the following two subsections we review the basic notions
associated with EHPP (Dekhtyar & Subrahmanian 2000;
Saad & Pontelli 2005a). Let C[0,1] denotes the set of
all closed intervals in [0,1]. In the context of EHPP,
probabilities are assigned to primitive events (atoms) and
compound events (conjunctions or disjunctions of atoms)
as intervals in C[0,1]. Let [aq, 1], [a2,02] € C[0,1].
Then the truth order asserts that [a1,01] <: [a2,02]
iff oy < ay and 81 < (. The set C[0,1] and the
relation <; form a complete lattice. In particular, the
join (@:) operation is defined as [a1, 1] @ [a2,02] =
[max{ay, as}, max{B1, B2}] and the meet (®¢) is defined
as [0[1, 61] R [Ctg, ﬂg] = [min{al, a2}7 min{ﬁl, ﬂg}] Ww.r.t.
<t. The type of dependency among the primitive events
within a compound event is described by probabilistic
strategies, which are explicitly selected by the user. We
call p, a pair of functions (c, md), a probabilistic strategy
(p-strategy), where ¢ : C10,1] x C[0,1] — C[0,1], the
probabilistic composition function, which is commutative,
associative, monotonic w.r.t. <;, and meets the follow-
ing separation criteria: there are two functions ci,co
such that c([av1, £1], [, B2]) = [e1(a1, a2), c2(B1, B2)].
Whereas, md : C[0,1] — C]0,1] is the maximal interval
function. The maximal interval function md of a certain
p-strategy returns an estimate of the probability range
of a primitive event, e, from the probability range of a
compound event that contains e. The composition function
c returns the probability range of a conjunction (disjunction)
of two events given the ranges of its constituents. For
convenience, given a multiset of probability intervals
M = {lo1, B, (o, Bn]}}, we use ¢M to denote
C([alv 61]7 C([Oég, 62]7 AR C([an—lv Bn—l]y [Oén) ﬂn])) .-)
According to the type of combination among events,
p-strategies are classified into conjunctive p-strategies
and disjunctive p-strategies. Conjunctive (dis-
junctive) p-strategies are employed to compose
events belonging to a conjunctive (disjunctive) for-
mula (please see (Dekhtyar & Subrahmanian 2000;
Saad & Pontelli 2005b) for the formal definitions).

174

L anguage Syntax

In this subsection, we describe the syntax of EHPP. Let L be
an arbitrary first-order language with finitely many predicate
symbols, constants, and infinitely many variables. Function
symbols are disallowed. In addition, let S = Scon;USais;
be an arbitrary set of p-strategies, where Scop; (Sqis;) i the
set of all conjunctive (disjunctive) p-strategies in S. The
Herbrand base of L is denoted by By. A literal is either
an atom a or the negation of an atom —a, where — is the
classical negation. We denote the set of all literals in L by
Lit. More formally, Lit = {ala € Bp} U {—ala € Br}.
An annotation denotes a probability interval and it is repre-
sented by [, a2], where a1, a5 are called annotation items.
An annotation item is either a constant in [0, 1], a variable

(annotation variable) ranging over [0, 1], or f(a,...,an)
(called annotation function) where f is a representation of
a total function f : ([0,1]))” — [0,1] and aq,...,ay are

annotation items. The building blocks of the language of
EHPP are hybrid basic formulae. Let us consider a set of lit-
eralsly, ..., 1, aconjunctive p-strategy p, and a disjunctive
p-strategy p’. Thenly A, ... Ayl and iy V...V, 1, are
called hybrid basic formulae. A hybrid literal is a hybrid ba-
sicformulaly A, ... Apln(l1 V...V 1y) Or the negation of
hybrid basic formula =(l1 A, ... Ap1p) (= (L Ve ...V 1)
bfs(Lit) is the set of all ground hybrid literals formed using
distinct literals from Lit and p-strategies from S. Note that
any hybrid basic formula F' can be represented in terms of
another hybrid basic formula G such that FF = =G, since
——a = a, (a1 Ay a2) = —(—a1 V, —ag) and (a1 V, az) =
=(ma1 Ay —ag) and A,, Vo, V., and A, are associative and
commutative. An annotated hybrid basic formula is an ex-
pression of the form F' : ;, where F'is a hybrid basic formula
and p is an annotation. An annotated hybrid literal is an an-
notated positive hybrid basic formula F' : x4 or an annotated
negative hybrid basic formula (=F) : p.

Definition 1 (E-rules) An extended hybrid probabilistic
rule (E-rule) is an expression of the form

l:/'l‘<_L1 :ulv"'vLm:umv
not (Lim+1 @ 1)y -« -y 10t (L @ piy)

where [is a literal, L; (1 < ¢ < n) are hybrid literals, and
u, i (1 <4 < n) are annotations.

The intuitive meaning of an E-rule is that, if for each L; : yu;
(1 <i < 'm), L; is true with probability interval at least ;
and for each not (L; : pj) (m+1 < j < n), itis not known
that L; is true with probability interval at least 15, then [is
true with probability interval at least .

Definition 2 (E-programs) An extended hybrid probabilis-
tic program over S (E-program) is a pair P = (R, 7), where
R is afinite set of E-rules with p-strategies from S, and 7 is
amapping 7 : Lit — Sg;s;.

The mapping 7 in the above definition associates to each lit-
eral [a disjunctive p-strategy that will be employed to com-
bine the probability intervals obtained from different E-rules
having [in their heads. An E-program is ground if no vari-
ables appear in any of its rules.

Technical Report IfI-06-04

Satisfaction and M odels

In this section, we define the declarative semantics of EHPP.
We define the notions of interpretations, models, and satis-
faction of E-programs. The notion of a probabilistic model
(p-model) is based on hybrid formula function.

Definition 3 A hybrid formula function is a mapping A :
bfs(Lit) — C]0, 1] that satisfies the following conditions:
e Commutativity: (L1 *, L2) = h(L2 *, L1),
x€{A,V},peS
e Composition: c,(h(L1), h(L2)) <:
x€{A,V},peS
e Decomposition. For any hybrid basic formula L, p € S,
and M € bfs(Lit): md,(h(L %, M)) < h(L).

If the probability of an event e is pr(e), then the probability
of —e is pr(—e) = 1 — pr(e). This can be generalized to
probability intervals as follows. Given pr(e) = [a1,as] is
the probability interval of an event e then the probability in-
terval of the event —e is given by pr(—e) = [1,1] — pr(e) =
[1 — a2, 1 — aq]. Note that Definition 3 does not restrict the
assignment of probability intervals to formulae in hybrid for-
mula functions. However, since we allow both an event and
its negation to be defined in hybrid formula functions, more
conditions need to be imposed on hybrid formula functions
to ensure their consistency. This can be characterized by the
following definition.

h(L1 *p LQ),

Definition 4 A total (partial) hybrid formula function A is
inconsistent if there exists F,—F € bfs(Lit) (F,~F €
dom(h)) such that h(—F) # [1,1] — h(F).

Definition 4 states that a hybrid formula function A is con-
sistent if for any F,—F € dom(h) we have h(—F) =

Definition 5 We say a set C, a subset of Lit, is a set of con-
sistent literals if there is no pair of complementary literals
a and —a belonging to C. Similarly, a consistent set of hy-
brid literals C* is a subset of bfg(Lit) such that there is no
pair of complementary hybrid literals F' and —F" belonging
to C*.

Definition 6 A consistent hybrid formula function 4 is ei-
ther not inconsistent or maps a consistent set of hybrid liter-
als C* to C[0, 1].

A consistent hybrid formula function is a partial or to-
tal hybrid formula function. Furthermore, given a consis-
tent partial hybrid formula function h, complementing A
with V. F € dom(h),h(=F) = [1,1] — h(F) and with
vV =G € dom(h),h(G) = [1,1] — h(=G), still keeps h a
consistent partial (or become total) hybrid formula function.
We denote complementing i by compl(h). For a consis-
tent partial hybrid formula function h, we use compl(L),
for some L € dom(h), to denote defining =L in h by
h(—-L) = [1,1]—h(L). The notion of truth order can be em-
ployed to hybrid formula functions (partial or total). Given
hybrid formula functions h; and hs, we say

(h1 <o ha) = (dom(h1) C dom(hsa) and
VL € dom(hy) h1(L) <t ha(L)).

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

The set of all hybrid formula functions, H F'F’, and the order
<, form a complete lattice. The meet ®, and the join &,
operations are defined respectively as follows.

Definition 7 Let h; and ho be two hybrid formula functions.
The meet ®, and join @, operations corresponding to the
partial order <, are defined respectively as:
o (71 @, ho)(F) = hi(F) @ ha(F)
VF € (dom(h1) N dom(hz)), otherwise, undefined.
o (h1 @, ho)(F) = hi(F) & ha(F)
VF € (dom(hi) N dom(hg))
(h1 @0 h2)(F') = h1(F)
VF € (dom(hi) \ dom(hg)), and
(1 @ ho)(F) = hs(F) _ _
VF € (dom(hsa) \ dom(hy)), otherwise, undefined.

Definition 8 A probabilistic interpretation (p-
interpretation) of an E-program P is a (partial or
total) hybrid formula function.

The satisfiability of an E-program is based on the satisfac-
tion of its E-rules.

Definition 9 (Probabilistic Satisfaction) Let P = (R,)
be a ground E-program, h be a p-interpretation, and

TEZ:/’LHLI:/LIM"’Lm:va

not (Ly41 : fmt1)s -« - 10t (L ¢ fiy).

Then
e h satisfies L; : u; (denoted by h = L; : p;) iff
L; € dom(h) and ,ui <i h(L;).
o hsatisfiesnot (L, : 115) (denoted by h = not (L; : 1))
iff L; € dom(h) and pj ¢ h(L;)or L; ¢ dom(h)
o h satisfies

Body =Ly :p1y..., Lyt pim,
N0t (Lim41 : fmt1),-- -

(denoted by h = Body) iff V(1 <i <m),h E L; :
andV(m +1<j <n),h=not (L;: ;).

e hosatisfies | : u «— Body iff h =1 : por h does not
satisfy Body.

e hsatisfies P iff h satisfies every E-rule in R and for every
literal | € dom(h),
x|l s p— Body € R and h = Body} <; h(l).

Definition 10 (Models) Let P be an E-program. A proba-
bilistic model (p-model) of P is a p-interpretation i of P
that satisfies P.

We say that & is a minimal p-model of P if there is no p-
model 1’ of P such that ' <, h. An E-program with-
out non-monotonic negation is simpler and has exactly one
minimal p-model. The following results allow us to char-
acterize the minimal (least) p-model (we call this least p-
model probabilistic answer set) of an E-program without
non-monotonic negation.

Proposition1 Let P = (R,7) be a ground E-program
without non-monotonic negation, i.e. n = m for each E-rule
r € R, and hy, ho be two p-models of P. Then hy ®, hs is
also a p-model of P.

not (L, : pin)

175

.TU Clausthal
11TH NMR WORKSHOP

Corollary 1 Let P be a ground E-program without non-
monotonic negation and let Hp be the set of all p-models
of P. Then, hp = ®,{h|h € Hp} is the probabilistic an-
swer set of P.

However, it is possible to get the probabilistic answer set of
an E-program P without non-monotonic negation and this
probabilistic answer set is inconsistent. If this is the case,
we say P is inconsistent. In other words, P is inconsistent
if it has inconsistent probabilistic answer set. When P is
inconsistent, LIT, where LIT : bfs(Lit) — [1,1], is the
probabilistic answer set of P. In this case every hybrid literal
with probability interval [1,1] follows from P. We adopt
this view from the answer set semantics of traditional logic
programming (Gelfond & Lifschitz 1991).

Example 1 Consider the following E-program P = (R, 7)
without non-monotonic negation, where R is

¢:[0.35,0.91] «— a:[0,0.11],b:[0.8,0.99]

—¢:[0,021] — a:[0.1,0.13],-b: [0.05,0.08]

d:[0.12,0.18] — c:[0.35,0. 65]

~d :[0.45,0.55] — a: [0 0.15), b : [0.02, 0.22],
c:[0,0.1]

~b:[0.15,03]
a:[0.1,0.2] —

and 7 is any arbitrary assignment of disjunctive p-strategies.
It is easy to verify that P has (unique) probabilistic answer
set h where h(a) = [0.1,0.2], h(=b) = [0.15,0.3], h(—c) =
[0,0.21], h(—d) = [0.45,0.55].

Now, suppose P is an E-program without non-monotonic
negation and h is a probabilistic answer set for P. Then, if
we complement h, denoted by compl(h), do we still have
h as a probabilistic answer set for P? The answer to this
question is no in general. Since after compl(h), itis possible
to have h as a p-model for P but not a probabilistic answer
set or even not a p-model at all. We show this by following
example.

Example 2 Consider the following E-program P = (R, T)
where R is

b:[0.6,0.7] «— —a:[0.7,0.8]
a:[0.5,06] — b:[0.550.7]
a:[0.2,0.3] <
b:[0.4,05 —

and 7(a) = 7(b) = pcd and 7(-b) = 7(-a) = 7w
where 7 is any arbitrary disjunctive p-strategy. pcd denotes
the disjunctive positive correlation p-strategy whose com-
position function is defined as: cpea([a1, 1], (a2, B2]) =
[max(ay, as), max(f31, G2)]. We can easily see that h;
is the probabilistic answer set of P where hi(a) =
[0.2,0.3], h1(b) = [0.4,0.5]. Now, let us compl(hi) and
see if the new h, is a probabilistic answer set of P. After
compl(hi) we get a new hy as hi(a) = [0.2,0.3], h1(b) =
[0.4,0.5], h1(—a) = [0.7,0.8],h1(—b) = [0.5,0.6], which
is a consistent p-interpretation but it is not a p-model of P,
and hence, it is not a probabilistic answer set of P. Note that
after comp(hq), if we remove hy(—a) from the definition of
hi, we get hl(a) = [027 03], hl(b) = [047 05], hl(—‘b) =

176

[0.5,0.6], which is a p-model of P but it is not a probabilis-
tic answer set. However, it can be a probabilistic answer set
of P except that the condition ¢,y {{i1[=b : p «+ Body €
R and h1 = Body}} <, hi(—b) does not apply, because
there is no E-rule in P with —b appearing in its head. l.e.,
there are no E-rules in P that support the probability in-
terval assigned to —b. The only support to the probability
interval of —=b is hy(—b) = [1,1] — h1(b). This can be done
for any hybrid literal L defined in the probabilistic answer
set h of an E-program P without non-monotonic negation,
if the program P as a whole provides no means to derive
more information about the probability of L. This means
that, given P, our knowledge about the probability of L is
complete, and hence, we can assert that the probability of
=L is h(=L) = [1,1] — h(L). In fact, we cannot assign
any [ai,as] to =b in hy such that hy(=b) = [a1, 2] <t
[0.5,0.6] or [0.5,0.6] <; [a1, 2] = hi(=b). This is be-
cause of the inconsistency condition, otherwise, the proba-
bilistic answer set of P is LIT.

Definition 11 Let P be an E-program without non-
monotonic negation and h be the probabilistic answer set
of P (different from LIT). The final probabilistic answer
set of P is the probabilistic answer set % after compl(L)
w.r.t. h for some L € dom(h) such that the program P as a
whole provides no means to derive more information about
the probability of L assigned by the original &

Example 3 Consider the following E-program P = (R, T)
where R is

b:[0.3,04] <« -a:[0.7,0.8]
a:[0.1,0.22] «— b:][0.55,0.7]
a:[0.2,0.3] <
b:[04,0.5]

and 7(a) = 7(b) = ped and 7(=b) = 7(-a) = 7
where 7 is any arbitrary disjunctive p-strategy. Then h
where h(a) = [0.2,0.3] h(b) = [0.4,0.5] h(-a) =
[0.7,0.8] h(—b) = [0.5,0.6] is the final probabilistic an-
swer set of P. Since, h(a) = [0.2,0.3], h(b) = [0.4,0.5] is
the probabilistic answer set of P and the program P as a
whole does not allow us to derive more information about
the probability assigned to a and b by h.

In the rest of paper, we will consider probabilistic answer
sets not the final probabilistic answer sets.
Proposition 2 Every E-program P without non-monotonic
negation has unique probabilistic answer set h p.
Associated with each E-program P without non-monotonic
negation, is an operator, T'p, called the fixpoint operator,
which maps a p-interpretation to a p-interpretation.
Definition 12 Let P = (R,) be a ground E-program with-
out non-monotonic negation, h be a p-interpretation, and
HFF be the set of all hybrid formula functions. The fix-
point operator T'p isamapping 7p : HFF — H F F which
is defined as follows:
1. iflisaliteral, Tp(h)(l) = c;) M; where
M; = {p|l : p — Body € R suchthat h = Body}.
2. Tp(h)(L1 Ap L2) = c,(Tp(h)(L1),Tp(h)(L2)) Where
(Ll Np Lg) S bfs(LZt) and Ly, Lo, € dom(Tp(h))

Technical Report IfI-06-04

3. Tp(h)(L1 Vyr La) = e (Tp(h)(L1), Tp(h)(La)) where
(Ll V! Lg) S bfs(LZt) and L, Lo, € dom(Tp(h))

If M, is empty—i.e., there are no E-rules in P whose heads
contain [such that their bodies are satisfied by h—then no
probability interval is assigned to [. This means the proba-
bility interval of [is unknown with respect to h. Let us now
proceed in the construction of the probabilistic answer set as
repeated iteration of the fixpoint operator T'p.

Definition 13 Let P be a ground E-program without non-
monotonic negation. Then
e Tp 1 0= () where () is the empty set.
e Tp T a=Tp(Tp T (v — 1)) where « is a successor
ordinal.
e Tp T A= &,{Tp 1 ala < A} where X is a limit
ordinal.

Lemma 1 The T’ operator is monotonic.

The properties of the T'» operator guarantee the existence of
a least fixpoint and its correspondence to the probabilistic
answer set of E-programs without non-monotonic negation.

Proposition 3 Let P be an E-program without non-
monotonic negation and & be a p-interpretation. Then A is a
p-model of P iff Tp(h) <, h.

Theorem 1 Let P be an E-program without non-monotonic
negation. Then, hp = I fp(Tp).

Example 4 Let us reconsider the E-program P, without
non-monotonic negation, described in Example 1. It is easy
to see that the [fp(T'p) assigns [0.1,0.2] to a, [0.15,0.3] to
=b, [0,0.21] to —¢, and [0.45, 0.55] to —d.

Probabilistic Answer Set Semantics for
E-programs

In this section we define the probabilistic answer sets of
E-programs (with non-monotonic negation), which extend
the notion of answer sets for traditional logic programming
(Gelfond & Lifschitz 1991). The semantics is defined in
two steps. First, we guess a probabilistic answer set h for
a certain E-program P, then we define the notion of the
probabilistic reduct of P with respect to h. The probabilis-
tic reduct is an E-program without non-monotonic negation
which has a unique probabilistic answer set. Second, we de-
termine whether & is a probabilistic answer set for P. This
is verified by determining whether A is the probabilistic an-
swer set of the probabilistic reduct of P w.r.t. h.

Definition 14 (Probabilistic Reduct) Let P = (R, 7) be a
ground E-program and h be a p-interpretation. The proba-

bilistic reduct P" of P w.r.t. his P* = (R", 7) where:

lip—1Li:pr,...,Lm: pm|

R — lip<—DLi:pi,..., Ly pim,
- not (Lm+1 : thmt1), ... ,n0t (L : un) € Rand
V(m+1<j<n), pu; £ h(L;) or L; ¢ dom(h).

The probabilistic reduct P" is an E-program without non-
monotonic negation. Therefore, its probabilistic answer set
is well-defined. For any not (L; : y1;) in the body of € R

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

with u; £, h(L;) means that it is not known that the proba-
bility interval of L; is at least 1; given the available knowl-
edge, and not (L; : pj;) is removed from the body of . In
addition, if L; ¢ dom(h), i.e., L; is undefined in h, then it
is completely not known (undecidable) that the probability
interval of L; is at least x;. In this case, not (L; : ;) is
also removed from the body of ». Here we distinguish be-
tween the case where it is not known the probability of L; is
at least 1; because we have some but incomplete knowledge
about the probability of L, (by p; £; h(L;)) and the case
where we completely have no knowledge about the proba-
bility interval of L; (by L; ¢ dom(h)). If u; < h(L;)
then we know that the probability interval of L; is at least
w; and the body of r is not satisfied and r is trivially ignored.

Definition 15 A p-interpretation A is a probabilistic answer
se]tl of an E-program P if h is the probabilistic answer set of
P,

The domain of a probabilistic answer set of an E-program
represents an agent set of beliefs based on the knowledge
represented by the E-program. However, the probability in-
tervals associated to these beliefs represent the agents belief
degrees on these beliefs. Intuitively, the probabilistic answer
sets of an E-program are the possible sets of beliefs with as-
sociated beliefs degrees an agent might have. Note that E-
programs without classical negation (normal hybrid proba-
bilistic programs (Saad & Pontelli 2005a)), i.e., E-programs
that contain no negative literals neither in head nor in the
body of E-rules, have probabilistic answer sets with hybrid
literals consisting of only atoms. In other words, the domain
of probabilistic answer set in this case consists of positive
hybrid basic formulae. Moreover, the definition of proba-
bilistic answer sets coincides with the definition of stable
probabilistic models defined in (Saad & Pontelli 2005a).
This implies that the probabilistic answer sets for a nor-
mal hybrid probabilistic program are equivalent to its sta-
ble probabilistic models. This means that the application of
probabilistic answer set semantics to normal hybrid proba-
bilistic programs is reduced to the stable probabilistic model
semantics for normal hybrid probabilistic programs. How-
ever, there are a couple of main differences between the two
semantics. A probabilistic answer set may be a partial p-
interpretation, however, a stable probabilistic model is a to-
tal p-interpretation. In addition, each hybrid basic formula F’
with probability interval [0,0]— i.e. there is no proof that £’
has probability interval different from [0, 0] or F is false by
default— in a stable probabilistic model of a normal hybrid
probabilistic program corresponds to the fact that the proba-
bility interval of F'is unknown, and hence undefined, in its
equivalent probabilistic answer set—i.e., the probability of
F'is unknown.

Proposition 4 Let P be an E-program without classical
negation. Then £ is a probabilistic answer set for P iff h’
is a stable probabilistic model of P, where h(F) = h'(F)
for b'(F') # [0, 0] and h(F) is undefined for A'(F") = [0, 0].

Proposition 4 shows that there is a simple reduction from
E-programs to normal hybrid probabilistic programs. The
importance of this is that, under the consistency condition,

177

.TU Clausthal
11TH NMR WORKSHOP

computational methods developed for normal hybrid proba-
bilistic programs can be applied to extended hybrid proba-
bilistic programs.

Example 5 In addition to the intuitive representation, the
undesirable consequences due to the use of non-monotonic

negation in the hear medication example described in the
introduction,

give(di,med) : [0.87,0.95] < not(ef f(med, hrt) : [0.15,0.15]),

can be eliminated by using classical negation. Therefore, by
using the classical negation we get

give(di, med) : [0.87,0.95] < —ef f(med, hrt) : [0.85,0.85].

Then, give(di, med) can be concluded with probability in-
terval [0.87,0.95] if no side effects of the medication on the
heart, —ef f(med, hrt), is concluded with probability inter-
val at least [0.85,0.85].

Example 6 Suppose that we know a bird can fly with proba-
bility at least the probability between 70% and 85% as long
as it is not known that it is incapable of flying with probabil-
ity at least the probability in the range 30% to 35%. How-
ever, a bird is incapable of flying with probability at least
the probability from 48% to 65% if it is wounded with prob-
ability at least the probability between 50% to 68%. Never-
theless, certainly, a bird is incapable of flying if it is a pen-
guin. In addition, we also know that Tweety and Rocky are
birds. Rocky is penguin, and there is over 70% chance that
Tweety is injured. This can be represented by the following
E-program P = (R, 7) where R is

Fly(X) : [0.7,0.85] — bird(X): [1,1],
not(—fly(X) : [0.3,0.35])
- fly(X) : [0.48,0.65] wounded(X) : [0.5,0.68]

~fly(X) : [1,1]
bird(tweety) : [1,1]
wounded(tweety) : [0.7,1]
bird(rocky) : [1,1]
penguin(rocky) : [1, 1]

penguin(X) : [1,1]

rTrr1rrt

and 7 is any arbitrary assignment of disjunctive p-
strategies. P has only one probabilistic answer set h where

h(bird(tweety)) = [11]
h(bird(rocky)) = [11]
h(wounded(tweety)) = [0.7,1]
h(penguin(rocky)) = [1,1]
h(—fly(tweety)) = [0.48,0.65]
h(~fly(rocky)) = [11]

Although completely different, the following examples are
inspired by examples described in (Loyer & Straccia 2002;
Dekhtyar, Dekhtyar, & Subrahmanian 1999).

Example 7 A detective is investigating a crime by consid-
ering the persons who might be suspects among the ones
who have been recalled for questions during the investiga-
tion. The detective is considering a person as a suspect with
probability at least the probability between 55% to 70% if
the probability that person lies is at least the probability
from 47% to 60% and has a motive to commit the crime with
probability at least the probability in the range 50% to 55%.
A person is also a suspect with at least 60% to 90% prob-
ability if there is at least 70% to 82% chance that there is
another person who is willing to witness against him. How-
ever, the detective does not consider a person as a suspect

178

with probability at least the probability from 48% to 65% if
that person does not lie with probability at least the proba-
bility between 68% and 90%. But the detective needs to col-
lect more evidence about a person (investigate) with proba-
bility at least the probability from 87% to 93% whenever it
is not known that person is suspect with at least 50% to 85%
probability and is not a suspect with at least 40% to 70%
probability. The detective is over 70% sure that Frank has a
motive to commit the crime, but, he also knows that John is
not willing to witness against Frank with probability as low
as in the range 20% to 25%. This can be represented by the
following E-program P = (R, 7) where R is

suspect(X) : [0.55,0.7] « lie(X) : [0.47,0.6],
motive(X) : [0.5,0.55]

suspect(X) : [0.6,0.9] «— witness(X,Y") : [0.7,0.82]

—suspect(X) : [0.48, 0.65] — —lie(X) : [0.68,0.9]

investigate(X) : [0.87,0.93] « not (suspect(X) : [0.5,0.85]),
not (—suspect(X) : [0.4,0.7])

motive(frank) : [0.7,1] «—

—witness(frank, john) : [0.2,0.25] —

and 7 is any arbitrary assignment of disjunctive p-
strategies. P has only one probabilistic answer set 4 where

h(—~witness(frank, john)) = [0.2,0.25]
h(motive(frank)) = [0.7,1]
h(investigate(frank)) = [0.87,0.93].

Note that our knowledge about the probabil-
ity of —witness(frank, john), motive(frank),
and investigate(frank) is complete given the
above E-program. Therefore, we can assert that
h(witness(frank, john)) [1,1] - [0.2,0.25]

[0.75, 0.8]
h(—motive(frank)) = [1,1]-[0.7,1]
= [0.0.3]
h(—investigate(frank)) = [1,1]-[0.87,0.93]
= [0.07,0.13].

Example 8 Itis probable that Frank was in the crime scene.
However, it is not yet known that Frank is a suspect. There-
fore, the detective has decided to question the persons who
also were seen in the crime scene due to the need for more
investigation around Frank. The detective questions a per-
son with probability at least the probability between 77%
and 93% if that person was seen in the crime seen with prob-
ability at least the probability from 52% to 68% where Frank
was also seen with probability at least the probability from
40% to 52%. |If the detective is ignorant about the rela-
tionship between a person who was seen in the crime scene
and the fact that Frank was also seen in the crime scene
with probability at least the probability in the range 60 %
to 79%, then there is probability at least the probability be-
tween 50% and 65% that the detective questions that person.
However, if there is a positive correlation between a person
who was not seen in the crime scene and Frank was seen in
the crime scene with probability at least the probability from
80% to 95%, then there is over 50% probability that person
is questioned. But, if the detective does not know whether to
question a person with probability at least 50% to 85% and
not to question that person with probability at least 40% to
70%, then he considers that person is not a suspect with
probability at least 87% to 93%. The detective also knows
that if a person was seen in the crime scene with probability

Technical Report IfI-06-04

interval [V4, V2], then he was not seen with probability inter-
val [1 — V2,1 — V4]. But if he was not seen with probability
interval [V, V5], then he was seen with probability interval
[1 — V2,1 — V4]. Further investigations have shown that
Frank was seen in the crime scene with probability 55% to
73%, however, Mark was not seen with probability 30% to
40%. This can be represented by the following E-program
P = (R,) where R is

question(X) : [0.77,0.93] < seen(X) : [0.52,0.68],
seen(frank) : (0.4, 0.52]
question(X) : [0.5,0.65] —
(seen(X) Nig seen(frank)) : [0.6,0.79]
question(X) : [0.5,1] «—
(—seen(X) Ape seen(frank)) : [0.8,0.95]
—suspect(X) : [0.87,0.93] — not (question(X) : [0.5,0.85]),
not (—question(X) : [0.4,0.7])
—seen(X) : [1 — Va,1 — V1] « seen(X) : [V1, V2]
seen(X) : [1 — Va,1 — V1] «— —seen(X) : [V1, V2]
seen(frank) : [0.55,0.73] —
—seen(mark) : [0.3,0.4] —

and 7 is any arbitrary assignment of disjunctive p-
strategies. Ay and A, correspond to the conjunc-
tive ignorance p-strategy igc—whose composition func-
tion is defined as c;yc([a1, £1], [2, B2]) = [max(0, 1 +
as—1), min(31, 32)]—and the conjunctive positive correla-
tion p-strategy pcc—whose composition function is defined
as cpee([a1, 0], [a2, B2]) = [min(a1,), min(f1, B2)]—
respectively. P has only one probabilistic answer set h
where

h(seen(frank)) = [0.55,0.73]

—seen(frank)) = [0.27,0.45)

—seen(mark)) = [0.3,0.4]

seen(mark)) = [0.6,0.7]

(seen(mark) N;q seen(frank))) = [0.14,0.7]
question(mark)) = [0.77,0.93]
h((—seen(mark) Ay seen(frank))) = [0.3,0.4].

In the following we define the immediate consequence op-
erator of E-programs and study its relationship to the prob-
abilistic answer sets.

Definition 16 Let P = (R,) be a ground E-program and
h € HFF. The immediate consequence operator T, is a
mapping T4 : HFF — HF'F defined as follows:

1. Tp(h)(l) = c;qy M; where

(
h(
h(
h(
h(
h(

(

lip—Ly:pi,...;Lm : pim,
M = not (Lm+1 : hmt1)y---,n0t (Ln : pun) € R
PENYH] andV(1 <i<m),h=Li:
and¥V(m+1<j<n),hkEnot(L;: ;)

2. Tp(h)(L1 Ay Lo) = c,(Tp(h)(L1), TH(h)(L2)) Where
(L1 Ap Lo) € bfs(Lit) and L1, Ly € dom(Tp(h)).

3. Tl/g(h)(Ll V! Lg) = Cp/ (Tllg(h)(Ll),TI/;(h)(Lg)) where
(L1 Vy L) € bfs(Lit) and L1, Ly € dom(Tp(h)).

It is easy to see that T, extends T'» to handle E-rules with

non-monotonic negation, and hence, T, = Tp for any E-
program P without non-monotonic negation.

Theorem 2 Let P = (R, 7) be an E-program such that for
every E-rule in R, n = m. ThenTp = Tp.

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

The operator 7', is not monotonic w.r.t. <,. This can be
seen by the following result.

Proposition 5 1'% is not monotonic w.r.t. <,,.

Example 9 Consider the E-program:
a:[0.2,0.3] < not (b:[0.6,0.8]).

Let hy = () be a p-interpretation. In addition, let h5 be a p-
interpretation that assigns [0.65, 0.9] to b. Hence, hy <, ha.
But T (h1) assigns [0.2,0.3] to @ and T (ha) = 0. Thus,
Tp(h1) %o Tp(h2)

The following results establish the relationship between the
T'}> operator and the probabilistic answer set semantics.

Lemma 2 Let P be an E-program and h be a probabilistic
answer set of P. Then T (h) = h, i.e., h is a fixpoint of T'p.

Theorem 3 Let P be an E-program and A be a probabilistic
answer set of P. Then h is a minimal fixpoint of 7.

It is worth noting that not every minimal fixpoint of T is
a probabilistic answer set for P. Consider the following E-
program P.

Example 10 Let P = (R, 7) where 7 is arbitrary and R
contains

a:[0.1,0.33]
a:[0.1,0.33]

— mnot (a:[0.1,0.33])
— b:[1,1]

It is easy to verify that the p-interpretation h(a) =
[0.1,0.33] and h(b) = [1,1] is a minimal fixpoint of T'5.
However, P" consists of a : [0.1,0.33] < b : [1,1] where
Ifp(Tprn) = (. Hence, h is not a probabilistic answer set
for P.

Let us show that the probabilistic answer set semantics gen-
eralizes the answer set semantics of extended logic pro-
grams in traditional logic programming (Gelfond & Lifs-
chitz 1991). An extended logic program P can be repre-
sented as an E-program P’ = (R, 7) where each extended
rule

l—11,...;Lp,not Lpy1,...,n0t l,, € P

can be encoded, in R, as an E-rule of the form
Live—li:v,.. ly:v,not (lypyr i v), ..., not (I, : v)

belongingto R, where v = [1,1], L, 11, ..., Iy b1, - - -5 In
are literals, and [1, 1] represents the truth value true. T is
any arbitrary assignment of disjunctive p-strategies. We call
the class of E-programs that consists only of E-rules of the
above formas £ H P P,. The following result shows that ex-
tended programs (Gelfond & Lifschitz 1991) are subsumed
by EHPP.

Proposition 6 Let P be an extended logic program. Then
S’ is a an answer set of P iff h is a probabilistic answer of
P’ € EHPP; that corresponds to P where h(l) = [1,1] iff
1 €5 and h(l’) is undefined iff I’ ¢ S’.

179

.TU Clausthal
11TH NMR WORKSHOP

Related Work

The problem of extending uncertain logic programming in
general and probabilistic logic programming in particular
with non-monotonic negation (negation-as-failure or default
negation) has been extensively studied in the literature. A
survey on these various approaches can be found in (Saad &
Pontelli 2005a). However, the main difference in this work
is that we allow classical negation as well as non-monotonic
negation to reason with incomplete knowledge, given the un-
derlying semantics is the answer set semantics for traditional
logic programming (Gelfond & Lifschitz 1991), which has
not been addressed by the current work in probabilistic logic
programming. The closest to our work is the work pre-
sented in (Baral, Gelfond, & Rushton 2004). In (Baral, Gel-
fond, & Rushton 2004), an elegant way has been presented
to reason with causal Bayesian nets by considering a body
of logical knowledge, by using the answer set semantics of
traditional logic programming (Gelfond & Lifschitz 1991).
Answer set semantics (Gelfond & Lifschitz 1991) has been
used to emulate the possible world semantics. Probabilis-
tic logic programs of (Baral, Gelfond, & Rushton 2004)
is expressive and straightforward and relaxed some restric-
tions on the logical knowledge representation part existed
in similar approaches to Bayesian reasoning, e.g., (Kerst-
ing & Raedt 2000; Muggleton 1995; Poole 1997; 2000;
Vennekens, Verbaeten, & Bruynooghe 2004). Since (Ng
& Subrahmanian 1992; 1993; 1994; Dekhtyar & Subrah-
manian 2000) provided a different semantical characteriza-
tion to probabilistic logic programming, it was not clear that
how these proposals relate to (Baral, Gelfond, & Rushton
2004). However, the work presented in this paper and (Saad
& Pontelli 2005a), which are modification and generaliza-
tion of the work presented in (Ng & Subrahmanian 1992;
1993; 1994; Dekhtyar & Subrahmanian 2000), are closely
related to (Baral, Gelfond, & Rushton 2004). The work pre-
sented in this paper strictly syntactically and semantically
subsumes probabilistic logic programs of (Baral, Gelfond,
& Rushton 2004). This can be easily argued by the fact
that EHPP naturally extends traditional logic programming
with answer set semantics (Gelfond & Lifschitz 1991), and
probabilistic logic programs of (Baral, Gelfond, & Rushton
2004) mainly rely on traditional logic programming with an-
swer set semantics (Gelfond & Lifschitz 1991) as a knowl-
edge representation and inference mechanism for reasoning
with causal Bayesian nets. This is true although EHPP does
not allow disjunctions in the head of rules since it is easy
to transform an extended disjunctive logic program into an
equivalent extended logic program via a simple transforma-
tion (Baral 2003). In this sense, the comparisons established
between (Baral, Gelfond, & Rushton 2004) and the existing
probabilistic logic programming approaches such as (Ker-
sting & Raedt 2000; Muggleton 1995; Poole 1997; 2000;
Vennekens, Verbaeten, & Bruynooghe 2004; Ng & Subrah-
manian 1992; 1993; 1994; Dekhtyar & Subrahmanian 2000;
Lukasiewicz 1998; Dekhtyar & Dekhtyar 2004) also carry
over to EHPP and these approaches. In addition, unlike
(Baral, Gelfond, & Rushton 2004), EHPP does not put any
restriction on the type of dependency existing among events.

180

Conclusions and Future Work

We presented an extension to the language of normal hy-
brid probabilistic programs (Saad & Pontelli 2005a), called
extended hybrid probabilistic programs, to allow classical
negation, in addition to, non-monotonic negation. The ex-
tension is important to provide the capability of reasoning
with incomplete knowledge. We developed a semantical
characterization of the extended language, which relies on
a probabilistic generalization of the answer set semantics,
originally developed for extended logic programs (Gelfond
& Lifschitz 1991). We showed that the probabilistic answer
set semantics naturally generalizes the answer set semantics
for extended logic programs (Gelfond & Lifschitz 1991).
Furthermore, we showed that the proposed semantics is re-
duced to stable probabilistic model semantics of NHPP pro-
posed in (Saad & Pontelli 2005a). The importance of that
computational methods developed for NHPP can be applied
to the language of EHPP. Moreover, we showed that some
commonsense probabilistic knowledge can be easily repre-
sented in the proposed language.

A topic of future research is to extend the language of ex-
tended hybrid probabilistic programs to allow disjunctions
of annotated literals in the heads of rules. In addition, we
intend to investigate the computational aspects of the prob-
abilistic answer set semantics—by developing algorithms
and implementations for computing the proposed semantics.
The algorithms and implementations we will develop will be
based on appropriate extensions of the existing technologies
for computing the answer semantics for extended logic pro-
grams.

References

Baral, C.; Gelfond, M.; and Rushton, N. 2004. Probabilis-
tic reasoning with answer sets. In 7th International Confer-
ence on Logic Programming and Nonmonotonic Reason-
ing. Springer Verlag.

Baral, C. 2003. Knowledge representation, reasoning, and
declarative problem solving. Cambridge University Press.
Dekhtyar, A., and Dekhtyar, 1. 2004. Possible worlds se-
mantics for probabilistic logic programs. In International
Conference on Logic Programming, 137-148.

Dekhtyar, A., and Subrahmanian, V. 2000. Hybrid
probabilistic program. Journal of Logic Programming
43(3):187-250.

Dekhtyar, M.; Dekhtyar, A.; and Subrahmanian, V. S.
1999. Hybrid probabilistic programs: Algorithms and
complexity. In Uncertainty in Artificial Intelliegence, 160—
169.

Gelder, A. V.; Ross, K. A.; and Schlipf, J. 1991. The well-
founded semantics for general logic programs. Journal of
ACM 38(3):620-650.

Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In ICSLP. MIT Pres.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9(3-4):363-385.

Technical Report IfI-06-04

Theory of NMR and Uncertainty

Kersting, K., and Raedt, L. D. 2000. Bayesian logic pro-
grams. In Inductive Logic Programming.

Lakshmanan, L., and Sadri, F. 2001. On a theory of prob-
abilistic deductive databases. Journal of Theory and Prac-
tice of Logic Programming 1(1):5-42.

Loyer, Y., and Straccia, U. 2002. The well-founded seman-
tics in normal logic programs with uncertainty. In FLOPS.
Springer Verlag.

Lukasiewicz, T. 1998. Probabilistic logic programming. In
13th European Conference on Artificial Intelligence, 388—
392.

Muggleton, S. 1995. Stochastic logic programming. In 5th
International Workshop on Inductive Logic Programming.

Ng, R., and Subrahmanian, V. 1992. Probabilistic logic
programming. Information & Computation 101(2).

Ng, R., and Subrahmanian, V. 1993. A semantical frame-
work for supporting subjective and conditional probabili-
ties in deductive databases. ARJ 10(2).

Ng, R., and Subrahmanian, V. 1994. Stable semantics for
probabilistic deductive databases. Information & Compu-
tation 110(1).

Poole, D. 1997. The independent choice logic for mod-
elling multiple agents under uncertainty. Artificial Intelli-
gence 94(1-2):7-56.

Poole, D. 2000. Abducing through negation as failure:
stable models within the independent choice logic. Journal
of Logic Programming 44(5-35).

Saad, E., and Pontelli, E. 2005a. Hybrid probabilistic logic
programs with non-monotonic negation. In International
Conference on Logic Programming.

Saad, E., and Pontelli, E. 2005b. Towards a more practi-
cal hybrid probabilistic logic programming framework. In
Practical Aspects of Declarative Languages.

Vennekens, J.; Verbaeten, S.; and Bruynooghe, M. 2004.
Logic programs with annotated disjunctions. In Interna-
tional Conference on Logic Programming, 431-445.

DEPARTMENT OF INFORMATICS 181

.TU Clausthal
11TH NMR WORKSHOP

182 Technical Report IfI-06-04

Theory of NMR and Uncertainty

2.8 Extending the role of causality in probabilistic modeling

Extending the Role of Causality in Probabilistic Modeling

Joost Vennekens, Marc Denecker, and Maurice Bruynooghe
{joost, marcd, maurice}@cs.kuleuven.be
Dept. of Computer Science, K.U.Leuven
Celestijnenlaan 200A
B-3001 Leuven, Belgium

Abstract

Causality plays an important role in probabilistic mod-
eling. Often, a probability distribution can be nat-
urally described as the outcome of a causal process,
in which different random variables interact through
a series of non-deterministic events. However, formal
tools such as Bayesian networks do not directly rep-
resent such events, but focus instead on derivate con-
cepts such as probabilistic independencies and condi-
tional probabilities. In this paper, we present a logic,
designed from fundamental causal principles, which has
a representation of such non-deterministic, probabilis-
tic events as its basic construct. We show that Bayesian
networks can be described in this language and illus-
trate some of its interesting properties. We then relate
this logic to a certain class of probabilistic logic pro-
gramming languages. We show that our logic induces a
semantics for disjunctive logic programs, in which these
represent non-deterministic processes. We also show
that logic programs under the well-founded semantics
can be seen as a language of deterministic causality,
which we relate to McCain & Turner’s causal theories.

Introduction

Causal information plays a crucial role in common-
sense reasoning in general and probabilistic modeling
in particular. The underlying assumption in work
such as Pearl’s influential treatment of causality (Pearl
2000) seems to be the assumption that the world
can be viewed as consisting of a number of non-
deterministic causal events. However, the formal tools
that are typically used in probabilistic modeling—most
notably Bayesian networks—do not directly represent
such causal events. Instead, derivate kinds of informa-
tion, such as probabilistic (in-)dependencies and condi-
tional probability distributions, are represented.

In this paper, we propose a more direct approach,
which is based on the following construct of a condi-
tional probabilistic event, or CP-event for short: “If
property ¢ is satisfied, then a probabilistic event will
happen that causes at most one of propositions hy, ho,
..., hyn, where the probability of h; being caused is a;,
the probability of hsy is «a, ..., and the probability of
hm is ap,.” We use the following syntax to represent
a CP-event of the above form: (hy : ag) V-V (hy, :

DEPARTMENT OF INFORMATICS

) < . In the next section, we will be more precise
about which kinds of preconditions ¢ we allow. For
now, we will consider the simple case of ¢ being a con-
junction by A --- A b, of propositions. The precondition
 may also be absent, in which case the event is called
unconditional.

The language Conditional Probabilistic Fvent Logic,
or CP-logic for short, now consists of sets of such CP-
events. Such a set is called a CP-theory. By examining
our intuitions about how different CP-events should in-
teract with each other, the following two fundamental
principles can be isolated. The first is that of indepen-
dent causation. It states that every CP-event represents
an independent causal event; in other words, the out-
come of one event might affect whether or not some
other event will happen, but does not have an influence
on what the outcome of such an event will be, should it
in fact happen. This principle is precisely what allows
causality to act as the basis for a stable and modular
view of the world. Moreover, it also implies that, to
a certain extent, the order in which CP-events happen
is irrelevant. The second principle, which we call the
principle of no deus ex machina effects, is that noth-
ing happens without a cause, i.e., everything remains
false unless there is a cause for it to become true and
something cannot cause itself. This is a fundamental
principle of causal reasoning and will turn out to be es-
pecially vital in the presence of cyclic causal relations.

In the next section, we will construct a semantics for
CP-logic based on these two principles. In this seman-
tics, a CP-theory constructively defines a unique prob-
ability distribution over interpretations of the proposi-
tions. At each step, this constructive process simulates
a single CP-event. Such a simulation derives proposi-
tion h; with probability «;, but can only be performed
if all the propositions by, ...,b, have already been de-
rived. Moreover, each event can occur at most once.
This process will start from the empty set, i.e., initially
nothing has been derived yet, and will end once there
are no more CP-events left to simulate. The probability
of an interpretation, then, is the sum of the probabil-
ities of all possible derivations of this interpretation.
It can be shown that the precise order in which CP-
events are simulated does not matter, i.e., all sequences

183

.TU Clausthal
11TH NMR WORKSHOP

will construct the same distribution. This follows from
the principle of independent causation, together with
the fact that, by only considering preconditions that
are conjunctions of propositions, we have ensured the
monotonicity of such sequences of simulations, i.e., the
fact that if, at a certain time, all preconditions to a CP-
event are satisfied, they will remain satisfied. Moreover,
the “no deus ex machina”-principle is clearly incorpo-
rated in this semantics, because a proposition is only
derived if it is caused by a CP-event with satisfied pre-
conditions.

To sketch some of the interesting properties of this
language, we consider two ways in which a person might
get infected by the HIV virus: sexual intercourse with
an infected partner and blood transfusion. For con-
creteness, assume that the probability of contracting
HIV from an infected partner is 0.6 and that the prob-
ability of contracting it through a blood transfusion is
0.01. For the case of two partners a and b, of which only
a has received a blood transfusion, we can model this
example by the following CP-theory: {(hiv(a): 0.6) —
hiv(b). (hiv(d) : 0.6) « hiv(a). (hiv(a) : 0.01).}

As this example shows, the principle of independent
causation makes it easy to represent the relation be-
tween an effect and a number of independent causes for
this effect in a compact, clear and modular way, with
each possible cause corresponding to a single CP-event.
Moreover, this principle also makes the representation
elaboration tolerant, in the sense that adding (or remov-
ing) an additional cause simply corresponds to adding
(removing) a single rule. For instance, if b undergoes a
blood transfusion as well, we only need to add a rule
(hiv(b) : 0.01). Because of the “no deus ex machina”-
principle, the cyclic causal relation between hiv(a) and
hiv(b) can be represented in precisely the same way as
an acyclic one. Indeed, the first two rules will act as one
would expect from such a causal loop: if neither a nor b
have been infected by an external cause, then both are
not infected, i.e., by itself such a loop does not cause
anything; if precisely one of a and b has been infected by
an external cause, then the probability of the other also
being infected is 0.6. Another useful consequence of the
“no deus ex machina”-principle is that domains can be
represented in a compact way, because cases in which
some proposition is not caused can simply be ignored.
Indeed, we do not need to mention that without either
intercourse with an infected partner or blood transfu-
sion, an HIV infection is impossible. Further on in this
paper, we will compare CP-logic to Bayesian networks
and address these issues in more detail.

The contributions of this paper are the following. We
introduce the concept of a CP-event and the princi-
ples of independent causation and no deus ex machina
effects. We then use these to define the language of
CP-logic. We show how this logic relates to Bayesian
networks and illustrate some advantages of making
causal events explicit. We relate our logic to logic pro-
gramming based approaches to probabilistic modeling.
This result provide additional motivation for these ap-

184

proaches and helps to clarify their knowledge represen-
tation methodology. It also allows us to consider a
causal interpretation for disjunctive and normal logic
programs. We compare this to McCain & Turner’s
causal theories.

Conditional Probabilistic Event Logic

The full syntax of CP-logic extends the one presented
in the introduction in two ways. Firstly, it allows vari-
ables to be used to represent a set of CP-events by a
single rule. Secondly, arbitrary first-order logic formu-
las can be used as preconditions to CP-events. More
concretely, a CP-theory consists of a set of rules of the
form: (A; : 1) V-V (A, : a,) «— @. Here, the A;’s
are atoms which may contain variables, ¢ is a first-
order formula, and the a;’s are numbers between 0 and
1, s.t. Z?zl a; < 1. We distinguish between two dif-
ferent kinds of variables: those that are bound by a
quantifier in ¢ and those that are free. The free vari-
ables free(r) of a rule r are treated as place holders for
ground terms. Concretely, we will consider a rule r as
an abbreviation for the grounding (w.r.t. the Herbrand
universe) of this rule, i.e., the set of all rules »’ that can
be derived from r by replacing all the variables free(r)
by ground terms. We reserve the term CP-event to re-
fer to a rule in which no free variables appear. As such,
a rule with free variables is simply a convenient way
of representing a set of similarly structured CP-events.
In formal discussions, we will always assume that CP-
theories have already been grounded, i.e., we restrict
attention to sets of rules of the form:

(hy:a1) V-V (b an) — @. (1)

where the h;’s are ground atoms and ¢ is a formula
with free(¢) = {}. For a rule r of form (1), we use
Body(r) to refer to the formula ¢. We use Body. (1) to
denote the set of all atoms that occur only positively
(i.e., within the scope of an even number of negations)
in ¢ and Body_(r) to denote all atoms that occur nega-
tively (in the scope of an odd number of negations). By
bodyy (r) and body_(r) we mean the set of all ground
atoms belonging to the grounding of an atom in, re-
spectively, Bodyy(r) and Body_(r). The set of pairs
{(h1,021),. .., (hn,a,)} will be denoted by head(r). By
head s+(r) we mean the set {h1, ..., hy} of all atoms ap-
pearing in the head of r. Rules of the form (h: 1) « ¢
are called deterministic. We also write such a rule as
h «— .

We now discuss how the definition of the semantics
of CP-logic outlined in the introduction can be adapted
to cope with arbitrary formulas as preconditions. The
main difficulty here lies in the presence of negation. In-
deed, this causes the previously mentioned monotonic-
ity property to be lost, i.e., it will no longer be the case
that if the preconditions to a CP-event are satisfied at
a certain point in time, they are guaranteed to remain
satisfied. As a consequence of this, the order in which
CP-events are executed might matter. Consider, for in-
stance, the following example: {p «— —¢q. ¢.} If the first

Technical Report IfI-06-04

event is executed first, then p will hold; if the second
event is executed first, then p will not. So, negation in-
troduces an ambiguity into the language and this needs
to be resolved. Moreover, to avoid making the language
too cumbersome, we would like to resolve it without
forcing the user to explicitly specify an order in which
events must happen. The most reasonable convention
that can be assumed to solve this problem is that a lit-
eral —r refers to the truth of r after all executable events
that might cause r have been executed. As such, in our
semantics, the simulation of such an event will be de-
layed as long as there are still executable events left
that might cause r.

To ensure that this is indeed possible, we require CP-
theories to be stratified, meaning that there has to ex-
ist a way of assigning to each ground atom p a level
A(p) € N, s.t. for each rule r and h € head (), for all
b € body,(r), A(h) > A(b), while for all b € body_(r),
A(h) > A(b). The level of a rule r is defined as the
minimum of the levels of the atoms in head ¢(r). Now,
by executing CP-events with a lower level first, we can
make sure that, by the time we need to decide whether
a precondition —r of some event holds, all executable
events that might cause r have already been executed.
From now on, we will restrict our attention to CP-
theories which admit such a stratification.

We will now formally define the semantics of a CP-
theory C'. We use the mathematical structure of a prob-
abilistic transition system. This is a tree structure 7, in
which every edge is labeled with a probability. To each
node ¢, we associate a Herbrand interpretation I(c) for
the alphabet of C. Formally, such an interpretation is
simply a set of ground atoms. A node ¢ ezecutes a rule
r of form (1) if ¢ has as its children precisely nodes
€0, Cl,-.-,Cn, Where I(cy) = I(c) and, for all i > 0,
I(¢;) = I(¢) U{h;}; the probability of the edge (c,cp)
is the probability with which none of the h;’s is caused,
ie, 1—> <, ®, and, for i > 0, the probability of
(c,¢;) is a. A rule 7 is ezecutable in a node c if body(r)
holds in I(c) and no ancestor of ¢ already executes r.
A probabilistic transition system 7 runs a CP-theory
C iff:

e For the root r of T, I(r) is {};

e For every node c of 7, either ¢ executes an executable
rule 7, s.t. no executable rule 7’ has a lower level than
that of r, or no rules are executable in ¢ and ¢ is a
leaf;

A system 7 defines a probability distribution over its
leaves: the probability of a leaf ¢ is the product of the
probabilities of all edges in the path from the root to c.
From this, a probability distribution w7 over interpreta-
tions can be derived, by defining the probability w7 (I)
of an interpretation I as the sum of the probabilities of
all leaves ¢ for which I(c) = I.

It can be shown that every system 7 that runs a CP-
theory C defines the same probability distribution, i.e.,
for all such 7 and 7', 77 = w7-. While we do not have
space to present a formal proof of this, the following

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

informal argument should show that, if in a certain node
n there are a number of different rules that might be
executed, it does not matter which one is chosen first.
If some r is executed first, then the existence of the
stratification for C ensures that, for each of the children
n' of n, all other rules r’ that were executable in n are
still executable in n’/, and, in fact, will remain this way
until they are executed. Because every executable rule
must eventually be executed, this shows that in every
branch originating from n, every r’ that was originally
executable in n will actually be executed. Now, let us
consider the sum of the probabilities of all branches
going through n, in which an atom h, with (h,a) €
head(r'), is derived as a result of executing r’. It can
be checked that, because 7 is constructed in such a way
that the sum of the labels of all edges that leave a node
is always equal to 1, this probability will be a times the
sum of the probabilities of all branches going through
n, which is precisely what it would have been if we had
chosen to execute 7’ in n. A formal proof can be found
in (Vennekens et al. 2006).

The formal semantics of a CP-theory C'is now defined
as precisely this unique distribution, which we denote
as mT¢.

Bayesian networks in CP-logic

CP-logic can express the same kind of knowledge as
expressed in a Bayesian network. The semantics of
Bayesian networks (Pearl 1988) states that a proba-
bility distribution is a model of a network with graph
(N, E) iff (1) the conditional probabilities it determines
are the same as the appropriate entries in the various
tables and (23) the value of a node n is probabilistically
independent of the value of all nodes m, s.t. there is no
path from n to m in E, given a value for the parents of
n in E. If a distribution 7 satisfies condition (2) w.r.t.
some binary relation E, we say that 7 is Bayesian w.r.t.
E.

We now investigate whether a similar relation exists
for the semantics ¢ of a CP-theory C. In other words,
we want to answer the question: “When does observ-
ing the truth value of a ground atom p give us direct
information about the truth of some other atom ¢?” By
the word “direct” in this sentence, we mean that this
information is not mediated by some other atom r. It
turns out that this happens in two cases.

e An atom p has a direct causal influence on an atom ¢
if p is a precondition to a CP-event that might cause
q, i.e, if Ir € C,q € heada(r) and p € body(r).
In this case, whether p holds affects whether one of
the CP-events that might cause ¢ is executed and,
therefore, learning the truth of p clearly might affect
the probability of q.

e Atoms p and ¢ are alternatives iff p and ¢ appear in
the head of the same rule, i.e., iff Ir € C : p,q €
heada¢(r) and p # ¢. In this case, p and ¢ are al-
ternative outcomes of the same CP-event. As such,

185

.TU Clausthal
11TH NMR WORKSHOP

186

learning that p holds will decrease the probability

that ¢ holds, and vice versa.

Let us now say that an atom p directly affects an
atom ¢ if one of these conditions holds, i.e., if dr €
C : q € heada(r) and p € body(r) U (head (1) \ {p}).
We have shown in a recent technical report [reference
omitted for anonymity] that the semantics 7o of a CP-
theory is Bayesian w.r.t. this “directly affects”-relation.
From this, a way of representing Bayesian networks in
CP-logic can be derived. We first show how to represent
the following Bayesian network:

Burglary Earthquake

BE|B-E | -BE | -B—E E]02]
A 09 08 | 08 0.1 B 01|

This can be modeled by the following CP-theory.
(bg : 0.1). (eq:0.2).
(al :0.9) «— bgA eq. (al:0.8) < -bg A eq.
(al : 0.8) < bg A —eq. (al:0.1) < =bg A —eq.

Because this network contains only boolean nodes, we
can translate each random variable into a single propo-
sitional symbol. As a result, in the CP-theory, all rules
have just a single atom in their head; in the terminology
defined above, no atoms are alternatives. The structure
of the Bayesian network is now mirrored by the struc-
ture of the rules: the bodies of the rules for earthquake
and burglary are empty, while the rules for alarm have
both burglary and earthquake in their body. As such,
this CP-theory expresses the same probabilistic inde-
pendencies as the Bayesian network.

For nodes with a domain of more than two possible
values, the situation is more complex. Indeed, such
a node no longer corresponds to a single proposition,
but rather to set of propositions. For instance, let us
suppose that the alarm can be in three states: off (f),
on (n), or disabled (d). We would then get rules of the
following form:
(al(n) : 0.8) V (al(f) : 0.1) v (
(al(n) : 0.7) V (al(f) : 0.1) V (al
(al(n) : 0.7) V (al(f) : 0.1) v (

(

al

This principle generalizes to a method of translating
arbitrary networks to CP-logic.

The Role of Causality in CP-logic

In this section, we examine the differences between
Bayesian networks and CP-logic in more detail.

Independent Causes

As already discussed, CP-logic incorporates the same
kind of probabilistic independencies as Bayesian net-
works do. However, the principle of independent cau-
sation also allows a different kind of independence to

be expressed, namely that between different causes for
the same effect. In the introduction, we illustrated this
by considering a number of different causes for HIV
infection. We return to that example in the next sec-
tion, where it will be used to illustrate the fact that
our methodology for representing independent causa-
tion also applies when cyclic causal relations are in-
volved. In this section, we focus on an example con-
taining only acyclic causality:

Example 1. Consider a game of Russian roulette with
two guns, one in the player’s right hand and one in his
left. Each of the guns is loaded with a single bullet.
What is the probability of the player dying?

Firing a gun causes death with probability %. In CP-
logic, we write: (death : §) < fire(Gun).This rule is
all that is needed to model the operation of the guns.
Indeed, if our alphabet also includes constants le ft_gun
and right_gun, then, after grounding, we get the fol-
lowing rules: {(death : §) « fire(left_gun). (death :
%) — fire(right_gun).}. In words, “firing the left gun”
and “firing the right gun” are two independent causes
for death and each has a probability of % of actually
causing death. In a Bayesian network, this relation
would typically be expressed as follows (the numbers
can be computed by applying noisy-or' to the multiset
of the probabilities with which the guns that are fired
each cause death):

Lr =Lr | Lor | —l-r

death | 11/36 | 1/6 | 1/6 | 0

In CP-logic, unlike in Bayesian networks, indepen-
dence between different causal mechanisms is a struc-
tural property, rather than a quantitative one. From
a knowledge representation point of view, there are a
number of different reasons why this is useful. Firstly,
it makes such properties more obvious. Indeed, the fact
that fire(left_gun) and fire(right_gun) are indepen-
dent possible causes of death is clear from the fact that
these atoms do not appear in the body of the same rule
together. Secondly, independence between causes is
more robust to changes in the specification of a problem
than quantitative knowledge usually is. For instance, if
we were to find out that one of the guns has a mechan-
ical defect, making the probability of the bullet being
in front of the hammer not % precisely, but % instead,
then this would not affect the independence between
the two possible causes for death. Thirdly, a large part
of Pearl’s book (Pearl 2000) is concerned with various
manipulations of causal models. These are important,
for instance, to deal with counterfactuals or concepts
such as the “actual cause” of some effect. Typically,
such a manipulation consists of preempting the normal
relation between a node and its parents and replacing it
by an entirely new relation. With the more fine-grained
structure imposed by CP-logic, a number of new, in-
teresting manipulations become possible. For instance,

'The noisy-or maps a multiset S of probabilities to 1 —

[Les(t=p).

Technical Report IfI-06-04

one could now consider the situation that would result
by only inhibiting one of the causal mechanisms that
might cause a particular atom or by adding a new such
causal mechanism. This also improves the elaboration
tolerance of the representation. For instance, if it is
also possible that the player dies of a heart attack, we
can simply include a CP-event “(death : 0.2).”, which
might lead to death without firing any guns. Finally,
like other qualitative properties, knowledge about these
independencies often originates from an expert’s back-
ground knowledge about the domain, instead of being
derived from a dataset. For instance, when performing
parameter learning in a Machine Learning setting, this
is an important consideration.

Cyclic Causal Relations

We now revisit the following example from the intro-
duction:

Example 2. There are two ways of getting infected by
the HIV wvirus. Firstly, there is a probability of 0.01 of
contracting the virus through a blood transfusion. Sec-
ondly, one might get infected by an already infected sex-
ual partner. The probability of an infected person infect-
ing his/her partner is 0.6.

(hiv(X) : 0.6) «— hiv(Y') Aintercourse(X,Y).
(hiv(X) : 0.01) « blood_trans fusion(X).

Because the intercourse-relation is symmetric, this
example leads naturally to cyclic causal relations. Be-
cause of the “no deus ex machina”-principle of CP-logic,
cyclic relations can be modeled in the same way as
acyclic ones. To make the discussion more concrete,
suppose that a and b are the only persons we wish to
consider and that these have intercourse. For simplic-
ity, we ignore the intercourse and blood_transfusion
predicates and simply assume that our grounding pro-
cess knows who have intercourse and who have re-
ceived blood transfusions. The first rule of the CP-
theory will lead to the grounding {(hiv(a) : 0.6) «—
hiv(b). (hiv(d) : 0.6) <« hiv(a).}. Let us examine how
these rules act when part of a larger theory. Firstly,
if these two rules were to constitute the entire theory,
then, because of the “no deus ex machina”-principle,
neither partner would be infected. Now, if partner a un-
dergoes a blood transfusion, the rule “(hiv(a) : 0.01).”
would also appear, adding this as an additional cause
for hiv(a). In this case, a has a non-zero proba-
bility (namely 0.01) of being infected by an external
cause and, therefore, b also has a non-zero probability
(0.01x0.6) of infection. If both a and b undergo a blood
transfusion, then the probability of, for instance, hiv(a)
will be higher still, because there are now two indepen-
dent causes for hiv(a): a could have gotten infected by
a transfusion, but also because b was first infected by a
transfusion and infected a in turn.

This causal loop can be represented in a Bayesian
network by introducing, for every hiv(z) in this loop,
a new node external(x) to represent the event that x

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

has gotten infected by some external (i.e., not part of
the loop) cause. These are then connected as follows:

bloodtrans(b) external(b)
bloodtrans(a) external(a)
Bi(a) | =bi(a) Be(b) [=bi(b)
(@) | 0.01 0 o(b) | 0.01 0
e(a)e(b) | e(a),—e(b) [—e(a)e(b) | —e(a),~e(b)
hiv(a) 1 1 0.6 0
e(a)e(b) | e(a),—e(b) [—e(a)e(b) | —e(a),me(b)
hiv(b) 1 0.6 1 0

The Absence of Causes

Another consequence of the “no deus ex machina’-
principle is that CP-logic does not require cases in
which an effect is not caused to be mentioned at all.
Obviously, this can make representations more com-
pact. This feature is made more powerful by the fact
that CP-theories may contain negation, which allows
the falsity of an atom, i.e., the absence of a cause for this
atom, to act as a cause for other atoms. To illustrate,
we consider the well-known dice game of craps. Sim-
ilar phenomena occur, e.g., when representing inertia
axioms, i.e., rules stating that some property persists
unless these is a cause for it not to.

Example 3. In craps, one keeps on rolling a pair of
dice until one either wins or loses. In the first round,
one immediately wins by rolling 7 or 11 and immediately
loses by rolling 2,3, or 12. If any other number is rolled,
this becomes the player’s “box point”. The game then
continues until either the player wins by rolling the box
point again or loses by rolling 7.

(roll(T+1,2) : 1/36)V-- -V (roll(T+1,12) : 1/36)
— (win(T) V lose(T)).

win(l) « roll(1,7) V roll(1,11).

lose(1) «— roll(1,2) V roll(1,3) Vroll(1,12).

boxpoint(X) « roll(1, X) A ~win(1) A —lose(1).

win(T) «— boxpoint(X) Aroll(T,X) AT > 1.

lose(T) «— roll(T, 7) AT > 1.

(In principle, this CP-theory would lead to an infinite
grounding. While it is possible to define a semantics
for CP-logic that is able to correctly handle such the-
ories, this is beyond the scope of this paper. Because
this issue is orthogonal to the points we want to discuss
here, we simply assume that a certain mazimum num-
ber of throws, i.e., an upper bound for the variable T,
has been fized up front and will be taken into account
when performing the grounding of this theory.)

In this CP-theory, we only specify when the game is
won or lost and use negation to express that, as long as
neither happens, the game carries on. In Bayesian net-
works, there is no real way of ignoring irrelevant cases.
Instead, there will be a probability of zero in the con-
ditional probability table. For this game, we could use

187

.TU Clausthal
11TH NMR WORKSHOP

188

variables roll;, representing the outcome of a certain
roll (with domain 2 through 12), and bp representing
the box point (with possible values 4,5,6,7,8,9 or 10),
that influence the state s; of the game at time ¢ as fol-
lows:

(bp, rolly)
St (47 2) (47 3) (47 4) (47 5) (47 6) (47 7)
win 0 0 1 0 0 0
lose 0 0 0 0 0 1

Logic Programs with Annotated
Disjunctions

Logic Programs with Annotated Disjunctions (LPADs)
are a probabilistic logic programming language, that
was conceived in (Vennekens, Verbaeten, & Bruynooghe
2004) as a straightforward extension of logic programs
with probability. In this section, we relate LPADs to
CP-logic. This achieves the following goals:

e We can clarify the position of CP-logic among related
work, such as Poole’s Independent Choice Logic and
McCain and Turner’s causal theories.

e We gain additional insight into a number of prob-
abilistic logic programming languages, by showing
that theories in these languages can be seen as de-
scriptions of causal processes. Moreover, as we will
discuss in the next section, this also leads to an inter-
esting way of looking at normal and disjunctive logic
programs.

e Probabilistic logic programming languages are usu-
ally motivated in a bottom-up way, i.e., along the fol-
lowing lines: “Logic programs are a good way of rep-
resenting knowledge about relational domains, prob-
ability is a good way of representing knowledge about
uncertainty; therefore, a combination of both should
be useful for modeling uncertainty in a relational do-
main.” Our results provide an additional top-down
motivation, by showing that these languages are a
natural way of representing causal processes.

We first recall the formal definition of LPADs from
(Vennekens, Verbaeten, & Bruynooghe 2004). An
LPAD is a set of rules (hy : a1) V -+ V (hy : ap) <
Iy A+~ Ny, where the h; are atoms and the [; literals.
As such, LPADs are a syntactic sublogic of CP-logic.
However, their semantics is defined quite differently.
Every rule of the above form represents a probabil-
ity distribution over the set of logic programming rules
{“hi —lu N--- N1, 1 <i<n}. From these distribu-
tions, a probability distribution over logic programs is
then derived. To formally define this distribution, we
introduce the following concept of a selection. In this
definition, we use the notation head*(r) to denote the
set of pairs head(r) U{(0,1 = 3" .0)enead(r) @)}, Where
() represents the possibility that none of the h;’s are
caused by the rule r.

Definition 1 (C-selection). Let C' be an LPAD. A
C-selection is a function o from C to |J,co head*(r),

such that for all r € C, o(r) € head*(r). By o"(r)
and 0(r) we denote, respectively, the first and second
element of the pair o(r).

The probability 7(o) of a selection o is now defined
as [[,cc0“(r). By C7 we denote the logic program
{“c"(r) « body(r)’| r € C and o"(r) # 0}. Such a
C7 is called an instance of C. These instances are in-
terpreted according to the well-founded model seman-
tics (Van Gelder, Ross, & Schlipf 1991). In general,
the well-founded model wfm(P) of a program P is a
pair (I, J) of interpretations, where I contains all atoms
that are certainly true and J contains atoms that might
possibly be true. If I = J, the model is said to be two-
valued. Intuitively, if wfm(P) is two-valued, then the
truth of all atoms can be decided, i.e., everything that
is not false can be derived. In the semantics of LPADs,
we want to ensure that all uncertainty is expressed by
means of the annotated disjunctions. In other words,
given a specific selection, there should no longer be any
uncertainty. We impose the following criterion.

Definition 2 (Soundness). An LPAD C is sound
iff all instances of C have a two-valued well-founded
model.

For such LPADs, the following semantics can now be
defined.

Definition 3 (Instance based semantics). Let
C be a sound LPAD. For an interpretation I, we de-
note by W(I) the set of all C-selections o for which
wfm(C?) = (I,I). The instance based semantics pc
of C' is the probability distribution on interpretations,
that assigns to each I the probability }°_ .y 7(0).

Now, the key result of this section is that this instance
based semantics coincides with the semantics defined
previously for CP-logic.

Theorem 1. Let C be a stratified CP-theory. Then C
is also a sound LPAD and, moreover, for each interpre-
tation J, pc(J) = me(J).

We remark that it is not the case that every sound
LPAD is also a valid CP-theory. In other words, there
are some sound LPADs that do not seem to represent
a causal process.

In (Vennekens, Verbaeten, & Bruynooghe 2004),
LPADs are compared to a number of different prob-
abilistic logic programming formalisms. For instance,
it was shown that this logic is very closely related
to Poole’s Independent Choice Logic. Because of the
above theorem, these comparisons carry over to CP-
logic.

CP-logic and Logic Programming

In this section, we examine some consequences of the
results of the previous section from a logic programming
point-of-view.

Technical Report IfI-06-04

Disjunctive logic programs

In probabilistic modeling, it is often useful to consider
the structure of a theory separately from its probabilis-
tic parameters. Indeed, for instance, in machine learn-
ing, the problems of structure learning and parameter
learning are two very different tasks. If we consider
only the structure of a CP-theory, then, syntactically
speaking, we end up with a disjunctive logic program?,
i.e., aset of rules hy V- --Vh, < ¢. Let us now consider
the class of all CP-theories C' that result from adding
probabilities «; to each rule, in such a way that, for
every rule, > «; = 1. Every probability distribution
mc defined by such a C induces a possible world se-
mantics, namely the set of interpretations I for which
mc (1) > 0. This set of possible worlds does not depend
on the precise values of the ay, i.e., it is the same for all
CP-theories C' in this class. As such, it captures pre-
cisely the structural information in such a CP-theory.

From the point of view of disjunctive logic program-
ming, this set of possible worlds can be seen as an al-
ternative semantics for such a program. Under this se-
mantics, the intuitive reading of a rule should be: “if
¢ holds, there will be a non-deterministic event, that
causes precisely one of hi,..., h,.” Clearly, this is
a different informal reading than is used in the stan-
dard stable model semantics for disjunctive programs
(Przymusinski 1991). Indeed, under our reading, a rule
corresponds to a causal event, whereas, under the sta-
ble model reading, it is supposed to describe an aspect
of the reasoning behaviour of a rational agent. This
difference also manifests itself in the resulting formal
semantics. Consider, for instance, the disjunctive pro-
gram {pV q. p.}. To us, this program describes a set of
two non-deterministic events: One event causes either
p or q and another event always causes p. This might,
for instance, correspond to the following story: “Some-
one is going to shoot a gun at Bob and this will either
cause Bob’s death or a hole in the wall behind Bob.
Bob has also just ingested a lethal dose of poison and
this is going to cause Bob’s death.” Our formal seman-
tics reflects this interpretation, by considering both the
interpretation {p} (Bob is dead and there is no hole in
the wall) and {p,q} (Bob is dead and there is a hole
in the wall) to be possible. Under the stable model se-
mantics, these rules describe beliefs of a rational agent:
The agent believes either p or ¢ and the agents believes
g. This interpretation might correspond to the follow-
ing story: “I know that someone was going to shoot a
gun at Bob, which would either result in Bob’s death
or in a hole in the wall. Moreover, I also learn that
Bob is dead.” In this case, I would have no reason to
believe there might be a hole in the wall. Indeed, the
only stable model is {p}.

CP-logic treats disjunction in a fundamentally differ-
ent way than the stable semantics. Interestingly, the

2In most of the literature, the bodies of the rules of a
disjunctive logic program must be conjunctions of literals.
For our purposes, however, this restriction is not relevant.

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

possible model semantics (Sakama & Inoue 1994) for
disjunctive programs is very similar to our treatment.
Indeed, it consists of the stable models of instances of a
program. Because, as shown in the previous section, the
semantics of CP-logic considers the well-founded mod-
els of instances, these two semantics are very closely
related. Indeed, for a large class of programs, including
all stratified ones, they coincide completely.

Normal logic programs

A normal logic program P is a set of rules h « ¢, with
h an atom and ¢ a formula. If P is stratified, then, at
least syntactically, it is also a CP-theory. Its semantics
mp assigns a probability of 1 to a single interpretation
and 0 to all other interpretations. Moreover, the results
from the previous section tell us that the interpretation
with probability 1 will be precisely the well-founded
model of P. As such, a logic program under the well-
founded semantics can be viewed as a description of
causal information about a deterministic process. Con-
cretely, we can read a rule h <« ¢ as: “if ¢ holds, there
will be a deterministic event, that causes h.”

This observation exposes an interesting connection
between logic programming under the well-founded se-
mantics and causality. Such a connection helps to
explain, for instance, the usefulness of this semantics
in dealing with recursive ramifications when reason-
ing about actions (Denecker, Theseider-Dupré, & Bel-
leghem 1998). Moreover, there is also an interesting link
here to the language of ID-logic (Denecker & Ternovska
2004). This is an extension of classical logic, that uses
logic programs under the well-founded semantics to rep-
resent inductive definitions. Inductive definitions are a
well-known mathematical construct, where a concept is
defined in terms of itself. In mathematical texts, such
a definition should be accompanied by a well-founded
order, over which the induction happens, e.g., the well-
known inductive definition of the satisfaction relation =
of classical logic is a definition over the length of formu-
las. One of the key observations that underlie ID-logic
is the fact that if such an order is not explicitly given,
one can still be derived from the rule-based structure
of a definition. This derived order is precisely the order
imposed by the well-founded semantics. There is an
obvious parallel here to the role of time in CP-logic: a
complete description of a process should specify when
events happen; however, if this information is not ex-
plicitly given, the order of events can still be derived
from the rule-based structure of a CP-theory. It is in-
teresting that the same mathematical construct of the
well-founded semantics can be used to derive both the
well-founded order for an inductive definition and the
temporal order for a set of CP-events. This observation
seems to imply that an inductive definition is nothing
more than a representation of a causal process, that
takes place in the domain of mathematical objects.

189

.TU Clausthal
11TH NMR WORKSHOP

190

McCain and Turner’s causal theories

In this section, we compare the treatment of causality in
CP-logic to McCain and Turner’s causal theories (Mc-
Cain & Turner 1996). A causal theory is a set of rules
of the form ¢ < 1, where ¢ and v are propositional
formulas. The semantics of such a theory T is defined
as follows. An interpretation I is a model of T iff I
is the unique classical model of the theory T! = {¢ |
there exists a rule ¢ < ¢ in T such that I | ¢}.
This semantics is based on the principle of universal
causation, which states that: “every fact that obtains
is caused” (McCain & Turner 1996). We now compare
this language to deterministic CP-logic, i.e., CP-logic in
which every CP-event causes one atom with probabil-
ity 1. The most obvious difference concerns the funda-
mental knowledge representation methodology of these
logics. In CP-logic, a proposition represents a property
that is false unless there is a cause for it to be true.
For McCain and Turner, however, truth and falsity are
completely symmetric, i.e., not only is a property not
true unless there is a cause for it to be true, but a prop-
erty is also not false unless there is a cause for it to be
false. It is up to the user to make sure there is always
a cause for either falsity or truth. For instance, the
CP-theory {p < —q} has {p} as its model, while the
causal theory {p < —¢} has no models, because neither
q nor —q is caused. The CP-logic view that falsity is
the natural state of an atom can be simulated in causal
theories, by adding a rule —p < —p for every atom p.
Essentially, this says that —p is in itself reason enough
for =p. Let C’ be the result of adding such rules to some
original CP-theory C'. As shown in (McCain 1997), the
models of C’ are all interpretations I that consist of all
heads of rules r € C, for which I |= body(r). In logic
programming terms, these are the supported models of
C, i.e., fixpoints of the immediate consequence operator
Tc.

The difference such a CP-theory C' and its corre-
sponding causal theory C' is, therefore, precisely the
difference between the well-founded model semantics
and supported model semantics. It is well-known that
this lies in the treatment of loops. In our context, it can
be traced back to the fundamental principles of these
logics. McCain and Turner’s principle of “universal cau-
sation” states that everything that holds must have a
cause. This is a weaker principle than our principle of
no deus ex machina effects, which states that every true
proposition must have a cause and that something can-
not cause itself. Indeed, the CP-theory {p < p} has {}
as its model, whereas the causal theory {p <= p} has {p}
as its model. In other words, in McCain and Turner’s
theories, it can be stated that a certain atom might be
true “on its own”, i.e., without any additional causal
explanation being required. This can be useful to in-
corporate exogenous actions into a theory, i.e., actions
that can simply happen, without any part of the model
describing why they happen. These currently cannot
be represented in CP-logic. On the other hand, Mc-
Cain and Turner’s approach to self-causation does not

allow them to directly represent cyclic causal relations
of the kind appearing in our HIV example.

Related work

The correspondence to LPADs establishes a relation
between CP-logic and probabilistic logic programming
formalisms. In (Vennekens & Verbaeten 2003), a de-
tailed comparison is made between LPADs and a num-
ber of such approaches. At the formal level, these com-
parisons carry over to CP-logic. Here, we briefly discuss
some of these formalisms, with a focus on the causal in-
terpretation of CP-logic.

It has been shown in (Vennekens & Verbaeten 2003)
that LPADs are very closely to the Independent Choice
Logic (ICL) (Poole 1997). This language is based on
abductive logic programs under the stable model se-
mantics and was developed within the framework of
decision theory. In (Finzi & Lukasiewicz 2003), a con-
nection was made between ICL and Pearl’s structural
model approach to causality. One of the motivations
for studying this relation is that it allows concepts such
as “actual cause” and “explanation”, that have been
investigated by Halpern and Pearl in the context of
structural models (Halpern & Pearl 2001), to be used in
ICL. By linking ICL to CP-logic, we show that ICL can
also be seen as a logic that incorporates our more fine-
grained concept of causality, based on causal events.
This raises the question of whether there are meaning-
ful adaptations of Halpern and Pearl’s definitions that
can take into account this additional structure. This is
an interesting avenue for future research.

Bayesian Logic Programs (BLPs) (Kersting & Raedt
2000) and Relational Bayesian Networks (RBNs)
(Jaeger 1997) are two formalisms that aim at lifting
the propositional formalism of Bayesian networks to
a first-order representation. Both these language al-
low arbitrary functions to be used to compute cer-
tain probabilities. By using a noisy-or, certain prop-
erties of CP-logic can be simulated. For instance, in
a Relational Bayesian Network, one would model the
Russian roulette example by the probability formula
P(death) = noisy-or({1/6- fire(z) | x}). However, nei-
ther language offers a way of dealing with cyclic causal
relations, other than an encoding similar to that for
Bayesian networks.

Baral et al. introduced P-log (Baral, Gelfond, &
Rushton 2004), a probabilistic extension of A-prolog.
This language seems to be quite similar to CP-logic,
even though it is somewhat broader in scope, being
aimed at combining probabilistic and logical reason-
ing, rather than simply representing a probability dis-
tribution. As far as the representation of probability
knowledge is concerned, P-log appears to be closer to
Bayesian networks in the sense that it does not share
CP-logic’s focus on independent causation; instead, in
every situation that might arise, there has to be pre-
cisely one statement that defines the probability of a
certain effect in terms of all its possible causes. An

Technical Report IfI-06-04

interesting feature of P-log is that it allows random se-
lections from a dynamic range of alternatives, which is
more flexible than the static enumerations of possible
outcomes used in CP-logic.

Conclusions

We have investigated the role of causality in model-
ing probabilistic processes. To this end, we introduced
the concept of a CP-event as a formal representation
of the intuitive notion of a causal event. We presented
a semantics for the language consisting of sets of such
CP-events. This is based on two fundamental princi-
ples, that govern the interaction between different CP-
events. The first is the principle of independent cau-
sation, which establishes the basic modularity of our
causal view of the world. The second principle, that of
no deus ex machina effects, captures the intuition that
nothing happens without a cause, even in the presence
of cyclic causal relations.

The direct representation of causal events in CP-logic
turns out to have a number of interesting properties
when compared to a Bayesian network style represen-
tation in terms of conditional probability. In particu-
lar, a new kind of independence, namely that between
different causes for the same effect, emerges as a struc-
tural property, improving the elaboration tolerance of
the representation. Moreover, cyclic causal relations
can also be represented in a natural way and do not
require any special treatment.

We have related CP-logic to a class of existing prob-
abilistic logic programming approaches. This shows
that these languages can also be seen as representations
of causal events. Moreover, this also shows that CP-
logic induces a possible world semantics for disjunctive
logic programs, that is quite different from the stan-
dard stable model semantics, but very similar to the
possible model semantics. Another consequence of this
results is that normal logic programs under the well-
founded semantics can be seen as a logic of deterministic
causality, which points towards an interesting relation
between causality and inductive definitions. We have
compared this way of handling causality to the McCain
and Turner’s causal theories.

References
Baral, C.; Gelfond, M.; and Rushton, N. 2004. Prob-
abilistic reasoning with answer sets. In Proc. Logic
Programming and Non Monotonic Reasoning, LP-
NMR’04, 21-33. Springer-Verlag.
Denecker, M., and Ternovska, E. 2004. A logic of
non-monotone inductive definitions and its modular-
ity properties. In Proc. 7th LPNMR, volume 2923 of
LNCS.
Denecker, M.; Theseider-Dupré, D.; and Belleghem,
K. V. 1998. An inductive definition approach to ram-
ifications. Linkdping EACIS 3(7):1-43.
Finzi, A., and Lukasiewicz, T. 2003. Structure-based
causes and explanations in the independent choice

DEPARTMENT OF INFORMATICS

Theory of NMR and Uncertainty

logic. In Proc. Uncertainty in Artificial Intelligence
(UAI).

Halpern, J., and Pearl, J. 2001. Causes and explana-
tions: A structural model approach — part I: Causes.
In Proc. Uncertainty in Artificial Intelligence (UAI).

Jaeger, M. 1997. Relational bayesian networks. In Pro-
ceedings of the Thirteenth Conference on Uncertainty
in Artificial Intelligence (UAI-97).

Kersting, K., and Raedt, L. D. 2000. Bayesian logic
programs. In Cussens, J., and Frisch, A., eds., Proceed-
ings of the Work-in-Progress Track at the 10th Inter-
national Conference on Inductive Logic Programming,
138-155.

McCain, N., and Turner, H. 1996. Causal theories of
action and change. In Proc. 15th AAAI/8th TAAL

McCain, N. 1997. Causality in Commonsense Rea-
soning about Actions. Ph.D. Dissertation, University
of Texas at Austin.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems : Networks of Plausible Inference. Morgan
Kaufmann.

Pearl, J. 2000. Causality: Models, Reasoning, and
Inference. Cambridge University Press.

Poole, D. 1997. The Independent Choice Logic for
modelling multiple agents under uncertainty. Artificial
Intelligence 94(1-2):7-56.

Przymusinski, T. C. 1991. Stable semantics for
disjunctive programs. New Generation Computing
3/4:401-424.

Sakama, C., and Inoue, K. 1994. An alternative ap-
proach to the semantics of disjunctive logic programs
and deductive databases. Journal of automated rea-
soning 13(1):145-172.

Van Gelder, A.; Ross, K.; and Schlipf, J. 1991. The
Well-Founded Semantics for General Logic Programs.
Journal of the ACM 38(3):620-650.

Vennekens, J., and Verbaeten, S. 2003. Logic pro-
grams with annotated disjunctions. Technical Report
CW386, K.U. Leuven.

Vennekens, J.; Denecker, M.; ; and Bruynoogh, M.
2006. On the equivalence of Logic Programs with An-
notated Disjunctions and CP-logic. Technical report,
K.U. Leuven.

Vennekens, J.; Verbaeten, S.; and Bruynooghe, M.
2004. Logic programs with annotated disjunctions. In
Proc. 20th ICLP, volume 3132 of LNCS. Springer.

191

.TU Clausthal
11TH NMR WORKSHOP

192 Technical Report IfI-06-04

Theory of NMR and Uncertainty

2.9 Model and experimental study of causality ascriptions

Model and experimental studies of causality ascriptions

Jean-Francois Bonnefon
LTC-CNRS
5 allées Antonio Machado
31058 Toulouse Cedex 9, France
bonnefon @univ-tlse2.fr

Abstract

A model is defined that predicts an agent’s ascriptions of
causality (and related notions of facilitation and justification)
between two events in a chain, based on background knowl-
edge about the normal course of the world. Background
knowledge is represented by nonmonotonic consequence re-
lations. This enables the model to handle situations of poor
information, where background knowledge is not accurate
enough to be represented in, e.g., structural equations. Tenta-
tive properties of causality ascriptions are explored, i.e., pref-
erence for abnormal factors, transitivity, coherence with log-
ical entailment, and stability with respect to disjunction and
conjunction. Empirical data are reported to support the psy-
chological plausibility of our basic definitions.

INTRODUCTION

Models of causal ascriptions crucially depend on the choice
of an underlying representation for the causality-ascribing
agent’s knowledge. Unlike standard diagnosis problems
(wherein an unobserved cause must be inferred from ob-
served events and known causal links), causality ascription
is a problem of describing as ‘causal’ the link between two
observed events in a sequence. The first step in modeling
causal ascription is to define causality in the language cho-
sen for the underlying representation of knowledge. In this
article, we define and discuss a model of causal ascription
that represents knowledge by means of nonmonotonic con-
sequence relations.! Indeed, agents often must cope with
poor knowledge about the world, under the form of default
rules. Clearly, this type of background knowledge is less
accurate than, e.g., structural equations. It is nevertheless
appropriate to predict causal ascriptions in situations of re-
stricted knowledge. We first presents the logical language
we will use to represent background knowledge. We then
define our main notions of causality and facilitation ascrip-
tions. Empirical data are reported to support the distinction
between these two notions. Next, we establish some formal
properties of the model. We then distinguish the notion of
epistemic justification from that of causality. Finally, we re-
late our model to other works on causality in Al

This model was advocated in a recent workshop paper (Dubois

& Prade 2005). The present paper is a slightly expanded version of
(Bonnefon et al. 2006)

DEPARTMENT OF INFORMATICS

Rui Da Silva Neves

DSVP

5 allées Antonio Machado
31058 Toulouse Cedex 9, France
neves @univ-tlse2.fr

Didier Dubois and Henri Prade
IRIT-CNRS
118 Route de Narbonne
31062 Toulouse Cedex, France
{dubois,prade } @irit.fr

MODELING BACKGROUND
KNOWLEDGE

The agent is supposed to have observed or learned of a se-
quence of events, e.g.: =B, A;, B,+1. This expresses that B
was false at time 7, when A took place, and that B became
true afterwards (¢ + 1 denotes a time point after ¢). There is
no uncertainty about these events.

Besides, the agent maintains a knowledge-base made of
conditional statements of the form ‘in context C, if A takes
place then B is generally true afterwards’, or ‘in context C,
B is generally true’. These will be denoted by A;,AC; ~ By41,
and by C, i~ B,, respectively. (Time indices will be omitted
when there is no risk of confusion.) The conditional beliefs
of an agent with respect to B when an action A takes place
or not in context C can take three forms: (i) If A takes place
B is generally true afterwards: A; A C; | Byyq; (ii) If A takes
place B is generally false afterwards: A; A C; b —Byy1; (iil)
If A takes place, one cannot say whether B is generally true
or false afterwards: A, A C, It By+1 and A; A C, [t =Byy1. 2

We assume that the nonmonotonic consequence relation
b satisfies the requirements of ‘System P’ (Kraus, Lehmann,
& Magidor 1990); namely, |~ is reflexive and the following
postulates and characteristic properties hold (| denotes clas-
sical logical entailment):

Left Equivalence ErbGandE=F imply FrG
Right Weakening Ep Fand F G imply ErG

AND ERFandERG imply ERFAG

OR ErGand FG imply EVFRrG

Cautious Monotony ErFandEMG imply EANFRFG
Cut ErFandEAF KRG imply ErG

In addition, we assume [t to obey the property
of Rational Monotony, a strong version of Cautious
Monotony(Lehmann & Magidor 1992):

Rational Monotony EWf-FandEFG imply EANFRFG

Empirical studies repeatedly demonstrated (Benferhat,
Bonnefon, & Da Silva Neves 2004; 2005; Da Silva Neves,

ZNote that }¢ can be understood in two different ways: Either
A; AC; it By just means that A; A C; By, is not deducible from
the agent’s knowledge base, or it means that the agent really knows
it is impossible to say that A; A C; | By (this requires that the
agent knows everything that generally holds concerning B when
A A C is true). However, this difference is not crucial to our present

purpose.

193

.TU Clausthal
11TH NMR WORKSHOP

Bonnefon, & Raufaste 2002; Ford 2004; Pfeifer & Kleiter
2005) that System P and Rational Monotony provide a psy-
chologically plausible representation of background knowl-
edge and default inference. Arguments for using nonmono-
tonic logics in modeling causal reasoning were also dis-
cussed in the cognitive science literature (Shoham 1990).

ASCRIBING CAUSALITY OR
FACILITATION

In the following definitions, A, B, C, and F are either re-
ported actions or statements describing states of affairs, even
though notations do not discriminate between them, since
the distinction does not yet play a crucial role in the model.
When nothing takes place, the persistence of the truth status
of statements is assumed in the normal course of things, i.e.,
B; b Byy1 and =B; | =By

Assume that in a given context C, the occurrence of event
B is known to be exceptional (i.e., C b —B). Assume now
that F and A are such that F A C £ =B on the one hand,
and A A F A C | B on the other hand; we will say that
in context C, A together with F are perceived as the cause
of B (denoted C : A A F =, B), while F alone is merely
perceived to have facilitated the occurrence of B (denoted
C:F =fa B).

Definition 1 (Facilitation ascription). An agent that, in
context C, learns of the sequence =B, , F;, B.1 will judge
that C : F =g, B if it believes that C |~ —B, and that both
FACW-Band FAC I B.

Definition 2 (Causality ascription). An agent that, in con-
text C, learns of the sequence =B, , A;, B+1 will judge that
C: A =, Bifit believes that C ~ =B, and AN C ~ B.

Example 1 (Driving while intoxicated). When driving, one
has generally no accident, Drive |~ —-Accident. This is no
longer true when driving while drunk, which is not as safe,
Drive A Drunk |+ —Accident); moreover, fast driving while
drunk will normally lead to an accident, Drive N Fast A
Drunk |~ Accident. Suppose now that an accident took place
after the driver drove fast while being drunk. Fast A Drunk
will be perceived as the cause of the accident, while Drunk
will only be judged as having facilitated the accident.

Of course, in the above definition A can stand for any
compound reported fact such as A’ A A”. Here, C —B,
FACW —-B,and A A C ~ B must be understood as pieces
of default knowledge used by the agent to interpret the chain
of reported facts —B; (in context C), A;, B:.1, together with
the persistence law =B, A C |~ =B, (which can be deduced
from C —B,; and =B, |~ —B;;;). In such a case, A; may
indeed appear to the agent as being a cause for the change
from =B, to B,,1, since C —-B; and A; A C B, entail
A; AN=B, AC} By

Note that Def. 1 is weaker than saying F ‘prevents’ —B
from persisting: ¢ does not allow the jump from ‘not having
=B’ to ‘B’. In Def. 2, the fact that B is exceptional in context
C precludes the possibility for C to be the cause of B — but
not the possibility that B = C, i.e., that C is a necessary
condition of B. Thus, context can be a necessary condition
of B without being perceived as its cause.

194

An interesting situation arises when an agent only knows
that C b =B and F A C | —B, and learns of the sequence
of events =B, (in context C), F;, B;;1. Although this sit-
uation should lead the agent to judge that C : F; =¢, By,
it may be tempting to judge that C : F;, =, By, as long
as no other potential cause reportedly took place. Another
interesting situation arises when, in context C, an agent
learns of the sequence —B;, A;, and B,,, while it believes
that =B, A C + —B;;, and that A, A C b —B;;. Then
the agent cannot consider that C : A; =, B:+1, and it may
suspect some fact went unreported: finding about it would
amount to a diagnosis problem.

When an agent believes that C =Band AAC ¢ =B, and
learns of the sequence of events —B,, A,, and =B, |, the agent
would conclude that action A; failed to produce its normal
effect, for unknown reasons.

According to (von Wright 1963), an action caused p to be
true if and only if either:

e p was false before the action, and had the action not been
taken, p would not have become true, or

e the action maintains p true against the normal course of
things, thus preventing p from becoming false.

The first situation straightforwardly relates to our defini-
tion. The second situation can also be represented in our set-
