
Proceedings of the 11th Workshop on
Nonmonotonic Reasoning
Jürgen Dix & Anthony Hunter

IfI Technical Report Series IfI-06-04

Impressum

Publisher: Institut für Informatik, Technische Universität Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jürgen Dix
Technical editor: Wojciech Jamroga
Technical editor of this issue: Tristan Marc Behrens
Contact: jamroga@in.tu-clausthal.de

URL: http://www.in.tu-clausthal.de/forschung/technical-reports/

ISSN: 1860-8477

The IfI Review Board

Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelligence)
Prof. Dr. Klaus Ecker (Applied Computer Science)
Prof. Dr. Barbara Hammer (Theoretical Foundations of Computer Science)
Prof. Dr. Kai Hormann (Computer Graphics)
Prof. Dr. Gerhard R. Joubert (Practical Computer Science)
Prof. Dr. Ingbert Kupka (Theoretical Computer Science)
Prof. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jörg Müller (Agent Systems)
Dr. Frank Padberg (Software Engineering)
Prof. Dr.-Ing. Dr. habil. Harald Richter (Technical Computer Science)
Prof. Dr. Gabriel Zachmann (Computer Graphics)

Proceedings of the 11th Workshop on Nonmonotonic
Reasoning

Jürgen Dix & Anthony Hunter

Clausthal University of Technology and University College London

Abstract

These are the proceedings of the 11th Nonmonotonic Reasoning Workshop. The
aim of this series http://www.kr.org/NMR/ is to bring together active re-
searchers in the broad area of nonmonotonic reasoning, including belief revision,
reasoning about actions, planning, logic programming, argumentation, causality,
probabilistic and possibilistic approaches to KR, and other related topics.
As part of the program of the 11th workshop, we have assessed the status of the
field and discussed issues such as: Significant recent achievements in the theory
and automation of NMR; Critical short and long term goals for NMR; Emerging
new research directions in NMR; Practical applications of NMR; Significance of
NMR to knowledge representation and AI in general.

1

http://www.kr.org/NMR/

11TH NMR WORKSHOP

Preface 5

1 Answer Set Programming 7
1.1 Modular Equivalence for Normal Logic Programs 10
1.2 A Tool for Advanced Correspondence Checking in Answer-Set Pro-

gramming . 20
1.3 On Probing and Multi-Threading in Platypus 30
1.4 Towards Efficient Evaluation of HEX-Programs 40
1.5 Tableaux Calculi for Answer Set Programming 48
1.6 Approaching the Core of Unfounded Sets 58
1.7 Elementary Sets for Logic Programs 68
1.8 Debugging inconsistent answer set programs 77
1.9 Forgetting and Conflict Resolving in Disjunctive Logic Programming . 85
1.10 Analysing the Structure of Definitions in ID-logic 94
1.11 Well-Founded semantics for Semi-Normal Extended Logic Programs . . 103

2 Theory of NMR and Uncertainty 109
2.1 Three views on the revision of epistemic states 114
2.2 A revision-based approach for handling inconsistency in description

logics . 124
2.3 Merging stratified knowledge bases under constraints 134
2.4 Merging Optimistic and Pessimistic Preferences 144
2.5 Distance-Based Semantics for Multiple-Valued Logics 153
2.6 On Compatibility and Forward Chaining Normality 163
2.7 Incomplete knowledge in hybrid probabilistic logic programs 173
2.8 Extending the role of causality in probabilistic modeling 183
2.9 Model and experimental study of causality ascriptions 193
2.10 Decidability of a Conditional-probability Logic with Non-standard Val-

ued Probabilities . 201
2.11 About the computation of forgetting symbols and literals 209
2.12 Handling (un)awareness and related issues in possibilistic logic: A pre-

liminary discussion . 219
2.13 On the Computation of Warranted Arguments within a Possibilistic

Logic Framework with Fuzzy Unification 227
2.14 Preference reasoning for argumentation: Non-monotonicity and algo-

rithms . 237

3 NMR Systems and Applications 245
3.1 DR-Prolog: A System for Reasoning with Rules and Ontologies on the

Semantic Web . 248
3.2 An Application of Answer Set Programming: Superoptimisation A Pre-

liminary Report . 258
3.3 COBA 2.0: A Consistency-Based Belief Change System 267
3.4 Modelling biological networks by action languages via answer set pro-

gramming . 275
3.5 A Non-Monotonic Reasoning System for RDF Metadata 285
3.6 Relating Defeasible Logic to the Well-Founded Semantics for Normal

Logic Programs . 295
3.7 ProLogICA: a practical system for Abductive Logic Programming . . . 304

2 Technical Report IfI-06-04

4 Action and Change 315
4.1 Model Checking Meets Theorem Proving 317
4.2 Designing a FLUX Agent for the Dynamic Wumpus World 326
4.3 A Semantics for ADL as Progression in the Situation Calculus 334
4.4 Planning ramifications: When ramifications are the norm, not the ’prob-

lem’ . 343
4.5 Resolving Conflicts in Action Descriptions 353
4.6 An Extended Query Language for Action Languages 362

5 Argumentation, Dialogue, and Decision Making 371
5.1 On Formalising Dialog Systems for Argumentation in Event Calculus . 374
5.2 Approximate Arguments for Efficiency in Logical Argumentation . . . 383
5.3 On Complexity of DeLP through Game Semantics 390
5.4 An Argumentation Framework for Concept Learning 400
5.5 An Abstract Model for Computing Warrant in Skeptical Argumentation

Frameworks . 409
5.6 Managing Deceitful Arguments with X-logics 418
5.7 Comparing Decisions in an Argumentation-based Setting 426
5.8 Defeasible Reasoning about Beliefs and Desires 433
5.9 Refining SCC Decomposition in Argumentation Semantics: A First In-

vestigation . 442

6 Belief Change and Updates 451
6.1 About time, revision and update . 455
6.2 An axiomatic characterization of ensconcement-based contraction . . . 465
6.3 Elaboraing domain descriptions . 472
6.4 Merging Rules . 482
6.5 A reversible framework for propositional bases merging 490
6.6 Mutual Enrichment for Agents Through Nested Belief Change 498
6.7 Getting Possibilities from the Impossible 505
6.8 Rethinking Semantics of Dynamic Logic Programming 515

DEPARTMENT OF INFORMATICS 3

11TH NMR WORKSHOP

4 Technical Report IfI-06-04

Preface

Preface
This informal proceedings is for the Eleventh International Workshop on Non-Monotonic
Reasoning. Its aim is to bring together active researchers in the broad area of nonmono-
tonic reasoning, including belief revision, reasoning about actions, planning, logic pro-
gramming, argumentation, causality, probabilistic and possibilistic approaches to KR,
and other related topics.

As part of the program we will be considering the status of the field and discussing
issues such as: Significant recent achievements in the theory and automation of NMR;
Critical short and long term goals for NMR; Emerging new research directions in NMR;
Practical applications of NMR; Significance of NMR to knowledge representation and
AI in general.

The workshop programme is chaired by Jürgen Dix and Anthony Hunter, and the
programme is composed of the following sessions (with session chairs).

1. Answer Set Programming (Ilkka Niemela and Mirek Truszczynski),

2. Theory of NMR and Uncertainty (Salem Benferhat and Gabriele Kern-Isberner),

3. NMR Systems and Applications (Jim Delgrande and Torsten Schaub),

4. Action and Change (Antonis Kakas and Gerhard Lakemeyer),

5. Belief Change and Updates (Andreas Herzig and Maurice Pagnucco),

6. Argumentation, Dialogue, and Decision Making (Leila Amgoud and Guillermo
Simari).

Authors have been invited to submit papers directly to any of the above sessions, and
all papers have been reviewed by two or three experts in the field. The programme chairs
are very grateful to the session chairs for organizing each session, and for arranging
the reviewing of the submissions. The programme chairs are also very grateful to the
reviewers for their hard work in assessing the submissions and for providing excellent
feedback to the authors.

We would also like to thank Mirek Truszczynski for his financial support for the
workshop.

Our special thanks go to Tristan Marc Behrens, who put these Proceedings together.
This turned out to be an enormous effort and we appreciate his work very much.

May 2006 Jürgen Dix (Germany)
dix@tu-clausthal.de

Anthony Hunter (United Kingdom)
a.hunter@cs.ucl.ac.uk

DEPARTMENT OF INFORMATICS 5

dix@tu-clausthal.de
a.hunter@cs.ucl.ac.uk

11TH NMR WORKSHOP

6 Technical Report IfI-06-04

Answer Set Programming

1 Answer Set Programming

The papers in this collection were presented at the Special Session on Answer Set
Programming. This one-day event was a part of the 11th Non-monotonic Reasoning
Workshop (NMR 2006) held in collocation with the 10th International Conference on
Principles of Knowledge Representation and Reasoning (KR 2006) in the Lake District
area of the UK on May 30 - June 1, 2006.

In the 1980s researchers working in the area of nonmonotonic reasoning discovered
that their formalisms could be used to describe the behavior of negation as failure in
Prolog. This work resulted in logic programming systems of a new kind — answer-set
solvers, and led to the emergence of a new approach to solving search problems, called
answer-set programming or ASP, for short. The aim of the session on ASP at NMR
2006 was to facilitate interactions between researchers designing and implementing
ASP languages and solvers, and researchers working in the areas of knowledge repre-
sentation and nonmonotonic reasoning.

The program included 11 papers selected after a review process out of 18 submis-
sions. We thank the program committee members and additional reviewers for careful
and unbiased evaluation of the submitted papers. We also want to acknowledge Leng-
ning Liu for his help with the preparation of the papers for the proceedings.

Session chairs

Ilkka Niemelä, Helsinki University of Technology
(Ilkka.Niemela@tkk.fi)

Mirosław Truszczyński, University of Kentucky
(mirek@cs.uky.edu)

Program committee

Marc Denecker, K.U.Leuven, Belgium
(Marc.Denecker@cs.kuleuven.ac.be)

Wolfgang Faber, University of Calabria, Italy
(wf@wfaber.com)

Tomi Janhunen, Helsinki University of Technology, Finland
(ttj@tcs.hut.fi)

Fangzhen Lin, Hong Kong University of Science and Technology, Hong Kong
(flin@cs.ust.hk)

Inna Pivkina, New Mexico State University, USA
(ipivkina@cs.nmsu.edu)

Chiaki Sakama, Wakayama University, Japan
(sakama@sys.wakayama-u.ac.jp)

Hans Tompits, Technische Universität Wien, Austria
(tompits@kr.tuwien.ac.at)

Kewen Wang, Griffith University, Australia
(K.Wang@cit.gu.edu.au)

DEPARTMENT OF INFORMATICS 7

Ilkka.Niemela@tkk.fi
mirek@cs.uky.edu
Marc.Denecker@cs.kuleuven.ac.be
wf@wfaber.com
ttj@tcs.hut.fi
flin@cs.ust.hk
ipivkina@cs.nmsu.edu
sakama@sys.wakayama-u.ac.jp
tompits@kr.tuwien.ac.at
K.Wang@cit.gu.edu.au

11TH NMR WORKSHOP

Additional reviewers

Huan Chen Kathrin Konczak Roman Schindlauer
Yin Chen Marco Maratea Joost Vennekens
Álvaro Cortés Calabuig Maarten Mariën Johan Wittocx
Phan Minh Dung Emilia Oikarinen Stefan Woltran
Thomas Eiter Hou Ping Yuting Zhao
Katsumi Inoue Francesco Ricca

Schedule

Wednesday 31 May 2006 (Thirlmere-Wastwater Room)
Session Chairs: I. Niemelä and M. Truszczyński

• 10.30 E. Oikarinen and T. Janhunen, Modular Equivalence for Normal Logic
Programs

• 11:00 J. Oetsch, M. Seidl, H. Tompits and S. Woltran, A Tool for Advanced
Correspondence Checking in Answer-Set Programming

• 11:30 J. Gressmann, T. Janhunen, R.Mercer, T. Schaub, S. Thiele and R. Ticky,
On Probing and Multi-Threading in Platypus

• 12.00 T. Eiter, G. Ianni, R. Schindlauer and H. Tompits, Towards Efficient Eval-
uation of HEX-Programs

• 12.30 Lunch

• 14.00 M. Gebser and T. Schaub, Tableaux Calculi for Answer Set Programming

• 14.30 C. Anger, M. Gebser and T. Schaub, Approaching the Core of Unfounded
Sets

• 15.00 M. Gebser, J. Lee and Y. Lierler, Elementary Sets for Logic Programs

• 15.30 Coffee

• 16.00 T. Syrjänen, Debugging inconsistent answer set programs

• 16.30 T. Eiter and K. Wang Forgetting and Conflict Resolving in Disjunctive
Logic Programming

• 17.00 J. Vennekens and M. Denecker Analysing the Structure of Definitions in
ID-logic

• 17.30 M. Caminada Well-Founded semantics for Semi-Normal Extended Logic
Programs

8 Technical Report IfI-06-04

Answer Set Programming

DEPARTMENT OF INFORMATICS 9

11TH NMR WORKSHOP

1.1 Modular Equivalence for Normal Logic Programs

Modular Equivalence for Normal Logic Programs∗

Emilia Oikarinen † and Tomi Janhunen
Department of Computer Science and Engineering

Helsinki University of Technology (TKK)
P.O. Box 5400, FI-02015 TKK, Finland

Emilia.Oikarinen@tkk.fi and Tomi.Janhunen@tkk.fi

Abstract

A Gaifman-Shapiro-style architecture of program modules is
introduced in the case of normal logic programs under sta-
ble model semantics. The composition of program mod-
ules is suitably limited by module conditions which ensure
the compatibility of the module system with stable models.
The resulting module theorem properly strengthens Lifschitz
and Turner’s splitting set theorem (1994) for normal logic
programs. Consequently, the respective notion of equiva-
lence between modules, i.e. modular equivalence, proves to
be a congruence relation. Moreover, it is analyzed (i) how
the translation-based verification technique from (Janhunen
& Oikarinen 2005) is accommodated to the case of modu-
lar equivalence and (ii) how the verification of weak/visible
equivalence can be reorganized as a sequence of module-level
tests and optimized on the basis of modular equivalence.

Introduction
Answer set programming(ASP) is a very promising con-
straint programming paradigm (Niemelä 1999; Marek &
Truszczýnski 1999; Gelfond & Leone 2002) in which prob-
lems are solved by capturing their solutions asanswer sets
or stable modelsof logic programs. The development and
optimization of logic programs in ASP gives rise to a meta-
level problem of verifying whether subsequent programs are
equivalent. To solve this problem, a translation-based ap-
proach has been proposed and extended further (Janhunen &
Oikarinen 2002; Turner 2003; Oikarinen & Janhunen 2004;
Woltran 2004). The underlying idea is to combine two logic
programsP andQ under consideration into two logic pro-
gramsEQT(P,Q) andEQT(Q,P) which have no stable
models iff P and Q are weakly equivalent, i.e. have the
same stable models. This enables the use of the same ASP
solver, such asSMODELS (Simons, Niemel̈a, & Soininen
2002), DLV (Leoneet al. 2006) or GNT (Janhunenet al.
2006), for the equivalence verification problem as for the
search of stable models in general. First experimental re-
sults (Janhunen & Oikarinen 2002; Oikarinen & Janhunen

∗The research reported in this paper has been partially funded
by the Academy of Finland (project #211025).

†The financial support from Helsinki Graduate School in Com-
puter Science and Engineering, Nokia Foundation, and Finnish
Cultural Foundation is gratefully acknowledged.

2004) suggest that the translation-based method can be ef-
fective and sometimes much faster than performing a simple
cross-check of stable models.

As a potential limitation, the translation-based method
as described above treats programs as integral entities and
therefore no computational advantage is sought by breaking
programs into smaller parts, saymodulesof some kind. Such
an optimization strategy is largely preempted by the fact that
weak equivalence, denoted by≡, fails to be acongruence
relation for ∪, i.e. weak equivalence is not preserved un-
der substitutions in unions of programs. More formally put,
P ≡ Q does not implyP ∪R ≡ Q∪R in general. The same
can be stated aboutuniform equivalence(Sagiv 1987) but
not aboutstrong equivalence(Lifschitz, Pearce, & Valverde
2001) which admits substitutions by definition.

From our point of view, strong equivalence seems inap-
propriate forfully modularizingthe verification task of weak
equivalence. This is simply because two programsP andQ
may be weakly equivalent even if they build on respective
modulesPi ⊆ P andQi ⊆ Q which are not strongly equiv-
alent. For the same reason, program transformations that
are known to preserve strong equivalence (Eiteret al. 2004)
do not provide an inclusive basis for reasoning about weak
equivalence. Nevertheless, there are cases where one can
utilize the fact that strong equivalence implies weak equiv-
alence. For instance, ifP andQ are composed of strongly
equivalent pairs of modulesPi andQi for all i, thenP and
Q can be directly inferred to be strongly and weakly equiva-
lent. These observations about strong equivalence motivate
the strive for a weaker congruence relation that is compatible
with weak equivalence at program-level.

To address the lack of a suitable congruence relation in
the context of ASP, we propose a new design in this ar-
ticle. The design superficially resembles that of Gaifman
and Shapiro (1989) but stable model semantics (Gelfond
& Lifschitz 1988) and special module conditions are in-
corporated. The feasibility of the design is crystallized in
a module theoremwhich shows the module system fully
compatible with stable models. In fact, the module theo-
rem established here is a proper strengthening of the split-
ting set theorem established by Lifschitz and Turner (1994)
in the case of normal logic programs. The main difference
is that our result allows negative recursion between mod-
ules. Moreover, it enables the introduction of a notion of

10 Technical Report IfI-06-04

Answer Set Programming

equivalence, i.e.modular equivalence, which turns out to be
a proper congruence relation and reduces to weak equiva-
lence for program modules which have a completely speci-
fied input and no hidden atoms. This kind of modules cor-
respond to normal logic programs with completely visible
Herbrand base. If normal programsP andQ are composed
of modularly equivalent modulesPi andQi for all i, then
P and Q are modularly equivalent or equivalently stated
weakly equivalent. The notion of modular equivalence
opens immediately new prospects as regards the translation-
based verification method (Janhunen & Oikarinen 2002;
Oikarinen & Janhunen 2004). First of all, the method can
be tuned for the task of verifying modular equivalence by at-
taching acontext generatorto program modules in analogy
to (Woltran 2004). Second, we demonstrate how the verifi-
cation of weak equivalence can be reorganized as a sequence
of tests, each of which concentrates on a pair of respective
modules in the programs subject to the verification task.

The plan for the rest of this article is as follows. As a
preparatory step, we briefly review the syntax and seman-
tics of normal logic programs and define notions of equiva-
lence addressed in the sequel. After that we specify program
modules as well as establish the module theorem discussed
above. Next, we define the notion of modular equivalence,
prove the congruence property for it, and give a brief account
of computational complexity involved in the respective ver-
ification problem. Connections between modular equiva-
lence and the translation-based method for verifying visible
equivalence (Janhunen & Oikarinen 2005) are also worked
out. Finally, we briefly contrast our work with earlier ap-
proaches and present our conclusions.

Normal Logic Programs
We will considerpropositional normal logic programsin
this paper.

Definition 1 A normal logic program (NLP) is a (finite) set
of rules of the formh ← B+,∼B−, whereh is an atom,
B+ andB− are sets of atoms, and∼B = {∼b | b ∈ B} for
any set of atomsB.

The symbol “∼” denotesdefault negationor negation as
failure to prove (Clark 1978). Atomsa and their default
negations∼a are calleddefault literals. A rule consists
of two parts: h is the headand the rest is thebody. Let
Head(P) denote the set of head atoms appearing inP , i.e.

Head(P) = {h | h← B+,∼B− ∈ P}.

If the body of a rule is empty, the rule is called afact and
the symbol “←” can be omitted. IfB− = ∅, the rule is
positive. A program consisting only of positive rules is a
positive logic program.

Usually theHerbrand baseHb(P) of a normal logic pro-
gramP is defined to be the set of atoms appearing in the
rules ofP . We, however, use a revised definition:Hb(P)
is any fixed set of atoms containing all atoms appearing in
the rules ofP . Under this definition the Herbrand base of
P can be extended by atoms having no occurrences inP .
This aspect is useful e.g. whenP is obtained as a result of
optimization and there is a need to keep track of the original

Herbrand base. Moreover,Hb(P) is supposed to be finite
wheneverP is.

Given a normal logic programP , an interpretationM of
P is a subset ofHb(P) defining which atoms ofHb(P) are
true (a ∈ M) and which are false (a 6∈ M). An interpre-
tationM ⊆ Hb(P) is a (classical) modelof P , denoted by
M |= P iff B+ ⊆ M andB− ∩ M = ∅ imply h ∈ M
for each ruleh ← B+,∼B− ∈ P . For a positive program
P , M ⊆ Hb(P) is the (unique)least modelof P , denoted
by LM(P), iff there is noM ′ |= P such thatM ′ ⊂ M .
Stable modelsas proposed by Gelfond and Lifschitz (1988)
generalize least models for normal logic programs.

Definition 2 Given a normal logic programP and an inter-
pretationM ⊆ Hb(P) the Gelfond-Lifschitz reduct

PM = {h← B+ | h← B+,∼B−∈ P and M∩B− = ∅},

andM is a stable model ofP iff M = LM(PM).

Stable models are not necessarily unique in general: a nor-
mal logic program may have several stable models or no sta-
ble models at all. The set of stable models of a NLPP is
denoted bySM(P).

We define apositive dependency relation≤⊆ Hb(P) ×
Hb(P) as the reflexive and transitive closure of a relation
≤1 defined as follows. Givena, b ∈ Hb(P), we say thatb
depends directly ona, denoteda ≤1 b, iff there is a ruleb←
B+,∼B− ∈ P such thata ∈ B+. Thepositive dependency
graphof P , Dep+(P), is a graph withHb(P) as the set of
vertices and{〈a, b〉 | a, b ∈ Hb(P) and a ≤ b} as the
set of edges. Thenegative dependency graphDep−(P) can
be defined analogously. Astrongly connected componentof
Dep+(P) is a maximal subsetC ⊆ Hb(P) such that for all
a, b ∈ C, 〈a, b〉 is in Dep+(P). Thus strongly connected
components ofDep+(P) partitionHb(P) into equivalence
classes. The dependency relation≤ can then be generalized
for the strongly connected components:Ci ≤ Cj , i.e. Cj

depends onCi, iff ci ≤ cj for anyci ∈ Ci andcj ∈ Cj .
A splitting setfor a NLPP is any setU ⊆ Hb(P) such

that for every ruleh ← B+,∼B− ∈ P , if h ∈ U then
B+ ∪ B− ⊆ U . The set of rulesh ← B+,∼B− ∈ P such
that {h} ∪ B+ ∪ B− ⊆ U is thebottomof P relative to
U , denoted bybU (P). The settU (P) = P \ bU (P) is the
top of P relative toU . The top can be partially evaluated
with respect to an interpretationX ⊆ U resulting a program
e(tU (P),X) that contains a ruleh← (B+\U),∼(B−\U)
for eachh ← B+,∼B− ∈ tU (P) such thatB+∩ U ⊆ X
and(B−∩ U) ∩X = ∅. Given a splitting setU for a NLP
P , a solution to P with respect toU is a pair〈X,Y 〉 such
that X ⊆ U , Y ⊆ Hb(P) \ U , X ∈ SM(bU (P)), and
Y ∈ SM(e(tU (P),X)). The splitting set theoremrelates
solutions with stable models.

Theorem 1 (Lifschitz & Turner 1994) LetU be a splitting
set for a NLPP andM ⊆ Hb(P). ThenM ∈ SM(P) iff
the pair〈M ∩ U,M \ U〉 is a solution toP with respect to
U .

Notions of Equivalence
The notion ofstrong equivalencewas introduced by Lifs-
chitz, Pearce and Valverde (2001) whereasuniform equiva-

DEPARTMENT OF INFORMATICS 11

11TH NMR WORKSHOP

lencehas its roots in the database community (Sagiv 1987);
cf. (Eiter & Fink 2003) for the case of stable models.

Definition 3 Normal logic programsP andQ are (weakly)
equivalent, denotedP ≡ Q, iff SM(P) = SM(Q); strongly
equivalent, denotedP ≡s Q, iff P ∪ R ≡ Q ∪ R for any
normal logic programR; and uniformly equivalent, denoted
P ≡u Q, iff P ∪ F ≡ Q ∪ F for any set of factsF .

Clearly, P ≡s Q implies P ≡u Q, andP ≡u Q implies
P ≡ Q, but not vice versa (in both cases). Strongly equiv-
alent logic programs are semantics preserving substitutesof
each other and the relation≡s can be understood as acon-
gruence relationamong normal programs, i.e. ifP ≡s Q,
then P ∪ R ≡s Q ∪ R for all normal programsR. On
the other hand, uniform equivalence is not a congruence, as
shown in Example 1 below. Consequently, the same applies
to weak equivalence and thus≡ and≡u are best suited for
the comparison of complete programs, and not for modules.

Example 1 (Eiter et al.2004, Example 1) Consider normal
logic programsP = {a.} andQ = {a ← ∼b. a ← b.}. It
holdsP ≡u Q, but P ∪ R 6≡ Q ∪ R for R = {b ← a.}.
ThusP 6≡s Q and≡u is not a congruence relation for∪.

ForP ≡ Q to hold, the stable models inSM(P) andSM(Q)
have to be identical subsets ofHb(P) andHb(Q), respec-
tively. The same can be stated about strong and uniform
equivalence. This makes these notions of equivalence less
useful ifHb(P) andHb(Q) differ by some atoms which are
not trivially false in all stable models. Such atoms might,
however, be of use when formalizing some auxiliary con-
cepts. Following the ideas from (Janhunen 2003) we par-
tition Hb(P) into two partsHbv(P) and Hbh(P) which
determine thevisible and thehiddenparts ofHb(P), re-
spectively. Invisible equivalencethe idea is that the hidden
atoms inHbh(P) and Hbh(Q) are local toP and Q and
negligible as regards the equivalence of the two programs.

Definition 4 (Janhunen 2003) Normal logic programsP
and Q are visibly equivalent, denoted byP ≡v Q, iff
Hbv(P) = Hbv(Q) and there is a bijectionf : SM(P) →
SM(Q) such that for all interpretationsM ∈ SM(P),
M ∩Hbv(P) = f(M) ∩Hbv(Q).

Note that the number of stable models is preserved under
≡v. Such a strict correspondence of models is much dic-
tated by the ASP methodology: the stable models of a pro-
gram usually correspond to the solutions of the problem be-
ing solved and thus≡v preserves the number of solutions,
too. In the fully visible case, i.e.Hbh(P) = Hbh(Q) = ∅,
the relation≡v becomes very close to≡. The only differ-
ence is the additional requirementHb(P) = Hb(Q) insisted
by≡v. This is of little importance as Herbrand bases can al-
ways be extended to meetHb(P) = Hb(Q). Since weak
equivalence is not a congruence, visible equivalence cannot
be a congruence either.

The relativized variants of strong and uniform equiva-
lenceintroduced by Woltran (2004) allow the context to be
constrained using a set of atomsA.

Definition 5 Normal logic programsP andQ are strongly
equivalent relative toA, denoted byP ≡A

s Q, iff P ∪ R ≡

Q∪R for all normal logic programsR over the set of atoms
A; uniformly equivalent relative toA, denoted byP ≡A

u Q,
iff P ∪ F ≡ Q ∪ F for all sets of factsF ⊆ A.

SettingA = ∅ in the above reduces both relativized notions
to weak equivalence, and thus neither is a congruence.

Eiter et al. (2005) introduce a very general framework
based onequivalence framesto capture various kinds of
equivalence relations. Most of the notions of equivalence
defined above can be defined using the framework. Vis-
ible equivalence is exceptional in the sense that it does
not fit into equivalence frames based onprojected answer
sets. A projective variant of Definition 4 would simply
equate{M ∩Hbv(P) | M ∈ SM(P)} to {N ∩Hbv(Q) |
N ∈ SM(Q)}. As a consequence, the number of answer sets
may not be preserved which we find somewhat unsatisfac-
tory because of the general nature of ASP as discussed after
Definition 4. Consider, for instance programsP = {a ←
∼b. b ← ∼a. } andQn = P ∪ {ci ← ∼di. di ← ∼ci. |
0 < i ≤ n} with Hbv(P) = Hbv(Qn) = {a, b}. Whenever
n > 0 these programs are not visibly equivalent but they
would be equivalent under the projective definition. With
sufficiently large values ofn it is no longer feasible to count
the number of different stable models (i.e. solutions) ifQn

is used.

Modular Logic Programs
We define alogic program modulesimilarly to Gaifman and
Shapiro (1989), but consider the case of normal logic pro-
grams instead of positive (disjunctive) logic programs.

Definition 6 A triple P = (P, I,O) is a (propositional logic
program) module, if

1. P is a finite set of rules of the formh← B+,∼B−;

2. I andO are sets of propositional atoms such that
I ∩O = ∅; and

3. Head(P) ∩ I = ∅.

The Herbrand base of moduleP, Hb(P), is the set of atoms
appearing inP combined withI ∪ O. Intuitively the setI
defines theinputof a module and the setO is theoutput. The
input and output atoms are considered visible, i.e. the visible
Herbrand base of moduleP is Hbv(P) = I ∪O. Notice that
I andO can also contain atoms not appearing inP , similarly
to the possibility of having additional atoms in the Herbrand
bases of normal logic programs. All other atoms are hidden,
i.e.Hbh(P) = Hb(P) \Hbv(P).

As regards the composition of modules, we follow (Gaif-
man & Shapiro 1989) and take the union of the disjoint sets
of rules involved in them. The conditions given by Gaifman
and Shapiro are not yet sufficient for our purposes, and we
impose a further restriction denying positive recursion be-
tween modules.

Definition 7 Consider modulesP1 = (P1, I1, O1) and
P2 = (P2, I2, O2) and letC1, . . . , Cn be the strongly con-
nected components ofDep+(P1∪P2). There is a positive re-
cursion betweenP1 andP2, if Ci∩O1 6= ∅ andCi∩O2 6= ∅
for some componentCi.

12 Technical Report IfI-06-04

Answer Set Programming

The idea is that all inter-module dependencies go through
the input/output interface of the modules, i.e. the output
of one module can serve as the input for another and hid-
den atoms are local to each module. Now, if there is a
strongly connected componentCi in Dep+(P1 ∪ P2) con-
taining atoms from bothO1 andO2, we know that, if pro-
gramsP1 andP2 are combined, some output atoma of P1

depends positively on some output atomb of P2 which again
depends positively ona. This yields a positive recursion.

Definition 8 Let P1 = (P1, I1, O1) andP2 = (P2, I2, O2)
be modules such that
1. O1 ∩O2 = ∅;
2. Hbh(P1) ∩Hb(P2) = Hbh(P2) ∩Hb(P1) = ∅; and
3. there is no positive recursion betweenP1 andP2.
Then the join ofP1 andP2, denoted byP1 ⊔ P2, is defined,
andP1 ⊔ P2 = (P1 ∪ P2, (I1 \O2) ∪ (I2 \O1), O1 ∪O2).

Remark. Condition 1 in Definition 8 is actually redundant
as it is implied by condition 3. Also, condition 2 can be
circumvented in practice using a suitable scheme, e.g. based
on module names, to rename the hidden atoms uniquely for
each module.

Some observations follow. Since each atom is defined in
one module, the sets of rules inP1 andP2 are disjoint, i.e.
P1 ∩ P2 = ∅. Also,

Hb(P1 ⊔ P2) = Hb(P1) ∪Hb(P2),

Hbv(P1 ⊔ P2) = Hbv(P1) ∪Hbv(P2), and

Hbh(P1 ⊔ P2) = Hbh(P1) ∪Hbh(P2).

Note that the module conditions above impose no restric-
tions onnegativedependencies or on positive dependencies
insidemodules. The input ofP1 ⊔ P2 might be smaller than
the union of inputs of individual modules. This is illustrated
by the following example.

Example 2 Consider modulesP = ({a ← ∼b.}, {b}, {a})
and Q = ({b ← ∼a.}, {a}, {b}). The join ofP and Q is
defined, andP ⊔Q = ({a← ∼b. b← ∼a.}, ∅, {a, b}).

The following hold for the intersections of Herbrand bases
under the conditions 1 and 2 in Definition 8:

Hbv(P1) ∩Hbv(P2)

= Hb(P1) ∩Hb(P2)

= (I1 ∩ I2) ∪ (I1 ∩O2) ∪ (I2 ∩O1), and

Hbh(P1) ∩Hbh(P2) = ∅.

Join operation⊔ has the following properties:
• Identity: P ⊔ (∅, ∅, ∅) = (∅, ∅, ∅) ⊔ P = P for all P.

• Commutativity: P1 ⊔ P2 = P2 ⊔ P1 for all modulesP1

andP2 such thatP1 ⊔ P2 is defined.

• Associativity: (P1 ⊔ P2) ⊔ P3 = P1 ⊔ (P2 ⊔ P3) for all
modulesP1, P2 andP3 such that the joins are defined.

Note that equality sign “=” used here denotes syntactical
equivalence, whereas semantical equivalence will be defined
in the next section.

The stable semantics of a module is defined with respect
to a given input, i.e. a subset of the input atoms of the mod-
ule. Input is seen as a set of facts (or a database) to be added
to the module.

Definition 9 Given a moduleP = (P, I,O) and a set of
atomsA ⊆ I the instantiation ofP with the inputA is
P(A) = P ⊔ FA, whereFA = ({a. | a ∈ A}, ∅, I).

Note thatP(A) = (P ∪{a. | a ∈ A}, ∅, I ∪O) is essentially
a normal logic program withI ∪ O as the visible Herbrand
base. We can thus generalize the stable model semantics for
modules. In the sequel we identifyP(A) with the respective
set of rulesP ∪ FA, whereFA = {a. | a ∈ A}. In the
following M ∩ I acts as a particular input with respect to
which the module is instantiated.

Definition 10 An interpretationM ⊆ Hb(P) is a stable
model of a moduleP = (P, I,O), denoted byM ∈ SM(P),
iff M = LM(PM ∪ FM∩I).

We define a concept ofcompatibilityto describe when a sta-
ble modelM1 of moduleP1 can be combined with a stable
modelM2 of another moduleP2. This is exactly whenM1

andM2 share the common (visible) part.

Definition 11 Let P1 and P2 be modules, andM1 ∈
SM(P1) andM2 ∈ SM(P2) their stable models which are
compatible, iffM1 ∩Hbv(P2) = M2 ∩Hbv(P1).

If a program (module) consists of several modules, its stable
models are locally stable for the respective submodules; and
on the other hand, local stability implies global stabilityas
long as the stable models of the submodules are compatible.

Theorem 2 (Module theorem). LetP1 and P2 be modules
such thatP1 ⊔ P2 is defined. Now,M ∈ SM(P1 ⊔ P2) iff
M1 = M ∩ Hb(P1) ∈ SM(P1), M2 = M ∩ Hb(P2) ∈
SM(P2), andM1 andM2 are compatible.

Proof sketch. “⇒” M1 andM2 are clearly compatible and
it is straightforward to show that conditions 1 and 2 in Defi-
nition 8 implyM1 ∈ SM(P1) andM2 ∈ SM(P2).
“⇐” ConsiderP1 = (P1, I1, O1), P2 = (P2, I2, O2) and
their joinP = P1 ⊔P2 = (P, I,O). Let M1 ∈ SM(P1), and
M2 ∈ SM(P2) be compatible and defineM = M1 ∪M2.
There is a strict total ordering< for the strongly connected
componentsCi of Dep+(P) such that ifCi < Cj , then
Ci ≤ Cj andCj 6≤ Ci; or Ci 6≤ Cj andCj 6≤ Ci. Let
C1 < · · · < Cn be such an ordering. Show that exactly
one of the following holds for eachCi: (i) Ci ⊆ I, (ii)
Ci ⊆ O1 ∪ Hbh(P1), or (iii) Ci ⊆ O2 ∪ Hbh(P2). Finally,
show by induction that

M ∩ (
k
∪

i=1
Ci) = LM(PM ∪ FM∩I) ∩ (

k
∪

i=1
Ci)

holds for0 ≤ k ≤ n by applying the splitting set theorem
(Lifschitz & Turner 1994). �

Example 3 shows that condition 3 in Definition 8 is neces-
sary to guarantee that local stability implies global stability.

Example 3 Consider P1 = ({a ← b.}, {b}, {a}) and
P2 = ({b ← a.}, {a}, {b}) with SM(P1) = SM(P2) =
{∅, {a, b}}. The join ofP1 and P2 is not defined because
of positive recursion (conditions 1 and 2 in Definition 8 are
satisfied, however). For a NLPP = {a ← b. b ← a.}, we
getSM(P) = {∅}. Thus, the positive dependency between
a andb excludes{a, b} fromSM(P).

DEPARTMENT OF INFORMATICS 13

11TH NMR WORKSHOP

Theorem 2 is strictly stronger than the splitting set theorem
(Lifschitz & Turner 1994) for normal logic programs. IfU
is a splitting set for a NLPP , then

P = B ⊔ T = (bU (P), ∅, U) ⊔ (tU (P), U,Hb(P) \ U),

and it follows from Theorems 1 and 2 thatM1 ∈ SM(B)
andM2 ∈ SM(T) iff 〈M1,M2 \U〉 is a solution forP with
respect toU . On the other hand the splitting set theorem can-
not be applied to e.g.P ⊔ Q from Example 2, since neither
{a} nor {b} is a splitting set. Our theorem also strength-
ens a module theorem given in (Janhunen 2003, Theorem
6.22) to cover normal programs that involve positive body
literals, too. Moreover, Theorem 2 can easily be general-
ized for modules consisting of several submodules. Con-
sider a collection of modulesP1, . . . , Pn such that the join
P1⊔· · ·⊔Pn is defined (recall that⊔ is associative). We say
that a collection of stable models{M1, . . . ,Mn} for mod-
ulesP1, . . . , Pn, respectively, iscompatible, iff Mi andMj

are pairwise compatible for all1 ≤ i, j ≤ n.

Corollary 1 LetP1, . . . , Pn be a collection of modules such
thatP1 ⊔ · · · ⊔ Pn is defined. NowM ∈ SM(P1 ⊔ · · · ⊔ Pn)
iff Mi = M ∩Hb(Pi) ∈ SM(Pi) for all 1 ≤ i ≤ n, and the
set of stable models{M1, . . . ,Mn} is compatible.

Corollary 1 enables the computation of stable models on a
module-by-module basis, but it leaves us the task of exclud-
ing mutually incompatible combinations of stable models.

Example 4 Consider modules

P1 = ({a← ∼b.}, {b}, {a}),

P2 = ({b← ∼c.}, {c}, {b}), and

P3 = ({c← ∼a.}, {a}, {c}).

The joinP = P1 ⊔ P2 ⊔ P3 is defined,

P = ({a← ∼b. b← ∼c. c← ∼a.}, ∅, {a, b, c}).

Now SM(P1) = {{a}, {b}}, SM(P2) = {{b}, {c}} and
SM(P3) = {{a}, {c}}. To apply Corollary 1 for finding
SM(P), one has to find a compatible triple of stable models
M1, M2, andM3 for P1, P2, andP3, respectively.

• Now{a} ∈ SM(P1) and{c} ∈ SM(P2) are compatible,
since{a} ∩ Hbv(P2) = ∅ = {c} ∩ Hbv(P1). However,
{a} ∈ SM(P3) is not compatible with{c} ∈ SM(P2),
since{c} ∩ Hbv(P3) = {c} 6= ∅ = {a} ∩ Hbv(P2).
On the other hand,{c} ∈ SM(P3) is not compatible with
{a} ∈ SM(P1), since{a} ∩ Hbv(P3) = {a} 6= ∅ =
{c} ∩Hbv(P1).

• Also{b} ∈ SM(P1) and{b} ∈ SM(P2) are compatible,
but {b} ∈ SM(P1) is incompatible with{a} ∈ SM(P3).
Nor is{b} ∈ SM(P2) compatible with{c} ∈ SM(P3).

Thus it is impossible to selectM1 ∈ SM(P1), M2 ∈
SM(P2) and M3 ∈ SM(P3) such that{M1,M2,M3} is
compatible, which is understandable asSM(P) = ∅.

Modular Equivalence
The definition ofmodular equivalencecombines features
from relativized uniform equivalence (Woltran 2004) and
visible equivalence (Janhunen 2003).

Definition 12 Logic program modulesP = (P, IP , OP)
and Q = (Q, IQ, OQ) are modularly equivalent, denoted
byP ≡m Q, iff

1. IP = IQ = I andOP = OQ = O, and
2. P(A) ≡v Q(A) for all A ⊆ I.

Modular equivalence is very close to visible equivalence de-
fined for modules. As a matter a fact, if Definition 4 is gen-
eralized for program modules, the second condition in Defi-
nition 12 can be revised toP ≡v Q. However,P ≡v Q is not
enough to cover the first condition in Definition 12, as visi-
ble equivalence only enforcesHbv(P) = Hbv(Q). If I = ∅,
modular equivalence coincides with visible equivalence. If
O = ∅, thenP ≡m Q means thatP andQ have the same
number of stable models on each input.

Furthermore, if one considers thefully visible case, i.e.
Hbh(P) = Hbh(Q) = ∅, modular equivalence can be seen
as a special case ofA-uniform equivalence forA = I. Re-
call, however, the restrictionsHead(P) ∩ I = Head(Q) ∩
I = ∅ imposed by module structure. With a further restric-
tion I = ∅, modular equivalence coincides with weak equiv-
alence becauseHb(P) = Hb(Q) can always be satisfied by
extending Herbrand bases. Basically, settingI = Hb(P)
would give us uniform equivalence, but the additional con-
dition Head(P) ∩ I = ∅ leaves room for the empty module
only.

Since≡v is not a congruence relation for∪, neither is
modular equivalence. The situation changes, however, if
one considers the join operation⊔ which suitably restricts
possible contexts. Consider for instance the programsP
andQ given in Example 1. We can define modules based
on them:P = (P, {b}, {a}) andQ = (Q, {b}, {a}). Now
P ≡m Q and it is not possible to define a moduleR based
onR = {b← a.} such thatQ ⊔ R is defined.

Theorem 3 Let P, Q and R be logic program modules. If
P ≡m Q and bothP ⊔ R andQ ⊔ R are defined, thenP ⊔
R ≡m Q ⊔ R.

Proof. Let P = (P, I,O) andQ = (Q, I,O) be modules
such thatP ≡m Q. Let R = (R, IR, OR) be an arbitrary
module such thatP ⊔ R andQ ⊔ R are defined. Consider
an arbitraryM ∈ SM(P ⊔ R). By Theorem 2,MP = M ∩
Hb(P) ∈ SM(P) andMR = M ∩ Hb(R) ∈ SM(R). Since
P ≡m Q, there is a bijectionf : SM(P) → SM(Q) such
thatMP ∈ SM(P)⇐⇒ f(MP) ∈ SM(Q), and

MP ∩ (O ∪ I) = f(MP) ∩ (O ∪ I). (1)

Let MQ = f(MP). Clearly,MP andMR are compatible.
Since (1) holds, alsoMQ andMR are compatible. Applying
Theorem 2 we getMQ∪MR ∈ SM(Q⊔R). Define function
g : SM(P ⊔ R)→ SM(Q ⊔ R) as

g(M) = f(M ∩Hb(P)) ∪ (M ∩Hb(R)).

Clearly,g restricted to the visible part is an identity function,
i.e.M ∩ (I ∪ IR ∪O ∪OR) = g(M)∩ (I ∪ IR ∪O ∪OR).
Functiong is a bijection, since

• g is an injection:M 6= N impliesg(M) 6= g(N) for all
M,N ∈ SM(P ⊔ R), sincef(M ∩ Hb(P)) 6= f(N ∩
Hb(P)) or M ∩Hb(R) 6= N ∩Hb(R).

14 Technical Report IfI-06-04

Answer Set Programming

• g is a surjection: for anyM ∈ SM(Q⊔R), N = f−1(M∩
Hb(Q)) ∪ (M ∩ Hb(R)) ∈ SM(P ⊔ R) andg(N) = M ,
sincef is a surjection.

The inverse functiong−1 : SM(Q ⊔ R) → SM(P ⊔ R) can
be defined asg−1(N) = f−1(N ∩Hb(Q))∪ (N ∩Hb(R)).
ThusP ⊔ R ≡m Q ⊔ R. �

It is instructive to consider a potentially stronger variant
of modular equivalence defined in analogy to strong equiva-
lence (Lifschitzet al. 2001):P ≡s

m Q iff P ⊔ R ≡m Q ⊔ R
holds for allR such thatP⊔R andQ⊔R are defined. How-
ever, Theorem 3 implies that≡s

m adds nothing to≡m since
P ≡s

m Q iff P ≡m Q.

Complexity Remarks
Let us then make some observations about the computa-
tional complexity of verifying modular equivalence of nor-
mal logic programs. In general, deciding≡m is coNP-
hard, since deciding the weak equivalenceP ≡ Q re-
duces to deciding(P, ∅,Hb(P)) ≡m (Q, ∅,Hb(Q)). In
the fully visible caseHbh(P) = Hbh(Q) = ∅, deciding
P ≡m Q can be reduced to deciding relativized uniform
equivalenceP ≡I

u Q (Woltran 2004) and thus deciding≡m

is coNP-complete in this restricted case. In the other ex-
treme,Hbv(P) = Hbv(Q) = ∅ and P ≡m Q iff P and
Q have the same number of stable models. This suggests a
much higher computational complexity of verifying≡m in
general because classical models can be captured with stable
models (Niemel̈a 1999) and counting stable models cannot
be easier than#SAT which is#P-complete (Valiant 1979).

A way to govern the computational complexity of ver-
ifying ≡m is to limit the use of hidden atoms as done in
the case of≡v by Janhunen and Oikarinen (2005). There-
from we adopt the property of havingenough visible atoms
(the EVA property for short) defined as follows. For a nor-
mal programP and an interpretationMv ⊆ Hbv(P) for
the visible part ofP , thehidden partPh/Mv of P relative
Mv contains for each ruleh ← B+,∼B− ∈ P such that
h ∈ Hbh(P) andMv |= B+

v ∪ ∼B−
v , the respective hid-

den parth ← B+

h
,∼B−

h
. The construction of the hidden

partPh/Mv is closely related to the simplification operation
simp(P, T, F) proposed by Cholewinski and Truszczyński
(1999), but restricted in the sense thatT andF are subsets
of Hbv(P) rather thanHb(P). More precisely put, we have
Ph/Mv = simp(P,Mv,Hbv(P)−Mv) for any programP .

Definition 13 A normal logic programP has enough vis-
ible atoms iffPh/Mv has a unique stable model for every
interpretationMv ⊆ Hbv(P).

The intuition behind Definition 13 is that the interpreta-
tion of Hbh(P) is uniquely determined for each interpreta-
tion of Hbv(P) if P has the EVA property. Consequently,
the stable models ofP can be distinguished on the basis of
their visible parts. By the EVA assumption (Janhunen &
Oikarinen 2005), the verification of≡v becomes acoNP-
complete problem forSMODELS programs1 involving hid-
den atoms. This complexity result enables us to generalize
the translation-based method from (Janhunen & Oikarinen

1This class of programs includes normal logic programs.

2002) for deciding≡v. Although verifying the EVA prop-
erty can be hard in general, there are syntactic subclasses
of normal programs (e.g. those for whichPh/Mv is always
stratified) with the EVA property. It should be stressed that
the use of visible atoms remains unlimited and thus the full
expressiveness of normal rules remains at our disposal.

So far we have discussed the role of the EVA assumption
in the verification of≡v. It is equally important in conjunc-
tion with ≡m. This becomes evident once we work out the
interconnections of the two relations in the next section.

Application Strategies
The objective of this section is to describe ways in which
modular equivalence can be exploited in the verification of
visible/weak equivalence. One concrete step in this respect
is to reduce the problem of verifying≡m to that of≡v by
introducing a special moduleGI that acts as a context gen-
erator. A similar technique is used by Woltran (2004) in the
case of relativized uniform equivalence.

Theorem 4 Let P and Q be program modules such that
Hbv(P) = Hbv(Q) = O ∪ I. ThenP ≡m Q iff P ⊔GI ≡v

Q ⊔GI whereGI = ({a ← ∼a. a← ∼a | a ∈ I}, ∅, I) is
a module generating all possible inputs forP andQ.

Proof sketch. Note thatGI has2|I| stable models of the
form A ∪ {a | a ∈ I \A} for eachA ⊆ I. ThusP ≡v

P⊔GI andQ ≡v Q⊔GI follow by Definitions 2 and 4 and
Theorem 2. It follows thatP ≡m Q iff P(A) ≡v Q(A) for
all A ⊆ I iff P ⊔GI ≡v Q ⊔GI . �

As a consequence of Theorem 4, the translation-based
technique from (Janhunen & Oikarinen 2005, Theorem 5.4)
can be used to verifyP ≡m Q given thatP and Q have
enough visible atoms (GI has the EVA property trivially).
More specifically, the task is to show thatEQT(P⊔GI , Q⊔
GI) andEQT(Q ⊔GI , P ⊔GI) have no stable models.

The introduction of modular equivalence was much moti-
vated by the need of modularizing the verification of weak
equivalence2. We believe that such a modularization could
be very effective in a setting whereQ is an optimized ver-
sion of P . Typically Q is obtained by making some local
modifications toP . In the following, we propose a further
strategy to utilize modular equivalence in the task of verify-
ing the visible/weak equivalence ofP andQ.

An essential prerequisite is to identify a module struc-
ture forP andQ. Basically, there are two ways to achieve
this: either the programmer specifies modules explicitly or
strongly connected components ofDep+(P) andDep+(Q)
are computed to detect them automatically. Assuming the
relationship ofP andQ as described above, it is likely that
these components are pairwise compatible and we can parti-
tionP andQ so thatP = P1⊔· · ·⊔Pn andQ = Q1⊔· · ·⊔Qn

where the respective modulesPi andQi have the same in-
put and output. Note thatPi andQi can be the same for a
number ofi’s under the locality assumption.

In this setting, the verification ofPi ≡m Qi for each pair
of modulesPi andQi is not of interest asPi 6≡m Qi does

2Recall that≡v coincides with≡ for programsP andQ having
equal and fully visible Herbrand bases.

DEPARTMENT OF INFORMATICS 15

11TH NMR WORKSHOP

not necessarily implyP 6≡v Q. However, the verification of
P ≡v Q can still be organized as a sequence ofn tests at the
level of modules, i.e. it is sufficient to show

Q1 ⊔ · · · ⊔Qi−1 ⊔ Pi ⊔ · · · ⊔ Pn ≡m

Q1 ⊔ · · · ⊔Qi ⊔ Pi+1 ⊔ · · · ⊔ Pn (2)

for each1 ≤ i ≤ n and the resulting chain of equalities
conveysP ≡v Q under the assumption thatP andQ have a
completely specified input. If not, then≡m can be addressed
using a similar chaining technique based on (2).

Example 5 Consider normal logic programsP andQ both
consisting of two submodules, i.e.P = P1 ⊔ P2 and Q =
Q1 ⊔Q2 whereP1, P2, Q1, andQ2 are defined by

P1 = ({c← ∼a.}, {a, b}, {c}),

P2 = ({a← b.}, ∅, {a, b}),

Q1 = ({c← ∼b.}, {a, b}, {c}), and

Q2 = ({b← a.}, ∅, {a, b}).

Now,P1 6≡m Q1, butP1 andQ1 are visibly equivalent in all
contexts produced by bothP2 andQ2 (in this case actually
P2 ≡m Q2 holds, but that is not necessary). Thus

P1 ⊔ P2 ≡m Q1 ⊔ P2 ≡m Q1 ⊔Q2,

which verifiesP ≡v Q as well asP ≡ Q.

It should be stressed that the programs involved in each
test (2) differ inPi and Qi for which the other modules
form a common context, sayCi. A way to optimize the
verification of Pi ⊔ Ci ≡m Qi ⊔ Ci is to view Ci as
a module generating input forPi and Qi and to adjust
the translation-based method from (Janhunen & Oikarinen
2005) for such generators. More specifically, we seek com-
putational advantage from usingEQT(Pi, Qi) ⊔ Ci rather
thanEQT(Pi ⊔ Ci, Qi ⊔ Ci) and especially when the con-
text Ci is clearly larger than the modulesPi and Qi. By
symmetry, the same strategy is applicable toQi andPi.

Related Work
The notion of modular equivalence is already contrasted
with other equivalence relations in previous sections.

Bugliesi, Lamma and Mello (1994) present an extensive
survey of modularity in conventional logic programming.
Two mainstream programming disciplines can be identified:
programming-in-the-largewhere programs are composed
with algebraic operators (O’Keefe 1985) andprogramming-
in-the-small with abstraction mechanisms (Miller 1986).
Our approach can be classified in the former discipline due
to resemblance to that of Gaifman and Shapiro (1989). But
stable model semantics and the denial of positive recursion
between modules can be pointed out as obvious differences
in view of their approach.

A variety of conditions on modules have also been intro-
duced. For instance, in contrast to our work, Maher (1993)
forbids all recursion between modules and considers Przy-
musinski’sperfect modelsrather than stable models. Brogi
et al. (1994) employ operators for program composition and
visibility conditions that correspond to the second item in

Definition 8. However, their approach covers only positive
programs and the least model semantics. Etalle and Gab-
brielli (1996) restrict the composition ofconstraint logic
program (CLP) modules with a condition that is close to
ours:Hb(P)∩Hb(Q) ⊆ Hbv(P)∩Hbv(Q) but no distinc-
tion between input and output is made; e.g.OP ∩ OQ 6= ∅
is allowed according to their definitions. They also strive for
congruence relations but in the case of CLPs.

Eiter, Gottlob, and Mannila (1997) consider the class of
disjunctive Datalogused as query programsπ over rela-
tional databases. As regards syntax, such programs are dis-
junctive programs which cover normal programs (involving
variables though) as a special case. The rough idea is that
π is instantiated with respect to an input databaseD for the
given input schemaR. The resulting models ofπ[D], which
depend on the semantics chosen forπ, are projected with re-
spect to an output schemaS. To link this approach to ours,
it is possible to viewπ as a program moduleP with input
I and outputO based onR andS, respectively. Thenπ[D]
is obtained asP(D). In contrast to our work, their mod-
ule architecture is based on bothpositive and negative de-
pendenciesand no recursion between modules is tolerated.
These constraints enable a straightforward generalization of
the splitting set theorem for the architecture.

Faberet al.(2005) apply themagic set methodin the eval-
uation of Datalog programs with negation, i.e. effectively
normal programs. This involves the concept of aninde-
pendent setS of a programP which is a specialization of
a splitting set (recall Theorem 1). Roughly speaking, the
idea is that the semantics of an independent setS is not af-
fected by the rest ofP and thusS gives rise to amodule
T = {h← B+,∼B− ∈ P | h ∈ S} of P so thatT ⊆ P
andHead(T) = S. Due to close relationship to splitting
sets, independent sets are not that flexible as regards parcel-
ing normal programs. For instance, the splittings demon-
strated in Examples 2 and 4 are impossible with independent
sets. In certain cases, the distinction ofdangerous rulesin
the definition of independent sets pushes negative recursion
inside modules which is unnecessary in view of our results.
Finally, the module theorem of Faberet al.(2005) is weaker
than Theorem 2.

Eiter, Gottlob and Veith (1997) address modularity within
ASP and view program modules asgeneralized quantifiers
the definitions of which are allowed to nest, i.e.P can refer
to another moduleQ by using it as a generalized quantifier.
This is an abstraction mechanism typical to programming-
in-the-small approaches.

Conclusion
In this article, we a propose a module architecture for logic
programs in answer set programming. The compatibility
of the module system and stable models is achieved by
allowing positive recursion to occur inside modules only.
The current design gives rise to a number of interesting re-
sults. First, the splitting set theorem by Lifschitz and Turner
(1994) is generalized to the case where negative recursion
is allowed between modules. Second, the resulting notion
of modular equivalenceis a proper congruence relation for
the join operation between modules. Third, the verification

16 Technical Report IfI-06-04

Answer Set Programming

of modular equivalence can be accomplished with existing
methods so that specialized solvers need not be developed.
Last but not least, we have a preliminary understanding how
the task of verifying weak equivalence can be modularized
using modular equivalence.

Yet the potential gain from the modular verification strat-
egy has to be evaluated by conducting experiments. A fur-
ther theoretical question is how the existing model theory
based onSE-modelsandUE-models(Eiter & Fink 2003) is
tailored to the case of modular equivalence. There is also a
need to expand the module architecture and module theorem
proposed here to cover other classes of logic programs such
as e.g. weight constraint programs, disjunctive programs,
and nested programs.

References
Brogi, A.; Mancarella, P.; Pedreschi, D.; and Turini, F.
1994. Modular logic programming.ACM Transactions on
Programming Languages and Systems16(4):1361–1398.
Bugliesi, M.; Lamma, E.; and Mello, P. 1994. Modular-
ity in logic programming.Journal of Logic Programming
19/20:443–502.
Cholewinski, P., and Truszczyński, M. 1999. Extremal
problems in logic programming and stable model compu-
tation. Journal of Logic Programming38(2):219–242.
Clark, K. L. 1978. Negation as failure. In Gallaire, H., and
Minker, J., eds.,Logic and Data Bases. New York: Plenum
Press. 293–322.
Eiter, T., and Fink, M. 2003. Uniform equivalence of logic
programs under the stable model semantics. InProc. of the
19th International Conference on Logic Programming, vol-
ume 2916 ofLNCS, 224–238. Mumbay, India: Springer.
Eiter, T.; Fink, M.; Tompits, H.; and Woltran, S. 2004.
Simplifying logic programs under uniform and strong
equivalence. InProc. of the 7th International Confer-
ence on Logic Programming and Nonmonotonic Reason-
ing, volume 2923 ofLNAI, 87–99. Fort Lauderdale, USA:
Springer.
Eiter, T.; Gottlob, G.; and Mannila, H. 1997. Disjunc-
tive datalog. ACM Transactions on Database Systems
22(3):364–418.
Eiter, T.; Gottlob, G.; and Veith, H. 1997. Modular logic
programming and generalized quantifiers. InProc. of the
4th International Conference on Logic Programming and
Nonmonotonic Reasoning, volume 1265 ofLNCS, 290–
309. Dagstuhl, Germany: Springer.
Eiter, T.; Tompits, H.; and Woltran, S. 2005. On solution
correspondences in answer-set programming. InProc. of
19th International Joint Conference on Artificial Intelli-
gence, 97–102. Edinburgh, UK: Professional Book Center.
Etalle, S., and Gabbrielli, M. 1996. Transformations
of CLP modules. Theoretical Computer Science166(1–
2):101–146.
Faber, W.; Greco, G.; and Leone, N. 2005. Magic sets
and their application to data integration. InProc. of 10th
International Conference on Database Theory, ICDT’05,
volume 3363 ofLNCS, 306–320. Edinburgh, UK: Springer.

Gaifman, H., and Shapiro, E. 1989. Fully abstract com-
positional semantics for logic programs. InProc. of the
16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 134–142. Austin, Texas, USA:
ACM Press.
Gelfond, M., and Leone, N. 2002. Logic programming
and knowledge representation — the A-Prolog perspective.
Artificial Intelligence138:3–38.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. InProc. of the 5th Inter-
national Conference on Logic Programming, 1070–1080.
Seattle, Washington: MIT Press.
Janhunen, T., and Oikarinen, E. 2002. Testing the equiva-
lence of logic programs under stable model semantics. In
Proc. of the 8th European Conference on Logics in Artifi-
cial Intelligence, volume 2424 ofLNAI, 493–504. Cosenza,
Italy: Springer.
Janhunen, T., and Oikarinen, E. 2005. Automated verifi-
cation of weak equivalence within theSMODELS system.
Submitted to Theory and Practice of Logic Programming.
Janhunen, T.; Niemelä, I.; Seipel, D.; Simons, P.; and You,
J.-H. 2006. Unfolding partiality and disjunctions in sta-
ble model semantics.ACM Transactions on Computational
Logic 7(1):1–37.
Janhunen, T. 2003. Translatability and intranslatability
results for certain classes of logic programs. Series A: Re-
search report 82, Helsinki University of Technology, Lab-
oratory for Theoretical Computer Science, Espoo, Finland.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
and Scarcello, F. 2006. The DLV system for knowledge
representation and reasoning.ACM Transactions on Com-
putational Logic. Accepted for publication.
Lifschitz, V., and Turner, H. 1994. Splitting a logic
program. InProc. of the 11th International Conference
on Logic Programming, 23–37. Santa Margherita Ligure,
Italy: MIT Press.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs.ACM Transactions on Compu-
tational Logic2(4):526–541.
Maher, M. J. 1993. A transformation system for deductive
database modules with perfect model semantics.Theoreti-
cal Computer Science110(2):377–403.
Marek, W., and Truszczýnski, M. 1999. Stable models and
an alternative logic programming paradigm. InThe Logic
Programming Paradigm: a 25-Year Perspective. Springer-
Verlag. 375–398.
Miller, D. 1986. A theory of modules for logic program-
ming. InProc. of the 1986 Symposium on Logic Program-
ming, 106–114. Salt Lake City, USA: IEEE Computer So-
ciety Press.
Niemel̈a, I. 1999. Logic programming with stable model
semantics as a constraint programming paradigm.Annals
of Math. and Artificial Intelligence25(3-4):241–273.
Oikarinen, E., and Janhunen, T. 2004. Verifying the equiv-
alence of logic programs in the disjunctive case. InProc. of
the 7th International Conference on Logic Programming

DEPARTMENT OF INFORMATICS 17

11TH NMR WORKSHOP

and Nonmonotonic Reasoning, volume 2923 ofLNAI, 180–
193. Fort Lauderdale, USA: Springer.
O’Keefe, R. A. 1985. Towards an algebra for constructing
logic programs. InProc. of the 1985 Symposium on Logic
Programming, 152–160.
Sagiv, Y. 1987. Optimizing datalog programs. InProc. of
the 6th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, 349–362. San Diego,
USA: ACM Press.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics.Artificial
Intelligence138(1–2):181–234.
Turner, H. 2003. Strong equivalence made easy: Nested
expressions and weight constraints.Theory and Practice
of Logic Programming3(4-5):609–622.
Valiant, L. G. 1979. The complexity of enumeration and re-
liability problems.SIAM Journal on Computing8(3):410–
421.
Woltran, S. 2004. Characterizations for relativized no-
tions of equivalence in answer set programming. InProc. of
the 9th European Conference on Logics in Artificial Intel-
ligence, volume 3229 ofLNAI, 161–173. Lisbon, Portugal:
Springer.

18 Technical Report IfI-06-04

Answer Set Programming

DEPARTMENT OF INFORMATICS 19

11TH NMR WORKSHOP

1.2 A Tool for Advanced Correspondence Checking in Answer-Set
Programming

A Tool for Advanced Correspondence Checking in Answer-Set Programming∗

Johannes Oetsch
Institut für Informationssysteme 184/3,

Technische Universität Wien,
Favoritenstraße 9-11,

A-1040 Vienna, Austria
oetsch@kr.tuwien.ac.at

Martina Seidl
Institut für Softwaretechnik 188/3,

Technische Universität Wien,
Favoritenstraße 9-11,

A-1040 Vienna, Austria
seidl@big.tuwien.ac.at

Hans Tompits and Stefan Woltran
Institut für Informationssysteme 184/3,

Technische Universität Wien,
Favoritenstraße 9-11,

A-1040 Vienna, Austria
{tompits,stefan}@kr.tuwien.ac.at

Abstract

In previous work, a general framework for specify-
ing correspondences between logic programs under the
answer-set semantics has been defined. The framework
allows to define different notions of equivalence, in-
cluding well-known notions likestrong equivalenceas
well as refined ones based on theprojectionof answer
sets, where not all parts of an answer set are of rele-
vance (like, e.g., removal of auxiliary letters). In the
general case, deciding the correspondence of two pro-
grams lies on the fourth level of the polynomial hier-
archy and therefore this task can (presumably) not be
efficiently reduced to answer-set programming. In this
paper, we describe an implementation to verify program
correspondences in this general framework. The sys-
tem, called cc⊤, relies on linear-time constructible re-
ductions toquantified propositional logicusing extant
solvers for the latter language as back-end inference en-
gines. We provide some preliminary performance eval-
uation which shed light on some crucial design issues.

Introduction
Nonmonotonic logic programs under the answer-set seman-
tics (Gelfond & Lifschitz 1991), with which we are dealing
with in this paper, represent the canonical and, due to the
availability of efficient answer-set solvers, arguably most
widely used approach to answer-set programming (ASP).
The latter paradigm is based on the idea that problems are
encoded in terms of theories such that the solutions of a
given problem are determined by the models (“answer sets”)
of the corresponding theory. Logic programming under the
answer-set semantics has become an important host for solv-
ing many AI problems, including planning, diagnosis, and
inheritance reasoning (cf. Gelfond & Leone (2002) for an
overview).

To support engineering tasks of ASP solutions, an im-
portant issue is to determine the equivalence of different
problem encodings. To this end, various notions of equiv-
alence between programs under the answer-set semantics

∗This work was partially supported by the Austrian Science
Fund (FWF) under grant P18019; the second author was also sup-
ported by the Austrian Federal Ministry of Transport, Innovation,
and Technology (BMVIT) and the Austrian Research Promotion
Agency (FFG) under grant FIT-IT-810806.

have been studied in the literature, including the recently
proposed framework by Eiter, Tompits, & Woltran (2005),
which subsumes most of the previously introduced notions.
Within this framework, correspondence between two pro-
grams,P andQ, holds iff the answer sets ofP ∪ R and
Q ∪ R satisfy certain criteria, for any programR in a spec-
ified class, called thecontext. We shall focus here on cor-
respondence problems where both the context and the com-
parison between answer sets are determined in terms ofal-
phabets. This kind of program correspondence includes, as
special instances, the well-known notions ofstrong equiva-
lence(Lifschitz, Pearce, & Valverde 2001),uniform equiv-
alence(Eiter & Fink 2003), its relativised variants thereof
(Woltran 2004), as well as the practicably important case
of program comparison underprojectedanswer sets. In the
last setting, not a whole answer set of a program is of in-
terest, but only its intersection on a subset of all letters;this
includes, in particular, removal of auxiliary letters.

For illustration, consider the following two programs
which both express the selection of exactly one of the atoms
a, b. An atom can only be selected if it can be derived to-
gether with the context:

P = { sel(b)← b,not out(b);

sel(a)← a,not out(a);

out(a) ∨ out(b)← a, b; }.

Q = { fail ← sel(a),not a,not fail ;

fail ← sel(b),not b,not fail ;

sel(a) ∨ sel(b)← a;

sel(a) ∨ sel(b)← b; }.

Both programs use “local” atoms,out(·) andfail , respec-
tively, which are expected not to appear in the context. In
order to compare the programs, we could specify an alpha-
bet,A, for the context, for instanceA = {a, b}, or, more
generally, any setA of atoms not containing the local atoms
out(a), out(b), and fail . On the other hand, we want to
check whether, for each addition of a context program over
A, the answer sets correspond when taking only atoms from
B = {sel(a), sel(b)} into account.

In this paper, we report about an implementation of such
correspondence problems together with some initial exper-
imental results. The overall approach of the system, which

20 Technical Report IfI-06-04

Answer Set Programming

we call cc⊤ (“correspondence-checking tool”), is to reduce
the problem of correspondence checking to the satisfiability
problem ofquantified propositional logic, an extension of
classical propositional logic characterised by the condition
that its sentences, usually referred to asquantified Boolean
formulas (QBFs), are permitted to contain quantifications
over atomic formulas.

The motivation to use such an approach is twofold. First,
complexity results (Eiter, Tompits, & Woltran 2005) show
that correspondence checking within this framework is hard,
lying on the fourth level of the polynomial hierarchy. This
indicates that implementations of such checks cannot be re-
alised in a straightforward manner using ASP systems them-
selves. In turn, it is well known that decision problems from
the polynomial hierarchy can be efficiently represented in
terms of QBFs in such a way that determining the valid-
ity of the resultant QBFs is not computationally harder than
checking the original problem. In previous work (Tompits
& Woltran 2005), such translations from correspondence
checking to QBFs have been developed; moreover, they are
constructible inlinear time and space. Second, various prac-
ticably efficient solvers for quantified propositional logic are
currently available (see, e.g., Le Berreet al.(2005)). Hence,
such tools are used as back-end inference engines in our sys-
tem to verify the correspondence problems under considera-
tion.

We note that reduction methods to QBFs have been suc-
cessfully applied already in the field of nonmonotonic rea-
soning (Eglyet al. 2000; Delgrandeet al. 2004), paracon-
sistent reasoning (Besnardet al. 2005; Arieli & Denecker
2003), and planning (Rintanen 1999).

Previous systems implementing different forms of equiv-
alence, being special cases of correspondence notions in
the framework of Eiter, Tompits, & Woltran (2005), also
based on a reduction approach, are SELP (Chen, Lin, &
Li 2005) and DLPEQ (Oikarinen & Janhunen 2004). Con-
cerning SELP, here the problem of checking strong equiva-
lence is reduced to propositional logic, making use of SAT
solvers as back-end inference engines. Our system gener-
alises SELP in the sense that cc⊤ handles a correspondence
problem which coincides with a test for strong equivalence
by the same reduction as used in SELP. The system DLPEQ,
on the other hand, is capable of comparing disjunctive logic
programs under ordinary equivalence. Here, the reduction of
a correspondence problem results in further logic programs
such that the latter have no answer set iff the encoded prob-
lem holds. Hence, this system uses answer-set solvers them-
selves in order to check for equivalence.

The methodologies of both of the above systems have
in common that their range of applicability is restricted to
very special forms of program correspondences, while our
new system cc⊤ provides a wide range of more fine-grained
equivalence notions, allowing practical comparisons useful
for debugging and modular programming.

The outline of the paper is as follows. We start with re-
capitulating the basic facts about logic programs under the
answer-set semantics and quantified propositional logic. In
describing how to implement correspondence problems, we
first give a detailed review of the encodings, followed by a

discussion how these encodings (and thus the present sys-
tem) behave in the case the specified correspondence coin-
cides with special equivalence notions. Then, we address
some technical questions which arise when applying the en-
codings to QBF solvers which require its input to be in a
certain normal form. Finally, we present the concrete system
cc⊤ and illustrate its usage. The penultimate section is de-
voted to experimental evaluation and comparisons. We con-
clude with some final remarks and pointers to future work.

Preliminaries
Throughout the paper, we use the following notation: For an
interpretationI (i.e., a set of atoms) and a setS of interpre-
tations, we writeS|I = {Y ∩ I | Y ∈ S}. For a singleton
setS = {Y }, we writeY |I instead ofS|I , if convenient.

Logic Programs
We are concerned withpropositional disjunctive logic pro-
grams(DLPs) which are finite sets of rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an, (1)

n≥m≥ l≥ 0, where allai are propositional atoms from
some fixed universeU and not denotes default negation.
If all atoms occurring in a programP are from a given set
A ⊆ U of atoms, we say thatP is a programoverA. The
set of all programs overA is denoted byPA.

Following Gelfond & Lifschitz (1991), an interpretationI
is ananswer setof a programP iff it is a minimal model of
thereductP I , resulting fromP by

• deleting all rules containing default negated atomsnot a
such thata ∈ I, and

• deleting all default negated atoms in the remaining rules.

The collection of all answer sets of a programP is denoted
byAS(P).

In order to semantically compare programs, different no-
tions of equivalence have been introduced in the context
of the answer-set semantics. Besidesordinary equivalence
between programs, which checks whether two programs
have the same answer sets, the more restrictive notions of
strong equivalence(Lifschitz, Pearce, & Valverde 2001) and
uniform equivalence(Eiter & Fink 2003) have been intro-
duced. Two programs,P andQ, are strongly equivalent iff
AS(P ∪ R) = AS(Q ∪ R), for any programR, and they
are uniformly equivalent iffAS(P ∪R) = AS(Q∪R), for
any setR of facts, i.e., rules of forma←, for some atoma.
Also, relativised equivalence notions, taking the alphabet of
the extension setR into account, have been defined (Woltran
2004).

In abstracting from these notions, Eiter, Tompits, &
Woltran (2005) introduced a general framework for speci-
fying differing notions of program correspondence. In this
framework, one parameterises, on the one hand, thecontext,
i.e., the class of programs used to be added to the programs
under consideration, and, on the other hand, the relation that
has to hold between the collection of answer sets of the ex-
tended programs. More formally, the following definition
has been introduced:

DEPARTMENT OF INFORMATICS 21

11TH NMR WORKSHOP

Definition 1 A correspondence frameF , is a triple (U , C,
ρ), whereU is a set of atoms, called theuniverse ofF , C ⊆
PU , called thecontext ofF , andρ ⊆ 22U × 22U .

Two programsP,Q ∈ PU are calledF-corresponding, in
symbolsP ≃F Q, iff, for all R ∈ C, (AS(P ∪R),AS(Q ∪
R)) ∈ ρ.

Clearly, the equivalence notions mentioned above are spe-
cial cases ofF-correspondence. Indeed, for any universeU
and anyA ⊆ U , strong equivalence relative toA coincides
with (U ,PA,=)-correspondence, and ordinary equivalence
coincides with(U , {∅},=)-correspondence.

Following Eiter, Tompits, & Woltran (2005), we are con-
cerned with correspondence frames of form(U ,PA,⊆B)
and (U ,PA,=B), whereA,B ⊆ U are sets of atoms and
⊆B and=B are projections of the standard subset and set-
equality relation, respectively, defined as follows: for any
setS,S ′ of interpretations,S ⊆B S

′ iff S|B ⊆ S ′|B , and
S =B S

′ iff S|B = S ′|B .
A correspondence problem, Π, (over U) is a quadruple

(P,Q, C, ρ), whereP,Q ∈ PU and(U , C, ρ) is a correspon-
dence frame. We say thatΠ holds iff P ≃(U,C,ρ) Q holds.
For a correspondence problemΠ = (P,Q, C, ρ) over U ,
we usually leaveU implicit, assuming that it consists of all
atoms occurring inP , Q, andC. We callΠ anequivalence
problemif ρ is given by=B , and aninclusion problemif ρ
is given by⊆B , for someB ⊆ U . Note that(P,Q, C,=B)
holds iff (P,Q, C,⊆B) and(Q,P, C,⊆B) jointly hold.

The next proposition summarises the complexity land-
scape within this framework (Eiter, Tompits, & Woltran
2005; Pearce, Tompits, & Woltran 2001; Woltran 2004).

Proposition 1 Given programsP andQ, sets of atomsA
andB, andρ ∈ {⊆B ,=B}, deciding whether a correspon-
dence problem(P,Q,PA, ρ) holds is:

1. ΠP
4 -complete, in general;

2. ΠP
3 -complete, forA = ∅;

3. ΠP
2 -complete, forB = U ;

4. coNP-complete forA = U .

While Case 1 provides the result in the general setting, for
the other cases we have the following: Case 2 amounts to
ordinary equivalence with projection, i.e., the answer sets of
two programs relative to a specified setB of atoms are com-
pared. Case 3 amounts tostrong equivalence relative toA
and includes, as a special case, viz. forA = ∅, ordinary
equivalence. Finally, Case 4 includesstrong equivalence
(for B = U) as well as strong equivalence with projection.

TheΠP
4 -hardness result shows that, in general, checking

the correspondence of two programs cannot (presumably)
be efficiently encoded in terms of ASP, which has its basic
reasoning tasks located at the second level of the polynomial
hierarchy (i.e., they are contained inΣP

2 or ΠP
2). However,

correspondence checking can be efficiently encoded in terms
of quantified propositional logic, whose basic concepts we
recapitulate next.

Quantified Propositional Logic
Quantified propositional logic is an extension of classical
propositional logic in which formulas are permitted to con-

tain quantifications over propositional variables. In particu-
lar, this language contains, for any atomp, unary operators
of form ∀p and∃p, calleduniversalandexistential quanti-
fiers, respectively, where∃p is defined as¬∀p¬. Formulas
of this language are also calledquantified Boolean formulas
(QBFs), and we denote them by Greek upper-case letters.

Given a QBFQpΨ, for Q ∈ {∃,∀}, we callΨ thescope
of Qp. An occurrence of an atomp is free in a QBFΦ if it
does not occur in the scope of a quantifierQp in Φ. In what
follows, we tacitly assume that every subformulaQpΦ of a
QBF contains a free occurrence ofp in Φ, and for two dif-
ferent subformulasQpΦ, QqΨ of a QBF, we requirep 6= q.
Moreover, given a finite setP of atoms,QP Ψ stands for any
QBF Qp1Qp2 . . .QpnΨ such that the variablesp1, . . . , pn

are pairwise distinct andP = {p1, . . . , pn}. Finally, for an
atomp (resp., a setP of atoms) and a setI of atoms,Φ[p/I]
(resp.,Φ[P/I]) denotes the QBF resulting fromΦ by replac-
ing each free occurrence ofp (resp., eachp ∈ P) in Φ by⊤
if p ∈ I and by⊥ otherwise.

For an interpretationI and a QBFΦ, the relationI |=
Φ is inductively defined as in classical propositional logic,
whereby universal quantifiers are evaluated as follows:

I |= ∀p Φ iff I |= Φ[p/{p}] andI |= Φ[p/∅].

A QBF Φ is true underI iff I |= Φ, otherwiseΦ is false
underI. A QBF issatisfiableiff it is true under at least one
interpretation. A QBF isvalid iff it is true under any inter-
pretation. Note that aclosedQBF, i.e., a QBF without free
variable occurrences, is either true under any interpretation
or false under any interpretation.

A QBF Φ is said to be inprenex normal form(PNF) iff it
is closed and of the form

QnPn . . .Q1P1 φ, (2)

wheren ≥ 0, φ is a propositional formula,Qi ∈ {∃,∀}
such thatQi 6= Qi+1 for 1 ≤ i ≤ n − 1, (P1, . . . , Pn) is
a partition of the propositional variables occurring inφ, and
Pi 6= ∅, for each1 ≤ i ≤ n. We say thatΦ is in prenex con-
junctive normal form(PCNF) iffΦ is of the form (2) andφ is
in conjunctive normal form. Furthermore, a QBF of form (2)
is also referred to as an(n,Qn)-QBF. Any closed QBFΦ is
easily transformed into an equivalent QBF in prenex normal
form such that each quantifier occurrence from the original
QBF corresponds to a quantifier occurrence in the prenex
normal form. Let us call such a QBF theprenex normal form
of Φ. However, there are different ways to obtain an equiv-
alent prenex QBF (cf. Eglyet al. (2004) for more details on
this issue). The following property is essential:

Proposition 2 For everyk ≥ 0, deciding the truth of a
given(k,∃)-QBF(resp.,(k,∀)-QBF) isΣP

k -complete(resp.,
ΠP

k -complete).

Hence, any decision problemD in ΣP
k (resp.,ΠP

k) can be
mapped in polynomial time to a(k,∃)-QBF (resp.,(k,∀)-
QBF) Φ such thatD holds iff Φ is valid. In particular any
correspondence problem(P,Q,PA, ρ), for ρ ∈ {⊆B ,=B},
can be reduced in polynomial time to a(4,∀)-QBF. Our im-
plemented tool, described next, relies on two such mappings,
which are actually constructible inlinear space and time.

22 Technical Report IfI-06-04

Answer Set Programming

Computing Correspondence Problems
We now describe the system cc⊤, which allows to verify
the correspondence of two programs. It relies on efficient
reductions from correspondence problems to QBFs as de-
veloped by Tompits & Woltran (2005). These encodings
are presented in the first subsection. Then, we discuss how
the encodings behave if the specified correspondence prob-
lem coincides with special forms of inclusion or equivalence
problems, viz. those restricted cases discussed in Proposi-
tion 1. Afterwards, we give details concerning the transfor-
mation of the resultant QBFs into PCNF, which is necessary
because most extant QBF solvers rely on input of this form.
Finally, we give some details concerning the general syntax
and invocation of the cc⊤ tool.

Basic Encodings
Following Tompits & Woltran (2005), we consider two dif-
ferent reductions from inclusion problems to QBFs,S[·] and
T[·], whereT[·] can be seen as an explicit optimisation of
S[·]. Recall that equivalence problems can be decided by the
composition of two inclusion problems. Thus, a composed
encoding for equivalence problems is easily obtained via a
conjunction of two particular instantiations ofS[·] (or T[·]).

For our encodings, we use the following building blocks.
The idea hereby is to use sets of globally new atoms in or-
der to refer to different assignments of the atoms from the
compared programs within a single formula. More formally,
given an indexed setV of atoms, we assume (pairwise) dis-
joint copiesVi = {vi | v ∈ V }, for everyi ≥ 1. Further-
more, we introduce the following abbreviations:

1. (Vi ≤ Vj) :=
∧

v∈V (vi → vj);

2. (Vi < Vj) := (Vi ≤ Vj) ∧ ¬(Vj ≤ Vi); and

3. (Vi = Vj) := (Vi ≤ Vj) ∧ (Vj ≤ Vi).

Observe that the latter is equivalent to
∧

v∈V (vi ↔ vj).
Roughly speaking, these three “operators” allow us to

compare different subsets of atoms from a common set,V ,
under subset inclusion, proper-subset inclusion, and equal-
ity, respectively. The comparison takes place within asin-
gle interpretation while evaluating a formula. As an ex-
ample, considerV = {v, w, u} and an interpretationI =
{v1, v2, w2}, implicitly representing setsX = {v} (via the
relation I|V1

= {v1}) andY = {v, w} (via the relation
I|V2

= {v2, w2}). Then, we have that(V1 ≤ V2) as well as
(V1 < V2) are true underI which matches the observation
thatX is indeed a proper subset ofY , while (V1 = V2) is
false underI reflecting the fact thatX 6= Y .

In accordance to this renaming of atoms, we use sub-
scripts as a general renaming schema for formulas and rules.
That is, for eachi ≥ 1, αi expresses the result of replacing
each occurrence of an atomp in α by pi, whereα is any
formula or rule. Furthermore, for a ruler of form (1), we
defineH(r) = a1 ∨ · · · ∨ al,B+(r) = al+1 ∧ · · · ∧ am, and
B−(r) = ¬am+1 ∧ · · · ∧ ¬an. We identify empty disjunc-
tions with⊥ and empty conjunctions with⊤. Finally, for a
programP , we define

Pi,j =
∧

r∈P

(

(B+(ri) ∧B
−(rj))→ H(ri)

)

.

Formally, we have the following relation: LetP be a pro-
gram over atomsV , I an interpretation, andX,Y ⊆ V
such that, for somei, j, I|Vi

= Xi andI|Vj
= Yj . Then,

X |= PY iff I |= Pi,j . Hence, we are able to characterise
models ofP (in case thati = j) as well as models of certain
reducts ofP (in case thati 6= j).

Having defined these building blocks, we proceed with
the first encoding.

Definition 2 LetP,Q be programs overV , letA,B ⊆ V ,
and letΠ = (P,Q,PA,⊆B) be an inclusion problem. Then,

S[Π] := ¬∃V1

(

P1,1 ∧ S1(P,A)∧

∀V3

(

S2(Q,A,B)→ S3(P,Q,A)
)

)

,

where

S1(P,A) := ∀V2

(

((A2 = A1) ∧ (V2 < V1))→¬P2,1

)

,

S2(Q,A,B) :=
(

(A ∪B)3 = (A ∪B)1
)

∧Q3,3, and

S3(P,Q,A) := ∃V4

(

(V4 < V3) ∧Q4,3 ∧
(

(A4 < A1)→

∀V5(((A5 =A4)∧(V5 ≤ V1))→¬P5,1)
))

.

In fact, the scope,Φ, of ∃V1 encodes the conditions for
deciding whether a so-calledpartial spoiler(Eiter, Tompits,
& Woltran 2005) for the inclusion problemΠ exists. Such
spoilers test certain relations on the reducts of the two pro-
grams involved, in order to avoid an explicit enumeration of
all R ∈ PA for deciding whetherΠ holds. Such a spoiler
for Π exists iffΠ doesnot hold. Hence, the resulting encod-
ing Φ is unsatisfiable iffΠ holds, and thus the closed QBF
S[Π] = ¬∃V1Φ is valid iff Π holds.

In more concrete terms, given a correspondence prob-
lem Π and its encodingS[Π] = ¬∃V1Φ, the general task
of the QBFΦ is to test, for an answer-set candidateX of
P , that noY with Y |B = X|B becomes an answer set of
Q under some implicitly considered extension (in fact, it is
sufficient to check only potential candidatesY of the form
Y |A∪B = X|A∪B). Now, the subformulaP1,1 ∧ S1(P,A)
tests whetherX is such a candidate forP , with X being
represented byV1. In the remaining part of the encoding,
S2(Q,A,B) returns as its models those potential candidates
Y (represented byV3) for being answer set ofQ. These
candidates are now checked to be non-minimal and whether
there is a further model (represented byV4) of the reduct of
Q with respect toY surviving an extension ofQ, for which
X turns into an answer set of the extension ofP .

In what follows, we review a more compact encoding
which, in particular, reduces the number of universal quan-
tifications. The idea is to save on the fixed assignments, as,
e.g., inS2(Q,A,B), where we have(A∪B)3 = (A∪B)1.
That is, inS2(Q,A,B), we implicitly ignore all assignments
to V3 where atoms fromA or B have different truth values
as the corresponding assignments toV1. Therefore, it makes
sense to consider only atoms fromV3 \ (A3 ∪B3) and using
A1 ∪B1 instead ofA3 ∪B3 in Q3,3.

This calls for a more subtle renaming schema for pro-
grams, however. LetV be a set of indexed atoms, and let
r be a rule. Then,rVi,k results fromr by replacing each atom
x in r by xi, providingxi ∈ V, and byxk otherwise. For a

DEPARTMENT OF INFORMATICS 23

11TH NMR WORKSHOP

programP , we define

PV
i,j,k :=

∧

r∈P

(

(B+(rVi,k) ∧B−(rVj,k))→ H(rVi,k)
)

.

Moreover, for everyi ≥ 1, every setV of atoms, and every
setC, V C

i := (V \ C)i.

Definition 3 LetP,Q be programs overV andA,B ⊆ V .
Furthermore, letΠ = (P,Q,PA,⊆B) be an inclusion prob-
lem andV = V1 ∪ V

A
2 ∪ V

A∪B
3 ∪ V4 ∪ V

A
5 . Then,

T[Π] := ¬∃V1

(

P1,1 ∧ T1(P,A,V)∧

∀V A∪B
3

(

QV
3,3,1 → T3(P,Q,A,V)

)

)

,

where
T1(P,A,V) := ∀V A

2

(

(V A
2 < V A

1)→ ¬PV
2,1,1

)

and

T3(P,Q,A,V) := ∃V4

((

V4 < ((A∪B)1 ∪ V
A∪B
3)

)

∧

QV
4,3,1 ∧

(

(A4 < A1)→

∀V A
5 ((V A

5 ≤ V
A
1)→ ¬PV

5,1,4)
))

.

Note that the subformulaV4 < ((A∪B)1 ∪ V
A∪B
3) in

T3(P,Q, A,V) denotes
((

(A ∪B)4 ≤ (A ∪B)1
)

∧ (V A∪B
4 ≤ V A∪B

3)
)

∧

¬
((

(A ∪B)1 ≤ (A ∪B)4
)

∧ (V A∪B
3 ≤ V A∪B

4)
)

.

Also note that, compared to our first encodingS[Π], we do
not have a pendant to subformulaS2 here, which reduces
simply toQV

3,3,1 due to the new renaming schema.

Proposition 3 (Tompits & Woltran 2005) For any inclu-
sion problemΠ, the following statements are equivalent:
(i) Π holds;(ii) S[Π] is valid; and(iii) T[Π] is valid.

In what follows, let, for every equivalence problemΠ =
(P, Q, PA, =B), Π′ andΠ′′ denote the associated inclusion
problems(P, Q, PA, ⊆B) and (Q, P, PA, ⊆B), respec-
tively.

Corollary 1 For any equivalence problemΠ, the following
statements are equivalent:(i) Π holds; (ii) S[Π′]∧ S[Π′′] is
valid; and(iii) T[Π′]∧ T[Π′′] is valid.

Special Cases
We now analyse how our encodings behave in certain in-
stances of the equivalence framework which are located at
lower levels of the polynomial hierarchy (cf. Proposition 1).
We point out that the following simplifications are corre-
spondingly implemented within our system.

In the case ofstrong equivalence(Lifschitz, Pearce, &
Valverde 2001), i.e., problems of formΠ = (P,Q,PA,=A)
with A = U , the encodingsT[Π′] andT[Π′′] can be drasti-
cally simplified, sinceV A

2 = V A
3 = V A

5 = ∅. In particular,
T[Π′] is equivalent to

¬∃V1

(

P1,1 ∧
(

Q1,1 → ∃V4

(

(V4 < V1)∧Q4,1 ∧¬P4,1

))

)

.

Now, the composed encoding for strong equivalence, i.e., the
QBF T[Π′] ∧ T[Π′′], amounts to a single propositional un-
satisfiability test, witnessing the coNP-completeness com-
plexity for checking strong equivalence (Pearce, Tompits,&

Woltran 2001; Lin 2002). This holds also for problems of
the form (P,Q,PU ,=B) with arbitraryB. One can show
that similar reductions (Pearce, Tompits, & Woltran 2001;
Lin 2002) for testing strong equivalence in terms of proposi-
tional logic are simple variants thereof. Indeed, the method-
ology of the tool SELP (Chen, Lin, & Li 2005) is basically
mirrored in our approach, in case the parameterisation of the
given problem corresponds to a test for strong equivalence.

Strong equivalencerelative to a setA of atoms (Woltran
2004), i.e., problems of form(P,Q,PA,=B) with B = U ,
also yields simplifications withinT[Π′] and T[Π′′], since
V A∪B

3 = ∅. In fact,T[Π′] can be rewritten to

¬∃V1

(

P1,1 ∧ ∀V
A
2

(

(V A
2 < V A

1)→ ¬PV
2,1,1

)

∧
(

Q1,1 → ∃V4

((

V4 < V1

)

∧Q4,1∧
(

(A4 < A1)→ ∀V
A
5 ((V A

5 ≤ V
A
1)→ ¬PV

5,1,4)
))))

.

When putting this QBF into prenex normal form (see be-
low), it turns out that the resulting QBF amounts to a(2,∀)-
QBF, again reflecting the complexity of the encoded task.
Notice that for equivalence problems(P,Q,PA,=B) with
A ∪ B = U , we also have thatV A∪B

3 = ∅. Thus, the same
simplifications also apply for this special case.

The case of ordinary equivalence, i.e., considering prob-
lems of formΠ = (P,Q,PA,=) with A = ∅, is, indeed, a
special case of relativised strong equivalence. As an addi-
tional optimisation we can drop the subformula

(A4 < A1)→ ∀V
A
5

(

(V A
5 ≤ V

A
1)→ ¬PV

5,1,4

)

(3)

from partT3 of T[Π′]. This is becauseA = ∅, and therefore

(A4 < A1) :=
∧

a∈A

(

a4 → a1

)

∧ ¬
∧

a∈A

(

a1 → a4

)

reduces to⊤ ∧ ¬⊤, and thus to⊥. Hence, the validity of
the implication (3) follows. However, this does not affect
the number of quantifier alternations compared to the case
of relativised strong equivalence. Indeed, this is in accord
with theΠP

2 -completeness for ordinary equivalence. Putting
things together, and observing that forA = ∅we haveV A

2 =
V2, the encodingT[Π′] results for ordinary equivalence in

¬∃V1

(

P1,1 ∧ ∀V2((V2 < V1)→ ¬P2,1)∧

(Q1,1 → ∃V4((V4 < V1) ∧Q4,1))
)

.

This encoding is related to encodings for computing answer
sets via QBFs, as discussed by Eglyet al. (2000). Indeed,
taking the two main conjuncts fromT[Π′], viz.

P1,1 ∧ ∀V2((V2 < V1)→ ¬P2,1) and (4)

Q1,1 → ∃V4((V4 < V1) ∧Q4,1), (5)

we get, for any assignmentY1 ⊆ V1, thatY1 is a model of
(4) iff Y is an answer set ofP , andY1 is a model of (5) only
if Y is not an answer set ofQ.

Finally, we discuss the case of ordinary equivalence with
projection, i.e., problems of form(P,Q,PA,=B) with A =
∅. Problems of this form areΠP

3 -complete, and thus we
expect our system (after transformation to prenex form) to

24 Technical Report IfI-06-04

Answer Set Programming

yield (3,∀)-QBFs. Here, the only simplification is to get rid
off the subformula (3). We can do this for the same reason,
viz. sinceA = ∅, as above. The simplifications are then as
follows (once again using the fact thatV A

2 = V2 as well as
V A∪B

3 = V B
3):

¬∃V1

(

P1,1 ∧ ∀V2

(

(V2 < V1)→ ¬P2,1

)

∧

∀V B
3

(

QV
3,3,1 → ∃V4

((

V4 < (B1 ∪ V
B
3)

)

∧QV
4,3,1

)))

.

Compared to the case of relativised equivalence, as dis-
cussed above, this time we haveV A∪B

3 6= ∅ and thus an
additional quantifier alternation “survives” the simplifica-
tion. After bringing the encoding into its prenex form, we
therefore get(3,∀)-QBFs, once again reflecting the intrinsic
complexity of the encoded problem.

For the encodingT[·], the structure of the resulting QBF
always reflects the complexity of the correspondence prob-
lem according to Proposition 1. This does not hold for for-
mulas stemming fromS[·], however. In any case, our tool
implements both encodings in order to provide interesting
benchmarks for QBF solvers with respect to their capability
to find implicit optimisations for equivalent QBFs.

Transformations into Normal Forms
Most available QBF solvers require its input formula to be
in a certain normal form, viz. in prenex conjunctive normal
form (PCNF). Hence, in order to employ these solvers for
our tool, the translations described above have to be trans-
formed by a further two-phased normalisation step:

1. translation of the QBF into prenex normal form (PNF);

2. translation of the propositional part of the formula in PNF
into CNF.

Both steps require to address different design issues. In
what follows, we describe the fundamental problems, and
then briefly provide our solutions in some detail.

First, the step of prenexing is not deterministic. As shown
by Egly et al. (2004), there are numerous so-calledprenex-
ing strategies. The concrete selection of such a strategy (also
depending on the concrete solver used) crucially influences
the running times (see also our results below). In prenex-
ing a QBF, certaindependenciesbetween quantifiers have
to be respected, when combining the quantifiers of different
subformulas to one linear prefix. For our encodings, these
dependencies are rather simple and analogous for both en-
codingsS[·] andT[·]. First, observe, however, that both en-
codings have a negation as their main connective which has
to be shifted into the formula by applying the usual equiva-
lence preserving transformations as known from first-order
logic. In what follows, we implicitly assume that this step
has already been performed. This allows us to consider the
quantifier dependencies cleansed with respect to their polar-
ities. The dependencies for the encodingS[·] can then be
illustrated as follows:

∀V1

∃V2 ∃V3

∀V4

∃V5

Here, the left branch results from the subformulaS1 and the
right one results from the subformula∀V3(S

2(Q,A,B) →
S3(P,Q,A)).

Inspecting these quantifier dependencies, we can group
∃V2 either together with∃V3 or with ∃V5. This yields the
following two basic ways for prenexing our encodings:

↑: ∀V1∃(V2 ∪ V3)∀V4∃V5; and ↓: ∀V1∃V3∀V4∃(V5 ∪ V2).

Together with the two encodingsS[·] andT[·], we thus get
four different alternatives to represent an inclusion problem
in terms of a prenex QBF; we will denote them byS↑[·],
S↓[·], T↑[·], andT↓[·], respectively. Our experiments below
show their different performance behaviour (relative to the
employed QBF solver and the benchmarks).

Concerning the transformation of the propositional part
of a prenex QBF into CNF, we use a method following
Tseitin (1968) in which new atoms are introduced abbreviat-
ing subformula occurrences and which has the property that
the resultant CNFs are always polynomial in the size of the
input formula. Recall that a standard translation of a propo-
sitional formula into CNF based on distributivity laws yields
formulas of exponential size in the worst case. However, the
normal form translation into CNF using labels is not valid-
ity preserving like the one based on distributivity laws but
only satisfiability equivalent. In the case of closed QBFs,
the following result holds:

Proposition 4 Let Φ = QnPn . . .Q1P1φ, for Qi ∈ {∃,∀}
andn > 0, be either an(n,∀)-QBF withn being even or
an (n,∃)-QBF withn being odd. Furthermore letφ′ be the
CNF resulting from the propositional partφ of Φ by intro-
ducing new labels following Tseitin(1968). Then,Φ and
QnPn . . . Q1P1∃V φ

′ are logically equivalent, whereV are
the new labels introduced by the CNF transformation.

Note that forΦ as in the above proposition, we have that
Q1 = ∃. Hence, in this case,QnPn . . .Q1P1∃V φ

′ is the de-
sired PCNF, equivalent toΦ, used as input for QBF solvers
requiring PCNF format for evaluatingΦ. In order to trans-
form a QBF Ψ = QnPn . . .Q1P1ψ which is an(n,∀)-
QBF withn being odd or an(n,∃)-QBF withn being even,
we just apply the above proposition toQnPn . . .Q1P1¬ψ,
whereQi = ∃ if Qi = ∀ and Qi = ∀ otherwise, which
is equivalent to¬Ψ. That is, in order to evaluateΨ by
means of a QBF solver requiring PCNF input, we compute
QnPn . . .Q1P1¬ψ and “reverse“ the output. This is ac-
commodated in cc⊤ that either the original correspondence
problem or the complementary problem is encoded when-
ever an input yields a QBF likeΨ.

For the entire normal-form transformation, one can use
the quantifier-shifting toolqst (Zolda 2004). It accepts ar-
bitrary QBFs inboole format (see below) as input and re-
turns an equivalent PCNF QBF inqdimacsformat, which is
nowadays a de-facto standard for PCNF-QBF solvers. The
tool qst implements 14 different strategies (among them
↑ and↓ we use here) to obtain a PCNF and uses the men-
tioned structure-preserving normal-form transformationfor
the transformation to CNF.

DEPARTMENT OF INFORMATICS 25

11TH NMR WORKSHOP

The Implemented Tool
The system cc⊤ implements the reductions from inclu-
sion problems(P,Q,PA,⊆B) and equivalence problems
(P,Q,PA,=B) to corresponding QBFs, together with the
potential simplifications discussed above. It takes as input
two programs,P andQ, and two sets of atoms,A andB,
whereA specifies the alphabet of the context andB the set
of atoms for projection on the correspondence relation. The
reduction (S[·] or T[·]) and the type of correspondence prob-
lem (⊆B or =B) are specified via command-line arguments:
-S , -T to select the kind of reduction; and-i , -e to check
for inclusion or equivalence between the two programs.

In general, the syntax to specify the programs in cc⊤ cor-
responds to the basicDLV syntax.1 PropositionalDLV pro-
grams can be passed to cc⊤ and programs processible for
cc⊤ can be handled byDLV. Considering the example from
the introduction, the two programs would be expressed as:

P : sel(b) :- b, not out(b).
sel(a) :- a, not out(a).
out(a) v out(b) :- a, b.

Q: fail :- sel(a), not a, not fail.
fail :- sel(b), not b, not fail.
sel(a) v sel(b) :- a.
sel(a) v sel(b) :- b.

We suppose that fileP.dl contains the code for program
P and, accordingly, fileQ.dl contains the code forQ. If we
want to check whetherP is equivalent toQ with respect to
the projection to the output predicatesel(·), and restricting
the context to programs over{a, b}, then we need to specify

• the context set, stored in a file, sayA, containing the string
“ (a, b) ”, and

• the projection set, also stored in a file, sayB, containing
the string “(sel(a), sel(b)) ”.

The invocation syntax for cc⊤ is as follows:

ccT -e P.dl Q.dl A B .

By default, the encodingT[·] is chosen. Note that the order
of the arguments is important: first, the programsP andQ
appear, then the context setA, and at last the projection set
B. An alternative call of cc⊤ for our example would be

cc⊤ -e -A "(a,b)" -B "(sel(a),sel(b))"
P.dl Q.dl

specifying setsA andB directly from the command line.
After invocation, the resulting QBF is written to the standard
output device and can be processed further by QBF solvers.
The output can be piped, e.g., directly to the BDD-based
QBF solverboole 2 by means of the command

ccT -e P.dl Q.dl A B | boole

which yields0 or 1 as answer for the correspondence prob-
lem (in our case, the correspondence holds and the output

1Seehttp://www.dlvsystem.com/ for more informa-
tion aboutDLV.

2This solver is available athttp://www.cs.cmu.edu/
˜modelcheck/bdd.html .

is 1). To employ further QBF solvers, the output has to be
processed according to their input syntax.

If the setA (resp.,B) is omitted in invocation, then each
variable occurring inP or Q is assumed to be inA (resp.,
B); if “ 0” is passed instead of a filename, then the empty set
is assumed for setA (resp.,B). Thus, checking for strong
equivalence betweenP andQ is done by

ccT -e P.dl Q.dl | boole

while ordinary equivalence (with projection overB) by

ccT -e P.dl Q.dl 0 B | boole .

We developed cc⊤ entirely inANSI C; hence, it is highly
portable. The parser for the input data was written using
LEX and YACC. The complete package in its current ver-
sion consists of more than 2000 lines of code. For further
information about cc⊤ and the benchmarks below, see

http://www.kr.tuwien.ac.at/research/eq/ .

Experimental Results
Our experiments were conducted to determine the behaviour
of different QBF solvers in combination with the encodings
S[·] andT[·] for inclusion checking, or, if the employed QBF
solver requires the input in prenex form, withS↑[·], S↓[·],
T↑[·], andT↓[·]. To this end, we implemented a genera-
tor of inclusion problems which emanate from the proof of
the ΠP

4 -hardness of inclusion checking (Eiter, Tompits, &
Woltran 2005), and thus provides us with benchmark prob-
lems capturing the intrinsic complexity of this task.

The strategy to generate such instances is as follows:

1. generate a(4,∀)-QBFΦ in PCNF by random;

2. reduceΦ to an inclusion problemΠ = (P,Q,PA,⊆B)
such thatΠ holds iff Φ is valid;

3. apply cc⊤ to derive the corresponding encodingΨ for Π.

Incidentally, this procedure also yields a simple method
for verifying the correctness of the overall implementation
by simply checking whetherΨ is equivalent toΦ. We use
here a parameterisation for the generation of random QBFs
such that the benchmark set yields a nearly 50% distribu-
tion between the true and false instances. Therefore, the set
is neither over- nor underconstrained and thus presumably
located in a hard region, having easy-hard-easy patterns in
mind.

The reduction from the generated QBFΦ to the corre-
sponding inclusion problem is obtained as follows: Con-
siderΦ of form ∀W∃X∀Y ∃Zφ, whereφ =

∧n
i=1 Ci is a

formula in CNF over atomsV = (W ∪ X ∪ Y ∪ Z) with
Ci = ci,1 ∨ · · · ∨ ci,ki

. Now, let V̄ = {v̄ | v ∈ V } be a set
of new atoms, and defineC∗

i = c∗i,1, . . . , c
∗
i,ki

, v∗ = v̄, and
(¬v)∗ = v. We generate

P = {v ∨ v̄ ←| v ∈ V }∪

{v ← u, ū; v̄ ← u, ū | v, u ∈ V \W}∪

{← not v; ← not v̄ | v ∈ V \W}∪

{v ← C∗
i ; v̄ ← C∗

i | v ∈ V \W ; 1 ≤ i ≤ n}.

For programQ we use further atomsX ′ = {x′ | x ∈ X},
X̄ ′ = {x̄′ | x ∈ X} and generate:

26 Technical Report IfI-06-04

Answer Set Programming

Figure 1: Results for true (left chart) and false (right chart) problem instances subdivided by solvers and encodings.

Q = {v ∨ v̄ ←| v ∈ X ∪ Y }∪

{v ← u, ū; v̄ ← u, ū | v, u ∈ X ∪ Y }∪

{← x′, x̄′; ← not x′,not x̄′ | x ∈ X}∪

{v ← x′; v̄ ← x′;

v ← x̄′; v̄ ← x̄′ | v ∈ X ∪ Y, x ∈ X}∪

{x′ ← x̄,not x̄′; x̄′ ← x,not x′ | x ∈ X}.

Finally, setsA andB are defined as:

A = B = {X ∪ X̄ ∪ Y ∪ Ȳ }.

It can be shown thatΦ is valid iff (P,Q,PA,⊆B) holds.
We have set up a test series comprising 1000 instances of

inclusion problems generated that way (465 of them evaluat-
ing to true), where the first programP has 620 rules, the sec-
ond programQ has 280 rules, using a total of 40 atoms, and
the setsA andB of atoms are chosen to contain 16 atoms.
After employing cc⊤, the resulting QBFs possess, in case
of translationS[·], 200 atoms and, in case of translationT[·],
152 atoms. The additional prenexing step (together with the
translation of the propositional part into CNF) yields, in case
of S[·], QBFs with 6575 clauses over 2851 atoms and, in case
of T[·], QBFs with 6216 clauses over 2555 atoms.

We compared four different state-of-the-art QBF solvers,
namely qube-bj (Giunchiglia, Narizzano, & Tacchella
2003),semprop (Letz 2002),skizzo (Benedetti 2005),
andqpro (Egly, Seidl, & Woltran 2006). The former three
require QBFs in PCNF as input (thus, we tested them using
encodingsS↑[·], S↓[·], T↑[·], andT↓[·]), while qpro admits
arbitrary QBFs as input (we tested it with the non-prenex en-
codingsS[·] andT[·]). Our results are depicted in Figure 1.
They-axis shows the (arithmetically) average running time
in seconds (time-out was 100 seconds) for each solver (with
respect to the chosen translation and prenexing strategy).

As expected, for all solvers, the more compact encodings
of form T[·] were evaluated faster than the QBFs stemming
from encodings of formS[·]. The performance of the prenex-
form solversqube-bj , semprop , andskizzo is highly
dependent on the prenexing strategy, and↓ dominates↑.

For the special case of ordinary equivalence, we com-
pared our approach against the system DLPEQ (Oikarinen
& Janhunen 2004) which is based on a reduction to disjunc-
tive logic programs, usinggnt (Janhunenet al. 2006) as
answer-set solver. The benchmarks rely on randomly gen-
erated(2,∃)-QBFs using Model A (Gent & Walsh 1999).

Each QBF is reduced to a program following Eiter & Got-
tlob (1995), such that the latter possesses an answer set iff
the original QBF is valid. The idea of the benchmarks is to
compare each such program with one in which one randomly
selected rule is dropped, simulating a “sloppy” programmer,
in terms of ordinary equivalence.

Average running times are shown in Table 1. The num-
bern of variables in the original QBF varies from 10 to 24,
and, for eachn, 100 such program comparisons are gener-
ated for which the portion of cases where equivalence holds
is between 40% and 50% (for details about the benchmarks,
cf. Oikarinen & Janhunen (2004)). We set a time-out of 120
seconds, and both the one-phased mode (DLPEQ1) as well
as the two-phased mode (DLPEQ2) of DLPEQ were tested.
For cc⊤, we compared the same back-end solvers as above,
using encodingT[·]. Recall that for ordinary equivalence
cc⊤ provides(2,∀)-QBFs, thus we can resign on the distinc-
tion between prenexing strategies. The dedicated DLPEQ
approach turns out to be faster, but, interestingly, among
the tested QBF solvers,qpro is the most competitive one,
while the PCNF-QBF solvers perform bad even for small in-
stances. This result is encouraging as regards further devel-
opment of the non-normal form approach of QBF solvers.

Conclusion
In this paper, we discussed an implementation for advanced
program comparison in answer-set programming via encod-
ings into quantified propositional logic. This approach was
motivated by the high computational complexity we have to
face for correspondence checking, making a direct realisa-
tion via ASP hard to accomplish. Since currently practicably
efficient solvers for quantified propositional logic are avail-
able, they can be employed as back-end inference engines
to verify the correspondence problems under consideration
using the proposed encodings. Moreover, since such prob-
lems are one of the few natural ones lying above the second
level of the polynomial hierarchy, yet still part of the poly-
nomial hierarchy, we believe that our encodings also provide
valuable benchmarks for evaluating QBF solvers, for which
there is currently a lack of structured problems with more
than one quantifier alternation (cf., Le Berreet al. (2005)).

References
Arieli, O., and Denecker, M. 2003. Reducing Preferential
Paraconsistent Reasoning to Classical Entailment.Journal

DEPARTMENT OF INFORMATICS 27

11TH NMR WORKSHOP

qube-bj semprop skizzo qpro DLPEQ1 DLPEQ2
10 120.00 120.00 14.71 0.05 0.05 0.04
12 120.00 120.00 18.45 0.17 0.06 0.06
14 120.00 120.00 48.70 0.51 0.09 0.08
16 120.00 120.00 120.00 1.54 0.13 0.11
18 120.00 120.00 120.00 4.85 0.19 0.15
20 120.00 120.00 120.00 15.07 0.31 0.25
22 120.00 120.00 120.00 46.23 0.50 0.39
24 120.00 120.00 120.00120.00 0.84 0.64

qube-bj semprop skizzo qpro DLPEQ1 DLPEQ2
10 0.29 56.00 12.27 0.01 0.03 0.03
12 1.49 65.06 18.24 0.02 0.05 0.03
14 5.35 69.35 33.17 0.07 0.05 0.04
16 25.48 86.53 120.00 0.23 0.07 0.06
18 46.10 65.74 120.00 0.50 0.09 0.07
20 82.06 90.34 120.00 1.95 0.20 0.15
22 76.77 86.95 120.00 6.11 0.20 0.15
24 83.68 92.43 120.00 14.81 0.40 0.34

Table 1: Comparing cc⊤ against DLPEQ on true (left table) and false (right table) problem instances subdivided by solvers.

of Logic and Computation13(4):557–580.

Benedetti, M. 2005. sKizzo: A Suite to Evaluate and Cer-
tify QBFs. InProc. CADE’05, volume 3632 ofLNCS, 369–
376. Springer.

Besnard, P.; Schaub, T.; Tompits, H.; and Woltran, S.
2005. Representing Paraconsistent Reasoning via Quan-
tified Propositional Logic. InInconsistency Tolerance, vol-
ume 3300 ofLNCS, 84–118. Springer.

Chen, Y.; Lin F.; and Li, L. 2005. SELP - A Sys-
tem for Studying Strong Equivalence Between Logic Pro-
grams. InProc. LPNMR’05, volume 3552 ofLNAI, 442–
446. Springer.

Delgrande, J.; Schaub, T.; Tompits, H.; and Woltran, S.
2004. On Computing Solutions to Belief Change Scenar-
ios. Journal of Logic and Computation14(6):801–826.

Egly, U.; Eiter, T.; Tompits, H.; and Woltran, S.
2000. Solving Advanced Reasoning Tasks using Quanti-
fied Boolean Formulas. InProc. AAAI’00, 417–422. AAAI
Press.

Egly, U.; Seidl, M.; Tompits, H.; Woltran, S.; and Zolda,
M. 2004. Comparing Different Prenexing Strategies for
Quantified Boolean Formulas. InProc. SAT’03. Selected
Revised Papers, volume 2919 ofLNCS, 214–228. Springer.

Egly, U.; Seidl, M.; and Woltran, S. 2006. A Solver for
QBFs in Nonprenex Form. InProc. ECAI’06.

Eiter, T., and Fink, M. 2003. Uniform Equivalence of
Logic Programs under the Stable Model Semantics. In
Proc. ICLP’03, volume 2916 ofLNCS, 224–238. Springer.

Eiter, T., and Gottlob, G. 1995. On the Computational
Cost of Disjunctive Logic Programming: Propositional
Case. Annals of Mathematics and Artificial Intelligence
15(3/4):289–323.

Eiter, T.; Tompits, H.; and Woltran, S. 2005. On Solution
Correspondences in Answer Set Programming. InProc.
IJCAI’05, 97–102.

Gelfond, M., and Leone, N. 2002. Logic Programming
and Knowledge Representation - The A-Prolog Perspec-
tive. Artificial Intelligence138(1-2):3–38.

Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases.New Genera-
tion Computing9:365–385.

Gent, I., and Walsh, T. 1999. Beyond NP: The QSAT Phase
Transition. InProc. AAAI’99, 648–653. AAAI Press.

Giunchiglia, E.; Narizzano, M.; and Tacchella, A. 2003.
Backjumping for Quantified Boolean Logic Satisfiability.
Artificial Intelligence145:99–120.
Janhunen, T.; Niemelä, I.; Seipel, D.; and Simons, P.
2006. Unfolding Partiality and Disjunctions in Stable
Model Semantics.ACM Transactions on Computational
Logic 7(1):1–37.
Le Berre, D.; Narizzano, M.; Simon, L.; and Tacchella, A.
2005. The Second QBF Solvers Comparative Evaluation.
In Proc. SAT’04. Revised Selected Papers, volume 3542 of
LNCS, 376–392. Springer.
Letz, R. 2002. Lemma and Model Caching in Decision
Procedures for Quantified Boolean Formulas. InProc.
TABLEAUX’02, volume 2381 ofLNCS, 160–175. Springer.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
Equivalent Logic Programs.ACM Transactions on Com-
putational Logic2(4):526–541.
Lin, F. 2002. Reducing Strong Equivalence of Logic Pro-
grams to Entailment in Classical Propositional Logic. In
Proc. KR’02, 170–176. Morgan Kaufmann.
Oikarinen, E.; and Janhunen, T. 2004. Verifying the Equiv-
alence of Logic Programs in the Disjunctive Case.Proc.
LPNMR’04, volume 2923 ofLNCS, 180–193. Springer.
Pearce, D.; Tompits, H.; and Woltran, S. 2001. Encodings
for Equilibrium Logic and Logic Programs with Nested
Expressions. InProc. EPIA’01, volume 2258 ofLNCS,
306–320. Springer.
Rintanen, J. 1999. Constructing Conditional Plans by a
Theorem Prover.JAIR10:323–352.
Tompits, H., and Woltran, S. 2005. Towards Implemen-
tations for Advanced Equivalence Checking in Answer-Set
Programming. InProc. ICLP’05, volume 3668 ofLNCS,
189–203. Springer.
Tseitin, G. S. 1968. On the Complexity of Derivation in
Propositional Calculus.Studies in Constructive Mathemat-
ics and Mathematical Logic, Part II. 234–259.
Woltran, S. 2004. Characterizations for Relativized No-
tions of Equivalence in Answer Set Programming. InProc.
JELIA’04, volume 3229 ofLNCS, 161–173. Springer.
Zolda, M. 2004. Comparing Different Prenexing Strategies
for Quantified Boolean Formulas. Master’s Thesis, Vienna
University of Technology.

28 Technical Report IfI-06-04

Answer Set Programming

DEPARTMENT OF INFORMATICS 29

11TH NMR WORKSHOP

1.3 On Probing and Multi-Threading in Platypus

On Probing and Multi-Threading in P LATYPUS

Jean Gressmann
Institut für Informatik
Universiẗat Potsdam

Postfach 900327
D-14439 Potsdam

Germany

Tomi Janhunen
Helsinki University of Technology

Department of Computer Science and Engineering
P.O. Box 5400
FI-02015 TKK

Finland

Robert E. Mercer
Department of Computer Science

Middlesex College
The University of Western Ontario

London, Ontario
Canada N6A 5B7

Torsten Schaub∗

Institut für Informatik
Universiẗat Potsdam

Postfach 900327
D-14439 Potsdam, Germany

Sven Thiele
Institut für Informatik
Universiẗat Potsdam

Postfach 900327
D-14439 Potsdam, Germany

Richard Tichy
Institut für Informatik
Universiẗat Potsdam

Postfach 900327
D-14439 Potsdam, Germany

Abstract

The PLATYPUS approach offers a generic platform for dis-
tributed answer set solving, accommodating a variety of dif-
ferent modes for distributing the search for answer sets over
different processes and/or processors. In this paper, we de-
scribe two major extensions of PLATYPUS. First, we present
its probing approach which provides a controlled non-linear
traversal of the search space. Second, we present its new
multi-threadingarchitecture allowing for intra-process distri-
bution. Both contributions are underpinned by experimental
results illustrating their computational impact.

Introduction
The success of Answer Set Programming (ASP) has been
greatly enhanced by the availability of highly efficient ASP-
solvers (Simons, Niemelä, & Soininen 2002; Leoneet al.
2006). But, more complex applications are requiring com-
putationally more powerful devices. Distributing parts of
the search space among cooperating sequential solvers per-
forming independent searches can provide increased compu-
tational power. To accomplish this distribution of the prob-
lem solving process, we have proposed a generic approach
to distributed answer set solving, called PLATYPUS (Gress-
mannet al. 2005).1

The PLATYPUS approach differs from other pioneering
work in distributed answer set solving (Finkelet al. 2001;
Hirsimäki 2001; Pontelli, Balduccini, & Bermudez 2003),
by accommodating in a single design a variety of different
architectures for distributing the search for answer sets over
different processes and processors. The resulting platform,2

platypus, allows one to exploit the increased computa-
tional power of clustered and/or multi-processor machines

∗Affiliated with the School of Computing Science at Simon
Fraser University, Burnaby, Canada.

1platypus, small densely furred aquatic monotreme of Australia
and Tasmania having a broad bill and tail and webbed feet.

2We usetypewriter font when referring to actual systems.

via different types of inter- and intra-process distribution
techniques like MPI (Gropp, Lusk, & Thakur 1999), Unix’
fork mechanism, and (as discussed in the sequel) multi-
threading. In addition, the generic approach permits a flexi-
ble instantiation of all parts of the design.

More precisely, the PLATYPUS design incorporates two
distinguishing features: First, it modularises (and is thus
independent of) the propagation engine (currently exem-
plified by smodels’ and nomore++’ expansion proce-
dures). Second, the search space is represented explicitly.
This representation allows a flexible distribution scheme to
be incorporated, thereby accommodating different distribu-
tion policies and architectures. For instance, the previous
platypus system (Gressmannet al. 2005) supported a
multiple process (by forking) and a multiple processor (by
MPI (Gropp, Lusk, & Thakur 1999)) architecture. The
two particular contributions discussed in this paper take ad-
vantage of these two aspects of the generic design philos-
ophy. The first extension to PLATYPUS, probing, refines
the encapsulated module for propagation. Probing is akin
to the concept ofrestarting in the related areas of satis-
fiability checking (SAT) (Baptista & Marques-Silva 2000;
Gomes, Selman, & Kautz 1998) and constraint processing
(CSP) (Gomeset al. 2000; Walsh 1999). The introduction
of probing demonstrates one aspect of the flexibility in our
PLATYPUS design: by having a modularised generic design,
we can easily specify parts of the generic design to give
different computational properties to theplatypus sys-
tem. Our second improvement toplatypus is the integra-
tion of multi-threading into our software package.3 Multi-
threading expands the implemented architectural options for
delegating the search space and adds several new features to
platypus: (1) the single- and multi-threaded versions can
take advantage of new hardware innovations such as multi-
core processors, as well as primitives to implement lock-
free data structures, (2) a hybrid architecture which allows

3Available at (platypus, website undated).

30 Technical Report IfI-06-04

Answer Set Programming

the mixing of inter- and intra-process distribution, and (3)
the intra-process distribution provides a lighter parallelisa-
tion mechanism than forking.

In the remainder of this paper we highlight our two con-
tributions,probingandmulti-threading, by focussing on the
appropriate aspects of the abstract PLATYPUS algorithm re-
produced from (Gressmannet al. 2005) below. As well,
their computational impact is exposed in data provided by a
series of experiments.

Definitions and notation
In Answer Set Programming, a logic programΠ is asso-
ciated with a setAS (Π) of answer sets, which are distin-
guished models of the rules in the program. Since we do not
elaborate upon theoretical aspects here, we refer the reader
to the literature for a formal introduction to ASP (cf. (Gel-
fond & Lifschitz 1991; Lifschitz 1996; Baral 2003)).

For computing answer sets, we rely onpartial assign-
ments, mapping atoms in an alphabetA onto true, false, or
undefined. We represent such assignments as pairs(X,Y)
of sets of atoms, in whichX contains all true atoms andY
all false ones. An answer setX is then represented by the
total assignment(X,A \ X). In general, a partial assign-
ment(X,Y) aims at capturing a subset of the answer sets of
a logic programΠ, viz.

AS (X,Y)(Π) = {Z ∈ AS (Π) | X ⊆ Z,Z ∩ Y 6= ∅} .

The PLATYPUS approach and itsprobing mode
To begin, we recapitulate the major features of the PLATY-
PUS approach (Gressmannet al. 2005). To enable a dis-
tributed search for answer sets, the search space is decom-
posed by means of partial assignments. This method works
because partial assignments that differ with respect to atoms
not in the undefined set represent different parts of the search
space. To this end, Algorithm 1 is based on an explicit rep-

Algorithm 1 : PLATYPUS

Global : A logic programΠ over alphabetA.
Input : A nonempty setS of partial assignments.
Output : Print a subset of the answer sets ofΠ.

repeat
(X,Y) ← CHOOSE(S)1

S ← S \ {(X,Y)}2

(X ′, Y ′) ← EXPAND((X,Y))3

if X ′ ∩ Y ′ = ∅ then4

if X ′ ∪ Y ′ = A then5

print X ′6

else
A ← CHOOSE(A \ (X ′ ∪ Y ′))7

S ← S∪{ (X ′∪{A}, Y ′), (X ′, Y ′∪{A}) }8

S ← DELEGATE(S)9

until S = ∅

resentation of the search space in terms of a setS of partial
assignments, on which it iterates untilS becomes empty.
The algorithm relies on the omnipresence of a given logic

programΠ and the program’s alphabetA as global param-
eters. Communication between PLATYPUS instances is lim-
ited to delegating partial assignments as representativesof
parts of the search space. The set of partial assignments
provided in the input variableS delineates the search space
given to a specific instance of PLATYPUS. Although this
explicit representation offers an extremely flexible access to
the search space, it must be handled with care since it grows
exponentially in the worst case. Without Line 9, Algo-
rithm 1 computes all answer sets in

⋃
(X,Y)∈S

AS (X,Y)(Π).
With Line 9 each PLATYPUS instance generates a subset of
the answer sets. CHOOSE and DELEGATE are in principle
non-deterministic selection functions: CHOOSEyields a sin-
gle element, DELEGATE communicates a subset ofS to a
PLATYPUS instance and returns a subset ofS . Clearly, de-
pending on what these subsets are, this algorithm is subject
to incomplete and redundant search behaviours. The EX-
PAND function hosts the deterministic part of Algorithm 1.
This function is meant to be implemented with an off-the-
shelf ASP-expander that is used as a black-box providing
both sufficiently strong as well as efficient propagation op-
erations. See (Gressmannet al. 2005) for further details.

Let us now turn to specific design issues beyond the
generic description of Algorithm 1. To reduce the size of
partial assignments and thus that of passed messages, we fol-
low (Pontelli, Balduccini, & Bermudez 2003) in represent-
ing partial assignments only by atoms4 whose truth values
were assigned by choice operations (cf. atomA in Lines 7
and 8). Given an assignment(X,Y) along with its sub-
setsXc ⊆ X andYc ⊆ Y of atoms assigned by a choice
operation, we have(X,Y) = EXPAND((Xc, Yc)). Conse-
quently, the expansion of assignment(X,Y) to (X ′, Y ′) in
Line 3 does not affect the representation of the search space
in S .5 Furthermore, the design includes the option of using
a choice proposed by the EXPAND component for imple-
menting Line 7. Additionally, the currently used expanders,
smodels andnomore++, also supply apolarity, indicat-
ing a preference for assigning true or false.6

Thread architecture.
The overall design of theplatypus platform splits Algo-
rithm 1 into two salient components: thedistribution
and thecore. While the former encapsulates inter-process
distribution, the latter handles intra-process distribution and
all (sequential) answer set computation methods. For better
hardware adaption, thecore comes in asingle-andmulti-
threadedversion. A thread amounts to a sequential PLATY-
PUS instance. Since multi-threading and all other distribu-
tion aspects are dealt with in the next section, we concentrate
in what follows on the non-distributive features of thecore
(equivalent to the single-threaded version).

Each (answer set computing) thread inside thecore of
a platypus process has an explicit representation of its

4Assignments are not a priori restricted to atoms. This is ex-
ploited when usingnomore++.

5Also, some care must be taken when implementing the tests in
Lines 4 and 5; see (Gressmannet al. 2005).

6We rely on this information in Algorithm 3.

DEPARTMENT OF INFORMATICS 31

11TH NMR WORKSHOP

(part of the) search space in its variableS . This set of par-
tial assignments is implemented as a tree. Whenever more
convenient, we describeS in terms of a set of assignments
or a search tree and its branches. In contrast to stack-based
ASP-solvers, likesmodels or nomore++, whose search
space contains a single branch at a time, this tree normally
contains several independent branches. The two major com-

core

expander

6 A
S

�
�
�
�

A
A

A
A�

�
�
��

Figure 1: Inner structure of a (single-threaded)core mod-
ule.

ponents of a (single-threaded)core along with their inter-
relationship are depicted in Figure 1. The triangle on the left
hand side represents the search tree contained in variableS
of Algorithm 1. The vector represents theactivepartial as-
signment (or branch, respectively) selected in Line 1, and
being currently treated by the expander (see below). The
square on the right hand side stands for the EXPAND mod-
ule; the state of the expander is characterised by the con-
tents of its stack, given on the left within the square. The
contents of the stack corresponds to the active branch in the
search tree (indicated by the usage of an arrow within the
stack). While the stack contains the full assignment(X,Y),
the search tree’s active branch only contains the pair of sub-
sets(Xc, Yc) having been assigned by choice operations.
The box A symbolises the fact that expanders (relying on
smodels or nomore++) also provide a candidate for the
choiceA made in Line 7 of Algorithm 1.

Probing.

The explicit representation of the (partial) search space,al-
though originally devised to enable the use of a variety of
strategies for delegating parts of the search space in the dis-
tributed setting, appears to be beneficial in some sequential
contexts, as well. Of particular interest, when looking for
a single answer set, is limiting fruitless searches in partsof
the search tree that are sparsely populated with answer sets.
In such cases, it seems advantageous to leave a putatively
sparsely populated part and continue at another location in
the search space. Inplatypus, this decision is governed
by two command line options,#c and#j. A part of the
search is regarded as fruitless, whenever the number ofcon-
flicts (as encountered in Line 4) exceeds the value of#c.
The corresponding conflict counter7 c is incremented each
time a conflict is detected in Line 4 in Algorithm 1. The
counterc is resetto zero whenever an answer set is found
in Line 5 or the active branch inS is switched (and thus
the expander is reinitialised; see Algorithm 2). The number

7Each thread has its own conflict and jump counters.

of jumps in the search space is limited by#j; each jump
changes the active branch in the search space. We use abi-
nary exponential back-off(cf. (Tanenbaum 2001)) scheme
to heed unsuccessful jumps. The idea is as follows. Initially,
probing initiates a jump in the search space whenever the ini-
tial conflict limit #c is reached. If no solution is found after
#j jumps, then the problem appears to be harder than ex-
pected. In this case, the permissible number of conflicts#c
is doubled and the allowed number of jumps#j is halved.
The former is done to prolong systematic search, the lat-
ter to reduce gradually to zero the number of jumps in the
search space. We refer to this treatment of the search space
asprobing. Probing is made precise in Algorithm 2, which
is a refinement of the CHOOSE operation in Line 1 of Al-
gorithm 1. Note that probing continues until the parameter

Algorithm 2 : CHOOSE (in Line 1 of Algorithm 1) in
probingmode.
Global : Positive integers#c,#j, initially supplied via

command line.
Integersc, j, initially c = 0 andj = #j.
Selection policyP, supplied via command
line.

Input : A setS of partial assignments with an active
assignmentb ∈ S .

Output : A partial assignment.

begin
// Counterc is incremented by one in Line 4 of
Algorithm 1.
if (c ≤ #c) then // no jumping

return b
if (#j = 0) then // no jumping

return b
else

c← 0
j ← j − 1
if (j = 0) then

#c← (#c× 2)
#j ← (#j div 2)
j ← #j

let b′ ← SELECT(P,S) in
makeb′ the active partial assignment inS
return b′

end

#j becomes zero. When probing stops, search proceeds in
the usual depth-first manner by considering only one branch
at a time by means of the expander’s stack. Clearly, this is
also the case during the phases when the conflict limit has
not been reached (c ≤ #c).

At the level of implementation, the expander must be
reinitialised whenever the active branch of the search space
changes. Reinitialisation is unnecessary when extending the
active branch by the choice (obtained in Line 7) in Line 8
of Algorithm 1 or when backtracking is possible in case a
conflict or an answer set is obtained. In the first case, the ex-
pander’s choice (that is, an atom along with a truth value) is
simply pushed on top of the expander’s stack (and marked as

32 Technical Report IfI-06-04

Answer Set Programming

a possible backtracking point). At the same time, the active
branch inS is extended by the choice and a copy of the ac-
tive branch extended by the complementary choice is added
to S . The probing refinement of Line 8 in Algorithm 1 is
made precise in Algorithm 3.

Algorithm 3 : Assignment (in Line 8 of Algorithm 1) in
probingmode.
Global : A setS of partial assignments with active

assignment(X ′, Y ′).
Input : An atomA and a constantP ∈ {true, false}.

begin
S ← S ∪ { (X ′ ∪ {A}, Y ′), (X ′, Y ′ ∪ {A}) }
if P = true then

make(X ′ ∪ {A}, Y ′) the active partial
assignment inS

else
make(X ′, Y ′ ∪ {A}) the active partial
assignment inS

end

In the case that a conflict occurs or an answer set is ob-
tained, the active branch inS is replaced by the branch cor-
responding to the expander’s stack after backtracking. If it
exists, this is the largest branch inS that equals a subbranch
of the active branch after switching the truth value of its leaf
element. If backtracking is impossible, the active branch
is chosen by means of the given policyP.8 If this, too, is
impossible,S must be empty and the PLATYPUS instance
terminates.

The policy-driven selection of a branch, expressed by SE-
LECT(P,S) in Algorithm 2, is governed by another com-
mand line option9 #n and works in two steps.

1. Among all existing branches,10 the #n best ones,
b1, . . . , b#n, are identified according to policyP.
To be precise, letp be a mapping of branches to or-
dinal values, used byP for evaluating branches. For
b ∈ {b1, . . . , b#n} andb′ ∈ S \ {b1, . . . , b#n}, we then
have that11 p(b) ≤ p(b′).

2. A branchb is randomly selected from{b1, . . . , b#n}.

The random selection from the best#n branches counter-
acts the effect of a rigid policy by arbitrarily choosing some
close alternatives.

To see that this approach guarantees completeness, it is
sufficient to see that no partial assignment is ever eliminated
from the search space. Also, when probing, the number of
different branches in the search spaceS cannot exceed twice
the number of initially permitted jumps, viz.2 × #j. For
instance, if the command line option sets#j to 13, we may
develop at most13 + 6 + 3 + 1 different branches inS ,

8To this end,platypus supports three policies, picking a
largest, a smallest, or a random assignment.

9Option#n can be zero, indicating the use of all branches.
10This includes all backtracking points.
11That is, branches sharing the worst value among the ones in

{b1, . . . , b#n} may also occur inS \ {b1, . . . , b#n}.

which is bound by2 × 13. Thereby, a branch is considered
as different if it is not obtainable from another’s subbranch
by switching the assigned value of a single element.12

Thread Architecture
In the PLATYPUS algorithm, DELEGATE allows the assign-
ing of answer set computation tasks to other PLATYPUS in-
stances. In the following, we detail the multi-threaded ar-
chitecture extension to theplatypus platform which adds
intra-process distribution delegation capacities to the exist-
ing inter-process distribution delegation capabilities,which
are optionally realised via Unix’ forking mechanism13 or
MPI (Gropp, Lusk, & Thakur 1999) (described in (Gress-
mannet al. 2005)). This enlarged architecture opens up the
possibility of hybrid delegation methods, for instance, dele-
gatingplatypus via MPI on a cluster of multi-processor
workstations, with delegation among the multi-processorsof
the workstation accomplished by means of multi-threading.

The architecture is split into more or less two parts: the
core and thedistribution components. The config-
uration of both components inside a process is depicted in
Figure 2. Thecore encapsulates the search for answer
sets, and the DELEGATE function is encapsulated in the
distribution component. Thecore anddistribu-
tion components have well-defined interfaces that local-
ize the communication between the components. This de-
sign allows us to incorporate, for instance, single- and multi-
threaded cores, as well as inter-process distribution schemes,
like MPI and forking, with ease.

Eachplatypus process hosts an instance of thecore,
the core object, which cooperates with one instance of the
distribution component, the distribution object. Com-
munication is directed from core to distribution objects and
is initiated by the core object. During execution the major
flow of control lies with the core objects.

The multi-threaded core flow of control works according
to the master/slave principle. The master coordinates a num-
ber of slave threads (viz.thread0 and thread1 to threadn,
respectively, in Figure 2). Each slave thread executes the
PLATYPUS algorithm on its thread-local search space, indi-
cated by the respective triangles and boxes as was done in
the previous section. The master thread handles communi-
cation (through the distribution object) with otherplaty-
pus processes on behalf of the slave threads. Communi-
cation between the master thread and its slave threads is
based on counters (symbolised by�) and queues (repre-
sented by). Similarly to the previous section, we
use arrows to indicate partial assignments. Events of in-
terest (e.g. statistics, answer sets, etc.) are communicated
by the slave threads to the master thread by incrementing
the appropriate counter or adding to the respective queue.
The master thread periodically polls the counters and queues
for any change. If the change requires information to be
transmitted to otherplatypus processes the master thread

12This would simply be a backtracking point.
13Forking creates duplicateplatypus processes, collaborating

in the search. Communication among them is done using POSIX
IPC (handling shared memory and message queues).

DEPARTMENT OF INFORMATICS 33

11TH NMR WORKSHOP

process

distribution

???

core

thread0

t
??

r
???

i o

thread1

�
�
�
�

A
A

A
A

...
threadn

�
�
�
�

A
A

A
A

Figure 2: Inner structure of a single process with a multi-
threadedcore.

forwards this information via the distribution object. The
search ends (followed by termination of theplatypus pro-
gram) if there is agreement among the distribution objects
that either all participating processes are in need of work
(indicating all the work is done) or the requested number of
answer sets has been computed.

Let us now illustrate the communication among core and
distribution objects by detailing the major counters and
queues. In thecore, the idle thread counterof the master
thread (indicated byi in Figure 2) serves two purposes: It
indicates the number of idle slave threads in the core object,
and it shows the number of partial assignments in thethread
delegation queueof the master thread (indicated byt). Slave
threads share their search space automatically among them-
selves as long as one thread has some work left. A slave
thread running out of work (reaching an empty search space
S) checks the availability of work via the idle thread counter
and if possible removes a partial assignment from the thread
delegation queue. Otherwise, it waits until new work is as-
signed to it.

A slave thread can become aware of the existence of an
idle thread by noting that the idle thread counter exceeds

zero during one of its periodic checks. If this is the case,
it splits off a subpart of its local search space according to
a distribution policy14, puts the partial assignment that rep-
resents the subspace into the thread delegation queue, and
decrements the idle thread counter. As this may happen si-
multaneously in several working slave threads, more partial
assignments can end up in the thread delegation queue than
there exist idle slaves. These extras are used subsequently
by idle threads.

When all slave threads are idle (that is, the idle thread
counter equals the number of slave threads.) the master
thread initiates communication via the distribution object to
acquire more work from other PLATYPUS processes. To this
end, the master thread operates in apolling model: The mas-
ter thread periodically queries the associated distribution ob-
ject for work until it either gets some work or is requested
to terminate.15 Once work is available, the master thread
adds it to the thread delegation queue, decrements the idle
thread counter,16 and wakes up a slave thread. The awoken
slave thread will find the branch there, take it out, and start
working again. From there on, the core enters its normal
thread-to-thread mode of work sharing.

Conversely, when aplatypus process receives notifica-
tion that another process has run out of work, it attempts to
delegate a piece of its search space. To this end, it sets the
other-process-needs-workflag (indicated byo) of the mas-
ter thread in its core object. All slave threads noticing this
flag clear the flag and delegate a piece of their search space
according to the delegation policy by adding it to theremote
delegation queue(indicated byr). The master thread takes
one branch out of the queue and forwards it to the requesting
platypus process (via the distribution object). Because of
the multi-threaded nature any number of threads can end up
delegating. Items left in the remote delegation queue are
used by the master thread to fulfil subsequent requests for
work by otherplatypus processes or work requests by its
slave threads.

The conceptual difference between the thread delegation
and the remote delegation queues is that the former handles
intra-core delegations, while the latter deals with extra-core
delegation, although non-delegated work can return to the
core. This is reflected by the fact that master and slave
threads are allowed to insert partial assignments into the
thread delegation queue, whereas only slave threads remove
items from this queue. In contrast, only the master thread
is allowed to eliminate items from the remote delegation
queue, while insertions are performed only by slave threads.

Implementation
An important aspect of the multi-threaded core implementa-
tion is the use oflock-free data structures(Valois 1995; Her-
lihy 1991; 1993) for synchronizing communication among

14Currently, platypus supports three policies, picking a
largest, a smallest, or a random assignment.

15For instance, if the required number of answer sets has already
been computed.

16The inserting thread is always responsible for decrementing
the idle thread counter.

34 Technical Report IfI-06-04

Answer Set Programming

master and slave threads. To be more precise,

• queues (such as the answer set, the thread delegation, and
the remote delegation queues) are based on Michael and
Scott’s FIFO queue (Michael & Scott 1996), and

• counters utilize atomic primitives to implement lock-
freedom.

The major benefits of lock-free data structures are that,
first, they avoid well-known problems of lock-based ap-
proaches such as deadlock, livelock, starvation, and the
priority inversion problem (Tanenbaum 2001) and, second,
they often provide better performance when contention is
high (Michael & Scott 1996). A drawback is that they need
hardware support in the form ofuniversal atomic primi-
tives (Herlihy 1993). Although not all known data struc-
tures have efficient and general-purpose implementations
since they require rather powerful atomic primitives (Her-
lihy 1993), the lock-free data structures used inplaty-
pus support Intel IA-32, IA-32 with AMD64/EM64T ex-
tensions, and SPARC V8/V9 architectures running Linux,
Solaris, or Windows, ensuring a broad coverage of major
hardware architectures and operating systems.

Experimental Results
The following experiments aim at providing some indica-
tions on the computational value of probing and multi-
threading. A more detailed empirical evaluation can be
found in (Gressmann 2005), being partly mirrored at (platy-
pus, website undated).

All experiments were conducted with some fixed param-
eters.

• smodels (2.28) was used as propagation engine and for
delivering the (signed) choice in Line 7 of Algorithm 1,

• the choice in Line 1 of Algorithm 1 was fixed to the pol-
icy selecting assignments with the largest number of unas-
signed atoms,

• all such selections were done in a deterministic way by
setting command-line option#n to 1 (cf. the previous
section).

All tests were conducted with platypus ver-
sion 0.2.2 (platypus, website undated). Our results
reflect the average times of 5 runs for finding the first or all
answer sets, respectively, of the considered instance. Timing
excludes parsing and printing. The data was obtained on a
quad processor (4 Opteron 2.2GHz processors, 8 GB shared
RAM) underLinux.

For illustrating the advantage of probing, we have chosen
the search for one Hamiltonian cycle inclumpy graphs, pro-
posed in (Ward & Schlipf 2004) as a problem set being prob-
lematic for systematic backtracking. These benchmarks are
available at (platypus, website undated). Table 1 shows the
timings for probing running the single-threaded core, with
all combinations of settings for the numbers of conflicts#c
(10, 50, 100, 200) and jumps#j (32, 64, 128, 256, 512),
respectively. The entries give the aforementioned average
time. For comparison, we also provide the corresponding

smodels times.17 as well as the ones for single-threaded
platypus without probing in the first two columns, la-
belledsmandst. The remaining columns are labelled with
the used command line options, viz.#c,#j. A blank entry
represents a timeout after 240 seconds.

First of all, we notice that the systems using standard
depth first-search are unable to solve 12 instances within
the given time limit, whereas when using probing, apart
for a few exceptions, all instances are solved. We see that
platypus without probing does best 8 times,18 as indi-
cated in boldface, and worst 24 times, whereassmodels
does best 2 times and worst 24 times. Compared to each
specific probing configuration,platypus without probing
performs better among 9 to 15 (smodels, 6 to 8) times out
of 38. In fact, there seems to be no clear pattern indicat-
ing a best probing configuration. However, looking at the
lower part of Table 1, we observe thatplatypus without
probing (smodels) times out 12 times, while probing still
gives a solution under all but three configurations. In all, we
see that probing allows for a significant speed-up for finding
the first answer set. This is particularly valuable whenever
answer sets are hard to find with a systematic backtracking
procedure, as witnessed by the entries in the lower part of
Table 1.

This improvement is even more impressive when using
multi-threading,19 where further speed-ups were observed
on 20 benchmarks, most of which were among the more sub-
stantial ones in the lower part of Table 1. The most signifi-
cant one was observed on clumpy graph 09,09,04 which was
solved in 4.66 and 4.26 seconds, respectively, when setting
#c,#j to 10,512 and using 3 and 4 slave threads, respec-
tively. Interestingly, even the multi-threaded variantwithout
probing cannot solve the last seven benchmarks within the
time limit, except for clumpy 09,09,07, whichplatypus
with 4 slave threads was able to solve in 13.8 seconds. This
illustrates that probing and multi-threading are two comple-
mentary techniques that can be used for accelerating the per-
formance of standard ASP-solvers. A way to tackle bench-
marks that are even beyond the reach of probing with multi-
threading is to use randomisation via command-line option
#n. Unlike the search for a single answer set, probing has
generally no positive effect on the computation of all answer
sets. In fact, on more common benchmarks (cf. (asparagus,
website undated)) probing rarely kicks in because the con-
flict counter is reset to zero whenever an answer set is found.

Table 2 displays the effect of multi-threading. For consis-
tency, we have taken a subset of the benchmarks20 in (Gress-
mannet al. 2005), used when evaluating the speed-ups ob-
tained with the (initial) forking and MPI variant ofplaty-

17These times are only of an indicative nature since they include
printing one answer set; this cannot be disabled insmodels.

18The six cases differ by only 0.01sec which is due to slightly
different timing methods (see Footnote 17).

19The complete set of tests on multi-threading with and without
probing are provided at (platypus, website undated).

20These benchmarks stem mainly from (asparagus, website un-
dated).

DEPARTMENT OF INFORMATICS 35

11TH NMR WORKSHOP

clumpy sm st 10,3210,6410,12810,25610,51250,3250,6450,12850,25650,512100,32100,64100,128100,256100,512200,32200,64200,128200,256200,512

06,06,02 0.01

06,06,03 0.10 0.10 0.05 0.05 0.05 0.05 0.05 0.07 0.07 0.07 0.07 0.07 0.11 0.11 0.11 0.11 0.11 0.17 0.16 0.16 0.16 0.16

06,06,04 0.61 0.63 0.08 0.08 0.08 0.08 0.08 0.14 0.14 0.14 0.14 0.14 0.24 0.24 0.24 0.24 0.24 0.34 0.34 0.34 0.34 0.34

06,06,05 6.30 6.61 1.24 1.79 0.95 0.84 0.84 0.78 0.66 0.66 0.66 0.66 0.96 0.96 0.96 0.96 0.96 2.29 2.14 2.14 2.14 2.14

06,06,06 0.38 0.39 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.06 0.06 0.06 0.06 0.06 0.10 0.10 0.10 0.10 0.10

06,06,07 0.04 0.03 0.14 0.14 0.14 0.14 0.14 0.08 0.08 0.08 0.08 0.08 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

06,06,08 0.08 0.08 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03

06,06,09 11.3 11.8 0.47 0.52 0.62 0.62 0.62 1.07 1.01 1.01 1.01 1.01 2.23 2.06 2.06 2.06 2.06 3.06 3.46 3.46 3.46 3.46

06,06,10 0.06 0.05 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.05 0.05 0.05 0.05 0.05

07,07,01 0.02 0.01

07,07,02 0.05 0.04 0.61 0.74 0.71 0.71 0.71 1.76 1.45 1.45 1.45 1.45 2.01 2.92 2.91 2.91 2.90 0.04 0.04 0.04 0.04 0.04

07,07,03 8.98 9.60 18.7 9.56 14.5 3.75 3.26 4.79 4.72 16.9 6.11 6.05 5.02 33.8 18.4 9.71 10.3 23.3 9.75 22.1 14.5 14.5

07,07,04 1.37 1.38 0.98 2.05 2.01 3.49 3.38 1.57 1.79 1.54 1.54 1.53 2.87 2.19 2.19 2.20 2.19 2.76 3.30 3.30 3.30 3.28

07,07,05 0.03 0.02 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02

07,07,06 0.38 0.38 0.41 0.38 0.38 0.38 0.38 0.61 0.61 0.61 0.61 0.61 0.69 0.69 0.69 0.69 0.69 0.86 0.86 0.86 0.86 0.86

07,07,07 0.04 0.03 0.08 0.08 0.08 0.08 0.08 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

07,07,08 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.14 0.14 0.14 0.14 0.14

07,07,09 0.40 0.40 0.08 0.08 0.08 0.08 0.08 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.55 0.55 0.55 0.55 0.55

07,07,10 124.5126.4 15.8 6.32 2.17 1.96 1.97 31.7 13.4 6.01 5.27 5.27 59.3 72.0 9.49 8.74 8.74 18.8 21.5 20.4 14.1 14.1

08,08,01 5.07 1.64 2.44 4.68 5.23 22.5 2.84 3.21 3.22 3.20 10.9 4.81 4.76 4.72 4.68 45.1 15.4 10.3 10.2 10.0

08,08,02 7.04 11.1 2.42 2.44 2.43 8.01 6.22 5.61 6.64 6.61 23.0 12.0 9.74 9.05 8.98 44.0 15.5 13.7 13.8 13.7

08,08,03 14.8 9.39 13.1 5.31 5.52 61.9 84.9 7.57 14.0 13.1 105.8 51.8 9.17 8.71 8.66 32.8 205.8 15.9 15.3 15.3

08,08,05 36.7 37.0 231.2 16.1 33.6 43.6 176.6 24.1 36.1 53.5 96.5 48.3 29.2 47.7 84.1 129.2 70.0 39.4 87.3 189 240

08,08,06 8.15 8.22 0.05 0.05 0.05 0.05 0.05 0.10 0.10 0.10 0.10 0.10 0.16 0.17 0.17 0.17 0.16 0.26 0.26 0.26 0.26 0.26

08,08,07 4.17 4.10 0.44 0.44 0.44 0.44 0.43 1.23 1.24 1.23 1.23 1.23 0.48 0.48 0.48 0.48 0.47 0.89 0.90 0.90 0.90 0.89

08,08,08 0.85 71.6 14.5 6.33 13.5 2.16 1.73 1.73 1.72 1.72 3.69 2.77 2.77 2.77 2.76 6.40 4.76 4.76 4.77 4.75

08,08,09 1.29 0.87 0.88 0.88 0.87 1.07 1.08 1.08 1.08 1.07 2.03 2.03 2.03 2.03 2.02 3.02 3.04 3.03 3.03 3.02

08,08,10 1.66 1.67 17.3 11.5 4.24 4.37 4.02 1.87 2.24 2.24 2.24 2.23 4.93 2.72 2.72 2.72 2.72 5.97 7.41 7.41 7.40 7.37

09,09,01 24.9 25.0 0.34 0.34 0.34 0.34 0.34 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.12

09,09,02 1.66 1.82 2.84 2.64 2.63 0.85 0.85 0.85 0.85 0.84 1.48 1.49 1.49 1.49 1.48 2.31 2.32 2.33 2.32 2.31

09,09,03 13.3 4.24 7.33 74.3 0.82 0.82 0.82 0.82 0.82 1.67 1.68 1.68 1.68 1.68 2.51 2.52 2.52 2.52 2.51

09,09,04 143.8 50.9 81.6 95.7

09,09,05 2.60 2.08 2.66 2.66 2.66 4.03 3.98 4.68 4.68 4.67 3.96 4.80 4.81 4.80 4.79 6.49 6.32 6.31 6.33 6.31

09,09,06 4.00 2.59 159.6 6.40 5.89 11.5 8.62 5.51 5.51 5.50 7.35 21.5 6.45 6.46 6.44 12.8 20.1 17.4 17.4 17.4

09,09,07 0.75 28.4 3.23 3.01 3.01 2.16 2.03 2.04 2.03 2.03 3.05 3.07 3.07 3.06 3.05 6.70 5.95 5.95 5.95 5.90

09,09,09 0.73 0.71 0.71 0.71 0.71 1.95 2.40 2.40 2.40 2.39 3.91 3.50 3.51 3.50 3.48 12.5 9.68 9.67 9.69 9.63

Table 1: Experimental results forprobing(with the single-threaded core).

pus.21 Unlike above, we measure the average time (of 5
runs) for computing all answer sets. Comparing the sum
of the average times, the currentplatypus variant run-
ning multi-threading is 2.64 times faster than its predeces-
sor using forking, reported in (Gressmannet al. 2005). In
more detail, the columns reflect the times ofplatypus run
with the multi-threaded core restricted to 1, 2, 3, and 4 slave
threads, (with probing disabled).22 When looking at each
benchmark, the experiments show a qualitatively consistent
2-, 3-, and 4-times speed-up when doubling, tripling, and
quadrupling the number of processors, with only minor ex-
ceptions. For instance, the smallest speed-up was observed
on schur-11-5(1.52, 1.73, 1.75); among the highest speed-
ups, we findschur-19-4(2.17, 3.43, 4.75) andpigeon-7-11

21The forking tests were also run on the same machine.
22The numbers in column ‘mt #1’ are comparable with the ones

obtained withsmodels or the single-threaded core, respectively.
To be more precise, when runningsmodels andplatypus in
mode ‘mt #1’ while printing to/dev/null, we observe an over-
all factor of 1.59 on the benchmarks in Table 2.

(2.24, 3.43, 4.6). The average speed-ups observed on this set
of benchmarks is 1.96, 2.89, and 3.75. However, when tak-
ing the weighted average, whose weight is given by the re-
spective average time, we obtain even a slightly super-linear
speed-up: 2.07, 3.18, 4.24. Such super-linear speed-ups are
observed primarily on time-demanding benchmarks and, al-
though less significant, have also been observed in (Gress-
mannet al. 2005) when forking. In all, we observe that
the more substantial the benchmark, the more clear-cut the
speed-up. Given that the experiments were run on a quad
processor, it is worth noting that we observe no drop in per-
formance when increasing the number of slave threads from
3 to 4, despite having a fifth (master) thread. Finally, we
note that the multi-threaded core, when restricted to a single
slave thread, exhibits only slightly poorer performance than
the single-threaded version: the latter is on average about
2% faster than the former.

At last, we would like to mention that the performance
of platypus is currently—under similar circumstances—
slightly better when using Unix’ fork (along with POSIX
IPC for communication) than when using multi-threading.

36 Technical Report IfI-06-04

Answer Set Programming

problem mt #1 mt #2 mt #3 mt #4
color-5-10 1.53 0.84 0.62 0.53
color-5-15 60.9 31.1 20.5 15.7
hamcomp8 3.66 1.99 1.38 1.10
hamcomp9 85.2 43.6 29.0 22.5
pigeon-7-8 1.38 0.73 0.57 0.48
pigeon-7-9 4.22 2.19 1.46 1.17
pigeon-7-10 13.2 6.31 4.12 3.08
pigeon-7-11 36.5 16.3 10.6 7.94
pigeon-7-12 88.2 39.9 25.8 19.0
pigeon-8-9 11.6 5.77 3.80 2.84
pigeon-8-10 48.3 22.3 14.2 10.4
pigeon-9-10 128.4 61.8 39.5 29.4
schur-14-4 1.00 0.63 0.47 0.42
schur-15-4 2.38 1.30 0.91 0.73
schur-16-4 4.04 2.14 1.41 1.11
schur-17-4 9.13 4.58 3.04 2.28
schur-18-4 16.7 8.34 5.31 3.92
schur-19-4 39.3 18.1 11.5 8.28
schur-20-4 44.1 21.9 13.8 10.1
schur-11-5 0.56 0.37 0.32 0.32
schur-12-5 1.49 0.83 0.63 0.54
schur-13-5 5.69 2.90 1.97 1.51
schur-14-5 18.6 9.05 6.00 4.42

Table 2: Experimental results onmulti-threading.

We see two reasons for this. First, forking does not need
a master. Second, the current implementation of forking
also utilises lock-free data structures where possible (and it
thus improves over the one described in (Gressmannet al.
2005)).

Discussion
At the heart of the PLATYPUS design is its generality and
modularity. These two features allow a great deal of flexi-
bility in any instantiation of the algorithm, making it unique
among related approaches. Up to now, this flexibility
was witnessed by the possibility to use different off-the-
shelf solvers, different process-oriented distribution mech-
anisms, and a variety of choice policies. In this paper we
have presented two significant configurable enhancements
to platypus.

First, we have described its probing mode, relying on
an explicit yet restricted representation of the search space.
This provides us with a global view of the search space
and allows us to have different threads working on differ-
ent subspaces. Although probing does not aim at a sequen-
tial setting, we have experimentally demonstrated its com-
putational value on a specific class of benchmarks, which
is problematic for standard ASP-solvers. Probing offers a
non-linear23 exploration of the search space that can be ran-
domised while remaining complete. Unlike restart strategies
in SAT, which usually draw on learnt information (Baptista

23That is, the traversal of the search space does not follow a
given strategy like depth-first search.

& Marques-Silva 2000; Gomes, Selman, & Kautz 1998),
probing keeps previously abandoned parts of the search
space, so that they can be revisited subsequently. Hence,
the principal difference between our probing scheme and
restarting, known from SAT and CSP, is that probing iscom-
pletein the sense that it allows the enumeration of all solu-
tions and the detection of no solution. Nonetheless, it would
be interesting to see how the various restart strategies in SAT
and CSP could be adapted for probing. Restart is imple-
mented insmodels and investigated in the context of lo-
cal search in ASP in (Dimopoulos & Sideris 2002). SAT-
based ASP-solvers, such asassat (Lin & Zhao 2004) and
cmodels (Giunchiglia, Lierler, & Maratea 2004), can take
advantage of restarts via their embedded SAT-solver.

Second, we have presentedplatypus’ multi-threaded
architecture. Multi-threading complements the previous
process-oriented distribution schemes ofplatypus by
providing further intra-process distribution capacities. This
is of great practical value since it allows us to take advan-
tage of recent hardware developments, offering multi-core
processors. In a hybrid setting, consisting of clusters of
such machines, we may use multi-threading for distribu-
tion on the multi-core processors, while distribution among
different workstations is done with previously established
distribution techniques inplatypus, like MPI. Further-
more, the modular implementation of thecoreanddistribu-
tion component allow for easy modifications in view of new
distribution concepts, like grid computing, for instance.The
platypus platform is freely available on the web (platy-
pus, website undated).

Our experiments have concentrated on highlighting the
individual merits of probing and multi-threading. Further
systematic studies are needed to investigate their interplay
in addition to experiments with different strategies which
would include approaches similar to those found in SAT and
CSP. Similarly, the relationship between our approach and
the work described in (Finkelet al. 2001; Hirsim̈aki 2001;
Pontelli, Balduccini, & Bermudez 2003) needs to be studied
in more detail.

Acknowledgments The first, fourth, fifth, and sixth author
was supported by DFG under grant SCHA 550/6-4. All but
the third author were also funded by the EC through IST-
2001-37004 WASP project. The third and last authors were
funded by NSERC (Canada) and SHARCNET.

We are furthermnore grateful to Christian Anger, Martin
Brain, Martin Gebser, Benjamin Kaufmann, and the anony-
mous referees for many helpful suggestions.

References
http://asparagus.cs.uni-potsdam.de.

Baptista, L., and Marques-Silva, J. 2000. Using random-
ization and learning to solve hard real-world instances of
satisfiability. In Dechter, R., ed.,Proceedings of the Sixth
International Conference on Principles and Practice of
Constraint Programming (CP’00), volume 1894 ofLecture
Notes in Computer Science, 489–494. Springer-Verlag.

DEPARTMENT OF INFORMATICS 37

11TH NMR WORKSHOP

Baral, C. 2003.Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.

Dimopoulos, Y., and Sideris, A. 2002. Towards local
search for answer sets. In Stuckey, P., ed.,Proceedings
of the Eighteenth International Conference on Logic Pro-
gramming (ICLP’02), volume 2401 ofLecture Notes in
Computer Science, 363–377. Springer-Verlag.

Finkel, R.; Marek, V.; Moore, N.; and Truszczynski, M.
2001. Computing stable models in parallel. In Provetti, A.,
and Son, T., eds.,Proceedings of AAAI Spring Symposium
on Answer Set Programming (ASP’01), 72–75. AAAI/MIT
Press.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases.New Generation
Computing9:365–385.

Giunchiglia, E.; Lierler, Y.; and Maratea, M. 2004. A SAT-
based polynomial space algorithm for answer set program-
ming. In Delgrande, J., and Schaub, T., eds.,Proceedings
of the Tenth International Workshop on Non-Monotonic
Reasoning (NMR’04), 189–196.

Gomes, C. P.; Selman, B.; Crato, N.; and Kautz,
H. A. 2000. Heavy-tailed phenomena in satisfiability
and constraint satisfaction problems.J. Autom. Reasoning
24(1/2):67–100.

Gomes, C.; Selman, B.; and Kautz, H. 1998. Boosting
combinatorial search through randomization. InProceed-
ings of the Fifteenth National Conference on Artificial In-
telligence (AAAI’98), 431–437. AAAI Press.

Gressmann, J.; Janhunen, T.; Mercer, R.; Schaub, T.;
Thiele, S.; and Tichy, R. 2005. Platypus: A platform
for distributed answer set solving. In Baral, C.; Greco,
G.; Leone, N.; and Terracina, G., eds.,Proceedings of
the Eighth International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’05), volume
3662 ofLecture Notes in Artificial Intelligence, 227–239.
Springer-Verlag.

Gressmann, J. 2005. Design, implementierung und vali-
dierung einer modularen mulithreaded architektur fr platy-
pus. Diplomarbeit, Institut f̈ur Informatik, Universiẗat Pots-
dam.

Gropp, W.; Lusk, E.; and Thakur, R. 1999.Using MPI-2:
Advanced Features of the Message-Passing Interface. The
MIT Press.

Herlihy, M. 1991. Wait-free synchronization.ACM
Transactions on Programming Languages and Systems
13(1):124–149.

Herlihy, M. 1993. A methodology for implementing highly
concurrent data objects.ACM Transactions on Program-
ming Languages and Systems15(5):745–770.

Hirsimäki, T. 2001. Distributing backtracking search trees.
Technical report, Helsinki University of Technology.

Leone, N.; Faber, W.; Pfeifer, G.; Eiter, T.; Gottlob, G.;
Koch, C.; Mateis, C.; Perri, S.; and Scarcello, F. 2006. The
DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic. To appear.

Lifschitz, V. 1996. Foundations of logic programming. In
Brewka, G., ed.,Principles of Knowledge Representation.
CSLI Publications. 69–127.
Lin, F., and Zhao, Y. 2004. ASSAT: computing answer sets
of a logic program by SAT solvers.Artificial Intelligence
157(1-2):115–137.
Michael, M. M., and Scott, M. L. 1996. Simple, fast, and
practical non-blocking and blocking concurrent queue al-
gorithms. InSymposium on Principles of Distributed Com-
puting, 267–275.
http://www.cs.uni-potsdam.de/platypus.
Pontelli, E.; Balduccini, M.; and Bermudez, F. 2003. Non-
monotonic reasoning on beowulf platforms. In Dahl, V.,
and Wadler, P., eds.,Proceedings of the Fifth International
Symposium on Practical Aspects of Declarative Languages
(PADL’03), volume 2562 ofLecture Notes in Artificial In-
telligence, 37–57.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics.Artificial
Intelligence138(1-2):181–234.
Tanenbaum, A. S. 2001.Modern Operating Systems. New
Jersey, USA: Prentice Hall, 2nd edition.
Valois, J. D. 1995. Lock-Free Data Structures. Ph.D.
Dissertation, Rensselaer Polytechnic Institute, Troy, New
York.
Walsh, T. 1999. Search in a small world. In Dean, T., ed.,
IJCAI, 1172–1177. Morgan Kaufmann.
Ward, J., and Schlipf, J. 2004. Answer set programming
with clause learning. In Lifschitz, V., and Niemelä, I.,
eds.,Proceedings of the Seventh International Conference
on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’04), volume 2923 ofLecture Notes in Artificial Intel-
ligence, 302–313. Springer-Verlag.

38 Technical Report IfI-06-04

Answer Set Programming

DEPARTMENT OF INFORMATICS 39

11TH NMR WORKSHOP

1.4 Towards Efficient Evaluation of HEX-Programs

Towards Efficient Evaluation of HEX -Programs∗

Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits
Institut für Informationssysteme, Technische Universität Wien,

Favoritenstraße 9–11, A-1040 Vienna, Austria
{eiter, ianni, roman, tompits}@kr.tuwien.ac.at

Abstract

We briefly report on the development status ofdlvhex, a
reasoning engine forHEX-programs, which are nonmono-
tonic logic programs with higher-order atoms and external
atoms. Higher-order features are widely acknowledged as
useful for various tasks and are essential in the context of
meta-reasoning. Furthermore, the possibility to exchange
knowledge with external sources in a fully declarative frame-
work such as answer-set programming (ASP) is particularly
important in view of applications in the Semantic-Web area.
Through external atoms,HEX-programs can deal with exter-
nal knowledge and reasoners of various nature, such as RDF
datasets or description logics bases.

Introduction
Nonmonotonic semantics is often requested by Semantic-
Web designers in cases where the reasoning capabilities of
the Ontology layerof the Semantic Web turn out to be too
limiting, since they are based on monotonic logics. The
widely acknowledged answer-set semantics of nonmono-
tonic logic programs (Gelfond & Lifschitz 1991), which is
arguably the most important instance of theanswer-set pro-
gramming(ASP) paradigm, is a natural host for giving non-
monotonic semantics to theRulesand Logic layers of the
Semantic Web.

In order to address problems such asmeta-reasoningin
the context of the Semantic Web and interoperability with
other software, in (Eiteret al. 2005), we have extended the
answer-set semantics toHEX-programs, which arehigher-
order logic programs(which accommodate meta-reasoning
throughhigher-order atoms) with external atomsfor soft-
ware interoperability. Intuitively, a higher-order atom allows
to quantify values over predicate names, and to freely ex-
change predicate symbols with constant symbols, like in the
rule

C (X)← subClassOf (D,C),D(X).

An external atom facilitates the assignment of a truth value
of an atom through an external source of computation. For
instance, the rule

t(Sub, Pred,Obj)← &RDF [uri](Sub, Pred,Obj)
∗This work was partially supported by the Austrian Science

Fund (FWF) under grant P17212-N04, and by the European Com-
mission through the IST Networks of Excellence REWERSE (IST-
2003-506779).

computes the predicatet taking values from the predicate
&RDF . The latter extracts RDF statements from the set of
URIs specified by the extension of the predicateuri ; this
task is delegated to an external computational source (e.g.,
an external deduction system, an execution library, etc.).Ex-
ternal atoms allow for a bidirectional flow of information to
and from external sources of computation such as descrip-
tion logics reasoners. By means ofHEX-programs, power-
ful meta-reasoning becomes available in a decidable setting,
e.g., not only for Semantic-Web applications, but also for
meta-interpretation techniques in ASP itself, or for defining
policy languages.

Other logic-based formalisms, like TRIPLE (Sintek &
Decker 2002) or F-Logic (Kifer, Lausen, & Wu 1995),
feature also higher-order predicates for meta-reasoning in
Semantic-Web applications. Our formalism is fully declara-
tive and offers the possibility of nondeterministic predicate
definitions with higher complexity in a decidable setting.
This proved already useful for a range of applications with
inherent nondeterminism, such as ontology merging (Wang
et al. 2005) or matchmaking, and thus provides a rich basis
for integrating these areas with meta-reasoning.

HEX -Programs
Syntax
HEX programs are built on mutually disjoint setsC, X , and
G of constant names, variable names, andexternal predi-
cate names, respectively. Unless stated otherwise, elements
from X (resp.,C) are written with first letter in upper case
(resp., lower case), and elements fromG are prefixed with
“ & ”. Constant names serve both as individual and predi-
cate names. Importantly,C may be infinite.

Elements fromC ∪ X are calledterms. A higher-order
atom(or atom) is a tuple(Y0, Y1, . . . , Yn), whereY0, . . . , Yn

are terms andn ≥ 0 is its arity. Intuitively, Y0 is the
predicate name; we thus also use the familiar notation
Y0(Y1, . . . , Yn). The atom isordinary, if Y0 is a constant.
For example,(x, rdf :type, c) and node(X) are ordinary
atoms, whileD(a, b) is a higher-order atom. Anexternal
atomis of the form

&g [Y1, . . . , Yn](X1, . . . ,Xm), (1)

whereY1, . . . , Yn and X1, . . . ,Xm are two lists of terms

40 Technical Report IfI-06-04

Answer Set Programming

(calledinput list andoutput list, respectively), and&g is an
external predicate name.

It is possible to specifymoleculesof atoms in F-Logic-
like syntax. For instance,gi [father → X,Z → iu] is a
shortcut for the conjunctionfather(gi,X), Z(gi, iu).

HEX-programs are sets of rules of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βm, (2)

wherem, k ≥ 0, α1, . . . , αk are higher-order atoms, and
β1, . . . , βm are either higher-order atoms or external atoms.
The operator “not” is negation as failure(or default nega-
tion).

Semantics
The semantics ofHEX-programs is given by generalizing the
answer-set semantics (Eiteret al. 2005). TheHerbrand base
of a programP , denotedHBP , is the set of all possible
ground versions of atoms and external atoms occurring inP
obtained by replacing variables with constants fromC. The
grounding of a ruler, grnd(r), is defined accordingly, and
the grounding of programP by grnd(P) =

⋃
r∈P grnd(r).

An interpretation relative toP is any subsetI ⊆ HBP con-
taining only atoms.

We say that an interpretationI ⊆ HBP is a modelof
an atoma ∈ HBP iff a∈ I. Furthermore,I is a model
of a ground external atoma = &g [y1, . . . , yn](x1, . . . , xm)
iff f&g(I, y1, . . . , yn, x1, . . . , xm)= 1, where f&g is an
(n+m+1)-ary Boolean function associated with&g, called
oracle function, assigning each element of2HBP × Cn+m

either0 or 1.
Let r be a ground rule. We define (i)I |=H(r) iff

there is somea ∈ H(r) such thatI |= a, (ii) I |= B(r) iff
I |= a for all a∈B+(r) and I 6|= a for all a∈B−(r), and
(iii) I |= r iff I |=H(r) wheneverI |=B(r). We say thatI is
a modelof a HEX-programP , denotedI |=P , iff I |= r for
all r∈ grnd(P).

TheFLP-reductof P w.r.t. I ⊆HBP , denotedfP I , is the
set of allr ∈ grnd(P) such thatI |= B(r). I ⊆HBP is an
answer set ofP iff I is a minimal model offP I . By ans(P)
we denote the set of answer sets ofP .

Note that the answer-set semantics may yield no, one, or
multiple models (i.e., answer sets) in general. Therefore,
for query answering,braveandcautious reasoning(truth in
some resp. all models) is considered in practice, depending
on the application.

We have seen that the truth value of an external atom is de-
termined with respect to a specific interpretation, via the do-
main of the associated Boolean function. As a consequence,
the satisfiability of an external atom in general cannot be
stated apriori, but only regarding an entire model of a pro-
gram. This implies not only that external atoms influence
the truth values of ordinary atoms by occuring in rule bod-
ies, but also that ordinary atoms can have an effect on the
evaluation of external atoms. Hence,HEX-programs facili-
tate a bidirectional flow of knowledge between the answer
set program and the external evaluation function.

In practice, it is useful to differentiate between two kinds
of input attributes for external atoms. For an external predi-
cate&g (exploited, say, in an atom&g[p](X)), a term ap-

pearing in an attribute position of typepredicate(in this
case,p) means that the outcomes off&g are dependent from
the current interpretationI, for what the extension of the
predicate namedp in I is concerned. An input attribute
of typeconstantdoes not imply a dependency off&g from
some portion ofI. An external predicate whose input at-
tributes are all of type constant does not depend from the
current interpretation.

Example 1 The external predicate&RDF introduced be-
fore is implemented with a single input argument of type
predicate, because its associated function finds the RDF-
URIs in the extension of the predicateuri :

tr(S, P,O)← &RDF [uri](S, P,O),
uri(“file://foaf .rdf ”)← .

Should the input argument be of type constant, an equivalent
program would be:

tr(S, P,O)← &RDF [“file://foaf .rdf ”](S, P,O).

or
tr(S, P,O)← &RDF [X](S, P,O), uri(X),

uri(“file://foaf .rdf ”)← .

Usability of HEX -Programs
An interesting application scenario, where several features
of HEX-programs come into play, isontology alignment.
Merging knowledge from different sources in the context of
the Semantic Web is a crucial task (Calvanese, Giacomo, &
Lenzerini 2001) that can be supported byHEX-programs in
various ways:

Importing external theories. This can be achieved by
fragments of code such as:

triple(X,Y,Z)← &RDF [uri](X,Y,Z),
triple(X,Y,Z)← &RDF [uri2](X,Y,Z),
proposition(P)← triple(P, rdf :type, rdf :statement).

Searching in the space of assertions.In order to choose
nondeterministically which propositions have to be in-
cluded in the merged theory and which not, statements
like the following can be used:

pick(P) ∨ drop(P)← proposition(P).

Translating and manipulating reified assertions. For in-
stance, it is possible to choose how to put RDF triples
(possibly including OWL assertions) in an easier manipu-
lable and readable format, and to make selected proposi-
tions true such as in the following way:

(X,Y,Z)← pick(P), triple(P, rdf :subject ,X),
triple(P, rdf :predicate, Y),
triple(P, rdf :object , Z),

C(X)← (X, rdf :type, C).

Defining ontology semantics.The semantics of the ontol-
ogy language at hand can be defined in terms of entail-
ment rules and constraints expressed in the language itself
or in terms of external knowledge, like in

D(X)← subClassOf (D,C), C(X),
← &inconsistent [pick],

DEPARTMENT OF INFORMATICS 41

11TH NMR WORKSHOP

where the external predicate&inconsistent takes a set
of assertions as input and establishes through an external
reasoner whether the underlying theory is inconsistent.
Inconsistency of the CWA can be checked by pushing
back inferred values to the external knowledge base:

set false(C,X)← cwa(C,C ′), C ′(X),
inconsistent ← &DL1 [set false](b),

where&DL1 [N](X) effects a check whether a knowl-
edge base, augmented with all negated facts¬c(a) such
that N(c, a) holds, entails the empty concept⊥ (entail-
ment of⊥(b), for any constantb, is tantamount to incon-
sistency).

Implementation
The challenge of implementing a reasoner forHEX-pro-
grams lies in the interaction between external atoms and
the ordinary part of a program. Due to the bidirectional
flow of information represented by its input list, an external
atom cannot be evaluated prior to the rest of the program.
However, the existence of established and efficient reason-
ers for answer-set programs led us to the idea of splitting and
rewriting the program such that an existing answer-set solver
can be employed alternatingly with the external atoms’ eval-
uation functions. In the following, we will outline methods
that are already implemented in our prototypeHEX reasoner
dlvhex. We will partly refer to (Eiteret al. 2006), modify-
ing the algorithms and concepts presented there where it is
appropriate in the view of an actual implementation.

Dependency Information
Taking the dependency between heads and bodies into ac-
count is a common tool for devising an operational seman-
tics for ordinary logic programs, e.g., by means of the no-
tions of stratification or local stratification (Przymusinski
1988), or throughmodular stratification(Ross 1994) or
splitting sets(Lifschitz & Turner 1994). In (Eiteret al.
2006), we defined novel types of dependencies, consider-
ing that in HEX programs, dependency between heads and
bodies is not the only possible source of interaction between
predicates. Contrary to the traditional notion of dependency
based on propositional programs, we consider relationships
between nonground, higher-order atoms. In the view of an
actual implementation of a dependency graph processing al-
gorithm, we will present in the following a generalized defi-
nition of atom dependency of (Eiteret al. 2006).

Definition 1 Let P be a program anda, b atoms occurring
in some rule ofP . Then,a depends positivelyon b (a→pb),
if one of the following conditions holds:

1. There is some ruler ∈ P such thata ∈ H(r) and b ∈
B+(r).

2. There are some rulesr1, r2 ∈ P such thata ∈ B(r2)
andb ∈ H(r1) and there exists a partial substitutionθ of
variables ina such that eitheraθ = b or a = bθ. E.g.,
H(a, Y) unifies withp(a,X).

3. There is some ruler ∈ P such thata, b ∈ H(r). Note
that this relation is symmetric.

4. a is an external predicate of form&g[X̄](Ȳ) whereX̄ =
X1, . . . ,Xn, and b is of form p(Z̄), and, for somei,
Xi = p and of type predicate(e.g.,&count[item](N)
is externally dependent onitem(X)).

Moreover, a depends negativelyon b (a→nb), if there is
some ruler ∈ P such thata ∈ H(r) and b ∈ B−(r).
We say thata depends onb, if a→b, where→ =→p ∪→n.
The relation→+ denotes the transitive closure of→.

These dependency relations let us construct a graph,
which we calldependency graphof the corresponding pro-
gram.

Example 2 Consider the program of Figure 1, modeling
the search for personal contacts that stem from aFOAF-
ontology,1 which is accessible by a URL.
The first two facts specify the URLs of the FOAF ontologies
we want to query. Rules 3 and 4 ensure that each answer
set will be based on a single URL only. Rule 5 extracts all
triples from an RDF file specified by the extension ofinput .
Rule 6 converts triples that assign names to individuals into
the predicatename. Finally, the last rule traverses the RDF
graph to construct the relationknows.

Figure 2 shows the dependency graph ofP .2

Evaluation Strategy
The principle of evaluation of aHEX-program relies on the
theory of splitting sets. Intuitively, given a programP ,
a splitting setS is a set of ground atoms that induce a
sub-programgrnd(P ′) ⊂ grnd(P) whose modelsM =
{M1, . . . ,Mn} can be evaluated separately. Then, an ade-
quatesplitting theoremshows how to plug inM in a mod-
ified version ofP \ P ′ so that the overall models can be
computed. Here, we use a modified notion of splitting set,
accomodating non-ground programs and suited to our defi-
nition of dependency graph.

Definition 2 A global splitting setfor a HEX-programP is
a set of atomsA appearing inP , such that whenevera ∈ A
anda→b for some atomb appearing inP , then alsob ∈ A.

In (Eiter et al. 2006), we already defined an algorithm
based on splitting sets. However, there we used a general
approach, decomposingP into strongly connected compo-
nents (SCC in the following), which leads to a potentially
large number of splitting sets (considering that a single atom
that does not occur in any cycle is a SCC by itself). How-
ever, since the evaluation of each splitting set requires an
interaction with an answer-set solver (i.e., one or more calls
to the solver, depending on the nature of the program asso-
ciated with the splitting set), in a practical setting the object
must be to identify as few splitting sets as possible in or-
der to minimize the number of actual reasoning steps and

1“FOAF” stands for “Friend Of A Friend”, and is an RDF vo-
cabulary to describe people and their relationships.

2Long constant names have been abbreviated for the sake of
compactness.

42 Technical Report IfI-06-04

Answer Set Programming

(1) url(“http://www .kr .tuwien.ac.at /staff /roman/foaf .rdf ”)←;
(2) url(“http://www .mat .unical .it /̃ianni /foaf .rdf ”)←;

(3) ¬input(X) ∨ ¬input(Y) ← url(X), url(Y),X 6= Y ;
(4) input(X) ← not¬input(X), url(X);
(5) triple(X,Y,Z) ← &RDF [A](X,Y,Z), input(A);
(6) name(X,Y) ← triple(X, “http://xmlns.com/foaf /0 .1 /name”, Y);
(7) knows(X,Y) ← name(A,X),name(B, Y), triple(A, “http://xmlns.com/foaf /0 .1 /knows”, B).

Figure 1: Example program using the&RDF -atom.

increase overall efficiency. Therefore, we now modify and
specialize the notions and methods given there.

Definition 3 A local splitting setfor a HEX-programP is
a set of atomsA appearing inP , such that for each atom
a ∈ A there is no atomb /∈ A such thata→b andb→+a.

Thus, contrary to a global splitting set, a local splitting set
does not necessarily include the lowest layer of the program,
but it never “breaks” a cycle.

Definition 4 Thebottomof P w.r.t. set of atomsA is the set
of rulesbA(P) = {r ∈ P | H(r) ∩A 6= ∅}.

We define the concept ofexternal component, which rep-
resents a part of the dependency graph including at least one
external atom. Intuitively, an external component is the min-
imal local splitting set that contains one or more external
atoms. We distinguish between different types of external
components, each with a specific procedure of evaluation,
i.e., computing its model(s) w.r.t. to a set of ground atomsI.
Before these are laid out, we need to introduce some auxil-
iary notions.

From the viewpoint of program evaluation, it turns out
to be impractical to define the semantics of an external
predicate by means of a Boolean function. Again restrict-
ing the concepts presented in (Eiteret al. 2006) for our
practical needs, we defineF&g : 2HBP × D1, . . . ,Dn

→ 2Rm

C with F&g(I, y1, . . . , yn) = 〈x1, . . . , xm〉 iff
f&g(I, y1, . . . , yn, x1, . . . , xm) = 1, whereRm

C
is the set

of all tuples of aritym that can be built with symbols from
C. If the input listy1, . . . , yn is not ground in the original
program, safety restrictions forHEX-programs ensure that
its values can be determined from the remaining rule body.

A ground external atom&g is monotonic providingI |=
&g impliesI ′ |= &g, for I ⊆ I ′⊆HBP .

With Phex, we denote the ordinary logic program having
each external atom&g[y](x) in P replaced byd&g(y, x) (we
call this kind of atomsreplacement atoms), whered&g is a
fresh predicate symbol.

The categories of external components we consider are:

• A single external atom&g that does not occur in any
cycle. Its evaluation method returns for each tuple
〈x1, . . . , xm〉 in F&g(I, y1, . . . , yn) a ground replacement
atomd&g(y1, . . . , yn, x1, . . . , xm) as result. The external
atom in Figure 2, surrounded by a rectangular box, repre-
sents such a component.

• A strongly connected componentC without any weakly
negated atoms and only monotonic external atoms. A
simple method for computing the (unique) model of such
a component is given by the fixpoint operation of the op-
eratorΛ : 2HBP → 2HBP , defined byΛ(I) = M(Phex ∪
DP (I)) ∩HBP , where:

– Phex is an ordinary logic program as defined above,
with P = bC .

– DP (I) is the set of all factsd&g(y, c)← such thatI |=
&g[y](c) for all external atoms&g in P ; and

– M(Phex ∪ DP (I)) is the single answer set ofPhex ∪
DP (I); sincePhex is stratified, this answer set is guar-
anteed to exist and to be unique.

• A strongly connected componentC with negative depen-
dencies or nonmonotonic external atoms. In this case,
we cannot rely on an iterative approach, but are forced
to guess the value of each external atom beforehand and
validate each guess w.r.t. the remaining atoms:

– ConstructPhex from P = bC as before and add for
each replacement atomd&g(y, x) all rules

d&g(y, c) ∨ ¬d&g(y, c)← (3)

such that&g[y](c) is a ground instance of&g[y](x).
Intuitively, the rules (3) “guess” the truth values of the
external atoms ofC. Denote the resulting program by
Pguess .

– Compute the answer setsAns = {M1, . . . ,Mn} of
Pguess .

– For each answer setM ∈ Ans of Pguess , test whether
the original “guess” of the value ofd&g(y, c) is compli-
ant withf&g. That is, for each external atoma, check
whetherM |= &g[y](c). If this condition does not
hold, removeM from Ans.

– Each remainingM ∈ Ans is an answer set ofP iff M
is a minimal model offPM

hex.

Note that a cyclic subprogram must preserve certain safety
rules in order to bound the number of symbols to be taken
into account to a finite extent. To this end, we defined
in (Eiter et al. 2006) the notion ofexpansion-safety, which
avoids a potentially infinite ground program while still al-
lowing external atoms to bring in additional symbols to the
program.

The evaluation algorithm in (Figure 3) uses the following
subroutines:

DEPARTMENT OF INFORMATICS 43

11TH NMR WORKSHOP

triple(X,Y,Z)

input(A)

p &RDF[A](X,Y,Z)

p

-input(X)

p

-input(Y)

p

input(X)

p

knows(X,Y)

triple(A,"knows",B)

p

name(A,X)

p

name(B,Y)

p

p

name(X,Y)

pp

triple(X,"name",Y)

p

p

p

url(X)

p

url(Y)

p

p

p p

n

p

p

Figure 2: FOAF program graph.

eval(comp, I) Computes the models of an external compo-
nentcomp (which is of one of the types described above)
for each interpretationI ∈ I; eachI is added as a set of
facts to the respective models.

solve(P, I) Returns the answer sets ofP ∪A, whereP does
not contain any external atom andA is the set of facts that
corresponds toI.

Intuitively, the algorithm traverses the dependency graph
from bottom to top, gradually pruning it while computing
the respective models. Step (a) singles out all external com-
ponents that do not depend on any further atom or compo-
nent, i.e., that are on the “bottom” of the dependency graph.
Those components are evaluated against the current known
models in Step (b) and can be removed from the list of exter-
nal components that are left to be solved. Moreover, Step (b)
ensures that all rules of these components are removed from
the program. From the remaining part, Step(d) extracts the

EVALUATION ALGORITHM
(Input: aHEX-programP ; Output: a set of modelsM)

1. Determine the dependency graphG for P .

2. Find all external componentsCi of P and buildComp =
{C1, . . . , Cn}.

3. SetT := Comp andM := {F}, whereF is the set of all
facts originally contained inP . The setMwill eventually
containans(P) (which is empty, in case inconsistency is
detected).

4. WhileP 6= ∅ do

(a) LetT := {C ∈ T | ∀a ∈ C : if ∃a→b thenb ∈ C}.

(b) LetM′ := {∅}; for eachC from T :
- letM′ := {A

⋃
B | (A,B) ∈M′ × eval(C,M)},

- removeC from Comp and
- let P := P \ bc(P).
LetM :=M′.

(c) ifM = ∅ then halt.
(d) LetM :=

⋃
M∈M

solve(P ′,M), whereP ′ = Phex \

bC andC is the set of all nodesu such that eitheru→+c
with c ∈ C or u ∈ C for anyC ∈ Comp;
let P := P \ P ′ and remove all atoms from the graph
that are not inC.

Figure 3: Evaluation algorithm.

largest possible subprogram that does not depend on any re-
maining external component, computes its models and re-
moves it from the program resp. dependency graph.

Seen from a more general perspective, the iteration tra-
verses the program graph by applying two different evalua-
tion functions each turn. Whileeval computes minimal sub-
programs containing external atoms,comp solves maximal
non-external subprograms.

Let us exemplarily step through the algorithm with Exam-
ple 2 as input programP . First, the graphG is constructed
as shown in Figure 2. SinceP contains only a single exter-
nal atom, the setComp constructed in Step 2 contains just
one external componentC, the&RDF -atom itself. Step (a)
extracts those components ofComp that form a global split-
ting set, i.e., that do not depend on any atom not in the com-
ponent. Clearly, this is not the case forC and hence,T is
empty. Step (d) constructs an auxiliary programP ′ by re-
moving the bottom ofC, which contains each component
that is still inComp and every atom “above” it in the depen-
dency graph:

¬input(X) ∨ ¬input(Y)← url(X), url(Y),X 6= Y ;
input(X)← not¬input(X), url(X);

solve(P ′,M) in Step (d) yields the answer sets ofP ′, where
M is the set of the original facts fromP (the two URIs).
P ′ is removed fromP andC from the dependency graph
(the resulting subgraph is shown in Figure 4). Continu-
ing with (a), now the external componentC is contained
in Tc, and therefore in Step (b) evaluated for each set inM.
After removingC from Comp, C is empty in Step (d) and

44 Technical Report IfI-06-04

Answer Set Programming

triple(X,Y,Z)

&RDF[A](X,Y,Z)

p

knows(X,Y)

triple(A,"knows",B)

p

name(A,X)

p

name(B,Y)

p

p

name(X,Y)

p p

triple(X,"name",Y)

p

p

Figure 4: Pruned dependency graph.

P ′ = Phex, i.e., an ordinary, stratified program, which is
evaluated against each set inM - note that these sets now
also contain the result of the external atom, represented as
ground replacement atoms. At this point,P is empty and
the algorithm terminates, havingM as result.

We obtain the following property:

Theorem 1 Let P be aHEX-program andM the output of
the evaluation algorithm from Figure 3. Then,M is an an-
swer set ofP iff M ∈M.

Proof 1 (Sketch). The given algorithm is actually a re-
peated application of the splitting set theorem as introduced
in (Lifschitz & Turner 1994) and extended to programs with
external atoms in (Eiteret al. 2006). Basically, the theorem
allows to state that ifU is a splitting set for a programP ,
then, a setA is an answer set of programP iff A is an an-
swer set ofP ′ = (P \ bU) ∪ B whereB contains the facts
corresponding to some answer set ofbU .

Given the current value ofP , Step (a) of the algorithm
finds splitting sets corresponding to external components of
P . The splitting set theorem is applied by computing the
answer sets of the bottoms of each of these components. If
one of the components is found to be inconsistent, then the
entire program must be inconsistent and no answer set exists
(Step (c)). Step (d) again applies the splitting set theoremon
the remaining program. In this case, the splitting set which
is searched for does not contain external atoms. After each
iteration of the algorithm, the set of final answer sets is up-
dated, whileP is reduced. Finally, all answer sets ofP are
left.

Available External Atoms
External Atoms are provided by so-calledplugins, i.e., li-
braries that define one or more external atom functions. Cur-

rently, we implemented theRDF plugin, the Description
Logics Pluginand theString Plugin.

The RDF Plugin RDF (Resource Description Frame-
work) is a language for representing information about re-
sources in the World-Wide Web and is intended to represent
meta-data about Web resources which is machine-readable
and -processable. RDF is based on the idea of identify-
ing objects using Web identifiers (calledUniform Resource
Identifiers, or URIs), and describing resources in terms of
simple properties and property values. TheRDF pluginpro-
vides a single external atom, the&RDF -atom, which en-
ables the user to import RDF-triples from any RDF knowl-
edge base. It takes a single constant as input, which denotes
the RDF-source (a file path or Web address).

The Description-Logics Plugin Description logics are an
important class of formalisms for expressing knowledge
about concepts and concept hierarchies (often denoted as
ontologies). The basic building blocks areconcepts, roles,
and individuals. Concepts describe the common proper-
ties of a collection of individuals and can be considered as
unary predicates interpreted as sets of objects. Roles are in-
terpreted as binary relations between objects. In previous
work (Eiter et al. 2004), we introduceddl-programsas a
method to interface description-logic knowledge bases with
answer-set programs, allowing a bidirectional flow of infor-
mation. To model dl-programs in terms ofHEX-programs,
we developed thedescription-logics plugin, which includes
three external atoms (these atoms, in accord to the semantics
of dl-programs, also allow for extending a description logic
knowledge base, before submitting a query, by means of the
atoms’ input parameters):

• the&dlC atom, which queries a concept (specified by an
input parameter of the atom) and retrieves its individuals,

• the&dlR atom, which queries a role and retrieves its in-
dividual pairs, and

• the &dlConsistent atom, which tests the (possibly ex-
tended) description logic knowledge base for consistency.

The description-logics plugin can access OWL ontolo-
gies, i.e., description logic knowledge bases in the lan-
guageSHOIN (D), utilizing the RACER reasoning engine
(Haarslev & M̈oller 2001).

The String Plugin For simple string manipulation rou-
tines, we provide the string plugin. It currently consists of
two atoms:

• the &concat atom, which lets the user specify two con-
stant strings in the input list and returns their concatena-
tion as a single output value, and

• the &strstr atom, which tests two strings for substring
inclusion.

Current Prototype
dlvhex has been implemented as a command-line applica-
tion. It takes one or moreHEX-programs as input and di-
rectly prints the resultant models as output. Both input
and output are given in classical textual logic-programming

DEPARTMENT OF INFORMATICS 45

11TH NMR WORKSHOP

notation. For the core reasoning process,dlvhex itself
needs the answer-set solver DLV (Leoneet al. 2005) (and
DLT (Ianni et al. 2004) if F-Logic syntax is used).

Assuming that the program from Example 2 is repre-
sented by the filerdf.lp , dlvhex is called as follows:

user@host:˜> dlvhex --filter=friend rdf.lp

The --filter switch reduces the output of facts to the
given predicate names. The result contains two answer sets:

{knows("Giovambattista Ianni",
"Axel Polleres"),

{knows("Giovambattista Ianni",
"Francesco Calimeri"),

{knows("Giovambattista Ianni",
"Wolfgang Faber"),

{knows("Giovambattista Ianni",
"Roman Schindlauer")}

{knows("Roman Schindlauer",
"Giovambattista Ianni"),

{knows("Roman Schindlauer",
"Wolfgang Faber"),

{knows("Roman Schindlauer",
"Hans Tompits")}

We will makedlvhex available both through source and
binary packages. To ease becoming familiar with the sys-
tem, we also offer a simple Web-interface available at

http://www.kr.tuwien.ac.at/research/dlvhex .

It allows for entering aHEX-program and filter predicates
and displays the resultant models. On the same Web-page,
we also supply a toolkit for developing custom plugins, em-
bedded in the GNU autotools environment, which takes care
for the low-level, system-specific build process and lets the
plugin author concentrate his or her efforts on the implemen-
tation of the plugin’s actual core functionality.

References
Calvanese, D.; Giacomo, G. D.; and Lenzerini, M. 2001.
A Framework for Ontology Integration. InProceedings of
the First Semantic Web Working Symposium, 303–316.

Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2004.
Nonmonotonic Description Logic Programs: Implementa-
tion and Experiments. InLogic for Programming, Artifi-
cial Intelligence, and Reasoning, 11th International Con-
ference, LPAR 2004, 511–527.

Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2005.
A Uniform Integration of Higher-Order Reasoning and Ex-
ternal Evaluations in Answer Set Programming. InPro-
ceedings of the 19th International Joint Conference on Ar-
tificial Intelligence (IJCAI-05). Morgan Kaufmann.

Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2006.
Effective Integration of Declarative Rules with external
Evaluations for Semantic Web Reasoning. InEuropean
Semantic Web Conference 2006, Proceedings. To appear.

Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases.New Genera-
tion Computing9:365–385.

Haarslev, V., and M̈oller, R. 2001. RACER System De-
scription. In Proceedings IJCAR-2001, volume 2083 of
LNCS, 701–705.
Ianni, G.; Ielpa, G.; Pietramala, A.; Santoro, M. C.; and
Calimeri, F. 2004. Enhancing Answer Set Programming
with Templates. In Delgrande, J. P., and Schaub, T., eds.,
Proceedings NMR, 233–239.
Kifer, M.; Lausen, G.; and Wu, J. 1995. Logical Founda-
tions of Object-Oriented and Frame-Based Languages.J.
ACM 42(4):741–843.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
Perri, S.; and Scarcello, F. 2005. The DLV System for
Knowledge Representation and Reasoning.ACM Transac-
tions on Computational Logic. To appear.
Lifschitz, V., and Turner, H. 1994. Splitting a Logic Pro-
gram. InProceedings ICLP-94, 23–38. Santa Margherita
Ligure, Italy: MIT-Press.
Przymusinski, T. 1988. On the declarative semantics of
deductive databases and logic programs. InFoundations
of Deductive Databases and Logic Programming.Morgan
Kaufmann. 193–216.
Ross, K. A. 1994. Modular stratification and magic sets for
datalog programs with negation.J. ACM41(6):1216–1266.
Sintek, M., and Decker, S. 2002. TRIPLE - A Query,
Inference, and Transformation Language for the Semantic
Web. InInternational Semantic Web Conference, 364–378.
Wang, K.; Antoniou, G.; Topor, R. W.; and Sattar, A. 2005.
Merging and Aligning Ontologies in dl-Programs. In Adi,
A.; Stoutenburg, S.; and Tabet, S., eds.,Proceedings First
International Conference on Rules and Rule Markup Lan-
guages for the Semantic Web (RuleML 2005), Galway, Ire-
land, November 10-12, 2005, volume 3791 ofLNCS, 160–
171. Springer.

46 Technical Report IfI-06-04

Answer Set Programming

DEPARTMENT OF INFORMATICS 47

11TH NMR WORKSHOP

1.5 Tableaux Calculi for Answer Set Programming

Tableau Calculi for Answer Set Programming

Martin Gebser and Torsten Schaub
Institut für Informatik
Universiẗat Potsdam

Postfach 900327
D–14439 Potsdam

Abstract

We introduce a formal proof system based on tableau meth-
ods for analyzing computations made in Answer Set Pro-
gramming (ASP). Our approach furnishes declarative and
fine-grained instruments for characterizing operations as well
as strategies of ASP-solvers. First, the granulation is detailed
enough to capture the variety of propagation and choice op-
erations of algorithms used for ASP; this also includes SAT-
based approaches. Second, it is general enough to encom-
pass the various strategies pursued by existing ASP-solvers.
This provides us with a uniform framework for identifying
and comparing fundamental properties of algorithms. Third,
the approach allows us to investigate the proof complexity
of algorithms for ASP, depending on choice operations. We
show that exponentially different best-case computations can
be obtained for different ASP-solvers. Finally, our approach
is flexible enough to integrate new inference patterns, so to
study their relation to existing ones. As a result, we obtain
a novel approach to unfounded set handling based on loops,
being applicable to non-SAT-based solvers. Furthermore, we
identify backward propagation operations for unfounded sets.

Introduction
Answer Set Programming (ASP; (Baral 2003)) is an ap-
pealing tool for knowledge representation and reasoning.
Its attractiveness is supported by the availability of effi-
cient off-the-shelf ASP-solvers that allow for computing an-
swer sets of logic programs. However, in contrast to the
related area of satisfiability checking (SAT), ASP lacks a
formal framework for describing inferences conducted by
ASP-solvers, such as the resolution proof theory in SAT-
solving (Mitchell 2005). This deficiency led to a great het-
erogeneity in the description of algorithms for ASP, ranging
over procedural (Lin & Zhao 2004; Giunchigliaet al. 2004),
fixpoint (Simonset al. 2002), and operational (Faber 2002;
Anger et al. 2005) characterizations. On the one hand,
this complicates identifying fundamental properties of algo-
rithms, such as soundness and completeness. On the other
hand, it almost disables formal comparisons among them.

We address this deficiency by introducing a family of
tableau calculi (D’Agostinoet al. 1999) for ASP. This al-
lows us to view answer set computations as derivations in
an inference system: A branch in a tableau corresponds to
a successful or unsuccessful computation of an answer set;
an entire tableau represents a traversal of the search space.

Our approach furnishes declarative and fine-grained instru-
ments for characterizing operations as well as strategies of
ASP-solvers. In fact, we relate the approaches ofassat,
cmodels, dlv, nomore++ , smodels, etc. (Lin & Zhao 2004;
Giunchiglia et al. 2004; Leoneet al. 2006; Angeret al.
2005; Simonset al. 2002) to appropriate tableau calculi,
in the sense that computations of an aforementioned solver
comply with tableau proofs in a corresponding calculus.
This provides us with a uniform proof-theoretic framework
for analyzing and comparing different algorithms, which is
the first of its kind for ASP.

Based on proof-theoretic concepts, we are able to derive
general results, which apply to whole classes of algorithms
instead of only specific ASP-solvers. In particular, we inves-
tigate the proof complexity of different approaches, depend-
ing on choice operations. It turns out that, regarding time
complexity, exponentially different best-case computations
can be obtained for different ASP-solvers. Furthermore, our
proof-theoretic framework allows us to describe and study
novel inference patterns, going beyond implemented sys-
tems. As a result, we obtain a loop-based approach to un-
founded set handling, which is not restricted to SAT-based
solvers. Also we identify backward propagation operations
for unfounded sets.

Our work is motivated by the desire to converge the vari-
ous heterogeneous characterizations of current ASP-solvers,
on the basis of a canonical specification of principles under-
lying the respective algorithms. The classic example for this
is DPLL (Davis & Putnam 1960; Daviset al. 1962), the
most widely used algorithm for SAT, which is based on res-
olution proof theory (Mitchell 2005). By developing proof-
theoretic foundations for ASP and abstracting from imple-
mentation details, we want to enhance the understanding of
solving approaches as such. The proof-theoretic perspective
also allows us to state results in a general way, rather than in
a solver-specific one, and to study inferences by their admis-
sibility, rather than from an implementation point of view.

Our work is inspired by the one of Jarvisalo, Junttila, and
Niemel̈a, who use tableau methods in (Järvisaloet al. 2005;
Junttila & Niemel̈a 2000) for investigating Boolean circuit
satisfiability checking in the context of symbolic model
checking. Although their target is different from ours, both
approaches have many aspects in common. First, both use
tableau methods for characterizing DPLL-type techniques.

48 Technical Report IfI-06-04

Answer Set Programming

Second, using cut rules for characterizing DPLL-type split
operations is the key idea for analyzing the proof complex-
ity of different inference strategies. General investigations in
propositional proof complexity, in particular, the one of sat-
isfiability checking (SAT), can be found in (Beame & Pitassi
1998). From the perspective of tableau systems, DPLL is
very similar to the propositional version of the KE tableau
calculus; both are closely related to weak connection tableau
with atomic cut (as pointed out in (Ḧahnle 2001)). Tableau-
based characterizations of logic programming are elaborated
upon in (Fitting 1994). Pearce, Guzmán, and Valverde pro-
vide in (Pearceet al. 2000) a tableau calculus for automated
theorem proving in equilibrium logic based on its 5-valued
semantics. Other tableau approaches to nonmonotonic log-
ics are summarized in (Olivetti 1999). Bonatti describes
in (Bonatti 2001) a resolution method for skeptical answer
set programming. Operator-based characterizations of prop-
agation and choice operations in ASP can be found in (Faber
2002; Angeret al. 2005; Calimeriet al. 2001).

Answer Set Programming
Given an alphabet P, a (normal) logic pro-
gram is a finite set of rules of the formp0 ←
p1, . . . , pm,not pm+1, . . . ,not pn, wheren ≥ m ≥ 0 and
eachpi ∈ P (0 ≤ i ≤ n) is anatom. A literal is an atomp or
its negationnot p. For a ruler, lethead(r) = p0 be thehead
of r andbody(r) = {p1, . . . , pm,not pm+1, . . . ,not pn}
be the body of r; and let body+(r) = {p1, . . . , pm}
and body−(r) = {pm+1, . . . , pn}. The set of atoms
occurring in a programΠ is given by atom(Π). The
set of bodies inΠ is body(Π) = {body(r) | r ∈ Π}.
For regrouping rule bodies with the same headp, let
body(p) = {body(r) | r ∈ Π, head(r) = p}. A programΠ
is positiveif body−(r) = ∅ for all r ∈ Π. Cn(Π) denotes
the smallest set of atoms closed under positive programΠ.
Thereduct, ΠX , of Π relative to a setX of atoms is defined
by ΠX = {head(r)← body+(r) | r ∈ Π, body−(r)∩X =
∅}. A setX of atoms is ananswer setof a logic program
Π if Cn(ΠX) = X. As an example, consider Program
Π1 = {a ←; c ← not b, not d; d ← a, not c} and its two
answer sets{a, c} and{a, d}.

An assignmentA is a partial mapping of objects in a pro-
gramΠ into {T ,F }, indicating whether a member of the
domainof A, dom(A), is true or false, respectively. In order
to capture the whole spectrum of ASP-solving techniques,
we fix dom(A) to atom(Π) ∪ body(Π) in the sequel. We
defineAT = {v ∈ dom(A) | A(v) = T } andAF = {v ∈
dom(A) | A(v) = F }. We also denote an assignmentA by
a set of signed objects:{T v | v ∈ AT } ∪ {F v | v ∈ AF }.
For instance withΠ1, the assignment mapping body∅ of rule
a← to T and atomb to F is represented by{T ∅,F b}; all
other atoms and bodies ofΠ1 remain undefined. Following
up this notation, we call an assignmentemptyif it leaves all
objects undefined.

We define a setU of atoms as anunfounded set(van
Gelder, Ross, & Schlipf 1991) of a programΠ wrt a partial
assignmentA, if, for every ruler ∈ Π such thathead(r) ∈
U , either (body+(r) ∩ AF) ∪ (body−(r) ∩ AT) 6= ∅ or

body+(r) ∩ U 6= ∅. The greatest unfounded setof Π wrt
A, denotedGUS (Π, A), is the union of all unfounded sets
of Π wrt A. Loops are sets of atoms that circularly de-
pend upon one another in a program’s positive atom depen-
dency graph (Lin & Zhao 2004). In analogy to external sup-
port (Lee 2005) of loops, we define theexternal bodiesof
a loopL in Π asEB(L) = {body(r) | r ∈ Π, head(r) ∈
L, body+(r) ∩ L = ∅}. We denote the set of all loops inΠ
by loop(Π).

Tableau calculi
We describe calculi for the construction of answer sets from
logic programs. Such constructions are associated with bi-
nary trees calledtableaux(D’Agostino et al. 1999). The
nodes of the trees are (mainly)signed propositions, that is,
propositions preceded by eitherT or F , indicating an as-
sumed truth value for the proposition. Atableaufor a logic
programΠ and an initial assignmentA is a binary tree such
that the root node of the tree consists of the rules inΠ and
all members ofA. The other nodes in the tree areentries
of the formT v or F v, wherev ∈ dom(A), generated by
extending a tableau using the rules in Figure 1 in the follow-
ing standard way (D’Agostinoet al. 1999): Given a tableau
rule and a branch in the tableau such that the prerequisites
of the rule hold in the branch, the tableau can be extended
by adding new entries to the end of the branch as specified
by the rule. If the rule is theCut rule in (m), then entries
T v andF v are added as the left and the right child to the
end of the branch. For the other rules, the consequent of the
rule is added to the end of the branch. For convenience, the
application of tableau rules makes use of two conjugation
functions,t andf . For a literall, define:

tl =

{

T l if l ∈ P
F p if l = not p for ap ∈ P

f l =

{

T p if l = not p for ap ∈ P
F l if l ∈ P

Some rule applications are subject to provisos.(§) stipulates
thatB1, . . . , Bm constitute all bodies of rules with headp.
(†) requires thatp belongs to the greatest unfounded set in-
duced by all rules whose body is not amongB1, . . . , Bm.
(‡) makes sure thatp belongs to a loop whose external bod-
ies areB1, . . . , Bm. Finally, (♯[X]) guides the application
of the Cut rule by restricting cut objects to members of
X.1 Different tableau calculi are obtained from different
rule sets. When needed this is made precise by enumerat-
ing the tableau rules. The following tableau calculi are of
particular interest:

Tcomp = {(a)-(h), Cut[atom(Π) ∪ body(Π)]} (1)

Tsmodels = {(a)-(i), Cut[atom(Π)]} (2)

TnoMoRe = {(a)-(i), Cut[body(Π)]} (3)

Tnomore++ = {(a)-(i), Cut[atom(Π) ∪ body(Π)]} (4)

1The Cut rule ((m) in Figure 1) may, in principle, introduce
more general entries; this would however necessitate additional de-
composition rules, leading to extended tableau calculi.

DEPARTMENT OF INFORMATICS 49

11TH NMR WORKSHOP

p← l1, . . . , ln
tl1, . . . , tln

T {l1, . . . , ln}

F {l1, . . . , li, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li

(a) Forward True Body (FTB) (b) Backward False Body (BFB)

p← l1, . . . , ln
T {l1, . . . , ln}

T p

p← l1, . . . , ln
F p

F {l1, . . . , ln}

(c) Forward True Atom (FTA) (d) Backward False Atom (BFA)

p← l1, . . . , li, . . . , ln
f li

F {l1, . . . , li, . . . , ln}
T {l1, . . . , li, . . . , ln}

tli

(e) Forward False Body (FFB) (f) Backward True Body (BTB)

FB1, . . . ,FBm
(§)F p

T p
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(§)TBi

(g) Forward False Atom (FFA) (h) Backward True Atom (BTA)

FB1, . . . ,FBm
(†)F p

T p
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(†)TBi

(i) Well-Founded Negation (WFN) (j) Well-Founded Justification (WFJ)

FB1, . . . ,FBm
(‡)F p

T p
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(‡)TBi

(k) Forward Loop (FL) (l) Backward Loop (BL)

(♯[X])T v | F v

(m) Cut (Cut[X])

(§) : body(p) = {B1, . . . , Bm}
(†) : {B1, . . . , Bm} ⊆ body(Π), p ∈ GUS ({r ∈ Π | body(r) 6∈ {B1, . . . , Bm}}, ∅)
(‡) : p ∈ L,L ∈ loop(Π), EB(L) = {B1, . . . , Bm}

(♯[X]) : v ∈ X

Figure 1: Tableau rules for answer set programming.

50 Technical Report IfI-06-04

Answer Set Programming

a←
c← not b, not d

d← a, not c
T ∅ (a)
T a (c)
F b (g)

T c F c
T {not b, not d} (h) F {not b, not d} (d)

F d (f) T d (b)
F {a, not c} (e) T {a, not c} (a)

(Cut [atom(Π)])

Figure 2: Tableau ofTsmodelsfor Π1 and the empty assignment.

An exemplary tableau ofTsmodels is given in Figure 2,
where rule applications are indicated by either letters or rule
names, like(a) or (Cut [atom(Π)]). Both branches com-
prise Π1 along with a total assignment foratom(Π1) ∪
body(Π1); the left one represents answer set{a, c}, the right
one gives answer set{a, d}.

A branch in a tableau iscontradictory, if it contains both
entriesT v andF v for somev ∈ dom(A). A branch iscom-
plete, if it is contradictory, or if the branch contains either the
entryT v orF v for eachv ∈ dom(A) and is closed under all
rules in a given calculus, except for theCut rule in (m). For
instance, both branches in Figure 2 are non-contradictory
and complete.

For eachv ∈ dom(A), we say that entryT v (or F v) can
be deduced by a setR of tableau rules in a branch, if the
entryT v (or F v) can be generated from nodes in the branch
by applying rules inR only. Note that every branch corre-
sponds to a pair(Π, A) consisting of a programΠ and an
assignmentA, and vice versa;2 we draw on this relationship
for identifying branches in the sequel. Accordingly, we let
DR(Π, A) denote the set of all entries deducible by rule set
R in branch(Π, A). Moreover,D∗

R(Π, A) represents the
set of all entries in the smallest branch extending(Π, A) and
being closed underR. When dealing with tableau calculi,
like T , we slightly abuse notation and writeDT (Π, A) (or
D∗

T (Π, A)) instead ofDT \{(m)}(Π, A) (or D∗
T \{(m)}(Π, A)),

thus ignoringCut. We mention thatD∗
{(a),(c),(e),(g)}(Π, A)

corresponds to Fitting’s operator (Fitting 2002). Similarly,
we detail in the subsequent sections thatD∗

{(a)-(h)}(Π, A)

coincides with unit propagation on a program’s comple-
tion (Clark 1978; Aptet al. 1987),D∗

{(a),(c),(e),(g),(i)}(Π, A)

amounts to propagation via well-founded semantics (van
Gelder, Ross, & Schlipf 1991), andD∗

{(a)-(i)}(Π, A) cap-
turessmodels’ propagation (Simonset al. 2002), that is,
well-founded semantics enhanced by backward propagation.
Note that all deterministic rules in Figure 1 are answer set
preserving; this also applies to theCut rule when consider-
ing both resulting branches.

A tableau iscompleteif all its branches are complete. A
complete tableau for a program and the empty assignment
such that all branches are contradictory is called arefutation

2Given a branch(Π, A) in a tableau forΠ and initial assignment
A0, we haveA0 ⊆ A.

for the program; it means that the program has no answer
set, as exemplarily shown next forsmodels-type tableaux.

Theorem 1 Let Π be a logic program and let∅ denote the
empty assignment. Then, the following holds for tableau
calculusTsmodels:

1. Π has no answer set iff any complete tableau forΠ and
∅ is a refutation.

2. If Π has an answer setX, then every complete tableau
for Π and∅ has a unique non-contradictory branch(Π, A)
such thatX = AT ∩ atom(Π).

3. If a tableau forΠ and∅ has a non-contradictory com-
plete branch(Π, A), thenAT ∩ atom(Π) is an answer set
of Π.

The same results are obtained for other tableau calculi, like
TnoMoReandTnomore++ , all of which are sound and complete
for ASP.

Characterizing existing ASP-solvers
In this section, we discuss the relation between the tableau
rules in Figure 1 and well-known ASP-solvers. As it turns
out, our tableau rules are well-suited for describing the ap-
proaches of a wide variety of ASP-solvers. In particular, we
cover all leading approaches to answer set computation for
(normal) logic programs. We start with SAT-based solvers
assat and cmodels, then go on with atom-based solvers
smodelsand dlv, and finally turn tohybrid solvers, like
nomore++ , working on atoms as well as bodies.

SAT-based solvers. The basic idea of SAT-based solvers
is to use some SAT-solver as model generator and to af-
terwards check whether a generated model contains an un-
foundedloop. Lin and Zhao show in (Lin & Zhao 2004)
that the answer sets of a logic programΠ coincide with the
models of thecompletionof Π and the set of allloop for-
mulasof Π. The respective propositional logic translation is
Comp(Π) ∪ LF (Π), where:3

Comp(Π) = {p ≡ (
∨

k=1..m

∧

l∈Bk
l) |

p ∈ atom(Π), body(p) = {B1, . . . , Bm}}

LF (Π) = {¬(
∨

k=1..m

∧

l∈Bk
l)→

∧

p∈L ¬p |

L ∈ loop(Π),EB(L) = {B1, . . . , Bm}}

3Note that a negative default literalnot p is translated as¬p.

DEPARTMENT OF INFORMATICS 51

11TH NMR WORKSHOP

This translation constitutes the backbone of SAT-based
solversassat(Lin & Zhao 2004) andcmodels(Giunchiglia
et al. 2004). However, loop formulasLF (Π) require ex-
ponential space in the worst case (Lifschitz & Razborov
2006). Thus,assatadds loop formulas fromLF (Π) incre-
mentally toComp(Π), whenever some model ofComp(Π)
not corresponding to an answer set has been generated by the
underlying SAT-solver.4 The approach ofcmodelsavoids
storing loop formulas by exploiting the SAT-solver’s inner
backtracking and learning scheme. Despite the differences
betweenassatandcmodels, we can uniformly characterize
their model generation and verification steps. We first de-
scribe tableaux capturing the proceeding of the underlying
SAT-solver and then go on with unfounded set checks.

In analogy to Theorem 1, models ofComp(Π) corre-
spond to tableaux ofTcomp .

Theorem 2 LetΠ be a logic program. Then,M is a model
of Comp(Π) iff every complete tableau ofTcomp for Π and
∅ has a unique non-contradictory branch(Π, A) such that
M = AT ∩ atom(Π).

Intuitively, tableau rules(a)-(h) describe unit propagation
on a program’s completion, represented in CNF as required
by most SAT-solvers. Note thatassatand cmodelsintro-
duce propositional variables for bodies in order to obtain a
polynomially-sized set of clauses equivalent to a program’s
completion (Babovich & Lifschitz 2003). Due to the fact
that atoms and bodies are represented as propositional vari-
ables, allowing both of them as branching variables inTcomp

(via Cut [atom(Π) ∪ body(Π)]; cf. (1)) makes sense.
Once a model ofComp(Π) has been generated by the un-

derlying SAT-solver,assatandcmodelsapply an unfounded
set check for deciding whether the model is an answer set.
If it fails, unfounded loops whose atoms are true (so-called
terminating loops(Lin & Zhao 2004)) are determined. Their
loop formulas are used to eliminate the generated model.
Unfounded set checks, as performed byassatandcmodels,
can be captured by tableau rulesFFB andFL ((e) and(k) in
Figure 1) as follows.

Theorem 3 Let Π be a logic program, letM be a model
of Comp(Π), and letA = {T p | p ∈ M} ∪ {F p | p ∈
atom(Π) \M}. Then,M is an answer set ofΠ iff M ∩
(D{FL}(Π,D{FFB}(Π, A)))F = ∅.

With SAT-based approaches, sophisticated unfounded set
checks, able to detect unfounded loops, are applied only to
non-contradictory complete branches. Unfortunately, pro-
grams may yield exponentially many loops (Lifschitz &
Razborov 2006). This can lead to exponentially many mod-
els of a program’s completion that turn out to be no answer
sets (Giunchiglia & Maratea 2005). In view of Theorem 3,
it means that exponentially many branches may have to be
completed by final unfounded set checks.

Atom-based solvers. We now describe the relation be-
tweensmodels(Simonset al. 2002) anddlv (Leoneet al.
2006) on the one side and our tableau rules on the other

4Note that every answer set ofΠ is a model ofComp(Π), but
not vice versa (Fages 1994).

side. We first concentrate on characterizingsmodelsand
then sketch how our characterization applies todlv.

Given that only literals are explicitly represented insmod-
els’ assignments, whereas truth and falsity of bodies are de-
termined implicitly, one might consider rewriting tableau
rules to work on literals only, thereby, restricting the domain
of assignments to atoms. For instance, tableau ruleFFA ((g)
in Figure 1) would then turn into:

f l1, . . . ,f lm
F p

({r ∈ Π | head(r) = p,
body(r) ∩ {l1, . . . , lm} = ∅} = ∅)

Observe that, in such a reformulation, one again refers to
bodies by determining their values in the proviso associ-
ated with the inference rule. Reformulating tableau rules to
work on literals only thus complicates provisos and does not
substantially facilitate the description.5 In (Giunchiglia &
Maratea 2005), additional variables for bodies, one for each
rule of a program, are even explicitly introduced for com-
paring smodelswith DPLL. Given that propagation, even
within atom-based solvers, has to consider the truth status
of rules’ bodies, the only saving in the computation of an-
swer sets is limiting branching to atoms, which is expressed
by Cut [atom(Π)] in Tsmodels(cf. (2)).

Propagation insmodelsis accomplished by two functions,
called atleast and atmost (Simonset al. 2002).6 The
former computes deterministic consequences by applying
completion-based forward and backward propagation ((a)-
(h) in Figure 1); the latter falsifies greatest unfounded sets
(WFN ; (i) in Figure 1).

The following result captures propagation viaatleast in
terms ofTcomp .

Theorem 4 Let Π be a logic program and letA be an as-
signment such thatAT ∪ AF ⊆ atom(Π). Let AS =
atleast(Π, A) andAT = D∗

Tcomp
(Π, A). If AT

S ∩ AF

S 6= ∅,

thenAT

T ∩AF

T 6= ∅; otherwise, we haveAS ⊆ AT .

This result shows that anything derived byatleast can also
be derived byTcomp (withoutCut). In fact, ifatleast detects
an inconsistency (AT

S ∩ AF

S 6= ∅), thenTcomp can derive it
as well (AT

T ∩ AF

T 6= ∅). Otherwise,Tcomp can derive at
least as much asatleast (AS ⊆ AT). This subsumption
does not only originate from the (different) domains of as-
signments, that is, only atoms foratleast but also bodies for
Tcomp . Rather, it is the redundant representation of rules’
bodies withinsmodelsthat inhibits possible derivations ob-
tained withTcomp . To see this, consider rulesa ← c, d and
b ← c, d and an assignmentA that containsF a but leaves
atomsc andd undefined. For such anA, atleast can only
determine that rulea← c, d must not be applied, but it does
not recognize that ruleb ← c, d, sharing body{c, d}, is in-
applicable as well. Ifb ← c, d is the only rule with head
atomb in the underlying program, thenTcomp can, in con-
trast toatleast , deriveF b via FFA ((g) in Figure 1). A
one-to-one correspondence betweenatleast andTcomp on

5Restricting the domain of assignments to atoms would also
disable the analysis of differentCut variants done below.

6Here, atleast and atmost are taken as defined on signed
propositions instead of literals (Simonset al. 2002).

52 Technical Report IfI-06-04

Answer Set Programming

derived atoms could be obtained by distinguishing different
occurrences of the same body. However, for each deriva-
tion of atleast , there is a corresponding one inTcomp . That
is, every propagation done byatleast can be described with
Tcomp .

Functionatmost returns the maximal set of potentially
true atoms, that is,atom(Π) \ (GUS (Π, A) ∪ AF) for a
programΠ and an assignmentA. Atoms in the complement
of atmost , that is, the greatest unfounded setGUS (Π, A)
augmented withAF , must be false. This can be described
by tableau rulesFFB andWFN ((e)and(i) in Figure 1).

Theorem 5 Let Π be a logic program and let
A be an assignment such thatAT ∪ AF ⊆
atom(Π). We haveatom(Π) \ atmost(Π, A) =
(D{WFN}(Π,D{FFB}(Π, A)))F ∪AF .

Note thatsmodelsadds literals{F p | p ∈ atom(Π) \
atmost(Π, A)} to an assignmentA. If this leads to an in-
consistency, so doesD{WFN}(Π,D{FFB}(Π, A)).

We have seen thatsmodels’ propagation functions,atleast
andatmost , can be described by tableau rules(a)-(i). By
addingCut [atom(Π)], we thus get tableau calculusTsmodels
(cf. (2)). Note thatlookahead(Simonset al. 2002) can
also be described by means ofCut [atom(Π)]: If smodels’
lookahead derives some literaltl, a respective branch can
be extended byCut applied to the atom involved inl. The
subbranch containingf l becomes contradictory by closing
it underTsmodels. Also, if smodels’ propagation detects an
inconsistency ontl, then both subbranches created byCut ,
f l andtl, become contradictory by closing them; the sub-
tableau under consideration becomes complete.

After having discussedsmodels, we briefly turn todlv:
In contrast tosmodels’ atmost , greatest unfounded set de-
tection is restricted to strongly connected components of
programs’ atom dependency graphs (Calimeriet al. 2001).
Hence, tableau ruleWFN has to be adjusted to work on
such components.7 In the other aspects, propagation within
dlv (Faber 2002) is (on normal logic programs) similar to
smodels’ atleast . Thus, tableau calculusTsmodelsalso char-
acterizesdlv very closely.

Hybrid solvers. Finally, we discuss similarities and dif-
ferences between atom-based ASP-solvers,smodelsanddlv,
andhybrid solvers, working on bodies in addition to atoms.
Let us first mention that SAT-based solvers,assatandcmod-
els, are in a sense hybrid, since the CNF representation of a
program’s completion contains variables for bodies. Thus,
underlying SAT-solvers can branch on both atoms and bod-
ies (viaCut [atom(Π)∪ body(Π)] in Tcomp). The only gen-
uine ASP-solver (we know of) explicitly assigning truth val-
ues to bodies, in addition to atoms, isnomore++ (Anger et
al. 2005).8

In (Anger et al. 2005), propagation rules applied by
nomore++ are described in terms of operators:P for for-
ward propagation,B for backward propagation,U for falsi-
fying greatest unfounded sets, andL for lookahead. Sim-

7However, iterated application of such aWFN variant leads to
the same result as(i) in Figure 1.

8Complementing atom-based solvers, thenoMoRe sys-
tem (Konczaket al. 2006) is rule-based (cf.TnoMoRein (3)).

ilar to our tableau rules, these operators apply to both
atoms and bodies. We can thus show direct correspon-
dences between tableau rules(a), (c), (e), (g)andP, (b),
(d), (f), (h) and B, and (i) and U . Similar to smodels’
lookahead, derivations ofL can be described by means of
Cut [atom(Π) ∪ body(Π)]. So by replacingCut [atom(Π)]
with Cut [atom(Π) ∪ body(Π)], we obtain tableau calcu-
lus Tnomore++ (cf. (4)) fromTsmodels. In the next section, we
show that this subtle difference, also observed on SAT-based
solvers, may have a great impact on proof complexity.

Proof complexity

We have seen that genuine ASP-solvers largely coincide on
their propagation rules and differ primarily in the usage of
Cut . In this section, we analyze the relative efficiency of
tableau calculi with differentCut rules. Thereby, we take
Tsmodels, TnoMoRe, andTnomore++ into account, all using tableau
rules(a)-(i) in Figure 1 but applying theCut rule either to
atom(Π), body(Π), or both of them (cf. (2–4)). These three
calculi are of particular interest: On the one hand, they can
be used to describe the strategies of ASP-solvers, as shown
in the previous section; on the other hand, they also repre-
sent different paradigms, either atom-based, rule-based,or
hybrid. So by considering these particular calculi, we ob-
tain results that, on the one hand, are of practical relevance
and that, on the other hand, apply to different approaches in
general.

For comparing different tableau calculi, we use well-
known concepts fromproof complexity(Beame & Pitassi
1998; J̈arvisalo et al. 2005). Accordingly, we measure
the complexity of unsatisfiable logic programs, that is, pro-
grams without answer sets, in terms ofminimal refuta-
tions. The size of a tableau is determined in the stan-
dard way as the number of nodes in it. A tableau calcu-
lusT is notpolynomially simulated(Beame & Pitassi 1998;
Järvisalo et al. 2005) by another tableau calculusT ′ if
there is an infinite (witnessing) family{Πn} of unsatisfi-
able logic programs such that minimal refutations ofT ′

for Π are asymptotically exponential in the size of minimal
refutations ofT for Π. A tableau calculusT is exponen-
tially strongerthan a tableau calculusT ′ if T polynomially
simulatesT ′, but not vice versa. Two tableau calculi are
efficiency-incomparableif neither one polynomially simu-
lates the other. Note that proof complexity says nothing
about how difficult it is to find a minimal refutation. Rather,
it provides a lower bound on the run-time of proof-finding
algorithms (in our context, ASP-solvers), independent from
heuristic influences.

In what follows, we provide families of unsatisfiable logic
programs witnessing that neitherTsmodelspolynomially sim-
ulatesTnoMoRenor vice versa. This means that, on certain in-
stances, restricting theCut rule to either only atoms or bod-
ies leads to exponentially longer minimal run-times of either
atom- or rule-based solvers in comparison to their counter-
parts, no matter which heuristic is applied.

Lemma 6 There is an infinite family{Πn} of logic pro-
grams such that

DEPARTMENT OF INFORMATICS 53

11TH NMR WORKSHOP

1. the size of minimal refutations ofTnoMoRe is linear in
n and
2. the size of minimal refutations ofTsmodelsis exponential
in n.

Lemma 7 There is an infinite family{Πn} of logic pro-
grams such that

1. the size of minimal refutations ofTsmodels is linear in
n and
2. the size of minimal refutations ofTnoMoReis exponential
in n.

Family{Πn
a ∪Πn

c } witnesses Lemma 6 and{Πn
b ∪Πn

c } wit-
nesses Lemma 7(see Figure 3).

The next result follows immediately from Lemma 6 and 7.

Theorem 8 Tsmodels and TnoMoRe are efficiency-
incomparable.

Given that any refutations ofTsmodelsandTnoMoRe are as
well refutations ofTnomore++ , we have thatTnomore++ polyno-
mially simulates bothTsmodelsandTnoMoRe. So the following
is an immediate consequence of Theorem 8.

Corollary 9 Tnomore++ is exponentially stronger than both
TsmodelsandTnoMoRe.

The major implication of Corollary 9 is that, on certain logic
programs, a priori restricting theCut rule to either only
atoms or bodies necessitates the traversal of an exponen-
tially larger search space than with unrestrictedCut . Note
that the phenomenon of exponentially worse proof complex-
ity in comparison toTnomore++ does not, depending on the
program family, apply to one ofTsmodelsor TnoMoRe alone.
Rather, families{Πn

a}, {Π
n
b }, and{Πn

c } can be combined
such that bothTsmodelsandTnoMoReare exponentially worse
thanTnomore++ . For certain logic programs, the unrestricted
Cut rule is thus the only way to have at least the chance of
finding a short refutation. Empirical evidence for the expo-
nentially different behavior is given in (Angeret al. 2006b).

Finally, note that our proof complexity results are robust.
That is, they apply to any possible ASP-solver whose pro-
ceeding can be described by corresponding tableaux. For
instance, any computation ofsmodelscan be associated with
a tableau ofTsmodels. A computation ofsmodelsthus requires
time proportional to the size of the corresponding tableau;in
particular, the magnitude of a minimal tableau constitutesa
lower bound on the run-time ofsmodels. This correlation
is independent from whether an assignment contains only
atoms or also bodies of a program: The size of any branch
(not containing duplicate entries) is tightly bound by the size
of a logic program. Therefore, exponential growth of min-
imal refutations is, for polynomially growing program fam-
ilies as the ones in Figure 3, exclusively caused by the in-
crease of necessaryCut applications, introducing an expo-
nential number of branches.

Unfounded sets
We have analyzed propagation techniques and proof com-
plexity of existing approaches to ASP-solving. We have
seen that all approaches exploit propagation techniques
amounting to inferences from program completion ((a)-(h)

in Figure 1). In particular, SAT-based and genuine ASP-
solvers differ only in the treatment of unfounded sets: While
the former apply (loop-detecting) unfounded set checks to
total assignments only, the latter incorporate (greatest)un-
founded set falsification (WFN ; (i) in Figure 1) into their
propagation. However, tableau ruleWFN , as it is currently
applied by genuine ASP-solvers, has several peculiarities:

A. WFN is partly redundant, that is, it overlaps with
completion-based tableau ruleFFA ((g) in Figure 1),
which falsifies atoms belonging to singleton unfounded
sets.

B. WFN deals with greatest unfounded sets, which can be
(too) exhaustive.

C. WFN is asymmetrically applied, that is, solvers apply
no backward counterpart.

In what follows, we thus propose and discuss alternative
approaches to unfounded set handling, motivated by SAT-
based solvers and results in (Lin & Zhao 2004). Before
we start, let us briefly introduce some vocabulary. Given
two sets of tableau rules,R1 andR2, we say thatR1 is at
least as effectiveasR2 if, for any branch(Π, A), we have
D∗

R2
(Π, A) ⊆ D∗

R1
(Π, A). We say thatR1 is more effec-

tive thanR2 if R1 is at least as effective asR2, but not vice
versa. IfR1 is at least as effective asR2 and vice versa,
thenR1 andR2 areequally effective. Finally,R1 andR2

areorthogonalif they are not equally effective and neither
one is more effective than the other. A correspondence be-
tween two rule setsR1 ∪ R andR2 ∪ R means that the
correspondence betweenR1 andR2 holds whenD∗ takes
auxiliary rulesR into account as well.

We start with analyzing the relation betweenWFN and
FFA, both falsifying unfounded atoms in forward direction.
The role ofFFB ((e) in Figure 1) is to falsify bodies that
positively rely on falsified atoms. Intuitively, this allows
to capture iterated applications ofWFN andFFA, respec-
tively, in whichFFB behaves neutrally. Taking up item A.
above, we have the following result.

Proposition 1 Set of rules{WFN ,FFB} is more effective
than{FFA,FFB}.

This tells us thatFFA is actually redundant in the presence
of WFN . However, all genuine ASP-solvers applyFFA as a
sort of “local” negation (e.g.atleast of smodelsand operator
P of nomore++) and separatelyWFN as “global” negation
(e.g.atmost of smodelsand operatorU of nomore++). Cer-
tainly, applyingFFA is reasonable as applicability is easy
to determine. (Thus, SAT-based solvers applyFFA, but not
WFN .) But with FFA at hand, Proposition 1 also tells us
that greatest unfounded sets are too unfocused to describe
the sort of unfounded sets that truly require a dedicated treat-
ment: The respective tableau rule,WFN , subsumes a sim-
pler one,FFA.

A characterization ofWFN ’s effect, not built upon great-
est unfounded sets, is obtained by putting results in (Lin &
Zhao 2004) into the context of partial assignments.

Theorem 10 Sets of rules {WFN ,FFB} and
{FFA,FL,FFB} are equally effective.

54 Technical Report IfI-06-04

Answer Set Programming

Πn
a =















x ← not x
x ← a1, b1

...
x ← an, bn















Πn
b =















x ← c1, . . . , cn, not x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn















Πn
c =























a1 ← not b1

b1 ← not a1

...
an ← not bn

bn ← not an























Figure 3: Families of programs{Πn
a}, {Π

n
b }, and{Πn

c }.

Hence, one may safely substituteWFN byFFA andFL ((k)
in Figure 1), without forfeiting atoms that must be false due
to the lack of (non-circular) support. Thereby,FFA concen-
trates on single atoms andFL on unfounded loops. Since
both tableau rules have different scopes, they do not overlap
but complement each other.

Proposition 2 Sets of rules{FFA,FFB} and{FL,FFB}
are orthogonal.

SAT-based approaches provide an explanation why con-
centrating on cyclic structures, namely loops, besides single
atoms is sufficient: When falsity of unfounded atoms does
not follow from a program’s completion orFFA, then there
is a loop all of whose external bodies are false. Such a loop
(called terminating loopin (Lin & Zhao 2004)) is a subset
of the greatest unfounded set. So in view of item B. above,
loop-oriented approaches allow for focusing unfounded set
computations on the intrinsically necessary parts. In fact,
the more sophisticated unfounded set techniques applied by
genuine ASP-solvers aim at circular structures induced by
loops. That is, bothsmodels’ approach, based on “source
pointers” (Simons 2000), as well asdlv’s approach, based
on strongly connected components of programs’ atom de-
pendency graphs (Calimeriet al. 2001), can be seen as re-
strictions ofWFN to structures induced by loops. However,
neither of them takes loops as such into account.

Having considered forward propagation for unfounded
sets, we come to backward propagation, that is,BTA, WFJ ,
andBL ((h), (j), and(l) in Figure 1). Although no genuine
ASP-solver currently integrates propagation techniques cor-
responding toWFJ or BL, as mentioned in item C. above,
both rules are answer set preserving.

Proposition 3 Let Π be a logic program and letA be
an assignment. LetB ∈ body(Π) such thatTB ∈
D{WFJ}(Π, A) (or TB ∈ D{BL}(Π, A), respectively).
Then, branch(Π, A∪D{WFN}(Π, A∪{FB})) (or (Π, A∪
D{FL}(Π, A ∪ {FB})), respectively) is contradictory.

Both WFJ andBL ensure that falsifying some body does
not lead to an inconsistency due to applying their forward
counterparts. In fact,WFJ andBL are contrapositives of
WFN andFL, respectively, in the same way as simpler rule
BTA is for FFA.

A particularity of supporting true atoms by backward
propagation is that “global” ruleWFJ is more effective than
“local” ones,BTA andBL. Even adding tableau ruleBTB
((f) in Figure 1), for enabling iterated application of back-
ward rules setting bodies to true, does not compensate for
the global character ofWFJ .

Proposition 4 Set of rules{WFJ ,BTB} is more effective
than{BTA,BL,BTB}.

We conclude by discussing different approaches to un-
founded set handling. Both SAT-based and genuine ASP-
solvers apply tableau rulesFFA andBTA, both focusing on
single atoms. In addition, genuine ASP-solvers applyWFN
to falsify more complex unfounded sets. However,WFN
gives an overestimation of the parts of unfounded sets that
need a dedicated treatment: SAT-based approaches show
that concentrating on loops, viaFL, is sufficient. However,
the latter apply loop-detecting unfounded set checks only to
total assignments or use loop formulas recorded in reaction
to previously failed unfounded set checks. Such a recorded
loop formula is then exploited by propagation within SAT-
based solvers in both forward and backward direction, which
amounts to applyingFL andBL. A similar kind of back-
ward propagation, by eitherWFJ or BL, is not exploited by
genuine ASP-solvers, so unfounded set treatment is asym-
metric. We however believe that bridging the gap between
SAT-based and genuine ASP-solvers is possible by putting
the concept of loops into the context of partial assignments.
For instance, a loop-oriented unfounded set algorithm is de-
scribed in (Angeret al. 2006a).

Discussion
In contrast to the area of SAT, where the proof-theoretic
foundations of SAT-solvers are well-understood (Mitchell
2005; Beame & Pitassi 1998), the literature on ASP-solvers
is generally too specific in terms of algorithms or solvers;
existing characterizations are rather heterogeneous and often
lack declarativeness. We address this deficiency by propos-
ing a tableau proof system that provides a formal frame-
work for analyzing computations of ASP-solvers. To our
knowledge, this approach is the first uniform proof-theoretic
account for computational techniques in ASP. Our tableau
framework allows to abstract away implementation details
and to identify valid inferences; hence, soundness and com-
pleteness results are easily obtained. This is accomplished
by associating specific tableau calculi with the approaches
of ASP-solvers, rather than with their solving algorithms.

The explicit integration of bodies into assignments has
several benefits. First, it allows us to capture completion-
based and hybrid approaches in a closer fashion. Second, it
allows us to reveal exponentially different proof complexi-
ties of ASP-solvers. Finally, even inferences in atom-based
systems, likesmodelsanddlv, are twofold insofar as they
must take program rules into account for propagation. This
feature is simulated in our framework through the corre-
sponding bodies. Although this simulation is sufficient for

DEPARTMENT OF INFORMATICS 55

11TH NMR WORKSHOP

establishing formal results, it is worth noting that dealing
with rules bears more redundancy than dealing with their
bodies. Related to this, we have seen that rule-wise consid-
eration of bodies, as for instance done insmodels’ atleast ,
can forfeit derivations that are easily obtained based on non-
duplicated bodies (cf. Theorem 4). The tableau rules un-
derlying atom-based and hybrid systems also reveal that the
only major difference lies in the selection of program objects
to branch upon.

The branching rule,Cut , has a major influence on proof
complexity. It is well-known that an uncontrolled applica-
tion of Cut is prone to inefficiency. The restriction of ap-
plying Cut to (sub)formulae occurring in the input showed
to be an effective way to “tame” the cut (D’Agostinoet al.
1999). We followed this by investigatingCut applications to
atoms and bodies occurring in a program. Our proof com-
plexity results tell us that the minimal number of required
Cut applications may vary exponentially when restricting
Cut to either only atoms or bodies. For not a priori de-
grading an ASP-solving approach, theCut rule must thus
not be restricted to either only atoms or bodies. Note that
these results hold for any ASP-solver (or algorithm) whose
proceeding can be described by tableaux of a corresponding
calculus.

Regarding the relation between SAT-based and genuine
ASP-solvers, we have seen that unfounded set handling con-
stitutes the major difference. Though both approaches, as
practiced by solvers, appear to be quite different, the aims
and effects of underlying tableau rules are very similar. We
expect that this observation will lead to convergence of SAT-
based and genuine ASP-solvers, in the sense that the next
generation of genuine ASP-solvers will directly incorporate
the same powerful reasoning strategies that are already ex-
ploited in the area of SAT (Mitchell 2005).
Acknowledgments. This work was supported by DFG
(SCHA 550/6-4). We are grateful to Christian Anger,
Philippe Besnard, Martin Brain, Yulyia Lierler, and the
anonymous referees for many helpful suggestions.

References
Anger, C.; Gebser, M.; Linke, T.; Neumann, A.; and Schaub,
T. 2005. Thenomore++ approach to answer set solving. In
Sutcliffe, G., and Voronkov, A., eds.,LPAR, 95–109. Springer.

Anger, C.; Gebser, M.; and Schaub, T. 2006a. Approaching the
core of unfounded sets. In Dix, J., and Hunter, A., eds.,NMR.

Anger, C.; Gebser, M.; and Schaub, T. 2006b. What’s a head
without a body. In Brewka, G., ed.,ECAI, to appear.

Apt, K.; Blair, H.; and Walker, A. 1987. Towards a theory of
declarative knowledge. In Minker, J., ed.,Foundations of De-
ductive Databases and Logic Programming, Morgan Kaufmann.
89–148.

Babovich, Y., and Lifschitz, V. 2003. Computing answer sets
using program completion. Unpublished draft.

Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving, Cambridge University Press.

Beame, P., and Pitassi, T. 1998. Propositional proof complexity:
Past, present, and future.EATCS, 65:66–89.

Bonatti, P. 2001. Resolution for skeptical stable model semantics.
J. AR, 27(4):391–421.

Calimeri, F.; Faber, W.; Leone, N.; and Pfeifer, G. 2001. Pruning
operators for answer set programming systems. INFSYS RR-
1843-01-07, TU Wien.
Clark, K. 1978. Negation as failure. In Gallaire, H., and Minker,
J., eds.,Logic and Data Bases, Plenum. 293–322.
D’Agostino, M.; Gabbay, D.; Ḧahnle, R.; and Posegga, J., eds.
1999.Handbook of Tableau Methods, Kluwer.
Davis, M., and Putnam, H. 1960. A computing procedure for
quantification theory.J. ACM, 7:201–215.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A machine
program for theorem-proving.C. ACM, 5:394–397.
Faber, W. 2002. Enhancing Efficiency and Expressiveness in
Answer Set Programming Systems. Dissertation, TU Wien.
Fages, F. 1994. Consistency of clark’s completion and the exis-
tence of stable models.J. MLCS, 1:51–60.
Fitting, M. 1994. Tableaux for logic programming.J. AR,
13(2):175–188.
Fitting, M. 2002. Fixpoint semantics for logic programming: A
survey.TCS, 278(1-2):25–51.
Giunchiglia, E., and Maratea, M. 2005. On the relation between
answer set and SAT procedures (or, cmodels and smodels). In
Gabbrielli, M., and Gupta, G., eds.,ICLP, 37–51. Springer.
Giunchiglia, E.; Lierler, Y.; and Maratea, M. 2004. A SAT-
based polynomial space algorithm for answer set programming.
In Delgrande, J., and Schaub, T., eds.,NMR, 189–196.
Hähnle, R. 2001. Tableaux and related methods. In Robinson,
J., and Voronkov, A., eds.,Handbook of Automated Reasoning,
Elsevier and MIT Press. 100–178.
Järvisalo, M.; Junttila, T.; and Niemelä, I. 2005. Unrestricted
vs restricted cut in a tableau method for Boolean circuits.AMAI,
44(4):373–399.
Junttila, T., and Niemelä, I. 2000. Towards an efficient tableau
method for boolean circuit satisfiability checking. In Lloyd, J.; et
al., eds.,CL, 553–567. Springer.
Konczak, K.; Linke, T.; and Schaub, T. 2006. Graphs and color-
ings for answer set programming.TPLP, 6(1-2):61–106.
Lee, J. 2005. A model-theoretic counterpart of loop formulas.
In Kaelbling, L., and Saffiotti, A., eds.,IJCAI, 503–508. Profes-
sional Book Center.
Leone, N.; Faber, W.; Pfeifer, G.; Eiter, T.; Gottlob, G.; Koch, C.;
Mateis, C.; Perri, S.; and Scarcello, F. 2006. The DLV system for
knowledge representation and reasoning.ACM TOCL, to appear.
Lifschitz, V., and Razborov, A. 2006. Why are there so many
loop formulas?ACM TOCL, to appear.
Lin, F., and Zhao, Y. 2004. ASSAT: computing answer sets of a
logic program by SAT solvers.AIJ, 157(1-2):115–137.
Mitchell, D. 2005. A SAT solver primer.EATCS, 85:112–133.
Olivetti, N. 1999. Tableaux for nonmonotonic logics. In
D’Agostino et al. (1999), 469–528.
Pearce, D.; de Guzḿan, I.; and Valverde, A. 2000. A
tableau calculus for equilibrium entailment. In Dyckhoff, R., ed.,
TABLEAUX, 352–367. Springer.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending and
implementing the stable model semantics.AIJ, 138(1-2):181–
234.
Simons, P. 2000. Extending and implementing the stable model
semantics. Dissertation, Helsinki UT.
van Gelder, A.; Ross, K.; and Schlipf, J. 1991. The well-founded
semantics for general logic programs.J. ACM, 38(3):620–650.

56 Technical Report IfI-06-04

Answer Set Programming

DEPARTMENT OF INFORMATICS 57

11TH NMR WORKSHOP

1.6 Approaching the Core of Unfounded Sets

Approaching the Core of Unfounded Sets

Christian Anger and Martin Gebser and Torsten Schaub∗

Institut für Informatik
Universiẗat Potsdam

Postfach 90 03 27, D–14439 Potsdam
{christian, gebser, torsten}@cs.uni-potsdam.de

Abstract

We elaborate upon techniques for unfounded set computa-
tions by building upon the concept of loops. This is driven
by the desire to minimize redundant computations in solvers
for Answer Set Programming. We begin by investigating
the relationship between unfounded sets and loops in the
context of partial assignments. In particular, we show that
subset-minimal unfounded sets correspond to active elemen-
tary loops. Consequentially, we provide a new loop-oriented
approach along with an algorithm for computing unfounded
sets. Unlike traditional techniques that compute greatest un-
founded sets, we aim at computing small unfounded sets
and rather let propagation (and iteration) handle greatest un-
founded sets. This approach reflects the computation of un-
founded sets employed in thenomore++ system. Beyond
that, we provide an algorithm for identifying active elemen-
tary loops within unfounded sets. This can be used by SAT-
based solvers, likeassat, cmodels, or pbmodels, for optimiz-
ing the elimination of invalid candidate models.

Introduction
Search strategies of solvers forAnswer Set Programming
(ASP) naturally decompose into a deterministic and a non-
deterministic part. While the non-deterministic part is real-
ized through heuristically driven choice operations, the de-
terministic one is based on advanced propagation operations,
often amounting to the computation ofwell-founded seman-
tics (van Gelderet al. 1991). The latter itself can be bro-
ken up into techniques realizingFitting’s operator (Fitting
2002) and the computation ofunfounded sets(van Gelder
et al. 1991). The notion of an unfounded set captures the
intuition that its atoms might circularly support themselves
but have no support from “outside.” Hence, there is no rea-
son to believe in the truth of an unfounded set, and the con-
tained atoms must be false. The opposites of unfounded sets
areexternally supported sets(Lee 2005), their atoms have a
non-circular support.

While genuine ASP-solvers, likedlv (Leoneet al. 2006)
and smodels(Simons et al. 2002), aim at determining
greatestunfounded sets, SAT-based ASP-solvers, likeassat
(Lin & Zhao 2004),cmodels(Lierler & Maratea 2004), and

∗ Affiliated with the School of Computing Science at Simon
Fraser University, Canada.

pbmodels(Liu & Truszczýnski 2005), useloopsand associ-
atedloop formulas(Lin & Zhao 2004; Lee 2005) for elimi-
nating models containing unfounded sets. Both approaches
comprise certain redundancies: For instance, not all ele-
ments of a greatest unfounded set need to be determined
by special-purpose unfounded set techniques. Alternatively,
one may restrict attention to crucial unfounded sets and han-
dle the remaining ones via simpler forms of propagation and
iteration. In fact, we show that a subset of a program’s loops
grants the same propagation strength as obtained with great-
est unfounded sets. Further on, the problem with the stan-
dard concept of loops is that it tolerates the generation of
ineffective loop formulas within SAT-based solvers. That is,
unfounded subsets of a loop might recur, causing the need
to generate additional loop formulas. Both redundancy is-
sues are addressed by(active) elementary loops(Gebser &
Schaub 2005), on which the computational approaches pre-
sented in this paper build upon.

We consider two diametrical computational tasks deal-
ing with unfounded sets: first, falsification of greatest un-
founded sets and, second, identification of subset-minimal
unfounded sets. Greatest unfounded sets are worthwhile
when the aim is setting unfounded atoms to false, as done
within genuine ASP-solvers. Subset-minimal unfounded
sets can serve best when one needs to eliminate an unde-
sired model of a program’scompletion(Clark 1978) by a
loop formula, which is important for SAT-based solvers.

First, we turn our attention to greatest unfounded sets
computed by genuine ASP-solvers. Indlv, operatorRΠC ,I

is applied to so-calledhead-cycle-free componentsC of a
disjunctive programΠ, whereI is a (partial) interpretation
(Calimeri et al. 2001).1 The fixpoint,Rω

ΠC ,I(C), of this
operator is the greatest unfounded set with respect toI, re-
stricted to atoms insideC.2 Component-wise unfounded set
identification is indlv achieved by computing complements,

1Such a componentC is a strongly connected component of the
atom dependency graph, where positive as well as negative depen-
dencies (throughnot) contribute edges. Head-cycle-freeness addi-
tionally assures tractability of unfounded set checks, which other-
wise are intractable for disjunctive programs.

2Note that a “global” greatest unfounded set is not guaranteed
to exist for a disjunctive program (Leoneet al. 1997). How-
ever, a head-cycle-free component always has a “local” greatest
unfounded set, which can be computed in linear time.

58 Technical Report IfI-06-04

Answer Set Programming

that is,C \ Rω
ΠC ,I(C). This set is externally supported, all

other atoms ofC form the greatest unfounded set.
In smodels, unfounded set computation follows a similar

idea. The respective function, calledAtmost, is based on
source pointers(Simons 2000). Each non-false atom has
a source pointer indicating a rule that provides an external
support for that atom. When some source pointers are inval-
idated (in effect of a choice),Atmostproceeds as follows:

Iterate over the strongly connected components of a pro-
gram’s (positive) atom dependency graph(see next sec-
tion). For the current component, do:

1. Remove source pointers that point to rules whose bod-
ies are false.

2. Remove further source pointers that point to rules
whose positive bodies contain some atoms currently
not having source pointers themselves.

3. Determine new source pointers if possible. That is,
re-establish source pointers of atoms that are heads of
rules with non-false bodies such that all atoms in the
positive parts have source pointers themselves.

4. All atoms without a new source pointer are unfounded.
Set them to false (possibly invalidating source pointers
of other components’ atoms) and proceed.

Essentially, Step 1 and 2 check for atoms that might be un-
founded due to rules whose bodies have recently become
false. Afterwards, Step 3 determines the atoms that are
still externally supported and, hence, not unfounded. Ob-
serve that the atoms to falsify as a result of Step 4 are pre-
cisely the ones that are not found externally supported in
the step before. Thus, bothsmodelsanddlv compute great-
est unfounded sets as complements of externally supported
sets. Notably, computations are modularized to strongly
connected components of atom dependency graphs.

Having considered the falsification of greatest unfounded
sets, we now turn to the diametrical problem: determin-
ing subset-minimal unfounded sets. The ability to com-
pute subset-minimal unfounded sets is attractive for SAT-
based solvers, which compute (propositional) models of a
program’s completion. Whenever a computed candidate
model does not correspond to an answer set,3 a loop for-
mula that eliminates the model is added to the completion.
For the loop formula eliminating the model, the respective
loop must be unfounded. SAT-based solverassatdetermines
so-calledterminatingloops (Lin & Zhao 2004), which are
subset-maximal unfounded loops. Terminating loops are
easy to compute: They are strongly connected components
of the (positive) atom dependency graph induced by the
greatest unfounded set. Given that terminating loops are not
necessarily subset-minimal unfounded sets, their loop for-
mulas condense the reason why a model is invalid less pre-
cisely than the ones of subset-minimal unfounded sets.

In this paper, we present a novel approach to achieving the
aforementioned computational tasks. In fact, both tasks are
settled on the same theoretical fundament. On the one hand,
we can explain strategies of genuine ASP-solvers to handle

3Any answer set of a program is a model of the program’s com-
pletion, whereas the converse does generally not hold (Fages 1994).

greatest unfounded sets, also we present the strategy recently
implemented innomore++ (Anger et al. 2005). On the
other hand, we point out how our approach can be exploited
by SAT-based solvers for determining more effective loop
formulas. The overall contributions are:

• We relate the notion of elementary loops to unfounded
sets in the context of partial assignments. Thereby, we
reveal unfounded sets that must intrinsically be consid-
ered by both SAT-based and genuine ASP-solvers. The
developed theoretical fundament fortifies new approaches
to computational tasks dealing with unfounded sets.

• We describe a novel algorithm for computing unfounded
sets in a loop-oriented way. The algorithm determines
unfounded sets directly, avoiding the complementation of
externally supported sets. This approach allows us to im-
mediately propagate falsity of atoms in a detected un-
founded set and to postpone unprocessed unfounded set
checks. We thereby achieve a tighter coupling of un-
founded set checks with simpler forms of propagation and
localize the causes and effects of operations. The algo-
rithm has recently been implemented innomore++, but
may be integrated into other solvers, e.g.,dlv, as well.

• We present an algorithm for extracting active elementary
loops from unfounded sets. The algorithm, which is the
first of its kind, exploits particular properties of active el-
ementary loops, building the “cores” of unfounded sets.
Active elementary loops can replace terminating loops in
SAT-based solvers. Note that a terminating loop is not
guaranteed to be elementary, hence, a respective loop for-
mula might be redundant (Gebser & Schaub 2005). Our
algorithm can be integrated in solvers likeassat, cmodels,
andpbmodels. Such an integration could form the base
for an empirical evaluation of the effectiveness of active
elementary loops.

Background
Given an alphabetP, a (normal)logic programis a finite set
of rules of the form

p0 ← p1, . . . , pm,not pm+1, . . . ,not pn (1)

where 0 ≤ m ≤ n and eachpi ∈ P (0 ≤ i ≤ n)
is an atom. A literal is an atomp or its negationnot p.
For a rule r as in (1), lethead(r) = p0 be the head
of r andbody(r) = {p1, . . . , pm,not pm+1, . . . ,not pn}
be thebody of r. Given a setX of literals, let X+ =
{p ∈ P | p ∈ X} andX− = {p ∈ P | not p ∈ X}.
For body(r), we then getbody(r)

+
= {p1, . . . , pm} and

body(r)
−

= {pm+1, . . . , pn}. The set of atoms occur-
ring in a logic programΠ is denoted byatom(Π). The
set of bodies inΠ is body(Π) = {body(r) | r ∈ Π}.
For regrouping rule bodies sharing the same headp, define
body(p) = {body(r) | r ∈ Π, head(r) = p}. A programΠ

is calledpositiveif body(r)
−

= ∅ for all r ∈ Π. Cn(Π)
denotes the smallest set of atoms closed under positive pro-
gramΠ. Thereduct, ΠX , of Π relative to a setX of atoms
is defined byΠX = {head(r) ← body(r)

+ | r ∈ Π,

DEPARTMENT OF INFORMATICS 59

11TH NMR WORKSHOP

body(r)
− ∩ X = ∅}. A setX of atoms is ananswer set

of a logic programΠ if Cn(ΠX) = X.
An unfounded set is defined relative to anassignment.

In nomore++, values are assigned to both atoms and bod-
ies, whereassmodelsanddlv explicitly assign values only
to atoms (from which the (in)applicability of rules is de-
termined). Note that an assignment to atoms and bodies
can reflect any state resulting from an assignment to atoms,
whereas the converse does not hold because a body might be
false without yet containing a false literal. Also, the restric-
tion of assignments to atoms limits search to branching on
atoms, which may lead to exponentially worse proof com-
plexity than obtained when branching on both atoms and
bodies (Gebser & Schaub 2006). Given that assignments
to both atoms and bodies provide extra value, we define an
assignmentA for a programΠ as a (total) function:

A : atom(Π) ∪ body(Π)→ {⊖,⊙,⊗,⊕}

The four values correspond to those used bydlv (Faber
2002); that is,⊖ stands forfalse, ⊙ for undefined, ⊗ for
must-be-true, and⊕ for true.4 We also assume that the ab-
stract ASP-solver, invoking the algorithms presented in the
following sections, propagates the four values likedlv ap-
plied to normal programs (which approximates propagation
within nomore++) and do not provide any details here.5 We
call an assignmentA positive-body-saturated, abbreviated
pb-saturated, if for every B ∈ body(Π), A(B) = ⊖ if
A(p) = ⊖ for somep ∈ B+. An arbitrary assignment is
easily turned into a pb-saturated one by propagation.

What is important to note is the difference between⊗
(must-be-true) and⊕ (true). For our unfounded set check
to work, the following invariant must hold for any assign-
mentA:

{p ∈ atom(Π) | A(p) = ⊕} ∪
(
⋃

B∈body(Π),A(B)=⊕B+
)

⊆ Cn({r ∈ Π | A(body(r)) = ⊕}∅) (2)

The invariant stipulates that all atoms and (positive partsof)
bodies assigned⊕ are bottom-up derivable within the part
of Π assigned⊕. This guarantees that no unfounded set
ever contains an atom assigned⊕, and we can safely exclude
such atoms as well as bodies assigned⊕ from unfounded
set checks. Hence, the invariant helps in avoiding useless
work. It also allows for “lazy” unfounded set checks, on
which we will come back when discussing the relation of
our unfounded set algorithm tosmodels. Invariant (2) can
be maintained by assigning⊕ to an atom, only if some of its
bodies is already assigned⊕, and to a body, only if all atoms
in the positive part are already assigned⊕. Otherwise,⊗
must be assigned instead of⊕.

4Note that the concept of an assignment is to be understood in
the sense of a constraint satisfaction problem, rather than an inter-
pretation. This is because answer sets are defined as models that are
represented by their entailed atoms. By assigning values to bodies,
which can be viewed as conjunctions, we do not construct such a
model but deal with problem-relevant variables. For this reason,
we use symbolic values instead of ascribed truth values.

5When referring to propagation, we mean any technique that
deterministically extends assignments except for unfounded set
checks, to be detailed in the following sections.

We now come to unfounded sets. For a programΠ, we
define a setU ⊆ atom(Π) as anunfounded setwith respect
to an assignmentA if, for every ruler ∈ Π, we have either

• head(r) 6∈ U ,

• A(body(r)) = ⊖, or

• body(r)
+ ∩ U 6= ∅.

Our definition is close to the original one (van Gelderet
al. 1991), but differs regarding the second condition, which
aims at inapplicable rules. With the original definition, such
rules are determined from atoms, that is,

• {p ∈ body(r)
+ | A(p) = ⊖} 6= ∅ or

• {p ∈ body(r)
− | A(p) = ⊗ or A(p) = ⊕} 6= ∅.

The reason for not determining inapplicable rules from
atoms is that, with our definition of an assignment, a body
assigned⊖ needs not necessarily contain a false literal.
Rather, a body might be inapplicable, that is, assigned⊖,
due to any reason (such as a choice or an inference by looka-
head). Still it holds that normal programs (in contrast to dis-
junctive ones (Leoneet al. 1997)) enjoy the property that
the union of distinct unfounded sets is itself an unfounded
set. Hence, there always is agreatest unfounded set, denoted
GUSΠ(A), for any programΠ and any assignmentA.

Finally, we come to loops, which are sets of atoms in-
volved in cyclic program structures. Traditionally, pro-
gram structure is described by means of atom dependency
graphs (Aptet al. 1987). When we restrict attention to un-
founded sets, it is sufficient to considerpositiveatom de-
pendency graphs. For a programΠ, the(positive) atom de-
pendency graphis the directed graph(atom(Π), E) where
E = {(p, p′) | r ∈ Π, p = head(r), p′ ∈ body(r)

+}. That
is, the head of a rule has an edge to each atom in the pos-
itive body. Following (Lee 2005), we define aloop L in a
programΠ as a non-empty subset ofatom(Π) such that, for
any two elementsp ∈ L andp′ ∈ L, there is a path fromp
to p′ in the atom dependency graph ofΠ all of whose ver-
tices belong toL. In other words, the subgraph of the atom
dependency graph ofΠ induced byL is strongly connected.
Note that each set consisting of a single atom is a loop, as
every atom is connected to itself via a path of length zero.

The significance of loops has first been recognized in (Lin
& Zhao 2002), where the concept was also originally de-
fined.6 In fact, program completion and loop formulas cap-
ture answer sets in terms of propositional models. The ad-
vantage of loops and their formulas, in comparison to other
SAT-reductions (e.g. (Janhunen 2003; Lin & Zhao 2003)),
is that the reduction can be done incrementally (SAT-based
solversassat, cmodels, andpbmodelspursue this strategy);
the increase in problem size is very small in the best case.
The downside is that a program may yield exponentially
many loops, leading to exponential worst-case space com-
plexity of loop-based SAT-reductions (Lifschitz & Razborov
2006). Genuine ASP-solvers can, however, exploit loops

6Note that in (Lin & Zhao 2002) loops’ atoms must be con-
nected via paths ofnon-zerolength. By dropping this requirement,
we can relate loops and unfounded sets more directly.

60 Technical Report IfI-06-04

Answer Set Programming

without explicitly representing loop formulas. In what fol-
lows, we relate loops to unfounded sets paving the way to
loop-oriented unfounded set computations. The difference
to SAT-based approaches is that we consider loops in the
context of partial assignments, and not with respect to total
(propositional) models.

Relating Unfounded Sets and Loops
Recall the definition of an unfounded set given in the pre-
vious section. It states that any rule whose head belongs to
an unfounded set is either inapplicable or contains an un-
founded atom in the positive part of the body. Since un-
founded sets are finite, the following is a consequence.

Proposition 1 Let Π be a logic program,A be an assign-
ment, andU be an unfounded set w.r.t.A.

If U 6= ∅, we haveL ⊆ U for some loopL in Π that is
unfounded w.r.t.A.

This result establishes that any non-empty unfounded set
is a superset of some loop that is itself unfounded. Note
that Proposition 1 would not hold, if we had defined loops
according to (Lin & Zhao 2004), where the contained atoms
must be connected via paths of non-zero length. Omitting
this, a singleton unfounded set{p} such that all bodies in
body(p) are assigned⊖ is a loop. Otherwise, some element
from an unfounded setU must be contained inB+, if B is
the body of a rule whose head is inU and not assigned⊖.
The latter condition gives rise to inherent cyclicity.

When dealing with greatest unfounded sets, one usually
concentrates on the part of an assignment not assigned⊖. In
fact, for an atomp assigned⊖ and a setU of atoms such that
p ∈ U , any bodyB such thatp ∈ B+ satisfies the condition
of containing an element fromU as well as the condition of
containing a false literal. Since the latter condition is easy
to verify, it is reasonable to exclude atoms assigned⊖ when
looking for the relevant part of a greatest unfounded set.

However, our definition of an unfounded set does not look
“through” bodies for determining inapplicability. As a min-
imum requirement, we thus need an assignment to be pb-
saturated, before a relevant unfounded set is determined.
Certainly this requirement is reasonable, while working on
“unsynchronized” assignments of atoms and bodies would
be rather weird. For a pb-saturated assignment, the non-false
part of the greatest unfounded set is an unfounded set.

Lemma 1 Let Π be a logic program andA be a pb-
saturated assignment.

Then,{p ∈ GUSΠ(A) | A(p) 6= ⊖} is an unfounded set
w.r.t. A.

Combining Proposition 1 and Lemma 1 yields the following.

Theorem 1 LetΠ be a logic program,A be a pb-saturated
assignment, andU = {p ∈ GUSΠ(A) | A(p) 6= ⊖}.

If U 6= ∅, we haveL ⊆ U for some loopL in Π that is
unfounded w.r.t.A.

The above result is the “partial assignment counterpart”
of (Lin & Zhao 2004, Theorem 2), where the latter refers to
total (propositional) models. Due to Theorem 1, we can con-
centrate greatest unfounded set computation on loops: By
successively falsifying the atoms of unfounded loops and

pb-saturating the resulting assignment, we eventually fal-
sify all atoms in a greatest unfounded set. Clearly, more
advanced propagation techniques (such as contraposition)
can be applied in addition to pb-saturation. Theorem 1 still
grants that there always is an unfounded loop whose atoms
are not assigned⊖, as long as there are non-false atoms
left in the greatest unfounded set. Note that all answer set
solvers we know of apply propagation techniques that are at
least as strong as Fitting’s operator (Fitting 2002). Whenever
this operator has reached a fixpoint, all singleton loops{p}
such that all bodies inbody(p) are assigned⊖ are already
set to false. More sophisticated unfounded set checks can
thus concentrate on loops as defined in (Lin & Zhao 2004).

Up to now, we have considered loops, which are defined
by means of atom dependency graphs. Such graphs do not
reflect program-specific connection via the bodies of rules.
Given that we are interested in intrinsically relevant un-
founded sets, loops are not yet fine-grained enough. To see
this, consider the following programs:

Π1 = { a← b← a, c c← b }
Π2 = { a← b← a b← c c← b }

Though sharing the same atom dependency graph, the sin-
gle answer set ofΠ1 is {a}, whereas we obtain{a, b, c}
for Π2. The reason for this is that the apparently different
rules,b ← a, c in Π1 as well asb ← a andb ← c in Π2,
contribute the same edges to an atom dependency graph.
However, ruleb ← a provides an external support for the
set{b, c}, whereas ruleb← a, c does not.

For distinguishing between putative and virtual external
supports, we have to consider elementary loops (Gebser &
Schaub 2005). We define a loopL in a programΠ asele-
mentaryif, for each non-empty proper subsetK of L, there
is a ruler ∈ Π such that

• head(r) ∈ K,

• body(r)
+ ∩K = ∅, and

• body(r)
+ ∩ L 6= ∅.

In words, a loop is elementary if each of its non-empty
proper subsets has a rule whose head is in the subset and
whose body positively relies on the loop, but not on the sub-
set itself.7 A particular property of elementary loops, rather
than general ones, is that they potentially provide an exter-
nal support to any of their non-empty proper subsets, even
when they are unfounded. If such a situation arises, we say
that an elementary loop is active. Formally, an elementary
loopL in a programΠ is activew.r.t. an assignmentA if

• L is an unfounded set w.r.t.A and

• L is elementary in{r ∈ Π | A(body(r)) 6= ⊖}.

Due to the first condition, an active elementary loop always
is unfounded. The next result tells us that any non-empty
unfounded set contains an active elementary loop.

7In analogy to general loops, every singleton is an elementary
loop by definition. This is different from (Gebser & Schaub 2005),
where loops are defined according to (Lin & Zhao 2004).

DEPARTMENT OF INFORMATICS 61

11TH NMR WORKSHOP

Proposition 2 Let Π be a logic program,A be an assign-
ment, andU be an unfounded set w.r.t.A.

If U 6= ∅, we haveL ⊆ U for some elementary loopL
in Π that is active w.r.t.A.

This result strengthens Proposition 1. For a pb-saturated
assignment, it together with Lemma 1 grants the existence
of an active elementary loop none of whose atoms is as-
signed⊖, whenever the greatest unfounded set contains non-
false atoms. It is thus sufficient to concentrate unfounded set
computations on active elementary loops. Going beyond is
impossible: Any non-empty proper subset of an active ele-
mentary loop is externally supported.

Proposition 3 Let Π be a logic program,A be an assign-
ment, andL be an active elementary loop inΠ w.r.t. A.

Then, any non-empty proper subset ofL is not unfounded
w.r.t. A.

The following is a “partial assignment counterpart” of re-
sults on total (propositional) interpretations in (Gebseret al.
2006).8 It is a consequence of Proposition 2 and 3.

Theorem 2 LetΠ be a logic program,A be an assignment,
andL ⊆ atom(Π).

Then,L is an active elementary loop inΠ w.r.t. A iff L is
a subset-minimal non-empty unfounded set w.r.t.A.

This result shows that active elementary loops form in fact
the “cores” of unfounded sets. Any proper superset of an
active elementary loop contains atoms that are unnecessary
for identifying (parts of) the set as unfounded. In turn, no
non-empty proper subset of an active elementary loop can
be identified as unfounded. Active elementary loops moti-
vate novel computational approaches in two aspects: First,
they can be used to make unfounded set computations less
exhaustive by not aiming at greatest unfounded sets; second,
they reveal intrinsically relevant unfounded sets and ruleout
superfluous ones. In the next sections, we provide respective
computational approaches.

Greatest Unfounded Sets
We now exploit Theorem 1 and Proposition 2, granting the
existence of an active elementary loop as a subset of the non-
false part of a greatest unfounded set, and design an algo-
rithm aiming at such loops. In order to restrict computations
to necessary parts, we make the following assumptions:

• Invariant (2) on assignments holds. It guarantees that nei-
ther an atom assigned⊕ nor an atom from the positive
part of a body assigned⊕ is unfounded.

• If, for an atom, the bodies of all rules with the atom as
head are assigned⊖, then the atom is assigned⊖. Vice
versa, an atom is assigned⊕ if it has a body assigned⊕.

• A body is assigned⊖ if some of its literals is false, that is,
an atom from the positive part is assigned⊖ or one from
the negative part is assigned either⊗ or⊕. Also, a body

8Please note that the reformulation of (active) elementary loops
provided here is inspired by the notion of anelementary set(Geb-
seret al. 2006), for which similar results in the context of total
(propositional) interpretations were developed first.

is assigned⊕ if all atoms in its positive part are assigned
⊕ and all atoms in the negative part⊖.

Due to the first assumption, the external support of atoms
and bodies assigned⊕ is granted. Furthermore, atoms and
bodies already assigned⊖ need not be considered anyway.
We can thus restrict attention to atoms and bodies assigned
either⊙ or ⊗. The second and third assumption grant that
anything decidable by Fitting’s operator is already assigned.
(Note that this implies assignments to be pb-saturated.) Fix-
points of Fitting’s operator are computed bydlv, smodels,
andnomore++ before an unfounded set check is initiated.

The unfounded sets we are aiming at are loops. Loops are
bound from above by the strongly connected components
of a program’s atom dependency graph. For conveniently
arranging both atoms and bodies into strongly connected
components, we extend dependency graphs to bodies. For a
programΠ, we define the(positive) atom-body dependency
graphas the directed graph(atom(Π) ∪ body(Π), E ∪ E0)
whereE = {(head(r), body(r)) | r ∈ Π} and E0 =

{(body(r), p) | r ∈ Π, p ∈ body(r)
+}.9 The strongly

connected components of such graphs are understood in the
standard graph-theoretical sense, loops are the atoms con-
tained in strongly connected subgraphs.

We are now ready to describe our algorithm for computing
an unfounded set. It accesses the following global variables.

Π: The underlying logic program.
A: The current assignment.
SCC: The vertices of a strongly connected component of

the atom-body dependency graph ofΠ.
Set: A set of atoms such thatSet ⊆ SCC ∩ atom(Π).
Ext: The setExt =

⋃

p∈Set{B ∈ body(p) | B+ ∩ Set = ∅,

A(B) 6= ⊖} of bodies.
Source: A subset ofbody(Π).
Sink: A subset ofatom(Π).

Variable Set contains the atoms to be extended to an un-
founded set. All atoms inSet belong to the same strongly
connected component:SCC. Set Ext of bodies can be
thought of as a todo list. It comprises bodies that provide ex-
ternal supports for the atoms inSet, hence, some atoms from
their positive parts must be added toSet. Synonymously
to smodels’ source pointers, setSource contains bodies for
which it is known that external supports for their positive
parts exist. SetSink contains atoms some of whose non-false
bodies are inSource or in a different strongly connected
component; such atoms are not contained in any unfounded
set. A source pointer insmodelscan be thought of as a link
from an atom inSink to a body inSource or outsideSCC.

Our unfounded set algorithm is shown in Algorithm 1.
The designated initial situation is that some atom, assigned
either⊙ or ⊗, has been chosen to start an unfounded set
check from. This atom is initially contained inSet, its
“external bodies” inExt. For the computation being rea-
sonable, each external body is supposed to be contained in

9So-calledbody-head graphsare used in (Linke & Sarsakov
2005) for describing isomorphisms between dependency graphs
and syntactically restricted program classes.

62 Technical Report IfI-06-04

Answer Set Programming

Algorithm 1: UNFOUNDED SET

while Ext 6= ∅ do1

Ext← Ext \ {B} for someB ∈ Ext2

if there is somep ∈ B+ ∩ SCC such thatp 6∈ Sink andA(p) 6= ⊕ then3

J← {B ∈ body(p) | B 6∈ SCC, A(B) 6= ⊖} ∪

{B ∈ body(p) | B ∈ Source, A(B) 6= ⊖}4

if J = ∅ then5

Set← Set ∪ {p}6
Ext← Ext \ {B ∈ Ext | p ∈ B+}7

Ext← Ext ∪ {B ∈ body(p) | B+ ∩ Set = ∅, A(B) 6= ⊖}8

else9
Sink← Sink ∪ {p}10
Ext← Ext ∪ {B}11

else12
Source← Source ∪ {B}13
R← {p ∈ Set | B ∈ body(p)}14

while R 6= ∅ do15

Set← Set \ R16
Sink← Sink ∪ R17

J← {B ∈ body(Π) ∩ SCC | B+ ∩ R 6= ∅, A(B) 6= ⊖,

{p ∈ B+ ∩ SCC | p 6∈ Sink, A(p) 6= ⊕} = ∅}18

Source← Source ∪ J19
R← {p ∈ Set | body(p) ∩ J 6= ∅}20

Ext←
⋃

p∈Set{B ∈ body(p) | B+ ∩ Set = ∅, A(B) 6= ⊖}21

SCC \ Source. The outer while-loop from line 1 to 21 is
iterated as long as there are external bodies. Note that we
haveExt = ∅ wheneverSet = ∅; in this case, the emptySet
indicates that no unfounded set contains any atom that has
temporarily been inSet.

If Ext 6= ∅, we select in line 2 an external bodyB from
whose positive part an atom should be added toSet next.
Such an atomp must be contained inSCC, but not inSink,
and not be assigned⊕ (line 3). If there is such an atomp,
we determine in line 4 all bodies of atomp that are not as-
signed⊖ and either not contained inSCC or contained in
Source. If such bodies exist, that is,J 6= ∅, p is externally
supported, and we add it toSink (line 10). Otherwise, we
can extendSet with atomp (line 6). All bodies that were
formerly external but positively rely onp are then removed
fromExt (line 7). Finally, we add bodies of rules with headp
to Ext if they do not positively rely onSet and are not as-
signed⊖ (line 8).

From line 12 to 21, we handle the case that no atom from
the positive part of bodyB can be added toSet. Then, we
addB to Source as it is externally supported (line 13). In
line 14, we determine the atoms fromSet that occur as heads
of rules with bodyB. These atoms are as well externally sup-
ported and must be removed fromSet. Note that we always
haveR 6= ∅ becauseB occurs as body of at least one atom
in Set. From line 15 to line 20, we remove atoms fromSet
and add them toSink as long as further bodies and associ-
ated head atoms are found externally supported. The crucial
line is 18: Here we determine bodiesB from SCC, not as-
signed⊖, such that some atoms in the positive part have
recently been removed fromSet (B+ ∩R 6= ∅) and all other

atoms are either not contained inSCC, contained inSink,
or assigned⊕. In a bottom-up fashion, we derive such ex-
ternally supported bodies and add them toSource (line 19),
respective head atoms are successively removed fromSet
and added toSink (lines 16, 17, and 20). Finally, we update
in line 21 the external bodies of the atoms still inSet.

Like unfounded set detection algorithms ofdlv andsmod-
els, Algorithm 1 can be implemented such that it works in
linear time. The distinguishing element to other algorithms
is that it extends the set of considered atoms on demand,
that is, if there are bodies from whose positive parts no atom
is included yet. The algorithm stops and does not explore
any more atoms when such bodies do not exist. The aim
is to keep a computed unfounded set as small as possible.
This is motivated as follows: Propagation of single atoms
and bodies can be done very efficiently and does, in contrast
to unfounded set checks, not risk “wasted” work yielding
no inferences. Simpler forms of propagation, like Fitting’s
operator, are thus innomore++ applied as soon as possi-
ble, in the hope that pending unfounded set checks can be
avoided in effect. For enabling such “early” propagation, it
is important that we compute unfounded sets directly, as it
is done by Algorithm 1, and do not complement externally
supported sets, as done withindlv andsmodels.

Let us now consider ways of integrating Algorithm 1 into
solvers. Any solver using Algorithm 1 has to grant that po-
tential external support for bodies inSource and atoms in
Sink really exists, since the elements of these sets are not
examined by the algorithm. The same applies to atoms and
bodies assigned⊕. Systemsdlv andnomore++ assure the
latter by assigningmust-be-trueor ⊗, when later unfound-
edness of a true atom or body cannot be excluded. Detecting
unfoundedness of program parts that must be true leads to a
conflict, which has to be detected for soundness reasons.

The strategy ofsmodelsis different, it does not use an ana-
log for ⊗. Unfounded program parts, whether they contain
true elements or not, are determined from source pointers.
Such source pointers correspond to elements ofSource and
Sink. They are maintained during the solving process, and
invalid ones are removed during the “first stage” of function
Atmost, before it performs the actual unfounded set check.
For a true atom, the removal of its source pointer can be seen
as turning the value from⊕ to⊗, in order to make the atom
accessible to a pending unfounded set check.

In contrast tosmodels’ Atmost, dlv andnomore++ do not
have a “first stage” for canceling outdated external support
information. They simply start their unfounded set compu-
tations from head atoms of rules whose bodies have become
false since the last unfounded set check. (Such atoms are
also the starting points forAtmostto remove source point-
ers.) Unfounded set checks are done locally for strongly
connected components of the respective dependency graphs.
After processing a component, no information is kept, and
no updates are necessary upon a revisit. Another parallel
betweendlv andnomore++ is that the former propagates a
component’s greatest unfounded set before initiating further
unfounded set checks (Faber 2006). Though not the same,
this is quite similar tonomore++ immediately propagating
an unfounded set determined by Algorithm 1.

DEPARTMENT OF INFORMATICS 63

11TH NMR WORKSHOP

The discussion above shows that Algorithm 1 can poten-
tially be put into various contexts, using different strategies
to maintain acquired information and to combine unfounded
set checks with propagation. Concerning the latter, Algo-
rithm 1 is designed to stop as soon as an unfounded set is
detected. In this way, a solver can immediately propagate
falsity of the contained atoms. This allows unfounded set
checks to always work on an up-to-date assignment, possi-
bly reducing the overall efforts of a computation. Finally,let
us mention that Algorithm 1, though aiming at loops, only
guarantees that the atoms of a computed unfounded set be-
long to the same strongly connected component. They do
not necessarily form a loop because of the inherent sensitiv-
ity to the order in which atoms are assumed to belong to an
unfounded set (the order in which they are added toSet).

Subset-Minimal Unfounded Sets
Having considered the falsification of greatest unfounded
sets, we now turn to the diametrical problem: determin-
ing subset-minimal unfounded sets, which, by Theorem 2,
are active elementary loops. The ability to determine active
elementary loops is attractive for SAT-based ASP-solvers,
computing (propositional) models of a program’s comple-
tion and adding loop formulas to eliminate invalid candi-
date models. To this end, the SAT-based solverassatde-
termines terminating loops, which are subset-maximal un-
founded loops. Clearly, terminating loops are not neces-
sarily active elementary loops. However, the loop formula
of an active elementary loop eliminates an invalid candidate
model, like the one of a terminating loop. In addition, un-
desired models that are not eliminated by the loop formula
of a terminating loop might be excluded in future invoca-
tions of the underlying SAT-solver (cf. Section 5 in (Gebser
& Schaub 2005) for an example). In this section, we show
how an active elementary loop can be extracted from a given
unfounded set, which might be a terminating loop. Within
SAT-based solvers, active elementary loops can thus replace
terminating loops.

Though elementary loops, as defined before, suggest that
all subsets of a loop must be examined, deciding whether a
loop is elementary is tractable. Indeed, elementary loops
can also be characterized by elementary subgraphs of a
program’s atom-body dependency graph (Gebser & Schaub
2005). For a programΠ and a setL ⊆ atom(Π), we define
B(L) = {body(r) | r ∈ Π, head(r) ∈ L, body(r)

+ ∩ L 6=
∅} andE(L) = {(p,B) | p ∈ L,B ∈ B(L), p ← B ∈ Π}.
The elementary subgraphof L in Π is the directed graph
(L ∪B(L), E(L) ∪ EC (L)) where:

EC 0(L) = ∅
EC i+1(L) = EC i(L) ∪ {(B, p) | B ∈ B(L), p ∈ B+ ∩ L,

eachp′ ∈ B+ ∩ L has a path top
in (L ∪B(L), E(L) ∪ EC i(L))}

EC (L) =
⋃

i≥0EC i(L)

By (Gebser & Schaub 2005, Theorem 10), the elementary
subgraph allows for deciding elementariness.

Theorem 3 LetΠ be a logic program andL ⊆ atom(Π).

If L 6= ∅, L is an elementary loop inΠ iff the elementary
subgraph ofL in Π is strongly connected.

If a loop is elementary, its elementary subgraph has the
following property (Gebser & Schaub 2005, Proposition 12).

Proposition 4 Let Π be a logic program,L be an elemen-
tary loop inΠ, and(L ∪B(L), E(L) ∪ EC (L)) be the ele-
mentary subgraph ofL in Π.

Then, every subgraph(L ∪B(L), E(L) ∪ EC ′(L)) such
that EC ′(L) ⊆ EC (L) and {B | (B, p) ∈ EC ′(L)} =
B(L) is strongly connected.

Due to the above property, considering only a single edge
from a body to a contained loop atom is sufficient for de-
ciding elementariness by elementary subgraph construction.
This “don’t care” character of elementary subgraphs greatly
facilities elementary loop computation: Instead of consid-
ering all edges in an atom-body dependency graph, we can
select one contained atom as a canonical representative to be
reached from a body. Considering the definition of elemen-
tary subgraphs, this representative should be a body atom
that is reached from all other body atoms under considera-
tion. Proceeding in this way, we can compute active elemen-
tary loops by implicitly constructing elementary subgraphs,
where bodies reach canonical representatives, reflecting the
single edges required to obtain a strongly connected graph.

We have now settled the fundament of Algorithm 2 for
extracting an active elementary loop from an unfounded set.
Algorithm 2 uses the global variableSet, containing the
atoms of an unfounded set. Initially,Set might be the re-
sult of Algorithm 1 (which is not necessarily a loop) or a
terminating loop. In effect of Algorithm 2,Set will contain
the atoms of an active elementary loop, obtained through re-
moving superfluous atoms. The variablesAct, Q, andN are
local to Algorithm 2. SetAct contains the atoms that are
temporarily assumed to be elements of the final active ele-
mentary loop. VariableQ is a priority queue of atoms that
need to be visited. Each atomp has an associatedid, ac-
cessible viap.id, atoms inQ are then sorted by theirids in
increasing order. Via operationQ.rem(), the first element
of Q is removed fromQ and returned. OperationQ.add(p)
inserts an atomp intoQ at the appropriate position, the oper-
ation has no effect ifp is already contained inQ. VariableN
is a counter, used to assign anid to an atom when it is visited
for the first time. Besides theid, each atomp is associated
with two more variables:root andexp. Integer valueroot
stores theid of the first visited atom that positively depends
on p in the elementary subgraph ofSet. The setexp corre-
sponds to a todo list of atoms that positively depend onp,
but have not yet been explored. Similar top.id, we access
root andexp of an atomp via p.root andp.exp.

Before we start describing the algorithm, let us sketch its
fundamental idea. The initial value forN will be |Set|, and
we decrementN whenever an atom is visited for the first
time. That is, an atom with a greaterid is visited before the
atoms with smallerids. While exploring atoms, we make
sure that an atom with a smallerid reaches all atoms with
greaterids in the elementary subgraph ofSet. In this way,
we can safely select the contained atom with the greatestid
to explore a body from. In fact, this atom is a canonical

64 Technical Report IfI-06-04

Answer Set Programming

Algorithm 2: ACTIVE ELEMENTARY LOOP

Act← ∅1
Q← ∅2
N← |Set|3

while N 6= 0 do4

p.id← 0 for somep ∈ Set5
Q.add(p)6

while Q 6= ∅ do7

p← Q.rem()8

if p.id = 0 then9

p.id← N10
p.root← N11
p.exp← ∅12
Act← Act ∪ {p}13
N← N− 114

foreach B ∈ body(Π) such thatp ∈ B+, B+ ∩ Set ⊆ Act,15
andA(B) 6= ⊖ do

let p′ ∈ B+ ∩ Act such that

p′.id = max{p.id | p ∈ B+ ∩ Act}16

p′.exp← p′.exp ∪ {p ∈ Set | B ∈ body(p)}17
Q.add(p′)18

if p.exp 6= ∅ then19

Q.add(p)20
p.exp← p.exp \ {p′} for somep′ ∈ p.exp21

if p′ ∈ Act then p.root← max{p.root, p′.root}22
else if p′ ∈ Set then23

p′.id← 024
Q.add(p′)25

else26
if p.id = p.root then27

if Q 6= ∅ or N 6= 0 then28

Set← Set \ {p ∈ Act | p.id ≤ p.id}29
Act← Act \ {p ∈ Act | p.id ≤ p.id}30

else31
p′ ← Q.rem()32
p′.root← max{p.root, p′.root}33
Q.add(p′)34

representative, as discussed below Proposition 4. Whenever
an atom is not reached from any atom with a greaterid in
the elementary subgraph ofSet or there are unvisited atoms
in Set, we can safely remove all atoms with smallerids than
that of the current atom fromSet. The residual atoms inSet
still form an unfounded set. We are done whenN reaches
zero, indicating that all atoms inSet have been inspected
and form an active elementary loop.

We now describe Algorithm 2. GivenSet as global vari-
able,Act andQ are initialized to be empty, andN is set to
the cardinality ofSet (lines 1 to 3). The outer while-loop
from line 4 to 34 is iterated untilN reaches zero, indicating
that all atoms inSet have been inspected. As long as this is
not the case, we pick an arbitrary atomp from Set, assign
p.id zero, and addp to the front ofQ (lines 5 and 6). The
atomp with the smallestid is removed fromQ in line 8. In
line 9, we detect fromp.id being zero thatp is visited for

the first time. We then initializep.id andp.root with N, and
p.exp with the empty set (lines 10 to 12). Addingp to Act
in line 13 indicates thatp has been visited. In line 14, we
decrementN to the number of still unvisited atoms inSet.

Due to visiting an atomp for the first time, a bodyB such
that p ∈ B+ andB+ ∩ Set ⊆ Act becomes accessible, as
there is an atom inAct that is reached from all atoms ofB+∩
Act in the elementary subgraph ofSet. Of course,A(B)
must not be⊖ since we are interested in an active elementary
loop w.r.t.A. These conditions are checked in line 15. For
each body satisfying the conditions, some atomp′ ∈ B+ ∩
Act has the greatestid; this atomp′ is determined in line 16.
As discussed above,p′ is a canonical representative to reach
B from. Thus, we add the head atoms of bodyB that are in
Set to p′.exp and re-addp′ to Q (lines 17 and 18). Recall
that the latter has no effect ifp′ is already contained inQ.

After having updated atoms to be explored, we process
p.exp for the current atomp from line 19 to 34. Ifp.exp is
non-empty, we re-addp toQ, making sure thatp is re-visited
later on, and remove some elementp′ to be processed next
from p.exp (lines 20 and 21). The atomp′ can be already
visited, in which case we maximizeids of atoms reaching
p amongp.root andp′.root (line 22). If p′ is unvisited and
has not been removed fromSet since it was added top.exp,
we setp′.id to zero and addp′ to the front ofQ (lines 24
and 25). On re-entering the outer while-loop from line 7,p′

is the atom visited next. The else-case from line 26 to 34 re-
flects that no more atom reachesp. If p is not reached from
an atom with a greaterid (p.id = p.root in line 27) and there
are atoms not reachingp (Q 6= ∅ or N 6= 0 in line 28), we
remove all atoms inAct whoseids are not greater thanp.id
from bothSet andAct (lines 29 and 30). The residual atoms
of Set still form an unfounded set (otherwise some of them
would have reached one of the removed atoms), containing
an active elementary loop by Theorem 2. Finally, the else-
case from lines 31 to 34 applies whenp is reached by some
atom with a greaterid. In this case, we haveQ 6= ∅, since
at least the atom picked in line 5 is still contained inQ. For
not mistakenly considering an atom unreached, we propa-
gate the greatestid of an atom reachingp to the atomp′

that succeedsp in Q (line 33). Atomp′, removed fromQ in
line 32 and re-added in line 34, is then re-visited in the next
iteration of the outer while-loop from line 7.

Regarding complexity of Algorithm 2, note that a body
is explored only once, when the last of its atoms contained
in Set is visited for the first time. Also, atoms are added to
Act only once, upon re-visits only path information is ex-
changed viaroot. Visits of bodies and accompanying up-
dates of reached atoms are bound by the number of edges
in the part of the atom-body dependency graph that contains
atoms inSet and their connecting bodies.

Extracting active elementary loops from unfounded sets
might not be important for genuine ASP-solvers, likedlv,
smodels, and nomore++, only aiming at falsification of
unfounded sets. But active elementary loops can play a
role in SAT-based ASP-solvers, such asassat, cmodels,
andpbmodels, since their loop formulas eliminate undesired
completion models more effectively than those of terminat-
ing loops (Gebser & Schaub 2005).

DEPARTMENT OF INFORMATICS 65

11TH NMR WORKSHOP

Discussion
This paper contributes to computational approaches to un-
founded set handling, both theoretically and practically.Un-
like already done in the literature (cf. (Lin & Zhao 2004;
Lee 2005)), where loops are related to total propositional
models, we have put loops into the context of partial assign-
ments. The major result is that active elementary loops form
the “cores” of unfounded sets. Hence, they must intrinsi-
cally be dealt with by any ASP-solver.

Based on active elementary loops, traditional approaches
to unfounded set computation can be explained. Beyond
that, new algorithms exploiting active elementary loops are
fortified. We have presented an algorithm that allows for
computing unfounded sets directly, avoiding the comple-
mentation of externally supported sets. This approach is
currently implemented in thenomore++ system. However,
it can also be incorporated into other ASP-solvers. In fact,
using assignments to both atoms and bodies is not an obli-
gation for our theoretical results and algorithms to apply,it
merely allows us to state them in a way that accounts for
nomore++ as well. For brevity, we do not provide experi-
mental results and just report that the usage of Algorithm 1
has greatly improved the performance of thenomore++sys-
tem. This improvement is of course of relative nature and
does not indicate any superiority of the approach.

Finally, we have provided an algorithm that exploits the
properties of elementary subgraphs to extract active elemen-
tary loops from unfounded sets. This algorithm, which is
the first of its kind, can be used by SAT-based ASP-solvers
to replace terminating loops with active elementary loops.

Acknowledgments. This work was supported by DFG
(SCHA 550/6-4). We are grateful to Martin Brain, Wolf-
gang Faber, Joohyung Lee, Yuliya Lierler, and the anony-
mous referees for many helpful suggestions.

References
Anger, C.; Gebser, M.; Linke, T.; Neumann, A.; and
Schaub, T. 2005. Thenomore++ approach to answer
set solving. In Sutcliffe, G., and Voronkov, A., eds.,LPAR,
95–109. Springer-Verlag.

Apt, K.; Blair, H.; and Walker, A. 1987. Towards a theory
of declarative knowledge. In Minker, J., ed.,Foundations
of Deductive Databases and Logic Programming. Morgan
Kaufmann. Chapter 2, 89–148.

Calimeri, F.; Faber, W.; Leone, N.; and Pfeifer, G. 2001.
Pruning operators for answer set programming systems.
Report INFSYS RR-1843-01-07, TU Wien.

Clark, K. 1978. Negation as failure. In Gallaire, H., and
Minker, J., eds.,Logic and Data Bases. Plenum. 293–322.

Faber, W. 2002. Enhancing efficiency and expressive-
ness in answer set programming systems. Dissertation,
TU Wien.

Faber, W. 2006. Personal communication.

Fages, F. 1994. Consistency of Clark’s completion and the
existence of stable models.J. MLCS1:51–60.

Fitting, M. 2002. Fixpoint semantics for logic program-
ming: A survey.TCS278(1-2):25–51.
Gebser, M., and Schaub, T. 2005. Loops: Relevant or
redundant? In Baral, C.; Greco, G.; Leone, N.; and Ter-
racina, G., eds.,LPNMR, 53–65. Springer-Verlag.
Gebser, M., and Schaub, T. 2006. Tableau calculi for an-
swer set programming. In Dix, J., and Hunter, A., eds.,
NMR. This volume.
Gebser, M.; Lee, J.; and Lierler, Y. 2006. Elementary sets
for logic programs. In Dix, J., and Hunter, A., eds.,NMR.
This volume.
Janhunen, T. 2003. Translatability and intranslatability
results for certain classes of logic programs. Report A82,
Helsinki UT.
Lee, J. 2005. A model-theoretic counterpart of loop for-
mulas. In Kaelbling, L., and Saffiotti, A., eds.,IJCAI, 503–
508. Professional Book Center.
Leone, N.; Faber, W.; Pfeifer, G.; Eiter, T.; Gottlob, G.;
Koch, C.; Mateis, C.; Perri, S.; and Scarcello, F. 2006. The
DLV system for knowledge representation and reasoning.
ACM TOCL. To appear.
Leone, N.; Rullo, P.; and Scarcello, F. 1997. Disjunc-
tive stable models: Unfounded sets, fixpoint semantics, and
computation.Inf. Comput.135(2):69–112.
Lierler, Y., and Maratea, M. 2004. Cmodels-2: SAT-
based answer sets solver enhanced to non-tight programs.
In Lifschitz, V., and Niemel̈a, I., eds.,LPNMR, 346–350.
Springer-Verlag.
Lifschitz, V., and Razborov, A. 2006. Why are there so
many loop formulas?ACM TOCL. To appear.
Lin, F., and Zhao, Y. 2002. ASSAT: computing answer
sets of a logic program by SAT solvers. InAAAI, 112–118.
AAAI/MIT Press.
Lin, F., and Zhao, J. 2003. On tight logic programs and yet
another translation from normal logic programs to propo-
sitional logic. In Gottlob, G., and Walsh, T., eds.,IJCAI,
853–858. Morgan Kaufmann.
Lin, F., and Zhao, Y. 2004. ASSAT: computing answer sets
of a logic program by SAT solvers.AIJ 157(1-2):115–137.
Linke, T., and Sarsakov, V. 2005. Suitable graphs for an-
swer set programming. In Baader, F., and Voronkov, A.,
eds.,LPAR, 154–168. Springer-Verlag.
Liu, L., and Truszczýnski, M. 2005. Pbmodels - software
to compute stable models by pseudoboolean solvers. In
Baral, C.; Greco, G.; Leone, N.; and Terracina, G., eds.,
LPNMR, 410–415. Springer-Verlag.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics.AIJ 138(1-
2):181–234.
Simons, P. 2000. Extending and implementing the stable
model semantics. Dissertation, Helsinki UT.
van Gelder, A.; Ross, K.; and Schlipf, J. 1991. The well-
founded semantics for general logic programs.J. ACM
38(3):620–650.

66 Technical Report IfI-06-04

Answer Set Programming

DEPARTMENT OF INFORMATICS 67

11TH NMR WORKSHOP

1.7 Elementary Sets for Logic Programs

Elementary Sets for Logic Programs

Martin Gebser
Institut für Informatik

Universiẗat Potsdam, Germany

Joohyung Lee
Computer Science and Engineering

Arizona State University, USA

Yuliya Lierler
Department of Computer Science

Universiẗat Erlangen-N̈urnberg, Germany

Abstract

By introducing the concepts of a loop and a loop formula,
Lin and Zhao showed that the answer sets of a nondisjunctive
logic program are exactly the models of its Clark’s comple-
tion that satisfy the loop formulas of all loops. Recently, Geb-
ser and Schaub showed that the Lin-Zhao theorem remains
correct even if we restrict loop formulas to a special class of
loops called “elementary loops.” In this paper, we simplify
and generalize the notion of an elementary loop, and clarify
its role. We propose the notion of an elementary set, which
is almost equivalent to the notion of an elementary loop for
nondisjunctive programs, but is simpler, and, unlike elemen-
tary loops, can be extended to disjunctive programs without
producing unintuitive results. We show that the maximal un-
founded elementary sets for the “relevant” part of a program
are exactly the minimal sets among the nonempty unfounded
sets. We also present a graph-theoretic characterization of el-
ementary sets for nondisjunctive programs, which is simpler
than the one proposed in (Gebser & Schaub 2005). Unlike the
case of nondisjunctive programs, we show that the problem of
deciding an elementary set iscoNP-complete for disjunctive
programs.

Introduction
By introducing the concepts of a loop and a loop formula,
Lin and Zhao (2004) showed that the answer sets (a.k.a. sta-
ble models) of a nondisjunctive logic program are exactly
the models of its Clark’s completion (Clark 1978) that sat-
isfy the loop formulasLF(L) of all loopsL for the program.
This important result has shed new light on the relationship
between answer sets and completion, and allowed us to com-
pute answer sets using SAT solvers, which led to the design
of answer set solversASSAT1 (Lin & Zhao 2004) andCMOD-
ELS2 (Giunchiglia, Lierler, & Maratea 2004).

The concepts of a loop and a loop formula were fur-
ther clarified in (Lee 2005). By slightly modifying the
definition of a loop, Lee observed that adding loop for-
mulas can be viewed as a generalization of completion,
which allows us to characterize the stability of a model
in terms of loop formulas: A model is stable iff it sat-
isfies the loop formulas of all loops. He also observed

1http://assat.cs.ust.hk/
2http://www.cs.utexas.edu/users/tag/cmodels/

that the mappingLF, which turns loops into loop formu-
las, can be applied to arbitrary sets of atoms, not only to
loops: AddingLF(Y) for a non-loopY does not affect
the models of the theory becauseLF(Y) is always entailed
by LF(L) for some loopL. Though this reformulation
of the Lin-Zhao theorem, in whichLF is not restricted to
loops, is less economical, it is interesting to note that it is
essentially a theorem on assumption sets (Saccá & Zaniolo
1990), or unfounded sets (Van Gelder, Ross, & Schlipf 1991;
Leone, Rullo, & Scarcello 1997) which has been known for
many years. In this sense, the most original contribution
of (Lin & Zhao 2004) was not the mapping that turns loops
into loop formulas, but the definition of a loop, which yields
a relatively small class of sets of atoms for the mappingLF.

However, for nondisjunctive programs, even the defini-
tion of a loop turned out still “too generous.” Gebser and
Schaub (2005) showed that restricting the mapping even
more to a special class of loops called “elementary loops,”
yields a valid modification of the Lin-Zhao theorem (or the
Sacća-Zaniolo theorem). That is, some loops are identified
as redundant, just as all non-loops are redundant. They noted
that the notion of a positive dependency graph, which is used
for defining a loop, is not expressive enough to distinguish
between elementary and non-elementary loops, and instead
proposed another graph-theoretic characterization basedon
the notion of a so-called “body-head dependency graph.”

Our work is motivated by the desire to understand the role
of an elementary loop further and to extend the results to
disjunctive programs. For nondisjunctive programs, we pro-
pose a simpler notion corresponding to an elementary loop,
which we call an “elementary set,” and provide a further en-
hancement of the Lin-Zhao theorem based on it. Unlike
elementary loops, elementary sets can be extended to dis-
junctive programs without producing unintuitive results.We
show that a special class of unfounded elementary sets co-
incides with the minimal sets among nonempty unfounded
sets. Instead of relying on the notion of a body-head depen-
dency graph, we present a simpler graph-theoretic character-
ization of elementary sets based on a subgraph of a positive
dependency graph.

Elementary Sets for Nondisjunctive Programs
Review of Loop Formulas: Nondisjunctive Case

68 Technical Report IfI-06-04

Answer Set Programming

A nondisjunctive ruleis an expression of the form

a1 ← a2, . . . , am, not am+1, . . . , not an (1)

wheren ≥ m ≥ 1 anda1, . . . , an are propositional atoms.
A nondisjunctive programis a finite set of nondisjunctive
rules.

We will identify a nondisjunctive rule (1) with the propo-
sitional formula

(a2 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an)→ a1 ,

and will often write (1) as

a1 ← B,F (2)

whereB is a2, . . . , am andF is not am+1, . . . , not an. We
will sometimes identifyB with its corresponding set.

Let Π be a nondisjunctive program. The reductΠX of Π
with respect to a setX of atoms is obtained fromΠ by

• deleting each rule (2) such thatX 6|= F , and

• replacing each remaining rule (2) bya1 ← B.

SetX is ananswer set (stable model)of Π if it is minimal
among the models that satisfyΠX . 3

The (positive) dependency graphof Π is the directed
graph such that

• its vertices are the atoms occurring inΠ, and

• its edges go froma1 to a2, . . . , am for all rules (1) ofΠ.

A nonempty setL of atoms is called aloop of Π if, for ev-
ery pairp, q of atoms inL, there exists a path (possibly of
length0) from p to q in the dependency graph ofΠ such that
all vertices in this path belong toL. In other words,L is
a loop ofΠ iff the subgraph of the dependency graph ofΠ
induced byL is strongly connected. Clearly, any set consist-
ing of a single atom is a loop. For instance, Figure 1 shows
the dependency graph of the following programΠ1:

p← not s
p← r
q ← r
r ← p, q .

ProgramΠ1 has seven loops:{p}, {q}, {r}, {s}, {p, r},
{q, r}, {p, q, r}.

For any setY of atoms, theexternal support formulaof Y
for Π, denoted byESΠ(Y), is the disjunction of conjunctions

B ∧ F

for all rules (2) ofΠ such that

• a1 ∈ Y , and

• B ∩ Y = ∅.

The first condition expresses that the atom “supported”
by (2) is an element ofY . The second condition ensures
that this support is “external”: The atoms inB that it relies
on do not belong toY . ThusY is calledexternally supported
by Π w.r.t. a setX of atoms ifX satisfiesESΠ(Y).

3We identify an interpretation with the set of atoms that are true
in it.

p qr sq

i

)

1

Figure 1: The dependency graph of ProgramΠ1

For any setY of atoms, byLFΠ(Y) we denote the follow-
ing formula: ∧

a∈Y

a→ ESΠ(Y) . (3)

Formula (3) is called the(conjunctive) loop formulaof Y
for Π.4 Note that we still call (3) a loop formula even
whenY is not a loop.

The following reformulation of the Lin-Zhao theorem,
which characterizes the stability of a model in terms of loop
formulas, is a part of the main theorem from (Lee 2005) for
the nondisjunctive case.

Theorem 1 (Lee 2005) LetΠ be a nondisjunctive program,
andX a set of atoms occurring inΠ. If X satisfiesΠ, then
the following conditions are equivalent:

(a) X is stable;
(b) X satisfies LFΠ(Y) for all nonempty setsY of atoms

that occur inΠ;
(c) X satisfies LFΠ(Y) for all loopsY of Π.

According to the equivalence between conditions (a)
and (b) in Theorem 1, a model ofΠ1 is stable iff it satis-
fies the loop formulas of all fifteen nonempty sets of atoms
occurring inΠ1. On the other hand, condition (c) tells us
that it is sufficient to restrict attention to the following seven
loop formulas:

p → ¬s ∨ r
q → r
r → p ∧ q
s → ⊥

p ∧ r → ¬s
q ∧ r → ⊥

p ∧ q ∧ r → ¬s .

(4)

ProgramΠ1 has six models: {p}, {s}, {p, s}, {q, s},
{p, q, r}, and{p, q, r, s}. Among them,{p} is the only sta-
ble model, which is also the only model that satisfies all loop
formulas (4). In the next section, we will see that in fact the
last loop formula can be disregarded as well, if we take ele-
mentary sets into account.

As noted in (Lee 2005), the equivalence between condi-
tions (a) and (c) is a reformulation of the Lin-Zhao theorem;
the equivalence between conditions (a) and (b) is a reformu-
lation of Corollary 2 of (Sacća & Zaniolo 1990), and Theo-
rem 4.6 of (Leone, Rullo, & Scarcello 1997) (for the nondis-
junctive case), which characterizes the stability of a model
in terms ofunfounded sets. For setsX, Y of atoms, we say
thatY is unfoundedby Π w.r.t.X if Y is not externally sup-
ported byΠ w.r.t.X. Condition (b) can be stated in terms of
unfounded sets as follows:

4If the conjunction in the antecedent is replaced with the dis-
junction, the formula is calleddisjunctive loop formula(Lin &
Zhao 2004). Our results stated in terms of conjunctive loop for-
mulas can be stated in terms of disjunctive loop formulas as well.

DEPARTMENT OF INFORMATICS 69

11TH NMR WORKSHOP

(b′) X contains no nonempty unfounded subsets forΠ
w.r.t. X.

Elementary Sets for Nondisjunctive Programs
As mentioned in the introduction, (Gebser & Schaub 2005)
showed thatLF in Theorem 1 can be further restricted to
“elementary loops.” In this section, we present a simpler re-
formulation of their results. We will compare our reformu-
lation with the original definition from (Gebser & Schaub
2005) later in this paper.

The following proposition tells us that a loop can be de-
fined even without referring to a dependency graph.

Proposition 1 For any nondisjunctive programΠ and any
nonempty setY of atoms occurring inΠ, Y is a loop ofΠ iff,
for every nonempty proper subsetZ of Y , there is a rule (2)
in Π such that

• a1 ∈ Z, and

• B ∩ (Y \ Z) 6= ∅.

For any setY of atoms and any subsetZ of Y , we say
thatZ is outboundin Y for Π if there is a rule (2) inΠ such
that

• a1 ∈ Z,

• B ∩ (Y \ Z) 6= ∅, and

• B ∩ Z = ∅.

Let Π be a nondisjunctive program. For any nonempty
setY of atoms that occur inΠ, we say thatY is elementary
for Π if all nonempty proper subsets ofY are outbound inY
for Π. As with loops, it is clear from the definition that every
set consisting of a single atom occurring inΠ is elementary
for Π. It is also clear that every elementary set forΠ is a
loop of Π, but a loop is not necessarily an elementary set:
The conditions for being an elementary set are stronger than
the conditions for being a loop as given in Proposition 1. For
instance, one can check that forΠ1, {p, q, r} is not elemen-
tary since{p, r} (or {q, r}) is not outbound in{p, q, r}. All
the other loops ofΠ1 are elementary. Note that an elemen-
tary set may be a proper subset of another elementary set
(both{p} and{p, r} are elementary sets forΠ1).

The following program replaces the last rule ofΠ1 by two
rules:

p← not s
p← r
q ← r
r ← p
r ← q .

This program has the same dependency graph as pro-
gramΠ1 and thus has the same set of loops. However, its
elementary sets are different: All its loops are elementary.

From the definition of an elementary set above, we get an
alternative, equivalent definition by requiring that only the
loops contained inY be outbound, instead of requiring that
all nonempty proper subsets ofY be outbound.

Proposition 2 For any nondisjunctive programΠ and any
nonempty setY of atoms that occur inΠ, Y is an elementary

set forΠ iff all loopsZ of Π such thatZ ⊂ Y are outbound
in Y for Π.5

Note that a subset of an elementary set, even if that subset
is a loop, is not necessarily elementary. For instance, for
program

p← p, q
q ← p, q
p← r
q ← r
r ← p
r ← q ,

set{p, q, r} is elementary, but{p, q} is not.
The following proposition describes a relationship be-

tween loop formulas of elementary sets and those of arbi-
trary sets.

Proposition 3 Let Π be a nondisjunctive program,X a set
of atoms, andY a nonempty set of atoms that occur inΠ. If
X satisfies LFΠ(Z) for all elementary setsZ of Π such that
Z ⊆ Y , thenX satisfies LFΠ(Y).

Proposition 3 suggests that condition (c) of Theorem 1
can be further enhanced by taking only loop formulas of el-
ementary sets into account. This yields the following theo-
rem, which is a reformulation of Theorem 3 from (Gebser &
Schaub 2005) in terms of elementary sets.

Theorem 1(d) The following condition is equivalent to con-
ditions (a)–(c) of Theorem 1.

(d) X satisfies LFΠ(Y) for all elementary setsY of Π.

According to Theorem 1(d), a model ofΠ1 is stable iff
it satisfies the first six formulas in (4); the loop formula of
non-elementary set{p, q, r} (the last one in (4)) can be dis-
regarded.

Maximal Elementary Sets and Elementarily
Unfounded Sets for Nondisjunctive Programs
If we modify condition (c) of Theorem 1 by replacing
“loops” in its statement with “maximal loops,” the condition
becomes weaker, and the modified statement of Theorem 1
does not hold. For instance, programΠ1 has only two max-
imal loops,{p, q, r} and{s}, and their loop formulas are
satisfied by the non-stable model{p, q, r}. In fact, maximal
loop{p, q, r} is not even an elementary set forΠ1.

This is also the case with maximal elementary sets: The-
orem 1(d) does not hold if “elementary sets” in its statement
is replaced with “maximal elementary sets” as the following
program shows:

p← q, not p
q ← p, not p
p .

(5)

Program (5) has two models,{p} and{p, q}, but the latter is
not stable. Yet, both models satisfy the loop formula of the
only maximal elementary set{p, q} for (5) (p ∧ q → ⊤).

However, in the following we show that if we consider the
“relevant” part of the program w.r.t. a given interpretation, it
is sufficient to restrict attention to maximal elementary sets.

5Note that Proposition 2 remains correct even after replacing
“all loops” in its statement with “all elementary sets.”

70 Technical Report IfI-06-04

Answer Set Programming

Given a nondisjunctive programΠ and a setX of atoms,
by ΠX we denote the set of rules (2) ofΠ such that
X |= B,F . The following proposition tells us that all
nonempty proper subset of an elementary set forΠX are ex-
ternally supported w.r.t.X.

Proposition 4 For any nondisjunctive programΠ, any
setX of atoms, and any elementary setY for ΠX , X satis-
fies ESΠ(Z) for all nonempty proper subsetsZ of Y .

From Proposition 4, it follows that every unfounded ele-
mentary setY for ΠX w.r.t. X is maximal among the ele-
mentary sets forΠX . One can show that ifY is a nonempty
unfounded set forΠ w.r.t.X that does not contain a maximal
elementary set forΠX , thenY consists of atoms that do not
occur inΠX . From this, we obtain the following result.

Theorem 1(e) The following condition is equivalent to con-
ditions (a)–(c) of Theorem 1.

(e) X satisfies LFΠ(Y) for every setY of atoms such that

• Y is a maximal elementary set forΠX , or
• Y is a singleton whose atom occurs inΠ.

According to Theorem 1(e), model{p, q, r} of Π1 is
not stable because it does not satisfy the loop formula
of {q, r}, which is one of the maximal elementary sets
for (Π1){p,q,r} = Π1.

Note that the analogy does not apply to loops: If we re-
place “maximal elementary sets” in the statement of Theo-
rem 1(e) with “maximal loops,” then the modified statement
does not hold. The non-stable model{p, q, r} still satisfies
the loop formula of the maximal loop{p, q, r} of (Π1){p,q,r}

(the last one in (4)).
We say that a setY of atoms occurring inΠ is elementar-

ily unfoundedby Π w.r.t. X if
• Y is an elementary set forΠX that is unfounded byΠ

w.r.t. X, or

• Y is a singleton that is unfounded byΠ w.r.t. X.6

From Proposition 4, every non-singleton elementarily un-
founded set forΠ w.r.t. X is a maximal elementary set
for ΠX .

It is clear from the definition that every elementarily un-
founded set forΠ w.r.t.X is an elementary set forΠ and that
it is also an unfounded set forΠ w.r.t.X. However, a set that
is both elementary forΠ and unfounded byΠ w.r.t. X is not
necessarily an elementarily unfounded set forΠ w.r.t. X.
For example, consider the following program:

p← q, not r
q ← p, not r .

(6)

Set{p, q} is both elementary for (6), and unfounded by (6)
w.r.t. {p, q, r}, but it is not an elementarily unfounded set
w.r.t. {p, q, r}.

The following corollary, which follows from Proposi-
tion 4, tells us that all nonempty proper subsets of an el-
ementarily unfounded set are externally supported. It is
essentially a reformulation of Theorem 5 from (Gebser &
Schaub 2005).

6Elementarily unfounded sets are closely related to “active ele-
mentary loops” in (Gebser & Schaub 2005).

Corollary 1 LetΠ be a nondisjunctive program,X a set of
atoms, andY an elementarily unfounded set forΠ w.r.t. X.
Then

• X does not satisfy ESΠ(Y), and

• X satisfies ESΠ(Z) for all nonempty proper subsetsZ
of Y .

Corollary 1 tells us that elementarily unfounded sets form
an “anti-chain”: One of them cannot be a proper subset of
another.7 In combination with Proposition 4, this tells us that
elementarily unfounded sets are minimal among nonempty
unfounded sets. Interestingly, the converse also holds.

Proposition 5 For any nondisjunctive programΠ and any
setsX, Y of atoms,Y is an elementarily unfounded set forΠ
w.r.t. X iff Y is minimal among the nonempty sets of atoms
occurring inΠ that are unfounded byΠ w.r.t. X.

Theorem 1(e) can be stated in terms of elementarily un-
founded sets, thereby restricting attention to minimal un-
founded sets:

(e′) X contains no elementarily unfounded subsets forΠ
w.r.t. X.

The notion of an elementarily unfounded set may help
improve computation performed by SAT-based answer set
solvers. Since there are exponentially many loops in the
worst case, SAT-based answer set solvers do not add all loop
formulas at once. Instead, they check whether a model re-
turned by a SAT solver is an answer set. If not, a loop for-
mula that is not satisfied by the current model is added, and
the SAT solver is invoked again.8 This process is repeated
until an answer set is found, or the search space is exhausted.
In view of condition (e′), when loop formulas need to be
added, it is sufficient to add loop formulas of elementarily
unfounded sets only. This guarantees that loop formulas
considered are only those of elementary sets. Since every
elementary set is a loop, but not vice versa, the process may
involve fewer loop formulas overall than the case when ar-
bitrary loops are considered. In view of Proposition 3 and
Corollary 1, this would yield reasonably the most economi-
cal way to eliminate non-stable models.

Deciding Elementary Sets: Nondisjunctive Case
The above definition of an elementary set involves all its
nonempty proper subsets (or at least all loops that are its
subsets). This seems to imply that deciding whether a set
is elementary is a computationally hard problem. But in
fact, Gebser and Schaub (2005) showed that, for nondis-
junctive programs, deciding an elementary loop can be done
efficiently. They noted that positive dependency graphs
are not expressive enough to distinguish between elemen-
tary and non-elementary loops, and instead introduced so-
called “body-head dependency graphs” to identify elemen-
tary loops. In this section, we simplify this result by still

7Recall that the anti-chain property does not hold for elemen-
tary sets forΠ: An elementary set may contain another elementary
set as its proper subset.

8To be precise,CMODELS adds “conflict clauses.”

DEPARTMENT OF INFORMATICS 71

11TH NMR WORKSHOP

p qrq)

Figure 2: The elementary subgraph of{p, q, r} for Π1

referring to positive dependency graphs. We show that re-
moving some “unnecessary” edges from the dependency
graph is just enough to distinguish elementary sets from non-
elementary sets.

For any nondisjunctive programΠ and any setY of
atoms,

EC0
Π(Y) = ∅ ,

ECi+1

Π
(Y) = ECi

Π(Y) ∪ {(a1, b) | there is a rule (2) inΠ
such thatb ∈ B and the graph(Y, ECi

Π(Y)) has a
strongly connected subgraph containing all atoms
in B ∩ Y } ,

ECΠ(Y) =
⋃

i≥0
ECi

Π(Y) .

Note that this is a “bottom-up” construction. We call the
graph(Y, ECΠ(Y)) theelementary subgraphof Y for Π. It
is clear that an elementary subgraph is a subgraph of a de-
pendency graph and that it is not necessarily the same as the
subgraph of the dependency graph induced byY . Figure 2
shows the elementary subgraph of{p, q, r} for Π1, which is
not strongly connected.

The following theorem is similar to Theorem 10
from (Gebser & Schaub 2005), but instead of referring to
the notion of a body-head dependency graph, it refers to an
elementary subgraph as defined above.

Theorem 2 For any nondisjunctive programΠ and any
setY of atoms occurring inΠ, Y is an elementary set forΠ
iff the elementary subgraph ofY for Π is strongly connected.

Clearly, constructing an elementary subgraph and check-
ing whether it is strongly connected can be done in poly-
nomial time. Therefore, the problem of deciding whether a
given set of atoms is elementary is tractable.

Elementary Sets for Disjunctive Programs
Review of Loop Formulas: Disjunctive Case
A disjunctive ruleis an expression of the form

a1; . . . ; ak ← ak+1, . . . , al, not al+1, . . . , not am,
not notam+1, . . . , not notan

(7)

wheren ≥ m ≥ l ≥ k ≥ 0 anda1, . . . , an are propositional
atoms. Adisjunctive programis a finite set of disjunctive
rules.

We will identify a disjunctive rule (7) with the proposi-
tional formula

(ak+1 ∧ · · · ∧ al ∧ ¬al+1 ∧ · · · ∧ ¬am∧
¬¬am+1 ∧ · · · ∧ ¬¬an)→ (a1 ∨ · · · ∨ ak) ,

and will often write (7) as

A← B,F (8)

whereA is a1, . . . , ak, B is ak+1, . . . , al, andF is

not al+1, . . . , not am, not notam+1, . . . , not notan .

We will sometimes identifyA andB with their correspond-
ing sets.

Let Π be a disjunctive program. The reductΠX of Π with
respect to a setX of atoms is obtained fromΠ by

• deleting each rule (8) such thatX 6|= F , and

• replacing each remaining rule (8) byA← B.

Similarly as with a nondisjunctive program, a setX of atoms
is ananswer set (stable model)of Π if X is minimal among
the models that satisfyΠX .

The definition of a dependency graph is extended to a dis-
junctive program in a straightforward way: The vertices of
the graph are the atoms occurring in the program, and its
edges go from the elements ofA to the elements ofB for all
rules (8) of the program. The definition of a loop in terms
of the dependency graph remains the same as in the case of
nondisjunctive programs.

For any setY of atoms, theexternal support formulaof Y
for Π, denoted byESΠ(Y), is the disjunction of conjunctions

B ∧ F ∧
∧

a∈A\Y

¬a

for all rules (8) ofΠ such that

• A ∩ Y 6= ∅, and

• B ∩ Y = ∅.

WhenΠ is nondisjunctive, this definition reduces to the def-
inition of ESΠ for nondisjunctive programs given earlier.

The notion ofLFΠ and the term(conjunctive) loop for-
mula similarly apply to formulas (3) whenΠ is a disjunc-
tive program. As shown in (Lee 2005), Theorem 1 remains
correct after replacing “nondisjunctive program” in its state-
ment with “disjunctive program.”

Elementary Sets for Disjunctive Programs
In this section, we generalize the definition of an elementary
set to disjunctive programs.

Note that a loop of a disjunctive program can be also de-
fined without referring to a dependency graph: Proposition 1
remains correct after replacing “nondisjunctive” in its state-
ment with “disjunctive,” “(2)” with “(8),” and “a1 ∈ Z” with
“A ∩ Z 6= ∅.”

Let Π be a disjunctive program. For any setY of atoms,
we say that a subsetZ of Y is outboundin Y for Π if there
is a rule (8) inΠ such that

• A ∩ Z 6= ∅,

• B ∩ (Y \ Z) 6= ∅,

• A ∩ (Y \ Z) = ∅, and

• B ∩ Z = ∅.

Note that whenΠ is nondisjunctive, this definition reduces
to the corresponding definition given before.

As with nondisjunctive programs, for any nonempty setY
of atoms that occur inΠ, we say thatY is elementaryfor Π if
all nonempty proper subsets ofY are outbound inY for Π.
Similarly, every set consisting of a single atom occurring
in Π is an elementary set forΠ, and every elementary set

72 Technical Report IfI-06-04

Answer Set Programming

for Π is a loop ofΠ. The definition of an elementary set for
a disjunctive program is stronger than the alternative defini-
tion of a loop provided in Proposition 1 for the disjunctive
case: It requires that the rules satisfy two additional condi-
tions,A ∩ (Y \ Z) = ∅ andB ∩ Z = ∅.

With these extended definitions, Propositions 2 and 3 re-
main correct after replacing “nondisjunctive program” in
their statements with “disjunctive program.” Theorem 1(d)
holds even whenΠ is disjunctive.

To illustrate the definition, consider the following pro-
gram:

p ; q ← p
p ← q
p ← not r .

Among the four loops of the program,{p}, {q}, {r},
and {p, q}, the last one is not an elementary set be-
cause{q} is not outbound in{p, q}: The first rule con-
tains q in the head andp in the body, but it also contains
{p, q} ∩ ({p, q} \ {q}) = {p} in the head. According to the
extension of Theorem 1(d) to disjunctive programs, the loop
formula of{p, q} can be disregarded.

Maximal Elementary Sets and Elementarily
Unfounded Sets for Disjunctive Programs
Let Π be a disjunctive program. For any setsX, Y of atoms,
by ΠX,Y we denote the set of all rules (8) ofΠ such that
X |= B,F andX ∩ (A \ Y) = ∅. ProgramΠX,Y contains
all rules ofΠ that can provide supports forY w.r.t. X.

The following proposition tells us howΠX,Y is related
to ΠX whenΠ is nondisjunctive.

Proposition 6 LetΠ be a nondisjunctive program, andX a
set of atoms, andY a set of atoms such that every elementa1

in Y has a rule (2) inΠ such thatX |= B,F . ThenY is
elementary forΠX,Y iff it is elementary forΠX .

It follows from the proposition that for any non-singleton
setY of atoms,Y is elementary forΠX,Y iff it is elementary
for ΠX .

We extend the definition of an elementarily unfounded set
to disjunctive programs by replacing “ΠX ” with “ ΠX,Y ”
and by identifyingΠ as a disjunctive program. It is clear
from the definition that every elementarily unfounded set
for Π w.r.t. X is an elementary set forΠ and that it is also
an unfounded set forΠ w.r.t. X.

Propositions 4, 5, Corollary 1, and Theorems 1(e), 1(e′)
remain correct after replacing “nondisjunctive program” in
their statements with “disjunctive program” and “ΠX ” with
“ΠX,Y .” For preserving the intended meaning of Theo-
rem 1(e), “Y is a maximal elementary set forΠX ” can be
alternatively replaced with “Y is maximal among all setsZ
of atoms that are elementary forΠX,Z .”

Deciding Elementary Sets: Disjunctive Case
Although deciding an elementary set can be done efficiently
for nondisjunctive programs, it turns out that the corre-
sponding problem for (arbitrary) disjunctive programs is in-
tractable.

Proposition 7 For any disjunctive programΠ and any setY
of atoms, deciding whetherY is elementary forΠ is coNP-
complete.

This result can be explained by the close relationship to the
problem of deciding whether a set of atoms isunfounded-
free (Leone, Rullo, & Scarcello 1997), which means that
the set contains no nonempty unfounded subsets. In fact,
the reduction from deciding unfounded-freeness to deciding
elementariness is straightforward.

However, for the class of disjunctive programs called
“head-cycle-free” (Ben-Eliyahu & Dechter 1994), deciding
an elementary set is tractable. A disjunctive programΠ is
calledhead-cycle-freeif, for every rule (8) inΠ, there is no
loopL of Π such that|A∩L| > 1. For instance, the program

p ; q ←
p← q

is head-cycle-free, while the program

p ; q ←
p← q
q ← p

is not.
The definition of an elementary subgraph for a nondis-

junctive program can be extended to a head-cycle-free pro-
gram by replacing “(2)” with “(8)” and “b ∈ B” with
“a1 ∈ A, b ∈ B” in the equation forECi+1

Π
. With this

extended definition of an elementary subgraph, Theorem 2
remains correct after replacing “nondisjunctive program”in
its statement with “head-cycle-free program.”

Comparison with the Gebser-Schaub
Definition

In this section, we compare our reformulation of elementary
loops with the original definition given in (Gebser & Schaub
2005) for nondisjunctive programs.

Let Π be a nondisjunctive program. A loop ofΠ is called
trivial if it consists of a single atom such that the dependency
graph ofΠ does not contain an edge from the atom to itself.
Non-trivial loops were called simply loops in (Lin & Zhao
2004; Gebser & Schaub 2005). For a non-trivial loopL of Π,
let

R−
Π

(L) = {(2) ∈ Π | a1 ∈ L, B ∩ L = ∅},

R+

Π
(L) = {(2) ∈ Π | a1 ∈ L, B ∩ L 6= ∅}.

Definition 1 (Gebser & Schaub 2005, Definition 1) Given
a nondisjunctive programΠ and a non-trivial loopL ofΠ, L
is called aGS-elementary loopfor Π if, for each non-trivial
loopL′ of Π such thatL′ ⊂ L, R−

Π
(L′) ∩R+

Π
(L) 6= ∅.9

Proposition 8 For any nondisjunctive programΠ and any
non-trivial loopL of Π, L is a GS-elementary loop forΠ iff
L is an elementary set forΠ.

9A GS-elementary loop was called an “elementary loop” in
(Gebser & Schaub 2005). Here we put “GS-” in the name, to dis-
tinguish it from a loop that is elementary under our definition.

DEPARTMENT OF INFORMATICS 73

11TH NMR WORKSHOP

There are a few differences between Definition 1 and our
definition of an elementary set. First, the definition of an el-
ementary set does not assume a priori that the set is a loop.
Rather, the fact that an elementary set is a loop is a conse-
quence of our definition. Second, our definition is simpler
because it does not refer to a dependency graph. Third, the
two definitions do not agree on trivial loops: A trivial loop
is an elementary set, but not a GS-elementary loop. This
originates from the difference between the definition of a
loop given in (Lin & Zhao 2004) and its reformulation given
in (Lee 2005). As shown in the main theorem of (Lee 2005),
identifying a trivial loop as a loop provides a simpler re-
formulation of the Lin-Zhao theorem by omitting reference
to completion. Furthermore, in the case of elementary sets,
this reformulation also enables us to see a close relationship
between maximal elementary sets (elementarily unfounded
sets) and minimal nonempty unfounded sets. It also allows
us to extend the notion of an elementary set to disjunctive
programs without producing unintuitive results, unlike with
GS-elementary loops. To see this, consider the following
program:

p ; q ← r
p ; r ← q
q ; r ← p .

(9)

The non-trivial loops of this program are{p, q}, {p, r},
{q, r}, and {p, q, r}, but not singletons{p}, {q}, and
{r}. If we were to extend GS-elementary loops to dis-
junctive programs, a reasonable extension would say that
{p, q, r} is a GS-elementary loop for program (9) because all
its non-trivial proper subloops are “outbound” in{p, q, r}.
Note that {p, q, r} is unfounded w.r.t.{p, q, r}. More-
over, every singleton is unfounded w.r.t{p, q, r} as well.
This is in contrast with our Proposition 4, according to
which all nonempty proper subsets of an elementary set
for program (9) w.r.t.{p, q, r} are externally supported
w.r.t. {p, q, r}. This anomaly does not arise with our defi-
nition of an elementary set since{p, q, r} is not elementary
for (9). More generally, an elementary set is potentially el-
ementarily unfounded w.r.t. some model, which is not the
case with GS-elementary loops extended to disjunctive pro-
grams.

Conclusion
We have proposed the notion of an elementary set and pro-
vided a further refinement of the Lin-Zhao theorem based on
it, which simplifies the Gebser-Schaub theorem and extends
it to disjunctive programs.

We have shown properties of elementary sets that allow
us to disregard redundant loop formulas. One property is
that, if all elementary subsets of a given set of atoms are ex-
ternally supported, the set is externally supported as well.
Another property is that, for a maximal set that is elemen-
tary for the relevant part of the program w.r.t. some inter-
pretation, all its nonempty proper subsets are externally sup-
ported w.r.t. the same interpretation. Related to this, we have
proposed the concept of elementarily unfounded sets, which
turn out to be precisely the minimal sets among nonempty
unfounded sets.

Unlike elementary loops proposed in (Gebser & Schaub
2005), elementary sets and the related results are extendedto
disjunctive programs in a straightforward way. For nondis-
junctive and head-cycle-free programs, we have provided a
graph-theoretic characterization of elementary sets, which is
simpler than the one proposed in (Gebser & Schaub 2005).
For disjunctive programs, we have shown that deciding ele-
mentariness iscoNP-complete, which can be explained by
the close relationship to deciding unfounded-freeness of a
given interpretation.

Elementary sets allow us to identify relevant unfounded
sets more precisely than what loops allow. An apparent ap-
plication is to consider elementarily unfounded sets in place
of arbitrary unfounded loops as considered in the current
SAT-based answer set solvers, at least for the tractable cases.
For nondisjunctive programs, an efficient algorithm for com-
puting elementarily unfounded sets is described in (Anger,
Gebser, & Schaub 2006), which can be extended to head-
cycle-free programs as well. Based on the theoretical foun-
dations provided in this paper, we plan to integrate elemen-
tarily unfounded set computation intoCMODELS for an em-
pirical evaluation.

Acknowledgments
We are grateful to Selim Erdoğan, Vladimir Lifschitz,
Torsten Schaub, and anonymous referees for their useful
comments. Martin Gebser was supported by DFG under
grant SCHA 550/6-4, TP C. Yuliya Lierler was partially sup-
ported by the National Science Foundation under Grant IIS-
0412907.

References
Anger, C.; Gebser, M.; and Schaub, T. 2006. Approaching
the core of unfounded sets. InProc. NMR 2006.

Ben-Eliyahu, R., and Dechter, R. 1994. Propositional se-
mantics for disjunctive logic programs.Annals of Mathe-
matics and Artificial Intelligence12(1-2):53–87.

Clark, K. 1978. Negation as failure. In Gallaire, H., and
Minker, J., eds.,Logic and Data Bases. New York: Plenum
Press. 293–322.

Gebser, M., and Schaub, T. 2005. Loops: Relevant or
redundant? InProc. LPNMR 2005, 53–65.

Giunchiglia, E.; Lierler, Y.; and Maratea, M. 2004. SAT-
based answer set programming. InProc. AAAI 2004, 61–
66.

Lee, J. 2005. A model-theoretic counterpart of loop for-
mulas. InProc. IJCAI 2005, 503–508.

Leone, N.; Rullo, P.; and Scarcello, F. 1997. Disjunc-
tive stable models: Unfounded sets, fixpoint semantics, and
computation. Information and Computation135(2):69–
112.

Lin, F., and Zhao, Y. 2004. ASSAT: Computing answer sets
of a logic program by SAT solvers.Artificial Intelligence
157(1–2):115–137.

Sacća, D., and Zaniolo, C. 1990. Stable models and non-
determinism in logic programs with negation. InProceed-

74 Technical Report IfI-06-04

Answer Set Programming

ings of ACM Symposium on Principles of Database Sys-
tems (PODS), 205–217.
Van Gelder, A.; Ross, K.; and Schlipf, J. 1991. The well-
founded semantics for general logic programs.Journal of
ACM 38(3):620–650.

DEPARTMENT OF INFORMATICS 75

11TH NMR WORKSHOP

76 Technical Report IfI-06-04

Answer Set Programming

1.8 Debugging inconsistent answer set programs

Debugging Inconsistent Answer Set Programs

Tommi Syrj änen∗
Helsinki University of Technology, Dept. of Computer Science and Eng.,

Laboratory for Theoretical Computer Science,
P.O.Box 5400, FIN-02015 HUT, Finland

Tommi.Syrjanen@tkk.fi

Abstract

In this paper we examine how we can find contradictions
from Answer Set Programs (ASP). One of the most impor-
tant phases of programming is debugging, finding errors that
have crept in during program implementation. Current ASP
systems are still mostly experimental tools and their support
for debugging is limited. This paper addresses one part of
ASP debugging, finding the reason why a program does not
have any answer sets at all. The basic idea is to compute di-
agnoses that are minimal sets of constraints whose removal
returns consistency. We compute also conflict sets that are
sets of mutually incompatible constraints. The final possible
source of inconsistency in an ASP program comes from odd
negative loops and we show how these may also be detected.
We have created a prototype for the ASP debugger that is it-
self implemented using ASP.

Introduction
One of the most important phases in computer programming
is always debugging; no matter how much care is used in
program writing, some errors will creep in. For this reason
a practical Answer Set Programming (ASP) system should
have support for program debugging. It is not possible to
detect all errors automatically since a construct may be an
error in one case but correct code in another.

The current ASP systems (Niemelä, Simons, & Syrj̈anen
2000; Dell’Armi et al. 2001; East & Truszczýnski 2001;
Anger, Konczak, & Linke 2001; Babovich 2002; Lin & Zhao
2002) are still on experimental level and their support for
debugging is limited. In this paper we examine how we can
debug one class of program errors, namely finding the con-
tradictions in a program. We have developed a prototype
debugger implementation for the SMODELS input language
but the same principles are applicable for most ASP systems.

Program defects can be roughly divided into two
classes (Aho, Sethi, & Ullman 1986):

• syntax errors: the program does not conform with the for-
mal syntax of the language; and

• semantic errors: the program is syntactically correct but
does not behave as the programmer intended.

∗This research has been funded by the Academy of Finland
(project number 211025).

In this discussion we leave out syntactical errors since they
are generally easy to remedy: the ASP system notes that the
program is not valid and outputs an error message telling
where the problem occurred.

The semantical errors are more difficult to handle. In the
context of ASP, they too can be roughly divided into two
classes:

• typographical errorssuch as misspelling predicate or
variable names, using a constant in place of a variable or
vice versa; and

• logical errorswhere a rule behaves differently from what
was intended.

The intuition of the division is that an error is typographi-
cal if it is caused by a simple misspelling of a single syn-
tactical element. For example, usingcorect(X) instead of
correct(X). On the other hand, a logical error is one where
the programmer writes a rule that does not do what he or
she expects it to do. For example, a programmer writing
an encoding for a planning problem might want to state the
constraint that an object may be at one place at a time by
using the rule:

← at(O, L1, I), at(O, L2, I).

The problem is that the values ofL1 andL2 are not con-
strained and may take the same value. Thus, for each ob-
ject o, locationx, and time stepi, there will be a ground
instance:

← at(o, x, i), at(o, x, i).

which causes a contradiction no matter where the object is.
In this case the programmer should have added a testL1 6=
L2 to the rule body.

Our experience is that finding the reason for a contradic-
tion is one of the most laborious tasks in ASP debugging.
Currently the most practical approach is to remove rules
from the program until the resulting program has an answer
set and then examining the removed rules to see what caused
the error.

In this paper we examine how we can automate this pro-
cess using ASP meta-programming. When we have a con-
tradictory program, we create several new ASP programs
based on it such that their answer sets reveal the possible
places of error.

DEPARTMENT OF INFORMATICS 77

11TH NMR WORKSHOP

We borrow our basic idea from the model-based diagno-
sis (Reiter 1987) field. There we have a system that does
not behave like it should and a diagnosis is a set of com-
ponents whose failure explains the symptoms. In our ap-
proach adiagnosisis a set of rules whose removal returns
consistency to the program. However, we do not attempt
construct a standard diagnostic framework. The reason for
this is pragmatic: our aim is to create a practical tool that
helps answer set programmers to debug their programs. It is
not reasonable to expect that a programmer would have an
existing system description that could be analyzed since that
would in effect be a correct program. On the other hand,
we are not willing to leave the debugger completely with-
out of formal semantics. One of the strengths of ASP is that
all programs have declarative semantics so it seems natu-
ral that also their diagnoses have one. Thus, we construct
our own formal framework that shares some features with
model-based diagnosis but is different in other areas.

When we construct diagnoses, we are interested in min-
imal ones. There are several possible ways to define min-
imality and we will usecardinality minimality: a diagno-
sis is minimal if there is no diagnosis that contains fewer
rules than it. Another possibility would besubset minimal-
ity where a diagnosis is minimal if it does not contain an-
other diagnosis as its subset. We chose cardinality minimal-
ity mainly because it was easier to implement in the proto-
type and also because it is possible that smaller diagnoses
are easier to handle in practical debugging.

Not all minimal diagnoses are equally good for debugging
purposes. For example, consider the program:

{a} . (1)

b← a. (2)

c← not a. (3)

← 1 {b, c} . (4)

Here (1) says thata may be true or false, (2) tells thatb is
true if a is true, (3) thatc is true ifa is not, and finally (4) is
a constraint stating that it is an error if eitherb or c is true.

No matter what truth value we choose fora, eitherb or
c is true, so we have a contradiction. The minimum num-
ber of rules that we have to remove to repair consistency is
one: removing either (2), (3), or (4) results in a consistent
program. Removing (4) gives the most information to the
programmer since neitherb ← a nor c ← not a can cause
the contradiction by themselves. On the other hand, (4) is a
constraint telling that its body should not become true so the
connection to the contradiction is immediate.

We take the approach that we include only constraints in
minimal diagnoses. Examining just them is not enough since
a contradiction can arise also from anodd loop. An odd loop
is a program fragment where an atom depends recursively
on itself through an odd number of negations. The simplest
example is:

a← not a.

This rule causes a contradiction since ifa is set to false, we
have to conclude thata is true. On the other hand, ifa is set

to true, the body of the rule is not satisfied so we do not have
a justification fora and we have to set it false.

Not all odd loops are errors since they may be used to
prune out unwanted answer sets. Since it is difficult to deter-
mine which odd loops are intentional and which are errors,
we take the approach that all odd loops are considered to be
errors.

This means that the programmer has to use some other
construct to replace the odd loops. In SMODELS the alterna-
tive approach is to first generate the possible model candi-
dates usingchoice rulesof the form:

{head} ← body.

Here the intuition is that ifbody is true, thenheadmay be
true but it may be also false. The pruning is then done using
constraintsof the form:

← body.

A constraint asserts that thebodymust be false. Note that
a constraint is actually an odd loop in a disguise: we could
replace a constraint by the equivalent rule:

f← body, not f.

In general, a program may have a number of different
minimal diagnoses. In many cases some constraints occur-
ring in them are related to each other. For example, in pro-
gram:

{a} .

← a. (1)

← not a. (2)

← not b. (3)

there are two different diagnoses:{1, 3} and{2, 3}. Here
the constraints (1) and (2) both depend on the value ofa. If
a is chosen to be true, then (1) fails, if not, (2) fails. In effect,
we can have either (1) or (2) in the program, but not both.
The constraint (3) is independent from the other two and it
always fails.

A conflict setis a way of formalizing the concept of re-
lated constraints. The intuition is that a set of constraints
is a conflict set if every diagnosis of the program contains
exactly one member from the set.1 We use the conflict sets
to give more information to the programmer. In the above
program the two conflict sets are{2, 3} and{4}. In general,
if two rules belong in the same conflict set, the truth values
of the literals that occur in their bodies depend on same truth
values of same atoms: choosing one value leads to one con-
tradiction and choosing the other leads to another. Grouping
them together may lead the programmer to the place of error
faster.

Note that there are programs whose constraints cannot be
divided into conflict sets. In those cases we cannot use con-
flict sets to help debugging and have to use other methods.
Fortunately, those cases seem to be quite rare in practice.

1Note that conflict sets are different from conflicts. In model-
based diagnosis a conflict is a set of components that contains at
least one malfunctioning component.

78 Technical Report IfI-06-04

Answer Set Programming

Related Work

Brain et. al. (Brain, Watson, & De Vos 2005) presented an
interactive way for computing answer sets. A programmer
can use the interactive system as a debugging aid since it can
be used to explain why a given atom is either included in an
answer set or left out from it. Their approach is very similar
to our method of computing explanations for diagnoses.

The NoMoRe system (Anger, Konczak, & Linke 2001)
utilizes blocking graphs that can be used to examine why
a given rule is applied or blocked and thus they provide a
visual method for debugging ASP programs.

The consistency-restoring rules of Balduccini and Gel-
fond (Balduccini & Gelfond 2003) are another related ap-
proach. They define a method that allows a reasoning sys-
tem to find the best explanation for conflicting observations.
The main difference between our approaches is that we do
not try to fix the contradictory program but instead try to
help the programmer to find the places that are in error.

There has been a lot of previous work on the properties
of odd and even cycles in a program (for example, (You &
Yuan 1994; Lin & Zhao 2004; Costantini & Provetti 2005;
Constantini 2005)) and how they affect the existence and
number of answer sets. In this work we propose methodol-
ogy where even loops are replaced by choice rules and odd
loops by constraints, so our viewpoint is slightly different.
However, the theoretical results of previous work still hold
since our programs could be translated back to normal logic
programs. In particular, constraints are equivalent to one-
rule odd loops.

The most closely related area of odd loop research is Con-
statini’s work on static program analysis (Constantini 2005).
She notes that there are two different ways to escape the in-
consistency caused by an odd loop: either there has to be
one unsatisfied literal in the body of at least one rule of the
loop or there has to be a non-circular justification for some
atom in the loop. The literals that are present in rule bodies
but are not part of the loop are called AND-handles and the
extra rules are OR-handles. In every answer set of the pro-
gram there has to be an applicable handle for every odd loop
in it. Since the handles are purely syntactic properties, we
can statically analyze the rules to see what conditions have
to be met so that all loops are satisfied. This approach seems
promising but there is currently the limitation that the def-
initions demand that the program is in kernel normal form.
This is not an essential limitation from theoretical point of
view since every normal logic program can be systemati-
cally translated to the normal form, but it will cause an extra
step in practical debugger since the results have to be trans-
lated back to the original program code.

Language
In this paper we construct a debugger for a subset of SMOD-
ELS language.2 We will consider only finite ground pro-
grams that do not have cardinality constraint literals but that
may have choice rules.

2The actual debugger implementation handles the complete lan-
guage.

The basic building block of a program is anatomthat en-
codes a single proposition that may be either true or false. A
literal is either an atoma or its negationnot a.

A basic ruleis of the form:

h← l1, . . . , ln

where theheadh is an atom andl1, . . ., ln in thebodyare
literals. The intuition is that if all literalsl1, . . ., ln are true,
thenh has to be also true. If the body is empty (n = 0), then
the rule is afact. A choice rulehas the form:

{h} ← l1, . . . , ln

whereh andli are defined as above. The intuition of a choice
rule is that if the body is true, then the head may be true but
it may also be false. If an atom does not occur in the head of
any rule that has a satisfied body, it has to be false.

Basic and choice rules are together calledgenerating
rules. The other possibility is aconstraintthat is a rule with-
out a head. If the body of a constraint becomes true, then the
model candidate is rejected. Alogic programP = 〈G, C〉 is
a pair whereG is a finite set of generating rules andC a finite
set of constraints.

Before we can define the formal ASP semantics for
these programs, we need to define notation that allows
us to refer to the parts of a rule. Letr = h ←
a1, . . . , an,not b1, . . . ,not bm be a basic rule whereai and
bi are atoms. Then,

head(r) = h

body+(r) = {a1, . . . , an}

body−(r) = {b1, . . . , bm} .

The same notation is used for choice rules. We use
Atoms(P) to denote the set of atoms that occur in a pro-
gramP .

A set of atomsS satisfiesan atoma (denoted byS � a) iff
a ∈ S and a negative literalnot a iff a /∈ S. A setS satisfies
a set of literalsL iff ∀l ∈ L : S � l. A set S satisfies
constraint← l1, . . . , ln iff S 6� li for some1 ≤ i ≤ n.

The ASP semantics is defined using the concept of a
reduct(Gelfond & Lifschitz 1988). The reductPS of a pro-
gramP = 〈G, C〉 with respect of a set of atomsS is:

PS = 〈GS , C〉, where

GS = {head(r)← body+(r) | r ∈ G, S � body−(r),

andr is either a basic rule or a

choice rule and head(r) ∈ S} .

Note that all rules that belong to the generator part of a
reductP are basic rules and all literals that occur in them
are positive. Such rules are monotonic soGS has a unique
least model (Gelfond & Lifschitz 1988) that we denote
with MM (GS). If this least model happens to coincide with
S and it also satisfies all constraints, thenS is an answer set
of P .

Definition 1 LetP = 〈G, C〉 be a program. A set of ground
atomsS is ananswer setof P if and only if:

DEPARTMENT OF INFORMATICS 79

11TH NMR WORKSHOP

1. MM (GS) = S; and
2. ∀r ∈ C : S � r.

A programP is consistentif it has at least one answer set
andinconsistentif it has none.

Theory for Debugging
Odd Loops
Definition 2 Thedependency graphDGP = 〈V,E+, E−〉
of a programP = 〈G, C〉 is a triple whereV = Atoms(P)
and E+, E− ⊆ V × V are sets ofpositive and negative
edges such that:

E+ = {〈h, a〉 | ∃r ∈ G : head(r) = h anda ∈ body+(r)}

E− = {〈h, b〉 | ∃r ∈ G : head(r) = h andb ∈ body−(r)} .

Definition 3 Let DGP = 〈V,E+, E−〉 be a dependency
graph. Then the twodependency relations OddP andEvenP
are the smallest relations onV such that:

1. for all 〈a1, a2〉 ∈ E− it holds that〈a1, a2〉 ∈ OddP ;
2. for all 〈a1, a2〉 ∈ E+ it holds that〈a1, a2〉 ∈ EvenP ;
3. if 〈a1, a2〉 ∈ E− and 〈a2, a3〉 ∈ EvenP , then〈a1, a3〉 ∈

OddP ;
4. if 〈a1, a2〉 ∈ E− and 〈a2, a3〉 ∈ OddP , then〈a1, a3〉 ∈

EvenP ;
5. if 〈a1, a2〉 ∈ E+ and 〈a2, a3〉 ∈ EvenP , then〈a1, a3〉 ∈

EvenP ; and
6. if 〈a1, a2〉 ∈ E+ and 〈a2, a3〉 ∈ OddP , then〈a1, a3〉 ∈

OddP .

The reason for the interleaved definition is that the relations
Odd and Even are then easy to compute: we start by ini-
tializing them with the edges of the dependency graph, and
then compute the transitive closure of the graph where every
negative edge changes the parity of the dependency: ifb de-
pends onc evenly and there is a negative edge froma to b,
thena depends oddly onc.

Definition 4 LetP be a program. Then, anodd loopis a set
L = {a1, . . . , an} of atoms such that〈ai, aj〉 ∈ OddP for
all 1 ≤ i, j ≤ n. An atoma ∈ Atoms(P) occurs in an odd
loop iff 〈a, a〉 ∈ OddP . The programP is odd loop freeif
∀a ∈ Atoms(P) : 〈a, a〉 /∈ OddP .

Diagnoses and Conflict Sets
Definition 5 Let P = 〈G, C〉 be an odd loop free program.
Then, adiagnosisof P is a setD ⊆ C such that the program
〈G, C \ D〉 is consistent. A diagnosis isminimal iff for all
diagnosesD′ of P it holds that|D′| ≥ |D|. The set of all
minimal diagnoses ofP is denoted byD(P).

Example 1 Consider the program:

{a} .

← a. (1)

← not a. (2)

← not b. (3)

This program has two minimal diagnoses:D1 = {1, 3} and
D2 = {2, 3}. To see thatD1 is really a diagnosis, note that
when its rules are removed, we are left with:

{a}.

← not a.

that has the answer set{a}.

We can observe two properties of diagnoses from Defini-
tion 5. First, ifP is consistent, then it has a unique minimal
diagnosis that is the empty set. The second observation is
that every inconsistent program has at least one minimal di-
agnosis.

Theorem 1 LetP = 〈G, C〉 be an inconsistent odd loop free
program. Then there exists at least one minimal diagnosisD
for it.

Proof 1 The rules inG can be systematically translated into
an equivalent normal logic programG′ where every choice
rule is replaced by an even loop (see (Niemelä & Simons
2000) for details). SinceG′ is odd loop free, it is consis-
tent (You & Yuan 1994). Thus, the setD′ = C is a diagno-
sis. SinceC is finite, there has to exist at least one minimal
diagnosisD ⊆ D′.

Definition 6 Let P = 〈G, C〉 be a program andD(P) the
set of its minimal diagnoses. Then, aconflict setC ⊆ C is a
set of constraints such that:

1. for all diagnosesD ∈ D(P) it holds that|D ∩ C| = 1;
and

2. for all constraintsr ∈ C there exists a diagnosisD ∈
D(P) such thatr ∈ D.

The set of all conflict sets ofP is denoted byC(P).

Intuitively, constraints that belong in a conflict set are mu-
tually exclusive in the sense that it is impossible to have all
of them satisfied at the same time. Note that with this defini-
tion it is possible that a program does not have any conflict
sets at all.

Example 2 In Example 1 we had two diagnosesD1 =
{1, 3} and D2 = {2, 3}. We can partition the constraints
that occur in them into two conflict sets:

C1 = {1, 2}

C2 = {3} .

Example 3 The program:

{a}. ← not a. (1) ← a, b. (4)
{b}. ← not b. (2) ← b, c. (5)
{c}. ← not c. (3) ← a, c. (6)

has six minimal diagnoses:{1, 2}, {1, 3}, {1, 5}, {2, 3},
{2, 6}, and{3, 4}. We see that there is no way to partition
the constraints so that every diagnosis contains exactly one
rule for each set.

80 Technical Report IfI-06-04

Answer Set Programming

The ASP Programs
In this section we create three different ASP programs that
can be used to debug contradictory programs. We express
these programs using the full SMODELS syntax so we need
to introduce a few new constructs. We do not give here the
full formal semantics but the interested reader may consult
(Syrjänen 2004) for details.

A cardinality constraint literal is of the form
L {l1, . . . , ln} U where L and U are integral lower
andupper boundsandli are literals. A cardinality constraint
literal is true if the number of satisfied literalsli is between
U and L, inclusive. Next, aconditional literal has the
form a(X) : d(X) This construct denotes the set of
literals {a(t) | d(t) is true}. Finally, a fact may have a
numeric rangein it and a(1..n) denotes the set ofn facts
{a(1), . . . , a(n)}.

Odd Loop Detection
When we do the odd loop detection, we will use the standard
meta-programming encoding of logic programs (Sterling &
Shapiro 1994). A rule:

r = h← a,not b

is encoded using the facts:

rule(r). pos-body(r, a).
head(r, h). neg-body(r, b).

We start the odd loop program by extracting the atoms from
the program representation:

atom(H)← head(R, H).

atom(A)← pos-body(R, A).

atom(B)← neg-body(R, B).

Next, we construct the dependency graph for the program:

pos-edge(H, A)← head(R, H),

pos-body(R, A).

neg-edge(H, B)← head(R, H),

neg-body(R, B).

One step positive dependency is even, negative odd:

even(X, Y)← pos-edge(X, Y).

odd(X, Y)← neg-edge(X, Y).

Adding a new positive edge preserves parity:

even(X, Z)← pos-edge(X, Y), even(Y, Z), atom(Z).

odd(X, Z)← pos-edge(X, Y), odd(Y, Z), atom(Z).

Adding a negative edge flips parity:

odd(X, Z)← neg-edge(X, Y), even(Y, Z), atom(Z).

even(X, Z)← neg-edge(X, Y), odd(Y, Z), atom(Z).

There is an odd loop if a predicate depends oddly on itself:

odd-loop(X)← odd(X, X).

Two atomsX and Y are in same odd loop ifX depends
oddly onY andY depends evenly onX:

in-odd-loop(X, Y)← odd(X, Y), even(Y, X).

The above rules correspond directly to the Definitions 1–4.
We could stop here, but we can make debugging a bit easier
if we also identify which rules belong to which loops. We
start by choosing one of the atoms that occur in a loop to
act as an identifier for the loop. We take the atom that is
lexicographically the first one:

first-in-loop(A)← odd-loop(A), not has-predecessor(A).

has-predecessor(A)← in-odd-loop(B, A), B < A.

The final part of the odd loop detection is to compute which
rules belong to the loop. The idea is that ifX andY are in
the same loop, then a rule that hasX in the head andY in
the body participates in the loop. We also have to extract the
identifier of the particular loop.

rule-in-loop(R, Z)← in-odd-loop(X, Y),

in-odd-loop(X, Z),

first-in-loop(Z),

head(R, X),

pos-body(R, Y).

rule-in-loop(R, Z)← in-odd-loop(X, Y),

in-odd-loop(X, Z),

first-in-loop(Z),

head(R, X),

neg-body(R, Y).

Example 4 Consider the program:

a← not b. (1)

b← a. (2)

This program is expressed with facts:

head(1, a). neg-body(1, b).
head(2, b). pos-body(2, a).

When these facts are given as an input for the odd loop de-
tection program, we have a unique answer set. The relevant
atoms from it are:

S = {odd-loop(a), odd-loop(b), first-in-loop(a),

rule-in-loop(2, a), rule-in-loop(1, a)} .

This answer set tells that the rules (1) and (2) form an odd
loop whose identifier isa.

Finding Diagnoses
We could use the meta-representation of the previous sec-
tion for also diagnosis computation but it is more efficient
in practice to use a more direct translation. The basic idea is
that we add a new literal to the bodies of constraint to control
whether it is applied or not. For example, a constraint:

r =← a, not b.

DEPARTMENT OF INFORMATICS 81

11TH NMR WORKSHOP

is translated into two rules:

← not removed(r), a,not b.

constraint(r).

All generating rules are kept as they were. Next, we add the
rule:

{removed(R) : constraint(R)} n.

This rule asserts that at mostn of the constraints may be
removed. Heren is a numeric constant whose value is set
from the command line.

The actual diagnoses are then computed by first setting
the n to zero and then increasing the value until the trans-
lated program has an answer set. The diagnosis can then be
extracted by noting theremoved/1 atoms that are true in the
answer.

Example 5 The program from program from Example 1 is
translated into:

{a}.

← not removed(1), a.

← not removed(2),not a.

← not removed(3),not b.

constraint(1..3).

{removed(R) :constraint(R)} n.

When we start computing the answer sets for the trans-
formed program we note that there are no answer sets when
n = 0 andn = 1. Withn = 2 there are two answer sets:

S1 = {removed(1), removed(3), a}

S2 = {removed(2), removed(3)}

The two diagnoses can then be read directly fromS1 andS3.

Finding Conflict Sets
Once we have computed all diagnoses, we can check
whether the program has conflict sets. We use a fact

in-diagnosis(d, r).

to denote that the constraintr is in thedth diagnosis.
First, we initialize several type predicates:

conflict-set(1..s).

diagnosis(S)← in-diagnosis(S, R).

rule(R)← in-diagnosis(S, R).

Heres is again a constant that is set during the instantiation
of the program.

We need two rules to compute the sets. The first one states
that each rule belongs to exactly one conflict set, and the
second states that every diagnosis should have exactly one
rule in each conflict set:

1 {in-set(S, R) : conflict-set(S)} 1← rule(R).

1 {in-set(S, R) : in-diagnosis(X, R)} 1← conflict-set(S),

diagnosis(X).

The conflict sets are computed in a same way as the diag-
noses: we start with only one conflict set, and increase their
number until we either find a partition or we know that none
exists.

Explanations

Initialization

Odd loops

Diagnoses

Debug

Loop
Critical sets

Figure 1: The debugger workflow

Example 6 From Example 5 we get the facts:

in-diagnosis(1, 1). in-diagnosis(1, 3).
in-diagnosis(2, 2). in-diagnosis(2, 3).

With these facts we find an answer set3 whens = 2. This
answer set is:

S = {in-set(1, 1), in-set(1, 2), in-set(2, 3)}

corresponding toC(P) = {{1, 2}, {3}}.

Debugger Implementation

We have created a prototype implementation for the
ASP debugger,smdebug, by combining the SMOD-
ELS programs with a driver program that is written with
Perl. The debugger implementation is included within
the lparse instantiator that is available for download at
http://www.tcs.tkk.fi/Software/smodels.

The general system architecture ofsmdebug is shown in
Figure 1. The debugger has four main components:

1. Odd loop detection. If the input program has an odd loop,
smdebug issues an error message and terminates;

2. Diagnosis computation wheresmdebug calls SMODELS
to compute all minimal diagnoses of the program;

3. Conflict set computation wheresmdebug tries to find
conflict sets of the program; and

4. Explanation computation wheresmdebug computes
derivation trees for constraints that occur in diagnoses.

We did not examine the fourth phase in this work but its idea
is to give the programmer more detailed knowledge about
the reasons of the contradictions. The user selects one diag-
nosis, and the debugger computes which set of choices leads
to this particular contradiction and presents the information
in the form of a derivation tree.

3More precisely, we have two isomorphic answer sets.

82 Technical Report IfI-06-04

Answer Set Programming

Conclusions and Further Work
In this work we applied the techniques from the symbolic
diagnosis (Reiter 1987) field to ASP debugging. The main
concepts have a natural mapping into ASP programs where a
diagnosis is a set of constraints whose removal returns con-
sistency to the program. We restrict these diagnoses to pro-
grams that are created in such a way that they do not have
odd loops. We use another ASP program to find the odd
loops that occur in a program and to warn about them. Fi-
nally, we defined the concept of the conflict set that can be
used to check which constraints are mutually exclusive.

We have created a prototype implementation,smdebug,
that implements the three debugging techniques of this paper
for the full SMODELS input language. Additionally,smde-
bug also can compute derivation trees to act as explanations
for the contradictions.

The main limitation for the current version ofsmdebug
is that it can be used to find only contradictions. However,
some of the techniques can be adapted to also explain why
a given atom is or is not in an answer set. In particular, the
method of computing explanations should generalize to this
direction quite easily.

The next step in continuing with thesmdebug develop-
ment is to add support for handling non-contradictory pro-
grams. This means that we have to add support for comput-
ing and analyzing answer sets of the program.

There are several avenues of further research for improv-
ing the current system. The algorithm thatsmdebug uses
for finding the minimal diagnoses and conflict sets is rather
naive: iteratively increasing the size of the parameter un-
til we get a program that has an answer set. It is possible
that some other approach could get us equally useful results
faster. Also, using some other minimality condition, like
subset minimality, might give better results in some cases.

This debugger has not been used to debug large answer
set programs, yet. The largest debugged program thus far
has been the part of the debugger itself. One of its early
versions of the explanation generation program contained a
bug that caused it to be contradictory. The debugger not
only identified the place of the error immediately, but it also
uncovered two bugs in thelparseinstantiator.

It may be that the current debugging support is not strong
enough to handle really large programs. In those cases prob-
ably the best way to proceed is to try to manually find the
smallest input program where the error happens and to de-
bug that one.

In conclusion, this approach seems promising for ASP
development but only time will tell if it will fulfill those
promises.

References
Aho, A. V.; Sethi, R.; and Ullman, J. D. 1986.Compil-
ers: Principles, Techniques, and Tools. Addison-Wesley
Publishing Company.

Anger, C.; Konczak, K.; and Linke, T. 2001. Nomore :
A system for non-monotonic reasoning under answer set
semantics. InProceedings of the 6th International Confer-

ence on Logic Programming and Nonmonotonic Reasoning
(LPNMR’01), 406–410.
Babovich, Y. 2002. Cmodels, a system computing answer
sets for tight logic programs.
Balduccini, M., and Gelfond, M. 2003. Logic programs
with consistency-restoring rules. InAAAI Spring 2003
Symposium, 9–18.
Brain, M.; Watson, R.; and De Vos, M. 2005. An inter-
active approach to answer set programming. InAnswer
Set Programming: Advances in Theory and Implementa-
tion ASP-05, 190 – 202.
Constantini, S. 2005. Towards static analysis of answer set
programs. Computer Science Group Technical Reports CS-
2005-03, Dipartimento di Ingegneria, Universita‘ di Fer-
rara.
Costantini, S., and Provetti, A. 2005. Normal forms for
answer sets programming.TPLP5(6):747–760.
Dell’Armi, T.; Faber, W.; Ielpa, G.; Koch, C.; Leone, N.;
Perri, S.; and Pfeifer, G. 2001. System description: Dlv. In
Proceedings of the 6th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’01).
Vienna, Austria: Springer-Verlag.
East, D., and Truszczyński, M. 2001. Propositional satis-
fiability in answer-set programming. InProceedings of KI
2001: Advances in Artificial Intelligence, 138–153.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. InProceedings of the 5th
International Conference on Logic Programming, 1070–
1080. The MIT Press.
Lin, F., and Zhao, Y. 2002. ASSAT: Computing answer
sets of a logic program by SAT solvers. InProceedings
of the 18th National Conference on Artificial Intelligence,
112–118. Edmonton, Alberta, Canada: The AAAI Press.
Lin, F., and Zhao, Y. 2004. On odd and even cycles in
normal logic programs. InProceedings of the 19th Na-
tional Conference on Artificial Intelligence (AAAI-04), 80–
85. The AAAI Press.
Niemel̈a, I., and Simons, P. 2000. Extending the smodels
system with cardinality and weight constraints. In Minker,
J., ed.,Logic-Based Artificial Intelligence. Kluwer. 491–
521.
Niemel̈a, I.; Simons, P.; and Syrjänen, T. 2000. Smodels: A
system for answer set programming. InProceedings of the
8th International Workshop on Non-Monotonic Reasoning.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence32:57–95.
Sterling, L., and Shapiro, E. 1994.The Art of Prolog. MIT
press.
Syrjänen, T. 2004. Cardinality constraint logic programs.
In The Proceedings of the 9th European Conference on
Logics in Artificial Intelligence (JELIA’04), 187–200. Lis-
bon, Portugal: Springer-Verlag.
You, J.-H., and Yuan, L. Y. 1994. A three-valued semantics
for deductive database and logic programs t.Journal of
Computer and System Science49:334–361.

DEPARTMENT OF INFORMATICS 83

11TH NMR WORKSHOP

84 Technical Report IfI-06-04

Answer Set Programming

1.9 Forgetting and Conflict Resolving in Disjunctive Logic Program-
ming

Forgetting and Conflict Resolving in Disjunctive Logic Programming∗

Thomas Eiter
Technische Universität Wien, Austria

eiter@kr.tuwien.ac.at

Kewen Wang†
Griffith University, Australia

k.wang@griffith.edu.au

Abstract

We establish a declarative theory of forgetting for disjunc-
tive logic programs. The suitability of this theory is justi-
fied by a number of desirable properties. In particular, one of
our results shows that our notion of forgetting is completely
captured by the classical forgetting. A transformation-based
algorithm is also developed for computing the result of for-
getting. We also provide an analysis of computational com-
plexity. As an application of our approach, a fairly general
framework for resolving conflicts in inconsistent knowledge
bases represented by disjunctive logic programs is defined.
The basic idea of our framework is to weaken the preferences
of each agent by forgetting certain knowledge that causes in-
consistency. In particular, we show how to use the notion of
forgetting to provide an elegant solution for preference elici-
tation in disjunctive logic programming.

Introduction
Forgetting (Lin & Reiter 1994; Lang, Liberatore, & Mar-
quis 2003) is a key issue for adequately handle a range of
classical tasks such as query answering, planning, decision-
making, reasoning about actions, or knowledge update and
revision. It is, moreover, also important in recently emerg-
ing issues such as design and engineering of Web-based on-
tology languages. Suppose we start to design an ontology
of Pets, which is a knowledge base of various pets (like
cats, dogs but not lions or tigers). Currently, there are nu-
merous ontologies on the Web. We navigated the Web and
found an ontologyAnimalswhich is a large ontology on
various animals including cats, dogs, tigers and lions. It is
not a good idea to download the whole ontology Animals.
The approach in the current Web ontology language standard
OWL1 is to discard those terminologies that are not desired
(although this function is still very limited in OWL). For ex-
ample, we may discard (or forget) tigers and lions from the
ontologyAnimals. If our ontology is only a list of relations,
we can handle the forgetting (or discarding) easily. However,

∗This work was partially supported by the Austrian Science
Funds (FWF) projects P17212 and 18019, the European Commis-
sion project REWERSE (IST-2003-506779) and the Australia Re-
search Council (ARC) Discovery Project 0666107.

†Part of the work was done while this author was working at
Technische Universität Wien.

1http://www.w3.org/2004/OWL/

an ontology is often represented as a logical theory, and the
removal of one term may influence other terms in the ontol-
ogy. Thus, more advanced methods are needed.

Disjunctive logic programming (DLP) under the answer
set semantics (Gelfond & Lifschitz 1990) is now widely
accepted as a major tool for knowledge representation and
commonsense reasoning (Baral 2002). DLP is expressive in
that it allows disjunction in rule heads, negation as failure
in rule bodies and strong negation in both heads and bodies.
Studying forgetting within DLP is thus a natural issue, and
we make in this paper the following contributions:
• We establish a declarative, semantically defined notion of

forgetting for disjunctive logic programs, which is a gen-
eralization of the corresponding notion for nondisjunctive
programs proposed in (Wang, Sattar, & Su 2005). The
suitability of this theory is justified by a number of de-
sirable properties.

• We present a transformation-based algorithm for comput-
ing the result of forgetting. This method allows to obtain
the result of forgetting a literall in a logic program via
a series of program transformations and other rewritings.
In particular, for any disjunctive programP and any lit-
erall, a syntactic representationforget(P, l) for forgetting
l in P always exists. The transformation is novel and does
not extend a previous one in (Wang, Sattar, & Su 2005),
which as we show is incomplete.

• Connected with the transformation algorithm, we settle
some complexity issues for reasoning under forgetting.
They provide useful insight into feasible representations
of forgetting.

• As an application of our approach, we present a fairly
general framework for resolving conflicts in inconsistent
knowledge bases. The basic idea of this framework is to
weaken the preferences of each agent by forgetting cer-
tain knowledge that causes inconsistency. In particular,
we show how to use the notion of forgetting to provide
an elegant solution for preference elicitation in DLP.

Preliminaries
We briefly review some basic definitions and notation used
throughout this paper.

A disjunctive programis a finite set of rules of the form
a1 ∨ · · · ∨ as ← b1, . . . , bm,not c1, . . . ,not cn, (1)

DEPARTMENT OF INFORMATICS 85

11TH NMR WORKSHOP

s,m, n ≥ 0, wherea, b’s andc’s are classical literals in a
propositional language. Aliteral is a positive literalp or a
negative literal¬p for some atomp. An NAF-literal is of the
form not l wherenot is for the negation as failure andl
is a (ordinary) literal. For an atomp, p and¬p are called
complementary. For any literall, its complementary literal
is denoted̃l.

To guarantee the termination of some program transfor-
mations, the body of a rule is a set of literals rather than a
multiset.

Given a ruler of form (1), head(r) = a1 ∨ · · · ∨
as and body(r) = body+(r) ∪ not body−(r) where
body+(r) = {b1, . . . , bm}, body−(r) = {c1, . . . , cn}, and
not body−(r) = {not q | q ∈ body−(r)}.

A rule r of the form (1) isnormal or non-disjunctive, if
s ≤ 1; positive, if n = 0; negative, if m = 0; constraint, if
s = 0; fact, if m = 0 andn = 0, in particular, a rule with
s = n = m = 0 is the constantfalse.

A disjunctive programP is callednormal program(resp.
positive program, negative program), if every rule inP is
normal (resp. positive, negative).

Let P be a disjunctive program and letX be a set of
literals. A disjunctiona1 ∨ · · · ∨ as is satisfied byX, de-
noted X |= a1 ∨ · · · ∨ as if ai ∈ X for some i with
1 ≤ i ≤ s. A rule r in P is satisfied byX, denoted
X |= r, iff ” body+(r) ⊆ X andbody−(r) ∩ X = ∅ im-
ply X |= head(r)”. X is a model ofP , denotedX |= P if
every rule ofP is satisfied byX.

An interpretationX is a set of literals that contains no
pair of complementary literals.

The answer set semantics Thereductof P onX is de-
fined asPX = {head(r)← body+(r) | r ∈ P, body−(r) ∩
X = ∅}. An interpretationX is ananswer setof P if X
is a minimal model ofPX (by treating each literal as a new
atom).AS(P) denotes the collection of all answer sets of
P . P is consistentif it has at least one answer set.

Two disjunctive programsP andP ′ areequivalent, de-
notedP ≡ P ′, if AS(P) = AS(P ′).

As usual,BP is theHerbrand baseof logic programP ,
that is, the set of all (ground) literals inP .

Forgetting in Logic Programming
In this section, we want to define what it means to forget
about a literall in a disjunctive programP . The idea is to
obtain a logic program which is equivalent to the original
disjunctive program, if we ignore the existence of the literal
l. We believe that forgetting should go beyond syntactic re-
moval of rules/literals and be close to classical forgetting and
answer set semantics (keeping its spirit) at the same time.
Thus, the definition of forgetting in this section is given in
semantics terms, i.e., based on answer sets, and naturally
generalizes the corresponding one in (Wang, Sattar, & Su
2005).

In propositional logic, the result of forgettingforget(T, p)
about a propositionp in a theoryT is conveniently de-
fined asT (p/true) ∨ T (p/false). This way cannot be di-
rectly generalized to logic programming since there is no
notion of the ”disjunction” of two logic programs. However,

if we examine the classical forgetting in model-theoretic
point of view, we can obtain the models offorget(T, p) in
this way: first compute all models ofT and removep from
each model if it containsp. The resulting collection of sets
{M \ {p} | M |= T} is exactly the set of all models of
forget(T, p).

Similarly, given a consistent disjunctive programP and
a literal l, we naively could define the result of forgetting
aboutl in P as an extended disjunctive programP ′ whose
answer sets are exactlyAS(P) \ l = {X \ {l} | X ∈
AS(P)}. However, this notion of forgetting cannot guaran-
tee the existence ofP ′ for even simple programs. For ex-
ample, considerP = {a ← . p ∨ q ←}, thenAS(P) =
{{a, p}, {a, q}} and thusAS(P)\p = {{a}, {a, q}}. Since
{a} ⊂ {a, q} and, as well-known, answer sets are incom-
parable under set inclusion,AS(P) \ p cannot be the set of
answer sets of any disjunctive program.

A solution to this problem isa suitable notion of minimal
answer setsuch that the definition of answer sets, minimal-
ity, and forgetting can be fruitfully combined. To this end,
we call a setX ′ an l-subset of a setX, denotedX ′ ⊆l X,
if X ′ \ {l} ⊆ X \ {l}. Similarly, a setX ′ is a strictl-subset
of X, denotedX ′ ⊂l X, if X ′ \ {l} ⊂ X \ {l}. Two sets
X andX ′ of literals arel-equivalent, denotedX ∼l X ′, if
(X \X ′) ∪ (X ′ \X) ⊆ {l}.

Definition 1 Let P be a consistent disjunctive program, let
l be a literal inP and letX be a set of literals.
1. For a collectionS of sets of literals,X ∈ S is l-minimal if

there is noX ′ ∈ S such thatX ′ ⊂l X. minl(S) denotes
the collection of alll-minimal elements inS.

2. An answer setX of disjunctive programP is anl-answer
set if X is l-minimal inAS(P). ASl(P) consists of all
l-answer sets ofP .

To makeAS(P)\ l incomparable, we could take either min-
imal elements or maximal elements fromAS(P) \ l. How-
ever, selecting minimal answer sets is in line with semantic
principles to minimize positive information.

For example,P = {a ← . p ∨ q ←}, has two answer
setsX = {a, p} andX ′ = {a, q}. X is a p-answer set of
P , butX ′ is not. This example shows that, for a disjunctive
programP and a literall, not every answer set is anl-answer
set.

In the rest of this paper, we assume thatP is a consis-
tent program. The following proposition collects some easy
properties ofl-answer sets.
Proposition 1 For any consistent programP and a literall
in P , the following four items are true:
1. Anl-answer setX of P must be an answer set ofP .
2. For any answer setX of P , there is anl-answer setX ′ of

P such thatX ′ ⊆l X.
3. Any answer setX of P with l∈X is anl-answer set ofP .
4. If an answer setX of P is not anl-answer set, then (1)

l 6∈ X; (2) there exists anl-answer setY of P such that
l ∈ Y ⊂l X.

Having the notion of minimality about forgetting a literal,
we are now in a position to define the result of forgetting
about a literal in a disjunctive program.

86 Technical Report IfI-06-04

Answer Set Programming

Definition 2 LetP be a consistent disjunctive program and
l be a literal. A disjunctive programP ′ is a result offorget-
ting aboutl in P , if P ′ representsl-answer sets ofP , i.e.,
the following conditions are satisfied:

1. BP ′ ⊆ BP \ {l} and
2. For any setX ′ of literals with l /∈X ′, X ′ is an answer

set ofP ′ iff there is anl-answer setX of P such that
X ′ ∼l X.

Notice that the first condition implies thatl does not appear
in P ′. An important difference of the notion of forgetting
here from existing approaches to updating and merging logic
programs is that onlyl and possibly some other literals are
removed. In particular, no new symbol is introduced inP ′.

For a consistent extended programP and a literall, some
programP ′ as in the above definition always exists (cf. Al-
gorithm 1 for details). However, different such programsP ′

might exist. It follows from the above definition that they are
all equivalent under the answer set semantics.

Proposition 2 LetP be a disjunctive program andl a literal
in P . If P ′ andP ′′ are two results of forgetting aboutl in P ,
thenP ′ andP ′′ are equivalent.

We useforget(P, l) to denote a possible result of forgetting
aboutl in P .

Example 11. If P1 = {q ← not p}, thenforget(P1, q) =
∅ andforget(P1, p) = {q ←}.

2. If P2 = {p ∨ q ←}, thenforget(P2, p) = ∅.
3. P3 = {p∨ q ← not p. c← q} has the unique answer set
{q, c} andforget(P3, p) = {q ← . c←}.

4. P4 = {a ∨ p ← not b. c ← not p. b ←}. Then
forget(P4, p) = {c← . b←}.

We will explain how to obtainforget(P, l) in the next sec-
tion. The following proposition generalizes Proposition 2.

Proposition 3 Let P and P ′ be two equivalent disjunc-
tive programs andl a literal in P . Then forget(P, l) and
forget(P ′, l) are also equivalent.

However, forgetting here does not preserve some spe-
cial equivalences of logic programs stronger than ordi-
nary equivalence like strong equivalence (Lifschitz, Tang, &
Turner 1999) or uniform equivalence (Eiter & Fink 2003).
A notion of forgetting which preserves strong equivalence
is interesting for some applications, but beyond the scope
of this paper. In addition, our approach may be easily re-
fined to preserve equivalences stronger than ordinary equiv-
alences by a canonical form for the result of forgetting (e.g.,
the output of Algorithm 1).

Proposition 4 For any consistent programP and a literall
in P , the following items are true:

1. AS(forget(P, l)) = {X \ {l} | X ∈ ASl(X)}.
2. If X ∈ ASl(X) with l 6∈ X, thenX ∈ AS(forget(P, l)).
3. For any X ∈ AS(P) such thatl ∈ X, X \ {l} ∈
AS(forget(P, l)).

4. For anyX ′ ∈ AS(forget(P, l)), eitherX ′ or X ′ ∪ {l} is
in AS(P).

5. For anyX ∈ AS(P), there existsX ′ ∈ AS(forget(P, l))
such thatX ′ ⊆ X.

6. If l does not appear inP , thenforget(P, l) = P .

Let |=s and|=c be the skeptical and credulous reasoning de-
fined by the answer sets of a disjunctive programP , respec-
tively: for any literall,

P |=s l iff l ∈ S for everyS ∈ AS(P).
P |=c l iff l ∈ S for someS ∈ AS(P).

Proposition 5 Let l be a specified literal in disjunctive pro-
gramP . For any literal l′ 6= l,

1. P |=s l′ iff forget(P, l) |=s l′.
2. P |=c l′ if forget(P, l) |=c l′.

This proposition says that, ifl is ignored,forget(P, l) is
equivalent toP under skeptical reasoning, but weaker un-
der credulous reasoning (i.e., inferences are lost).

Similar to the case of normal programs, the above defini-
tions of forgetting about a literall can be extended to forget-
ting about a setF of literals. Specifically, we can similarly
defineX1 ⊆F X2, X1 ∼F X2 andF -answer sets of a dis-
junctive program. The properties of forgetting about a single
literal can also be generalized to the case of forgetting about
a set. Moreover, the result of forgetting about a setF can be
obtained one by one forgetting each literal inF .

Proposition 6 Let P be a consistent disjunctive program
andF = {l1, . . . , lm} be a set of literals. Then

forget(P, F) ≡ forget(forget(forget(P, l1), l2), . . .), lm).

We remark that for removing a propositionp entirely from a
programP , it is suggestive to remove both the literalsp and
¬p in P (i.e., all positive and negative information aboutp).
This can be easily accomplished byforget(P, {p,¬p}).

Let lcomp(P) be Clark’s completion plus the loop formu-
las for an ordinary disjunctive programP (Lee & Lifschitz
2003; Lin & Zhao 2004). ThenX is an answer set ofP iff
X is a model oflcomp(P).

Now we have two kinds of operatorsforget(,) and
lcomp(). Thus for a disjunctive program and an atomp, we
have two classical logical theorieslcomp(forget(P, p)) and
forget(lcomp(P), p) on the signatureBP \ {p}. It is natu-
ral to ask what the relationship between these two theories
is. Intuitively, the models of the first theory are all minimal
models while the models of the second theory may not be
minimal 2. Let P = {p ← not q. q ← not p}. Then
lcomp(forget(P, p)) = {¬q} and forget(lcomp(P), p) =
{T ↔ ¬q ∨ F ↔ ¬q} ≡ T, which has two models{q}
and∅.

However, we have the following result. However, no-
tice that for this programP , the minimal modelsof
forget(lcomp(P), p) are the same as themodels of
lcomp(forget(P, p)). In fact, this result is true for ordinary
disjunctive programs in general.

Theorem 1 Let P be a logic program without strong nega-
tion and p an atom inP . Then X is an answer set of

2Thanks to Esra Erdem and Paolo Ferraris for pointing this out
to us.

DEPARTMENT OF INFORMATICS 87

11TH NMR WORKSHOP

forget(P, p) if and only ifX is a minimal model of the result
of classical forgettingforget(lcomp(P), p). That is,

AS(forget(P, p)) = MMod(forget(lcomp(P), p))

HereMMod(T) denotes the set of all minimal models of a
theoryT in classical logic.

This result means that the answer sets offorget(P, p) are
exactly the minimal models of the result of forgetting about
p in the classical theorylcomp(P). Thusforget(P, p) can be
characterized by forgetting in classical logic. Notice that it
would not make much sense if we replacelcomp(P) with
a classical theory which is not equivalent tolcomp(P) in
Theorem 1. In this sense, the notion of forgetting for answer
set programming is unique.

We useforgetmin(T, p) to denote a set of classical for-
mulas whose models are the minimal models of the classical
forgettingforget(T, p). Then the conclusion of Theorem 1 is
reformulated as

lcomp(forget(P, p)) ≡ forgetmin(lcomp(P), p).

This result is graphically represented in the following com-
mutative diagram

P
forget(.,p)

//

lcomp(.)

��

forget(P, p)

lcomp(.)

��

lcomp(P)
forgetmin(.,p)

// lcomp(forget(P, p))

The result is a nice property, since it means that one can
”bypass” the use of an LP engine entirely, and represent also
the answer sets offorget(P, p) in terms of a circumscription
of classical forgetting, applied tolcomp(P). In fact, we can
express combined forgetting and minimal model reasoning
by a circumscription oflcomp(P).

Theorem 2 Let P be a logic program without strong nega-
tion and p an atom inP . Then S′ is an answer set of
forget(P, p) if and only if eitherS = S′ or S = S′ ∪ {p} is
a model ofCirc(BP \ {p}, {p}, lcomp(P)).

Computation of Forgetting
As we have noted,forget(P, l) exists for any consistent dis-
junctive programP and literall. In this section, we discuss
some issues on computing the result of forgetting.

Naive Algorithm
By Definition 2, we can easily obtain a naive algorithm for
computingforget(P, l) using some ASP solvers for DLP,
like DLV (Leoneet al.2004) or GnT (Janhunenet al.2000).
Algorithm 1 (Computing a result of forgetting)
Input: disjunctive programP and a literall in P .
Procedure:

Step 1.Using DLV computeAS(P);
Step 2.Remove the literall from every element ofAS(P)

and denote the resulting collection asA′

Step 3.Obtain A′′ by removing non-minimal elements
from A′.

Step 4.ConstructP ′ whose answer sets are exactlyA′′:
Let A′′ = {A1, ..., Am} and for eachAi, Pi = {l′ ←
not Āi | l

′ ∈ Ai}. P ′ = ∪1≤i≤nPi. HereĀi = BP \Ai.
Step 5.OutputP ′ asforget(P, l).

This algorithm is complete w.r.t. the semantic forgetting
defined in Definition 2.

Theorem 3 For any consistent disjunctive programP and
a literal l, Algorithm 1 always outputsforget(P, l).

Basic Program Transformations
The above algorithm is semantic, and does not describe how
to syntactically compute the result of forgetting in DLP.
In this subsection, we develop an algorithm for computing
the result of forgetting inP using program transformations
and other modifications. Here we use the setT

∗
WFS of pro-

gram transformations investigated in (Brass & Dix 1999;
Wang & Zhou 2005). In our algorithm, an input program
P is first translated into a negative program and the result
of forgetting is represented as a nested program (under the
minimal answer sets defined by Lifschitz et al. (1999)).
Elimination of Tautologies: P ′ is obtained fromP by the
elimination of tautologies if there is a ruler: head(r) ←
body+(r),not body−(r) in P such that head(r) ∩
body+(r) 6= ∅ andP ′ = P \ {r}.
Elimination of Head RedundancyP ′ is obtained fromP
by the elimination of head redundancy if there is a ruler in
P such that an atoma is in bothhead(r) andbody−(r) and
P ′ = P \ {r} ∪ {head(r)− a← body(r)}.

The above two transformations guarantee that those rules
whose head and body have common literals are removed.
Positive Reduction: P ′ is obtained from P by pos-
itive reduction if there is a ruler: head(r) ←
body+(r),not body−(r) in P and c ∈ body−(r) such
that c 6∈ head(P) and P ′ is obtained fromP by remov-
ing not c from r. That is,P ′ = P \ {r} ∪ {head(r) ←
body+(r),not (body−(r) \ {c})}.
Negative Reduction: P ′ is obtained fromP by neg-
ative reduction if there are two rulesr: head(r) ←
body+(r),not body−(r) andr′: head(r′)← in P such that
head(r′) ⊆ body−(r) andP ′ = P \ {r}.

To define our next program transformation, we need the
notion ofs-implicationof rules. This is a strengthened ver-
sion of the notion ofimplicationsin (Brass & Dix 1999).

Definition 3 Let r andr′ be two rules. We say thatr′ is an
s-implication ofr if r′ 6= r and at least one of the following
two conditions is satisfied:

1. r′ is an implication ofr: head(r) ⊆ head(r′), body(r) ⊆
body(r′) and at least one inclusion is proper; or

2. r can be obtained by changing some negative body literals
of r′ into head atoms and removing some head atoms and
body literals fromr′ if necessary.

Elimination of s-Implications : P2 is obtained fromP1 by
elimination of s-implications if there are two distinct rulesr
andr′ of P1 such thatr′ is an s-implication ofr andP2 =
P1 \ {r

′}.

88 Technical Report IfI-06-04

Answer Set Programming

Unfolding: P ′ is obtained fromP by unfolding if there is a
rule r such that

P ′ = P \ {r} ∪ {head(r) ∨ (head(r′)− b)←

(body+(r) \ {b}),not body−(r), body(r′)) |

b ∈ body+(r),∃r′ ∈ P s.t.b ∈ head(r′)}.

Herehead(r′)− b is the disjunction obtained fromhead(r′)
by removingb.

Since an implication is always an s-implication, the fol-
lowing result is a direct corollary of Theorem 4.1 in (Brass
& Dix 1999).

Lemma 1 Each disjunctive programP can be equivalently
transformed into a negative programN via the program
transformations inT∗

WFS, such that on no ruler in N , a
literal appears in both the head and the body ofr.

Transformation-Based Algorithm
We are now in a position to present our syntax-based algo-
rithm for computing forgetting in a disjunctive program.
Algorithm 2 (Computing a result of forgetting)
Input: disjunctive programP and a literall in P .
Procedure:

Step 1.Fully apply the program transformations inT∗
WFS

on programP and then obtain a negative programN0.
Step 2.Separatel from head disjunction via semi-shifting:

For each (negative) ruler ∈ N0 such thathead(r) = l ∨ A
andA is a non-empty disjunction, it is replaced by two rules:
l ← not A, body(r) andA ← not l, body(r). Herenot A
is the conjunction of allnot l′ with l′ in A. The resulting
disjunctive program is denotedN .

Step 3.Suppose thatN hasn rules with headl:
rj : l ← not lj1, ...,not ljmj

wheren ≥ 0, j = 1, . . . , n
andmj ≥ 0 for all j.

If n = 0, then letQ denote the program obtained fromN
by removing all appearances ofnot l.

If n = 1 andm1 = 0, then l ← is the only rule inN
having headl. In this case, remove every rule inN whose
body containsnot l. Let Q be the resulting program.

For n ≥ 1 andm1 > 0, let D1, . . . ,Ds be all possible
conjunctions(not not l1k1

, · · · ,not not lnkn
) where0 ≤

k1 ≤ m1, ...,0 ≤ kn ≤ mn. Replace inN each occurrence
of not l in N by all possibleDi. Let Q be the result.

Step 4.Remove all rules with headl from Q and output
the resulting programN ′.

Some remarks: (1) This is only a general algorithm. Some
program transformations could be omitted for some special
programs and various heuristics could also be employed to
make the algorithm more efficient; (2) In this process, a re-
sult of forgetting is represented by a logic program allowing
nested negation as failure. This form seems more intuitive
than using ordinary logic programs; (3) In the construction
of Di, not not lij cannot be replaced withlij (even for
a normal logic program). As one can see, if they are re-
placed, the resulting program represents only a subset of
ASl(P) (see Example 2). This also implies that Algorithm
1 in (Wang, Sattar, & Su 2005) is incomplete in general.

(4) Algorithm 2 above essentially improves the correspond-
ing algorithm (Algorithm 1) in (Wang, Sattar, & Su 2005) at
least in two ways: (i) our algorithm works for a more expres-
sive class of programs (i.e. disjunctive programs) and (ii)the
next result shows that our algorithm is complete under the
minimal answer set semantics of nested logic programs.

Theorem 4 Let P be a consistent disjunctive program and
l a literal. ThenX is an answer set offorget(P, l) iff X is a
minimal answer set ofN ′.

Example 2 ConsiderP4 = {c ← not q. p ← not q.
q ← not p}. Then, by Algorithm 2,forget(P4, p) is the
nested program{c ← not q. q ← not not q}, whose min-
imal answer sets are exactly the same as the answer sets
of forget(P4, p). Note that Algorithm 1 in (Wang, Sattar, &
Su 2005) outputs a programN ′ = {c ← not q. q ← q}
which has a unique answer set{c}. However,forget(P4, p)
has two answer sets{c} and{q}. This implies that the algo-
rithm there is incomplete.

The above algorithm is worst case exponential, and might
also output an exponentially large program. As follows from
complexity considerations, there is no programP ′ that rep-
resents the result of forgetting which can be constructed in
polynomial time, even if auxiliary literals might be used
which are projected from the answer sets ofP ′. This is a
consequence of the complexity results below.

However, the number of rules containingl may not be
very large and some conjunctionsDi may be omitted be-
cause of redundancy. Moreover, the splitting technique of
logic programs (Lifschitz & Turner 1994) can be used to
localize the computation of forgetting. That is, an input pro-
gramP is split into two parts so that the part irrelevant to
forgetting is separated from the process of forgetting.

Resolving Conflicts in Multi-Agent Systems
In this section, we present a general framework for resolving
conflicts in multi-agents systems, which is inspired from the
preference recoveryproblem (Lang & Marquis 2002). Sup-
pose that there aren agents who may have different prefer-
ences on the same issue. In many cases, these preferences (or
constraints) have conflicts and thus cannot be satisfied at the
same time. It is an important issue in constraint reasoning
to find an intuitive criteria so that preferences with higher
priorities are satisfied. Consider the following example.

Example 3 (Lang & Marquis 2002) Suppose that a group of
four residents in a complex tries to reach an agreement on
building aswimming pooland/or atennis court. The prefer-
ences and constraints are as follows.

1. Building a tennis court or a swimming pool costs each
one unit of money.

2. A swimming pool can be eitherredor blue.
3. The first resident would not like to spend more than one

money unit, and prefers a red swimming pool.

4. The second resident would like to build at least one of
tennis court and swimming pool. If a swimming pool is
built, he would prefer a blue one.

DEPARTMENT OF INFORMATICS 89

11TH NMR WORKSHOP

5. The third resident would prefer a swimming pool but ei-
ther colour is fine with him.

6. The fourth resident would like both tennis court and swim-
ming pool to be built. He does not care about the colour
of the pool.

Obviously, the preferences of the group are jointly inconsis-
tent and thus it is impossible to satisfy them at the same time.

In the following, we will show how to resolve this kind of
preference conflicts using the theory of forgetting.

An n-agent systemS is an n-tuple (P1, P2, . . . , Pn) of
disjunctive programs,n > 0, wherePi represents agenti’s
knowledge (including preferences, constraints).

As shown in Example 3,P1 ∪ P2 ∪ · · · ∪ Pn may be in-
consistent. The basic idea in our approach is to forget some
literals for each agent so that conflicts can be resolved.
Definition 4 Let S = (P1, P2, . . . , Pn) be an n-agent
system. A compromise of S is a sequenceC =
(F1, F2, . . . , Fn) where eachFi is a set of literals. Anagree-
ment of S on C is an answer set of the disjunctive pro-
gram forget(S, C) whereforget(S, C) = forget(P1, F1) ∪
forget(P2, F2) ∪ · · · ∪ forget(Pn, Fn).
For a specific application, we may need to impose certain
conditions on eachFi.
Example 4 (Example 3 continued) The scenario can be en-
coded as a collection of five disjunctive programs (P0 stands
for general constraints):S = (P0, P1, P2, P3, P4) where

P0 = { red ∨ blue ← s. ← red , blue.
u1 ← not s, t. u1 ← s,not t.
u2 ← s, t. u0 ← not s,not t};

P1 = {u0 ∨ u1 ← . red ← s};
P2 = {s ∨ t← . blue ← s};
P3 = {s←}; andP4 = {s← . t←}.

Since this knowledge base is jointly inconsistent, each resi-
dent may have to weaken some of her preferences so that an
agreement is reached. Some possible compromises are:
1. C1 = (∅, F, F, F, F) whereF = {s, blue, red}: Every

resident would be willing to weaken her preferences on
the swimming pool and its colour. Sinceforget(S, C1) =
P0 ∪ {u0 ∨ u1 ← . t ←}, S has a unique agreement
{t, u1} onC1. That is, only a tennis court is built.

2. C2 = (∅, F, F, F, F) whereF = {u0, u1, u2, blue, red}:
Every resident can weaken her preferences on the price
and the pool colour. Sinceforget(S, C2) = P0∪{s∨ t←
. s← . t←}, S has two possible agreements{s, t, red}
and {s, t, blue} on C2. That is, both a tennis court and
a swimming pool will be built but the pool colour can be
either red or blue.

3. C3 = (∅, {blue, red}, ∅, ∅, {t}): The first resident can
weaken her preference on pool colour and the fourth res-
ident can weaken her preference on tennis court. Since
forget(S, C3) = P0 ∪ P2 ∪ P3 ∪ {u0 ∨ u1 ← . s ∨ t ←
. s ←}, S has a unique agreement{s, blue, u1} on C3.
That is, only a swimming pool will be built and its colour
is blue.
As shown in the example, different compromises lead to

different results. We do not consider the issue of how to
reach compromises here, which is left for future work.

Computational Complexity
In this section we address the computational complexity of
forgetting for different classes of logic programs. Our results
show that for general disjunctive programs, (1) the model
checking of forgetting isΠp

2-complete; (2) the credulous rea-
soning of forgetting isΣp

3-complete. However, for normal
programs or negative disjunctive programs, the complexity
levels are lower: (1) the model checking of forgetting is co-
NP-complete; (2) the credulous reasoning of forgetting is
Σp

2-complete. The design of Algorithm 2 in Section is heav-
ily based on the complexity analysis here. Our complexity
results for forgetting are summarized in the following table
and formally stated after the table.

disjunctive negative normal

model checking Πp
2 co-NP co-NP

|=c Σp
3 Σp

2 Σp
2

Theorem 5 Given a disjunctive programP , a literal l, and
a set of literalsX, deciding whetherX is anl-answer set of
P is Πp

2-complete.

Intuitively, in order to show thatX is an l-answer set, we
have to witness thatX is an answer set (which is coNP-
complete to test), and that there is no answer setX ′ of P
such thatX ′ ⊂l X. Any X ′ disproving this can be guessed
and checked using an NP-oracle in polynomial time. Thus,
l-answer set checking is inΠp

2, as stated in Theorem 5.
Proof (Sketch)Πp

2 membership holds since checking
whether a set of literalsX ′ is an answer set of a disjunc-
tive programP is in co-NP. The hardness result is shown by
a reduction from deciding whether a given disjunctive pro-
gramP (without strong negations) has no answer set, which
is Πp

2-complete (Eiter & Gottlob 1995). Construct a logic
programP ′ = {head(r) ← p, body(r) | r ∈ P} ∪ {q ←
not p. p← not q}∪{a← | a appears inP}, wherep and
q are two fresh atoms. This programP ′ has one answer set
X0 in whichp is false and all other atoms are true; all other
answer sets are of the formX ∪ {p}, whereX ∈ AS(P). It
holds thatX0 ∈ ASp(P

′) iff P has no answer set.

The construction in the above proof can be extended to
showΣp

3-hardness of credulous inference.

Theorem 6 Given a disjunctive programP and literals l
andl′, deciding whetherforget(P, l) |=c l′ is Σp

3-complete.

In Theorem 6 a suitablel-answer set containingl′ can be
guessed and checked, by Theorem 5 usingΣp

2-oracle. Hence,
credulous inferenceforget(P, l) |=c l′ is in Σp

3. The match-
ing lower bounds,Πp

2- resp.Σp
3-hardness can be shown by

encodings of suitable quantified Boolean Formulas (QBFs).
In Theorems 5 and 6, the complexity is coNP- andΣp

2-
complete, respectively, ifP is either negative or normal.

Theorem 7 Given anegativeprogramN , a literal l, and a
set of literalsX, decidingX ∈ ASl(N) is co-NP-complete.

Proof (Sketch) The co-NP membership holds since
checking whether a set of literalsX ′ is an answer set
of a negative programP is polynomial. As for co-NP-
hardness, letC = C1 ∧ · · · ∧ Ck be a CNF over atoms

90 Technical Report IfI-06-04

Answer Set Programming

y1, . . . , ym, where eachCj is non-empty. For1 ≤ i ≤ m, let
Ni = {yi ← not y′

i. y′
i ← not yi. yi ← not l. y′

i ← not l},
and for 1 ≤ j ≤ k, let Zj = {yi | yi ∈ Cj} ∪ {y

′
i |

¬yi ∈ Cj}. DefineN = ∪m
i=1(Ni ∪ { ← not Zi}) ∪ {l ←

not y1. l ← not y′
1}. Then,X = {yi, y

′
i | 1 ≤ i ≤ m} is

an answer set ofN . Moreover,X is anl-answer set, iffC is
unsatisfiable. The satisfiable assignments correspond to the
answer sets ofN containingl.

This construction can be lifted to show that credulous in-
ference|=c of a literal from thel-answer sets ofN is Σp

2-
hard.

Theorem 8 Given a negative programN and literalsl and
l′, deciding whetherforget(N, l) |=c l′ is Σp

2-complete.

Proof (Sketch). By Theorem 7,Σp
2 membership is easy.

As forΣp
2-hardness, take a QBF∃X∀ZE, whereE is a DNF

on X and Z and contains some variable fromZ in each
clause. Construct the same program as above in Theorem 7
for C = ¬E and whereY = X ∪ Z andy1 is from Z, but
(1) omit the clausesxi ← not l andx′

i ← not l. (2) add a
clausel′ ← not l. For each subsetS ⊆ X, the set

S ∪ {x′
i | xi ∈ X \ S} ∪ Z ∪ {z′j | zj ∈ Z} ∪ {l′}

is an answer set ofN . These are also all answer sets ofN
that containl′ (and do not containl). Furthermore, this set
is an l-answer set, iff there is no satisfying assignment for
C (=¬E) which corresponds onX to S. Overall, this means
that there is somel-answer set of the program in whichl′ is
true, iff the formula∃X∀ZE is true.

In the proof of Theorem 7, a CNF is actually reduced to a
normal program. It is thus easy to see the following result.

Theorem 9 Given anormalprogramP , a literal l, and a
set of literalsX, deciding whetherX is an l-answer set of
P is co-NP-complete.

Similarly, we can show the credulous reasoning with forget-
ting for normal program isΣp

2-complete.

Theorem 10 Given anormal program P , a literal l, and
a literal l′, deciding whetherforget(P, l) |=c l′ is Σp

2-
complete.

By applying techniques that build on non-uniform complex-
ity classes similar as in (Cadoliet al. 2000), we conjecture
that there is no programforget(P, l) of polynomial size un-
less the polynomial hierarchy collapses, even if auxiliary
literals might be used (which are projected off). Thus, the
exponential blow up offorget(P, l) is, to some extent, un-
avoidable in general.

Related Work and Conclusion
We have proposed a theory of forgetting literals in disjunc-
tive programs. Although our approach is purely declarative,
we have proved that it is coupled by a syntactic counterpart
based on program transformations. The properties of forget-
ting show that our approach captures the classical notion of
forgetting. As we have explained before, the approach in this
paper naturally generalizes the forgetting for normal pro-
grams investigated in (Wang, Sattar, & Su 2005).

Another approach to forgetting for normal programs is
proposed in (Zhang, Foo, & Wang 2005), which is purely

procedural since the result of forgetting is obtained by re-
moving some rules and/or literals. A shortcoming of that ap-
proach is that there is, intuitively, no semantic justification
for the removal.

As an application of forgetting, we have also presented a
fairly general framework for resolving conflicts in disjunc-
tive logic programming. In particular, this framework pro-
vides an elegant solution to the preference recovery problem.
There are some interesting issues to be pursued. First, we
are currently improving and implementing the algorithm for
computing the result of forgetting. Second, we will explore
the application of forgetting in various scenarios of conflict
resolving, such as belief merging, update of disjunctive pro-
grams, inheritance in disjunctive programs.

References
Baral, C. 2002. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Ben-Eliyahu, R., and Dechter, R. 1994. Propositional semantics
for disjunctive logic programs.Ann. Math. and AI12(1-2):53–87.
Brass, S., and Dix, J. 1999. Semantics of disjunctive logic
programs based on partial evaluation.J. Logic Programming
38(3):167–312.
Cadoli, M.; Donini, F.; Liberatore, P.; and Schaerf, M. 2000.
Space Efficiency of Propositional Knowledge Representation For-
malisms.J. Artif. Intell. Res.13:1–31.
Eiter, T., and Fink, M. 2003. Uniform equivalence of logic pro-
grams under the stable model semantics. InProc. 19th ICLP,
224–238.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001. Com-
plexity and expressive power of logic programming.ACM Com-
puting Surveys33(3):374–425.
Eiter, T., and Gottlob, G. 1995. On the computational cost of
disjunctive logic programming: Propositional case.Ann. Math.
and AI15(3-4):289–323.
Gelfond, M., and Lifschitz, V. 1990. Logic programs with classi-
cal negation. InProc. ICLP, 579–597.
Janhunen, T.; Niemelä, I.; Simons, P.; and You, J.-H. 2000. Par-
tiality and Disjunctions in Stable Model Semantics. InProc.
KR 2000, 411–419.
Lang, J., and Marquis, P. 2002. Resolving inconsistencies by
variable forgetting. InProc. 8th KR, 239–250.
Lang, J.; Liberatore, P.; and Marquis, P. 2003. Propositional inde-
pendence: Formula-variable independence and forgetting.J. Artif.
Intell. Res.18:391–443.
Lee, J., and Lifschitz, V. 2003. Loop formulas for disjunctive
logic programs. InProc. ICLP, 451–465.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri, S.;
and Scarcello, F. 2004. The DLV System for Knowledge Repre-
sentation and Reasoning.ACM TOCL(to appear).
Lifschitz, V.; Tang, L.; and Turner, H. 1999. Nested expressions
in logic programs.Ann. Math. and AI25:369–389.
Lifschitz, V., and Turner, H. 1994. Splitting a logic program. In
Proc. ICLP, 23-37.
Lin, F., and Reiter, R. 1994. Forget it. InProc. AAAI Symp. on
Relevance, 154–159.
Lin, F., and Zhao, Y. 2004. ASSAT: Computing answer set of a
logic program by sat solvers.Artif. Intell. 157(1-2): 115–137.
Wang, K., and Zhou, L. 2005. Comparisons and computation
of well-founded semantics for disjunctive logic programs.ACM
TOCL6(2):295–327.

DEPARTMENT OF INFORMATICS 91

11TH NMR WORKSHOP

Wang, K.; Sattar, A.; and Su, K. 2005. A theory of forgetting in
logic programming. InProc. 20th AAAI, 682–687. AAAI Press.
Zhang, Y.; Foo, N.; and Wang, K. 2005. Solving logic program
conflicts through strong and weak forgettings. InProc. IJCAI,
627–632.

92 Technical Report IfI-06-04

Answer Set Programming

DEPARTMENT OF INFORMATICS 93

11TH NMR WORKSHOP

1.10 Analysing the Structure of Definitions in ID-logic

Analyzing the Structure of Definitions in ID-logic∗

Joost Vennekensand Marc Denecker
{joost.vennekens, marc.denecker}@cs.kuleuven.be

Dept. of Computer Science, K.U.Leuven
Celestijnenlaan 200A

B-3001 Leuven, Belgium

Abstract

ID-logic uses ideas from logic programming to extend classi-
cal logic with non-monotone inductive definitions. Here, we
study the structure of definitions expressed in this formalism.
We define the fundamental concept of a dependency relation,
both in an abstract, algebraic context and in the concrete set-
ting of ID-logic. We also characterize dependency relations
in a more constructive way. Our results are used to study
the relation between ID-logic and known classes of inductive
definitions and to show the correctness of ID-logic semantics
in these cases.

Introduction
Inductive definitions are a distinctive and well-understood
kind of knowledge, which occurs often in mathematical
practice. The roots of ID-logic lie in the observation that
logic programs under the well-founded semantics can be
seen as a formal equivalent of this informal mathematical
construct (Denecker 1998). This result is particularly useful,
because inductive definitions cannot be easily represented
in classical logic. ID-logic uses a form of logic programs
under the well-founded semantics to extend classical logic
with a new “inductive definition” primitive. In the resulting
formalism, all kinds of definitions regularly found in mathe-
matical practice can be represented in a uniform way. More-
over, the rule-based representation of a definition in ID-logic
neatly corresponds to the form such a definition would take
in a mathematical text. ID-logic also has interesting applica-
tions in common-sense reasoning. For instance, (Denecker
& Ternovska 2004a) gives a natural representation of situa-
tion calculus as an iterated inductive definition in ID-logic.
The resulting theory correctly handles tricky issues such as
recursive ramifications, and is, as far as we know, the most
general representation of this calculus to date.

The main ideas behind ID-logic and the relation between
the well-founded semantics and inductive definitions have
been further generalized inapproximation theory(Denecker,
Marek, & Truszczynski 2003; 2000), an algebraic fixpoint
theory for arbitrary operators. Interestingly, this theory
not only captures the well-founded semantics for logic pro-
grams, but also other logic programming semantics, such

∗This work was supported by FWO-Vlaanderen, European
Framework 5 Project WASP, and by GOA/2003/08.

as the stable model semantics, as well as several different
semantics for other non-monotonic reasoning formalisms,
such as auto-epistemic logic and default logic. Approxima-
tion theory provides an abstract framework in which general
properties of a variety of different semantics for different
logics can be succinctly proven.

In this paper, we analyze the structure of definitions in
ID-logic. This analysis takes place at three different levels.
Firstly, we use approximation theory to analyze definitions
in ID-logic by studying the internal structure of certain lat-
tice operators. To this end, we define the algebraic concept
of a dependency relationfor an operator. It turns out that
this can be related to a theory of modularity in approxima-
tion theory (Vennekens, Gilis, & Denecker 2005), allowing
a number of quite general results to easily be derived. Sec-
ondly, we also define a similar concept at the more specific
level of ID-logic and relate this to its algebraic counterpart.
When instantiated to this level, the properties proven in ap-
proximation theory immediately provide us with several in-
teresting results, such as a splitting theorem for ID-logic.
Finally, we also present a constructive characterization of a
specific kind of dependency relation for an ID-logic defini-
tion, based on the syntactical structure of its rules.

As an application of these results, we study several classes
of inductive definitions known from mathematical literature.
The concept of dependency relations can be used to offer a
natural definition for each of these classes. The fact that ID-
logic correctly formalizes the semantics of definitions be-
longing to these classes can then be proven in approximation
theory. Finally, our constructively characterized dependency
relations lead to some semi-syntactical ways of identifying
members of each of these classes.

The work in this paper is part of a larger project (Ven-
nekens & Denecker 2005; Denecker & Ternovska 2004b) to
establish firm mathematical foundations for ID-logic. While
our results are largely theoretical, they are meant to serveas
a basis for more practical work. In particular, they should
help to more clearly establish the knowledge representation
methodology of ID-logic, offer some mathematical tools
with which to analyze theories in this logic and prove their
correctness, and contribute to the development of efficient
reasoning algorithms for (decidable fragments of) ID-logic.
The importance of this kind of research can be motivated
by looking at its accomplishments in logic programming,

94 Technical Report IfI-06-04

Answer Set Programming

where the use of concepts such as dependency graphs dates
back at least as far as (Apt, Blair, & Walker 1988). As we
will see, the same kind of techniques can be applied in the
more complex setting of ID-logic. More recently, Answer
Set Programming has seen more results in a similar vein,
with work being done to identify interesting subclasses of
programs, such astight logic programs(Erdem & Lifschitz
2003). This work is very similar in spirit to the analysis
of various subclasses of inductive definitions, that we will
present later in this paper.

Preliminaries
Approximation theory

Our presentation of approximation theory is based on (De-
necker, Marek, & Truszczynski 2000; 2003). Let〈L,≤〉
be a lattice. We consider the squareL2 of the domain
of this lattice. The obvious point-wise extension of≤
to L2 is called theproduct order≤⊗ on L2, i.e., for all
(x, y), (x′, y′) ∈ L2, (x, y) ≤⊗ (x′, y′) iff x ≤ x′ and
y ≤ y′. An element(x, y) of L2 can be seen as denoting
an interval[x, y] = {z ∈ L | x ≤ z ≤ y}. Using this
intuition, we can derive a second order, theprecision order
≤p, onL2: for each(x, y), (x′, y′) ∈ L2, (x, y) ≤p (x′, y′)
iff x ≤ x′ andy′ ≤ y. Indeed, if(x, y) ≤p (x′, y′), then
[x, y] ⊇ [x′, y′]. It can easily be seen that〈L2,≤p〉 is also
a lattice. The structure〈L2,≤⊗,≤p〉 is thebilattice corre-
sponding toL. If L is complete, then so are〈L2,≤⊗〉 and
〈L2,≤p〉. Elements(x, x) of L2 are calledexact. The set of
exact elements forms a natural embedding ofL in L2.

Approximation theory is based on the study of operators
which are monotone w.r.t.≤p. Such operators are calledap-
proximations. For an approximationA andx, y ∈ L, we de-
note byA1(x, y) andA2(x, y) the unique elements ofL, for
whichA(x, y) = (A1(x, y), A2(x, y)). An approximation
approximatesan operatorO onL if for eachx ∈ L,A(x, x)
containsO(x), i.e. A1(x, x) ≤ O(x) ≤ A2(x, x). An ex-
act approximation maps exact elements to exact elements,
i.e.A1(x, x) = A2(x, x) for all x ∈ L. Each exact approx-
imation approximates a unique operatorO on L, namely
that which maps eachx ∈ L to A1(x, x) = A2(x, x).
An approximation issymmetricif for all (x, y) ∈ L2, if
A(x, y) = (x′, y′) thenA(y, x) = (y′, x′). Each symmetric
approximation is exact.

For an approximationA on L2, we define the operator
A1(·, y) on L that maps an elementx ∈ L to A1(x, y),
i.e. A1(·, y) = λx.A1(x, y), andA2(x, ·) that maps an el-
ementy ∈ L to A2(x, y). These are monotone operators
and, therefore, they each have a unique least fixpoint. We
define an operatorC↓

A on L, which maps eachy ∈ L to
lfp(A1(·, y)) and, similarly, an operatorC↑

A, which maps
x ∈ L to lfp(A2(x, ·)). C↓

A is called thelower stable op-
erator of A, while C↑

A is the upper stable operatorof A.
Both these operators are anti-monotone. We define thepar-
tial stable operatorCA on L2 as mapping each(x, y) to
(C↓

A(y), C↑
A(x)). Because the lower and upper partial op-

eratorsC↓
A andC↑

A are anti-monotone, the partial stable op-

eratorCA is≤p-monotone. IfA is symmetric, then its lower
and upper stable operators are equal, i.e.,C↓

A = C↑
A.

An approximationA defines a number of different fix-
points: the least fixpoint of an approximationA is called its
Kripke-Kleene fixpoint, fixpoints of its partial stable oper-
ator CA arestable fixpointsand the least fixpoint ofCA is
called thewell-founded fixpointwf(A) of A. As shown in
(Denecker, Marek, & Truszczynski 2000; 2003), these fix-
points correspond to various semantics of logic program-
ming, auto-epistemic logic and default logic. Finally, it
should also be noted that the concept of an approximation
as defined in these works corresponds to our definition of a
symmetricapproximation.

ID-logic
ID-logic (Denecker & Ternovska 2004b; 2004a) extends
classical logic with non-monotone inductive definitions. Ac-
tually, the term “ID-logic” refers to a family of logics, de-
pending on which particular version of classical logic serves
as a base, i.e., we have the extensionFO(ID) of first-order
logic with inductive definitions, the extensionSO(ID) of
second-order logic with inductive definitions, and so on. Be-
cause the results of this paper concern the structure of the
inductive definitions, it does not really matter which base
logic is considered. For generality, we will useSO(ID).

Following (Denecker & Ternovska 2004a), we start by
presenting standard second-order logic in a slightly non-
standard way. In particular, no distinction is made be-
tween constant symbols and variables. We assume an
infinite supply of object symbolsx, y, . . ., function sym-
bols f/n, g/n,. . . of every arityn, andpredicate symbols
P/n,Q/n, . . . of every arityn. As usual, object symbols are
identified with function symbols of arity0. A vocabularyΣ
is a set of symbols. We denote byΣo the object symbols
in Σ, by Σf the function symbols, and byΣP the predicate
symbols. Termsand atomsof Σ are defined as usual. A
formula ofΣ is inductively defined as:

• aΣ-atomP (t1, . . . , tn) is aΣ-formula;

• if φ is aΣ-formula, then so is¬φ;

• if φ1 andφ2 areΣ-formulas, then so is(φ1 ∨ φ2);

• if φ is a (Σ ∪ {σ})-formula for some symbolσ, then
(∃σ φ) is aΣ-formula.

If in all quantifications∃σ of a formulaφ, σ is an object
symbol,φ is calledfirst order1. We also use the usual ab-
breviations∀ and∧. Let V be a set of truth values. Most
commonly,V is L2 = {t, f}. Given a certain domainD,
a symbolσ can be assigned avalue in D: if σ/n ∈ Σf , a
value forσ in D is a function of arityn in D; if σ/n ∈ ΣP ,
a value forσ in D is a function fromDn to V.

A (V-valued) structureS for vocabularyΣ, or (V-valued)
Σ-structureS, consists of a domain, denotedDS , and a
mapping from each symbolσ in Σ to a valueσS inDS for σ.
TherestrictionS′|Σ of aΣ′-structureS′ to a sub-vocabulary

1The first-order versionFO(ID) of ID-logic can be defined
by requiring that all formulas be first-order. All other definitions
would remain the same.

DEPARTMENT OF INFORMATICS 95

11TH NMR WORKSHOP

Σ ⊆ Σ′, is theΣ-structureS for whichDS = DS′ and, for
each symbolσ of Σ, σS = σS′

. Under the same conditions,
S′ is called anextensionof S to Σ′. For each valuea in DS

for a symbolσ, we denote byS[σ/a] the extensionS′ of S
to Σ∪ {σ}, such thatσS′

= a. We also use this notation for
tuples~σ of symbols and~a of corresponding values.

The value of a Σ-term t in a Σ-structureS, also de-
noted tS , is inductively defined as:(f(t1, . . . , tn))S =
fS(tS1 , . . . , t

S
n), for a function symbol f and terms

t1, . . . , tn. We now assume that the set of truth-valuesV
is partially ordered by some≤V , s.t.〈V,≤V〉 is a complete
lattice. Moreover, we assume that for eachv ∈ V, a com-
plementv−1 ∈ V exists. ForL2, f ≤L2

t and f
−1 = t,

t
−1 = f . We inductively define the truth value of aΣ-

formulaφ in aV-valuedΣ-structureS:

• P (t1, . . . , tn)S = PS(tS1 , . . . , t
S
n);

• (¬φ)S = (φS)−1;

• (φ ∨ ψ)S = lub≤V
(φS , ψS);

• (∃σ φ)S = lub≤V
{φS[x/a] | a is a value forσ in DS}.

Given a domainD, a domain atomis a pair(P,~a), with
P/n a predicate ofΣ and~a ∈ Dn. We also write such a pair
asP (~a). The set of all domain atoms is denoted asAtD or,
if D is clear from the context, simplyAt. For a structureS,
we also writeAtS for AtDS

. A pre-interpretationH for Σ
is a structure for the languageΣf , i.e., one which interprets
only the object and function symbols ofΣ. A structureS
extendingH to Σ is called anH-interpretation. Clearly,
eachV-valuedΣ-structure can be seen as consisting of a pre-
interpretationH and a mapping fromAtH to V. The set of
all H-interpretations is a complete lattice w.r.t. to the order
≤t, defined as:S ≤t S

′ iff for all P (~a) ∈ At, P (~a)S ≤V

P (~a)S′

.
We now define the syntax used for inductive definitions in

ID-logic. LetΣ be a vocabulary. Adefinitional ruler of Σ is
a formula “∀~x A← φ,” with A a (Σ∪~x)-atom andφ a first-
order(Σ ∪ ~x)-formula, i.e., no second-order quantifications
are allowed within a definition. The atomA is called the
headof r andφ is the body of r. The symbol “←” is a
new language primitive, thedefinitional implication, which
is different from material implication. Adefinition∆ is a
set of definitional rules, enclosed in curly brackets{}. A
predicateP for which there is a ruler ∈ ∆ with P in its
head is adefined predicateof ∆. Predicates that are not
defined in∆ areopenin ∆. Given a domainD, we denote
the set of all domain atomsP (~a) ∈ AtD for which P is
defined in∆ byDefD

∆ , while its complementAtD \DefD
∆

is denoted asOpenD
∆. Once again,D is omitted if it is clear

from the context. AΣ-definition∆ is a set of definitional
rules. Given a pre-interpretationH, a ruler is a defining
rule of a domain atomP (~a) ∈ Def∆ under a substitution
[~x/~c] iff r is ∀~x P (~t)← φ with ~tH[~x/~c] = a.

Definition 1. Let Σ be a vocabulary. AnID-logic formula
of Σ is inductively defined by extending the definition of a
formula with the additional base case:

• A definition∆ of Σ is an ID-logic formula ofΣ.

Example1. We consider a game played with a pile ofn
stones. Two players subsequently remove either one stone
or two. The player to make the last move wins. The win-
ning positions of this game can be inductively defined by
the following definition∆Game:






∀x Win(x)← ∃y Move(x, y) ∧ ¬Win(y).

∀x, y Move(x, y)← y ≥ 0

∧ ((y = x− 1) ∨ (y = x− 2)).







The second rule defines the legal moves of the game. The
first rule expresses that a winning position has a move to a
position in which the opponent loses. This rule has been
around in logic programming since, at least, (Gelder, Ross,
& Schlipf 1991) and it therefore illustrates that the connec-
tion between inductive definitions and logic programs that
underlies ID-logic has been implicitly present in the domain
for some time.

To formally state the semantics of such a definition, we
can either work in Belnap’s latticeL4 = {u, t, f , i} or in
the latticeL2

2 of pairs of elements ofL2. These settings are
known to be equivalent under the mappingh fromL2

2 toL4,
defined by: h(f , t) = u, h(t, t) = t, h(f , f) = f , and
h(t, f) = i. For the remainder of this section, we assume
a certain fixed pre-interpretationH and identify the set of
V-valuedH-interpretations withVAt, i.e., with the set of
all V-valued functions onAt. We use symbolsR,S, . . . for
L4-valued structures andR,S, . . . for L2-valued structures.
The correspondenceh betweenL2

2 andL4 induces an iso-
morphism betweenL4-valued structures and pairs(S1, S2)
of L2-valued structures: we denote byS1 ⊕ S2 the struc-
ture S which assigns to eachP (~a) ∈ At the truth-value
h(P (~a)S1 , P (~a)S2). The set of allS⊕S with S aL2-valued
structure forms a natural embedding ofL2 in L4.

To make it more convenient to relate the semantics of ID-
logic to approximation theory, we will define this in the lat-
tice L2

2. The truth value of a formula can be evaluated in
pairs ofL2-valued structures as follows:

Definition 2. Let S1 andS2 beL2-valuedΣ-structures and
φ a Σ-formula. Thevalue of φ in (S1, S2) is inductively
defined by:

• P (~t)(S1,S2) = P (~t)S1 ;

• (¬φ)(S1,S2) = ((φ)(S2,S1))−1;

• (φ ∨ ψ)(S1,S2) = lub≤L2
(φ(S1,S2), ψ(S1,S2));

• (∃σ φ)(S1,S2) = lub≤L2
({φ(S1[σ/a],S2[σ/a]) | a is a value

for σ in HD}).

Observe that in the rule for¬φ, the roles ofS1 andS2 are
switched. It is worth mentioning that for all pairs(S1, S2)
of L2-valued structures, the standardL4-valued evaluation
φS1⊕S2 is equal toh(φ(S1,S2), φ(S2,S1)). The evaluation in
pairs ofL2-valued structures also has an intuitive appeal
of its own: let us consider a structureS approximated by
(S1, S2), i.e., such thatS1 ≤t S ≤t S2. In the evaluation
of φ in (S1, S2), all positively occurring atoms are evaluated
with respect to the underestimateS1 of S, and all negatively
occurring atoms are evaluated with respect to the overesti-
mateS2 of S. Therefore, the truth value ofφ in (S1, S2) is

96 Technical Report IfI-06-04

Answer Set Programming

an underestimate of the value ofφ in S. Vice versa, in the
evaluation ofφ in (S2, S1), all positively occurring atoms
are evaluated in the overestimateS2 while all negatively oc-
curring atoms are evaluated in the underestimateS1; hence,
the truth value ofφ in (S2, S1) is an overestimate of the
value ofφ in S.

Intuitively, an inductive definition describes a process by
which, given some fixed interpretation of the open predi-
cates, new truth values for the defined atoms can be derived
from some current truth values for these atoms. We will de-
fine an immediate consequence operatorT R

∆ that maps an
estimate(S1, S2) of the defined relations to a more precise
estimateT R

∆ (S1, S2) = (S′
1, S

′
2). The new lower boundS′

1
is constructed by underestimating the truth of the bodies of
the rules in∆, i.e., by evaluating these in(S1, S2). When
constructing the new upper boundS′

2, on the other hand, the
truth of the bodies of these rules is overestimated, i.e., eval-
uated in(S2, S1).

Definition 3. Let ∆ be a definition and(R1, R2) a pair
of L2-valued structures which interprets at leastOpen∆.
We define a functionU (R1,R2)

∆ from (LDef∆

2)2 to LDef∆

2 as

U
(R1,R2)
∆ (S1, S2) = S, with for eachP (~a) ∈ Def∆:

P (~a)S = lub≤L2
({φ((R1∪S1)[~x/~c],(R2∪S2)[~x/~c]) |

“∀~x P (~t)← φ” is a defining rule ofP (~a) in S under[~x/~c]}).

We define T
(R1,R2)
∆ (S1, S2) as

(

U
(R1,R2)
∆ (S1, S2), U

(R2,R1)
∆ (S2, S1)

)

.

Each such operator is an approximation. Moreover, for
everyL2-valuedR, T (R,R)

∆ is symmetric. EveryT (R1,R2)
∆

approximates the operatorT (R1,R2)
∆ on LDef∆

2 , defined as

T
(R1,R2)
∆ (S) = S′, with (S′, S′) = T

(R1,R2)
∆ (S, S). Some-

times, it will be convenient to use an equivalent operator on
the latticeL4, i.e., for everyR = R1⊕R2 andS = S1⊕S2,
we defineT R

∆ (S) = U
(R1,R2)
∆ (S1, S2)⊕ U

(R2,R1)
∆ (S2, S1).

We now use the well-founded fixpoint of the approximation
T

(R1,R2)
∆ to define the semantics of ID-logic.

Definition 4. A L2-valued structureS satisfies an ID-logic
formulaφ, denotedS |= φ, if φS = t, whereφS is defined
by the standard inductive definition of theL2-valued truth
value, extended by the additional base case:

• for a definition∆, ∆S = t if S1|Def∆
= S|Def∆

=

S2|Def∆
, with (S1, S2) = wf(T

(S,S)
∆); otherwise∆S =

f .

Even though this definition uses the operatorT (R1,R2)
∆ on

pairs ofL2-valued structures (or, equivalently,L4-valued
structures), the eventual models of a definition are always
singleL2-valued structures. The intuition here is that a def-
inition should completely and consistently define its defined
predicates, i.e., no defined domain atoms should beu or
i. For aL4-valued structureS, we therefore only say that
S |= φ iff there exists aL2-valuedS, such thatS = S ⊕ S
andS |= φ.

Algebraic dependency relations
This section studies dependency relations in an algebraic
context. We assume the following setting. LetI be some
index set and, for eachi ∈ I, let 〈Li,≤i〉 be a lattice. LetL
be the product

⊗

i∈I Li of the sets(Li)i∈I , i.e.,L consists of
all functionsf : I →

⋃

i∈I Li, such that∀i ∈ I : f(i) ∈ Li.
The product order≤⊗ onL is defined as:∀x, y ∈ L, x ≤⊗ y
iff ∀i ∈ I, x(i) ≤i y(i). Clearly,〈L,≤⊗〉 is also a lattice,
which is complete if all lattices〈Li,≤i〉 are complete. For
a subsetJ ⊆ I, we denote byL|J the part⊗j∈JLj of L,
which is equal to the set of all restrictionsx|J , with x ∈ L.
Now, letO be an operator onL. We are interested in the
internal structure ofO w.r.t. the component latticesLi of L.
For instance, what information aboutx is used byO to de-
termine the value(O(x))(i) of someO(x) in a component
Li? Does such an(O(x))(i) depend on the valuex(j) of
x in eachLj? Or is there someJ ⊂ I, such that the re-
striction x|J of x to this J already completely determines
what (O(x))(i) will be? The following concept captures
these basic dependencies expressed by an operator. For a
binary relationθ on a setS andy ∈ S, we write (θy) for
{x ∈ S | xθy}.

Definition 5. LetO be an operator on a latticeL = ⊗i∈ILi.
A binary relation on I is a dependency relationof O
iff for each i ∈ I andx, y ∈ L, if x|(i) = y|(i), then
(O(x))(i) = (O(y))(i).

An operator can have many dependency relations. In fact,
any superset of a dependency relation of an operatorO is
also a dependency relation ofO. Therefore, smaller depen-
dency relations are more informative. An operator does not
necessarily have a least dependency relation.

In (Vennekens, Gilis, & Denecker 2005; Vennekens &
Denecker 2005), an algebraic theory of modularity was de-
veloped. This theory focuses on the study ofstratifiableop-
erators, i.e., operators on a lattice

⊗

i∈I Li whose index set
I can be partially ordered by some�, such that the value of
(O(x))(i) depends only on the value ofx in L|(�i).

Definition 6. An operatorO on a latticeL = ⊗i∈ILi is
stratifiablew.r.t. a partial order� on I iff for all x, y ∈ L
andi ∈ I : if x|(�i) = y|(�i) thenO(x)|(�i) = O(y)|(�i).

The main results from (Vennekens & Denecker 2005)
concern the relation between a stratifiable operatorO and
certain smaller operators which can be derived fromO. For
J ⊆ I andu ∈ L|I\J , we denote byOu

J the operator onL|J
which maps eachx ∈ L|J to O(y)|J , with y|I\J = u and
y|J = x. SuchOu

J are calledcomponentsof O.

Theorem 1 ((Vennekens & Denecker 2005)).Let O be
an operator on a latticeL = ⊗i∈ILi which is stratifiable
w.r.t. a well-founded2 partial order� on I. LetJ be a par-
tition of I. For eachx ∈ L, x is a fixpoint (least fixpoint,
stable fixpoint, or well-founded fixpoint) ofO (assuming that
O is monotone or an approximation, where appropriate) iff
for eachJ ∈ J , x|J is a fixpoint (least fixpoint, stable fix-

point, or well-founded fixpoint) ofO
x|I\J

J .
2A binary relationθ on a setS is well-foundediff there exists

no infinite sequencex0, x1, x2, . . . ∈ S, s.t.xi+1θxi for all i.

DEPARTMENT OF INFORMATICS 97

11TH NMR WORKSHOP

We now show that there exists a uniform way of stratify-
ing an operatorO, given one of its dependency relations .
Let ≤ be the reflexive, transitive closure of . For each
i ∈ I, we denote byı the equivalence class{j ∈ I | j ≤ i
and i ≤ j} of i. We denote byE the set{ı | i ∈ I}
of all equivalence classes of≤ and by� the partial or-
der onE derived from≤ , i.e., for all i, j ∈ I, ı � 
iff i ≤ j. Now,O can also be viewed as an operator on
⊗ı∈E L|ı. This follows from the fact that any product lat-
tice⊗i∈ILi is isomorphic to⊗J∈J ⊗j∈J Lj , for any parti-
tionJ of I. This allows us to relate the concept of a depen-
dency relation to that of stratifiability.

Proposition 1. LetO be an operator onL = ⊗i∈ILi. If a
binary relation on I is a dependency relation ofO, then
O is stratifiable on⊗ı∈E L|ı w.r.t.� .

It can easily be seen that� is well-founded iff is.
Theorem 1 now implies the following corollary:

Corollary 1. LetO be an operator on a latticeL = ⊗i∈ILi,
with a well-founded dependency relation . Let J be a
partition of I, such that for each equivalence classı of≤ ,
there exists aJ ∈ J , such thatı ⊆ J . For eachx ∈ L, x
is a fixpoint (least fixpoint, stable fixpoint, or well-founded
fixpoint) ofO (assuming thatO is monotone or an approx-
imation, where appropriate) iff for eachJ ∈ J , x|J is a
fixpoint (least fixpoint, stable fixpoint, or well-founded fix-

point) ofO
x|I\J

J .

This results shows that if we know a dependency relation
for an operator, we will be able to split this operator into
components, while still preserving its (various kinds of) fix-
points. Indeed, as long as the stratification is done in such a
way that none of the equivalence classes of this dependency
relation is split over different levels, we know that this will
be the case.

Dependency Relations in ID-logic
In this section, we apply our algebraic results to ID-logic.
We fix a vocabularyΣ and a pre-interpretationH for Σ. We
restrict our attention toH-interpretations, which can there-
fore be viewed as assignments of truth values to domain
atoms. We study properties of ID-logic in the following
product lattice:

⊗

P (~a)∈At

L4 = LAt
4 =

⊗

P (~a)∈At

L2
2 = (

⊗

P (~a)∈At

L2)
2 = (LAt

2)2.

We define the following concept of a dependency relation
for a definition. In (Denecker & Ternovska 2004a), the term
reduction relationwas used for such a relation.

Definition 7. Let ∆ be aΣ-definition andR a L4-valued
H-interpretation which interprets some subsetA ⊆ AtH . A
binary relation onAtH is adependency relationof ∆ in
R iff for all L4-valuedH-interpretationsR′ ofOpen∆, such
thatR′|A = R|Open∆

, for all L4-valuedH-interpretations
S andS ′ of Σ such thatS|Open∆

= S ′|Open∆
= R′, for

every rule(∀~x P (~t) ← φ) in ∆, and every value~a for
~x: if S|(P (~tH[~x/~a])) = S ′|(P (~tH[~x/~a])), thenφS[~x/~a] =

φS
′[~x/~a].

Clearly, for a binary relation and an interpretationR
of someA ⊆ At,R is a dependency relation of a definition
∆ in R iff for all interpretationsR′ of Open∆, such that
R′|A = R|Open∆

, is a dependency relation of∆ in R′.
This notion of an dependency relation for a definition coin-
cides with the previously defined concept of a dependency
relation for an operator.

Proposition 2. If is a dependency relation of∆ in some
interpretationR of Open∆, then() ∩ Def2

∆ is a depen-
dency relation ofT R

∆ .

(Vennekens & Denecker 2005) proves some results about
dependency relations for ID-logic. Perhaps the most impor-
tant one is that a definition∆ can be split into any partition
which does not split up the equivalence classes associated
with a dependency relation.

Definition 8. Let ∆ be a definition and let be a binary
relation onAt. A partition {∆1, . . . ,∆n} of ∆ is a ()-
partition iff, for each 1 ≤ j ≤ n, if ∆j contains a rule
defining a predicateP , then∆j also contains all rules defin-
ing a predicateQ, for which there exist tuples~a,~c of domain
elements, s.t.Q(~c) ≤ P (~a) andP (~a) ≤ Q(~c).

The algebraic splitting results then show that:

Theorem 2 ((Vennekens & Denecker 2005)).Let ∆ be a
Σ-definition,R a L4-valued interpretation ofOpen∆, and
 a dependency relation of∆ inR. Let{∆1, . . . ,∆n} be a
()-partition. For eachL4-valuedΣ-structureS, such that
S|Open∆

= R|Open∆
: S |= ∆ iff S |= ∆1 ∧ · · · ∧∆n.

Let us illustrate this by looking at our example∆Game.
We take the natural numbersN as our domain and interpret
the function−/2 and the object symbols0, 1, 2 in the usual
way. We will define a rather coarse dependency relation for
this definition, which only takes into account the predicate
symbols of domain atoms. Concretely, let be the binary
relation onAtN, consisting of(k ≤ l) Move(m,n),
(k = l) Move(m,n), Move(k, l) Win(m), and
Win(m) Win(n), for all l, k,m, n ∈ N. Because this
 is dependency relation of∆Game, the above theorem
shows that∆Game is equivalent to∆Move ∧∆Win, with:

∆Win = {∀x Win(x)← ∃y Move(x, y) ∧ ¬Win(y).};

∆Move =
{

∀x, y Move(x, y)←y ≥ 0

∧ ((y = x− 1) ∨ (y = x− 2)).

}

In the next section, a more fine-grained dependency relation
will be used to further analyze∆Win.

Constructing dependency relations
So far, we have only considered dependencies at a seman-
tical level. In this section, we develop a constructive char-
acterization of certain dependency relations. Recall thata
definition can have many dependency relations. In fact, any
superset of a dependency relation is also a dependency rela-
tion. While large dependency relations, such as the one used
to split ∆Game, can be easy to find, they are not very infor-
mative. In this section, we present a method of constructing

98 Technical Report IfI-06-04

Answer Set Programming

smaller, more useful dependency relations. We first intro-
duce the concept of abasefor a formulaφ. Intuitively, a
base forφ is a setB of domain atoms, s.t. the truth value of
all atoms inB completely determines the truth value ofφ.

Definition 9. Let φ be aΣ-formula andS aL4-valuedΣ-
structure. A setB ⊆ At is a basefor φ in S iff for all
Σ-structuresS ′, s.t.S ′|B = S|B , φS

′

= φS .

Clearly, any superset of a base is also a base. The problem
of finding a dependency relation for a definition∆ can be
reduced to that of finding bases for bodies of rules.

Proposition 3. Let ∆ be a definition,R a structure inter-
preting at leastOpen∆, and a binary relation onAt.
If for all Σ-structuresS, s.t.S|Open∆

= R|Open∆
, for ev-

ery rule “∀~x P (~t) ← φ” in ∆ and every tuple~c, the set
(P (~tH[~x/~c])) is a base forφ in S[~x/~c], then is a de-
pendency relation of∆ inR.

We now define a method which can be used to extend any
setA of domain atoms to a base for a formulaφ. The fol-
lowing definition introduces both a setPosA

S (φ) of domain
atoms which, given some fixed interpretationS for the atoms
in A, influenceφ in a positiveway (i.e., greater truth values
for all P (~a) ∈ PosA

S (φ) lead to a greater truth value for
φ itself) and a setNegA

S (φ) of domain atoms which, given
the interpretationS forA, influenceφ is anegativeway (i.e.,
greater truth values for the atoms inNegA

S (φ) lead to a lesser
truth value forφ itself). The unionDepA

S (φ) of these two
sets will contain all atoms which influence the truth value of
φ, givenS.

Definition 10. Letφ be a formula,A a set of domain atoms,
andS a L4-valuedΣ-structure. We definePosA

S (φ) and
NegA

S (φ) by simultaneous induction.DepA
S (φ) is used to

abbreviatePosA
S (φ) ∪NegA

S (φ).

• For allP (~t), s.t.P (~tS) ∈ A,
PosA

S (P (~t)) = NegA
S (P (~t)) = {};

• for all otherP (~t),
PosA

S (P (~t)) = {P (~t)} andNegA
S (P (~t)) = {};

• for all (φ1 ∨ φ2), s.t.DepA
S (φ1) = {} andφS1 = t or

DepA
S (φ2) = {} andφS2 = t:

PosA
S (φ1 ∨ φ2) = NegA

S (φ1 ∨ φ2) = {};

• for all other(φ1 ∨ φ2):
PosA

S (φ1 ∨ φ2) = PosA
S (φ1) ∪ Pos

A
S (φ2) and

NegA
S (φ1 ∨ φ2) = NegA

S (φ1) ∪Neg
A
S (φ2);

• for all (∃x φ), s.t. for somec ∈ D, DepA
S[x/c](φ) = {}

andφS[x/c] = t:
PosA

S (∃x φ) = NegA
S (∃x φ) = {};

• for all other(∃x φ):
PosA

S (∃x φ) =
⋃

d∈D PosA
S[x/d](φ) and

NegA
S (∃x φ) =

⋃

d∈D NegA
S[x/d](φ);

• for all (¬φ):
PosA

S (¬φ) = NegA
S (φ) andNegA

S (¬φ) = PosA
S (φ).

In a number of places, this definition distinguishes be-
tween formulasφ for whichDepA

S (φ) = {} and those for

whichDepA
S (φ) 6= {}. The intuition here is that in the first

case, the truth ofφ is already completely determined by the
truth values of the atoms inA, i.e., byS|A.

Lemma 1. Let φ be a formula,A a set of domain atoms,
andS a L4-valuedΣ-structure. IfDepA

S (φ) = {}, thenA
is a base forφ in S.

It follows from a simple induction over the construction
given in Definition 10 that, for allS andS ′ s.t.S|A = S ′|A,
PosA

S (φ) = PosA
S′(φ) andNegA

S (φ) = NegA
S′(φ). We

now show that this definition indeed captures the desired
concepts.

Proposition 4. Letφ be a formula,A a set of domain atoms,
andS = (S1, S2), S ′ = (S′

1, S
′
2) L4-valued structures such

that (S1, S2)|A = (S′
1, S

′
2)|A. Let P = PosA

S1⊕S2
(φ) =

PosA
S′

1⊕S′
2
(φ) andN = NegA

S1⊕S2
(φ) = NegA

S′
1⊕S′

2
(φ).

If S1|P ≤t S′
1|P and S2|N ≥t S′

2|N , thenφ(S1,S2) ≤t

φ(S′
1,S′

2).

It follows that, for allA,A∪DepA
S (φ) is a base ofφ in S.

We can now derive a dependency relation for a definition∆
from the bases of the bodies of its rules. This construction
works by extending ana priori relation →֒ to a dependency
relation. The point of thisa priori relation is to express de-
pendencies from defined predicates on open predicates. Of-
ten, the simple relation֒→ consisting of allP (~a) →֒ Q(~c)
with P (~a) ∈ Open∆ andQ(~c) ∈ Def∆ will be used. In
the following definition, we write(→֒ ·) to denote the set
⋃

P (~a)∈At(→֒ P (~a)) of all domain atoms that directly influ-
ence some other atom according to→֒.

Definition 11. Let ∆ be a definition,֒→ a binary relation on
At, andS aL4-valued structure interpreting at least(→֒ ·).
We define the relation֒→+

S (respectively,֒→−
S) onAt as: for

all P (~a), Q(~b), P (~a) →֒+
S Q(~b) iff P (~a) →֒ Q(~b) or there

is a rule(∀~x P (~t) ← φ) ∈ ∆, such that there exists a~c ∈
Hn

D, ~tS[~x/~c] = ~a andQ(~b) ∈ Pos
(→֒P (~a))
S[~x/~c] (φ) (respectively,

Q(~b) ∈ Neg
(→֒P (~a))
S[~x/~c] (φ)). Finally, we define֒→∗

S as →֒+
S

∪ →֒−
S .

The following result now follows directly from Proposi-
tions 3 and 4.

Proposition 5. Let∆ be a definition and let֒→ be a binary
relation onAt, such that(→֒ ·) ⊆ Open∆. Then for each
structureR interpreting at least(→֒ ·), →֒∗

R is a depen-
dency relation of∆ inR.

We now further analyze the definition∆Win =
{∀x Win(x) ← ∃y Move(x, y) ∧ ¬Win(y)}. Intuitively,
it is clear that, forn ∈ N, Win(n) is influenced by all
Win(m), s.t. there is a move fromn to m, i.e., Win(0)
influencesWin(1) and, forn ≥ 2, bothWin(n − 1) and
Win(n − 2) influenceWin(n). Moreover, all these influ-
ences are negative, sincen is winning if n − 1 or n − 2 are
losing.

We now show how this information can be derived using
the concepts defined above. Let→֒ be the binary relation on
AtN consisting ofMove(n,m) →֒ Win(n) for all n,m ∈

DEPARTMENT OF INFORMATICS 99

11TH NMR WORKSHOP

N. LetS be aL2-valued structure interpreting the open pred-
icateMove/2. By Definition 11, for everyn ∈ N, the set
{P (~a) ∈ AtN | P (~a) →֒∗

S Win(n)} of domain atoms in-
fluencingWin(n) is precisely equal to∪m∈NDep

An

Sn
(φ),

with An = {Move(n, k) | k ∈ N}, Sn = S[x/n] and
φ = ∃y Move(x, y) ∧ ¬Win(y) ≡ ∃y ¬(¬Move(x, y) ∨
Win(y)). Let m ∈ N and letSm

n = Sn[y/m]. Because
(x, y)Sm

n = (n,m) andMove(n,m) ∈ An, it is clear
thatDepAn

Sm
n

(¬Move(x, y)) = DepAn

Sm
n

(Move(x, y)) = {}.

From this, it now follows that if(¬Move(x, y))Sm
n = t,

i.e.,MoveS(n,m) = f , thenDepAn

Sm
n

(φ) = {}. This cor-
responds to the intuition that if there is no move fromn to
m (according to the chosen interpretationS of Move/2),m
does not affect whethern is winning. On the other hand, if
MoveS(n,m) = t, i.e., thereis a move fromn to m, we
see thatPosAn

Sm
n

(φ) = NegAn

Sm
n

(Win(y)) andNegAn

Sm
n

(φ) =

PosAn

Sm
n

(Win(y)). BecauseNegAn

Sm
n

(Win(y)) = {} and

PosAn

Sm
n

(Win(y)) = {Win(m)}, we find that in this case

PosAn

Sm
n

(φ) = {} andNegAn

Sm
n

(φ) = {Win(m)}. Putting

all of this together, we see that(→֒∗
S) = (→֒−

S) =
{(Win(m),Win(n)) | MoveS(n,m) = t} ∪ (→֒). More-
over, if S |= ∆Move, this reduces to(→֒−

S) = {(Win(n −
1),Win(n)) | n ≥ 1} ∪ {(Win(n − 2),Win(n)) | n ≥
2} ∪ (→֒).

ID-logic and mathematical induction
ID-logic aims to formalize the principle of inductive defini-
tion. As such, the relation between this logic and the kinds of
inductive definitions regularly found in mathematical prac-
tice is an important research topic. (Denecker & Ternovska
2004a) showed that two known classes of definitions—
monotone definitions and definitions over a well-founded
order—correspond to certain classes of ID-logic definitions.
Informally speaking, a definition is monotone if its associ-
ated operator is monotone w.r.t. theL4-valued truth-order
≤t or, equivalently, the point-wise extension≤⊗ to L2

2 of
the order≤L2

. A definition is a definition by induction over
a well-founded order if there exists a well-founded order on
its domain atoms, s.t. the truth of every atom depends only
on the truth of strictly lower atoms.
Definition 12. Let ∆ be a definition. LetR interpret at least
Open∆.
• ∆ is monotoneinR iff T R

∆ is≤⊗-monotone.
• ∆ is a definition by induction over a well-founded order

in R iff ∆ has a dependency relation in R, such that
the transitive closure of is a well-founded strictorder.
In (Denecker & Ternovska 2004a), it was shown that the

ID-logic semantics of such definitions coincides with their
usual meaning. Here, we extend this analysis in two ways.
We first characterize a third class, namely that ofiterated in-
ductive definitions, in a similar way. We then show that the
results of the previous section can be used to develop syn-
tactic criteria by which members of all three of these classes
can be identified. Informally, an iterated inductive defini-
tion consists of a well-founded order of definitions, which

are structured in such a way that an atom may depend either
positively or negatively on an atom defined in a strictly lower
level, but may only depend positively on atoms defined in
the same level. As such, each of these definitionscan be re-
duced to a monotone definition, by fixing an interpretation
for all lower levels. In our setting, this corresponds to:

Definition 13. Let ∆ be a definition andR a structure in-
terpreting at leastOpen∆. ∆ is an iterated inductive def-
inition in R iff there exists a dependency relation of
T R

∆ such that the transitive closure of is well-founded
and each component(T R

∆)U
P (~a)

is≤⊗-monotone, withU =

wf(T R
∆)|

≺ P (~a)
.

Because every constant operator isa fortiori monotone,
the following proposition shows that this class contains all
definitions over a well-founded order.

Proposition 6. Let O be an operator on a latticeL =
⊗i∈ILi. Let be a dependency relation ofO, s.t. the tran-
sitive closure of is a strict well-founded order. Leti ∈ I,
x ∈ L andu = x|≺ ı. Then the component(O)u

ı is con-
stant.

Because an iterated inductive definition is nothing more
than a sequence of monotone definitions, its models can be
constructed by incrementally constructing the least fixpoints
of the operators associated with each level, given all lower
levels. The fact that this also holds in ID-logic, follows from
the following results:

Proposition 7. LetA be an exact approximation of an oper-
atorO, such thatA is≤⊗-monotone. ThenO is a monotone
operator andwf(A) = (lfp(O), lfp(O)).

Proposition 8. LetA be an exact approximation of an oper-
atorO, such thatA is stratifiable w.r.t. a well-founded order
� and each componentAwf(A)|≺i

i of A is ≤⊗-monotone.
Then (x, y) = wf(A) iff for each i ∈ I, x|i = y|i =

lfp(O
x|≺i

i).

It follows directly that, for an iterated inductive defini-
tion ∆ and structureS, S |= ∆ iff for all P (~a) ∈ At,

S|
P (~a)

= lfp((T
(S,S)
∆)

S|
≺ P (~a)

P (~a)
), with a dependency re-

lation satisfying the conditions of Definition 13. In other
words, models of such definitions can be constructed by it-
erating a least fixpoint construction, using theL2-valued im-
mediate consequence operatorTS

∆.
The constructively defined dependency relations from the

previous section can now be used to complement this se-
mantical analysis with a more syntactical way of identifying
members of these three classes of definitions.

Proposition 9. Let ∆ be a definition and let֒→ be a bi-
nary relation onAt, such that(→֒ ·) ⊆ Open∆. LetR
interpret at least(→֒ ·). If (→֒−

R) ⊆ (→֒), then∆ is a
monotone definition. If the transitive closureTC(→֒∗

R) of
→֒∗

R is a well-founded strict order, then∆ is a definition by
induction over a well-founded order. IfTC(→֒∗

R) is well-
founded and֒→−

R is such that for all(P (~a), Q(~c)) ∈ (→֒−
R),

(Q(~c), P (~a)) 6∈ TC(→֒∗
R), then∆ is an iterated inductive

definition.

100 Technical Report IfI-06-04

Answer Set Programming

For ∆Win, we previously defined a relation→֒, consist-
ing of Move(m,n) →֒ Win(m) with m,n ∈ N, and used
this to construct a dependency relation→֒∗

S for this defini-
tion. It was shown that, for anyS |= ∆Move, →֒∗

S consists
of {(n − 1, n) | n ≥ 1} ∪ {(n − 2, n) | n ≥ 2} ∪ (→֒).
Because the transitive closure of such an(→֒∗

S) is clearly a
strict well-founded order, this shows that∆Win is a defini-
tion over a well-founded order inS. Note that, for a struc-
tureS′, such that there existsn ∈ N withMoveS′

(n, n) = t

(and thereforeS′ 6|= ∆Move), ∆Win is of course not a defi-
nition over a well-founded order inS′. Indeed, in this case,
Win(n) →֒−

S′ Win(n) and therefore none of the above cri-
teria is satisfied.

Conclusion
We have studied the structure of definitions in ID-logic, us-
ing the basic concept of a dependency relation, both at the
concrete level of ID-logic and at the algebraic level of ap-
proximation theory. These results extend work from (De-
necker & Ternovska 2004a) in various ways. Firstly, we
have offered a method for constructing dependency relations
in ID-logic. Secondly, we extended results concerning the
relation between ID-logic and inductive definitions over a
well-founded order to the more general class of iterated in-
ductive definitions. Finally, we also showed how members
of both these classes can be identified.

This work is part of a larger research effort into mathemat-
ical foundations for ID-logic, which aims to lay the ground-
work for more practical results. We briefly sketch the im-
portance of our work from this point of view. Firstly, the
results presented in the previous section offer additionalsup-
port for the hypothesis underlying the entire knowledge rep-
resentation methodology of ID-logic, namely that the “in-
ductive definition”-construct of this logic can be understood
as the formal equivalent of inductive definitions as they ap-
pear in mathematical texts. Moreover, the concepts we in-
troduced and our taxonomy of inductive definitions will be
useful when applying this methodology to a specific domain.
Secondly, our results can be used to prove properties of the-
ories in ID-logic, such as, e.g., their correctness w.r.t. aspec-
ification. Finally, we suspect they will also have an impact
on algorithms for reasoning with ID-logic. While ID-logic
is, in general, undecidable, there is ongoing work on iden-
tifying decidable fragments. One trivial such fragment is of
course the propositional case. For this, a model generator
is currently being developed. We are investigating how our
work can help to improve its performance. Concretely, we
are considering two complementary approaches. The first
is that, during the generation of the well-founded model,
knowledge about dependency relation can be exploited to
avoid a number of superfluous checks and computations.
The second is that, if a definition is known to belong to some
specific class, then a model generation algorithm can be se-
lected that is tailored specifically to this class. This approach
seems especially promising in combination with a “prepro-
cessing step” to transform definitions into a more manage-
able form.

This process was already illustrated by our treatment of

the example∆Game. Even a coarse dependency relation
already shows that this can be split into the conjunction
∆Move ∧∆Win. Now,∆Move is a non-inductive definition
and its well-founded model can therefore be found as a clas-
sical model of its completion, which means we can simply
use a SAT-solver for this task. Once the model of∆Move is
known, a better dependency relation for∆Win can be con-
structed, which allows us to conclude that this is now a def-
inition over a well-founded order. An algorithm specific to
this class of definitions can then be applied.

As already mentioned in the introduction, the kind of
work presented here has a rich tradition in logic program-
ming. The use of constructs similar to dependency rela-
tions to analyze the structure of programs, identify inter-
esting subclasses of programs, and clarify semantical issues
dates back at least as far as (Apt, Blair, & Walker 1988).
More recently, work such as (Erdem & Lifschitz 2003) on
the topic oftight logic programsand variants thereof per-
forms an analysis of Answer Set Programs that is very simi-
lar to our analysis for ID-logic, studying criteria that suffice
to conclude that a program belongs to a certain specific class,
for which interesting properties hold.

References
Apt, K.; Blair, H.; and Walker, A. 1988. Towards a theory
of Declarative Knowledge. InFoundations of Deductive
Databases and Logic Programming.
Denecker, M., and Ternovska, E. 2004a. Inductive situation
calculus. InProc. KR ’04, 545–553. AAAI Press.
Denecker, M., and Ternovska, E. 2004b. A logic of non-
monotone inductive definitions and its modularity proper-
ties. InProc. LPNMR ’04.
Denecker, M.; Marek, V.; and Truszczynski, M. 2000. Ap-
proximating operators, stable operators, well-founded fix-
points and applications in non-monotonic reasoning. In
Logic-based Artificial Intelligence. Kluwer Academic Pub-
lishers. 127–144.
Denecker, M.; Marek, V.; and Truszczynski, M. 2003. Uni-
form semantic treatment of default and autoepistemic log-
ics. Artificial Intelligence143(1):79–122.
Denecker, M. 1998. The well-founded semantics is the
principle of inductive definition. InProc. JELIA’98, vol-
ume 1489 ofLNAI, 1–16.
Erdem, E., and Lifschitz, V. 2003. Tight logic programs.
Theory and Practice of Logic Programming3:499–518.
Gelder, A. V.; Ross, K.; and Schlipf, J. 1991. The well-
founded semantics for general logic programs.Journal of
the ACM38(3):620–650.
Vennekens, J., and Denecker, M. 2005. An algebraic ac-
count of modularity in ID-logic. InProc. LPNMR’05.
Vennekens, J.; Gilis, D.; and Denecker, M. 2005. Splitting
an operator: Algebraic modularity results for logics with
fixpoint semantics.ACM TOCL. To appear.

DEPARTMENT OF INFORMATICS 101

11TH NMR WORKSHOP

102 Technical Report IfI-06-04

Answer Set Programming

1.11 Well-Founded semantics for Semi-Normal Extended Logic Pro-
grams

Well-Founded semantics for Semi-Normal Extended Logic Programs

Martin Caminada ∗

Utrecht University

Abstract

In this paper we present a new approach for apply-
ing well-founded semantics to extended logic programs.
The main idea is not to fundamentally change the def-
inition of well-founded semantics (as others have at-
tempted) but rather to define a few restrictions on the
content of the extended logic program, that make it pos-
sible to apply “traditional” well-founded semantics in a
very straightforward way.

Introduction
Well-founded semantics (van Gelder, Ross, & Schlipf 1991)
has originally been stated as an alternative for stable model
semantics in normal logic programs. Due to its skeptical na-
ture, it has sometimes been regarded as an easily computable
lower bound for the more credulous stable model seman-
tics. At the same time, well-founded semantics avoids some
of the problems of stable model semantics, in which rela-
tively small pieces of information (like a rulea ← not a)
can cause the total absence of stable models.

With the emergence of extended logic programming (Gel-
fond & Lifschitz 1991), several researchers have attempted
to apply well-founded semantics to extended logic pro-
grams (Sakama 1992; Brewka 1996). The introduction of
strong negation, however, introduces additional problems
not present in normal (non-extended) logic programming.
In this paper, we approach the issue of how to apply well-
founded semantics for extended logic programs not by giv-
ing another complex and advanced specification of what
well-founded semantics for extended logic programs should
look like, but instead we state a few restrictions on thecon-
tentof the extended logic programs. We then show that un-
der these restrictions, a relatively simple and straightforward
definition of well-founded semantics yields a decent and un-
problematic well-founded model.

Basic Definitions
A programconsidered in this paper is enextended logic pro-
gram (ELP) (Gelfond & Lifschitz 1991) containing rules
with weak as well as strong negation.

∗This work has been supported by the EU ASPIC project.

Definition 1. An extended logic programP is a finite set of
clauses of the form:

c ← a1, . . . , an, not b1, . . . , not bm(n ≥ 0, m ≥ 0)

where eachc, ai and bj is a positive/negative literal and
not stands for negation as failure. In the above rule,
bj(1 ≤ j ≤ m) is called aweakly negated literal. The
literal c is called theheadof the rule, and the conjunction
a1, . . . , an, not b1, . . . , not bm is called thebodyof the rule.
A rule is calledstrict iff it contains no weakly negated liter-
als (that is, ifm = 0), otherwise, the rule isdefeasible.

Notice that the head of a rule is never empty, although the
body can be empty. Ifl is a literal, then we identify¬¬l
with l. If P is an extended logic program, thenstrict(P)
stands for the set of strict rules inP , and defeasible(P)
stands for the set of defeasible rules inP .

The closureof a set of strict rules consists of all literals
that can be derived with it, as is stated in the following defi-
nition.
Definition 2. LetS be a set of strict rules. We defineCl(S)
as the smallest set of literals such that ifS contains a rule
c← a1, . . . , an anda1, . . . , an ∈ Cl(S) thenc ∈ Cl(S).

If S is a set of strict rules andL a set of literals, then we
write Cl(S ∪ L) as an abbreviation ofCl(S ∪ {l ← | l ∈
L}).
Definition 3. We say that a set of literalsL is consistentiff L
does not contain a literall and its negation¬l. We say that
a set of strict rulesS is consistentiff Cl(S) is consistent.

The idea ofPL (the Gelfond-Lifschitz reduct of a logic
program P under a set of literals L) is to remove each rule
from P that is “defeated” byL (that is, to remove each
rule containing a weakly negated literal inL) and then from
the remaining rules to remove all remaining occurrences of
weak negation.
Definition 4. Let P be an extended logic program and let
L be a set of literals. We definePL as {c← a1, . . . , an |
c← a1, . . . , an, not b1, . . . , not bm ∈ P (n,m ≥ 0) and
¬∃bj(1 ≤ j ≤ m) : bj ∈ L}.

Well-founded semantics (van Gelder, Ross, & Schlipf
1991) is a concept originally proposed for non-extended
logic programs. As its original description is quite com-
plex, we will use the following definition instead (inspired
by (Brewka 1996)).

DEPARTMENT OF INFORMATICS 103

11TH NMR WORKSHOP

Definition 5. LetP be an extended logic program andL be
a set of literals. We defineγ(L) (the standard stable oper-
ator) asCl(PL). We defineΓ(L) as γ(γ(L)). Thewell-
founded modelof P is the smallest fixpoint ofΓ.

The Problem
Well-founded semantics (WFS) has been applied success-
fully in non-extended logic programs (Dix 1995a; 1995b).
Applying WFS for extended logic programs, however, intro-
duces the problem that the well-founded model is not guar-
anteed to be consistent. Consider the following example,
taken from (Caminada & Amgoud 2005).

Example 1.
“John wears something that looks like a wedding ring.”
“John parties with his friends until late.”
“Someone wearing a wedding ring is usually married.”
“A party-animal is usually a bachelor.”
“A married person, by its definition, has a spouse.”
“A bachelor, by definition, does not have a spouse.”
These sentences are represented by the programP :
r ← p ←
m ← r, not¬ m b ← p, not¬ b

hs ← m ¬hs ← b .

For example 1, applying the unaltered version of WFS
yields a well-founded model of{r, p, m, b, hs,¬hs}, which
is inconsistent.

To cope with this problem, many approaches have been
stated. Brewka, for instance, proposes to define the function
Γ(L) not asγ(γ(L)) but asγ(Cn(γ(L))), whereCn(L) is
L if L is consistent, orLit if L is not consistent (Brewka
1996). Another approach would be to apply paraconsistent
reasoning, as for instance has been done in (Sakama 1992).

An alternative approach would be not to redefine these-
manticsof an ELP, but instead to state some additional con-
ditions on thecontentof the extended logic program. The
above example, for instance, would yield a perfectly ac-
ceptable outcome if the rules¬m ← ¬hs and¬b ← hs

were added (which are essentially the contraposed versions
of hs ← m and¬hs ← b). In that case, the well-founded
model would be{r, p}. This approach would be quite sim-
ilar to the work that Caminada and Amgoud have done in
the field of formal argumentation, where similar difficulties
occur (Caminada & Amgoud 2005).

Logic Programming as Argumentation
In this section, we will state some theory that allows us to
link logic programming to formal argumentation. Using this
theory, we will be able to apply the solution of (Caminada
& Amgoud 2005) in the context of extended logic program-
ming.

The first thing to do is to define the set of arguments and
the defeat relation, given an (extended) logic programP .
We choose a form of arguments that is different from (Dung
1995) and better suited to our purpose.

Definition 6. LetP be an extended logic program.

• An argument A based on P is a finite tree of
rules from P such that each node (of the form
c← a1, . . . , an, not b1, . . . , not bm with n ≥ 0 andm ≥
0) has exactlyn children, each having a different head
ai ∈ {a1, . . . , an}. Theconclusionof A (Conc(A)) is the
head of its root.

• We say that an argumentA1 defeatsan argumentA2 iff
A1 has conclusionc andA2 has a rule containingnot c.

We defineArguments
P

as the set of arguments that can be
constructed usingP , andDefeat

P
as the defeat relation un-

der P . LetArgs ⊆ Arguments
P

. We defineConcs(Args)
as{Conc(A) | A ∈ Args}.

We say that argumentA is asubargumentof argumentB
iff A is a subtree ofB. We say that argumentA is adirect
subargumentof argumentB iff A is a subtree ofB and there
does not exist an argumentC such thatC 6= A, C 6= B, C
is a subtree ofB, andA is a subtree ofC.

Definition 7. We say that:

• a set of argumentsArgs is conflict-freeiff Args does not
contain two argumentsA andB such thatA defeatsB
• a set of argumentsArgs defendsan argumentA iff for

each argumentB that defeatsA, Args contains an argu-
mentC that defeatsB.

Definition 8. Let Args be a set of arguments. We define
f(Args) as {A | Args does not contain an argument that
defeatsA} andF (Args) asf(f(Args)).

F (Args) can be seen as the set of arguments that are de-
fended byArgs (Dung 1995).

Lemma 1. Let P be an extended logic program and letE
be the smallest fixpoint ofF underP . E is conflict-free.

Proof. As E is the smallest fixpoint ofF underP , it holds
that (Dung 1995)E = ∪∞

i=0F
i(∅). Suppose thatE is not

conflict-free. AsF is a monotonic function andF 0(∅) = ∅,
there must be some smallesti (i ≥ 0) such thatF i(∅) is
conflict-free butF i+1(∅) is not conflict-free. From defini-
tion 7 it then follows thatF i+1(∅) contains two argumentsA
andB such thatA defeatsB. The fact thatA defeatsB and
B ∈ F i+1(∅) means that there is an argumentC ∈ F i(∅)
that defeatsA. The fact thatC defeatsA andA ∈ F i+1(∅)
means that there is an argumentD ∈ F i(∅) that defeats
C. But thenF i(∅) would not be conflict-free. Contradic-
tion.

The following property follows from definition 6 and 2.

Property 1. LetS be a set of strict rules andl be a literal.
It holds thatl ∈ Cl(S) iff there exists an argumentA, based
onS, such thatConc(A) = l.

The following property follows from definition 4 and 6.

Property 2. Let P be an extended logic program andL be
a set of literals. There exists an argumentA, based onPL,
with Conc(A) = l iff there exists an argumentB, based
on P , with Conc(B) = l, such thatB does not contain a
weakly negated literalk ∈ L.

The functionγ is actually quite similar to the functionf ,
as is stated in the following theorem.

104 Technical Report IfI-06-04

Answer Set Programming

Theorem 1. Let L be a set of literals andArgs be a
set of arguments. IfL = Concs(Args) then γ(L) =
Concs(f(Args)).

Proof. We need to prove two things:

1. γ(L) ⊆ Concs(f(Args))
Let l ∈ γ(L). This, by definition 5, means thatl ∈
Cl(PL). From property 1 it follows that there exists an ar-
gument (A), based onPL, with Conc(A) = l. Then, ac-
cording to property 2, there exists an argument (B), based
onP , with Conc(B) = l, such thatB does not contain a
weakly negated literalk ∈ L. As L = Concs(Args),
the argumentB is not defeated byArgs. Therefore,
B ∈ f(Args). As B has conclusionl it holds that
l ∈ Concs(f(Args))

2. Concs(f(Args)) ⊆ γ(L)
Let l ∈ Concs(f(Args)) ⊆ γ(L). This means that
f(Args) contains some argument (sayB) with conclusion
l. That is, there exists an argument (B) with conclusion
l that is not defeated byArgs. From property 2 it then
follows that there exists an argumentA, based onPL (as
L = Concs(Args)), with Conc(A) = l. This, by prop-
erty 1, means thatl ∈ Cl(PL), which by definition 5
means thatl ∈ γ(L).

The following theorem states that the well-founded
model of a programP coincides with the conclusions
of the grounded extension (Dung 1995) of the argument-
interpretation ofP .

Theorem 2. Let P be an extended logic program. The
grounded extension GE of〈Arguments

P
,Defeat

P
〉 coin-

cides with the smallest fixpoint (WFM) ofΓ. That is:
concs(GE) = WFM .

Proof. From theorem 1 it follows that, ifL = Concs(Args),
then γ(γ(L)) = Concs(f(f(Args))), so Γ(L) =
Concs(F (L)). Therefore, the smallest fixpoint ofΓ is equal
to the conclusions of the smallest fixpoint ofF , which is the
grounded extension.

Semi-Normal Extended Logic Programs
In this section, we define some restrictions on an extended
logic program. An extended logic program that satisfies
these restrictions is called asemi-normalextended logic pro-
gram (a term inspired by semi-normal default theories). We
then show that a semi-normal extended logic program avoids
problems like illustrated in example 1 by always having a
consistent well-founded model.

Definition 9. Lets1 ands2 be strict rules. We say thats2 is
a transpositionof s1 iff:
s1 = c← a1, . . . , an and
s2 = ¬ai ← a1, . . . , ai−1,¬c, ai+1, . . . , an (1 ≤ i ≤ n).

The intuition behind transposition can be illustrated by
translating a strict rulec← a1, . . . , an to a material im-
plication c ⊂ a1 ∧ · · · ∧ an. This implication is equivalent
to ¬ai ⊂ a1 ∧ · · · ∧ ai−1 ∧ ¬c ∧ ai+1 ∧ · · · ∧ an, which is

again translated to¬ai ← a1, . . . , ai−1,¬c, ai+1, . . . , an.
Notice that, whenn = 1, transposition coincides with clas-
sical contraposition.

Definition 10. A defeasible rule issemi-normaliff it is of
the form
c← a1, . . . , an, not b1, . . . , not bm, not¬c.

Definition 11. An extended logic programP is calledsemi-
normaliff:

1. strict(P) is consistent,
2. strict(P) is closed under transposition, and
3. defeasible(P) consists of semi-normal rules only

If A is an argument, then thedepthof A is the number of
nodes on the longest root-originated path inA. If A is an
argument andr is a rule inA then thedepth ofr in A is the
number of nodes on the shortest path from the root to a node
labeled withr.

Lemma 2. Let P be a semi-normal extended logic pro-
gram, Ass (the assumptions) be a nonempty set of strict
rules with empty antecedents{a1 ←, . . . , an ←} andA an
argument with conclusionc based onstrict(P)∪Ass, such
that A contains an assumptionai ← (1 ≤ i ≤ n) that
does not occur inP . There exists an argumentB, based on
strict(P) ∪ Ass ∪ {¬c ←} such thatB has a conclusion
¬ai.

Proof. We prove this by induction on the depth ofA.

basis Let’s assume that the depth ofA is 1. In that case,A
consists of a single rule, which must then have an empty
antecedent. Therefore, the root ofA must bec←. It then
follows thatc = ai. Therefore, there exists an argument
(A itself) based onstrict(P) ∪ Ass ∪ {¬c ←} that has
conclusion¬ai.

step Suppose the above lemma holds for all strict arguments
of depth≤ j. We now prove that it also holds for all strict
arguments of depthj + 1. Let A be an argument of depth
j + 1, based onstrict(P) ∪ Ass, with conclusionc. Let
c ← Conc(A1), . . . , Conc(Am) be the root ofA. Let Ai

be a direct subargument ofA that contains the assump-
tion ai ←. Because the set of strict rules inP is closed
under transposition, there exists a rule¬Conc(Ai) ←
Conc(A1), . . . , Conc(Ai−1),¬c, Conc(Ai+1), . . . , Conc(Am).
The fact that Ai has a depth≤ j means that
we can apply the induction hypothesis. That
is, there exists an argument (sayB′), based on
strict(P) ∪ Ass ∪ {¬Conc(Ai) ←}, with conclusion
¬ai. Now, in B′, substitute¬Conc(Ai) ← by the subar-
gument¬Conc(Ai) ← A1, . . . , Ai−1,¬c,Ai+1, . . . Am.
The resulting argument (call itB) is a strict argument,
based onstrict(P) ∪ Ass ∪ {¬c ←}, with conclusion
¬ai.

Theorem 3. Let 〈Arguments
P

,Defeat
P
〉 be an argumen-

tation framework built from a semi-normal extended logic
programP , and letE be the smallest fixpoint ofF . It holds
thatConcs(E) is consistent.

DEPARTMENT OF INFORMATICS 105

11TH NMR WORKSHOP

B

strict
rules

AiA1 An
d

A

BAnA1

D’

c −c

strict rules

trans−
posed

d

Ai

D

...

−e e

THEOREM

Figure 1: The working of theorem 3

Proof. Let E be the grounded extension of
〈Arguments

P
,Defeat

P
〉. Suppose the conclusions of

E are not consistent. ThenE contains an argument (sayA)
with conclusionc and an argument (sayB) with conclusion
¬c. As strict(P) is consistent, at least one of these two
arguments must contain a defeasible rule. Let us, without
loss of generality, assume thatA contains at least one
defeasible rule. Letd be a defeasible rule inA that has
minimal depth. Notice that the depth ofd must be at
least 1, for if d were the top-rule ofA, then B would
defeatA andE would not be conflict-free (which conflicts
with lemma 1). It now holds that every rule inA with
a smaller depth thand is a strict rule (see also figure 1).
Let Ai be a subargument ofA that hasd as its top-rule.
We will now prove that there exists an argument (D′) in
E that defeatsAi. Let A1, . . . , An be the subarguments
of A that are at the same level asAi in A. Lemma 2
tells us that with the conclusions ofA1, . . . , An, B it is
possible to construct an argument with a conclusion that is
the opposite of the conclusion ofAi. Call this argument
D. Now, let D′ be equal toD, but with the assumptions
Conc(A1) ←, . . . , Conc(An) ←, Conc(B) ← substituted
by the underlying argumentsA1, . . . , An, B. It holds that
D′ ∈ E (this is because each defeater ofD′ is also a
defeater ofA1, . . . , An, B ∈ E, and the fact thatE is a
fixpoint of F means it defends itself against this defeater,
which means thatD′ ∈ E). D′, however, defeatsAi on d,
so the fact thatD′, Ai ∈ E means thatE is not conflict-free,
and (lemma 1) also no fixpoint ofF . Contradiction.

Theorem 4. Let P be a semi-normal extended logic pro-
gram. The smallest fixpoint WFM (the well-founded model)
of Γ is consistent.

Proof. This follows directly from theorem 2 and theorem
3.

Discussion
Many scholars in the field of defeasible reasoning distin-
guish two types of abstract rules:strict rulesanddefeasi-
ble rules(Pollock 1992; Nute 1994; Prakken & Sartor 1997;
Garćıa & Simari 2004). A strict rulea1, . . . , an → b ba-
sically means that ifa1, . . . , an hold, then it iswithout any
possible exceptionalso the case thatb holds. A defeasible
rulea1, . . . , an ⇒ b basically means that ifa1, . . . , an hold,
then it isusually(or normally) the case thatb holds.

One possible application of strict rules is to describe
things that hold by definition (like ontologies). For instance,
a cow is by definition a mammal and someone who is mar-
ried by definition has a spouse. For this kind of rules, it ap-
pears that transposition is quite naturally applicable. Iffrom

a1, . . . , an it follows without any possible exception thatb,
then it also holds that froma1, . . . , ai−1,¬b, ai+1, . . . , an it
follows without any possible exception that¬ai.

In essence, one could say that the problems of example
1 are caused by the fact that two conclusions (m andb) are
conflicting (asm implieshs, andb implies¬hs) but the stan-
dard entailment of ELP is too weak to discover this conflict.
Transposition (for strict rules) can thus be seen as a way
of strengthening the entailment, so that this kinds of hidden
conflicts become explicit, and therefore manageable.

Some formalisms for defeasible reasoning, like (Pollock
1992; 1995), have strict rules that coincide with classical
(propositional or first order) reasoning. That is, there ex-
ists a strict rulea1, . . . , an → b iff a1, . . . , an ⊢ b. In
such a formalism, example 1 could be represented by the
defeasible rulesr ⇒ m and p ⇒ b and by the proposi-
tionsr, p, m ⊃ hs andb ⊃ ¬hs. Using these propositions
one can then construct the strict rulesm, (m ⊃ hs) → hs

and b, (b ⊃ ¬hs) → ¬hs, as well as the strict rules
¬hs, (m ⊃ hs) → ¬m andhs, (b ⊃ ¬hs) → ¬b. These
rules can be used not only to construct arguments form and
b but also to construct the much needed counterarguments
deriving¬m and¬b. By basing strict rules on classical en-
tailment, Pollock is able to specify a formalism that avoids
many of the difficult issues that have been plaguing the field
of extended logic programming.

It is not difficult to see that transposition is a valid prin-
ciple in classical logic (froma1, . . . , an ⊢ b it follows that
a1, . . . , ai−1,¬b, ai+1, . . . , an ⊢ ¬ai). In general, the set of
strict rules generated by classical entailment satisfies many
interesting properties. With transposition we have isolated
the specific property of classical logic that is actually needed
to avoid problems like illustrated by example 1. We simply
apply the part of classical logic that we actually need, with-
out having to go through the complexities of having to im-
plement a full-blown classical logic theorem prover to gen-
erate the set of strict rules, as is for instance done in (Pol-
lock 1995). The main cost of our approach is in generating
the transpositions of the strict rules. For each strict rule, n
transpositions are generated, wheren is the number of liter-
als in the body of the rule.

As for the defeasible rules, Pollock distinguishes two
ways in which these can be argued against: rebutting and
undercutting (Pollock 1992; 1995). Rebutting essentially
means deriving the opposite consequent (head) of the rule,
whereas undercutting basically means that there is some ad-
ditional information under which the antecedent (body) of
the rule is no longer a reason for the consequent (head) of
the rule. For instance, suppose that we have the defeasible
rule that an object that looks red usually is red. A rebutter
would be that the object is not red, because it is known to be
blue. An undercutter would be that the object is illuminated
by a red light. This is not a reason for itnot being red, but
merely means that the fact that it looks red can no longer be
regarded as a valid reason for it actually being red. Thus,
rebutting attacks the consequent (head) of a rule, whereas
undercutting attacks merely the connection between the an-
tecedent (body) and the consequent (head) of a rule. Pollock
claims, based on his philosophical work regarding episte-

106 Technical Report IfI-06-04

Answer Set Programming

mology, all forms of defeat can be reduced to rebutting and
undercutting (Pollock 1992). This observation is important,
as both of these forms of defeat can be modeled using semi-
normal defeasible rules in extended logic programs.

Many problems in logic programming are caused by spe-
cific logic programs containing anomalous information (a
rule likea ← not a could for instance cause the absence of
stable models). If one wants to apply standard and relatively
straightforward semantics then one needs to make sure that
a logic program does not contain such anomalies. If one
provides anomalous input (like stating that a married per-
son always has a spouse, without stating that someone who
does not have a spouse is not married, using a formalism
(ELP) that is not powerful enough to make this inference it-
self) then one should not be surprised that the outcome (the
well-founded model) is anomalous as well. For reasons de-
scribed above, we think that that the concept of semi-normal
extended logic programs can serve as a quite natural and rea-
sonable restriction of which programs can be regarded to be
free of anomalies.

Quality Postulates
One way to evaluate the different approaches for providing a
suitable semantics for ELP is by providing quality postulates
(Caminada & Amgoud 2005). The idea is to state a number
of general properties that should be satisfied by any formal-
ism for defeasible reasoning, including ELP. In (Caminada
& Amgoud 2005; ASPIC-consortium 2005) the following
quality postulates have been stated:

• direct consistency. LetP be an extended logic program
such thatstrict(P) is consistent, and letM be a model of
P (under some specified semantics). It must hold thatM
is consistent.

• closedness. LetP be an extended logic program and let
M be a model underP (under some specified semantics).
It must hold thatCl(strict(P) ∪M) = M .

• indirect consistency. LetP be an extended logic program
such thatstrict(P) is consistent, and letM be a model
of P (under some specified semantics). It must hold that
Cl(strict(P) ∪M) is consistent.

The quality postulate of direct consistency is quite
straightforward and is satisfied by most formalisms that we
know of. The quality postulate of closedness basically states
that, as far as the strict rules are concerned, the model is
“complete”. The quality postulate of indirect consistency
does by itself not require that the model is closed under the
strict rules, but instead requires the more modest property
that if one would compute the closure of the model under
the strict rules, the result would at least not contain any in-
consistencies.

The above three quality postulates are not completely in-
dependent. Indirect consistency, for instance, implies direct
consistency. Similarly, closedness and direct consistency
imply indirect consistency.

To illustrate the value of the above three quality postu-
lates, consider a person who knows a set of strict and defea-
sible rules, encodes these as a semi-normal extended logic

program and then examines a model generated by an ELP
inference engine. If the ELP inference engine would (in ex-
ample 1) provide a model containingm but not containinghs
(thus violating closedness) then the user may conclude that
the ELP inference engine apparently “forgot” something.
Worse yet, if the ELP inference engine provides a model
containingm andb (thus violating indirect consistency) then
the user may reason like: “My inference engine says that
m, and I know that fromm it always follows thaths, there-
fore hs. My inference engine also says thatb and I know
that fromb it always follows that¬hs, therefore¬hs.” It is
our view that, from an agent perspective, a formalism that
does not satisfy indirect consistency cannot be used to gen-
erate the beliefs of an agent, as we think that an agent should
never run into inconsistencies once it starts to do additional
reasoning on its own beliefs.

Although ELP-models should ideally be closed under the
strict rules ofP , they should not necessarily be closed under
the defeasible rules ofP . If a is given and there exists a
rule “if a then normallyb”, then one cannot simply deriveb
since the situation may not be normal. The quality postulate
of closedness is thus only relevant with respect to strict rules.

A fourth quality postulate that has, as far as we know, not
been published earlier is that of crash-resistancy:

• crash-resistancy. There should not exist an extended logic
programP , with strict(P) consistent, such that forany
extended logic programP ′, with strict(P ′) consistent,
that does not share any atoms withP , it holds thatP has
the same models (under some specific semantics) asP ∪
P ′.

Crash-resistancy basically states that it should not be pos-
sible for an extended logic program to contain some pieces
of information (P) that makes other totally unrelated pieces
of information (P ′) totally irrelevant when added.

The above four quality postulates are violated by vari-
ous approaches that aim to provide extended logic programs
with a suitable semantics. Indirect consistency, for instance,
is problematic in approaches that are based on paraconsis-
tent reasoning. When the approach of, for instance, (Sakama
1992) is applied to example 1, it produces a well-founded
model 〈{r, p, m, b, hs,¬hs}, {¬r,¬p,¬m,¬b}〉. Using
Ginsberg’s 7-valued default bilattice, this means that only
r, p, m andb (but noths or ¬hs) are considered true, thus
violating closedness and indirect consistency.

Brewka’s approach to well-founded semantics (Brewka
1996), on the other hand, violates direct consistency as well
as crash-resistancy. In example 1,strict(P) is consistent,
but Brewka’s approach nevertheless yields the inconsistent
setLit, which violates direct consistency. As the outcome
of Lit is obtained even when one adds syntactically totally
unrelated rules toP , crash-resistancy is violated as well.

The quality postulate of crash-resistancy is violated by the
stable model semantics of answer set programming, where
a simple rule likea ← not a yields no stable models at
all, regardless of what additional (unrelated) information is
contained in the logic program. A common opinion in the
ELP-research community is that programs that have no sta-
ble models are by definition anomalous and unnatural. We

DEPARTMENT OF INFORMATICS 107

11TH NMR WORKSHOP

hereby would like to argue against this view. Consider a sit-
uation in where persons are usually believed in what they
say, unless information of the contrary is available (rebut) or
the person is known to be unreliable (undercut). Now con-
sider the following three persons, who give the following
statements:

• Bert: “Ernie is unreliable.”

• Ernie: “Elmo is unreliable.”

• Elmo: “Bert is unreliable.”

This would correspond with the following extended logic
program:

• bert says u ernie←

• u ernie← bert says u ernie, not¬u ernie, not u bert

• ernie says u elmo←

• u elmo← ernie says u elmo, not¬u elmo, not u ernie

• elmo says u bert←

• u bert← elmo says u bert, not¬u bert, not u elmo

It is perfectly possible for a situation to occur in which
three persons, sitting in a circle, claim their direct neighbour
is unreliable. How this conflict should be dealt with is an
issue open for discussion, but it should at least not cause the
hearer to enter a state of total ignorence in which also all
other entailment is completely blocked. It is our opinion,
also for reasons described in (Dung 1995) that the problems
of stable model semantics are very often caused by the na-
ture of the semantics itself, and not by an “anomalous” ex-
tended logic program.

Summary and Conclusions
One of the advantages of the approach as sketched in the cur-
rent paper is that it satisfies each of the quality postulatesdi-
rect consistency, indirect consistency, closedness and crash-
resistancy. Furthermore, it does so without the need of an
advanced semantics that is complex and potentially difficult
to understand. Although the approach only works for the
somewhat restricted notion of semi-normal extended logic
programs, we believe that these restrictions are in essence
quite natural and can be given a decent philosophical justifi-
cation.

References
ASPIC-consortium. 2005. Deliverable D2.5: Draft formal
semantics for ASPIC system.

Brewka, G. 1996. Well-founded semantics for extended
logic programs with dynamic preferences.J. Artif. Intell.
Res. (JAIR)4:19–36.

Caminada, M., and Amgoud, L. 2005. An axiomatic
account of formal argumentation. InProceedings of the
AAAI-2005, 608–613.

Dix, J. 1995a. A classification theory of semantics of nor-
mal logic programs: I. strong properties.Fundam. Inform.
22(3):227–255.

Dix, J. 1995b. A classification theory of semantics of nor-
mal logic programs: Ii. weak properties.Fundam. Inform.
22(3):257–288.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming andn-person games.Artificial Intelligence
77:321–357.
Garćıa, A., and Simari, G. 2004. Defeasible logic program-
ming: an argumentative approach.Theory and Practice of
Logic Programming4(1):95–138.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases.New Generation
Computing9(3/4):365–385.
Nute, D. 1994. Defeasible logic. In Gabbay, D.; Hog-
ger, C. J.; and Robinson, J. A., eds.,Handbook of Logic
in Artificial Intelligence and Logic Programming. Oxford:
Clarendon Press. 253–395.
Pollock, J. L. 1992. How to reason defeasibly.Artificial
Intelligence57:1–42.
Pollock, J. L. 1995.Cognitive Carpentry. A Blueprint for
How to Build a Person. Cambridge, MA: MIT Press.
Prakken, H., and Sartor, G. 1997. Argument-based ex-
tended logic programming with defeasible priorities.Jour-
nal of Applied Non-Classical Logics7:25–75.
Sakama, C. 1992. Extended well-founded semantics for
paraconsistent logic programs. InFGCS, 592–599.
van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991.
The well-founded semantics for general logic programs.J.
ACM 38(3):620–650.

108 Technical Report IfI-06-04

Theory of NMR and Uncertainty

2 Theory of NMR and Uncertainty
Nonmonotonic and uncertain reasoning are both aiming at making optimal use of avail-
able information even if it is neither complete nor certain. Whereas the former is in-
fluenced mainly by symbolic or qualitative logics, the latter often uses numbers such
as probabilities or possibilities to specify degrees of uncertainty. For intelligent agents
living in a complex environment, both frameworks provide interesting and powerful
approaches to help them realizing their intentions and goals in a particular effective and
flexible way. Many approaches have been developed in Artificial Intelligence in order
to formalize reasoning under uncertainty, as well as reasoning under incomplete infor-
mation with rules having potential exceptions. Some of them are symbolic and based
on a logical framework or on logic programming. Others are more numerically oriented
and make use of probabilities, or possibilistic logic.

This is the special session on Theory of NMR and Uncertainty, held in Lake District,
England, on June 1st, 2006, in the framework of the 11th International Workshop on
Nonmonotonic Reasoning (NMR’2006).

It gathers 14 contributions that covers various facets of recent researches which are at
the junction between nonmonotonic reasoning and the symbolic and numerical handling
of uncertainty.

The five first papers deal with fusion and revision of (possibily inconsistent) beliefs
and preferences. Didier Dubois’ paper is on the issue of iterated belief revision, dis-
cussing Three views on the revision of epistemic states emerging from three different
paradigms. He elaborates relationships to prioritized merging and to conditional belief
revision, and reveals clashes between some approaches to iterated belief revision and
the famous claim by Gärdenfors and Makinson, that belief revision and nonmonotonic
reasoning are two sides of the same coin.

Guilin Qi, Weiru Liu, and David A. Bell deal in A revision-based approach for han-
dling inconsistency in description logics with revision operators for description logics.
They first investigate their logical properties, and then make use of them to cope with
inconsistency in stratified description logic bases.

In Merging stratified knowledge bases under constraints, Guilin Qi, Weiru Liu,
and David A. Bell propose a family of merging operators for combining stratified
knowledge bases under integrity constraints. These knowledge bases need not be self-
consistent, nor do they have to share a common scale.

In their paper Merging Optimistic and Pessimistic Preferences, Souhila Kaci and
Leon van der Torre distinguish between controllable and uncontrollable variables for
decision making, where the first ones are considered under an optimistic perspective
while the second ones are seen more pessimistic, taking the worst case into account.

Similarity between worlds is a crucial notion for many nonmonotonic consequence
relations, and distance measures are a proper means to make this notion more precise.
Ofer Arieli pursues this idea in his paper Distance-Based Semantics for Multiple-Valued
Logics in the context of paraconsistent logics.

The next two papers concern default rules having exceptions, and logic programming
with default negations.

On Compatibility and Forward Chaining Normality is on extensions of the class of
normal default theories. Mingyi Zhang, Ying Zhang, and Yisong Wang study weakly
auto-compatible default theories and their relationships to auto-compatible default the-
ories and Forward Chaining normal default theories. The latter ones generalize normal
default theories but share most desirable properties with these.

In Incomplete knowledge in hybrid probabilistic logic programs, Emad Saad presents
a probabilistic answer set semantics for annotated extended logic programs, allowing
both classical and default negation in their syntax.

DEPARTMENT OF INFORMATICS 109

11TH NMR WORKSHOP

The two next papers address the formalisation of causality in probabilistic and possi-
bilistic framework. Joost Vennekens, Marc Denecker, and Maurice Bruynooghe present
in Extending the role of causality in probabilistic modeling a logic that uses conditional
probabilistic events as atomic constructs and that is based on two fundamental causal
principles. They show interesting relationships between their work and the theories of
Bayesian networks and probabilistic logic programming, respectively.

The paper Model and experimental study of causality ascriptions by Jean-Francois
Bonnefon, Rui Da Silva Neves, Didier Dubois, and Henri Prade discusses an agent’s
capability of recognizing causal relationships (and related notions of facilitation and
justification) from a psychological point of view. Background knowledge in an uncer-
tain world is here represented by means of nonmonotonic consequence relations.

Miodrag Raskovic, Zoran Markovic, and Zoran Ognjanovic prove in Decidability
of a Conditional-probability Logic with Non-standard Valued Probabilities the decid-
ability of their probabilistic logic that allows the representation of vague or imprecise
probabilistic statements. Their framework covers also the case when conditioning is
done on events of zero probability, and can be used for default reasoning as well.

Nonmonotonic reasoning basically centers around the question how consequences
may change when knowledge is enlarged or shrunken. Technically, this often comes
down to inserting or forgetting chunks of information, represented e.g. by literals. About
the computation of forgetting symbols and literals by Yves Moinard considers this issue
from a computational point of view.

The last three papers deal with argumentation and possibilistic reasoning. In Han-
dling (un)awareness and related issues in possibilistic logic: A preliminary discussion,
Henri Prade sheds some light on the investigation of unawareness in the possibilistic
framework. He points out how different graded modalities here can prove to be useful
for capturing forms of (un)awareness.

Possibilistic Defeasible Logic Programming is already quite a rich framework for
knowledge representation, combining features both from logic programming and argu-
mentation theory, and also allowing possibilistic uncertainty. In On the Computation of
Warranted Arguments within a Possibilistic Logic Framework with Fuzzy Unification,
Teresa Alsinet, Carlos Chesnevar, Lluis Godo, Sandra Sandri, and Guillermo Simari
extend this approach once again by incorporating elements of fuzzy logic.

Finally, in their second paper, Preference reasoning for argumentation: Non-monotonicity
and algorithms, Souhila Kaci and Leon van der Torre apply preference reasoning to ar-
gumentation theory, making it possible to compare the acceptability of arguments via
ordered values.

Session chairs

Salem Benferhat
(benferhat@cril.univ-artois.fr)

Gabriele Kern-Isberner
(gabriele.kern-isberner@cs.uni-dortmund.de)

Program committee

Gerd Brewka
(brewka@informatik.uni-leipzig.de)

Alexander Bochman
(bochmana@hit.ac.il)

110 Technical Report IfI-06-04

 benferhat@cril.univ-artois.fr
 gabriele.kern-isberner@cs.uni-dortmund.de
brewka@informatik.uni-leipzig.de
bochmana@hit.ac.il

Theory of NMR and Uncertainty

Jim Delgrande
(jim@cs.sfu.ca)

Marc Denecker
(Marc.Denecker@cs.kuleuven.be)

Angelo Gilio
(gilio@dmmm.uniroma1.it)

Lluis Godo
(godo@iiia.csic.es)

Rolf Haenni
(haenni@iam.unibe.ch)

Weiru Liu
(W.Liu@qub.ac.uk)

Thomas Lukasiewicz
(Thomas.Lukasiewicz@dis.uniroma1.it)

David Makinson
(david.makinson@kcl.ac.uk)

Robert Mercer
(mercer@csd.uwo.ca)

Henri Prade
(prade@irit.fr)

Bernd Reusch
(Bernd.Reusch@udo.edu)

Karl Schlechta
(ks1ab@web.de)

Guillermo Simari
(grs@cs.uns.edu.ar)

Paul Snow
(paulsnow@verizon.net)

Choh Man Teng
(cmteng@ai.uwf.edu)

Leon Van der Torre
(leon.vandertorre@uni.lu)

Emil Weydert
(emil.weydert@uni.lu)

Nic Wilson
(n.wilson@4c.ucc.ie)

Schedule Thursday 1 June 2006 (Thirlmere-Wastwater Room)
Session Chairs: S Benferhat and G Kern-Isberner

• 10.30MRaskovic, Z Markovic, and Z Ognjanovic, Decidability of a conditional-
probability logic with non-standard valued probabilities

• 10.55 Y Moinard, About the computation of forgetting symbols and literals

• 11.20 H Prade, Handling (un)awareness and related issues in possibilistic logic:
A preliminary discussion

DEPARTMENT OF INFORMATICS 111

 jim@cs.sfu.ca
Marc.Denecker@cs.kuleuven.be
 gilio@dmmm.uniroma1.it
 godo@iiia.csic.es
 haenni@iam.unibe.ch
 W.Liu@qub.ac.uk
Thomas.Lukasiewicz@dis.uniroma1.it
 david.makinson@kcl.ac.uk
 mercer@csd.uwo.ca
 prade@irit.fr
 Bernd.Reusch@udo.edu
ks1ab@web.de
 grs@cs.uns.edu.ar
 paulsnow@verizon.net
 cmteng@ai.uwf.edu
 leon.vandertorre@uni.lu
emil.weydert@uni.lu
 n.wilson@4c.ucc.ie

11TH NMR WORKSHOP

• 11.45 T Alsinet, C Chesnevar, L Godo, S Sandri, and G Simari, On the compu-
tation of warranted arguments within a possibilistic logic framework with fuzzy
unificiation

• 12.10 S Kaci and L van der Torre, Preference reasoning for argumentation: Non-
monotonicity and algorithms

• 12.35 Lunch

• 13.50 O Arieli, Distance-based semantics for multiple-valued logics

• 14.15 E Saad, Incomplete knowledge in hybrid probabilistic logic programs

• 14.40 J Vennekens, M Denecker, and M Bruynooghe, Extending the role of
causality in probabilistic modeling

• 15.05 J Bonnefon, R Da Silva Neves, D Dubois, and H Prade, Causality ascrip-
tions: Model and experimental study of

• 15.30 Coffee

• 16.00 D Dubois, Three views on the revision of epistemic states

• 16.25 G Qi, W Liu, and D Bell, A revision-based approach for handling incon-
sistency in description logics

• 16.50 G Qi, W Liu, and D Bell, Merging stratified knowledge bases under con-
straints

• 17.15 S Kaci and L van der Torre, Merging optimistic and pessimistic preferences

• 17.40 M Zhang, Y Zhang andWYisong, On compatibility and forward chaining
normality

112 Technical Report IfI-06-04

Theory of NMR and Uncertainty

DEPARTMENT OF INFORMATICS 113

11TH NMR WORKSHOP

2.1 Three views on the revision of epistemic states

Three scenarios for the revision of epistemic states
�

Didier Dubois
IRIT-CNRS

Université Paul Sabatier
Toulouse, France

dubois@irit.fr

Abstract

This position paper discusses the difficulty of interpreting it-
erated belief revision in the scope of the existing literature.
Axioms of iterated belief revision are often presented as ex-
tensions of the AGM axioms, upon receiving a sequence of
inputs. More recent inputs are assumed to have priority over
less recent ones. We argue that this view of iterated revision
is at odds with the claim, made by Gärdenfors and Makin-
son, that belief revision and non-monotonic reasoning are two
sides of the same coin. We lay bare three different paradigms
of revision based on specific interpretations of the epistemic
entrenchment defining an epistemic state and of the input
information. If the epistemic entrenchment stems from de-
fault rules, then AGM revision is a matter of changing plau-
sible conclusions when receiving specific information on the
problem at hand. In such a paradigm, iterated belief revi-
sion makes no sense. If the epistemic entrenchment encodes
prior uncertain evidence and the input information is at the
same level as the prior information and possibly uncertain,
then iterated revision reduces to prioritized merging. A third
problem is one of the revision of an epistemic entrenchment
by means of another one. In this case, iteration makes sense,
and it corresponds to the revision of a conditional knowledge
base describing background information by the addition of
new default rules.

Introduction

The interest in belief revision as a topic of investigation in ar-
tificial intelligence was triggered by Gärdenfors (1988) book
and the axiomatic approach introduced by C. Alchourrón, P.
Gärdenfors and D. Makinson (1985) in the setting of propo-
sitional logic. This approach assumes that the set of ac-
cepted beliefs held by an agent is a deductively closed set
of propositions. On this basis, axioms of belief change (re-
vision, but also contraction) formulate constraints that gov-
ern the “flux” of information, i.e. that relate one belief set
to the next one upon receiving a new piece of information.
An important assumption is that belief revision takes place
in a static world, so that the input information is supposed to
bring insight to a case that the agent deals with, but is never

�
This position paper was triggered by discussions with Jerome
Lang and Jim Delgrande at a Belief Revision seminar in Dagstuhl,
in August 2005

meant to indicate that the world considered by the agent re-
ceiving it has evolved.

The crucial point of the AGM theory is that the axiomatic
framework enforces the existence of a so-called epistemic
entrenchment relation between propositions of the language.
This relation acts like a priority assignment instrumental to
determine the resulting belief set after revision. It is also
similar (even if purely ordinal) to a probability measure.
More specifically, an epistemic entrenchment is a complete
preordering between propositions which looks like a com-
parative probability relation (Fishburn 1986), even if it has
different properties. Properties of an epistemic entrench-
ments make it expressible in terms of a complete plausibility
ordering of possible worlds, such that the resulting belief set
after receiving input

�
is viewed as the set of propositions

that are true in the most plausible worlds where
�

holds.

The AGM theory leaves the issue of iterated revision as
an open problem. Since then, iterated revision has been the
topic of quite a number of works (Nayak 1994), (Williams
1995), (Darwiche & Pearl 1997), (Lehmann 1995), (Jin &
Thielscher 2005). However it also seems to have created
quite a number of misunderstandings, due to the lack of in-
sight into the nature of the problem to be solved.

A typical question that results from studying the AGM
theory is: What becomes of the epistemic entrenchment af-
ter the belief set has been revised by some input informa-
tion? Some researchers claimed it was simply lost, and that
the AGM theory precludes the possibility of any iteration.
Others claimed that it changes along with � , and tried to
state axioms governing the change of the plausibility order-
ing of the worlds, viewing them as an extension of the AGM
axioms. This trend led to envisage iterated belief revision as
a form of prioritized merging where the priority assignment
to pieces of input information reflected their recency.

However, this notion of iterated belief revision seems to
be at odds with Gärdenfors and Makinson (1994) view of
belief revision as the other side of non-monotonic reasoning,
where the epistemic entrenchment relation is present from
the start and describes the agent’s expectations in the face
of the available evidence. Such an epistemic entrenchment
may also derive from the analysis of a set of conditionals, in

114 Technical Report IfI-06-04

Theory of NMR and Uncertainty

the style of (Lehmann & Magidor 1992), yielding a ranking
of worlds via the so-called rational closure.

The revised belief set is then the result of a simple infer-
ence step of conditionals from conditionals, whereby propo-
sitional conclusions tentatively drawn are altered by the ar-
rival of new pieces of evidence. In this framework, the con-
ditional information, hence the plausibility ordering, is never
revised and iteration comes down to inference of new con-
clusions and dismissal of former ones, in the spirit of non-
monotonic reasoning.

Solving the clash of intuitions between iterated revision
and non-monotonic reasoning leads us to considering that
the AGM view of belief revision (related to non-monotonic
reasoning) has more to do with inference under incomplete
information than with iterated revision as studied by many
subsequent researchers (see a critical discussion of Dar-
wiche and Pearl(1997) axioms along this line in (Dubois,
Moral, & Prade 1998)). Two settings for revision, namely
revision as defeasible inference, and revision as prioritized
merging emerge, that deal with distinct problems.

This note is also in the spirit of a former position paper by
Friedman and Halpern (1996a). In that note, they complain
that iterated belief revision research relies too much on the
finding of new axioms justified by toy-examples, and repre-
sentation results, while more stress should be put on laying
bare an appropriate “ontology”, that is, describing a concrete
problem or scenario that iterated revision is supposed to ad-
dress. Friedman and Halpern suggest two such ontologies,
that basically differ by the meaning of the input information.
According to the first one, the agent possesses knowledge
and beliefs about the state of the world, knowledge being
more entrenched than beliefs, and receives inputs consid-
ered as true observations. This view is similar to a form
of conditioning in the sense of uncertainty theories. In the
other scenario, the input information is no longer system-
atically held for true and competes with prior beliefs, thus
corresponding to a kind of merging bearing much similarity
to the combination of uncertainty in the theory of evidence
(Shafer 1976).

In this paper, we somewhat pursue this discussion by
pointing out that the status of the epistemic entrenchment
itself may also be understood differently: in some scenar-
ios, it represents background information about the world,
telling what is normal from what it is not, in a refined way. In
that case, the plausibility ordering underlying the epistemic
entrenchment is similar to a statistical probability distribu-
tion, except that the underlying population is ill-specified,
and statistical data is not directly accessible. In other sce-
narios, the plausibility ordering expresses beliefs about un-
reliable observations about the solution to a problem at hand,
the pieces of evidence gathered so far from witnesses on a
whodunit case, for instance. In the latter situation, the result-
ing epistemic entrenchment is fully dependent on the case at
hand and has no generic value.

It leads to propose three change problems that have little
to do with each other even if they may share some technical

tools. If we take it for granted that belief revision and non-
monotonic reasoning are two sides of the same coin and if
we rely on technical equivalence results between Lehmann
and Magidor(1992) conditional logic under rational closure,
and the AGM theory, then we come up with a qualitative
counterpart of statistical reasoning, with inputs taken as in-
complete but sure information about a case at hand. We call
it Belief Revision as Defeasible Inference (BRDI). On the
other hand, if we take it for granted that the epistemic en-
trenchment gathers uncertain evidence about a case, likely
to evolve when new uncertain pieces of evidence are col-
lected, we speak of Belief Revision as Prioritized Merging
(BRPM). Finally, we consider the situation where our back-
ground knowledge is modified by new pieces of knowledge,
whereby states of fact that we used to think as normal turn
out not to be so, or conversely. We then speak of Revision of
Background Knowledge by Generic Information (RBKGI).
In the latter case, inputs take the form of conditionals.

It may be that other scenarios for belief change could be
pointed out. However, we claim that iterated revision in
each of the above scenarios corresponds to very different
problems. A companion paper (Delgrande, Dubois, & Lang
2006) proposes a formal framework for the BRPM situation
in full details. Here, we propose an informal comparative
discussion of the three scenarios.

Belief Revision as Defeasible Inference (BRDI)

In the first setting, the AGM theory and non-monotonic rea-
soning are really regarded as two sides of the same coin.
However, while in the AGM approach, only a flat belief
set denoted � , composed of logical formulas, is explicitly
available (since the epistemic entrenchment is implicit in
the axioms of the theory), the nonmonotonic logic approach
lays bare all the pieces of information that allows an agent
to reason from incomplete reliable evidence and background
knowledge. While in the AGM paradigm, the primitive ob-
ject is the belief set, in the following, everything derives
from conditional information, synthetized in the form of a
partial ordering of propositions, and the available evidence.
This view is fully developed by Dubois Fargier and Prade
(2004) (2005) as a theory of accepted beliefs.

In the following, we consider a classical propositional lan-
guage, and we do not distinguish between logically equiva-
lent propositions. Hence, we consider propositions as sub-
sets of possible worlds, in other words, events (to borrow
from the probabilistic literature). The influence of syntax on
revision is out of the scope of this paper. Under such a pro-
viso, it is assumed that the agent’s epistemic state is made of
three components:

1. A confidence relation, in the form of a partial ordering �
on propositions

�������������
expressed in a given language.

This relation, which should be in agreement with logi-
cal deduction, expresses that some propositions are more
normally expected (or less suprizing) than others. It en-
codes the background information of the agent, which de-

DEPARTMENT OF INFORMATICS 115

11TH NMR WORKSHOP

scribes how (s)he believes the world behaves in general.
It reflects the past experience of the agent. Such a con-
fidence relation may directly stem from a set of condi-
tionals � . � contains pieces of conditional knowledge
of the form

��� �
where

�
is a nonclassical implica-

tion, stating that in the context where all that is known is�
,
�

is generally true. Each such conditional is then en-
coded as the constraint

��� � � ����� �
, understood as

the statement that
��� �

is generally more plausible (that
is, less surprizing) than

�	��� �
(Friedman & Halpern

1996b). A plausibility ordering of worlds
�� can be de-
rived from such constraints via some information mini-
mization principle (like rational closure of Lehmann and
Magidor (1992), or equivalently, the most compact rank-
ing compatible with the constraints(Pearl 1990), or yet the
principle of minimal specificity of possibilistic logic (see
(Benferhat, Dubois, & Prade 1997) for instance).

2. A set of contingent observations concerning a case of in-
terest for the agent, under the form of a propositional for-
mula

�
. The observations are sure evidence about this

case, not general considerations about similar cases. Such
pieces of evidence are sure facts (or at least accepted as
such), hence consistent with each other. It means that a
preliminary process is capable of handling conflicting ob-
servations and come up with a consistent report.

3. The belief set � � �
of the agent. It is made of propo-

sitions tentatively accepted as true by the agent about the
case, in the face of the current observations. Propositions
in � � �

are inferred from the observations and the back-
ground knowledge (so it is not an independent part of the
epistemic state). � is the belief set of the agent before
hearing about

�
. That input information is safe explains

why the success postulate (
��

� � �
) makes sense.

For instance consider a medical doctor about to diagnose
a patient. It is assumed that the aim is to determine what
the patient suffers from within a time-period where the dis-
ease does not evolve. The plausibility ordering reflects the
medical knowledge of the medical doctor in general. Before
seeing the patient, (s)he may have some idea of which dis-
eases are more plausible than others. Observations consist
of reports from medical tests and information provided by
the patient on his state of health. The resulting belief set
contains the diagnosis of the patient that will be formulated
by the doctor on the basis of the available observations. This
belief set concerns the patient, not people’s health in general.

Formally, under this view, the original belief set � is in-
ferred from � , or from � , or from
�� , (according to the
choice of a representation) and from the tautology as input
(

�����
, assuming no observations). � � �

is derived like-
wise from input

�
. In terms of conditionals, the change from

� to � � �
stems from the fact that the conditionals

���
�

and
���

� � �
, respectively, can be inferred from � under

some inferential system. In terms of a confidence relation
� between propositions � � ����� � � ��� � � ����� ���

.
Dubois et al. (2005) show that requiring the deductive clo-
sure of � � �

is enough to recover system P of Kraus et
al.(1990). Moreover if � is the strict part of a complete

preordering, one recovers the setting of possibility theory
(Dubois, Fargier, & Prade 2004) and all the AGM axioms
of belief revision (restricted to consistent inputs). In other
words, � is a comparative possibility relation in the sense
of Lewis(1973), that derives from a plausibility ordering
 �
of possible worlds. Under a plausibility ordering
 � , it is
well-known after Grove(1988) that � (resp. � � �

) are the
set of propositions true in the most plausible worlds (resp.
where

�
is true).

This approach is very similar to probabilistic reasoning as
emphasized by Pearl (1988), Dubois and Prade (1994). A
set of conditionals � is the qualitative counterpart of a set of
conditional probabilities of the form ��� ��� �����!

defin-
ing a family of probability measures. There is no need to re-
sort to infinitesimals for bridging the gap between nonmono-
tonic reasoning and probabilistic reasoning. Recent works
by Gilio and colleagues (2002) indicate that probabilistic
reasoning with conditionals of the form ��� �"� �#���%$

,
precisely behaves like system P of Kraus et al. Benferhat et
al. (1999), show that if we restrict to so-called big-stepped
probabilities, conditionals can be interpreted by constraints
��� �&� �'�)(��� ���*� �+�

.

Along the same lines, extracting a minimally informative
plausibility ordering of worlds
 � from a set of condition-
als is very similar to the application of the maximal entropy
principle from a set of conditional probabilities, an approach
advocated by Paris (1994). This similarity has been stud-
ied by Maung(1995). So reasoning according to a plausi-
bility ordering is also similar to probabilistic reasoning with
Bayes nets (Pearl 1988). In this approach, the background
knowledge is encoded by means of a (large) joint probabil-
ity distribution on the state space defined by a set of (often
Boolean) attributes. This probability distribution embodies
statistical data pertaining to a population (e.g. of previously
diagnosed patients, for instance) in the form of a directed
acyclic graph and conditional probability tables. The ad-
vantage of the Bayes net format is to lay bare conditional
independence assumptions and simplify the computation of
inference steps accordingly. The network is triggered by the
acquisition of observations on a case. Inferring a conclu-
sion , based on observing

�
requires the computation of a

conditional probability ���-, � ���
, and interpreting it as the

degree of belief that , is true for the current situation for
which all that is known is

�
. Apart from computing degrees

of belief, one is interested in determining the most probable
states upon learning

�
.

It is clear that the plausibility ordering in the above view
of the AGM framework plays the same role as a Bayes net.
Especially,
.� might compile a population of cases, even
if this population is ill-defined in the non-monotonic set-
ting (the agent knows that “Birds fly” but it is not entirely
clear which population of birds is referred to). It means that
the input observations, since pertaining only to the case at
hand, are not of the same nature as the plausibility ordering,
and are not supposed to alter it, just like a Bayes net is not
changed by querying it. In this framework, iterating belief
change just means accumulating consistent observations and

116 Technical Report IfI-06-04

Theory of NMR and Uncertainty

reasoning from them using the background knowledge. In-
terestingly, plausibility orderings, encoded as possibility dis-
tributions can be represented using the same graphical struc-
tures as joint probability distributions (see (Benferhat et al.
2002a)), and local methods for reasoning in such graphs can
be devised (BenAmor, Benferhat, & Mellouli 2003). These
graphical representations are equivalent to the use of possi-
bilistic logic, but not necessarily more computationally effi-
cient. In the purely ordinal case, CP-nets are also the coun-
terparts of Bayes nets, and it is strange they are only pro-
posed for preference modeling, while they could also im-
plement a form of plausible reasoning compatible with the
above “ontology” of qualitative reasoning under incomplete
observations using background knowledge.

Belief Revision as Prioritized Merging

A radically different view is to consider that an epistemic
state is made of uncertain evidence about a particular world
of interest (a static world, again). It gathers the past uncer-
tain observations obtained so far about a single case. So the
belief set � is actually a completely ordered set (ordered by
the epistemic entrenchment), and the underlying plausibility
ordering on worlds describes what is the most plausible so-
lution to the problem at hand. The epistemic entrenchment
describes what should be more or less believed about the
current case. In the BRPM view, the plausibility ordering is
no longer like a statistical distribution.

The new observations
�

have the same status as the plau-
sibility ordering, and are likely to modify it. They are testi-
monies or sensor measurements. They could be unreliable,
uncertain.

So this kind of belief change is particularly adapted to the
robotics environment for the fusion of unreliable measure-
ments. It also accounts for the problem of collecting evi-
dence, where the main issue is to validate facts relevant to
a case on the basis of unreliable testimonies and incomplete
observations. As an example, consider a criminal case where
the guilty person is to be found on the basis of (more or less
unreliable) testimonies and clues. The investigator’s beliefs
reflect all evidence gathered so far about the case. The input
information consists of an additional clue or testimony.

Under this view, belief revision means changing the pair
� �

�
 � � into another pair � � � ���
 ��� � . Again the belief
set � is induced by the plausibility ordering, but here there
is no background knowledge at work. A new input should
be merged with the existing information, with its own relia-
bility level. If this level is too weak, it may be contradicted
by the original belief set. Note that � cannot be viewed as
knowledge (as opposed to belief). It is just what the agent
thinks is more likely. Here, iterating the revision process
makes sense, and comes down to a merging process because
the a priori information and the input information are of the
same nature. The success postulate just expresses the fact
that the newest information is the most reliable. Not ques-
tioning this postulate has led to a view of iterated belief revi-

sion where the newest piece of information is always more
reliable than the previous ones.

One may argue that iterated belief revision can be more
convincingly considered as a form of prioritized merging.
Indeed, it seems that assigning priorities on the sole basis of
the recency of observations in a static problem about which
information accumulates is not always a reasonable assump-
tion. Sherlock Holmes would not dismiss previously estab-
lished facts on the basis of new evidence just because such
evidence is new.

At the computational level, an epistemic state � �
�
�� �

is best encoded as an ordered belief base using possibilis-
tic logic (Dubois, Lang, & Prade 1994) or kappa rankings
(Williams 1995). However the meaning of a prioritized be-
lief base differs according to whether it is viewed as a partial
epistemic entrenchment (what Williams calls an “ensconce-
ment”) or as a set of constraints on a family of possible epis-
temic entrenchments (possibilistic logic). Practical methods
for merging ordered belief bases were devised in (Benferhat
et al. 1999), (Benferhat et al. 2000) and in the special case
when the success postulate is acknowledged see (Benferhat
et al. 2002c).

The numerical counterpart to this view of iterated revision
here is to be found in Shafer(1976)’s mathematical theory
of evidence. In this theory, an unreliable testimony takes
the form of a proposition

�
and a weight � � � � reflecting

the probability that the source providing
�

is reliable. It
means that with probability

$�� � � � � , the input information
is equivalent to receiving no information at all. More gen-
erally, a body of evidence is made of a set of propositions���

along with positive masses � � ��� � summing to 1. � � �	� �
is the probability that proposition � � correctly reflects the
agent’s evidence about the case at hand. The degree of belief��

� �-, � of a proposition , is the probability that , can be
logically inferred from the agent’s body of evidence (sum-
ming the masses of propositions

� �
that imply ,). Revising

the agent belief upon arrival of a sure piece of information
�

(��� � ��� � $
) comes down to a conditioning process ruling

out all states or worlds that falsify
�

. If the input informa-
tion is not fully reliable, Dempster’s rule of combination, an
associative and commutative operation, carries out the merg-
ing process. Note that the symmetry of the operation is due
to the fact that the new pair � ��� ���-� ��� �

is merged with the
body of evidence. The smaller ���-� �#�

, the less effective is
the input information

�
in the revision process.

When the input information is legitimately considered as
more reliable than what has been acquired so far, merging
the plausibility ordering and the new observation in a non-
commutative way is a possible option. A similar view was
advocated by (Dubois & Prade 1992) where the plausibility
ordering was encoded by means of a possibility distribution.
The AGM axioms were extended to plausibility orderings

 � and are thus discussed in terms of their relevance for
characterizing the revision of possibility distributions by in-
put information. The success postulate led us to consider
belief revision as a form of conditioning, in the tradition of

DEPARTMENT OF INFORMATICS 117

11TH NMR WORKSHOP

probability kinematics (Domotor 1980).

Darwiche and Pearl (1997) axioms of iterated belief
change embody the principle of minimal change of the or-
dering that is expected when the priority is always given
to the new information. Among revision operations sat-
isfying these postulates (applied to plausibility orderings)
Boutilier’s natural revision (Boutilier 1993) can be viewed
as iterated revision of a plausibility ordering
 � , with pri-
ority to the new input

�
. In this scheme, the resulting most

plausible worlds are the
 � -best
�

-worlds, all other things
remaining equal, while possibilistic conditioning flatly elim-
inates worlds not in agreement with the input information
(thus not obeying the Darwiche-Pearl postulates). Papini
and colleagues (Benferhat et al. 2002b) adopt the view that
in the resulting plausibility ordering all

�
-worlds are more

plausible than any
� �

-world all things being equal. This
method also satisfies the Darwiche-Pearl postulates.

The case of uncertain inputs is discussed in (Dubois &
Prade 1992). It is pointed out that two situations may oc-
cur: one whereby the degree of certainty of the new piece of
information is considered as a constraint. Then, this piece
of information is to be entered into the a priori ordered be-
lief set with precisely this degree of certainty. If this degree
of certainty is low it may result in a form of contraction (if
the source reliably claims that a piece of information can-
not be known, for instance). In probability theory this is at
work when using Jeffrey’s revision rule (Jeffrey 1965). Dar-
wiche and Pearl (1997) propose one such revision operation
in terms of kappa-functions. The other view is that the de-
gree of uncertainty attached to the input is an estimation of
the reliability of the source, and then the piece of informa-
tion is absorbed or not into the belief set. The latter view is
more in line with the prioritized merging setting.

The companion paper (Delgrande, Dubois, & Lang 2006)
reconsiders postulates for iterated revision without making
any recency assumption: there is a certain number of more
less reliable pieces of information to be merged, one of them
being the new one. If we postulate that all uncertain obser-
vations play the same role and have the same reliability, a
symmetric (and possibly associative) merging process can
take place.

Reliability degrees are no longer a matter of recency, but
can be decided on other grounds. In (Delgrande, Dubois,
& Lang 2006), four axioms, for the prioritized merging of
unreliable propositions into a supposedly accepted one are
proposed. They embody the BRPM scenario of evidence
collection and sorting producing a clearly established fact (a
propositional formula representing a belief set). Informally
they express the following requirements:

� A piece of information at a given reliability level should
never make us disbelieve something we accepted after
merging pieces of information at strictly higher reliabil-
ity levels.

� The result of merging should be consistent.
� Vacuous evidence does not affect merging.

� Optimism: The result of merging consistent propositions
is the conjunction thereof.

The important postulate is optimism, which suggests that
if supposedly reliable pieces of information do not conflict,
we can take them for granted. In case of conflicts, one may
then assume as many reliable pieces of information as pos-
sible so as to maintain local consistency. It leads to opti-
mistic assumptions on the number of truthful sources, and
justify procedures for extracting maximal consistent subsets
of items of information, see (Dubois & Prade 2001). This
may be viewed as an extended view of the minimal change
postulate, via the concern of keeping as many information
items as possible. A restricted form of associativity stat-
ing that merging can be performed incrementally, from the
most reliable to the least reliable pieces of information is
proposed as optional. These axioms for prioritized merging
recover Darwiche and Pearl postulates (except the contro-
versial C2 dealing with two successive contradictory inputs)
as well as two other more recent postulates from (Nayak
et al. 1996; Nayak, Pagnucco, & Peppas 2003), and from
(Jin & Thielscher 2005), when the reliability ordering corre-
sponds to recency. It also recovers the setting of Konieczny
and Pino-Perez (2002) for flat merging under integrity con-
straints for the fusion of equally reliable items in the face
of more reliable ones. The prioritized merging setting of
(Delgrande, Dubois, & Lang 2006) can also be viewed as
a framework for extracting a set of preferred models from
a potentially inconsistent prioritized belief base. Extending
the postulates to outputs in the form of an ordered belief set
is a matter of further research.

Interestingly, the BRPM scenario can be articulated with
the previous BRDI scenario. One may see the former as a
prerequisite for the latter: first evidence must be sorted out
using a BRPM step, and then once a fact has been suffi-
ciently validated, the agent can revise plausible conclusions
about the world, based on this fact using BRDI (in order to
suggest the plausible guilty person in a case, thus guiding
further evidence collection).

AGM � BRDI or BRPM ?

Considering the relative state of confusion in the iterated re-
vision literature, it is not completely clear what the AGM
theory is talking about: BRDI or BRMP. Due to the stress
given subsequently by Gärdenfors and Makinson (1994) to
the similarity between non-monotonic reasoning and belief
revision, it is natural to consider that BRDI is the natural
framework for understanding their results. But then it fol-
lows that iterated revision deals with a different problem,
and the above discussion suggests it can be BRMP.

1. In the AGM theory you never need � to derive � � �
,

you only need the revision operation * (in other words the
plausibility ordering) and

�
. So the notation � � �

is
in some sense misleading, since it suggests an operation
combining � and

�
. This point was also made by Fried-

man and Halpern (1996a) In the BRPM view, the result-

118 Technical Report IfI-06-04

Theory of NMR and Uncertainty

ing epistemic state is also a function of the prior epistemic
state and the input information only.

2. The AGM postulates of belief revision are in some sense
written from a purely external point of view, as if an ob-
server had access to the agent’s belief set from outside,
would notice its evolution under input information viewed
as stimuli, and describe its evolution laws (the AGM the-
ory says: if from the outside, an agent’s beliefs seem to
evolve according to the postulates, then it is as if there
were a plausibility ordering that drives the belief flux). In
this view, the background knowledge remains hidden to
the observer, and its existence is only revealed through
the postulates (like small particles are revealed by theo-
ries of microphysics, even if not observed yet). In the
BRPM problem, the prior plausibility ordering is explic-
itly stated. Under the BRDI view, for practical purposes, it
also looks more natural to use the plausibility ordering as
an explicit primitive ingredient (as done by (Gärdenfors
& Makinson 1994) and to take an insider point of view
on the agent’s knowledge, rather than observing beliefs
change from the outside.

3. The belief revision step in the AGM theory leaves the or-
dering of states unchanged under the BRDI view. This is
because inputs and the plausible ordering deal with differ-
ent matters, resp. the particular world of interest, and the
class of worlds the plausible ordering refers to. The AGM
approach, in the BRDI view is a matter of “querying” the
epistemic entrenchment relation, basically, by focusing it
on the available observation. Under this point of view,
axioms for revising the plausibility ordering, as proposed
by (Darwiche & Pearl 1997), for instance, cannot be seen
as additional axioms completing the AGM axioms. On
the contrary, the prioritized merging view understands the
AGM axioms as relevant for the revision of epistemic
states and apply them to the plausibility ordering. As such
they prove to be insufficient for its characterization, hence
the necessity for additional axioms.

4. In BRDI, while belief sets seem to evolve (from � to � �
�

to � � � ��� � � . . .) as if iterated belief revision would
take place, � � � �#� � � is really obtained by gathering the
available observations

�
and

�
and inferring plausible

beliefs from them. Again we do not compute � � � ��� � �
from � � �

. But � � � ��� � � means � � � � � �'�
(itself not

obtained from �), with the proviso that
�

and
�

should
be consistent. And indeed, within the BRDI view,

� � � ��� � � � � � � ��� �+�
if

� � ������
is a consequence of AGM revisions (especially Axioms 7
and 8), if we consider that after revision by

�
the plausi-

bility ordering does not change (we just restrict it to the�
-worlds). Strictly speaking, these axioms say that the

identity holds if
�

is consistent with � � �
(not with�

). However, if the relative plausibility of worlds is not
altered after observing

�
, the subsequent revision step

by observation
�

will further restrict
 � to the
��� �

-
worlds since

��� ������
, and the corresponding belief

set is thus exactly � � � � � �+�
corresponding the most

plausible among
� � �

-worlds. It underlies an optimistic

assumption about input information, namely that both
�

and
�

are reliable if consistent (a postulate of prioritized
merging). This situation is similar to probabilistic con-
ditioning whereby iterated conditioning (��� , � � � �'�

)
comes down to simple conditioning on the conjunction of
antecedents (���-, � ��� �+�

). Of course this is also a re-
stricted view of the AGM theory, forbidding not only the
revision by

�
, but also by a sequence of consistent in-

puts that are globally inconsistent. But we claim that this
restriction is sensible in the BRDI scenario.

5. If in the AGM setting, observations
�

,
�

are inconsistent
then the BRDI scenario collapses, because it means that
some of the input facts are wrong. In this case, even if the
AGM theory proposes something, the prospect it offers is
not so convincing, as this is clearly a pathological situ-
ation. Similarly, in probabilistic reasoning, conditioning
on a sequence of contradicting pieces of evidence makes
no sense. Within the BRDI view, the natural approach is
to do a merging of observations so as to restore a con-
sistent context prior to inferring plausible beliefs (and as
suggested above, the BRPM could be applied to the merg-
ing of such inconsistent input observations). In the med-
ical example, it is clear that the physician receiving con-
tradictory reports about the patient will first try to sort out
the correct information prior to formulating a diagnosis.
In the BRPM view, there is nothing anomalous with the
situation of several conflicting inputs, because this con-
flict is expected as being of the same nature as the pos-
sible conflict between the agent’s epistemic state and one
piece of input information.

In summary, under the BRDI view, the belief revision
problem (moving from � to � � �

) is totally different from
the problem of revising the plausible ordering of states of na-
ture, while in the BRPM view both are essentially the same
problem and must be carried out conjointly. In particular, it
makes no sense to “revise an ordering by a formula”, in the
AGM framework. In the BRPM view, the input proposition�

is viewed as an ordering of worlds such that at least one
world where

�
is true is more likely than any world where�

is false. In other words, belief revision can be cast within
a more general setting of merging uncertain pieces of evi-
dence (encoded by plausibility orderings).

Revision of Background Knowledge by
Generic Information (RBKGI)

In the BRDI view, apart from the (contingent) belief revi-
sion problem addressed by the non-pathological part of the
AGM theory and non-monotonic inference, there remains
the problem of revising the generic knowledge itself (en-
coded or not as a plausibility ordering) by means of input
information of the same kind. The AGM theory tells noth-
ing about it. This problem is also the one of revising a set of
conditionals by a new conditional (Boutilier & Goldszmidt
1993). Comparing again to probabilistic reasoning, contin-
gent belief revision is like computing a conditional probabil-
ity using observed facts instantiating some variables, while

DEPARTMENT OF INFORMATICS 119

11TH NMR WORKSHOP

revising a plausibility ordering is like revising a Bayes net
(changing the probability tables and/or the topology of the
graph). In the medical example, the background knowledge
of the physician is altered when reading a book on medicine
or attending a specialized conference on latest developments
of medical practice.

One interesting issue is the following: since background
knowledge can be either encoded as a plausibility ordering

.� or as a conditional knowledge base � , should we pose
the RBKGI problem in terms of revising � or revising
 � ?

Suppose � is a conditional knowledge base, which, using
rational closure, delivers a plausibility ordering
 � of possi-
ble worlds. Let

�	� �
be an additional generic rule that is

learned by the agent. If ��� � �	� ���
is consistent (in the

sense that a plausibility ordering
 ��� can be derived from
it), it is natural to consider that the revision of
 � yields the
plausibility ordering
 ��� , obtained from ��� � ��� ���

via
rational closure. Viewed from the conditional knowledge
base this form of revision is just an expansion process. The
full-fledged revision would take place when the conditional� � �

contradicts � , so that no plausibility ordering is
compatible with ��� � ��� ���

(Freund 2004). This kind of
knowledge change needs specific rationality postulates for
the revision of conditional knowledge bases, in a logic that
is not classical logic, but the logic of conditional assertions
of Kraus et al.(1990).

Alternatively, one may attempt to revise the plausibil-
ity ordering
 � (obtained from � via a default informa-
tion minimisation principle), using a constraint of the form��� � � �#� � �

. To do so, Darwiche-Pearl postulates can be
a starting point, but they need to be extended in the context
of this particular type of change. Results of (Freund 2004)
and (Kern-Isberner 2001) seem to be particularly relevant
in this context. For instance it is not clear that the change
process should be symmetric. One might adopt a principle
of minimal change of the prior beliefs under the constraint
of accepting the new conditional or ordering as a constraint
(Domotor 1980). A set of postulates for revising a plausibil-
ity ordering (encoded by a kappa-function) by a conditional
input information of the form

�	� � � ����� �
is pro-

posed by Kern-Isberner (2001). They extend the Darwiche-
Pearl postulates and preserve the minimal change require-
ment in the sense that they preserve the plausibility ordering

 � among the examples

��� �
of the input conditionals, its

counterexamples
� � � �

, and its irrelevant cases
� �

.

Some insights can also be obtained from the probabilistic
literature (van Fraassen 1980) (Domotor 1985). For instance
Jeffrey’s rule consists in revising a probability distribution
� , enforcing a piece of knowledge, of the form ��� ��� ��

,
as a constraint which the resulting probability measure ���
must satisfy. The probability measure “closest” to � in the
sense of relative entropy, and obeying �	� � ���&�

is of
the form �
� � � ��� � ��� � � ����� � $��� � ��� ��� � ���

. The
problem of revising a probability distribution by means of a
conditional input of the form ��� �+� �+� ��

has been consid-
ered in the probabilistic literature by (van Fraassen 1981).

Rules for revising a plausibility ordering can be found in
(Williams 1995), (Weydert 2000), (Kern-Isberner 2001) (us-
ing the kappa functions of (Spohn 1988)) and (Dubois &
Prade 1997) using possibility distributions.

However it is not clear that revising the plausibility or-
dering
 � obtained from � by a constraint of the form��� � � ��� � �

has any chance to always produce the
same result as deriving the plausibility ordering
��� from
the revised conditional knowledge base � after enforcing a
new rule

��� �
.

While our aim is not to solve this question, at least our
paper claims that revising generic knowledge whether in the
form of a conditional knowledge base, or in the form of a
plausibility ordering, is a problem distinct from the one of
contingent belief revision (BRDI, which is only a problem
of inferring plausible conclusions), and from the prioritized
merging of uncertain information. The RBKGI problem can
be subject to iterated revision, as well. One may argue that
RBKGI underlies an evolving world in the sense of account-
ing for a global evolution of the context in which we live.
In some respects, the normal course of things to-day is not
the same as it used to be fifty years ago, and we must adapt
our generic knowledge accordingly. The distinction between
updates and revision is not so clear when generic knowledge
is the subject of change.

Conclusion

This position paper tried to lay bare three problems of be-
lief change corresponding to different scenarios. Results in
the literature of iterated belief change should be scrutinized
further in the context of these problems. It is clear that ad-
dressing these problems separately is a simplification. For
instance in the BRDI approach, observations are always con-
sidered as sure facts, but one may consider the more com-
plex situation of inferring plausible conclusions from uncer-
tain contingent information using background knowledge.
Also the assumption that in the BRDI approach, contingent
inputs never alter the background knowledge is also an ideal-
ization: some pieces of information may destroy part of the
agent’s generic knowledge, if sufficiently unexpected (think
of the destruction of the Twin Towers); moreover, an intel-
ligent agent is capable of inducing generic knowledge from
a sufficient amount of contingent observations. The latter
is a matter of learning, and the question of the relationship
between learning and belief revision is a natural one even if
beyond the scope of this paper.

References

Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change : partial meet contraction
and revision functions. J. Symbolic Logic 50:510–530.
BenAmor, N.; Benferhat, S.; and Mellouli, K. 2003.
Anytime propagation algorithm for min-based possibilistic
graphs. Soft Computing 8:150–161.

120 Technical Report IfI-06-04

Theory of NMR and Uncertainty

Benferhat, S.; Dubois, D.; Prade, H.; and Williams, M.
1999. A practical approach to fusing prioritized knowledge
bases. In Proc. 9th Portuguese Conference on Artificial
Intelligence, Lecture Notes in Artificial Intelligence, 222–
236. Springer.
Benferhat, S.; Dubois, D.; Kaci, S.; and Prade, H. 2000.
Encoding information fusion in possibilistic logic:a general
framework for rational syntactic merging. In Proc.14th Eu-
rop.Conf.on Artificial Intelligence (ECAI2000), 3–7. IOS
Press.
Benferhat, S.; Dubois, D.; Garcia, L.; and Prade., H.
2002a. On the transformation between possibilistic logic
bases and possibilistic causal networks. Int. J. Approximate
Reasoning 29:135–173.
Benferhat, S.; Dubois, D.; Lagrue, S.; and Papini, O.
2002b. Making revision reversible: an approach based on
polynomials. Fundamenta Informaticae 53:251–280.
Benferhat, S.; Dubois, D.; Prade, H.; and Williams, M.
2002c. A practical approach to revising prioritized knowl-
edge bases. Studia Logica 70:105–130.
Benferhat, S.; Dubois, D.; and Prade, H. 1997. Nonmono-
tonic reasoning, conditional objects and possibility theory.
Artificial Intelligence 92:259– 276.
Benferhat, S.; Dubois, D.; and Prade, H. 1999. Possi-
bilistic and standard probabilistic semantics of conditional
knowledge. J. Logic and Computation 9:873–895.
Biazzo, V.; Gilio, A.; Lukasiewicz, T.; and Sanfilippo,
G. 2002. Probabilistic Logic under Coherence, Model-
Theoretic Probabilistic Logic, and Default Reasoning in
System P. J. Applied Non-Classical Logics 12(2):189–213.
Boutilier, C., and Goldszmidt, M. 1993. Revision by con-
ditionals beliefs. In Proc. of the 11th National Conf. on
Artificial Intelligence (AAAI’93).
Boutilier, C. 1993. Revision sequences and nested condi-
tionals. In Proceedings of IJCAI’93.
Darwiche, A., and Pearl, J. 1997. On the logic of iterated
belief revision. Artificial Intelligence 89:1–29.
Delgrande, J.; Dubois, D.; and Lang, J. 2006. Iterated
belief revision as prioritized merging. In Proceedings of
KR’06, Windermere, U.K.
Domotor, Z. 1980. Probability kinematics and representa-
tion of belief change. Philosophy of Science 47:284–403.
Domotor, Z. 1985. Probability kinematics - conditional
and entropy principles. Synthese 63:74–115.
Dubois, D., and Prade, H. 1992. Belief change and possi-
bility theory. In Gärdenfors, P., ed., Belief Revision. Cam-
bridge University Press. 142–182.
Dubois, D., and Prade, H. 1994. Non-standard theories
of uncertainty in knowledge representation and reasoning.
The Knowledge Engineering Review 9:399–416.
Dubois, D., and Prade, H. 1997. A synthetic view of belief
revision with uncertain inputs in the framework of possi-
bility theory. Int. J. Approximate Reasoning 17:295–324.
Dubois, D., and Prade, H. 2001. Possibility theory in in-

formation fusion. In Data Fusion and Perception, volume
431 of CISM Courses and Lectures. Springer. 53–76.
Dubois, D.; Fargier, H.; and Prade, H. 2004. Ordinal and
probabilistic representations of acceptance. J. Artificial In-
telligence Research 22:23–56.
Dubois, D.; Fargier, H.; and Prade, H. 2005. Acceptance,
conditionals, and belief revision. In Conditionals, Infor-
mation, and Inference, volume 3301 of Lecture Notes in
Artificial Intelligence. Springer. 38–58.
Dubois, D.; Lang, J.; and Prade, H. 1994. Possibilistic
logic. In Gabbay, D.; Hogger, C.; and Robinson, J., eds.,
Handbook of logic in Artificial Intelligence and logic pro-
gramming, volume 3. Clarendon Press - Oxford. 439–513.
Dubois, D.; Moral, S.; and Prade, H. 1998. Belief change
rules in ordinal and numerical uncertainty theories. In Be-
lief Change. Kluwer. 311–392.
Fishburn, P. C. 1986. The axioms of subjective probabili-
ties. Statistical Science 1:335–358.
Freund, M. 2004. On the revision of preferences and ra-
tional inference processes. Artificial Intelligence 152:105–
137.
Friedman, N., and Halpern, J. 1996a. Belief revision: A
critique. In Proceedings of KR’96, 421–631.
Friedman, N., and Halpern, J. Y. 1996b. Plausibility mea-
sures and default reasoning. In Proceedings of AAAI’96,
1297–1304.
Gärdenfors, P., and Makinson, D. 1994. Nonmonotonic
inference based on expectations. Artificial Intelligence
65:197–245.
Gärdenfors, P. 1988. Knowledge in Flux: Modeling the
Dynamics of Epistemic States. MIT Press.
Grove, A. 1988. Two modellings for theory change. J.
Philos. Logic 17:157–170.
Jeffrey, R. 1965. The logic of decision. McGraw-Hill.
Jin, Y., and Thielscher, M. 2005. Iterated revision, revised.
In Proc. IJCAI’05, 478–483.
Kern-Isberner, G. 2001. Conditionals in Nonmonotonic
Reasoning and Belief Revision, volume 2087 of Lecture
Notes in Artificial Intelligence. Springer.
Konieczny, S., and Pino Pérez, R. 2002. Merging informa-
tion under constraints: a qualitative framework. J. Logic
and Computation 12(5):773–808.
Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Non-
monotonic reasoning, preferential models and cumulative
logics. Artificial Intelligence 44(1-2):167–207.
Lehmann, D., and Magidor, M. 1992. What does a condi-
tional knowledge base entail? Artificial Intelligence 55:1–
60.
Lehmann, D. 1995. Belief revision, revised. In Proceed-
ings of IJCAI’95, 1534–1540.
Lewis, D. 1973. Counterfactuals. Basil Blackwell, U.K.
Maung, I. 1995. Two characterizations of a minimum in-
formation principle for possibilistic reasoning. Int. J. Ap-
proximate Reasoning 12:133–156.

DEPARTMENT OF INFORMATICS 121

11TH NMR WORKSHOP

Nayak, A.; Foo, N.; Pagnucco, M.; and Sattar, A. 1996.
Changing conditional beliefs unconditionally. In Proceed-
ings of TARK96, 119–135.
Nayak, A.; Pagnucco, M.; and Peppas, P. 2003. Dynamic
belief revision operators. Artificial Intelligence 146:193–
228.
Nayak, A. 1994. Iterated belief change based on epistemic
entrenchment. Erkenntnis.
Paris, J. 1994. The Uncertain Reasoner’s Companion.
Cambridge University Press, Cambridge.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann.
Pearl, J. 1990. System z: A natural ordering of defaults
with tractable applications to default reasoning. In Proc. of
the 3rd Conf. on Theoretical Aspects of Reasoning about
Knowledge (TARK’90), 121–135. Morgan & Kaufmann,
San Mateo, CA.
Shafer, G. 1976. A mathematical theory of evidence.
Princeton University Press.
Spohn, W. 1988. Ordinal conditional functions: a dynamic
theory of epistemic states. In Harper, W. L., and Skyrms,
B., eds., Causation in Decision, Belief Change and Statis-
tics, volume 2. Kluwer Academic Pub. 105–134.
van Fraassen, B. 1980. Rational belief and probability
kinematics. Philosophy of Science 47:165–187.
van Fraassen, B. 1981. A problem for relative information
minimizers. British J. Philosophy of Science 33:375–379.
Weydert, E. 2000. How to revise ranked probabili-
ties. In Proc.14th Europ.Conf.on Artificial Intelligence
(ECAI2000), 38–44. IOS Press.
Williams, M. 1995. Iterated theory-based change. In Proc.
of the 14th Inter. Joint Conf. on Artificial Intelligence (IJ-
CAI’95), 1541–1550.

122 Technical Report IfI-06-04

Theory of NMR and Uncertainty

DEPARTMENT OF INFORMATICS 123

11TH NMR WORKSHOP

2.2 A revision-based approach for handling inconsistency in de-
scription logics

A revision-based approach for handling inconsistency in description logics

Guilin Qi, Weiru Liu, David A. Bell
School of Electronics, Electrical Engineering and Computer Science

Queen’s University Belfast
Belfast, BT7 1NN, UK

{G.Qi, W.Liu, DA.Bell}@qub.ac.uk

Abstract

Recently, the problem of inconsistency handling in de-
scription logics has attracted a lot of attention. Many ap-
proaches were proposed to deal with this problem based
on existing techniques for inconsistency management.
In this paper, we first define two revision operators in
description logics, one is called the weakening-based
revision operator and the other is its refinement. The
logical properties of the operators are analyzed. Based
on the revision operators, we then propose an algorithm
to handle inconsistency in astratifieddescription logic
knowledge base. We show that when the weakening-
based revision operator is chosen, the resulting knowl-
edge base of our algorithm is semantically equivalent to
the knowledge base obtained by applyingrefined con-
junctive maxi-adjustment(RCMA) which refines the
disjunctive maxi-adjusment (DMA), a good strategy for
inconsistency handling in classical logic.

Introduction
Ontologies play a crucial role for the success of the Seman-
tic Web (Berners-Lee, Hendler, and Lassila 2001). There
are many representation languages for ontologies, such as
description logics (or DLs for short) and F-logic (Staab
and Studer 2004). Recently, the problem of inconsistency
(or incoherence) handling in ontologies has attracted a lot
of attention and research addressing this problem has been
reported in many papers (Baader and Hollunder; Baader
and Hollunder 1995; Parsia, Sirin, and Kalyanpur 2005;
Haase et. al. 2005; Schlobach 2005; Schlobach and Cor-
net 2003; Flouris, Plexousakis and Antoniou 2005; Huang,
Harmelen, and Teije 2005; Meyer, Lee, and Booth 2005;
Friedrich and Shchekotykhin 2005). Inconsistency can oc-
cur due to several reasons, such as modelling errors, migra-
tion or merging ontologies, and ontology evolution. Cur-
rent DL reasoners, such as RACER (Haarslev and Möller
2005) and FaCT (Horrocks 1998), can detect logical incon-
sistency. However, they only provide lists of unsatisfiable
classes. The process ofresolving inconsistency is left to
the user or ontology engineers. The need to improve DL
reasoners to reason with inconsistency is becoming urgent
to make them more applicable.Many approaches were pro-
posed to handle inconsistency in ontologies based on exist-
ing techniques for inconsistency management in traditional

logics, such as propositional logic and nonmonotonic logics
(Schlobach and Cornet 2003; Parsia, Sirin, and Kalyanpur
2005; Huang, Harmelen, and Teije 2005).

It is well-known that priority or preference plays an im-
portant role in inconsistency handling (Baader and Hollun-
der; Benferhat and Baida 2004; Meyer, Lee, and Booth
2005). In (Baader and Hollunder), the authors introduced
priority to default terminological logic such that more spe-
cific defaults are preferred to more general ones. When con-
flicts occur in reasoning with defaults, defaults which are
more specific should be applied before more general ones.
In (Meyer, Lee, and Booth 2005), an algorithm, calledre-
fined conjunctive maxi-adjustment(RCMA for short) was
proposed to weaken conflicting information in astratified
DL knowledge base and some consistent DL knowledge
bases were obtained. To weaken a terminological axiom,
they introduced a DL expression, calledcardinality restric-
tions on concepts. However, to weaken an assertional ax-
iom, they simply delete it. An interesting problem is to ex-
plore other DL expressions to weaken aconflictingDL ax-
iom (both terminological and assertional).

In this paper, we first define two revision operators in de-
scription logics, one is called a weakening-based revision
operator and the other is its refinement. The revision opera-
tors are defined by introducing a DL constructor callednom-
inals. The idea is that when a terminology axiom or a value
restriction is in conflict, we simply add explicit exceptions to
weaken it and assume that the number of exceptions is min-
imal. Based on the revision operators, we then propose an
algorithm to handle inconsistency in astratifieddescription
logic knowledge base. We show that when the weakening-
based revision operator is chosen, the resulting knowledge
base of our algorithm is semantically equivalent to that of
the RCMA algorithm. However, their syntactical forms are
different.

This paper is organized as follows. Section 2 gives a brief
review of description logics. We then define two revision
operators in Section 3. The revision-based algorithm for in-
consistency handling is proposed in Section 4. Before con-
clusion, we have a brief discussion on related work.

Description logics
In this section, we introduce some basic notions of Descrip-
tion Logics (DLs), a family of well-known knowledge rep-

124 Technical Report IfI-06-04

Theory of NMR and Uncertainty

resentation formalisms (Baader et al. 2003). To make our
approach applicable to a family of interesting DLs, we con-
sider the well-known DLALC (Schmidt-Schaußand Smolka
1991), which is a simple yet relatively expressive DL. Let
NC andNR be pairwise disjoint and countably infinite sets
of concept namesandrole namesrespectively. We use the
lettersA and B for concept names, the letterR for role
names, and the lettersC and D for concept. The set of
ALC concepts is the smallest set such that: (1) every con-
cept name is a concept; (2) ifC andD are concepts,R is a
role name, then the following expressions are also concepts:
¬C, CuD, CtD, ∀R.C and∃R.C.

An interpretationI = (∆I , ·I) consists of a set∆I ,
called thedomainof I, and a function·I which maps ev-
ery conceptC to a subsetCI of ∆I and every roleR to a
subsetRI of ∆I ×∆I such that, for all conceptsC, D, role
R, the following properties are satisfied:

(1) (¬C)I = ∆I \ CI ,
(2) (CuD)I = CI∩DI , (CtD)I = CI∪DI ,
(3) (∃R.C)I = {x|∃y s.t.(x, y)∈RI andy∈CI},
(4) (∀R.C)I = {x|∀y(x, y)∈RI impliesy∈CI}.
We introduce an extra expression of DLs callednominals

(also calledindividual names) (Schaerf 1994). A nominal
has the form{a}, wherea is an individual name. It can be
viewed as a powerful generalization of DL Abox individu-
als. The semantics of{a} is defined by{a}I = {aI} for
an interpretationI. Nominals are included in many DLs,
such asSHOQ (Horrocks and Sattler 2001) andSHOIQ
(Horrocks and Sattler 2005).

A general concept inclusion axiom (GCI) orterminology
is of the formCvD, whereC andD are two (possibly com-
plex) ALC concepts. An interpretationI satisfies a GCI
CvD iff CI⊆DI . A finite set ofGCIs is called aTbox.
We can also formulate statements about individuals. We de-
note individual names asa, b, c. A concept(role) assertion
axiom has the formC(a) (R(a, b)), whereC is a concept
description,R is a role name, anda, b areindividual names.
To give a semantics to Aboxes, we need to extend interpre-
tations to individual names. For each individual namea, ·I

maps it to an elementaI ∈ ∆I . The mapping·I should
satisfy theunique name assumption(UNA)1, that is, ifa and
b are distinct names, thenaI 6=bI . An interpretationI sat-
isfies a concept axiomC(a) iff aI∈CI , it satisfies a role
axiom R(a, b) iff (aI , bI)∈RI . An Aboxcontains a finite
set of concept and role axioms. A DL knowledge baseK
consists of a Tbox and an Abox, i.e. it is a set of GCIs and
assertion axioms. An interpretationI is a modelof a DL
(Tbox or Abox) axiom iff it satisfies this axiom, and it is a
model of a DL knowledge baseK if it satisfies every axiom
in K. In the following, we useM(φ) (or M(K)) to de-
note the set of models of an axiomφ (or DL knowledge base
K). K is consistent iffM(K)6=∅. Let K be an inconsistent
DL knowledge base, a setK ′⊆K is aconflictof K if K ′ is
inconsistent, and any sub-knowledge baseK ′′⊂K ′ is con-

1In some very expressive DLs, such asSHOQ, this assump-
tion is dropped. Instead, they useinequality assertionsof the form
a 6

.
=b for individual namesa andb, with the semantics that an inter-

pretationI satisfiesa 6
.
=b iff a

I 6=b
I .

sistent. Given a DL knowledge baseK and a DL axiomφ,
we say Kentailsφ, denoted asK |= φ, iff M(K)⊆M(φ).

Revision Operators for DLs
Definition
Belief revision is a very important topic in knowledge repre-
sentation. It deals with the problem of consistently accom-
modating new information received by an existing knowl-
edge base. Recently, Flouris et al. discuss how to apply
the famous AGM theory (Gardenfors 1988) in belief revi-
sion to DLs and OWL (Flouris, Plexousakis and Antoniou
2005). However, they only evaluate the feasibility of apply
theAGM postulates for contractionin DLs. There is no ex-
plicit construction of a revision operator in their paper. In
this subsection, we propose a revision operator for DLs and
provide a semantic explanation of this operator.

We need some restrictions on the knowledge base to
be revised. First, the original DL knowledge base should
be consistent. Second, we only consider inconsistencies
arising due to objects explicitly introduced in the Abox.
That is, supposeK and K ′ are the original knowledge
base and the newly received knowledge base respectively,
then for each conflictKc of K∪K ′, Kc must contain an
Abox statement. For example, we exclude the following
case: > v ∃R.C ∈ K and> v ∀R.¬C ∈ K ′. The
handling of conflicting axioms in the Tbox has been dis-
cussed in much work recently (Schlobach and Cornet 2003;
Parsia, Sirin, and Kalyanpur 2005). In this section, we dis-
cuss the resolution of conflicting information which contains
assertional axioms in the context of knowledge revision.

We give a method to weaken a GCI first. To weaken a
GCI, we simply add some explicit exceptions, and the num-
ber of exceptions is called the degree of the weakened GCI.

Definition 1 Let CvD be a GCI. A weak-
ened GCI (CvD)weak of CvD has the form
(Cu¬{a1}u...u¬{an})vD, wheren is the number of indi-
viduals to be removed fromC. We used((CvD)weak) = n
to denote the degree of(CvD)weak.

It is clear that whend((CvD)weak) = 0, (CvD)weak =
CvD. The idea of weakening a GCI is similar to weaken
an uncertain rule in (Benferhat and Baida 2004). That is,
when a GCI is involved in conflict, instead of dropping it
completely, we remove those individuals which cause the
conflict.

The weakening of an assertion is simpler than that of a
GCI. The weakened assertionφweak of an Abox assertion
φ is of the form eitherφweak = > or φweak = φ. That
is, we either delete it or keep it intact. The degree ofφweak,
denoted asd(φweak), is defined asd(φweak) = 1 if φweak =
> and 0 otherwise.

Next, we consider the weakening of a DL knowledge
base.

Definition 2 LetK andK ′ be two consistent DL knowledge
bases. SupposeK∪K ′ is inconsistent. A DL knowledge
baseKweak,K′ is a weakened knowledge base ofK w.r.t
K ′ if it satisfies:

• Kweak,K′ ∪ K ′ is consistent, and

DEPARTMENT OF INFORMATICS 125

11TH NMR WORKSHOP

• There is a bijectionf from K to Kweak,K′ such that for
eachφ∈K, f(φ) is a weakening ofφ.

The set of all weakened base ofK w.r.t K ′ is denoted by
WeakK′(K).

In Definition 2, the first condition requires that the weakened
base should be consistent withK ′. The second condition
says that each element inKweak,K′ is uniquely weakened
from an element inK.

Example 1 Let K = {bird(tweety), birdvflies}
and K ′ = {¬flies(tweety)}, where bird and
flies are two concepts andtweety is an indi-
vidual name. It is easy to check thatK ∪ K ′

is inconsistent. Let K ′ = {>, birdvflies},
K ′′ = {bird(tweety), birdu¬{tweety}vflies}, then
bothK ′ andK ′′ are weakened bases ofK w.r.t K ′.

The degree of a weakened base is defined as the sum of
the degrees of its elements.
Definition 3 Let Kweak,K′ be a weakened base of a DL
knowledge baseK w.r.t K ′. The degree ofKweak is de-
fined as

d(Kweak,K′) = Σφ∈Kweak,K′
d(φ)

In Example 1, we haved(K ′) = d(K ′′) = 1.
We now define a revision operator.

Definition 4 Let K be a consistent DL knowledge base.
K ′ is a newly received DL knowledge base. The result
of weakening-based revision ofK w.r.t K ′, denoted as
K◦wK ′, is defined as

K◦wK ′ = {K ′∪Ki : Ki∈WeakK′(K), and 6 ∃

Kj∈WeakK′(K), d(Kj) < d(Ki)}.

The result of revision ofK by K ′ is a set of DL knowledge
bases, each of which is the union ofK ′ and a weakened base
of K with the minimal degree.K◦wK ′ is adisjunctive DL
knowledge base2 defined in (Meyer, Lee, and Booth 2005).

We now consider the semantic aspect of our revision op-
erator.

In (Meyer, Lee, and Booth 2005), an ordering relation was
defined to compare interpretations. It was claimed that only
two interpretations having the same domain and mapping
the same individual names to the same element in the do-
main can be compared. Given a domain∆, a denotation
functiond is an injective mapping which maps every indi-
vidual a to a differentaI in ∆. Then apre-interpretation
was defined as an ordered pairπ = (∆π, dπ), where∆π is
a domain anddπ is a denotation function. For each inter-
pretationI = (∆I , ·I), its denotation function is denoted
asdI . Given a pre-interpretationπ = (∆π, dπ), I

π is used
to denote the class of interpretationsI with ∆I = ∆π and
dI = dπ. It is also assumed that a DL knowledge base is a
multi-set3 of GCIs and assertion axioms.We now introduce
the ordering between two interpretations defined in (Meyer,
Lee, and Booth 2005).

2A disjunctive DL knowledge (or DKB) is a set of DL knowl-
edge bases. A DKBK is satisfied by an interpretationI iff I is a
model of at least one of the elements ofK.

3A multi-set is a set in which an element can appear more than
once.

Definition 5 Let π be a pre-interpretation,I ∈ I
π, φ a DL

axiom, andK a multi-set of DL axioms. Ifφ is an assertion,
the number ofφ-exceptionseφ(I) is 0 if I satisfiesφ and 1
otherwise. Ifφ is a GCI of the formCvD, the number of
φ-exceptions forI is:

eφ(I) =

{

|CI∩(¬DI)| if CI∩(¬DI) is finite
∞ otherwise.

(1)

The number ofK-exceptions forI is eK(I) = Σφ∈Keφ(I).
The ordering¹π

K on I
π is: I ¹π

K I ′ iff eK(I)≤eK(I ′).

We give a proposition to show that our weakening-based
revision operator captures some kind of minimal change.

Proposition 1 Let K be a consistent DL knowledge base.
K ′ is a newly received DL knowledge base. LetΠ be the
class of all pre-interpretations.◦w is the weakening-based
revision operator. We then have

M(K◦wK ′) = ∪π∈Πmin(M(K ′),¹π
K).

Proposition 1 says that the models of the resulting knowl-
edge base of our revision operator are models ofK ′ which
are minimalw.r.t the ordering¹Π

K induced byK. The
proofs of proposition 2 and other propositions can be found
in the appendix.

Let us look at an example.

Example 2 Let K = {∀hasChild.RichHuman(Bob),
hasChild(Bob,Mary), RichHuman(Mary), hasChild
(Bob, Tom)}. Suppose we now receive new information
K ′ = {hasChild (Bob, John),¬RichHuman(John)}.
It is clear that K∪K ′ is inconsistent. Since
∀hasChild. RichHuman(Bob) is the only assertion
axiom involved in conflict withK ′, we only need to
delete it to restore consistency, that is,K◦wK ′ =
{hasChild(Bob,Mary), RichHuman(Mary), hasChild
(Bob, Tom), hasChild(Bob, John),¬RichHuman(John)}.

Refined weakening-based revision

In weakening-based revision, to weaken a conflicting
assertion axiom, we simply delete it. However, this
may result in counterintuitive conclusions. In Example
2, after revisingK by K ′ using the weakening-based
operator, we cannot infer thatRichHuman(Tom) be-
cause∀hasChild.RichHuman(Bob) is discarded, which
is counterintuitive. FromhasChild(Bob, Tom) and
∀hasChild.RichHuman(Bob) we should have known that
RichHuman(Tom) and this assertion is not in conflict
with information inK ′. The solution for this problem is to
treatJohnas anexceptionand that all children ofBobother
thanJohnare rich humans.

Next, we propose a new method for weakening Abox as-
sertions. For an Abox assertion of the form∀R.C(a), it is
weakened by dropping some individuals which are related
to the individuala by the relationR, i.e. its weakening has
the form∀R.(C t {b1, ..., bn})(a), wherebi (i = 1, n) are
individuals to be dropped. For other Abox assertionsφ, we
either keep them intact or replace them by>.

126 Technical Report IfI-06-04

Theory of NMR and Uncertainty

Definition 6 Letφ be an assertion in an Abox. A weakened
assertionφweak of φ is defined as:

φweak =

{

∀R.(C t {b1, ..., bn})(a) if φ = ∀R.C(a)
> or φ otherwise.

(2)
The degree ofφweak is d(φweak) = n if φ = ∀R.C
and φweak = ∀R.(C t {b1, ..., bn})(a), d(φweak) = 1 if
φ6=∀R.C andφweak = > andd(φweak) = 0 otherwise.

We call the weakened base obtained by applying weakening
of GCIs in Definition 1 and weakening of assertions in Def-
inition 6 as a refined weakened base. We then replace the
weakened base by the refined weakened base in Definition
4 and get a new revision operator, which we call a refined
weakening-based revision operator and is denoted as◦rw.

Let us have a look at Example 2 again.

Example 3 (Example 2 Continued) According to our
discussion before, ∀hasChild.RichHum- an(Bob)
is the only assertion axiom involved in conflict in
K and John is the only exception which makes
∀hasChild.RichHuman(Bob) conflicting, soK◦rwK ′ =
{∀hasChild.(RichHumant{John})(Bob), hasChild
(Bob,Mary), RichHuman(Mary), hasChild(Bob, Tom),
hasChild(Bob, John),¬RichHuman(John)}. We then
can infer that RichHuman(Tom) fromK◦rwK ′.

To give a semantic explanation of the refined weakening-
based revision operator, we need to define a new ordering
between interpretations.

Definition 7 Let π be a pre-interpretation,I ∈ I
π, φ a DL

axiom, andK a multi-set of DL axioms. Ifφ is an assertion
of the form∀R.C(a), the number ofφ-exceptions forI is:

eφ
r (I) =

{

|RI(aI)∩(¬CI)| if RI(aI)∩(¬CI) is finite
∞ otherwise,

(3)
whereRI(aI) = {b∈∆I : (aI , b)∈RI}. If φ is an as-
sertion which is not of the form∀R.C(a), the number of
φ-exceptionseφ

r (I) is 0 if I satisfiesφ and 1 otherwise. Ifφ
is a GCI of the formCvD, the number ofφ-exceptions for
I is:

eφ
r (I) =

{

|CI∩(¬DI)| if CI∩(¬DI) is finite
∞ otherwise.

(4)

The number ofK-exceptions forI is eK
r (I) = Σφ∈Keφ

r (I).
The refined ordering¹π

r,K on I
π is: I ¹π

r,K I ′ iff
eK
r (I)≤eK

r (I ′).

We have the following propositions for the refined
weakening-based revision operator.

Proposition 2 Let K be a consistent DL knowledge base.
K ′ is a newly received DL knowledge base. LetΠ be the
class of all pre-interpretations.◦rw is the weakening-based
revision operator. We then have

M(K◦rwK ′) = ∪π∈Πmin(M(K ′),¹π
r,K).

Proposition 2 says that the refined weakening-based operator
can be accomplished with minimal change.

Proposition 3 Let K be a consistent DL knowledge base.
K ′ is a newly received DL knowledge base. We then have

K◦rwK ′ |= φ, ∀φ∈K◦wK ′.

By Example 3, the converse of Proposition 3 is false. Thus,
we have shown that the resulting knowledge base of the re-
fined weakening-based revision contains more important in-
formation than that of the weakening-based revision.

Logical properties of the revision operators
In belief revision theory, a set of postulates or logical prop-
erties are proposed to characterize a “rational” revision op-
erator. The most famous postulates are so-called AGM pos-
tulates (Gardenfors 1988) which were reformulated in (Kat-
suno and Mendelzon 1992). We now generalize AGM pos-
tulates for revision to DLs.

Definition 8 Given two DL knowledge basesK andK ′. A
revision operator◦ is said to be AGM-compliant if it satisfies
the following properties:
(R1) K◦K ′ |= φ for all φ ∈ K ′

(R2) If K∪K ′ is consistent, thenM(K◦K ′) = M(K∪K ′)
(R3) If K ′ is consistent, thenK◦K ′ is also consistent
(R4) If M(K) = M(K1) and M(K ′) = M(K2), then
M(K◦K ′) = M(K1◦K2)
(R5) M(K◦K ′)∩M(K ′′)⊆M(K◦(K ′∪K ′′))
(R6) If M(K◦K ′)∩M(K ′′) is not empty, then
M(K◦(K ′∪K ′′))⊆M(K◦K ′)∩M(K ′′)

(R1) says that the new information must be accepted. (R2)
requires that the result of revision be equivalent to the union
of the existing knowledge base and the newly arrived knowl-
edge base if this union is satisfiable. (R3) is devoted to the
satisfiability of the result of revision. (R4) is the syntax-
irrelevance condition. (R5) and (R6) together are used to
ensure minimal change. (R4) states that the operator is inde-
pendent of the syntactical form of both the original knowl-
edge base and the new knowledge base. The following prop-
erty is obviously weaker than (R4)
(R4′) If M(K1) = M(K2), then M(K◦K1) =
M(K◦K2).

Definition 9 A revision operator◦ is said to be quasi-AGM
compliant if it satisfies (R1)-(R3), (R4’), (R5-R6).

The following proposition tells us the logical properties
of our revision operators.

Proposition 4 Given two DL knowledge basesK and K ′.
Both the weakening-based revision operator and the refined
weakening-based revision operator are not AGM-compliant
but they satisfy postulates (R1), (R2), (R3), (R4’), (R5) and
(R6), that is, they are quasi-AGM compliant.

Proposition 4 is a positive result. Our revision operators sat-
isfy all the AGM postulates except (R4), i.e. the syntax-
irrelevant condition.

A Revision-based Algorithm
It is well-known that priorities or preferences play an impor-
tant role in inconsistency handling (Baader and Hollunder;
Benferhat and Baida 2004; Benferhat et al. 2004; Meyer,

DEPARTMENT OF INFORMATICS 127

11TH NMR WORKSHOP

Lee, and Booth 2005). In this section, we define an algo-
rithm for handling inconsistency in a stratified DL knowl-
edge base, i.e. each element of the base is assigned a
rank, based on the weakening-based revision operator. More
precisely, a stratified DL knowledge base is of the form
Σ = K1∪...∪Kn, where for eachi∈{1, ..., n}, Ki is a fi-
nite multi-set of DL sentences. Sentences in each stratum
Ki have the same rank or reliability, while sentences con-
tained inKj such thatj > i are seen as less reliable.

Revision-based algorithm
We first need to generalize the (refined) weakening-based
revision by allowing the newly received DL knowledge base
to be a disjunctive DL knowledge base. That is, we have the
following definition.

Definition 10 Let K be a consistent DL knowledge base.
K′ is a newly received disjunctive DL knowledge base. The
result of (refined) weakening-based revision ofK w.r.t K′,
denoted asK◦wK

′, is defined as

K◦wK
′ = {K ′∪Kweak,K′ : K ′∈K′, Kweak,K′∈

WeakK′(K) & 6 ∃Ki∈WeakK′(K),

d(Ki) < d(Kweak,K′)}.

Revision-based Algorithm (R-Algorithm)
Input: a stratified DL knowledge baseΣ = {K1, ...,Kn}, a
(refined) weakening-based revision operator◦ (i.e. ◦ = ◦w

or ◦rw), a new DL knowledge baseK
Result: a disjunctive DL knowledge baseK
begin
K←K1◦K;
for i = 2 to n do

K←Ki◦K;
return K

end
The idea originates from the revision-based algorithms

proposed in (Qi, Liu, and Bell 2005). That is, we start by
revising the set of sentences in the first stratum using the
new DL knowledge baseK, and the result of revision is a
disjunctive knowledge base. We then revise the set of sen-
tences in the second stratum using the disjunctive knowledge
base obtained by the first step, and so on.

Example 4 Let Σ = (K1,K2) and K = {>}, where
K1 = {W (t),¬F (t), B(c)} and K2 = {BvF,WvB}
(W , F , B, t and c abbreviate Wing, Flies,
Bird, Tweety and Chirpy). Let ◦ = ◦w in
R-Algorithm. Since K1 is consistent, we have
K = K1◦w{>} = {K1}. SinceK1∪K2 is inconsistent,
we need to weakenK2. Let K ′

2 = {Bu¬{t}vF,WvB}
andK ′′

2 = {BvF,Wu¬{t}vB}, soK ′
2, K ′′

2∈Weak(K2)
and d(K ′

2) = d(K ′′
2) = 1. It is easy to check that

K ′
2∪K1 and K ′′

2∪K1 are both consistent and they
are the only weakened bases ofK2 which are consis-
tent with K1. So K2◦wK = {K1∪K ′

2,K1∪K ′′
2 } =

{{W (t),¬F (t), B(c), Bu¬{t}vF,WvB},
{W (t),¬F (t), B(c), BvF,Wu¬{t}vB}}. It is easy
to check thatF (c) can be inferred fromK2◦wK.

Based on Proposition 3, it is easy to prove the following
proposition.

Proposition 5 Let Σ = {K1, ...,Kn} be a stratified DL
knowledge base andK be a DL knowledge base. Sup-
poseK1 andK2 are disjunctive DL knowledge bases result-
ing from R-Algorithm using the weakening-based operator
and refined weakening-based operator respectively. We then
have, for each DL axiomφ, if K1 |= φ thenK2 |= φ.

Proposition 5 shows that the resulting knowledge base of R-
Algorithm w.r.t the refined weakening-based operator con-
tains more important information than that of R-Algorithm
w.r.t the weakening-based operator.

In the following we show that if the weakening-based re-
vision operator is chosen, then our revision-based approach
is equivalent to the refined conjunctive maxi-adjustment
(RCMA) approach (Meyer, Lee, and Booth 2005). The
RCMA approach is defined in a model-theoretical way as
follows.

Definition 11 (Meyer, Lee, and Booth 2005) LetΣ =
(K1, ...,Kn) be a stratified DL knowledge base. LetΠ be
the class of all pre-interpretations. Letπ ∈ Π, I, I ′ ∈ I

π.
The lexicographically combined preference ordering¹π

lex is
defined asI¹π

lexI
′ iff ∀j∈{1, ..., n}, I¹π

Kj
I ′ or I≺π

Ki
I ′

for somei < j. Then the set of models of the consistent
DL knowledge base extracted fromΣ by means of¹π

lex is
∪π∈Πmin(Iπ,¹π

lex).

The following proposition shows that our revision-based
approach is equivalent to the RCMA approach when the
weakening-based revision operator is chosen.

Proposition 6 Let Σ = (K1, ...,Kn) be a stratified DL
knowledge base andK = {>}. LetK be the resulting DL
knowledge base of R-Algorithm. We then have

M(K) = ∪π∈Πmin(Iπ,¹π
lex).

In (Meyer, Lee, and Booth 2005), an algorithm was pro-
posed to compute the RCMA approach in a syntactical way.
The main difference between our algorithm and the RCMA
algorithm is that the strategies for resolving terminologi-
cal information are different. The RCMA algorithm uses
a preprocess to transform all the GCIsCivDi to cardinality
restrictions (Baader, Buchheit, and Hollander 1996) of the
form ≤0Ciu¬Di, i.e. the conceptsCiu¬Di do not have
any elements. Then those conflicting cardinality restric-
tions ≤0CiuDi are weakened by relaxing the restrictions
on the number of elementsC may have, i.e. a weakening of
≤0CiuDi is of the form≤nCiuDi wheren > 1. The re-
sulting knowledge base contains cardinality restrictionsand
assertions and is no longer a DL knowledge base in a strict
sense. By contrast, our algorithm weakens the GCIs by in-
troducingnominal and role constructors. So the resulting
DL knowledge base of our algorithm still contains GCIs and
assertions.

Application to revising a stratified DL knowledge
base
We can define two revision operators based on R-Algorithm.
Let Σ = (K1, ...,Kn) be a stratified knowledge base and

128 Technical Report IfI-06-04

Theory of NMR and Uncertainty

K be a new DL knowledge base. Let◦ be the (refined)
weakening-based revision operator. The prioritized (refined)
weakening-based revision operator, denoted as◦g, is defined
in a model-theoretic way as:M(Σ◦gK) = ∪π∈Πmin({I ∈
I
π : I |= K},¹π

lex). We now look at the logical properties
of the newly defined operator.

Proposition 7 Let Σ be a stratified DL knowledge base,K
andK ′ be two DL knowledge bases. The revision operator
◦g satisfies the following properties:

(P1) If K is satisfiable, thenΣ◦gK is satisfiable.
(P2) Σ◦gK |= φ, for all φ ∈ K.
(P3) If M(Σ)∩M(K) is not empty, then
M(Σ◦gK)=M(Σ)∩M(K).

(P4) Given a stratified DL knowledge baseK =
{S1, ..., Sn}, and two DL knowledge basesK and K ′, if
K≡K ′, thenMod(Σ◦gK) = Mod(Σ◦gK ′).

(P5) M(Σ◦gK ′)∩M(K ′′)⊆M(Σ◦g(K ′∪K ′′)).
(P6) If M(Σ◦gK ′)∩M(K ′′) is not empty, then
M(Σ◦g(K ′∪K ′′))⊆M(Σ◦gK ′)∩M(K ′′).

(P1)-(P3) correspond to Conditions (R1)-(R3) in Definition
8. (P4) is a generalization of the weakening condition (R4’)
of the principle of irrelevance of syntax. (P5) and (P6) are
generalization of (R5) and (R6).

Related Work
This work is closely related to the work on inconsistency
handling in propositional and first-order knowledge bases
in (Benferhat et al. 2004; Benferhat and Baida 2004), the
work on knowledge integration in DLs in (Meyer, Lee, and
Booth 2005) and the work on revising-based inconsistency
handling approaches in (Qi, Liu, and Bell 2005). In (Ben-
ferhat et al. 2004), a very powerful approach, called dis-
junctive maxi-adjustment (DMA) approach, was proposed
for weakening conflicting information in a stratified propo-
sitional knowledge base. The basic idea of the DMA ap-
proach is that starting from the information with the lowest
stratum where formulae have highest level of priority, when
inconsistency is encountered in the knowledge base, it weak-
ens the conflicting information in those strata. When applied
to a first-order knowledge base directly, the DMA approach
is not satisfactory because some important information is
lost. A new approach was proposed in (Benferhat and Baida
2004). For a first-order formula, called anuncertain rule,
with the form∀xP (x) ⇒ Q(x), when it is involved in a con-
flict in the knowledge base, instead of deleting it completely,
the formula is weakened by dropping some of the instances
of this formula that are responsible for the conflict. The idea
of weakening GCIs in Definition 1 is similar to this idea. In
(Meyer, Lee, and Booth 2005), the authors proposed an algo-
rithm for inconsistency handling by transforming every GCI
in a DL knowledge base into a cardinality restriction, and a
cardinality restriction responsible for a conflict is weakened
by relaxing the restrictions on the number of elements it may
have. So their strategy of weakening GCIs is different from
ours. Furthermore, we proposed a refined revision operator
which not only weakens the GCIs but also assertions of the
form ∀R.A(a). The idea of applying revision operators to

deal with inconsistency in a stratified knowledge base was
proposed in (Qi, Liu, and Bell 2005). However, this work is
only applicable in propositional stratified knowledge bases.
The R-Algorithm is a successful application of the algorithm
to DL knowledge bases.

There are many other work on inconsistency handling in
DLs (Baader and Hollunder; Baader and Hollunder 1995;
Parsia, Sirin, and Kalyanpur 2005; Quantz and Royer 1992;
Haase et. al. 2005; Schlobach 2005; Schlobach and Cor-
net 2003; Flouris, Plexousakis and Antoniou 2005; Huang,
Harmelen, and Teije 2005; Friedrich and Shchekotykhin
2005). In (Baader and Hollunder 1995; Baader and Hol-
lunder), Reiter’s default logic (Reiter 1987) is embedded
into terminological representation formalisms, where con-
flicting information is treated asexceptions. To deal with
conflicting default rules, each rule is instantiated using in-
dividuals appearing in an Abox and two existing methods
are applied to compute all extensions. However, in prac-
tical applications, when there is a large number of indi-
vidual names, it is not advisable to instantiate the default
rules. Moreover, only conflicting default rules are dealt
with and it is assumed that information in the Abox is ab-
solutely true. This assumption is dropped in our algorithm,
that is, an assertion in an Abox may be weakened when it
is involved in a conflict. Another work on handling con-
flicting defaults can be found in (Quantz and Royer 1992).
The authors proposed a preference semantics for defaults in
terminological logics. As pointed out in (Meyer, Lee, and
Booth 2005), this method does not provide a weakening of
the original knowledge base and the formal semantics is not
cardinality-based. Furthermore, it is also assumed that in-
formation in the Abox was absolutely true. In recent years,
several methods have been proposed to debug erroneous ter-
minologies and have them repaired when inconsistencies
are detected (Schlobach and Cornet 2003; Schlobach 2005;
Parsia, Sirin, and Kalyanpur 2005; Friedrich and Shcheko-
tykhin 2005). A general framework for reasoning with in-
consistent ontologies based onconcept relevancewas pro-
posed in (Huang, Harmelen, and Teije 2005). The idea is
to select from an inconsistent ontology some consistent sub-
theories based on aselection function, which is defined on
the syntactic or semantic relevance. Then standard reason-
ing on the selected sub-theories is applied to findmeaningful
answers. A problem with debugging of erroneous terminolo-
gies methods in (Schlobach and Cornet 2003; Schlobach
2005; Parsia, Sirin, and Kalyanpur 2005; Friedrich and
Shchekotykhin 2005) and the reasoning method in (Huang,
Harmelen, and Teije 2005) is that both approaches delete
terminologies in a DL knowledge base to obtain consistent
subbases, thus the structure of DL language is not exploited.

Conclusions and Further Work
In this paper, we propose a revision-based algorithm for han-
dling inconsistency in description logics. We mainly consid-
ered the following issues:

1. A weakening-based revision operator was defined in both
syntactical and semantic ways. Since the weakening-
based revision operator may result in counter-intuitive

DEPARTMENT OF INFORMATICS 129

11TH NMR WORKSHOP

conclusions in some cases, we defined a refined version
of this operator by introducing additional expressions in
DLs.

2. The well-known AGM postulates are reformulated and we
showed that our operators satisfy most of the postulates.
Thus they have good logical properties.

3. A revision-based algorithm was presented to handle in-
consistency in a stratified knowledge base. When the
weakening-based revision operator is chosen, the result-
ing knowledge base of our algorithm is semantically
equivalent to that of the RCMA algorithm. The main dif-
ference between our algorithm and the RCMA algorithm
is that the strategies for resolving terminological informa-
tion are different.

4. Two revision operators were defined on stratified DL
knowledge bases and their logical properties were ana-
lyzed.

There are many problems worthy of further investigation.
Our R-Algorithm is based on two particular revision oper-
ators. Clearly, if a normative definition of revision opera-
tors in DLs is provided, then R-Algorithm can be easily ex-
tended. Unfortunately, such a definition does not exist now.
As far as we know, the first attempt to deal with this problem
can be found in (Flouris, Plexousakis and Antoniou 2005).
However, the authors only studied the feasibility of AGM’s
postulates for acontractionoperator and their results are not
so positive. That is, they showed that in many important
DLs, such asSHOIN (D) andSHIQ, it is impossible to
define a contraction operator that satisfies the AGM postu-
lates. Moreover, they didn’t apply AGM’s postulates for a
revision operator and explicit construction of a revision op-
erator was not considered in their paper. We generalized
AGM postulates for revision in Definition 8 and we showed
that our operators satisfied most of the generalized postu-
lates. An important future work is to construct a revision
operator in DLs which satisfies all the generalized AGM
postulates.

Proofs
Proof of Proposition 1: Before proving Proposition 1, we
need to prove two lemmas.

Lemma 1 Let K and K ′ be two consistent DL knowledge
bases andI be an interpretation such thatI |= K ′. Sup-
poseK ∪ K ′ is inconsistent. Letl = min(d(Kweak,K′) :
Kweak,K′∈WeakK′(K), I |= Kweak,K′). TheneK(I) =
l.

Proof: We only need to prove that for each
Kweak,K′∈WeakK′(K) such that I |= Kweak,K′

andd(Kweak,K′) = l, eK(I) = d(Kweak,K′).
(1) Letφ ∈ K be an assertion axiom. Supposeeφ(I) = 1,

then I 6|= φ. SinceI |= Kweak,K′ , φ 6∈ Kweak,K′ So
φweak = > and thend(φweak) = 1. Conversely, sup-
posed(φweak) = 1, then φweak = >. We must have
I 6|= φ. Otherwise, letK ′′

weak,K′ = (Kweak,K′\{>})∪{φ}.
SinceI |= φ, then K ′′

weak,K′ is consistent. It is clear

d(K ′′
weak,K′) < d(Kweak,K′), which is a contradiction. So

I 6|= φ, we then haveeφ(I) = 1. Thus,eφ = 1 iff d(φ) = 1.
(2) Let φ = CvD be a GCI axiom andφweak =

(CvD)weak∈Kweak,K′ . Supposed(φweak) = n. That
is, φweak = Cu¬{a1, ..., an}vD. SinceI |= Kweak,K′ ,
I |= φweak. Moreover, for any other weakeningφ′

weak

of φ, if d(φ′
weak) < n, thenI 6|= φ′

weak (because other-
wise, we find another weakeningK ′

weak,K′ = (Kweak,K′ \
{φweak})∪{φ

′
weak} such thatd(K ′

weak,K′) < d(Kweak,K′)

and I |= K ′
weak,K′). Since I |= φweak, CI \

{aI
1 , ..., aI

n} ⊆ DI . For eachai, we must haveai∈C
and ai 6∈D. Otherwise, we can delete suchai and obtain
φ′

weak = Cu{a1, ..., ai−1, ai+1, ..., an} v D such that
d(φ′

weak) < d(φweak) andI |= φ′
weak, which is a contra-

diction. So|CI∩¬DI |≤n. Since for eachai, let φ′
weak =

Cu{a1, ..., ai−1, ai+1, ..., an} v D, thenI 6|= φ′
weak, so

|CI∩¬DI |≥n. Therefore, we have|CI∩¬DI | = n =
d(φweak).

(1) and (2) together show thateK(I) = l.

Lemma 2 Let K and K ′ be two consistent knowledge
bases andI be an interpretation such thatI |=
K ′. SupposeK ∪ K ′ is inconsistent. Letdm =
min(d(Kweak,K′) : Kweak,K′∈WeakK′(K)). Then
I∈

⋃

π∈Π
min(M(K ′),¹π

K) iff eK(I) = dm.
Proof: “If Part”
SupposeeK(I) = dm. By Lemma 1, for eachI ′ such

that I ′ |= K ′, eK(I ′) = l, wherel = min(d(Kweak,K′) :
Kweak,K′∈WeakK′(K), I ′ |= Kweak,K′). That is, there
exitsKweak,K′ ∈ WeakK′(K) such thatI ′ |= Kweak,K′

and eK(I ′) = d(Kweak,K′). Sinced(Kweak,K′)≤dm, we
haveeK(I ′)≤eK(I). SoI∈

⋃

π∈Π
min(M(K ′),¹π

K).
“Only If Part”
SupposeI∈

⋃

π∈Π
min(M(K ′),¹π

K). We need to
prove that for all I ′ |= K ′, eK(I)≤eK(I ′). Suppose
I ∈ I

π for someπ = (∆π, dπ). It is clear that∀I ′∈I
π,

eK(I)≤eK(I ′). Now supposeI ′∈I
π′

for someπ′ 6= π

such that π′ = (∆π′

, dπ′

). We further assume that
eK(I ′)=min(eK(Ii) : Ii |= K ′). Let Ind(K) and
Ind(K ′) be sets of individual names appearing inK
and K ′ respectively. By unique name assumption, for
each individual namea in Ind(K)∪Ind(K ′), there is
a unique elementa1 in ∆I and a unique elementa2 in
∆I

′

such thataI = a1 and aI
′

= a2. For notational
simplicity, we assume thataI=aI

′

=a for every indi-
vidual namea. So Ind(K)∪Ind(K ′)⊆∆π∩∆π′

. We
take an I ′′ ∈ I

π which satisfies the following condi-
tions: 1) for each conceptC appearing inK, suppose
∆ = CI ∩ (Ind(K) ∪ Ind(K ′)), then ∆⊆CI

′′

; 2)
eK(I ′′) = min(eK(I) : I |= K ′ I ∈ I

π). We now prove
Σφ∈Keφ(I ′) = Σφ∈Keφ(I ′′). By 1) and 2), supposeφ is
an assertion of the formC(a), whereC is a concept, then
aI

′

∈CI
′

iff aI
′′

∈CI
′′

, so eφ(I ′) = eφ(I ′′). Supposeφ
is a GCI of the formCvD and b∈CI

′

∩¬DI
′

. Then we
must haveb∈Ind(K)∪Ind(K ′). Otherwise, if we define
I ′′′ = (∆I

′

\ {b}, ·I
′′′

) such that for each concept nameC,

130 Technical Report IfI-06-04

Theory of NMR and Uncertainty

CI
′′′

= CI
′

\ {b} and for all R, RI
′′′

= RI
′

\ ({(b, ai) :

ai∈∆I
′

} ∪ {(ai, b) : ai∈∆I
′

}). It is easy to check that
I ′′′ |= K ′ and eK(I ′′′) < eK(I ′), which is a contra-
diction. So b∈CI

′

∩¬DI
′

∩(Ind(K)∪Ind(K ′)). Since
CI

′

∩(Ind(K)∪Ind(K ′)) = CI
′′

∩(Ind(K)∪Ind(K ′))

and DI
′

∩(Ind(K)∪Ind(K ′)) = DI
′′

∩(Ind(K)∪

Ind(K ′)), we haveCI
′

∩¬DI
′

∩(Ind(K)∪Ind(K ′)) =

CI
′′

∩¬DI
′′

∩(Ind(K)∪Ind(K ′)). It follows that
b∈CI

′′

∩¬DI
′′

∩(Ind(K)∪Ind(K ′)). We then have
CI

′

∩¬DI
′

⊆CI
′′

∩¬DI
′′

. Similarly, we can prove that
CI

′′

∩¬DI
′′

⊆CI
′

∩¬DI
′

. So CI
′′

∩¬DI
′′

=CI
′

∩¬DI
′

.
That is, eφ(I) = eφ(I ′′). Thus, we can conclude
that eK(I ′) = eK(I ′′). SinceeK(I ′′) = eK(I), we
have eK(I) = eK(I ′). Therefore, for allI ′ |= K ′,
eK(I)≤eK(I ′). It is clear that there exists anI ′ |= K ′

such thateI
′

= dm. SoeK(I) = dm.

We continue the proof of Proposition 1. Suppose
I |= K◦wK ′, then I |= K ′∪Kweak,K′ , for some
Kweak,K′∈WeakK′(K) such thatd(Kweak,K′) = dm (dm

is defined in Lemma 2). By Lemma 1,I |= K ′ and
eK(I) = dm. By Lemma 2,I∈

⋃

π∈Π
min(M(K ′),¹π

K

). Conversely, supposeI∈
⋃

π∈Π
min(M(K ′),¹π

K). By
Lemma 2,I |= K ′ andeK(I) = dm. By Lemma 1,I |=
K ′∪Kweak,K′ , for someKweak,K′∈WeakK′(K) such that
d(Kweak,K′) = dm. SoI |= K◦wK ′. This completes the
proof.
Proof of Proposition 2: The proof of Proposition 2 is simi-
lar to that of Proposition 1. The only problem is that we need
to extend the proofs of Lemma 1 and Lemma 2 by consider-
ing the weakening of assertion axioms of the form∀R.C(a),
which can be proved similar to the case of GCIs.
Proof of Proposition 3: We only need to prove that
M(K◦rwK ′)⊆M(K◦wK ′). SupposeI|=K◦rwK ′, then
by Proposition 2,I |= K ′ and eK

r (I) = min(eK
r (I ′) :

I ′ |= K ′). We now prove that for anyI ′ 6=I,
eK(I)≤eK(I ′). Supposeφ is an assertion of the form
∀R.C(a) andeφ

r (I)≥1, then there existsb such thatbI ∈
RI(aI)∩(¬DI). SinceI 6|= ∀R.C(a), we haveeφ(I) = 1.
Since eφ

r (I ′)≥eφ
r (I), we haveeφ

r (I ′)≥1. Similarly, we
haveeφ(I ′) = 1. So eφ(I)=eφ(I ′). Supposeeφ

r (I)=0
and eφ

r (I ′)≥1, then eφ(I) = 0 < 1 = eφ(I ′). Thus,
eφ(I)≤eφ(I ′). If φ is an assertion which is not of the
form ∀R.C(a) or a GCI, then it is easy to prove that
eφ(I)=eφ(I ′). Therefore,eK(I)≤eK(I ′). By Proposition
1, I∈M(K◦wK ′).
Proofs of Proposition 4 and Proposition 5:Proposition 4
and Proposition 5 are easily to be checked and we do not
provide their proofs here.
Proof of Proposition 6: Let Iπ

1 = min(Iπ,¹π
K1

), andIπ
i =

min(Iπ
i−1,¹

π
Ki

) for all i > 1. It is clear thatM(K) = I
π
n.

So we only need to prove thatIπ
n = min(Iπ,¹π

lex). Sup-
poseI∈I

π
n, then we must haveI∈min(Iπ,¹π

lex). Other-
wise, there existsI ′∈I

π such thatI ′≺lexI. That is, there
existsi such thatI ′≺π

Ki
I andI ′'π

Kj
I for all j < i, where

I ′'π
Kj

I meansI ′¹π
Kj

I andI¹π
Kj

I ′. SinceI ′'π
Kj

I, it is
clear thatI, I ′∈I

π
i−1 by the definition ofIπ

i−1. SinceI ∈ I
π
n,

we haveI ∈ I
π
i = min(Iπ

i−1,¹
π
Ki

), which is contradic-
tory to the assumption thatI ′≺π

Ki
I. Thus we prove that

I
π
n⊆min(Iπ,¹π

lex). Conversely, supposeI∈min(Iπ,¹π
lex

), then we must haveI∈I
π
n. Otherwise, there exists ani

such thatI6∈I
π
i andI∈I

π
j for all j < i. SupposeI ′∈I

π
i ,

thenI ′∈I
π
j for all j < i. We then haveI ′ 'π

Kj
I for all

j < i. SinceI ′∈I
π
i andI6∈I

π
i , it follows thatI ′≺π

Ki
I. That

is, I ′≺π
lexI, which is a contradiction. Thus we prove that

min(Iπ,¹π
lex)⊆I

π
n. This completes the proof.

References
F. Baader and B. Hollunder. Embedding defaults into ter-
minological knowledge representation formalisms,Journal
of Automated Reasoning, 14(1):149-180, 1995.
F. Baader and B. Hollunder. Priorities on defaults with pre-
requisites, and their application in treating specificity in ter-
minological default logic,Journal of Automated Reason-
ing, 15(1): 41-68, 1995.
F. Baader, M. Buchheit, and B. Hollander. Cardinality re-
strictions on concepts.Artificial Intelligence, 88:195-213,
1996.
F. Baader, D.L. McGuiness, D. Nardi, and Peter Patel-
Schneider.The Description Logic Handbook: Theory,
implementation and application, Cambridge University
Press, 2003.
S. Benferhat, C. Cayrol, D. Dubois, L. Lang, and H. Prade.
Inconsistency management and prioritized syntax-based
entailment. InProceedings of IJCAI’93, 640-645, 1993.
S. Benferhat, and R.E. Baida. A stratified first order logic
approach for access control.International Journal of Intel-
ligent Systems, 19:817-836, 2004.
S. Benferhat, S. Kaci, D.L. Berre, and M.A. Williams.
Weakening conflicting information for iterated revision and
knowledge integration.Artificail Intelligence, vol. 153(1-
2):339-371, 2004.
T. Berners-Lee, J. Hendler, and O. Lassila. The semantic
web,Scientific American, 284(5):3443, 2001.
G. Flouris, D. Plexousakis and G. Antoniou. On applying
theAGM theory toDLs andOWL, In Proc. of 4th Interna-
tional Conference on Semantic Web (ISWC’05), 216-231,
2005.
G. Friedrich and K.M. Shchekotykhin. A General Diagno-
sis Method for Ontologies, InProc. of 4th International
Conference on Semantic Web (ISWC’05), 232-246, 2005.
P. G̈ardenfors,Knowledge in Flux-Modeling the Dynamic
of Epistemic States, The MIT Press, Cambridge, Mass,
1988.
V. Haarslev and R. M̈oller, RACER System Description,
In IJCAR’01, 701-706, 2001.
P. Haase, F. van Harmelen, Z. Huang, H. Stuckenschmidt,
and Y. Sure. A framework for handling inconsistency in
changing ontologies, InISWC’05, LNCA3729, 353-367,
2005.
I. Horrocks. The FaCT system, In de Swart, H., ed.,
Tableaux’98, LNAI 1397, 307-312, 1998.

DEPARTMENT OF INFORMATICS 131

11TH NMR WORKSHOP

I. Horrocks, and U. Sattler. Ontology reasoning in the
SHOQ(D) description logic, InProceedings of IJCAI’01,
199-204, 2001.
I. Horrocks and U. Sattler. A tableaux decision procedure
for SHOIQ, In Proc. of 19th International Joint Confer-
ence on Artificial Intelligence (IJCAI’05), 448-453, 2005.
Z. Huang, F. van Harmelen, and A. ten Teije. Reasoning
with inconsistent ontologies, InProceedings of IJCAI’05,
254-259, 2005.
H. Katsuno and A.O. Mendelzon. Propositional Knowl-
edge Base Revision and Minimal Change,Artificial Intelli-
gence, 52(3): 263-294, 1992.
C. Lutz, C. Areces, I. Horrocks, and U. Sattler. Keys, nom-
inals, and concrete domains,Journal of Artificial Intelli-
gence Research, 23:667-726, 2005.
T. Meyer, K. Lee, and R. Booth. Knowledge integration for
description logics, InProceedings of AAAI’05, 645-650,
2005.
B. Nebel.What is Hybrid in Hybrid Representation and
Reasoning Systems?, In F. Gardin and G. Mauri and M. G.
Filippini, editors,Computational Intelligence II: Proc. of
the International Symposium Computational Intelligence
1989, North-Holland, Amsterdam, 217-228, 1990.
B. Parsia, E. Sirin and A. Kalyanpur. DebuggingOWL on-
tologies, InProc. of WWW’05, 633-640, 2005.
J. Quantz and V. Royer. A Preference Semantics for De-
faults in Terminological Logics, InProc. of the 3th Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR’92), 294-305, 1992.
G. Qi, W. Liu, and D.A. Bell. A revision-based approach
to resolving conflicting information, InProceedings of
twenty-first Conference on Uncertainty in Artificial Intel-
ligence (UAI’05), 477-484.
R. Reiter. A Theory of Diagnosis from First Principles,Ar-
tificial Intelligence, 32(1): 57-95, 1987.
A. Schaerf. Reasoning with individuals in concept lan-
guages.Data and Knowledge Engineering, 13(2):141-176,
1994.
S. Schlobach, and R. Cornet. Non-standard reasoning ser-
vices for the debugging of description logic terminologies,
In Proceedings of IJCAI’2003, 355-360, 2003.
S. Schlobach. Diagnosing Terminologies, InProc. of
AAAI’05, 670-675, 2005.
M. Schmidt-Schauß, and G. Smolka. Attributive Con-
cept descriptions with complements,Artificial Intelligence,
48:1-26, 1991.
S. Staab and R. Studer.Handbook on Ontologies, Interna-
tional Handbooks on Information Systems, Springer, 2004.
H. Wang, A.L. Rector, N. Drummond and J. Seidenberg.
DebuggingOWL-DL Ontologies: A Heuristic Approach,
In Proc. of 4th International Conference on Semantic Web
(ISWC’05), 745-757, 2005.

132 Technical Report IfI-06-04

Theory of NMR and Uncertainty

DEPARTMENT OF INFORMATICS 133

11TH NMR WORKSHOP

2.3 Merging stratified knowledge bases under constraints

Merging stratified knowledge bases under constraints

Guilin Qi, Weiru Liu, David A. Bell
School of Electronics, Electrical Engineering and Computer Science

Queen’s University Belfast
Belfast, BT7 1NN, UK

{G.Qi, W.Liu, DA.Bell}@qub.ac.uk

Abstract

In this paper, we propose a family of operators for merging
stratified knowledge bases under integrity constraints. The
operators are defined in a model-theoretic way. Our merging
operators can be used to merge stratified knowledge bases
where no numerical information is available. Furthermore,
the original knowledge bases to be merged can be individu-
ally inconsistent. In the flat case, our merging operators are
good alternatives of model-based merging operators in the
propositional setting. Both logical properties and computa-
tional complexity issues of the operators are studied.

Keywords: Belief merging; stratified knowledge base; pref-
erence representation

Introduction
Fusion of information coming from different sources is cru-
cial to build an intelligent system (Abidi and Gonzalez 1992;
Bloch and Hunter 2001). In classical logic, this problem
is often called belief merging, which defines the beliefs
(resp. goals) of a group of agents from their individual be-
liefs (resp. goals). There are mainly two families of belief
merging operators: the model-based ones which select some
interpretations that are the “closest” to the original bases
(Revesz 1997; Konieczny and Pino Pérez 1998; Konieczny
and Pino Ṕerez 2002; Liberatore and Schaerf 1998; Ever-
aere, Konieczny, and Marquis 2005) and the formula-based
ones which pick some formulae in the union of the original
bases (Baral, Kraus, and Minker 1991; Baral et al. 1992;
Konieczny 2000). In (Konieczny, Lang, and Marquis 2004),
a class of distance-based merging operators, calledDA2 op-
erators, were defined based on two aggregation functions.
DA2 operators capture many merging operators (including
both model-based ones and syntax-based ones) as special
cases. In (Everaere, Konieczny, and Marquis 2005), two
families of interesting merging operators are proposed. One
is calledQuotaoperators, which select possible worlds sat-
isfying “sufficient many” bases from the given profile (a
multi-set of bases) as the models of the resulting knowledge
base. The other is calledGminoperators, which are intended
to refine quota operators to preserve more information.

It is well-known that priority or preference (either implicit
or explicit) plays an important role in many Artificial Intel-
ligence areas, such as inconsistency handling (Benferhat et

al. 1993), belief revision (G̈ardenfors 1988), belief merging
(Benferhat et al. 2002). When explicit priority or prefer-
ence information is available, a knowledge base is stratified
or ranked. In that case, the merging operators in classical
logic are not appropriate to merge those knowledge bases
because the priority information is not used. Merging of
stratified knowledge bases is often handled in the frame-
work of possibilistic logic (Dubois, Lang, and Prade 1994)
or ordinal conditional function (Spohn 1988). The merg-
ing methods are usually based on the commensurability as-
sumption, that is, all knowledge bases share a common scale
(usually ordinal scales such as [0,1]) to order their beliefs.
However, this assumption is too strong in practice-we may
only have knowledge bases with a total pre-order relation
on their elements. Furthermore, different agents may use
different strategies to order their beliefs or interpretations.
Even a single agent may have different ways of modeling
her preferences for different aspects of a problem (Brewka
2004). Without the commensurability assumption, the pre-
vious merging methods are hard to apply. For example, sup-
pose there are two agents whose beliefs are represented as
B1 = {(p, 3), (q, 2), (r, 1)} andB2 = {(¬q, 2), (r, 1)} re-
spectively, where the numberi (i = 1, 2.3) denotes the level
of relative importance or priority of a formula. That is,p
is more important thanq in B1 and¬q is more important
thanr in B2. Althoughq and¬q have the same number (i.e.
2) attached to them, they may not have the same level of
importance or priority. In this case, previous merging oper-
ators under commensurability assumption cannot be applied
to mergingB1 andB2.

In this paper, we propose a family of operators for merg-
ing stratified knowledge bases under integrity constraints.
The operators are defined in a model-theoretic way. We as-
sume that each stratified knowledge base is assigned to an
ordering strategy. First, for each stratified knowledge base
K, the setΩ of possible worlds is stratified asΩK,X ac-
cording to its ordering strategyX. In this way, a possible
world has a priority level with regard to each knowledge
base which is its priority level inΩK,X . Second, each possi-
ble world or interpretation is associated with a list ofpriority
levelsin all the original knowledge bases. Then a possible
world is viewed as a model of the resulting knowledge base
of merging if it is a model of the formula representing the
integrity constraint and it is minimal among models of the

134 Technical Report IfI-06-04

Theory of NMR and Uncertainty

integrity constraintw.r.t the lexicographical order induced
by the natural order.

The main contributions of this paper are summarized as
follows.

(1) First, we define our merging operators in a model-
theoretic way. When original knowledge bases are flat, i.e.
there is no rank between their elements, some of our opera-
tors are reduced to existing classical merging operators.

(2) Second, the commensurability assumption is not nec-
essary for our operators. Moreover, each knowledge base
can have its own ordering strategy. By considering the pros
and cons of different ordering strategies, we can deal with
merging of knowledge bases in a more flexible way.

(3) Third, the original knowledge bases are not necessary
to be self-consistent and our operators resolve the conflicting
information among different knowledge bases and result in
a consistent knowledge base.

(4) Fourth, we provide a family of syntactic methods to
merge stratified knowledge bases under integrity constraints.
These methods are the syntactical counterparts of our merg-
ing operators.

(5) Finally, we generalize the set of postulates proposed
in (Konieczny and Pino Ṕerez 2002) for merging operators
applied to stratified knowledge bases and discuss the logical
properties of our operators based on these postulates.

This paper is organized as follows. Some preliminaries
are introduced in Section 2. In Section 3, we consider the
preference representation of stratified knowledge bases. A
new ordering strategy is proposed. The∆PLMIN operators
are proposed in Section 4. Section 5 analyzes the computa-
tional complexity of our merging operators. We then study
the logical properties of our merging operators in Section 6.
Section 7 is devoted to discussing related work. Finally, we
conclude the paper in Section 8.

Preliminaries
Classical logic: In this paper, we consider a propositional
languageLPS from a finite setPS of propositional symbols.
The classical consequence relation is denoted as`. An in-
terpretation (or world) is a total function fromPS to {0, 1},
denoted by a bit vector whenever a strict total order onPS
is specified.Ω is the set of all possible interpretations. An
interpretationw is a model of a formulaφ iff w(φ) = 1.
p, q, r,... represent atoms inPS. We denote formulae in
LPS by φ, ψ, γ,... For each formulaφ, we useM(φ) to de-
note its set of models. Aclassical knowledge base Kis a
finite set of propositional formulae (we can also identifyK
with the conjunction of its elements).K is consistent iff
there exists an interpretationw such thatw(φ) = true for
all φ∈K. A knowledgeprofile Eis a multi-set of knowledge
bases, i.e.E = {K1, ...,Kn}, whereKi may be identical to
Kj for i6=j. Let

⋃
(E) = ∪n

i=1Ki. Two knowledge profiles
E1 andE2 are equivalent, denotedE1≡E2 iff there exists a
bijection f betweenE1 andE2 such that for eachK∈E1,
f(K)≡K.
Stratified knowledge base: A stratified knowledge base,
sometimes also called ranked knowledge base (Brewka
2004) or prioritized knowledge base (Benferhat et al. 1993),

is a setK of (finite) propositional formulas together with a
total preorder≤ onK (a preorder is a transitive and reflexive
relation, and≤ is a total preorder if eitherφ≤ψ or ψ ≤ φ
holds for anyφ, ψ∈K)1. Intuitively, if φ ≤ ψ, thenφ is
considered to be less important thanψ. K can be equiva-
lently defined as a sequenceK = (S1, ..., Sn), where each
Si (i = 1, ..., n) is a non-empty set which contains all the
maximal elements ofK \ (∪i−1

j=1Sj) w.r.t ≤ (Coste-Marquis

and Marquis 2000), i.e.Si = {φ∈K \ (∪i−1
j=1Sj) : ∀ψ∈K \

(∪i−1
j=1Sj), ψ≤φ}. Each subsetSi is called a stratum ofK

andi the priority level of each formula ofSi. Therefore, the
lower the stratum, the higher the priority level of a formula
in it. There are many ways to generate a stratified knowl-
edge base (Benferhat et al. 1993; Benferhat and Baida 2004;
Brewka 1989; Pearl 1990). A stratified knowledge profile
(SKP)E is a multi-set of stratified knowledge bases. Given
a stratified knowledge baseK = (S1, ..., Sn), thei-cut ofK
is defined asK≥i = S1∪...∪Si, for i∈{1, ..., n}. A subbase
A of K is also stratified, that is,A = (A1, ..., An) such that
Ai⊆Si, i = 1, ..., n. Two SKPsE1 andE2 are equivalent,
denotedE1≡sE2 iff there exists a bijection betweenE1 and
E2 such thatn = m and for eachK = (S1, ..., Sl)∈E1,
f(K) = (S′

1, ..., S
′
l) andSi≡S′

i for all i∈{1, ..., l}.
There are several inconsistency-tolerant inference meth-

ods for stratified knowledge bases. In this paper, we use
one defined in (Benferhat, Dubois, and Prade 1998) which
is related to the consequence relation in possibilistic logic
(Dubois, Lang, and Prade 1994).

Definition 1 Let K = (S1, ..., Sn) be a stratified knowl-
edge base. A formulaφ is said to be ani-consequence of
K, denoted byK `i φ, if and only if: (1)K≥i is consis-
tent; (2) K≥i ` φ; (3) ∀j < i, K≥j 6` φ. We sayφ is
a π-consequence ofK, denoted byK `π φ, if φ is an i-
consequence ofK for somei.

Preference Representation of Stratified
Knowledge Base

Ordering strategies
Given a stratified knowledge base, we can define some total
pre-orders onΩ.
• best out ordering (Benferhat et al. 1993): letrBO(ω) =

min{i : ω 6|= Si}, for ω∈Ω. By convention, we have
min∅ = +∞. Then the best out ordering¹bo on Ω is
defined as:ω¹boω

′ iff rBO(ω)≥rBO(ω′)

• maxsat ordering (Brewka 2004): letrMO(ω) = min{i :
ω |= Si}, for ω∈Ω. Then the maxsat ordering¹maxsat

onΩ is defined as:ω¹maxsatω
′ iff rMO(ω)≤rMO(ω′)

• leximin ordering (Benferhat et al. 1993): letKi(ω) =
{φ∈Si : ω |= φ}. Then the leximin ordering¹leximin on
Ω is defined as:
ω¹leximinω′ iff |Ki(ω)| = |Ki(ω′)| for all i, or there
is an i such that|Ki(ω′)|<|Ki(ω)|, and for allj < i:
|Kj(ω)| = |Kj(ω′)|, where|Ki| denote the cardinality
of the setsKi.
1For simplicity, we useK to denote a stratified knowledge base

and ignore the total preorder≤.

DEPARTMENT OF INFORMATICS 135

11TH NMR WORKSHOP

Given a preorder¹ onΩ, as usual, the associated strict par-
tial order is defined byω≺ω′ iff ω¹ω′ and notω′¹ω. An
ordering¹X is more specific than another¹X′ iff ω≺X′ω′

impliesω≺Xω′. The total preorders onΩ defined above are
not independent of each other.

Proposition 1 (Brewka 2004) Letω, ω′∈Ω, K a stratified
knowledge base. The following relationships hold:

(1) ω≺boω
′ impliesω≺leximinω′;

(2) ω≺boω
′ implies ω¹maxsatω

′ and ω≺maxsatω
′ im-

pliesω¹boω
′

Proposition 1 shows that theleximin ordering is more spe-
cific than the best-out ordering.

A new ordering strategy
We now define a new ordering strategy by considering the
“distance” between an interpretation and a knowledge base.

Definition 2 (Everaere, Konieczny, and Marquis 2005) A
pseudo-distance between interpretations is a total function
d from Ω × Ω to N such that for everyω1, ω2∈Ω: (1)
d(ω1, ω2) = d(ω2, ω1); and (2)d(ω1, ω2) = 0 if and only if
ω1 = ω2.

A “distance ” between an interpretationω and a knowledge
baseS can then be defined asd(ω, S) = minω′|=Sd(ω, ω′).
WhenS is inconsistent,d(ω, S) = +∞. That is, all the
possible worlds have the same distance with an inconsis-
tent knowledge base. Two common examples of such dis-
tances are thedrastic distancedD and theDalal distance
dH , wheredD(ω1, ω2) = 0 whenω1 = ω2 and 1 otherwise,
anddH(ω1, ω2) is the Hamming distance betweenω1 and
ω2.

Definition 3 The distance-based ordering¹d on Ω is de-
fined as:

ω¹dω
′ iff d(ω, Si) = d(ω′, Si) for all i, or there is ani

such thatd(ω, Si)<d(ω′, Si), and for allj < i: d(ω, Sj) =
d(ω′, Sj).

It is clear that the distance-based orderings are total pre-
orders onΩ. Supposed = dH , the ordering¹dH

is equiv-
alent to the total preorder≤K,Lex which is defined to char-
acterize the minimal change of a revision operator in (Qi,
Liu, and Bell 2005). The following proposition states the
relationships among distance based orderings and other or-
derings.

Proposition 2 Let ω, ω′∈Ω, and K be a stratified knowl-
edge base. Supposed = dD or dH , then we have:
(1) ω¹dω

′ implies ω¹boω
′ and ω¹dω

′ implies
ω¹maxsatω

′; (2) ω≺boω
′ impliesω≺dω

′

2Given a stratified knowledge baseK, Ω can be stratified
with regard to the total preorder¹ on it obtained by an or-
dering strategyX asΩK,X = (Ω1, ...,Ωm) in the same way
as stratifying a knowledge base. For two interpretationsω1,
ω2, if ω1∈Ωi andω2∈Ωj , wherei < j, thenω1 is preferred
toω2. We uselK,X(ω) to denote the priority level of the stra-
tum whereω belongs to, i.e. ifω ∈ Wi, thenlK,X(ω) = i.

2All proofs of this paper can be found at
http://www.cs.qub.ac.uk/∼G.Qi/papers/MergProof.ps

∆
PLMIN Operators

Definition
We use¹X to denote a total preorder onΩ, whereX rep-
resents an ordering strategy. For example, ifX = bo, then
¹X is the best-out ordering. We now define the∆PLMIN

operators.

Definition 4 Let E = {K1, ...,Kn} be a multi-set of strat-
ified knowledge bases, whereKi = {Si1, ..., Simi

}, and
µ be an integrity constraint. LetX = (X1, ...,Xn) be
a set of ordering strategies, whereXi are ordering strate-
gies attached toKi. Let ¹Ki,Xi

be the total preorder
on Ω induced by the ordering strategyXi. For each in-
terpretation ω, we can associate with it a list of num-
bers (lK1,X1

(ω), ..., lKn,Xn
(ω)), where lKi,Xi

(ω) is the
priority level of the stratum ofΩKi,Xi

where ω belongs
to. Let LE(ω) = (l1(ω), ..., ln(ω)) be obtained by sort-
ing in increasing order(lK1,X1

(ω), ..., lKn,Xn
(ω)), that is,

l1(ω)≤...≤ln(ω). The resulting knowledge base of lexi-
cographical minimum and preference representation based
merging operator, denoted by∆PLMIN,X

µ (E), is defined as
follows:

ω∈M(∆PLMIN,X
µ (E)) iff ω∈M(µ) and ∀ω′∈M(µ),

li(ω) = li(ω
′) for all i or ∃i such thatli(ω) < li(ω

′) and
lj(ω) = lj(ω

′) for all j < i.

In Definition 4, each possible world is associated with a
list of numbers consisting of the priority levels of the strata
of ΩKi

in an increasing order. Then the models of the re-
sulting stratified knowledge base of the∆PLMIN,X

µ merg-
ing operator is the models of the integrity constraint that
are minimalw.r.t the lexicographic order induced by the
natural order. In our definition, different stratified knowl-
edge bases may have different ordering strategies. That
is, each agent can choose her own strategy to order in-
terpretations. We go back to the example in the Intro-
duction section. Suppose the best out ordering strategy
is attached to bothB1 and B2. B1 and B2 are strati-
fied as B1 = ({p}, {q}, {r}) and B2 = ({¬q}, {r}).
Let µ = >. We haveM(µ) = {ω1 = pqr, ω2 =
pq¬r, ω3 = p¬qr, ω4 = p¬q¬r, ω5 = ¬pqr, ω6 =
¬pq¬r, ω7 = ¬p¬qr, ω8 = ¬p¬q¬r}. It is easy to
check thatΩB1,bo = ({ω1}, {ω2}, {ω3, ω4}, {ω5, ..., ω8})
and ΩB2,bo = ({ω3, ω7}, {ω4, ω8}, {ω1, ω2, ω5, ω6}). So
ω1 andω3 are two minimal possible worlds. That is, the
result of merging isp∧r.

Let us consider the following example.

Example 1 Let E = {K1,K2,K3} be a set of three strati-
fied knowledge bases, where

- K1 = {S11, S12, S13}, whereS11 = {p1∨p2, p3}, S12 =
{¬p1,¬p2, p2∨¬p3, p4}, S13 = {¬p3 ∨ ¬p4}

- K2 = {S21, S22}, whereS21 = {p1, p2∨p3} andS22 =
{¬p2, p4}

- K3 = {S31, S32}, whereS31 = {p1, p3} and S32 =
{p2}.

The integrity constraint isµ = {¬p1∨p2}. The set of models
of µ is M(µ) = {ω1 = 0111, ω2 = 0101, ω3 = 0110, ω4 =
0100, ω5 = 0011, ω6 = 0001, ω7 = 0010, ω8 =

136 Technical Report IfI-06-04

Theory of NMR and Uncertainty

0000, ω9 = 1111, ω10 = 1101, ω11 = 1110, ω12 = 1100}.
We denote each model by a bit vector consisting of truth val-
ues of(p1, p2, p3, p4). For example,ω1 = 0111 means that
the truth value ofp1 is 0 and the truth values of other atoms
are all 1. LetX = {X1,X2,X3}, whereX1 = X2 = bo
and X3 = dH . That is, the best out ordering strategy is
chosen for bothK1 andK2, whilst the Dalal distance-based
ordering is chosen forK3. The computations are given in
Table 1 below.

ω K1 K2 K3 E

0111 1 3 3 (1,3,3)
0101 2 3 5 (2,3,5)
0110 1 3 3 (1,3,3)
0100 2 3 5 (2,3,5)
0011 2 3 4 (2,3,4)
0001 2 3 6 (2,3,6)
0010 2 3 4 (2,3,4)
0000 2 3 6 (2,3,6)
1111 1 2 1 (1,1,2)
1101 2 2 3 (2,2,3)
1110 1 2 1 (1,1,2)
1100 2 2 3 (2,2,3)

Table 1:∆PLMIN,X
µ operator

In Table 1, the column corresponding toKi gives the
priority levels of strata ofΩKi

where ωi belongs to (Ω
is stratified by an ordering strategy induced byKi). The
column corresponding toE gives the lists of numbers of
the priority levels of possible worlds in an ascending or-
der. Let us explain how to obtain the column correspond-
ing to K2 (other columns can be obtained similarly). Let
ω13 = 1011, ω14 = 1001, ω15 = 1010 and ω16 =
1000. SincerBO(ωi) = 1 for all 1≤i≤8, rBO(ωi) = 2
for 9≤i≤12 and 14≤i≤16, rBO(ω13) = +∞, we have
ΩK2,bo = ({ω13}, {ω9, ..., ω12, ω14, ..., ω16}, {ω1, ..., ω8}).
So lK2,bo(ωi) = 3 for 1≤i≤8 and lK2,bo(ωi) = 2 for
9≤i≤12. By Def. 4, it is easy to see thatω9 andω11 are two
minimal possible worlds in Table 1. SoM(∆PLMIN,X

µ (E))

= {1111, 1110}. That is,∆PLMIN,X
µ (E) = p1∧p2∧p3.

The following proposition states relationships between
different∆PLMIN operators when considering different or-
dering strategies.

Proposition 3 Let E = {K1, ...,Kn} be a SKP, andµ be
the integrity constraint. LetX1 = {X1, ...,Xn} andX2 =
{X ′

1, ...,X
′
n} be two vectors of ordering strategies, where

both Xi and X ′
i are ordering strategies forKi. Suppose

¹Xi
is more specific than¹X′

i
, for all i, whereXi∈X1 and

X ′
i ∈ X2, then∆PLMIN,X2

µ (E) |= ∆PLMIN,X1

µ (E).

Proposition 3 shows that the operator with regard to the
set of more specific ordering strategies can result in a knowl-
edge base which has stronger inferential power. By Propo-
sition 2 and 3, we have the following result: Suppose
Xi = bo andX ′

i = d for all i, then∆PLMIN,X2

µ (E) |=

∆PLMIN,X1

µ (E).

Example 2 (continue Example 1) SupposeX′ =
{X ′

1,X
′
2,X

′
3}, where X ′

1 = bo, X ′
2 = X ′

3 = dH .
The computations are given in Table 2 below.

ω K1 K2 K3 E

0111 1 5 3 (1,3,5)
0101 2 5 5 (2,5,5)
0110 1 6 3 (1,3,6)
0100 2 6 5 (2,5,6)
0011 2 4 4 (2,4,4)
0001 2 7 6 (2,6,7)
0010 2 5 4 (2,4,5)
0000 2 8 6 (2,6,8)
1111 1 2 1 (1,1,2)
1101 2 2 3 (2,2,3)
1110 1 3 1 (1,1,3)
1100 2 3 3 (2,3,3)

Table 2:∆PLMIN,X′

µ operator
According to Table 2,ω9 = 1111 is the only mini-

mal model inM(µ). So the result of merging by the
∆PLMIN,d operator is M(∆PLMIN,X′

µ (E)) = {1111}.

So ∆PLMIN,X′

µ (E) = p1∧p2∧p3∧p4. It is clear that

M(∆PLMIN,X′

µ (E)) |= M(∆PLMIN,X
µ (E)).

Syntactical counterpart of the∆PLMIN operators
The ∆PLMIN operators are defined in a model-theoretic
way in Definition 4. In this section, we propose an algo-
rithm to compute the∆PLMIN operators syntactically.

Definition 5 Let φ be a formula andK be a stratified
knowledge base. LetX be an ordering strategy forK. The
level ofφ with regard toK andX, denoted asL(φ,KX) is
defined as:

L(φ,KX) = min{lK,X(ωi) : ωi∈M(φ)}

L(φ,KX) is the minimum priority level of models ofφ with
regard toK andX.

Given a stratified knowledge baseK together with an or-
dering strategyX and a formulaµ, a revision operator, de-
noted◦X can be defined asM(K◦Xµ) = Min(M(µ),¹X

). We then have the following proposition for the◦X revi-
sion operators.
Proposition 4 LetK be a stratified knowledge base andX
be an ordering strategy for it. Letφ be a formula. We then
have,
1. for X=bo, let l = max{i : {φ} ∪ K≥i 6` ⊥}, then

K◦boφ ≡ φ∧
∧

ψ∈K≥l
ψ.

2. for X = maxsat, let l = min{i : {φ} ∪ Si 6` ⊥}, then
K◦maxsatφ ≡ φ∧

∧
ψ∈Sl

ψ.

3. for X = leximin, let SMC(K) = {A =
A1∪...∪An⊆K : ∀i, {φ} ∪ A1 ∪ ...∪Ai 6`
⊥ and ∀Bi⊆Si, if Ai⊂Bi, then {φ} ∪ A1 ∪ ... ∪ Bi `
⊥}. SupposeLex(K) = {A = A1∪...∪An∈SMC(K) :
∀B = B1∪...∪Bn∈SMC(K), 6 ∃i, |Bi| >
|Ai| and ∀j < i, |Bj | = |Aj |}, then K◦leximinφ =
φ∧(∨Ai∈Lex(K) ∧ψij∈Ai

ψij).
4. for X = dH , let GS,ψ be the syntactical result of revis-

ing a knowledge baseS using ψ by the Dalal revision
method in (Dalal 1988). ThenK◦dφ = φ ∧ GS1,φ ∧
GS2,ψ1

∧...∧GSn,ψn−1
, whereψ1 = φ ∧ GS1,φ andψi =

φ ∧ GS1,φ∧...∧GSi,ψi−1
.

DEPARTMENT OF INFORMATICS 137

11TH NMR WORKSHOP

By Proposition 4, the operator◦bo is the cut base-revision
operator defined in (Nebel 1994) and the operator◦leximin

is the lex-revision operator defined in (Benferhat, Dubois,
and Prade 1998).
Algorithm 1
Input: a set of n stratified knowledge basesE =
{K1, ...,Kn}; a formulaµ representing the integrity con-
straints; a set of ordering strategiesX = (X1, ...,Xn),
whereXi is the ordering strategy forKi.
Result: a formulaψE,X

Let Φ = {(µ,E)}, l = +∞, ind=1
while (∃ (φi, Ei) ∈ Φ, Ei 6= ∅)

for each(φi, Ei) ∈ Φ
for eachKj∈Ei, computeL(φi, (Kj)Xj

)
let lφi

= minKj∈Ei
L(φi, (Kj)Xj

); l = min(φi,Ei)∈Φlφi

let Φ
′

= {(φi, Ei)∈Φ, lφi
6= l}; Φ = Φ \ Φ′

setΦ′ = ∅
for each (φi, Ei) ∈ Φ
let Ii = {j : L(φi, (Kj)Xj

) = l}
computeMCS(Ii) = {J⊆Ii : ∧j∈JKj ◦Xj

φi 6` ⊥
and∀k∈Ii \ J, ∧j∈JKj ◦Xj

φi ∧ Kk ◦Xk
φi ` ⊥}

let λi = maxJ ′∈MCS(I)|J
′|, where|J | is the cardinality

of J
CardM(Ii) = {J∈MCS(I) : |J | = λi}

let λ = min(φi,Ei)∈Φλi; Φ = {(φi, Ei) ∈ Φ : λi = λ}
for each (φi, Ei) ∈ Φ
for eachJ∈CardM(Ii)
let φJ = ∧j∈J(Kj ◦Xj

φi);
EφJ

= Ei \ {Kj∈Ei : j∈J}
Φ′ = Φ′∪{(φJ , EφJ

) : J∈CardM(I)}
let Φ = Φ′; Φ′ = ∅
ind=ind+1

let ψ = ∨(φi,Ei)∈Φφi

return ψ
end

In Algorithm 1, we useΦ to denote the set of pairs con-
sisting of a formulaφi and a setEi of knowledge bases,
whereφi is obtained by merging some selected knowledge
bases fromE andEi contains knowledge bases which are
left to be merged under the integrity constraintφi. Initially,
Φ contains a single element(µ,E). In the “while” step, we
check whether there is a pair(φi, Ei) in Φ such thatEi 6= ∅.
If not, then the algorithm stops. Otherwise, for each element
(φi, Ei) in Φ, we compute the priority levellφi

of φi with
regard toEi and letl be the minimal priority level among
all lφi

. We then delete those pairs(φj , Ej) such thatlφj
6= l

from Φ. For each(φi, Ei) ∈ Φ, we find all the maximal sub-
sets ofEi which contains those stratified knowledge bases
such that the levels ofφi w.r.t them are equal tol and whose
revised formulae byφi are consistent altogether, i.e. their
union is consistent. This step is a competition step. That
is, the knowledge bases are defeated and will be left to be
dealt with in another “while” loop when either the level of
φi w.r.t them are not equal tol or they are not chosen in a
cardinally maximal subset. We then compare the cardinal-
ity of the maximal subsets and only keep those pairs whose
maximal subsets have the maximal cardinality. After that,
for each such cardinally maximal subset, we revise all the

knowledge bases in it byφi. A new formulaφJ is then ob-
tained by taking the conjunction of the resulting formulae of
revision. A setEφJ

, which is the complement of this car-
dinally maximal subset byEi, is then attached to the new
formula φJ for further merging. Φ is reset to contain all
those pairs of(φJ , EφJ

) and we go back to the “while” step
again.

Example 3 (Continue Example 2) Initially, we haveΦ =
{(µ = ¬p1∨p2, E = {K1,K2,K3})} and X1 = bo
and X2 = X3 = dH . We haveL(µ, (K1)X1

) = 1,
L(µ, (K2)X2

) = 2 and L(µ, (K3)X3
) = 2 (which can

be checked by Table 2). Sol = 1. It is clear that
Φ′ = ∅. For (µ,E) ∈ Φ, we haveI = {1} because
only L(µ, (K1)X1

) = 1. By Proposition 4,K1◦boµ =
(¬p1∨p2)∧(p1∨p2)∧p3. Letφ = (¬p1∨p2)∧(p1∨p2)∧p3

and Eφ = {K2,K3}. SoΦ = {(φ,Eφ)}. We then have
L(φ, (K2)X2

) = 2 and L(φ, (K3)X3
) = 2. So l = 2.

Φ′ = ∅. For (φ,Eφ) ∈ Φ, we haveI = {2, 3}. By Proposi-
tion 4, K2◦dH

φ≡p1∧p2∧p3∧p4 and K3◦dH
φ≡p1∧p2∧p3.

It is clear that K2◦dH
φ and K3◦dH

φ are consistent with
each other, soMSC(I) = CardM(I) = {J = {2, 3}}.
φJ = (K2◦dH

φ) ∧ (K2◦dH
φ) = p1∧p2∧p3∧p4 and

EφJ
= ∅. We haveΦ = {(φJ , ∅)}. The algorithm ter-

minates. SoψE,X = p1∧p2∧p3∧p4, which is the same as
4PLMIN,X

µ (E) in Example 2.

Proposition 5 Let E = {K1,,Kn} be a set ofn strati-
fied knowledge bases andX = {X1, ...,Xn} be a set of or-
dering strategies, whereXi is the ordering strategy forKi.
µ is the integrity constraint. Suppose∆PLMIN,X

µ (E) is the
knowledge base obtained byKi under constraintsµ using
the ∆PLMIN,X

µ operator andψE,X is the knowledge base
obtained by Algorithm 1, then∆PLMIN,X

µ (E) ≡ ψE,X.

Proposition 5 tells us that the resulting knowledge base of
Algorithm 1 is equivalent to that of the∆PLMIN,X

µ opera-
tor. Therefore, the syntactical merging methods obtained by
Algorithm 1 are the syntactical counterparts of our merging
operators.

Flat case
In this section, we apply our merging operators to the classi-
cal knowledge bases. Since our merging operators are based
on the ordering strategies, we need to consider the ordering
strategies for classical knowledge bases.

Proposition 6 Let K be a classical knowledge base. Sup-
poseX is an ordering strategy, then

1. for X = bo andX = maxsat, we haveω¹Xω′ iff ω |=
K

2. forX = leximin, letK(ω) = {φ∈K : ω |= φ}, we have
ω¹Xω′ iff |K(ω)|≥|K(ω′)|

3. for X = d, we haveω¹Xω′ iff d(ω,K)≤d(ω,K ′).

By Proposition 6, the best out ordering and the maxsat or-
dering are reduced to the same ordering when knowledge
base is classical. Furthermore, the leximin ordering can be
used to order possible worlds when the knowledge base is
inconsistent.

138 Technical Report IfI-06-04

Theory of NMR and Uncertainty

Proposition 7 LetE be a knowledge profile andµ be a for-
mula. LetMAXCONS(E,µ) = {F⊆E :

⋃
(F)∪{µ} 6|=

⊥, and if F⊂E′⊆E, then
⋃

(E′) ∪ {µ} |= ⊥}. That
is, MAXCONS(E,µ) is the set of maximal subsets ofE
which are consistent withµ. Let CardM(E,µ) = {F ∈
MAXCONS(E,µ) : 6 ∃F ′∈MAXCONS(E,µ), |F | <
|F ′|}. SupposeXi = bo or maxsat for all i, then
∆PLMIN,X

µ (E) =
∨

F∈CardM(E,µ)(∧φ∈F φ ∧ µ).

Proposition 7 shows that the∆PLMIN,X operator is equiv-
alent to the4C4 operator defined in (Konieczny, Lang, and
Marquis 2004), which selects the set of consistent subsets
of E∪{µ} that contain the constraintsµ and that are maxi-
mal with respect to cardinality, when each knowledge base
is viewed as a formula and ordering strategy of it is thebest
outstrategy ormaxsatstrategy.

WhenXi = d for all i, the corresponding∆PLMIN,X
µ

operators are similar to the4d,Gmin
µ operators defined as

follows.

Definition 6 (Everaere, Konieczny, and Marquis 2005) Let
d be a pseudo-distance,µ an integrity constraint,E =
{K1, ...,Kn} a profile and letω be an interpretation. The
“distance” betweenω andE, denoted bydd,Gmin(ω,E), is
defined as the list of numbers(d1, ..., dn) obtained by sort-
ing in increasing order the set{d(ω,Ki) : Ki∈E}. The
models of4d,Gmin

µ (E) are the models ofµ that are mini-
mal w.r.t the lexicographical order induced by the natural
order.

Our ∆PLMIN
µ operators and the4d,Gmin

µ operators differ
in that the lists of numbers attached to models are different.
The former uses the priority levels of a modelw.r.t all the
knowledge bases and the latter uses the distance between a
model and each knowledge base.

Proposition 8 Let E = {K1, ...,Kn} a profile and µ
an integrity constraint. dD is the drastic distance and
X = (X1, ...,Xn) is a set of ordering strategies attached
to Ki (i = 1, ..., n), whereXi = dD for all i. Then
∆PLMIN,X

µ (E) ≡ 4dD,Gmin
µ (E).

Proposition 8 shows that the∆PLMIN,X
µ operator and the

4dD,Gmin
µ operator are equivalent when thedrastic distance

is chosen.
Propositions 7 and 8 only consider4d,Gmin

µ operators
where all knowledge bases have the same ordering strategy.
When hybrid ordering strategies are used, we can get more
operators. For example, if we use theleximin ordering for
those knowledge bases which are inconsistent, then our op-
erators can be applied to merging a set of knowledge bases
which may be individually inconsistent. Now let us look at
an example.

Example 4 Let E = {K1,K2}, where K1 =
{p1∨p2, p3,¬p3} andK2 = {p1, p2, p3}, andµ = {(p1 ∨
p3)∧p2}. SoMod(µ) = {ω1 = 110, ω2 = 111, ω3 = 011}.
LetX = (X1,X2), whereX1 = leximin andX2 = bo are
ordering strategies ofK1 andK2 respectively. The compu-
tations are given in Table 3 below.

ω K1 K2 E

110 1 2 (1,2)
111 1 1 (1,1)
011 1 2 (1,2)

Table 3:∆PLMIN,X operator
According to Table 3,ω2 = 111 is the only minimal

model inM(µ). SoM(∆PLMIN,X
µ (E)) = {111}. That

is, ∆PLMIN,X
µ (E) = p1∧p2∧p3.

Computational Complexity
We now discuss the complexity issue. First we need to con-
sider the computational complexity of stratifyingΩ from a
stratified knowledge base. In (Lang 2004), two important
problems for logical preference representation languages
were considered. We express them as follows.

Definition 7 Given a stratified knowledge baseK and two
interpretationsω andω′, the COMPARISON problem con-
sists of determining whetherω¹Xω′, whereX denotes an
ordering strategy. The NON-DOMINANCE problem con-
sists of determining whetherω is non-dominatedfor ¹X ,
that is, there is notω′ such thatω′≺Xω.

It was shown in (Lang 2004) that the NON-
DOMINANCE problem is usually a hard problem, i.e
coNP-complete. We have the following proposition on
NON-DOMINANCE problem for ordering strategies in
Section 3.

Proposition 9 Let K be a stratified knowledge base. For
X = bo, maxsat, or lexmin:

(1) COMPARISON is inP, whereP denotes the class of
problems decidable in determini-

stic polynomial time.
(2) NON-DOMINANCE is coNP-complete.

To stratifyΩ, we need to consider the problemdetermin-
ing all non-dominated interpretations, which is computa-
tional much harder than the NON-DOMINANCE problem
(we believe it isΣp

2-hard). To simplify the computation of
our merging operators, we assume thatΩ is stratified from
each stratified knowledge base during an off-line prepro-
cessing stage.

Let ∆ be a merging operator. The following decision
problem is denoted as MERGE(∆):

• Input : a 4-tuple〈E,µ, ψ,X〉 whereE = {K1, ...,Kn}
is a multi-set of stratified knowledge bases,µ is a for-
mula, andψ is a formula;X = (X1, ...,Xn), whereXi

is the ordering strategy attached toKi. Ω/〈Ki,Xi〉 =
(Ωi1, ...,Ωini

) (i = 1, ..., n), where Ωij is the non-
empty set which contains all the minimal elements of
Ω \ (∪j1

l=1Ωil) with regard to an ordering strategyXi of
Ki.

• Question : Does∆µ(E) |= ψ hold?

Proposition 10 MERGE(∆PLMIN,X) in Θp
2, whereΘp

2 is
the class of all languages that can be recognized in polyno-
mial time by a deterministic Turing machine using a num-
ber of calls to anNPoracle bounded by a logarithmic func-
tion of the size of the input data. LetX = (X1, ...,Xn),

DEPARTMENT OF INFORMATICS 139

11TH NMR WORKSHOP

whereXi = bo, maxsat, leximin, or dD(i = 1, ..., n),
then MERGE(∆PLMIN,X) is Θp

2-complete.

Proposition 10 shows that the computational complexity of
inference for our merging operators is located at a low level
of the boolean hierarchy under an additional assumption.

Logical Properties
Many logical properties have been proposed to characterize
a belief merging operator. We introduce the set of postulates
proposed in (Konieczny and Pino Pérez 2002), which is used
to characterize Integrity Constraints (IC) merging operators.

Definition 8 Let E, E1, E2 be knowledge profiles,K1, K2

be consistent knowledge bases, andµ, µ1, µ2 be formulas
from LPS . ∆ is an IC merging operator iff it satisfies the
following postulates:
(IC0) ∆µ(E) |= µ
(IC1) If µ is consistent, then∆µ(E) is consistent
(IC2) If

∧
E is consistent withµ, then ∆µ(E)≡

∧
E∧µ,

where
∧

(E) = ∧Ki∈EKi

(IC3) If E1≡E2 andµ1≡µ2, then∆µ1
(E1)≡∆µ2

(E2)
(IC4) If K1 |= µ andK2 |= µ, then∆µ({K1,K2})∧K1 is
consistent iff∆µ({K1,K2})∧K2 is consistent
(IC5) ∆µ(E1) ∧ ∆µ(E2) |= ∆µ(E1tE2)
(IC6) If ∆µ(E1) ∧ ∆µ(E2) is consistent, then
∆µ(E1tE2) |= ∆µ(E1) ∧ ∆µ(E2)
(IC7) ∆µ1

(E) ∧ µ2 |= ∆µ1∧µ2
(E)

(IC8) If ∆µ1
(E) ∧ µ2 is consistent, then∆µ1∧µ2

(E) |=
∆µ1

(E) ∧ µ2

The postulates are used to characterize an IC merging op-
erator in classical logic. Detailed explanation of the above
postulates can be found in (Konieczny and Pino Pérez 2002).

Some postulates in Definition 8 need to be modified if we
consider merging postulates for stratified knowledge bases,
i.e., (IC2), (IC3) should be modified as:
(IC2

′

) Let
∧

E = ∧Ki∈E ∧φij∈Ki
φij . If

∧
E is consistent

with µ, then∆µ(E)≡
∧

E∧µ

(IC3
′

) If E1≡sE2 andµ1≡µ2, then∆µ1
(E1)≡∆µ2

(E2)

(IC3
′

) is stronger than (IC3) because the condition of
equivalence between two knowledge profiles is generalized
to the condition of equivalence between two SKPs. We do
not generalize (IC4), the fairness postulate, which says that
the result of merging of two belief bases should not give
preference to one of them. This postulate is controversial
(Konieczny 2004). And it is hard to be adapted in the pri-
oritized case because a stratified knowledge base may be in-
consistent and there is no unique consequence relation for a
stratified knowledge base (Benferhat et al. 1993).

Proposition 11 ∆PLMIN,X
µ satisfies (IC0), (IC1), (IC2′),

(IC5), (IC6) (IC7), (IC8). The other postulates are not sat-
isfied in the general case.

(IC3′) is not satisfied because some ordering strategies
are syntax-sensitive. However, when the ordering strate-
gies are either best-out ordering or maxsat ordering, then
our merging operators satisfy all the generalized postulates.

Proposition 12 SupposeXi = bo or maxsat, then
∆PLMIN,X

µ satisfies (IC0), (IC1), (IC2′), (IC3′), (IC5),
(IC6), (IC7), (IC8). The other postulates are not satisfied
in the general case.

Related Work
Merging of stratified knowledge bases is often handled in the
framework of possibilistic logic (Dubois, Lang, and Prade
1994) or ordinal conditional function (Spohn 1988). In pos-
sibilistic logic, the merging problems are often solved by ag-
gregatingpossibility distributions, which are mappings from
Ω to a common scale such as [0,1], using somecombination
modes. Then the syntactic counterpart of these combination
modes can be defined accordingly (Benferhat, Dubois, and
Prade 1997; Benferhat et al. 2002). In (Chopra, Ghose, and
Meyer 2005; Meyer, Ghose, and Chopra 2002), the merg-
ing is conducted by mergingepistemic stateswhich are (to-
tal) functions from the set of interpretations toN, the set of
natural numbers. There are many other merging methods
in possibilistic logic (Benferhat, Dubois, and Prade 1998;
Benferhat et al. 1999; Qi, Liu, and Glass, 2004a; Qi, Liu,
and Glass 2004b) and in ordinal conditional function frame-
work (Benferhat et al. 2004; Qi, Liu, and Bell 2005). Our
merging operators differs from previous ones at least in two
aspects:

First, our operators are semantically defined in a model-
theoretic way and others are semantically defined by distri-
bution functions such as possibility distributions. In theflat
case, our merging operators belong to model-based merg-
ing operators, and they capture some notion of minimal
change. Whilst other merging operators are usually syntax-
based ones in the flat case.

Second, most of previous merging operators are based
on the commensurability assumption. In (Benferhat et al.
1999), a merging approach for stratified knowledge base
is proposed which drops the commensurability assumption.
However, their approach is based on the assumption that
there is an ordering relation between two stratified knowl-
edge basesK1 andK2, i.e. K1 has priority overK2. In
contrast, our merging operators do not require any of above
assumptions and are flexible enough to merge knowledge
bases which are stratified by a total pre-ordering on their
elements. So our merging operators are more general and
practical than other methods.

This work is also related to the logical preference descrip-
tion language (LPD) in (Brewka 2004). The language LPD
uses binary operators∨, ∧ and> to connect two (or more)
basic orderingsand get more complex orderings. In con-
trast, when defining our merging operators, we use an adap-
tive method which is based on a lexicographical preference
to combine orderings assigned to original knowledge bases.

Conclusions and Further Work
In this paper, we proposed a family of model-theoretic op-
erators to merge stratified knowledge bases with integrity
constraints. We also considered the syntactical counterpart
of merging operators. Our operators can be applied to classi-
cal knowledge bases. In that case, some of our operators are

140 Technical Report IfI-06-04

Theory of NMR and Uncertainty

reduced to existing merging operators. The computational
complexity of our merging operators was analyzed. Under
an additional assumption, the computation of∆PLMIN is
equivalent to that of∆GMIN in (Everaere, Konieczny, and
Marquis 2005). Finally, we revised the set of postulates de-
fined in (Konieczny and Pino Ṕerez 2002) and shown that
our operators satisfy most of the revised postulates.

There are several problems that will be left as further
work. First, we have applied our merging operators to clas-
sical bases and got some interesting results. By Proposition
11 and Proposition 12, it is easy to conclude that our oper-
ators have good logical properties in flat cases. However,
to have a thorough evaluation of our operators, we need to
consider other important criteria to compare operators, such
as the strategy-proofness and discriminating power. Second,
we revised the set of postulates defined in (Konieczny and
Pino Ṕerez 2002). However, the revision is a simple exten-
sion of existing postulates. Due to the additional information
of stratified knowledge bases, the postulates of a “rational”
merging operators for stratified knowledge bases should be
much more complex than what we have considered in this
paper. More postulates will be explored in the future.

References
Abidi, M.A., and Gonzalez, R.C. eds. 1992.Data Fusion
in Robotics and Machine Intelligence.Academic Press.
Baral, C.; Kraus, S. and Minker, J. 1991. Combining mul-
tiple knowledge bases.IEEE Transactions on Knowledge
and Data Engineering, 3(2):208-220.
Baral, C.; Kraus, S.; Minker, J.; and Subrahmanian, V.S.
1992. Combining knowledge bases consisting in first order
theories.Computational Intelligence8(1):45-71.
Benferhat, S.; Cayrol, C.; Dubois, D.; Lang, L. and
Prade, H. 1993a. Inconsistency management and priori-
tized syntax-based entailment. InProc. IJCAI’93, 640-645.
Benferhat, S.; Dubois, D.; and Prade, H. 1997. From se-
mantic to syntactic approaches to information combination
in possibilistic logic. In Bouchon-Meunier, B. eds.,Ag-
gregation and Fusion of Imperfect Information, 141-151.
Physica. Verlag.
Benferhat, S.; Dubois, D. and Prade, H.: Some syntac-
tic approaches to the handling of inconsistent knowledge
bases: A comparative study. Part 2: The prioritized case.
In Logic at work : essays dedicated to the memory of He-
lena Rasiowa/ Ewa Orow. - New York : Physica-Verlag,
pp. 473-511, 1998.
Benferhat S.; Dubois, D.; Prade, H. and Williams, M.A.
1999. A Practical Approach to Fusing Prioritized Knowl-
edge Bases,Proc. 9th Portu. Conf. Artificial Intelligence,
pp. 223-236, 1999.
Benferhat, S.; Dubois, D.; Kaci, S.; and Prade, H. 2002.
Possibilistic merging and distance-based fusion of propo-
sitional information.Annals of Mathematics and Artificial
Intelligence34:217-252.
Benferhat, S. and Baida, R.E. 2004. A stratified first order
logic approach for access control.International Journal of
Intelligent Systems, 19:817-836.

Benferhat S., Kaci S., Berre D.L., and Williams M.A.
Weakening conflicting information for iterated revision and
knowledge integration.Artificail Intelligence, vol. 153(1-
2), pp. 339-371, 2004.

Brewka, G. 2004. A rank-based description language for
qualitative preferences. InProc. of ECAI’04, 303-307.

Bloch, I. and Hunter, A. 2001. Fusion: General con-
cepts and characteristics.International Journal of Intelli-
gent Systems, 16(10):1107-1134 (special issue on Data and
Knowledge Fusion).

Brewka, G. 1989. Prefered subtheories-an extended logi-
cal framework for default reasoning. InProc. of IJCAI’89,
1043-1048.

Brewka, G. 2004. A rank-based description language for
qualitative preferences. InProceedings of sixteenth Euro-
pean Conference on Artificial Intelligence (ECAI’04), 303-
307.

Cholvy, L. 1992. A logical approach to multi-sources rea-
soning. InProceedings of International Conference Logic
at Work on Knowledge Representation and Reasoning Un-
der Uncertainty, Logic at Work, 183-196. Springer-Verlag.

Chopra, S.; Ghose, A. and Meyer, T. 2003. Non-prioritized
ranked belief change.Journal of Philosophical Logic.
32(4):417-443.

Chopra, S.; Ghose, S. and Meyer, T. 2005. Social choice
theory, belief merging, and strategy-proofness.Journal of
Information Fusion, to appear.

Coste-Marquis, S. and Marquis, P. 2000. Compiling strati-
fied belief bases. InProc. of ECAI’00, 23-27.

Coste-Marquis, S.; Lang, J.; Liberatore, P. and Marquis,
P. Expressive power and succintness of propositional lan-
guages for preference representation. InProceedings of
Ninth International Conference on Knowledge Represen-
tation and Reasoning (KR’04), 203-213.

Dalal, M. 1988. Investigations into a theory of knowledge
base revision: Preliminary report,Proc. of AAAI’88, 3-7.

Dubois, D.; Lang, J.; and Prade, H. 1992. Dealing with
Multi-Source Information in Possibilistic Logic. InPro-
ceedings of 10th European Conference on Artificial Intelli-
gence(ECAI 92), 38-42.

Dubois, D.; Lang, J.; and Prade, H. 1994. Possibilistic
logic. In Handbook of logic in Aritificial Intelligence and
Logic Programming, Volume 3. Oxford University Press,
439-513.

Everaere, P.; Konieczny, S. and Marquis, P. 2005. Quota
and Gmin merging operators. InIJCAI’05, 424-429.

Fagin, R. and Ullman, J.D. 1983. On the semantics of
updates in Databases. InProceedings of Second ACM
SIGACT-SIGMOD Symp. on Principles of Database Sys-
tems, Atlanta, 352-265.

Gärdenfors P. 1988.Knowledge in Flux-Modeling the Dy-
namic of Epistemic States.Mass.: MIT Press.

Konieczny, S. and Pino Ṕerez, R. 1998. On the logic of
merging. InProceedings of the Sixth International Confer-

DEPARTMENT OF INFORMATICS 141

11TH NMR WORKSHOP

ence on Principles of Knowledge Representation and Rea-
soning (KR’98), 488-498. Morgan Kaufmann.
Konieczny, S. 2000. On the difference between merging
knowledge bases and combining them. InProceedings
of the Seventh International Conference on Principles of
Knowledge Representation and Reasoning (KR’00), 135-
144.
Konieczny, S. and Pino Ṕerez, R. 2002. Merging informa-
tion under constraints: a qualitative framework.Journal of
Logic and Computation12(5):773-808.
Konieczny, S.; Lang, J. and Marquis, P. 2004. DA2 opera-
tors.Artificial Intelligence, 157(1-2):49-79.
Konieczny, S. Propositional belief merging and belief ne-
gotiation model, InNMR’04, 249-257, 2004.
Liberatore, P. and Schaerf, M. 1998. Arbitration (or How
to Merge Knowledge Bases).IEEE Transaction on Knowl-
edge and Data Engineering10(1):76-90.
Lafage, L. and Lang, J. 2000. Logical representation of
preference for group decision making. InProceedings
of the Seventh International Conference on Principles of
Knowledge Representation and Reasoning (KR’00), 457-
468. Morgan Kaufmann.
Lang, J. 2004. Logical preference representation and com-
binatorial vote.Annals of Mathematics and Artificial Intel-
ligence, 4(1-3):37-71.
Meyer, T.; Ghose A. and Chopra S. 2002. Syntactic repre-
sentations of semnatic merging operations. InProceedings
of sixth Pacific Rim International Conference on Artificial
Intelligence (PRICAI’02), 620.
Nebel, B. 1994. Belief Revision operators and schemes:
Semantics representation and complexity. InProceedings
of eleventh European Conference on Artificial Intelligence,
341-345.
Nebel, B. 1998. How hard is it to revise a belief base? In
Handbook of Defeasible Reasoning and Uncertainty Man-
agement Systems, vol. 3: Belief change, Kluwer Academic,
Dubois and Prade (eds.), 77-145.
Pearl, J. 1990. System Z: A natural ordering of defaults
with tractable applications to default reasoning. InProc. of
third International Conference on Theoretical Aspects of
Reasoning about Knowledge, 121-135.
Qi, G.; Liu, W. and Glass, D. 2004. A split-combination
methods for merging possibilistic knowledge bases. InPro-
ceedings of the Ninth International Conference on Princi-
ples of Knoweldge Presentation and Reasoning (KR’04),
348-356. Morgan Kaufmann.
Qi, G.; Liu, W. and Glass, D. 2004. Combining individu-
ally inconsistent prioritized knowledge bases. InProceed-
ings of the 10th International Workshop on Non-Monotonic
Reasoning (NMR’04), 342-349. Canada.
Qi, G.: Liu, W. and Bell, D.A. 2005. A revision-based ap-
proach to resolving conflicting information. InProceedings
of twenty-first Conference on Uncertainty in Artificial In-
telligence (UAI’05), 477-484.
Revesz, P.Z. 1997. On the semantics of arbitration.Interna-
tional Journal of Algebra and Computation, 7(2):133-160.

Spohn, W. 1988. Ordinal conditional functions. In William
L. Harper and Brian Skyrms (eds.),Causation in Decision,
Belief Change, and Statistics, 11, 105-134. Kluwer Aca-
demic Publisher.

142 Technical Report IfI-06-04

Theory of NMR and Uncertainty

DEPARTMENT OF INFORMATICS 143

11TH NMR WORKSHOP

2.4 Merging Optimistic and Pessimistic Preferences

Merging Optimistic and Pessimistic Preferences

Souhila Kaci
CRIL

Rue de l’Université SP 16
62307 Lens Cedex, France

kaci@cril.univ-artois.fr

Leendert van der Torre
ILIAS

University of Luxembourg
Luxembourg

leon.vandertorre@uni.lu

Abstract - In this paper we consider the extension of non-
monotonic preference logic with the distinction between control-
lable (or endogenous) and uncontrollable (or exogenous) vari-
ables, which can be used for example in agent decision making
and deliberation. We assume that the agent is optimistic about
its own controllables and pessimistic about its uncontrollables,
and we study ways to merge these two distinct dimensions. We
also consider complex preferences, such as optimistic preferences
conditional on an uncontrollable, or optimistic preferences con-
ditional on a pessimistic preference.

Keywords: Preference logic, preference merging, non-
monotonic reasoning.

Introduction
In many areas such as cooperative information systems,
multi-databases, multi-agents systems, information comes
from multiple sources. The multiplicity of sources providing
information makes that information is often contradictory
which requires conflict resolution. This problem has been
widely studied in literature where implicit priorities, based
on Dalal’s distance, (Lin 1996; Lin & Mendelzon 1998;
Konieczny & Pérez 1998; Revesz 1993; 1997) or explicit
priorities (Benferhat et al. 1999; 2002) are used in order to
solve conflicts.

Our concern in this paper is the merging of preferences
of a single agent when they are expressed in a logic of
preferences. Logics of preferences attract much attention
in knowledge representation and reasoning, where they are
used for a variety of applications such as qualitative deci-
sion making (Doyle & Thomason 1999). In this paper we
oppose to the common wisdom that the very efficient speci-
ficity algorithms used in some non-monotonic preference
logics are too simple to be used for knowledge represen-
tation and reasoning applications. In that logics we distin-
guish minimal and maximal specificity principles which cor-
respond to a gravitation towards the ideal and the worst re-
spectively. We counter the argument that a user is forced
to chose among minimal and maximal specificity by intro-
ducing the fundamental distinction between controllable and
uncontrollable variables from decision and control theory,
and merging preferences on the two kinds of variables as vi-
sualized in Figure 1. Our work is based on the hypothesis

that each set of preferences on controllable and uncontrol-
lable variables is consistent. The merging process aims to
cohabit controllable and uncontrollable variables in an intu-
itive way. Preferences on controllable variables are called
optimistic preferences since minimal specificity principle is
used for such variables. This principle is a gravitation to-
wards the ideal and thus corresponds to an optimistic rea-
soning. Preferences on uncontrollable variables are called
pessimistic preferences since maximal specificity principle
is used for such variables. This principle is a gravitation to-
wards the worst and thus corresponds to an pessimistic rea-
soning.

Figure 1: Merging optimistic and pessimistic preferences.

A preference specification contains optimistic pref-
erences (O) defined on controllables x, y, z, . . ., and
pessimistic preferences (P) defined on uncontrollables
q, r, t, . . ., which are interpreted as constraints on total pre-
orders on worlds. The efficient specificity algorithms (step
1 and 2 in Figure 1) calculate unique distinguished total pre-
orders, which are thereafter merged (step 3) by symmetric or
a-symmetric mergers. If the optimistic and pessimistic pref-
erences in Figure 1 are defined on separate languages, then
for step 1 and 2 we can use existing methods in preference

144 Technical Report IfI-06-04

Theory of NMR and Uncertainty

logic, such as (Kaci & van der Torre 2005a). In this paper
we also consider more general languages, in which prefer-
ences on controllables are conditional on uncontrollables, or
on preferences on uncontrollables (or vice versa).

The remainder of this paper is organized as follows. Af-
ter a necessary background, we present a logic of optimistic
preferences defined on controllable variables and a logic of
pessimistic preferences defined on uncontrollable variables.
Then we propose some merging approaches of optimistic
and pessimistic preferences. We also introduce a logic of
preferences where pessimistic and optimistic preferences are
merged in the logic itself. Lastly we conclude with future re-
search.

Background
Let W be the set of propositional interpretations ofL, and let
� be a total pre-order on W (called also a preference order),
i.e., a reflexive, transitive and connected (∀ω, ω′ ∈ W we
have either ω � ω′ or ω′ � ω) relation. We write w � w′

for w � w′ without w′ � w. Moreover, we write max(x,�)
for {w ∈ W | w |= x, ∀w′ ∈W : w′ |= x⇒ w � w′}, and
analogously we write min(x,�) for {w ∈ W | w |=
x, ∀w′ ∈ W : w′ |= x⇒ w′ � w}.

The following definition illustrates how a preference or-
der can also be represented by a well ordered partition of
W . This is an equivalent representation, in the sense that
each preference order corresponds to one ordered partition
and vice versa. This equivalent representation as an ordered
partition makes the definition of the non-monotonic seman-
tics, defined later in the paper, easier to read.

Definition 1 (Ordered partition) A sequence of sets of
worlds of the form (E1, . . . , En) is an ordered partition of
W iff

• ∀i, Ei is nonempty,
• E1 ∪ · · · ∪ En = W and
• ∀i, j, Ei ∩ Ej = ∅ for i 6= j.

An ordered partition of W is associated with pre-order� on
W iff ∀ω, ω′ ∈ W with ω ∈ Ei, ω

′ ∈ Ej we have i ≤ j iff
ω � ω′.

Preferences for controllables
Reasoning about controllables is optimistic in the sense that
an agent or decision maker can decide the truth value of a
controllable proposition, and thus may expect that the best
state will be realized.

Optimistic reasoning semantics
A preference statement is a comparative statement “x is
preferred to y”, with x and y propositional sentences of a
propositional language on a set of controllable propositional
atoms. A reasoning about a preference can be optimistic or
pessimistic with respect to both its left hand side and right
hand side, indicated by o and p respectively. Formally we
write x a>by, where a, b ∈ {o, p}. An optimistic reason-
ing focuses on the best worlds while a pessimistic reasoning
focuses on the worst worlds. For example, the preference
x p>oy indicates that we are drawing a pessimistic reasoning

with respect to x, and an optimistic reasoning with respect
to y. This means that we deal with the worst x-worlds i.e.
min(x,�) and the best y-worlds i.e. max(y,�).
An optimistic reasoning on a preference statement over con-
trollable variables consists of an optimistic reasoning w.r.t.
its right and left hand side. This also includes the case where
the reasoning is pessimistic w.r.t. its left hand side and opti-
mistic w.r.t. its right hand side. This will be explained later
in this subsection. For the sake of simplicity, such a pref-
erence is called optimistic. Indeed we define an optimistic
preference specification as a set of strict and non-strict opti-
mistic preferences:

Definition 2 (Optimistic preference specification) Let LC

be a propositional language on a set of controllable proposi-
tional atoms C. Let OB be a set of optimistic preferences of
the form {xi B yi | i = 1, · · · , n, xi, yi ∈ LC}. A preference
specification is a tuple 〈OB | B ∈ {

p>o, p≥o o>o, o≥o}〉.

We define preferences of x over y as preferences of x∧¬y
over y ∧ ¬x. This is standard and known as von Wright’s
expansion principle (Wright 1963). Additional clauses may
be added for the cases in which sets of worlds are nonempty,
to prevent the satisfiability of preferences like x > > and
x > ⊥. To keep the formal exposition to a minimum, we do
not consider this borderline condition in this paper.

Definition 3 (Monotonic semantics) Let � be a total pre-
order on W .

�|= x o>oy iff ∀w ∈ max(x∧¬y,�) and ∀w′ ∈ max(¬x∧
y,�) we have w � w′

�|= x o≥oy iff ∀w ∈ max(x∧¬y,�) and ∀w′ ∈ max(¬x∧
y,�) we have w � w′

�|= x p>oy iff ∀w ∈ min(x∧¬y,�) and ∀w′ ∈ max(¬x∧
y,�) we have w � w′

�|= x p≥oy iff ∀w ∈ min(x∧¬y,�) and ∀w′ ∈ max(¬x∧
y,�) we have w � w′.

A total pre-order � is a model of an optimistic preference
specificationOB if it is a model of each pi B qi ∈ OB.

Note that x p>oy means that each x-world is preferred
to all y-worlds w.r.t. �. This preference can be equiva-
lently written as a set of optimistic preferences of the form
{x′ o>oy : x′ is a x − world}. This is also true for x p≥oy
preferences.

Example 1 Consider an agent organizing his evening by
deciding whether he goes to the cinema (c), with his friend
(f) and whether he alos goes to the restaurant (r). We
have O = 〈O o>o ,O p>o ,O p≥o〉, where O o>o = {c ∧

f o>o¬(c ∧ f)}, O p>o = {c ∧ r p>oc ∧ ¬r}, O p≥o =

{c ∧ r p≥o¬c ∧ r}. The strict preference c ∧ f o>o¬(c ∧ f)
means that there is at least a situation in which the agent
goes to the cinema with his friend which is strictly preferred
to all situations where the agent does not go to the cinema
with his friend. The strict preference c∧ r p>oc∧ ¬r means
that each situation in which the agent goes to the cinema and
the restaurant is strictly preferred to all situations in which
the agent goes to the cinema but not to the restaurant. Fi-
nally the non-strict preference c ∧ r p≥o¬c ∧ r means that

DEPARTMENT OF INFORMATICS 145

11TH NMR WORKSHOP

each situation in which the agent goes to the cinema and the
restaurant is at least as preferred as all situations in which
the agent goes to the restaurant but not to the cinema.

We compare total pre-orders based on the so-called speci-
ficity principle. Optimistic reasoning is based on the mini-
mal specificity principle, which assumes that worlds are as
good as possible.

Definition 4 (Minimal specificity principle) Let � and�′

be two total pre-orders on a set of worlds W represented by
ordered partitions (E1, · · · , En) and (E′

1, · · · , E
′
m) respec-

tively. We say that � is at least as specific as �′, written as
�v�′, iff ∀ω ∈ W , if ω ∈ Ei and ω ∈ E′

j then i ≤ j.
� belongs to the set of the least specific pre-orders among
a set of pre-orders O if there is no �′ in O s.t. �′

@�, i.e.,
�′v� holds but �v�′ does not.

Algorithm 1 gives the (unique) least specific pre-order satis-
fying an optimistic preference specification. All the proofs
can be found in (Kaci & van der Torre 2006).

Following Definition 2 an optimistic preference specifica-
tion contains the following sets of preferences:

Oo>o = {Ci1 : xi1
o>oyi1},

Oo≥o = {Ci2 : xi2
o≥oyi2},

Op>o = {Ci3 : xi3
p>oyi3},

Op≥o = {Ci4 : xi4
p≥oyi4}.

Moreover, we refer to the constraints of these preferences by

C =
⋃

k=1,···,4

{Cik
= (L(Cik

), R(Cik
))},

where the left and right hand side of these constraints are
L(Cik

) = |xik
∧ ¬yik

| and R(Cik
) = |¬xik

∧ yik
| re-

spectively; |φ| denotes the set of interpretations satisfying φ.

The basic idea of the algorithm is to construct the least
specific pre-order by calculating the sets of worlds of the
ordered partition, going from the ideal to the worst worlds.

At each step of the algorithm, we look for worlds which
can have the current highest ranking in the preference or-
der. This corresponds to the current minimal value l. These
worlds are those which do not falsify any constraint in C.
We first put in El worlds which do not falsify any strict pref-
erence. These worlds are those which do not appear in the
right hand side of the strict preferences Ci1 and Ci3 . Now we
remove from El worlds which falsify constraints of the non-
strict preferences Ci2 and Ci4 . Constraints Ci2 are violated if
L(Ci2)∩El = ∅ and R(Ci2)∩El 6= ∅, while the constraints
Ci4 are violated if L(Ci4) 6⊆ El and R(Ci4)∩El 6= ∅. Once
El is fixed, satisfied constraints are removed. Note that con-
straints Cik

s.t. k ∈ {1, 2} are satisfied if L(Cik
) ∩ El 6= ∅

since in this case, worlds of R(Ci1) are necessarily in Eh

with h > l and worlds of R(Ci2) are in Eh′ with h′ ≥ l.
However constraints Cik

with k ∈ {3, 4} are satisfied only
when L(Cik

) ⊆ El otherwise they should be replaced by
(L(Cik

)−El, R(Cik
)).

Algorithm 1: Handling optimistic preferences.

Data: An optimistic preference specification.
Result: A total preorder� on W .
begin

l ← 0;
while W 6= ∅ do

– l ← l + 1, j ← 1 ;
/** strict constraints **/
– El = {ω : ∀Ci1 , Ci3 ∈ C, ω 6∈ R(Ci1) ∪
R(Ci3)} ;
while j = 1 do

j ← 0;
for each Ci2 and Ci4 in C do

/** constraints induced by non-strict pref-
erences **/
if (L(Ci2)∩El = ∅ and R(Ci2)∩El 6= ∅)
or (L(Ci4) 6⊆ El and R(Ci4) ∩ El 6= ∅)
then

El = El −R(Cik
);

j ← 1

if El = ∅ then Stop (inconsistent constraints);
– from W remove elements of El ;
/** remove satisfied constraints induced by o>o

preferences **/
– from C remove Cik

k ∈ {1, 2} such that
L(Cik

) ∩ El 6= ∅ ;
/** update constraints induced by p>o constraints
**/
– replace constraints Cik

(k ∈ {3, 4}) by
(L(Cik

)−El, R(Cik
)) ;

/** remove satisfied constraints induced by p>o

preferences **/
– from C remove Cik

(k ∈ {3, 4}) with empty
L(Cik

).

return (E1, · · · , El)

end

Example 2 Let us consider again the optimistic preference
specification given in Example 1.
Let W = {ω0 : ¬c¬f¬r, ω1 : ¬c¬fr, ω2 : ¬cf¬r, ω3 :
¬cfr, ω4 : c¬f¬r, ω5 : c¬fr, ω6 : cf¬r, ω7 : cfr}.
We have C = {({ω6, ω7}, {ω0, ω1, ω2, ω3, ω4, ω5})} ∪
{({ω5, ω7}, {ω4, ω6})} ∪ {({ω5, ω7}, {ω1, ω3})}.
We put in E1 all worlds which do not appear in the right
hand side of strict constraints, we get E1 = {ω7}. The
constraint induced by c ∧ r p≥o¬c ∧ r is not violated. The
constraint induced by c ∧ f o>o¬(c ∧ f) is satisfied while
the ones induced by c∧ r p>oc∧¬r and c∧ r p≥o¬c∧ r are
not. So C = {({ω5}, {ω4, ω6})} ∪ {({ω5}, {ω1, ω3})}.
We repeat this process and get E2 = {ω0, ω1, ω2, ω3, ω5}
and E3 = {ω4, ω6}.

Preferences for uncontrollables
Reasoning about uncontrollables is pessimistic in the sense
that an agent cannot decide the truth value of a uncontrol-

146 Technical Report IfI-06-04

Theory of NMR and Uncertainty

lable proposition, and thus may assume that the worst state
will be realized (known as Wald’s criterion).

Pessimistic reasoning semantics
A pessimistic preference specification contains four sets of
preferences, which are pessimistic on their left and right
hand side. This also includes the case where preferences are
pessimistic with respect to their left hand side and optimistic
with respect to their right side (as in optimistic reasoning se-
mantics). This will be explained later in this section.

Definition 5 (Pessimistic preference specification)
Let LU be a propositional language on a set of
uncontrollable propositional atoms U . Let PB

be a set of pessimistic preferences of the form
{qi B ri | i = 1, · · · , n, qi, ri ∈ LU}. A preference
specification is a tuple 〈PB | B ∈ { p>o, p≥o, p>p, p≥p}〉.

Definition 6 (Monotonic semantics) Let � be a total pre-
order on W .

�|= q p>pr iff ∀w ∈ min(q ∧ ¬r,�) and ∀w′ ∈ min(¬q ∧
r,�) we have w � w′

�|= q p≥pr iff ∀w ∈ min(q ∧ ¬r,�) and ∀w′ ∈ min(¬q ∧
r,�) we have w � w′

�|= q p>or iff ∀w ∈ min(q∧¬r,�) and ∀w′ ∈ max(¬q ∧
r,�) we have w � w′

�|= q p≥or iff ∀w ∈ min(q∧¬r,�) and ∀w′ ∈ max(¬q ∧
r,�) we have w � w′

A total pre-order � is a model of PB iff � satisfies each
preference qi B ri in PB.

Note that q p>or can be equivalently written as {q p>pr′ :
r′ is a r − world}. This is also true for q p≥or preferences.

Pessimistic reasoning is based on the maximal specificity
principle, which assumes that worlds are as bad as possible.

Definition 7 (Maximal specificity principle) � belongs to
the set of the most specific pre-orders among a set of pre-
orders O if there is no �′ in O such that �@�′.

Algorithm 2 gives the (unique) most specific preorder satis-
fying a pessimistic preference specification. It is similar to
Algorithm 1.
This algorithm is based on the following four sets of prefer-
ences:

P p>p = {Ci1 : qi1
p>pri1},

P p≥p = {Ci2 : qi2
p≥pri2},

P p>o = {Ci3 : qi3
p>ori3},

P p≥o = {Ci4 : qi4
p≥ori4}.

Let C =
⋃

k=1,···,4{Cik
= (L(Cik

), R(Cik
))}, where

L(Cik
) = |qik

∧ ¬rik
| and R(Cik

) = |¬qik
∧ rik

|.

Merging optimistic and pessimistic preferences
In this section we consider the merger of the least specific
pre-order satisfying the optimistic preference specification,
and the most specific pre-order satisfying the pessimistic

Algorithm 2: Handling pessimistic preferences.

Data: A pessimistic preference specification.
Result: A total pre-order� on W .
begin

l ← 0;
while W 6= ∅ do

l ← l + 1, j ← 1;
El = {ω : ∀Ci1 , Ci3 in C, ω 6∈ L(Ci1)∪L(Ci3)};
while j = 1 do

j ← 0;
for each Ci2 and Ci4 in C do

/** constraints induced by non-strict pref-
erences **/
if (L(Ci2)∩El 6= ∅ and R(Ci2)∩El = ∅)
or
(L(Ci4)∩El 6= ∅ and R(Ci4) 6⊆ El) then

El = El − L(Cik
), j ← 1

if El = ∅ then Stop (inconsistent constraints);
– From W remove elements of El;
/** remove satisfied constraints induced by p>p

preferences **/
– From C remove Cik

(for k ∈ {1, 2}) s.t. El ∩
R(Cik

) 6= ∅;
/** update constraints induced by p>o prefer-
ences **/
– Replace Cik

(for k ∈ {3, 4}) in C by
(L(Cik

), R(Cik
)−El);

/** remove satisfied constraints induced by p>o

preferences **/
– From C remove Cik

(k ∈ {3, 4}) with empty
R(Cik

);

return (E′
1, · · · , E

′
l) s.t. ∀1 ≤ h ≤ l, E′

h = El−h+1

end

preference specification. From now on, let L be a propo-
sitional language on disjoint sets of controllable and uncon-
trollable propositional atoms C ∪ U . A preference specifi-
cation PS consists of an optimistic and a pessimistic pref-
erence specification, i.e., optimistic preferences on control-
lables and pessimistic preferences on uncontrollables. In
general, let � be the merger of �o and �p. We assume that
Pareto conditions hold:

Definition 8 Let �o, �p and� be three total pre-orders on
the same set. � is a merger of �o and �p if and only if the
following three conditions hold:
If w1 �o w2 and w1 �p w2 then w1 � w2,
If w1 �o w2 and w1 �p w2 then w1 � w2.

Given two arbitrary pre-orders, there are many possible
mergers. We therefore again consider distinguished pre-
orders in the subsections below. The desideratum of a
merger operator is that the merger satisfies, in some sense,
most of the preference specification. However, it is clearly
unreasonable to ask for an operator that satisfies the whole
preference specification. For example, we may have strong
preferences x p>o¬x and p p>o¬p, which can be satisfied

DEPARTMENT OF INFORMATICS 147

11TH NMR WORKSHOP

by a minimal and maximal specific pre-order separately, but
which are contradictory given together. This motivates the
next definition of partial satisfaction, which only considers
some of the preference types.

Definition 9 A pre-order partially satisfies a preference
specification PS when it satisfies PSB with B ∈
{ o>o, o≥o, p>p, p≥p}.

The merging operators in this section satisfy our desider-
atum that the merger partially satisfies the preference spec-
ification, as a consequence of the following lemma. The
two minimal and maximal specific pre-orders of optimistic
and pessimistic preference specifications satisfy the property
that no two sets are disjoint.

Lemma 1 Let (E1, · · · , En) and (E′
1, · · · , E

′
m) be the or-

dered partitions of �o and �p respectively. We have for all
1 ≤ i ≤ n and all 1 ≤ j ≤ m that Ei ∩E′

j 6= ∅.
Proof. Due to the fact that�o and�p are defined on disjoint
sets of variables.

Symmetric mergers
Let � be the merger of �o and �p. The least and most spe-
cific pre-orders � satisfying Pareto conditions, are unique
and identical, and can be obtained as follows. Given
Lemma 1, thus far nonempty sets E ′′

k do not exist, but they
may exist in extensions discussed in future sections.

Proposition 1 Let (E1, · · · , En) and (E′
1, · · · , E

′
m) be the

ordered partitions of�o and�p respectively. The least/most
specific merger of �o and �p is �= (E′′

1 , · · · , E′′
n+m−1)

such that if ω ∈ Ei and ω ∈ E′
j then ω ∈ E′′

i+j−1, and
by eliminating nonempty sets E ′′

k and renumbering the non-
empty ones in sequence.

The symmetric merger, called also the least/most specific
merger, is illustrated by the following example.

Example 3 Consider the optimistic preference specifica-
tion p o>o¬p and the pessimistic preference specification
m p>p¬m, where p and m stand respectively for “I will
work on a project in order to get money” and “my boss
accepts to give me money to pay the conference fee”.
Applying Algorithm 1 and Algorithm 2 on
p o>o¬p and m p>p¬m respectively gives
�o= ({mp,¬mp}, {m¬p,¬m¬p}) and �p=
({mp, m¬p}, {¬mp,¬m¬p}). The least/most specific
merger is �= {{mp}, {¬mp, m¬p}, {¬m¬p}}.

Proposition 2 The least/most specific merger of two pre-
orders satisfying Lemma 1 partially satisfies the preference
specification.

Proposition 3 The least/most specific merger is not com-
plete, in the sense that there are pre-orders which cannot
be constructed in this way.

Proof. Consider a language with only one controllable x
and one uncontrollable p. The minimal and maximal specific
pre-orders consist of at most two equivalence classes, and
the least/most specific merger consists therefore of at most
three equivalence classes. Hence, pre-orders in which all
four worlds are distinct cannot be constructed.

We can also consider the product merger, which is a sym-
metric merger, defined by: if ω ∈ Ei and ω ∈ E′

j then
ω ∈ E′′

i∗j .

Dictators
We now consider dictator mergers that prefer one ordering
over the other one. The minimax merger gives priority to the
preorder �o associated to the optimistic preference specifi-
cation, computed following the minimal specificity princi-
ple, over �p associated to the pessimistic preference speci-
fication, computed following the maximal specificity princi-
ple. Dictatorship relation of �o over �p means that worlds
are first ordered with respect to �o and only in the case of
equality�p is considered.

Definition 10 w1 � w2 iff w1 �o w2 or (w1 ∼o w2 and
w1 �p w2).

The minimax merger can be defined as follows.

Proposition 4 Let (E1, · · · , En) and (E′
1, · · · , E

′
m) be the

ordered partitions of �o and �p respectively. The result
of merging �o and �p is �= (E′′

1 , · · · , E′′
n∗m) such that if

ω ∈ Ei and ω ∈ E′
j then ω ∈ E′′

(i−1)∗m+j
.

Example 4 (continued) The minimax merger of the prefer-
ence specification is {{mp}, {¬mp}, {m¬p}, {¬m¬p}}.

The principle of the maximin merger is similar to minimax
merger. The dictator here is the pre-order associated to the
pessimistic preference specification and computed following
the maximal specificity principle.

Definition 11 w1 � w2 iff w1 �p w2 or (w1 ∼p w2 and
w1 �o w2).

Example 5 (continued) The maximin merger of the prefer-
ence specification is {{mp}, {m¬p}, {¬mp}, {¬m¬p}}.

Conditional preferences
The drawback of handling preferences on controllable and
uncontrollable variables separately is the impossibility to ex-
press interaction between the two kinds of variables. For
example my decision on whether I will work hard to finish a
paper (which is a controllable variable) depends on the un-
controllable variable “money”, decided by my boss. If my
boss accepts to pay the conference fees then I will work hard
to finish the paper. We therefore consider in the remainder
of this paper preference formulas with both controllable and
uncontrollable variables.

A general approach would be to define optimistic and
pessimistic preference specifications on any combination of
controllables and uncontrollables, such as an optimistic pref-
erence p o>ox or even q o>or. However, this approach blurs
the idea that optimistic reasoning is restricted to control-
lables, and pessimistic reasoning is restricted to uncontrol-
lables. We therefore define conditional preferences. Condi-
tional optimistic and pessimistic preferences are defined as
follows.

Definition 12 (Conditional optimistic preference specification)
Let OB be a set of conditional optimistic preferences of the
form {qi → (xi B yi) | i = 1, · · · , n, qi ∈ LU , xi, yi ∈ LC},

148 Technical Report IfI-06-04

Theory of NMR and Uncertainty

where q → (x B y) = (q ∧ x) B (q ∧ y). A con-
ditional optimistic preference specification is a tuple
〈OB | B ∈ { p>o, p≥o o>o, o≥o}〉.

Definition 13 (Conditional pessimistic preference specification)
Let PB be a set of conditional pessimistic preferences of the
form {xi → (qi B ri) | i = 1, · · · , n, xi ∈ LC , qi, ri ∈ LU},
where x → (q B r) = (x ∧ q) B (x ∧ r). A con-
ditional pessimistic preference specification is a tuple
〈PB | B ∈ {

p>o, p≥o, p>p, p≥p}〉.

In the following examples we merge the two pre-orders
using the symmetric merger operator since there is no reason
to give priority neither to �o nor to �p. We start with some
simple examples to illustrate that the results of the merger
behaves intuitively.

Example 6 The merger of optimistic preference
m → (p o>o¬p) and pessimistic preference ¬m p>pm
is the merger of �o= ({mp,¬mp,¬m¬p}, {m¬p})
and �p= ({¬mp,¬m¬p}, {mp, m¬p}), i.e.,
�= ({¬m¬p,¬mp}, {mp}, {m¬p}).

The merger of optimistic preference m → (p o>o¬p)
and pessimistic preference m p>p¬m is the
merger of �o= ({mp,¬mp,¬m¬p}, {m¬p}) and
�p= ({mp, m¬p}, {¬mp,¬m¬p}), i.e., �=
({mp}, {¬mp, m¬p,¬m¬p}).

The merger of optimistic preference m → (p o>o¬p)
and pessimistic preference p → (m p>p¬m) is the
merger of �o= ({mp,¬mp,¬m¬p}, {m¬p}) and
�p= ({mp}, {¬mp, m¬p,¬m¬p}), i.e., �=
({mp}, {¬mp,¬m¬p}, {m¬p}).

Proposition 5 The most specific merger of two minimal and
maximal pre-orders of conditional preference specifications
does not necessarily partially satisfy the preference specifi-
cation.

Proof. The merger of optimistic preference m →
(p o>o¬p) and pessimistic preference ¬p → (m p>p¬m)
is the merger of �o= ({mp,¬mp,¬m¬p}, {m¬p})
and �p= ({m¬p}, {mp,¬mp,¬m¬p}), i.e.,
�= ({mp, m¬p,¬m¬p,¬mp}). The merger is the
universal relation which does not satisfy any non-trivial
preference.

We now consider an extension of our running example on
working and money.

Example 7 Let’s consider another controllable variable
w which stands for “I will work hard on the paper”. Let
O = {money → (work o>o¬work),

¬money → (¬work o>owork),
¬money → (project p>o¬project)}.

This is equivalent to
{money ∧ work o>omoney ∧ ¬work,
¬money ∧ ¬work o>o¬money ∧ work,
¬money ∧ project p>o¬money ∧ ¬project}.
Applying Algorithm 1 gives
�o= ({¬m¬wp, mwp, mw¬p}, {m¬w¬p, m¬wp,¬mwp},

{¬m¬w¬p,¬mw¬p}).

All preferences are true in �o. According to these pref-
erences, the best situations for the agent are when there is

money and she works hard on the paper, or when there is
no money, she works on a project but does not work hard
on the paper. This is intuitively meaningful since when there
is money the agent is motivated to work hard on the paper
however when there is no money, it becomes necessary to
work on a project which prevents her to work hard on the
paper. The worst situations (as one would expect) are when
there is no money and she does not work on a project.

Example 8 Let
P = {¬project→ (money p>o¬money),

¬work → (¬money p>pmoney)}.
This is equivalent to
{¬project ∧money p>o¬project ∧ ¬money,
¬work ∧ ¬money p>p¬work ∧money}.
Applying Algorithm 2 gives
�p= ({mw¬p, m¬w¬p}, {¬m¬w¬p,¬m¬wp},

{¬mw¬p,¬mwp, m¬wp, mwp}).

Now given a preference specification PS = O ∪ P , the
associated total pre-order is the result of combining �o and
�p using the symmetric merger.

Example 9 The merger of �o and �p

given in Examples 7 and 8 respectively is
�= ({mw¬p}, {¬m¬wp, m¬w¬p}, {mwp},
{m¬wp,¬mwp,¬m¬w¬p}, {¬mw¬p}). The best
situation is when there is money, the agent works hard on
the paper and does not work on a project and the worst
situation is when the agent works hard on the paper but
unfortunately neither she works on a project nor there is
money.

The following example illustrates how our approach can
be used in qualitative decision making. The distinction
between controllable and uncontrollable variables exists in
many qualitative decision theories, see e.g. (Boutilier 1994),
and most recently preference logic for decision has been pro-
moted in particular by Brewka (Brewka 2004). We use Sav-
age’s famous egg breaking example (Savage 1954), as also
used by Brewka (Brewka 2004) to illustrate his extended
logic programming approach in decision making.

Example 10 An agent is preparing an omelette. 5 fresh
eggs are already in the omelette. There is one more egg.
She does not know whether this egg is fresh or rotten. The
agent can (i) add it to the omelette which means the whole
omelette may be wasted, (ii) throw it away, which means one
egg may be wasted, or (iii) put it in a cup, check whether it is
ok or not and put it to the omelette in the former case, throw
it away in the latter. In any case, a cup has to be washed if
this option is chosen.
There is one controllable variable which consists in putting
the egg in−omelette, in−cup or throw it away. There is
also an uncontrollable variable which is the state of the egg
fresh or rotten. The effects of controllable and uncontrol-
lable variables are the following:

5−omelette← throw−away,
6−omelette← fresh, in−omelette
0−omelette← rotten, in−omelette,
6−omelette← fresh, in−cup,
5−omelette← rotten, in−cup,

DEPARTMENT OF INFORMATICS 149

11TH NMR WORKSHOP

¬wash← not in−cup,
wash← in−cup.

Agent’s desires are represented as follows:
¬wash× wash
6−omelette× 5−omelette× 0−omelette.

We used here notations of logic programming (Brewka
2004). For example 5−omelette ← throw−away is in-
terpreted as: if the egg is thrown away then the agent will
get an omelette with 5 eggs. The desire 6−omelette ×
5−omelette × 0−omelette is interpreted as: prefer-
ably 6−omelette, if not then 5−omelette and if neither
6−omelette nor 5−omelette then 0−omelette.
Possible solutions are:
S1 = {6−omelette,¬wash, fresh, in−omelette},
S2 = {0−omelette,¬wash, rotten, in−omelette},
S3 = {6−omelette, wash, fresh, in−cup},
S4 = {5−omelette, wash, rotten, in−cup},
S5 = {5−omelette,¬wash, fresh, throw−away},
S6 = {5−omelette,¬wash, rotten, throw−away}.
Each solution is composed of an instantiation of decision
variables and the satisfied desires.

Let us run this example following Brewka’s approach
(Brewka 2004).

Example 10 (Continued) Brewka generates a prefer-
ence order on the solutions (called answer sets in his
framework) following agent’s desires. Indeed S1 is the
single preferred solution. S5 and S6 are equally preferred.
They are preferred to S2 and S4 but incomparable to S3.
S3 is preferred to S4 and incomparable to S5, S6 and S2.
Lastly S2 and S4 are incomparable.

In our approach, controllable and uncontrollable vari-
ables are dealt with separately, respecting their distinct
nature in decision theory. Our approach uses also various
kinds of preferences, and non-monotonic reasoning (based
on specificity algorithms) to deal with under-specification.

Example 10 (Continued) Let us consider the following
preferences on controllable and uncontrollable variables:

O =











fresh→ in−omelette > in−cup
fresh→ in−cup > throw−away
rotten→ throw−away > in−cup
rotten→ in−cup > in−omelette

P =

{

in−omelette→ fresh > rotten
in−cup→ fresh > rotten
throw−away → rotten > fresh

The set of possible alternatives is W =
{ω1, ω2, ω3, ω4, ω5, ω6} where
ω1 = fresh ∧ in−omelette,
ω2 = rotten ∧ in−omelette,
ω3 = fresh ∧ in−cup,
ω4 = rotten ∧ in−cup,
ω5 = fresh ∧ throw−away and
ω6 = rotten ∧ throw−away.
We apply Algorithm 1 on the setO of optimistic preferences,
we get ({ω1, ω6}, {ω3, ω4}, {ω2, ω5}).

We apply Algorithm 2 on the set P of pessimistic prefer-
ences, we get ({ω1, ω3, ω6}, {ω2, ω4, ω5}).
We merge the two preorders using the symmetric merger, we
get ({ω1, ω6}, {ω3}, {ω4}, {ω2, ω5}).
Now agent’s desires may be used to discriminate ω1 and ω6.
Both satisfy ¬wash however ω1 satisfies 6−omelette while
ω6 satisfies 5−omelette so ω1 is preferred to ω6.
Concerning ω2 and ω5, ω5 is preferred to ω2. Indeed
solutions of the previous example are ordered as follows in
our framework: S1 � S6 � S3 � S4 � S5 � S2.

Our approach may be viewed as an extension of Brewka’s
approach where preferences among alternatives are used in
addition to preferences among desires.

Concluding remarks
The distinction between controllable and uncontrollable
propositions is fundamental in decision and control theory,
and in various agent theories. Moreover, various kinds of op-
timistic and pessimistic reasoning are also present in many
decision theories, for example in the maximin and mini-
max decision rules. However, their role seems to have at-
tracted less attention in the non-monotonic logic of prefer-
ence (Boella & van der Torre 2005; Dastani et al. 2005;
Kaci & van der Torre 2005a; Lang 2004), despite the recent
interest in this area, and the recent recognition that prefer-
ence logic plays a key role in many knowledge representa-
tion and reasoning tasks, including decision making.

In this paper we study non-monotonic preference logic
extended with the distinction between controllable and un-
controllable propositions. We illustrate how the logic can be
used in decision making where preferences on controllables
and preferences on uncontrollables have to be merged.

Our approach may also be used in more complex merg-
ing tasks such as social and group decision making. For
example, one such extension are preferences on control-
lable variables conditional on preferences on uncontrollable
variables, i.e. (q Bp r) → (x Bo y), or conversely, i.e.
(x Bo y) → (q Bp r). This extension can be used for so-
cial decision making where an agent states its preferences
given the preferences of another agent.

The following example illustrates how such social pref-
erences can be used. Roughly, for a conditional optimistic
preference (q Bp r) → (x Bo y), we first apply the pes-
simistic ordering on uncontrollables and then use the result
to incorporate preferences on controllables, combining the
two using the maximin merger.

Example 11 Carl and his girlfriend Sandra go the restau-
rant. Menus are composed of meat or fish, wine or jus and
dessert or cheese. Sandra is careful about her fitness so
each menu without cake is preferred for her to all menus
with cake. Even if Carl likes dessert, he does want to
attempt Sandra by choosing a menu composed of a cake
so, to compensate, he states that there is at least one menu
composed of wine and cheese which is preferred to all
menus composed of neither cake nor wine. Let W = {ω0 :
¬d¬w¬m, ω1 : ¬d¬wm, ω2 : ¬dw¬m, ω3 : ¬dwm, ω4 :
d¬w¬m, ω5 : d¬wm, ω6 : d¬w¬m, ω0 : dwm} be the set

150 Technical Report IfI-06-04

Theory of NMR and Uncertainty

of possible menus where m, w and d stand for meat, wine
and dessert respectively. ¬m, ¬w and ¬d stand for fish, jus
and cheese respectively.
Sandra’s preferences give the following pre-
order �= ({ω0, ω1, ω2, ω3}, {ω4, ω5, ω6, ω7}) and
Carl’s preferences give the following preorder �′=
({ω2, ω3, ω4, ω5, ω6, ω7}, {ω0, ω1}). We use the maximin
merger and get: ({ω2, ω3}, {ω0, ω1}, {ω4, ω5, ω6, ω7}).
Given a set of preferences of the form {qjBprj → xiBoyi},
one may be tried to compute the preorders associated to
{qj Bp rj} and {xi Bo yi} and then to merge them. However
this way is misleading since each set of preferences may
be inconsistent. The correct way would be to compute the
preorder associated to each rule qj Bp rj → xi Bo yi as
explained above and then to merge the different preorders
using the symmetric merger since there is no reason to give
priority to any preorder. The investigation of this idea is left
to a further research.

Other topics for further research are preference specifica-
tions in which strong preferences p>o are defined on both
controllables and uncontrollables to define a stronger no-
tion than weak satisfiability of a preference specification, the
extension with beliefs, and ceteris paribus preferences (see
(Kaci & van der Torre 2005b)).

References
Benferhat, S.; Dubois, D.; Prade, H.; and Williams, M.
1999. A practical approach to fusing and revising prior-
itized belief bases. In Proceedings of EPIA 99, LNAI no

1695, Springer Verlag, 222–236.
Benferhat, S.; Dubois, D.; Kaci, S.; and Prade, H. 2002.
Possibilistic merging and distance-based fusion of proposi-
tional information. In Annals of Mathematics and Artificial
Intelligence, volume 34(1-3), 217–252.
Boella, G., and van der Torre, L. 2005. A nonmonotonic
logic for specifying and querying preferences. In Proceed-
ings of IJCAI’05.
Boutilier, C. 1994. Toward a logic for qualitative decision
theory. In Proceedings KR94, 75–86.
Brewka, G. 2004. Answer sets and qualitative decision
making. In Synthese.
Dastani, M.; Governatori, G.; Rotolo, A.; and van der
Torre, L. 2005. Preferences of agents in defeasible logic.
In Proceedings AI’05. Springer.
Doyle, J., and Thomason, R. 1999. Background to qualita-
tive decision theory. AI Magazine 20(2):55–68.
Kaci, S., and van der Torre, L. 2005a. Algorithms for a
nonmonotonic logic of preferences. In Eighth European
Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU’05), 281–292.
Kaci, S., and van der Torre, L. 2005b. Non-monotonic rea-
soning with various kinds of preferences. In IJCAI’05 Mul-
tidisciplinary Workshop on Advances in Preference Han-
dling.
Kaci, S., and van der Torre, L. 2006. Merging Optimistic
and Pessimistic Preferences. In C.R.I.L., Technical report.

Konieczny, S., and Pérez, R. P. 1998. On the logic of merg-
ing. In Proceedings of the Sixth International Conference
on Principles of Knowledge Representation and Reasoning
(KR’98), Trento, 488–498.
Lang, J. 2004. A preference-based interpretation of other
agents’ actions. In Proceedings of KR04, 644–653.
Lin, J., and Mendelzon, A. 1998. Merging databases under
constraints. International Journal of Cooperative Informa-
tion Systems 7(1):55–76.
Lin, J. 1996. Integration of weighted knowledge bases.
Artificial Intelligence 83:363–378.
Revesz, P. Z. 1993. On the semantics of theory change:
arbitration between old and new information. In 12th ACM
SIGACT-SIGMOD-SIGART symposium on Principles of
Databases, 71–92.
Revesz, P. Z. 1997. On the semantics of arbitration. In-
ternational Journal of Algebra and Computation 7(2):133–
160.
Savage, L. 1954. The foundations of Statistics. Dover, New
York.
Wright, G. V. 1963. The Logic of Preference. Edinburg.
University Press.

DEPARTMENT OF INFORMATICS 151

11TH NMR WORKSHOP

152 Technical Report IfI-06-04

Theory of NMR and Uncertainty

2.5 Distance-Based Semantics for Multiple-Valued Logics

Distance-Based Semantics for Multiple-Valued Logics

Ofer Arieli
Department of Computer Science,
The Academic College of Tel-Aviv

4 Antokolski street, Tel-Aviv 61161, Israel.
oarieli@mta.ac.il

Abstract

We show that the incorporation of distance-based se-
mantics in the context of multiple-valued consequence
relations yields a general, simple, and intuitively ap-
pealing framework for reasoning with incomplete and
inconsistent information.

Introduction
Reasoning with distance functions is a common way of
giving semantics to formalisms that are non-monotonic in
nature. The basic intuition behind this approach is that,
given a set of possible worlds (alternatively, interpretations)
that represent the reasoner’s epistemic states or the infor-
mation content of different data sources, the similarity be-
tween those worlds can be expressed quantitatively (that is,
in terms of distance measurements), and thus can be evalu-
ated by corresponding distance operators. In this respect,
there is no wonder that distance semantics has played a
prominent role in different paradigms for (non-monotonic)
information processing. Two remarkable examples for this
are the following:

• Formalisms for modeling belief revision, in which dis-
tance minimization corresponds to the idea that the dif-
ference between the reasoner’s new states of belief and
the old one should be kept as minimal as possible, that is,
restricted only to what is really implied by the new infor-
mation (see, e.g., (Lehmann, Magidor, & Schlechta 2001;
Peppas, Chopra, & Foo 2004; Delgrande 2004)).

• Database integration systems (Arenas, Bertossi, &
Chomicki 1999; 2003; Lin & Mendelzon 1999) and merg-
ing operators for independent data-sources (Konieczny,
Lang, & Marquis 2002; Konieczny & Pino Pérez 2002),
where the basic idea is that the amalgamated information
should be kept coherent and at the same time as close as
possible to the collective information as it is depicted by
the distributed sources.

The goal of this paper is to introduce similar distance con-
siderations in the context ofparaconsistent logics, that is:
formalisms that tolerate inconsistency and do not become
trivial in the presence of contradictions (see (da Costa 1974)
and (Priest 2002); some collections of papers on this topic
appear, e.g., in (Batenset al. 2000; Carnielli, Coniglio, &

Dóttaviano 2002)). One could identify at least four par-
ties with different philosophical attitudes to such logics: the
traditionalistsdefend classical logics and deny any need of
paraconsistent logics. On the other extreme, thedialethe-
istscontend that the world is fundamentally inconsistent and
hence the true logic should be paraconsistent. Thepluralists
view inconsistent structures as fundamental but provisional,
and favour their replacement, at least in empirical domains,
by consistent counterparts. Finally, thereformistsdefend
consistency in ontological matters, but argue that human
knowledge and thinking necessarily requires inconsistency,
and hence that classical logic should be replaced by a para-
consistent counterpart. The underlying theme here, follow-
ing the reformists, is that conflicting data is unavoidable in
practice, but it corresponds to inadequate information about
the real world, and therefore it should be minimized. As we
show below, this intuition is nicely and easily expressed in
terms of distance semantics. Indeed, the incorporation of
distance-based semantics in the context of multiple-valued
consequence relations yields a framework in which a vari-
ety of paraconsistent multiple-valued logics are definable.
These logics are naturally applied in many situations where
uncertainty is involved.

The principle of uncertainty minimization by distance
semantics is in fact a preference criterion among differ-
ent interpretations of the premises. In this respect, the
formalisms that are defined here may be considered as a
certain kind of preferential logics(Shoham 1987; 1988;
Makinson 1994). In particular, the intuition and the mo-
tivation behind this work is closely related to other exten-
sions to multiple-valued semantics of the theory of pref-
erential reasoning (see for instance (Arieli & Avron 1998;
2000; Konieczny & Marquis 2002; Arieli & Denecker 2003;
Ben Naim 2005; Arieli 2004; 2006)).

The rest of this paper is organized as follows: in the
next section we set up the framework; we consider basic
multiple-valued entailments and define their distance-based
variants. Then we consider different distance metrics and
investigate some of the properties of the induced conse-
quence relations. Finally, we discuss a generalization of the
distance-based entailments to prioritized theories and show
its usefulness for modeling belief revision and for consistent
query answering in database systems. In the last section we
conclude.

DEPARTMENT OF INFORMATICS 153

11TH NMR WORKSHOP

The Framework
Basic Multiple-Valued Entailments
Definition 1 Let L be an arbitrary propositional language.
A multiple-valued structurefor L is a triple 〈V,O,D〉,
whereV is set of elements (“truth values”),O is a set of
operations onV that correspond to the connectives inL, and
D is a nonempty proper subset ofV.

The setD consists of thedesignatedvalues ofV, i.e.,
those that represent true assertions. In what follows we
shall assume thatV contains at least the classical values
true, false, and thattrue ∈ D, false 6∈ D.

Definition 2 LetS = 〈V,O,D〉 be a multiple-valued struc-
ture for a propositional languageL.

a) A (multiple-valued)valuationν is a function that assigns
an element ofV to each atomic formula inL. Extensions
to complex formulae are done as usual. In what follows
we shall sometimes writeν = {p1 : x1, . . . , pn : xn} to
denote thatν(pi) = xi for i = 1, . . . , n. The set of valu-
ations onV is denoted byΛV .

b) A valuationν satisfiesa formulaψ if ν(ψ) ∈ D.
c) A valuationν is amodelof a setΓ of formulae inL, if ν

satisfies every formula inΓ. The set of the models ofΓ is
denoted bymodS(Γ).

Definition 3 LetS = 〈V,O,D〉 be a multiple-valued struc-
ture for a languageL. A basicS-entailmentis a relation|=S

between sets of formulae inL and formulae inL, defined as
follows: Γ |=S ψ if every model ofΓ satisfiesψ.

Example 4 In many cases the underlying semantical struc-
ture of a multiple-valued logic is a lattice, and so it is usual
to include inO (at least) the basic lattice operations. In
such cases a conjunction inL is associated with the join,
the disjunction corresponds to the meet, and if the lattice
has a negation operator, it is associated with the negation of
the language. In what follows we use these definitions for
the operators inO. Now, the two-valued structureTWO is
defined by the two-valued lattice, and is obtained by taking
V = {true, false} andD = {true}. The corresponding en-
tailment is denoted|=2. For three-valued structures we take
V = {true, false,middle}, the lattice operators inO are de-
fined with respect to the total orderfalse < middle < true,
and D is either {true} or {true,middle}. The structure
with D = {true} is denoted here byTHREE⊥. The associ-
ated entailment,|=3⊥ , corresponds to Kleene’s three-valued
logic (Kleene 1950). The other three-valued structure,
THREE⊤, corresponds to Priest’s logic LP (Priest 1989;
1991).1 Note that by different choices of the operators in
O other three-valued logics are obtained, line weak Kleene
logic, strong Kleene logic, and Łukasiewicz’s logic (see,
e.g., (Fitting 1990; Avron 1991)). In the four-valued case
there are usually two middle elements, denoted here byboth

and neither.2 In this context it is usual to taketrue and
1Also known as J3, RM3, and PAC (see (D’ottaviano 1985;

Rozoner 1989; Avron 1991) and chapter IX of (Epstein 1990)).
2The names of the middle elements correspond to their intu-

itive meaning as representing conflicts (‘both true and false’) and
incomplete information (‘neither true nor false’).

both as the designated values. The corresponding struc-
ture is known as Belnap’s bilattice (see (Belnap 1977a;
1977b) as well as (Arieli & Avron 1998)), and it is denoted
here byFOUR. Its entailment is denoted by|=4. Entailments
in whichV is the unit interval andD = {1} are common in
the context of fuzzy logic (see, e.g., (Hájek 1998)). In this
context it is usual to consider different kinds of operations
on the unit interval (T-norms, T-conorms, residual implica-
tions, etc.), and this is naturally supported in our framework
as well. The simplest case is obtained by associating∧ and
∨ with the meet and the join operators on the unit interval,
which in this case are the same as the minimum and the
maximum functions (respectively), and relating negation to
the involutive operator¬, defined for every0 ≤ x ≤ 1 by
¬x = 1 − x. In what follows we denote the corresponding
structure (S) by [0, 1].

Distance-Based Entailments

By their definition, basicS-entailments are monotonic. In
addition, some of them are trivial in the presence of contra-
dictions (e.g.,p,¬p |=2 q andp,¬p |=3⊥ q), or exclude clas-
sically valid rules (e.g.,p,¬p∨q 6|=3⊤ q andp,¬p∨q 6|=4 q).
Common-sense reasoning, on the other hand, is frequently
non-monotonic and tolerant to inconsistency. For assuring
such properties we consider in what follows distance-based
derivatives of the basic entailments. In the sequel, unless
otherwise stated, we shall considerfinite sets of premises in
the classical propositional languageL = {¬,∧,∨,→}, the
operators of which correspond, respectively, to a negation,
meet, join, and the material implication on the underlying
lattice.

Definition 5 A total functiond : U ×U → R
+ is called

pseudo distanceon U if it is symmetric (that is,∀u, v ∈
U d(u, v) = d(v, u)) and preserves identity(∀u, v ∈ U
d(u, v) = 0 iff u = v). A distance functionon U is a
pseudo distance onU that satisfies the triangular inequality
(∀u, v, w∈U d(u, v) ≤ d(u,w) + d(w, v)).

Definition 6 An aggregation functionf is a total function
that accepts arbitrarily many real numbers3 and returns a
real number. In addition, the following conditions should
be satisfied: (a)f is non-decreasing in each of its argu-
ments, (b)f(x1, . . . , xn) = 0 if x1 = . . . = xn = 0, and
(c) ∀x ∈ R, f(x) = x.

Definition 7 An S-distance metricis a quadrupleD =
〈S, d, f, g〉, whereS = 〈V,O,D〉 is a multiple-valued struc-
ture, d is a pseudo distance on the space of theV-valued
interpretationsΛV , andf andg are aggregation functions.

Definition 8 Given a theoryΓ = {ψ1, . . . , ψn}, aV-valued
interpretationν, and anS-distance metricD = 〈S, d, f, g〉,
define:

• df (ν, ψi) = fµ∈modS(ψi) d(µ, ν)

• dg(ν,Γ) = g(df (ν, ψ1), . . . , df (ν, ψn))

3This can be formally handled by associatingf with the set
{fn : R

n → R | n ∈ N} of n-ary functions.

154 Technical Report IfI-06-04

Theory of NMR and Uncertainty

It is common to definef as the minimum function, so that
a distance between an interpretationν to a formulaψ is the
minimal distance betweenν and some model ofψ. Frequent
choices ofg are the summation function (over the distances
to the formulae inΓ) and the maximal value (among those
distances).

Note 9 Let D = 〈S, d, f, g〉 be anS-distance metric. As
distances are non-negative numbers, by conditions (a) and
(b) in Definition 6,df is a non-negative function for every
choice of an aggregation functionf . This implies thatdg

is obtained by applying an aggregation functiong on non-
negative numbers, and sodg is non-negative as well.

Definition 10 An S-distance metricD = 〈S, d, f, g〉 is
callednormal, if: (a) df (ν, ψ) = 0 for everyν ∈modS(ψ),
and (b)g(x1, . . . , xn) = 0 only if x1 = . . . = xn = 0.

As easily verified, the standard choices off andg men-
tioned above preserve the conditions in Definition 10. Thus,
for instance, for every multi-valued structureS and a pseudo
distanced, D = 〈S, d,min, g〉 is a normal metric for each
g ∈ {Σ,max, avg,median}.4

Definition 11 Given a finite theoryΓ and anS-distance
metricD = 〈S, d, f, g〉, define:

∆D(Γ) =
{

ν ∈ ΛV | ∀µ ∈ ΛV dg(ν,Γ) ≤ dg(µ,Γ)
}

.

Proposition 12 LetD = 〈S, d, f, g〉 be a normal metric. If
modS(Γ) 6= ∅ then∆D(Γ) = modS(Γ).

Proof. If ν is a model of{ψ1, . . . , ψn}, then asD is normal,
df (ν, ψi) = 0 for every1≤ i≤n. Thus, asg is an aggrega-
tion function, by condition (b) in Definition 6,dg(ν,Γ) = 0.
Sincedg(µ,Γ) ≥ 0 for everyµ∈ΛV (Note 9), it follows that
ν ∈ ∆D(Γ).

For the converse, consider the following lemma:

Lemma 13 In every normal metric〈S, d, f, g〉 the function
g is strictly positive whenever it has at least one strictly posi-
tive argument and the rest of its arguments are non-negative.

Lemma 13 follows from the fact thatg(x1, . . . , xn) = 0
iff x1 = . . . = xn = 0 (by conditions (b) in Defini-
tions 6 and 10) together with the requirements thatg is non-
decreasing in each of its arguments (condition (a) in Defini-
tions 6).

To complete the proof of Proposition 12, suppose then thatν
is not a model of{ψ1, . . . , ψn}. As such, it does not satisfy
ψk for some1≤k≤n, and sodf (ν, ψk)>0. By Lemma 13,
dg(ν,Γ)>0 as well. On the other hand, we have shown that
dg(µ,Γ)=0 for everyµ∈modS(Γ), thusν 6∈∆D(Γ). 2

Now we are ready to define distance-based entailments:

Definition 14 For a metricD, defineΓ |=D ψ if every valu-
ation in∆D(Γ) is a model ofψ.

4Note that the arguments ofg are non-negative numbers, and
so lettingg be the summation, average, or median of such numbers
preserves condition (b) in Definition 10.

Example 15 ConsiderΓ = {p, ¬q, r, p → q}, and let
D2 = 〈TWO, dH ,min,Σ〉 be a (normal) distance metric,
wheredH is the Hamming distance between two-valued val-
uations5. The distances between the relevant two-valued val-
uations andΓ are given in the following table:

model p q r dΣ

ν1 true true true 1
ν2 true true false 2
ν3 true false true 1
ν4 true false false 2
ν5 false true true 2
ν6 false true false 3
ν7 false false true 1
ν8 false false false 2

Thus,∆D2(Γ) = {ν1, ν3, ν7}, and so, for instance,Γ |=D2

r, while Γ 6|=D2 p andΓ 6|=D2 q. This can be intuitively
explained by the fact that, unlikep andq, the atomic formula
r is not related to the contradictory fragment ofΓ, thus it is
a reliable information that can be safely deduced fromΓ.

Proposition 16 Let D be a normalS-distance metric, and
let Γ be a set of formulas inL such thatmodS(Γ) 6= ∅. Then
for every formulaψ in L, Γ |=S ψ iff Γ |=D ψ.

Proof. Immediately follows from Proposition 12. 2

Some important particular cases of Proposition 16 are the
following:

Corollary 17 Let D be a normal distance metric inTWO.
For every classically consistent set of formulasΓ and for
every formulaψ, Γ |=2 ψ iff Γ |=D ψ.

Proof. By Proposition 16, since every classically consistent
theory has a model. 2

Corollary 18 LetD be a normalS-distance metric.
a) If S = THREE⊤ thenΓ |=3⊤ ψ iff Γ |=D ψ.
b) If S = FOUR thenΓ |=4 ψ iff Γ |=D ψ.

Proof. By Proposition 16, since inTHREE⊤ and inFOUR,
a valuation that assigns the designated middle element to
every atom is a model of every theory in the classical propo-
sitional language. 2

Example 19 Consider again the distance metricD2 of Ex-
ample 15. By Corollary 17,|=D2 is the same as|=2 with
respect to classically consistent sets of premises, but unlike
the basic two-valued entailment, it does not become trivial
in the presence of contradictions. On the contrary, as Ex-
ample 15 shows,|=D2 allows to draw conclusion from in-
consistent theories in a non-trivial way, and so|=D2 (as well
as many other distance-based relations that are induced by
Definition 14; see Proposition 22 below) is aparaconsistent
consequence relation.

Consider nowD
3⊥ = 〈THREE⊥, dH ,min,Σ〉. The in-

duced entailment,|=D
3⊥ , is again paraconsistent, and with

respect to consistent set of premises it coincides with Kle-
nee’s logic,|=3⊥ (note that the latter relation isnot paracon-
sistent, so in general|=3⊥ and|=D

3⊥ arenot the same). By

5I.e., dH(ν, µ) is the number of atomic formulasp such that
ν(p) 6= µ(p); see also the next section.

DEPARTMENT OF INFORMATICS 155

11TH NMR WORKSHOP

Corollary 18, the three-valued entailment,|=D
3⊤ , induced

by D
3⊤ = 〈THREE⊤, dH ,min,Σ〉, and the four-valued en-

tailment |=D4 , induced byD4 = 〈FOUR, dH ,min,Σ〉, are
paraconsistent consequence relations that coincide with the
consequence relation of Priest’s logic LP and with the conse-
quence relation of Belnap’s four-valued logic, respectively.

Note that the above observations still hold when the sum-
mation function in the metrics is replaced, e.g., by maxi-
mum, average, or the median function.

Reasoning with Distance-based Semantics
Distance Functions
A major consideration in the definition of the entailment re-
lations considered in the previous section is the choice of the
distance functions. In this section we consider some useful
definitions of distances in the context of multiple-valued se-
mantics. For this, we need the following notation.

Notation 20 Denote byAtoms the set of atomic formulas
of the languageL and byAtoms(Γ) the set of the atomic
formulae that appear in some formula ofΓ.

Many distance definitions have been considered in the lit-
erature as quantitative measurements of the level of similar-
ity between given interpretations. For instance, thedrastic
distance, considered in (Konieczny, Lang, & Marquis 2002),
is defined by

dD(ν, µ) =

{

0 if ν = µ,
1 otherwise.

Another common measurement of the distance between
two-valued interpretations is given by theHamming distance
that counts the number of atomic formulae that are assigned
different truth values by these interpretations (see also (Dalal
1988)):

dH(ν, µ) = |{p ∈ Atoms | ν(p) 6= µ(p)} |.

For three-valued logics (such as Kleene’s and Priest’s log-
ics considered above) it is possible to apply the same dis-
tance measurements, or to use a natural extension of the
Hamming distance that considers the distance between the
extreme elementstrue and false as strictly bigger than the
distances between each one of them and the middle element.
In this case,true is associated with the value 1,false is asso-
ciated with 0, and the middle element corresponds to1

2 . The
generalized Hamming distance is then defined as follows:

d3
H(ν, µ) =

∑

p∈Atoms

|ν(p) − µ(p)|.

This function is used, e.g., in (de Amo, Carnielli, & Mar-
cos 2002) as part of the semantics behind (three-valued)
database integration systems.

For four-valued interpretations there is also a natural gen-
eralization of the Hamming distance. The idea here is
that each one of the four truth values is associated with a
pair of two-valued components as follows:true = (1, 0),
false = (0, 1), neither = (0, 0), both = (1, 1). This
pairwise representation preserves Belnap’s original four-
valued structure (see (Arieli & Denecker 2003; Arieli 2004;

2006)), and so it is a valid rewriting of the truth values. Now,
the distance between two valuesx = (x1, x2), y = (y1, y2)
in this pairwise representation is given by

d4(x, y) =
|x1 − y1| + |x2 − y2|

2
,

so the graphic representation ofd4 on the four-valued struc-
ture is the following:

t(0, 0)
neither =

t(1, 1)
both =

t

false = (0, 1)

t

true = (1, 0)

¡
¡

¡
¡
¡

@
@

@
@
@¡

¡
¡

¡
¡

@
@

@
@
@

d4 = 1
2 d4 = 1

2

d4 = 1
2 d4 = 1

2

d4 = 1

Now, the generalized Hamming distance between two four-
valued interpretationsν, µ is defined by:

d4
H(ν, µ) =

∑

p∈Atoms

d4
(

ν(p), µ(p)
)

.

Clearly, this definition may be applied on any lattice whose
elements have a pairwise representation (see (Arieli 2004;
2006)).

It is not difficult to verify that all the functions defined
above satisfy the conditions in Definition 5. Below are some
further observations on these distance functions:

1. Given two interpretationsν, µ into {true, false}, it holds
thatd4

H(ν, µ) = d3
H(ν, µ) = dH(ν, µ), thusd4

H andd3
H

indeed generalize the standard Hamming distance.

2. As the following example shows, the choice of the dis-
tance function (as well as the choice of the other com-
ponents of a distance metric) has a great impact on the
induced entailment.

Example 21 Consider the following two metrics:

D
′ = 〈THREE⊥, dH ,min,Σ〉,

D
′′ = 〈THREE⊥, d3

H ,min,Σ〉.

ForΓ = {p,¬p}, we have

∆D
′

(Γ) =
{

{p : true}, {p : false}
}

,

∆D
′′

(Γ) =
{

{p : true}, {p : false}, {p :middle}
}

.

Thus, for instance,Γ |=D
′

p ∨ ¬p, while Γ 6|=D
′′

p ∨ ¬p.6

3. In (Konieczny, Lang, & Marquis 2002) it is shown that
the choice of the distance function has also a major affect
on the computational complexity of the underlying for-
malism. See Section 4 of that paper for some complexity
results of distance-based operators whenS = TWO.

6This is so, sinceν(p ∨ ¬p) = middle whenν(p) = middle,
and inTHREE⊥ the middle element is not designated.

156 Technical Report IfI-06-04

Theory of NMR and Uncertainty

Basic Properties of|=D

Paraconsistency. In what follows we consider some char-
acteristic properties of the distance-based entailments.We
begin with the ability to reason with inconsistent theoriesin
a non-trivial way. The following proposition shows that this
property is common to many distance-based logics that are
definable within our framework.

Proposition 22 The consequence relations|=D, induced by
the following metrics, are all paraconsistent:

a) D = 〈TWO, d,min, g〉, whered is the drastic distance
(dD) or the Hamming distance (dH) andg is either a sum-
mation or a maximum function.

b) D = 〈THREE⊥, d,min, g〉, whered ∈ {dD, dH , d3
H}

andg is either a summation or a maximum function.
c) D = 〈THREE⊤, d,min, g〉, whered ∈ {dD, dH , d3

H}
andg is either a summation or a maximum function.

d) D = 〈FOUR, d,min, g〉, whered is any distance function
of those considered in the previous section andg is either
a summation or a maximum function.

e) D = 〈[0, 1], d,min, g〉, whered is the drastic distance or
the Hamming distance andg is either a summation or a
maximum function.

Proof. For any of the items above we shall show that
p,¬p 6|=D q, and so it isnot the case that any formula fol-
lows from an inconsistent theory. Indeed, in item (a) we
have that{p : true, q : false} (as well as{p : false, q : false})
is in ∆D({p,¬p}), thusq does not follow from{p,¬p}. For
item (b) note that although different distance functions in-
duce different sets of preferred models of{p,¬p} (see Ex-
ample 21), it is easy to verify that wheneverg is the sum-
mation function then{p : true, q : false} is, e.g., an element
of ∆D({p,¬p}), and wheneverg is the maximum function
{p : middle, q : false} is an element of∆D({p,¬p}). Thus,
in both cases,q does not follow from{p,¬p}. Part (c)
holds since by Proposition 12 we have that∆D({p,¬p}) =
mod3⊤({p,¬p}), and so{p :middle, q : false} is an element
in ∆D({p,¬p}) (recall that inTHREE⊤ the middle element
is designated, and so{p :middle} is a model of{p,¬p}). We
therefore again have thatp,¬p 6|=D q. The proof of part (d)
is similar to that of part (c) with the obvious adjustments to
the four-valued case. Part (e) is similar to part (a) replacing,
respectively,true andfalse by 1 and0. 2

Monotonicity. Next we consider monotonicity, that is:
whether the set of|=D-conclusions is non-decreasing in
terms of the size of the premises. As the next two proposi-
tions show, this property is determined by the multi-valued
structure and the distance metric at hand:

Proposition 23 Let D be a normal distance metric for
FOUR. Then the corresponding distance-based entailment,
|=D, is monotonic.

Proof. By Corollary 18(b),|=D is the same as the basic four-
valued entailment|=4 of Belnap’s logic. The proposition
now follows from the monotonicity of the latter (see (Arieli
& Avron 1996, Theorem 3.10) and (Arieli & Avron 1998,
Proposition 19)). 2

Proposition 24 LetD=〈TWO, d,min, g〉 be a normal dis-
tance metric such thatg(x1, . . . , xn) ≤ g(y1, . . . , ym) if
{x1, . . . , xn} ⊆ {y1, . . . , ym}.7 Then the corresponding
distance-based entailment,|=D, is non-monotonic.

Proof. Consider, e.g.,Γ = {p,¬p ∨ q}. By Corollary 17,
Γ |=D q. On the other hand, considerΓ′ = Γ∪{¬p}, and let
νt andνf be two-valued valuations that respectively assign
true andfalse to p. By the assumption ong we have that

dg

(

νt,Γ
′
)

= g
(

dmin(νt,¬p), dmin(νt,¬p ∨ q)
)

≥ g
(

dmin(νt,¬p)
)

= dmin(νt,¬p)
= dmin(νf , p)

= g
(

dmin(νf , p)
)

= dg

(

νf ,Γ′
)

.

It follows, then, that every two-valued valuationνf that as-
signsfalse to p is in ∆D(Γ′), no matter what value it assigns
to q (asdg(νf ,Γ′) is not affected byνf (q)). In particular,
∆D(Γ′) contains valuations that assignfalse to q, and so
Γ′ 6|=D q. 2

Rationality. In (Lehmann & Magidor 1992), Lehmann
and Magidor consider some properties that a “rational” non-
monotonic consequence relation should satisfy. One prop-
erty that is considered as particularly important assures that
a reasoner will not have to retract any previous conclusion
when learning about a new fact that has no influence on the
existing set of premises. Consequence relations that satisfy
this property are calledrational. Next we show that many
distant-based entailments are indeed “rational”.

Notation 25 An aggregation functionf is calledhereditary,
if f(x1, . . . , xn, z1, . . . , zm) < f(y1, . . . , yn, z1, . . . , zm)
wheneverf(x1, . . . , xn) < f(y1, . . . , yn).8

Proposition 26 Let D = 〈S, d, f, g〉 be anS-distance met-
ric with a hereditary functiong. If Γ |=D ψ thenΓ, φ |=D ψ
for everyφ such thatAtoms(Γ ∪ {ψ}) ∩ Atoms(φ) = ∅.

Intuitively, the condition onφ in Proposition 26 guaran-
tees thatφ is ‘irrelevant’ forΓ andψ. The intuitive meaning
of Proposition 26 is, therefore, that the reasoner does not
have to retractψ when learning thatφ holds.
Proof of Proposition 26. Let µ ∈ ΛV be a valuation that
does not satisfyψ. AsΓ |=D ψ while µ(ψ) 6∈ D, necessarily
µ is not in∆D(Γ), and so there is a valuationν in ∆D(Γ), for
which dg(ν,Γ) < dg(µ,Γ). Again, sinceΓ |=D ψ, ν(ψ) ∈
D. Assuming thatΓ = {ψ1, . . . , ψn}, we have that

g(df (ν, ψ1), . . . , df (ν, ψn)) < g(df (µ, ψ1), . . . , df (µ, ψn)).

Now, consider a valuationσ, defined for every atomp as
follows:

σ(p) =

{

ν(p) if p ∈ Atoms(Γ ∪ ψ)

µ(p) otherwise

7As the arguments ofg are non-negative, summation, maxi-
mum, and many other aggregation functions satisfy this property.

8Note that heredity, unlike monotonicity, is defined by strict
inequalities. Thus, for instance, the summation is hereditary, while
the maximum function is not.

DEPARTMENT OF INFORMATICS 157

11TH NMR WORKSHOP

Note thatσ(p) = ν(p) for every p ∈ Atoms(ψ), and so
σ(ψ) ∈ D as well. AsAtoms(Γ ∪ {ψ}) ∩ Atoms(φ) = ∅
and sinceg is hereditary, we have that

dg(σ,Γ ∪ {φ}) = g(df (σ, ψ1), . . . , df (σ, ψn), df (σ, φ))
= g(df (ν, ψ1), . . . , df (ν, ψn), df (µ, φ))
< g(df (µ, ψ1), . . . , df (µ, ψn), df (µ, φ))
= dg(µ,Γ ∪ {φ}).

Thus, for every valuationµ such thatµ(ψ) 6∈ D there is
a valuationσ such thatσ(ψ) ∈ D and dg(σ,Γ ∪ {φ}) <

dg(µ,Γ∪{φ}). It follows that the elements of∆D(Γ∪{φ})
must satisfyψ, and soΓ, φ |=D ψ. 2

Adaptivity. The ability to handle theories with contra-
dictions in a nontrivial way and at the same time to pre-
suppose a consistency of all sentences ‘unless and un-
til proven otherwise’, is calledadaptivity (Batens 1989;
1998). Consequence relations with this propertyadapt to
the specificinconsistencies that occur in the theories. For
instance, a plausible inference mechanism shouldnot ap-
ply the Disjunctive Syllogism for concluding thatq follows
from {p,¬p,¬p ∨ q}. On the other hand, in the case of
{p,¬p, r,¬r ∨ q}, applying the Disjunctive Syllogism tor
and¬r∨ q may be justified by the fact that the subset of for-
mulae to which the Disjunctive Syllogism is applied should
not be affected by the inconsistency of the whole theory,
therefore inference rules that are classically valid can beap-
plied to it.

The following proposition shows that in many cases
distance-based entailments are adaptive. If a given theory
can be split up to a consistent and an inconsistent parts, then
every assertion that is not related to the inconsistent part, and
which classically follows from the consistent part, must be
entailed by the whole theory.

Proposition 27 Let D = 〈S, d, f, g〉 be a normalS-
distance metric with a hereditary functiong. Suppose that
Γ is a theory that can be represented asΓ′ ∪ Γ′′, where
modS(Γ′) 6= ∅ andAtoms(Γ′) ∩ Atoms(Γ′′) = ∅. Then
for every formulaψ such thatAtoms(ψ) ∩ Atoms(Γ′′) = ∅,
it holds that ifΓ′ |=S ψ thenΓ |=D ψ.

Proof. If Γ′ |=S ψ, then by Proposition 16,Γ′ |=D ψ. Now,
asAtoms(Γ′ ∪ {ψ}) ∩ Atoms(Γ′′) = ∅, we have, by Propo-
sition 26, thatΓ |=D ψ. 2

Distance-based Entailments for
Prioritized Theories

|=D, Generalized
We now extend the distance-based semantics of the previous
section toprioritized theories. An n-prioritized theory is a
theoryΓ = Γ1 ∪ . . . ∪ Γn, where the setsΓi (1 ≤ i ≤ n)
are pairwise disjoint. Intuitively, wheni < j the formulas
in Γi are preferred than those inΓj . A common situation
in which theories are prioritized is, e.g., when data-sources
are augmented with integrity constraints. In such cases the
corresponding theory has two priority levels, as the integrity
constraints must always be satisfied, while the data facts may
be revised in case of conflicts.

To formalize the existence of different levels of priority
in prioritized theories, we consider the following sequence
of sets: for a metricD = 〈S, d, f, g〉 and ann-prioritized
theoryΓ = Γ1 ∪ . . . ∪ Γn, define:

• ∆D
1 (Γ) =

{

ν ∈ ΛV | ∀µ ∈ ΛV dg(ν,Γ1) ≤ dg(µ,Γ1)
}

• for every1 < i ≤ n, let
∆D

i (Γ) =
{

ν ∈ ∆D
i−1(Γ) |

∀µ ∈ ∆D
i−1(Γ) dg(ν,Γi) ≤ dg(µ,Γi)

}

Definition 28 Given anS-distance metricD, define for ev-
ery n-prioritized theoryΓ and formulaψ, Γ |=D ψ if every
valuation in∆D

n(Γ) satisfiesψ.

Note that the last definition is a conservative extension of
Definition 14, since for non-prioritized theories (i.e., when
n = 1) the two definitions coincide.

Example 29 Consider the following puzzle, known as the
Tweety dilemma:

Γ =























bird(x) → fly(x),
penguin(x) → bird(x),
penguin(x) → ¬fly(x),
bird(Tweety),
penguin(Tweety)























As this theory is not consistent, everything classically fol-
lows from it, including, e.g.,fly(Tweety), which seems a
counter-intuitive conclusion in this case, as penguins should
not fly, although they are birds. The reason for this anomaly
is that all the formulas above have the same importance, in
contrast to the intuitive understanding of this case. Indeed,

1. The confidence level of strict facts (bird(Tweety) and
penguin(Tweety) in our case) is usually at least as high
as the confidence level of general rules (implications).

2. As penguinsnever fly, and this is a characteristic fea-
ture of penguins (without exceptions), one would proba-
bly like to attach to the assertionpenguin(x) → ¬fly(x)
a higher priority than that ofbird(x) → fly(x), which
states only a default property of birds.9

Consider now the metricD = 〈TWO, dH ,min,Σ〉 and
regardΓ as a prioritized theory in which the two consid-
erations above are satisfied. It is easy to verify that the
unique valuation in∆D

n(Γ) (wheren > 1 is the number of
priority levels inΓ) assignstrue to bird(Tweety), true to
penguin(Tweety), andfalse to fly(Tweety). Thus, e.g.,
Γ |=D ¬fly(Tweety), as intuitively expected.

Applications
In this section we show how the generalized distance-based
semantics for prioritized theories, introduced in the previous
section, can be naturally applied in related areas. Below we
consider two representative examples: database query sys-
tems and belief revision theory.

9The third assertion,penguin(x) → bird(x), could have an
intermediate priority, as again there are no exceptions to the fact
that every penguin is a bird, but still penguins are nottypicalbirds,
thus they shouldn’t inherit all the properties we expect birds to
have.

158 Technical Report IfI-06-04

Theory of NMR and Uncertainty

A. Consistent Query Answering in Database Systems
A particularly important context in which reasoning with
prioritized theories naturally emerges is consistency han-
dling in database systems. In such systems, it is of prac-
tical importance to enforce the validity of the data facts
by a set of integrity constraints. In case of any violation
of some integrity constraint, the set of data-facts is sup-
posed to be modified in order to restore the database consis-
tency. It follows, then, that integrity constraints are superior
than the facts themselves, and so the underlying theory is
a prioritized one. This also implies that consistent query
answering from possibly inconsistent databases (Arenas,
Bertossi, & Chomicki 1999; 2003; Greco & Zumpano 2000;
Bravo & Bertossi 2003; Eiter 2005) or constraint data-
sources (Konieczny, Lang, & Marquis 2002; Konieczny &
Pino Ṕerez 2002) may be defined in terms of distance-based
entailments on prioritized theories. Moreover, as our frame-
work is tolerant to different semantics, such methods of
query answering, which are traditionally two-valued ones,
may be related to other formalisms that are based on many-
valued semantics like those considered in (Subrahmanian
1994) and (de Amo, Carnielli, & Marcos 2002).

Let L be a propositional language withAtoms its under-
lying set of atomic propositions. A (propositional)database
instanceI is a finite subset ofAtoms. The semantics
of a database instance is given by the conjunction of the
atoms inI, augmented with theclosed world assumption
(CWA(I)) (Reiter 1978) that assures that each atom which
is not explicitly mentioned inI is false.

Definition 30 A databaseis a pair (I, C), whereI is a
database instance, andC — the set ofintegrity constraints
— is a finite and consistent set of formulae inL. A database
DB = (I, C) is consistentif every formula inC follows from
I, that is, there is no integrity constraint that is violated in
I.

Given a databaseDB = (I, C), the theoryΓDB that is
associated with it contains the components ofDB and im-
poses the closed word assumption onI. In addition, this
theory should reflect the fact that the integrity constraints in
C are of higher priority than the rest of the data. That is,
ΓDB should be a two-leveled theory, in whichΓ1 = C and
Γ2 = I ∪ CWA(I). Now, query answering with respect to
DB may be defined in terms of a distance-based entailment
onΓDB.

Suppose, then, thatD is a normalS-distance metric for
some multiple-valued structureS, and letDB = (I, C) be a
(possibly inconsistent) database. Its prioritized theoryis

ΓDB = Γ1 ∪ Γ2 = C ∪ (I ∪ CWA(I)),

andQ is a consistent query answer ifΓDB |=D Q. Now, as
C is classically consistent, by Proposition 12,∆D

1 (ΓDB) =
mod(C). It follows, therefore, thatQ is a consistent query
answer ofDB if it is satisfied by every model ofC with
minimal distance (in terms ofdg) from I ∪ CWA(I).

Example 31 LetDB = ({p, r}, {p → q}). Here,

I ∪ CWA(I) = I ∪ {¬x | x 6∈ I} = {p,¬q, r},

so the associated theory is

ΓDB = {p → q} ∪ {p,¬q, r}.

This theory is the same as the one considered in Example 15,
but with one major difference: nowp → q is preferred over
the other formulas, thus only its models are taken into ac-
count. Consider the same metric as that of Example 15. As
valuationsν3, ν4 in the table of that example do not satisfy
C, they are excluded. Among the remaining valuations,ν1

andν7 are the closest toI ∪ CWA(I), and so the consistent
query answers of(I, C) are the formulas that are satisfied by
bothν1 andν7.

Note 32 Example 31 shows, in particular, that|=D is not re-
flexive, since for instanceΓDB 6|=

Dp althoughp∈ΓDB. This
can be justified by the fact that one way of restoring the con-
sistency ofDB is by removingp from I (ν7 corresponds to
this situation), and sop does not hold in all the consistency
‘repairs’ of ΓDB.10 Similarly, the fact thatΓDB 6|=D ¬q al-
though¬q ∈ ΓDB may be justified by the alternative way
of restoring the consistency ofDB, in which q is added to
I (ν1 corresponds to this situation). Note also that there is
no reason to remover from I, as this will not contribute
to the consistency restoration ofDB. This intuitively justi-
fies the fact that forr (unlike the other atomic formulae in
ΓDB), we do have thatΓDB |=D r (cf. Example 15). This is
also to the intuition behind the query answering formalisms
for inconsistent databases, considered e.g. in (Arenas,
Bertossi, & Chomicki 1999; 2003; Greco & Zumpano 2000;
Bravo & Bertossi 2003; Eiteret al. 2003; Arieliet al. 2004;
2006).

B. Modeling of Belief Revision
A belief revision theory describes how a belief state is ob-
tained by the revision of a belief stateB by some new in-
formation, ψ. A belief revision operator◦ describes the
kind of information change that should be made in face of
the new (possibly contradicting) information depicted byψ.
The new belief state, denotedB ◦ψ, is usually characterized
by the closest worlds toB in which ψ holds. This crite-
rion, often calledthe principle of minimal change, is one of
the most widely advocated postulates of belief revision the-
ory. Clearly, it is derived by distance considerations, so it
is not surprising that this consideration can be expressed in
our framework. Indeed, the intended meaning of the revi-
sion operator is to describe ‘how to reviseB in order to be
consistent withψ’. In our context the revised belief state
corresponds to the (coherent) set of conclusions that can be
derived from the prioritized theory{ψ} ∪ B, in which ψ
is superior thanB. Indeed, suppose again thatD is a nor-
malS-distance metric for some multiple-valued structureS,
and considerΓ = Γ1 ∪ Γ2 = {ψ} ∪ B. Again, by Propo-
sition 12,∆D

1 (Γ) = mod(ψ), and so the new belief state
consists of the formulas that are satisfied by every model of
ψ and that are minimally distant (in terms ofdg) from B. In
other words,

B ◦ ψ = ∆D

2 (Γ), (1)

10Or, equivalently,p is involved in contradictions inΓDB; see
also the discussion in Example 15 above.

DEPARTMENT OF INFORMATICS 159

11TH NMR WORKSHOP

whereΓ = Γ1 ∪ Γ2, Γ1 = {ψ}, andΓ2 = B.

Example 33 For D2 = 〈TWO, dH ,min,Σ〉 define a be-
lief revision operator◦ by Equation (1) above. The revision
operator that is obtained is the same as the one considered
in (Dalal 1988). It is well-known that this operator satisfies
the AGM postulates (Alchourrón, G̈ardenfors, & Makinson
1985).

Conclusion
In this paper we have introduced a family of multiple-valued
entailments, the underlying semantics of which is based on
distance considerations. It is shown that such entailments
can be incorporated in a variety of deductive systems, me-
diators of distributed databases, consistent query answering
engines, and formalisms for belief revision.

A characteristic property of the entailments considered
here is that, although being paraconsistent in nature, to a
large extent they retain consistency. For instance, the en-
tailments that are defined by normal distance metrics in a
two-valued (respectively,S-valued) semantics, are identical
to classical two-valued entailment (respectively, are identi-
cal to the corresponding basicS-entailment), as long as the
set of premises is kept consistent. Moreover, even when the
set of premises becomes inconsistent, the conclusions that
are obtained from the fragment of the theory that is not re-
lated to the ‘core’ of the inconsistency, are the same as those
obtained by the classical two-valued (respectively, the ba-
sicS-valued) entailment, when only the consistent fragment
is taken into account. In contrast to the classical entailment,
however, our formalisms are not degenerated in the presence
of contradictions, so the set of conclusions is not ‘exploded’
is such cases.

References
Alchourrón, C. E.; G̈ardenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet contraction and
revision function.Journal of Symbolic Logic50:510–530.

Arenas, M.; Bertossi, L.; and Chomicki, J. 1999. Con-
sistent query answers in inconsistent databases. InProc.
18th Symp. on Principles of Database Systems(PODS’99),
68–79.

Arenas, M.; Bertossi, L.; and Chomicki, J. 2003. An-
swer sets for consistent query answering in inconsistent
databases.Theory and Practice of Logic Programming
3(4–5):393–424.

Arieli, O., and Avron, A. 1996. Reasoning with logical
bilattices. Journal of Logic, Language, and Information
5(1):25–63.

Arieli, O., and Avron, A. 1998. The value of the four
values.Artificial Intelligence102(1):97–141.

Arieli, O., and Avron, A. 2000. Bilattices and paracon-
sistency. In Batens, D.; Mortenson, C.; Priest, G.; and
Van Bendegem, J., eds.,Frontiers of Paraconsistent Logic,
volume 8 ofStudies in Logic and Computation. Research
Studies Press. 11–27.

Arieli, O., and Denecker, M. 2003. Reducing preferential
paraconsistent reasoning to classical entailment.Logic and
Computation13(4):557–580.
Arieli, O.; Denecker, M.; Van Nuffelen, B.; and
Bruynooghe, M. 2004. Database repair by signed formu-
lae. In Seipel, D., and Turull Torres, J. M., eds.,Proc. 3rd
Symp. on Foundations of Information and Knowledge Sys-
tems(FoIKS’02), number 2942 in LNCS, 14–30. Springer.
Arieli, O.; Denecker, M.; Van Nuffelen, B.; and
Bruynooghe, M. 2006. Computational methods for
database repair by signed formulae.Annals of Mathematics
and Artificial Intelligence46(1–2):4–37.
Arieli, O. 2004. Paraconsistent preferential reasoning by
signed quantified Boolean formulae. In de Mántaras, R.,
and Saitta, L., eds.,Proc. 16th European Conference on
Artificial Intelligence(ECAI’04), 773–777. IOS Press.
Arieli, O. 2006. Paraconsistent reasoning and preferential
entailments by signed quantified Boolean formulae.ACM
Transactions on Computational Logic. Accepted.
Avron, A. 1991. Natural 3-valued logics: Characterization
and proof theory.Journal of Symbolic Logic56(1):276–
294.
Batens, D.; Mortenson, C.; Priest, G.; and Bendegem, J. V.,
eds. 2000.Frontiers of Paraconsistent Logic. Research
Studies Press.
Batens, D. 1989. Dynamic dialectical logics. In Priest, G.;
Routely, R.; and Norman, J., eds.,Paraconsistent Logic.
Essay on the Inconsistent. Philosophia Verlag. 187–217.
Batens, D. 1998. Inconsistency-adaptive logics. In Or-
lowska, E., ed.,Logic at Work. Physica Verlag. 445–472.
Belnap, N. D. 1977a. How a computer should think. In
Ryle, G., ed.,Contemporary Aspects of Philosophy. Oriel
Press. 30–56.
Belnap, N. D. 1977b. A useful four-valued logic. In Dunn,
J. M., and Epstein, G., eds.,Modern Uses of Multiple-
Valued Logics. Reidel Publishing Company. 7–37.
Ben Naim, J. 2005. Preferential and preferential-
discriminative consequence relations.Logic and Compu-
tation15(3):263–294.
Bravo, L., and Bertossi, L. 2003. Logic programming for
consistently querying data integration systems. In Gottlob,
G., and Walsh, T., eds.,Proc. 18th Int. Joint Conference on
Artificial Intelligence(IJCAI’03), 10–15.
Carnielli, W. A.; Coniglio, M. E.; and D́ottaviano, I., eds.
2002. Paraconsistency: The Logical Way to the Incon-
sistent, volume 228 ofLecture Notes in Pure and Applied
Mathematics. Marcel Dekker.
da Costa, N. C. A. 1974. On the theory of inconsistent for-
mal systems.Notre Dame Journal of Formal Logic15:497–
510.
Dalal, M. 1988. Investigations into a theory of knowledge
base revision. InProc. National Conference on Artificial
Intelligence(AAAI’98), 475–479. AAAI Press.
de Amo, S.; Carnielli, W. A.; and Marcos, J. 2002. A
logical framework for integrating inconsistent information

160 Technical Report IfI-06-04

Theory of NMR and Uncertainty

in multiple databases. InProc. 2nd Int. Symp. on Founda-
tions of Information and Knowledge Systems(FoIKS’02),
number 2284 in LNCS, 67–84. Springer.
Delgrande, J. 2004. Preliminary considerations on the
modelling of belief change operators by metric spaces.
In Proc. Int. Workshop on Non-Monotonic Reasoning
(NMR’04), 118–125.
D’ottaviano, I. 1985. The completeness and compactness
of a three-valued first-order logic.Revista Colombiana de
MatematicasXIX(1–2):31–42.
Eiter, T.; Fink, M.; Greco, G.; and Lembo, D. 2003. Ef-
ficient evaluation of logic programs for querying data inte-
gration systems. InProc. 19th Int. Conf. on Logic Pro-
gramming(ICLP’03), number 2916 in LNCS, 163–177.
Springer.
Eiter, T. 2005. Data integration and answer set program-
ming. In Baral, C.; Greco, G.; Leone, N.; and Terracina,
G., eds.,Proc. 8th Int. Conf. on Logic Programming and
Nonmonotonic Reasoning(LPNMR’05), number 3662 in
LNCS, 13–25. Springer.
Epstein, R. L. 1990.The semantic foundation of logic.
Vol.I: propositional logics. Kluwer.
Fitting, M. 1990. Kleene’s logic, generalized.Logic and
Computation1:797–810.
Greco, S., and Zumpano, E. 2000. Querying inconsis-
tent databases. InProc. Int. Conf. on Logic Programming
and Automated Reasoning(LPAR’2000), number 1955 in
LNAI, 308–325. Springer.
Hájek, P. 1998.Metamatematics of Fuzzy Logic. Kluwer.
Kleene, S. C. 1950.Introduction to Metamathematics. Van
Nostrand.
Konieczny, S., and Marquis, P. 2002. Three-valued logics
for inconsistency handling. In Flesca, S.; Greco, S.; Leone,
N.; and Ianni, G., eds.,Proc. 8th European Conference on
Logics in Artificial Intelligence(JELIA’02), number 2424
in LNAI, 332–344. Springer.
Konieczny, S., and Pino Pérez, R. 2002. Merging infor-
mation under constraints: a logical framework.Logic and
Computation12(5):773–808.
Konieczny, S.; Lang, J.; and Marquis, P. 2002. Distance-
based merging: A general framework and some complexity
results. InProc 8th Int. Conf. on Principles of Knowledge
Representation and Reasoning(KR’02), 97–108.
Lehmann, D., and Magidor, M. 1992. What does a condi-
tional knowledge base entail?Artificial Intelligence55:1–
60.
Lehmann, D.; Magidor, M.; and Schlechta, K. 2001. Dis-
tance semantics for belief revision.Journal of Symbolic
Logic 66(1):295–317.
Lin, J., and Mendelzon, A. O. 1999. Knowledge base
merging by majority. InDynamic Worlds: From the Frame
Problem to Knowledge Management. Kluwer.
Makinson, D. 1994. General patterns in nonmonotonic
reasoning. In Gabbay, D.; Hogger, C.; and Robinson, J.,
eds.,Handbook of Logic in Artificial Intelligence and Logic

Programming, volume 3. Oxford Science Publications. 35–
110.
Peppas, P.; Chopra, S.; and Foo, N. 2004. Distance se-
mantics for relevance-sensitive belief revision. InProc 9th
Int. Conf. on Principles of Knowledge Representation and
Reasoning(KR’04), 319–328. AAAI Press.
Priest, G. 1989. Reasoning about truth.Artificial Intelli-
gence39:231–244.
Priest, G. 1991. Minimally inconsistent LP.Studia Logica
50:321–331.
Priest, G. 2002. Paraconsistent logic. In Gabbay, D., and
Guenthner, F., eds.,Handbook of Philosophical Logic, vol-
ume 6. Kluwer. 287–393.
Reiter, R. 1978. On closed world databases. InLogic and
Databases. Plenum Press. 55–76.
Rozoner, L. I. 1989. On interpretation of inconsistent the-
ories. Information Sciences47:243–266.
Shoham, Y. 1987. A semantical approach to non-
monotonic logics. In Ginsberg, M. L., ed.,Readings in
Non-Monotonic Reasoning. Morgan Kaufmann Publishers.
227–249.
Shoham, Y. 1988.Reasoning About Change: Time and
Causation from the Standpoint of Artificial Intelligence.
MIT Press.
Subrahmanian, V. S. 1994. Amalgamating knowledge
bases.ACM Transactions on Database Systems19(2):291–
331.

DEPARTMENT OF INFORMATICS 161

11TH NMR WORKSHOP

162 Technical Report IfI-06-04

Theory of NMR and Uncertainty

2.6 On Compatibility and Forward Chaining Normality

On Compatibility and Forward Chaining Normality ∗

Mingyi Zhang 1,2 and Ying Zhang1

1Guizhou Academy of Sciences, Guiyang, P. R. China.
2School of Information Engineering,

Guizhou University, P. R. China.
zhangmingyi045@yahoo.com.cn

Yisong Wang3

3School of Computer Science & Engineering,
Guizhou University, Guiyang, P. R. China.

ys wang168@yahoo.com.cn

Abstract

In Reiter’s default logic, the class of normal default theo-
ries is an important subclass of default theories. All de-
faults in this subclass have a simple syntactic criterion and
the subclass has a number of nice properties, which makes
it a desirable context for belief revision (Reiter 1980). But
this simple syntactic criterion has a side effect — interact-
ing defaults would lead to anomalous conclusions (Reiter &
Criscuolo 1981). Auto-compatible default theories (Mingyi
1992; 1993), which is obtained by introducing the notions of
(strongly) compatibility and auto-compatibility of defaults,
and Forward Chaining normal (FC-normal) default theories
(Marek, Nerode, & Remmel 1994) which employed the no-
tion of normal default theories with respect to a consistency
property are two larger subclasses than normal default the-
ories, and both enjoy all the desirable properties of normal
default theories.
In this paper we extend the class of auto-compatible default
theories to weakly auto-compatible default theories, present
a sound and complete algorithm to compute all of its exten-
sions, and show that weakly auto-compatible theories have
the same nice properties as the auto-compatible default theo-
ries. We argue that every FC-normal default theory is weakly
auto-compatible. Moreover, we also show that this class
properly contains FC-normal default theories, i.e., there are
some weakly auto-compatible default theories which are not
FC-normal. We also point out that it is easy to apply the
notions of (weakly) auto-compatibility to general logic pro-
grams and truth maintenance systems as well.

1 Introduction
Default logic (DL) (Reiter 1980) is one of the best known
and most widely studied formalizations of non-monotonic
reasoning due to its very expressive and lucid language
(Marek & Truszczynski 1993; Makinson 2005). However,
the existence of extensions for a default theory (DT) is not
guaranteed and the construction of extensions is quite com-
plex. So many researchers had proposed several variants of
default logic (Lukaszewicz 1985; Brewka 1991; Delgrande,
Schaub, & Jackson 1994; Mikitiuk & Truszczynski 1993;
Przymusinska & Przymusinski 1994; Giordano & Martelli
1994; Brewka & Gottlob 1997). Many of these variants

∗The work was partially supported by the Natural Science
Foundation under grant NSF 60573009 and the stadholder foun-
dation of Guizhou Province under grant 2005(212).

put forward the formal property of semi-monotonicity be-
cause it guarantees the existence of extensions and it allows
for incremental construction. And the other variants address
the expressive power of default logic, which was diminished
by semi-monotonicity. An important class of default theo-
ries enjoying semi-monotonicity is normal default theories
in Reiter’s framework. One particular feature of the class
is that a simple syntactic criterion which enables us to de-
termine easily whether a given default theory is normal or
not. The class of normal default theories has the following
remarkable properties: the existence of extensions, semi-
monotonicity and a default proof theory. But it has a side
effect — interacting defaults would lead to a counterintuitive
conclusion. It is natural to ask that whether one can extend
normal default theories to a larger subclass of default theo-
ries, which have all the above desirable properties of normal
default theories.

By introducing the notions of (strongly) compatibility and
auto-compatibility of defaults, we proposed a larger class
of default theories, so-called auto-compatible default theo-
ries (Mingyi 1992). We proved that an extension of any
auto-compatible default theory always exists and the class
of auto-compatible default theories strictly contains all of
normal default theories. We also pointed out that auto-
compatible default theories have all the desirable properties
of normal default theories (Mingyi 1992; 1994). Then we
detailed some important properties of auto-compatible de-
fault theories (Mingyi 1996), which are possessed by nor-
mal default theories. Mareket al extended the notion of
normal default theories with respect to a consistency prop-
erty and also got a larger subclass of default theories, so-
called Forward Chaining normal (FC-normal) default theo-
ries (Marek, Nerode, & Remmel 1994), which has the same
nice properties as normal default theories. In order to study
the connection between the two notions: auto-compatibility
and FC-normality, we extend auto-compatible default the-
ories to weakly auto-compatible default theories (WACDT)
and discover that this subclass has all desired nice properties
of normal default theories. We also explore some new fea-
tures of FC-normal non-monotonic rule systems (FC-normal
NRS) and we show that every FC-normal default theory is
weakly auto-compatible, but not vice versa. It will not only
theoretically fertilizes the two notions of auto-compatibility
and FC-normality but also, or more importantly, the notions

DEPARTMENT OF INFORMATICS 163

11TH NMR WORKSHOP

can be easily applied to general logic programs and truth
maintenance systems and then it will surely benefit both of
them.

The outline of this paper is as follows. In section 2 we
briefly recall some notations of Reiter’s DL, Lukaszewic’s
modified extension and some key properties of auto-
compatible default theories. Then in section 3 we explore
some new features of FC-normal nonm-onotonic rule sys-
tems. In section 4, we establish the relationship between the
class of FC-normal default theories and that of weakly auto-
compatible default theories. For the sake of space, we leave
the proofs of some main propositions at the end of the paper
as appendix.

2 Preliminaries

Following the notations in (Reiter 1980) with slight differ-
ence, a default is a rule of the form

α : β1, . . . , βn/γ (1)

where α, βi(1 ≤ i ≤ n) and γ are wffs in a underly-
ing propositional languageL. If α = true, it is called
prerequisite-free and it is usually written as: β1, . . . , βn/γ.
If n=0, it is called justification-free and is written asα : /γ.
A default theory (DT) is a pair(D,W), whereD is a set of
defaults andW a set of formulas. A default isnormal if it is
of the formα : β/β. A default issemi-normalif it is of the
form α : β ∧ γ/γ. A DT (D,W) is normal (semi-normal)
if every defaultd ∈ D is normal (semi-normal). Reiter gave
the fixed-point definition and quasi-inductive characteriza-
tion of extensions for a DT. These definitions are based on
an infinite and deductively closed set of formulas.

As we know, there are some default theories which have
no extension. To avoid this, (Lukaszewicz 1988) defined a
new version of application for defaults by employing two
operators, whose roles are to keep tracks of the consequents
and the consistent conditions of being applied defaults re-
spectively. That is, let(E,F) and(E′, F ′) be pairs of sets
of formulas. A defaultd = α : β1, . . . , βn/γ is applicable
to (E′, F ′) w.r.t. (E,F), denotedd∇(E,F)(E

′, F ′), whenever
if α ∈ E′ andE ∪{γ} |= ¬β for noβ ∈ F ∪{β1, . . . , βn},
thenγ ∈ E′ and{β1, . . . , βn} ⊆ F ′. Let ∆ = (D,W)
be a DT, E and F sets of formulae. DefineΛ1

∆(E,F)
andΛ2

∆(E,F) to be the smallest set of formulae such that
Λ1

∆(E,F) is deductively closed,W ⊆ Λ1
∆(E,F) , and if

d ∈ D thend∇(E,F)(Λ
1
∆(E,F),Λ2

∆(E,F)). Then a set of
formulae is amodified extensionof ∆ iff there exists a set
F of formulae such that(E,F) is a fixed point of a certain
operatorΛ∇.

We gave a characterization of extensions of a DT, which
is based only on the DT itself. To do this, we introduced
the notions of (joint) compatibility for a set of defaults and
the operatorΛ, which characterize the conditions of appli-
cability of defaults. In the same way, we also got the fi-
nite characterizations of extensions for DL’s variants. Now
we recall some notations and results in (Mingyi 1992; 1992;
1994).

2.1 Reiter’s DL and Lukaszewicz’s extensions
Definition 1 Let D be a set of defaults. We use the following
notations:
Pre(D)={α|α : β1, . . . , βn/γ ∈ D},
Ccs(D)={βi|α : β1, . . . , βn/γ ∈ D, 1 ≤ i ≤ n} and,
Cns(D)={γ|α : β1, . . . , βn/γ ∈ D}.
Here, to avoid confusion with the notationCon of consis-
tency property in (Marek, Nerode, & Remmel 1994), we re-
place the notationCon in (Mingyi 1992) withCns.

Different from our previous work, we allow a default to
be justification-free in this paper. It is easy to see that all of
the results previously obtained still are true. A few results
different from our one before will be reiterated and some
special results about DT with justification-free will be given
also.

A defaultd, as a inference rule, is monotonic ifCcs(d) =
∅; otherwise, it is non-monotonic. For any setD of defaults
we denoteDM = {d ∈ D|Ccs(d) = ∅}, DNM = {d ∈
D|Ccs(d) 6= ∅}.

To capture the consistency condition of generating an ex-
tension for a default theory, we introduced the notions of
compatibility and auto-compatibility (Mingyi 1992), which
are still well defined when we allow a default to be
justification-free.

Definition 2 Let∆ = (D,W) be a DT. AnyD′ ⊆ D is said
to be compatible with respect to (w.r.t.)∆ if W∪Cns(D′) 6`
¬β for eachβ ∈ Ccs(D′). D′ is maximally compatible if
it is compatible and there is no compatible subsetD′′ of D
which properly containsD′.

Note that the empty set∅ is compatible w.r.t. any default
theory. Further,DM is compatible for any DT∆ = (D,W).

Definition 3 Let ∆ = (D,W) be a DT andD′ a compati-
ble subset of D. A defaultd = (α : β1, . . . , βn/γ) is auto-
incompatible w.r.t.D′ if

(1) W ∪ Cns(D′) 6` ¬βi for any1 ≤ i ≤ n and,
(2) W ∪Cns(D′∪{d}) ` ¬β for someβ ∈ Ccs(D′∪{d})

(i.e. D′ ∪ {d} is incompatible).

d is auto-incompatible w.r.t.∆ if there is a compatible subset
D′ of D such that d is auto-incompatible w.r.t.D′. It is
auto-compatible w.r.t. a compatible subsetD′ of D if it is
not auto-incompatible w.r.t.D′, and it is auto-compatible
w.r.t. ∆ if it is auto-compatible w.r.t. any compatible subset
D′ of D. ∆ is auto-compatible if every default of D is auto-
compatible w.r.t.∆.

Clearly, for a DT∆ = (D,W), if D is compatible then∆
is auto-compatible. But the inverse is not true. For example,
the DT ({: A/B; : ¬B/C}, ∅) is auto-compatible butD
is not compatible.

The following operator is to characterize the derivability
of premises of defaults generating an extension.

Definition 4 Let ∆ = (D,W) be a DT. The operatorΛ :
2D → 2D (the power set of D) is defined as: for anyD′ ⊆
D, Λ(D′,∆) =

⋃
η∈µ D′

η(∆), whereµ is the ordinal of D
(Assume that the ordering among ordinals is given by∈) and

• D′
0(∆) = {d ∈ D′|W ` Pre({d})};

164 Technical Report IfI-06-04

Theory of NMR and Uncertainty

• D′
η+1(∆) = {d ∈ D′|W ∪ Cns(D′

η(∆)) ` Pre({d})}
if η is a successive ordinal;

• D′
η(∆) =

⋃
κ∈η D′

κ(∆), if η is a limit ordinal.

Essentially, an extension of a default theory is determined
by its applicable defaults, which is called the set of generat-
ing defaults (Reiter 1980).

Definition 5 Let ∆ = (D,W) be a DT and E an extension
of ∆. The set of generating defaults of E,GD(E,∆), is the
set{α : β1, . . . , βn/γ ∈ D|α ∈ E,¬β1, . . .¬βn 6∈ E}.

Obviously, ifE is an extension of a DT∆ = (D,W) then
E = Th(W ∪Cns(GD(E,∆)), whereTh is the deductive
closure operator in classical logic.

Definition 6 Let ∆ = (D,W) be a DT,D′ a subset of D.
D′ is strongly compatible w.r.t.∆ if D′ is compatible and
Λ(D′,∆) = D′.

In the following sections we will omit “w.r.t. D′(∆)”
whenever it is not confused from the context. we presented
the important features of compatibility concept and the op-
eratorΛ (Mingyi 1992).

Theorem 1 Let∆ = (D,W) be a DT. For anyD′ ⊆ D′′ ⊆
D,
(1) if D′′ is compatible then also isD′.
(2) if Λ(D′,∆) = D′ then for anyd ∈ D, Λ(D′∪{d},∆) =
D′ ∪ {d} iff W ∪ Cns(D′) ` Pre({d}).

We say that a strongly compatible subsetD′ of D is
maximal if there is no strongly compatible subsetD′′

of D such thatD′ ⊂ D′′ (here⊂ implies ⊆ and 6=).
Clearly, for any DT =(D,W),∅ is strongly compatible. Let
SC(∆) = {D′|D′ ⊆ D andD′ is strongly compatible} and
MSC(∆) = {D′|D′ ⊆ D andD′ is maximally strongly
compatible}. SC(∆) is not empty since∅ is strongly com-
patible. By Zorn’s lemma, we have

Corollary 2 Each default theory has a maximally strongly
compatible set of defaults.

Theorem 3 If a DT ∆ = (D,W) has an extension E then
GD(E,∆) is maximally strongly compatible.

2.2 Finite Characterization of extensions
Based on the notions of compatibility and the operatorΛ
we presented a finite characterization of extensions, which
enables us to determine whether a default theory has an ex-
tension by checking the default theory itself and to compute
one extension if it exits.

Theorem 4 (Finite characterization of DL extensions)
A DT ∆ = (D,W) has an extension iff there exists a com-
patible subsetD′ of D such that
P1. Λ(D′,∆) = D′;
P2. For any α : β1, . . . , βn/γ ∈ D − D′, either W ∪
Cns(D′) 6` α or W ∪Cns(D′) ` ¬βi for some1 ≤ i ≤ n.

In other words, a DT∆ = (D,W) has an extension iff
there exists a maximally strongly compatible subsetD′ of D
such thatd is auto-compatible w.r.t.D′ for anyd ∈ D−D′.

From the above theorem it is immediate that the set of
generating defaults of an extension for∆ is a maximally
strongly compatible subset of defaults.

It is worthy of noting that, Marek and Truszczynski
(Marek & Truszczynski 1993) independently obtained a
characterization similar to the above theorem, which is
slightly different from ours. First, the notion of compati-
bility carries more information about the existence of exten-
sions thanS-provability. For example, consider the default
theory({: A/¬A}, ∅). Let S = ∅. : A/¬A is S-applicable
but not compatible. This can be also seen from the devel-
opment of the class of auto-compatible default theories and
the application to characterize Lukaszewicz’s modified ex-
tensions. Next, the “overlap” caused by the operatorRDs in
(Marek & Truszczynski 1993) is global, while the “overlap”
carried by the operatorΛ is local. This property of “localiza-
tion” of a “overlap” makes it simple to find extensions, i.e.
verifying a candidate extension by our algorithm, in gen-
eral, needs much less logical inference tests than by their
algorithm.

From the above characterization we can get some suffi-
cient conditions for the existence of extension, for instance,

Theorem 5 Let ∆ = (D,W) be a DT. If D is compatible
(further if Λ(D,∆) is compatible) then∆ has exactly one
extensionE = Th(W ∪ Cns(Λ(D,∆))).

Theorem 6 If a DT ∆ = (D,W) is auto-compatible then it
has an extension.

The notion of strongly compatibility can also depict the
characterization of modified extension.

Theorem 7 Any default theory∆ = (D,W) has an mod-
ified extension which is generated by a maximally strong
compatible subset of D.

It is worth to see that Reiter’s conclusion on inconsistent
extension does not hold for a DT with justification-free de-
faults. In fact we have

Theorem 8 Any DT∆ = (D,W) has an inconsistent ex-
tension iffW ∪ Cns(Λ(DM ,∆)) is inconsistent.

Proof: It is clear from the fact thatΛ(DM ,∆) is the unique
subset ofD satisfying the conditions in Theorem 4.

Corollary 9 If a DT ∆ = (D,W) has an inconsistent ex-
tension E then this is its only extension andGD(E,∆) =
Λ(DM ,∆).

Without loss of generality, we always assume thatW ∪
Cns(Λ(DM ,∆)) is consistent in the rest of the paper un-
less otherwise stated.

3 Weakly Auto-Compatible Default Theory
3.1 Weak auto-compatibility
From the finite characterization of extensions, Theorem 4,
it is easy to see that violating the conditionP2 (i.e. there
is an auto-incompatible default) might lead to nonexistence
of extension for a default theory. Using the notion of
auto-compatibility is an approach to avoiding this prob-
lem. Extending the notion of auto-compatibility, in this sec-
tion, we present a larger class than auto-compatible DTs.
This class, which we call Weakly Auto-Compatible De-
fault Theory, enjoys many nice properties as the class of

DEPARTMENT OF INFORMATICS 165

11TH NMR WORKSHOP

auto-compatible default theories. All proofs in the section
are easily done in a way similar to those in (Mingyi 1992;
1994).

Definition 7 Let∆ = (D,W) be a DT,D′ a strongly com-
patible subset of D and letd = (α : β1, . . . , βn/γ) be
a default in D. d is weakly auto-compatible w.r.t.D′ if
Λ(D′∪{d},∆) = D′∪{d} implies that d is auto-compatible
w.r.t. D′. d is weakly auto-compatible w.r.t.∆ if d is weakly
auto-compatible w.r.t. any strongly compatible subset of D.
∆ is weakly auto-compatible if each of its defaults is weakly
auto-compatible w.r.t.∆.

From the definition and Definition 3 it is clear that the
class of auto-compatible default theories is a subclass of
weakly auto-compatible theories. That is

Corollary 10 Each auto-compatible default theory is also
weakly auto-compatible.

The following example shows that the inverse of the
above result is false and then auto-compatible default the-
ory class is a proper subclass of the weakly auto-compatible
default theory.

Example 1 The default theory∆ = ({: A/B; C :
D/¬A}, ∅) is not auto-compatible but weakly auto-
compatible since the default: A/B is auto-incompatible
w.r.t. the compatible set of defaults{C : D/¬A}, which
is not strongly compatible.

So, we have
Normal default theories⊂ auto-compatible default theo-

ries⊂ weakly auto-compatible default theories.
Noting that weak auto-compatibility just actually prevents

generation of an extension from violating conditionP2 in
Theorem 4. It is obvious that, for a weakly auto-compatible
default theory∆ = (D,W), each maximally strongly com-
patible subset ofD is just the set of generating defaults of an
extension for∆. In fact, for any maximally strongly com-
patible subsetD′ of D (its existence is guaranteed by Corol-
lary 2), E′ = Th(W ∪ Cns(D′)) is just one extension of
∆′ = (D′,W) by Theorem 5. Further,GD(E′,∆′) = D′.
Clearly,D′ satisfies the conditions in Theorem 4 for∆. So,
D′ is the set of generating defaults of an extension for∆
andE′ is an extension of∆. This shows that existence of
extensions for a weakly auto-compatible DT is guaranteed.
That is,

Theorem 11 A weakly auto-compatible DT∆ = (D,W)
has at least one extension and eachD′ ∈ MSC(∆) corre-
sponds to a set of generating defaults of an extension E of
∆.

The above analysis on the existence of extensions does
also hold for any strongly compatible subsetD′ of D.
The only modification is extendingD′ to a maximally
strongly compatible subset and generating an extensionE
for ∆ such thatE′ ⊆ E, whereE′ is an extension for
(D′,W). This shows that weak auto-compatibility implies
semi-monotonicityin a sense. Here, a default theory(D,W)
enjoys semi-monotonicity if it satisfies the following condi-
tion: for anyD′ andD′′ with D′ ⊆ D′′ ⊆ D, (D′′,W) has
an extensionE′′ such thatE′ ⊆ E′′ whenever(D′,W) has

an extensionE′. Now we state the result, whose proof is
simple by Theorem 5.

Theorem 12 (Semi-monotonicity) Suppose that∆ =
(D,W) is a weakly auto-compatible default theory and that
D′ is any subset of D. If∆′ = (D′,W) has an extension
E′, then ∆ has an extension E such thatE′ ⊆ E and
GD(E′,∆′) ⊆ GD(E,∆).

Proof: Clearly, from Theorem 11,∆′ is weakly auto-
compatible and thenGD(E′, ∆′) ∈ MSC(∆′). Fur-
ther there existsD′′ ⊆ D such thatD′′ ∈ MSC(∆)
and GD(E′,∆′) ⊆ D′′. Consequently,E = Th(W ∪
Cns(D′′)) is one extension of∆ and obviously,E′ ⊆ E
andGD(E′,∆′) ⊆ GD(E,∆).
For a prerequisite-free DT∆ = (D,W), the inverse
of the above theorem is also true. In fact, we pointed
out that semi-monotonicity is an essential characteriza-
tion for a prerequisite-free default theory (Mingyi 1996).
Note that weakly auto-compatibility is equivalent to auto-
compatibility for any prerequisite-free default theory. So,
we have

Theorem 13 A prerequisite-free DT is weakly auto-
compatible iff it enjoys semi-monotonicity.

As a matter of fact, it is not difficult to prove that de-
fault theory is weakly auto-compatible whenever it is semi-
monotonic.

Lemma 1 Let ∆ = (D,W) is a weakly auto-compatible
default theory. Then∆′ = (D′,W) is also weakly auto-
compatible, whereD′ ⊆ D.

Theorem 14 (Underlying Characterization of Weakly Auto-
compatibility DT) A default theory∆ is weakly auto-
compatible if and only if it is semi-monotonic.

Proof: “only if ” It is clear from Theorem 12.
“if” Suppose that∆ is not weakly auto-compatible, then

we haved = (α : β1, . . . , βn/γ) ∈ D and a strongly
compatible subsetD′ ⊆ D such thatW ∪ Cns(D′) ` α,
W ∪ Cns(D′) 6` ¬βi for anyi : 1 ≤ i ≤ n andD′ ∪ {d} is
not compatible. Notice that(D′,W) has a unique extension
E′ = Th(W ∪ Cns(D′)) and GD(E′,∆′) = D′. By
the semi-monotonicity of∆, it follows that ∆ has one
extensionE′′ such thatE′ ⊆ E′′ andD′ ⊆ GD(E′′,∆).
Clearly, d /∈ D\GD(E′′,∆) sinceD′ ∪ {d} is not com-
patible by the assumption. However, by Theorem 3, it
conflicts with the assumption thatW ∪ Cns(D′) ` α and
W ∪ Cns(D′) 6` ¬βi for anyi : 1 ≤ i ≤ n.

To check strongly compatibility of a subset ofD for a
given weakly auto-compatible DT, starting form the empty
set of defaults, we need the following lemma, whose proof is
easy from the definition of strongly compatibility and Theo-
rem 1.

Lemma 2 Suppose that∆ = (D,W) is weakly auto-
compatible. For any strongly compatibleD′ ⊆ D and any
d ∈ D, if W∪Cns(D′) ` Pre({d}) andW∪Cns(D′) 6` β
for eachβ ∈ Ccs({d}), thenD′ ∪ {d} is strongly compati-
ble.

166 Technical Report IfI-06-04

Theory of NMR and Uncertainty

The above result shows that we can construct any maximally
strongly compatible subset ofD starting from the empty set
of defaults. Together with Theorem 11, this lemma also im-
plies the algorithm to compute all of extensions for a given
finite weakly auto-compatible default theories — all of its
maximally strongly compatible defaults are enough.

Algorithm 1 Given a finite default theory∆ = (D,W)
andD′ ⊆ D, compute theΛ(D′,∆).
function LAMBDA(D,W,D′)
begin

result := ∅
repeat

new := ∅
for eachd = (α : β1, . . . , βn/γ) ∈ D′ − result do

if W ∪ Cns(result) ` Pre(d) then
new := new ∪ {d}

result := result ∪ new
until new = ∅
return(result)

end

It is obvious thatLAMBDA(D,W,D′) will correctly com-
puteΛ(D′,∆) in O(|D′|2) costs. Please note that, hereafter,
we regards̀ as one unit time cost.

Algorithm 2 Given a finite default theory∆ = (D,W),
determine whetherD′ ⊆ D is maximally strongly compati-
ble.
boolean functionisMSC(D,W,D′)
begin

for eachd = (α : β1, . . . , βn/γ) ∈ D′ do
if W ∪ Cns(D′) ` ¬βi for some1 ≤ i ≤ n then

return(false)
if LAMBDA(D,W,D′) 6= D′ then

return(false)
for eachd = (α : β1, . . . , βn/γ) ∈ D −D′ do

if W ∪ Cns(D′) ` Pre(d) and
W ∪ Cns(D′) 6` ¬βi for anyi(1 ≤ i ≤ n) then
return(false)

return(true)
end

This algorithm is to check whetherD′ is maximally strongly
compatible. And it can be implied inO(|D|2).
Algorithm 3 Given a finite WAC default theory
∆ = (D,W), compute the maximally strongly com-
patible sets of defaults.
function allMSC(D,W)
begin

result := ∅
for eachD′ ⊆ D do

if isMSC(D,W,D′) thennew := new ∪ {D′}
result := result ∪ new
return(result)

end

Undoubtedly, by Theorem 11, for a given WAC default the-
ory, we can compute all of its extensions by just find all of its

maximally strongly compatible sets of defaults. That is what
the above algorithm does. The soundness and completeness
of this algorithm are clear, and then we ignore its proof.

In order to compute one extension of a finite WAC default
theory∆ = (D,W), we just need to compute one maxi-
mally strongly compatible set of defaults. By Lemma 2, this
can be achieved by giving a well-ordering< over D and
starting from∅ as the next algorithm.

Algorithm 4 Given a finite WAC default theory∆ =
(D,W), to compute one extension for∆.
function one-extension(D,W,<)
begin

E< := Th(W); GD< := ∅
repeat
new := ∅

if there exists the leastk such that
d<

k ∈ {d<
m|m ≤ |D|} −GD<, where

Pre(d<
k) ∈ E< and¬β /∈ E< for any

β ∈ Ccs(d<
k) then

begin
new :=new∪{dk}
E< := Th(E< ∪ Cns(d<

k))
GD< := GD< ∪ {d<

k }
end

until new = ∅
return(E<)

end

Theorem 15 (Soundness and Completeness) Given a finite
WAC default theory∆ = (D,W), we have
(1) For anyD′ ∈allMSC(D,W), Th(W ∪ Cns(D′)) is an
extension of∆.
(2) For each extensionE of ∆, GD(E,∆) must be in
allMSC(D,W).

However, notice that, for FC-normal default theory, the
Forward Chaining Construction algorithm is very similar to
our algorithm and then it is also exhaustive when comes to
computing all extensions although it is quite easy to just
compute one extension. In the next section, we show that
FC-normal default theories are weakly auto-compatible, and
then this algorithm suits for FC-normal default theory with-
out a given consistency property beforehand like FC-normal
construction.

Also note that, the complexity of checking whether a de-
fault theory is WACDT is still open up to now like FC-
normal default theory. We strongly conjecture that it is same
to the complexity of computing all extensions of any de-
fault theory. So, it is interesting to find some subclasses of
WACDT, which have simpler criterion which enables us es-
timating weak auto-compatibility.

Based on Theorem 11 we can get the following nice prop-
erties of weakly auto-compatible default theories, which are
similar to that of normal default theories.

P1. Updating a weakly auto-compatible default theory
with new defaults cannot effect old belief provided the re-
sulted default theory is still weakly auto-compatible.

P2. For a given weakly auto-compatible default theory
there is a proof procedure, which is local w.r.t. the defaults

DEPARTMENT OF INFORMATICS 167

11TH NMR WORKSHOP

so that the proofs can be constructed by ignoring some of
defaults.

4 Weak Auto-Compatibility and FC-normality
In this section we establish a closed relationship between
auto-compatibility and FC-normality. By analyzing the
proofs of the main results on normal default theories, Marek
et al revealed that the proof does not rely on the particu-
lar syntactic form of the rules but rather on the fact that all
rules have a certain consistency property (Marek, Nerode, &
Remmel 1994). They extended the notion of normal default
theories and proposed so-called Forward Chaining (FC) nor-
mal default theories. They proved FC non-monotonic rule
systems (NRS) have many desirable properties of normal de-
fault theories and a number of other important properties as
well. It is worth to note that the notion and desired prop-
erties of FC-normal default theories are very similar to the
ones of (weakly) auto-compatible default theories. This lead
us to explore the relationship between these two classes of
default theories. At first we recall some notations of FC-
normality.

4.1 FC-normality
Definition 8 A non-monotonic rule of inference r is an ex-
pression of the form

α1, . . . , αm : β1, . . . , βn/γ. (2)

For such r we denote the premises of r byPre(r) =
{α1, . . . , αm}, the constraints of r byCons(r) =
{β1, . . . , βn}, and the conclusion of r byCns(r) = {γ} re-
spectively. EitherPre(r), or Ccs(r), or both may be empty.
If Pre(r) = Ccs(r) = ∅, then the rule r is called an ax-
iom. A non-monotonic formal system is a pair(U,N), where
U is a nonempty set and N is a set of non-monotonic rules
such that Pre(r), Cons(r) and Cns(r) are subset of U for all
r ∈ N . A subsetS ⊆ U is called deductively closed if for
all r ∈ N , whenever all the premises of r are in S and all the
constraints of r are not in S, then the conclusion of r belongs
to S.

Given S ⊆ U and I ⊆ U , an S-deductionof γ from
I in (U,N) is a finite sequence< γ1, . . . , γk > such that
γk = γ and for all i ≤ k, eachγi is in I, or is an axiom,
or is the conclusion of a ruler ∈ N such thatPre(r) ⊆
{γ1, . . . , γi−1} andCons(r) ⊆ U − S. An S-consequence
of I is an element ofU occurring in someS-deduction from
I. Let CS(I) be the set of allS-consequences ofI in (U,N).

We say thatS ⊆ U is ground in I if S ⊆ CS(I). We
say thatS ⊆ U is anextensionof I if CS(I) = S. T is an
extensionof Γ = (U,N) if T is an extension of∅ in (U,N).
Let NG(S, Γ) = {r ∈ N |Pre(r) ⊆ S andCons(r) ∩ S =
∅}. ThenNG(T,Γ) is the set of generating non-monotonic
rules ofT if T is an extension of(U,N).

Note that a monotonic rule system (MRS) is a special case
of NRS, where every non-monotonic rule has no constraints.
So, the above notions can be easily translated into the case
that(U,N) (usually, written(U,M)) is a MRS.

A proof scheme of r is a finite sequence,
p =<< γ0, r0, G0 >, ..., < γm, rm, Gm >> such

that
(1) If m = 0 then (a)γ0 is a conclusion of an axiomr,
r0 = r andG0 = ∅, or (b) {γ0} = Cns(r), r0 = r and
G0 = Cons(r), wherer = (: β1, . . . , βn/γ) ∈ N .
(2) If m > 0, << γ0, r0, G0 >, . . . , <
γm−1, rm−1, Gm−1 >> is a proof scheme of lengthm and
γm is a conclusion ofr, wherePre(r) ⊆ {γ0, . . . , γm−1},
rm = r andGm = Gm−1 ∪ Cons(r). The formulaγm is
called the conclusion ofp and is writtenclm(p).

For a non-monotonic rule systemΓ = (U,N), let
mon(Γ) = {r ∈ N |Cons(r) = ∅}, nmon(Γ) =
N − mon(Γ). We say a setS ⊆ U is monotonically
closedif wheneverr = α1, . . . , αm : /γ ∈ mon(Γ) and
α1, . . . , αm ∈ S, thenγ ∈ S. Given any setA ⊆ U , the
monotonic-closure of A, writtenclmon(A), is defined to be
the intersection of all monotonically closed sets containing
A.

Definition 9 Let Γ = (U,N) be a non-monotonic rule sys-
tem. We say thatCon ⊆ 2U is a consistency property overΓ
if
1. ∅ ∈ Con;
2. for all A,B ⊆ U(A ⊆ B&B ∈ Con ⇒ A ∈ Con);
3. for all A ∈ U(A ∈ Con ⇒ clmon(A) ∈ Con);
4. wheneverΩ ⊆ Con has the property thatA,B ∈ Ω ⇒
∃C ∈ Ω(A ⊆ C&B ⊆ C) then

⋃
Ω ∈ Con.

Note that the conditions 1,2 and 4 are Scott’s condi-
tions for information systems. LetΓ = (U,N), A rule
r = (α1, . . . , αm : β1, . . . , βn/γ) ∈ nmon(Γ) is FC-
normalw.r.t. a consistency propertyConoverΓ = (U,N) if
V ∪{γ} ∈ Con andV ∪{γ, βi} 6∈ Con for all i : 1 ≤ i ≤ n
wheneverV ⊆ U is such thatV ∈ Con, clmon(V) = V ,
α1, . . . , αm ∈ V , andβ1, . . . , βn, γ 6∈ V . We say thatΓ is
FC-normalw.r.t. Con if, for every r ∈ nmon(Γ), r is FC-
normal w.r.t.Con. FinallyΓ is FC-normalif it is FC-normal
w.r.t. some consistency propertyCon ⊆ 2U .

Mareket alproved that any FC-normal NRS has an exten-
sion and gave a uniform construction of extensions (Marek,
Nerode, & Remmel 1994). Assume< is a well-ordering
of nmon(Γ), which determines some listing of the rules of
nmon(Γ), {rα|α ∈ κ}, whereκ is some ordinal. LetZα be
the least cardinal such thatκ < Zα. They defined the for-
ward chaining construction (FC construction) of extensions.

Example 2 (Marek, Nerode, & Remmel 1994) LetU =
{a, b, c, d, e, f}. Consider the set of rulesN = {: /a; c :
/b; b : /c; a : d/c; c : f/e}. Then for the NRS
(U,N), subsets2{a,b,c,e} and 2{a,b,c,e} ∪ 2{a,b,c,f} of 2U

are consistency properties over(U,N). It is easy to check
that (U, N) is FC-normal w.r.t. each of these subsets re-
spectively. Clearly{a, b, c, e} is the unique extension. Let
Con be defined by the condition:A /∈ Con iff either
{c, d} ⊆ A or {e, f} ⊆ A. Obviously,Con is not a con-
sistency property since{a, b, d, e}, {a, b, d, f} ∈ Con but
we have thatclmon({a, b, d, e}) = {a, b, c, d, e} /∈ Con,
clmon({a, b, d, f}) = {a, b, c, d, f} /∈ Con.

4.2 Properties of FC-normal NRS
Now we explore some new features of FC-normal non-
monotonic rule systems. From the definitions of a consis-

168 Technical Report IfI-06-04

Theory of NMR and Uncertainty

tency property and FC-normality the following lemma is
clear.

Lemma 3 Let (U, N) be a NRS.
(1) If Con is a consistency property over (U, N), thenCon =
2U iff U ∈ Con.
(2) 2U (2clmon(∅), resp.) is the maximal (minimal, resp.)
consistency properties over (U, N), i.e.2clmon(∅) ⊆ Con ⊆
2U for any consistency Con over (U, N).
(3) Given any consistency propertiesCon1 andCon2 over
(U, N),Con1∩Con2 is also a consistency property over (U,
N). Further, if (U,N) is FC-normal w.r.t.Con1 and Con2

respectively then it is also FC-normal w.r.t.Con1 ∩ Con2.
(4) If (U,N) is FC-normal w.r.t. a consistency property Con
then there is a minimal consistency propertyCon∗ such that
Con∗ ⊆ Con and (U,N) is FC-normal w.r.t.Con∗.

Theorem 16 If Γ = (U,N) is FC-normal w.r.t. a consis-
tency property Con, thenCon∗ =

⋃
{2E | E is an extension

of Γ} ⊆ Con.

Proof: By the completeness of FC-construction, every
extensionE of Γ is of the formE< =

⋃
{E<

α |α ∈ Zα}
for a suitably chosen well-ordering< over nmon(Γ) and
E< ∈ Con. So,Con∗ ⊆ Con.

It is clear that, for a given default theory∆ = (D,W),
it is easy to translate∆ into a non-monotonic rule sys-
tem (U,N) and vice versa. That is, a default ruleα :
β1, . . . , βn/γ and an element w of W are transformed into
α : ¬β1, . . . ,¬βn/γ and: /w respectively, andU be the set
of all formulas of the underlying language. Then the notion
of forward chaining normal is applicable for default theory
in the sense thatclmon(A) = Th(W ∪ Cns(Λ(DM ,∆)) ∪
A) where A is a set of formulas of the underlying language.

Definition 10 (Marek, Nerode, & Remmel 1994) Given a
consistency property Con and a default theory∆ = (D,W),
we say that a default ruled = (α : β1, . . . , βn/γ) in
DNM is FC-normal w.r.t. Con ifT ∪ {γ} ∈ Con and
T ∪ {γ,¬βi} 6∈ Con for any i : 1 ≤ i ≤ n whenever T
is a theory such thatT ∈ Con, clmon(T) = T , α ∈ T and
¬β1, . . . ,¬βn, γ /∈ T . ∆ is FC-normal w.r.t. Con if each de-
fault in DNM is FC-normal w.r.t. Con.∆ is FC-normal if it
is FC-normal w.r.t. some consistency property over(D,W).

From Lemma 3, given an FC-normal default theory∆ =
(D,W), we asserts that there is a minimal consistency prop-
erty Con∗ such that∆ is FC-normal w.r.tCon∗. However,
to our best knowledge, neither does there exist feasible al-
gorithm to compute the minimal consistency property even
thought we know it is FC-normal, nor does there exist fea-
sible algorithm to decide whether a given default theory is
FC-normal or not. Because only from the definition of FC-
normality, there is no suggestive approach to exhaust all pos-
sible consistency properties over the given default theory.
The next corollary asserts that, for a candidate minimal con-
sistency property over a given default theory, it is not enough
to just consider its extensions.

Corollary 17 There is an FC-normal DT such thatCon∗ ⊂
Con.

Example 3 Consider the default theory∆ = ({: A/B; :
C/F ∧ G; : ¬F/¬C}, ∅), whereA, B, C, F and G are
atoms.∆ is weakly auto-compatible and has two extensions
Th({B,F,G}) andTh({B,¬C}). If ∆ is FC-normal w.r.t.
a consistency propertyCon, then{B,G,¬C} ∈ Con (In
fact, Th({B,G}) ∈ Con and¬C,F /∈ Th({B,G}). It is
immediate from the FC-normality of the default: ¬F/¬C).
Clearly, there is no any compatible subsetD′ of D such that
{B,G,¬C} ⊆ Th(Cns(D′)). By FC-normality,{T ⊆ E|
E is an extension of∆} ⊆ Con for any consistency prop-
erty Con. This example shows thatCon∗ ⊂ Con is pos-
sible, whereCon∗ = {T ⊆ E| E is an extension of
∆}. However, we can check that∆ is FC-normal w.r.t.
Con = 2Th({B,F,G})∪2Th({B,G,¬C}) though the procedure
is a bit complex.

4.3 Features of consistency property
Marek et al showed that their notion of FC-normal default
theories actually extend Reiter’s original notion of normal
default theories and got nice properties for FC-normal de-
fault theories (Marek, Nerode, & Remmel 1994), which are
similar to those of normal default theories, such as the exis-
tence of extensions, semi-normality and a proof theoryetc.
After we establish the relationship between the notions of
(weak) auto-compatibility and FC-normality, these become
clear from our results on weakly auto-compatible default
theory. To do this, we give the following results.

Theorem 18 Given a default theory (D,W), let Con be a
consistency property for (D,W).
(1) T is consistent for allT ∈ Con iff U /∈ Con iff
Con ⊂ 2U .
(2) If W is inconsistent, thenCon = 2U .
(3) If Con = 2U then any defaultd = (α : β1, . . . , βn/γ) ∈
D is not FC-normal w.r.t. Con unless¬β1 = . . .¬βn =
γ = α.

Proof: (1) It is clear.
(2) If W is inconsistent, thenTh(W) = U ∈ Con since
∅ ∈ Con. This implies thatCon = 2U

(3) If Con = 2U , then{α} ∈ Con and¬β1, . . . ,¬βn, γ /∈
{α} implies that Th(W ∪ {γ ∪ ¬βi}) /∈ Con for all
i : 1 ≤ i ≤ n, which contradictsCon = 2U .

Theorem 19 Let (D, W) be a DT, where W is consistent.
The collection of all consistent sets,{A ⊆ U | A is consis-
tent} (denoted it byCon#), is a consistency property for (D,
W). Further,Con ⊆ Con#, whenever Con is a consistency
property for (D, W) such thatCon ⊂ 2U .

Proof: It is sufficient to show thatCon# is closed under
the union of directed family (condition 4 of Definition
9). Assume thatΩ ⊆ Con# has the property that
A,B ∈ Ω ⇒ ∃C ∈ Ω(A ⊆ C&B ⊆ C). If

⋃
Ω /∈ Con# ,

then
⋃

Ω ` α∧¬α for some formulaα. By the compactness
of positional logic, there is a finite subsetΨ of

⋃
Ω such

thatΨ ` α ∧ ¬α. So, there isΦ ∈ Con# such thatΨ ⊆ Φ.
HenceΦ ` α ∧ ¬α, which implies thatΦ is inconsistent.
This contradiction shows that

⋃
Ω ∈ Con#. HenceCon#

is a consistent property for (D, W). IfCon ⊂ 2U is a

DEPARTMENT OF INFORMATICS 169

11TH NMR WORKSHOP

consistency property for (D, W), then it is consistent by (1)
of Theorem 18, which showsCon ⊆ Con#.

Example 4 (Continue of Example 3) Clearly∆ is not FC-
normal w.r.t. Con#. In fact, {¬B} ∈ Con# and
¬A,B /∈ Th({¬B}). If ∆ is FC-normal w.r.t. Con# ,
thenTh({¬B,B}) ∈ Con#, a contradiction.

In the rest of this paper, we always suppose thatCon ⊂
2U for any consistency propertyConover a DT(D, W) un-
less explicitly stated.

4.4 The Connection of FC-normality and Weakly
auto-compatibility
Given a consistency propertyCon for a default theory(D,
W), for any increasing chain{Ti} in Con,

⋃
{Ti} ∈ Con,

sinceCon is closed under the union of directed family. By
the Kuratowski-Zorn Lemma,{Con,⊆} has a maximal el-
ement. LetMCon = {T |T is a maximal element ofCon
under the set inclusion}. Now we establish one of the main
results in the paper, that is an FC-normal default theory is
weakly auto-compatible. To do this we need the following
lemmas.

Lemma 4 MCon 6= ∅ andMCon ⊆ Con. For anyT ∈
MCon, Th(W ∪ T) = T .

Lemma 5 Let ∆ = (D,W) be an FC-normal default the-
ory w.r.t. Con. For anyT ∈ MCon, let DT = {α :
β1, . . . , βn/γ ∈ D|α ∈ T,¬β1, . . . ,¬βn /∈ T}. Then
Th(W ∪Cns(DT)) ⊆ T andDT is compatible. Further, if
Th(W ∪ Cns(DT)) = T thenDT is strongly compatible.

Proof: For anyα : β1, . . . , βn/γ ∈ DT , if γ /∈ T , then
Th(T ∪ {γ}) ∈ Con by the FC-normality of (D,W). So,
γ ∈ T by maximality ofT. This impliesCns(DT) ⊆ T and
Th(W ∪ Cns(DT)) ⊆ T . Compatibility ofDT is obvious
from Th(W ∪Cns(DT)) ⊆ T . If Th(W ∪Cns(DT)) = T
then it is easy to prove thatΛ(DT ,∆) = DT by Definition
4.

Lemma 6 Let ∆ = (D,W) be an FC-normal default the-
ory w.r.t. Con. For anyD′ ⊆ D, if D′ is strongly compati-
ble, thenW ∪ Cns(D′) ∈ Con.

Proof: By the strongly compatibility ofD′ we have that
Λ(D′,∆) = D′ andD′ is compatible. SoD′

η(∆) is com-
patible for anyη ∈ µ, whereΛ(D′,∆) =

⋃
η∈µ D′

η(∆) and
µ is the ordinal of D. By (transfinite) induction we show that
W ∪ Cns(D′

η(∆)) ∈ Con.
BASE: Consider the caseη = 0. SupposeD′

0(∆) =
{dκ|κ ∈ σ}, whereσ is the ordinal ofD′

0(∆). Now we
inductively proveW ∪ Cns({dκ|κ ∈ ρ}) ∈ Con for any
ρ ∈ σ.

Sub-base.ρ = 0. Since∅ ∈ Con, thenTh(W) ∈ Con
sinceclmon(∅) = Th(W ∪ Λ(DM ,∆) ∪ ∅) ∈ Con. By
Definition 4, Pre(D′

0(∆)) ⊆ Th(W). For d0 = α :
β1, . . . , βn/γ ∈ D′

0(∆), we have thatα ∈ Th(W) and
¬β1, . . . ,¬βn /∈ Th(W) sinceD′ is compatible. Ifγ ∈
Th(W) thenW ∪ {γ} ∈ Con sinceW ∪ {γ} ⊆ Th(W).

Otherwise, by the FC-normality of (D,W) we have that
W ∪ {γ} ∈ Con and W ∪ {γ,¬β} /∈ Con for any
β ∈ Ccs(d0). This shows thatW ∪ Cns({d0}) ∈ Con.

Sub-step. ρ ∈ σ is a successor ordinal. Assume that
W ∪ Cns({dκ|κ ∈ ρ − 1}) ∈ Con and dρ = (α :
β1, . . . , βn/γ). Clearly,α ∈ Th(W∪Cns({dκ|κ ∈ ρ−1}))
and ¬β1, . . . ,¬βn /∈ Th(W ∪ Cns({dκ|κ ∈ ρ − 1}))
sincePre(D′

0(∆)) ⊆ Th(W) and D′ is compatible. If
γ ∈ Th(W∪Cns({dκ|κ ∈ ρ−1})) thenW∪Cns({dκ|κ ∈
ρ − 1}) ∪ {γ} ∈ Con. Otherwise, by the FC-normality of
(D,W) we have thatW ∪Cns({dκ|κ ∈ ρ−1})∪{γ} ∈ Con
andW ∪ {γ,¬β} /∈ Con for anyβ ∈ Ccs(dρ).

ρ is a limit ordinal. ThenW ∪ Cns({dκ|κ ∈ ρ}) =⋃
λ∈ρ{W ∪ Cns({dκ|κ ∈ λ})} and W ∪ Cns({dκ|κ ∈

λ}) ∈ Con for anyλ ∈ ρ. So,W ∪ Cns({dκ|κ ∈ λ}) ∈
Con by the consistency propertyConthatCon is closed un-
der the union of directed family.

STEP: It is similar to that in BASE.
Finally, note thatD′ = Λ(D′,∆) =

⋃
η∈µ D′

η(∆)
and D′

η(∆) ⊆ D′
η+1(∆) for any η ∈ µ. We have that

W ∪ Cns(D′) ∈ Con since Con is closed under the union
of a directed family of Con.
The following lemma shows that an extension of an FC-
normal default theory∆ = (D,W) can be gotten by en-
larging a strongly compatible subsetD′ of D.

Lemma 7 Let ∆ = (D,W) be an FC-normal default the-
ory. For any strongly compatible subsetD′ of D, there is an
extension E of∆ such thatD′ ⊆ GD(E,∆).

Proof: Let ρ be the ordinal type ofD. We fix some well-
order<, which determines some listing of the elements of
D, {dρ|ρ ∈ σ}, such that{dρ|ρ ∈ Ψ} is a listing of the
elements ofD′, whereΨ ∈ σ. By the FC-construction,
we get an extensionE< of ∆ such thatE<

Ψ ⊆ E<, where
E<

Ψ = Th(W ∪Cns(D′)), sinceD′ is strongly compatible.
Hence,D′ ⊆ GD(E<,∆).

It is easy to see that Lemma 4 is a corollary of the above
lemma sinceW ∪ Cns(GD(E,∆)) ∈ Con, that is we
get another proof of Lemma 4. The following theorem
shows that each extension of an FC-normal default theory
∆ = (D,W) is just generated by a maximally strongly com-
patible subsetD′ of D.

Theorem 20 Let ∆ = (D,W) be an FC-normal default
theory. E is an extension of∆ iff there is a maximally
strongly compatible subsetD′ of D such thatE = Th(W ∪
Cns(D′)).

Proof: “Only If” It is clear sinceGD(E,∆) is maximally
strongly compatible by Theorem 3.
“If” From Lemma 5, we getD′ ⊆ GD(E,∆), whereE is
an extension of∆. SinceGD(E,∆) is strongly compati-
ble, thenD′ = GD(E,∆) by the maximality ofD′. So,
E = Th(W ∪ Cns(D′)).
From the semi-monotonicity of FC-normal default theory
(Marek, Nerode, & Remmel 1994) and the essential char-
acterization of weakly auto-compatible default theory (The-
orem 14), we have the following important conclusion:

170 Technical Report IfI-06-04

Theory of NMR and Uncertainty

Theorem 21 If ∆ = (D,W) is an FC-normal default the-
ory then it is weakly auto-compatible.

However, we find a default theory∆ which is weakly
auto-compatible but not FC-normal.

Example 5 Consider the default theory∆ = (D,W),
whereD = {d1 =: ¬B/A; d2 = A : /C; d3 = C :
¬A/B; d4 = B ∧ C : /A} andW = ∅. Note that, the
strongly compatible sets of defaults areS1 = ∅, S2 = {d1}
andS3 = {d1, d2}. It is easy to see that every defaultd ∈ D
is weakly auto-compatible∆ and it has a unique extension
E = Th({A,C}). As a matter of fact, it is not FC-normal.
Otherwise, if it is FC-normal w.r.t. a consistencyCon then
we have
clmon(∅) = Th(∅) ∈ Con (since∅ ∈ Con)
⇒ {A} ∪ Th(∅) ∈ Con (sinceclmon(Th(∅)) = Th(∅),
d1 ∈ DNM , Pre(d1) ⊆ Th(∅), B /∈ Th(∅) and A /∈
Th(∅))
⇒ clmon({A} ∪ Th(∅)) = Th({A ∪ C}) ∈ Con
⇒ Th({C}) ∈ Con (sinceTh({C}) ⊆ Th({A,C}))
⇒ {B} ∪ Th({C}) ∈ Con (since clmon(Th({C})) =
Th({C}), d3 ∈ DNM , Pre(d3) ⊆ Th({C}), A /∈
Th({C}) andB /∈ Th({C}))
⇒ {A,B} ∪ Th({C}) /∈ Con.
And note thatclmon({B}∪Th({C})) = Th({A,B, C}) ∈
Con and then{A,B} ∪ Th({C}) ∈ Con since{A,B} ∪
Th({C}) ⊆ Th({A,B,C}). It is a paradox.

This example together with Theorem 21 implies that
weakly auto-compatible default theory properly contains
FC-normal default theories. Consequently, we bridge the
two classes of FC-normal default theories and weakly auto-
compatible default theories.

As we pointed out, all extensions of a weakly auto-
compatible default theory are just generated by maximally
strongly compatible subsets ofD and vice versa. The set
of generating defaults of any such extension can be gotten,
starting from the empty set, by the facts that ifΛ(D′,∆) =
D′ then for anyd ∈ D, Λ(D′ ∪ {d},∆) = D′ ∪ {d} if
W ∪ Cns(D′) ` Pre({d}). This is just FC-construction.

As for the application to logic programs and truth mainte-
nance systems, it is not difficult by the connection between
default logic and them. We will detail this in the future.

5 Conclusion and future work
In the paper, we present a properly larger subclass of default
theory than the class of FC-normal default theory which
we called weakly auto-compatible default theory. Both of
them enjoy many desirable properties of normal default the-
ory. Different from FC-normal default theory, weakly auto-
compatible theory just depends on the default theory itself
without a given consistency property over the default the-
ory. And then it easier to be check than FC-normal default
theory. We also present a sound and complete algorithm to
compute all of its extension of weakly auto-compatible de-
fault theory. Although, to our best knowledge, both of their
complexities are still open up to now. It is worthy of explor-
ing.

Linke and Schaub presented a new approach to reason
with default logic (default reasoning via blocking sets) by

shifting the emphasis from application of individual defaults
to that of the joint application of a default rule together with
the rules supporting this application (Linke & Schaub 2000).
Their compromising approach allows for reasoning (compo-
sitional) incremental construction and ensuring the existence
of extensions without semi-monotonicity . In the following
paper, we will explore the relationship between Linke and
Schaub’ s approach and our characterization.

References
Brewka, G., and Gottlob, G. 1997. Well-founded semantics
for default logic.Fundam. Inform.31(3/4):221–236.
Brewka, G. 1991. Cumulative default logic: In defense of
nonmonotonic inference rules.Artif. Intell. 50(2):183–205.
Delgrande, J. P.; Schaub, T.; and Jackson, W. K. 1994.
Alternative approaches to default logic.Artif. Intell. 70(1-
2):167–237.
Giordano, L., and Martelli, A. 1994. On cumulative default
logics. Artif. Intell. 66(1):161–179.
Linke, T., and Schaub, T. 2000. Alternative foundations
for reiter’s default logic.Artif. Intell. 124(1):31–86.
Lukaszewicz, W. 1985. Two results on default logic. In
IJCAI, 459–461.
Lukaszewicz, W. 1988. Considerations on default logic: an
alternative approach.Computational Intelligence4:1–16.
Makinson, D. 2005.Bridge from Classical to Nonmono-
tonic Logic. King’s College.
Marek, V. W., and Truszczynski, M. 1993.Non-monotonic
logic: context-dependent reasoning. Springer.
Marek, V.; Nerode, A.; and Remmel, J. 1994. A context for
belief revision: forward chaining-normal nonmonotonic
rules systems.Annals of Pure and Applied Logic67:259–
323.
Mikitiuk, A., and Truszczynski, M. 1993. Rational default
logic and disjunctive logic programming. InLPNMR, 283–
299.
Mingyi, Z. 1992. A characterization of extension of gen-
eral default theories. Inproceeding of 9th Canadian Con-
ference on Artificial Intelligence, 134–139.
Mingyi, Z. 1993. On extension of general default theories.
Sci China Ser. A,16(10):1273–1280.
Mingyi, Z. 1994. Some results on default logic.J. Comput.
Sci. Technol.9(3):267–274.
Mingyi, Z. 1996. A new research into default logic.Inf.
Comput.129(2):73–85.
Przymusinska, H., and Przymusinski, T. C. 1994. Station-
ary default extensions.Fundam. Inform.21(1/2):67–87.
Reiter, R., and Criscuolo, G. 1981. On interacting de-
faults. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence, 270–276.
Reiter, R. 1980. A logic for default reasoning.Artificial
Intelligence13:81–132.

DEPARTMENT OF INFORMATICS 171

11TH NMR WORKSHOP

172 Technical Report IfI-06-04

Theory of NMR and Uncertainty

2.7 Incomplete knowledge in hybrid probabilistic logic programs

Incomplete Knowledge in Hybrid Probabilistic Logic Programs

Emad Saad
College of Computer Science and Information Technology

Abu Dhabi University
Abu Dhabi, UAE

emad.saad@adu.ac.ae

Abstract

Although negative conclusions are presented implicitly in
Normal Hybrid Probabilistic Programs (NHPP) (Saad & Pon-
telli 2005a) through the closed world assumption, represent-
ing and reasoning with explicit negation is needed in NHPP
to allow the ability to reasoning with incomplete knowledge.
In this paper we extend the language of NHPP to explicitly
encode classical negation in addition to non-monotonic nega-
tion. The semantics of the extended language is based on the
answer set semantics of traditional logic programming (Gel-
fond & Lifschitz 1991). We show that the proposed semantics
is a natural extension to the answer set semantics of tradi-
tional logic programming (Gelfond & Lifschitz 1991). In ad-
dition, the proposed semantics is reduced to the stable prob-
abilistic model semantics of NHPP (Saad & Pontelli 2005a).
The importance of that is computational methods developed
for NHPP can be applied to the proposed language. Further-
more, we show that some commonsense probabilistic knowl-
edge can be easily represented in the proposed language.

Introduction
Hybrid Probabilistic Programs (HPP) in (Saad & Pontelli
2005b) is a probabilistic logic programming framework
that modifies the original Hybrid Probabilistic Program-
ming framework of (Dekhtyar & Subrahmanian 2000). HPP
(Saad & Pontelli 2005b) enables the user to explicitly en-
code his/her knowledge about the type of dependencies ex-
isting between the probabilistic events being described by
the programs. In addition, it allows the ability to encode the
user’s knowledge about how to combine the probabilities of
the same event derived from different rules. Moreover, it
subsumes Lakshmanan and Sadri’s (Lakshmanan & Sadri
2001) probabilistic implication-based framework as well as
it is a natural extension of traditional logic programming.
As a step towards enhancing its reasoning capabilities, HPP
(Saad & Pontelli 2005b) was extended to cope with non-
monotonic negation (Saad & Pontelli 2005a) by introduc-
ing the notion of Normal Hybrid Probabilistic Programs
(NHPP) and providing two different semantics namely; sta-
ble probabilistic model semantics and well-founded prob-
abilistic model semantics. It was shown in (Saad & Pon-
telli 2005a) that the relationship between the stable prob-
abilistic model semantics and the well-founded probabilis-
tic model semantics preserves the relationship between the
stable model semantics and the well-founded semantics for

normal logic programs (Gelder, Ross, & Schlipf 1991).
More importantly, the stable probabilistic models semantics
and the well-founded probabilistic semantics naturally ex-
tend the stable model semantics (Gelfond & Lifschitz 1988)
and the well-founded semantics (Gelder, Ross, & Schlipf
1991) of normal logic programs.

An important limitation of the language of NHPP (Saad &
Pontelli 2005a) compared to traditional logic programming
(Gelfond & Lifschitz 1991) is its inability to represent and
reason directly in the presence of classical negation to cope
with incomplete knowledge. This is because HPP (Saad &
Pontelli 2005b) and NHPP (Saad & Pontelli 2005a) allow
closed world assumption in defining their semantics. There-
fore, for any event represented by a program in either HPP or
NHPP there is an associated probability interval (probability
interval represents the bounds on the degree of belief a ra-
tional agent has about the truth of an event.) Any event that
cannot be derived from a program is assigned the probability
[0, 0], by default. But, an event that can be derived from the
program is assigned a probability [a, b] 6= [0, 0]. However,
a third possibility, which is unknown or undecidable, is pos-
sible which represents information incompleteness. This is
because assuming that non-derivable events have the proba-
bility interval [0, 0] could lead to serious implications.

Consider a medical doctor who treats his/her patient from
a certain disease (di) by taking specific medication (med)
for that disease. The doctor knows that if the patient took
this medication he will be recovered. But the doctor also
knows that the patient is suffering from a heart disease and
taking that medication could affect the function of his heart
and lead to death, although the medication is very effective.
Therefore, the doctor can give the medication to the patient
with probability [0.87, 0.95] if there are no side effects of the
medication on the heart with probability [0.85, 0.85]. This
situation can be represented as an NHPP program as follow:
give(di,med) : [0.87, 0.95]← not(eff(med, hrt) : [0.15, 0.15]).

If our knowledge regarding the side effects of the medica-
tion on the heart is incomplete because they might have not
been yet clinically proven, then the medication should not
be given to this specific patient, otherwise, he would proba-
bly die. The current semantics of NHPP allows us to assume
that probability interval of the side effects of the medication
on the heart is [0, 0], which is strictly less than [0.15, 0.15],
and hence, medication is given to the patient, although, the
program has no enough knowledge to assume the contrary.

DEPARTMENT OF INFORMATICS 173

11TH NMR WORKSHOP

We propose to overcome this limitation by extending the
language of NHPP to explicitly allow classical negation as
well as non-monotonic negation not, by introducing the no-
tion of Extended Hybrid Probabilistic Programs (EHPP).
The semantics of EHPP is based on the answer set seman-
tics of traditional logic programming (Gelfond & Lifschitz
1991) and employs the Open World Assumption. We show
that some commonsense probabilistic knowledge can be eas-
ily represented in the proposed language. We present that the
proposed semantics is a natural extension to the answer set
semantics (Gelfond & Lifschitz 1991). Moreover, we show
that the proposed semantics is reduced to stable probabilis-
tic model semantics of NHPP (Saad & Pontelli 2005a). The
importance of that is computational methods developed for
NHPP can be applied to the language of EHPP.

Syntax

In the following two subsections we review the basic notions
associated with EHPP (Dekhtyar & Subrahmanian 2000;
Saad & Pontelli 2005a). Let C[0, 1] denotes the set of
all closed intervals in [0, 1]. In the context of EHPP,
probabilities are assigned to primitive events (atoms) and
compound events (conjunctions or disjunctions of atoms)
as intervals in C[0, 1]. Let [α1, β1], [α2, β2] ∈ C[0, 1].
Then the truth order asserts that [α1, β1] ≤t [α2, β2]
iff α1 ≤ α2 and β1 ≤ β2. The set C[0, 1] and the
relation ≤t form a complete lattice. In particular, the
join (⊕t) operation is defined as [α1, β1] ⊕t [α2, β2] =
[max{α1, α2}, max{β1, β2}] and the meet (⊗t) is defined
as [α1, β1]⊗t [α2, β2] = [min{α1, α2}, min{β1, β2}] w.r.t.
≤t. The type of dependency among the primitive events
within a compound event is described by probabilistic
strategies, which are explicitly selected by the user. We
call ρ, a pair of functions 〈c, md〉, a probabilistic strategy
(p-strategy), where c : C[0, 1] × C[0, 1] → C[0, 1], the
probabilistic composition function, which is commutative,
associative, monotonic w.r.t. ≤t, and meets the follow-
ing separation criteria: there are two functions c1, c2

such that c([α1, β1], [α2, β2]) = [c1(α1, α2), c2(β1, β2)].
Whereas, md : C[0, 1] → C[0, 1] is the maximal interval
function. The maximal interval function md of a certain
p-strategy returns an estimate of the probability range
of a primitive event, e, from the probability range of a
compound event that contains e. The composition function
c returns the probability range of a conjunction (disjunction)
of two events given the ranges of its constituents. For
convenience, given a multiset of probability intervals
M = {{[α1, β1], . . . , [αn, βn]}}, we use cM to denote
c([α1, β1], c([α2, β2], . . . , c([αn−1, βn−1], [αn, βn])) . . .).
According to the type of combination among events,
p-strategies are classified into conjunctive p-strategies
and disjunctive p-strategies. Conjunctive (dis-
junctive) p-strategies are employed to compose
events belonging to a conjunctive (disjunctive) for-
mula (please see (Dekhtyar & Subrahmanian 2000;
Saad & Pontelli 2005b) for the formal definitions).

Language Syntax
In this subsection, we describe the syntax of EHPP. Let L be
an arbitrary first-order language with finitely many predicate
symbols, constants, and infinitely many variables. Function
symbols are disallowed. In addition, let S = Sconj∪Sdisj

be an arbitrary set of p-strategies, where Sconj (Sdisj) is the
set of all conjunctive (disjunctive) p-strategies in S. The
Herbrand base of L is denoted by BL. A literal is either
an atom a or the negation of an atom ¬a, where ¬ is the
classical negation. We denote the set of all literals in L by
Lit. More formally, Lit = {a|a ∈ BL} ∪ {¬a|a ∈ BL}.
An annotation denotes a probability interval and it is repre-
sented by [α1, α2], where α1, α2 are called annotation items.
An annotation item is either a constant in [0, 1], a variable
(annotation variable) ranging over [0, 1], or f(α1, . . . , αn)
(called annotation function) where f is a representation of
a total function f : ([0, 1])n → [0, 1] and α1, . . . , αn are
annotation items. The building blocks of the language of
EHPP are hybrid basic formulae. Let us consider a set of lit-
erals l1, . . . , ln, a conjunctive p-strategy ρ, and a disjunctive
p-strategy ρ′. Then l1 ∧ρ . . . ∧ρ ln and l1 ∨ρ′ . . . ∨ρ′ ln are
called hybrid basic formulae. A hybrid literal is a hybrid ba-
sic formula l1∧ρ . . .∧ρ ln(l1∨ρ′ . . .∨ρ′ ln) or the negation of
hybrid basic formula ¬(l1∧ρ . . .∧ρ ln)(¬(l1∨ρ′ . . .∨ρ′ ln)).
bfS(Lit) is the set of all ground hybrid literals formed using
distinct literals from Lit and p-strategies from S. Note that
any hybrid basic formula F can be represented in terms of
another hybrid basic formula G such that F = ¬G, since
¬¬a = a, (a1 ∧ρ a2) = ¬(¬a1 ∨ρ ¬a2) and (a1 ∨ρ′ a2) =
¬(¬a1∧ρ′ ¬a2) and ∧ρ,∨ρ,∨ρ′ , and ∧ρ′ are associative and
commutative. An annotated hybrid basic formula is an ex-
pression of the form F : µ where F is a hybrid basic formula
and µ is an annotation. An annotated hybrid literal is an an-
notated positive hybrid basic formula F : µ or an annotated
negative hybrid basic formula (¬F) : µ.

Definition 1 (E-rules) An extended hybrid probabilistic
rule (E-rule) is an expression of the form

l : µ← L1 : µ1, . . . , Lm : µm,
not (Lm+1 : µm+1), . . . , not (Ln : µn)

where l is a literal, Li (1 ≤ i ≤ n) are hybrid literals, and
µ, µi (1 ≤ i ≤ n) are annotations.

The intuitive meaning of an E-rule is that, if for each Li : µi

(1 ≤ i ≤ m), Li is true with probability interval at least µi

and for each not (Lj : µj) (m+1 ≤ j ≤ n), it is not known
that Lj is true with probability interval at least µj , then l is
true with probability interval at least µ.

Definition 2 (E-programs) An extended hybrid probabilis-
tic program over S (E-program) is a pair P = 〈R, τ〉, where
R is a finite set of E-rules with p-strategies from S, and τ is
a mapping τ : Lit→ Sdisj .

The mapping τ in the above definition associates to each lit-
eral l a disjunctive p-strategy that will be employed to com-
bine the probability intervals obtained from different E-rules
having l in their heads. An E-program is ground if no vari-
ables appear in any of its rules.

174 Technical Report IfI-06-04

Theory of NMR and Uncertainty

Satisfaction and Models
In this section, we define the declarative semantics of EHPP.
We define the notions of interpretations, models, and satis-
faction of E-programs. The notion of a probabilistic model
(p-model) is based on hybrid formula function.

Definition 3 A hybrid formula function is a mapping h :
bfS(Lit)→ C[0, 1] that satisfies the following conditions:
• Commutativity: h(L1 ∗ρ L2) = h(L2 ∗ρ L1),
∗ ∈ {∧,∨}, ρ ∈ S

• Composition: cρ(h(L1), h(L2)) ≤t h(L1 ∗ρ L2),
∗ ∈ {∧,∨}, ρ ∈ S

• Decomposition. For any hybrid basic formula L, ρ ∈ S,
and M ∈ bfS(Lit): mdρ(h(L ∗ρ M)) ≤t h(L).

If the probability of an event e is pr(e), then the probability
of ¬e is pr(¬e) = 1 − pr(e). This can be generalized to
probability intervals as follows. Given pr(e) = [α1, α2] is
the probability interval of an event e then the probability in-
terval of the event ¬e is given by pr(¬e) = [1, 1]− pr(e) =
[1− α2, 1− α1]. Note that Definition 3 does not restrict the
assignment of probability intervals to formulae in hybrid for-
mula functions. However, since we allow both an event and
its negation to be defined in hybrid formula functions, more
conditions need to be imposed on hybrid formula functions
to ensure their consistency. This can be characterized by the
following definition.

Definition 4 A total (partial) hybrid formula function h is
inconsistent if there exists F,¬F ∈ bfS(Lit) (F,¬F ∈
dom(h)) such that h(¬F) 6= [1, 1]− h(F).

Definition 4 states that a hybrid formula function h is con-
sistent if for any F,¬F ∈ dom(h) we have h(¬F) =
[1, 1]− h(F).

Definition 5 We say a set C, a subset of Lit, is a set of con-
sistent literals if there is no pair of complementary literals
a and ¬a belonging to C. Similarly, a consistent set of hy-
brid literals C∗ is a subset of bfS(Lit) such that there is no
pair of complementary hybrid literals F and ¬F belonging
to C∗.

Definition 6 A consistent hybrid formula function h is ei-
ther not inconsistent or maps a consistent set of hybrid liter-
als C∗ to C[0, 1].

A consistent hybrid formula function is a partial or to-
tal hybrid formula function. Furthermore, given a consis-
tent partial hybrid formula function h, complementing h
with ∀ F ∈ dom(h), h(¬F) = [1, 1] − h(F) and with
∀ ¬G ∈ dom(h), h(G) = [1, 1] − h(¬G), still keeps h a
consistent partial (or become total) hybrid formula function.
We denote complementing h by compl(h). For a consis-
tent partial hybrid formula function h, we use compl(L),
for some L ∈ dom(h), to denote defining ¬L in h by
h(¬L) = [1, 1]−h(L). The notion of truth order can be em-
ployed to hybrid formula functions (partial or total). Given
hybrid formula functions h1 and h2, we say

(h1 ≤o h2) =⇒ (dom(h1) ⊆ dom(h2) and
∀L ∈ dom(h1) h1(L) ≤t h2(L)).

The set of all hybrid formula functions, HFF , and the order
≤o form a complete lattice. The meet ⊗o and the join ⊕o

operations are defined respectively as follows.

Definition 7 Let h1 and h2 be two hybrid formula functions.
The meet ⊗o and join ⊕o operations corresponding to the
partial order ≤o are defined respectively as:
• (h1 ⊗o h2)(F) = h1(F)⊗t h2(F)
∀F ∈ (dom(h1) ∩ dom(h2)), otherwise, undefined.
• (h1 ⊕o h2)(F) = h1(F)⊕t h2(F)
∀F ∈ (dom(h1) ∩ dom(h2)),
(h1 ⊕o h2)(F) = h1(F)
∀F ∈ (dom(h1) \ dom(h2)), and
(h1 ⊕o h2)(F) = h2(F)
∀F ∈ (dom(h2) \ dom(h1)), otherwise, undefined.

Definition 8 A probabilistic interpretation (p-
interpretation) of an E-program P is a (partial or
total) hybrid formula function.

The satisfiability of an E-program is based on the satisfac-
tion of its E-rules.

Definition 9 (Probabilistic Satisfaction) Let P = 〈R, τ〉
be a ground E-program, h be a p-interpretation, and

r ≡ l : µ← L1 : µ1, . . . , Lm : µm,
not (Lm+1 : µm+1), . . . , not (Ln : µn).

Then
• h satisfies Li : µi (denoted by h |= Li : µi) iff
Li ∈ dom(h) and µi ≤t h(Li).
• h satisfies not (Lj : µj) (denoted by h |= not (Lj : µj))

iff Lj ∈ dom(h) and µj �t h(Lj) or Lj /∈ dom(h).
• h satisfies

Body ≡ L1 : µ1, . . . , Lm : µm,
not (Lm+1 : µm+1), . . . , not (Ln : µn)

(denoted by h |= Body) iff ∀(1 ≤ i ≤ m), h |= Li : µi

and ∀(m + 1 ≤ j ≤ n), h |= not (Lj : µj).
• h satisfies l : µ ← Body iff h |= l : µ or h does not

satisfy Body.
• h satisfies P iff h satisfies every E-rule in R and for every

literal l ∈ dom(h),
cτ(l){{µ|l : µ← Body ∈ R and h |= Body}} ≤t h(l).

Definition 10 (Models) Let P be an E-program. A proba-
bilistic model (p-model) of P is a p-interpretation h of P
that satisfies P .

We say that h is a minimal p-model of P if there is no p-
model h′ of P such that h′ <o h. An E-program with-
out non-monotonic negation is simpler and has exactly one
minimal p-model. The following results allow us to char-
acterize the minimal (least) p-model (we call this least p-
model probabilistic answer set) of an E-program without
non-monotonic negation.

Proposition 1 Let P = 〈R, τ〉 be a ground E-program
without non-monotonic negation, i.e. n = m for each E-rule
r ∈ R, and h1, h2 be two p-models of P . Then h1 ⊗o h2 is
also a p-model of P .

DEPARTMENT OF INFORMATICS 175

11TH NMR WORKSHOP

Corollary 1 Let P be a ground E-program without non-
monotonic negation and let HP be the set of all p-models
of P . Then, hP = ⊗o{h|h ∈ HP } is the probabilistic an-
swer set of P .

However, it is possible to get the probabilistic answer set of
an E-program P without non-monotonic negation and this
probabilistic answer set is inconsistent. If this is the case,
we say P is inconsistent. In other words, P is inconsistent
if it has inconsistent probabilistic answer set. When P is
inconsistent, LIT , where LIT : bfS(Lit) → [1, 1], is the
probabilistic answer set of P . In this case every hybrid literal
with probability interval [1, 1] follows from P . We adopt
this view from the answer set semantics of traditional logic
programming (Gelfond & Lifschitz 1991).

Example 1 Consider the following E-program P = 〈R, τ〉
without non-monotonic negation, where R is

c : [0.35, 0.91] ← a : [0, 0.11], b : [0.8, 0.99]
¬c : [0, 0.21] ← a : [0.1, 0.13],¬b : [0.05, 0.08]
d : [0.12, 0.18] ← c : [0.35, 0.65]
¬d : [0.45, 0.55] ← a : [0, 0.15],¬b : [0.02, 0.22],

¬c : [0, 0.1]
¬b : [0.15, 0.3] ←
a : [0.1, 0.2] ←

and τ is any arbitrary assignment of disjunctive p-strategies.
It is easy to verify that P has (unique) probabilistic answer
set h where h(a) = [0.1, 0.2], h(¬b) = [0.15, 0.3], h(¬c) =
[0, 0.21], h(¬d) = [0.45, 0.55].

Now, suppose P is an E-program without non-monotonic
negation and h is a probabilistic answer set for P . Then, if
we complement h, denoted by compl(h), do we still have
h as a probabilistic answer set for P ? The answer to this
question is no in general. Since after compl(h), it is possible
to have h as a p-model for P but not a probabilistic answer
set or even not a p-model at all. We show this by following
example.

Example 2 Consider the following E-program P = 〈R, τ〉
where R is

b : [0.6, 0.7] ← ¬a : [0.7, 0.8]
a : [0.5, 0.6] ← b : [0.55, 0.7]
a : [0.2, 0.3] ←
b : [0.4, 0.5] ←

and τ(a) = τ(b) = pcd and τ(¬b) = τ(¬a) = π
where π is any arbitrary disjunctive p-strategy. pcd denotes
the disjunctive positive correlation p-strategy whose com-
position function is defined as: cpcd([α1, β1], [α2, β2]) =
[max(α1, α2), max(β1, β2)]. We can easily see that h1

is the probabilistic answer set of P where h1(a) =
[0.2, 0.3], h1(b) = [0.4, 0.5]. Now, let us compl(h1) and
see if the new h1 is a probabilistic answer set of P . After
compl(h1) we get a new h1 as h1(a) = [0.2, 0.3], h1(b) =
[0.4, 0.5], h1(¬a) = [0.7, 0.8], h1(¬b) = [0.5, 0.6], which
is a consistent p-interpretation but it is not a p-model of P ,
and hence, it is not a probabilistic answer set of P . Note that
after comp(h1), if we remove h1(¬a) from the definition of
h1, we get h1(a) = [0.2, 0.3], h1(b) = [0.4, 0.5], h1(¬b) =

[0.5, 0.6], which is a p-model of P but it is not a probabilis-
tic answer set. However, it can be a probabilistic answer set
of P except that the condition cτ(¬b){{µ|¬b : µ ← Body ∈
R and h1 |= Body}} ≤t h1(¬b) does not apply, because
there is no E-rule in P with ¬b appearing in its head. I.e.,
there are no E-rules in P that support the probability in-
terval assigned to ¬b. The only support to the probability
interval of ¬b is h1(¬b) = [1, 1]− h1(b). This can be done
for any hybrid literal L defined in the probabilistic answer
set h of an E-program P without non-monotonic negation,
if the program P as a whole provides no means to derive
more information about the probability of L. This means
that, given P , our knowledge about the probability of L is
complete, and hence, we can assert that the probability of
¬L is h(¬L) = [1, 1] − h(L). In fact, we cannot assign
any [α1, α2] to ¬b in h1 such that h1(¬b) = [α1, α2] <t

[0.5, 0.6] or [0.5, 0.6] <t [α1, α2] = h1(¬b). This is be-
cause of the inconsistency condition, otherwise, the proba-
bilistic answer set of P is LIT .

Definition 11 Let P be an E-program without non-
monotonic negation and h be the probabilistic answer set
of P (different from LIT). The final probabilistic answer
set of P is the probabilistic answer set h after compl(L)
w.r.t. h for some L ∈ dom(h) such that the program P as a
whole provides no means to derive more information about
the probability of L assigned by the original h.

Example 3 Consider the following E-program P = 〈R, τ〉
where R is

b : [0.3, 0.4] ← ¬a : [0.7, 0.8]
a : [0.1, 0.22] ← b : [0.55, 0.7]
a : [0.2, 0.3] ←
b : [0.4, 0.5] ←

and τ(a) = τ(b) = pcd and τ(¬b) = τ(¬a) = π
where π is any arbitrary disjunctive p-strategy. Then h
where h(a) = [0.2, 0.3] h(b) = [0.4, 0.5] h(¬a) =
[0.7, 0.8] h(¬b) = [0.5, 0.6] is the final probabilistic an-
swer set of P . Since, h(a) = [0.2, 0.3], h(b) = [0.4, 0.5] is
the probabilistic answer set of P and the program P as a
whole does not allow us to derive more information about
the probability assigned to a and b by h.

In the rest of paper, we will consider probabilistic answer
sets not the final probabilistic answer sets.

Proposition 2 Every E-program P without non-monotonic
negation has unique probabilistic answer set hP .

Associated with each E-program P without non-monotonic
negation, is an operator, TP , called the fixpoint operator,
which maps a p-interpretation to a p-interpretation.

Definition 12 Let P = 〈R, τ〉 be a ground E-program with-
out non-monotonic negation, h be a p-interpretation, and
HFF be the set of all hybrid formula functions. The fix-
point operator TP is a mapping TP : HFF → HFF which
is defined as follows:

1. if l is a literal, TP (h)(l) = cτ(l) Ml where
Ml = {{µ|l : µ← Body ∈ R such that h |= Body}}.

2. TP (h)(L1 ∧ρ L2) = cρ(TP (h)(L1), TP (h)(L2)) where
(L1 ∧ρ L2) ∈ bfS(Lit) and L1, L2,∈ dom(TP (h))

176 Technical Report IfI-06-04

Theory of NMR and Uncertainty

3. TP (h)(L1 ∨ρ′ L2) = cρ′(TP (h)(L1), TP (h)(L2)) where
(L1 ∨ρ′ L2) ∈ bfS(Lit) and L1, L2,∈ dom(TP (h)).

If Ml is empty—i.e., there are no E-rules in P whose heads
contain l such that their bodies are satisfied by h—then no
probability interval is assigned to l. This means the proba-
bility interval of l is unknown with respect to h. Let us now
proceed in the construction of the probabilistic answer set as
repeated iteration of the fixpoint operator TP .

Definition 13 Let P be a ground E-program without non-
monotonic negation. Then
• TP ↑ 0 = ∅ where ∅ is the empty set.
• TP ↑ α = TP (TP ↑ (α − 1)) where α is a successor
ordinal.
• TP ↑ λ = ⊕o{TP ↑ α|α < λ} where λ is a limit
ordinal.

Lemma 1 The TP operator is monotonic.

The properties of the TP operator guarantee the existence of
a least fixpoint and its correspondence to the probabilistic
answer set of E-programs without non-monotonic negation.

Proposition 3 Let P be an E-program without non-
monotonic negation and h be a p-interpretation. Then h is a
p-model of P iff TP (h) ≤o h.

Theorem 1 Let P be an E-program without non-monotonic
negation. Then, hP = lfp(TP).

Example 4 Let us reconsider the E-program P , without
non-monotonic negation, described in Example 1. It is easy
to see that the lfp(TP) assigns [0.1, 0.2] to a, [0.15, 0.3] to
¬b, [0, 0.21] to ¬c, and [0.45, 0.55] to ¬d.

Probabilistic Answer Set Semantics for
E-programs

In this section we define the probabilistic answer sets of
E-programs (with non-monotonic negation), which extend
the notion of answer sets for traditional logic programming
(Gelfond & Lifschitz 1991). The semantics is defined in
two steps. First, we guess a probabilistic answer set h for
a certain E-program P , then we define the notion of the
probabilistic reduct of P with respect to h. The probabilis-
tic reduct is an E-program without non-monotonic negation
which has a unique probabilistic answer set. Second, we de-
termine whether h is a probabilistic answer set for P . This
is verified by determining whether h is the probabilistic an-
swer set of the probabilistic reduct of P w.r.t. h.

Definition 14 (Probabilistic Reduct) Let P = 〈R, τ〉 be a
ground E-program and h be a p-interpretation. The proba-
bilistic reduct P h of P w.r.t. h is P h = 〈Rh, τ〉 where:

Rh =











l : µ← L1 : µ1, . . . , Lm : µm|
l : µ← L1 : µ1, . . . , Lm : µm,
not (Lm+1 : µm+1), . . . , not (Ln : µn) ∈ R and
∀(m + 1 ≤ j ≤ n), µj �t h(Lj) or Lj /∈ dom(h).











The probabilistic reduct P h is an E-program without non-
monotonic negation. Therefore, its probabilistic answer set
is well-defined. For any not (Lj : µj) in the body of r ∈ R

with µj �t h(Lj) means that it is not known that the proba-
bility interval of Lj is at least µj given the available knowl-
edge, and not (Lj : µj) is removed from the body of r. In
addition, if Lj /∈ dom(h), i.e., Lj is undefined in h, then it
is completely not known (undecidable) that the probability
interval of Lj is at least µj . In this case, not (Lj : µj) is
also removed from the body of r. Here we distinguish be-
tween the case where it is not known the probability of Lj is
at least µj because we have some but incomplete knowledge
about the probability of Lj (by µj �t h(Lj)) and the case
where we completely have no knowledge about the proba-
bility interval of Lj (by Lj /∈ dom(h)). If µj ≤t h(Lj)
then we know that the probability interval of Lj is at least
µj and the body of r is not satisfied and r is trivially ignored.

Definition 15 A p-interpretation h is a probabilistic answer
set of an E-program P if h is the probabilistic answer set of
P h.

The domain of a probabilistic answer set of an E-program
represents an agent set of beliefs based on the knowledge
represented by the E-program. However, the probability in-
tervals associated to these beliefs represent the agents belief
degrees on these beliefs. Intuitively, the probabilistic answer
sets of an E-program are the possible sets of beliefs with as-
sociated beliefs degrees an agent might have. Note that E-
programs without classical negation (normal hybrid proba-
bilistic programs (Saad & Pontelli 2005a)), i.e., E-programs
that contain no negative literals neither in head nor in the
body of E-rules, have probabilistic answer sets with hybrid
literals consisting of only atoms. In other words, the domain
of probabilistic answer set in this case consists of positive
hybrid basic formulae. Moreover, the definition of proba-
bilistic answer sets coincides with the definition of stable
probabilistic models defined in (Saad & Pontelli 2005a).
This implies that the probabilistic answer sets for a nor-
mal hybrid probabilistic program are equivalent to its sta-
ble probabilistic models. This means that the application of
probabilistic answer set semantics to normal hybrid proba-
bilistic programs is reduced to the stable probabilistic model
semantics for normal hybrid probabilistic programs. How-
ever, there are a couple of main differences between the two
semantics. A probabilistic answer set may be a partial p-
interpretation, however, a stable probabilistic model is a to-
tal p-interpretation. In addition, each hybrid basic formula F
with probability interval [0,0]— i.e. there is no proof that F
has probability interval different from [0, 0] or F is false by
default— in a stable probabilistic model of a normal hybrid
probabilistic program corresponds to the fact that the proba-
bility interval of F is unknown, and hence undefined, in its
equivalent probabilistic answer set—i.e., the probability of
F is unknown.

Proposition 4 Let P be an E-program without classical
negation. Then h is a probabilistic answer set for P iff h′

is a stable probabilistic model of P , where h(F) = h′(F)
for h′(F) 6= [0, 0] and h(F) is undefined for h′(F) = [0, 0].

Proposition 4 shows that there is a simple reduction from
E-programs to normal hybrid probabilistic programs. The
importance of this is that, under the consistency condition,

DEPARTMENT OF INFORMATICS 177

11TH NMR WORKSHOP

computational methods developed for normal hybrid proba-
bilistic programs can be applied to extended hybrid proba-
bilistic programs.

Example 5 In addition to the intuitive representation, the
undesirable consequences due to the use of non-monotonic
negation in the hear medication example described in the
introduction,

give(di,med) : [0.87, 0.95] ← not(eff(med, hrt) : [0.15, 0.15]),

can be eliminated by using classical negation. Therefore, by
using the classical negation we get

give(di,med) : [0.87, 0.95] ← ¬ eff(med, hrt) : [0.85, 0.85].

Then, give(di, med) can be concluded with probability in-
terval [0.87, 0.95] if no side effects of the medication on the
heart, ¬eff(med, hrt), is concluded with probability inter-
val at least [0.85, 0.85].

Example 6 Suppose that we know a bird can fly with proba-
bility at least the probability between 70% and 85% as long
as it is not known that it is incapable of flying with probabil-
ity at least the probability in the range 30% to 35%. How-
ever, a bird is incapable of flying with probability at least
the probability from 48% to 65% if it is wounded with prob-
ability at least the probability between 50% to 68%. Never-
theless, certainly, a bird is incapable of flying if it is a pen-
guin. In addition, we also know that Tweety and Rocky are
birds. Rocky is penguin, and there is over 70% chance that
Tweety is injured. This can be represented by the following
E-program P = 〈R, τ〉 where R is

fly(X) : [0.7, 0.85] ← bird(X) : [1, 1],
not(¬fly(X) : [0.3, 0.35])

¬fly(X) : [0.48, 0.65] ← wounded(X) : [0.5, 0.68]
¬fly(X) : [1, 1] ← penguin(X) : [1, 1]
bird(tweety) : [1, 1] ←
wounded(tweety) : [0.7, 1] ←
bird(rocky) : [1, 1] ←
penguin(rocky) : [1, 1] ←

and τ is any arbitrary assignment of disjunctive p-
strategies. P has only one probabilistic answer set h where
h(bird(tweety)) = [1,1]
h(bird(rocky)) = [1,1]
h(wounded(tweety)) = [0.7,1]
h(penguin(rocky)) = [1,1]
h(¬fly(tweety)) = [0.48,0.65]
h(¬fly(rocky)) = [1,1].

Although completely different, the following examples are
inspired by examples described in (Loyer & Straccia 2002;
Dekhtyar, Dekhtyar, & Subrahmanian 1999).

Example 7 A detective is investigating a crime by consid-
ering the persons who might be suspects among the ones
who have been recalled for questions during the investiga-
tion. The detective is considering a person as a suspect with
probability at least the probability between 55% to 70% if
the probability that person lies is at least the probability
from 47% to 60% and has a motive to commit the crime with
probability at least the probability in the range 50% to 55%.
A person is also a suspect with at least 60% to 90% prob-
ability if there is at least 70% to 82% chance that there is
another person who is willing to witness against him. How-
ever, the detective does not consider a person as a suspect

with probability at least the probability from 48% to 65% if
that person does not lie with probability at least the proba-
bility between 68% and 90%. But the detective needs to col-
lect more evidence about a person (investigate) with proba-
bility at least the probability from 87% to 93% whenever it
is not known that person is suspect with at least 50% to 85%
probability and is not a suspect with at least 40% to 70%
probability. The detective is over 70% sure that Frank has a
motive to commit the crime, but, he also knows that John is
not willing to witness against Frank with probability as low
as in the range 20% to 25%. This can be represented by the
following E-program P = 〈R, τ〉 where R is

suspect(X) : [0.55, 0.7]← lie(X) : [0.47, 0.6],
motive(X) : [0.5, 0.55]

suspect(X) : [0.6, 0.9]← witness(X, Y) : [0.7, 0.82]
¬suspect(X) : [0.48, 0.65]← ¬lie(X) : [0.68, 0.9]
investigate(X) : [0.87, 0.93] ← not (suspect(X) : [0.5, 0.85]),

not (¬suspect(X) : [0.4, 0.7])
motive(frank) : [0.7, 1]←
¬witness(frank, john) : [0.2, 0.25]←

and τ is any arbitrary assignment of disjunctive p-
strategies. P has only one probabilistic answer set h where
h(¬witness(frank, john)) = [0.2,0.25]
h(motive(frank)) = [0.7,1]
h(investigate(frank)) = [0.87,0.93].

Note that our knowledge about the probabil-
ity of ¬witness(frank, john), motive(frank),
and investigate(frank) is complete given the
above E-program. Therefore, we can assert that
h(witness(frank, john)) = [1,1] - [0.2,0.25]

= [0.75, 0.8]

h(¬motive(frank)) = [1,1] - [0.7,1]
= [0.,0.3]

h(¬investigate(frank)) = [1,1] - [0.87,0.93]
= [0.07,0.13].

Example 8 It is probable that Frank was in the crime scene.
However, it is not yet known that Frank is a suspect. There-
fore, the detective has decided to question the persons who
also were seen in the crime scene due to the need for more
investigation around Frank. The detective questions a per-
son with probability at least the probability between 77%
and 93% if that person was seen in the crime seen with prob-
ability at least the probability from 52% to 68% where Frank
was also seen with probability at least the probability from
40% to 52%. If the detective is ignorant about the rela-
tionship between a person who was seen in the crime scene
and the fact that Frank was also seen in the crime scene
with probability at least the probability in the range 60 %
to 79%, then there is probability at least the probability be-
tween 50% and 65% that the detective questions that person.
However, if there is a positive correlation between a person
who was not seen in the crime scene and Frank was seen in
the crime scene with probability at least the probability from
80% to 95%, then there is over 50% probability that person
is questioned. But, if the detective does not know whether to
question a person with probability at least 50% to 85% and
not to question that person with probability at least 40% to
70%, then he considers that person is not a suspect with
probability at least 87% to 93%. The detective also knows
that if a person was seen in the crime scene with probability

178 Technical Report IfI-06-04

Theory of NMR and Uncertainty

interval [V1, V2], then he was not seen with probability inter-
val [1− V2, 1− V1]. But if he was not seen with probability
interval [V1, V2], then he was seen with probability interval
[1 − V2, 1 − V1]. Further investigations have shown that
Frank was seen in the crime scene with probability 55% to
73%, however, Mark was not seen with probability 30% to
40%. This can be represented by the following E-program
P = 〈R, τ〉 where R is

question(X) : [0.77, 0.93]← seen(X) : [0.52, 0.68],
seen(frank) : [0.4, 0.52]

question(X) : [0.5, 0.65]←
(seen(X) ∧ig seen(frank)) : [0.6, 0.79]

question(X) : [0.5, 1]←
(¬seen(X) ∧pc seen(frank)) : [0.8, 0.95]

¬suspect(X) : [0.87, 0.93]← not (question(X) : [0.5, 0.85]),
not (¬question(X) : [0.4, 0.7])

¬seen(X) : [1 − V2, 1 − V1]← seen(X) : [V1, V2]
seen(X) : [1 − V2, 1 − V1]← ¬seen(X) : [V1, V2]
seen(frank) : [0.55, 0.73]←
¬seen(mark) : [0.3, 0.4]←

and τ is any arbitrary assignment of disjunctive p-
strategies. ∧ig and ∧pc correspond to the conjunc-
tive ignorance p-strategy igc—whose composition func-
tion is defined as cigc([α1, β1], [α2, β2]) = [max(0, α1 +
α2−1), min(β1, β2)]—and the conjunctive positive correla-
tion p-strategy pcc—whose composition function is defined
as cpcc([α1, β1], [α2, β2]) = [min(α1, α2), min(β1, β2)]—
respectively. P has only one probabilistic answer set h
where

h(seen(frank)) = [0.55, 0.73]
h(¬seen(frank)) = [0.27, 0.45]
h(¬seen(mark)) = [0.3, 0.4]
h(seen(mark)) = [0.6, 0.7]
h((seen(mark) ∧ig seen(frank))) = [0.14, 0.7]
h(question(mark)) = [0.77, 0.93]
h((¬seen(mark) ∧pc seen(frank))) = [0.3, 0.4].

In the following we define the immediate consequence op-
erator of E-programs and study its relationship to the prob-
abilistic answer sets.

Definition 16 Let P = 〈R, τ〉 be a ground E-program and
h ∈ HFF . The immediate consequence operator T ′

P is a
mapping T ′

P : HFF → HFF defined as follows:

1. T ′

P (h)(l) = cτ(l) M ′

l where

M ′

l =





















µ

l : µ← L1 : µ1, . . . , Lm : µm,
not (Lm+1 : µm+1), . . . , not (Ln : µn) ∈ R
and ∀(1 ≤ i ≤ m), h |= Li : µi

and ∀(m + 1 ≤ j ≤ n), h |= not (Lj : µj)





















2. T ′

P (h)(L1 ∧ρ L2) = cρ(T
′

P (h)(L1), T
′

P (h)(L2)) where
(L1 ∧ρ L2) ∈ bfS(Lit) and L1, L2 ∈ dom(T ′

P (h)).
3. T ′

P (h)(L1 ∨ρ′ L2) = cρ′(T ′

P (h)(L1), T
′

P (h)(L2)) where
(L1 ∨ρ′ L2) ∈ bfS(Lit) and L1, L2 ∈ dom(T ′

P (h)).

It is easy to see that T ′

P extends TP to handle E-rules with
non-monotonic negation, and hence, T ′

P = TP for any E-
program P without non-monotonic negation.

Theorem 2 Let P = 〈R, τ〉 be an E-program such that for
every E-rule in R, n = m. Then T ′

P = TP .

The operator T ′

P is not monotonic w.r.t. ≤o. This can be
seen by the following result.

Proposition 5 T ′

P is not monotonic w.r.t. ≤o.

Example 9 Consider the E-program:

a : [0.2, 0.3]← not (b : [0.6, 0.8]).

Let h1 = ∅ be a p-interpretation. In addition, let h2 be a p-
interpretation that assigns [0.65, 0.9] to b. Hence, h1 ≤o h2.
But T ′

P (h1) assigns [0.2, 0.3] to a and T ′

P (h2) = ∅. Thus,
T ′

P (h1) �o T ′

P (h2)

The following results establish the relationship between the
T ′

P operator and the probabilistic answer set semantics.

Lemma 2 Let P be an E-program and h be a probabilistic
answer set of P . Then T ′

P (h) = h, i.e., h is a fixpoint of T ′

P .

Theorem 3 Let P be an E-program and h be a probabilistic
answer set of P . Then h is a minimal fixpoint of T ′

P .

It is worth noting that not every minimal fixpoint of T ′

P is
a probabilistic answer set for P . Consider the following E-
program P .

Example 10 Let P = 〈R, τ〉 where τ is arbitrary and R
contains

a : [0.1, 0.33] ← not (a : [0.1, 0.33])
a : [0.1, 0.33] ← b : [1, 1]

It is easy to verify that the p-interpretation h(a) =
[0.1, 0.33] and h(b) = [1, 1] is a minimal fixpoint of T ′

P .
However, P h consists of a : [0.1, 0.33] ← b : [1, 1] where
lfp(TP h) = ∅. Hence, h is not a probabilistic answer set
for P .

Let us show that the probabilistic answer set semantics gen-
eralizes the answer set semantics of extended logic pro-
grams in traditional logic programming (Gelfond & Lifs-
chitz 1991). An extended logic program P can be repre-
sented as an E-program P ′ = 〈R, τ〉 where each extended
rule

l ← l1, . . . , lm, not lm+1, . . . , not ln ∈ P

can be encoded, in R, as an E-rule of the form

l : ν ← l1 : ν, . . . , lm : ν, not (lm+1 : ν), . . . , not (ln : ν)

belonging to R, where ν ≡ [1, 1], l, l1, . . . , lm, lm+1, . . . , ln
are literals, and [1, 1] represents the truth value true. τ is
any arbitrary assignment of disjunctive p-strategies. We call
the class of E-programs that consists only of E-rules of the
above form as EHPP1. The following result shows that ex-
tended programs (Gelfond & Lifschitz 1991) are subsumed
by EHPP.

Proposition 6 Let P be an extended logic program. Then
S′ is a an answer set of P iff h is a probabilistic answer of
P ′ ∈ EHPP1 that corresponds to P where h(l) = [1, 1] iff
l ∈ S′ and h(l′) is undefined iff l′ /∈ S′.

DEPARTMENT OF INFORMATICS 179

11TH NMR WORKSHOP

Related Work

The problem of extending uncertain logic programming in
general and probabilistic logic programming in particular
with non-monotonic negation (negation-as-failure or default
negation) has been extensively studied in the literature. A
survey on these various approaches can be found in (Saad &
Pontelli 2005a). However, the main difference in this work
is that we allow classical negation as well as non-monotonic
negation to reason with incomplete knowledge, given the un-
derlying semantics is the answer set semantics for traditional
logic programming (Gelfond & Lifschitz 1991), which has
not been addressed by the current work in probabilistic logic
programming. The closest to our work is the work pre-
sented in (Baral, Gelfond, & Rushton 2004). In (Baral, Gel-
fond, & Rushton 2004), an elegant way has been presented
to reason with causal Bayesian nets by considering a body
of logical knowledge, by using the answer set semantics of
traditional logic programming (Gelfond & Lifschitz 1991).
Answer set semantics (Gelfond & Lifschitz 1991) has been
used to emulate the possible world semantics. Probabilis-
tic logic programs of (Baral, Gelfond, & Rushton 2004)
is expressive and straightforward and relaxed some restric-
tions on the logical knowledge representation part existed
in similar approaches to Bayesian reasoning, e.g., (Kerst-
ing & Raedt 2000; Muggleton 1995; Poole 1997; 2000;
Vennekens, Verbaeten, & Bruynooghe 2004). Since (Ng
& Subrahmanian 1992; 1993; 1994; Dekhtyar & Subrah-
manian 2000) provided a different semantical characteriza-
tion to probabilistic logic programming, it was not clear that
how these proposals relate to (Baral, Gelfond, & Rushton
2004). However, the work presented in this paper and (Saad
& Pontelli 2005a), which are modification and generaliza-
tion of the work presented in (Ng & Subrahmanian 1992;
1993; 1994; Dekhtyar & Subrahmanian 2000), are closely
related to (Baral, Gelfond, & Rushton 2004). The work pre-
sented in this paper strictly syntactically and semantically
subsumes probabilistic logic programs of (Baral, Gelfond,
& Rushton 2004). This can be easily argued by the fact
that EHPP naturally extends traditional logic programming
with answer set semantics (Gelfond & Lifschitz 1991), and
probabilistic logic programs of (Baral, Gelfond, & Rushton
2004) mainly rely on traditional logic programming with an-
swer set semantics (Gelfond & Lifschitz 1991) as a knowl-
edge representation and inference mechanism for reasoning
with causal Bayesian nets. This is true although EHPP does
not allow disjunctions in the head of rules since it is easy
to transform an extended disjunctive logic program into an
equivalent extended logic program via a simple transforma-
tion (Baral 2003). In this sense, the comparisons established
between (Baral, Gelfond, & Rushton 2004) and the existing
probabilistic logic programming approaches such as (Ker-
sting & Raedt 2000; Muggleton 1995; Poole 1997; 2000;
Vennekens, Verbaeten, & Bruynooghe 2004; Ng & Subrah-
manian 1992; 1993; 1994; Dekhtyar & Subrahmanian 2000;
Lukasiewicz 1998; Dekhtyar & Dekhtyar 2004) also carry
over to EHPP and these approaches. In addition, unlike
(Baral, Gelfond, & Rushton 2004), EHPP does not put any
restriction on the type of dependency existing among events.

Conclusions and Future Work
We presented an extension to the language of normal hy-
brid probabilistic programs (Saad & Pontelli 2005a), called
extended hybrid probabilistic programs, to allow classical
negation, in addition to, non-monotonic negation. The ex-
tension is important to provide the capability of reasoning
with incomplete knowledge. We developed a semantical
characterization of the extended language, which relies on
a probabilistic generalization of the answer set semantics,
originally developed for extended logic programs (Gelfond
& Lifschitz 1991). We showed that the probabilistic answer
set semantics naturally generalizes the answer set semantics
for extended logic programs (Gelfond & Lifschitz 1991).
Furthermore, we showed that the proposed semantics is re-
duced to stable probabilistic model semantics of NHPP pro-
posed in (Saad & Pontelli 2005a). The importance of that
computational methods developed for NHPP can be applied
to the language of EHPP. Moreover, we showed that some
commonsense probabilistic knowledge can be easily repre-
sented in the proposed language.

A topic of future research is to extend the language of ex-
tended hybrid probabilistic programs to allow disjunctions
of annotated literals in the heads of rules. In addition, we
intend to investigate the computational aspects of the prob-
abilistic answer set semantics—by developing algorithms
and implementations for computing the proposed semantics.
The algorithms and implementations we will develop will be
based on appropriate extensions of the existing technologies
for computing the answer semantics for extended logic pro-
grams.

References
Baral, C.; Gelfond, M.; and Rushton, N. 2004. Probabilis-
tic reasoning with answer sets. In 7th International Confer-
ence on Logic Programming and Nonmonotonic Reason-
ing. Springer Verlag.

Baral, C. 2003. Knowledge representation, reasoning, and
declarative problem solving. Cambridge University Press.

Dekhtyar, A., and Dekhtyar, I. 2004. Possible worlds se-
mantics for probabilistic logic programs. In International
Conference on Logic Programming, 137–148.

Dekhtyar, A., and Subrahmanian, V. 2000. Hybrid
probabilistic program. Journal of Logic Programming
43(3):187–250.

Dekhtyar, M.; Dekhtyar, A.; and Subrahmanian, V. S.
1999. Hybrid probabilistic programs: Algorithms and
complexity. In Uncertainty in Artificial Intelliegence, 160–
169.

Gelder, A. V.; Ross, K. A.; and Schlipf, J. 1991. The well-
founded semantics for general logic programs. Journal of
ACM 38(3):620–650.

Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In ICSLP. MIT Pres.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9(3-4):363–385.

180 Technical Report IfI-06-04

Theory of NMR and Uncertainty

Kersting, K., and Raedt, L. D. 2000. Bayesian logic pro-
grams. In Inductive Logic Programming.
Lakshmanan, L., and Sadri, F. 2001. On a theory of prob-
abilistic deductive databases. Journal of Theory and Prac-
tice of Logic Programming 1(1):5–42.
Loyer, Y., and Straccia, U. 2002. The well-founded seman-
tics in normal logic programs with uncertainty. In FLOPS.
Springer Verlag.
Lukasiewicz, T. 1998. Probabilistic logic programming. In
13th European Conference on Artificial Intelligence, 388–
392.
Muggleton, S. 1995. Stochastic logic programming. In 5th
International Workshop on Inductive Logic Programming.
Ng, R., and Subrahmanian, V. 1992. Probabilistic logic
programming. Information & Computation 101(2).
Ng, R., and Subrahmanian, V. 1993. A semantical frame-
work for supporting subjective and conditional probabili-
ties in deductive databases. ARJ 10(2).
Ng, R., and Subrahmanian, V. 1994. Stable semantics for
probabilistic deductive databases. Information & Compu-
tation 110(1).
Poole, D. 1997. The independent choice logic for mod-
elling multiple agents under uncertainty. Artificial Intelli-
gence 94(1-2):7–56.
Poole, D. 2000. Abducing through negation as failure:
stable models within the independent choice logic. Journal
of Logic Programming 44(5-35).
Saad, E., and Pontelli, E. 2005a. Hybrid probabilistic logic
programs with non-monotonic negation. In International
Conference on Logic Programming.
Saad, E., and Pontelli, E. 2005b. Towards a more practi-
cal hybrid probabilistic logic programming framework. In
Practical Aspects of Declarative Languages.
Vennekens, J.; Verbaeten, S.; and Bruynooghe, M. 2004.
Logic programs with annotated disjunctions. In Interna-
tional Conference on Logic Programming, 431–445.

DEPARTMENT OF INFORMATICS 181

11TH NMR WORKSHOP

182 Technical Report IfI-06-04

Theory of NMR and Uncertainty

2.8 Extending the role of causality in probabilistic modeling

Extending the Role of Causality in Probabilistic Modeling

Joost Vennekens, Marc Denecker, and Maurice Bruynooghe
{joost, marcd, maurice}@cs.kuleuven.be

Dept. of Computer Science, K.U.Leuven
Celestijnenlaan 200A

B-3001 Leuven, Belgium

Abstract

Causality plays an important role in probabilistic mod-
eling. Often, a probability distribution can be nat-
urally described as the outcome of a causal process,
in which different random variables interact through
a series of non-deterministic events. However, formal
tools such as Bayesian networks do not directly rep-
resent such events, but focus instead on derivate con-
cepts such as probabilistic independencies and condi-
tional probabilities. In this paper, we present a logic,
designed from fundamental causal principles, which has
a representation of such non-deterministic, probabilis-
tic events as its basic construct. We show that Bayesian
networks can be described in this language and illus-
trate some of its interesting properties. We then relate
this logic to a certain class of probabilistic logic pro-
gramming languages. We show that our logic induces a
semantics for disjunctive logic programs, in which these
represent non-deterministic processes. We also show
that logic programs under the well-founded semantics
can be seen as a language of deterministic causality,
which we relate to McCain & Turner’s causal theories.

Introduction
Causal information plays a crucial role in common-
sense reasoning in general and probabilistic modeling
in particular. The underlying assumption in work
such as Pearl’s influential treatment of causality (Pearl
2000) seems to be the assumption that the world
can be viewed as consisting of a number of non-
deterministic causal events. However, the formal tools
that are typically used in probabilistic modeling—most
notably Bayesian networks—do not directly represent
such causal events. Instead, derivate kinds of informa-
tion, such as probabilistic (in-)dependencies and condi-
tional probability distributions, are represented.

In this paper, we propose a more direct approach,
which is based on the following construct of a condi-
tional probabilistic event, or CP-event for short: “If
property ϕ is satisfied, then a probabilistic event will
happen that causes at most one of propositions h1, h2,
. . . , hm, where the probability of h1 being caused is α1,
the probability of h2 is α2, . . . , and the probability of
hm is αm.” We use the following syntax to represent
a CP-event of the above form: (h1 : α1) ∨ · · · ∨ (hm :

αm) ← ϕ. In the next section, we will be more precise
about which kinds of preconditions ϕ we allow. For
now, we will consider the simple case of ϕ being a con-
junction b1 ∧ · · · ∧ bn of propositions. The precondition
ϕ may also be absent, in which case the event is called
unconditional.

The language Conditional Probabilistic Event Logic,
or CP-logic for short, now consists of sets of such CP-
events. Such a set is called a CP-theory. By examining
our intuitions about how different CP-events should in-
teract with each other, the following two fundamental
principles can be isolated. The first is that of indepen-
dent causation. It states that every CP-event represents
an independent causal event; in other words, the out-
come of one event might affect whether or not some
other event will happen, but does not have an influence
on what the outcome of such an event will be, should it
in fact happen. This principle is precisely what allows
causality to act as the basis for a stable and modular
view of the world. Moreover, it also implies that, to
a certain extent, the order in which CP-events happen
is irrelevant. The second principle, which we call the
principle of no deus ex machina effects, is that noth-
ing happens without a cause, i.e., everything remains
false unless there is a cause for it to become true and
something cannot cause itself. This is a fundamental
principle of causal reasoning and will turn out to be es-
pecially vital in the presence of cyclic causal relations.

In the next section, we will construct a semantics for
CP-logic based on these two principles. In this seman-
tics, a CP-theory constructively defines a unique prob-
ability distribution over interpretations of the proposi-
tions. At each step, this constructive process simulates
a single CP-event. Such a simulation derives proposi-
tion hi with probability αi, but can only be performed
if all the propositions b1, . . . , bn have already been de-
rived. Moreover, each event can occur at most once.
This process will start from the empty set, i.e., initially
nothing has been derived yet, and will end once there
are no more CP-events left to simulate. The probability
of an interpretation, then, is the sum of the probabil-
ities of all possible derivations of this interpretation.
It can be shown that the precise order in which CP-
events are simulated does not matter, i.e., all sequences

DEPARTMENT OF INFORMATICS 183

11TH NMR WORKSHOP

will construct the same distribution. This follows from
the principle of independent causation, together with
the fact that, by only considering preconditions that
are conjunctions of propositions, we have ensured the
monotonicity of such sequences of simulations, i.e., the
fact that if, at a certain time, all preconditions to a CP-
event are satisfied, they will remain satisfied. Moreover,
the “no deus ex machina”-principle is clearly incorpo-
rated in this semantics, because a proposition is only
derived if it is caused by a CP-event with satisfied pre-
conditions.

To sketch some of the interesting properties of this
language, we consider two ways in which a person might
get infected by the HIV virus: sexual intercourse with
an infected partner and blood transfusion. For con-
creteness, assume that the probability of contracting
HIV from an infected partner is 0.6 and that the prob-
ability of contracting it through a blood transfusion is
0.01. For the case of two partners a and b, of which only
a has received a blood transfusion, we can model this
example by the following CP-theory: {(hiv(a) : 0.6)←
hiv(b). (hiv(b) : 0.6)← hiv(a). (hiv(a) : 0.01).}

As this example shows, the principle of independent
causation makes it easy to represent the relation be-
tween an effect and a number of independent causes for
this effect in a compact, clear and modular way, with
each possible cause corresponding to a single CP-event.
Moreover, this principle also makes the representation
elaboration tolerant, in the sense that adding (or remov-
ing) an additional cause simply corresponds to adding
(removing) a single rule. For instance, if b undergoes a
blood transfusion as well, we only need to add a rule
(hiv(b) : 0.01). Because of the “no deus ex machina”-
principle, the cyclic causal relation between hiv(a) and
hiv(b) can be represented in precisely the same way as
an acyclic one. Indeed, the first two rules will act as one
would expect from such a causal loop: if neither a nor b
have been infected by an external cause, then both are
not infected, i.e., by itself such a loop does not cause
anything; if precisely one of a and b has been infected by
an external cause, then the probability of the other also
being infected is 0.6. Another useful consequence of the
“no deus ex machina”-principle is that domains can be
represented in a compact way, because cases in which
some proposition is not caused can simply be ignored.
Indeed, we do not need to mention that without either
intercourse with an infected partner or blood transfu-
sion, an HIV infection is impossible. Further on in this
paper, we will compare CP-logic to Bayesian networks
and address these issues in more detail.

The contributions of this paper are the following. We
introduce the concept of a CP-event and the princi-
ples of independent causation and no deus ex machina
effects. We then use these to define the language of
CP-logic. We show how this logic relates to Bayesian
networks and illustrate some advantages of making
causal events explicit. We relate our logic to logic pro-
gramming based approaches to probabilistic modeling.
This result provide additional motivation for these ap-

proaches and helps to clarify their knowledge represen-
tation methodology. It also allows us to consider a
causal interpretation for disjunctive and normal logic
programs. We compare this to McCain & Turner’s
causal theories.

Conditional Probabilistic Event Logic
The full syntax of CP-logic extends the one presented
in the introduction in two ways. Firstly, it allows vari-
ables to be used to represent a set of CP-events by a
single rule. Secondly, arbitrary first-order logic formu-
las can be used as preconditions to CP-events. More
concretely, a CP-theory consists of a set of rules of the
form: (A1 : α1) ∨ · · · ∨ (An : αn) ← ϕ. Here, the Ai’s
are atoms which may contain variables, ϕ is a first-
order formula, and the αi’s are numbers between 0 and
1, s.t.

∑n
i=1 αi ≤ 1. We distinguish between two dif-

ferent kinds of variables: those that are bound by a
quantifier in ϕ and those that are free. The free vari-
ables free(r) of a rule r are treated as place holders for
ground terms. Concretely, we will consider a rule r as
an abbreviation for the grounding (w.r.t. the Herbrand
universe) of this rule, i.e., the set of all rules r′ that can
be derived from r by replacing all the variables free(r)
by ground terms. We reserve the term CP-event to re-
fer to a rule in which no free variables appear. As such,
a rule with free variables is simply a convenient way
of representing a set of similarly structured CP-events.
In formal discussions, we will always assume that CP-
theories have already been grounded, i.e., we restrict
attention to sets of rules of the form:

(h1 : α1) ∨ · · · ∨ (hn : αn)← ϕ. (1)

where the hi’s are ground atoms and ϕ is a formula
with free(ϕ) = {}. For a rule r of form (1), we use
Body(r) to refer to the formula ϕ. We use Body+(r) to
denote the set of all atoms that occur only positively
(i.e., within the scope of an even number of negations)
in ϕ and Body−(r) to denote all atoms that occur nega-
tively (in the scope of an odd number of negations). By
body+(r) and body−(r) we mean the set of all ground
atoms belonging to the grounding of an atom in, re-
spectively, Body+(r) and Body−(r). The set of pairs
{(h1, α1), . . . , (hn, αn)} will be denoted by head(r). By
headAt(r) we mean the set {h1, . . . , hn} of all atoms ap-
pearing in the head of r. Rules of the form (h : 1)← ϕ
are called deterministic. We also write such a rule as
h← ϕ.

We now discuss how the definition of the semantics
of CP-logic outlined in the introduction can be adapted
to cope with arbitrary formulas as preconditions. The
main difficulty here lies in the presence of negation. In-
deed, this causes the previously mentioned monotonic-
ity property to be lost, i.e., it will no longer be the case
that if the preconditions to a CP-event are satisfied at
a certain point in time, they are guaranteed to remain
satisfied. As a consequence of this, the order in which
CP-events are executed might matter. Consider, for in-
stance, the following example: {p← ¬q. q.} If the first

184 Technical Report IfI-06-04

Theory of NMR and Uncertainty

event is executed first, then p will hold; if the second
event is executed first, then p will not. So, negation in-
troduces an ambiguity into the language and this needs
to be resolved. Moreover, to avoid making the language
too cumbersome, we would like to resolve it without
forcing the user to explicitly specify an order in which
events must happen. The most reasonable convention
that can be assumed to solve this problem is that a lit-
eral ¬r refers to the truth of r after all executable events
that might cause r have been executed. As such, in our
semantics, the simulation of such an event will be de-
layed as long as there are still executable events left
that might cause r.

To ensure that this is indeed possible, we require CP-
theories to be stratified, meaning that there has to ex-
ist a way of assigning to each ground atom p a level
λ(p) ∈ N, s.t. for each rule r and h ∈ headAt(r), for all
b ∈ body+(r), λ(h) ≥ λ(b), while for all b ∈ body−(r),
λ(h) > λ(b). The level of a rule r is defined as the
minimum of the levels of the atoms in headAt(r). Now,
by executing CP-events with a lower level first, we can
make sure that, by the time we need to decide whether
a precondition ¬r of some event holds, all executable
events that might cause r have already been executed.
From now on, we will restrict our attention to CP-
theories which admit such a stratification.

We will now formally define the semantics of a CP-
theory C. We use the mathematical structure of a prob-
abilistic transition system. This is a tree structure T , in
which every edge is labeled with a probability. To each
node c, we associate a Herbrand interpretation I(c) for
the alphabet of C. Formally, such an interpretation is
simply a set of ground atoms. A node c executes a rule
r of form (1) if c has as its children precisely nodes
c0, c1, . . . , cn, where I(c0) = I(c) and, for all i > 0,
I(ci) = I(c) ∪ {hi}; the probability of the edge (c, c0)
is the probability with which none of the hi’s is caused,
i.e., 1 −

∑
1≤i≤n αi, and, for i > 0, the probability of

(c, ci) is αi. A rule r is executable in a node c if body(r)
holds in I(c) and no ancestor of c already executes r.
A probabilistic transition system T runs a CP-theory
C iff:
• For the root r of T , I(r) is {};
• For every node c of T , either c executes an executable

rule r, s.t. no executable rule r′ has a lower level than
that of r, or no rules are executable in c and c is a
leaf;
A system T defines a probability distribution over its

leaves: the probability of a leaf c is the product of the
probabilities of all edges in the path from the root to c.
From this, a probability distribution πT over interpreta-
tions can be derived, by defining the probability πT (I)
of an interpretation I as the sum of the probabilities of
all leaves c for which I(c) = I.

It can be shown that every system T that runs a CP-
theory C defines the same probability distribution, i.e.,
for all such T and T ′, πT = πT ′ . While we do not have
space to present a formal proof of this, the following

informal argument should show that, if in a certain node
n there are a number of different rules that might be
executed, it does not matter which one is chosen first.
If some r is executed first, then the existence of the
stratification for C ensures that, for each of the children
n′ of n, all other rules r′ that were executable in n are
still executable in n′, and, in fact, will remain this way
until they are executed. Because every executable rule
must eventually be executed, this shows that in every
branch originating from n, every r′ that was originally
executable in n will actually be executed. Now, let us
consider the sum of the probabilities of all branches
going through n, in which an atom h, with (h, α) ∈
head(r′), is derived as a result of executing r′. It can
be checked that, because T is constructed in such a way
that the sum of the labels of all edges that leave a node
is always equal to 1, this probability will be α times the
sum of the probabilities of all branches going through
n, which is precisely what it would have been if we had
chosen to execute r′ in n. A formal proof can be found
in (Vennekens et al. 2006).

The formal semantics of a CP-theory C is now defined
as precisely this unique distribution, which we denote
as πC .

Bayesian networks in CP-logic

CP-logic can express the same kind of knowledge as
expressed in a Bayesian network. The semantics of
Bayesian networks (Pearl 1988) states that a proba-
bility distribution is a model of a network with graph
〈N,E〉 iff (1) the conditional probabilities it determines
are the same as the appropriate entries in the various
tables and (23) the value of a node n is probabilistically
independent of the value of all nodes m, s.t. there is no
path from n to m in E, given a value for the parents of
n in E. If a distribution π satisfies condition (2) w.r.t.
some binary relation E, we say that π is Bayesian w.r.t.
E.

We now investigate whether a similar relation exists
for the semantics πC of a CP-theory C. In other words,
we want to answer the question: “When does observ-
ing the truth value of a ground atom p give us direct
information about the truth of some other atom q?” By
the word “direct” in this sentence, we mean that this
information is not mediated by some other atom r. It
turns out that this happens in two cases.

• An atom p has a direct causal influence on an atom q
if p is a precondition to a CP-event that might cause
q, i.e., if ∃r ∈ C, q ∈ headAt(r) and p ∈ body(r).
In this case, whether p holds affects whether one of
the CP-events that might cause q is executed and,
therefore, learning the truth of p clearly might affect
the probability of q.

• Atoms p and q are alternatives iff p and q appear in
the head of the same rule, i.e., iff ∃r ∈ C : p, q ∈
headAt(r) and p 6= q. In this case, p and q are al-
ternative outcomes of the same CP-event. As such,

DEPARTMENT OF INFORMATICS 185

11TH NMR WORKSHOP

learning that p holds will decrease the probability
that q holds, and vice versa.
Let us now say that an atom p directly affects an

atom q if one of these conditions holds, i.e., if ∃r ∈
C : q ∈ headAt(r) and p ∈ body(r) ∪ (headAt(r) \ {p}).
We have shown in a recent technical report [reference
omitted for anonymity] that the semantics πC of a CP-
theory is Bayesian w.r.t. this “directly affects”-relation.
From this, a way of representing Bayesian networks in
CP-logic can be derived. We first show how to represent
the following Bayesian network:

Burglary EarthquakeAlarm

B,E B,¬E ¬B,E ¬B,¬E
A 0.9 0.8 0.8 0.1

E 0.2
B 0.1

This can be modeled by the following CP-theory.

(bg : 0.1).
(al : 0.9)← bg ∧ eq.

(al : 0.8)← bg ∧ ¬eq.

(eq : 0.2).
(al : 0.8)← ¬bg ∧ eq.

(al : 0.1)← ¬bg ∧ ¬eq.

Because this network contains only boolean nodes, we
can translate each random variable into a single propo-
sitional symbol. As a result, in the CP-theory, all rules
have just a single atom in their head; in the terminology
defined above, no atoms are alternatives. The structure
of the Bayesian network is now mirrored by the struc-
ture of the rules: the bodies of the rules for earthquake
and burglary are empty, while the rules for alarm have
both burglary and earthquake in their body. As such,
this CP-theory expresses the same probabilistic inde-
pendencies as the Bayesian network.

For nodes with a domain of more than two possible
values, the situation is more complex. Indeed, such
a node no longer corresponds to a single proposition,
but rather to set of propositions. For instance, let us
suppose that the alarm can be in three states: off (f),
on (n), or disabled (d). We would then get rules of the
following form:

(al(n) : 0.8) ∨ (al(f) : 0.1) ∨ (al(d) : 0.1)← bg ∧ eq.

(al(n) : 0.7) ∨ (al(f) : 0.1) ∨ (al(d) : 0.1)← bg ∧ ¬eq.
(al(n) : 0.7) ∨ (al(f) : 0.1) ∨ (al(d) : 0)← ¬bg ∧ eq.

(al(n) : 0.2) ∨ (al(f) : 0.8) ∨ (al(d) : 0)← ¬bg ∧ ¬eq.

This principle generalizes to a method of translating
arbitrary networks to CP-logic.

The Role of Causality in CP-logic
In this section, we examine the differences between
Bayesian networks and CP-logic in more detail.

Independent Causes
As already discussed, CP-logic incorporates the same
kind of probabilistic independencies as Bayesian net-
works do. However, the principle of independent cau-
sation also allows a different kind of independence to

be expressed, namely that between different causes for
the same effect. In the introduction, we illustrated this
by considering a number of different causes for HIV
infection. We return to that example in the next sec-
tion, where it will be used to illustrate the fact that
our methodology for representing independent causa-
tion also applies when cyclic causal relations are in-
volved. In this section, we focus on an example con-
taining only acyclic causality:
Example 1. Consider a game of Russian roulette with
two guns, one in the player’s right hand and one in his
left. Each of the guns is loaded with a single bullet.
What is the probability of the player dying?

Firing a gun causes death with probability 1
6 . In CP-

logic, we write: (death : 1
6) ← fire(Gun).This rule is

all that is needed to model the operation of the guns.
Indeed, if our alphabet also includes constants left gun
and right gun, then, after grounding, we get the fol-
lowing rules: {(death : 1

6) ← fire(left gun). (death :
1
6)← fire(right gun).}. In words, “firing the left gun”
and “firing the right gun” are two independent causes
for death and each has a probability of 1

6 of actually
causing death. In a Bayesian network, this relation
would typically be expressed as follows (the numbers
can be computed by applying noisy-or1 to the multiset
of the probabilities with which the guns that are fired
each cause death):

l,r ¬l,r l,¬r ¬l,¬r
death 11/36 1/6 1/6 0

In CP-logic, unlike in Bayesian networks, indepen-
dence between different causal mechanisms is a struc-
tural property, rather than a quantitative one. From
a knowledge representation point of view, there are a
number of different reasons why this is useful. Firstly,
it makes such properties more obvious. Indeed, the fact
that fire(left gun) and fire(right gun) are indepen-
dent possible causes of death is clear from the fact that
these atoms do not appear in the body of the same rule
together. Secondly, independence between causes is
more robust to changes in the specification of a problem
than quantitative knowledge usually is. For instance, if
we were to find out that one of the guns has a mechan-
ical defect, making the probability of the bullet being
in front of the hammer not 1

6 precisely, but 11
60 instead,

then this would not affect the independence between
the two possible causes for death. Thirdly, a large part
of Pearl’s book (Pearl 2000) is concerned with various
manipulations of causal models. These are important,
for instance, to deal with counterfactuals or concepts
such as the “actual cause” of some effect. Typically,
such a manipulation consists of preempting the normal
relation between a node and its parents and replacing it
by an entirely new relation. With the more fine-grained
structure imposed by CP-logic, a number of new, in-
teresting manipulations become possible. For instance,

1The noisy-or maps a multiset S of probabilities to 1−Q
p∈S(1− p).

186 Technical Report IfI-06-04

Theory of NMR and Uncertainty

one could now consider the situation that would result
by only inhibiting one of the causal mechanisms that
might cause a particular atom or by adding a new such
causal mechanism. This also improves the elaboration
tolerance of the representation. For instance, if it is
also possible that the player dies of a heart attack, we
can simply include a CP-event “(death : 0.2).”, which
might lead to death without firing any guns. Finally,
like other qualitative properties, knowledge about these
independencies often originates from an expert’s back-
ground knowledge about the domain, instead of being
derived from a dataset. For instance, when performing
parameter learning in a Machine Learning setting, this
is an important consideration.

Cyclic Causal Relations
We now revisit the following example from the intro-
duction:

Example 2. There are two ways of getting infected by
the HIV virus. Firstly, there is a probability of 0.01 of
contracting the virus through a blood transfusion. Sec-
ondly, one might get infected by an already infected sex-
ual partner. The probability of an infected person infect-
ing his/her partner is 0.6.

(hiv(X) : 0.6)← hiv(Y) ∧ intercourse(X,Y).
(hiv(X) : 0.01)← blood transfusion(X).

Because the intercourse-relation is symmetric, this
example leads naturally to cyclic causal relations. Be-
cause of the “no deus ex machina”-principle of CP-logic,
cyclic relations can be modeled in the same way as
acyclic ones. To make the discussion more concrete,
suppose that a and b are the only persons we wish to
consider and that these have intercourse. For simplic-
ity, we ignore the intercourse and blood transfusion
predicates and simply assume that our grounding pro-
cess knows who have intercourse and who have re-
ceived blood transfusions. The first rule of the CP-
theory will lead to the grounding {(hiv(a) : 0.6) ←
hiv(b). (hiv(b) : 0.6) ← hiv(a).}. Let us examine how
these rules act when part of a larger theory. Firstly,
if these two rules were to constitute the entire theory,
then, because of the “no deus ex machina”-principle,
neither partner would be infected. Now, if partner a un-
dergoes a blood transfusion, the rule “(hiv(a) : 0.01).”
would also appear, adding this as an additional cause
for hiv(a). In this case, a has a non-zero proba-
bility (namely 0.01) of being infected by an external
cause and, therefore, b also has a non-zero probability
(0.01×0.6) of infection. If both a and b undergo a blood
transfusion, then the probability of, for instance, hiv(a)
will be higher still, because there are now two indepen-
dent causes for hiv(a): a could have gotten infected by
a transfusion, but also because b was first infected by a
transfusion and infected a in turn.

This causal loop can be represented in a Bayesian
network by introducing, for every hiv(x) in this loop,
a new node external(x) to represent the event that x

has gotten infected by some external (i.e., not part of
the loop) cause. These are then connected as follows:

bloodtrans(a)

bloodtrans(b)

external(a)

external(b)

hiv(a)

hiv(b)

bt(a) ¬bt(a)
e(a) 0.01 0

bt(b) ¬bt(b)
e(b) 0.01 0

e(a),e(b) e(a),¬e(b) ¬e(a),e(b) ¬e(a),¬e(b)
hiv(a) 1 1 0.6 0

e(a),e(b) e(a),¬e(b) ¬e(a),e(b) ¬e(a),¬e(b)
hiv(b) 1 0.6 1 0

The Absence of Causes
Another consequence of the “no deus ex machina”-
principle is that CP-logic does not require cases in
which an effect is not caused to be mentioned at all.
Obviously, this can make representations more com-
pact. This feature is made more powerful by the fact
that CP-theories may contain negation, which allows
the falsity of an atom, i.e., the absence of a cause for this
atom, to act as a cause for other atoms. To illustrate,
we consider the well-known dice game of craps. Sim-
ilar phenomena occur, e.g., when representing inertia
axioms, i.e., rules stating that some property persists
unless these is a cause for it not to.
Example 3. In craps, one keeps on rolling a pair of
dice until one either wins or loses. In the first round,
one immediately wins by rolling 7 or 11 and immediately
loses by rolling 2,3, or 12. If any other number is rolled,
this becomes the player’s “box point”. The game then
continues until either the player wins by rolling the box
point again or loses by rolling 7.

(roll(T +1, 2) : 1/36)∨· · ·∨ (roll(T +1, 12) : 1/36)
← ¬(win(T) ∨ lose(T)).

win(1)← roll(1, 7) ∨ roll(1, 11).
lose(1)← roll(1, 2) ∨ roll(1, 3) ∨ roll(1, 12).
boxpoint(X)← roll(1, X) ∧ ¬win(1) ∧ ¬lose(1).
win(T)← boxpoint(X) ∧ roll(T,X) ∧ T > 1.
lose(T)← roll(T, 7) ∧ T > 1.

(In principle, this CP-theory would lead to an infinite
grounding. While it is possible to define a semantics
for CP-logic that is able to correctly handle such the-
ories, this is beyond the scope of this paper. Because
this issue is orthogonal to the points we want to discuss
here, we simply assume that a certain maximum num-
ber of throws, i.e., an upper bound for the variable T ,
has been fixed up front and will be taken into account
when performing the grounding of this theory.)

In this CP-theory, we only specify when the game is
won or lost and use negation to express that, as long as
neither happens, the game carries on. In Bayesian net-
works, there is no real way of ignoring irrelevant cases.
Instead, there will be a probability of zero in the con-
ditional probability table. For this game, we could use

DEPARTMENT OF INFORMATICS 187

11TH NMR WORKSHOP

variables rollt, representing the outcome of a certain
roll (with domain 2 through 12), and bp representing
the box point (with possible values 4,5,6,7,8,9 or 10),
that influence the state st of the game at time t as fol-
lows:

(bp, rollt)
st (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7) · · ·
win 0 0 1 0 0 0 · · ·
lose 0 0 0 0 0 1 · · ·

Logic Programs with Annotated
Disjunctions

Logic Programs with Annotated Disjunctions (LPADs)
are a probabilistic logic programming language, that
was conceived in (Vennekens, Verbaeten, & Bruynooghe
2004) as a straightforward extension of logic programs
with probability. In this section, we relate LPADs to
CP-logic. This achieves the following goals:
• We can clarify the position of CP-logic among related

work, such as Poole’s Independent Choice Logic and
McCain and Turner’s causal theories.

• We gain additional insight into a number of prob-
abilistic logic programming languages, by showing
that theories in these languages can be seen as de-
scriptions of causal processes. Moreover, as we will
discuss in the next section, this also leads to an inter-
esting way of looking at normal and disjunctive logic
programs.

• Probabilistic logic programming languages are usu-
ally motivated in a bottom-up way, i.e., along the fol-
lowing lines: “Logic programs are a good way of rep-
resenting knowledge about relational domains, prob-
ability is a good way of representing knowledge about
uncertainty; therefore, a combination of both should
be useful for modeling uncertainty in a relational do-
main.” Our results provide an additional top-down
motivation, by showing that these languages are a
natural way of representing causal processes.
We first recall the formal definition of LPADs from

(Vennekens, Verbaeten, & Bruynooghe 2004). An
LPAD is a set of rules (h1 : α1) ∨ · · · ∨ (hn : αn) ←
l1 ∧ · · · ∧ ln, where the hi are atoms and the lj literals.
As such, LPADs are a syntactic sublogic of CP-logic.
However, their semantics is defined quite differently.
Every rule of the above form represents a probabil-
ity distribution over the set of logic programming rules
{“hi ← l1 ∧ · · · ∧ ln”| 1 ≤ i ≤ n}. From these distribu-
tions, a probability distribution over logic programs is
then derived. To formally define this distribution, we
introduce the following concept of a selection. In this
definition, we use the notation head∗(r) to denote the
set of pairs head(r)∪{(∅, 1−

∑
(h:α)∈head(r) α)}, where

∅ represents the possibility that none of the hi’s are
caused by the rule r.
Definition 1 (C-selection). Let C be an LPAD. A
C-selection is a function σ from C to

⋃
r∈C head

∗(r),

such that for all r ∈ C, σ(r) ∈ head∗(r). By σh(r)
and σα(r) we denote, respectively, the first and second
element of the pair σ(r).

The probability π(σ) of a selection σ is now defined
as

∏
r∈C σ

α(r). By Cσ we denote the logic program
{“σh(r) ← body(r)”| r ∈ C and σh(r) 6= ∅}. Such a
Cσ is called an instance of C. These instances are in-
terpreted according to the well-founded model seman-
tics (Van Gelder, Ross, & Schlipf 1991). In general,
the well-founded model wfm(P) of a program P is a
pair (I, J) of interpretations, where I contains all atoms
that are certainly true and J contains atoms that might
possibly be true. If I = J , the model is said to be two-
valued. Intuitively, if wfm(P) is two-valued, then the
truth of all atoms can be decided, i.e., everything that
is not false can be derived. In the semantics of LPADs,
we want to ensure that all uncertainty is expressed by
means of the annotated disjunctions. In other words,
given a specific selection, there should no longer be any
uncertainty. We impose the following criterion.

Definition 2 (Soundness). An LPAD C is sound
iff all instances of C have a two-valued well-founded
model.

For such LPADs, the following semantics can now be
defined.

Definition 3 (Instance based semantics µC). Let
C be a sound LPAD. For an interpretation I, we de-
note by W (I) the set of all C-selections σ for which
wfm(Cσ) = (I, I). The instance based semantics µC
of C is the probability distribution on interpretations,
that assigns to each I the probability

∑
σ∈W (I) π(σ).

Now, the key result of this section is that this instance
based semantics coincides with the semantics defined
previously for CP-logic.

Theorem 1. Let C be a stratified CP-theory. Then C
is also a sound LPAD and, moreover, for each interpre-
tation J , µC(J) = πC(J).

We remark that it is not the case that every sound
LPAD is also a valid CP-theory. In other words, there
are some sound LPADs that do not seem to represent
a causal process.

In (Vennekens, Verbaeten, & Bruynooghe 2004),
LPADs are compared to a number of different prob-
abilistic logic programming formalisms. For instance,
it was shown that this logic is very closely related
to Poole’s Independent Choice Logic. Because of the
above theorem, these comparisons carry over to CP-
logic.

CP-logic and Logic Programming

In this section, we examine some consequences of the
results of the previous section from a logic programming
point-of-view.

188 Technical Report IfI-06-04

Theory of NMR and Uncertainty

Disjunctive logic programs
In probabilistic modeling, it is often useful to consider
the structure of a theory separately from its probabilis-
tic parameters. Indeed, for instance, in machine learn-
ing, the problems of structure learning and parameter
learning are two very different tasks. If we consider
only the structure of a CP-theory, then, syntactically
speaking, we end up with a disjunctive logic program2,
i.e., a set of rules h1∨· · ·∨hn ← ϕ. Let us now consider
the class of all CP-theories C that result from adding
probabilities αi to each rule, in such a way that, for
every rule,

∑
αi = 1. Every probability distribution

πC defined by such a C induces a possible world se-
mantics, namely the set of interpretations I for which
πC(I) > 0. This set of possible worlds does not depend
on the precise values of the αi, i.e., it is the same for all
CP-theories C in this class. As such, it captures pre-
cisely the structural information in such a CP-theory.

From the point of view of disjunctive logic program-
ming, this set of possible worlds can be seen as an al-
ternative semantics for such a program. Under this se-
mantics, the intuitive reading of a rule should be: “if
ϕ holds, there will be a non-deterministic event, that
causes precisely one of h1,. . . , hn.” Clearly, this is
a different informal reading than is used in the stan-
dard stable model semantics for disjunctive programs
(Przymusinski 1991). Indeed, under our reading, a rule
corresponds to a causal event, whereas, under the sta-
ble model reading, it is supposed to describe an aspect
of the reasoning behaviour of a rational agent. This
difference also manifests itself in the resulting formal
semantics. Consider, for instance, the disjunctive pro-
gram {p∨ q. p.}. To us, this program describes a set of
two non-deterministic events: One event causes either
p or q and another event always causes p. This might,
for instance, correspond to the following story: “Some-
one is going to shoot a gun at Bob and this will either
cause Bob’s death or a hole in the wall behind Bob.
Bob has also just ingested a lethal dose of poison and
this is going to cause Bob’s death.” Our formal seman-
tics reflects this interpretation, by considering both the
interpretation {p} (Bob is dead and there is no hole in
the wall) and {p, q} (Bob is dead and there is a hole
in the wall) to be possible. Under the stable model se-
mantics, these rules describe beliefs of a rational agent:
The agent believes either p or q and the agents believes
q. This interpretation might correspond to the follow-
ing story: “I know that someone was going to shoot a
gun at Bob, which would either result in Bob’s death
or in a hole in the wall. Moreover, I also learn that
Bob is dead.” In this case, I would have no reason to
believe there might be a hole in the wall. Indeed, the
only stable model is {p}.

CP-logic treats disjunction in a fundamentally differ-
ent way than the stable semantics. Interestingly, the

2In most of the literature, the bodies of the rules of a
disjunctive logic program must be conjunctions of literals.
For our purposes, however, this restriction is not relevant.

possible model semantics (Sakama & Inoue 1994) for
disjunctive programs is very similar to our treatment.
Indeed, it consists of the stable models of instances of a
program. Because, as shown in the previous section, the
semantics of CP-logic considers the well-founded mod-
els of instances, these two semantics are very closely
related. Indeed, for a large class of programs, including
all stratified ones, they coincide completely.

Normal logic programs

A normal logic program P is a set of rules h← ϕ, with
h an atom and ϕ a formula. If P is stratified, then, at
least syntactically, it is also a CP-theory. Its semantics
πP assigns a probability of 1 to a single interpretation
and 0 to all other interpretations. Moreover, the results
from the previous section tell us that the interpretation
with probability 1 will be precisely the well-founded
model of P . As such, a logic program under the well-
founded semantics can be viewed as a description of
causal information about a deterministic process. Con-
cretely, we can read a rule h← ϕ as: “if ϕ holds, there
will be a deterministic event, that causes h.”

This observation exposes an interesting connection
between logic programming under the well-founded se-
mantics and causality. Such a connection helps to
explain, for instance, the usefulness of this semantics
in dealing with recursive ramifications when reason-
ing about actions (Denecker, Theseider-Dupré, & Bel-
leghem 1998). Moreover, there is also an interesting link
here to the language of ID-logic (Denecker & Ternovska
2004). This is an extension of classical logic, that uses
logic programs under the well-founded semantics to rep-
resent inductive definitions. Inductive definitions are a
well-known mathematical construct, where a concept is
defined in terms of itself. In mathematical texts, such
a definition should be accompanied by a well-founded
order, over which the induction happens, e.g., the well-
known inductive definition of the satisfaction relation |=
of classical logic is a definition over the length of formu-
las. One of the key observations that underlie ID-logic
is the fact that if such an order is not explicitly given,
one can still be derived from the rule-based structure
of a definition. This derived order is precisely the order
imposed by the well-founded semantics. There is an
obvious parallel here to the role of time in CP-logic: a
complete description of a process should specify when
events happen; however, if this information is not ex-
plicitly given, the order of events can still be derived
from the rule-based structure of a CP-theory. It is in-
teresting that the same mathematical construct of the
well-founded semantics can be used to derive both the
well-founded order for an inductive definition and the
temporal order for a set of CP-events. This observation
seems to imply that an inductive definition is nothing
more than a representation of a causal process, that
takes place in the domain of mathematical objects.

DEPARTMENT OF INFORMATICS 189

11TH NMR WORKSHOP

McCain and Turner’s causal theories
In this section, we compare the treatment of causality in
CP-logic to McCain and Turner’s causal theories (Mc-
Cain & Turner 1996). A causal theory is a set of rules
of the form ϕ ⇐ ψ, where ϕ and ψ are propositional
formulas. The semantics of such a theory T is defined
as follows. An interpretation I is a model of T iff I
is the unique classical model of the theory T I = {ϕ |
there exists a rule ϕ ⇐ ψ in T such that I |= ψ}.
This semantics is based on the principle of universal
causation, which states that: “every fact that obtains
is caused” (McCain & Turner 1996). We now compare
this language to deterministic CP-logic, i.e., CP-logic in
which every CP-event causes one atom with probabil-
ity 1. The most obvious difference concerns the funda-
mental knowledge representation methodology of these
logics. In CP-logic, a proposition represents a property
that is false unless there is a cause for it to be true.
For McCain and Turner, however, truth and falsity are
completely symmetric, i.e., not only is a property not
true unless there is a cause for it to be true, but a prop-
erty is also not false unless there is a cause for it to be
false. It is up to the user to make sure there is always
a cause for either falsity or truth. For instance, the
CP-theory {p ← ¬q} has {p} as its model, while the
causal theory {p⇐ ¬q} has no models, because neither
q nor ¬q is caused. The CP-logic view that falsity is
the natural state of an atom can be simulated in causal
theories, by adding a rule ¬p ⇐ ¬p for every atom p.
Essentially, this says that ¬p is in itself reason enough
for ¬p. Let C ′ be the result of adding such rules to some
original CP-theory C. As shown in (McCain 1997), the
models of C ′ are all interpretations I that consist of all
heads of rules r ∈ C, for which I |= body(r). In logic
programming terms, these are the supported models of
C, i.e., fixpoints of the immediate consequence operator
TC .

The difference such a CP-theory C and its corre-
sponding causal theory C ′ is, therefore, precisely the
difference between the well-founded model semantics
and supported model semantics. It is well-known that
this lies in the treatment of loops. In our context, it can
be traced back to the fundamental principles of these
logics. McCain and Turner’s principle of “universal cau-
sation” states that everything that holds must have a
cause. This is a weaker principle than our principle of
no deus ex machina effects, which states that every true
proposition must have a cause and that something can-
not cause itself. Indeed, the CP-theory {p← p} has {}
as its model, whereas the causal theory {p⇐ p} has {p}
as its model. In other words, in McCain and Turner’s
theories, it can be stated that a certain atom might be
true “on its own”, i.e., without any additional causal
explanation being required. This can be useful to in-
corporate exogenous actions into a theory, i.e., actions
that can simply happen, without any part of the model
describing why they happen. These currently cannot
be represented in CP-logic. On the other hand, Mc-
Cain and Turner’s approach to self-causation does not

allow them to directly represent cyclic causal relations
of the kind appearing in our HIV example.

Related work

The correspondence to LPADs establishes a relation
between CP-logic and probabilistic logic programming
formalisms. In (Vennekens & Verbaeten 2003), a de-
tailed comparison is made between LPADs and a num-
ber of such approaches. At the formal level, these com-
parisons carry over to CP-logic. Here, we briefly discuss
some of these formalisms, with a focus on the causal in-
terpretation of CP-logic.

It has been shown in (Vennekens & Verbaeten 2003)
that LPADs are very closely to the Independent Choice
Logic (ICL) (Poole 1997). This language is based on
abductive logic programs under the stable model se-
mantics and was developed within the framework of
decision theory. In (Finzi & Lukasiewicz 2003), a con-
nection was made between ICL and Pearl’s structural
model approach to causality. One of the motivations
for studying this relation is that it allows concepts such
as “actual cause” and “explanation”, that have been
investigated by Halpern and Pearl in the context of
structural models (Halpern & Pearl 2001), to be used in
ICL. By linking ICL to CP-logic, we show that ICL can
also be seen as a logic that incorporates our more fine-
grained concept of causality, based on causal events.
This raises the question of whether there are meaning-
ful adaptations of Halpern and Pearl’s definitions that
can take into account this additional structure. This is
an interesting avenue for future research.

Bayesian Logic Programs (BLPs) (Kersting & Raedt
2000) and Relational Bayesian Networks (RBNs)
(Jaeger 1997) are two formalisms that aim at lifting
the propositional formalism of Bayesian networks to
a first-order representation. Both these language al-
low arbitrary functions to be used to compute cer-
tain probabilities. By using a noisy-or , certain prop-
erties of CP-logic can be simulated. For instance, in
a Relational Bayesian Network, one would model the
Russian roulette example by the probability formula
P (death) = noisy-or({1/6·fire(x) | x}). However, nei-
ther language offers a way of dealing with cyclic causal
relations, other than an encoding similar to that for
Bayesian networks.

Baral et al. introduced P-log (Baral, Gelfond, &
Rushton 2004), a probabilistic extension of A-prolog.
This language seems to be quite similar to CP-logic,
even though it is somewhat broader in scope, being
aimed at combining probabilistic and logical reason-
ing, rather than simply representing a probability dis-
tribution. As far as the representation of probability
knowledge is concerned, P-log appears to be closer to
Bayesian networks in the sense that it does not share
CP-logic’s focus on independent causation; instead, in
every situation that might arise, there has to be pre-
cisely one statement that defines the probability of a
certain effect in terms of all its possible causes. An

190 Technical Report IfI-06-04

Theory of NMR and Uncertainty

interesting feature of P-log is that it allows random se-
lections from a dynamic range of alternatives, which is
more flexible than the static enumerations of possible
outcomes used in CP-logic.

Conclusions
We have investigated the role of causality in model-
ing probabilistic processes. To this end, we introduced
the concept of a CP-event as a formal representation
of the intuitive notion of a causal event. We presented
a semantics for the language consisting of sets of such
CP-events. This is based on two fundamental princi-
ples, that govern the interaction between different CP-
events. The first is the principle of independent cau-
sation, which establishes the basic modularity of our
causal view of the world. The second principle, that of
no deus ex machina effects, captures the intuition that
nothing happens without a cause, even in the presence
of cyclic causal relations.

The direct representation of causal events in CP-logic
turns out to have a number of interesting properties
when compared to a Bayesian network style represen-
tation in terms of conditional probability. In particu-
lar, a new kind of independence, namely that between
different causes for the same effect, emerges as a struc-
tural property, improving the elaboration tolerance of
the representation. Moreover, cyclic causal relations
can also be represented in a natural way and do not
require any special treatment.

We have related CP-logic to a class of existing prob-
abilistic logic programming approaches. This shows
that these languages can also be seen as representations
of causal events. Moreover, this also shows that CP-
logic induces a possible world semantics for disjunctive
logic programs, that is quite different from the stan-
dard stable model semantics, but very similar to the
possible model semantics. Another consequence of this
results is that normal logic programs under the well-
founded semantics can be seen as a logic of deterministic
causality, which points towards an interesting relation
between causality and inductive definitions. We have
compared this way of handling causality to the McCain
and Turner’s causal theories.

References
Baral, C.; Gelfond, M.; and Rushton, N. 2004. Prob-
abilistic reasoning with answer sets. In Proc. Logic
Programming and Non Monotonic Reasoning, LP-
NMR’04, 21–33. Springer-Verlag.
Denecker, M., and Ternovska, E. 2004. A logic of
non-monotone inductive definitions and its modular-
ity properties. In Proc. 7th LPNMR, volume 2923 of
LNCS.
Denecker, M.; Theseider-Dupré, D.; and Belleghem,
K. V. 1998. An inductive definition approach to ram-
ifications. Linköping EACIS 3(7):1–43.
Finzi, A., and Lukasiewicz, T. 2003. Structure-based
causes and explanations in the independent choice

logic. In Proc. Uncertainty in Artificial Intelligence
(UAI).
Halpern, J., and Pearl, J. 2001. Causes and explana-
tions: A structural model approach – part I: Causes.
In Proc. Uncertainty in Artificial Intelligence (UAI).
Jaeger, M. 1997. Relational bayesian networks. In Pro-
ceedings of the Thirteenth Conference on Uncertainty
in Artificial Intelligence (UAI-97).
Kersting, K., and Raedt, L. D. 2000. Bayesian logic
programs. In Cussens, J., and Frisch, A., eds., Proceed-
ings of the Work-in-Progress Track at the 10th Inter-
national Conference on Inductive Logic Programming,
138–155.
McCain, N., and Turner, H. 1996. Causal theories of
action and change. In Proc. 13th AAAI/8th IAAI.
McCain, N. 1997. Causality in Commonsense Rea-
soning about Actions. Ph.D. Dissertation, University
of Texas at Austin.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems : Networks of Plausible Inference. Morgan
Kaufmann.
Pearl, J. 2000. Causality: Models, Reasoning, and
Inference. Cambridge University Press.
Poole, D. 1997. The Independent Choice Logic for
modelling multiple agents under uncertainty. Artificial
Intelligence 94(1-2):7–56.
Przymusinski, T. C. 1991. Stable semantics for
disjunctive programs. New Generation Computing
3/4:401–424.
Sakama, C., and Inoue, K. 1994. An alternative ap-
proach to the semantics of disjunctive logic programs
and deductive databases. Journal of automated rea-
soning 13(1):145–172.
Van Gelder, A.; Ross, K.; and Schlipf, J. 1991. The
Well-Founded Semantics for General Logic Programs.
Journal of the ACM 38(3):620–650.
Vennekens, J., and Verbaeten, S. 2003. Logic pro-
grams with annotated disjunctions. Technical Report
CW386, K.U. Leuven.
Vennekens, J.; Denecker, M.; ; and Bruynoogh, M.
2006. On the equivalence of Logic Programs with An-
notated Disjunctions and CP-logic. Technical report,
K.U. Leuven.
Vennekens, J.; Verbaeten, S.; and Bruynooghe, M.
2004. Logic programs with annotated disjunctions. In
Proc. 20th ICLP, volume 3132 of LNCS. Springer.

DEPARTMENT OF INFORMATICS 191

11TH NMR WORKSHOP

192 Technical Report IfI-06-04

Theory of NMR and Uncertainty

2.9 Model and experimental study of causality ascriptions

Model and experimental studies of causality ascriptions

Jean-François Bonnefon
LTC-CNRS

5 allées Antonio Machado
31058 Toulouse Cedex 9, France

bonnefon@univ-tlse2.fr

Rui Da Silva Neves
DSVP

5 allées Antonio Machado
31058 Toulouse Cedex 9, France

neves@univ-tlse2.fr

Didier Dubois and Henri Prade
IRIT-CNRS

118 Route de Narbonne
31062 Toulouse Cedex, France

{dubois,prade}@irit.fr

Abstract

A model is defined that predicts an agent’s ascriptions of
causality (and related notions of facilitation and justification)
between two events in a chain, based on background knowl-
edge about the normal course of the world. Background
knowledge is represented by nonmonotonic consequence re-
lations. This enables the model to handle situations of poor
information, where background knowledge is not accurate
enough to be represented in, e.g., structural equations. Tenta-
tive properties of causality ascriptions are explored, i.e., pref-
erence for abnormal factors, transitivity, coherence with log-
ical entailment, and stability with respect to disjunction and
conjunction. Empirical data are reported to support the psy-
chological plausibility of our basic definitions.

INTRODUCTION
Models of causal ascriptions crucially depend on the choice
of an underlying representation for the causality-ascribing
agent’s knowledge. Unlike standard diagnosis problems
(wherein an unobserved cause must be inferred from ob-
served events and known causal links), causality ascription
is a problem of describing as ‘causal’ the link between two
observed events in a sequence. The first step in modeling
causal ascription is to define causality in the language cho-
sen for the underlying representation of knowledge. In this
article, we define and discuss a model of causal ascription
that represents knowledge by means of nonmonotonic con-
sequence relations.1 Indeed, agents often must cope with
poor knowledge about the world, under the form of default
rules. Clearly, this type of background knowledge is less
accurate than, e.g., structural equations. It is nevertheless
appropriate to predict causal ascriptions in situations of re-
stricted knowledge. We first presents the logical language
we will use to represent background knowledge. We then
define our main notions of causality and facilitation ascrip-
tions. Empirical data are reported to support the distinction
between these two notions. Next, we establish some formal
properties of the model. We then distinguish the notion of
epistemic justification from that of causality. Finally, we re-
late our model to other works on causality in AI.

1This model was advocated in a recent workshop paper (Dubois
& Prade 2005). The present paper is a slightly expanded version of
(Bonnefon et al. 2006)

MODELING BACKGROUND
KNOWLEDGE

The agent is supposed to have observed or learned of a se-
quence of events, e.g.: ¬Bt, At, Bt+1. This expresses that B
was false at time t, when A took place, and that B became
true afterwards (t + 1 denotes a time point after t). There is
no uncertainty about these events.

Besides, the agent maintains a knowledge-base made of
conditional statements of the form ‘in context C, if A takes
place then B is generally true afterwards’, or ‘in context C,
B is generally true’. These will be denoted by At∧Ct |∼ Bt+1,
and by Ct |∼ Bt, respectively. (Time indices will be omitted
when there is no risk of confusion.) The conditional beliefs
of an agent with respect to B when an action A takes place
or not in context C can take three forms: (i) If A takes place
B is generally true afterwards: At ∧Ct |∼ Bt+1; (ii) If A takes
place B is generally false afterwards: At ∧ Ct |∼ ¬Bt+1; (iii)
If A takes place, one cannot say whether B is generally true
or false afterwards: At ∧Ct 6|∼ Bt+1 and At ∧Ct 6|∼ ¬Bt+1. 2

We assume that the nonmonotonic consequence relation
|∼ satisfies the requirements of ‘System P’ (Kraus, Lehmann,
& Magidor 1990); namely, |∼ is reflexive and the following
postulates and characteristic properties hold (|= denotes clas-
sical logical entailment):

Left Equivalence E |∼ G and E ≡ F imply F |∼ G
Right Weakening E |∼ F and F |= G imply E |∼ G

AND E |∼ F and E |∼ G imply E |∼ F ∧G
OR E |∼ G and F |∼ G imply E ∨ F |∼ G

Cautious Monotony E |∼ F and E |∼ G imply E ∧ F |∼ G
Cut E |∼ F and E ∧ F |∼ G imply E |∼ G

In addition, we assume 6|∼ to obey the property
of Rational Monotony, a strong version of Cautious
Monotony(Lehmann & Magidor 1992):

Rational Monotony E 6|∼ ¬F and E |∼ G imply E ∧ F |∼ G

Empirical studies repeatedly demonstrated (Benferhat,
Bonnefon, & Da Silva Neves 2004; 2005; Da Silva Neves,

2Note that 6|∼ can be understood in two different ways: Either
At ∧Ct 6|∼ Bt+1 just means that At ∧Ct |∼ Bt+1 is not deducible from
the agent’s knowledge base, or it means that the agent really knows
it is impossible to say that At ∧ Ct |∼ Bt+1 (this requires that the
agent knows everything that generally holds concerning B when
A∧C is true). However, this difference is not crucial to our present
purpose.

DEPARTMENT OF INFORMATICS 193

11TH NMR WORKSHOP

Bonnefon, & Raufaste 2002; Ford 2004; Pfeifer & Kleiter
2005) that System P and Rational Monotony provide a psy-
chologically plausible representation of background knowl-
edge and default inference. Arguments for using nonmono-
tonic logics in modeling causal reasoning were also dis-
cussed in the cognitive science literature (Shoham 1990).

ASCRIBING CAUSALITY OR
FACILITATION

In the following definitions, A, B, C, and F are either re-
ported actions or statements describing states of affairs, even
though notations do not discriminate between them, since
the distinction does not yet play a crucial role in the model.
When nothing takes place, the persistence of the truth status
of statements is assumed in the normal course of things, i.e.,
Bt |∼ Bt+1 and ¬Bt |∼ ¬Bt+1.

Assume that in a given context C, the occurrence of event
B is known to be exceptional (i.e., C |∼ ¬B). Assume now
that F and A are such that F ∧ C 6|∼ ¬B on the one hand,
and A ∧ F ∧ C |∼ B on the other hand; we will say that
in context C, A together with F are perceived as the cause
of B (denoted C : A ∧ F ⇒ca B), while F alone is merely
perceived to have facilitated the occurrence of B (denoted
C : F ⇒fa B).

Definition 1 (Facilitation ascription). An agent that, in
context C, learns of the sequence ¬Bt , Ft, Bt+1 will judge
that C : F ⇒fa B if it believes that C |∼ ¬B, and that both
F ∧C 6|∼ ¬B and F ∧C 6|∼ B.

Definition 2 (Causality ascription). An agent that, in con-
text C, learns of the sequence ¬Bt , At, Bt+1 will judge that
C : A⇒ca B if it believes that C |∼ ¬B, and A ∧C |∼ B.

Example 1 (Driving while intoxicated). When driving, one
has generally no accident, Drive |∼ ¬Accident. This is no
longer true when driving while drunk, which is not as safe,
Drive ∧ Drunk 6|∼ ¬Accident); moreover, fast driving while
drunk will normally lead to an accident, Drive ∧ Fast ∧
Drunk |∼ Accident. Suppose now that an accident took place
after the driver drove fast while being drunk. Fast ∧ Drunk
will be perceived as the cause of the accident, while Drunk
will only be judged as having facilitated the accident.

Of course, in the above definition A can stand for any
compound reported fact such as A′ ∧ A′′. Here, C |∼ ¬B,
F ∧ C 6|∼ ¬B, and A ∧ C |∼ B must be understood as pieces
of default knowledge used by the agent to interpret the chain
of reported facts ¬Bt (in context C), At, Bt+1, together with
the persistence law ¬Bt ∧C |∼ ¬Bt+1 (which can be deduced
from C |∼ ¬Bt and ¬Bt |∼ ¬Bt+1). In such a case, At may
indeed appear to the agent as being a cause for the change
from ¬Bt to Bt+1, since C |∼ ¬Bt and At ∧ C |∼ Bt+1 entail
At ∧ ¬Bt ∧C |∼ Bt+1.

Note that Def. 1 is weaker than saying F ‘prevents’ ¬B
from persisting: 6|∼ does not allow the jump from ‘not having
¬B’ to ‘B’. In Def. 2, the fact that B is exceptional in context
C precludes the possibility for C to be the cause of B – but
not the possibility that B |= C, i.e., that C is a necessary
condition of B. Thus, context can be a necessary condition
of B without being perceived as its cause.

An interesting situation arises when an agent only knows
that C |∼ ¬B and F ∧ C 6|∼ ¬B, and learns of the sequence
of events ¬Bt (in context C), Ft, Bt+1. Although this sit-
uation should lead the agent to judge that C : Ft ⇒fa Bt+1,
it may be tempting to judge that C : Ft ⇒ca Bt+1, as long
as no other potential cause reportedly took place. Another
interesting situation arises when, in context C, an agent
learns of the sequence ¬Bt, At, and Bt+1, while it believes
that ¬Bt ∧ C |∼ ¬Bt+1, and that At ∧ C |∼ ¬Bt+1. Then
the agent cannot consider that C : At ⇒ca Bt+1, and it may
suspect some fact went unreported: finding about it would
amount to a diagnosis problem.

When an agent believes that C |∼ ¬B and A∧C 6|∼ ¬B, and
learns of the sequence of events¬Bt, At, and¬Bt+1, the agent
would conclude that action At failed to produce its normal
effect, for unknown reasons.

According to (von Wright 1963), an action caused p to be
true if and only if either:
• p was false before the action, and had the action not been

taken, p would not have become true, or
• the action maintains p true against the normal course of

things, thus preventing p from becoming false.
The first situation straightforwardly relates to our defini-

tion. The second situation can also be represented in our set-
ting: Bt is known to be true, and after At takes place Bt+1 is
still true, although in the normal course of things, had A not
happened, B would have become false, i.e., Bt ∧C |∼ ¬Bt+1.
The agent knowledge also includes Bt ∧ At ∧C |∼ Bt+1. Let-
ting C′ = Bt ∧ C, this can be rewritten C′ |∼ ¬Bt+1 and
A ∧C′ |∼ Bt+1, which is formally Definition 2.

EXPERIMENTAL TESTS
There is no previous empirical support to the distinction we
introduce between ascriptions of cause and facilitation. To
check whether this distinction has intuitive appeal to lay rea-
soners, we conducted two experiments in which we pre-
sented participants with different sequences of events. We
assessed their relevant background knowledge, from which
we predicted the relations of cause and facilitation they
should ascribe between the events in the sequence. We then
compared these predictions to their actual ascriptions.

Experiment 1
Methods Participants were 46 undergraduate students.
None was trained in formal logic or in philosophy. Par-
ticipants read the stories of three characters, and answered
six questions after reading each story. The three characters
were described as constantly feeling very tired (an uncom-
mon feeling for them) after two recent changes in their lives:
working at night and having a stressful boss (for the first
character), working at night and becoming a dad (for the
second character), and having a stressful boss and becoming
a dad (for the third character). The first three questions as-
sessed participants’ background knowledge with respect to
(i) the relation between the first event and feeling constantly
tired; (ii) the second event and feeling constantly tired; and
(iii) the conjunction of the two events and feeling constantly
tired. For example:

194 Technical Report IfI-06-04

Theory of NMR and Uncertainty

What do you think is the most common, the most normal:
Working at night and feeling constantly tired, or working at
night and not feeling constantly tired? or are those equally
common and normal?

Participants who chose the first, second, and third answer
were assumed to endorse WorkNight |∼ Tired; WorkNight |∼
¬Tired; and (WorkNight 6|∼ Tired) ∧ (WorkNight 6|∼ ¬Tired),
respectively. The fourth, fifth, and sixth questions assessed
participants’ ascriptions of causality or facilitation between
(i) the first event and feeling constantly tired; (ii) the second
event and feeling constantly tired; and (iii) the conjunction
of the two events and feeling constantly tired. E.g., one of
these questions read:

Fill in the blank with the word ‘caused’ or ‘facilitated’, as
seems the most appropriate. If neither seems appropriate, fill
in the blank with ‘’: Working at night . . . the fact that
Julien feels constantly tired.

The experiment was conducted in French,3 and the order
in which the stories were presented to the participants was
counterbalanced.

Results Out of the 116 ascriptions that the model pre-
dicted to be of facilitation, 68% indeed were, 11% were of
causality, and 21% were neither. Out of the 224 ascriptions
that the model predicted to be of causality, 46% indeed were,
52% were of facilitation, and 2% were neither. The global
trend in the results is thus that background knowledge that
theoretically matches a facilitation ascription indeed largely
leads people to make such an ascription, while background
knowledge that theoretically matches a causality ascription
leads people to divide equally between causality and facili-
tation ascriptions. This trend is statistically reliable for al-
most all ascriptions required by the task. Relevant statistics
(χ2 scores) are higher than 7.7 for 7 out of the 9 ascriptions
(p < .05, one-tailed, in all cases), and higher than 3.2 for
the remaining two ascriptions (p < .10, one-tailed, in both
cases). From these results, it appears that the notion of facil-
itation does have intuitive appeal to lay reasoners, and that
it is broadly used as defined in our model. In particular, it
clearly has a role to play in situations where an ascription of
causality sounds too strong a conclusion, but no ascription
at all sounds too weak.

Experiment 2

Experiment 2 was designed to consolidate the results of Ex-
periment 1 and to answer the following questions: Does the
fact that background knowledge match Def. 1 or Def. 2 af-
fect the strength of the link participants perceive between
two reported events, and does this perceived strength in turn
determine whether they make an ascription of causality or
facilitation?

3The term ‘a favorisé’ was used for ‘facilitated’, instead of
the apparently straightforward translation ‘a facilité’, for it seemed
pragmatically awkward to use the French verb ‘faciliter’ for an un-
desirable outcome.

Figure 1: Mediating role of perceived strength for the ef-
fect of background knowledge on ascription. Coefficients
are standardized βs, ∗p < .05, ∗∗p < .01.

Background knowledge

Perceived strength

Ascription

.41∗∗ .29∗

(.23)

.33∗

Methods Participants were 41 undergraduates. Ele-
ments of their background knowledge were assessed as
in Exp. 1, in order to select triples of propositions <
Context,Factor,Effect > that matched either Def. 1 or
Def. 2. E.g., a participant might believe that one has gen-
erally no accident when driving, but that one will generally
have an accident when driving after some serious drinking;
for this participant, < Drive, SeriousDrinking,Accident > is
a match with Def. 2. Participants then rated on a 9-point
scale how strongly Factor and Effect were related. Finally,
as a measure of ascription, they chose an appropriate term to
describe the relation between Factor and Effect, from a list
including ‘causes’ and ‘facilitates’.

Results Out of the 16 ascriptions that the model predicted
to be of facilitation, 14 were so, and 2 were of causality.
Out of the 25 ascriptions that the model predicted to be of
causality, 11 were so, and 14 were of facilitation. Beliefs
thus had the expected influence on ascriptions, χ2 = 4.5,
p < .05. The trend observed in Experiment 1 is replicated
in Experiment 2. We also conducted a mediation analysis
of our data, which consists in a series of 3 regression ana-
lyzes (see Figure 1). The direct effect of background knowl-
edge on ascription was significant, β = .33, p < .05. The
effect of background knowledge on perceived strength was
also significant, β = .41, p < .01. In the third regression,
background knowledge and perceived strength were entered
simultaneously. Perceived strength was a reliable predictor
of ascription, β = .29, p < .05, which was no longer the case
for background knowledge, β = .23, p > .05. Data thus meet
the requirement of a mediational effect: Whether the back-
ground knowledge of participants matches Def. 1 or Def. 2
determines their final ascription of C : Factor ⇒fa Effect or
C : Factor ⇒ca Effect through its effect on the perceived
strength of the link between Factor and Effect.

PROPERTIES OF CAUSAL ASCRIPTIONS
Impossibility of mutual causality
Proposition 1. If C : A⇒ca B, then it cannot hold that
C : B⇒ca A.

Proof. If C : A⇒ca B, it holds that C |∼ ¬A, C ∧ A |∼ B,
and the sequence ¬Bt, At, Bt+1 has been observed. This is
not inconsistent with C |∼ ¬A, C ∧ B |∼ A (the background
knowledge part of C : B⇒ca A), but it is inconsistent with

DEPARTMENT OF INFORMATICS 195

11TH NMR WORKSHOP

the sequence ¬At, Bt, At+1 that would allow the ascription
C : B⇒ca A. �

Preference for abnormal causes
Psychologists established that abnormal conditions are more
likely to be selected by human agents as the cause of an
event (Hilton & Slugoski 1986) and more so if this event is
itself abnormal (Gavansky & Wells 1989) (see also (Hart &
Honoré 1985) in the area of legal philosophy). Our model
reflects this preference: Only what is abnormal in a given
context can be perceived as facilitating or causing a change
in the normal course of things in this context.

Proposition 2. If C : A⇒ca B or C : A⇒fa B, then C |∼
¬A.

Proof. C |∼ ¬A is false when either C |∼ A or C 6|∼ ¬A.
If C |∼ A, it cannot be true that both C |∼ ¬B and either
A ∧ C 6|∼ ¬B (the definition of C : A⇒fa B) or A ∧ C |∼ B
(the definition of C : A⇒ca B). This is due to the Cautious
Monotony property of |∼, which forces C ∧ A |∼ ¬B from
C |∼ A and C |∼ ¬B. Likewise, the Rational Monotony of
|∼ forces C ∧ A |∼ ¬B from C 6|∼ ¬A and C |∼ ¬B; thus,
it cannot be the case that C : A⇒fa B or C : A⇒ca B when
C 6|∼ ¬A. �

Example 2 (The unreasonable driver). Let us imagine an
agent who believes it is normal to be drunk in the context
of driving (Drive |∼ Drunk). This agent may think that it
is exceptional to have an accident when driving (Drive |∼
¬Accident). In that case, the agent cannot but believe
that accidents are exceptional as well when driving while
drunk: Drive ∧ Drunk |∼ ¬Accident. As a consequence,
when learning that someone got drunk, drove his car,
and had an accident, this agent will neither consider that
C : Drunk ⇒fa Accident nor that C : Drunk ⇒ca Accident.

Transitivity
Def. 2 does not grant general transitivity to ⇒ca. If
C : A⇒ca B and C : B⇒ca D, it does not always follow that
C : A⇒ca D. Formally: C |∼ ¬B and A∧C |∼ B and C |∼ ¬D
and B ∧ C |∼ D do not entail C |∼ ¬D and A ∧ C |∼ D, be-
cause |∼ itself is not transitive. Although⇒ca is not generally
transitive, it becomes so in one particular case.

Proposition 3. If C : A⇒ca B, C : B⇒ca D, and B∧C |∼ A,
then C : A⇒ca D.

Proof. From the definition of C : B⇒ca D, it holds that B∧
C |∼ D. From B∧C |∼ A and B∧C |∼ D, applying Cautious
Monotony yields A ∧ B ∧ C |∼ D, which together with A ∧
C |∼ B (from the definition of C : A⇒ca B) yields by Cut
A∧C |∼ D; since it holds from the definition of C : B⇒ca D
that C |∼ ¬D, the two parts of the definition of C : A⇒ca D
are satisfied. �

Example 3 (Mud on the plates). Driving back from the
countryside, you get a fine because your plates are muddy,
Drive : Mud ⇒ca Fine. Let us assume that you perceive
your driving to the countryside as the cause for the plates
to be muddy, Drive : Countryside⇒ca Mud. For transitivity

to apply, i.e., to judge that Drive : Countryside ⇒ca Fine, it
must hold that Mud ∧ Drive |∼ Countryside: If mud on your
plates usually means that you went to the countryside, then
the trip can be considered the cause of the fine. If the pres-
ence of mud on your plates does not allow to infer that you
went to the countryside (perhaps you also regularly drive
through muddy streets where you live), then transitivity is
not applicable; you will only consider that the mud caused
the fine, not that the trip did.

Entailment and causality ascriptions
Classical entailment |= does not preserve ⇒ca. If
C : A⇒ca B and B |= B′, one cannot say that C : A⇒ca B′.
Indeed, while A∧C |∼ B′ follows by right weakening (Kraus,
Lehmann, & Magidor 1990) from A∧C |∼ B, it is not gener-
ally true that C |∼ ¬B′, given that C |∼ ¬B. Besides, accord-
ing to Definition 2, if A′ |= A, the fact that C : A⇒ca B does
not entail that C : A′ ⇒ca B, since C |∼ ¬B and A ∧ C |∼ B
do not entail A′ ∧ C |∼ B when A′ |= A. This fact is due to
the extreme cautiousness of System P. It is contrasted in the
following example with Rational Monotony.
Example 4 (Stone throwing). An agent believes that
a window shattered because a stone was thrown at it
(Window : Stone ⇒ca Shatter), based on its beliefs that
Window |∼ ¬Shatter and Stone ∧Window |∼ Shatter. Using
the Cautious Monotony of System P, it is not possible to pre-
dict that the agent would make a similar ascription if a small
stone had been thrown (SmallStone), or if a white stone
had been thrown (WhiteStone), or even if a big stone had
been thrown (BigStone), although it holds that SmallStone |=
Stone, WhiteStone |= Stone, and BigStone |= Stone.
Adding Rational Monotony (Lehmann & Magidor 1992) to
System P allows the ascriptions Window : BigStone ⇒ca
Shatter and Window : WhiteStone ⇒ca Shatter, but also
Window : SmallStone ⇒ca Shatter. To block this last as-
cription, it would be necessary that the agent has specific
knowledge about the harmlessness of small stones, such
as Window ∧ Smallstone 6|∼ Shatter or even Window ∧
Smallstone |∼ ¬Shatter.

Stability w.r.t. disjunction and conjunction
⇒ca is stable with respect to disjunction, both on the right
and on the left, and stable w.r.t. conjunction on the right.
Proposition 4. The following properties hold:

1. If C : A⇒ca B and C : A⇒ca B′, then C : A⇒ca B ∨ B′.
2. If C : A⇒ca B and C : A′ ⇒ca B, then C : A ∨ A′ ⇒ca B.
3. If C : A⇒ca B and C : A⇒ca B′, then C : A⇒ca B ∧ B′.

Proof. Applying AND to the first part of the definitions of
C : A⇒ca B and C : A⇒ca B′, i.e., C |∼ ¬B and C |∼ ¬B′,
yields C |∼ ¬B ∧ ¬B′, and thus C |∼ ¬(B ∨ B′). Now, apply-
ing AND to the second part of the definitions of C : A⇒ca B
and C : A⇒ca B′, i.e., A ∧ C |∼ B and A ∧ C |∼ B′, yields
A∧C |∼ B∧B′, which together with Right Weakening yields
A ∧ C |∼ B ∨ B′. The definition of C : A⇒ca B ∨ B′ is
thus satisfied. The proof of Fact 2 is obtained by apply-
ing OR to the second part of the definitions of C : A⇒ca B
and C : A⇒ca B′. Finally, applying AND to the first part

196 Technical Report IfI-06-04

Theory of NMR and Uncertainty

of the definitions of C : A⇒ca B and C : A⇒ca B′, i.e.,
C |∼ ¬B and C |∼ ¬B′, yields C |∼ ¬B ∧ ¬B′, which to-
gether with Right Weakening, yields C |∼ ¬B ∨ ¬B′, and
thus C |∼ ¬(B ∧ B′). Now, applying AND to the second
part of the definitions of C : A⇒ca B and C : A⇒ca B′, i.e.,
A ∧ C |∼ B and A ∧ C |∼ B′, yields A ∧ C |∼ B ∧ B′. The
definition of C : A⇒ca B ∧ B′ is thus satisfied. �

⇒ca is not stable w.r.t. conjunction on the left. If
C : A⇒ca B and C : A′ ⇒ca B, then it is not always the case
that C : A ∧ A′ ⇒ca B (see example 5). This lack of stabil-
ity is once again due to the cautiousness of System P; for
C : A ∧ A′ ⇒ca B to hold, it is necessary that C ∧ A |∼ A′
or, alternatively, that C ∧ A′ |∼ A. Then Cautious Monotony
will yield A ∧ A′ ∧ C |∼ B. Rational Monotony can soften
this constraint and make it enough that C ∧ A 6|∼ ¬A′ or
C ∧ A′ 6|∼ ¬A.

Example 5 (Busy professors). Suppose that professors in
your department seldom show up early at the office (Prof |∼
¬Early). However, they generally do so when they have tons
of student papers to mark (Prof ∧Mark |∼ Early), and also
when they have a grant proposal to write (Prof ∧ Grant |∼
Early). When learning that a professor had tons of papers
to grade and that she came in early, you would judge that
Prof : Mark ⇒ca Early. Likewise, when learning that a
professor had a grant proposal to write and came in early,
you would judge that Prof : Grant ⇒ca Early. But what
if you learn that a professor had tons of papers to grade
and a grant proposal to write and that she came in early?
That would depend on whether it is an exceptional situa-
tion to have to deal with both tasks on the same day. If it
is not exceptional (Mark 6|∼ ¬Grant), then you will judge
that Prof : Mark ∧ Grant ⇒ca Early. If, on the contrary,
Mark ∧ Grant is an exceptional event, it does not hold any-
more that Mark ∧ Grant |∼ Early, and it is thus impossible to
feel sure about Prof : Mark ∧ Grant ⇒ca Early. For exam-
ple, it might be the case that faced with such an exceptional
workload, a professor will prefer working at home all day
rather than coming to the office. In that case, her coming
in early would be due to another factor, e.g., a meeting that
could not be cancelled.

ASCRIPTIONS OF JUSTIFICATION
Perceived causality as expressed in Def. 2 should be distin-
guished from the situation that we term ‘justification.’ We
write that C : A⇒ju B when an agent judges that the occur-
rence of A in context C gave reason to expect the occurrence
of B.

Definition 3 (Justification). An agent that learns in context
C of the sequence ¬Bt , At, Bt+1 will judge that C : A⇒ju B
if it believes that C 6|∼ ¬B, C 6|∼ B and A ∧C |∼ B.

Faced with facts C, ¬Bt, At, Bt+1, an agent believing that
C 6|∼ ¬B, C 6|∼ B and A ∧ C |∼ B may doubt that the change
from ¬Bt to Bt+1 is really due to At, although the latter is
indeed the very reason for the lack of surprise at having Bt+1
reported. Indeed, situation ¬Bt at time t appears to the agent
to be contingent, since it is neither a normal nor an abnormal
course of things in context C. This clearly departs from the

situation where C |∼ ¬B and A ∧ C |∼ B, wherein the agent
will judge that C : A⇒ca B. In a nutshell, the case whereby
C 6|∼ ¬B, C 6|∼ B and A ∧ C |∼ B cannot be interpreted as
the recognition of a causal phenomenon by an agent: All
that can be said is that reporting A caused the agent to start
believing B, and that she should not be surprised of having
Bt+1 reported.

What we call justification is akin to the notion of explana-
tion following Spohn (Spohn 1983): Namely, ‘A is a reason
for B’ when raising the epistemic rank for A raises the epis-
temic rank for B. Gärdenfors (Gärdenfors 1990) captured
this view to some extent, assuming that A is a reason for B
if B is not retained in the contraction of A. Williams et al.
(Williams et al. 1995) could account for the Spohnian view
in a more refined way using kappa-rankings and transmuta-
tions, distinguishing between weak and strong explanations.
As our framework can easily be given a possibilistic seman-
tics (Benferhat, Dubois, & Prade 1997), it could properly
account for this line of thought, although our distinction be-
tween perceived causation and epistemic justification is not
the topic of the above works.

RELATED WORKS
Causality plays a central role in at least two problems stud-
ied in AI, diagnosis and the simulation of dynamical sys-
tems. Diagnosis problems are a matter of abduction: One
takes advantage of the knowledge of some causal links to
infer the most plausible causes of an observed event (Peng
& Reggia 1990). In this setting, causality relations are often
modelled by conditional probabilities P(effect|cause).4 Dy-
namical systems are modelled in AI with respect, e.g., to
qualitative physics (de Kleer & Brown 1986), and in logics
of action. The relation of nonmonotonic inference to causal-
ity has already been emphasized by authors dealing with rea-
soning about actions and the frame problem (Giunchiglia et
al. 2004; McCain & Turner 1995; Turner 1999). Material
implication being inappropriate to represent a causal link,
these approaches define a ‘causal rule’ as ‘there is a cause
for effect B to be true if it is true that A has just been exe-
cuted’, where ‘there is a cause for’ is modelled by a modal
operator.

The problem discussed in this paper is not, however, one
of classical diagnosis. Neither does it deal with the qualita-
tive simulation of dynamical systems, nor with the problem
of describing changes caused by the execution of actions,
nor with what does not change when actions are performed.
We are concerned here with a different question, namely the
explanation of a sequence of reported events, in terms of
pairs of events that can be considered as related by a causal-
ity relation. In that sense, our work is reminiscent of the
‘causal logic’ of Shafer (Shafer 1998), which provides a log-
ical setting that aims at describing the possible relations of
concomitance between events when an action takes place.

4Nevertheless, Bayesian networks (Pearl 1988) (that represent a
joint probability distribution by means of a directed graph) do not
necessarily reflect causal links between their nodes, for different
graphical representations can be obtained depending on the order-
ing in which variables are considered (Dubois & Prade 1999).

DEPARTMENT OF INFORMATICS 197

11TH NMR WORKSHOP

However, Shafer’s logic does not leave room for abnormal-
ity. This notion is central in our approach, as it directly re-
lates to the relations of qualitative independence explored
in (Dubois et al. 1999) – causality and independence being
somewhat antagonistic notions.

Following (Pearl 2000), Halpern and Pearl (Halpern &
Pearl to appeara; to appearb) have proposed a model that dis-
tinguishes real causes (‘cause in fact’) from potential causes,
by using an a priori distinction between ‘endogenous’ vari-
ables (the possible values of which are governed by struc-
tural equations, for example physical laws), and ‘exogenous’
variables (determined by external factors). Exogenous vari-
ables cannot be deemed causal. Halpern and Pearl’s defini-
tion of causality formalizes the notion of an active causal
process. More precisely, the fact A that a subset of en-
dogenous variables has taken some definite values is the real
cause of an event B if (i) A and B are true in the real world,
(ii) this subset is minimal, (iii) another value assignment to
this subset would make B false, the values of the other en-
dogenous variables that do not directly participate to the oc-
currence of B being fixed in some manner, and (iv) A alone is
enough for B to occur in this context. This approach, thanks
to the richness of background knowledge when it is repre-
sented in structural equations, makes it possible to treat es-
pecially difficult examples.

Building upon the notion of potential cause, Chockler and
Halpern (Chockler & Halpern 2003) have introduced defi-
nitions of responsibility and blame: The extent to which a
cause (or an agent) is responsible for an effect is graded,
and depends on the presence of other potential causes (or
agents). Clearly, the assessment of responsibility from iden-
tification of causal relationships raises further problems that
will not be discussed here.

Our model is not to be construed as an alternative or a
competitor to models based on structural equations. In-
deed, we see our approach as either a ‘plan B’ or a com-
plement to structural equation modeling. One might not
have access to the accurate information needed to build a
structural equation model; in this case, our less demand-
ing model might still be operable. Alternatively, a decision
support system may be able to build a structural equation
model of the situation, although its users only have access to
qualitative knowledge. In that case, the system will be able
to compare its own causality ascriptions to the conclusions
of the qualitative model, and take appropriate explanatory
steps, would those ascriptions be too different. Indeed, our
model does not aim at identifying the true, objective cause
of an event, but rather at predicting what causal ascription
an agent would make based on the limited information it has
at its disposal.

Models based on structural equations are often supple-
mented with the useful notion of intervention. In many sit-
uations, finding the cause of an event will be much easier if
the agent can directly intervene in the manner of an experi-
menter. In future work, we intend to explore the possibility
of supplementing our own model with a similar notion by
means of a do(•) operator. An ascription of causality (resp.,
facilitation) would be made iff the requirements of Defini-
tion 2 (resp., 1) are met both for A, B, C and for do(A), B,

C, where do(A) means that the occurrence of A is forced by
an intervention (Pearl 2000). As for now, we only give a
brief example of how such an operator can be used in our
approach.
Example 6 (Yellow teeth). An agent learns that someone
took up smoking, that this person’s teeth yellowed, and
that this person developed lung cancer. The agent believes
that generally speaking, it is abnormal to be a smoker, to
have yellow teeth, and to develop lung cancer (resp., (C |∼
¬Smoke, C |∼ ¬Yellow, C |∼ ¬Lung). The agent believes that
it is normal for smokers to have yellow teeth (C ∧ Smoke |∼
Yellow) and to develop lung cancer (C∧Smoke |∼ Lung), and
that it is not abnormal for someone who has yellow teeth to
develop lung cancer (C ∧ Yellow 6|∼ ¬Lung). From these be-
liefs and observations, Definitions 1 and 2 would allow for
various ascriptions, including the following one: Smoking
caused the yellow teeth which in turn facilitated lung cancer.
With the additional constraint based on the do(•) operator,
only one set of ascriptions remains possible: Both the yellow
teeth and the lung cancer were caused by smoking. Yellow
teeth cannot be said anymore to facilitate lung cancer be-
cause, inasmuch as lung cancer is generally abnormal, it
holds that C ∧ do(Yellow) |∼ ¬ Lung: There is no reason to
think that one will develop lung cancer after painting one’s
teeth yellow.

CONCLUDING REMARKS
We have presented a simple qualitative model of the causal
ascriptions an agent will make from its background default
knowledge, when confronted with a series of events. In ad-
dition to supplementing this model with a do(•) operator, we
intend to extend our present work in three main directions.
First, we should be able to equip our framework with possi-
bilistic qualitative counterparts to Bayesian networks (Ben-
ferhat et al. 2002), since System P augmented with Rational
Monotony can be represented in possibilistic logic (Benfer-
hat, Dubois, & Prade 1997). Second, we will derive pos-
tulates for causality from the independence postulates pre-
sented in (Dubois et al. 1999). Finally, in parallel to further
theoretical elaboration, we will maintain a systematic exper-
imental program that will test the psychological plausibility
of our definitions, properties, and postulates.

ACKNOWLEDGMENTS
This work was supported by a grant from the Agence Na-
tionale pour la Recherche, project number NT05-3-44479.

References
Benferhat, S.; Dubois, D.; Garcia, L.; and Prade, H. 2002.
On the transformation between possibilistic logic bases and
possibilistic causal networks. International Journal of Ap-
proximate Reasoning 29:135–173.
Benferhat, S.; Bonnefon, J. F.; and Da Silva Neves, R. M.
2004. An experimental analysis of possibilistic default rea-
soning. In KR2004, 130–140. AAAI Press.
Benferhat, S.; Bonnefon, J. F.; and Da Silva Neves, R. M.
2005. An overview of possibilistic handling of default rea-
soning: An experimental study. Synthese 146:53–70.

198 Technical Report IfI-06-04

Theory of NMR and Uncertainty

Benferhat, S.; Dubois, D.; and Prade, H. 1997. Nonmono-
tonic reasoning, conditional objects and possibility theory.
Artificial Intelligence 92:259–276.
Bonnefon, J. F.; Da Silva Neves, R. M.; Dubois, D.; and
Prade, H. 2006. Background default knowledge and
causality ascriptions. In ECAI2006. IOS Press.
Chockler, H., and Halpern, J. 2003. Responsibility and
blame. A structural-model approach. In IJCAI’03. San
Francisco, CA: Morgan Kaufmann.
Da Silva Neves, R. M.; Bonnefon, J. F.; and Raufaste, E.
2002. An empirical test for patterns of nonmonotonic in-
ference. Annals of Mathematics and Artificial Intelligence
34:107–130.
de Kleer, J., and Brown, J. S. 1986. Theories of causal
ordering. Artificial Intelligence 29:33–61.
Dubois, D., and Prade, H. 1999. Probability theory in arti-
ficial intelligence. Book review of J. Pearl’s ‘Probabilistic
Reasoning in Intelligent Systems’. Journal of Mathemati-
cal Psychology 34:472–482.
Dubois, D., and Prade, H. 2005. Modeling the role of
(ab)normality in the ascription of causality judgements by
agents. In NRAC’05, 22–27.
Dubois, D.; Fariñas Del Cerro, L.; Herzig, A.; and Prade,
H. 1999. A roadmap of qualitative independence, vol-
ume 15 of Applied Logic series. Dordrecht, The Nether-
lands: Kluwer. 325–350.
Ford, M. 2004. System LS: A three tiered nonmonotonic
reasoning system. Computational Intelligence 20:89–108.
Gärdenfors, P. 1990. The dynamics of belief systems:
Foundations vs. coherence theories. Revue Internationale
de Philosophie 44:24–46.
Gavansky, I., and Wells, G. L. 1989. Counterfactual pro-
cessing of normal and exceptional events. Journal of Ex-
perimental Social Psychology 25:314–325.
Giunchiglia, E.; Lee, J.; McCain, N.; Lifschitz, V.; and
Turner, H. 2004. Non-monotonic causal theories. Artificial
Intelligence 153:49–104.
Halpern, J., and Pearl, J. to appeara. Causes and expla-
nations: A structural-model approach — part 1: Causes.
British Journal for the Philosophy of Science.
Halpern, J., and Pearl, J. to appearb. Causes and expla-
nations: A structural-model approach — part 2: Explana-
tions. British Journal for the Philosophy of Science.
Hart, H. L. A., and Honoré, T. 1985. Causation in the law.
Oxford: Oxford University Press.
Hilton, D. J., and Slugoski, B. R. 1986. Knowledge-based
causal attribution: The abnormal conditions focus model.
Psychological Review 93:75–88.
Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Non-
monotonic reasoning, preferential models and cumulative
logics. Artificial Intelligence 44:167–207.
Lehmann, D., and Magidor, M. 1992. What does a condi-
tional knowledge base entail? Artificial Intelligence 55:1–
60.

McCain, N., and Turner, H. 1995. A causal theory of ram-
ifications and qualifications. In IJCAI’95. San Francisco,
CA: Morgan Kaufmann.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems. San Mateo, CA: Morgan Kaufmann.
Pearl, J. 2000. Causality: Models, Reasoning, and Infer-
ence. Cambridge: Cambridge University Press.
Peng, Y., and Reggia, J. A. 1990. Abductive Inference
Models for Diagnostic Problem-Solving. Berlin: Springer
Verlag.
Pfeifer, N., and Kleiter, G. D. 2005. Coherence and non-
monotonicity in human reasoning. Synthese 146:93–109.
Shafer, G. 1998. Causal logic. In ECAI’98, 711–719.
Chichester, England: Wiley.
Shoham, Y. 1990. Nonmonotonic reasoning and causation.
Cognitive Science 14:213–252.
Spohn, W. 1983. Deterministic and probabilistic reasons
and causes. Erkenntnis 19:371–393.
Turner, H. 1999. A logic of universal causation. Artificial
Intelligence 113:87–123.
von Wright, G. H. 1963. Norm and Action: A Logical
Enquiry. London: Routledge.
Williams, M.-A.; Pagnucco, M.; Foo, N.; and Sims, B.
1995. Determining explanations using transmutations. In
IJCAI’95, 822–830. Morgan Kaufmann.

DEPARTMENT OF INFORMATICS 199

11TH NMR WORKSHOP

200 Technical Report IfI-06-04

Theory of NMR and Uncertainty

2.10 Decidability of a Conditional-probability Logic with Non-standard
Valued Probabilities

Decidability of a Conditional-probability Logic
with Non-standard Valued Probabilities

Miodrag Rašković, Zoran Markovi ć, Zoran Ognjanović
Matematǐcki Institut

Kneza Mihaila 35, 11000 Beograd, Srbija i Crna Gora
zorano@mi.sanu.ac.yu zoranm@mi.sanu.ac.yu

Abstract

A probabilistic logic was defined in (Raškovíc, Ogn-
janovíc & Marković 2004; 2004) with probabilistic op-
erators, both conditional and ”absolute”, which are ap-
plied to propositional formulas. The range of proba-
bilistic operators is syntactically restricted to a recursive
subset of a non standard interval∗[0, 1] which means
that it contains infinitesimals. In this paper we prove
the decidability of that logic. This means that the logic
may be a suitable candidate for AI applications such as,
e.g. modelling the default reasoning.

Introduction
The problem of reasoning with statements whose truth is
only probable is an old problem which was rejuvenated in
the 80’s by the interest from AI (Nilsson 1986). One line of
research consisted in studying a propositional calculus en-
riched with probabilistic operators (Fagin & Halpern 1994;
Fagin, Halpern, & Megiddo 1990). Rather extensive bibli-
ography of probability logics can be found in (Database of
probability logic papers 2005). Usual semantics for such
systems consists of a Kripke model of possible worlds with
appropriate probability measure on sets of worlds. On the
other hand, the study of default logics had a high point with
(Kraus, Lehmann, & Magidor 1990), where a system P was
introduced which is now considered to be the common core
of default reasoning. In the same paper, a semantics for P
was introduced which consisted of nonstandard (∗R) proba-
bilistic models.

In (Rǎskovíc, Ognjanovíc & Marković 2004; 2004) a
logic (denotedLPPS) was introduced in which five types of
probabilistic operators are applied to propositional formulas:
P≥s, P≈r, CP=s, CP≥s, andCP≈r, wherer is a rational
number from [0,1] ands ∈ S, whereS is a unit interval of
the Hardy fieldQ[ε]. The intended meaning of the operators
is: ”the probability is at leasts”, ”approximativelyr”, and
”the conditional probability iss”, ”at leasts”, and ”approx-
imativelyr”, respectively. The semantics consists of Kripke
models extended with a finitely additive probability measure
defined on an algebra of sets of possible worlds. The range
of this probability measure is syntactically restricted toS.
Namely, there is a rule which allowsA → ⊥ to be derived
from the set of formulas{A → ¬P=s : s ∈ S}. This logic
makes it possible to discuss ”conditioning on the events of

zero probability”. Namely, if the probability ofα ∧ β is
ε and probability ofβ is 2ε, the conditional probability of
α given β will be 1

2 . In the absence of infinitesimals and
following the approach based on Kolmogorov’s ideas, the
probabilities ofα ∧ β andβ would be0, so the conditional
probability would be1. Another application of this logic is
to default reasoning. It turns out that the formulas of the type
CP≈1(α, β) faithfully represent defaults in the sense that all
rules of P can be derived inLPPS for the formulas of this
type. Furthermore, the same derivations can be made from
a finite set of defaults. In the case of an infinite set of de-
faults, however, more conclusions can be derived inLPPS ,
as demonstrated on an example from (Lehmann & Magidor
1992).

It was proved in (Rǎskovíc, Ognjanovíc & Marković
2004) thatLPPS is sound and complete for the set of
LPPS

Meas,Neat-models, but it remained unclear whether
LPPS is decidable. In this paper we prove thatLPPS is
decidable, which makes it suitable for realistic applications.

The rest of the paper is organized as follows. At the be-
ginning we briefly describe the logicLPPS , giving its syn-
tax, semantics and an axiomatic system (for more details see
(Rǎskovíc, Ognjanovíc & Marković 2004)). The next sec-
tion contains the proof of decidability ofLPPS . Finally,
we conclude with some remarks on possibility to use our
system to model default reasoning.

The logicLPP S

Let S be the unit interval of the Hardy fieldQ[ε]. Q[ε] is
a recursive nonarchimedean field which contains all rational
functions of a fixed positive infinitesimalε which belongs to
a nonstandard elementary extension∗R of the standard real
numbers (Keisler 1986; Robinson 1966). An elementε of
∗R is an infinitesimal if|ε| < 1

n for every natural number
n. Q[ε] contains all rational numbers. LetQ[0, 1] denote the
set of rational numbers from[0, 1].

The language of the logic consists of:

• a denumerable setVar = {p, q, r, . . .} of propositional
letters,

• the classical connectives¬, and∧,

• unary probabilistic operators(P≥s)s∈S , (P≈r)r∈Q[0,1],
and

DEPARTMENT OF INFORMATICS 201

11TH NMR WORKSHOP

• binary probabilistic operators(CP≥s)s∈S , (CP=s)s∈S ,
(CP≈r)r∈Q[0,1].

The setForC of classical propositional formulas is de-
fined as usual. Elements ofForC will be denoted byα, β,
. . . The setForS

P of probabilistic propositional formulas is
the smallest setY containing all formulas of the forms:

• P≥sα for α ∈ ForC , s ∈ S,

• P≈rα for α ∈ ForC , r ∈ Q[0, 1],

• CP=s(α, β) for α, β ∈ ForC , s ∈ S,

• CP≥s(α, β) for α, β ∈ ForC , s ∈ S and

• CP≈r(α, β) for α, β ∈ ForC , r ∈ Q[0, 1],

and closed under the formation rules:

• if A belongs toY , then¬A is in Y .

• if A andB belong toY , then(A ∧B) is in Y .

Formulas fromForS
P will be denoted byA, B, . . . Neither

mixing of pure propositional formulas and probabil-
ity formulas, nor nested probabilistic operators are al-
lowed. The other classical connectives (∨, →, ↔)
can be defined as usual, while we denote¬P≥sα by
P<sα, P≥1−s¬α by P≤sα, ¬P≤sα by P>sα, P≥sα ∧
¬P>sα by P=sα, ¬P=sα by P6=sα, ¬CP≥s(α, β) by
CP<s(α, β), CP<s(α, β) ∨ CP=s(α, β) by CP≤s(α, β),
and CP≥s(α, β) ∧ ¬CP=s(α, β) by CP>s(α, β). Let
ForS = ForC ∪ForS

P . ϕ, ψ, . . . will be used to denote for-
mulas from the setForS . Forα ∈ ForC , andA ∈ ForS

P ,
we abbreviate both¬(α → α) and¬(A → A) by⊥ letting
the context determine the meaning, while> denotes¬⊥.

The semantics forForS will be based on Kripke models.

Definition 1 An LPPS-model is a structure〈W,H, µ, v〉
where:

• W is a nonempty set of elements called worlds,
• H is an algebra of subsets ofW ,
• µ : H → S is a finitely additive probability measure, and
• v : W ×Var → {true, false} is a valuation which asso-

ciates with every worldw ∈ W a truth assignmentv(w)
on the propositional letters.

The valuationv is extended to a truth assignment on all clas-
sical propositional formulas. LetM be anLPPS model and
α ∈ ForC . The set{w : v(w)(α) = true} is denoted by
[α]M .

Definition 2 AnLPPS-modelM is measurable if[α]M ∈
H for every formulaα ∈ ForC . AnLPPS-modelM is neat
if only the empty set has the zero probability.LPPS

Meas,Neat

denotes the class of all neat and measurableLPPS-models.

The neatness-condition is introduced in order to make our
models a subclass of∗R-probabilistic models of (Kraus,
Lehmann, & Magidor 1990; Lehmann & Magidor 1992).
This facilitates the explanation of a possible application of
our system to default reasoning (see the last section). All
the results can be also proved for the class of measurable
LPPS-models.

Definition 3 The satisfiability relation |=⊂
LPPS

Meas,Neat × ForS is defined by the following
conditions for everyLPPS

Meas,Neat-modelM :

1. if α ∈ ForC ,M |= α if (∀w ∈W)v(w)(α) = true,
2. M |= P≥sα if µ([α]M) ≥ s,
3. M |= P≈rα if for every positive integern, µ([α]M) ∈

[max{0, r − 1/n},min{1, r + 1/n}],
4. M |= CP≥s(α, β) if eitherµ([β]M) = 0 or µ([β]M) > 0

and µ([α∧β]M)
µ([β]M) ≥ s,

5. M |= CP=s(α, β) if either µ([β]M) = 0 and s = 1 or
µ([β]M) > 0 and µ([α∧β]M)

µ([β]M) = s,

6. M |= CP≈r(α, β) if either µ([β]M) = 0 and r =
1 or µ([β]M) > 0 and for every positive integern,
µ([α∧β]M)

µ([β]M) ∈ [max{0, r − 1/n},min{1, r + 1/n}].
7. ifA ∈ ForS

P ,M |= ¬A if M 6|= A,

8. ifA,B ∈ ForS
P ,M |= A ∧B if M |= A andM |= B.

Note that the conditions 3 and 6 are equivalent to saying
that the (conditional) probability equalsr− εi (or r+ εi) for
some infinitesimalεi ∈ S.

A formula ϕ ∈ ForS is satisfiable if there is an
LPPS

Meas,Neat-modelM such thatM |= ϕ; ϕ is valid if for
everyLPPS

Meas,Neat-modelM , M |= ϕ; a set of formulas
is satisfiable if there is a model in which every formula from
the set is satisfiable.

The main theorem proved in (Raškovíc, Ognjanovíc &
Marković 2004) concerns completeness of the logic with re-
spect to the classLPPS

Meas,Neat:

Theorem 1 (Extended completeness theorem)A setT of
formulas has anLPPS

Meas,Neat-model if and only if it is
consistent with respect to the following axiom system:
Axiom schemes:

1. all ForC-instances of classical propositional tautologies
2. all ForS

P -instances of classical propositional tautologies
3. P≥0α

4. P≤sα→ P<tα, t > s

5. P<sα→ P≤sα

6. P≥1(α↔ β) → (P=sα→ P=sβ)
7. (P=sα∧P=tβ ∧P≥1¬(α∧ β)) → P=min(1,s+t)(α∨ β)
8. P≈rα→ P≥r1α, for every rationalr1 ∈ [0, r)
9. P≈rα→ P≤r1α, for every rationalr1 ∈ (r, 1]

10. CP=s(α, β) → ¬CP=t(α, β), s 6= t

11. P=0β → CP=1(α, β)
12. (P=tβ ∧ P=s(α ∧ β)) → CP=s/t(α, β), t 6= 0
13. CP=s(α, β) → ¬CP≥t(α, β), s < t

14. CP=s(α, β) → CP≥t(α, β), s ≥ t

15. CP=s(α, β) → (P=ts(α ∧ β) ↔ P=tβ), t 6= 0
16. CP≈r(α, β) → CP≥r1(α, β), for every rationalr1 ∈

[0, r)
17. CP≈r(α, β) → CP≤r1(α, β), for every rationalr1 ∈

(r, 1]

202 Technical Report IfI-06-04

Theory of NMR and Uncertainty

18. CP=r(α, β) → CP≈r(α, β)

Inference rules:

1. Fromϕ andϕ→ ψ inferψ.
2. If α ∈ ForC , fromα infer P≥1α.
3. FromA→ P6=sα, for everys ∈ S, inferA→ ⊥.
4. FromA→ (P=ts(α∧β) ↔ P=sβ), for everys ∈ S\{0},

inferA→ CP=t(α, β).
5. For everyr ∈ Q[0, 1], fromA → P≥r−1/nα, for every

integern ≥ 1/r, andA → P≤r+1/nα for every integer
n ≥ 1/(1− r), inferA→ P≈rα.

6. For everyr ∈ Q[0, 1], fromA → CP≥r−1/n(α, β), for
every integern ≥ 1/r, andA → CP≤r+1/n(α, β) for
every integern ≥ 1/(1− r), inferA→ CP≈r(α, β).

Decidability
It is well known that there is a procedure to decide whether a
classical propositional formula is satisfiable. Thus, to prove
decidability of our logic, it is enough to show that the satis-
fiability problem for probability formulas is decidable.

We can perform some easy transformations which will re-
duce the satisfiability problem to checking probability for-
mulas of simpler form. LetA be a probability formula and
p1, . . . , pn be a list of all propositional letters fromA. An
atom a of A is a formula±p1 ∧ . . . ± pn, where±pi is
either pi, or ¬pi. For different atomsai andaj we have
` ai → ¬aj . We useAt(A) to denote the set of all atoms
fromA, andn to denote the number of propositional letters
fromA. Obviously,|At(A)| = 2n.

Using propositional reasoning and the fact that if` α ↔
β, then` P≥sα ↔ P≥sβ, it is easy to show that every
probability formulaA is equivalent to a formula:

DNF (A) =
m∨

i=1

ki∧
j=1

±Xi,j(p1, . . . , pn)

called a disjunctive normal form ofA, where:

• Xi,j ∈ {P≥s, CP=s, CP≥s}s∈S ∪{P≈r, CP≈r}r∈Q[0,1],

• ±Xi,j is eitherXi,j or¬Xi,j , and

• Xi,j(p1, . . . , pn) denotes that the propositional formula
which is in the scope of the probability operatorXi,j is
in the complete disjunctive normal form, i.e. the proposi-
tional formula is a disjunction of the atoms ofA.

Obviously, to prove decidability of our logic, it is enough to
show that satisfiability of probability formulas of the form∧k

i=1±Xi(p1, . . . , pn) is decidable.
Every formula of the formP≥sα is equivalent to the

formula CP≥s(α,>). Furthermore, for any conditional
probability formula (±CP≥s(α, β), ±CP=s(α, β), and
±CP≈r(α, β)) we can distinguish two cases:

1. the probability ofβ is zero, in which case

• CP≥s(α, β), for s ∈ S, ¬CP=s(α, β), for s ∈ S \
{1}, CP=1(α, β), andCP≈1(α, β) hold - and can be
deleted from the formula, while

• ¬CP≥s(α, β), for s ∈ S, CP=s(α, β), CP≈r(α, β),
for s ∈ S \ {1}, r ∈ Q[0, 1] \ {1} ¬CP=1(α, β), and
¬CP≈1(α, β) do not hold - and the whole formula is
not satisfiable,

2. the probability ofβ is greater than zero.

As a consequence, to prove decidability of our logic it
is enough to prove decidability of satisfiability of formu-
las which are conjunctions of conditional probabilistic for-
mulas of the forms:±CP≥s(α, β), ±CP=s(α, β), and
±CP≈r(α, β), such that the probability ofβ is greater than
0.

In the next step, we will reduce the satisfiability problem
to linear programming problem. Note that the same is done
to prove decidability in papers (Fagin, Halpern, & Megiddo
1990; Rǎskovíc 1993; Ognjanovíc & Rǎskovíc 2000) that
deal with the standard real-valued probabilities. However,
in the logic we discuss here, the range of probabilities is re-
cursive and contains non-standard values, and there are oper-
ators of the formCP≈r that do not appear in the mentioned
papers. Thus, we should perform the reduction carefully to
obtain linear systems that are suitable for establishing decid-
ability, which, in our approach, means that Fourier-Motzkin
elimination can be applied to them. The idea is to eliminate
≈ and 6≈ signs and to try to solve linear systems in an ex-
tension ofQ(ε). In the rest of this section we will use the
following abbreviations:

• xi denotes the measure of the atomai ∈ At(A), i =
1, 2n,

• ai |= α means that the atomai appears in the complete
disjunctive normal form of a classical propositional for-
mulaα,

•
∑

(α) denotes
∑

ai∈At(A):ai|=α xi, and

• C
∑

(α, β) denotes
∑

(α∧β)∑
(β)

.

Recall that [α]M denotes the set of all worlds of an
LPPS

Meas,Neat-modelM that satisfyα. Since [α]M =
∪ai∈At(A):ai|=α[ai]M , and different atoms are mutually ex-
clusive, i.e.,[ai]M ∩ [aj]M = ∅ for i 6= j,CP≥s(α, β) holds
in M iff

∑
(β) = 0, or

∑
(β) > 0 andC

∑
(α, β) ≥ s (and

similarly forCP=s, andCP≈r).

Let us consider a formulaA of the form:

(∧i=1,I ± CP≥si
(αi, βi)) ∧ (∧j=1,J ± CP=sj

(αj , βj))∧
(∧±l=1,LCP≈rl

(αl, βl)).

Then, A is satisfiable iff the following system of linear
equalities and inequalities is satisfiable:

DEPARTMENT OF INFORMATICS 203

11TH NMR WORKSHOP

∑2n

i=1 xi = 1

xi ≥ 0 for i = 1, 2n∑
(β) > 0 for every formulaβ appearing

in the formulas of the
form ± CP�(α, β) fromA
and� ∈ {≥ si,= sj ,≈ rl}

C
∑

(αi, βi) ≥ si for every formula
CP≥si

(αi, βi) fromA

C
∑

(αi, βi) < si for every formula
¬CP≥si(αi, βi) fromA

C
∑

(αj , βj) = sj for every formula
CP=sj (αj , βj) fromA

C
∑

(αj , βj) > sj or C
∑

(αj , βj) < sj

for every formula
¬CP=sj (αj , βj) fromA

C
∑

(αl, βl) ≈ rl for every formula
CP≈rl

(αl, βl) fromA

C
∑

(αl, βl) 6≈ sl for every formula
¬CP≈rl

(αl, βl) fromA.

We can further simplify the above system by observing
that every expression of the formC

∑
(αl, βl) ≈ rl can be

seen as

C
∑

(αl, βl)− rl ≈ 0 andC
∑

(αl, βl)− rl ≥ 0 (1)

or

C
∑

(αl, βl)− rl ≈ 0 andrl − C
∑

(αl, βl) ≥ 0. (2)

Similarly, every expression of the formC
∑

(αl, βl) 6≈ rl
can be seen as

C
∑

(αl, βl)− rl 6≈ 0 andC
∑

(αl, βl)− rl > 0 (3)

or

C
∑

(αl, βl)− rl 6≈ 0 andrl − C
∑

(αl, βl) > 0. (4)

Thus, we will consider systems containing expressions
of the forms (1 - 4) instead ofC

∑
(αl, βl) ≈ rl, and

C
∑

(αl, βl) 6≈ rl, respectively.
Let us useS(−→x , ε) to denote a system of that form. Note

that

C
∑

(αl, βl)− rl ≈ 0 and C
∑

(αl, βl)− rl ≥ 0 (5)

is equivalent to

(∃nl ∈ N) 0 ≤ C
∑

(αl, βl)− rl < nl · ε,

C
∑

(αl, βl)− rl ≈ 0 and rl − C
∑

(αl, βl) ≥ 0(6)

is equivalent to

(∃nl ∈ N) 0 ≥ C
∑

(αl, βl)− rl >

−nl · ε,

C
∑

(αl, βl)− rl 6≈ 0 and C
∑

(αl, βl)− rl > 0 (7)

is equivalent to

(∃nl ∈ N) C
∑

(αl, βl)− rl >
1
nl
,

C
∑

(αl, βl)− rl 6≈ 0 and rl − C
∑

(αl, βl) > 0 (8)

is equivalent to

(∃nl ∈ N) C
∑

(αl, βl)− rl < − 1
nl
.

Since we have only finitely many expressions of the forms
(1 – 4) in our system, we can use a uniquen0 ∈ N instead
of manynl’s in expressions (5 – 8). We useS(−→x , n0, ε) to
denote the obtained system. Then,

S(−→x , ε) has a solution inQ(ε) iff (9)

S(−→x , n0, ε) has a solution inQ(ε),

and, sinceQ(ε) is dense in∗R, for every fixed and finiten0,

S(−→x , n0, ε) has a solution inQ(ε) iff (10)

S(−→x , n0, ε) has a solution in∗R.

Note thatn0 is not determined in the (9) and (10) above.
Now, we will replacen0 with another, infinite but fixed, pa-
rameterH which will also have some suitable characteristics
in relation toε. The role ofH is to help us to avoid the stan-
dard approach to the analysis of inequalities, where we have
very often to discuss arguments of the form ”it holds for all,
large enough integers”. SinceH is a positive infinite integer,
if an inequality holds for everyn greater than some fixed fi-
nite n0, by the overspill principle it also holds forH. The
other direction is a consequence of the underspill principle
which says that if an inequality holds for every infinite num-
ber less thanH, it also holds for some finite positive integer.
Thus, let us consider the following set

O = {n ∈ ∗N : S(−→x , n, ε) has a solution in∗R}.

O is an internal set which contains all natural numbers
greater than some fixed natural numbern′. Using the over-
spill and underspill principles, we conclude that, ifS(−→x , ε)
is solvable inQ(ε), thenO also contains all infinite numbers
from ∗N which are less than a fixed infinite natural number
H. In other words, for somen′ ∈ N , andH ∈ ∗N \ N ,
[n′,H] = {n ∈ ∗N : n′ ≤ n ≤ H} ⊂ O. Then,

S(−→x , n0, ε) has a solution in∗R iff (11)

S(−→x ,H, ε) has a solution in∗R.

We can chooseH so that for everyk ∈ N ,Hk · ε ≈ 0. That
can be explained as follows. Let us consider the internal set
O′ = {n ∈ ∗N : nn < 1√

ε
}. Obviously,N ⊂ O′. Using

the overspill principle, there is someH ∈ ∗N \N such that

204 Technical Report IfI-06-04

Theory of NMR and Uncertainty

0 < HH < 1√
ε
, and0 < HH · ε <

√
ε. Thus, for every

k ∈ N , 0 < Hk · ε <
√
ε, andHk · ε ≈ 0.

Note that ≈ and 6≈ do not appear in the system
S(−→x ,H, ε). Thus, we can freely multiply (in)equalities by
the denominators of the expressions of the formC

∑
(α, β)

and in that way obtain linear (in)equalities of the form∑
(α ∧ β)− s

∑
(β) ρ 0,

wheres is a polynomial inε andH, andρ ∈ {≥, >,=, <
,≤}.

Now, we can perform Fourier-Motzkin elimination, which
iteratively rewrites the starting system into a new system
without a variablexi such that two systems are equisatis-
fiable. During the procedure, numerators and denominators
of coefficients in (in)equalities remain polynomials inε and
H. When no variables are left, we have to check satisfiabil-
ity of relations between numerical expressions with param-
etersε andH which can be done since:Q(ε) is recursive
and ordered field, andH is chosen so that for everyk ∈ N ,
Hk ·ε ≈ 0. Namely, we consider two polynomialsQ1(ε,H)
and Q2(ε,H) in ε and H of the forms: Q1(ε,H) =
q1,0Q1,0(H)ε0 + q1,1Q1,1(H)ε1 + . . .+ q1,n1Q1,n1(H)εn1 ,
andQ2(ε,H) = q2,0Q2,0(H)ε0 + q2,1Q2,1(H)ε1 + . . . +
q2,n2Q2,n2(H)εn2 , whereqi,j ’s are rationals, andQi,j(H)’s
are polynomials inH with rational coefficients. Compar-
ison of polynomialsQ1(ε,H) andQ2(ε,H) starts by ex-
aminingq1,0Q1,0(H) andq2,0Q2,0(H) in the standard way.
If they are equal, we have to examineq1,1Q1,1(H) and
q2,1Q2,1(H) and so on. Sinceε is an infinitesimal, the above
examination of expressions sharing the same powers ofε is
done in a reverse order with respect to the standard proce-
dure of comparison of polynomials.

It follows that the problem of solving whetherS(−→x ,H, ε)
has a solution in∗R is decidable. From the equalities (9),
(10), and (11), it follows that the problem of solving whether
S(−→x , ε) has a solution inQ(ε) is decidable, too.

If S(−→x , ε) is solvable, we can define anLPPS-model
M = 〈W,H, µ, v〉 such thatW = At(A), H = 2W , µ
is defined according to the solutions ofS(−→x , ε), andv sat-
isfies v(a)(p) = > iff p (and not¬p) occurs in the con-
junction which constitutes the atoma. Obviously,M |= A.
However, even ifS(−→x , ε) has a solution, some ofxi’s might
be 0. It means thatM does not satisfy the neatness condi-
tion, i.e., that some non-empty sets of worlds (represented
by the corresponding atoms that hold in those worlds) have
the zero probabilities. In that case, we can simply remove
those worlds and denote the obtained model byM ′. It is
easy to see that for everyA ∈ ForS

P , M |= A iff M ′ |= A.
Thus, we have:

Theorem 2 The problem ofLPPS
Meas,Neat-satisfiability is

decidable.

As an example, let us consider the following problem.
Let b, f , and l denote ’bird’, ’flies’, and ’living creature’,
respectively. Suppose that our knowledge base isKB =
{CP≈1(f, b), CP≈.3(b, l)} which means that birds gener-
ally fly, and that approximately30% of living creatures are
birds. Then, we can ask for the probability that a randomly

chosen living creature flies, i.e., for the conditional proba-
bility CP (f | l). Using the above procedure we can check
for whatk(k ≤ 1), CP=k(f, l) is consistent withKB.

Let

x1 = µ(b ∧ f ∧ l),
x2 = µ(b ∧ f ∧ ¬l),
x3 = µ(b ∧ ¬f ∧ l),
x4 = µ(b ∧ ¬f ∧ ¬l),
x5 = µ(¬b ∧ f ∧ l),
x6 = µ(¬b ∧ f ∧ ¬l),
x7 = µ(¬b ∧ ¬f ∧ l) and

x8 = µ(¬b ∧ ¬f ∧ ¬l).
Supposing that we consider living creatures only, we have
that x2 = 0, x4 = 0, x6 = 0, andx8 = 0. Then, from
CP≈1(f, b),CP≈.3(b, l) andCP=k(f, l), we obtain the fol-
lowing system:

x1 + x3 + x5 + x7 = 1
x2 + x4 + x6 + x8 = 0
xi ≥ 0, i = 1, 2, . . . , 8

x1+x2
x1+x2+x3+x4

≈ 1
x1+x3

x1+x3+x5+x7
≈ 0.3

x1+x5
x1+x3+x5+x7

= k

Sincex1 + x3 + x5 + x7 = 1, we have also that:
x1

x1+x3
≈ 1

x1 + x3 ≈ 0.3, and

x1 + x5 = k,

Now, we can eliminate≈:

x1 + x3 + x5 + x7 = 1
xi ≥ 0, i = 1, 3, 5, 7
1− x1

x1+x3
≤ n1ε

0 < x1 + x3 − 0.3 < n2ε or 0 < 0.3− (x1 + x3) < n2ε

x1 + x5 = k

Letn0 = max{n1, n2}. LetH be an infinite natural number
fixed as above. Then, an easy calculation shows that the last
system is solvable iff the following condition is fulfilled:

0.3− 1.3Hε−H2ε2 < k ≤ 1.

Conclusion
In this paper we have proved decidability of the
LPPS

Meas,Neat-satisfiability problem. One of the questions
that are still open is to find a precise characterization of
the corresponding computational complexity. It is important
having in mind possible applications ofLPPS to problems
involving uncertain probabilistic knowledge and default rea-
soning. Namely, in (Kraus, Lehmann, & Magidor 1990;
Lehmann & Magidor 1992) a set of properties which form
a core of default reasoning, the corresponding formal sys-
tem P, and a family of nonstandard (∗R) probabilistic mod-
els characterizing the default consequence relation defined

DEPARTMENT OF INFORMATICS 205

11TH NMR WORKSHOP

by the system P, are proposed. Probabilities from∗R-
probabilistic models are∗R-valued, while in our approach
the range of probabilities is a countable subsetS of the unit
interval of∗R. In (Rǎskovíc, Ognjanovíc & Marković 2004)
we describe in details how our system can be used to model
default reasoning. The main results are (CP≈1(β, α) cor-
responds to the default ’ifα, then generallyβ’, denoted by
α � β):

• If we consider the language of defaults and finite default
bases, the entailment coincides with the one in the system
P.

• If we consider the language of defaults and arbitrary de-
fault bases, more conclusions can be obtained in our sys-
tem than in the system P. For example, in our system we
can go beyond the system P, when we consider the infi-
nite default base∆ = {pi � pi+1, pi+1 � ¬pi}, i =
0, 1, . . . Namely,p0 is P-consistent (Lehmann & Magidor
1992), while we obtain∆ `AxLP P S

CP≈1(⊥, p0).

• When we consider our full language, we can express
probabilities of formulas, negations of defaults, combi-
nations of defaults with the other (probabilistic) formulas
etc. For example, the translation of rational monotonicity,
((α � β)∧¬(α � ¬γ)) → ((α∧γ) � β), which is an
important default-reasoning principle isLPPS

Meas,Neat-
valid, while it cannot be even formulated in the framework
of the pure language of defaults.

• Our system is not sensitive to the syntactical form which
represents the available knowledge (duplications of rules
in the knowledge base).

Although the ideas of using probabilities and infinitesimals
in default reasoning are not new ((Adams 1975; Benfer-
hat, Saffiotti, & Smets 2000; Goldszmidt & Pearl 1996;
Lehmann & Magidor 1992; Satoh 1990)), the above facts
show that our approach does not coincide with any of those
systems.

Finally, note that in this paper the probabilistic operators
may be applied to classical propositional formulas only. It
is enough to reason about probabilities of events described
by (classical propositional) formulas, but we cannot speak
about higher order probabilities (probabilities of probabili-
ties, probabilities of defaults, defaults defined on uncertain
knowledge). A logic which allows that was presented in
(Ognjanovíc, Markovíc & Rǎskovíc 2005).

References
E. W. Adams.The logic of Conditional. Dordrecht: Reidel.
1975.

N. Alechina. Logic with probabilistic operators. InProc.
of the ACCOLADE ’94, 121 – 138. 1995.

F. Bacchus, A.J. Grove, J.Y. Halpern, and D. Koller. From
Statistical Knowledge Bases to Degrees of Belief. Artificial
Intelligence (87): 75–143. 1996.

S. Benferhat, A. Saffiotti, and P. Smets. Belief functions
and default reasoning.Artificial Intelligence(122):1 – 69.
2000.

V. Biazzo, A. Gilio, T. Lukasiewicz, and G. Sanfilippo.
Probabilistic logic under coherence, model-theoretic prob-
abilistic logic, and default reasoning in System P.Journal
of Applied Non-Classical Logics12(2): 189–213. 2002.

G. Coletti, and R. Scozzafava.Probabilistic logic in a co-
herent setting. Kluwer Academic Press, Dordrecht, The
Netherlands. 2002.

Database of probability logic papers.
http://problog.mi.sanu.ac.yu, Mathematical Institute,
Belgrade. 2005.

R. -Dord̄evíc, M. Rǎskovíc, and Z. Ognjanović. Complete-
ness theorem for propositional probabilistic models whose
measures have only finite ranges.Archive for Mathemati-
cal Logic43, 557 – 563. 2004.

R. Fagin, and J. Halpern. Reasoning about knowledge and
probability. Journal of the ACM41(2):340 – 367. 1994.

R. Fagin, J. Halpern, and N. Megiddo. A logic for rea-
soning about probabilities.Information and Computation
87(1-2):78 – 128. 1990.

A. Gilio. Probabilistic reasoning under coherence in Sys-
tem P. Annals of Mathematics and Artificial Intelligence
34, 5 – 34. 2002.

M. Goldszmidt, and J. Pearl. Qualitative probabilities for
default reasoning, belief revision and causal modeling.Ar-
tificial Intelligence84(1-2):57 – 112. 1996.

J. Keisler.Elementary calculus. An infinitesimal approach.
2nd ed.Boston, Massachusetts: Prindle, Weber & Schmidt.
1986.

S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic
reasoning, preferential models and cumulative logics.Ar-
tificial Intelligence44:167 – 207. 1990.

D. Lehmann, and M. Magidor. What does a conditional
knowledge base entail?Artificial Intelligence55:1 – 60.
1992.

T. Lukasiewicz. Probabilistic Default Reasoning with Con-
ditional Constraints.Annals of Mathematics and Artificial
Intelligence34, 35 – 88. 2002.

T. Lukasiewicz. Weak nonmonotonic probabilistic logics.
Artificial Intelligence168(1-2): 119–161. 2005.

Z. Marković, Z. Ognjanovíc, and M. Rǎskovíc. A prob-
abilistic extension of intuitionistic logic. Mathematical
Logic Quarterly49:415 – 424. 2003.

N. Nilsson. Probabilistic logicArtificial Intelligence, 28,
71 – 87. 1986.

Z. Ognjanovíc, and M. Rǎskovíc. Some probability logics
with new types of probability operators.Journal of Logic
and Computation9(2):181 – 195. 1999.

Z. Ognjanovíc, and M. Rǎskovíc. Some first-order proba-
bility logics. Theoretical Computer Science247(1-2):191
– 212. 2000.

Z. Ognjanovíc, Z. Markovíc, and M. Rǎskovíc. Complete-
ness Theorem for a Logic with Imprecise and Conditional
Probabilities. Publications de l’Institut Math́ematique,
Nouvelle Śerie, Beograd, vol. 78(92): 35 – 49. 2005.

206 Technical Report IfI-06-04

Theory of NMR and Uncertainty

M. Rǎskovíc. Classical logic with some probability oper-
ators. Publications de l’Institut Math́ematique, Nouvelle
Śerie, Beograd(53(67)):1 – 3. 1993.
M. Rǎskovíc, Z. Ognjanovíc, and Z. Markovíc. A Prob-
abilistic Approach to Default Reasoning. InProc. of the
NMR ’04, 335 – 341. 2004.
M. Rǎskovíc, Z. Ognjanovíc, and Z. Markovíc. A Logic
with Conditional Probabilities. InProc. of the JELIA’04,
Lecture notes in artificial intelligence (LNCS/LNAI), 3229,
226 – 238, Springer-Verlag. 2004.
Robinson, A.Non-standard analysis. Amsterdam: North-
Holland. 1966.
Satoh, K. A probabilistic interpretation for lazy nonmono-
tonic reasoning. InProc. of the Eighth American Confer-
ence on Artificial Intelligence, 659 – 664. 1990.

DEPARTMENT OF INFORMATICS 207

11TH NMR WORKSHOP

208 Technical Report IfI-06-04

Theory of NMR and Uncertainty

2.11 About the computation of forgetting symbols and literals

About the computation of forgetting symbols and literals

Yves Moinard
INRIA/IRISA, Campus de Beaulieu, 35042 RENNES-Cedex FRANCE

moinard@irisa.fr

Abstract

Recently, the old logical notion of forgetting proposi-
tional symbols (or reducing the logical vocabulary) has
been generalized to a new notion: forgetting literals.
The aim was to help the automatic computation of var-
ious formalisms which are currently used in knowledge
representation, particularly for nonmonotonic reason-
ing. We develop here a further generalization, allowing
propositional symbols to vary while forgetting literals.
We describe the new notion, on the syntactical and the
semantical side. We provide various manipulations over
the basic definitions involved, including for the original
version, which hopefully should help improving again
the efficiency of the computation. This work concerns
especially circumscription, since it is known that one
way of computing circumscription uses the forgetting
of literals.

Introduction
The well-known notion of forgetting propositional symbols,
which is known at least since a 1854 paper by Boole un-
der the name “elimination of middle terms”, has been used
for a long time in mathematical logic and in its applications
for knowledge representation (see e.g. (Lin & Reiter 1994;
Lin 2001; Su, Lv, & Zhang 2004)). It is a reduction of the
vocabulary, thanks to the suppression of some propositional
symbols. Let us consider the formula

(bird ∧ ¬exceptional → flies) ∧ ¬exceptional.

We may want to “forget” the symbol exceptional, consid-
ered here as “auxiliary”, then we get the formula

bird→ flies.

Recently, Lang et al. (Lang, Liberatore, & Marquis 2003)
have extended this notion in a significant manner, by allow-
ing the forgetting of literals. In above example, it happens
that in fact what has been done is equivalent to forgetting
the literal ¬exceptional. In the general case, forgetting a
literal is more precise than forgetting its propositional sym-
bol: we get a formula standing “somewhere between” the
original formula and the formula obtained by forgetting the
propositional symbol.

This new definition is a natural extension of the classical
definition of forgetting propositional symbols. Lang et al.

have shown that this new notion also is useful for knowl-
edge representation and particularly for nonmonotonic
reasoning. In some cases, this provides a simplification of
the computations, and the authors provide various ways
for computing the forgetting of literals, in order to obtain
concrete examples of simplification of the computation of
some already known formalism.

We extend the notion by allowing some propositional
symbols to vary when forgetting literals. The new defini-
tions are a simple and natural extension of the original ones,
and they have the same kind of behavior

We describe various ways for computing these notions
(including the original ones, without varying symbols), and
we provide hints showing that the complexity of the new
notion should be comparable to the complexity of the notion
without variable symbols. This is of some importance in
order to apply the results given in (Lang, Liberatore, &
Marquis 2003) to the new notion, since this should simplify
significantly the overall computation. The main application
example of the interest of these methods for computing
already known formalisms given in (Lang, Liberatore, &
Marquis 2003) concerns circumscription, and (Moinard
2005) has shown how the new notion with varying symbols
allows to reduce a two stage method to a single stage one.

Firstly, we give the preliminary notations and definitions.
Then we remind the notion of propositional symbol forget-
ting, with a few more technical tools. Then we remind the
notion of literal forgetting as introduced by Lang et al. Then
we introduce our generalization, allowing symbols to vary
when literals are forgotten. Finally, we detail yet another
method for computing these notions.

Technical preliminaries
We work in a propositional language PL. As usual, PL

also denotes the set of all the formulas, and the vocabulary
of PL is a set of propositional symbols denoted by V(PL).
We restrict our attention to finite sets V(PL) in this text.

Letters ϕ, ψ denote formulas in PL, > and ⊥ denote re-
spectively the true and the false formulas. Interpretations
for PL, identified with subsets of V(PL), are denoted by
the letter ω. The notations ω |= ϕ and ω |= X for a set X

DEPARTMENT OF INFORMATICS 209

11TH NMR WORKSHOP

of formulas are defined classically. For a set E, P(E) de-
notes the set of the subsets of E. The set P(V(PL)) of the
interpretations for PL is denoted by Mod. A model of X is
an interpretation ω such that ω |= X , Mod(ϕ) and Mod(X)
denote respectively the sets of the models of {ϕ} and X .

A literal l is either a symbol p in V(PL) (positive literal)
or its negation ¬p (negative literal). If l is a literal, ∼ l
denotes its complementary literal: ∼ ¬p = p and∼ p = ¬p.
Similarly, we define ∼> = ⊥ and ∼⊥ = >.

A clause (respectively a term) is a disjunction (respec-
tively a conjunction) of literals. Subsets of V(PL) are de-
noted by P,Q, V . P+ (respectively P−) denotes the set of
the positive (respectively negative) literals built on P , and
P± denotes the set P+ ∪ P− of all the literals built on P
(P and P+ can be assimilated). For any (finite) set X of
formulas,

∧

X (respectively
∨

X) denotes the conjunction
(respectively disjunction) of all the formulas in X . We get:
∧

X ≡ X ,
∧

∅ ≡ > and
∨

∅ ≡ ⊥. V(X) denotes the set of
the propositional symbols appearing in X .

A disjunctive normal form or DNF of ϕ is a disjunction
of consistent terms which is equivalent to ϕ. A set L of
literals in V ± (and the term

∧

L) is consistent and complete
in V if each propositional symbol of V appears once and
only once in L; the clause

∨

L is then non trivial and
complete in V . For any set L of literals, ∼ L denotes the
set of the literals complementary to those in L (notice that
∼ P = P−).

We need the following notions and notations, many of
them coming from (Lang, Liberatore, & Marquis 2003):

If ϕ is some formula and p is a propositional symbol in
PL, ϕp:> (respectively ϕp:⊥) is the formula obtained from
ϕ by replacing each occurrence of p by > (respectively ⊥).
If l = p is a positive literal, ϕl:i, denotes the formula ϕp:i

1;
if l = ¬p is a negative literal, ϕl:i denotes the formulaϕp:∼i.

Notations 1 1. If v1, · · · , vn are propositional symbols,
ϕ(v1:ε1,···,vn:εn) with each εj ∈ {⊥,>}, denotes the for-
mula (· · · ((ϕv1:ε1)v2:ε2)· · ·)vn:εn

.
If the vj’s in the list are all distinct, the order of the vj’s is
without consequence for the final result. Thus, if V1 and
V2 are disjoint subsets of V , we may defineϕ[V1:>,V2:⊥] as
ϕ(v1:>,···,vn:>,vn+1:⊥,···,vn+m:⊥), where (v1, · · · , vn) and
(vn+1, · · · , vn+m) are two orderings of all the elements
of V1 and V2 respectively.

2. If L = (l1, · · · , ln) is a list of literals, ϕ(l1:ε1···ln:εn) de-
notes the formula (· · · ((ϕl1:ε1)l2:ε2)· · ·)ln:εn

.

3. Let V(PL)± be ordered in some arbitrary way. If
L1, · · · , Ln are disjoint sets of literals, ϕ〈L1:ε1,···,Ln:εn〉

denotes the formula ϕ(l1:γ1,···,ln:γn) where (l1, · · · , ln) is
the enumeration of the set L1 ∪ · · · ∪ Ln which respects
the order chosen for the set of all the literals, and where,
for each lj , γj is equal to εr where r ∈ {1, · · · , n} is such
that lj ∈ Lr.

1Notice that in (Lang, Liberatore, & Marquis 2003), “ϕ l:⊥” (re-
spectively “ϕ l:>”) is denoted by “ϕ l←0” (respectively “ϕ l←1”).

Forgetting propositional symbols
Let us remind a possible definition for this well known and
old notion 2.

Definition 2 If V ⊆ V(PL) and ϕ ∈ PL, ForgetV (ϕ, V)
denotes a formula, in the propositional language PL

V
built

on the vocabulary V = V(PL) − V , which is equivalent to
ϕ in this restricted language: ForgetV (ϕ, V) ≡ Th(ϕ) ∩
PL

V
where Th(ϕ) = {ϕ′ ∈ PL/ϕ |= ϕ′}.

For any ψ ∈ PL
V

, ϕ |= ψ iff ForgetV (ϕ, V) |= ψ.

Here are two known ways to get ForgetV (ϕ, V):

1. In a DNF form of ϕ, for each term suppress all the literals
in V ± (“empty terms” being equivalent to > as usual).

2. For any formula ϕ, and any list V of propositional sym-
bols, we get

(a) ForgetV (ϕ, {v} ∪ V) =
ForgetV (ϕ, V)v:> ∨ ForgetV (ϕ, V)v:⊥,

(b) ForgetV (ϕ, ∅) = ϕ.

The iterative point 2 applies to any formula, and shows that
we can forget one symbol at a time. Also, the order is irrel-
evant: the final formulas are all equivalent when the order
is modified. Here is the corresponding “global formulation”
(cf Notations 1-1):

Definition 3 ForgetV (ϕ, V) =
∨

V ′⊆V

ϕ[V ′:>,(V −V ′):⊥].

Considering the formulation ForgetV (ϕ, V) ≡ Th(ϕ)∩
PL

V
, the following obvious technical remark happens to be

very useful:

Remark 4 When considering a formula equivalent to a set
Th(ϕ) ∩ X , the set of formulas X can be replaced by any
set Y having the same ∧-closure: {

∧

X ′/X ′ ⊆ X} =
{
∧

X ′/X ′ ⊆ Y }. Indeed, we have:

• If X and Y have the same ∧-closure, then Th(ϕ) ∩X ≡
Th(ϕ) ∩ Y .

• The converse is true, provided that we assimilate equiv-
alent formulas: if Th(ϕ) ∩ X ≡ Th(ϕ) ∩ Y for any
ϕ ∈ PL, then X and Y have the same ∧-closure.

Since we work in finite propositional languages, there ex-
ists a unique smallest (for set inclusion, and up to logical
equivalence) possible set, the ∧-reduct of X , equal to the
set X − {ϕ ∈ X/ϕ is in the ∧-closure of X − {ϕ}}. Thus,
X can be replaced by any set containing the ∧-reduct of X
and included in the ∧-closure of X .

Thus, instead of considering the whole set PL
V

in
ForgetV (ϕ, V) ≡ Th(ϕ) ∩ PL

V
(Definition 2), we can

consider the set of all the clauses built on V , the smallest
(for ⊆) set that can be considered here being the set of these
clauses which are non trivial and complete in V .

2“V” in ForgetV stands for “[propositional] variable”, mean-
ing “propositional symbol”, and is in accordance with the notations
of (Lang, Liberatore, & Marquis 2003), even if using term “vari-
able” here could provoke confusions with the notions described
later in this text.

210 Technical Report IfI-06-04

Theory of NMR and Uncertainty

On the semantical side, the set of the models of
ForgetV (ϕ, V) is the set of all the interpretations for PL

which coincide with a model of ϕ for all the propositional
symbols not in V : Mod(ForgetV (ϕ, V)) =

{ω ∈ Mod / ∃ω′, ω′ |= ϕ and ω ∩ V = ω′ ∩ V }.
These syntactical and semantical characterizations justify

the name “Forget”.

Example 1 Here V(PL) = {a, b, c, d}, and
ϕ = (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c ∧ ¬d).

DNF rule: ForgetV (ϕ, {b, c}) ≡ (¬a) ∨ (a ∧ ¬d)
≡ ¬a ∨ ¬d.

iteratively: ForgetV (ϕ, {c}) ≡ (¬a∧b)∨(a∧¬b∧¬d).
ForgetV (ForgetV (ϕ, {c}), {b}) ≡
ForgetV (ϕ, {b, c}).

semantics:
Starting with Mod(ϕ) = {{a}, {b, c}, {b, c, d}}, we get
the twelve models of ForgetV (ϕ, {b, c}) by adding all
the interpretations varying on {b, c}, which gives the
twelve interpretations: ∅ ∪ E, {a} ∪ E, {d} ∪ E, for any
subset E of the set of the forgotten symbols {b, c}.

Remind that for any formulas ϕ1 and ϕ2,
we get ForgetV (ϕ1 ∨ ϕ2, V) ≡

ForgetV (ϕ1, V) ∨ ForgetV (ϕ2, V),
and ForgetV (ϕ1 ∧ ϕ2, V) |=

ForgetV (ϕ1, V) ∧ ForgetV (ϕ2, V).
Here is counter-example for the converse entailment:

ϕ1 = a ∨ ¬b, ϕ2 = b, thus ϕ1 ∧ ϕ2 = a ∧ b and
we get ForgetV (ϕ1, {b}) = ForgetV (ϕ2, {b}) = >,
while ForgetV (ϕ1 ∧ ϕ2, {b}) = a.

We need now another definition:

Definition 5 (Lang, Liberatore, & Marquis 2003, pp. 396–
397) Let ω be an interpretation for PL, p be a propositional
symbol in PL and L be a consistent set of literals in PL.

We define the interpretations
Force(ω, p) = ω ∪ {p} and
Force(ω,¬p) = ω − {p} and more generally,
Force(ω,L) = ω ∪ {p/p ∈ V(PL), p ∈ L}

− {p/p ∈ V(PL),¬p ∈ L}.

Thus, Force(ω,L) is the interpretation for PL equal to
ω for all the propositional symbols in V(PL) − V(L) and
which satisfies all the literals of L.

An immediate consequence of the definition of ϕl:> is
that we get: Mod(ϕl:>) =
{ω/ω |= ϕ, ω |= l} ∪ {Force(ω,∼ l)/ω |= ϕ, ω |= l} =
{Force(ω, l), F orce(ω,∼ l)/ω |= ϕ, ω |= l} (Modl:>).

It is then interesting to relate ForgetV (ϕ, v) [v ∈
V(PL)] to the formulas ϕv:> and ϕv:⊥:

ϕv:> ≡ ForgetV (v ∧ ϕ, v);
ϕv:⊥ ≡ ForgetV (¬v ∧ ϕ, v).

F orgetV (ϕ, v) ≡ ϕv:> ∨ ϕv:⊥.

Indeed, ForgetV (ϕ, v) ≡ ϕv:> ∨ ϕv:⊥ and ϕ ≡ (v ∧
ϕv:>) ∨ (¬v ∧ ϕv:⊥) are obvious, while choosing l = v in
result (Modl:>) gives: ϕv:> ≡ ForgetV (v ∧ ϕ, v).

Thus, we get, for each ε ∈ {⊥,>}:
(ϕ ∨ ψ)l:ε ≡ ϕl:ε ∨ ψl:ε, and also (ϕ ∧ ψ)l:ε ≡ ϕl:ε ∧ ψl:ε.

Remark 6 Let ϕ be any formula and l some literal with vl

as its propositional symbol. Then, the following six formulas
are all equivalent:

ForgetV (l ∧ ϕ, vl) ∨ ϕ ≡
(¬l ∧ ForgetV (l ∧ ϕ, vl)) ∨ ϕ ≡
ϕl:> ∨ (¬l ∧ ϕ) ≡ ϕl:> ∨ (¬l ∧ ϕl:⊥) ≡
ϕl:> ∨ ϕ ≡ ϕ ∨ (¬l ∧ ϕl:⊥).

Indeed, the set of the models of each of these formulas
is {Force(ω, l)/ω |= ϕ, ω |= l} ∪ {Force(ω,∼ l)/ω |=
ϕ, ω |= l} ∪ {Force(ω,∼ l)/ω |= ϕ, ω |= ¬l}.

Forgetting literals
Variable forgetting as been generalized as detailed now, be-
ginning with the semantical side.

Definition 7 (Literal forgetting) (Lang, Liberatore, &
Marquis 2003, Prop. 15) If ϕ is a formula and L a set of
literals in PL, ForgetLit(ϕ,L) is a formula having for
models the set of all the interpretations for PL which can
be turned into a model of ϕ when forced by a consistent
subset of L:

Mod(ForgetLit(ϕ,L)) = {ω/Force(ω,L1) |= ϕ
and L1 is a consistent subset of L}.

Thus, the models of ForgetLit(ϕ,L) are built from the
models of ϕ by allowing to “negate” (or “complement”) an
arbitrary number of values of literals in L:

Mod(ForgetLit(ϕ,L)) = {Force(ω′, L′
1) /ω

′ |= ϕ
and L′

1 is a consistent subset of ∼ L}.

Let us consider the syntactical side now. One way is to
start from a DNF formulation of ϕ:

Proposition 8 (Lang, Liberatore, & Marquis 2003) If ϕ =
t1 ∨ · · · ∨ tn is a DNF, ForgetLit(ϕ,L) is equivalent to
the formula t′1 ∨ · · · ∨ t′n where t′i is the term ti without the
literals in L.

The similar method for obtaining ForgetV (ϕ, V) when
ϕ is a DNF has been reminded in point 1 following Defini-
tion 2. Similarly, the following syntactical definition, analo-
gous to Definition 3, can be given:

Definition 9 If L is a set of literals in PL, then

ForgetLit(ϕ,L) =
∨

L′⊆L

((

∧

∼ L′
)

∧ ϕ〈(L−L′):>〉

)

.

This is a “global formulation”, easily shown to be equiva-
lent to the following iterative definition (Lang, Liberatore,
& Marquis 2003, Definition 7):

1. ForgetLit(ϕ, ∅) = ϕ.

DEPARTMENT OF INFORMATICS 211

11TH NMR WORKSHOP

2. ForgetLit(ϕ, {l}) = ϕl:> ∨ ϕ.

3. ForgetLit(ϕ, {l} ∪ L) =
ForgetLit(ForgetLit(ϕ,L), l).

We refer the reader to (Lang, Liberatore, & Marquis
2003) which shows the adequacy with Definition 7 and
Proposition 8, and also that choosing any order of the
literals does not modify the meaning of the final formula (cf
Notations 1-3). It follows that this independence from the
order of the literals also applies to the global formulation
in Definition 9. The fact that, exactly as with the notion
of forgetting symbols (cf Definition 2 and following com-
ment), the notion of forgetting literals has such an iterative
definition is important from a computational point of view
(Lang, Liberatore, & Marquis 2003).

Notice that (Lang, Liberatore, & Marquis 2003) uses the
formula ϕl:> ∨ (¬l ∧ ϕ) in point 2, and also the variant
ϕl:> ∨ (¬l ∧ ϕl:>), instead of ϕl:> ∨ ϕ. Remark 6 shows
that any of the six formulas given there could be used
here, which could marginally simplify the computation,
depending on the form in which ϕ appears.

The presence of
(
∧

l′∈L′ ¬l′
)

in Definition 9, which is
what differentiatesForgetLit(ϕ, ...) fromForgetV (ϕ, ...),
comes from the fact that here we forget l ∈ L but we do not
forget l′ ∈ ∼ L.

A proof in (Lang, Liberatore, & Marquis 2003), using
Proposition 8, shows that we get ForgetLit(ϕ, V ±) ≡
ForgetV (ϕ, V). This proof is easily extended to get the
following result:

Remark 10 Since any set of literals can be written as a dis-
joint union between a consistent set L′ and a set V ± of com-
plementary literals, here is a useful formulation:

ForgetLit(ϕ,L′∪V ±) ≡ ForgetLit(ForgetV (ϕ, V), L′).

Notice that we could also forget the literals first, i.e. con-
sider the formula ForgetV (ForgetLit(ϕ,L′), V), even if
it seems likely that this is less interesting from a computa-
tional point of view.

This remark has the advantage of separating clearly the
propositional symbols into three kinds. Let V ′ denote the
set V(L′) of the propositional symbols in L′, and V ′′ =
V(PL)−V −V ′ be the set of the remaining symbols. Then
we get:

1. The propositional symbols in V are forgotten.

2. The propositional symbols in V ′′ are fixed, since the liter-
als in V ′′± are not forgotten.

3. The remaining symbols, in V ′, are neither forgotten nor
fixed, since only the literals in L′ are forgotten, but not
the literals in ∼ L′.

Thus, ForgetLit(ϕ,L1) can be defined as: forgetting lit-
erals with some propositional symbols fixed. It is then natu-
ral to generalize the notion, by allowing some propositional
symbols to vary in the forgetting process.

Forgetting literals with varying symbols
As done with the original notion, let us begin with the se-
mantical definitions.

Definition 11 Let ϕ be a formula, V a set of propositional
symbols, and L a consistent set of literals, in PL, with V
and V(L) disjoint in V(PL). ForgetLitV ar(ϕ,L, V) is a
formula having the following set of models:

Mod(ForgetLitV ar(ϕ,L, V)) =
{ω /Force(ω,L1 ∪ L2) |= ϕ,L1 ⊆ L,

L2 ⊆ V ±, L2 consistent, and (ω 6|= L1 or L2 = ∅)}.

This is equivalent to:

Mod(ForgetLitV ar(ϕ,L, V)) = Mod(ϕ) ∪
{Force(ω,L1 ∪ L2) / ω |= ϕ, ω 6|= L1,

L1 ⊆∼ L, L2 ⊆cons V
±}.

Notice the notation ⊆cons V
± for “included in V ± and

consistent”.
Since ω |= L2 iff Force(ω,L2) = ω, the con-

dition “(ω 6|= L1 or L2 = ∅)” can be replaced by
“(ω 6|= L1 or ω |= L2)”, and then we can replace every-
where here “L2 consistent” by “L2 consistent and complete
in V ” (there are 3card(V) consistent sets L2 and “only”
2card(V) consistent and complete sets).

We could be more general, by allowing to forget some
propositional symbols, which amounts to allow non consis-
tent sets L. This generalization does not present difficulties,
however, since we have not found any application for it till
now, we leave it for future work.

With respect to Definition 7, what happens here is that
the non consistent part of the set of literals, which allowed
to forget some set V of propositional symbols altogether,
has been replaced by a set of varying propositional symbols.

Remark 12 Since ForgetLit(L1, ϕ) |= ForgetLit(L1 ∪
L2, ϕ) holds from (Lang, Liberatore, & Marquis 2003) (“the
more we forget, the less we know”), we get:

ϕ |= ForgetV (ϕ, V) |= ForgetLit(ϕ,L ∪ V ±).

Similarly, it is clear that the new definition allows a finer
(more cautious) forgetting than ForgetLit:

ϕ |= ForgetLitV ar(ϕ,L, V) |= ForgetLit(ϕ,L ∪ V ±).

Remind the motivations for introducing ForgetLitV ar:
we want to “forget” the literals in L, even at the price of
modifying the literals in V ±: if we effectively forget at
least one literal in L, then, we allow any modification for
the literals in V ±. However, we do not want to modify the
literals in V ± “for nothing” our aim being to forget as many
literals in L as possible. This justifies the appearance of the
condition “ω 6|= L1” in the definition and in the alternative
formulation.

The syntactical aspect is slightly more tricky, but it
remains rather simple and it allows to revisit and improve

212 Technical Report IfI-06-04

Theory of NMR and Uncertainty

already known results. As with the original notion (see
Proposition 8), the simplest way is to start from a DNF.

Since L is consistent, without loss of generality and in
order to simplify the notations, we can consider that L is
a set of negative literals (otherwise, replace any p ∈ V(L)
such that p ∈ L by¬p′, p′ being a new propositional symbol,
then after the computations, replace p′ by ¬p). Thus, till the
end of this section, we will consider two disjoint subsets P
and V of V(PL), and L = P− with Q = V(PL) − V − P
denoting the set of the remaining propositional symbols.

Proposition 13 (See proof in Appendix) Letϕ = t1∨· · ·∨tn
be a DNF, with

ti = (
∧

Pi,1) ∧ (
∧

¬(Pi,2)) ∧ (
∧

Vi,l) ∧ (
∧

Qi,l),

where Pi,1 ⊆ P , Pi,2 ⊆ P − Pi,1, with Vi,l ⊆ V ±

and Qi,l ⊆ Q± being consistent sets of literals. Then
ForgetLitV ar(ϕ, P−, V) ≡ t′1 ∨ · · · ∨ t′n where

t′i = (
∧

Pi,1)∧(
∧

Qi,l)∧ [(
∨

(P −Pi,1))∨(
∧

Vi,l)], i.e.

t′i = (
∧

Pi,1) ∧ (
∧

Qi,l) ∧ [
∧

l∈Vi,l

(l ∨ (
∨

(P − Pi,1)))].

Thus, t′i is ti except that the literals in P− are suppressed
while each literal in V ± must appear in disjunction with the
clause

∨

(P − P1), this clause denoting the disjunction of
all the literals in P+ which do not appear (positively) in ti.
Naturally, the literals of L = P− appearing in ti disappear.
Moreover, it is important to notice that the literals from
P± = L ∪ ∼L in ti which remain are those which do
not appear positively in ti. This means that ti could be
“completed in P ” by the conjunction of all the ¬p for each
symbol p ∈ P not appearing in ti, without modifying the
“forget” formula.

We have provided the semantical definition (in the lines of
Definition 7) and a characterization from a DNF formulation
(in the lines of Proposition 8). Let us provide now other
characterizations, and a comparison with ForgetLit.

Proposition 14 Let ϕ be a formula in PL, and P,Q and V
be three pairwise disjoint sets of propositional symbols such
that P ∪Q ∪ V = V(PL).

1. ForgetLit(ϕ, P−∪V ±) is equivalent to the set Th(ϕ)∩
X where X is the set of the formulas in PL which are
disjunctions of terms of the kind
(
∧

P1) ∧ (
∧

Ql) with P1 ⊆ P and Ql ⊆ Q±.
2. ForgetLitV ar(ϕ, P−, V) is equivalent to the set
Th(ϕ) ∩ X where X is the set of the formulas in PL

which are disjunctions of terms of the kind
(
∧

P1) ∧ (
∧

Ql) ∧ [
∧

l∈Vl
(l ∨ (

∨

(P − P1)))] ,
where P1 ⊆ P , Vl ⊆cons V

± and Ql ⊆ Q±.

(We can clearly consider consistent sets Ql only.)

These two results are immediate consequences of
Propositions 8 and 13 respectively. We get the following
alternative possibilities for the sets X’s, firstly by boolean

duality from the preceding results, then by considering
some set having the same ∧-closure as X (Remark 4):

Proposition 14 (following)
1.(a) For ForgetLit(ϕ, P− ∪ V ±), X is the set of the con-

junctions of the clauses of the kind (
∨

P1) ∨ (
∨

Ql)
with P1 ⊆ P and Ql ⊆ Q± (we can clearly consider
consistent sets Ql only).

(b) We can also consider the set X of the clauses (
∨

P1)∨
(
∨

Ql) with P1 ⊆ P and Ql ⊆ Q±.
(c) The smallest set X possible is the set of the clauses

(
∨

P1)∨(
∨

Ql) with P1 ⊆ P ,Ql ⊆ Q±,Ql consistent
and complete in Q.

2.(a) For ForgetLitV ar(ϕ, P−, V), X is the set of the con-
junctions of the formulas flv(P1, Ql, Vl) = (

∨

P1) ∨
(
∨

Ql) ∨
∨

l∈Vl
(l ∧ (

∧

(P − P1))), where P1 ⊆ P ,
Vl ⊆cons V

± and Ql ⊆cons Q
±.

(b) We can also consider the set X of all the formulas
flv(P1, Ql, Vl) of this kind.

(c) The smallest set X possible is the set of the formulas
flv(P1, Ql, Vl) with P1 ⊆ P , Ql and Vl being sets
of literals consistent and complete in Q and V respec-
tively.

These results provide the analogous, for ForgetLit and
ForgetLitV ar, of the results for ForgetV reminded in
Definition 2, and in Remark 4.

The next definition is analogous to Definitions 3 and 9
(see appendix for a proof of the adequacy with Definition
11):

Definition 15 If ϕ is a formula and P and V are two dis-
joint subsets of V(PL), then
ForgetLitV ar(ϕ, P−, V) is the formula

∨

P1⊆P

(

∧

P1 ∧ (ϕ[P1:>,(P−P1):⊥] ∨

(ForgetV (ϕ[P1:>,(P−P1):⊥], V) ∧ (
∨

(P − P1))))
)

.

Example 2 Here P = {a, b}, V = {c}, Q = {d}, with
ϕ = (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c ∧ ¬d).

Syntactical side:

Since ϕ is a DNF, the rules from a DNF after Definition
2 (for ForgetV), in Proposition 8 (for ForgetLit) and
Proposition 13 (for ForgetLitV ar), give the three results:

• ForgetV (ϕ, V) ≡ (¬a ∧ b) ∨ (a ∧ ¬b ∧ ¬d).
• ForgetLit(ϕ, P− ∪ V ±) ≡ b ∨ (a ∧ ¬d).
• ForgetLitV ar(ϕ, P−, V) ≡

(a ∧ b) ∨ (a ∧ ¬c ∧ ¬d) ∨ (b ∧ c). FLV 1

Definitions 9 and 15 can be used also, as shown now for
Definition 15 where, in each case, ψ = ϕ[P1:>,(P−P1):⊥]:
P1 = ∅ : ψ ∨ (ForgetV (ψ, c) ∧ (a ∨ b)) ≡

⊥ ∨ (⊥ ∧ (a ∨ b)) ≡ ⊥. (ϕ1)

P1 = {a} : a ∧ (ψ ∨ (ForgetV (ψ, c) ∧ b)) ≡
a ∧ ((¬c ∧ ¬d) ∨ (¬d ∧ b)). (ϕ2)

DEPARTMENT OF INFORMATICS 213

11TH NMR WORKSHOP

P1 = {b} : b ∧ (ψ ∨ (ForgetV (ψ, c) ∧ a)) ≡
b ∧ (c ∨ (> ∧ a)). (ϕ3)

P1 = {a, b} : a ∧ b ∧ (ψ ∨ (ForgetV (ψ, c) ∧ ⊥)) ≡
a ∧ b ∧ (⊥ ∨⊥) ≡ ⊥. (ϕ4)

The disjunction
∨4

i=1 ϕi is equivalent to FLV 1.

Semantical side:

We get Mod(ϕ) = {{a}, {b, c}, {b, c, d}}.

• The six models of ForgetV (ϕ, V) are obtained by adding
the three interpretations differing from the three models of
ϕ by the value attributed to c (cf example 1):
{a, c}, {b}, and {b, d}.

• The ten models of ForgetLit(ϕ, P− ∪ V ±) are obtained
by adding to the models of ϕ the seven interpretations dif-
fering from these models by adding any subset of {a, b}
and by either do nothing else or modify the value of c
(adding c if it is not present and removing c if it is present).
This gives the six models of ForgetV (ϕ, V) plus the four
interpretations including {a, b}.

• The seven models of ForgetLitV ar(ϕ, P−, V) are ob-
tained by adding to the three models of ϕ the four inter-
pretations differing from these models by adding a non
empty subset of {a, b} and by either do nothing else or
modify the value of c, which gives here the four interpre-
tations including {a, b}.

Here is a technical result which can be drawn from this
example, and which may have a computational interest:

Remark 16 1. For any formula ϕ we get:
ForgetV (ϕ, V) ∨ ForgetLitV ar(ϕ, P−, V) ≡
ForgetLit(ϕ, P− ∪ V ±)

2. For any formulaϕ which is uniquely defined in P , we get:
ForgetV (ϕ, V) ∧ ForgetLitV ar(ϕ, P−, V) ≡ ϕ.
By formula uniquely defined in P we mean a formula

which is equivalent to a conjunction ϕ1 ∧ ϕ2, where ϕ1 is a
term complete in P and ϕ2 is without symbol of P .

See the Appendix for a proof. This remark can be
compared with Remark 12. Notice that in Example
2, the formula ϕ is uniquely defined in P [indeed,
ϕ ≡ (¬a ∧ b) ∧ (c ∨ (¬c ∧ ¬d))], thus points 1. and 2. of
this Remark are satisfied. Here is a simple counter-example
(where the important fact to notice is that ϕ is a term which
is not complete in P , i.e. Pi,1 ∪ Pi,2 6= P) showing that the
second equivalence does not hold for any formula.

Example 3 P, V,Q, and PL as in example 2, ϕ = t = a∧c.
We get:

• ForgetV (t, V) ≡ a.
• ForgetLit(t, P− ∪ V ±) ≡ a.
• ForgetLitV ar(t, P−, V) ≡

ForgetLitV ar(a ∧ ¬b ∧ c, P−, V) ≡ a ∧ (b ∨ c).

Notice also that, once we have all the models of ϕ,
the complexity of the construction of all the models
of ForgetLitV ar(ϕ, P−, V) is not greater than the

complexity of the construction of all the models of
ForgetLit(ϕ, P− ∪ V ±).

More about the computation of these notions
On the syntactical side, we have the same kind of iterative
definition than we had for ForgetV and ForgetLit (cf the
two “iterative definitions”, in Point 2 just before Definition
3 for ForgetV , and after Definition 9 for ForgetLit):

Remark 17 Let us suppose that V is a set of propositional
symbols and thatL∪{l} is a consistent set of literals without
symbol in V and such that l /∈ L.

1. ForgetLitV ar(ϕ, ∅, V) = ϕ;

2. ForgetLitV ar(ϕ, {l}, V) =
ϕ ∨ ForgetV (¬l ∧ ForgetV (l ∧ ϕ, vl), V)
(where vl denotes the symbol of l).

3. ForgetLitV ar(ϕ, {l} ∪ L, V) =
ForgetLitV ar(ForgetLitV ar(ϕ,L, V), {l}, V).

We get equivalent formulas for each order of appearance of
the literals in the iterative process. The complexity of the
computation of ForgetLitV ar(· · · , L, V) should be only
slightly harder than for the computation of ForgetLit. In-
deed, we have to “forget V ” for each new literal, which in-
troduces a rather small new complication, otherwise, com-
puting¬l∧ForgetV (l∧ForgetLitV ar(ϕ,L, V), vl) is not
harder than computing ForgetLit(ForgetLit(ϕ,L), l).

See the appendix for the proof of the equivalence
with Definition 15. Notice already that the formula
(¬l ∧ ForgetV (l ∧ Φ, vl)) has for models the models of
Φ which are actively forced by ¬l (l was true in the initial
model, and l is forced to be false).

Formally, Mod(¬l ∧ ForgetV (l ∧ Φ, vl)) =
{Force(ω,∼ l)/ω |= Φ ∧ l}. (M¬lFVl)

It seems important, from a computational point of view,
to describe an alternative syntactical way to compute this
formula (besides the possibility of using the formulation in
ForgetV given above). Here is a syntactical method.

From (M¬lFVl), we get

¬l ∧ ForgetV (l ∧ Φ, vl) ≡ ¬l ∧ [l ∧ Φ]l:>. (F¬lFVl)

An interesting point in the proof of the equivalence
between Remark 17 and Definition 15 is that it shows how
to improve the computation a bit. Indeed, once a model
has been modified by some l′ ∈ L, the set of all its variant
in V (i.e. the set {Force(ω,L2)/L2 ⊆cons V±}) is
already computed. Thus, for such a model, it is useless to
compute again all the variants in V , since they are already
present, and forgetting one more literal in L will have no
consequence to that respect: since we had already all the
variants in V , modifying a new symbol brings only one
more model (at most, it was not already present) without the
need to consider again all the variants in V for this model.

This gives rise to the following iterative process:

214 Technical Report IfI-06-04

Theory of NMR and Uncertainty

1. ForgetLitV ar(ϕ, ∅, V) = ϕ;

2. ForgetLitV ar(ϕ, {l} ∪ L, V) =
Φ ∨ Φl:> ∨ ForgetV (¬l ∧ [l ∧ ϕ]l:>, V)

where Φ = ForgetLitV ar(ϕ,L, V).

Remind that ¬l ∧ [l ∧ ϕ]l:> can be replaced by
¬l ∧ ForgetV (l ∧ ϕ, vl) (see formula (F¬lFVl).

The simplification with respect to Remark 17 comes from
the fact that only the “fixed” formula ϕ is considered when
forgetting the symbols in V , instead of the “moving” for-
mula ForgetLitV ar(ϕ,L, V). This can be interesting,
since ϕ can be simplified before the computations, which
will then be facilitated.

Let us apply this improved iterative method to Example 2:

Example 4 cf Example 2: P = {a, b}, V = {c}, Q = {d},
with ϕ = (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c ∧ ¬d).

• We compute ForgetLitV ar(ϕ, P, V) again:

1. Φ0 = ForgetLitV ar(ϕ, ∅, {c}) = ϕ;
2. Φ1 = Φ0 ∨ Φ0

¬a:> ∨ ForgetV (a ∧ [¬a ∧ ϕ]¬a:>, c) ≡
((¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c ∧ ¬d)) ∨
(b ∧ c) ∨ ForgetV (a ∧ (b ∧ c), {c}) ≡
(¬a∧ b∧ c)∨ (a∧¬b∧¬c∧¬d))∨ (b∧ c)∨ (a∧ b) ≡
(a ∧ ¬b ∧ ¬c ∧ ¬d) ∨ (a ∧ b) ∨ (b ∧ c);

3. ForgetLitV ar(ϕ, P, V) = Φ2 =
Φ1 ∨ Φ1

¬b:> ∨ ForgetV (b ∧ [¬b ∧ ϕ]¬b:>, c)) ≡
((a∧¬b∧¬c∧¬d)∨ (a∧ b)∨ (b∧ c))∨ (a∧¬c∧¬d)∨
ForgetV (b ∧ (a ∧ ¬c ∧ ¬d), {c}) ≡
(a∧¬b∧¬c∧¬d) ∨ (a∧ b)∨ (b∧ c)∨ (a∧¬c∧¬d)∨
(a ∧ b ∧ ¬d) ≡
(a ∧ b) ∨ (b ∧ c) ∨ (a ∧ ¬c ∧ ¬d) (cf Example 2).

Conclusion and perspectives
Why could this work be useful:

The notion of forgetting literals consists in small manip-
ulations of propositional formulas. This notion can help
the effective computation of various useful already known
knowledge representation formalisms. As shown in (Lang,
Liberatore, & Marquis 2003), we cannot hope that this will
solve all the problems, but it should help in providing signif-
icant practical improvements. And the introduction of vary-
ing symbols while forgetting literals should enhance these
improvements in a significant way. However, the present
text has not developed this applicative matter. Let us just re-
mind a few indications on this subject now [see (Lang, Lib-
eratore, & Marquis 2003; Moinard 2005) for more details].
Various knowledge representation formalisms are known to
be concerned, we will only evoke circumscription.

Circumscription (McCarthy 1986) is a formalism aimed
at minimizing some set of propositional symbols. For
instance, circumscribing the symbol exceptional in the
sub-formula bird ∧ ¬exceptional → flies of our intro-
ductory example would conclude ¬exceptional since it
is compatible with the sub-formula that “no exception”
happens. Notice that even on this simple example a com-
plication appears: we cannot “circumscribe” exceptional

alone, if we want the expected minimization to hold here.
Instead, we must also allow at least one other symbol to vary
during the circumscription (e.g. we could allow flies to
vary while exceptional is circumscribed). Circumscription
is used in action languages and other formalizations of
common sense reasoning, but a key and limiting issue is
the efficient computation. The notion of forgetting literals
provides a (limited, but real) progress on the subject. The
main result is the following one:

Circ(P,Q, V)(ϕ) |= ψ iff
ϕ |= ForgetLitV ar(ϕ ∧ ψ, P−, V).

The propositional symbols in P, V,Q are respectively cir-
cumscribed, varying, and fixed in the “circumscription of the
formula ϕ” here.

This result is known to improve (from a computational
perspective) previously known results, mainly a result from
(Przymusinski 1989). The notion of varying symbols allows
some simplification with respect to Przymunsinski’s method
and even with respect to the computational improvements
of this method discovered by (Lang, Liberatore, & Marquis
2003).

What has been done here:
We have provided the semantical and several syntactical

characterizations for a new notion, extending the notion of
literal forgetting introduced in (Lang, Liberatore, & Mar-
quis 2003) to the cases where some propositional symbols
are allowed to vary. These results show that the new no-
tion is not significantly harder than literal forgetting with-
out varying symbols. The various characterizations provide
effective ways for computing the results, depending on the
form in which the formulas appear. These different ways
for computing the notions introduced should help the ef-
fective computation in many cases. This is why we have
provided several equivalent formulas for the main formulas
introduced here, and also for some important auxiliary for-
mulas involved in the definitions. This kind of work is abso-
lutely necessary when coming to the effective computation.
Indeed, as shown in (Lang, Liberatore, & Marquis 2003), no
formulation can be considered as the best one in any case.

Hopefully, the various ways of defining the formulas and
notions introduced here could also help getting a better grasp
of these notions, since they are not very well known till now.

What remains to be done:
Various knowledge representation formalisms are known

to be concerned (Lang, Liberatore, & Marquis 2003). More-
over, it is highly probable that these notions of forgetting
literals for themselves can give rise to new useful formaliza-
tions of old problems in knowledge representation. It seems
even likely that new knowledge representation formalisms
could emerge from these enhanced notions of “forgetting”.

More concretely, the notion of “forgetting” can still be
generalized: we could directly “forget formulas” (instead of
just “literals”), in the lines of what has been done with for-
mula circumscription with respect to predicate circumscrip-
tion.

DEPARTMENT OF INFORMATICS 215

11TH NMR WORKSHOP

Again more concretely, the present work [after the initiat-
ing work of (Lang, Liberatore, & Marquis 2003)] has given
a preliminary idea on what kind technical work can be done
for simplifying the effective computation of the formulas in-
volved in the forgetting process. It is clear that a lot of im-
portant work should still be done on the subject.

Also, the complexity results, which have been described
in (Lang, Liberatore, & Marquis 2003), should be extended
to the new notion, and to the new methods of computation.
This is far from simple since, as shown in (Lang, Libera-
tore, & Marquis 2003), it seems useless to hope for a general
decrease of complexity with respect to the already known
methods. So, the methods should be examined one by one,
and for each method, its range of utility (the particular for-
mulations for a given formula ϕ for which the method is
interesting) should be discovered and discussed.

Appendix
Proof of Proposition 13:

Let us consider complete terms first, such as

ti = t = (
∧

P1) ∧ (
∧

¬(P − P1)) ∧ (
∧

Vl) ∧ (
∧

Ql),

where P1 ⊆ P , Vl and Ql being consistent
and complete sets of literals in V and Q respec-
tively. t corresponds to an interpretation ω. The set
F (ω) = {Force(ω,L1 ∪ L2) / L1 ⊆ P, L2 ⊆
V ±, L2 consistent and complete in V, and ω 6|= L1 or ω |=
L2} is the set of the models of the formula t1 ∧ t2 where
t1 = (

∧

P1) ∧ (
∧

Ql) and t2 = ¬(
∧

¬(P − P1)) ∨ (
∧

Vl),
i.e. t2 ≡ (

∨

(P − P1)) ∨ (
∧

Vl)).
Indeed, for each ω′ ∈ F (ω), t1 holds since it holds in

ω, and the symbols in P − P1 and V can take any value
satisfying the condition ω 6|= L1 or ω |= L2. Since ω |= t,
this means L1 ∩ (P − P1) 6= ∅ or L2 ⊆ Vl, which is
equivalent to ω′ |= t2. Conversely, any model ω′′ of t1 ∧ t2
is easily seen to be in F (ω).

The same result holds for any (consistent) term
t = ti = (

∧

P1) ∧ (
∧

¬(P2)) ∧ (
∧

Vl) ∧ (
∧

Ql), where
P1 ⊆ P , P2 ⊆ P − P1, Vl and Ql being consistent subsets
of V ± and Q± respectively: Let us first consider separately
the cases where some symbols in P are missing, then
symbols in V , then symbols in Q.

(1) If p ∈ P does not appear in t, for any model ω′ of
t, ω′′ = Force(ω′, {¬p}) and Force(ω′′, {p}) are two
models of t (one of these is ω′). By considering all the
missing p’s, we get that the set {Force(ω′, L1 ∪ L2)/ω

′ |=
t, L1⊆P−, L2⊆consV

±, ω′ 6|=L1 or L2 =∅} is included in
the set {Force(ω′′, L1 ∪ L2)/ω

′′ |= t ∧
∧

¬(P − P1),
L1 ⊆ P−, L2 ⊆cons V ±, ω′′ 6|= L1 or L2 = ∅}.
Thus any missing p in t behaves as if the negative
literal ¬p was present: we get a term “completed
in P ” satisfying ForgetLitV ar(t, P−, V) ≡
ForgetLitV ar(t ∧ ¬(P − P1), P

−, V).

(2) The reasoning for a missing q in t (q ∈ Q) is simpler
yet: if some q ∈ Q does not appear in t, it can be interpreted
as false or true for any model of ForgetLitV ar(t, L,Q),

which means that we keep the part
∧

Ql unmodified,
exactly as in the case where Ql is complete in Q.

(3) The case for V is similar (the disjunction of all the
formulas with all the possibilities for the missing symbols
gives the formula where these symbols are missing): If some
v ∈ V is missing in t, then any model ω′ of t has its counter-
part where the value for v is modified. Let us call Vm the set
of the symbols in V which are absent in t. By considering
the disjunctions of all the possibilities, we get the formula
∨

V ′

l
∈Lm

((
∧

P1)∧(
∧

Ql)∧((
∨

(P−P1))∨(
∧

Vl∧
∧

V ′
l))),

where Lm is the set of all the sets of literals consistent
and complete in Vm. This is equivalent to the formula
(
∧

P1) ∧ (
∧

Ql) ∧ ((
∨

(P − P1)) ∨ (
∧

Vl)).

Combining “the three incompleteness” (1)–(3) gives:
ForgetLitV ar(ti, P

−, V) ≡ (
∧

P1) ∧ (
∧

Ql) ∧
((

∨

(P − P1)) ∨ (
∧

Vl)).
The disjunction for all the ti’s gives the result. 2

Proof of the adequacy of Definition 15 with Definition 11:

Each model ω of ϕ gives rise to the following models of
ForgetLitV ar(ϕ, P−, V):

• ω itself, model of ψ1 =
∧

P1 ∧
∧

¬(P − P1) ∧
ϕ[P1:>, (P−P1):⊥] where P1 = ω ∩ P ,
together with

• all the interpretations differing from ω in that they have
at least one more p ∈ P , and no constraint holds for the
symbols in V ; this set of interpretations being the set of
models of the formula ψ2 =
∧

P1 ∧ ForgetV (ϕ[P1:>, (P−P1):0], V) ∧
∨

(P − P1).

Since ϕ[P1:>,(P−P1):⊥] |= ForgetV (ϕ[P1:>,(P−P1):⊥], V)
and

∧

¬(P − P1) ≡ ¬(
∨

(P − P1)), when considering the
disjunction ψ1 ∨ ψ2, we can suppress ∧

∧

¬(P − P1) in
ψ1. The disjunction of all these formulas ψ1 ∨ ψ2 for each
model ω of ϕ, gives the formula as written in this definition.
2

Proof of Remark 16:

1. For any formula ϕ, Mod(ForgetV (ϕ, V)) =
{Force(ω,L2)/L2 ⊆cons V ±} = {Force(ω,L1 ∪
L2)/L1 ⊆ P−, L2 ⊆cons V ±, ω |= L1}
and Mod(ForgetLitV ar(ϕ, P−, V)) =
{Force(ω,L1 ∪ L2)/L1 ⊆ P−, L2 ⊆cons V ±, [ω 6|=
L1 or L2 = ∅]}. Thus, Mod(ForgetV (ϕ, V) ∨
ForgetLitV ar(ϕ, P−, V)) = Mod(ForgetV (ϕ, V)) ∪
Mod(ForgetLitV ar(ϕ, P−, V)) = {Force(ω,L1 ∪
L2)/L1 ⊆ P−, L2 ⊆cons V ±} =
Mod(ForgetLit(ϕ, P− ∪ V ±)).

2. We get Mod(ForgetV (ϕ, V) ∧
ForgetLitV ar(ϕ, P−, V)) = Mod(ForgetV (ϕ, V)) ∩
Mod(ForgetLitV ar(ϕ, P−, V)). Let us suppose now
that ϕ is a formula uniquely defined in P . This means that
the set Mod(ϕ) ∩ P is a singleton. Then, if L1 ⊆ P−,
ω |= ϕ and ω 6|= L1, we get Force(ω,L1) 6∈ Mod(ϕ),

216 Technical Report IfI-06-04

Theory of NMR and Uncertainty

and also, for any ω′ ∈ Mod(ϕ) and any consistent subsets
L2, L

′
2 of V ±, Force(ω,L1 ∪ L2) 6= Force(ω′, L′

2).
Thus, for any element Force(ω,L1 ∪ L2) of
Mod(ForgetLitV ar(ϕ, P−, V)) which is also in
Mod(ForgetV (ϕ, V), we get ω |= L1, thus also
L2 = ∅, thus Force(ω,L1 ∪ L2) = ω, thus this
element is in Mod(ϕ). Thus we get ForgetV (ϕ, V) ∧
ForgetLitV ar(ϕ, P−, V) |= ϕ, and, by Remark 12,
ForgetV (ϕ, V) ∧ ForgetLitV ar(ϕ, P−, V) ≡ ϕ. 2

Proof of the adequacy of Remark 17 with Definition 15:

Let V be a set of propositional symbols and L ∪ {l} be
a consistent set of literals without symbol in V such that
l /∈ L.

For any formula Φ, we have Mod(¬l ∧ ForgetV (l ∧
Φ, vl)) = {Force(ω,∼ l)/ω |= Φ, ω |= l}.
This is the set of all the models of Φ actively forced by ∼ l:
l was satisfied by ω while Force(ω,∼ l) differs from ω in
that it satisfies ¬l. Then we get
Mod(ForgetV (¬l ∧ ForgetV (l ∧ Φ, vl), V)) =
{Force(Force(ω,∼ l), L2)/ω |= Φ, ω |= l, L2 ⊆cons

V±} =
{Force(ω, {∼ l} ∪ L2)/ω |= Φ, ω |= l, L2 ⊆cons V±}.

Thus, from Definition 11, wet get
Mod(ForgetLitV ar(ϕ,L, V)) = Mod1 ∪ Mod2 and
Mod(ForgetV (¬l ∧ ForgetV (l ∧

ForgetLitV ar(ϕ,L, V), vl), V)) = Mod3 ∪ Mod4

where

1. Mod1 = {ω/ω |= ϕ};

2. Mod2 = {Force(ω,L1 ∪ L2)/ω |= ϕ,
ω 6|= L1, L1 ⊆∼ L,L2 ⊆cons V±};

3. Mod3 =
{Force(ω, {∼ l} ∪ L2)/ω |= ϕ, ω |= l, L2 ⊆cons V±};

4. Mod4 =
{Force(Force(ω,L1 ∪L2), {∼ l}∪L

′
2)/ω |= ϕ, ω |= l,

ω 6|= L1, L1 ⊆∼ L,L2 ⊆cons V±, L′
2 ⊆cons V±}.

Notice that we get: vl /∈ L, vl /∈ V and V(L∪{l})∩V =
∅. Thus we get

Mod4 =
{Force(ω, {¬l}∪L1 ∪L′

2 ∪ (L2− ∼ L′
2))/ω |= ϕ, ω |= l,

ω 6|= L1, L1 ⊆∼ L,L2 ⊆cons V±, L′
2 ⊆cons V±}.

When the sets L2 andL′
2 run over the set of the consistent

subsets of V ±, the set L′′
2 = L′

2 ∪ (L2− ∼ L′
2) also runs

over the same set and we get:

Mod4 = {Force(ω, {∼ l} ∪ L1 ∪ L′′
2)/ω |= ϕ,

ω |= l, ω 6|= L1, L1 ⊆∼ L,L′′
2 ⊆cons V±}.

If L1 ⊆∼ L and ω |= L1, we get
Force(ω, {∼ l} ∪ L2) = Force(ω, {∼ l} ∪ L1 ∪ L2).

Thus we get Mod3 ∪ Mod4 = Mod34 =
{Force(ω, {∼ l} ∪ L1 ∪ L2)/ω |= ϕ, ω |= l,

L1 ⊆∼ L,L2 ⊆cons V±}.

Similarly, if ω 6|= l (i.e. ω |= ¬l), we get
Force(ω,L1 ∪ L2) = Force(ω, {∼ l} ∪ L1 ∪ L2).
Thus we get Mod2 = Mod2a ∪ Mod2b where:
Mod2a = {Force(ω, {∼ l} ∪ L1 ∪ L2)/ω |= ϕ,

ω 6|= l, ω 6|= L1, L1 ⊆∼ L,L2 ⊆cons V±} and
Mod2b = {Force(ω,L1 ∪ L2)/ω |= ϕ, ω 6|= L1,

L1 ⊆∼ L,L2 ⊆cons V±} =
{Force(ω,L′

1 ∪ L2)/ω |= ϕ, ω 6|= L′
1,¬l /∈ L′1,

L′
1 ⊆ {∼ l}∪ ∼ L,L2 ⊆cons V±}.

Since ω 6|= {l} ∪ L1 iff ω 6|= l or ω 6|= ∪L1, we get:
Mod2a ∪ Mod34 = Mod2a34 =
{Force(ω, {∼ l} ∪ L1 ∪ L2)/ω |= ϕ, ω 6|= {∼ l} ∪ L1,

L1 ⊆∼ L,L2 ⊆cons V±} =
{Force(ω,L′

1 ∪ L2)/ω |= ϕ, ω 6|= L′
1,

L′
1 ⊆ {∼ l}∪ ∼ L,∼ l ∈ L′

1, L2 ⊆cons V±}.

Thus we get Mod2a34 ∪ Mod2b =
Mod234 = {Force(ω,L1 ∪ L2)/ω |= ϕ, ω 6|= L1,

L1 ⊆ {∼ l}∪ ∼ L,L2 ⊆cons V±}.

Finally we get the result which achieves the proof:
Mod(ForgetLitV ar(ϕ,L, V) ∨ ForgetV (¬l ∧

ForgetV (l ∧ ForgetLitV ar(ϕ,L, V), vl), V)) =
Mod1 ∪ Mod2 ∪ Mod3 ∪ Mod4 = Mod1 ∪ Mod234 =
Mod(ForgetLitV ar(ϕ, {l} ∪ L, V)).

Thus, we have shown:
ForgetLitV ar(ϕ, {l} ∪ L, V) =

ForgetLitV ar(ϕ,L, V) ∨ ForgetV (¬l ∧
ForgetV (l ∧ ForgetLitV ar(ϕ,L, V), vl), V). 2

References
Lang, J.; Liberatore, P.; and Marquis, P. 2003. Proposi-
tional Independence - Formula-Variable Independence and
Forgetting. (Electronic) Journal of Artificial Intelligence
Research 18:391–443. http://WWW.JAIR.ORG/.
Lin, F., and Reiter, R. 1994. Forget it! In Mellish, C. S.,
ed., AAAI Fall Symposium on Relevance, 1985–1991. New
Orleans, USA: Morgan Kaufmann.
Lin, F. 2001. On strongest necessary and weakest sufficient
conditions. Artficial Intelligence 128(1–2):143–159.
McCarthy, J. 1986. Application of circumscription to for-
malizing common sense knowledge. Artificial Intelligence
28(1):89–116.
Moinard, Y. 2005. Forgetting literals with varying proposi-
tional symbols. In McIlraith, S.; Peppas, P.; and Thielscher,
M., eds., 7th Int. Symposium on Logical Formalizations of
Common Sense Reasoning, 169–176.
Przymusinski, T. C. 1989. An Algorithm to Compute Cir-
cumscription. Artificial Intelligence 38(1):49–73.
Su, K.; Lv, G.; and Zhang, Y. 2004. Reasoning about
Knowledge by Variable Forgetting. In Dubois, D.; Welty,
C. A.; and Williams, M.-A., eds., KR’04, 576–586. AAAI
Press.

DEPARTMENT OF INFORMATICS 217

11TH NMR WORKSHOP

218 Technical Report IfI-06-04

Theory of NMR and Uncertainty

2.12 Handling (un)awareness and related issues in possibilistic logic:
A preliminary discussion

Handling (un)awareness and related issues in possibilistic logic:
A preliminary discussion

Henri Prade

IRIT
118 route de Narbonne

31062 Toulouse Cedex 9
prade@irit.fr

Abstract
Possibilistic logic has been developed as a
framework where classical logic formulas are
associated with levels that express partial certainty,
or encode priority when handling contexts in non-
monotonic reasoning, or specifying goals when
modeling preferences. Thus, basic features of
possibilistic logic are the fact that it deals with
layered sets of formulas, and it can handle
incomplete, uncertain and inconsistent information.
In this paper, we provide a preliminary discussion
of how different forms of (un)awareness could be
processed, in possibilistic logic taking advantage of
the layered structure and of the different modalities
available.

1 Introduction
Agents may be unaware of propositions that are
true. Clearly, this lack of knowledge may affect
their capabilities for making right judgments and
good choices. This is why a proper representation
of awareness and unawareness is of interest in
economic modeling.

In their approach to this concern, Modica and
Rustichini (1999) claim “that simple uncertainty is
not an adequate model of a subject's ignorance,
because a major component of it is the inability to
give a complete description of the states of the
world, and we provide a formal model of
unawareness” and that “without weakening the
inference rules of the logic one would face the
unpleasant alternative between full awareness and
full unawareness”.

Indeed a first attempt to model the awareness of a
proposition a, as being equivalent to the knowledge
of a or to the knowledge that a is not known, was
made by Modica and Rustichini (1994) in a modal
logic setting, following an earlier proposal of Fagin
and Halpern (1988) where knowledge and
unawareness were handled by the means of separate
modalities. A new proposal by Modica and

Rustichini (1999) is further discussed in Halpern
(2001).

In this note we provide a preliminary discussion
and investigation of what kinds of (un)awareness
might be captured in the framework of possibility
theory and possibilistic logic. This setting allows
for there presentation of qualitative uncertainty
thanks to a limited use of graded modalities in
agreement with propositional logic. States of
complete ignorance can be easily represented in
possibility theory, which contrasts with the
probabilistic framework. However, the handling of
some forms of unawareness go beyond the simple
representation of uncertainty and ignorance.

We first start with an informal discussion of
(un)awareness may mean. Then, we progressively
restate the knowledge representation capabilities of
the possibility theory and possibilistic logic
settings, and point out how the layered structure of
possibilistic knowledge base and the use of
different modalities in possibility theory, can be
useful for capturing various forms of
(un)awareness.

2 Being (un)aware of what ?
Intuitively speaking, the idea of unawareness relates
to the distinction between implicit and explicit
knowledge (Halpern, 2001), where explicit
knowledge implies implicit knowledge, while the
converse may not hold. Then, one possible
understanding of unawareness, is to see it as due to
limited reasoning capabilities.

An agent may be aware of a, just because he knows
a (i. e., he knows that a is true). Being aware of a
and aware of b in this trivial sense, he might be
unaware that he should know a ∨ b , or that he
should know a ∧ b also. This is limited omniscience
and limited reasoning capabilities.

DEPARTMENT OF INFORMATICS 219

11TH NMR WORKSHOP

An agent may be aware that himself, or another
agent, does not know if a is true or if a is false, but
he may be also aware that himself, or another agent,
or any other agent cannot know if a is true or if a is
false. Consequently, he or another agent cannot
claim that b is true if they have no direct knowledge
about b, and if they are unaware of any formula
involving b except ¬a ∨ b.

Clearly, there are other forms of unawareness. In
particular, the agent may have never heard of a or
of ¬a, and then may have never figured out if a
might be true or if a might be false.

In the following, we discuss how these different
forms of (un)awareness could be handled in a
possibilistic setting.

3 Limited awareness of clauses
The core of possibilistic logic, which uses bounds
on necessity measures only, is first recalled. Then
its use for distinguishing between formulas that the
agent is aware that they are true from formulas that
would require a higher level of awareness, is
outlined. The approach also enables us to control
and limit the awareness of disjunctions of formulas
that the agent is aware of.

3.1 Background on possibilistic logic
A possibilistic logic formula is essentially a pair
made of a classical first order logic formula and of
a weight, which expresses certainty or priority
(Dubois et al., 1994). In possibilistic logic, the
weight associated with a formula a is semantically
interpreted in terms of lower bounds α ∈ (0,1] of a
necessity measure, i.e., a possibilistic logic
expression (a, α) is understood as N(a) ≥ α, where
N is a necessity measure.

More generally, from a semantic point of view, a
possibilistic knowledge base K = {(ai, αi)}i=1,n is
understood as the possibility distribution πK
representing a fuzzy set of models of K on the set Ω
of the interpretations induced by the logical
language that is used:

πK(ω) = mini=1,n max(µ[ai](ω), 1 − αi) (1)

where [ai] denotes the sets of models of ai so that
µ[ai](ω) = 1 if ω ∈ [ai] (i.e. ω |= ai), and µ[ai](ω) =
0 otherwise. The degree of possibility of ω
according to (1) is computed as the complement to

1 of the largest weight of a formula falsified by ω.
Thus, ω is all the less possible as it falsifies
formulas of higher degrees. In particular, if ω is a
counter-model of a formula with weight 1, then ω is
impossible, i. e. πK(ω) = 0. Moreover πK(ω) results
from the min-based conjunctive combination of the
elementary possibility distributions π(ai, αi)

(ω) =

max(µ[ai](ω), 1 − α i) that pertain to one formula
(ai, α i). Note that π(ai, αi)

(ω) = 1 if ω |= ai and

π(ai, α i)
(ω) = 1 − α i otherwise, which means that

Π([ai]) = 1 and Π([¬pi]) = 1 − αi = 1 − N([ai]) and
thus N([ai]) = α i, having in mind that a possibility
measure Π and a necessity measure N are
associated with a possibility distribution π by the
definition Π(A) = sup{π(ω) | ω ∈ A} and the
duality N(A) = 1 − Π (Ac) where Ac is the
complement of A in Ω.

A principle of minimal specificity (which justifies
the use of a min-combination) is at work in (1),
since the greatest possible possibility degree is
assessed to each ω in agreement with the
constraints N(ai) ≥ αi ⇔ Π(¬ai) ≤ 1 − αi. Note also
that a state of complete ignorance about a is
represented by π[a](ω) = 1 if ω |= a and π[¬a](ω) =
1, or N(a) = N(¬a) = 0 (the ‘[]’ are now omitted).

It can be shown that πK is the largest possibility
distribution such that NK(ai) ≥ αi, ∀i = 1,n, where
NK is the necessity measure associated with πK,
namely NK(a) = min v∈[¬a](1 − πK(v))). It may be

that NK(ai) > α i, for some i, due to logical
constraints linking formulas in K.

At the syntactic level, the inference rules are:

• (¬a ∨ b, α); (a, β) |- (b, min(α, β))
(modus ponens)

• for β ≤ α (a, α) |- (a, β) (weight weakening),
where |- denotes the syntactic inference of
possibilistic logic.

The min-decomposability of necessity measures
allows us to work with weighted clauses without
lack of generality, since N(∧i=1,n ai) ≥ α ⇔ ∀ i ,
N(ai) ≥ α. It means that in terms of possibilistic
logic expressions we have (∧ i=1,n ai, α) ⇔

220 Technical Report IfI-06-04

Theory of NMR and Uncertainty

∧i=1,n (ai, α). In other words, any weighted logical
formula put in Conjunctive Normal Form is
equivalent to a set of weighted clauses. This feature
considerably simplifies the proof theory of
possibilistic logic. The basic inference rule in
possibilistic logic put in clausal form is the
resolution rule (cut):

 (¬a ∨ b, α); (a ∨ c, β) |- (b ∨ c, min(α, β))

Classical resolution is retrieved when all the
weights are equal to 1. Other noticeable, valid
inference rules are:

• if a entails b classically, (a, α) |- (b, α)
(formula weakening)

• (a, α); (a, β) |- (a, max(α, β)) (weight fusion).

Observe that since (¬a ∨ a, 1) is an axiom, formula
weakening is a particular case of the resolution rule
(indeed (a, α); (¬a ∨ a ∨ b, 1) |- (a ∨ b, α)).
Formulas of the form (a, 0) which do not contain
any information (∀a, N(a) ≥ 0 always holds), are
not usually part of the possibilistic language since
they bring nothing.

Refutation is easily extended to possibilistic logic.
Let K be a knowledge base made of possibilistic
formulas, i.e., K = {(ai, α i)}i=1,n. Proving (a, α)
from K amounts to adding (¬a,1), put in clausal
form, to K, and using the above rules repeatedly
until getting K ∪ {(¬a, 1)} |- (⊥, α), where ⊥ is the
empty clause. Clearly, we are interested herein
getting the empty clause with the greatest possible
weight. It holds that K |- (a, α) if and only if Kα |- a
(in the classical sense), where Kα = {a: (a, β) ∈ K
and β ≥ α }. Possibilistic logic is sound and
complete for refutation with respect to the above
semantics where the semantic entailment
corresponds to point wise fuzzy set inclusion (K |=
(a, α) if and only if πK ≤ π(a, α)), Dubois et al.,
1994).

An important feature of possibilistic logic is its
ability to deal with inconsistency. The level of
inconsistency of a possibilistic logic base is defined
as

inc(K) = max{α | K |- (⊥, α)}
 (by convention max∅ = 0).

More generally, inc(K) = 0 if and only if K* = {ai |
(ai, αi) ∈ K)} is consistent in the usual sense.

3.2 Level of awareness and disjunctions
In classical logic, we cannot make any difference
between the two propositional bases corresponding
to situations 1 and 2 below:

S1 = {a, b},
i.e. we are aware of ‘a’ and aware of ‘b’;

S2 = {a, a → b},
i.e. we are aware of ‘a’ and aware of ‘a→b’.

In both cases, we have the same deductive closure.
This is due to the fact that from ‘b’ we can infer ‘¬a
∨ b’ (≡ a → b). This points out that when we are
aware of a formula, we should be aware as well of
any disjunction involving this formula. However,
S2 expresses a logical dependency between a and b,
while this is not the case for S1.

More formally, let c(S) denote the closure of a set S
of propositional formulas by iterated application of
the cut rule. Then c(S1) = S1 = {a, b} and c(S2) =
{a, a→b, b}. From this point of view, S1 and S2 are
no longer equivalent, although they are
semantically equivalent to the interpretation where
a and b are true.

In possibilistic logic, this problem can be
circumvented. Namely, (¬a ∨ b, α) is no longer
subsumed by (b, β) if α > β. Semantically speaking
(a, β) means N(a) ≥ β where N is a necessity
measure. Thus, the possibilistic bases

S’1 = {(a, β), (b, β)},
S’2 = {(a, β), (a → b, α)},

are associated with two different possibility
distributions, respectively:

π1(ab) = 1; π1(¬ab) = 1 − β;
π1(a¬b) = 1 − β; π1(¬a¬b) = 1 − β,

π2(ab) = 1; π2(¬ab) = 1 − β;
π2(a¬b) = 1 − α; π2(¬a¬b) = 1 − β.

Since α > β, we have π1 > π2. Thus S’2 is better N-
informed than S’1 (remember that total ignorance is
represented by π(ω) = 1 for all interpretations ω,
and the minimal specificity principle expresses in a
graded way that anything not stated as impossible is
possible). The idea is that S’2 corresponds to a
situation of greater awareness.

DEPARTMENT OF INFORMATICS 221

11TH NMR WORKSHOP

Formally, since π1 > π2, we may write

π2 = min(π1, π) (2)

Thus S’2 is the combination of the information
contained in S’1 and of an additional piece of
information S. Let π* be the largest solution of the
above equation. When π1 > π2, π* always exists
and is unique. In our example, we have

π*(ab) = 1 ; π*(¬ab) = 1;
π*(a¬b) = 1 − α ; π*(¬a¬b) = 1.

It corresponds to the possibilistic base

S’ = {(a → b, α)}.

The syntactic counterpart of (2) in terms of bases,
writes

S’2 = S’1 ∪ S’.

Moreover in syntactic terms, the closure of S’2:
{(a, β), (a → b, α)} by the cut rule in possibilistic
logic ((¬a ∨ b, α), (a ∨ c, β) |- (b ∨ c, min(α, β)),
writes S’2: {(a, β), (a → b, α), (b, β)}. This differs
from S’1: {(a, β), (b, β)}, where a → b cannot be
obtained by cut from ‘a’ and ‘b’, but only as a
weakening of b.

This suggests the following approach. Given a
possibilistic logic base K with formulas having
levels 1 = α1 > α2 > …> αn > 0, being aware of K
at level αj, means that we only access the formulas
in K that are associated with weights equal to or
smaller than αj, or to formulas that can be deduced
from those formulas by application of the cut rule.
Thus, the weights are no longer viewed as certainty
levels, but as increasing levels of awareness.

Let K≥β (resp. K>β, K=β) be the set of formulas in
K whose level is greater than or equal to (resp.
strictly greater than, equal to) β. Namely,

 K≥β = {(a, α) s. t. (a, α) ∈ K and α ≥ β};

 K>β = {(a, α) s. t. (a, α) ∈ K and α > β};

 K=β = {(a, α) s. t. (a, α) ∈ K and α = β}.

Then obviously K≥β = K=β ∪ K>β.

This provides a decomposition of a knowledge base
between the set of formulas K=β that an agent is

aware of, say at level β, and the formulas in K>β
that are at higher levels of awareness. Clearly, at the
semantic level, we have

πK≥β = min(πK=β, πK>β). (3)

With this reading of a possibilistic base K, we have
the following result, where (K)* and c(K)
respectively denote the set of the formulas in K
without their weights, and the closure of K by the
possibilistic cut rule only, K being a possibilistic
base. In the particular case where all the weights in
K are equal to 1, the closure of K by the
possibilistic cut rule and the closure of (K)* by the
classical cut rule are equivalent. Moreover, note
that c((K)*) = (c(K))*. In the following, (c(K=β))*

is thus abridged into c(K=β)*, and similarly for K>β
and for K≥β.

If a formula belongs to the deductive closure of
(K=β)*, but not to c(K=β)*, while it belongs to

c(K≥β)*, then this formula is in c(K>β)*.

For instance, in the above example ¬a ∨ b is in the
deductive closure of (K=β)* = {a, b}, but not in

c(K=β)*, while it belongs to c(K≥β)* = {a, ¬a ∨ b,

b}, where ¬a ∨ b is in c(K>β)* = {¬a ∨ b}.

In summary, in the above approach,

i) The formulas, for which the agent is
supposed to be aware that they are true, are the
formulas in (K=β)*, and the formulas in

c(K=β)* that can be obtained by the cut rule

from (K=β)*; note that the agent is not
supposed to be aware of the formulas in the
deductive closure of (K=β)* that are not in

c(K=β)*.

ii) The agent is supposed not to be aware of
formulas in (K>β)* (provided they are not in

c(K=β)*);

iii) It would be possible to deal with several
levels of (non)-awareness K=β1

,…, K=βk
 with

222 Technical Report IfI-06-04

Theory of NMR and Uncertainty

β1 < …< βk, such that the agent depending his
role may access a different level i of
awareness, i. e., the agent is aware of formulas
K=β1

 ∪…∪ K=βi
, but not in K=βi+1

∪…∪

K=βk
.

iv) The fact that a formula is in c(K≥β) with
level β does not necessarily means that the
agent is aware of it, if it can be only inferred
using higher level formulas (which can be
easily detected). For instance, if (K=β)* = {a},

(K>β)* = {¬a ∨ b}, then c(K≥β)* ⊃ {b}.

v) The approach may be simplified if the agent
is supposed to be aware of all the formulas in
the deductive closure of K=β, (but not of the

formulas in K>β). Then the standard
possibilistic logic inference mechanism based
on refutation can be used, rather than using the
limited closure based on the cut rule.

4 Awareness of inability to know
As recalled in section 3.1, the usual possibilistic
logic handles constraints of the form N(a) ≥ α
Constraints of the form Π (a) ≥ α can be also
handled. They represent poor pieces of information,
while N(a) ≥ α ⇔ Π(¬a) ≤ 1 − α expresses partial
certainty of a and impossibility of ¬a.

However, the inability to know if a is true or false
can be expressed by Π(a) = 1 = Π(¬a), which states
that both a and ¬a are fully possible. In that view,
the unawareness of a and the unawareness of ¬a are
the same thing.

The following cut rule, which mixes the two types
of lower bound constraints on Π and N, has been
established (Dubois and Prade, 1990):

N(¬a ∨ b) ≥ α; Π(a ∨ c) ≥ β |- Π(b ∨ c) ≥ α & β

with α & β = 0 if α + β ≤ 1; α & β = β if α + β > 1.

As a particular case, the following rule holds for β
= 1, namely

 N(¬a ∨ b) > 0; Π(a ∨ c) = 1 |- Π(b ∨ c) = 1 (4)

This is easy to check since N(¬a ∨ b) > 0 is
equivalent to Π(a ∧ ¬b) < 1. Then Π (a ∨ c) =

Π((a ∧ ¬b) ∨ (a ∧ b) ∨ c) = max(Π(a ∧ ¬b), Π(a ∧
b), Π(c)) applying the max-decomposability of Π.
Hence max(Π(a ∧ b), Π(c)) = 1 ≤ max(Π(b), Π(c))
= Π(b ∨ c).

As a consequence of (4), if the awareness of a is
equivalent to the one of b, i.e. we have N(¬a ∨ b) >
0 and N(¬b ∨ a) > 0, and if the agent is unable to
know a, i.e. Π (a) = 1 = Π (¬a), then he is also
unable to know b, i.e., Π (b) = 1 = Π(¬b), as
expected.

Thus, the inability to know can be represented and
propagated in the possibilistic framework. It can be
conjointly handled with the approach of section 3.2,
since a possibilistic logic with the two types of
bounds has been developed (Dubois et al., 1994).

5 Limited awareness of conjunctions
With the approach outlined in section 3.2, the agent
may not be aware of a ∧ b, while he is aware of a
and he is aware of b. But we may like to have the
agent aware of ‘a’ and ‘b’, without being aware of
‘a ∧ b’. Since N(a ∧ b) = min(N(a), N(b)), (a ∧ b,
α) is semantically equivalent to {(a, α); (b, α)}.
Thus the above approach cannot be applied.

However, this is achievable by using Δ–based
formulas rather than N-based formulas as above.
Indeed a measure denoted Δ , and called
“guaranteed possibility, has been introduced in
possibility theory (e.g., (Dubois and Prade, 2004)).

This measure Δ is associated with a distribution δ in
the following way:

Δ(a) = min{δ(ω) | ω |= a}.

Thus, Δ(a ∨ b) = min(Δ(a), Δ(b)). Δ(a) corresponds
to the minimal level of possibility of a model of a.
It is thus a guaranteed level of possibility, and is the
basis for a logic of observations (Dubois et al.,
2000).

Then a weighted formula (now written between
brackets) [a, γ] is understood as Δ (a) ≥ γ. The
associated cut rule is now:

 [¬a ∧ b, γ], [a ∧ c, η] |- [b ∧ c, min(γ, η)].

Mind it works in a reverse way w. r. t. classical
entailment. Total lack of Δ-information is
represented by δ(ω) = 0 for all interpretations ω,
and a maximal specificity principle now applies
expressing in a graded way that anything not stated

DEPARTMENT OF INFORMATICS 223

11TH NMR WORKSHOP

as possible is impossible (closed world
assumption).

Indeed, T’1 = {[a, γ]; [b, γ]} is now represented by

δ1(ab) = γ; δ1(¬ab) = γ;
δ1(a¬b) = γ ; δ1(¬a¬b) = 0

and T’2 = {[a, γ], [b, γ], [a ∧ b, η]} with γ < η, is
associated with the distribution

δ2(ab) = η; δ2(¬ab) = γ;
δ2(a¬b) = γ; δ2(¬a¬b) = 0.

while T’ = {[a ∧ b, η]} is associated with the
distribution with

δ(ab) = η; δ(¬ab) = 0;
δ(a¬b) = 0; δ(¬a¬b) = 0.

Clearly, it can be checked that the following
decomposition holds

δ2 = max(δ1, δ) (5)

and δ2 (>δ1) is better Δ-informed than δ1.

Thus in the Δ–possibilistic base {[a, γ], [b, γ], [a ∧
b, η]} with γ < η , we are aware of ‘a ∧ b’, while
this is not the case in {[a, γ], [b, γ]}.

Then an approach similar to the one of section 3.2
could be developed. It should be manageable to
combine the two approaches, using two different
scales separately, and thus to be aware of ‘a’ and
‘b’ without being aware of ‘a ∧ b’ and ‘a → b’ for
instance.

6 Concluding remarks
This research note has outlined potentialities of the
possibilistic framework for handling (un)awareness.
Some other lines of research can be mentioned.

First, it would be possible to combine the above
approach with beliefs of different levels. Namely
the agent would be aware of propositions with some
certainty levels, but might be not aware that the
same propositions can be regarded in fact as being
more certain (or even fully certain).

Another road that might be worth investigating,
would be to use an extension of possibilistic logic

with ill-known certainty levels. Then a formula that
the agent is not aware of could receive an unknown
level.

In Halpern (2001)’s approach to different forms of
unawareness, ‘being aware’ is viewed as a modal
operator distinct from ‘knowing’. In the approaches
outlined here in Sections 3 and 5, a similar
distinction does not exist. Rather, the distinction is
made through the introduction of a level of
awareness that can be controlled through the
possibilistic inference machinery. This contrasts
with section 4, where the inability to know a (or
¬a) may be viewed as the counterpart of a specific
modal information. A comparison of the notions of
(un)awareness captured in Halpern (2001)’s
approach and the ones discussed in this paper is a
topic for further research.

Clearly, (un)awareness is still more interesting,
especially from an application point of view in a
multiple-agent setting (Heifetz et al. , 2003), where,
e. g., an agent may be unaware of something that
another agent is aware of; moreover this other agent
may be also aware that the first agent is not aware
of the thing. Modeling (un)awareness may be a
crucial issue in negotiation. Then the possibilistic
handling of (un)awareness would require first to
work with a multiple agent extension of
possibilistic logic. Such an extension is currently
under study.

Lastly, there are also dynamic aspects in
unawareness. For instance, believing that one can’t
be aware of a, one may receive the information that
a , that forces the agent to reconsider the
unawareness status of some propositions. Believing
a, one may also receive the information that one
cannot be aware of a. This raises new revision
problems.

References
D. Dubois, P. Hajek, H. Prade (2000) Knowledge-driven
versus data-driven logics. Journal of Logic, Language,
and Information, 9, 65-89.
D. Dubois, H. Prade Resolution principles in possibilistic
logic, Int. J. of Approximate Reasoning, 4, 1-21, 1990.
D. Dubois, J. Lang and H. Prade (1994), Possibilistic
logic. In: Handbook of Logic in Artificial Intelligence and
Logic Programming, (D.M. Gabbay et al., eds.), Vol. 3,
Oxford Univ. Press, Oxford, UK, 439-513.
D. Dubois, H. Prade (2004) Possibilistic logic: a
retrospective and prospective view. Fuzzy Sets and
Systems, 144, 3-23.
R. Fagin, J. Y. Halpern (1988) Belief, awareness, and
limited reasoning, Artificial Intelligence, 34, 39-76.

224 Technical Report IfI-06-04

Theory of NMR and Uncertainty

J. Y. Halpern (2001) Alternative semantics for
unawareness, Games and Economic Behavior, 37, 321-
339.
A. Heifetz, M. Meier, B. C. Schipper (2003) Multi-person
unawareness. Proc. of the 9th Conference on Theoretical
Aspects of Rationality and Knowledge (TARK-2003), J.
Y. Halpern, M. Tennenholtz (eds.), Bloomington,
Indiana, USA, June 20-22, 2003, 145-158.
S. Modica and A. Rustichini (1994) Awareness and
partitional information structures, Theory and Decision,
37, 107-125.
S. Modica and A. Rustichini (1999) Unawareness and
partitional information structures, Games and Economic
Behavior, 27, 265-298.

DEPARTMENT OF INFORMATICS 225

11TH NMR WORKSHOP

226 Technical Report IfI-06-04

Theory of NMR and Uncertainty

2.13 On the Computation of Warranted Arguments within a Possi-
bilistic Logic Framework with Fuzzy Unification

On the Computation of Warranted Arguments
within a Possibilistic Logic Framework with Fuzzy Unification ∗

Teresa Alsinet Carlos Chesñevar
Dept. of Computer Science

University of Lleida
Lleida, SPAIN

{tracy,cic}@eps.udl.es

Lluı́s Godo Sandra Sandri
AI Research Institute (IIIA-CSIC)

Campus UAB
Bellaterra, SPAIN

{godo,sandri}@iiia.csic.es

Guillermo Simari
Dept. of Computer Science and Eng.

Universidad Nacional del Sur
Bahı́a Blanca, ARGENTINA
grs@cs.uns.edu.ar

Abstract

Possibilistic Defeasible Logic Programming (P-DeLP) is a
logic programming language which combines features from
argumentation theory and logic programming, incorporating
the treatment of possibilistic uncertainty at object-language
level. The aim of this paper is twofold: first to present an
approach towards extending P-DeLP in order to incorporate
fuzzy constants and fuzzy unification, and after to propose
a way to handle conflicting arguments in the context of the
extended framework.
Keywords: Possibilistic logic, fuzzy constants, fuzzy unifi-
cation, defeasible argumentation.

Introduction
In the last decade, defeasible argumentation has emerged
as a very powerful paradigm to model commonsense rea-
soning in the presence of incomplete and potentially incon-
sistent information (Chesñevar, Maguitman, & Loui 2000).
Recent developments have been oriented towards integrat-
ing argumentation as part of logic programming languages.
In this context, Possibilistic Defeasible Logic Programming
(P-DeLP) (Chesñevar et al. 2004) is a logic programming
language which combines features from argumentation the-
ory and logic programming, incorporating the treatment of
possibilistic uncertainty at object-language level. Roughly
speaking, in P-DeLP degrees of uncertainty help in deter-
mining which arguments prevail in case of conflict.

In spite of its expressive power, an important limitation in
P-DeLP (as defined in (Chesñevar et al. 2004)) is that the
treatment of imprecise, fuzzy information was not formal-
ized. One interesting alternative for such formalization is the
use of PGL+, a Possibilistic logic over Gödel logic extended
with fuzzy constants. Fuzzy constants in PGL+ allow ex-
pressing imprecise information about the possibly unknown
value of a variable (in the sense of magnitude) modeled as a
(unary) predicate. For instance, an imprecise statement like
“John’s salary is low” can be expressed PGL+ by the for-
mula John salary(low) where John salary is a predicate
and low a fuzzy constant, which will be mapped under a

∗This is a proper extension of the paper “Modeling Defeasible
Argumentation within a Possibilistic Logic Framework with Fuzzy
Unification” to appear in the 11th IPMU International Conference
2006 (Paris, France).

given PGL+ interpretation to a fuzzy set rather to a single
domain element as usually in predicate logics. Notice that
this kind of statements express disjunctive knowledge (mu-
tually exclusive), in the sense that in each interpretation it is
natural to require that the predicate John salary(x) be true
for one and only one variable assignment to x, say u0. Then,
in such an interpretation it is also natural to evaluate to what
extent John salary(low) is true as the degree in which the
salary u0 is considered to be low. Hence, allowing fuzzy
constants in the language leads to treat formulas in a many-
valued logical setting (that of Gödel many-valued logic in
our framework), as opposed to the bivalued setting within
classical possibilistic logic, with the unit interval [0, 1] as a
set of truth-values.

The aim of this paper is twofold: first to define DePGL+,
a possibilistic defeasible logic programming language that
extends P-DeLP through the use of PGL+, instead of (clas-
sical) possibilistic logic, in order to incorporate fuzzy con-
stants and fuzzy unification, and after to propose a way to
handle conflicting arguments in the context of the extended
framework. To this end, the rest of the paper is structured as
follows. First, we present the fundamentals of PGL+. Then
we define the DePGL+ programming language. The next
two sections focus on the characterization of arguments in
DePGL+ and the analysis of the notion of conflict among
arguments in the context of our proposal. Next we discuss
some problematic situations that may arise when trying to
define the notion of warranted arguments in DePGL+, and
propose some solutions. Finally we discuss some related
work and present the main conclusions we have obtained.

PGL+: Overview
Possibilistic logic (Dubois, Lang, & Prade 1994) is a logic
of uncertainty where a certainty degree between 0 and 1,
interpreted as a lower bound of a necessity measure, is at-
tached to each classical formula. In the propositional ver-
sion, possibilistic formulas are pairs (ϕ, α) where ϕ is a
proposition of classical logic and interpreted as specifying a
constraint N(ϕ) ≥ α on the necessity measure of ϕ. Possi-
bilistic models are possibility distributions π : Ω → [0, 1]
on the set of classical (bivalued) interpretations Ω which
rank them in terms of plausibility: w is at least as plau-
sible as w′ when π(w) ≥ π(w′). If π(w) = 1 then w
is considered as fully plausible, while if π(w) = 0 w is

DEPARTMENT OF INFORMATICS 227

11TH NMR WORKSHOP

considered as totally impossible. Then (ϕ, α) is satisfied
by π, written π |= (ϕ, α) whenever Nπ(ϕ) ≥ α, where
Nπ(ϕ) = inf{1− π(w) | w(ϕ) = 0}.

In (Alsinet & Godo 2000; 2001) the authors introduce
PGL+, an extension of possibilistic logic allowing to deal
with some form of fuzzy knowledge and with an efficient
and complete proof procedure for atomic deduction when
clauses fulfill two kinds of constraints. Technically speak-
ing, PGL+ is a possibilistic logic defined on top of (a frag-
ment of) Gödel infinitely-valued logic, allowing uncertainty
qualification of predicates with imprecise, fuzzy constants,
and allowing as well a form of graded unification between
them. Next we provide some details.

The basic components of PGL+ formulas are: a set of
primitive propositions (fuzzy propositional variables) Var;
a set S of sorts of constants; a set C of object constants,
each having its sort; a set Pred of unary regular predicates,
each one having a type; and connectives ∧, →. An atomic
formula is either a primitive proposition from Var or of the
form p(A), where p is a predicate symbol from Pred, A is
an object constant from C and the sort of A corresponds to
the type of p. Formulas are Horn-rules of the form p1 ∧
· · · ∧ pk → q with k ≥ 0, where p1, . . . , pk, q are atomic
formulas. A (weighted) clause is a pair of the form (ϕ, α),
where ϕ is a Horn-rule and α ∈ [0, 1].
Remark Since variables, quantifiers and function symbols are
not allowed, the language of PGL+ so defined remains in fact
propositional. This allows us to consider only unary predicates
since statements involving multiple (fuzzy) properties can be al-
ways represented in PGL+ as a conjunction of atomic formulas.
For instance, the statement “Mary is young and tall” can be rep-
resented in PGL+ as age Mary(young) ∧ height Mary(tall)
instead of using a binary predicate involving two fuzzy constants
like age&height Mary(young, tall).

A many-valued interpretation for the language is a struc-
ture w = (U, i,m), where: U = ∪σ∈SUσ is a collection
of non-empty domains Uσ , one for each basic sort σ ∈ S;
i = (iprop, ipred), where iprop : V ar → [0, 1] maps each
primitive proposition q into a value iprop(q) ∈ [0, 1] and
ipred : Pred → U maps a predicate p of type (σ) into a
value ipred(p) ∈ Uσ; and m : C → [0, 1]U maps an object
constant A of sort σ into a normalized fuzzy set m(A) on
Uσ , with membership function µm(A) : Uσ → [0, 1]. 1

The truth value of an atomic formula ϕ under an inter-
pretation w = (U, i,m), denoted by w(ϕ) ∈ [0, 1], is de-
fined as w(q) = iprop(q) for primitive propositions, and
w(p(A)) = µm(A)(ipred(p)) for atomic predicates. The
truth evaluation is extended to rules by means of interpreting
the ∧ connective by the min-conjunction and the → con-
nective by the so-called Gödel’s many-valued implication:
w(p1 ∧ · · · ∧ pk → q) = 1 if min(w(p1), . . . , w(pk)) ≤
w(q), and w(p1 ∧ · · · ∧ pk → q) = w(q) otherwise.

Note that the truth value w(ϕ) will depend not only on the
interpretation ipred of predicate symbols that ϕ may contain,

1Note that for each predicate symbol p, ipred(p) is the one and
only value of the domain which satisfies p in that interpretation and
that m prescribes for each constant A at least one value u0 of the
domain Uσ as fully compatible, i.e. such that µm(A)(u0) = 1.

but also on the fuzzy sets assigned to fuzzy constants by m.
Then, in order to define the possibilistic semantics, we need
to fix a meaning for the fuzzy constants and to consider some
extension of the standard notion of necessity measure for
fuzzy events. The first is achieved by fixing a context. Basi-
cally a context is the set of interpretations sharing a common
domain U and an interpretation of object constants m. So,
given U and m, its associated context is just the set of inter-
pretations IU,m = {w | w = (U, i,m)} and, once fixed the
context, [ϕ] denotes the fuzzy set of models for a formula ϕ
defining µ[ϕ](w) = w(ϕ), for all w ∈ IU,m.

Now, in a fixed context IU,m, a belief state (or possibilis-
tic model) is determined by a normalized possibility distri-
bution on IU,m, π : IU,m → [0, 1]. Then, we say that π
satisfies a clause (ϕ, α), written π |= (ϕ, α), iff the (suit-
able) necessity measure of the fuzzy set of models of ϕ with
respect to π, denoted N([ϕ] | π), is indeed at least α. Here,
for the sake of soundness preservation, we take

N([ϕ] | π) = inf
w∈IU,m

π(w)⇒ µ[ϕ](w),

where⇒ is the reciprocal of Gödel’s many-valued implica-
tion, defined as x ⇒ y = 1 if x ≤ y and x ⇒ y = 1 − x,
otherwise. This necessity measure for fuzzy sets was pro-
posed and discussed by Dubois and Prade (cf. (Dubois,
Lang, & Prade 1994)). For example, according to this se-
mantics, given a context IU,m the formula

(age Peter(about 35), 0.9)
is to be interpreted in PGL+ as the following set of clauses
with imprecise but non-fuzzy constants
{(age Peter([about 35]β), min(0.9, 1− β)) : β ∈ [0, 1]},

where [about 35]β denotes the β-cut of the fuzzy set
m(about 35). As usual, a set of clauses P is said to entail
another clause (ϕ, α), written P |= (ϕ, α), iff every possi-
bilistic model π satisfying all the clauses in P also satisfies
(ϕ, α), and we say that a set of clauses P is satisfiable in the
context determined by U and m if there exists a normalized
possibility distribution π : IU,m → [0, 1] that satisfies all
the clauses in P . Satisfiable clauses enjoy the following re-
sult (Alsinet 2003): If P is satisfiable and P |= (ϕ, α), with
α > 0, there exists at least an interpretation w ∈ IU,m such
that w(ϕ) = 1.

Finally, still in a context IU,m, the degree of possibilis-
tic entailment of an atomic formula (or goal) ϕ by a set
of clauses P , denoted by ‖ϕ‖P , is the greatest α ∈ [0, 1]
such that P |= (ϕ, α). In (Alsinet 2003), it is proved that
‖ϕ‖P = inf{N([ϕ] | π) | π |= P}.

The calculus for PGL+ in a given context IU,m is defined
by the following set of inference rules:

Generalized resolution:
(p ∧ s→ q(A), α),
(q(B) ∧ t→ r, β)

(p ∧ s ∧ t→ r, min(α, β))
[GR], if A ⊆ B

Fusion:
(p(A) ∧ s→ q(D), α),
(p(B) ∧ t→ q(E), β)

(p(A ∪B) ∧ s ∧ t→ q(D ∪ E),min(α, β))
[FU]

228 Technical Report IfI-06-04

Theory of NMR and Uncertainty

Intersection:
(p(A), α), (p(B), β)

(p(A ∩B),min(α, β))
[IN]

Resolving uncertainty:

(p(A), α)
(p(A′), 1)

[UN], where A′ = max(1− α, A)

Semantical unification:
(p(A), α)

(p(B),min(α, N(B | A)))
[SU]

For each context IU,m, the above GR, FU, SU, IN and UN
inference rules can be proved to be sound with respect to the
possibilistic entailment of clauses. Moreover we shall also
refer to the following weighted modus ponens rule, which
can be seen as a particular case of the GR rule

(p1 ∧ ... ∧ pn → q, α),
(p1, β1), . . . , (pn, βn)
(q, min(α, β1, . . . , βn))

[MP]

The notion of proof in PGL+, denoted by `, is that of de-
duction by means of the triviality axiom and the PGL+ infer-
ence rules. Given a context IU,m, the degree of deduction of
a goal ϕ from a set of clauses P , denoted |ϕ|P , is the great-
est α ∈ [0, 1] for which P ` (ϕ, α). Actually this notion of
proof is complete for determining the degree of possibilistic
entailment of a goal, i.e. |ϕ|P = ‖ϕ‖P , for non-recursive
and satisfiable programs P , called PGL+ programs, under
certain further conditions. Details can be found in (Alsinet
& Godo 2001; Alsinet 2003).

The DePGL+ programming language
As already pointed out our objective is to extend the P-DeLP
programming language through the use of PGL+ in order
to incorporate fuzzy constants and fuzzy propositional va-
riables; we will refer to this extension as Defeasible PGL+,
DePGL+ for short. To this end, the base language of P-
DeLP (Chesñevar et al. 2004) will be extended with fuzzy
constants and fuzzy propositional variables, and arguments
will have an attached necessity measure associated with the
supported conclusion.

The DePGL+ language L is defined over PGL+ atomic
formulas together with the connectives {∼,∧, ← }. The
symbol ∼ stands for negation. A literal L ∈ L is a PGL+

atomic formula or its negation. A rule in L is a formula
of the form Q ← L1 ∧ . . . ∧ Ln, where Q, L1, . . . , Ln are
literals in L. When n = 0, the formula Q← is called a fact
and simply written as Q. In the following, capital and lower
case letters will denote literals and atoms in L, respectively.

In argumentation frameworks, the negation connective al-
lows to represent conflicts among pieces of information. In
the frame of DePGL+, the handling of negation deserves
some explanation. In what regards negated propositional
variables ∼p, the negation connective ∼ will not be consid-
ered as a proper Gödel negation. Rather, ∼p will be treated
as another propositional variable p′, with a particular status

with respect to p, since it will be only used to detect contra-
dictions at the syntactical level. On the other hand, negated
literals of the form∼p(A), where A is a fuzzy constant, will
be handled in the following way.

As previously mentioned, fuzzy constants are disjunc-
tively interpreted in PGL+. For instance, consider the for-
mula speed(low). In each interpretation I = (U, i,m),
the predicate speed is assigned a unique element i(speed)
of the corresponding domain. If low denotes a crisp inter-
val of rpm’s, say [0, 2000], then speed(low) will be true iff
such element belongs to this interval, i.e. iff i(speed) ∈
[0, 2000]. Now, since the negated formula ∼ speed(low)
is to be interpreted as “¬[∃x ∈ low such that the engine
speed is x]”, which (under PGL+ interpretations) amounts
to “[∃x 6∈ low such that the engine speed is x]”, it turns
out that∼speed(low) is true iff speed(¬low) is true, where
¬low denotes the complement of the interval [0, 2000] in
the corresponding domain. Then, given a context IU,m, this
leads us to understand a negated literal ∼ p(A) as another
positive literal p(¬A), where the fuzzy constant ¬A denotes
the (fuzzy) complement of A, that is, where µm(¬A)(u) =
n(µm(A)(u)), for some suitable negation function n (usually
n(x) = 1− x).

Therefore, given a context IU,m, using the above interpre-
tations of the negation, and interpreting the DePGL+ arrow
← as the PGL+ implication →, we can actually transform
a DePGL+ program P into a PGL+ program, denoted as
τ(P), and then, we can apply the deduction machinery of
PGL+ on τ(P) for automated proof purposes. From now
on and for the sake of a simpler notation, we shall write
Γ `τ (ϕ, α) to denote τ(Γ) ` τ((ϕ, α)), being Γ and (ϕ, α)
DePGL+ clauses. Moreover, we shall consider that the
negation function n is implicitly determined by each context
IU,m, i.e. the function m will interpret both fuzzy constants
A and their complement (negation) ¬A.

Arguments in DePGL+

In the last sections we formalized the many-valued and the
possibilistic semantics of the underlying logic of DePGL+.
In this section we formalize the procedural mechanism for
building arguments in DePGL+.

We distinguish between certain and uncertain DePGL+

clauses. A DePGL+ clause (ϕ, α) will be referred as
certain when α = 1 and uncertain, otherwise. Given
a context IU,m, a set of DePGL+ clauses Γ will be
deemed as contradictory, denoted Γ `τ ⊥, when

(i) either Γ `τ (q, α) and Γ `τ (∼q, β), with α > 0 and
β > 0, for some atom q in L,

(ii) or Γ `τ (p(A), α) with α > 0, for some predicate
p and some fuzzy constant A such that m(A) is non-
normalized.

Notice that in the latter case, τ(Γ) is not satisfiable and
there exist Γ1 ⊂ τ(Γ) and Γ2 ⊂ τ(Γ) such that Γ1 and Γ2

are satisfiable and |p(B)|Γ1 > 0 and |p(C)|Γ2 > 0, with
A = B ∩ C.

Example 1 Consider the set of clauses Γ = {(q, 0.8),
(r, 1), (p(A)← q , 0.5), (p(B)← q ∧ r , 0.3)}. Then, Γ `τ

DEPARTMENT OF INFORMATICS 229

11TH NMR WORKSHOP

(p(A), 0.5) and Γ `τ (p(B), 0.3), and, by the IN inference
rule, Γ `τ (p(A ∩ B), 0.3). Hence, in a particular con-
text IU,m, Γ is contradictory as soon as m(A) ∩m(B) is a
non-normalized fuzzy set whereas, for instance, Γ\{(r, 1)}
is satisfiable.

A DePGL+ program is a set of clauses in L in which
we distinguish certain from uncertain information. As ad-
ditional requirement, certain knowledge is required to be
non-contradictory and the corresponding PGL+ program
(by means of transformation τ) is required to satisfy the
modularity constraint (Alsinet & Godo 2001; Alsinet 2003).
Formally: Given a context IU,m, a DePGL+ program P is
a pair (Π,∆), where Π is a non-contradictory finite set of
certain clauses, ∆ is a finite set of uncertain clauses, and
τ(Π ∪∆) satisfies the modularity constraint.

The requirement of the modularity constraint of a
DePGL+ program ensures that all (explicit and hidden)
clauses of programs are considered. Indeed, since fuzzy
constants are interpreted as (flexible) restrictions on an ex-
istential quantifier, atomic formulas clearly express disjunc-
tive information. For instance, when A = {a1, . . . , an},
p(A) is equivalent to the disjunction p(a1) ∨ · · · ∨ p(an).
Then, when parts of this (hidden) disjunctive information
occur in the body of several program formulas we also have
to consider all those new formulas that can be obtained
through a completion process of the program which is based
on the RE and FU inference rules.

Example 2 (Adapted from (Chesñevar et al. 2004)) Con-
sider an intelligent agent controlling an engine with three
switches sw1, sw2 and sw3. These switches regulate differ-
ent features of the engine, such as pumping system, speed,
etc. The agent’s generic (and incomplete) knowledge about
how this engine works is the following:

– If the pump is clogged, then the engine gets no fuel.
– When sw1 is on, apparently fuel is pumped properly.
– When fuel is pumped, fuel seems to work ok.
– When sw2 is on, usually oil is pumped.
– When oil is pumped, usually it works ok.
– When there is oil and fuel, normally the engine is ok.
– When there is heat, the engine is almost sure not ok.
– When there is heat, normally there are oil problems.
– When fuel is pumped and speed is low, there are

reasons to believe that the pump is clogged.
– When sw2 is on, usually speed is low.
– When sw2 and sw3 are on, usually speed is not low.
– When sw3 is on, normally fuel is ok.

Suppose also that the agent knows some particular facts
about the current state of the engine:

– sw1, sw2 and sw3 are on, and
– the temperature is around 31oC.

This knowledge can be modelled by the program Pengine

shown in Fig. 1. Note that uncertainty is assessed in terms
of different necessity degrees and vague knowledge is repre-
sented by means of fuzzy constants (low, around 31, high).

Next we introduce the notion of argument in DePGL+.
Informally, an argument for a literal (goal) Q with necessity

(1) (∼fuel ok ← pump clog , 1)
(2) (pump fuel ← sw1 , 0.6)
(3) (fuel ok ← pump fuel , 0.85)
(4) (pump oil ← sw2 , 0.8)
(5) (oil ok ← pump oil , 0.8)
(6) (engine ok ← fuel ok ∧ oil ok , 0.6)
(7) (∼engine ok ← temp(high), 0.95)
(8) (∼oil ok ← temp(high), 0.9)
(9) (pump clog ← pump fuel ∧ speed(low), 0.7)
(10) (speed(low)← sw2 , 0.8)
(11) (∼speed(low)← sw2 , sw3 , 0.8)
(12) (fuel ok ← sw3 , 0.9)
(13) (sw1, 1)
(14) (sw2, 1)
(15) (sw3, 1)
(16) (temp(around 31), 0.85)

Figure 1: DePGL+ program Peng (example 2)

degree α is a tentative (as it relies to some extent on uncer-
tain, possibilistic information) proof for (Q,α) .

Definition 3 (Argument) Given a context IU,m and a
DePGL+ program P = (Π,∆), a set A ⊆ ∆ of uncertain
clauses is an argument for a goal Q with necessity degree
α > 0, denoted 〈A, Q, α〉, iff:
(1) Π ∪ A `τ (Q,α);
(2) Π ∪ A is non contradictory; and
(3) A is minimal wrt set inclusion, i.e. there is no A1 ⊂ A
satisfying (1) and (2).

Let 〈A, Q, α〉 and 〈S, R, β〉 be two arguments. We will
say that 〈S, R, β〉 is a subargument of 〈A, Q, α〉 iff S ⊆ A.
Notice that the goal R may be a subgoal associated with the
goal Q in the argument A.

Given a context IU,m, the set of arguments for a DePGL+

program P = (Π,∆) can be found by the iterative applica-
tion of the following construction rules:

1) Building arguments from facts (INTF):

(Q, 1)
〈∅, Q, 1〉

(Q,α), Π ∪ {(Q,α)} 6`τ ⊥, α < 1
〈{(Q,α)}, Q, α〉

for any (Q, 1) ∈ Π and any (Q, α) ∈ ∆.

2) Building Arguments by SU (SUA):

〈A, p(A), α〉
〈A, p(B),min(α, N(m(B) | m(A)))〉

if N(m(B) | m(A)) 6= 0.

3) Building Arguments by UN (UNA):

〈A, p(A), α〉
〈A, p(A′), 1〉

where m(A′) = max(1− α, m(A)).

4) Building Arguments by IN (INA):

〈A1, p(A), α〉, 〈A2, p(B), β〉,
Π ∪ A1 ∪ A2 6`τ ⊥

〈A1 ∪ A2, p(A ∩B),min(α, β)〉

230 Technical Report IfI-06-04

Theory of NMR and Uncertainty

5) Building Arguments by MP (MPA):

〈A1, L1, α1〉 〈A2, L2, α2〉 . . . 〈Ak, Lk, αk〉
(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , 1)

Π ∪
⋃k

i=1Ai 6`τ ⊥
〈
⋃k

i=1Ai, L0, β〉

for any certain rule (L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , 1) ∈ Π,
with β = min(α1, . . . , αk).

〈A1, L1, α1〉 〈A2, L2, α2〉 . . . 〈Ak, Lk, αk〉
(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ), with γ < 1

Π ∪ {(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ)} ∪
⋃k

i=1Ai 6`τ ⊥
〈
⋃k

i=1Ai ∪ {(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ)}, L0, β〉

for any weighted rule (L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ) ∈ ∆,
with β = min(α1, . . . , αk, γ).

The basic idea with the argument construction procedure
is to keep a trace of the set A ⊆ ∆ of all uncertain informa-
tion in the program P used to derive a given goal Q with ne-
cessity degree α. Appropriate preconditions ensure that the
proof obtained always ensures the non-contradictory con-
straint of arguments wrt the certain knowledge Π of the pro-
gram. Given a context IU,m and a DePGL+ program P , rule
INTF allows to construct arguments from facts. An empty
argument can be obtained for any certain fact in P . An ar-
gument concluding an uncertain fact (Q,α) in P can be de-
rived whenever assuming (Q,α) is not contradictory wrt the
set Π in P . Rules SUA and UNA accounts for semantical
unification and resolving uncertainty, respectively. As both
rules do not combine new uncertain knowledge, we do not
need to check the non-contradictory constraint. Rule INA
applies intersection between previously argumented goals
provided that the resulting intersection is non contradic-
tory wrt Π. Rules MPA account for the use of modus po-
nens, both with certain and defeasible rules. Note they as-
sume the existence of an argument for every literal in the
antecedent of the rule. Then, in a such a case, the MPA
rule is applicable whenever no contradiction results when
putting together Π, the sets A1, . . . , Ak corresponding to
the arguments for the antecedents of the rule and the rule
(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ) when γ < 1.

Example 4 Consider the program Peng in Example 2,
where temp(·) is a unary predicate of type (degrees),
speed(·) is a unary predicate of type (rpm), heat and
around 31 are two object constants of type degrees, and
low is an object constant of type rpm. Further, consider the
context IU,m such that:

• U = {Udegrees = [−100, 100] oC, Urpm = [0, 200]};
• m(high) = [28, 30, 100, 100]2,

m(around 31) = [26, 31, 31, 36],
m(low) = [10, 15, 25, 30], and
m(¬low) = 1−m(low).

Then the following arguments can be derived from Peng:

2We represent a trapezoidal fuzzy set as [t1; t2; t3; t4], where
the interval [t1, t4] is the support and the interval [t2, t3] is the core.

1. The argument 〈B, fuel ok, 0.6〉 can be derived as fol-
lows:

i) 〈∅, sw1, 1〉 from (13) via INTF.
ii) 〈B′, pump fuel, 0.6〉 from (2) and i) via MPA.
iii) 〈B, fuel ok, 0.6〉 from (3) and ii) via MPA.

where B′={(pump fuel ← sw1 , 0.6)} and B = B′ ∪
{(fuel ok ← pump fuel , 0.85)}.

2. Similarly, the argument 〈C1, oil ok, 0.8〉 can be derived
using the rules (15), (4) and (5) via INTC, MPA, and
MPA respectively, with: C1 = {(pump oil ← sw2 , 0.8);
(oil ok ← pump oil , 0.8)}.

3. The argument 〈A1, engine ok, 0.6〉 can be derived as fol-
lows:

i) 〈B, fuel ok, 0.6〉 as shown above.
ii) 〈C1, oil ok, 0.8〉 as shown above.
iii) 〈A1, engine ok, 0.6〉 from i), ii), (6) via MPA.

with A1={(engine ok ← fuel ok ∧ oil ok , 0.6)} ∪ B ∪
C1. Note that 〈C1, oil ok, 0.8〉 and 〈B, fuel ok, 0.6〉 are
subarguments of 〈A1, engine ok, 0.6〉.

4. One can also derive the argument 〈C2,∼oil ok, 0.8〉,
where C2 = {(temp(around 31), 0.85), (∼ oil ok ←
temp(high), 0.9)}, as follows:

i) 〈{(temp(around 31), 0.85)}, temp(around 31), 0.85〉
from (16) via INTF.

ii) 〈{(temp(around 31), 0.85)}, temp(high), 0.8〉
from i) via SUA, where N(high | around 31) = 0.8
and 0.8 = min(0.85, 0.8).

iii) 〈C2,∼oil ok, 0.8〉
from i), ii), (6) via MPA.

5. Similarly, an argument 〈A2,∼engine ok, 0.8〉 can be de-
rived using the rules (16) and (7) via INTF, SUA, and
MPA, with
A2 = {(temp(around 31), 0.85);

(∼engine ok ← temp(high), 0.95)}.

Counter-argumentation and defeat in
DePGL+

Given a program and a particular context, it can be the
case that there exist conflicting arguments for one lite-
ral and its negation. For instance, in the above exam-
ple, 〈A1, engine ok, 0.6〉 and 〈A2,∼engine ok, 0.8〉, and
〈C1, oil ok, 0.8〉 and 〈C2,∼oil ok, 0.8〉, and thus, the pro-
gram Peng considering the context IU,m is contradictory.
Therefore, it is necessary to define a formal framework for
solving conflicts among arguments in DePGL+. This is for-
malized next by the notions of counterargument and defeat,
based on the same ideas used in P-DeLP (Chesñevar et al.
2004) but incorporating the treatment of fuzzy constants.

Definition 5 (Counterargument) Let P be a DePGL+

program, let IU,m be a context, and let 〈A1, Q1, α1〉 and
〈A2, Q2, α2〉 be two arguments wrt P in the context IU,m.
We will say that 〈A1, Q1, α1〉 counterargues 〈A2, Q2, α2〉
iff there exists a subargument (called disagreement subargu-
ment) 〈S, Q, β〉 of 〈A2, Q2, α2〉 such that Q =∼Q1

3.

3For a given goal Q, we write∼ Q as an abbreviation to denote
“∼ q” if Q ≡ q (resp.,“∼ q(A)” if Q ≡ q(A)) and “q” if Q ≡∼ q
(resp., “q(A)” if Q ≡ ∼ q(A)).

DEPARTMENT OF INFORMATICS 231

11TH NMR WORKSHOP

Since arguments rely on uncertain and hence defeasible
information, conflicts among arguments may be resolved by
comparing their strength and deciding which argument is de-
feated by which one. Therefore, a notion of defeat amounts
to establish a preference criterion on conflicting arguments.
In our framework, following (Chesñevar et al. 2004), it
seems natural to define it on the basis of necessity degrees
associated with arguments.
Definition 6 (Defeat) Let P be a DePGL+ program, let
IU,m be a context, and let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉
be two arguments wrt P in the context IU,m. We will
say that 〈A1, Q1, α1〉 defeats 〈A2, Q2, α2〉 (or equivalently
〈A1, Q1, α1〉 is a defeater for 〈A2, Q2, α2〉) iff:

(1) the argument 〈A1, Q1, α1〉 counterargues the argument
〈A2, Q2, α2〉 with disagreement subargument 〈A, Q, α〉;
and

(2) either it holds that α1 > α, in which case 〈A1, Q1, α1〉
will be called a proper defeater for 〈A2, Q2, α2〉, or α1 =
α, in which case 〈A1, Q1, α1〉 will be called a blocking
defeater for 〈A2, Q2, α2〉.
Following Examples 2 and 4, we have that argu-

ment 〈A2,∼engine ok, 0.8〉 is a defeater of argument
〈A1, engine ok, 0.6〉 while 〈C2,∼oil ok, 0.8〉 is a block-
ing defeater of 〈C1, oil ok, 0.8〉.

Computing warranted arguments in DePGL+

As in most argumentation systems, a main goal in DePGL+

is to devise a procedure to determine whether a given argu-
ment 〈A,Q, α〉 is warranted (or ultimately accepted) wrt a
program P . Intuitively, an argument 〈A,Q,α〉 is warranted
when

1. it has no defeaters, or
2. every defeater for 〈A,Q,α〉 is on its turn defeated by an-

other argument which is warranted.
In P-DeLP this is done by an exhaustive dialectical anal-

ysis of all argumentation lines rooted in a given argument
(see (Chesñevar et al. 2004) for details) which can be ef-
ficiently performed by means of a top-down algorithm, as
described in (Chesñevar, Simari, & Godo 2005). For in-
stance, given the following simple P-DeLP program P =
{(p, 0.45), (∼ p, 0.7)}, a short dialectical analysis would
conclude that the argument A = 〈{(∼ p, 0.7)},∼ p, 0.7〉
is warranted.

However, even with similar simple programs, the situa-
tion DePGL+ gets more involved. Indeed, in order to pro-
vide DePGL+ with a similar dialectical analysis, due to the
disjunctive interpretation of fuzzy constants and their asso-
ciated fuzzy unification mechanism, new blocking situations
between arguments have to be considered as we show in the
following example.
Example 7 Consider the DePGL+ program

P = {(temp(around 31), 0.45),
(temp(between 25 30), 0.7)}

where temp(·) is a unary predicate of type (degrees), and
the context IU,m with U = {Udegrees = [−100, 100] oC}
and

m(around 31) = [26, 31, 31, 36],
m(between 25 30) = [20, 25, 30, 35],
m(¬around 31) = 1−m(around 31), and
m(¬between 25 30) = 1−m(between 25 30).

Consider the following sets of clauses:
A1 = {(temp(around 31), 0.45)}
A2 = {(temp(between 25 30), 0.7)}.

Within the context IU,m, the arguments
A1 =〈A1, temp(around 31), 0.45〉,
A2 =〈A2, temp(between 25 30), 0.7〉,

can be derived from P , but notice that m(around 31) ∩
m(between 25 30) is a non-normalized fuzzy set. However,
since we have

N(m(¬around 31) | m(between 25 30)) = 0
N(m(¬between 25 30) | m(around 31)) = 0,

using the SUA procedural rule, one can only derive ar-
guments for the negated literals ∼ temp(around 31) and
∼ temp(between 25 30) with necessity degree 0. Hence,
neither A1 nor A2 has a proper defeater. Then, in this par-
ticular context, neither A1 nor A2 can be warranted, and
thus A1 acts as a blocking argument for A2, and viceversa.

Remark that the unification degree, or the partial match-
ing, between fuzzy constants depends on the context we are
considering. For instance, if for the above context IU,m we
consider the Gödel negation instead of the involutive nega-
tion; i.e.,

m(¬A)(t) =
{

1, if m(A)(t) = 0
0, otherwise

for any fuzzy constant A, we get that

N(m(¬around 31) | m(between 25 30)) = 0.2
N(m(¬between 25 30) | m(around 31)) = 0.2

However, as 0.2 < 0.45 and 0.2 < 0.7, in this new particu-
lar context neither A1 nor A2 can be warranted as well.

Therefore we introduce the following notion of pair of
blocking arguments.

Definition 8 (Blocking arguments) Let P be a DePGL+

program, let IU,m be a context, and let 〈A1, q(A), α1〉 and
〈A2, q(B), α2〉 be two arguments wrt P in the context IU,m.
We will say that 〈A1, q(A), α1〉 blocks 〈A2, q(B), α2〉, and
viceversa, when

1. m(A) ∩m(B) is a non-normalized fuzzy set; and
2. N(m(¬A) | m(B)) < α1 and N(m(¬B) | m(A)) <

α2.

By extension, if 〈A1, Q1, α1〉 is a subargument of 〈A, Q, α〉
and 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 are a pair of blocking
arguments, argument 〈A, Q, α〉 cannot be warranted and
〈A2, Q2, α2〉 is a blocking argument for 〈A, Q, α〉.

Given a DePGL+ program and a particular context, there
may exist both multiple blocking arguments and multiple
proper defeaters for a same argument, all of them derived
from a same set of clauses by applying the semantical uni-
fication procedural rule SUA as we show in the following
example.

232 Technical Report IfI-06-04

Theory of NMR and Uncertainty

Example 9 Consider the DePGL+ program P and the con-
text IU,m of Example 7. Let

A3 = {(temp(about 25), 0.9)},
and let P ′ = P ∪ A3 be a new program. Further,
consider two new fuzzy constants “between 31 32” and
“about 25 ext”. The three new fuzzy constants are inter-
preted in the context IU,m as

m(about 25) = [24, 25, 25, 26],
m(¬about 25) = 1−m(about 25),
m(between 31 32) = [26, 31, 32, 37], and
m(about 25 ext) = [24, 25, 25, 32].

Notice that arguments A1 and A2 from Example 7 are still
arguments with respect the new program P ′. Now, in the
frame of the program P ′, from the argument A1 and by ap-
plying the SUA procedural rule, we can build the argument

A3 =〈A1, temp(between 31 32), 0.45〉,
since N(m(between 31 32) | m(around 31)) = 1. One
can easily check that A3 and A2 are a pair of blocking argu-
ments. Moreover, as m(around 31) ≤ m(between 31 32),
i.e. “around 31” is more specific than “between 31 32”,
we have N(m(¬between 25 30) | m(around 31)) ≥
N(m(¬between 25 30) | m(between 31 32)), and thus,
the argument A3 can be considered as a redundant blocking
argument for the argument A2.

On the other hand, the argument

A4 =〈A3, temp(about 25), 0.9〉,
can be derived from P ′. Then, from the argument A4 and
by applying the SUA procedural rule, we can build the argu-
ment

A5 =〈A3,∼temp(around 31), 0.9〉,
since N(m(¬around 31) | m(about 25)) = 1, and thus,
the argument A5 is a proper defeater for the argument A1.
Now, from the argument A4 and by applying the SUA proce-
dural rule, we can build the argument

A6 =〈A3, temp(about 25 ext), 0.9〉,
since N(m(about 25 ext) | m(about 25)) = 1. Finally,
from the argument A6 and by applying the SUA procedural
rule, we can build the argument

A7 =〈A3,∼temp(around 31), 0.5〉,
since N(m(¬around 31) | m(about 25 ext)) = 0.5, and
thus, the argument A7 is a proper defeater for the argument
A1. However, as arguments A5 and A7 have been computed
both from the same specific information of the program and
0.9 > 0.5, the argument A7 can be considered as a redun-
dant proper defeater for the argument A1.

Therefore, if we aim at an efficient procedure for com-
puting warrants (based on an exhaustive dialectical analysis
of all argumentation lines), we have to avoid for a given ar-
gument both redundant blocking arguments and redundant
proper defeaters . According to the above discussion, we in-
troduce the following definitions of redundant blocking ar-
guments and defeaters.

Definition 10 (Redundant blocking arguments) Let P be
a DePGL+ program, let IU,m be a context, and let
〈A1, p(A), α1〉 and 〈A2, p(B), α2〉 be a pair of block-
ing arguments wrt P in the context IU,m. We will say
that 〈A2, p(B), α2〉 is a redundant blocking argument for
〈A1, p(A), α1〉 iff there exists an argument 〈A2, p(C), 1〉
such that:

1. 〈A1, p(A), α1〉 and 〈A2, p(C), 1〉 are a pair of blocking
arguments; and

2. m(C) ≤ max(1− α2,m(B)).

Definition 11 (Redundant defeater) Let P be a DePGL+

program, let IU,m be a context, and let 〈A1, Q1, α1〉
and 〈A2, Q2, α2〉 be two arguments wrt P in the con-
text IU,m such that 〈A1, Q1, α1〉 is a proper defeater for
〈A2, Q2, α2〉. We will say that 〈A1, Q1, α1〉 is a redun-
dant defeater for 〈A2, Q2, α2〉 iff there exists an argument
〈A1, Q1, α〉 such that:

1. 〈A1, Q1, α〉 is is a proper defeater for 〈A2, Q2, α2〉); and
2. α1 < α.

At this point we are ready to formalize the notion of ar-
gumentation line in the framework of DePGL+. An argu-
mentation line starting in an argument 〈A0, Q0, α0〉 is a se-
quence of arguments

λ = [〈A0, Q0, α0〉, 〈A1, Q1, α1〉, . . . , 〈An, Qn, αn〉, . . .]

that can be thought of as an exchange of arguments between
two parties, a proponent (evenly-indexed arguments) and an
opponent (oddly-indexed arguments). Each 〈Ai, Qi, αi〉 is
either a defeater or a blocking argument for the previous ar-
gument 〈Ai−1, Qi−1, αi−1〉 in the sequence, i > 0. In order
to avoid fallacious reasoning, argumentation theory imposes
additional constraints on such an argument exchange to be
considered rationally acceptable wrt a DePGL+ program P
and a context IU,m, namely:

1. Non-contradiction: given an argumentation line λ, the
set of arguments of the proponent (resp. opponent) should
be non-contradictory wrt P and IU,m.

2. Progressive argumentation: every4 blocking defeater
and blocking argument 〈Ai, Qi, αi〉 in λ, i > 0, is de-
feated by a proper defeater 〈Ai+1, Qi+1, αi+1〉 in λ.

3. Non-redundancy: every proper defeater and blocking
argument 〈Ai, Qi, αi〉 in λ, i > 0, is a non-redundant
defeater, resp. a non-redundant blocking argument, for
the previous argument 〈Ai−1, Qi−1, αi−1〉 in λ; i.e.
〈Ai, Qi, αi〉 is the best proper defeater or the most spe-
cific blocking argument one can consider from a given set
of clauses.

The first condition disallows the use of contradictory in-
formation on either side (proponent or opponent). The sec-
ond condition enforces the use of a proper defeater to defeat
an argument which acts as a blocking defeater or as a block-
ing argument. An argumentation line satisfying restrictions

4Remark that the last argument in an argumentation line is al-
lowed to be a blocking defeater and a blocking argument for the
previous one.

DEPARTMENT OF INFORMATICS 233

11TH NMR WORKSHOP

(1) and (2) is called acceptable, and can be proven to be fi-
nite. Finally, since we consider programs with a finite set of
clauses, the last condition ensures that we have a computable
number of argumentations lines.

Given a program P , a context IU,m and an argument
〈A0, Q0, α0〉, the set of all acceptable argumentation lines
starting in 〈A0, Q0, α0〉 accounts for a whole dialectical
analysis for 〈A0, Q0, α0〉 (i.e. all possible dialogues rooted
in 〈A0, Q0, α0〉, formalized as a dialectical tree5).

Definition 12 (Warrant) Given a program P = (Π,∆), a
context IU,m, and a goal Q, we will say that Q is warranted
wrt P in the context IU,m with a maximum necessity degree
α iff there exists an argument of the form 〈A,Q,α〉, for some
A ⊆ ∆, such that:

1. every acceptable argumentation line starting with
〈A,Q,α〉 has an odd number of arguments; i.e. every ar-
gumentation line starting with 〈A,Q,α〉 finishes with an
argument proposed by the proponent which is in favor of
Q with at least a necessity degree α; and

2. for each argument of the form 〈A1, Q, β〉, with β > α,
there exists at least an acceptable argumentation line
starting with 〈A1, Q, β〉 that has an even number of ar-
guments.

Note that we will generalize the use of the term “warranted”
for applying it to both goals and arguments: whenever a goal
Q is warranted on the basis of a given argument 〈A,Q,α〉
as specified in Def. 12, we will also say that the argument
〈A,Q,α〉 is warranted. Continuing with Examples 7 and 9,
we will next show how to determine, according to the above
definition, whether some arguments appearing there (argu-
ments A4, A1 and A2) are warranted.

Example 13 Let us recall the following arguments:

A1 = 〈A1, temp(around 31), 0.45〉,
A2 = 〈A2, temp(between 25 30), 0.7〉,
A4 = 〈A3, temp(about 25), 0.9〉,
A5 = 〈A3,∼ temp(around 31), 0.9〉.

Consider first the argument A4. It has neither a proper
defeater nor a blocking argument, hence there exists an
acceptable argumentation line starting with A4 with just
one argument. Indeed, the only possible argumentation
line rooted in A4 that can be obtained is [A4]. Since this
line has odd length, according to Definition 12 the goal
“temp(about 25)” can be warranted wrt P ′ in the context
IU,m with a necessity of 0.9.

Consider now the case of argument A1. In this case, the
argument A5 is a non-redundant proper defeater for A1 and
A5 has no defeater, since “temp(about 25)” is a warranted
goal with a necessity of 0.9. Similarly, the argument A2 is
a non-redundant blocking argument for A1, but A2 has a
proper defeater, namely A4. However, the line [A1, A2, A4]
is not allowed because A1 and A4 are contradictory since

5It must be remarked that the definition of dialectical tree as
well as the characterization of constraints to avoid fallacies in argu-
mentation lines can be traced back to (Simari, Chesñevar, & Garcı́a
1994). Similar formalizations were also used in other argumenta-
tion frameworks (e.g. (Prakken & Sartor 1997)).

m(around 31) ∩ m(about 25) is not normalized. There-
fore two acceptable argumentation lines rooted at A1 can
be built: [A1, A5] and [A1, A2]. Since it is not the case that
every argumentation line rooted in A1 has odd length, the
argument A1 cannot be warranted.

Finally, following a similar discussion for A2, we can
conclude that the argument A2 is not warranted either.

It must be noted that to decide whether a given goal Q
is warranted (on the basis of a given argument A0 for Q) it
may be not necessary to compute every possible argumenta-
tion line rooted in A0, e.g. in the case of A1 in the previous
example, it sufficed to detect just one even-length argumen-
tation line to determine that is not warranted. Some aspects
concerning computing warrant efficiently by means of a top-
down procedure in P-DeLP can be found in (Chesñevar,
Simari, & Godo 2005).

Related work
To the best of our knowledge, in the literature there have
been not many approaches that aim at combining argumen-
tation and fuzziness, except for the work of Schroeder &
Schweimeier (Schweimeier & Schroeder 2001; Schroeder &
Schweimeier 2002; Schweimeier & Schroeder 2004). The
argumentation framework is also defined for a logic pro-
gramming framework based on extended logic programming
with well-founded semantics, and providing a declarative
bottom-up fixpoint semantics along with an equivalent top-
down proof procedure. In contrast with our approach, this
argumentation framework defines fuzzy unification on the
basis of the notion of edit distance, based on string com-
parison (Schweimeier & Schroeder 2004). Their proposal,
on the other hand, does not include an explicit treatment of
possibilistic uncertainty as in our case.

There has been generic approaches connecting defeasible
reasoning and possibilistic logic (e.g.(Benferhat, Dubois, &
Prade 2002)). Including possibilistic logic as part of an ar-
gumentation framework for modelling preference handling
and information merging has recently been treated by Am-
goud & Kaci (Amgoud & Kaci 2005) and Amgoud & Cay-
rol (Amgoud & Cayrol 2002). Such formulations are based
on using a possibilistic logic framework to handle merging
of prioritized information, obtaining an aggregated knowl-
edge base. Arguments are then analyzed on the basis of
the resulting aggregated knowledge base. An important dif-
ference of these proposals with our formulation is that our
framework introduces explicit representation of fuzziness
along with handling possibilistic logic. Besides, in the pro-
posed framework we attach necessity degrees to object level
formulas, propagating such necessity degrees according to
suitable inference rules, which differs from the approach
used in the proposals above mentioned.

Besides of considering possibilistic logic and fuzziness, a
number of hybrid approaches connecting argumentation and
uncertainty have been developed, such as Probabilistic Ar-
gumentation Systems (Haenni, Kohlas, & Lehmann 2000;
Haenni & Lehmann 2003), which use probabilities to com-
pute degrees of support and plausibility of goals, related to
Dempster-Shafer belief and plausibility functions. However

234 Technical Report IfI-06-04

Theory of NMR and Uncertainty

this approach is not based on a dialectical theory (with argu-
ments, defeaters, etc.) nor includes fuzziness as presented in
this paper.

Conclusions and future work
PGL+ constitutes a powerful formalism that can be inte-
grated into an argument-based framework like P-DeLP, al-
lowing to combine uncertainty expressed in possibilistic
logic and fuzziness characterized in terms of fuzzy constants
and fuzzy propositional variables.

In this paper we have focused on characterizing DePGL+,
a formal language that combines features from PGL+ along
with elements which are present in most argumentative
frameworks (like the notions of argument, counterargument,
and defeat). As stated in Sections 5 and 6, part of our cur-
rent work is focused on providing a formal characteriza-
tion of warrant in the context of the proposed framework.
In particular, we are interested in studying formal proper-
ties for warrant that should hold in the context of argumen-
tation frameworks, as proposed in (Caminada & Amgoud
2005). In this paper, Caminada & Amgoud identify anoma-
lies in several argumentation formalisms and provide an in-
teresting solution in terms of rationality postulates which
–the authors claim– should hold in any well-defined argu-
mentative system. In (Chesñevar et al. 2005) we started a
preliminary analysis for this problem in the context of P-
DeLP (Chesñevar et al. 2004), and currently part of our
research is focused on this issue. We are also analyzing how
to characterize an alternative conceptualization of warrant in
which different warrant degrees can be attached to formulas
on the basis of necessity degrees, extending some concepts
suggested in (Pollock 2001). Research in these directions is
currently being pursued.

Acknowledgments
We thank anonymous reviewers for their comments and sug-
gestions to improve the final version of this paper. This
work was supported by Spanish Projects TIC2003-00950,
TIN2004-07933-C03-01/03, by Ramón y Cajal Program
(MCyT, Spain), by CONICET (Argentina), by the Secretarı́a
General de Ciencia y Tecnologı́a de la Universidad Nacional
del Sur and by Agencia Nacional de Promoción Cientı́fica y
Tecnológica (PICT 2002 No. 13096).

References
Alsinet, T., and Godo, L. 2000. A complete calculus for
possibilistic logic programming with fuzzy propositional
variables. In Proc. of UAI-2000 Conf., 1–10.
Alsinet, T., and Godo, L. 2001. A proof procedure for
possibilistic logic programming with fuzzy constants. In
Proc. of the ECSQARU-2001 Conf., 760–771.
Alsinet, T. 2003. Logic Programming with Fuzzy Unifica-
tion and Imprecise Constants: Possibilistic Semantics and
Automated Deduction. Number 15. IIIA-CSIC. Bellaterra,
Spain.
Amgoud, L., and Cayrol, C. 2002. Inferring from incon-
sistency in preference-based argumentation frameworks. J.
Autom. Reasoning 29(2):125–169.

Amgoud, L., and Kaci, S. 2005. An argumentation frame-
work for merging conflicting knowledge bases: The prior-
itized case. In Proc. of the ECSQARU-2005 Conf., LNAI
3571, 527–538.
Benferhat, S.; Dubois, D.; and Prade, H. 2002. The pos-
sibilistic handling of irrelevance in exception-tolerant rea-
soning. Annals of Math. and AI 35:29–61.
Caminada, M., and Amgoud, L. 2005. An axiomatic ac-
count of formal argumentation. In Proc. of the AAAI-2005
Conf., 608–613.
Chesñevar, C. I.; Simari, G.; Alsinet, T.; and Godo, L.
2004. A Logic Programming Framework for Possibilis-
tic Argumentation with Vague Knowledge. In Proc. of the
UAI-2004 Conf., 76–84.
Chesñevar, C.; Simari, G.; Godo, L.; and Alsinet, T. 2005.
On warranted inference in possibilistic defeasible logic
programming. In Proc. of CCIA-2005. IOS Press, 265–
272.
Chesñevar, C.; Maguitman, A.; and Loui, R. 2000. Logical
Models of Argument. ACM Computing Surveys 32(4):337–
383.
Chesñevar, C.; Simari, G.; and Godo, L. 2005. Computing
dialectical trees efficiently in possibilistic defeasible logic
programming. In Proc. of LPNMR-2005 Conf., 158–171.
Dubois, D.; Lang, J.; and Prade, H. 1994. Possibilistic
logic. In D.Gabbay et al. eds., Handbook of Logic in Art.
Int. and Logic Prog. (Nonmonotonic Reasoning and Un-
certain Reasoning). Oxford Univ. Press. 439–513.
Haenni, R., and Lehmann, N. 2003. Probabilistic Ar-
gumentation Systems: a New Perspective on Dempster-
Shafer Theory. Int. J. of Intelligent Systems 1(18):93–106.
Haenni, R.; Kohlas, J.; and Lehmann, N. 2000. Proba-
bilistic argumentation systems. Handbook of Defeasible
Reasoning and Uncertainty Management Systems.
Pollock, J. L. 2001. Defeasible reasoning with variable
degrees of justification. Artif. Intell. 133(1-2):233–282.
Prakken, H., and Sartor, G. 1997. Argument-based ex-
tended logic programming with defeasible priorities. Jour-
nal of Applied Non-classical Logics 7:25–75.
Schroeder, M., and Schweimeier, R. 2002. Fuzzy argumen-
tation for negotiating agents. In Proc. of the AAMAS-2002
Conf., 942–943.
Schweimeier, R., and Schroeder, M. 2001. Fuzzy argu-
mentation and extended logic programming. In Proceed-
ings of ECSQARU Workshop Adventures in Argumentation
(Toulouse, France).
Schweimeier, R., and Schroeder, M. 2004. Fuzzy unifi-
cation and argumentation for well-founded semantics. In
proc. of SOFSEM 2004, LNCS 2932, 102–121.
Simari, G.; Chesñevar, C.; and Garcı́a, A. 1994. The role of
dialectics in defeasible argumentation. In Proc. of the XIV
Intl. Conf. of the Chilean Society for Computer Science,
260–281. Universidad de Concepción, Concepción (Chile).

DEPARTMENT OF INFORMATICS 235

11TH NMR WORKSHOP

236 Technical Report IfI-06-04

Theory of NMR and Uncertainty

2.14 Preference reasoning for argumentation: Non-monotonicity
and algorithms

Preference Reasoning for Argumentation: Non-monotonicity and Algorithms

Souhila Kaci
CRIL

Rue de l’Université SP 16
62307 Lens France

kaci@cril.univ-artois.fr

Leendert van der Torre
ILIAS

University of Luxembourg
Luxembourg

leon.vandertorre@uni.lu

Abstract

In this paper we are interested in the role of prefer-
ences in argumentation theory. To promote a higher
impact of preference reasoning in argumentation, we in-
troduce a novel preference-based argumentation theory.
Using non-monotonic preference reasoning we derive a
Dung-style attack relation from a preference specifica-
tion together with a defeat relation. In particular, our
theory uses efficient algorithms computing acceptable
arguments via a unique preference relation among ar-
guments from a preference relation among sets of argu-
ments.

Introduction
Dung’s theory of abstract argumentation (Dung 1995) is
based on a set of arguments and a binary attack relation
defined over the arguments. Due to this abstract represen-
tation, it can and has been used in several ways, which
may explain its popularity in artificial intelligence. It has
been used as a general framework for non-monotonic rea-
soning, as a framework for argumentation, and as a com-
ponent in agent communication, dialogue, decision making,
etc. Dung’s abstract theory has been used mainly in com-
bination with more detailed notions of arguments and at-
tack, for example arguments consisting of rules, arguments
consisting of a justification and a conclusion, or attack re-
lations distinguishing rebutting and undercutting. However,
there have also been several attempts to modify or generalize
Dung’s theory, for example by introducing preferences (Am-
goud & Cayrol 2002; Kaci, van der Torre, & Weydert 2006),
defeasible priorities (Prakken & Sartor 1997; Poole 1985;
Simari & Loui 1992; Stolzenburg et al. 2003), values
(Bench-Capon 2003), or collective arguments (Bochman
2005).

In this paper we are interested in the role of preference
reasoning in Dung’s argumentation theory. An example
from political debate has been discussed by Bench-Capon
et al. (Atkinson, Bench-Capon, & McBurney 2005), where
several arguments to invade Iraq are related to values such
as respect for life, human rights, good world relations, and
so on. In this paper we use a less controversial example to
illustrate our theory where several arguments used in a de-
bate between parents and their children are used to promote
values like staying healthy, doing well at school, and so on.

In our theory, we integrate two existing approaches (though
our approach differs both conceptually and technically from
these approaches in several significant ways, as explained in
the related work).

• We consider a preference based argumentation theory
consisting of a set of arguments, an attack relation, and
a preference relation over arguments. Then, like Amgoud
and Cayrol (Amgoud & Cayrol 2002), we transform this
preference based argumentation theory to Dung’s theory,
by stating that an argument A attacks another argument
B in Dung’s theory, when A attacks B in the preference-
based theory, and B is not preferred to A. To distinguish
the two notions of attack, we call the notion of attack in
the preference-based theory defeat. The defeat and pref-
erence relation may be considered as an alternative repre-
sentation of Dung’s attack relation.

• Like Bench-Capon (Bench-Capon 2003), we consider
value based argumentation, in which arguments are used
to promote a value, and in which values are ordered by
a preference relation. Moreover, in contrast to Bench-
Capon, we use non-monotonic preference reasoning to re-
duce the ordered values to a preference relation over argu-
ments. In analogy with the above, we say that the ordered
values represent the preference relation over arguments.

Summarizing, starting with a set of arguments, a defeat re-
lation, and an ordered set of values, we use the ordered val-
ues to compute a preference relation over arguments, and we
combine this preference relation with the defeat relation to
compute Dung’s attack relation. Then we use any of Dung’s
semantics to define the acceptable set of arguments. In con-
trast to most other approaches (Amgoud & Cayrol 2002;
Prakken & Sartor 1997; Poole 1985; Simari & Loui 1992;
Stolzenburg et al. 2003) (but see (Amgoud, Parsons, & Per-
russel 2000) for an exception), our approach to reason about
preferences in argumentation does not refer to the internal
structure of the arguments. We study the following research
questions:

1. How to reason about ordered values and to derive a pref-
erence relation over arguments?

2. How to combine the two steps of our approach to directly
define the acceptable set of arguments from a defeat rela-
tion and an ordered set of values?

DEPARTMENT OF INFORMATICS 237

11TH NMR WORKSHOP

To reason about ordered values and to compute the pref-
erence relation over arguments, we are inspired by insights
from the non-monotonic logic of preference (Kaci & van der
Torre 2005). When value v1 is promoted by the argu-
ments A1, . . . , An, and value v2 is promoted by arguments
B1, . . . , Bm, then the statement that value v1 is preferred to
value v2 means that the set of arguments A1, . . . , An is pre-
ferred to the set of arguments B1, . . . , Bm. In other words,
the problem of reducing ordered values to a preference rela-
tion comes down to reducing a preference relation over sets
of arguments to a preference relation over single arguments.
We use both so-called optimistic and pessimistic reasoning
to define the preference relation.

For the combined approach, we restrict ourselves to
Dung’s grounded semantics. For this semantics, we intro-
duce an algorithm that shows how the computation of set of
acceptable arguments can be combined with the optimistic
reasoning to incrementally define the set of acceptable argu-
ments, and we show why this works less well for pessimistic
reasoning.

The layout of this paper is as follows. After presenting
Dung’s abstract theory of argumentation, and its extension
to the preference-based argumentation framework, we intro-
duce our value based argumentation theory, and show how to
reduce a value based argumentation theory to a preference-
based argumentation theory using optimistic or pessimistic
reasoning. Then we introduce an algorithm for directly com-
puting the set of acceptable arguments using grounded se-
mantics. We also present an algorithm for ordering the ar-
guments following the pessimistic reasoning. Lastly we dis-
cuss related work and conclude.

Abstract argumentation
Argumentation is a reasoning model based on construct-
ing arguments, determining potential conflicts between ar-
guments and determining acceptable arguments.

Dung’s argumentation framework
Dung’s framework (Dung 1995) is based on a binary attack
relation among arguments.

Definition 1 (Argumentation framework) An argumenta-
tion framework is a tuple 〈A,R〉 where A is a set of argu-
ments and R is a binary attack relation defined on A×A.

We restrict ourselves to finite argumentation frameworks,
i.e., when the set of arguments A is finite.

Definition 2 (Defence) A set of arguments S defends A if
for each argument B of A which attacks A, there is an ar-
gument C in S which attacks B.

Definition 3 (Conflict-free) Let S ⊆ A. The set S is
conflict-free iff there are no A,B ∈ S such that ARB.

The following definition summarizes different acceptable
semantics of arguments proposed in the literature:

Definition 4 (Acceptability semantics) Let S ⊆ A.

• S is admissible iff it is conflict-free and defends all its
elements.

• A conflict-free S is a complete extension iff S = {A |
S defends A}.

• S is a grounded extension iff it is the smallest (for set
inclusion) complete extension.

• S is a preferred extension iff it is the largest (for set inclu-
sion) complete extension.

• S is a stable extension iff it is a preferred extension that
attacks all arguments in A\S .

The output of the argumentation framework is derived from
the set of selected acceptable arguments w.r.t. an acceptabil-
ity semantics.

Preference-based argumentation framework
An extended version of Dung’s framework (Dung 1995) has
been proposed in (Amgoud & Cayrol 2002) where a prefer-
ence relation is defined on the set of arguments on the basis
of the evaluation of arguments. We start with some defini-
tions concerning preferences.
Definition 5 A pre-order on a set A, denoted �, is a re-
flexive and transitive relation. � is total if it is complete
and it is partial if it is not. The notation A1 � A2 stands
for A1 is at least as preferred as A2. � denotes the or-
der associated with �. We write max(�,A) for {B ∈
A, @B′ ∈ A s.t.B′ � B} and we write min(�,A) as
{B ∈ A, @B′ ∈ A s.t. B � B′}.
Definition 6 illustrates how a total pre-order on A can also
be represented by a well ordered partition of A. This is an
equivalent representation, in the sense that each total pre-
order corresponds to one ordered partition and vice versa.
This equivalent representation as an ordered partition makes
some definitions easier to read.
Definition 6 (Ordered partition) A sequence of sets of ar-
guments of the form (E1, · · · , En) is the ordered partition of
A w.r.t. � iff
• E1 ∪ · · · ∪ En = A,
• Ei ∩ Ej = ∅ for i 6= j,
• ∀A,B ∈ A, A ∈ Ei and B ∈ Ej with i < j iff A � B.
An ordered partition of A is associated with pre-order � on
A iff ∀A,B ∈ A with A ∈ Ei, B ∈ Ej we have i ≤ j iff
A � B.

Definition 7 (Preference-based argumentation framework)
A preference-based argumentation framework is a triplet
〈A,D,�〉 where A is a set of arguments, D is a binary
defeat relation defined on A × A and � is a (total or
partial) pre-order (preference relation) defined on A×A.

The attack relation is defined on the basis of defeat D and
preference relation �, and therefore also the other relations
defined by Dung are reused by the preference-based argu-
mentation framework.
Definition 8 Let 〈A,R〉 be an argumentation framework
and 〈A,D,�〉 a preference-based argumentation frame-
work. We say that 〈A,D,�〉 represents 〈A,R〉 iff for all
arguments A and B of A, we have A R B iff A D B and
it is not the case that B � A. We also say that R is repre-
sented by D and �.

238 Technical Report IfI-06-04

Theory of NMR and Uncertainty

From this definition follows immediately that when � is
a total pre-order, we have: A R B iff A D B and A � B.

Preference reasoning
In most preference-based argumentation frameworks, the
preference order on arguments is based on an evaluation of
single arguments (Amgoud, Cayrol, & LeBerre 1996). It
consists in computing the strength of the argument on the
basis of knowledge from which it is built, knowledge being
pervaded with implicit or explicit priorities. Note however
that knowledge is not always pervaded with priorities which
makes it difficult to use this way to evaluate arguments.
Moreover one may also need to express more sophisticated
preferences such as preferences among sets of abstract argu-
ments without referring to their internal structure. We adapt
in this paper a preference logic of non-monotonic reasoning
(Kaci & van der Torre 2005) to the context of argumentation
framework. Let p and q be two values. A preference of p
over q, denoted p >> q, is interpreted as a preference of
arguments promoting p over arguments promoting q.

Definition 9 (Value based argumentation framework) A
value based argumentation framework (VAF) is a 5-tuple
〈A,D, V, >>, arg〉 where A is a set of arguments, D is a
defeat relation, V is a set of values, >> is a total or partial
order on V , called a preference specification, and arg is a
function from V to 2A s.t. arg(v) is the set of arguments
supporting the value v.

Given a preference specification the logic allows to compute
a total pre-order over the set of all arguments. We are inter-
ested here in computing a unique total pre-order that satis-
fies the preference specification. Let� be the total pre-order
that we intend to compute. A preference of p over q may be
interpreted in two ways:

(1) either we compare the best arguments in favor of p and
the best arguments in favor of q w.r.t. �. In this case
we say that � satisfies p >> q iff ∀A ∈ max(arg(p),�
),∀B ∈ max(arg(q),�) we have A � B.

(2) or we compare the worst arguments in favor of p and
the worst arguments in favor of q w.r.t. �. In this case
we say that � satisfies p >> q iff ∀A ∈ min(arg(p),�
),∀B ∈ min(arg(q),�) we have A � B.

Comparing the worst arguments of arg(p) and the best ar-
guments of arg(q) w.r.t. � can be reduced to comparing
single arguments (see the related work). So they can be
used in both above items. Comparing the best arguments
of arg(p) and the worst arguments of arg(q) w.r.t. � is ir-
relevant (Kaci & van der Torre 2005).

Definition 10 (Model of a preference specification)
� satisfies (or is a model of) a preference specification
P = {pi >> qi : i = 1, · · · , n} iff � satisfies each
pi >> qi in P .

The above two cases correspond to two different reasonings:
an optimistic reasoning which applies to the first case since
we compare the best arguments w.r.t. �, and a pessimistic
reasoning which applies to the second case since we com-
pare the worst arguments w.r.t. �.

The optimistic reasoning corresponds to the minimal speci-
ficity principle in non-monotonic reasoning (Pearl 1990).
Following this principle there is a unique model of P . This
model, called the least specific model of P , is characterized
as gravitating towards the ideal since arguments are put in
the highest possible rank in the pre-order�. The pessimistic
reasoning behaves in an opposite way and corresponds to the
maximal specificity principle in non-monotonic reasoning.
Following this principle there is also a unique model of P
(Benferhat et al. 2002). This pre-order, called the most spe-
cific model of P , is characterized as gravitating towards the
worst since arguments are put in the lowest possible rank in
the pre-order �.

Definition 11 (Minimal/Maximal specificity principle)
Let � and �′ be two total pre-orders on a set of arguments
A represented by ordered partitions (E1, · · · , En) and
(E′

1, · · · , E′
m) respectively. We say that � is at least as

specific as �′, written as �v�′, iff ∀A ∈ A, if A ∈ Ei and
A ∈ E′

j then i ≤ j.
� belongs to the set of the least (resp. most) specific
pre-orders among a set of pre-orders O if there is no �′

in O such that �′@�, i.e., �′v� holds but �v�′ (resp.
�@�′) does not.

Since the preference-based argumentation framework is
mainly based on the preference relation among arguments,
it is worth noticing that the choice of the reasoning attitude
is predominant in the output of the argumentation system.

Example 1 Let A = {A,B, C} be a set of arguments and
V = {p, q} be the set of values. Let D be a defeat rela-
tion defined by C D B and B D C. Let p >> q with
arg(p) = {A} and arg(q) = {B}. Following the opti-
mistic reasoning the total pre-order satisfying p >> q is
�o= ({A,C}, {B}). We can check that each argument
is put in the highest possible rank in �o s.t. p >> q
is satisfied. So we have C attacks B. The grounded ex-
tension is composed of A and C. Now following the pes-
simistic reasoning the total pre-order satisfying p >> q is
�p= ({A}, {B,C}). Here also we can check that each ar-
gument is put in the lowest possible rank in �p s.t. p >> q
is satisfied. In this case we have B attacks C and C attacks
B. The grounded extension is composed of A only.

Note that in this example pessimistic reasoning returns less
acceptable arguments than optimistic reasoning, however
this is not always the case. In addition to the defeat re-
lations given in Example 1 we give A D C and C D A.
Then following the optimistic reasoning the grounded ex-
tension is empty while following the pessimistic reasoning
the grounded extension is {A}.
Let us now consider the same example but with the fol-
lowing defeat relations A D C and C D A only. Then
the grounded extension following the optimistic reasoning is
{B} while the grounded extension following the pessimistic
reasoning is {A,B}.
Indeed the two kinds of reasoning are incomparable. It is
important to notice that the optimistic/pessimistic adjectives
refer to the way the arguments are ranked in the total pre-
order �.

DEPARTMENT OF INFORMATICS 239

11TH NMR WORKSHOP

Grounded extension in optimistic reasoning
Algorithms of optimistic reasoning compute the total pre-
order � starting from the best arguments w.r.t. �. Indeed
this property makes it possible to compute incrementally the
grounded extension when computing this pre-order. Infor-
mally this consists in first computing the set of the best ar-
guments w.r.t. �. Let us say E0. Then arguments in E0

which are not defeated in E0 belong to the grounded ex-
tension. Also all arguments in E0 defeated only by argu-
ments in A\E0 belong to the grounded extension. Belong
also to the grounded extension arguments in E0 which are
defeated by arguments in E0 but defended by acceptable
arguments, i.e., arguments already put in the grounded ex-
tension. Lastly all arguments in A\E0 defeated by argu-
ments in the current grounded extension will certainly not
belong to the grounded extension and can be removed from
A. Once A updated we compute the set of immediately pre-
ferred arguments, let’s say E1. At this stage non defeated
arguments from E1 are added to the current grounded ex-
tension. Also belong to the grounded extension arguments
in E1 which are defeated by arguments in E1 but their de-
featers are themselves defeated by the current grounded ex-
tension. This means that these arguments are defended by
the grounded extension. Lastly all arguments in A\E1 de-
feated by selected arguments (in the grounded extension) are
discarded. This reasoning is repeated until the set of argu-
ments is empty. Algorithm 1 gives a formal description of
our procedure to compute progressively the grounded exten-
sion. Let
• Safe(El) = {B : B ∈ El s.t. @B′ ∈ (El ∪

R) with B′DB},
• AcceptableGE(El) = {B : B ∈ El s.t. for each B′ ∈

(El ∪R) s.t. B′DB,∃C ∈ GE s.t. CDB′},
• non-Safe(A) = {B : B ∈ A s.t. ∃B′ ∈
GE with B′DB}.

Algorithm 1: Computing the grounded extension in opti-
mistic reasoning.

Data: 〈A,D, V, >>, arg〉.
Result: The grounded extension.
begin

l = 0, GE = ∅, R = ∅;
while A 6= ∅ do

- El = {B : B ∈ A,∀pi >> qi, B 6∈ arg(qi)};
if El = ∅ then Stop (inconsistent preferences);
– GE = GE ∪ Safe(El);
– GE = GE ∪AcceptableGE(El);
– A = A\El;
– A = A\ non-Safe(A);
– R = R ∪ (El\GE);
/** remove satisfied preferences **/;
– remove pi >> qi where arg(pi) ∩ El 6= ∅;
– l = l + 1.

return GE
end

Example 2 Tom and Mary discuss with their children about
their education. Several arguments are given concerning
the plans of the children to spend the day. In an attempt
to structure the discussion, the arguments are grouped
according to several values they promote, and modeled
as follows. Tom and Marry give the following set of
preferences {Health >> Unhealth,Education >>
Enjoy, Social >> Alone}.
Let A = {A0, A1, A2, A3, A4, A5, A6, A7} be a set of argu-
ments where arg(Health) = {A4, A5}, arg(Unhealth) =
{A6, A7}, arg(Education) = {A3, A5, A7},
arg(Enjoy) = {A2, A4, A6}, arg(Social) = {A0, A4}
and arg(Alone) = {A1, A5}.
Let the following defeat relations A6DA0, A0DA6,
A3DA4, A3DA2, A2DA5, A5DA2, A4DA5 and A5DA4.
Figure 1 summarizes defeat relations among the arguments.
An arrow from A to B stands for “A defeats B”.

We first put in E0 arguments which are not in

Figure 1: Defeat relations among the arguments.

arg(Unhealth), arg(Enjoy) and arg(Alone). We
get E0 = {A0, A3}. R is the empty set and there is no
defeat relation among arguments of E0 so both A0 and A3

are safe. They belong to GE . The set AcceptableGE(E0)
returns the empty set since there is no defeat relation in E0.
Now we first remove arguments of E0 from A since they
have been treated. We get A = {A1, A2, A4, A5, A6, A7}.
Then we remove from A arguments which are defeated by
arguments in GE (i.e. which are already accepted). We
remove A2, A4 and A6. So A = {A1, A5, A7}. R = ∅
since E0 = GE . Lastly we remove Education >> Enjoy
and Social >> Alone since they are satisfied. We
run the second iteration of the algorithm. We have
E1 = {A1, A5}. A1 and A5 are safe so they are added
to GE , i.e., GE = {A0, A3, A1, A5}. AcceptableGE(E1)
is empty. We remove A1 and A5 from A. There are no
non-safe arguments in A and R = ∅. In the third iteration
of the algorithm we have E2 = {A7}. A7 is safe so
GE = {A0, A3, A1, A5, A7}.

240 Technical Report IfI-06-04

Theory of NMR and Uncertainty

The role of the set R does not appear in this example
however it is important to define such a set to compute in-
crementally the grounded extension. Let A = {A,B, C, D}
be a set of arguments such that BDC, CDB and BDD.
Suppose that the first iteration gives E0 = {A,B, C}. So
A belongs to the grounded extension while B and C do not
(since they attack each other). Following the algorithm we
update A and get A = {D}. At this stage it is important
to keep B and C in a set, let’s say R. The reason is that
in the second iteration of the algorithm we should not put
D in the grounded extension just because it is not defeated
by A. In fact D is attacked by B and not defended by A.
This justifies why we consider El ∪ R when computing
Safe(El) and AcceptableGE(El).

Let us now first compute the pre-order and then compute
the grounded extension. We compute this pre-order from
Algorithm 1 by replacing while loop by

while A 6= ∅ do
- El = {B : B ∈ A,∀pi >> qi, B 6∈ arg(qi)};
- remove pi >> qi where arg(pi) ∩ El 6= ∅.

We have �o= (E0, E1, E2) where E0 = {A0, A3},
E1 = {A1, A2, A4, A5} and E2 = {A6, A7}.
Let us now compute the grounded extension. Following
Definition 8 the attack relations are A3RA2, A3RA4,
A4RA5, A5RA4, A2RA5, A5RA2 and A0RA6. We first
put in the grounded extension arguments which are not
attacked, so GE = {A0, A1, A3, A7}. Then we add to GE
arguments which are attacked but defended by arguments in
GE . We add A5. So GE = {A0, A1, A3, A7, A5}.

The following theorem shows that Algorithm 1 computes
the grounded extension.
Theorem 1 Let F = 〈A,D, V, >>, arg〉 be a VAF. Algo-
rithm 1 computes the grounded extension of F .

Grounded extension in pessimistic reasoning
A particularity of pessimistic reasoning is that it computes
the total pre-order starting from the lowest ranked arguments
in this pre-order. Indeed it is no longer possible to compute
progressively the grounded extension. Let us consider our
running example. Following the pessimistic reasoning (we
will give the formal algorithm later in this section), the worst
arguments are A1, A2 and A6. At this stage we can only con-
clude that A1 belongs to GE since it is not defeated. How-
ever the status of A2 and A6 cannot be determined since they
are attacked by A3 and A0 respectively. Since higher ranks
in � are not computed yet we cannot check whether A3 and
A0 are attacked or not. The only case where the status of
A2 and A6 can be determined is when at least one of their
defeaters is not defeated. In this case we can conclude that
they do not belong to GE . Algorithm 2 gives the total pre-
order following the pessimistic reasoning. Each argument is
put in the lowest possible rank in the computed pre-order.
Example 3 (cont’d)
We put in E0 arguments which do not appear in any
arg(Health), arg(Education) and arg(Social). We get

Algorithm 2: Pessimistic reasoning.

Data: 〈A,D, V, >>, arg〉.
Result: A total pre-order �p on A.
begin

l = 0;
while A 6= ∅ do

El = {B : B ∈ A,∀pi >> qi, B 6∈ arg(pi)};
if El = ∅ then Stop (inconsistent preferences);
– Remove from A elements of El;
/** remove satisfied preferences **/
– Remove pi >> qi where arg(qi) ∩ El 6= ∅;
– l = l + 1.

return (E′
1, · · · , E′

l−1) s.t. ∀1 ≤ h ≤ l, E′
h =

El−h−1

end

E0 = {A1, A2, A6}. We remove all preferences pi >> qi

s.t. arg(qi) ∩ E0 6= ∅. All preferences are removed. Then
E1 = {A0, A3, A4, A5, A7}.
So we have �p= ({A0, A3, A4, A5, A7}, {A1, A2, A6}).
In this example we get the same grounded extension as in the
optimistic reasoning. However if we add for example the de-
feat relations A3DA7 and A7DA3 then the grounded exten-
sion following the optimistic reasoning is {A0, A1, A3, A5}
while following the pessimistic reasoning the grounded ex-
tension is {A0, A1}.

Related Work
The preference-based argumentation theory introduced in
this paper integrates several existing approaches, most no-
table the preference based framework of Amgoud and Cay-
rol (Amgoud & Cayrol 2002), and the value based argumen-
tation theory of Bench-Capon (Bench-Capon 2003). How-
ever, there are also substantial conceptual and technical dis-
tinctions.

Maybe the main conceptual distinction is that the above
authors present their argumentation theory as an extension
of Dung’s framework, which has the technical consequence
that they also define new notions of, for example, defence
and acceptance. We, in contrast, consider our preference-
based argumentation theory as an alternative representation
of Dung’s theory, that is, as a kind of front end to it, which
has the technical consequence that we do not have to in-
troduce such notions. Reductions of the other preference-
based argumentation theories to Dung’s theory may be de-
rived from some of the results presented by these authors.

Another conceptual distinction is that in our theory, there
seems to be a higher impact of preference reasoning in ar-
gumentation. The preference ordering on arguments is not
given, but has to be derived from a more abstract prefer-
ence specification. Technically, this leads to our use of non-
monotonic preference reasoning to derive a Dung-style at-
tack relation from a preference specification together with
a defeat relation. None of the existing approaches studies
the use of non-monotonic reasoning techniques to reason
with the preferences. Another conceptual distinction with

DEPARTMENT OF INFORMATICS 241

11TH NMR WORKSHOP

the work of Bench-Capon is that he, following Perelman, is
concerned with an audience.

Concerning the extensive work of Amgoud and col-
leagues on preference-based argumentation theory, our pref-
erence based argumentation theory seems closest to the ar-
gumentation framework based on contextual preferences of
Amgoud, Parsons and Perrussel (Amgoud, Parsons, & Per-
russel 2000). A context may be an agent, a criterion, a view-
point, etc., and they are ordered. For example, in law earlier
arguments are preferred to later ones, arguments of a higher
authority are preferred to arguments of a lower authority,
more specific arguments are preferred over more general ar-
guments, and these three rules are ordered themselves too.
However our approach is more general since we compare
sets of arguments instead of single arguments as it is the case
in their approach. Bench-Capon (Bench-Capon 2003) de-
velops a value-based argumentation framework, where argu-
ments promote some value. No ordering is required among
arguments promoting the same value. If a value V is priori-
tized over another value W then this is interpreted as “each
argument promoting the value V is preferred to all argu-
ments promoting the value W ”. In our framework we can
add such preferences, or encode them as pi >> qj where pi

is an argument in favor of V and qj is an argument in favor
of W . Note that in our example there is no ordering which
satisfies these strong preferences.

Specificity principle we used in this paper has been
also used in many other works (Prakken & Sartor 1997;
Poole 1985; Simari & Loui 1992; Stolzenburg et al. 2003)1

however in that works preference relation over arguments is
defined on the basis of specificity of their internal structure.
In fact arguments are built from default and strict knowl-
edge. Then an argument is preferred to another if its internal
structure is more specific. In our work specificity concerns
abstract arguments without referring to their internal struc-
ture.

There are numerous works on non-monotonic logic and
in particular the non-monotonic logic of preference which
is related to the work in this paper, and which can be used
to further generalize the reasoning about preferences in ar-
gumentation. Interestingly, as argumentation theory is itself
a framework of non-monotonic reasoning, due to our non-
monotonic reasoning about preferences two kinds of non-
monotonicity seems to be present in our system; we leave a
further analysis of this phenomena for further research.

Summary
To promote a higher impact of preference reasoning in
argumentation, we introduce a novel preference-based
argumentation theory. Starting with a set of arguments,
a defeat relation, and an ordered set of values, we use
the ordered values to compute a preference relation over
arguments, and we combine this preference relation with
the defeat relation to compute Dung’s attack relation. Then
we use any of Dung’s semantics to define the acceptable
set of arguments. In contrast to most other approaches, our

1Note that Poole (Poole 1985) uses specificity of arguments
without studying interaction among arguments.

approach to reason about preferences in argumentation does
not refer to the internal structure of the arguments.

The problem of reducing ordered values to a preference
relation comes down to reducing a preference relation
over sets of arguments to a preference relation over single
arguments. To reason about ordered values and to compute
the preference relation over arguments, we are inspired
by insights from the non-monotonic logic of preference
known as minimal specificity, System Z, gravitation to
normality, and otherwise, and we use both so-called opti-
mistic and pessimistic ways to define the preference relation.

For the combined approach, we introduce an algorithm
for Dung’s grounded semantics. It shows that the compu-
tation of the set of acceptable arguments can be combined
with the optimistic reasoning to incrementally define the set
of acceptable arguments, because in this construction for
each equivalence class we can deduce which arguments are
not attacked by other arguments. This property does not
hold for pessimistic reasoning.

In future work, we study other ways to use reasoning
about preferences in argumentation theory. For example,
Bochman (2005) develops a generalization of Dung’s theory,
called collective argumentation, where the attack relation is
defined over sets of arguments instead of single arguments.
It seems natural to develop a unified framework where both
attack and preference relations are defined over sets of ar-
guments. Another future work is to study the reinforcement
among different arguments promoting the same value as ad-
vocated in (Bench-Capon 2003).

References
Amgoud, L., and Cayrol, C. 2002. A reasoning model
based on the production of acceptable arguments. AMAI
Journal 34:197–216.
Amgoud, L.; Cayrol, C.; and LeBerre, D. 1996. Comparing
arguments using preference orderings for argument-based
reasoning. In 8th International Conf. on Tools with Artifi-
cial Intelligence, 400–403.
Amgoud, L.; Parsons, S.; and Perrussel, L. 2000. An ar-
gumentation framework based on contextual preferences.
Technical report, Department of Electronic Engineering,
Queen Mary and Westfield College.
Atkinson, K.; Bench-Capon, T.; and McBurney, P. 2005.
Persuasive Political Argument. In Computational Models
of Natural Argument, 44–51.
Bench-Capon, T. 2003. Persuasion in practical argument
using value based argumentation framework. Journal of
Logic and Computation 13(3):429–448.
Benferhat, S.; Dubois, D.; Kaci, S.; and Prade, H. 2002.
Bipolar possibilistic representations. In 18th Interna-
tional Conference on Uncertainty in Artifcial Intelligence
(UAI’02), 45–52.
Bochman, A. 2005. Propositional Argumentation and

242 Technical Report IfI-06-04

Theory of NMR and Uncertainty

Causal Reasoning. In 11th Int. Joint Conf. on Artificial
Intelligence, 388–393.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence
77:321–357.
Kaci, S., and van der Torre, L. 2005. Algorithms for a
Nonmonotonic Logic of Preferences. In 8th Eur. Conf. on
Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, 281–292.
Kaci, S.; van der Torre, L.; and Weydert, E. 2006. Acyclic
argumentation: Attack = conflict + preference. In Proceed-
ings of the 17th European Conference on Artificial Intelli-
gence (ECAI’06), to appear.
Pearl, J. 1990. System z: A natural ordering of de-
faults with tractable applications to default reasoning. In
3rd Conference on Theoretical Aspects of Reasoning about
Knowledge (TARK’90), 121–135.
Poole, D. L. 1985. On the comparison of theories: Prefer-
ring the most specific explanation. In Proceedings of the
9th IJCAI, 144–147. IJCAI.
Prakken, H., and Sartor, G. 1997. Argument-based ex-
tended logic programming with defeasible priorties. Jour-
nal of Applied Non-Classical Logics 7:25–75.
Simari, G. R., and Loui, R. P. 1992. A mathematical treat-
ment of defeasible reasoning and its implementation. Arti-
ficial Intelligence 53:125–157.
Stolzenburg, F.; Garcı́a, A. J.; Chesñevar, C. I.; and Simari,
G. R. 2003. Computing generalized specificity. Journal of
Aplied Non-Classical Logics 13(1):87–113.

DEPARTMENT OF INFORMATICS 243

11TH NMR WORKSHOP

244 Technical Report IfI-06-04

NMR Systems and Applications

3 NMR Systems and Applications
In recent years, a number of systems implementing non-monotonic reasoning, or mak-
ing extensive use of nonmonotonic reasoning approaches, have emerged. These systems
have ranged from implementations of systems in traditional nonmonotonic reasoning
areas (best exemplified by answer set program implementations) to those in less tradi-
tional areas (including belief change and causality). Areas of application have similarly
ranged from implementations of systems in traditional areas (best exemplified by plan-
ning) to less traditional or emerging areas (including bioinformatics, configuration, and
the semantic web). Given the increasing performance of computer hardware along with
advances in algorithm design, the performance of existing systems is already sufficient
to enable industrial applications of non-monotonic reasoning.

This special session was intended to attract researchers interested in systems and
applications of non-monotonic reasoning. Seven papers were presented at the session.
Grigoris Antoniou and Antonis Bikakis describe a system, DR-Prolog, for defeasible
reasoning on the web. Martin Brain, Tom Crick, Marina De Vos and John Fitch de-
scribe a large-scale implementation using answer set programming to generate optimal
machine code for simple, acyclic functions, with encouraging results. In the paper by
James Delgrande, Daphne H. Liu, Torsten Schaub, and Sven Thiele, an implementation
for a general consistency-based approach to belief change, including revision, contrac-
tion and merging with integrity constraints is presented. Susanne Grell, Torsten Schaub,
and Joachim Selbig propose a new action language for modelling biological networks,
building on earlier work by Baral et al. and providing a translation into answer set
programs. Efstratios Kontopoulos, Nick Bassiliades, Grigoris Antoniou present in their
paper a system for non-monotonic reasoning on the Semantic Web called VDR-Device,
which is capable of reasoning about RDF metadata over multiple Web sources using de-
feasible logic rules. Frederick Maier and Donald Nute relating Defeasible Logic to the
well-founded semantics for normal logic programs. Oliver Ray and Antonis Kakas’s
paper presents a new system, called ProLogICA, for abductive logic programming in
the presence of negation as failure and integrity constraints.

Session chairs

James Delgrande
(jim@cs.sfu.ca)

Torsten Schaub
(torsten@cs.uni-potsdam.de)

Program committee

Chitta Baral
(chitta@asu.edu)

Dirk Vermeir
(dvermeir@tinf.vub.ac.be)

Gerald Pfeifer
(gerald@pfeifer.com)

Gianluigi Greco
(ggreco@mat.unical.it)

Joohyung Lee
(joolee@asu.edu)

DEPARTMENT OF INFORMATICS 245

jim@cs.sfu.ca
torsten@cs.uni-potsdam.de
chitta@asu.edu
dvermeir@tinf.vub.ac.be
gerald@pfeifer.com
ggreco@mat.unical.it
joolee@asu.edu

11TH NMR WORKSHOP

Leopoldo Bertossi
(bertossi@scs.carleton.ca)

Paolo Liberatore
(liberato@dis.uniroma1.it)

Pascal Nicolas
(pn@info.univ-angers.fr)

Odile Papini
(papini@univ-tln.fr)

Trao Can Son
(tson@cs.nmsu.edu)

Yannis Dimopoulos
(yannis@cs.ucy.ac.cy)

Yan Zhang
(yan@cit.uws.edu.au)

246 Technical Report IfI-06-04

bertossi@scs.carleton.ca
liberato@dis.uniroma1.it
pn@info.univ-angers.fr
papini@univ-tln.fr
tson@cs.nmsu.edu
yannis@cs.ucy.ac.cy
yan@cit.uws.edu.au

NMR Systems and Applications

DEPARTMENT OF INFORMATICS 247

11TH NMR WORKSHOP

3.1 DR-Prolog: A System for Reasoning with Rules and Ontologies
on the Semantic Web

DR-Prolog: A System for Reasoning with Rules and Ontologies
on the Semantic Web

Grigoris Antoniou and Antonis Bikakis

Institute of Computer Science, FO.R.T.H
Vassilika Vouton, P.O. Box 1385, GR 71110, Heraklion, Greece

{antoniou,bikakis}@ics.forth.gr

Abstract
Defeasible reasoning is a rule-based approach for efficient
reasoning with incomplete and inconsistent information.
Such reasoning is, among others, useful for ontology
integration, where conflicting information arises naturally;
and for the modeling of business rules and policies, where
rules with exceptions are often used. This paper describes
these scenarios in more detail, and reports on the
implementation of a system for defeasible reasoning on the
Web. The system (a) is syntactically compatible with
RuleML; (b) features strict and defeasible rules, priorities
and two kinds of negation; (c) is based on a translation to
logic programming with declarative semantics; (d) is
flexible and adaptable to different intuitions within
defeasible reasoning; and (e) can reason with rules, RDF,
RDF Schema and (parts of) OWL ontologies.

Introduction
The development of the Semantic Web (Berners Lee et al.,
2001) proceeds in layers, each layer being on top of other
layers. At present, the highest layer that has reached
sufficient maturity is the ontology layer in the form of the
description logic based languages of DAML+OIL
(Connolly et al., 2001) and OWL (Dean and Schreiber,
2004).
The next step in the development of the Semantic Web will
be the logic and proof layers that will offer enhanced
representation and reasoning capabilities. Rule systems
appear to lie in the mainstream of such activities.
Moreover, rule systems can also be utilized in ontology
languages. So, in general rule systems can play a twofold
role in the Semantic Web initiative: (a) they can serve as
extensions of, or alternatives to, description logic based
ontology languages; and (b) they can be used to develop
declarative systems on top of (using) ontologies. Reasons
why rule systems are expected to play a key role in the
further development of the Semantic Web include the
following:
• Seen as subsets of predicate logic, monotonic rule

systems (Horn logic) and description logics are
orthogonal; thus they provide additional expressive
power to ontology languages.

• Efficient reasoning support exists to support rule
languages.

• Rules are well known in practice, and are reasonably well
integrated in mainstream information technology.

Possible interactions between description logics and
monotonic rule systems were studied in (Grosof et al.,
2003). Based on that work and on previous work on hybrid
reasoning (Levy and Rousset, 1998) it appears that the best
one can do at present is to take the intersection of the
expressive power of Horn logic and description logics; one
way to view this intersection is the Horn-definable subset
of OWL.
This paper is devoted to a different problem, namely
conflicts among rules. Here we just mention the main
sources of such conflicts, which are further expanded in
the next section. At the ontology layer:
• Default inheritance within ontologies
• Ontology merging
And at the logic and reasoning layers:
• Rules with exceptions as a natural representation of

business rules
• Reasoning with incomplete information
Defeasible reasoning is a simple rule-based approach to
reasoning with incomplete and inconsistent information. It
can represent facts, rules, and priorities among rules. This
reasoning family comprises defeasible logics (Nute, 1994;
Antoniou et al., 2001) and Courteous Logic Programs
(Grosof 1997). The main advantage of this approach is the
combination of two desirable features: enhanced
representational capabilities allowing one to reason with
incomplete and contradictory information, coupled with
low computational complexity compared to mainstream
nonmonotonic reasoning.
In this paper we report on the implementation of a
defeasible reasoning system for reasoning on the Web. Its
main characteristics are the following:
• Its user interface is compatible with RuleML (RuleML),

the main standardization effort for rules on the Semantic
Web.

• It is based on Prolog. The core of the system consists of a
well-studied translation (Antoniou et. al., 2001) of
defeasible knowledge into logic programs under Well-

248 Technical Report IfI-06-04

NMR Systems and Applications

Founded Semantics (van Gelder et al., 1991). This
declarative translation distinguishes our work from other
implementations (Grosof et al., 2002; Maher et al.,
2001).

• The main focus is on flexibility. Strict and defeasible
rules and priorities are part of the interface and the
implementation. Also, a number of variants were
implemented (ambiguity blocking, ambiguity
propagating, conflicting literals; see below for further
details).

• The system can reason with rules and ontological
knowledge written in RDF Schema (RDFS) or OWL.

As a result of the above, DR-Prolog is a powerful
declarative system supporting:
• rules, facts and ontologies
• all major Semantic Web standards: RDF, RDFS, OWL,

RuleML
• monotonic and nonmonotonic rules, open and closed

world assumption, reasoning with inconsistencies.
The paper is organized as follows. The next section
describes the main motivations for conflicting rules on the
Semantic Web. The third section describes the basic ideas
of defeasible reasoning, and the forth one describes the
translation of defeasible logic, and of RDF, RDFS and
(parts of) OWL into logic programs. The fifth section
reports on the implemented system. The sixth section
discusses related work, and the last section concludes with
a summary and some ideas for future work.

Motivation for Nonmonotonic Rules on the
Semantic Web

We believe that we have to distinguish between two types
of knowledge on the Semantic Web. One is static
knowledge, such as factual and ontological knowledge
which contains general truths that do not change often.
And the other is dynamic knowledge, such as business
rules, security policies etc. that change often according to
business and strategic needs. The first type of knowledge
requires monotonic reasoning based on an open world
assumption to guarantee correct propagation of truths. But
for dynamic knowledge flexible, context-dependent and
inconsistency tolerant nonmonotonic reasoning is more
appropriate for drawing practical conclusions.
Obviously, a combination of both types of knowledge is
required for practical systems. Defeasible logic, as
described in the next section, supports both kinds of
knowledge. Before presenting its technical details, we
motivate the use of nonmonotonic rules in more detail.

Reasoning with Incomplete Information: Antoniou and
Arief (2002) describe a scenario where business rules have
to deal with incomplete information: in the absence of
certain information some assumptions have to be made
which lead to conclusions that are not supported by
classical predicate logic. In many applications on the Web
such assumptions must be made because other players may

not be able (e.g. due to communication problems) or
willing (e.g. because of privacy or security concerns) to
provide information. This is the classical case for the use
of nonmonotonic knowledge representation and reasoning
(Marek and Truszczynski, 1993).
Rules with Exceptions: Rules with exceptions are a
natural representation for policies and business rules
(Antoniou et. al, 1999). And priority information is often
implicitly or explicitly available to resolve conflicts among
rules. Potential applications include security policies
(Ashri et al., 2004; Li et al., 2003), business rules
(Antoniou and Arief 2002), personalization, brokering,
bargaining, and automated agent negotiations (Governatori
et al., 2001).
Default Inheritance in Ontologies: Default inheritance is
a well-known feature of certain knowledge representation
formalisms. Thus it may play a role in ontology languages,
which currently do not support this feature. Grosof and
Poon (2003) present some ideas for possible uses of
default inheritance in ontologies. A natural way of
representing default inheritance is rules with exceptions,
plus priority information. Thus, nonmonotonic rule
systems can be utilized in ontology languages.
Ontology Merging: When ontologies from different
authors and/or sources are merged, contradictions arise
naturally. Predicate logic based formalisms, including all
current Semantic Web languages, cannot cope with
inconsistencies.
If rule-based ontology languages are used and if rules are
interpreted as defeasible (that is, they may be prevented
from being applied even if they can fire) then we arrive at
nonmonotonic rule systems. A skeptical approach, as
adopted by defeasible reasoning, is sensible because it
does not allow for contradictory conclusions to be drawn.
Moreover, priorities may be used to resolve some conflicts
among rules, based on knowledge about the reliability of
sources or on user input. Thus, nonmonotonic rule systems
can support ontology integration.

Defeasible Logics

Basic Characteristics
The root of defeasible logics lies on research in knowledge
representation, and in particular on inheritance networks.
Defeasible logics can be seen as inheritance networks
expressed in a logical rules language. In fact, they are the
first nonmonotonic reasoning approach designed from its
beginning to be implementable.
Being nonmonotonic, defeasible logics deal with potential
conflicts (inconsistencies) among knowledge items. Thus
they contain classical negation, contrary to usual logic
programming systems. They can also deal with negation as
failure (NAF), the other type of negation typical of
nonmonotonic logic programming systems; in fact,
Wagner (2003) argues that the Semantic Web requires

DEPARTMENT OF INFORMATICS 249

11TH NMR WORKSHOP

both types of negation. In defeasible logics, often it is
assumed that NAF is not included in the object language.
However, as Antoniou et al. (2000a) show, it can be easily
simulated when necessary. Thus, we may use NAF in the
object language and transform the original knowledge to
logical rules without NAF exhibiting the same behavior.
Conflicts among rules are indicated by a conflict between
their conclusions. These conflicts are of local nature. The
simpler case is that one conclusion is the negation of the
other. The more complex case arises when the conclusions
have been declared to be mutually exclusive, a very useful
representation feature in practical applications.
Defeasible logics are skeptical in the sense that conflicting
rules do not fire. Thus consistency of drawn conclusions is
preserved.
Priorities on rules may be used to resolve some conflicts
among rules. Priority information is often found in
practice, and constitutes another representational feature of
defeasible logics.
The logics take a pragmatic view and have low
computational complexity. This is, among others, achieved
through the absence of disjunction and the local nature of
priorities: only priorities between conflicting rules are
used, as opposed to systems of formal argumentation
where often more complex kinds of priorities (e.g.
comparing the strength of reasoning chains) are
incorporated.
Generally speaking, defeasible logics are closely related to
Courteous Logic Programs (Grosof, 1997); the latter were
developed much later than defeasible logics. DLs have the
following advantages:
• They have more general semantic capabilities, e.g. in

terms of loops, ambiguity propagation etc.
• They have been studied much more deeply, with strong

results in terms of proof theory (Antoniou et al., 2001),
semantics (Maher, 2002) and computational complexity
(Maher, 2001). As a consequence, its translation into
logic programs, a cornerstone of DR-Prolog, has also
been studied thoroughly (Maher et al., 2001; Antoniou
and Maher, 2002).

However, Courteous Logic Programs have also had some
advantages:
• They were the first to adopt the idea of mutually

exclusive literals, an idea incorporated in DR-Prolog.
• They allow access to procedural attachments, something

we have chosen not to follow in our work so far.

Syntax
A defeasible theory D is a triple (F,R,>) where F is a finite
set of facts, R a finite set of rules, and > a superiority
relation on R. In expressing the proof theory we consider
only propositional rules. Rules containing free variables
are interpreted as the set of their variable-free instances.
There are two kinds of rules (fuller versions of defeasible
logics include also defeaters): Strict rules are denoted by
 A → p,

and are interpreted in the classical sense: whenever the
premises are indisputable then so is the conclusion. An
example of a strict rule is “Professors are faculty
members”. Written formally:
 professor(X) → faculty(X).
Inference from strict rules only is called definite inference.
Strict rules are intended to define relationships that are
definitional in nature, for example ontological knowledge.
Defeasible rules are denoted by
 A ⇒ p,
and can be defeated by contrary evidence. An example of
such a rule is
 faculty(X) ⇒ tenured(X)
which reads as follows: “Professors are typically tenured”.
A superiority relation on R is an acyclic relation > on R
(that is, the transitive closure of > is irreflexive). When
 r1 > r2,
then r1 is called superior to r2, and r2 inferior to r1. This
expresses that r1 may override r2. For example, given the
defeasible rules
 r: professor(X) ⇒ tenured(X)
 r’: visiting(X) ⇒ ¬tenured(X)
which contradict one another: no conclusive decision can
be made about whether a visiting professor is tenured. But
if we introduce a superiority relation > with
 r’ > r,
then we can indeed conclude that a visiting professor
cannot be tenured.
A formal definition of the proof theory is found in
(Antoniou et al., 2001).

Simulation of Negation As Failure in the Object
Language
We follow a technique based on auxiliary predicates first
presented in (Antoniou et al., 2000a), but which is often
used in logic programming. According to this technique, a
defeasible theory with NAF can be modularly transformed
into an equivalent one without NAF. Every rule
 r: L1,…,Ln, ~M1,…, ~Mk ⇒ L

where L1,…,Ln, M1,…,Mk are atoms and ~Mi denotes the
weak negation of Mi, is replaced by the rules:

 r: L1,…,Ln, neg(M1),…,neg(Mk) ⇒ L
 ⇒ neg(M1)
 …
 ⇒ neg(Mk)
 M1 ⇒ ¬neg(M1)
 …
 Mk ⇒ ¬neg(Mk)

where neg(M1),…,neg(Mk) are new auxiliary atoms and
¬neg(Mi) denotes the strong negation of Mi. If we restrict
attention to the original language, the set of conclusions
remains the same.

250 Technical Report IfI-06-04

NMR Systems and Applications

Ambiguity Blocking and Ambiguity Propagating
Behavior
A literal is ambiguous if there is a chain of reasoning that
supports a conclusion that p is true, another that supports
that ¬p (where ¬p denotes strong negation of p) is true,
and the superiority relation does not resolve this conflict.
We can illustrate the concept of ambiguity propagation
through the following example.
 r1: quaker(X) ⇒ pacifist(X)
 r2: republican(X) ⇒ ¬pacifist(X)
 r3: pacifist(X) ⇒ ¬hasGun(X)
 r4: livesInChicago(X) ⇒ hasGun(X)
 quaker(a)
 republican(a)
 livesInChicago(a)
 r3 > r4
Here pacifist(a) is ambiguous. The question is whether
this ambiguity should be propagated to the dependent
literal hasGun(a). In one defeasible logic variant it is
detected that rule r3 cannot fire, so rule r4 is unopposed and
gives the defeasible conclusion hasGun(a). This behavior
is called ambiguity blocking, since the ambiguity of
pacifist(a) has been used to block r3 and resulted in
the unambiguous conclusion hasGun(a).
On the other hand, in the ambiguity propagation variant,
although rule r3 cannot lead to the conclusion hasGun(a)
(as pacifist(a) is not provable), it opposes rule r4 and
the conclusion hasGun(a) cannot also be drawn.
This question has been extensively studied in artificial
intelligence, and in particular in the theory of inheritance
networks. A preference for ambiguity blocking or
ambiguity propagating behavior is one of the properties of
nonmonotonic inheritance nets over which intuitions can
clash. Ambiguity propagation results in fewer conclusions
being drawn, which might make it preferable when the cost
of an incorrect conclusion is high. For these reasons an
ambiguity propagating variant of DL is of interest.

Conflicting Literals
Usually in Defeasible Logics only conflicts among rules
with complementary heads are detected and used; all rules
with head L are considered as supportive of L, and all rules
with head ¬L as conflicting. However, in applications
often literals are considered to be conflicting, and at most
one of a certain set should be derived. For example, the
risk an investor is willing to accept may be classified in
one of the categories low, medium, and high. The way to
solve this problem is to use a constraint rule of the form
 conflict :: low, medium, high
Now if we try to derive the conclusion high, the
conflicting rules are not just those with head ¬high, but
also those with head low and medium. Similarly, if we are
trying to prove ¬high, the supportive rules include those
with head low or medium.
In general, given a conflict::L,M, we augment the
defeasible theory by:

 ri: q1,q2,…,qn → ¬L
 for all rules ri: q1,q2,…,qn → M
 ri: q1,q2,…,qn → ¬M
 for all rules ri: q1,q2,…,qn → L
 ri: q1,q2,…,qn ⇒ ¬L
 for all rules ri: q1,q2,…,qn⇒ M
 ri: q1,q2,…,qn ⇒ ¬M
 for all rules ri: q1,q2,…,qn ⇒ L

The superiority relation among the rules of the defeasible
theory is propagated to the “new” rules.

Translation into Logic Programs

Translation of Defeasible Theories
The translation of a defeasible theory D into a logic
program P(D) has a certain goal: to show that
 p is defeasibly provable in D
 p is included in the Well-Founded Model of P(D)
Two different translations have so far been proposed,
sharing the same basic structure:
The translation of (Antoniou et al., 2000b; Maher et al.,
2001) where a meta-program was used.
The translation of (Antoniou and Maher, 2002), which
makes use of control literals.
It is an open question which is better in terms of
computational efficiency, although we conjecture that for
large theories the meta-program approach is better, since in
the other approach a large number of concrete program
clauses is generated. Therefore, we have adopted this
approach in our implementation.

Translation of Ambiguity Blocking Behavior. The
metaprogram which corresponds to the ambiguity blocking
behavior of the defeasible theories consists of the
following program clauses:
The first three clauses define the class of rules used in a
defeasible theory.

 supportive_rule(Name,Head,Body):-
 strict(Name,Head,Body).
 supportive_rule(Name,Head,Body):-
 defeasible(Name,Head,Body).
 rule(Name,Head,Body):-

 supportive_rule (Name,Head,Body).
The following clauses define the definite provability: a
literal is definitely provable if it is a fact or is supported by
a strict rule, the premises of which are definitely provable.

 definitely(X):- fact(X).
 definitely(X):-strict(R,X,L),
 definitely_provable(L).
 definitely_provable([]).
 definitely_provable(X):- definitely(X).
definitely_provable([X1|X2]):-
definitely_provable(X1),
definitely_provable(X2).

DEPARTMENT OF INFORMATICS 251

11TH NMR WORKSHOP

The next clauses define the defeasible provability: a literal
is defeasibly provable, either if it is definitely provable, or
if its complementary is not definitely provable, and it is
supported by a defeasible rule, the premises of which are
defeasibly provable, and which is not overruled. The
sk_not operator, which we use as the negation operator in
the following clauses, is provided by XSB (the logic
programming system that stands in the core of DR-Prolog),
and allows for correct execution of programs according to
the well-founded semantics.

 defeasibly(X):- definitely(X).
defeasibly(X):- negation(X,X1),
supportive_rule(R,X,L),
defeasibly_provable(L),
sk_not(definitely(X1)),

 sk_not(overruled(R,X)).
 defeasibly_provable([]).
 defeasibly_provable(X):- defeasibly(X).
defeasibly_provable([X1|X2]):-
defeasibly_provable(X1),
defeasibly_provable(X2).

The next clause defines that a rule is overruled when there
is a conflicting rule, the premises of which are defeasible
provable, and which is not defeated.

 overruled(R,X):- negation(X,X1),
 supportive_rule(S,X1,U),
defeasibly_provable(U),

 sk_not(defeated(S,X1)).

The next clause defines that a rule is defeated when there
is a superior conflict rule, the premises of which are
defeasibly provable. The last two clauses are used to define
the negation of a literal.

 defeated(S,X):-sup(T,S), negation(X,X1),
supportive_rule(T,X1,V),
defeasibly_provable(V).

 negation(~(X),X):- !.
 negation(X,~(X)).

For a defeasible theory D = (F,R,>), where F is the set of
the facts, R is the set of the rules, and > is the set of the
superiority relations between the rules of the theory, we
add facts according to the following guidelines:

 fact(p).
 for each p∈F
 strict(ri,p,[q1,…,qn]).
 for each rule r: q1,q2,…,qn → p ∈R
 defeasible(ri,p,[q1,…,qn]).
 for each rule r: q1,q2,…,qn ⇒ p ∈R
 sup(r,s).
 for each pair of rules such that r>s

Translation of Ambiguity Propagating Behavior. In
order to support the ambiguity propagation behavior of a
defeasible theory, we only have to modify the program
clauses which define when a rule is overruled. In

particular, in this variant a rule is overruled when there is a
conflicting rule, the premises of which are supported, and
which is not defeated.

 overruled(R,X):- negation(X,X1),
supportive_rule(S,X1,U),
supported_list(U),

 sk_not(defeated(S,X1)).

The next clauses define that a literal is supported, either if
it is definitely provable, or if there is a supportive rule, the
premises of which are supported, and which is not
defeated.

 supported(X):- definitely(X).
 supported(X):-supportive_rule(R,X,L),

supported_list(L),
sk_not(defeated(R,X)).

 supported_list([]).
 supported_list(X):- supported(X).
 supported_list([X1|X2]):-
 supported_list(X1),
 supported_list(X2).

Translation of RDF(S) and parts of OWL
ontologies
In order to support reasoning with RDF/S and OWL
ontologies, we translate RDF data into logical facts, and
RDFS and OWL statements into logical facts and rules.
For RDF data, the SWI-Prolog RDF parser (SWI) is used
to transform it into an intermediate format, representing
triples as

 rdf(Subject, Predicate, Object).

Some additional processing
(i) transforms the facts further into the format

 Predicate(Subject, Object);

(ii) cuts the namespaces and the “comment” elements of
the RDF files, except for resources which refer to the RDF
or OWL Schema, for which namespace information is
retained.
In addition, for processing RDF Schema information, the
following rules capturing the semantics of RDF Schema
constructs are created:

 a: C(X):- rdf:type(X,C).
 b: C(X):- rdfs:subClassOf(Sc,C),Sc(X).
 c: P(X,Y):- rdfs:subPropertyOf(Sp,P),
 Sp(X,Y).
 d: D(X):- rdfs:domain(P,D),P(X,Z).
 e: R(Z):- rdfs:range(P,R),P(X,Z).

Parts of OWL ontologies can also be translated using
logical rules, which capture the semantics of some of the
OWL constructs.
Equality

252 Technical Report IfI-06-04

NMR Systems and Applications

Figure 1: The overall architecture of DR-Prolog

o1: D(X):- C(X),owl:equivalentClass(C,D).
o2: C(X):- D(X),owl:equivalentClass(C,D).
o3: P(X,Y):- Q(X,Y),
 owl:equivalentProperty(P,Q).
o4: Q(X,Y):- P(X,Y),
 owl:equivalentProperty(P,Q).
o5: owl:equivalentClass(X,Y):-
 rdfs:subClassOf(X,Y),
 rdfs:subClassOf(Y,X).

o6 :owl:equivalentProperty(X,Y):-
 rdfs:subPropertyOf(X,Y),
 rdfs:subPropertyOf(Y,X)
o7 : C(X):- C(Y),
 owl:sameIndividualAs(X,Y).
o8 : P(X,Z):- P(X,Y),
 owl:sameIndividualAs(Y,Z).
o9 : P(Z,Y):- P(X,Y),
 owl:sameIndividualAs(X,Z).
o10: owl:sameIndividualAs(X,Y):-
 owl:sameIndividualAs(Y,X).
o11: owl:sameIndividualAs(X,Z):-

owl:sameIndividualAs(X,Y),
owl:sameIndividualAs(Y,Z).

o12: owl:sameAs(X,Y):-
 owl:equivalentClass(X,Y).
o13: owl:sameAs(X,Y):-
 owl:equivalentProperty(X,Y).
o14: owl:sameAs(X,Y):-
 owl:sameIndividualAs(X,Y).

Property Characteristics

o15: P(X,Z):- P(X,Y), P(Y,Z),
 rdf:type(P,owl:TransitiveProperty).
o16: P(X,Y):- P(Y,X),
 rdf:type(P,owl:SymmetricProperty).
o17: P(X,Y):- Q(Y,X),owl:Inverseof(P,Q).
o18: Q(X,Y):- P(Y,X),owl:Inverseof(P,Q).
o19: owl:sameIndividualAs(X,Y):-
 P(A,X),P(A,Y),
 rdf:type(P,owl:FunctionalProperty).
o20: owl:sameIndividualAs(X,Y):-
 P(X,A),P(Y,A),
rdf:type(P,owl:InverseFunctionalProperty)

Property Restrictions

o21: D(Y):- C(X),P(X,Y),
 rdfs:subClassOf(C,R),
 rdf:type(R,owl:Restriction),
 owl:onProperty(R,P),
 owl:allValuesFrom(R,D),
 rdf:type(D,owl:Class).
o22: C(X):- P(X,V),rdfs:subClassOf(C,R),
 rdf:type(R,owl:Restriction),
 owl:onProperty(R,P),owl:hasValue(R,V).
o23: P(X,V):- C(X),rdfs:subClassOf(C,R),
 rdf:type(R,owl:Restriction),
 owl:onProperty(R,P),owl:hasValue(R,V).

Collections

o24: D(X):- C1(X), C2(X),
 owl:IntersectionOf(D,Collect),
 rdf:type(Collect,Collection),
 memberOf(C1,Collect),
 memberOf(C2,Collect).

o25: C1(X):- D(X),
 owl:IntersectionOf(D,Collect),
 rdf:type(Collect,Collection),
 memberOf(C1,Collect),

 memberOf(C2,Collect).
o26: C2(X):- D(X),
 owl:IntersectionOf(D,Collect),
 rdf:type(Collect,Collection),
 memberOf(C1,Collect),
 memberOf(C2,Collect).

o27: C(X):- owl:oneOf(C,Collect),
 rdf:type(Collect,Collection),
 memberOf(X,Collect).

Implementation
DR-Prolog, in accordance with the general philosophy of
logic programming, is designed to answer queries. In fact,
there are two kinds of queries, depending on which
strength of proof we are interested in: definite or defeasible
provability.
In Figure 1 we present the overall architecture of our
system. The system works in the following way: The user
imports defeasible theories, either using the syntax of
defeasible logic, or in the RuleML syntax, that we describe
below in this section. The former theories are checked by
the DL Parser, and if they are syntactically correct, they
are passed to the Logic Translator, which translates them

DEPARTMENT OF INFORMATICS 253

11TH NMR WORKSHOP

into logic programs. The RuleML defeasible theories are
checked by the RuleML Parser and translated into
defeasible theories, which are also passed to the Logic
Translator and transformed into logic programs. The
Reasoning Engine compiles the logic programs and the
metaprogram which corresponds to the user’s choice of the
defeasible theory variants (ambiguity blocking /
propagating), and evaluates the answers to the user’s
queries. The logic programming system that we use as the
Reasoning Engine is XSB. The advantages of this system
are two: (a) it supports the well-founded semantics of logic
programs through the use of tabled predicates, and its
sk_not negation operator; and (b) it offers an easy and
efficient way to communicate with the other parts of the
system. The RDF&OWL Translator is used to translate the
RDF/S and OWL information into logical facts and rules,
which can be processed by the rules, provided by the user.
The DTD that we have developed to represent defeasible
theories in XML format, is in fact an extension of the
RuleML DTDs (RuleML). The elements that we add /
modify to support the defeasible theories are:
• The “rulebase” root element which uses strict and

defeasible rules, fact assertions and superiority relations.
• The “imp” element, which consists of a “_head” and a

“_body” element, accepts a “name” attribute, and refers
to the strict rules.

• The “def” element, which consists of a “_head” and a
“_body” element, accepts a “name” attribute, and refers
to the defeasible rules.

• The “superiority” empty element, which accepts the name
of two rules as its attributes (“sup” & “inf”), and refers
to the superiority relation between these two rules.

Below, we present the modified DTD:

 <!ELEMENT rulebase ((imp|def|fact|greater)*)>
 <!ELEMENT imp ((head, body) | (body, head))>
 <!ATTLIST imp
 name ID #IMPLIED>
 <!ELEMENT def ((head, body) | (body, head))>
 <!ATTLIST def
 name ID #IMPLIED>
 <!ELEMENT fact (atom|neg) >
 <!ELEMENT greater EMPTY>
 <!ATTLIST greater
 sup IDREF #REQUIRED
 inf IDREF #REQUIRED>
 <!ELEMENT head (atom|neg)>
 <!ELEMENT body (atom|neg)*>
 <!ELEMENT neg (atom)>
 <!ELEMENT atom ((op,(ind | var)*) | ((ind | var)+,
op))>
 <!ELEMENT ind (#PCDATA)>
 <!ELEMENT var (#PCDATA)>
 <!ELEMENT op (#PCDATA)>

All the DR-Prolog files are available at:
http://www.csd.uoc.gr/~bikakis/DR-Prolog.

Related Work
There exist several previous implementations of defeasible
logics. Conington et al. (2002) give the historically first
implementation, D-Prolog, a Prolog-based
implementation. It was not declarative in certain aspects
(because it did not use a declarative semantic for the not
operator), therefore it did not correspond fully to the
abstract definition of the logic. Also, D-Prolog supported
only one variation thus it lacked the flexibility of the
implementation we report on. Finally it did not provide any
means of integration with Semantic Web layers and
concepts, a central objective of our work.
Deimos (Maher et al., 2001) is a flexible, query processing
system based on Haskell. It implements several variants,
but not conflicting literals. Also, it does not integrate with
Semantic Web (for example, there is no way to treat RDF
data and RDFS/OWL ontologies; nor does it use an XML-
based or RDF-based syntax for syntactic interoperability).
Thus it is an isolated solution. Finally, it is propositional
and does not support variables.
Delores (Maher et al., 2001) is another implementation,
which computes all conclusions from a defeasible theory.
It is very efficient, exhibiting linear computational
complexity. Delores only supports ambiguity blocking
propositional defeasible logic; so, it does support
ambiguity propagation, nor conflicting literals and
variables. Also, it does integrate with other Semantic Web
languages and systems, and is thus an isolated solution.
DR-DEVICE (Bassiliades, 2004) is another effort on
implementing defeasible reasoning, albeit with a different
approach. DR-DEVICE is implemented in Jess, and
integrates well with RuleML and RDF. It is a system for
query answering. Compared to the work of this paper, DR-
DEVICE supports only one variant, ambiguity blocking,
thus it does not offer the flexibility of this implementation.
At present, it does not support RDFS and OWL ontologies.
SweetJess (Grosof et al., 2002) is another implementation
of a defeasible reasoning system (situated courteous logic
programs) based on Jess. It integrates well with RuleML.
Also, it allows for procedural attachments, a feature not
supported by any of the above implementations, not by the
system of this paper. However, SweetJess is more limited
in flexibility, in that it implements only one reasoning
variant (it corresponds to ambiguity blocking defeasible
logic). Moreover, it imposes a number of restrictions on
the programs it can map on Jess. In comparison, our
system implements the full version of defeasible logic.

Conclusion
In this paper we described reasons why conflicts among
rules arise naturally on the Semantic Web. To address this
problem, we proposed to use defeasible reasoning which is
known from the area of knowledge representation. And we
reported on the implementation of a system for defeasible

254 Technical Report IfI-06-04

NMR Systems and Applications

reasoning on the Web. It is Prolog-based, supports
RuleML syntax, and can reason with monotonic and
nonmonotonic rules, RDF facts and RDFS and OWL
ontologies..
Planned future work includes:
• Adding arithmetic capabilities to the rule language, and

using appropriate constraint solvers in conjunction with
logic programs.

• Implementing load/upload functionality in conjunction
with an RDF repository, such as RDF Suite (Alexaki et
al., 2001) and Sesame (Broekstra et al., 2003).

• Applications of defeasible reasoning and the developed
implementation for brokering, bargaining, automated
agent negotiation, and security policies.

References

Alexaki, S.; Christophides, V.; Karvounarakis, G.;
Plexousakis, D.; and Trolle, K. 2001 The ICS-FORTH
RDFSuite: Managing Voluminous RDF Description Bases.
2nd International Workshop on the Semantic Web
(SemWeb'01).
Antoniou, G., and Arief, M. 2002. Executable Declarative
Business rules and their use in Electronic Commerce. In
Proc. ACM Symposium on Applied Computing
Antoniou, G.; Billington, D.; and Maher M. J. 1999. On
the analysis of regulations using defeasible rules. In Proc.
32nd Hawaii International Conference on Systems Science
Antoniou G.; Billington D.; Governatori G.; and Maher M.
J. 2001. Representation results for defeasible logic. ACM
Transactions on Computational Logic 2, 2 (2001): 255 -
287
Antoniou G.; Maher M. J.; and Billington D. 2000a.
Defeasible Logic versus Logic Programming without
Negation as Failure. Journal of Logic Programming 41,1
(2000): 45-57
Antoniou G.; Billington, D.; Governatori G.; and Maher
M. J. 2000b: A Flexible Framework for Defeasible Logics.
In Proc. AAAI’ 2000, 405-410
Antoniou G.; Maher M. J. 2002. Embedding Defeasible
Logic into Logic Programs. In Proc. ICLP 2002, 393-404
Ashri, R.; Payne, T.; Marvin, D; Surridge, M.; and Taylor
S. 2004. Towards a Semantic Web Security Infrastructure.
In Proc. of Semantic Web Services 2004 Spring
Symposium Series, Stanford University, California
Bassiliades, N; Antoniou, G; and Vlahavas, I. 2004. DR-
DEVICE: A Defeasible Logic System for the Semantic
Web. In Proc. 2nd Workshop on Principles and Practice of
Semantic Web Reasoning (PPSWR04), LNCS, Springer
2004 (accepted)
Berners-Lee, T; Hendler, J; and Lassila, O. 2001. The
Semantic Web. Scientific American, 284, 5 (2001): 34-43
Broekstra, J; Kampman, A.; and van Harmelen, F. 2003
Sesame: An Architecture for Storin gand Querying RDF

Data and Schema Information. In: D. Fensel, J. A.
Hendler, H. Lieberman and W. Wahlster (Eds.), Spinning
the Semantic Web, MIT Press, 197-222
Connolly, D; van Harmelen, F.; Horrocks, I.; McGuinness,
D. L.; Patel-Schneider, P. F.; and Stein, L. A. 2001.
DAML+OIL Reference Description.
www.w3.org/TR/daml+oil-reference
Covington, M. A.; Nute, D.; and Vellino, A. 1997. Prolog
Programming in Depth, 2nd ed. Prentice-Hall
Dean, M., and Schreiber, G. (Eds.) 2004. OWL
Web Ontology Language Reference.
www.w3.org/TR/2004/REC-owl-ref-20040210/
van Gelder, A.; Ross, K.; and Schlipf, J. 1991. The well-
founded semantics for general logic programs. Journal of
the ACM 38 (1991): 620—650
Governatori, G; Dumas, M.; ter Hofstede, A.; and Oaks, P.
2001. A formal approach to legal negotiation. In Proc.
ICAIL 2001, 168-177
Grosof, B. N. 1997. Prioritized conflict handing for logic
programs. In Proc. of the 1997 International Symposium
on Logic Programming, 197-211
Grosof, B. N.; Gandhe, M. D.; and Finin T. W. 2002
SweetJess: Translating DAMLRuleML to JESS. RuleML
2002. In: Proc. International Workshop on Rule Markup
Languages for Business Rules on the Semantic Web
Grosof, B. N.; Horrocks, I.; Volz, R; and Decker, S. 2003.
Description Logic Programs: Combining Logic Programs
with Description Logic". In: Proc. 12th Intl. Conf. on the
World Wide Web (WWW-2003), ACM Press
Grosof, B. N., and Poon, T. C. 2003. SweetDeal:
representing agent contracts with exceptions using XML
rules, ontologies, and process descriptions. In Proc. 12th
International Conference on World Wide Web. ACM
Press, 340 – 349
Levy, A., and Rousset M. C. 1998. Combining Horn rules
and description logics in CARIN. Artificial Intelligence
104, 1-2 (1998):165 - 209
Li, N.; Grosof, B. N.; and Feigenbaum, J. 2003. Delegation
Logic: A Logic-based Approach to Distributed
Authorization. In: ACM Transactions on Information
Systems Security 6,1 (2003)
Maher, M. J. 2002: A Model-Theoretic Semantics for
Defeasible Logic. In Proc. Paraconsistent Computational
Logic 2002, Datalogisker Srkifter 95 ,67-80
Maher, M. J. 2001. Propositional Defeasible Logic has
Linear Complexity. Logic Programming Theory and
Practice 1(6): 691-711 (2001)
Maher, M. J.; Rock, A.; Antoniou, G.; Billington, D.; and
Miller, T. 2001. Efficient Defeasible Reasoning Systems.
International Journal of Tools with Artificial Intelligence
10,4 (2001): 483--501
Marek, V. W., and Truszczynski, M. 1993. Nonmonotonic
Logics; Context Dependent Reasoning. Springer Verlag

DEPARTMENT OF INFORMATICS 255

11TH NMR WORKSHOP

Nute, D. 1994. Defeasible logic. In Handbook of logic in
artificial intelligence and logic programming (vol. 3):
nonmonotonic reasoning and uncertain reasoning. Oxford
University Press
RuleML. The Rule Markup Language Initiative.
www.ruleml.org
SWI. SWI-Prolog, http://www.swi-prolog.org
Wagner, G. 2003. Web Rules Need Two Kinds of
Negation. In Proc. First Workshop on Semantic Web
Reasoning, LNCS 2901, Springer 2003, 33-50
XSB, Logic Programming and Deductive Database System
for Unix and Windows. http://xsb.sourceforge.net

256 Technical Report IfI-06-04

NMR Systems and Applications

DEPARTMENT OF INFORMATICS 257

11TH NMR WORKSHOP

3.2 An Application of Answer Set Programming: Superoptimisa-
tion A Preliminary Report

An Application of Answer Set Programming: Superoptimisation
A Preliminary Report

Martin Brain, Tom Crick, Marina De Vos and John Fitch
Department of Computer Science

University of Bath,
Bath BA2 7AY, UK

email: {mjb,tc,mdv,jpff}@cs.bath.ac.uk

Abstract

Answer set programming (ASP) is a declarative problem-
solving technique that uses the computation of answer set se-
mantics to provide solutions. Despite comprehensive imple-
mentations and a strong theoretical basis, ASP has yet to be
used for more than a handful of large-scale applications. This
paper describes such a large-scale application and presents
some preliminary results. The TOAST (Total Optimisation
using Answer Set Technology) project seeks to generate opti-
mal machine code for simple, acyclic functions using a tech-
nique known as superoptimisation. ASP is used as a scalable
computational engine for conducting searches over complex,
non-regular domains. The experimental results suggest this
is a viable approach to the optimisation problem and demon-
strates the value of using parallel answer set solvers.

Introduction
Answer set programming (ASP) is a relatively new tech-
nology, with the first computation tools (referred to as an-
swer set solvers) only appearing in the late 1990s (Niemelä
& Simons 1997). Initial studies have demonstrated (WASP
2004) that it has great potential in many application ar-
eas, including automatic diagnostics (Eiter et al. 2000;
Nogueira et al. 2001), agent behaviour and communica-
tion (De Vos et al. 2006), security engineering (P. Giorgini
& Zannone 2004) and information integration (S. Costantini
& Omodeo 2003). However, larger production scale appli-
cations are comparatively scarce. One of the few examples
of such a system is the USA-Advisor decision support sys-
tem for the NASA Space Shuttle (Nogueira et al. 2001). It
modelled an extremely complex domain in a concise way;
although of great significance to the field it is, in computa-
tional terms, relatively small. The only large and difficult
programs most answer set solvers have been tested on are
synthetic benchmarks. How well do the algorithms and im-
plementations scale? How much memory and how much
time is required? This paper makes an initial attempt to an-
swer some of these questions.

This paper investigates the possibility of using ASP tech-
nology to generate optimal machine code for simple func-
tions. Modern compilers apply a fixed set of code improve-
ment techniques using a range of approximations rather than
aiming to generate optimal code. None of the existing tech-
niques, or approaches to creating new techniques, are likely

to change the current state of play.
An approach to obtaining optimal code sequences is

called superoptimisation (Massalin 1987). One of the main
bottlenecks in this process is the size of the space of pos-
sible instruction sequences, with most superoptimising im-
plementations relying on brute force searches to locate can-
didate sequences and approximate equivalence verification.
The TOAST project presents a new approach to the search
and verification problems using ASP.

From an ASP perspective, the TOAST project provides a
large-scale, real-world application with some programs con-
taining more than a million ground rules. From a compiler
optimisation perspective, it might be a step towards tools
that can generate truly optimal code, benefiting many areas,
especially embedded systems and high performance com-
puting.

This paper presents the results of the first phase of the
TOAST project, with the overall infrastructure complete and
three machine architectures implemented. We have used off-
the-shelf solvers without any domain-specific optimisations,
so the results we present also provide useful benchmarks for
these answer set solvers.

The rest of this paper is structured as follows: in the next
section, we provide a short introduction to modern compiler
technology. In two subsections we explain the mechanisms
of code optimisation, superoptimisation and verifiable code
generation. In a third subsection we investigate the chal-
lenges of producing verifiable superoptimised sequences in
terms of the length of input code sequences and word length
of the target machine. We then give an overview of ASP
from a programming language viewpoint. After these two
background sections, we introduce the TOAST system and
present the preliminary results. The analysis of these results
leads to a section detailing the future work of the project.

The Problem Domain
Before describing the TOAST system and how it uses an-
swer set technology, it is important to consider the problem
that it seeks to solve and how this fits into the larger field of
compiler design.

Compilers and Optimisation
Optimisation, as commonly used in the field of compiler
research and implementation, is something of a misnomer.

258 Technical Report IfI-06-04

NMR Systems and Applications

A typical compiler targeting assembly language or machine
code will include an array of code improvement techniques,
from the relatively cheap and simple (identification of com-
mon sub-expressions and constant folding) (Aho, Sethi, &
Ullmann 1986) to the costly and esoteric (auto-vectorisation
and inter-function register allocation) (Appel 2004). How-
ever, none of these generate optimal code; the code that they
output is only improved (though often to a significant de-
gree). As all of these techniques identify and remove cer-
tain inefficiencies, it is impossible to guarantee that the code
could not be further improved.

Further confusion is created by complications in defining
optimality. In the linear case, a shorter instruction sequence
is clearly better1. If the code branches but is not cyclic, a
number of definitions are possible: shortest average path,
shortest over all sequence, etc. However, for code including
cycles, it is not possible to define optimality in the general
case. To do so would require calculating how many time the
body of loop would be executed – a problem equivalent to
the halting problem. To avoid this, and problems with other
areas such as equivalence of floating point operations, this
paper only considers optimality in terms of the number of
instructions used in acyclic, integer-based code.

Finally, it is important to consider the scale of the likely
savings. The effect of improvements in code generation for
an average program have been estimated as a 4% speed in-
crease2 per year (Proebsting 1998). In this context, saving
just one or two instructions is significant, particularly if the
technique is widely applicable, or can be used to target ‘hot
spots’, CPU-intensive sections of code.

Superoptimisation

Superoptimisation is a radically different approach to code
generation, first described in (Massalin 1987). Rather than
starting with crudely generated code and improving it, a su-
peroptimiser starts with the specification of a function and
performs an exhaustive search for a sequence of instructions
that meets this specification. Clearly, as the length of the se-
quence increases, the search space potentially rises at an ex-
ponential rate. This makes the technique unsuitable for use
in normal compilers, but for improving the code generators
of compilers and for targeting key sections of performance-
critical functions, the results can be quite impressive.

A good example of superoptimisation is the sign func-
tion (Massalin 1987), which returns the sign of a binary in-
teger, or zero if the input is zero:

1Although the TOAST approach could be generalised to handle
them, this paper ignores complications such as pipelining, caching,
pre-fetching, variable-instruction latency and super-scalar execu-
tion.

2This may seem very low in comparison with the increase in
processing power created by advances in microprocessor manufac-
turing. However, it is wise to consider the vast disparity in research
spending in the two areas, as well as the link between them: most
modern processors would not achieve such drastic improvements
without advanced compilers to generate efficient code for them.

int signum (int x) {

if (x > 0) return 1;

else if (x < 0) return -1;

else return 0;

}

A naı̈ve compilation of this function would produce ap-
proximately ten instructions, including at least two condi-
tional branch instructions. A skilled assembly language pro-
grammer may manage to implement it in four instructions
with one conditional branch. At the time of writing, this is
the best that state of the art compilation can produce. How-
ever, superoptimisation (in this case for the SPARC-V7 ar-
chitecture) gives the following:

! input in %i0

addcc %i0 %i0 %l1

subxcc %i0 %l1 %l2

addx %l2 %i0 %o1

! output in %o1

Not only is this sequence only three instructions long,
it does not require any conditional branches, a significant
saving on modern pipelined processors. This example also
demonstrates another interesting property of code produced
by superoptimisation: it is not obvious that this computes
the sign of a number or how it does so. The pattern of ad-
dition and subtraction essentially ‘cancels out’, with the ac-
tual computation done by how the carry flag is set and used
by each instruction (instructions whose name includes cc
set the carry flag, whereas instructions with x use the carry
flag). Such inventive use of a processor’s features are com-
mon in superoptimised sequences; when the GNU Superop-
timizer (GSO) (Granlund & Kenner 1992) was first used to
superoptimise sequences for the GCC port to the POWER
architecture, it produced a number of sequences that were
shorter than the processor’s designers thought possible!

Despite significant potential, superoptimisation has re-
ceived relatively little attention within the field of compiler
research. Following Massalin’s work, the next published su-
peroptimiser was GSO, a portable superoptimiser developed
to aid the development of GCC. It improved on Massalin’s
search strategy by attempting to apply constraints while gen-
erating elements of the search space, rather than generat-
ing all possible sequences and then skipping those that were
marked as clearly redundant. The most recent work on su-
peroptimisation have been from the Denali project (Joshi,
Nelson, & Randall 2002; Joshi, Nelson, & Zhou 2003).
Their approach was much closer to that of the TOAST sys-
tem, using automatic theorem-proving technology to handle
the large search spaces.

Analysis of Problem Domain
Superoptimisation naturally breaks into two sub-problems:
searching for sequences that meet some limited criteria and
verifying which of these candidates are fully equivalent to
the input function.

The search space of possible sequences of a given length
is very large, at least the number of instructions available to
the power of the length of the sequences (thus growing at
least exponentially as the length rises). However, a number
of complex constraints exist that reduce the space that has

DEPARTMENT OF INFORMATICS 259

11TH NMR WORKSHOP

to be searched. For example, if a sub-sequence is known
to be non-optimal then anything that includes it will also be
non-optimal and thus can be discarded. Managing the size
and complexity of this space is the current limit on superop-
timiser performance.

Verifying that two code sequences are equivalent also in-
volves a large space of possibilities (for single input se-
quences it is 2

w where w is the word length (number of
bits per register) of the processor). However, it is a space
that has a number of unusual properties. Firstly, verifica-
tion of two sequences is a reasonably simple task for human
experts, suggesting there may be a strong set of heuristics.
Secondly, sequences of instructions that are equivalent on a
reasonably small subset of the space of possible inputs tend
to be equivalent on all of it. Both GSO and Massalin’s orig-
inal superoptimiser handled verification by testing the new
sequence for correctness of a small number of inputs and
declaring it equivalent if it passed. Although non-rigorous,
this approach seemed to work in practise (Granlund & Ken-
ner 1992).

Answer Set Programming
Answer set programming is a declarative problem solving
technique based on research on the semantics of logic pro-
gramming languages and non-monotonic reasoning (Gel-
fond & Lifschitz 1988; 1991). For reasons of compactness,
this paper only includes a brief summary of answer set se-
mantics; a more in-depth discussion can be found in (Baral
2003).

Answer set semantics are defined with respect to pro-
grams, sets of Horn clause-style rules composed of literals.
Two forms of negation are described, negation as failure and
explicit (or classical) negation. The first (denoted as not) is
interpreted as not knowing that the literal is true, while the
second (denoted as ¬) is knowing that the literal is not true.
For example:

a ← b, not c.

¬b ← not a.

is interpreted as “a is known to be true if b is known to be
true and c is not known to be true. b is known to be not true if
a is not known to be true” (the precise declarative meaning is
an area of ongoing work, see (Denecker 2004)). Constraints
are also supported, which allow conjunctions of literals to
be ruled as inconsistent. Answer sets are sets of literals that
are consistent (do not contain both a and ¬a or the bodies of
any constraints) and supported (every literal has at least one,
acyclic way of concluding its truth). A given program may
have zero or more answer sets.

Answer set programming is describing a problem as a pro-
gram under answer set semantics in such a way that the an-
swer sets of the program correspond to the solutions of the
problem. In many cases, this is simply a case of encoding
the description of the problem domain and the description
of what constitutes a solution. Thus solving the problem is
reduced to computing the answer sets of the program.

Computing an answer set of a program is an NP-complete
task, but there are a number of sophisticated tools, known
as answer set solvers, that can perform this computation.

The first generation of efficient solvers (such as SMOD-
ELS (Niemelä & Simons 1997) and DLV (Leone et al.
2006)) use a DPLL-style algorithm (Davis, Logemann, &
Loveland 1962). Before computation, the answer set pro-
gram is grounded (an instantiation process that creates
copies of the rules for each usable value of each variable)
by using tools such as LPARSE (Syrjänen 2000), to remove
variables. The answer sets are then computed using a back-
tracking algorithm; at each stage the sets of literals that are
known to be true and known to be false are expanded ac-
cording to a set of simple rules (similar to unit propaga-
tion in DPLL), then a branching literal is chosen accord-
ing to heuristics and both possible branches (asserting the
literal to be true or false) are explored. An alternative ap-
proach is to use a SAT solver to generate candidate answer
sets and then check whether these meet all criteria. This
is the approach used by CMODELS (Giunchiglia, Lierler, &
Maratea 2004). More recent work has investigated using
‘Beowulf’-style parallel systems to explore possible models
in parallel (Pontelli, Balduccini, & Bermudez 2003). One
such system, PLATYPUS (Gressmann et al. 2005) is used in
the TOAST system.

TOAST
The existence of a clear NP algorithm, as well as the causal
nature of the problem and the need for high expressive and
computational power, suggest ASP as a suitable approach
to the superoptimisation problem. The TOAST system con-
sists of a number of components that generate answer set
programs and parse answer sets, with a ‘front end’ that uses
these components to produce a superoptimised version of an
input function. Data is passed between components either
as fragments of answer set programs or in an architecture-
independent, assembly language-like format. An answer
set solver is used as a ‘black box’ tool, currently either
SMODELS or PLATYPUS, although experiments with other
solvers are ongoing. Although the grounding tool of DLV
is stronger in some notable examples, it has not been tested
yet due to syntax incompatibilities with many of the features
required.

System Components
Four key components provide most of the functionality of
the TOAST system:

pickVectors Given the specification of the input to an in-
struction sequence, pickVectors creates a representative
set of inputs, known as input vectors, and outputs it as
an ASP program fragment.

execute This component takes an ASP program fragment
describing an input vector (as generated by pickVector or
verify) and emulates running an instruction sequence with
that input. The output is the given as another ASP pro-
gram fragment containing constraints on the instruction
sequence’s outputs.

search Taking ASP fragments giving ‘input’ and ‘output’
values (from pickVectors / verify and execute respec-
tively), this component searches for all instruction se-

260 Technical Report IfI-06-04

NMR Systems and Applications

quences of a given length that produce the required ‘out-
put’ for the given ‘input’ values.

verify Takes two instruction sequences with the same input
specification and tests if they are equivalent. If they are
not, an input vector on which they differ can be generated,
in the format used by execute and search.

The TOAST system is fully architecture-independent.
Architecture-specific information is stored in a description
file which provides meta-information about the architecture,
as well as which operations from the library of instructions
are available. At the time of writing, TOAST supports the
MIPS R2000 and SPARC V7/V8 processors. Porting to a
new architecture is simple and takes between a few hours
and a week, depending on how many of the instructions have
already been modelled.

System Architecture
The key observation underlying the design of the TOAST
system is that any correct superoptimised sequence will be
returned by running search for the appropriate instruction
length; however, not everything that search returns is nec-
essarily a correct answer. Thus to generate superoptimised
sequences, the front end uses pickVector and execute on the
input instruction sequence to create criteria for search. In-
struction sequence lengths from one up to one less than the
length of the original input sequence are then sequentially
searched. If answers are generated, another set of criteria
are created and the same length searched again. The two
sets are then intersected, as any correct answer must appear
in both sets. This process is repeated until either the inter-
section becomes empty, in which case the search moves on
to the next sequence length, or until the intersection does not
decrease in size. verify can then be used to check members
of this set for equivalence to the original input program.

The Answer Set Programs
In the following section we give a brief overview of the ba-
sic categories of answer set programs generated within the
system: flow control, flag control, instruction sequences, in-
struction definitions, input vectors and output constraints.

The flow control rules set which instruction will be ‘exe-
cuted’ at a given time step by controlling the pc (program
counter) literal. An example set of flow control rules are
given in Figure 1. The rules are simple, such as an in-
struction that asserts jump(C,T,J) would move the pro-
gram’s execution on J instructions, otherwise it will just
move on by one. As the ASP programs may need to si-
multaneously model multiple independent code streams (for
example, when trying to verify their equivalence), all literals
are tagged with a abstract entity called ‘colour’. The inclu-
sion of the colour(C) literal in each rule allows copies
to be created for each separate code stream during instantia-
tion. In most cases, when only one code stream is used, only
one value of colour is defined and only one copy of each
set of rules is produced; the overhead involved is negligible.

Flag control rules control the setting and maintenance of
processor flags such as carry, overflow, zero and negative.
Although generally only used for controlling conditional

haveJumped(C,T) :- jump(C,T,J), jumpSize(C,J),
time(C,T), colour(C).

pc(C,PCV+J,T+1) :- pc(C,PCV,T), jump(C,T,J), jumpSize(C,J),
time(C,T), colour(C), position(C,PCV).

pc(C,PCV+1,T+1) :- pc(C,PCV,T), not haveJumped(C,T),
time(C,T), colour(C), position(C,PCV).

pc(C,1,1).

Figure 1: Flow Control Rules in ASP

value(C,T,B) :- istream(C,P,lxor,R1,R2,none), pc(C,P,T),
value(C,R1,B), -value(C,R2,B),
register(R1), register(R2), colour(C),
position(C,P), time(C,T), bit(B).

value(C,T,B) :- istream(C,P,lxor,R1,R2,none), pc(C,P,T),
-value(C,R1,B), value(C,R2,B),
register(R1), register(R2), colour(C),
position(C,P), time(C,T), bit(B).

-value(C,T,B) :- istream(C,P,lxor,R1,R2,none), pc(C,P,T),
not value(C,T,B), register(R1), register(R2),
colour(C), position(C,P), time(C,T), bit(B).

symmetricInstruction(lxor).

Figure 2: Modelling of a Logical XOR Instruction in ASP

branches and multi-word arithmetic, the flags are a source
of many superoptimised sequences and are thus of prime im-
portance when modelling.

The instruction sequence itself is represented as a series of
facts, or in the case of search, a set of choice rules (choice
rules are a syntactic extension to ASP, see (Niemelä & Si-
mons 1997)). The literals are then used by the instruction
definitions to control the value literals that give the value
of various registers within the processor. If the literal is
in the answer set, the given bit is taken to be a 1, if the
classically-negated version of the literal is in the answer set
then it is a 0. An example instruction definition, for a logical
XOR (exclusive or) between registers, is given in Figure 2.
Note the use of negation as failure to reduce the number of
rules required and the declaration that lxor is symmetric,
which is used to reduce the search space.

The input vectors and output constraints are the program
fragments created by pickVectors and execute respectively.

The ASP programs generated do not contain disjunction,
aggregates or any other non-syntactic extensions to answer
set semantics.

Results

Tests were run on a Beowulf-style cluster of 20 x 800MHz
Intel Celeron, 512MB RAM machines connected by 100Mb
Ethernet, running SuSE Linux 9.2. Results are given for
SMODELS v2.28 (denoted s) and the initial MPI version
of PLATYPUS running on n nodes (denoted p/n). LPARSE
v1.0.17 was used in all cases to ground the programs. The
timings displayed are from the SMODELS internal timing
mechanism and the PLATYPUS MPI wall time respectively.
Values for LPARSE are the user times given via the system
time command.

DEPARTMENT OF INFORMATICS 261

11TH NMR WORKSHOP

Search Time
search was used to generate programs that searched the
space of SPARC-V7 instructions for candidate superoptimi-
sations for the following instruction sequence:

! input in %i0, %i1

and %i0 %i1 %l1

add %i0 %l1 %l2

add %i0 %l2 %l3

sub 0 %l3 %o1

! output in %o1

This sequence was selected as a ‘worst case’, an exam-
ple of a sequence that cannot be superoptimised, giving an
approximate ceiling on the performance of the system.

Statistics on the programs used can be found in Figure 3,
with the timing results are given in Figure 4.

Verification Time
verify was used to create a verification program for the fol-
lowing two code sequences:

! input in %i0

add %i0 %i0 %o1

! output in %o1

! input in %i0

umult %i0 2 %o1

! output in %o1

using the SPARC-V83 architecture but varying the proces-
sor word length (the number of bits per register). This pair
of programs were chosen as, although they are clearly equiv-
alent, the modelling and reasoning required to show this is
non-trivial. Timing results for a variety of solver configura-
tions and different word lengths can be found in Figure 7,
program statistics can be found in Figure 5.

Analysis
The experimental results presented suggest a number of in-
teresting points. Firstly, superoptimisation using ASP is fea-
sible, but work is needed to make it more practical. Given
that only a few constraints were used in the programs gener-
ated by search, increasing the length of the maximum prac-
tical search space seems eminently possible. The result from
verify are less encouraging; although it shows it is possible
using ASP, it also suggests that attempting to verify instruc-
tion sequences of more than 32 bits of input is likely to re-
quire significant resources.

The graph in Figure 6 also shows some interesting proper-
ties of the parallel solver. The overhead of the solver appears
to be near constant, regardless of the number of processors
used. For the simpler problems, the overhead of the paral-
lel solver is greater than any advantages, but for the larger
problems it makes a significant difference and the speed-up
is approximately proportional to the number of processors
used.

Finally, the figures suggest that the SMODELS algorithm
does not scale linearly on some programs. The programs
output by verify double in search space size for each increase
in word length, but the time required by SMODELS rises by
significantly more than a factor of two. Strangely, this addi-
tional overhead appears to be less significant as the number
of processors used by PLATYPUS rises.

3SPARC-V8 is a later, minimal extension of SPARC-V7 with
the addition of the umult instruction.

The simplified graph in Figure 6 shows these effects, with
time graphs for SMODELS against PLATYPUS with 4, 8 and
16 processors.

Future Development

One of the key targets in the development of TOAST is to
reduce the amount of time required in searching. Doing so
will also increase the length of instruction sequence that can
be found. This requires improvements to both the programs
that are generated and the tools used to solve them.

A key improvement to the generated programs will be
to remove all short sequences that are known to be non-
optimal. search can be used to generate all possible instruc-
tion sequences of a given length. By superoptimising each
one of these for the smaller lengths, it is then possible to
build a set of equivalence categories of instructions. Only
the shortest member of each category needs to be in the
search space and thus a set of constraints can be added to
the programs that search generates. This process only ever
needs to be done once for each processor architecture and
will give significant improvements in terms of search times.
The equivalence classes generated may also be useful to im-
prove verification.

The other developments needed to reduce the search time
are in the tools used. Addressing the amount of memory
consumed by LPARSE and attempting to improve the scaling
of the SMODELS algorithm are both high priorities.

The performance of verify also raises some interesting
questions. At present, is possible to verify programs for
some of the smaller, embedded processors. However, in its
current form it is unlikely to scale to high-end, 64 bit proces-
sors. A number of alternative approaches are being consid-
ered, such as attempting to prove equivalence results about
the generated ASP programs, reducing the instructions to
a minimal/pseudo-normal form (an approach first used by
Massalin), using some form of algebraic theorem-proving
(as in the Denali project) or attempting to formalise and
prove the observation that sequences equivalent on a small
set of points tend to be equivalent on all of them.

Using the TOAST system to improve the code generated
by tools such as GCC is also a key target for the project. By
implementing tools that translate between the TOAST inter-
nal assembly-like format and processor-specific assembly, it
will be possible to check the output of GCC for sequences
that can be superoptimised. Patterns that occur regularly can
then be added to the instruction generation phases of GCC.
Performance-critical system libraries, such as the GNU Mul-
tiple Precision Arithmetic Library (GMP) (Granlund 2006)
and code generators used by Just In Time (JIT) compilers
could also be interesting application areas.

It is hoped that it will not only prove useful as a tool for
optimising sections of performance critical code, but that the
ASP programs could be used as benchmarks for solver per-
formance and the basis of other applications which reason
about machine code.

262 Technical Report IfI-06-04

NMR Systems and Applications

Length of Sequence No. rules Grounding time No. ground rules No. of atoms
1 530 20.100 95938 1018
2 534 65.740 298312 1993
3 538 142.22 643070 3428
4 542 - 1197182 6873

Figure 3: Search Program Sizes

Length of Sequence s p/2 p/4 p/6 p/8 p/10 p/12 p/14 p/16 p/18 p/20
1 3.057 10.4647 10.4813 10.4761 10.5232 10.5023 10.4674 10.4782 10.4833 10.4915 10.5040
2 99.908 104.710 123.312 120.984 135.733 136.057 139.944 139.000 135.539 139.271 138.288
3 81763.9 63644.4 19433.4 12641.0 6008.20 7972.73 9097.83 6608.64 6063.08 4629.90 5419.08
4 > 237337.35 - - - - - - - - - -

Figure 4: Search Space Size v Compute Time (secs)

Word Length No. rules Grounding time No. ground rules No. of atoms
8 779 1.220 1755 975
9 780 1.320 2063 1099

10 781 1.430 2402 1235
11 782 1.480 2772 1383
12 783 1.330 3173 1543
13 784 1.350 3605 1715
14 785 1.450 4068 1899
15 786 1.480 4562 2095
16 787 1.480 5087 2303
17 788 1.640 5645 2527
18 789 1.680 6234 2763
19 790 1.690 6854 3011
20 791 1.550 7505 3271
21 792 1.590 8187 3543
22 793 1.670 8900 3827
23 794 1.900 9644 4123
24 795 1.830 10419 4431

Figure 5: Verification Program Sizes

Conclusion

This paper suggests that ASP can be used to solve large-
scale, real-world problems. Future work will hopefully
show this is also a powerful approach to the superoptimi-
sation problem and perhaps even a ‘killer application’ for
ASP.

However, it is not without challenges. Although savings
to both size of the ASP programs used and their search
spaces are possible, this will remain a high-end application
for answer set solvers. Some of the features required, such as
the handling of large, sparse search spaces and efficiency in
producing all possible answer sets (or traversing the search
space of programs without answer sets) are unfortunately
not key targets of current solver development.

The TOAST project demonstrates that answer set technol-
ogy is ready to be used in large-scale applications, although
more work is required to make it competitive.

References

Aho, A. V.; Sethi, R.; and Ullmann, J. D. 1986. Compilers:
Principles, Techniques and Tools. Addison-Wesley.

Appel, A. W. 2004. Modern Compiler Implementation in
C. Cambridge University Press.

Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A
Machine Program for Theorem-Proving. Communications
of the ACM 5(7):394–397.

De Vos, M.; Crick, T.; Padget, J.; Brain, M.; Cliffe, O.; and
Needham, J. 2006. A Multi-agent Platform using Ordered
Choice Logic Programming. In Proceedings of the 3rd
International Workshop on Declarative Agent Languages
and Technologies (DALT’05), volume 3904 of LNAI, 72–
88. Springer.

Denecker, M. 2004. What’s in a Model? Epistemological
Analysis of Logic Programming. In Proceedings of the 9th

DEPARTMENT OF INFORMATICS 263

11TH NMR WORKSHOP

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 8 10 12 14 16 18 20 22 24

"Smodels"
"4-processors"
"8-processors"

"16-processors"

Figure 6: Simplified Timings (Log Scale)

Word Length s p/2 p/4 p/6 p/8 p/10 p/12 p/14 p/16 p/18 p/20
8 bit 0.153 0.495074 1.21623 0.581861 0.632791 0.662914 0.706752 1.21751 0.698032 0.723088 0.740474
9 bit 0.306 0.863785 0.705636 0.777568 0.740043 1.02031 0.918548 0.864449 1.02644 1.03752 1.09627

10 bit 0.675 1.61512 1.2337 1.23213 1.16333 1.23683 1.28347 1.28118 1.39326 1.29568 1.31185
11 bit 1.537 3.42153 1.97181 1.84315 1.93191 2.01146 1.9929 2.34911 2.2948 2.28081 2.18609
12 bit 3.597 7.46042 4.28284 3.43396 3.53243 3.33475 3.27878 3.16487 3.38788 3.21397 3.94176
13 bit 8.505 15.8174 8.86814 6.51479 6.25371 5.55683 5.1507 5.3369 6.22179 5.61428 5.06376
14 bit 17.795 34.2229 18.7478 15.9874 10.8228 9.57001 9.3808 8.6161 9.97594 9.41512 8.16737
15 bit 39.651 76.018 39.9688 25.9992 21.8607 19.382 17.6372 18.0614 16.3806 15.6143 15.6043
16 bit 93.141 167.222 71.3785 52.7732 46.6144 36.5995 31.9568 33.2825 35.3159 27.2188 29.5464
17 bit 217.162 373.258 141.108 110.65 96.6821 85.1217 77.4811 78.7892 83.9177 56.1338 58.4057
18 bit 463.025 815.373 384.237 222.826 189.690 162.318 144.840 136.126 122.038 118.658 133.579
19 bit 1002.696 1738.02 681.673 456.607 421.681 430.879 299.870 290.456 262.611 229.802 217.998
20 bit 2146.941 3790.84 1514.80 994.849 896.705 726.629 625.820 610.117 566.040 523.700 426.004
21 bit 4826.837 8206.4 3438.71 2279.3 1874.36 1544.74 1461.4 1199.96 1244.95 932.877 1128.53
22 bit 11168.818 17974.8 6683.06 4375.12 3850.71 3017.14 3206.33 2492.00 2296.87 2245.3 1869.17
23 bit 23547.807 38870.5 15047 9217.82 7947.95 7123.56 6111.6 6089.38 4833.66 4610.92 4020.37
24 bit 52681.498 83405.1 32561.2 20789.1 16165.4 14453.8 12800.7 11213.2 10580.4 9199.8 8685.47

Figure 7: Word Length v Compute Time (secs)

International Conference on the Principles of Knowledge
Representation and Reasoning (KR2004), 106–113.

Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres,
A. 2000. Using the dlv system for planning and diagnostic
reasoning. In Proceedings of the 14th Workshop on Logic
Programming (WLP’99), 125–134.

Gelfond, M., and Lifschitz, V. 1988. The Stable Model Se-
mantics for Logic Programming. In Kowalski, R. A., and
Bowen, K., eds., Proceedings of the 5th International Con-
ference on Logic Programming (ICLP’88), 1070–1080.
The MIT Press.

Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Genera-
tion Computing 9(3-4):365–386.

Giunchiglia, E.; Lierler, Y.; and Maratea, M. 2004. SAT-
Based Answer Set Programming. In Proceedings of the
18th National Conference on Artificial Intelligence (AAAI-
04), 61–66.

Granlund, T., and Kenner, R. 1992. Eliminating Branches
using a Superoptimizer and the GNU C Compiler. In Pro-
ceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’92),

264 Technical Report IfI-06-04

NMR Systems and Applications

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 8 10 12 14 16 18 20 22 24

"No ground rules"
"No of atoms"

Figure 8: Number of Rules/Atoms v Word Length

341–352. ACM Press.
Granlund, T. 2006. GMP : GNU Multiple Precision Arith-
metic Library. http://www.swox.com/gmp/.
Gressmann, J.; Janhunen, T.; Mercer, R.; Schaub, T.;
Thiele, S.; and Tichy, R. 2005. Platypus: A Platform for
Distributed Answer Set Solving. In Proceedings of the 8th
International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’05), 227–239.
Joshi, R.; Nelson, G.; and Randall, K. 2002. Denali: A
Goal-Directed Superoptimizer. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’02), 304–314. ACM Press.
Joshi, R.; Nelson, G.; and Zhou, Y. 2003. The Straight-
Line Automatic Programming Problem. Technical Report
HPL-2003-236, HP Labs.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
Perri, S.; and Scarcello, F. 2006. The DLV system for
Knowledge Representation and Reasoning. to appear in
ACM Transactions on Computational Logic (TOCL).
Massalin, H. 1987. Superoptimizer: A Look at the Small-
est Program. In Proceedings of the 2nd International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS’87), 122–126.
IEEE Computer Society Press.
Niemelä, I., and Simons, P. 1997. Smodels: An Imple-
mentation of the Stable Model and Well-Founded Seman-
tics for Normal Logic Programs. In Proceedings of the 4th
International Conference on Logic Programing and Non-
monotonic Reasoning (LPNMR’97), volume 1265 of LNAI,
420–429. Springer.
Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.;

and Barry, M. 2001. An A-Prolog Decision Support Sys-
tem for the Space Shuttle. In Proceedings of the 3rd Inter-
national Symposium on Practical Aspects of Declarative
Languages (PADL’01), 169–183. Springer-Verlag.
P. Giorgini, F. Massacci, J. M., and Zannone, N. 2004. Re-
quirements Engineering Meets Trust Management: Model,
Methodology, and Reasoning. In Proceedings of the 2nd
International Conference on Trust Management (iTrust
2004), volume 2995 of LNCS, 176–190. Springer.
Pontelli, E.; Balduccini, M.; and Bermudez, F. 2003.
Non-Monotonic Reasoning on Beowulf Platforms. In Pro-
ceedings of the 5th International Symposium on Practi-
cal Aspects of Declarative Languages (PADL’03), 37–57.
Springer-Verlag.
Proebsting, T. 1998. Proebsting’s Law: Compiler
Advances Double Computing Power Every 18 Years.
http://research.microsoft.com/˜toddpro/
papers/law.htm.
S. Costantini, A. F., and Omodeo, E. 2003. Mapping Be-
tween Domain Models in Answer Set Programming. Pro-
ceedings of Answer Set Programming: Advances in Theory
and Implementation (ASP’03).
Syrjänen, T. 2000. Lparse 1.0 User’s Manual. Helsinki
University of Technology.
WASP. 2004. WP5 Report: Model Applications and
Proofs-of-Concept. http://www.kr.tuwien.ac.
at/projects/WASP/wasp-wp5-web.html.

DEPARTMENT OF INFORMATICS 265

11TH NMR WORKSHOP

266 Technical Report IfI-06-04

NMR Systems and Applications

3.3 COBA 2.0: A Consistency-Based Belief Change System

COBA 2.0: A Consistency-Based Belief Change System

James P. Delgrandeand Daphne H. Liu
School of Computing Science

Simon Fraser University
Burnaby, B.C.

Canada V5A 1S6
{jim, daphnel}@cs.sfu.ca

Torsten Schaub∗ and Sven Thiele
Institut für Informatik
Universität Potsdam

Postfach 60 15 53, D-14415
Potsdam, Germany

{torsten@cs, sthiele@rz}.uni-potsdam.de

Abstract

We describe COBA 2.0, an implementation of a consistency-
based framework for expressing belief change, focusing here
on revision and contraction, with the possible incorporation
of integrity constraints. This general framework was first pro-
posed in (Delgrande & Schaub 2003); following a review of
this work, we present COBA 2.0’s high-level algorithm, work
through several examples, and describe our experiments. A
distinguishing feature of COBA 2.0 is that it builds on SAT-
technology by using a module comprising a state-of-the-art
SAT-solver for consistency checking. As well, it allows for
the simultaneous specification of revision, multiple contrac-
tions, along with integrity constraints, with respect to a given
knowledge base.

Introduction
Given a knowledge base and a sentence for revision or con-
traction, the fundamental problem of belief change is to de-
termine what the resulting knowledge base contains. The
ability to change one’s knowledge is essential for an intel-
ligent agent. Such change in response to new information
is not arbitrary, but rather is typically guided by various ra-
tionality principles. The best known of these sets of princi-
ples was proposed by Alchourron, Gardenfors, and Makin-
son (Alchourrón, Gärdenfors, & Makinson 1985), and has
come to be known as the AGM approach.

In this paper, we describe COBA 2.0, an implementation
of a consistency-based approach to belief revision and con-
traction. The general methodology was first proposed in
(Delgrande & Schaub 2003). In this approach, the AGM
postulates for revision are effectively satisfied, with theex-
ception of one of the “extended” postulates. Similarly the
contraction postulates are satisfied with the exception of the
controversial recovery postulate and one of the extended
postulates. Notably the approach is syntax independent, and
so independent of how a knowledge base and sentence for
belief change is represented. COBA 2.0 the implements this
approach, and in a more general form. Thus a single belief
change opertaion will involve a single knowledge base and
(possibly) a sentence for revision, but along with (possibly) a
set of sentences for contraction; as well integrity constraints
are handled, and in a straightforward fashion.

∗Affiliated with the School of Computing Science at Simon
Fraser University, Burnaby, B.C., Canada.

In Section 2, we give background terminology, notations,
and implementation considerations. Section 3 presents
COBA 2.0’s high-level algorithm, in addition to working
through two examples. Section 4 discusses COBA 2.0’s fea-
tures, syntax, and input checks, while Section 5 describes
our experiments evaluating COBA 2.0 against a comparable
solver. Lastly, Section 6 concludes with a summary.

Preliminaries
To set the stage, we informally motivate our original ap-
proach to belief revision; contraction is motivated similarly,
and is omitted here given space considerations. First, the
syntactic form of a sentence doesn’t give a clear indication
as to which sentences should or should not be retained in a
revision. Alternately, one can consider interpretations,and
look at the models ofK andα. The interesting case oc-
curs whenK ∪ {α} is unsatisfiable becauseK andα share
no models. Intuitively, a model ofK+̇α should then con-
tain models ofα, but incorporating “parts” of models ofK
that don’t conflict with those ofα. That is, we will have
Mod(K+̇α) ⊆ Mod(α), and form ∈ Mod(K+̇α) we will
want to incorporate whatever we can of models ofK.

We accomplish this by expressingK andα in different
languages, but such that there is an isomorphism between
atomic sentences of the languages. In essence, we replace
every occurrence of an atomic sentencep in K by a new
atomic sentencep′, yielding knowledge baseK ′ and leav-
ingα unchanged. Clearly, under this relabelling, the models
ofK ′ andαwill be independent, andK ′∪{α} will be satis-
fiable (assuming that each ofK, α are satisfiable). We now
assert that the languages agree on the truth values of corre-
sponding atoms wherever consistently possible. So, for ev-
ery atomic sentencep, we assert thatp ≡ p′ whenever this is
consistent withK ′ ∪ {α} along with the set of equivalences
obtained so far. We obtain a maximal set of such equiva-
lences, call itEQ, such thatK ′ ∪ {α} ∪ EQ is consistent.
A model ofK ′ ∪{α}∪EQ then will be a model ofα in the
original language, wherein the truth values of atomic sen-
tences inK ′ andα are linked via the setEQ. A candidate
“choice” revision ofK by α consists ofK ′ ∪ {α} ∪ EQ
re-expressed in the original language. General revision cor-
responds to the intersection of all candidate choice revisions.
The following section gives an example, once we have given
a formal summary of the approach.

DEPARTMENT OF INFORMATICS 267

11TH NMR WORKSHOP

Formal Preliminaries

We deal with propositional languages and use the logical
symbols⊤, ⊥, ¬, ∨, ∧, ⊃, and≡ to construct formulas in
the standard way. We writeLP to denote a language over
an alphabetP of propositional letters or atomic proposi-
tions. Formulas are denoted by the Greek lettersα, β,α1,
Knowledge bases, identified with belief sets or deductively-
closed sets of formulas, are denoted byK, K1, SoK
= Cn(K), whereCn(·) is the deductive closure in classical
propositional logic of the formula or set of formulas given
as argument. Given an alphabetP , we define a disjoint al-
phabetP ′ asP ′ = {p′ | p ∈ P}. Forα ∈ LP , α′ is the
result of replacing inα each propositionp ∈ P by the cor-
responding propositionp′ ∈ P ′ (and hence an isomorphism
betweenP andP ′). This definition applies analogously to
sets of formulas.

A belief change scenarioin LP is a tripleB = (K,R,C)
whereK, R, andC are sets of formulas inLP . Informally,
K is a belief set that is to be modified so that the formulas
in R are contained in the result, and the formulas inC are
not. An extension determined by a belief change scenario is
defined as follows.

Definition 1 (Belief Change Extension)Let B =
(K,R,C) be a belief change scenario inLP , and a
maximal set of equivalencesEQ ⊆ {p ≡ p′ | p ∈ P} be
such thatCn(K ′ ∪R ∪ EQ) ∩ (C ∪ {⊥}) = ∅.

ThenCn(K ′∪R∪EQ)∩LP is abelief change extension
of B. If there is no such setEQ, thenB is inconsistent
andLP is defined to be the sole(inconsistent) belief change
extensionofB.

In Definition 1, “maximal” is with respect to set contain-
ment, and the exclusive use of “{⊥}” is to take care of
consistency ifC = ∅. Definition 1 provides a very gen-
eral framework for specifying belief change. Next, we can
restrict the definition to obtain specific functions for belief
revision and contraction.

Revision and Contraction. For a given belief change sce-
nario, there may be more than one consistent belief change
extension. We can thus use aselection functionc that, for
any setI 6= ∅, has as value some element ofI.

Definition 2 (Revision) Let K be a knowledge base,α a
formula, and(Ei)i∈I the family of all belief change exten-
sions of(K, {α}, ∅). Then, we define

1. K+̇cα = Ei as achoice revisionofK byα with respect
to some selection functionc with c(I) = i.

2. K+̇α =
⋂

i∈I Ei as the(skeptical) revisionofK byα.

Definition 3 (Contraction) LetK be a knowledge base,α
a formula, and(Ei)i∈I the family of all belief change exten-
sions of(K, ∅, {α}). Then, we define

1. K−̇cα = Ei as achoice contractionof K byα with re-
spect to some selection functionc with c(I) = i.

2. K−̇α =
⋂

i∈I Ei as the(skeptical) contractionof K by
α.

K ′ α EQ K+̇α

p′ ∧ q′ ¬q {p ≡ p′} p ∧ ¬q
¬p′ ≡ q′ ¬q {p ≡ p′, q ≡ q′} p ∧ ¬q
p′ ∨ q′ ¬p ∨ ¬q {p ≡ p′, q ≡ q′} p ≡ ¬q
p′ ∧ q′ ¬p ∨ ¬q {p ≡ p′}, {q ≡ q′} p ≡ ¬q

Table 1: Skeptical Revision Examples

K ′ α EQ K−̇α

p′ ∧ q′ q {p ≡ p′} p
p′ ∧ q′ ∧ r′ p ∨ q {r ≡ r′} r
p′ ∨ q′ p ∧ q {p ≡ p′, q ≡ q′} p ∨ q
p′ ∧ q′ p ∧ q {p ≡ p′}, {q ≡ q′} p ∨ q

Table 2: Skeptical Contraction Examples

A choicechange represents a feasible way in which a knowl-
edge base can be revised or contracted to incorporate new in-
formation. On the other hand, the intersection of all choice
changes represents a “safe,”skepticalmeans of taking into
account all choice changes.

Table 1 gives examples of skeptical revision. The knowl-
edge base is in the first column, but with atoms already
renamed. The second column gives the revision formula,
while the next lists the maximal consistentEQ set(s); the
last column gives the results of the revision, as a finite rep-
resentation ofCn(K+̇α). For {p ∧ q}+̇(¬p ∨ ¬q), there
are two maximal consistentEQ sets{p ≡ p′} and{q ≡ q′}
and thus two corresponding choice extensionsCn(p ∧ ¬q)
andCn(¬p ∧ q), respectively. Table 2 lists four skeptical
contraction examples.

The general approach, with|C| > 1, can be employed
to expressmultiple contraction(Fuhrmann 1988), in which
contraction is with respect to a set of (not necessarily mu-
tually consistent) sentences. Therefore, we can use the be-
lief change scenario(K, ∅, {α,¬α}) to represent asymmet-
ric contraction(Katsuno & Mendelzon 1992) ofα fromK.
Refer to (Delgrande & Schaub 2003) for a discussion of the
formal properties of these belief revision and contractionop-
erators.

Integrity Constraints. Definition 1 allows for simultane-
ous revision and contraction by sets of formulas. This in
turn leads to a natural and general treatment of integrity
constraints. To specify a belief change incorporating a set
of consistency-basedintegrity constraints (Kowalski 1978;
Sadri & Kowalski 1987),ICc, and a set of formulas as
entailment-based constraints (Reiter 1984),ICe, one can
specify a belief change scenario by(K,R∪ ICe, C ∪ ICc),
whereK, R, andC are as in Defintion 1, andICc = {¬φ |
φ ∈ ICc}. See (Delgrande & Schaub 2003) for details.

Implementation Considerations
Finite Representation. Definitions 1–3 provide an ab-
stract characterization of revision and contraction, yielding
in each case a deductively-closed belief set. It is proven in
(Delgrande & Schaub 2003) that the same (with respect to

268 Technical Report IfI-06-04

NMR Systems and Applications

logical equivalence) operators can be defined so that they
yield a knowledge base consisting of a finite formula. Con-
siderK+̇α. Via Definitions 1 and 2, we determine maximal
setsEQ where{K ′} ∪ {α} ∪ EQ is consistent. For each
suchEQ set, we carry out the substitutions:

• for p ≡ p′ ∈ EQ, replacep′ with p in K ′,

• for p ≡ p′ /∈ EQ, replacep′ with ¬p in K ′.

It is shown that following this substitution, the resulting
knowledge base and input formula is logically equivalent
to some choice revision; the disjunction of all such result-
ing knowledge bases and input formula is equivalent to the
skeptical revision.

For contraction (whereC 6= ∅), we need to substitute into
the resultingK all possible combinations of truth value as-
signments for all elements inPEQ. Again, see (Delgrande
& Schaub 2003) for details.

Limiting Range of EQ. The range ofEQ can be limited
to “relevant” atoms. Intuitively, if an atomic sentence ap-
pears in a knowledge baseK but not in the sentence for revi-
sionα, or vice versa, then that atomic sentence plays no part
in the revision process. The same intuition extends to con-
traction. It was proven in (Delgrande & Schaub 2003) that
for computing a belief change extension of a belief change
extensionB = (K,R,C), we need consider only those
atoms common toK and to(R∪C). That is, ifAtoms(X) is
the set of atoms in set of formulasX , then in Definition 1 for
formingK ′ and the setEQ we can limit ourselves to con-
sidering atoms inAtoms(K) ∩ (Atoms(R) ∪Atoms(C)).

Algorithm
The results at the end of the last section lead to an algorithm
for computing a belief change extension for an arbitrary be-
lief change scenario. After presenting our algorithm, we will
work through two example belief change scenarios.

Given a setK of formulas in LP , and setsRev,
ICe, Con, and ICc of formulas in LP for revision,
entailment-based integrity constraints, contraction, and
consistency-based integrity constraints, respectively,algo-
rithm ComputeBCE returns a formula whose deductive
closure is a belief change extension of the belief change sce-
narioB = (K,Rev∪ICe, Con∪ICc), whereICc = {¬φ |
φ ∈ ICc}.

Algorithm ComputeBCE invokes the following auxil-
iary functions:

Atoms(S) Returns the set of atoms appearing in any for-
mula in set of formulasS.

Prime(K,CA) For set of formulasK and set of atoms
CA, returnsK but where every atomp ∈ A is replaced
by p′.

Initialize(K ′, R, Con, ICc) Given a formulaK ′ and sets
R, Con, ICc of formulas, returns a set of formulas of
form (K ′ ∧ (

∧
R)∧¬φ∧ψ), for eachφ ∈ (Con∪ {⊥})

andψ ∈ (ICc ∪ {⊤}).

Replace(K ′, p′, p) ReturnsK ′ with every occurrence of
atomp′ replaced byp.

ForgetOutEquiv(K ′, Out) Input: formulaK ′ and a set
Out of equivalences of atoms
Output:K ′ with every atomp such that(p′ ≡ p) ∈ Out
is “forgotten”:

1. If Out = ∅, then returnK ′.
2.OutAtoms := {p | (p′ ≡ p) ∈ Out}.
3. TA := PowerSet(OutAtoms).

//TA is the set of all truth assignments toOutAtoms.
4.KDisj := ⊥.
5. For each truth assignmentπ ∈ TA {

TempK := K ′.
KDisj := KDisj ∨ Substitute(TempK, π). }
//Substitute returnsπ applied toTempK.

6. ReturnKDisj.

Algorithm ComputeBCE(K,Rev, ICe, Con, ICc)
LetR = Rev ∪ ICe andC = Con ∪ ICc.
1. If R ⊢ ⊥ orK ⊢ ⊥, then return⊥.
2. If (for anyψ ∈ ICc,R ∪ {ψ} ⊢ ⊥), then return⊥.
3. If (for anyφ ∈ Con, R ∪ {¬φ} ⊢ ⊥), then return⊥.
4. If (for anyφ ∈ Con and anyψ ∈ ICc

{¬φ} ∪ {ψ} ⊢ ⊥), then return⊥.
5. CA := Atoms(K) ∩ (Atoms(R) ∪Atoms(C)).
6.K ′ := Prime(K,CA).
7.KRC := Initialize(K ′, R, Con, ICc).
8. In := Out := ∅.
9. For eache ∈ {p′ ≡ p | p ∈ CA} {

If (for any θ ∈ KRC we have e ∪ {θ} ⊢ ⊥)
ThenOut := Out ∪ {e}.
ElseIn := In ∪ {e}. }

10. For eache ∈ In: K ′ := Replace(K ′, p′, p).
11. For eache ∈ Out: K ′ := Replace(K ′, p′,¬p).
12. If (Con 6= ∅) ThenK ′ := ForgetOutEquiv(K ′, Out).
13. ReturnK ′ ∧ (

∧
Rev).

Algorithm ComputeBCE generates a belief change ex-
tension in non-deterministic polynomial (NP) time; i.e., an
extension can be computed by a deterministic polynomial
Turing machine using the answers given by an NP oracle.
For this purpose, we currently use the SAT-solver called
Berkmin in the SAT4J library (SAT4J). The solver performs
the consistency checks in lines 1 through 4 and within the
for loop in Line 9. Before passing any formula to the solver,
we convert it first to conjunctive normal form (CNF).1 The
CNF formula, once created, is saved with its corresponding
formula so that conversions are not done repetitively.

The selection function (for the “preferred”EQ set) is left
implicit in Line 9 of AlgorithmComputeBCE; it is real-
ized by the particular order chosen when treating the atoms
in CA. In COBA 2.0, however, we create an ordered (in
ascending cardinality) listL of all 2|CA| possible subsets of
{p′ ≡ p | p ∈ CA}. To help streamline the search forEQ
sets and minimize memory usage, we represent each equiv-
alence by a single bit so that it is included in anEQ sete
iff its corresponding bit is 1 ine’s bit-string. Furthermore,
the ordered listL can accommodate our subsequent search

1In future, this will be replaced by a structural normal form
translation, avoiding the potential exponential blow-up caused by
distributivity.

DEPARTMENT OF INFORMATICS 269

11TH NMR WORKSHOP

for maximalEQ sets, whether the search be breadth-first or
depth-first. On average, the running time and memory usage
of breadth-first search is comparable to that of depth-first
search, although in our experience neither is consistentlysu-
perior.

Examples
We illustrate how COBA 2.0 computes belief change exten-
sions by working through two examples. The examples in-
clude belief revision and contraction.

Revision. Consider revising a knowledge baseK = {p, q}
by a formulaα = ¬p ∨ ¬q. We show how COBA 2.0 com-
putesK+̇α:

1. Find the common atoms between the knowledge base and
the revision formula.
CA = {p, q}

2. Create a new formulaK ′ fromK by priming the common
atoms appearing inK.
K ′ = (p′ ∧ q′)

3. Find all maximal equivalence setsEQ = {b′ ≡ b | b ∈
CA} such that{K ′} ∪ {α} ∪ EQ is satisfiable.
EQ1 = {p′ ≡ p}
EQ2 = {q′ ≡ q}

4. For eachEQi, create a belief change extension by (a) un-
priming inK ′ every primed atomp′ if (p′ ≡ p) ∈ EQi,
(b) replacing every primed atomp′ with ¬p if (p′ ≡ p) /∈
EQi, and finally (c) conjoiningK ′ with the revision for-
mula.
K+̇c1

{α} = (p ∧ ¬q) ∧ (¬p ∨ ¬q) ≡ (p ∧ ¬q)
K+̇c2

{α} = (¬p ∧ q) ∧ (¬p ∨ ¬q) ≡ (¬p ∧ q)

5. The resulting knowledge base is the deductive closure
of either the disjunction of all belief change extensions
for skepticalchange, or one belief change extension for
choicechange.
K+̇{α} = Cn((p ∧ ¬q) ∨ (¬p ∧ q))

Contraction. Consider contracting a knowledge base
K = {p ∨ q} by a formulaα = p ∨ q. We show how
COBA 2.0 computesK−̇α:

1. Find the common atoms between the knowledge base and
the contraction formula.
CA = {p, q}

2. Create a new formulaK ′ fromK by priming the common
atoms appearing inK.
K ′ = (p′ ∨ q′)

3. Find all maximal equivalence setsEQ = {b′ ≡ b | b ∈
CA} such that{K ′} ∪ {¬α} ∪ EQ is satisfiable.
EQ1 = {}

4. For eachEQi, create a belief change extension by (a) un-
priming inK ′ every primed atomp′ if (p′ ≡ p) ∈ EQi,
(b) replacing every primed atomp′ with ¬p if (p′ ≡ p) /∈
EQi, and finally (c) taking the disjunction of all possible
substitutions of⊤ or ⊥ into those atoms inK ′ that are
in CA but whose corresponding equivalences are not in

EQi.
K−̇c1

{α} = (⊤)

5. The resulting knowledge base is the deductive closure
of either the disjunction of all belief change extensions
for skeptical change, or one belief change extension for
choice change.
Here, there is only one resulting knowledge base for
skeptical change and for choice change:K−̇{α} =
Cn((¬⊥∨¬⊥)∨(¬⊥∨¬⊤)∨(¬⊤∨¬⊥)∨(¬⊤∨¬⊤)) =
Cn(⊤)

Implementation
In this section, we describe the COBA 2.0 implementation.
We discuss features, syntax, and syntactic and consistency
checks on input formulas.

Features
COBA 2.0 is available as an interactive Java applet, com-
plete with a menu, text boxes, buttons, and separate pan-
els for belief change, integrity constraints, and snapshots.

Figure 1: COBA 2.0’s Main Screen

Via the menu, users can import belief change scenarios from
files, specify the type (skeptical or choice) of belief change
desired, and obtain a resulting knowledge base.

Users may also

1. enter belief change scenarios in text boxes,

2. view logs of the changes made to the knowledge base
(KB) list, the entailment-based integrity constraints (EB
IC) list, and the consistency-based integrity constraints
(CB IC) list,

3. revert to an older KB, EB IC, or CB IC snapshot,

4. save any list to an output file,

5. view formulas in CNF or DNF,

6. turn off the various consistency checks,

270 Technical Report IfI-06-04

NMR Systems and Applications

Figure 2: COBA 2.0’s History Screen

7. preview, and then reject or commit, a resulting knowledge
base, and

8. view the user manual and JavaDocs in external browser
windows (if the applet is running in an html document).

COBA 2.0 automatically simplifies formulas where appli-
cable, for example, eliminating occurrences of⊤ and⊥ in
subformulas. COBA 2.0 also automatically informs users of
any syntactically ill-formed input formulas. The consistency
checks in 6. above and the syntax checks are elaborated on
in Subsection 4.3. The applet, user manual, Java code, and
Javadocs of COBA 2.0 are accessible from (COBA 2.0).

Syntax
COBA 2.0 accepts almost all alphanumerical strings for
atom names. The exceptions are the symbols in the follow-
ing list: ’, +, &, ˆ, ˜, =, > , (and). Note thatT
andF stand for⊤ and⊥, respectively.

More complex formulas can be built from formulas A and
B using connectives.

• ˜A for the negation of A

• (A&B) for the conjunction of A and B

• (A+B) for the disjunction of A and B

• (A>B) for A implies B

• (A=B) for A is equivalent to B

A top-level formula with a binary connective (&, +, >,
or =) must be enclosed in parentheses. Parentheses within
a formula, however, are optional and are used only to en-
force precedence. For example,(a&b+c) is a valid input
sentence and is different from(a&(b+c)) , whereas a top-
level sentence likea&b is syntactically illformed.

Encoding Input Files. Input file formats (for belief
change scenarios) vary according to the list (KB, Revision,
Contraction, EB IC, or CB IC) to which formulas are to be

KB Rev Cont EB IC CB IC
KB : q p (a&b+c) d
(p&q&r) ˜p ˜q (x&(y+z)) ˜d
(˜q+˜s)

Table 3: Example Input Files

added. Any KB file to be loaded should precede each knowl-
edge base by a line “KB :” (without the double quotes) and
list each formula on a separate line. Each formula is listed
on a separate line in any Revision and EB IC input files. For
any contraction and CB IC input files, each line is interpreted
as an independent formula for contraction and as a CB IC,
respectively.

Consider an example contraction file. While the formula
(p&˜q) means that(p&¬q) is to be removed from the

consequences of the resulting knowledge base,
p
˜q

listed

on two separate lines means that bothp and¬q are to be
dropped from the consequences of the resulting knowledge
base.

As an example, Table 2 shows some valid input files.

Input Checks
COBA 2.0 performs syntax and consistency checks on all in-
put formulas. The former checks are always enforced, while
the latter checks are optional but carried out by default. See
below for details.

Syntax Checks. With regard to the syntax detailed earlier
in Subsection 4.2, COBA 2.0 informs users of ill-formed
input formulas. Thus, for example, the following ill-formed
input strings would be flagged with an appropriate message:
q) , q+, pˆ , p’ , (p , (p&(q) , (p+q&) , and(+q) .

Consistency Checks. To preempt inconsistent belief
change scenarios, COBA 2.0 prohibits certain kinds of input
formulas that result in inconsistent belief change scenarios.
This preemptive measure accords well with the consistency
checks in lines 1 through 4 of AlgorithmComputeBCE in
Section 3. Automatic consistency checks on input formulas,
although carried out by default, can be optionally disabled
by users wishing to speed up computations. One caveat is
that, if these checks are disabled,F might be obtained as the
resulting knowledge base.

Let (
∧
Rev) denote the conjunction of all formulas

in Rev for revision, (
∧
EBIC) the conjunction of all

entailment-based integrity constraints. The following incon-
sistent belief change scenarios should be avoided; sample
error messages, where applicable, are italicised.

1. a contradiction inRev: The conjunction of revisions is
inconsistent!

2. a contradiction inEBIC: The conjunction of EB ICs is a
contradiction!

3. a contradiction as a KB, revision, or EB IC formula: No
error message; sentence not added.

DEPARTMENT OF INFORMATICS 271

11TH NMR WORKSHOP

4. a tautology as a contraction formula: No error message;
sentence not added.

5. a contradiction as a CB IC formula: No error message;
sentence not added.

6. conflict between(
∧
Rev) and(

∧
EBIC): The conjunc-

tion of revisions is inconsistent with the conjunction of EB
ICs!

7. conflict between(
∧
Rev) and contraction formulas:The

contraction indexed 0 is inconsistent with the conjunction
of revisions (indexing starts at 0)!

8. conflict between(
∧
Rev) and CB IC formulas:The CB

IC indexed 1 is inconsistent with the conjunction of revi-
sions (indexing starts at 0)!

9. conflict between(
∧
EBIC) and contraction formulas:

The contraction indexed 6 is inconsistent with the con-
junction of EB ICs (indexing starts at 0)!

10. conflict between(
∧
EBIC) and CB IC formulas:The

CB IC indexed 3 is inconsistent with the conjunction of
EB ICs (indexing starts at 0)!

11. conflicting pairs of CB IC formulas and contraction for-
mulas:The contraction indexed 2 is inconsistent with the
CB IC indexed 0 (indexing starts at 0)!

The aforementioned consistency checks correspond to the
consistency checks on input in AlgorithmComputeBCE
from Section 3. Specifically, 1., 2., 3., and 6. corre-
spond to the checks(R ⊢ ⊥) and (K ⊢ ⊥) in Line 1 of
ComputeBCE; 5., 8., and 10. to the check (R ∪ {ψ} ⊢ ⊥,
for anyψ ∈ ICc) in Line 2 ofComputeBCE; 4., 7., and 9.
to the check (R ∪ {¬φ} ⊢ ⊥, for anyφ ∈ Con) in Line 3 of
ComputeBCE; lastly, 11. to the check ({¬φ} ∪ {ψ} ⊢
⊥, for any φ ∈ Con and anyψ ∈ ICc) in Line 4 of
ComputeBCE.

Experiments
It has been shown that skeptical revision and contraction are
ΠP

2
-hard problems (Delgrande & Schaub 2003). In (Del-

grandeet al. 2004) is was shown how the approach could be
encoded using quantified Boolean formulas (QBF). This al-
lows us to compare COBA 2.0 with an implemented version
of the approach using the quantified Boolean formula solver
QUIP (Eglyet al. 2000).

For comparing the implementations, we created knowl-
edge bases and revision sentences made up of randomly
generated 3-DNF formulas, and converted each to a QBF.
We also devised an experimental prototype of COBA 2.0
which performs structural transformation (by replacing sub-
formulas with new atoms) instead of the CNF conversion of
formulas (for consistency checks). Experiments were then
conducted on QUIP, and on both the stable version (the ap-
plet) and the experimental prototype of COBA 2.0.

Preliminary experimental results reveal that most of
COBA 2.0’s run-time is attributed to its structural or CNF
conversion of formulas and to its consistency checks. The
run-time of all three implementations shows an exponential
growth rate. QUIP, however, is relatively faster than both
versions of COBA 2.0. The experimental prototype seems

to be more than two orders of magnitude faster than the sta-
ble version of COBA 2.0, and this observation suggests that
structural transformation be done in lieu of CNF conversion
in our future implementation.

Conclusion
We have presented COBA 2.0, an implementation of a
consistency-based approach for belief change incorporating
integrity constraints. Operators for belief revision and con-
traction incorporating integrity constraints are readilyde-
fined in a general framework that satisfys the majority of
the AGM postulates. As demonstrated by COBA 2.0, the
framework is easily implementable, for the results of our op-
erators are finite and vocabulary-restricted belief changecan
be performed instead. Examples of how COBA 2.0 com-
putes belief change are detailed in Section 3.

Our preliminary experiments show that our stable version
(the applet) still has much potential for improvement. To this
end, we devised an experimental prototype (with structural
transformation in lieu of CNF conversion) that seems to be
more than two orders of magnitude faster than the stable ver-
sion (with CNF conversion). Hence, we are optimistic that
COBA 2.0 can be improved to achieve a similar run-time
behaviour as the monolithic QUIP system.

To our knowledge, COBA 2.0 is the most general belief
change system currently available, capable of computing ar-
bitrary combinations of belief revision and contraction that
(possibly) incorporate consistency-based and entailment-
based integrity constraints. Moreover, COBA 2.0’s general
framework is easily extensible to consistency-based merg-
ing operators as detailed in (Delgrande & Schaub 2004), and
currently we are refining our implementation so as to accom-
modate the merging of knowledge bases.

The applet, user manual, Java code, and Javadocs of
COBA 2.0 are all accessible from (COBA 2.0).

References
Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet functions
for contraction and revision.Journal of Symbolic Logic
50(2):510–530.
http://www.cs.sfu.ca/˜cl/software/-
COBA/coba2.html .

Delgrande, J., and Schaub, T. 2003. A consistency-based
approach for belief change.Artificial Intelligence151(1-
2):1–41.
Delgrande, J., and Schaub, T. 2004. Consistency-based
approaches to merging knowledge bases. In Delgrande,
J., and Schaub, T., eds.,Proceedings of the Tenth Inter-
national Workshop on Non-Monotonic Reasoning (NMR
2004), 126–133.
Delgrande, J.; Schaub, T.; Tompits, H.; and Woltran, S.
2004. On computing belief change operations using quan-
tified boolean formulas.Journal of Logic and Computation
14(6):801–826.
Egly, U.; Eiter, T.; Tompits, H.; and Woltran, S. 2000.
Solving advanced reasoning tasks using quantified Boolean

272 Technical Report IfI-06-04

NMR Systems and Applications

formulas. InProceedings of the AAAI National Conference
on Artificial Intelligence, 417–422.
Fuhrmann, A. 1988.Relevant Logics, Modal Logics, and
Theory Change. Ph.D. Dissertation, Australian National
University, Australia.
Katsuno, H., and Mendelzon, A. 1992. On the difference
between updating a knowledge base and revising it. In
Gärdenfors, P., ed.,Belief Revision, 183–203. Cambridge
University Press.
Kowalski, R. 1978. Logic for data description. In Gallaire,
H., and Minker, J., eds.,Logic and Data Bases. Plenum
Press. 77–103.
Reiter, R. 1984. Towards a logical reconstruction of re-
lational database theory. In Brodie, M.; Mylopoulos, J.;
and Schmidt, J., eds.,On Conceptual Modelling. Springer-
Verlag. 191–233.
Sadri, F., and Kowalski, R. 1987. A theorem-proving ap-
proach to database integrity. In Minker, J., ed.,Foundations
of Deductive Databases and Logic Programming. Morgan
Kaufmann Publishers. chapter 9, 313–362.
A satisfiability library for java.
http://www.sat4j.org .

DEPARTMENT OF INFORMATICS 273

11TH NMR WORKSHOP

274 Technical Report IfI-06-04

NMR Systems and Applications

3.4 Modelling biological networks by action languages via answer
set programming

Modelling biological networks by action languages
via answer set programming

Susanne Grell and Torsten Schaub
Institut für Informatik
Universität Potsdam

Postfach 900327
D-14439 Potsdam, Germany

Joachim Selbig
Institut für Informatik und Institut für Biologie/Biochemie

Universität Potsdam
Postfach 900327

D-14439 Potsdam, Germany

Abstract

We describe an approach to modelling biological networks
by action languages via answer set programming. To this
end, we propose an action language for modelling biologi-
cal networks, building on previous work by Baral et al. We
introduce its syntax and semantics along with a translation
into answer set programming. Finally, we describe one of its
applications, namely, the sulfur starvation response-pathway
of the model plant Arabidopsis thaliana and sketch the func-
tionality of our system and its usage.

Introduction
Molecular biology has seen a technological revolution with
the establishment of high-throughput methods in the last
years. These methods allow for gathering multiple orders
of magnitude more data than was procurable before. For
turning such huge amounts of data into knowledge, one
needs appropriate and powerful knowledge representation
tools that allow for modelling complex biological systems
and their behaviour. Of particular interest are qualitative
tools that allow for dealing with biological and biochem-
ical networks. Since these networks are very large, a bi-
ologist can manually deal with a small part of it at once.
Among the currently used, more traditional formalisms for
the qualitative modelling of biological networks, we find
e.g. Petri Nets (Reddy, Mavrovouniotis, & Liebman 1993;
Pinney, Westhead, & McConkey 2003), Flux Balance Anal-
ysis (Bonarius, Schmid, & Tramper 1997) or Boolean Net-
works (Shmulevich et al. 2002). As detailed in (Baral et al.
2004), these approaches lack sufficiently expressive reason-
ing capacities, like explanation and planning.

Groundbreaking work addressing this deficiency was re-
cently done by Chitta Baral and colleagues who developed
a first action language for representing and reasoning about
biological networks (Tran & Baral 2004; Baral et al. 2004).
Action languages were introduced in the 1990s by Gelfond
and Lifschitz (cf. (Gelfond & Lifschitz 1993)). By now,
there exists a large variety of action languages, like the
most basic language A and its extensions (Gelfond & Lifs-
chitz 1998) as well as more expressive action languages like
C (Giunchiglia & Lifschitz 1998) or K (Eiter et al. 2000).
Traditionally, action languages are designed for applications
in autonomous agents, planning, diagnosis, etc, in which the
explicit applicability of actions plays a dominant role. This

is slightly different in biological systems where reactions
are a major concern. For instance, while an agent usually
has the choice to execute an action or not, a biological reac-
tion is often simply triggered by its application conditions.
This is addressed in (Baral et al. 2004) by proposing trig-
ger and inhibition rules as an addition to the basic action
language A; the resulting language is referred to as A0

T . A
further extension, allowing knowledge about event ordering,
is introduced in (Tran, Baral, & Shankland 2005).

The advantages of action languages for modelling biolog-
ical systems are manifold:

• We get a simplified model. It is not necessary to have
any kinetic parameters. The approach can thus already be
used in a very early state to verify whether the proposed
model of the biological system can or cannot hold.

• Different kinds of reasoning can be used to plan and sup-
port experiments. This helps to reduce the number of ex-
pensive experiments.

• Further reasoning modes allow for prediction of conse-
quences and explanation of observations.

• The usage of static causal laws allows to easily include
background knowledge like environmental conditions,
which play an important role for the development of a bi-
ological system but are usually difficult to include in the
model.

• The approach is elaboration tolerant because it allows to
easily extend the model without requiring to change the
rest of the model.

We start by introducing our action language CTAID

by building on language A0
T (Baral et al. 2004) and

C (Giunchiglia & Lifschitz 1998). CTAID extends C by
adding biologically relevant concepts from A0

T such as trig-
gers and it augments A0

T by providing static causal laws for
modelling background knowledge. Moreover, fluents are no
longer inertial by definition and the concurrent execution of
actions can be restricted. A feature distinguishing CTAID

from its predecessors is its concept of allowance, which was
motivated by our biological applications. The correspond-
ing allowance rules let us express that an action can occur
under certain conditions but does not have to occur. In fact,
biological systems are characterised by a high degree of in-
complete knowledge about the dependencies among differ-

DEPARTMENT OF INFORMATICS 275

11TH NMR WORKSHOP

ent component and the actual reasons for their interaction. If
the dependencies are well understood, they can be expressed
using triggering rules. However, if the dependencies are
only partly known or not part of the model, e.g. environmen-
tal conditions, they cannot be expressed appropriately using
triggering rules. The concept of allowance permits actions to
take place or not, as long as they are allowed (and not inhib-
ited). This introduces a certain non-determinism that is used
to model alternative paths, actions for which the precondi-
tions are not yet fully understood, and low reaction rates.
Of course, such a non-deterministic construct increases the
number of solutions. However, this is a desired feature since
we pursue an exploratory approach to bioinformatics that al-
lows the biologist to browse through the possible models of
its application.

We introduce the syntax and semantics of CTAID and give
a soundness and completeness result, proved in (Grell 2006).
For implementing CTAID, we have developed a compila-
tion technique that maps a specification in CTAID into logic
programs under answer set semantics (Baral 2003). This
has been implemented in Java and was used meanwhile in
ten different application scenarios at the Max-Planck Insti-
tute for Molecular Plant Physiology for modelling metabolic
as well as signal transduction networks. Among them we
present the smallest application, namely the sulfur starvation
response-pathway of the model plant Arabidopsis thaliana.

Action Language CTAID

The alphabet of our action language CTAID consists of two
nonempty disjoint sets of symbols: a set of actions A and a
set of fluents F . Informally, fluents describe changing prop-
erties of a world and actions can influence fluents. In what
follows, we deal with propositional fluents that can either
be true or false. A fluent literal is a fluent f ∈ F possibly
preceded by ¬.

We distinguish three sublanguages of CTAID: The action
description language is used to describe the general knowl-
edge about the system, the action observation language is
used to express knowledge about particular points of time
and the action query language is used to reason about the
described system.

Action Description Language. To begin with, we fix the
syntax of CTAID’s action description language:
Definition 1 A domain description D(A,F) in CTAID con-
sists of expressions of the following form:

(a causes f1, . . . , fn if g1, . . . , gm) (1)
(f1, . . . , fn if g1, . . . , gm) (2)
(f1, . . . , fn triggers a) (3)
(f1, . . . , fn allows a) (4)
(f1, . . . , fn inhibits a) (5)
(noconcurrency a1, . . . , an) (6)
(default f) (7)

where a, a1, . . . , an ∈ A are a actions and
f, f1, . . . , fn, g1, . . . , gm ∈ F are fluent literals.
Note thatA0

T consists of expressions of form (1), (3), and (5)
only.

A dynamic causal law is a rule of form (1), stating that
f1, . . . , fn hold after the occurrence of action a if g1, . . . , gm

hold when a occurs. If there are no preconditions of the
form g1, . . . , gm, the if-part can be omitted. Rule (2) is a
static causal law, used to express immediate dependencies
between fluents. It guarantees that f1, . . . , fn hold whenever
g1, . . . , gm hold. To express whether and when an action can
or cannot occur rules (3) to (6) can be used. A triggering
rule (3) is used to state that action a occurs immediately if
the preconditions f1, . . . , fn hold, unless it is inhibited. An
allowance rule of form (4) states that action a can but need
not occur if the preconditions f1, . . . , fn hold. An action for
which triggering or allowance rules are specified can only
occur if one of its triggering or allowance rules, resp., is sat-
isfied. An inhibition rule of form (5) can be used to express
that action a cannot occur if f1, . . . , fn hold. A rule of the
form (6) is a no-concurrency constraint. Actions included
in such a constraint cannot occur at the same time. Rule
(7) is a default rule, which is used to define a default value
for a fluent. This makes us distinguish two kinds of fluents:
inertial and non-inertial fluents. Inertial fluent change their
value only if they are affected by dynamic or static causal
laws. Non-inertial fluents on the other hand have the value,
specified by a default rule, unless they are affected by a dy-
namic or static causal law. Every fluent that has no default
value is regarded to be inertial. Additionally, we distinguish
three groups of actions depending on the rules defined for
them. An action can either be a triggered, an allowed or an
exogenous action. That means, for one action there can be
several triggering or several allowance rules but not both.

As usual, the semantics of a domain description D(A,F)
is defined in terms of transition systems. An interpretation I
of F is a complete and consistent set of fluents, i.e. for every
fluent f ∈ F either f ∈ I or ¬f ∈ I .

Definition 2 (State) A state s ∈ S of the domain descrip-
tion D(A,F) is an interpretation of F such that for every
static causal law (f1, . . . , fn if g1, . . . , gn) ∈ D(A,F), we
have {f1, . . . , fn} ⊆ s whenever {g1, . . . , gn} ⊆ s.

Hence, we are only interested in sets of fluents satisfying
all static causal laws, i.e. correctly model the dependencies
between the fluents.

Depending on the state, it is possible to decide which ac-
tions can or cannot occur. Therefore we define the notion of
active, passive and applicable rules.

Definition 3 Let D(A,F) be a domain description and s a
state of D(A,F).

1. An inhibition rule (f1, . . ., fn inhibits a) is active in s, if
s |= f1∧ . . .∧fn, otherwise the inhibition rule is passive.
The set AI(s) is the set of actions for which there exists
at least one active inhibition rule in s.

2. A triggering rule (f1, . . ., fn triggers a) is active in s, if
s |= f1 ∧ . . . ∧ fn and all inhibition rules of action a are
passive in s, otherwise the triggering rule is passive in s.
The set AT (s) is the set of actions for which there exists at
least one active triggering rule in s. The set AT (s) is the
set of actions for which there exists at least one triggering
rule and all triggering rules are passive in s.

276 Technical Report IfI-06-04

NMR Systems and Applications

3. An allowance rule (f1, . . ., fn allows a) is active in s, if
s |= f1 ∧ . . . ∧ fn and all inhibition rules of action a are
passive in s, otherwise the allowance rule is passive in s.
The set AA(s) is the set of actions for which there exists at
least one active allowance rule in s. The set AA(s) is the
set of actions for which there exists at least one allowance
rule and all allowance rules are passive in s.

4. A dynamic causal law (a causes f1, . . ., fn if g1, . . ., gn)
is applicable in s, if s |= g1 ∧ . . . ∧ gn.

5. A static causal law (f1, . . ., fn if g1, . . ., gn) is applicable
in s, if s |= g1 ∧ . . . ∧ gn.

Observe that point two and three of the definition express
that an action has to occur or may occur as long as there
is one active triggering or allowance rule respectively. An
action cannot occur if either an inhibition rule for the action
is active or if all triggering or allowance rules for the action
are passive.

The effects of an action are determined by the applicable
dynamic causal laws defined for this action. Following (Gel-
fond & Lifschitz 1998), the effects of an action a in a state s
of domain description D(A,F) are defined as follows:

E(a, s) = {f1, . . . , fn | (a causes f1, . . . , fn

if g1, . . . , gm) is applicable in s}

The effects of a set of actions A is defined as the union of the
effects of the single actions: E(A, s) =

⋃
a∈AE(a, s). Be-

sides the direct effects of actions, a domain description also
defines the consequences of static relationships between flu-
ents. For a set of static causal laws in a domain description
D(A,F) and a state s, the set

L(s) = {f1, . . . , fn | (f1, . . . , fn if g1, . . . , gm)
is applicable in s}

contains the heads of all static causal laws whose precondi-
tions hold in s.

Finally, the way the world evolves according to a domain
description is captured by a transition relation. It defines to
which state the execution of a set of actions leads.

Definition 4 Let D(A,F) be a domain description and S
be the set of states of D(A,F). Then, the transition rela-
tion Φ ⊆ S × 2A × S determines the resulting state after
executing all actions B ⊆ A in state s ∈ S as follows:

• (s,B, s′) ∈ Φ, if s′ ∈ S
for s′ = {(s ∩ s′) ∪ E(B, s) ∪ L(s′) ∪∆(s′)} where

∆(s′) = { f | (default f) ∈ D(A,F),
¬f /∈ E(B, s) ∪ L(s′)}

∪ {¬f | (default ¬f) ∈ D(A,F),
f /∈ E(B, s) ∪ L(s′)}

Even if no actions are performed, there can nevertheless be
a change of state due to the default values defined by the do-
main description. Intuitively, if actions occur, the next state
is determined by taking all effects of the applicable dynamic
and static causal laws and adding the default values of flu-
ents not affected by these actions. The values of all fluents

that are not affected by these actions or by default values
remain unchanged.

The transition relation determines the resulting state when
an action is executed, but it cannot be used to decide whether
the action happens at all, since it does not consider trigger-
ing, allowance or inhibition rules. This is accomplished by
the concept of a trajectory, which is a sequence of states and
actions that takes all rules in the domain description into ac-
count.

Definition 5 (Trajectory) Let D(A,F) be a domain de-
scription.

A trajectory s0, A1, s1, . . . , An, sn of D(A,F) is a se-
quence of actions Ai ⊆ A and states si satisfying the fol-
lowing conditions for 0 ≤ i < n:

1. (si, A, si+1) ∈ Φ
2. AT (si) ⊆ Ai+1

3. AT (si) ∩Ai+1 = ∅
4. AA(si) ∩Ai+1 = ∅
5. AI(si) ∩Ai+1 = ∅
6. |Ai ∩ {a | a ∈ B}| ≤ 1 for all (noconcurrency B) ∈

D(A,F).

A trajectory assures that there is a reason why an action oc-
curs or why it does not occur. The second and third point of
the definition make sure that the actions of all active trigger-
ing rules are included in the set of actions and that no action
for which all triggering rules are passive is included in the
set of actions. Point four and five assure that no actions for
which all allowance rules are passive and no inhibited ac-
tions are included in the set of actions. The definition does
not include assertions about the active allowance rules, be-
cause they can be, but not necessarily have to be, included
in the set of actions. (As detailed above, this is motivated
by our biological application.) Point two to four imply that
for an action there can either be only triggering rules or only
allowance rules defined. The last point of the definition as-
sures that all no-concurrency constraints are correctly ap-
plied.

Action Observation Language. The action observation
language provides expressions to describe particular states
and occurrences of actions:

(f at ti) (a occurs at ti) (8)

where f is a fluent literal, a is an action and ti is a point
of time. The initial point of time is t0. For a set of actions
A′ = {a1, . . . , ak} we write (A′ occurs at t i) to abbreviate
(a1 occurs at ti), . . ., (ak occurs at ti). Intuitively, an ex-
pression of form (f at ti) is used to state that a fluent f is
true or present at time ti. If the fluent f is preceded by ¬ it
states that f is false or not present at ti. An observation of
form (a occurs at ti) says that action a occurs at time ti.
It is possible that action a is preceded by ¬ to express that a
does not occur at time ti.

A domain description specifies how the system can evolve
over time. By including observations the possibilities of this
evolution are restricted. So only when all information, the

DEPARTMENT OF INFORMATICS 277

11TH NMR WORKSHOP

domain description and the observations, is taken into ac-
count, we get an appropriate picture of the world. The com-
bination of domain description and observations is called an
action theory.
Definition 6 (Action theory) Let D be a domain descrip-
tion and O be a set of observations. The pair (D,O) is
called an action theory.

Intuitively, trajectories specify possible evolutions of the
system with respect to the given domain description. How-
ever, not all trajectories satisfy the observations given by an
action theory. Trajectories satisfying both, the domain de-
scription as well as given observations, are called trajectory
models:
Definition 7 (Trajectory model) Let (D,O) be an action
theory.

A trajectory s0, A1, s1, A2, . . . , An, sn of D is a trajec-
tory model of (D,O), if it satisfies all observations in O in
the following way:
• if (f at t) ∈ O, then f ∈ st

• if (a occurs at t) ∈ O, then a ∈ At+1.
The problem that arises here is to find biologically meaning-
ful models. Obviously, such trajectory models often include
redundant information, but since this is a common phenom-
ena of biological systems it is not possible to simply exclude
such trajectory models. Often, only the minimal trajectories
are considered to be of interest, but this is not appropriate
for biological systems, since we are not only interested in
the shortest path through the transition system, but also in,
possibly longer, alternative paths and just as well in mod-
els which include the concurrent execution of actions. To
decide which actions are redundant is thus a rather difficult
problem and the question whether a model is biologically
meaningful can only be answered by a biologist, not by an
automated reasoner. One way to include additional informa-
tion which may be derived from data on measurement could
be the use of preferences, which is subject to future work.

A question we can already answer is the question of the
logical consequence of observations.
Definition 8 Let (D,O) be an action theory. Then,
• (D,O) entails fluent observation (f at ti), written

(D,O) |= (f at ti), if f ∈ si for all trajectory models
s0, A1, . . . , si, Ai+1, . . . , An, sn of (D,O),

• (D,O) entails action observation (a occurs at ti), writ-
ten (D,O) |= (a occurs at ti), if a ∈ Ai+1 for
all trajectory models s0, A1, . . . , si, Ai+1, . . . , An, sn of
(D,O).
Action Query Language. Queries are about the evolu-

tion of the biological system, i.e. about trajectories. In gen-
eral, a query is of the form:

(f1, . . . , fn after A1 occurs at t1, . . . , Am occurs at tm)
(9)

where f1, . . . , fn are fluent literals, A1, . . . , Am are sets of
actions, and t1, . . . , tm are time points.

For queries the most prominent question is the notion of
logical consequence. Under which circumstances entails an
action theory or a single trajectory model a query.

Definition 9 Let (D,O) be an action theory and Q be a
query of form (9). Then,

• Q is cautiously entailed by (D,O), written (D,O) |=c

Q, if every trajectory model s0, A
′
1, s1, A

′
2, . . . , A

′
p, sp of

(D,O) satisfies Ai ⊆ A′
i for 0 < i ≤ m ≤ p and sp |=

f1 ∧ . . . ∧ fn.
• Q is bravely entailed by (D,O), written (D,O) |=b

Q, if some trajectory model s0, A
′
1, s1, A

′
2, . . . , A

′
p, sp of

(D,O) satisfies Ai ⊆ A′
i for 0 < i ≤ m ≤ p and

sp |= f1 ∧ . . . ∧ fn.

While cautiously entailed queries are supported by all mod-
els, bravely entailed queries can be used for checking the
possible hypotheses.

We want to use the knowledge given as an action theory to
reason about the corresponding biological system. Reason-
ing includes explaining observed behaviour, but also predict-
ing the future development of the system or how the system
may be influenced in a particular way. The above notion of
entailment is used to verify the different queries introduced
in the next sections.

Planning. In planning, we try to find possibilities to in-
fluence a system in a certain way. Neither the initial state
nor the goal state have to be completely specified by fluent
observations. A plan is thus a sequence of actions starting
from one possible initial state and ending at one possible
goal state. There are usually several plans, taking into ac-
count different paths but also different initial and goal states.

Definition 10 (Plan) Let (D,Oinit) be an a action theory
such that Oinit contains only fluent observations about the
initial state and let Q be a query of form (9).

If (D,Oinit) |=b Q, then P =
{(A1 occurs at t1), . . . , (Am occurs at tm)} is a
plan for f1, . . . , fn.

Note that a plan is always derived from the corresponding
trajectory model.

Explanation. Usually, there are not only observations
about the initial state but also about other points of time and
often we are more interested in understanding the observed
behaviour of a system than in finding a plan to cause certain
behaviour of the system.

Definition 11 (Explanation) Let (D,O) be an action the-
ory and let Q be a query of form (9) where (f1, . . . , fn) =
true.

If (D,O) |=b Q, then E =
{(A1 occurs at t1), . . . , (Am occurs at tm)} is an
explanation for the set of observations O.

When explaining observed behaviour it is neither necessary
to completely define the initial state, nor the final state. The
less information is provided the more possible explanation
there are, because an explanation is one path from one possi-
ble initial state to one possible final state, via some possible
intermediate partially defined states given by the observa-
tions. The initial state and the explanation are defined by the
corresponding trajectory model.

Prediction is mainly used to determine the influence of
actions on the system; it tries to answer questions about the

278 Technical Report IfI-06-04

NMR Systems and Applications

possible evolution of the system. A query answers the ques-
tion whether, starting at the current state and executing a
given sequence of actions, fluents will hold or not hold after
a certain time.

Definition 12 (Prediction) Let (D,O) be an action theory
and let Q be a query of form (9).

• If (D,O) |=c Q, then f1, . . . , fn are cautiously predicted,
• If (D,O) |=b Q, then f1, . . . , fn are bravely predicted.

All of the above reasoning modes are implemented in our
tool and used in our biological applications. Before describ-
ing its usage, we first detail how it is implemented.

Compilation
We implemented our action language by means of a com-
piler mapping CTAID onto logic programs under answer
set semantics (cf. (Gelfond & Lifschitz 1991; Baral 2003)).
This semantics associates with a logic program a set of
distinguished models, referred to as answer sets. This
model-based approach to logic programming is different
from the traditional one, like Prolog, insofar as solutions
are read off issuing answer sets rather than proofs of posed
queries. Our compiler uses efficient off-the-self answer set
solvers as a back-end, whose purpose is to compute an-
swer sets from the result of our compilation. Since we
do not elaborate upon theoretical aspects of this, we re-
fer the reader to the literature for a formal introduction to
answer set programming (cf. (Gelfond & Lifschitz 1991;
Baral 2003)).

Our translation builds upon and extends the one in (Tran
& Baral 2004). We adapt the translation of the language
A0

T to include new language constructs and we extend the
compilation of A0

T in order to capture the semantics of
static causal laws, allowance and default rules, and of no-
concurrency constraints. In what follows, we stick to the
syntax of the smodels system, using lowercase strings
for predicate, function, and constant symbols and uppercase
strings for variables.

Action description language. The expressions defined
in a domain description D(A,F) have to be composed of
symbols from A an F . When constructing the logic pro-
gram for D(A,F), we first have to define the alphabet. We
declare every fluent f ∈ F and action a ∈ A, resp., by
adding a fact of the form fluent(f), and action(a).
We use continuously a variable T, representing a time point
where 0 ≤ T≤ tmax. This range is encoded by the
smodels construct time(0..tmax), standing for the facts
time(0), . . . ,time(tmax). Furthermore, it is necessary to
add constraints expressing that f and ¬f are contradictory.

:- holds(f,T), holds(neg(f),T), fluent(f),
time(T).

Whenever clear from the context, we only give transla-
tions for positive fluent literals f ∈ F and omit the dual rule
for the negative fluent, viz. ¬f represented as neg(f).

For each inertial fluent f ∈ F , we include rules express-
ing that f has the same value at ti+1 as at ti, unless it is
known otherwise:

holds(f,T+1) :- holds(f,T),
not holds(neg(f,T+1)),not default(f),
fluent(f),time(T),time(T+1).

For each non-inertial fluent f ∈ F , we add the fact
default(f) and include for the default value true:

holds(f,T) :- not holds(neg(f),T),
fluent(f), time(T).

For each dynamic causal law (1) in D(A,F) and each
fluent fi ∈ F , we include:

holds(fi,T+1) :- holds(occurs(a),T),
holds(g1,T),. . .,holds(gn,T),
fluent(g1),. . .,fluent(gn),fluent(fi),
action(a),time(T),time(T+1).

For each static causal law (2) in D(A,F) and each fluent
fi ∈ F , we include:

holds(fi,T) :- holds(g1,T),. . .,holds(gn,T),
fluent(g1), . . ., fluent(gn),
fluent(fi), time(T).

Every triggering rule (3) in D(A,F) is translated as:

holds(occurs(a),T) :-
not holds(ab(occurs(a)),T),
holds(f1,T),. . .,holds(fn,T),
fluent(f1),. . .,fluent(fn),
action(a),time(T).

For each allowance rule (4) in D(A,F), we include:

holds(allow(occurs(a)),T) :-
not holds(ab(occurs(a)),T),
holds(f1,T),. . .,holds(fn,T),
fluent(f1),. . .,fluent(fn),
action(a),time(T).

For every exogenous action a ∈ A, the translation in-
cludes a rule, stating that this action can always occur.

holds(allow(occurs(a)),T) :- action(a),
time(T).

Every inhibition rule (5) in D(A,F) is translated as:

holds(ab(occurs(a)),T) :-
holds(f1,T),. . .,holds(fn,T),
fluent(f1),. . .,fluent(fn),
action(a), time(T).

For each no-concurrency constraint (6) in D(A,F), we
include an integrity constraint assuring that at most one of
the respective actions can hold at time t:

:- 2 {holds(occurs(a1),T):action(a1),. . .,
holds(occurs(an),T):action(an)},time(T).

Action observation language. There are two different
kinds of fluent observations. On the one hand, those about
the initial state, (f at t0), and on the other hand, the flu-
ent observations about all other states, (f at t i) for i > 0.
Fluent observations about the initial state are simply trans-
lated as facts: holds(f,0). Because they are just assumed
to be true and need no further justification. All other fluent
observations however need a justification. Due to this, flu-
ent observations about all states except the initial state are

DEPARTMENT OF INFORMATICS 279

11TH NMR WORKSHOP

translated into integrity constraints of the form: :- not
holds(f,T),fluent(f),time(T).

The initial state can be partially specified by fluent obser-
vations. In fact, only the translation of the (initial) fluent
observations must be given. All possible completions of the
initial state are then generated by adding for every fluent
f ∈ F the rules:

holds(f,0):- not holds(neg(f),0).
holds(neg(f),0):- not holds(f,0). (10)

When translating action observations of form (8) the dif-
ferent kinds of actions have to be considered. Exogenous
actions can always occur and need no further justification.
Such an exogenous action observation is translated as a fact:
holds(occurs(a),T). Unlike this, observations about
triggered or allowed actions must have a reason, e.g. an ac-
tive triggering or allowance rule, to occur. To assure this
justification, the action observation is translated using con-
straints of the form:

:-
holds(neg(occurs(a)),T),action(a),time(T).

Such a constraint assures that every answer set must satisfy
the observation (a occurs at t i).

Apart from planning (see below), we also have to gener-
ate possible combinations of occurrences of actions, for all
states. To this effect, the translation includes two rules for
every exogenous and allowed action.

holds(occurs(a),T) :-
holds(allow(occurs(a)),T),
not holds(ab(occurs(a)),T),
not holds(neg(occurs(a)),T),
action(a), time(T), T<tmax.

holds(neg(occurs(a)),T) :-
not holds(occurs(a),T),
action(a), time(T), T<tmax.

(11)

Basic correctness and completeness result. The follow-
ing result provides a basic correctness and completeness re-
sult; corresponding results for the specific reasoning modes
are either obtained as corollaries or adaptions of its proof.
Theorem 1 Let (D,Oinit) be an action theory such that
Oinit contains only fluent observations about the initial
state. Let Q be a query as in (9) and let

AQ = {(a occurs at ti) | a ∈ Ai, 1 ≤ i ≤ m} .

Let T denote the translation of CTAID into logic programs,
described above.

Then, we have the following results.
1. If s0, A1, s1, A2, . . . , Am, sm is a trajectory model of

(D,Oinit ∪AQ),
then there is an answer set X of logic program
T (D,Oinit ∪ AQ) such that we have for all f ∈ F and
0 ≤ k ≤ m

(a) holds(f,k)∈ X , if sk |= f and
(b) holds(neg(f),k)∈ X , if sk |= ¬f .

2. If X is an answer set of logic program T (D,Oinit ∪AQ)
and for 0 ≤ k ≤ m

sk = {f | holds(f,k) ∈ X}
∪ {¬f | holds(neg(f),k) ∈ X}

then there is a trajectory model
s0, A1, s1, A2, . . . , Am, sm of (D,Oinit ∪AQ).
Action query language. In the following tmax is the up-

per time bound, which has to be provided when the answer
sets are computed.

Planning. Recall that the initial state can be partially spec-
ified; it is then completed by the rules in (10) for taking into
account all possible initial states. A plan for f1, . . . , fn (cf.
Definition 10) is translated using the predicate “achieved”. It
ensures that the goal holds in the final state of every answer
set for the query.

:- not achieved.
achieved :- achieved(0).
achieved :- achieved(T+1),not achieved(T),

time(T),time(T+1).
achieved(T) :- holds(f1,T),. . .,holds(fn,T),

achieved(T+1),fluent(f1),. . .,fluent(fn),
time(T),time(T+1).

achieved(n) :- holds(f1,T),. . .,holds(fn,T),
fluent(f1),. . .,fluent(fn),T = tmax.

Constant tmax is the maximum number of steps in which
the goals f1, . . . , fn should be achieved. The proposition
achieved(T) represents the earliest point of time T at
which the plan is successfully achieved. Once the query is
satisfied only triggered actions can occur, all other actions
should not occur since that might invalidate the plan. That
is why achieved(T) occurs in the translation of every al-
lowed and exogenous action.

holds(occurs(a),T) :-
holds(allow(occurs(a)),T),
not achieved(T),
not holds(ab(occurs(a)),T),
not holds(neg(occurs(a)),T),
action(a),time(T).

holds(neg(occurs(a)),T) :-
not holds(occurs(a),T),
action(a),time(T).

These rules are used to generate all possible combinations of
occurrences of non-triggered actions. Such actions can only
occur as long as the goal is not yet achieved and if they are
not inhibited. If there exists an answer set X for the planning
problem, then for a plan P as defined in Definition 10 we
have (a occurs at ti) ∈ P if holds(occurs(a),i)∈ X .

Explanation. The translation of an explanation contains
the translation of all action and fluent observations in O,
as described above. Since the observations about the ini-
tial state are often incomplete the translation contains the
rules in (10) to generate all initial states which do not con-
tradict the observations. Also, we have to generate possible
combinations of occurrences of actions for all states. To this

280 Technical Report IfI-06-04

NMR Systems and Applications

effect, the translation includes for every exogenous and al-
lowed action, the rules in (11). If there exists an answer set
X for the explanation problem, then for an explanation E as
defined in Definition 11 we have (a occurs at ti) ∈ E if
holds(occurs(a),i)∈ X .

Prediction. The translation includes all fluent and action
observations in O, as described above. As in explanation, we
have to fill in missing information, which is necessary to jus-
tify the observed behaviour. That means we have to include
for every fluent f two rules of form (10) to generate possi-
ble initial states. Moreover the translation includes for every
non-triggered action two rules similar to those of an expla-
nation of form (11). The actual prediction for f1, . . . , fn (cf.
Definition 12) is translated as:

predicted :- holds(f1,T), . . ., holds(fn,T),
fluent(f1),. . .,fluent(fn),time(T),T >= i.

where i is the time of the latest observation. If the atom
predicted is included in all answer sets, it is a cautious
prediction. If it is only included in some answer sets, it is a
brave prediction.

Application
Meanwhile, we have used CTAID in several different appli-
cation scenarios at the Max-Planck Institute for Molecular
Plant Physiology for modelling metabolic as well as signal
transduction networks. For illustration, we describe below
the smallest such application, namely the sulfur starvation
response-pathway of the model plant Arabidopsis thaliana.
Sulfur is essential for the plant. If the amount of sulfur it can
access is not sufficient to allow a normal development of the
plant, the plant follows a complex strategy. First the plant
forms additional lateral roots to access additional sources of
sulfur and to normalise its sulfur level. However, if this strat-
egy is not successful the plant uses its remaining resources
to form seeds. A simplified version of the basic causal re-
lationships constituting this network is shown in Figure 1.

Figure 1: Sulfur starvation response-pathway of Arabidopsis
thaliana

Normally, the amount of sulfur in a plant is sufficient, but
due to external, e.g. environmental conditions, the amount of
sulfur can be reduced. A problem, when modelling this net-
work are these environmental conditions, which are not and

cannot be part of such a model and which might or might
not lead to the reduction of sulfur. Once the level of sulfur
in the plant is decreased complex interactions of different
compounds are triggered. Genes are activated, which in-
duce the generation of auxin, a plant hormone, which plays
a key role as a signal in coordinating the development of the
plant. This eventually leads to the formation of additional
lateral roots. Since this consumes the scarce resources, this
development should be stopped, when it becomes apparent,
that it is not successful, i.e. it takes too long and consumes
too many of the plant’s resources. This “emergency stop” is
triggered by complex interactions that lead, via a surplus of
the auxin flux, to the expression of IAA28, a gene which is
subject to current research. If IAA28 is expressed and the
sulfur level is still low, other processes result in a different
physiological endpoint, the production of seeds.

We now show how this biological network can be repre-
sented as a domain description D(A,F) in CTAID.

A = {sulfur depletion, sulfur repletion,

enhanced lateral root formation,

iaa28 expression, rapid seed production}
F = {normal sulfur, depleted sulfur,

enhanced lateral roots, expressed iaa28, seeds}

The biologist’s knowledge about the biological system,
gives rise to the following dynamic causal laws.

(sulfur depletion causes depleted sulfur if
normal sulfur)

(enhanced lateral root formation causes
enhanced lateral roots)

(sulfur repletion causes normal sulfur)
(iaa28 expression causes expressed iaa28)
(rapid seed production causes seeds)

Additionally, two static causal laws specify the relation-
ship between normal sulfur and depleted sulfur. They assure
that at most one of the fluents is true at all times.

(¬normal sulfur if depleted sulfur)
(¬depleted sulfur if normal sulfur)

For two of the actions, we know all the preconditions that
have to be satisfied for the actions to occur.

(depleted sulfur triggers
enhanced lateral root formation)

(expressed iaa28 , depleted sulfur triggers
rapid seed production)

For the remaining three actions, it is more difficult to de-
cide whether and when they occur. Whether the action sul-
fur depletion occurs depends on environmental conditions
which are not part of the model. The same holds for the
action sulfur repletion, which might or might not be suc-
cessful, depending on the environmental conditions. For the
occurrence of action iaa28 expression the question is not
whether it occurs but when it occurs. The longer it is de-
layed, the more resources are used to form additional lateral
roots.

DEPARTMENT OF INFORMATICS 281

11TH NMR WORKSHOP

(normal sulfur allows sulfur depletion)
(depleted sulfur allows iaa28 expression)
(enhanced lateral roots allows sulfur repletion)

There is only one inhibition relation in this example.

(expressed iaa28 inhibits enhanced root formation)

But only if we add a default value for the fluent enhanced
lateral roots, the inhibition relation has the desired effect of
stopping the formation of additional lateral roots.

(default¬enhanced lateral roots)

The knowledge that the plant either forms additional lat-
eral roots or produces seeds can be expressed by the follow-
ing no-concurrency constraint:

(noconcurrency enhanced lateral roots formation ,
rapid seed production)

After defining the domain description, let us define a set
of observations O. The initial state where we still have a nor-
mal level of sulfur can be described by the following fluent
observations:

O = {(normal sulfur at 0) ,
(¬ enhanced lateral roots at 0) ,
(¬ expressed iaa28 at 0) , (¬ seeds at 0)}

Now that we defined our action theory (D,O), we can
start to reason about it. Let us first find an explanation for
the observed behaviour:

O1 = O ∪ {(sulfur depletion occurs at 0) ,
(normal sulfur at 3)}

For a time bound of tmax = 3 there are already 4 possible
explanations. They all have in common that sulfur deple-
tion occurs at time point 0, the formation of lateral roots is
triggered at time point 1 and the action sulfur repletion oc-
curs at time point 2. The explanations differ in whether and
when the action iaa28 expression and the action rapid seed
production occurs. One explanation is:

(D,O1) |=b (true after sulfur depletion occurs at 0,
enhanced lateral root formation occurs at 1,
enhanced lateral root formation occurs at 2,

sulfur repletion occurs at 2)

A second explanation is:

(D,O1) |=b (true after sulfur depletion occurs at 0,
enhanced lateral root formation occurs at 1,
enhanced lateral root formation occurs at 2,
sulfur repletion occurs at 2, iaa28 expression

occurs at 2)

Our next question is whether the given observations are
sufficient to predict a certain behaviour of the plant.

(D,O) |=c (seeds after sulfur depletion occurs at 0,
iaa28 expression occurs at 1)

(D,O) |=b (normal sulfur after sulfur depletion
occurs at 0, iaa28 expression occurs at 1)

Using these predictions, we can say that when sulfur is de-
pleted and IAA28 is expressed the plant grows seeds, but it
is still possible that it also stabilises its sulfur level.

Finally, we want to find a plan for the action theory
(D,O) that results in the production of seeds. For time
bound tmax = 3, there are 4 plans. One possible plan is:

(D,O) |=b (seeds after sulfur depletion occurs at 0,
iaa28 expression occurs at 1,
enhanced lateral root formation occurs at 1,
rapid seed production occurs at 2,
rapid seed production occurs at 3)

The number of plans and explanations depend on the
number of allowance rules, since the different possibilities
for the occurrence of such an allowed action is reflected by
different answer sets.

Discussion
We proposed the action language CTAID and showed how
it can be used to represent and reason about biological net-
works. CTAID is based on the action language A0

T intro-
duced in (Tran & Baral 2004). The latter language provides
only minimal features to define dynamic causal laws, trig-
gering and inhibition rules, which turn to be a fruitful ba-
sis but insufficient for modelling our biological applications.
Moreover, our exploratory approach made us propose the
concept of allowance that enables the experimenter to in-
vestigate alternative models “in silico”. As a consequence,
we extended A0

T by static causal laws, allowance rules, de-
fault rules and no-concurrency constraint which furnish a
more appropriate representation of our biological networks.
Especially static causal laws and default rules can be used
to include background knowledge and other dependencies
like environmental conditions which influence the biological
system, but are not part of the actual model. Allowance rules
are mainly used to express incomplete knowledge about the
reasons why an action occurs. This missing information is a
common problem for biologist which is due to the immanent
complexity of biological systems.

We fixed the semantics of CTAID in the standard way
by means of transition relations, trajectories and trajectory
models. In contrast to A0

T , for example, default values can
enable state changes without the occurrence of an action.
Also, Baral et al. guarantee a unique trajectory model and
a unique answer set, if the initial state is completely defined
by a set of observations. This is not the case in CTAID be-
cause of the non-determinism introduced by allowance rules
that may yield multiple answer sets.

We implemented our action language by means of a com-
piler mapping CTAID onto logic programs under answer set
semantics. Our translation builds upon and extends the one
given in (Tran & Baral 2004). The resulting tool is im-
plemented in Java and freely available at (bio). Mean-
while, it has been used in ten different application scenar-
ios at the Max-Planck Institute for Molecular Plant Physiol-
ogy for modelling metabolic as well as signal transduction
networks. For illustration, we described the smallest such
application, namely part of the sulfur starvation response-
pathway of the model plant Arabidopsis thaliana.

282 Technical Report IfI-06-04

NMR Systems and Applications

Beyond the traditional approaches mentioned in the intro-
ductory section, further logic-based approaches using rule-
based languages have emerged recently: Closely related
work has been conducted in abductive logic programming
where abduction was used in (Papatheodorou, Kakas, & Ser-
got 2005) as the principal mode of inference for modelling
gene relations from micro-array data. A very sophisticated
and much more advanced automated reasoning tool for sys-
tems biology can be found in the area of constraint program-
ming, namely the BIOCHAM (Chabrier-Rivier, Fages, &
Soliman 2004) system. BIOCHAM relies on CTL (Clarke,
Grumberg, & Peled 1999) and is thus particularly strong in
modelling temporal aspects of systems biology. Unlike our
abstract approach, the constraint-based approach offers fine-
grained capacities for modelling biochemical processes, in-
cluding kinetics and reactions.

References
Baral, C.; Chancellor, K.; Tran, N.; Tran, N.; Joy, A.; and
Berens, M. 2004. A knowledge based approach for rep-
resenting and reasoning about signaling networks. In ISM-
B/ECCB (Supplement of Bioinformatics), 15–22.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
http://bioinformatics.mpimp-
golm.mpg.de/bionetreasoning/.
Bonarius, H. P. J.; Schmid, G.; and Tramper, J. 1997.
Flux analysis of underdetermined metabolic networks: The
quest for the missing constraints. Trends Biotechnol
15:308314.
Chabrier-Rivier, N.; Fages, F.; and Soliman, S. 2004. The
biochemical abstract machine biocham. In Danos, V., and
Schächter, V., eds., CMSB, volume 3082 of Lecture Notes
in Computer Science, 172–191. Springer.
Clarke, E.; Grumberg, O.; and Peled, D. 1999. Model
checking. Cambridge, MA, USA: MIT Press.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres,
A. 2000. Planning under incomplete knowledge. In CL
’00: Proceedings of the First International Conference on
Computational Logic, 807–821. London, UK: Springer-
Verlag.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9:365–385.
Gelfond, M., and Lifschitz, V. 1993. Representing action
and change by logic programs. Journal of Logic Program-
ming 17:301–321.
Gelfond, M., and Lifschitz, V. 1998. Action languages.
Electron. Trans. Artif. Intell. 2:193–210.
Giunchiglia, E., and Lifschitz, V. 1998. An action lan-
guage based on causal explanation: preliminary report. In
AAAI ’98/IAAI ’98: Proceedings of the fifteenth national/-
tenth conference on Artificial intelligence/Innovative appli-
cations of artificial intelligence, 623–630. AAAI Press.
Grell, S. 2006. Investigation and analysis of new ap-
proaches for representing and reasoning about biological

networks using action languages. Diploma thesis, Uni-
versity of Potsdam and Max Planck Institute of Molecular
Plant Physiology.
Papatheodorou, I.; Kakas, A. C.; and Sergot, M. J. 2005.
Inference of gene relations from microarray data by abduc-
tion. In Baral, C.; Greco, G.; Leone, N.; and Terracina, G.,
eds., LPNMR, volume 3662 of Lecture Notes in Computer
Science, 389–393. Springer.
Pinney, J. W.; Westhead, D. R.; and McConkey, G. A.
2003. Petri net representations in systems biology.
Biochem Soc Trans 31(Pt 6):1513–1515.
Reddy, V.; Mavrovouniotis, M.; and Liebman, M. 1993.
Petri net representations in metabolic pathways. Proc. First
ISMB 328–336.
Shmulevich, I.; Dougherty, E.; Kim, S.; and Zhang, W.
2002. Probabilistic boolean networks: A rule-based uncer-
tainty model for gene regulatory networks. Bioinformatics
18(2):261–274.
Tran, N., and Baral, C. 2004. Reasoning about triggered
actions in ansprolog and its application to molecular inter-
actions in cells. In KR, 554–564.
Tran, N.; Baral, C.; and Shankland, C. 2005. Issues in
reasoning about interaction networks in cells: Necessity of
event ordering knowledge. In Veloso, M. M., and Kamb-
hampati, S., eds., AAAI, 676–681. AAAI Press AAAI Press
/ The MIT Press.

DEPARTMENT OF INFORMATICS 283

11TH NMR WORKSHOP

284 Technical Report IfI-06-04

NMR Systems and Applications

3.5 A Non-Monotonic Reasoning System for RDF Metadata

A Non-Monotonic Reasoning System for RDF Metadata
Efstratios Kontopoulos1, Nick Bassiliades1, Grigoris Antoniou2

1Department of Informatics, Aristotle University of Thessaloniki

GR-54124 Thessaloniki, Greece
{ skontopo,nbassili}@csd.auth.gr

2Institute of Computer Science, FO.R.T.H.
P.O. Box 1385, GR-71110, Heraklion, Greece

antoniou@ics.forth.gr

Abstract
Non-monotonic reasoning constitutes an approach to rea-
soning with incomplete or changing information and is sig-
nificantly more powerful than standard reasoning, which
simply deals with universal statements. Defeasible reason-
ing, a member of the non-monotonic reasoning family, of-
fers the extra capability of dealing with conflicting informa-
tion and can represent facts, rules and priorities among
rules. The main advantages of defeasible reasoning, how-
ever, are not only limited to its enhanced representational
capabilities, but also feature low computational complexity
compared to mainstream non-monotonic reasoning. This
paper presents a system for non-monotonic reasoning on the
Semantic Web called VDR-Device, which is capable of rea-
soning about RDF metadata over multiple Web sources us-
ing defeasible logic rules. It is implemented on top of the
CLIPS production rule system and features a RuleML com-
patible syntax. The operational semantics of defeasible
logic are implemented through compilation into a generic
deductive rule language. Since the RuleML syntax may ap-
pear complex for many users, we have also implemented a
graphical authoring tool for defeasible logic rules that acts
as a shell for the defeasible reasoning system. The tool con-
strains the allowed vocabulary through analysis of the input
RDF documents, so that the user does not have to type-in
class and property names.

Introduction
The development of the Semantic Web (Berners-Lee,
Hendler and Lassila 2001) proceeds in a hierarchy of lay-
ers, with each layer being on top of other layers. At pre-
sent, the highest layer that has reached sufficient maturity
is the ontology layer, where OWL (Dean and Schreiber
2004), a description logic based language, is currently the
dominant standard.
 Above the ontology layer lie the logic and proof layers,
towards which the next steps in the development of the
Semantic Web will be directed. Rule systems can play a
twofold role in the Semantic Web initiative: (a) they can
serve as extensions of, or alternatives to, description logic
based ontology languages, since rules are more expressive
than description logic languages like OWL and (b) they

can be used to develop declarative systems on top of (us-
ing) ontologies.
 Non-monotonic reasoning (Antoniou 1997) constitutes
an approach that allows reasoning with incomplete or
changing information. More specifically, it provides
mechanisms for taking back conclusions that, in the pres-
ence of new information, turn out to be wrong and for de-
riving new, alternative conclusions instead. Contrary to
standard reasoning, which simply deals with universal
statements, non-monotonic reasoning offers a significantly
higher level of expressiveness.
 Defeasible reasoning (Nute 1987), a member of the non-
monotonic reasoning family, represents a simple rule-
based approach to reasoning not only with incomplete or
changing but also with conflicting information. When
compared to mainstream non-monotonic reasoning, the
main advantages of defeasible reasoning are enhanced rep-
resentational capabilities coupled with low computational
complexity.
 Defeasible reasoning can represent facts, rules and pri-
orities and conflicts among rules. Such conflicts arise,
among others, from rules with exceptions, which are a
natural representation for policies and business rules (An-
toniou, Billington and Maher 1999) and priority informa-
tion is often available to resolve conflicts among rules.
Other application domains are described later on in this
work.
 In this paper we report on the implementation of VDR-
DEVICE which is a visual, integrated environment for the
development and application of defeasible logic rule bases
on top of RDF ontologies. VDR-Device consists of: (i) a
visual RuleML-compliant rule editor and (ii) a defeasible
reasoning system for the Semantic Web that processes
RDF data and RDF Schema ontologies.
 VDR-Device supports multiple rule types of defeasible
logic (strict rules, defeasible rules and defeaters) as well as
priorities among rules. It also supports two types of nega-
tion (strong negation and negation-as-failure) and conflict-
ing (mutually exclusive) literals.
 The system has a RuleML-compatible (Boley et al.
2001) syntax, which expresses the main standardization
effort for rules in the Semantic Web. Input and output of
data is performed through processing of RDF data and
RDF Schema ontologies.

DEPARTMENT OF INFORMATICS 285

11TH NMR WORKSHOP

 The reasoning system of VDR-Device is built on-top of
a CLIPS-based implementation of deductive rules, called
R-Device (Bassiliades and Vlahavas 2006). The core
mechanism of the system performs the translation of de-
feasible knowledge into a set of deductive rules, including
derived and aggregate attributes.
 The rest of the paper is organized as follows: Firstly, the
motivation for utilizing defeasible reasoning in the Seman-
tic Web is more thoroughly examined. Then, a brief intro-
duction to defeasible logics is made, followed by the sec-
tion that presents the VDR-Device system. The presenta-
tion includes the architecture and functionality of the sys-
tem, the syntax of the defeasible logic rule language, the
underlying core deductive rule language, the translation
from the defeasible logic rules to the deductive rules and
the graphical rule editor. Related work on defeasible rea-
soning systems is discussed, next. Finally, this paper sums
up the conclusions and gives potential directions for future
work.

Conflicting Rules in the Semantic Web
This section briefly describes the main cases, where con-
flicting rules might be applied in the Semantic Web.

Reasoning with Incomplete Information
In (Antoniou 2002) a scenario is described where business
rules have to deal with incomplete information: in the ab-
sence of certain information some assumptions have to be
made that lead to conclusions not supported by classical
predicate logic. In many applications on the Web such
assumptions must be made because other players may not
be able (e.g. due to communication problems) or willing
(e.g. because of privacy or security concerns) to provide
information. This is the classical case for the use of non-
monotonic knowledge representation and reasoning
(Marek and Truszczynski 1993).

Rules with Exceptions
As mentioned earlier, rules with exceptions are a natural
way of representation for policies and business rules. And
priority information is often implicitly or explicitly avail-
able to resolve conflicts among rules. Potential applica-
tions include security policies (Ashri et al. 2004), business
rules (Antoniou and Arief 2002), e-contracting (Governa-
tori 2005), brokering (Antoniou et al. 2005) and agent ne-
gotiations (Governatori et al. 2001).

Default Inheritance in Ontologies
Default inheritance is a well-known feature of certain
knowledge representation formalisms. Thus it may play a
role in ontology languages, which currently do not support
this feature. In (Grosof and Poon 2003) some ideas are

presented for possible uses of default inheritance in on-
tologies. A natural way of representing default inheritance
is rules with exceptions plus priority information. Thus,
non-monotonic rule systems can be utilized in ontology
languages.

Ontology Merging
When ontologies from different authors and/or sources are
merged, contradictions arise naturally. Predicate logic
based formalisms, including all current Semantic Web lan-
guages, cannot cope with inconsistencies. If rule-based
ontology languages are used (e.g. DLP (Grosof et al.
2003)) and if rules are interpreted as defeasible (that is,
they may be prevented from being applied even if they can
fire) then we arrive at non-monotonic rule systems. A
skeptical approach, as adopted by defeasible reasoning, is
sensible because it does not allow for contradictory con-
clusions to be drawn. Moreover, priorities may be used to
resolve some conflicts among rules, based on knowledge
about the reliability of sources or on user input). Thus,
non-monotonic rule systems can support ontology integra-
tion.

Defeasible Logics
A defeasible theory D is a couple (R,>) where R a finite set
of rules, and > a superiority relation on R. In expressing
the proof theory we consider only propositional rules.
Rules containing free variables are interpreted as the set of
their variable-free instances.
 There are three kinds of rules: Strict rules are denoted
by A → p, and are interpreted in the classical sense: when-
ever the premises are indisputable then so is the conclu-
sion. An example of a strict rule is “Professors are faculty
members”. Written formally:

professor(X) → faculty(X).
 Inference from strict rules only is called definite infer-
ence. Strict rules are intended to define relationships that
are definitional in nature, for example ontological knowl-
edge.
 Defeasible rules are denoted by A ⇒ p and can be de-
feated by contrary evidence. An example of such a rule is:

professor(X) ⇒ tenured(X)
which reads as follows: “Professors are typically tenured”.
 Defeaters are denoted as A ~> p and cannot actively
support conclusions, but are used only to prevent some of
them. A defeater example is:

assistantProf(X) ~> ¬tenured(X)
which is interpreted as follows: “Assistant professors may
be not tenured”.
 A superiority relation on R is an acyclic relation > on R
(that is, the transitive closure of > is irreflexive). When r1
> r2, then r1 is called superior to r2, and r2 inferior to r1.

286 Technical Report IfI-06-04

NMR Systems and Applications

This expresses that r1 may override r2. For example, given
the defeasible rules
r1: professor(X) ⇒ tenured(X)

r2: visiting(X) ⇒ ¬tenured(X)

which contradict one another, no conclusive decision can
be made about whether a visiting professor is tenured. But
if we introduce a superiority relation > with r2 > r1, then we
can indeed conclude that a visiting professor is not ten-
ured.

Another important element of defeasible reasoning is the
notion of conflicting literals. In applications, literals are
often considered to be conflicting and at most one of a
certain set should be derived. An example of such an ap-
plication is price negotiation, where an offer should be
made by the potential buyer. The offer can be determined
by several rules, whose conditions may or may not be mu-
tually exclusive. All rules have offer(X) in their head,
since an offer is usually a positive literal. However, only
one offer should be made; therefore, only one of the rules
should prevail, based on superiority relations among them.
In this case, the conflict set is:
C(offer(x,y)) = { ¬offer(x,y) } ∪

{ offer(x,z) | z ≠ y }

 For example, the following two rules make an offer for
a given apartment, based on the buyer’s requirements.
However, the second one is more specific and its conclu-
sion overrides the conclusion of the first one.
r5: size(X,Y),Y≥45,garden(X,Z) ⇒

offer(X,250+2Z+5(Y−45))
r6: size(X,Y),Y≥45,garden(X,Z),central(X) ⇒

offer(X,300+2Z+5(Y−45))
r6 > r5

The VDR-Device System
The VDR-Device system consists of two primary compo-
nents:
1. DR-Device, the reasoning system that performs the

RDF processing and inference and produces the results,
and

2. DRREd (Defeasible Reasoning Rule Editor), the rule
editor, which serves both as a rule authoring tool and as
a graphical shell for the core reasoning system.

 Although these two subsystems utilize different tech-
nologies and were developed independently, they inter-
communicate efficiently, forming a flexible and powerful
integrated environment.

The Non-Monotonic Reasoning System
The core reasoning system of VDR-Device is DR-Device
(Bassiliades, Antoniou and Vlahavas 2006) and consists of
two primary components (Fig. 1): The RDF
loader/translator and the rule loader/translator. The user
can either develop a rule base (program, written in the
RuleML-like syntax of VDR-Device) with the help of the

rule editor described in a following section, or he/she can
load an already existing one, probably developed manu-
ally. The rule base contains: (a) a set of rules, (b) the
URL(s) of the RDF input document(s), which is forwarded
to the RDF loader, (c) the names of the derived classes to
be exported as results and (d) the name of the RDF output
document.
 The rule base is then submitted to the rule loader which
transforms it into the native CLIPS-like syntax through an
XSLT stylesheet and the resulting program is then for-
warded to the rule translator, where the defeasible logic
rules are compiled into a set of CLIPS production rules
(http://www.ghg.net/clips/CLIPS.html). This is a
two-step process: First, the defeasible logic rules are trans-
lated into sets of deductive, derived attribute and aggregate
attribute rules of the basic deductive rule language, using
the translation scheme described in (Bassiliades, Antoniou
and Vlahavas 2006). Then, all these deductive rules are
translated into CLIPS production rules according to the
rule translation scheme in (Bassiliades and Vlahavas
2006). All compiled rule formats are also kept in local files
(structured in project workspaces), so that the next time
they are needed they can be directly loaded, improving
speed considerably (running a compiled project is up to 10
times faster).

RDF triple
Loader

RDF triple
Translator

Local Disk

Input RDF
document URI

ARP

RuleML/DR-DEVICE
Rulebase

CLIPS / COOL

RDF triples

COOL
Objects

RDF/XML
documents

RDF/XML

RDF/
N-triples

Results - Objects

Results -
RDF/XML

DR-DEVICE

RDF/XML
RDF/N-triple
Documents RDF

Extractor

Results - Objects CLIPS Rules

Logic Program

Loader

Xalan
XSLT

Processor

Local Disk

RuleML
documents

RuleML document

RuleML documents

DR-DEVICE
Rulebase

Rule Translator

Defeasible Rule
Translator

Deductive Rule
Translator

DR-DEVICE Rulebase

Results -
RDF/XML

DR-DEVICE
XSLT

stylesheet

Internet

DRREd USER

Fig. 1. Architecture of the VDR-DEVICE system.

 Meanwhile, the RDF loader downloads the input RDF
documents, including their schemas, and translates RDF
descriptions into CLIPS objects, according to the RDF-to-
object translation scheme in (Bassiliades and Vlahavas
2006), which is briefly described below.
 The inference engine of CLIPS performs the reasoning
by running the production rules and generates the objects
that constitute the result of the initial rule program. The
compilation phase guarantees correctness of the reasoning
process according to the operational semantics of defeasi-
ble logic. Finally, the result-objects are exported to the
user as an RDF/XML document through the RDF extrac-
tor. The RDF document includes the instances of the ex-
ported derived classes, which have been proved.

DEPARTMENT OF INFORMATICS 287

11TH NMR WORKSHOP

Syntax of the Defeasible Logic Rule Language
There are three types of rules in DR-DEVICE, closely re-
flecting defeasible logic: strict rules, defeasible rules, and
defeaters. Each rule type is declared with a corresponding
keyword (strictrule, defeasiblerule and defeater
respectively). For example, the following rule construct
represents the defeasible rule r1: professor(X) ⇒
tenured(X).
(defeasiblerule r1
 (professor (name ?X))
⇒
 (tenured (name ?X)))

 Predicates have named arguments, called slots, since
they represent CLIPS objects. DR-DEVICE has also a
RuleML-like syntax. The same rule is represented in
RuleML notation (version 0.85) as follows:
<imp>
 <_rlab ruleID="r1" ruletype="defeasiblerule">
 <ind>r1</ind></_rlab>
 <_head>
 <atom><_opr><rel>professor</rel></_opr>
 <_slot name="name"/><var>X</var></_slot>
 </atom> </_head>
 <_body>
 <atom><_opr><rel href="tenured"/></_opr>
 <_slot name="name"><var>X</var></_slot>
 </atom>
 </_body>
</imp>

 We have tried to re-use as many features of RuleML
syntax as possible. However, several features of the DR-
DEVICE rule language could not be captured by the exist-
ing RuleML DTDs (version 0.9); therefore, we have de-
veloped a new DTD (Fig. 2), using the modularization
scheme of RuleML, extending the Datalog with strong
negation. For example, rules have a unique (ID) ruleID
attribute in their _rlab element, so that superiority of one
rule over the other can be expressed through an IDREF
attribute of the superior rule. For example, the following
rule r2 is superior to rule r, presented above.
(defeasiblerule r2
 (declare (superior r1)) (visiting (name ?X))
⇒
 (not (tenured (name ?X))))

 In RuleML notation, there is a superiority attribute
in the rule label.
<imp>
 <_rlab ruleID="r2" ruletype="defeasiblerule"
superior="r1">
 <ind>r2</ind>
 </_rlab>
...
</imp>

 Classes and objects (facts) can also be declared in DR-
DEVICE; however, the focus in this paper is the use of
RDF data as facts. The input RDF file(s) are declared in
the rdf_import attribute of the rulebase (root) element of
the RuleML document. There exist two more attributes in
the rulebase element: the rdf_export attribute that
declares the address of the RDF file with the results of the

rule program to be exported, and the
rdf_export_classes attribute that declares the derived
classes whose instances will be exported in RDF/XML
format.
 Further extensions to the RuleML syntax, include func-
tion calls that are used either as constraints in the rule body
or as new value calculators at the rule head. Multiple con-
straints in the rule body can be expressed through the logi-
cal operators: _not, _and, _or.
<!ENTITY % LABELs "IDREFS">
<!ENTITY % CLASSes "NMTOKENS">
<!ATTLIST _rlab
 ruleID ID #REQUIRED
 ruletype (strictrule|defeasiblerule|defeater)
 #REQUIRED
 superior %LABELs; #IMPLIED>
<!ENTITY % _calc.cont "(function+)">
<!ELEMENT calc %_calc.cont;>
<!ENTITY % _head.content " (calc?, (atom | neg))">
<!ENTITY % _body.content "(atom | neg | and | or)">
<!ENTITY % _fname.cont "(#PCDATA)">
<!ELEMENT fname %_fname.cont;>
<!ENTITY % pos_term "(ind | var | function)">
<!ELEMENT function (fname, (%pos_term;)*)>
<!ENTITY % term "(_not | %pos_term;)">
<!ELEMENT _not (ind | var)>
<!ELEMENT _or (%term;, (%term;)+)>
<!ELEMENT _and (%term;, (%term;)+)>
<!ENTITY % constraint "(_not | _or | _and)">
<!ENTITY % _slot.content "(ind | var | %constraint;)">
<!ENTITY % negurdatalog_include SYSTEM
 "http://www.ruleml.org/0.85/dtd/neg/negurdatalog.dtd">

%negurdatalog_include;
<!ATTLIST rulebase
 rdf_import CDATA #IMPLIED
 rdf_export_classes %CLASSes; #IMPLIED
 rdf_export CDATA #IMPLIED>

Fig. 2. RuleML syntax DTD of the VDR-DEVICE rule language.

The Deductive Rule Language of R-DEVICE
R-DEVICE has a powerful deductive rule language which
includes features such as normal (ground), unground, and
generalized path expressions over the objects, stratified
negation, aggregate, grouping, and sorting, functions. The
rule language supports a second-order syntax, where vari-
ables can range over classes and properties. However, sec-
ond-order variables are compiled away into sets of first-
order rules, using instantiations of the metaclasses. Users
can define views which are materialized and, optionally,
incrementally maintained by translating deductive rules
into CLIPS production rules. Users can choose between an
OPS5/CLIPS-like or a RuleML-like syntax. Finally, users
can use and define functions using the CLIPS host lan-
guage. R-DEVICE belongs to a family of previous such
deductive object-oriented rule languages (Bassiliades et al.
2000). Examples of rules are given below.
 R-DEVICE, like DR-DEVICE, has both a native
CLIPS-like syntax and a RuleML-compatible syntax. Here
we will present a few examples using the former, since it is
more concise. For example, assume there is an RDF class
carlo:owner that defines the owners of the apartments
and a property carlo:has-owner that relates an apart-
ment to its owner.

288 Technical Report IfI-06-04

NMR Systems and Applications

 The following rule returns the names of all apartments
owned by "Smith":
(deductiverule test1
 (carlo:apartment (carlo:name ?x)
 ((carlo:lastName carlo:has-owner) "Smith"))
 =>
 (result (apartment ?x)))

 The above rule has a ground path expression
(carlo:lastName carlo:has-owner) where the
right-most slot name (carlo:has-owner) is a slot of the
"departing" class carlo:apartment. Moving to the left,
slots be-long to classes that represent the range of the
predecessor slots. In this example, the range of
carlo:has-owner is carlo:owner, so the next slot
carlo:lastName has domain carlo:owner. The value
expression in the above pattern (e.g. constant "Smith")
actually describes a value of the left-most slot of the path
(carlo:lastName). Notice that we have adopted a right-
to-left order of attributes, contrary to the left-to-right C-
like dot notation that is commonly assumed, because we
consider path expressions as function compositions, if we
assume that each property is a function that maps its do-
main to its range.
 Another example that demonstrates aggregate function
in R-DEVICE is the following rule, which returns the
number of apartments owned by each owner:
(deductiverule test2
 (carlo:apartment (carlo:name ?x)
 ((carlo:lastName carlo:has-owner) ?o))
 =>
 (result (owner ?o) (apartments (count ?x))))

 Function count is an aggregate function that returns the
number of all the different instantiations of the variable ?x
for each different instantiation of the variable ?o. There
are several other aggregate functions, such as sum, avg,
list, etc.

Translating Defeasible Logic Rules into Deductive
Rules
The translation of defeasible rules into R-DEVICE rules is
based on the translation of defeasible theories into logic
programs through the well-studied meta-program of (An-
toniou et al. 2000). However, instead of directly using the
meta-program at run-time, we have used it to guide defea-
sible rule compilation. Therefore, at run-time only first-
order rules exist.

Before going into the details of the translation we briefly
present the auxiliary system attributes (in addition to the
user-defined attributes) that each defeasibly derived object
in DR-DEVICE has, in order to support our translation
scheme:
• pos, neg: These numerical slots hold the proof status of

the defeasible object. A value of 1 at the pos slot de-
notes that the object has been defeasibly proven;
whereas a value of 2 denotes definite proof. Equivalent
neg slot values denote an equivalent proof status for the
negation of the defeasible object. A 0 value for both

slots denotes that there has been no proof for either the
positive or the negative conclusion.

• pos-sup, neg-sup: These attributes hold the rule ids
of the rules that can potentially prove the object posi-
tively or negatively.

• pos-over, neg-over: These attributes hold the rule
ids of the rules that have overruled the positive or the
negative proof of the defeasible object. For example, in
the rules r1 and r2 presented above, rule r2 has a nega-
tive conclusion that overrides the positive conclusion of
rule r1. Therefore, if the condition of rule r2 is satisfied
then its rule id is stored at the pos-over slot of the cor-
responding derived object.

• pos-def, neg-def: These attributes hold the rule ids
of the rules that can defeat overriding rules when the
former are superior to the latter. For example, rule r2 is
superior to rule r1. Therefore, if the condition of rule r2
is satisfied then its rule id is stored at the neg-def slot
of the corresponding derived object along with the rule
id of the defeated rule r1. Then, even if the condition of
rule r1 is satisfied, it cannot overrule the negative con-
clusion derived by rule r2 (as it is suggested by the pre-
vious paragraph) because it has been defeated by a su-
perior rule.

 Each defeasible rule in DR-DEVICE is translated into a
set of 5 R-DEVICE rules:
• A deductive rule that generates the derived defeasible

object when the condition of the defeasible rule is met.
The proof status slots of the derived objects are initially
set to 0. For example, for rule r2 the following deduc-
tive rule is generated:

(deductiverule r2-deductive
 (visiting (name ?X))
⇒
 (tenured (name ?X) (pos 0) (neg 0)))

Rule r2-deductive states that if an object of class
visiting with slot name equal to ?X exists, then create
a new object of class tenured with a slot name with
value ?X. The derivation status of the new object (ac-
cording to defeasible logic) is unknown since both its
positive and negative truth status slots are set to 0. No-
tice that if a tenured object already exists with the
same name, it is not created again. This is ensured by
the value-based semantics of the R-DEVICE deductive
rules.

• An aggregate attribute “support” rule that stores in -
sup slots the rule ids of the rules that can potentially
prove positively or negatively the object. For example,
for rule r2 the following “support” rule is generated
(list is an aggregate function that just collects values
in a list):

(aggregateattrule r2-sup
 (visiting (name ?X))
 ?gen23 <- (tenured (name ?X))
 ⇒
 ?gen23 <- (tenured (neg-sup (list r5))))

DEPARTMENT OF INFORMATICS 289

11TH NMR WORKSHOP

Rule r2-sup states that if there is a visiting object
named ?X, and there is a tenured object with the same
name, then derive that rule r2 could potentially support
the defeasible negation of the tenured object (slot
neg-sup).

• A derived attribute “defeasibly” rule that defeasibly
proves either positively or negatively an object by stor-
ing the value of 1 in the pos or neg slots, if the rule
condition has been at least defeasibly proven, if the op-
posite conclusion has not been definitely proven and if
the rule has not been overruled by another rule. For ex-
ample, for rule r2 the following “defeasibly” rule is
generated:

(derivedattrule r2-defeasibly
(visiting (name ?X) (pos ?gen29&:(>= ?gen29 1)))
 ?gen23 <- (tenured (name ?X) (pos ~2)
 (neg-over $?gen25&:(not (member$ r5 $?gen25))))
 ⇒
 ?gen23 <- (tenured (neg 1)))

Rule r2-defeasibly states that if it has been defeasi-
bly proven that a visiting object named ?X exists,
and there is a tenured object with the same name that
is not already strictly-positively proven and rule r2 has
not been overruled (check slot neg-over), then derive
that the tenured object is defeasibly-negatively
proven.

• A derived attribute “overruled” rule that stores in -
over slots the rule id of the rule that has overruled the
positive or the negative proof of the defeasible object,
along with the ids of the rules that support the opposite
conclusion, if the rule condition has been at least defea-
sibly proven, and if the rule has not been defeated by a
superior rule. For example, for rule r1 the following
“overruled” rule is generated (through calc expres-
sions, arbitrary user-defined calculations are per-
formed):

(derivedattrule r1-over
 (professor (name ?X)
 (pos ?gen22&:(>= ?gen22 1)))
 ?gen16 <- (tenured (name ?X) (neg-sup $?gen19)
 (neg-over $?gen20)
 (pos-def $?gen18&
 :(not (member$ r4 $?gen18))))
 ⇒
(calc (bind $?gen21
 (create$ r1-over $?gen19 $?gen20)))
 ?gen16 <- (tenured (neg-over $?gen21)))

Rule r1-over actually overrules all rules that can sup-
port the negative derivation of tenured, including rule
r2. Specifically, it states that if it has been defeasibly
proven that a professor object named ?X exists, and
there is a tenured object with the same name that its
negation can be potentially supported by rules in the slot
neg-sup, then derive that rule r1-over overruled
those “negative supporters” (slot neg-over), unless it
has been defeated (check slot pos-def).

• A derived attribute “defeated” rule that stores in -def
slots the rule id of the rule that has defeated overriding
rules (along with the defeated rule ids) when the former

is superior to the latter, if the rule condition has been at
least defeasibly proven. A “defeated” rule is generated
only for rules that have a superiority relation, i.e. they
are superior to others. For example, for rule r5 the fol-
lowing “defeated” rule is generated:

(derivedattrule r2-def
 (visiting (name ?X)
 (pos ?gen29&:(>= ?gen29 1)))
 ?gen23 <- (tenured (name ?X) (pos-def $?gen26))
⇒
(calc (bind $?gen25 (create$ r2-def r1 $?gen26)))
 ?gen23 <- (tenured (pos-def $?gen25)))

Rule r2-def actually defeats rule r1, since r2 is supe-
rior to r1. Specifically, it states that if it has been defea-
sibly proven that a visiting object named ?X exists,
and there is a tenured object with the same name then
derive that rule r2-def defeats rule r1 (slot pos-
def).

 Strict rules are handled in the same way as defeasible
rules, with an addition of a derived attribute rule (called
definitely rule) that definitely proves either positively or
negatively an object by storing the value of 2 in the pos or
neg slots, if the condition of the strict rule has been defi-
nitely proven, and if the opposite conclusion has not been
definitely proven. For example, for the strict rule r3:
visiting(X) → professor(X), the following “defi-
nitely” rule is generated:
(derivedattrule r3-definitely
 (visiting (name ?X) (pos 2))
 ?gen9 <- (professor (name ?X) (pos ~2))
 ⇒
 ?gen9 <- (professor (pos 2)))

Defeaters are much weaker rules that can only overrule
a conclusion. Therefore, for a defeater only the “over-
ruled” rule is created, along with a deductive rule to allow
the creation of derived objects, even if their proof status
cannot be supported by defeaters.
Execution Order
The order of execution of all the above rule types is as
follows: “deductive”, “support”, “definitely”, “defeated”,
“overruled”, “defeasibly”. Moreover, rule priority for
stratified defeasible rule programs is determined by strati-
fication. Finally, for non-stratified rule programs rule exe-
cution order is not determined. However, in order to ensure
the correct result according to the defeasible logic theory
for each derived attribute rule of the rule types “defi-
nitely”, “defeated”, “overruled” and “defeasibly” there is
an opposite “truth maintenance” derived attribute rule that
undoes (retracts) the conclusion when the condition is no
longer met. In this way, even if rules are not executed in
the correct order, the correct result will be eventually de-
duced because conclusions of rules that should have not
been executed can be later undone. For example, the fol-
lowing rule undoes the “defeasibly” rule of rule r2 when
either the condition of the defeasible rule is no longer de-
feasibly satisfied, or the opposite conclusion has been defi-
nitely proven, or if rule r5 has been overruled.
(derivedattrule r2-defeasibly-dot

290 Technical Report IfI-06-04

NMR Systems and Applications

 ?gen23 <- (tenured (name ?X) (neg 1)
 (neg-sup $? r5 $?))
 (not (and (visiting (name ?X) (pos ?gen29&
 :(>= ?gen29 1)))
 ?gen23 <- (tenured (pos ~2) (neg-over $?g&
 :(not (member$ r2 $?g))))))
 ⇒
 ?gen23 <- (tenured (neg 0)))

 DR-DEVICE has been tested for correctness using a
tool that generates scalable test defeasible logic theories
that comes with Deimos, a query answering defeasible
logic system (Maher et al. 2001).

The Rule Editor
Writing rules in RuleML can often be a highly cumber-
some task. Thus, the need for authoring tools that assist
end-users in writing and expressing rules is apparently
imperative.
 VDR-Device is equipped with DRREd, a Java-built vis-
ual rule editor that aims at enhancing user-friendliness and
efficiency during the development of VDR-Device
RuleML documents. Its implementation is oriented to-
wards simplicity of use and familiarity of interface. Other
key features of the software include: (a) functional flexibil-
ity - program utilities can be triggered via a variety of
overhead menu actions, keyboard shortcuts or popup
menus, (b) improved development speed - rule bases can
be developed in just a few steps and (c) powerful safety
mechanisms – the correct syntax is ensured and the user is
protected from syntactic or RDF Schema related semantic
errors.

Fig. 3. The graphical rule editor and the namespace dialog win-
dow.

 More specifically, and as can be observed in Fig. 3, the
main window of the program is composed of two major
parts: a) the upper part includes the menu bar, which con-
tains the program menus, and the toolbar that includes
icons, representing the most common utilities of the rule
editor, and b) the central and more “bulky” part is the pri-
mary frame of the main window and is in turn divided in
two panels.

 The left panel displays the rule base in XML-tree for-
mat, which is the most intuitive means of displaying
RuleML-like syntax, because of its hierarchical nature.
The user has the option of navigating through the entire
tree and can add to or remove elements from the tree.
However, since each rule base is backed by a DTD docu-
ment, potential addition or removal of tree elements has to
obey to the DTD limitations. Therefore, the rule editor
allows a limited number of operations performed on each
element, according to the element's meaning within the
rule tree.
 The right panel shows a table, which contains the attrib-
utes that correspond to the selected tree node in the left-
hand area. The user can also perform editing functions on
the attributes, by altering the value for each attribute in the
panel that appears below the attributes table on the right-
hand side. The values that the user can insert are obviously
limited by the chosen attribute each time.
 The development of a rule base using VDR-Device is a
delicate process that depends heavily on the parameters
around the node that is being edited each time. First of all,
there is an underlying procedure behind tree expansion,
which is “launched” each time the user is trying to add a
new element to the rule base. Namely, when a new element
is added to the tree, all the mandatory sub-elements that
accompany it are also added. In the cases where there are
multiple alternative sub-elements, none of them is added to
the rule base and the final choice is left to the user to de-
termine which one of them has to be added. The user has
to right-click on the parent element and choose the desired
sub-element from the pop-up menu that appears (Fig. 3).
 Another important component is the namespace dialog
window (Fig. 3), where the user can determine which
RDF/XML namespaces will be used by the rule base. Ac-
tually, we treat namespaces as addresses of input RDF
Schema ontologies that contain the vocabulary for the in-
put RDF documents, over which the rules will be run. The
namespaces entered by the user, as well as those contained
in the input RDF documents (indicated by the
rdf_import attribute of the rulebase root element), are
analyzed in order to extract all the allowed class and prop-
erty names for the rule base being developed (see next
section). These names are then used throughout the author-
ing phase of the RuleML rule base, constraining the corre-
sponding allowed names that can be applied and narrowing
the possibility for errors on behalf of the user.
 Moving on to more node-specific features of the rule
editor, one of the rule base elements that are treated in a
specific manner is the atom element, which can be either
negated or not. The response of the editor to an atom nega-
tion is performed through the wrapping/unwrapping of the
atom element within a neg element and it is performed via
a toggle button, located on the overhead toolbar.
 Some components that also need “special treatment” are
the rule IDs, each of which uniquely represents a rule
within the rule base. Thus, the rule editor has to collect all
of the RuleIDs inserted, in order to prohibit the user from
entering the same RuleID twice and also equipping other

DEPARTMENT OF INFORMATICS 291

11TH NMR WORKSHOP

IDREF attributes (e.g. superior attribute) with the list of
RuleIDs, constraining the variety of possible values.
 The names of the functions that appear inside a
fun_call element are also partially constrained by the
rule editor, since the user can either insert a custom-named
function or a CLIPS built-in function. Through radio-
buttons the user determines whether he/she is using a cus-
tom or a CLIPS function. In the latter case, a list of all
built-in functions is displayed, once again constraining
possible entries.
 Finally, users can examine all the exported results via an
Internet Explorer window, launched by VDR-Device.
Also, to improve reliability, the user can also observe the
execution trace of compilation and running, both during
run-time and also after the whole process has been termi-
nated.

Related Work
There exist several previous implementations of defeasible
logics, although to the best of our knowledge none of them
is supported by a user-friendly integrated development
environment or a visual rule editor. Deimos (Maher et al.
2001) is a flexible, query processing system based on Has-
kell. It implements several variants, but neither conflicting
literals nor negation as failure in the object language. Also,
the current implementation does not integrate with Seman-
tic Web, since it is solely a defeasible logic engine (for
example, there is no way to treat RDF data and
RDFS/OWL ontologies; nor does it use an XML-based or
RDF-based syntax for syntactic interoperability). There-
fore, it is only an isolated solution, although external trans-
lation modules could provide such interoperability. Finally,
it is propositional and does not support variables.

Delores (Maher et al. 2001) is another implementation,
which computes all conclusions from a defeasible theory.
It is very efficient, exhibiting linear computational com-
plexity. Delores only supports ambiguity blocking proposi-
tional defeasible logic; so, it does not support ambiguity
propagation, nor conflicting literals, variables and negation
as failure in the object language. Also, it does not integrate
with other Semantic Web languages and systems, and is,
thus, an isolated solution as well.

SweetJess (Grosof, Gandhe and Finin 2002) is yet an-
other implementation of a defeasible reasoning system
based on Jess. It integrates well with RuleML. However,
SweetJess rules can only express reasoning over ontologies
expressed in DAMLRuleML (a DAML-OIL like syntax of
RuleML) and not on arbitrary RDF data, like VDR-
DEVICE. Furthermore, SweetJess is restricted to simple
terms (variables and atoms). This applies to VDR-
DEVICE to a large extent; however, the basic R-DEVICE
language (Bassiliades and Vlahavas 2006) can support a
limited form of functions in the following sense: (a) path
expressions are allowed in the rule condition, which can be
seen as complex functions, where allowed function names
are object referencing slots; (b) aggregate and sorting func-

tions are allowed in the conclusion of aggregate rules. Fi-
nally, VDR-DEVICE can also support conclusions in non-
stratified rule programs due to the presence of truth-
maintenance rules (Bassiliades, Antoniou and Vlahavas
2006).

Mandarax (Dietrich et al. 2003) is a Java rule platform,
which provides a rule mark-up language (compatible with
RuleML) for expressing rules and facts that may refer to
Java objects. It is based on derivation rules with negation-
as-failure, top-down rule evaluation, and generating an-
swers by logical term unification. RDF documents can be
loaded into Mandarax as triplets. Furthermore, Mandarax
is supported by the Oryx graphical rule management tool.
Oryx includes a repository for managing the vocabulary, a
formal-natural-language-based rule editor and a graphical
user interface library. Contrasted, the rule authoring tool of
DR-DEVICE lies closer to the XML nature of its rule syn-
tax and follows a more traditional object-oriented view of
the RDF data model (Bassiliades and Vlahavas 2006). Fur-
thermore, DR-DEVICE supports both negation-as-failure
and strong negation, and supports both deductive and de-
feasible logic rules.

Conclusions and Future Work
In this paper we have argued that defeasible reasoning is

useful for many applications in the Semantic Web, mainly
due to conflicting rules and rule priorities. We have also
presented a system for defeasible reasoning on the Web,
called VDR-Device. It is a visual environment for develop-
ing defeasible logic rule bases that, after analyzing the in-
put RDF ontologies, it constrains the allowed vocabulary.
Furthermore, the system employs a user-friendly graphical
shell and a powerful defeasible reasoning system that sup-
ports the following:
• Multiple rule types of defeasible logic, such as strict

rules, defeasible rules, and defeaters.
• Priorities among rules.
• Two types of negation (strong, negation-as-failure) and

conflicting (mutually exclusive) literals.
• Compatibility with RuleML, the main standardization

effort for rules on the Semantic Web.
• Direct import from the Web and processing of RDF data

and RDF Schema ontologies.
• Direct export to the Web of the results (conclusions) of

the logic program as an RDF document.
 The defeasible reasoning system is built on-top of a
CLIPS-based implementation of deductive rules. The core
of the system consists of a translation of defeasible knowl-
edge into a set of deductive rules, including derived and
aggregate attributes. However, the implementation is de-
clarative because it interprets the not operator using Well-
Founded Semantics.

In the future, we plan to delve into the proof layer of the
Semantic Web architecture by enhancing further the
graphical environment with rule execution tracing, expla-

292 Technical Report IfI-06-04

NMR Systems and Applications

nation, proof exchange in an XML or RDF format, proof
visualization and validation, etc. We will try to visualize
the semantics of defeasible logic in an intuitive manner, by
providing graphical representations of rule attacks, superi-
orities, conflicting literals, etc. These facilities would be
useful for increasing the trust of users for the Semantic
Web agents and for automating proof exchange and trust
among agents in the Semantic Web. Furthermore, we will
include a graphical RDF ontology and data editor that will
comply with the user-interface of the RuleML editor. Fi-
nally, concerning the implementation of the graphical edi-
tor we will adhere to newer XML Schema-based versions
of RuleML.

References
Antoniou, G. 1997. Nonmonotonic Reasoning. MIT Press.
Antoniou G. 2002. Nonmonotonic Rule Systems on Top of
Ontology Layers. In Proceedings of the 1st Int. Semantic
Web Conference. 394-398. LNCS 2342. Springer-Verlag.
Antoniou, G., and Arief, M. 2002. Executable Declarative
Business Rules and their Use in Electronic Commerce. In
Proceedings of ACM Symposium on Applied Computing.
6-10. ACM Press.
Antoniou, G., Billington, D., Governatori, G., Maher M.J.
2000. A Flexible Framework for Defeasible Logics. In
Proceedings of the 17 National Conference on Artificial
Intelligence and 12 Conference on Innovative Applica-
tions of Artificial Intelligence.

th

th

405-410. AAAI/MIT Press.
Antoniou, G., Billington, D., and Maher, M.J. 1999. On
the Analysis of Regulations using Defeasible Rules. In
Proceedings of the 32nd Hawaii Int. Conference on Systems
Science, 7 pages (no page numbers). IEEE Press.
Antoniou G., Billington D., Governatori G. and Maher
M.J., “Representation results for defeasible logic”, ACM
Trans. on Computational Logic, 2(2), 2001, pp. 255-287
Antoniou, G., Skylogiannis, T., Bikakis, A., Bassiliades,
N. 2005. DR-BROKERING – A Defeasible Logic-Based
System for Semantic Brokering. In Proceedings of IEEE
Int. Conf. on E-Technology, E-Commerce and E-Service.
414-417. IEEE Computer Society.
Ashri, R., Payne, T., Marvin, D., Surridge, M., and Taylor,
S. 2004. Towards a Semantic Web Security Infrastructure.
In Proceedings of Semantic Web Services 2004 Spring
Symposium Series. Stanford University, Stanford Califor-
nia.
Bassiliades, N., Antoniou, G., Vlahavas I. 2006. A Defea-
sible Logic Reasoner for the Semantic Web. International
Journal on Semantic Web and Information Systems, 2(1):
1-41.
Bassiliades, N., and Vlahavas, I. 2006. R-DEVICE: An
Object-Oriented Knowledge Base System for RDF Meta-

data, International Journal on Semantic Web and Informa-
tion Systems, 2(2) (to appear).
Bassiliades, N., Vlahavas, and I., Elmagarmid, A.K. 2000.
E DEVICE: An extensible active knowledge base system
with multiple rule type support. IEEE TKDE. 12(5): 824-
844.
Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The
Semantic Web. Scientific American 284(5):34-43.
Boley, H., Tabet, S., and Wagner, G. 2001. Design Ration-
ale for RuleML: A Markup Language for Semantic Web
Rules. SWWS 2001: 381-401.
Dean, M., and Schreiber, G. eds. 2004. OWL Web Ontol-
ogy Language Reference. www.w3.org/TR/2004/REC-
owl-ref-20040210/

Dietrich, J.; Kozlenkov A.; Schroeder, M.; Wagner, G.
2003. Rule-based agents for the semantic web. Electronic
Commerce Research and Applications. 2(4):323–338.
Governatori, G. 2005. Representing business contracts in
RuleML, International Journal of Cooperative Informa-
tion Systems, 14(2-3):181-216.
Governatori, G., Dumas, M., Hofstede, A. ter and Oaks P.
2001. A formal approach to protocols and strategies for
(legal) negotiation, In Proceedings of the 8th International
Conference of Artificial Intelligence and Law. 168-177.
ACM Press.
Grosof, B.N., Gandhe, M.D., Finin, T.W. 2002. SweetJess:
Translating DAMLRuleML to JESS. In Proceedings of Int.
Workshop on Rule Markup Languages for Business Rules
on the Semantic Web. Held at 1st Int. Semantic Web Con-
ference.
Grosof, B. N. and Poon T. C. 2003. SweetDeal: represent-
ing agent contracts with exceptions using XML rules, on-
tologies, and process descriptions. In Proceedings of the
12th Int. Conference on World Wide Web. 340-349. ACM
Press.
Hayes, P., “RDF Semantics”, W3C Recommendation, Feb.
2004, http://www.w3c.org/TR/rdf-mt/
Maher, M.J.; Rock, A.; Antoniou, G.; Billington, D.;
Miller T. 2001. Efficient Defeasible Reasoning Systems.
Int. Journal of Tools with Artificial Intelligence.
10(4):483-501.
Marek, V.W., Truszczynski, M. 1993. Nonmonotonic Lo-
gics; Context Dependent Reasoning. Springer-Verlag.
McBride, B. 2001. Jena: Implementing the RDF Model
and Syntax Specification. In Proceedings of the 2nd Int.
Workshop on the Semantic Web, CEUR Workshop Pro-
ceedings, Vol. 40.
Nute, D. 1987. Defeasible Reasoning. In Proceedings of
the 20th Int. Conference on Systems Science, 470-477.
IEEE Press.

DEPARTMENT OF INFORMATICS 293

11TH NMR WORKSHOP

294 Technical Report IfI-06-04

NMR Systems and Applications

3.6 Relating Defeasible Logic to the Well-Founded Semantics for
Normal Logic Programs

Relating Defeasible Logic to the Well-Founded Semantics for Normal Logic
Programs

Frederick Maier and Donald Nute
Department of Computer Science and Artificial Intelligence Center

The University of Georgia
Athens, GA 30602

fmaier@uga.edu and dnute@uga.edu

Abstract
The most recent version of defeasible logic (Nute 1997) is
related to the well-founded semantics by translating defeasi-
ble theories into normal logic programs. A correspondence
is shown between the assertions of a defeasible theory and
the literals contained in the well-founded model of the trans-
lation. The translation scheme is based upon (Antoniou &
Maher 2002) but is modified to account for unique features
of this defeasible logic.

Introduction
This paper relates the most recent version of defeasible logic
first described in (Nute 1997) to the well-founded semantics
for normal logic programs via a translation scheme. After
the scheme is presented, a correspondence is proven to exist
between, on the one hand, positive and negative assertions
of a defeasible theory, and (selected) positive and negative
literals of the logic program’s well-founded model.
The translation scheme is based upon work of Antoniou and
Maher in (2002) which is based on a notational variant of an
earlier version of defeasible logic described in (Nute 1992;
1994). For the purposes of this paper, we will call the earlier
version of defeasible logic DL and the newer version NDL.
Antoniou and Maher show a relationship between DL and
stable models, but the result is limited to defeasible theories
without cycles in their rules. They establish a more general
relationship between all defeasible theories and Kunen’s 3
valued semantics described in (Kunen 1987). Antoniou and
Maher cite extensive recent work on the theory and applica-
tions of DL, and further discussion of applications of NDL
can be found in (Nute 2001). A deontic version of NDL is
also presented in (Nute 1997).
NDL goes beyond DL by including a more extensive treat-
ment of the ways that defeasible rules may conflict and by
explicitly considering failures of proofs due to cycles in de-
feasible rules. Both of these are important improvements in
defeasible logic, and the impact of these changes are dis-
cussed in detail in (Nute 2001). Studying NDL in relation to
the well-founded semantics is a natural choice. Both are for-
malisms for nonmonotonic reasoning which explicitly con-
sider dependency cycles between literals, and both are pur-
portedly computationally tractable.
The majority of this paper is devoted to proving the corre-
spondence between the assertions of a defeasible theory in

NDL and the well-founded model of the translation. We
interpret this result as showing that well-founded models in-
directly provide a semantics for NDL. (For an alternative
semantics for NDL, see (Donnelly 1999).) Furthermore, our
result allows us to use our translation method together with a
proof method that is sound with respect the the well-founded
semantics as an implementation of NDL.

Defeasible Logic: Language and Proof System
This section presents necessary terminology for NDL and
its proof system. For a fuller discussion, see (Nute 2001).
The only well-formed formulas in the language for NDL are
literals (atomic sentences and their negations). The language
also contains strict rules, written A → p (where p is a literal
and A a finite set of literals), defeasible rules (written A ⇒
p), and undercutting defeaters or simply defeaters (written
A p).
Definition 1: A defeasible theory D is a quadruple
〈F,R, C,≺〉, where F is a possibly empty set of literals in
the language of D, R a set of rules, C a set of finite sets
of literals in the language of D such that for any literal p in
the language of the theory, {p,¬p} ∈ C, and ≺ an acyclic
superiority relation over R.
The basic ideas behind the proof theory for NDL is that we
can derive a literal p from a defeasible theory just in case p is
one of the initial facts of the theory (p ∈ F ,) or p is the head
of some strict or undefeated defeasible rule in the theory and
all of the literals in the body of the rule are also derivable.
The role of defeaters is solely to defeat other arguments that
might otherwise establish a literal.
Let D = 〈F,R, C,≺〉 be a defeasible theory. If C only
contains sets of the form {p,¬p}, we say D has a minimal
conflict set. We say that the conflict set C of D is closed
under strict rules if, for all cs ∈ C, if A → p is a rule and p ∈
cs, then {A∪(cs−{p})} ∈ C. It is not a necessary condition
that a defeasible theory be closed under strict rules, but it is
certainly an attractive condition. We will call a defeasible
theory closed if its conflict set is closed under strict rules.
The proof theory for NDL is based upon argument trees:
Definition 2: Let D be a defeasible theory and p a literal in
the language of D. The expression D |∼ p is called a pos-
itive defeasible assertion, while D ∼| p is called a negative
defeasible assertion.

DEPARTMENT OF INFORMATICS 295

11TH NMR WORKSHOP

Informally, D |∼ p and D ∼| p are interpreted to mean that
a demonstration (respectively, a refutation) exists for p from
D. Note that D ∼| p is equvalent to neither D |∼ ¬p nor
D 6|∼ p. D ∼| p means that there is a demonstration that
there is no defeasible proof of p from D.
Definition 3: τ is a defeasible argument tree for D iff τ is a
finite tree such that every node of τ is labelled either D |∼ p
or D ∼| p (for some literal p appearing in D).
Definition 4: The depth of a node n is k iff n has k − 1
ancestors in τ . The depth of a tree is taken to be the greatest
depth of any of its nodes.
Definition 5: Let A be a set of literals, and n a node of τ :

1. A succeeds at n iff for all q ∈ A, there is a child m of n
such that m is labelled D |∼ q.

2. A fails at n iff there is a q ∈ A and a child m of n such
that m is labelled D ∼| q.

Definition 6: τ is a defeasible proof iff τ is an argument
tree for D, and for each node n of τ , one of the following
obtains:

1. n is labelled D |∼ p and either:

a. p ∈ F ,
b. there is a strict rule r : A → p ∈ R such that A suc-

ceeds at n, or
c. there is a defeasible rule r : A ⇒ p ∈ R such that A

succeeds at n and for all csi ∈ C, if p ∈ csi, then there
is a q ∈ (csi − (F ∪ {p})) such that

i. for all strict rules s : B → q ∈ R, B fails at n, and
ii. for all defeasible rules s : B ⇒ q ∈ R, either B fails

at n or else s ≺ r , and
iii. for all defeaters s : B q ∈ R, either B fails at n or

else s ≺ r.

2. n is labelled D ∼| p and:
a. p /∈ F ,
b. for all strict rules r : A → p ∈ R, A fails at n, and
c. for all defeasible rules r : A ⇒ p ∈ R, either

i. A fails at n, or
ii. there is a csi ∈ C such that p ∈ csi, and for all q ∈

csi − (F ∪ {p}), either
A. there is a strict rule s : B → q ∈ R such that B

succeeds at n,
B. there is a defeasible rule s : B ⇒ q ∈ R such that B

succeeds at n and s ⊀ r , or
C. there is a defeater rule s : B q ∈ R such that B

succeeds at n and s ⊀ r.
3. n is labelled D ∼| p and n has an ancestor m in τ such

that m is labelled D ∼| p and all nodes between n and m
are negative defeasible assertions.

Condition 6.3 is called failure-by-looping. Since conclu-
sions cannot be established by circular arguments, failure-
by-looping can be used to help show that a literal cannot be
derived from a defeasible theory.
Definition 7: Where D is a defeasible theory and S is a set
of literals in the language of D, D |∼ S if and only if for all
p ∈ S, D |∼ p.

Some important formal properties of this logic are estab-
lished in the following theorems.

Theorem 1 (Coherence): If D is a defeasible theory and
D |∼ p, then D 6∼| p.

Theorem 2 (Consistency): If D = 〈F,R, C,≺〉 is a defea-
sible theory, S ∈ C, and D |∼ S, then 〈F, {A → p : A →
p ∈ R}, C,≺〉 |∼ S.

Theorem 3 (Cautious Monotony): If D = 〈F,R, C,≺
〉 is a defeasible theory, D |∼ p, and D |∼ q, then 〈F ∪
{p}, R, C,≺〉 |∼ q.

Theorem 1 assures us that we can not both prove and demon-
strate the absence of any proof for the same literal. Theorem
2 says that any incompatible set of literals derivable from a
defeasible theory must be derivable from the facts and the
strict rules alone. In other words, the defeasible rules of
a theory can never introduce any new incompatibilites. Of
course, this interpretation of Theorem 2 assumes that all pos-
sible incompatibilities are captured in the conflict set of the
theory. Cautious Monotony is a principle which many au-
thors working on nonmonotonic reasoning propose as a nec-
essary feature for any adequate nonmonotonic formalism.
The advantages of adding failure-by-looping to our proof
theory should be obvious. Consider a simple defeasible the-
ory like the following:

D = 〈 {mammal} , {{furry, has wings} ⇒ bat,
bat ⇒ furry, bat ⇒ has wings, bat ⇒ flies,
mammal ⇒ ¬flies}, {{bat,¬bat}, {furry,¬furry},
{has wings,¬has wings}, {mammal,¬mammal},
{flies,¬flies}}, ∅〉.
In earlier versions of defeasible logic that lacked failure-by-
looping, although we could easily see that there was no way
to show D |∼ bat, we could not demonstrate this in the proof
theory, that is, we could not show D ∼| bat. Consequently,
neither could we show D |∼ ¬flies. Failure-by-looping
provides a mechanism for showing D ∼| bat, which then
allow us to show D |∼ ¬flies. When we later define a trans-
lation of defeasible theories into a standard logic programs
in such a way that the consequences of a theory correspond
to the well-founded semantics for the logic program, this
example will also serve to show that failure-by-looping is
necessary to get this correspondence. Where the theory
D above is translated into the standard logic program PD,
¬defeasibly(bat), ¬defeasibly(furry),
¬defeasibly(has_wings), and
defeasibly(neg_flies) are all in the well-
founded model of PD, but the corresponding results
are undetermined in versions of defeasible logic without
failure-by-looping. Where a defeasible theory has cyclic
rules, failure-by-looping is needed to capture within the
proof theory the concept of a literal being unfounded.
Adding explicit conflict sets and closing them under strict
rules provides an alternative solution to a class of examples
that have always seemed odd to the authors. Consider the
theory

D = 〈 {quaker, republican} , {quaker ⇒ dove,

296 Technical Report IfI-06-04

NMR Systems and Applications

republican ⇒ hawk, dove ⇒ activist, hawk ⇒
activist, dove → ¬hawk, hawk → ¬dove},
{{quaker,¬quaker}, {republican,¬republican},
{dove,¬dove}, {hawk,¬hawk}, {dove, hawk}}, ∅〉.
Theories like Reiter’s default logic (Reiter 1980)
would generate two default extensions for a theory
like this: {quaker, republican, dove, activist} and
{quaker, republican, hawk, activist}. The skeptical
approach would accept the intersection of these extensions,
{quaker, republican, activist}, including activist as a
floating conclusion (Makinson & Schechta 1991). This
seems unintuitive to us. A Republican quaker might be a
dove or a hawk, but might just as well be neither. This is
reflected in NDL. In this theory, the rules quaker ⇒ dove
and republican ⇒ hawk conflict with each other since
{dove, hawk} is a conflict set in the theory. Neither
rule takes precedence over the other; so neither conse-
quent is defeasbily derivable. Thus neither of the rules
to establish activist is satisfied, and activist is also not
defeasibly derivable. Our proof theory avoids these floating
conclusions in an intuitively reasonable way.

Logic Programs
Recall that a logic program consists of a set of rules having
the form

P:- Q1, Q2 . . . Qn.

where each P and Qi are atomic formulae of first order
logic, or else such formulae preceded by a negation symbol.
A rule in which the set of Q’s is empty is called a fact. The
neck ‘:-’ is interpreted as ‘if’, though it is incorrect to view
it as material implication (Gelder, Ross, & Schlipf 1991).
Commas separating formulae in the body indicate logical
conjunction.
Constants, variables, and function symbols are allowed to
appear in each formula. If variables are used, then the rule is
assumed to be universally quantified, though the quantifiers
themselves are usually omitted in the written program.
Definite logic programs do not contain negation (in any
form) in either the head or body of a rule. A normal (some-
times general (Gelder, Ross, & Schlipf 1991)) logic program
may contain atoms in the body preceded by not, where the
negation is taken to be negation-as-failure: An atom pre-
ceded by not is true only if it cannot be proven from the
program. This can be contrasted with strong (sometimes ex-
plicit) negation (e.g., ¬p). Programs in which both strong
negation and negation-as-failure appear are called extended
logic programs. In a normal program, only not is allow-
able.
Definite programs have a unique minimal Herbrand model,
and this is often taken to be the intended meaning of the pro-
gram (Gelder, Ross, & Schlipf 1991). This result was shown
in a paper by Van Emden and Kowalski in 1976 (Emden &
Kowalski 1976). It was also shown there that this least Her-
brand model corresponds to least fixed-point obtainable via
the T operator (the immediate consequence operator), de-
fined below.
Let P be a logic program and I a set of ground atoms. Then:

TP (I) = {p | r is a rule of P with head p, and each qi in
the body of r is in I}.

Importantly, when negation occurs in a program, a single
least Herbrand model need not exist. For instance, the pro-
gram p :- not q has two minimal models: {p} and {q}
(Gelder, Ross, & Schlipf 1991). In such cases, the meaning
of the program is unclear.

The Well-Founded Model for Normal Logic
Programs

Several attempts have been made to provide a reasonable
interpretation of logic programs containing negation. The
well-founded semantics (Gelder, Ross, & Schlipf 1988;
1991) was developed for normal programs but has since
been applied to extended logic programs.
Let P be a normal logic program containing only ground
terms. An interpretation I of P is simply a consistent set of
positive and negative literals whose atoms are taken from the
Herbrand base of P . The consistency of I is required—if a
literal p is in I, then its complement ¬p does not appear in
I.
If p appears in I, then p is said to be true in I. If ¬p appears
in I, then p is false in I. If neither p nor ¬p appears in I,
then p is said to be undefined in I.
A set of literals S from the Herbrand base of P is said to
be unfounded with respect to an interpretation I iff for each
each p ∈ S and for each rule r of P with head p, there exists
a (positive or negative) subgoal q of r such that

1. q is false in I (that is, ¬q appears in I), or

2. q is positive and appears in S.

Unfounded sets are closed under union, and so for any P and
I, there exists a greatest unfounded set of P wrt I, denoted
UP (I):

UP (I) = {
⋃

A | A is an unfounded set of P with respect
to I}.

UP (I) can be viewed as a monotone operator and together
with TP is used to define another operator, WP :

WP (I) = TP (I) ∪ ¬ · UP (I)

where ¬ · UP (I) is the element-wise negation of UP (I).
UP (I), TP (I), and WP (I) are all monotonic, and can be
used to define the sequence (I0, I1, . . .), as follows:

1. I0 = ∅

2. Ik+1 = WP (Ik)

The well-founded model of P , wfm(P), is the limit of this
sequence. If the Herbrand base is finite, then this limit can
be reached in a finite number of iterations.

In the following, we will only be dealing with the propo-
sitional case—only finite grounded defeasible theories and
programs are considered. Also, we allow I0 to contain facts
of programs.

DEPARTMENT OF INFORMATICS 297

11TH NMR WORKSHOP

Translating a defeasible theory into a logic
program

Let D be a finite propositional defeasible theory
〈F,R, C,≺〉, where F is a set of facts, R is a set of
strict, defeasible, and defeater rules, C is a conflict set, and
≺ is an acyclic superiority relation over R.
The translation of D into a normal logic program LP (D)
is shown below. We shall use head(r) to denote the head
of a rule and body(r) to denote the set of its subgoals. ¬p
denotes the complement of a literal p. The expression not
indicates negation as failure.

1. For each literal p ∈ F add the following fact to LP (D):
defeasibly(p).

Facts cannot be defeated, and so they can always safely
be inferred.

2. For every pair of rules r and s, if r ≺ s, add the following
fact to LP (D):
sup(s,r).

3. For each strict rule r ∈ R (r : q1, q2 . . . qn → p), add to
LP (D) the following rule:
defeasibly(p) :- defeasibly(q1), . . .
defeasibly(qn).

The consequent of a strict rule can be derived if it’s an-
tecedent holds. Counterarguments need not be consid-
ered.

4. For each defeasible rule r ∈ R (r : q1, q2 . . . qn ⇒ p),
add to LP (D) rules of the following form:
a. defeasibly(p) :- defeasibly(q1), . . .
defeasibly(qn), ok(r).
A literal p is defeasibly provable using r if each sub-
goal qi ∈ body(r) is defeasibly provable and it’s ok to
detach the head (i.e., the rule is not blocked). For each
defeasible rule in D, exactly one rule of this form is
added to LP (D).

b. ok(r) :- ok(r, cs1), ok(r, cs2). . .
ok(r, csm).

where head(r) ∈ csi. It’s ok to apply rule r if it’s ok
with respect to each conflict set containing the head of
r (note that there will always be at least one conflict
set).

c. ok(r, csi) :- blocked_literal(r, qj).
where qj ∈ csi− (F ∪head(r)). It’s ok to apply rule r
with respect to a conflict set if there’s a blocked literal
in the set csi − (F ∪ head(r)). Note that a rule of this
form will exist for each qj ∈ csi − (F ∪ head(r)).
Facts need not be considered, since these can never be
blocked.

d. blocked_literal(r, qi) :-
blocked(r,r1),
blocked(r,r2),
. . .
blocked(r,rk).

where head(r1) = head(r2) . . . = head(rk) = qi,
and each ri is any sort of rule. A literal qi is blocked

with respect to a rule r if every rule ri having it as a
head is blocked by r.
One clause of the above form will exist for each unique
(r, qi) pair, where qi ∈ csi−(F ∪head(r)) and csi is a
conflict set containing head(r). The literal qi can never
be a fact of the defeasible theory, since (again) facts
cannot be blocked. Also, if no rule has head qi, then
blocked_literal(r, qi) is asserted as a fact of
the logic program.

e. blocked(r,ri):- not defeasibly(sj).
where sj ∈ body(ri). A rule r blocks another ri if ri

has a subgoal sj that is not defeasibly provable.
If a rule ri has no body (in the case of defeasible rules),
then no clauses of form (e) will occur in LP (D).

f. blocked(r,ri):- sup(r,ri).
A rule r also blocks another ri if r is takes precedence
over ri.

Note that the only place negation-as-failure occurs in the
translation is in 3.e. Also, for any strict or defeasible rule
r of D with head p, there is a single corresponding logic
program rule with head defeasible(p). We refer to this
corresponding rule as trans(r).
In the following section, we show that the above transla-
tion process is correct, in that D |∼ p iff defeasible(p)
∈ wfm(LP), and D |∼ p iff ¬defeasible(p) ∈
wfm(LP).

A Proof of the Translation’s Correctness
We begin with the ‘if’ direction and induct on the depth of a
defeasible argument tree τ .
Let D be a defeasible theory, LP its logic program transla-
tion, and τ be a defeasible argument tree for D.
Theorem 4: If the root of τ is labeled with D |∼ p, then
defeasibly(p) ∈ wfm(LP). If the root of τ is labeled
with D ∼| p, then ¬defeasibly(p) ∈ wfm(LP).
(Base Case) Suppose τ is just a single node n labeled D |∼ p
or D ∼| p. We consider each case separately.
Case 1: Suppose that n is labeled D |∼ p. Then definition
6.1 holds.
Since strict rules with empty bodies are forbidden, then ei-
ther 6.1.a or 6.1.c must obtain. If 6.1.a obtains, p is a fact
of D and defeasibly(p) is a fact of LP , and so ob-
viously defeasibly(p) ∈ wfm(LP). If 6.1.c obtains,
then there is some rule r : A ⇒ p that succeeds at n, and
for all conflict sets cs such that p ∈ cs, there is a literal
q ∈ (cs− (F ∪ {p})) such that 6.1.c.i, 6.1.c.ii, and 6.1.c.iii
hold. Since n has no children, A must be empty.
Let csi be a conflict set such that p ∈ csi, and qj ∈ (csi −
(F ∪ {p})) a literal with the above properties. Since n has
no children, there can be no strict rules with qj as a head.
For the same reason, the body of any defeasible or defeater
rule with head qj must be empty.
Let sk be a defeasible or defeater rule with head qj . Since
6.1.c obtains, sk ≺ r. Generalizing on sk, for all rules s
with head qj , s ≺ r, and so sup(r, s) appears as a fact
in LP . Given this, blocked_literal(r, q_j) and
hence ok(r, cs_i)∈ wfm(LP).

298 Technical Report IfI-06-04

NMR Systems and Applications

Generalizing on csi, for each conflict set cs containing p,
ok(r, cs)∈ wfm(LP). But if this is the case, ok(r)
∈ wfm(LP), and so defeasibly(p)∈ wfm(LP).
Case 2: Suppose that n is labelled D ∼| p.
τ consists of only a single node, and so failure-by-looping
cannot apply. Definition 6.2 must obtain: p is not a fact,
there are no strict rules with head p (since n is a leaf node),
and for all defeasible rules r : A ⇒ p, either

i A fails at n, or
ii There is a conflict set csi such that p ∈ csi, and for all

q ∈ (csi − (F ∪ {p})), either,

a There is a strict rule s: B → q such that B succeeds at
n, or

b There is a defeasible rule s: B ⇒ q such that B suc-
ceeds at n and s ⊀ r, or

c There is a defeater s: B q such that B succeeds at n
and s ⊀ r.

Let ri be a rule A ⇒ p. Since n is a leaf node, neither i nor
ii.a can obtain.
Let csk be a conflict set satisfying (ii) above, and let q be a
member of (csk−(F∪{p})). Suppose (ii.b) or (ii.c) obtains.
Then there is a rule s: B ⇒ q (B q) such that B succeeds
at n and s ⊀ ri. Since B must be empty, clauses of the form

blocked(r_i, s):- not defeasibly(q)

do not appear in LP . Since s ⊀ ri, the clause
sup(r_i,s) does not appear as a fact in LP , and be-
cause no rules can derive sup(r_i,s), ¬sup(r_i,s)∈
wfm(LP). The only rule with head blocked(r_i, s)
now has a subgoal whose complement appears in
wfm(LP), and so ¬blocked(r_i, s)∈ wfm(LP).
Similarly, since blocked(r_i, s) appears in the rule

blocked_literal(r_i, q):-
blocked(r_i, s_1),
blocked(r_i, s_2),
...
blocked(r_i, s_k).

and there are no other rules with that head,
¬blocked_literal(r_i, q)∈ wfm(LP).
Generalizing on q, for any qj in the set csk − (F ∪ {p})),
¬blocked_literal(r_i, q_j)∈ wfm(LP). From
this it follows that ¬ok(r_i, cs_k)∈ wfm(LP), and
hence ¬ok(r_i)∈ wfm(LP).
Generalizing on rule ri, ¬defeasibly(p)∈ wfm(LP).
(Induction) Suppose the claim holds for trees of depth k or
less and let τ be a tree of depth k + 1.
Case 1: Suppose the root n of τ is labeled D |∼ p. Then 6.1
again holds. We will show that regardless of whether 6.1.a,
6.1.b, or 6.1.c is true, defeasibly(p)∈ wfm(LP):
Case 1.a: p is a fact of D, in which case
defeasibly(p)∈ wfm(LP).
Case 1.b: There is a strict rule A → p such that A succeeds
at n. Then for all q ∈ A, there is a child of m labeled D |∼ q.
Each such q is the root of a valid argument tree of maxi-
mum depth less than k + 1, and so by inductive hypothesis,

defeasibly(q)∈ wfm(LP). Applying the immediate
consequence operator, defeasibly(p)∈ wfm(LP).
Case 1.c: There is a rule r: A ⇒ p such that A succeeds
at n and for all conflict sets cs with p ∈ cs, there is a q in
cs− (F ∪ {p})) such that:

i. For all strict rules s: B → q, B fails at n,

ii. For all defeasible rules s: B ⇒ q fails at n or else s ≺ r,
and

iii. For all defeater rules s: B q fail at n or else s ≺ r.

Let csi and qk be such a conflict set and literal, and let s
be any rule with head qk. If s fails at n, then some some
child of n is labeled D ∼| d, where d is in the body of s.
This is the root of a valid proof tree, and so by inductive
hypothesis, ¬defeasibly(d) ∈ wfm(LP). Based on
this, blocked(r, s) ∈ wfm(LP).
If s is a defeasible or defeater rule and s ≺ r, then
sup(r,s) is a fact of LP, and so blocked(r, s) is
again in wfm(LP).
Generalizing on s, blocked_literal(r, qk)∈
wfm(LP), and so ok(r, cs_i) ∈ wfm(LP). Gen-
eralizing on csi, ok(r, cs) ∈ wfm(LP) for all cs in
which p appears, and so ok(r) appears in wfm(LP).
Since A succeeds at n, for all u ∈ A, there is a child of n
labeled D |∼ u. Each such u is the root of a valid argument
tree of maximum depth less than k + 1, and so by inductive
hypothesis, defeasibly(u) ∈ wfm(LP).
It is now that case that every subgoal of the LP rule

defeasibly(p) :-
defeasibly(u_1),
...
defeasibly(u_n),
ok(r).

corresponding to r ∈ RD is true in the wfm(LP). It fol-
lows that defeasibly(p) ∈ wfm(LP).
Case 2: Suppose the root n of τ is labeled D ∼| p.
For this part of the proof, we show that the collection of
literals appearing in negative assertions of τ correspond to
an unfounded set with respect to wfm(LP).
Any branch of a proof tree involving failure-by-looping need
not extend beyond the topmost node where definition 6.3
applies. As this is so, the tree can be trimmed to that point,
and so 6.3 only applies to the leaves of the tree. We may
assume without loss of generality that τ is of this form.
Define S and U as follows:

S = {n : n is a node of τ labeled with D ∼| u for some
u}.

U = {defeasibly(u): D ∼| u appears as a label for
some member of S}.

Let n be any node in S. Then n is labeled D ∼| φ for
some φ. The following shows that all rules with head φ are
unfounded.
Node n is either a leaf or an internal node.

Case 2.a: Suppose that n is an internal node. Then 6.2 ob-
tains, and φ is not a fact.

DEPARTMENT OF INFORMATICS 299

11TH NMR WORKSHOP

If r is a strict or defeasible rule with head φ that fails at
n, n has a child labeled D ∼| v, where v ∈ body(r). By
definition defeasibly(v) appears in U.
If r is a defeasible rule with head φ that does not fail at n,
then by 6.2.c.ii there is a cs ∈ C such that p ∈ cs, and for
all q ∈ cs− (F ∪ {p}), either

i. there is a strict rule s : B → q ∈ R such that B succeeds
at n,

ii. there is a defeasible rule s : B ⇒ q ∈ R such that B
succeeds at n and s ⊀ r , or

ii. there is a defeater rule s : B q ∈ R such that B
succeeds at n and s ⊀ r

Let csi be such a conflict set as above, qj a member of csi−
(F∪{p}), and let s be a strict (defeasible, defeater) rule with
head qj such that body(s) succeeds at n and s ⊀ r (even if
s is strict, s ⊀ r holds).
Since body(s) succeeds at n, n has a child labeled D |∼
u for each u ∈ body(s). By inductive hypothesis,
defeasibly(u) ∈ wfm(LP) for each u ∈ body(s).
Since s ⊀ r, ¬sup(r,s) ∈ wfm(LP). As this is
so, every rule with head blocked_(r,s) has a sub-
goal whose complement appears in wfm(LP), and so
¬blocked_(r,s) itself appears in wfm(LP).
Since ¬blocked_(r,s) ∈ wfm(LP),
¬blocked_literal(r,q) ∈ wfm(LP). Gener-
alizing on q, ¬ok(r,cs_i) ∈ wfm(LP), and hence
¬ok(r) ∈ wfm(LP).
Generalizing on rule r, every logic program rule with head
defeasibly(φ) has a subgoal in U or else a subgoal
whose complement appears in wfm(LP).
Case 2.a: Suppose that n is a leaf node. Either 6.2 or
6.3 obtains. If 6.2 obtains, then as was shown in the base
case, for any rule r with head defeasibly(φ), ¬ok(r)
∈ wfm(LP). If 6.3 obtains, then there is a non-leaf node
labeled D ∼| φ, and we have shown there that all rules with
head defeasibly(φ) have (1) a subgoal whose comple-
ment appears in wfm(LP), or (2) a subgoal in U .
Given the above 2 cases, for every member
defeasibly(u) ∈ U , each rule with head
defeasibly(u) has a subgoal in U or else a sub-
goal whose complement is in wfm(LP). By definition, U
is unfounded with respect to the wfm(LP).
As this is so, for each u ∈ U , ¬defeasibly(u)
∈ wfm(LP). In particular, ¬defeasibly(p) ∈
wfm(LP). �

For the ‘only if’ portion of the proof, it is convenient to
transform the logic program by combining rules of the form

ok(r) :-
ok(r, cs_1),
ok(r, cs_2),
...
ok(r, cs_k).

ok(r, cs_i) :-
blocked_literal(r, q_1).

to create new rules such as below:

ok(r) :-
blocked_literal(r, q_1),
...
blocked_literal(r, q_k).

The old rules are deleted from the program. In each new
rule, the ith blocked_literal(r, q) corresponds to
one element of the set csi − (F ∪ {head(r)}). Intuitively,
this means that rule r is ‘ok’ to fire if each conflict set has a
blocked literal. Each rule contains a tuple from {cs1− (F ∪
{head(r)})}×{cs2− (F ∪{head(r)})}× . . . {csk− (F ∪
{head(r)})}. Every possible combination is used in some
rule.
The following lemmas are used in the proof:
Lemma 1: If ok(r) ∈ Un, then there exists a conflict set
cs in D with head(r) ∈ cs, and for each q ∈ cs − (F ∪
{head(r)}) there exists a rule s of D with head(q) such
that s ⊀ r and for each v ∈ body(s), defeasibly(v)
∈ In−1.
Suppose ok(r) ∈ Un. Then every rule of the form

ok(r) :-
blocked_literal(r, q_1),
...
blocked_literal(r, q_k).

has a subgoal ¬blocked_literal(r, qi) in In−1

or else in Un. If ¬blocked_literal(r, qi)∈
In−1, then blocked_literal(r, qi)∈ Un−1. U
is monotonic, and so we may assume wlog that
blocked_literal(r, qi) ∈ Un.
Since a tuple from {cs1− (F ∪{head(r)})}×{cs2− (F ∪
{head(r)})} × . . . {csm − (F ∪ {head(r)})} comprises
the body of each rule with head ok(r), and every rule has
a subgoal in Un, it readily follows that for at least one set
csi−(F∪{head(r)}), every literal of csi−(F∪{head(r)})
is in Un.
Let qj be some literal in csi − (F ∪ {head(r)}). Since
blocked_literal(r, qj)∈ Un, it follows that the
rule

blocked_literal(r, q_j):-
blocked(r, s_1),
blocked(r, s_2),
. . .
blocked(r, s_m).

has some subgoal blocked(r, s_u) ∈ Un. Rules with
head blocked(r, s_u) have not defeasibly(v)
or sup(r,s_u) as their bodies, where v is some subgoal
of su.
Applying the definition of unfoundedness, for each rule with
body not defeasibly(v), defeasibly(v) must
appear in In−1, and so defeasibly(v)∈ In−1 for every
v ∈ body(su). If sup(r,s_u) appears as the body of
some rule, then sup(r, su) ∈ Un (the same holds even if no
rule has such a body). If that is the case, then su ≺ r does
not appear in D.
Generalizing on qj , every literal of csi − (F ∪ {head(r)})
has a rule s with s ⊀ r such that for all v ∈ body(s),
defeasibly(v) ∈ In−1. �

300 Technical Report IfI-06-04

NMR Systems and Applications

Lemma 2: If ok(r) ∈ In, then for each conflict set cs con-
taining head(r), there exists a q ∈ cs − (F ∪ {head(r)})
such that for all rules s with head q, either: (1) s contains a
subgoal defeasible(v)∈ Un−1, or (2) s ≺ r is in D.

If ok(r) ∈ In, there is some rule

ok(r) :-
blocked_literal(r, u_1),
...
blocked_literal(r, u_k).

such that each subgoal is in Im, for some m < n. Each
blocked_literal(r,u_j) appears as the head of ex-
actly one rule of LP (D):

blocked_literal(r, u_j):-
blocked(r, s_1),
blocked(r, s_2),
...
blocked(r, s_n).

Since blocked_literal(r,uj) ∈ Im, each subgoal
blocked(r, s_i) must be in Il, for some l < m.
Rules with head blocked(r, s_i) can have
not defeasibly(v) or sup(r,s_i) as their
bodies. Since blocked(r, s_i) ∈ Il, either
¬defeasibly(v) ∈ Ik, k < l for some v ∈ si or
else sup(r, s_i) is a fact of LP (D). If the former,
defeasibly(v) ∈ Uk (and hence in Un−1). If the latter,
then si ≺ r must appear in D.
Generalizing on si, for each rule s of D with head uj , s ≺ r
or else for some v ∈ s, defeasibly(v) ∈ Un−1. Gen-
eralizing on csi, for each conflict cs set containing head(r),
there exists a u ∈ cs − (F ∪ {head(r)}) such that if rule
ri has head u, then ri ≺ r or else ri contains a subgoal in
Un−1. �

Theorem 5: Let I0 = {defeasible(p)|p ∈ FD} and
Ik+1 = WLP (Ik). For all In, if defeasibly(p) ∈ In,
then D |∼ p, and if ¬defeasibly(p) ∈ In, then D ∼| p.

(Base Case) Suppose defeasibly(p) ∈ I0. Then
defeasibly(p) is a fact of LP and so p is a fact of D.
Trivially, D |∼ p.
For any p, ¬defeasibly(p) /∈ I0, and so the claim is
trivially satisfied.

(Induction) Suppose that defeasibly(p) ∈ Ik implies
D |∼ p and ¬defeasibly(p) ∈ Ik implies D ∼| p, for
all k ≤ n. We will treat positive and negative literals in turn.

Case 1: Let defeasibly(p) ∈ In+1. Then either
defeasibly(p) is a fact of LP (D) (and so obviously
D |∼ p) or else there is some rule t = trans(r) with head
defeasibly(p) such that for all q ∈ body(t), q ∈ In.
If each subgoal of t is of form defeasibly(q_i), then
r is strict. By inductive hypothesis, D |∼ qi for each such
qi, and so for each there exists a defeasible proof tree with
root labeled D |∼ qi (denoted τD|∼qi

). We may append these
proofs to a node labeled D |∼ p to form a proof of D |∼ p.
If t contains an additional subgoal ok(r), then r is defeasi-
ble. Since ok(r) ∈ In, by Lemma 2 it follows that for each

conflict cs set containing p, there exists a u ∈ cs−(F ∪{p})
such that if rule ri has head u, then ri ≺ r or else ri contains
a subgoal defeasible(v) in Un−1. By inductive hy-
pothesis, a refutation proof exists for each v. Where applica-
ble, we may append these to a root node to show D |∼ p.
Since rule t must correspond to either a defeasible or strict
rule of r, we may conclude D |∼ p.

Case 2: Suppose that ¬defeasibly(p) ∈ In+1. Then
by definition defeasibly(p) ∈ Un+1. It immediately
follows that p is not a fact of D.
We construct a series of trees as follows. Let τ0 be the tree
consisting of a single unmarked node labeled D ∼| p. For
any n > 0, pick an unmarked leaf node x in τn. From the
definition of τ0 and the cases below, we will see that x is
labeled D ∼| q and defeasibly(q) ∈ Un+1. Then for
each rule r with head q, trans(r) has a subgoal s such that
¬s ∈ In, or else s ∈ Un+1. Either s = defeasibly(t)
for some t ∈ body(r) or s = ok(r). Consider each posibility
in turn.
Case 2.a: s = ok(r) and ok(r) ∈ Un+1. By Lemma 1,
there exists a conflict set cs in D with q ∈ cs, and for each
u ∈ cs−(F∪{q}), there exists a rule r′ with head u such that
r′ ⊀ r and defeasibly(v) ∈ In for each v in the body
of r′. By inductive hypothesis, for each such v, D |∼ v.
For each u ∈ cs − (F ∪ {q}), if its associated rule s has
a nonempty body, append proof trees for its body to x and
mark every node of each such subtree.
Case 2.b: s = ok(r) and ¬ok(r) ∈ In. By definition,
ok(r) ∈ Un. Since U is monotonic, ok(r) ∈ Un+1, and we
make the same additions to τn.
Case 2.c: s = defeasible(t) and ¬defeasible(x)
∈ In. Then defeasible(t) ∈ Un, and by inductive
hypothesis D ∼| t. Append to x a proof tree for D ∼| t and
mark every node of this subtree.
Case 2.d: s = defeasible(t) and defeasible(t)
∈ Un+1. Append to x a node y labled D ∼| t. If y satisfies
condition i or 3 in Definition 6, then mark y. Otherwise,
leave y unmarked.
After applying one of the cases 2.a-2.d for each rule r with
head q, examine the resulting tree to see if there is an un-
marked non-leaf node z in the tree such that all the children
of z are marked. If such a node z is found, mark it. Repeat
this procedure until there are no more unmarked nodes in the
tree all of whose children are marked. The resulting tree is
τn+1.
Let τ =

⋃∞
i=0 τi.

Suppose x is a marked node in τ . If x was added to τ using
cases 2.a, 2.b, or 2.c, then x occurs within a subtree of τ that
is a proof tree. So x must satisfy one of the conditions in
Definition 6. If x was added to τ and marked according to
case 2.d, then x is a leaf node in τ and x satisfies condition
2 or 3 of Definition 6. Otherwise, x is a non-leaf node in
τ , x was added to τ using condition 2.d, and x was marked
because all of its children were marked. Looking at the four
cases used to add the children of x to τ , we see that x must
satisfy condition 2 in Definition 6. So if τ is finite and if
every node in τ is marked, then τ is a proof tree.
Since D contains only finitely many rules, the branching fac-

DEPARTMENT OF INFORMATICS 301

11TH NMR WORKSHOP

tor for constructing τ must be finite. So if τ is infinite, then τ
must have an infinitely long branch. Consider such a branch.
Every node in this branch (other than the top node) must
have been added using case 2.d since all the other branches
add proof trees which are finite. So every node in the branch
must be labeled D ∼| q for some literal q. Furthermore, no
node in the branch satisfies condition 3 in Definition 6 since
if it did, it would have been marked when it was added to
τ and it would therefore have no children. But since D is
finite, only finitely many literals occur in D. So there must
be some literal q such that two different nodes in our infi-
nite branch are labeled D ∼| q. But then one of these two
nodes does satisfy condition 3 of Definition 6, which is a
contradiction. Therefore, τ is not infinite.
Since τ is not infinite, we can let n be a non-negative inte-
ger such that τ = τn. Suppose τn has an unmarked node.
Since a node must be marked if all its children are marked,
τn must have an unmarked leaf node x. This node must
have been added by case 2.d of our construction, and so
we can let q be a literal such that x is labeled D ∼| q,
and defeasible(q) ∈ Un+1. Since x is not marked,
it satisfies neither condition 2 or 3 of Definition 6. Since
defeasible(q) ∈ Un+1, q 6∈ F . If there is no rule
r ∈ R such that head(r) = q, then x satisfies condition 2 of
Definition 6. So there is a rule r ∈ R such that head(r) = q,
and one of the cases 2.a-2.d applies to x. So there must be
some m > n such x has a child node in τm. Then x is not
a leaf node in τm and x is not a leaf node in τ , a contradic-
tion. Therefore, every node in τ satisfies some condition in
Definition 6 and τ is a proof tree.�

References
Antoniou, G., and Maher, M. J. 2002. Embedding defeasil-
ble logic into logic programs. In Proceedings of ICLP,
393–404.
Donnelly, S. 1999. Semantics, Soundness, and Incomplete-
ness for a Defeasible Logic. Masters thesis, The University
of Georgia.
Emden, M. H. V., and Kowalski, R. 1976. The semantics
of predicate logic as a programming language. Journal of
the ACM 23:733–742.
Gelder, A. V.; Ross, K. A.; and Schlipf, J. 1988. Un-
founded sets and well-founded semantics for general logic
programs. In Proceedings 7th ACM Symposium on Princi-
ples of Database Systems, 221–230.
Gelder, A. V.; Ross, K. A.; and Schlipf, J. 1991. The well-
founded semantics for general logic programs. Journal of
the ACM 221–23.
Kunen, K. 1987. Negation in logic programming. Journal
of Logic Programming 4:289–308.
Makinson, D., and Schechta, K. 1991. Floating conclu-
sions and zombie paths: two deep difficulties in the ’di-
rectly skeptical’ approach to inheritance nets. Artificial In-
telligence 48:199–209.
Nute, D. 1992. Basic defeasible logic. In del Cerro, L. F.,
and Penttonen, M., eds., Intensional Logics for Program-
ming. Oxford University Press. 125–154.

Nute, D. 1994. Defeasible logic. In Gabbay, D., and Hog-
ger, C., eds., Handbook of Logic for Artificial Intelligence
and Logic Programming, Vol. III. Oxford University Press.
353–395.
Nute, D. 1997. Apparent obligation. In Nute, D., ed.,
Defeasible Deontic Logic, Synthese Library. Dordrecht,
Netherlands: Kluwer Academic Publishers. 287–315.
Nute, D. 2001. Defeasible logic: Theory, implementation,
and applications. In Proceedings of INAP 2001, 14th In-
ternational Conference on Applications of Prolog, 87–114.
Tokyo: IF Computer Japan.
Reiter, R. 1980. A logic for default reasoning. Artificial
Intelligence 13:81–132.

302 Technical Report IfI-06-04

NMR Systems and Applications

DEPARTMENT OF INFORMATICS 303

11TH NMR WORKSHOP

3.7 ProLogICA: a practical system for Abductive Logic Program-
ming

ProLogICA: a practical system for Abductive Logic Programming

Oliver Ray∗

Imperial College London, UK
email: or@doc.ic.ac.uk

Antonis Kakas†
University of Cyprus, Cyprus
email: antonis@cs.ucy.ac.cy

Abstract

This paper presents a new system calledProLogICA
for Abductive Logic Programming (ALP) with Nega-
tion as Failure (NAF) and Integrity Constraints (ICs).
The system builds upon existing ALP techniques but
includes several optimisations and extensions necessi-
tated by recent applications in computational biology,
temporal reasoning and machine learning. Unlike some
other ALP systems that support non-ground abduction
through the integrated use of constraint solving, we
adopt a more lightweight approach which avoids this
complexity at the expense of only computing ground
hypotheses. We argue our approach is suited to a wide
class of real-world problems and demonstrate the effec-
tiveness ofProLogICAon three non-trivial applications.

Introduction
The utility of Abductive Logic Programming (ALP) for
knowledge representation and problem solving with Nega-
tion as Failure (NAF) and Integrity Constraints (ICs) is
widely accepted (Kakas, Kowalski, & Toni 1992; Kakas
& Denecker 2002). Moreover, state-of-the-art ALP sys-
tems, such as theA-system(Kakas, Van Nuffelen, & De-
necker 2001) andCIFF (Endrisset al. 2004) also incorpo-
rate powerful constraint solvers that enable the inferenceof
non-ground abducibles and the solution of complex optimi-
sation problems characteristic of some application domains.
These systems are particularly effective in constraint-based
tasks such as planning (Van Nuffelen & Denecker 2000) and
scheduling (Kakas & Michael 2001).

But many applications do not require complex constraint
handling capabilities and simpler ALP procedures with
lower computational overheads are often appropriate. This
is especially true of recent machine learning techniques,
such asHybrid Abductive Inductive Learning(HAIL) (Ray
2005), that integrate abduction and induction in a common
reasoning framework. In this task, (i) the availability of an
inductive reasoning module for generalising abductive ex-
planations means that ground based abduction is sufficient,
(ii) the use of standard Prolog as a representation language

∗Part of this work was completed while visiting the Department
of Computer Science at the University of Cyprus.

†Part of this work was completed while visiting the Department
of Computing at Imperial College London.

and execution model means that support for Prolog libraries
and the efficient processing of logical integrity constraints is
more useful than constraint solving, and (iii) since ALP is
just one of part in a much larger system, low overheads and
good performance are paramount.

This paper presents a practical lightweight ALP system
calledProLogICA1 that was first developed as the abductive
component of HAIL, but has also been applied in three real-
world applications involving temporal event calculus rea-
soning (Albertiet al. 2005), the inference of genetic regula-
tory networks (Papatheodorou, Kakas, & Sergot 2005), and
a novel form of ”in-silico genotyping” for predicting HIV
drug resistance (Rayet al. 2006). In fact, because these ap-
plications were carried out in parallel with the development
of ProLogICA, each of them prompted a number of develop-
ments that were incorporated into the computational model
of the resulting procedure.

ProLogICA is closely based on the ALP procedure of
Kakas and Mancarella (KM) (Kakas & Mancarella 1990a),
but includes several optimisations and extensions that were
necessitated by the three applications mentioned above.
The optimisations are concerned with pruning redundant
branches from abductive and consistency computations,
whereas the extensions are concerned with overcoming the
representational restrictions of the KM procedure and avoid-
ing the computation of non-minimal solutions. The sys-
tem also supports dynamic integrity constraints, which are
generated on-the-fly as the computation unfolds, in order to
avoid floundering in consistency computations.

Improved performance is realised, through a syntactic
analysis of the ALP theory to identify sources of determin-
ism that can be exploited and, also, through run time heuris-
tics for literal selection and pruning. Enhanced functionality
is provided by preprocessing the ALP theory to overcome
the representational restrictions of KM and, additionally, by
the provision of metalogical operators that enable a finer de-
gree of control over the search space.ProLogICAsupports
most Prolog built-in predicates and offers a facility for depth
bounded computation. These features may be customised by
the user via system parameters described in this paper.

1”ProLogICA” stands for ”Prolog with Integrity Constraints
and Abduction”, but is also obtained by rearranging the capitalised
letters in ”Abductive LOGIC PROgramming”. The system can be
downloaded from http://www.doc.ic.ac.uk/˜or/proLogICA.

304 Technical Report IfI-06-04

NMR Systems and Applications

ALP
ALP is an extension of normal logic programs for reason-
ing with incomplete information. As in conventional logic
programming, ALP seeks to establish the conditions under
which a goal follows from a theory. But, in addition to com-
puting a set of bindings for the variables in the goal, ALP
returns a set of ground atoms that can be added to theory
to ensure the goal succeeds. These atoms are usually drawn
from a predefined set of ground atoms, calledabducibles,
which represent those facts for which there is only partial
information in the form of integrity constraints.

Semantics
Formally, an abductive theory is a triple(P, IC, A) compris-
ing a normal logic programP (domain knowledge), a set
of formulaeIC (integrity constraints), and a set of ground
atomsA (abducibles). A goalG is a set of literals and an
abductive explanation ofG with respect to(P, IC, A) is a
set of atoms∆ ⊆ A such thatP ∪∆ |=∗ ∃G ∧ ∀IC, where
|=∗ denotes the satisfaction of the formula on the right in a
stable modelof the program on left. In the terminology of
(Kakas & Mancarella 1990b),G is said to be satisfied in a
Generalised Stable Model(GSM) of (P, IC, A).

To discriminate between alternative abductive explana-
tions, additional preference criteria are often utilised.Two
popular desiderata areminimalityandbasicality. Formally,
an explanation∆ of G with respect to(P, IC, A) is minimal
iff there is no∆′ ⊂ ∆ such that∆′ is also an explanation of
G, and isbasiciff there is no∆′ 6⊇ ∆ such that∆′ is also an
explanation of∆. Intuitively, an explanation∆ is minimal
if none of its atoms are redundant; and it is basic if none of
its atoms can be further explained.

Procedure
The KM procedure is a standard ALP technique that
computes abductive explanations by interleaving abductive
derivations (in which abducibles are assumed) and consis-
tency derivations (in which consistency is enforced). Given
a theory(P, IC, A) and a goalG, the KM procedure starts
an abductive derivation by unfolding the goalG against the
programP in Prolog fashion until an abduciblea is selected.
At this point, a consistency derivation is invoked to see if
the atoma can be added to the initially empty hypothesis∆
without violating the integrity constraintsIC.

A consistency derivation comprises one separate branch
for each resolvent of the integrity constraints and the ab-
ducible a under investigation. Each such resolvent is re-
garded as a query that must be shown to fail in order for the
integrity check, as a whole, to succeed. This is established
by repeatedly resolving on selected literals in all possible
ways and, if necessary, assuming further abducibles (that are
carried over to any remaining branches of the computation).

When all branches of the consistency derivation have been
closed, the outer abductive computation continues witha
and any other abducibles assumed in the consistency com-
putation added to∆ – indicating that all subsequent calls to
these abducibles should immediately succeed. If any branch
of the consistency derivation cannot be closed, then the outer

abductive computation is failed and the backtracking mech-
anism is invoked.

Negative literals, which are preceded by the connective
not, are treated as abducibles subject to the (implicit) in-
tegrity constraint∀(not b↔ ¬b). Thus, whenever a negative
literal not b is selected in an abductive (resp. consistency)
derivation, it is assumed (resp. failed) by the KM procedure
subject to there being a successful consistency (resp. abduc-
tive) derivation for the positive literalb – possibly resulting
in deeply nested consistency and abductive computations.

Example
The KM procedure is best illustrated by an example.
Fig. 1 shows an abductive theory describing the lactose
metabolism of the bacterium E. Coli. The program P mod-
els the fact that E. coli can feed on the sugar lactose (lact)
if it makes two enzymes permease (perm) and galactosi-
dase (gala). Like all enzymes (E), these are made if they
are coded by a gene (G) that is expressed. These enzymes
are coded by two genes (lac(y) andlac(z)) in cluster
of genes (lac(X)) – called anoperon– that is only ex-
pressed when the amounts of glucose (gluc) are low (lo)
and lactose are high (hi).2 The abduciblesA declare all
ground instances of the predicatesamt andsugar as as-
sumable. The integrity constraints state that the amount ofa
substance (S) may not be both high and low; and can only
be known if the substance is a sugar. (The atomic de-
notes logical falsity, so the first constraint is equivalentto
∀S : ¬(amt(S, lo) ∧ amt(S, hi))), while the second con-
straint is equivalent to∀S,V : amt(S, V)→ sugar(S).)

%------ Domain Knowledge (P) ------%

feed(lact):-make(perm),make(gala).

make(E):-code(G,E),express(G).

express(lac(X)):-amt(gluc,lo),amt(lact,hi).

code(lac(y),perm).

code(lac(z),gala).

%--- Integrity Constraints (IC) ---%

ic :- amt(S,lo), amt(S,hi).

ic :- amt(S,V), not sugar(S).

%--------- Abducibles (A) ---------%

abducible_predicate(amt).

abducible_predicate(sugar).

Figure 1: ALP model of lactose metabolism regulation in E.
coli. — Simplified from the case study in (Ray 2005).

The KM computation resulting from the goal
feed(lact) is shown in Fig. 2. In the notation of
(Kakas & Mancarella 1990a), abductive derivations are
enclosed in a single-line boxes, while consistency compu-
tations are enclosed in double boxes. The initial goal is

2Biologically, this reflects the fact that glucose is a preferred
food source that E. coli metabolises more efficiently than lactose.

DEPARTMENT OF INFORMATICS 305

11TH NMR WORKSHOP

shown at the very top of the computation. The next four
goals are obtained by unfolding the top goal Prolog-style by
resolving with the clauses in the programP .

Upon selectingamt(gluc,lo), KM adds this ab-
ducible to the initially empty hypothesis∆ and begins
the first consistency derivation. Since the abducible
resolves with both integrity constraints, there are two
branches, which, for convenience, are separated by a dou-
ble horizontal line. The first must show the failure of
amt(gluc,hi), which it does by abducing its negation
notamt(gluc,hi).

Adding this to∆, KM proceeds with the second branch,
which must show the failure ofnotsugar(gluc). This
means showingsugar(gluc) by a subsidiary abductive
computation. Since it is abducible, this is assumed subject
to its own integrity check. But, as it does not trigger any in-
tegrity constraints, the innermost consistency derivation triv-
ially succeeds; and, hence, so do the enclosing abductive and
consistency derivations.

Note that a double box succeeds when all of its branches
are disproved (denoted�), whereas a single box succeeds
when all of its goals are proved (denoted�). Note also how
the hypothesis∆ grows monotonically throughout the com-
putation. For compactness, we only show the hypothesis
at the beginning and end of each (branch of a) consistency
derivation. It is assumed the final hypothesis is exported to
the enclosing abductive derivation.

Having abducedamt(gluc,lo), sugar(gluc) and
notamt(gluc,hi), KM resumes the outer abduc-
tive computation, where the goalsamt(lact,hi) and
make(gala) are pending. The former results in a consis-
tency derivation analogous to that described above, but the
latter succeeds the already abduced atomsamt(gluc,lo)
andamt(lact,hi)without needing to perform any addi-
tional consistency checks.

This example shows the top-down nature of KM and its
handling of negation through subsidiary computations like
NAF in conventional Prolog. It also illustrates the main
strengths of this procedure, which are (i) the interleaving
of abductive and consistency computations so that integrity
violations are detected as soon as they arise, and (ii) the
avoidance of excessive integrity checking by recording the
absenceof abducibles selected in consistency computations
and by checking only those constraints that resolve with the
abducible being assumed.

To avoid the complex integrity checking procedures
needed to handle existentially quantified variables in ab-
ducibles, KM is committed to selecting ground abducibles
only. This means KM must explore all ways of failing a con-
straint which may lead to variable bindings that result in the
grounding of abducibles. However, experience shows that
existing implementations of KM generate excessive num-
bers of choice points, which makes them too inefficient for
the applications described in this paper. In addition, as dis-
cussed in the next section, KM imposes two restrictions
upon ALP theories that are not always appropriate, and it
provides no mechanisms for handling the large number of
explanations that can arise in practical applications.

We have developedProLogICAto address these issues.

?+feed(lact)
?+make(perm),make(gala)
?+code(Y,perm),expr(Y),make(gala)
?+expr(lac(y)),make(gala)
?+amt(gluc,lo),amt(lact,hi),make(gala)

∆={amt(gluc,lo)}
?-amt(gluc,hi)
?-�

∆={not amt(gluc,hi),amt(gluc,lo)}

∆={not amt(gluc,hi),amt(gluc,lo)}
?-notsugar(gluc)

?+sugar(gluc)

∆={sugar(gluc),not amt(gluc,hi),amt(gluc,lo)}
?-�

∆={sugar(gluc),not amt(gluc,hi),amt(gluc,lo)}

?+�

?-�

∆={sugar(gluc),not amt(gluc,hi),amt(gluc,lo)}

?+amt(lact,hi),make(gala)

∆={amt(lact,hi),
sugar(gluc),not amt(gluc,hi),amt(gluc,lo)}

?-amt(lact,lo)
?-�

∆={not amt(lact,lo),amt(lact,hi),
sugar(gluc),not amt(gluc,hi),amt(gluc,lo)}

∆={not amt(lact,lo),amt(lact,hi),
sugar(gluc),not amt(gluc,hi),amt(gluc,lo)}

?-notsugar(lact)

?+sugar(lact)

∆={sugar(lact),not amt(lact,lo),amt(lact,hi),
sugar(gluc),not amt(gluc,hi),amt(gluc,lo)}

?-�

∆={sugar(lact),not amt(lact,lo),amt(lact,hi),
sugar(gluc),not amt(gluc,hi),amt(gluc,lo)}

?+�

?-�

∆={sugar(lact),not amt(lact,lo),amt(lact,hi),
sugar(gluc),not amt(gluc,hi),amt(gluc,lo)}

?+make(gala)
?+code(Z,gala),expr(Z)
?+expr(lac(z))
?+amt(gluc,lo),amt(lact,hi)
?+amt(lact,hi)
?+�

Figure 2: Successful KM computation for the query
feed(lact) using the ALP theory in Fig. 1.

306 Technical Report IfI-06-04

NMR Systems and Applications

ProLogICA
Initialisation
ProLogICAis a meta-interpreter for SICStus Prolog 3.11.2.
The code is contained in a single Prolog filealp.pl and
is invoked with the commandsicstus -l alp. A list
of available commands is obtained by typinghelp. An
ALP theory to be interpreted is loaded with the command
file(’fname’). If necessary, the working directory is
set with the commandpath(’dirpth’). The object file
syntax is shown in Fig. 1. Negative literals may appear
in the bodies of clauses using the operatornot/1 (which
may not be nested). Integrity constraints are clauses with
the head atomic. Abducible predicates are declared by
abducible predicate/1. Built-in Prolog predicates
can be used, but impure ones should be treated with care.
Control primitives like cut and disjunction are not supported.
All non-built-in predicates should be declared dynamic: e.g.
with the following declaration for the code in Fig. 1:

:-dynamic feed/1,make/1,code/2,express/1,

amt/2,sugar/1,abducible_predicate/1,ic/0.

Invocation
Abductive queries are invoked through the predicate
demo/2. There first argument should be instantiated
to a list of goals. The second argument will become
bound to a list of abducibles. Thus, running the query
?-demo([feed(lact)],D) on the code in Fig. 1 results
in the answerD=[sugar(lact), not amt(lact,lo),
amt(lact,hi), sugar(gluc), not amt(gluc,hi),
amt(gluc,lo)]. The Prolog backtracking mechanism
will search for alternative explanations by entering a ”;”. If
eval/2 is used in place ofdemo/2, it will first compute
all explanations and then return only the minimal ones.

Preprocessing
The KM procedure relies heavily on two representational
restrictions: (i) that all integrity constraints contain an ab-
ducible predicate and (ii) that no abducible predicates are
defined in the theory. These assumptions allow KM to avoid
repeatedly re-checking all of the integrity constraints every
time an atom is abduced. From a knowledge representation
perspective, these restrictions can be motivated by arguing
that abducibles are predicates whose extents are completely
unknown except for the integrity constraints.

However, these assumptions are not always practicable
as the first is often violated when the application provides
partial knowledge of abducible predicates, and the second
is often violated when the application suggests general do-
main integrity constraints that do not explicitly mention any
abducible predicates. Moreover, in situations that involve
refining incomplete theories (Ray 2005), these assumptions
are particularly inconvenient.

Thus,ProLogICAprovides a preprocessor that transforms
any abductive theory into a theory satisfying (i) and (ii). In
fact, it is well known that (ii) can always be ensured by re-
placing each abducible predicatep/n by a new abducible
predicatep’/n and adding a clause to the program of the

form p(X1,...,Xn):- p’(X1,...,Xn). Since, this
usually leads to the violation of (i),ProLogICArepeatedly
unfolds each constraint with no abducibles by resolving on
a selected atom with the program clauses.

Since, in general, it may be impossible to ensure that all
constraints derived in this way contain abducibles, after a
preset number of steps,ProLogICAcollects those with ab-
ducibles, as these can be efficiently processed during the
computation, and leaves the others to be checked at the end.
The transformed clauses can be seen by typinglist and
can be recomputed with the commandreload.

Features
ProLogICAoffers many features not found in existing KM
implementations. To ensure termination, derivations are
depth bounded. To avoid floundering in consistency com-
putations, dynamic integrity constraints are issued (Kakas,
Michael, & Mourlas 2000). A selection policy is used that
preferentially selects ground atoms, evaluates built-insas
soon as they are executable, and processes assumed or in-
consistent abducibles when they become ground. A meta-
predicateatleast/2 is offered for ensuring the success of
N goals from a given list whilst assuming the fewest num-
ber of abducibles. Efficient pruning mechanisms are also
provided, as described below.

Settings
Customisation ofProLogICAis achieved via user-definable
system parameters whose values are set with the command
set(param,value). Boolean settings take the values
true or false, while numeric settings take integers. The
parameters are summarised below (with default values).

max ab depth (70): bounds the combined depth of all ab-
ductive derivations in a computation.

max con depth (50): bounds the individual depth of each
consistency derivations in a computation.

max ic unfold (5): bounds the number of times integrity
constraints are unfolded during preprocessing. Setting
this to 0 disables integrity unfolding, but still performs a
consistency check at the end of each computation. Setting
this to a negative value disables all pre and postprocessing
of integrity constraints and abducibles.

enable pruning (true): activates pruning mechanisms that
effect a substantial reduction in the number of redundant
branches in the search space at the expense of a negligi-
ble loss of performance on non-redundant branches. This
is done mainly by eliminating unnecessary backtracking
points in consistency derivations.

exploit determinism (true): uses so-calledclosed predi-
cates, which do not depend on any abducibles, to enable
further pruning of consistency computations. Although it
reduces execution times, this option can lead to a loss of
completeness if the program contains positive cycles.

attempt minimal (false): To avoid computing non-
minimal solutions,ProLogICA offers a heuristic search
strategy that attempts to minimise the number of literals

DEPARTMENT OF INFORMATICS 307

11TH NMR WORKSHOP

in each explanation. This almost always reduces the
number of non-minimal hypotheses, but can reduce or
increase the execution time according to context.

show negatives (false): When true, this option prevents
negative literals being removed from computed explana-
tions during postprocessing.

show constraints (false): When true, this option results in
dynamic integrity constraints being appended on to com-
puted explanations during postprocessing.

show time (false): When set, this option results in execu-
tion times being appended on to computed explanations
during postprocessing.

debug info (false): When true, this option results in min-
imal debugging information being written onto the user
output during execution.

Limitations
ProLogICA avoids the need for more complex constraint
solving techniques by precluding the selection of non-
ground abducibles in abductive computations. This brings
with it the possibility of floundering - where a branch of the
search space cannot be explored as none of the goal literals
can be selected. In consistency computations floundering
is avoided through the use of dynamic integrity constraints.
In abductive computations floundering is partially avoided
by postponing the selection on non-ground abducibles. But,
the programmer must ensure that variables are sufficiently
grounded so floundering does not prune useful solutions.
(This is analogous to the use of standard Prolog without
constructive negation.)ProLogICA’s preprocessing facility
does not use clever heuristics in the unfolding of integrity
constraints. No subsumption checking is performed when
issuing dynamic integrity constraints. More user-friendly
debugging and visualisation tools are needed.

Applications3

Temporal Reasoning in Multi-Agent Systems
ProLogICA has been used within a multi-agent systems
project calledSocieties of Computees(SOCS) (Albertiet
al. 2005; Stathiset al. 2004) to implement the Temporal
Reasoning (TR) component of its computees (autonomous
agents). This aspect of the computee architecture allows an
agent to maintain a coherent model of its evolving environ-
ment and infer temporal information missing from its neces-
sarily incomplete view of the external world.

The TR representation is based on a variant of the Abduc-
tive Event Calculus (Eshghi 1988; Denecker, Missiaen, &
Bruynooghe 1992; Shanahan 2000), based on the Language
E (Kakas & Miller 1997), which models how the truth or fal-
sity of certain fluents (properties) vary over time as a result
of certain events (actions) happening, or not. Atoms of the
form holds at(F, T) denote that the fluentF is true at time

3In contrast to the previous two sections, this section uses the
notation of classical logic to express clauses and theories: with the
connective← in place of:- and with⊥ in place ofic.

T , while atoms of the formhappens(A, T) denote that the
actionA occurs at timeT .

The abductive theory is formed of two parts. The ”domain
independent” axioms, shown below, formalize how fluents
are caused by events and how they persist forwards in time.
For an agent to believe a fluentF holds at timeT , either
(i) an eventA previously occurred that initiatedF , or (ii)
F was observed to hold in the past, or (iii)F is assumed
(abduced) to hold initially – providing that no intervening
event terminatesF . Negative fluents are representedneg(F)
and are treated symmetrically.

holds at(F, T)← happens(A, T1),
T1 < T, initiates(A, T1, F), not clipped(T1, F, T).

holds at(F, T)← observed(F, T1),
T1 ≤ T, not clipped(T1, F, T).

holds at(F, T)← assume holds(F, 0),
not clipped(0, F, T).

clipped(T1, F, T2)← happens(A, T),
T1 ≤ T < T2, terminates(A, T, F).

The second part of the theory contains the domain specific
axioms stating which actions initiate and terminate which
fluent under which conditions. For example, if our domain
involves the parking of cars in a car park, we may have the
following axioms – stating that the action of parking a car
will result in the car being in the car park if there is a free
place or, even if their is no free space, will still result in
the car being in the car park providing there is a parking
attendant (with access to specially reserved places):

initiates(park(Car), T, in car park(Car))←
holds at(free place, T).

initiates(park(Car), T, in car park(Car))←
holds at(neg(free place), T),
holds at(park attendant, T).

There is one domain independent integrity constraint

⊥ ← holds at(F, T), holds at(neg(F), T)

stating that a fluent and its negation cannot hold at the
same time; and there may be other domain specific in-
tegrity constraints constraining evolution of one or more
fluents over time. There is just one abducible predicate
assume holds expressing the fact that we have incomplete
information only for fluents. As the computee operates, it
also receives information from its environment in the form
of a narrative containing observations about particular flu-
ents holding and certain events happening at specific times.
For example, an agent may get the following narrative.

observed(park attendant, 1).

happens(park(car1), 3).

After adding these observations to its knowledge base,
the agent uses an abductive engine to infer missing knowl-
edge about the evolution of fluents. In the example
above the agent should infer that at time 3 the attendant
and car are in the car park, but there may or may not

308 Technical Report IfI-06-04

NMR Systems and Applications

Query 0 1 2 3 4 5 6 7 8 9 Avg.
CIFF (v2) 54.2 52.1 95.5 44.3 94.3 45.0 44.7 49.8 101 101 68.3
ProLogICA(v0) 1.17 1.38 3.31 2.12 2.51 2.19 2.22 2.37 2.27 2.29 2.18
ProLogICA(v1) 0.16 0.16 0.28 0.16 0.17 0.16 0.16 0.17 0.17 0.17 0.18

Table 1: Execution time (in seconds) of CIFF vs.ProLogICA for 10 queries in the SOCS temporal reasoning domain.
— Experiments using the ALP model developed in (Albertiet al. 2005).

be a free place. Thus SOCS agents distinguish scepti-
cal conclusions likeholds at(in car park(car1), 3) and
holds at(park attendant, 3) from credulous conclusions
like holds at(free place, 3). Formally a ground atom
holds at(f, t) is credulouslyentailed iff it has an abductive
explanation; and it isscepticallyentailed iff it is credulously
entailed but its complementholds at(neg(f), t) is not.

The SOCS consortium has implemented a computational
agent platform, called PROSOCS (Stathiset al. 2004), that
is based on the SOCS architecture. Since this platform is
parametric on the underlying abductive procedure, it has en-
abled the SOCS consortium to carry out experiments with
different abductive systems in order to achieve the most ef-
fective setup. Such experiments have compared the perfor-
mance ofProLogICAwith that of an alternative ALP system,
CIFF (Endrisset al. 2004), which is used elsewhere in the
SOCS project for agent planning tasks.

Table 1 compares the execution times ofProLogICAand
CIFF for 10 different queries in a test-bed domain. The table
shows execution times, in seconds, on a Pentium III desktop
PC. For completeness, Table 1 includes data for two versions
of ProLogICA: the latest version (v1) and an earlier version
(v0) that was originally used in (Albertiet al. 2005) under
the name ASLD(N,IC). On average,ProLogICA (v0) was
30 times faster than CIFF (v2), and theProLogICA(v1) was
300 times faster than CIFF (v2).

According to (Alberti et al. 2005), ProLogICA is
marginally slower than an unsound optimisation of CIFF,
called triggering, that involves suppressing the unfolding
of anyholds at atoms that appear within an integrity con-
straint. But, while their performance is comparable,Pro-
LogICA without triggering produced only correct answers,
while CIFF with triggering did not. Overall,ProLogICAwas
found to exhibit a high level of robustness, so that, in spiteof
its lightweight nature, it was found to be ”significantly more
effective” in this application.

Inference of Genetic Regulatory Networks

ProLogICA has been applied to the task of inferring gene
interactions using data from microarray experiments on M.
tuberculosis using the method developed in (Papatheodorou,
Kakas, & Sergot 2005). Published experimental data mea-
sures changes in levels of gene expression in response to
genetic modifications, such as knocking-out (turning off)
or over-expressing (turning on) genes, and environmental
stresses, such as changes in temperature or nutrient con-
centration. The aim of these experiments is to obtain in-
sights into the complex feedback mechanisms by which the
product of one gene affects the expression of another. As

these interactions cannot be observed directly, they must
be inferred indirectly from gene expression levels; and the
complexity of interactions and volume of experimental data
means that automatic methods are needed in this task.

As explained in (Papatheodorou, Kakas, & Sergot 2005),
statistical analysis of the raw microarray data from each
experiment reveals significant changes in the expression
of particular genes. These differences are represented
by atoms of the formincreases expression(E, G) and
reduces expression(E, G), whereE is an experiment and
G is a gene. Similarly, the experimental conditions are
recorded by atoms of the formknocks out(E, G) and
over expresses(E, G). Given a set of experimental obser-
vations and the general model of gene interactions described
below, ProLogICAwas used to abduce atoms of the form
induces(F, G) or inhibits(F, G) stating that one geneF
induces (increases) or inhibits (reduces) the expression of
anotherG. These elementary hypotheses can then be built
into paths and networks of gene interactions.

The ALP theory developed by (Papatheodorou, Kakas,
& Sergot 2005) models the general principles by which
changes in gene expression can be explained by possible
gene interactions. Because these principles are (assumed
to be) independent of any particular network topology,
they are succinctly and modularly expressed commonsense
laws such as one below, which states that an increase in the
expression of a geneX in an experimentE can be explained
by hypothesising that another geneG, which is knocked-out
in E, is an inhibitor ofX , providing that there are no other
effects that could better account for the increase ofX . Here,
incr affected by other gene(E, G, X) means that the
increase ofX in E is due to some gene other thanG and
incr affected by EnvFact(E, X) means it is due to an
environmental change.

increases expression(E, X)←
knocks out(E, G), inhibits(G, X),
not incr affected by other gene(E, G, X),
not incr affected by EnvFact(E, X).

incr affected by other gene(E, G, X)
reduces expression(E, Gx),
Gx 6= X, Gx 6= G,
related genes(Gx, G), inhibits(Gx, X).

As formalised in the second rule above, an alternative
explanation for the increase in the expression ofX could be
some other geneGx whose expression is reduced in experi-
mentE and which inhibitsX . Therelated genes predicate
is one of several mechanisms in the model for declaratively
constraining the search space by exploiting background

DEPARTMENT OF INFORMATICS 309

11TH NMR WORKSHOP

Query 0 1 2 3 4 Avg.
KM >7000 >7000 >7000 >7000 >7000 >7000
ProLogICA(v0) 0.47 12.4 12.4 281 282 118
ProLogICA(v1) 0.03 0.08 0.08 0.16 0.13 0.09

Table 2: Execution time (in seconds) of KM vs.ProLogICA for 5 queries in the genetic regulatory network domain.
— Experiments using the ALP model developed in (Papatheodorou, Kakas, & Sergot 2005).

biological information about the relationships between
different genes. There are about a dozen background rules
covering the different combinations of conditions that could
arise. The model also contains several integrity constraints
like the one below which states that a gene cannot not both
induce and inhibit another. Other constraints, not shown,
restrict the interactions of genes located on the same operon.

⊥ ← induces(F, G), inhibits(F, G)

Given this simple model of gene interactionsProLogICA
was used to to analyse data from 5 microarray experiments
involving genes thought to be implicated in the response of
M. tuberculosis to heat shock. (Papatheodorou, Kakas, &
Sergot 2005) report how the system was able to rediscover
several gene interactions already known in the literature and
to suggest further experiments for investigating other pos-
sible integrations. In addition, the highly recursive nature
of the model provided a challenging application on which
to evaluate the efficiency ofProLogICA. Table 2 shows the
time taken forProLogICA compared to a standard imple-
mentation of KM (Kakas & Mancarella 1998) – similarly
depth-bounded for a fair comparison – to find all solutions to
5 different queries each containing up to 5 atoms. Whereas
KM did not terminate on any of the queries (or return any an-
swers) after two hours,ProLogICAcomputed all minaimal
solutions in less than two tenths of a second.

Clinical Management of HIV/AIDS
ProLogICAhas been used in a ALP approach for assisting
medical practitioners in the selection of anti-retroviraldrugs
for patients infected with Human Immunodeficiency Virus
(HIV) (Ray et al. 2006). The difficulty is the ability of HIV
to accrue genetic mutations that confer resistance to known
medications. For this reason, clinical guidelines advocate
the use of laboratoryresistance teststo help identify which
mutations a patient is carrying and predict which drugs they
are most likely resistant to. But, these tests have several
drawbacks: first, they cost between one and two dollars;
second, they require medical access that most infected in-
dividuals do not have; and third, they cannot reliably detect
minority strainsof HIV (often comprising up to 20% of a
patient’s viral population) which may be harbouring drug-
resistant mutations. Thus clinicians must carefully studya
patient’s medical history for any additional clues that may
suggest the presence or absence of mutations.

To address this task, we developed an novel ”in-Silico”
Sequencing System built on top ofProLogICA to assist in
the interpretation of resistance tests and, more importantly,
to infer likely mutations and drug resistances in the absence

of such tests. These inferences are made using a patient’s
clinical history, which details previous treatment failures and
successes, and a set of rules expressing which mutations
confer resistance to which drugs. We do not invent these
associations; instead we download the same rules used by
the resistance testing laboratories to predict drug resistances
from mutations determined by genetic sampling of clinical
isolates from infected patients. But, instead of using them
deductively (i.e.forwards) to predict likely drug resistances
implied by observed mutations, we use the rules abductively
(i.e. backwards) so as to explain observed drug resistances
in terms of likely mutations.

The domain knowledge contains 64 rules (obtained from
the French national AIDS research agency) for 16 FDA-
approved drugs. These rules are represented using head
atoms of the formresistant(P, T, D) to denote that patient
aP is resistant to a drugD at timeT , and body atoms of the
form mutation(P, T, M) to denote that patientP is carry-
ing the mutationM at timeT . A typical rule is shown below
for the drug zidovudine and states that the patient is resistant
to zidovudine if he is carrying at least one of the three muta-
tions151M , 69i or 215Y F . The notation151M refers to a
mutation at codon151 in the viral genome whereby the wild
type amino acid (according to a standard reference strain of
HIV) is replaced by the mutant methionineM . Similarly,
69i denotes theinsertion of an amino acid at position69,
and215Y F is a compact way of writing215Y or 215F .

These rules exploit the meta-predicateatleast/2 to en-
sure the satisfaction of a given number of goals from a
given list using the fewest number of abducibles. The ad-
vantage of using this predicate is that, when given the goal
resistant(P, T, zidovudine) the system will not even con-
sider showing the first two mutations if it has previously es-
tablishedmutation(P, T, ”215Y F”).

resistant(P, T, zidovudine)←
atleast(1, [mutation(P, T,′ 151M ′),

mutation(P, T,′ 69i′), mutation(P, T,′ 215Y F ′)]).

Because the treatment of HIV usually involves the pre-
scription of powerful cocktails of at least three anti-
retrovirals, we provide two clauses to link the possible inef-
fectiveness (resp. effectiveness) of a combination treatment
with the resistance (resp. non-resistance) to one of the drugs
D in the set of drugsS.

ineffective(P, T, S) ←
in(D, S), resistant(P, T, D).

effective(P, T, S) ←
in(D, S), not resistant(P, T, D).

310 Technical Report IfI-06-04

NMR Systems and Applications

Query 0 1 2 3 4 5 6 7 8 9 Avg.
KM 197,760 5,439 >85,211 56,916 435,600 9,828 28,231 263 263 15,022 >83,453
ProLogICA 5,492 1,208 56,165 4,062 3,570 1,979 2,395 74 74 1,436 7,646
+atleast 4,770 1,164 25,625 3,075 3,238 1,939 2,375 74 74 73 4,241
+minimal 1,283 51 333 138 1,628 191 1,938 73 73 72 578

Table 3: Number of hypotheses returned by KM vs.ProLogICA for 10 patients in the HIV resistance domain.
— Experiments using the ALP model developed in (Rayet al. 2006).

To correctly model the dynamics of drug resistance, we
need an integrity constraint that captures a key biological
principle underlying this work: namely, the persistence of
mutations. As formalised below, this constraint states that if
a patientP is carrying a mutationM at timeT , then he or
she must also be carrying that mutation at all later timesT ′.

⊥←mutation(P, T, M), T ′ ≥ T, not mutation(P, T ′, M)

Declaring the predicatemutation/3 as abducible, this
theory can explain a history of treatment successes and
failures in terms of mutations the patient is (or is not)
carrying. For example, one explanation of the observations
below is thatp56 was not carrying mutations151M , 69i,
215Y F , 41L, 67N , 70R and 210W at time 1, but was
carrying mutation215Y F at time2.

effective(p56, 1, [zidovudine, lamivudine, indinavir]).

ineffective(p56, 2, [zidovudine, lamivudine, indinavir]).

An interesting feature of this approach is that, since we
can never really be sure which mutations a patient is carry-
ing, there is no point in looking for an optimal hypothesis.
Thus, in contrast to previous applications of ALP, we accept
that multiple explanations are inevitable and seek to develop
ways of extracting useful information from them. For this
purpose, we developed a domain specific system that uses
ProLogICAto compute a set of explanations for a patient’s
clinical history and then analyses those explanations so asto
predict which drugs the patient may be resistant to. This is
done by ranking each drug by to the number of explanations
that imply its resistance. As expected, a major computa-
tional obstacle is the sheer number of explanations.

A typical patient taking 3 different drugs at each of 10
time points results in more solutions (tens of thousands)
than can be conveniently analysed. To efficiently reduce
the number of redundant explanations, we appliedProLog-
ICA’s minimisation routine incrementally after each time
point. The reduction in the number of solutions for real
clinical data from 10 HIV-infected patients is shown in Ta-
ble 3. On average,ProLogICAprovided an order of mag-
nitude improvement of a standard implementation of KM
(Kakas & Mancarella 1998). Moreover, the use ofPro-
LogICA’s atleast predicate resulted in another factor of 2
improvement, and the incremental application of minimal-
ity produced further order of magnitude improvement (and
a significantly faster computation).

Conclusions, Related and Future Work

ProLogICAis a practical system for ALP whose utility has
been shown by recent applications in the areas of multi-
agent systems (Albertiet al. 2005) and bioinformatics (Ray
et al. 2006; Papatheodorou, Kakas, & Sergot 2005). It
is a lightweight system that is appropriate for many tasks
which do not require the ability to solve complex optimisa-
tion problems, and is versatile enough to be used as a com-
ponent of a larger reasoning system (Ray 2005).

In many respects,ProLogICAtakes a step back from some
recent ALP systems such as ACLP (Kakas, Michael, &
Mourlas 2000), SLDNFAC (Denecker & Schreye 1998), A-
system (Kakas, Van Nuffelen, & Denecker 2001), and CIFF
(Endrisset al. 2004). In these systems, the emphasis is on
integrating abduction with constraint solving to enable the
solution of complex optimisation problems. These systems
work by producing non-ground (existentially quantified) ex-
planations with an associated set of constraints and then rely
on the efficient satisfiability check of an external constraint
solver. By contrast,ProLogICA exploits the simplicity of
early procedures for ground abduction (Eshghi & Kowalski
1989; Kakas & Mancarella 1990a) by overcoming some of
their well-known inefficiencies.

ProLogICA was motivated by recent attempts to apply
ALP in areas of systems biology where it seems that highly
specific explanations and models are required. Here, the task
is to identify one or more hypotheses from a (large) set of
ground hypotheses in order to explain some experimental
observations.ProLogICA was originally developed as the
abductive component of the HAIL learning system, which
aims to support scientific theory development through the
integration of abductive and inductive logic programming
within a common reasoning framework. In this setting, ALP
is only required to construct a specific account of the input
observations to seed further generalisations.ProLogICA is
well suited to both of these settings.

An alternative framework for performing ground abduc-
tion in Logic Programming is the framework of Answer
Set Programming (ASP) (Lifschitz 1999). ASP systems
such as SMODELS (Simons, Niemelä, & Soininen 2002)
and DLV (Dell’Armi et al. 2001) have been continuously
improving and offer nowadays a very efficient computa-
tional paradigm for many problem domains. In contrast to
ALP approaches, which are top-down query-driven, ASP
approaches are bottom-up data-driven. They operate by
translating extended logic programs into ground proposi-
tional theories and employing satisfiability solvers to com-
pute the models of the original program.

DEPARTMENT OF INFORMATICS 311

11TH NMR WORKSHOP

AlthoughProLogICAhas proven to be an effective ALP
system for the applications considered in this paper, a sys-
tematic comparison of ALP and ASP remains to be carried
out. Using the translation introduced in (Satoh & Iwayama
1991) – whereby ALP problems can be encoded into the
ASP formalism – would enable a comparison of the two ap-
proaches on the problems described above. Such a compari-
son may also lead to new approaches for combining different
aspects of ALP and ASP technologies. For example, ALP
could utilise ASP methods in its integrity constraint check-
ing phase after it has generated a possible explanation.

Acknowledgments
We acknowledge the help of Andrea Bracialli who kindly
provided the experimental data in Table 1. We are grateful
to Irene Papatheodorou for her valuable comments regarding
the gene interaction model.

References
Alberti, M.; Bracciali, A.; Chesani, F.; Ciampolini, A.; En-
driss, U.; Gavanelli, M.; Guerri, A.; Kakas, A.; Lamma,
E.; Lu, W.; Mancarella, P.; Mello, P.; Milano, M.; Riguzzi,
F.; Sadri, F.; Stathis, K.; Terreni, G.; Toni, F.; Torroni, P.;
and A.Yip. 2005. Experiments with animated societies
of computees. Technical Report D14, SOCS Consortium.
http://lia.deis.unibo.it/Research/Projects/SOCS/.
Dell’Armi, T.; Faber, W.; Ielpa, G.; Koch, C.; Leone, N.;
Perri, S.; and Pfeifer, G. 2001. System description: Dlv. In
Proceedings of the 6th International Conference on Logic
Programming and Nonmonotonic Reasoning, 424–428.
Denecker, M., and Schreye, D. D. 1998. SLDNFA: An Ab-
ductive Procedure for Abductive Logic Programs.Journal
of Logic Programming34(2):111–167.
Denecker, M.; Missiaen, L.; and Bruynooghe, M. 1992.
Temporal reasoning with abductive event calculus. InPro-
ceedings of the 10th European conference on Artificial in-
telligence, 384–388.
Endriss, U.; Mancarella, P.; Sadri, F.; Terreni, G.; and Toni,
F. 2004. The CIFF Proof Procedure for Abductive Logic
Programming with Constraints. InProceedings of the 9th
European Conference on Logics in Artificial Intelligence,
31–44. Springer Verlag.
Eshghi, K., and Kowalski, R. 1989. Abduction compared
with negation by failure. In Levi, G., and Martelli, M., eds.,
Proceedings of the 6th International Conference on Logic
Programming, 234–254. MIT Press.
Eshghi, K. 1988. Abductive planning with event calcu-
lus. In Proceedings of the 5th International Conference
and Symposium on Logic Programming, 562–579.
Kakas, A., and Denecker, M. 2002. Abduction in Logic
Programming. In Kakas, A., and Sadri, F., eds.,Compu-
tational Logic: Logic Programming and Beyond, Essays
in Honour of Robert A. Kowalski, Part I, volume 2407 of
Lecture Notes in Computer Science. Springer. 402–436.
Kakas, A., and Mancarella, P. 1990a. Database Updates
through Abduction. InProceedings of the 16th Interna-
tional Conference on Very Large Databases, 650–661.

Kakas, A., and Mancarella, P. 1990b. Generalized Stable
Models: a Semantics for Abduction. InProceedings of the
9th European Conference on Artificial Intelligence, 385–
391. Pitman.
Kakas, A., and Mancarella, P. 1998. KM ALP procedure.
At http://www.cs.ucy.ac.cy/aclp/alpint.pl.
Kakas, A., and Michael, A. 2001. An abductive-based
scheduler for air-crew assignment.Applied Artificial Intel-
ligence15(3):333–360.
Kakas, A., and Miller, R. 1997. A simple declarative lan-
guage for describing narratives with actions.Journal of
Logic Programming31:157–200.
Kakas, A.; Kowalski, R.; and Toni, F. 1992. Abductive
Logic Programming.Journal of Logic and Computation
2(6):719–770.
Kakas, A.; Michael, A.; and Mourlas, C. 2000. ACLP:
Abductive constraint logic programming.Journal of Logic
Programming44(1-3):129–177.
Kakas, A.; Van Nuffelen, B.; and Denecker, M. 2001. A-
system: Problem solving through abduction. InProceed-
ings of the 17th International Joint Conference on Artificial
Intelligence, 591–596.
Lifschitz, V. 1999. Action languages, answer sets and plan-
ning. InThe Logic Programming Paradigm: a 25 year per-
spective, 357–373. Springer.
Papatheodorou, I.; Kakas, A.; and Sergot, M. 2005. In-
ference of gene relations from microarray data by abduc-
tion. In Proceedings of the 8th International Conference
on Logic Programming and Nonmonotonic Reasoning, vol-
ume 3662 ofLecture Notes in Computer Science, 389–393.
Ray, O.; Antoniades, A.; Kakas, A.; and Demetriades, I.
2006. Abductive Logic Programming in the Clinical Man-
agement of HIV/AIDS. InProceedings of the 17th Euro-
pean Conference on Artificial Intelligence. to appear.
Ray, O. 2005.Hybrid Abductive-Inductive Learning. Ph.D.
Dissertation, Department of Computing, Imperial College
London, UK.
Satoh, K., and Iwayama, N. 1991. Computing Abduction
by Using the TMS. InProceedings of the 8th International
Conference on Logic Programming, 505–518. MIT Press.
Shanahan, M. 2000. An abductive event calculus planner.
Journal of Logic Programming44(1-3):207–240.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics.Artificial
Intelligence138(1-2):181–234.
Stathis, K.; Kakas, A.; Lu, W.; Demetriou, N.; Endriss, U.;
and Bracciali, A. 2004. Prosocs: A platform for program-
ming software agents in computational logic. In Müller,
J., and Petta, P., eds.,Proceedings of the 4th International
Symposium ‘From Agent Theory to Agent Implementation’.
Van Nuffelen, B., and Denecker, M. 2000. Problem solv-
ing in ID-logic with aggregates: some experiments. In
Proceedings of the 8th International Workshop on Non-
Monotonic Reasoning, Session on Abduction, 1–5.

312 Technical Report IfI-06-04

NMR Systems and Applications

DEPARTMENT OF INFORMATICS 313

11TH NMR WORKSHOP

314 Technical Report IfI-06-04

Action and Change

4 Action and Change
The special track on reasoning about action and change (RAC) aims to bring together
researchers to consider the fundamental issues in the field of RAC with their links to
NMR, together with the new challenges that the deployment of RAC into applications
can bring.

We had six submissions which we were all able to accept for presentation at the
workshop. Five of the papers address foundational issues, from model checking in the
situation calculus to revising action theories. One paper reports on applying the fluent
calculus to solving a variant of the Wumpus world.

Session chairs

Antonis Kakas, University of Cyprus, Cyprus

Gerhard Lakemeyer, RWTH Aachen, Germany

Program committee

Thomas Eiter, TU Vienna, Austria

Alfredo Gabaldon, NICTA, Australia

Sebastian Sardina, RMIT, Australia

Marek Sergot, Imperial College, UK

Tran Cao Son, New Mexico State U, USA

Michael Thielscher, TU Dresden, Germany

Schedule Tuesday 30 May 2006

• 10.30 Yilan Gu and Iluju Kiringa, Model Checking Meets Theorem Proving: a
Situation Calculus Based Approach

• 11.00 Jens ClaSSen and Gerhard Lakemeyer, A Semantics for ADL as Progres-
sion in the Situation Calculus

• 11.30 Thomas Eiter, Ersa Erdem, Michael Fink and Jan Senko, Resolving Con-
flicts in Action Descriptions

• 12.00 James P. Delgrande, Torsten Schaub and Hans Tompits An extended query
language for action languages (and its application to aggregates and preferences)

• 12.00 Lunch

• 14.00 Debora Field and Allan Ramsay, Planning ramifications: When ramifica-
tions are the norm, not the ‘problem

• 14.30 Michael Thielscher, Designing a FLUX Agent for the Dynamic Wumpus
World

• 15.00 S Grell, T Schaub and J Selbig, ModeLling Biological Networks by Ac-
tions Language Via Answer Set Programming 1 (Joint talk with “Systems and
Applications”)

• 15.30 Coffee

• 16.00 Panel on Action Languages and Application Modeling

DEPARTMENT OF INFORMATICS 315

11TH NMR WORKSHOP

316 Technical Report IfI-06-04

Action and Change

4.1 Model Checking Meets Theorem Proving

Model Checking Meets Theorem Proving:
a Situation Calculus Based Approach

Yilan Gu
Dept. of Computer Science

University of Toronto
yilan@cs.toronto.edu

Iluju Kiringa
SITE

University of Ottawa
kiringa@site.uottawa.ca

Abstract

To reason about properties of reactive programs, one
may usually follow either an operational or a deductive
approach. In this paper, we propose representing the
classical model checking approach of Clarke and Emer-
son in the situation calculus. Doing so, we propose an
approach that merges the operational and the deduc-
tive approaches into one single framework by translat-
ing Kripke models that represent system specifications
into theories formulated in the situation calculus and
by recasting CTL as a sublanguage of the calculus.

Introduction
The importance of long running, nondeterministic con-
current programs has been emphasized over the past
two and half decades since Pnueli proposed using tem-
poral logic for reasoning about them (Pnueli 1977).
These, also called reactive systems, as opposed to se-
quential transformational programs, show ideally non-
terminating behaviors (Clarke, Grumberg, & Peled
1999). Their mathematical properties are usually de-
fined using either the operational or the deductive ap-
proach. In the operational approach, programs are
viewed as generator of computations. Given a program,
all the computations associated with it can be gener-
ated once by an interpreter, or incrementally by specify-
ing a transition relation that holds between consecutive
states of the computation of the program. In summary,
the operational semantics is based on the structure of
the given program (Plotkin 1981). In the deductive ap-
proach, programs are viewed as specifying a set of com-
putations about which some statements can be proven.
Dynamic logic (Harel, Tiuryn, & Kozen 2000), Hoare’s
systems (Hoare 1969), and the situation calculus (Mc-
Carthy 1963; Reiter 2001) are examples of formalisms
used in this approach.

The semantics of concurrent programs is described
in either approaches in terms of infinite behaviors, also
called computations. A behavior is a sequence of states
that a program moves through while executing. The be-
haviors are all the possible interleavings of the “atomic”
steps of the subprograms running in parallel; that is,
given a concurrent program P composed of subpro-
grams P1, P2, . . . , Pn, where the Pis, 1 ≤ i ≤ n, are

sequential programs running in parallel, its execution is
usually modeled by nondeterministically executing the
atomic steps for each Pi, 1 ≤ i ≤ n, in an arbitrary or-
der. So if P is in a state sk, it nondeterministically goes
to the next state sk+1 by executing an arbitrary atomic
step of any of its subprograms Pi. This procedure is
repeated infinitely, or at least indefinitely.

Linear and branching temporal logics are the most
commonly used languages for describing computations.
The model checking problem (MC) can be defined as
follows: Given (1) a reactive system S represented as
a finite-state structure which generates computations,
and (2) a temporal logic formula P specifying a prop-
erty of S, find whether S satisfies P. There are suc-
cessful algorithmic solutions of MC. As an example, in
(Clarke & Sistla 1986), Kripke Structures are used to
represent the reactive system and Computational Tree
Logic (CTL), a branching time temporal logic, is used
to represent properties of the system.

In this paper, we propose representing the classical
MC approach of (Clarke & Sistla 1986) in the situation
calculus. Our approach merges both the operational
and the deductive approaches into a single framework
by translating Kripke models into theories of the situ-
ation calculus and by recasting CTL as a sublanguage
of the same calculus. This approach can be labeled as
deductive-operational in the sense of (Pnueli 1981); that
is, it deals with computations arising during program
execution and, at the same time, allows us to deduc-
tively reason about those computations in the logic of
the situation calculus.

In (De Giacomo, Ternovskaia, & Reiter 1997), it is
argued that, for non-terminating programs, one needs
to rely on a transition semantics, in which one allows
for interpreting and quantifying over parts of programs
and their executions. In this paper, we show that an
evaluation semantics in which one allows for interpret-
ing whole programs is possible for non-terminating pro-
grams.

The paper is organized as follows. In the next section,
we introduce the situation calculus, and the classical
model of concurrent systems in terms of Kripke struc-
tures. Then we give an effective method for translating
a Kripke structure to a basic action theory. Next, we

DEPARTMENT OF INFORMATICS 317

11TH NMR WORKSHOP

show how CTL properties are specified in the situation
calculus and treat the model checking of action theories
within our framework. This is followed by the presen-
tation of an an example which illustrates our approach
of model checking in the situation calculus. Finally,
we conclude the paper and indicate avenues for future
work.

Preliminaries

The Situation Calculus
The situation calculus (McCarthy 1963; Reiter 2001)
is a many-sorted second order language with equal-
ity specifically designed for representing dynamically
changing world. We consider a version of the situation
calculus with three sorts for actions (A), situations (S),
and objects (O) other than the first two. Actions are
first order terms consisting of a 0−ary action function
symbols corresponding to the transitions of the finite
state structures. Situations are first order terms de-
noting a sequence of actions. They are represented us-
ing a binary function symbol do: do(α, s) denotes the
sequence resulting from adding the action α to the se-
quence s. The constant S0 (initial situation) denotes
the empty sequence []. In modeling systems, situations
will correspond to computations. Objects constitute
a catch-all sort representing everything else depending
on the domain of application.

We shall have a finite number of unary predicates
called fluents which represent properties with truth
values varying from state to state. Fluents are denoted
by predicate symbols with argument a situation term.
In a Reader-Writer example given below (Example 1),
state1(s) is a relational fluent, meaning that the system
is in state w1 after performing the sequence of opera-
tions in the computation s. In addition to the fluents,
we shall have a finite number of ground situation inde-
pendent predicates. For example, we will use ground
binary predicate trans(I, J) to represent a transition
form state wI to wJ of the system being modeled.

The language also includes special predicates Poss,
and @; Poss(a, s) means that the action a is possible
in the situation s, and s @ s′ states that the situation
s′ is reachable from s by performing some sequence of
actions. In system modeling terms, s @ s′ means that s
is a proper subcomputation of the computation s′. The
predicate @ will be useful in formulating properties of
systems. We call this fragment of the situation calculus
L0

0. In general, we can define fragments Lj
i, where

i (j) is the maximum number of arguments of sort O
that an action function (fluent predicate) may have.

Axiomatizing a Domain Theory

A domain theory is axiomatized in the situation calcu-
lus with four classes of axioms which constitute a basic
action theory (BAT – More details in (Pirri & Reiter
1999)):1

1There are also unique names axioms which guarantee
that primitive actions of the domain are pairwise unequal.

Foundational axioms for situations (Df). These
guarantee an infinite tree structure for the situations,
and are the same for all BATs.

Action precondition axioms (Dap). There is
one for each action function A, with syntactic form
Poss(A, s) ≡ ΠA(s). Here, ΠA(s) is a formula with free
variable s. These characterize the preconditions for do-
ing action A in the situation s.

In the Reader-Writer example, the following states that
it is possible for the system to move from state 1 to
state 2 relative to the system computation s iff there is
a transition from state 1 to state 2, and as a result of
performing the actions in that computation, the system
is in state 1.

Poss(tr1,2, s) ≡ trans(1, 2) ∧ state1(s).

Successor state axioms (Dss). There is one
for each relational fluent F (s), with syntactic form
F (do(a, s)) ≡ ΦF (a, s), where ΦF (a, s) is a formula
with free variables among a and s. These characterize
the truth values of the fluent F in the next situation
do(a, s) in terms of the current situation s, and they
embody a solution to the frame problem for determin-
istic actions (Reiter 2001).

In the Reader-Writer example, the following states that
the system will be in the state 1 relative to the com-
putation do(a, s) iff the last system operation a in the
computation was tr4,1 or tr6,1, or it was already in state
1 relative to the computation s, and a does not lead the
system to another state.

state1(do(a, s)) ≡ a = tr4,1 ∨ a = tr6,1∨

state1(s) ∧ a 6= tr1,2 ∧ a 6= tr1,3.

Initial database (DS0
). This is a set of first order sen-

tences whose only situation term is S0; it specifies the
initial state of the domain, in our case, the initial sys-
tem state. Notice that while these initial system axioms
specify a complete initial system state (as is normal for
reactive systems), this is not a requirement of the theory
we are presenting. Therefore our account could, for ex-
ample, accommodate incomplete initial system states.

Notations
We now introduce further notations used later in the
paper. Suppose D is a basic action theory. Further-
more, suppose that UA = {A1, . . . , Ak} is the (finite)
set of actions of D, UA

∗ is the set of action sequences,
and F = {F1, . . . , Fn} is the (finite) set of fluents of
D, and V = {0, 1} is a set of labels denoting the truth
values. Then ~v0 = 〈v01

, . . . , v0n
〉 denotes the vector

of initial truth values of fluents of D, where v0j
with

1 ≤ j ≤ n is the initial value of fluent Fj , and ci(α)
specifies whether the fluent Fi holds in the situation
represented by the action sequence α; ci is called the
characteristic function (Ternovskaia 1999) of fluent Fi.

Checking a Situation Calculus System
Let D be a background situation calculus axiomatiza-
tion for some reactive system, as described above, and

318 Technical Report IfI-06-04

Action and Change

let Q(s) be a situation calculus formula – a property –
with one free situation variable s.

Let S = do(αn, do(αn−1, · · · , do(α1, S0) · · ·)) be a
situation term that mentions no free variables. We treat
this as a system computation, and define the answer to
Q relative to this computation to be “yes” iff D |= Q(S).
The answer is “no” iff D |= ¬Q(S). So on this defini-
tion, model checking is performed relative to a system
computation, and, in the most general setting, it is a
theorem-proving task. In particular, the executability
problem is to check whether D |= executable(S), where

executable(s) =df (∀a, s′).do(a, s′) v s′ ⊃ Poss(a, s′).

It is important to notice the following property of ba-
sic action theories formulated in the language of Sub-
section ”The Situation Calculus”.

Theorem 1 The basic action theories formulated in
the fragment L0

0 of the situation calculus are decidable.
That is, suppose D is a BAT, and φ is a formula, all of
which are formulated in L0

0; then there is an algorithm
for establishing whether D |= φ.

Proof (outline):
Similar to the idea in This is a corollary of Theorem 3
in (Ternovskaia 1999) that shows decidability for a sim-
ilar fragment of the situation calculus, but where there
are no situation independent predicates. The proof
there is now augmented by showing that adding finitely
many ground situation independent predicates does not
change the nature of the automata constructed for D
and φ. �

GOLOG

GOLOG (Levesque et al. 1997) is a situation calculus-
based programming language for defining complex ac-
tions in terms of a set of primitive actions axiomatized
in the situation calculus according to Subsection ”Ax-
iomatizing a Domain Theory”. It has control structures
found in most Algol-like languages, augmented by some
nonstandard structures: Sequence (α ; β: Do action α,
followed by action β); Test actions (p?: Test the truth
value of expression p in the current situation); Nonde-
terministic action choice (α | β: Do α or β); Nonde-
terministic choice of arguments ((π x)α: Nondetermin-
istically pick a value for x, and for that value of x, do
action α); Conditionals (if-then-else) and while loops;
and Procedures, including recursion.

The following is a GOLOG procedure that executes
an sequence of n randomly picked actions which are
possible:

proc execActions(n)

n = 0? |

n > 0? ; (π a)[Poss(a)? ; a]; execActions(n− 1)

endProc .

The semantics of GOLOG programs is defined by
macro-expansion, using a ternary relationDo (Levesque

et al. 1997); Do(P, s, s′) is an abbreviation for a situa-
tion calculus formula which intuitively means that s′ is
one of the situations reached by evaluating the GOLOG
program P, beginning in situation s. In the reactive sys-
tem setting, any binding for s′ represents the system
computation that results from executing P, beginning
in the system state defined by the computation s.

Concurrent Systems

Concurrent reactive systems are semantically character-
ized by transition systems (Wolper 1998; Clarke, Grum-
berg, & Peled 1999). Usually, the latter are modeled by
Kripke structures (Clarke, Grumberg, & Peled 1999)
which we now introduce.

Definition 1 (Kripke structure) A finite Kripke
structure is a quintuple K = (P,W,R,w0, L) where

• P is a finite set of atomic propositions;

• W is a finite set of states;

• R ⊆W ×W is a total (transition) relation;

• w0 is an initial state;

• L : W → 2P maps each w ∈ W to the set {p ∈ P | |=w

p}.

Definition 2 (Behavior) Suppose K =
(P,W,R,w0, L) is a Kripke structure. Then a
behavior σ of K is a function from N , a subset of the
natural numbers, to W such that:

• N = {0, 1, .., n} for some natural number n ∈ N, or
N is the set of natural numbers;

• σ(0) = w0;

• ∀i ≥ 0 (σ(i), σ(i+ 1)) ∈ R.

If N equals the set N of natural numbers, then σ is
called an infinite behavior.

Example 1 Consider a concurrent system – denoted
by RW – consisting of a Reader process, numbered 1,
and a Writer process, numbered 2 (Emerson & Trefler
1999). We define RW as follows. Each of these
processes can be in three states: Non-Trying, Trying,
and Critical Section. These are thus subscripted
accordingly: Ni, Ti, and Ci refer the Non-Trying,
Trying, and Critical Section states of Process i.
Process 1 may enter its critical section only when
Process 2 is in its Non-trying section, and Process
2 may enter its critical section only when Process 1
is in its Non-Trying or Trying states. Figure 1 is a
Kripke structure representing all the reachable states
of the RW system. Formally, we have the following:
P = {N1, N2, T1, T2, C1, C2}; W = {w0, · · · , w7};
R = {(w0, w1), (w0, w2), (w1, w3), (w1, w4), (w2, w4), (w2, w5),
(w3,w0),(w3,w6),(w4,w7),(w5,w0),(w5,w7),(w6,w2),(w7,w1)};
the initial state w0; and L(w0) = {N1, N2}, L(w1) =
{T1, N2}, L(w2) = {N1, T2}, L(w3) = {C1, N2}, L(w4) =
{T1, T2}, L(w5) = {N1, C2}, L(w6) = {C1, T2}, L(w7) =
{T1, C2}.

DEPARTMENT OF INFORMATICS 319

11TH NMR WORKSHOP

N N1 2

N1 2
N1 T2T

C1 N2 T1 T2 C2

T1 C2C1 T2

N1

w

w w

w w w

w w

0

1 2

3 4 5

6 7

Figure 1: Reader-Writer transition system

One may unwind a Kripke structure into an infinite tree
that is rooted in w0. Such trees are called computational
trees.

Definition 3 (Computational Tree) Suppose K =
(P,W,R,w0, L) is a Kripke structure. Then the
(infinite) computational tree CTK of K is the set
{σ1, σ2, . . .} of all (infinite) behaviors of K; that is,

• for each i = 1, 2, . . ., σi is a function from N to W ;

• σi(0) = w0 for all i = 1, 2, . . .;

• ∀j > 0, i ≥ 0 (σj(i), σj(i+ 1)) ∈ R.

The top tree in Figure 2 shows the infinite computa-
tional tree of the RW system depicted in Figure 1. Thus
any path starting in the root of the computational tree
represents a behavior of the Kripke structure.

Translating Concurrent Systems into

BATs

Recall that the foundational axioms guarantee the in-
finite tree structure of the situation calculus. We shall
translate Kripke structures to the situation calculus by
relating the idea of computational tree to the situation
calculus tree of situations. More precisely, the Kripke
structure will be translated into a BAT such that the
computational tree of the Kripke structure is repre-
sented as a subtree obtained from the tree of situations
by pruning away paths that are not executable.

In order to relate Kripke structures to BATs, we need
to define a situation tree like model for a BAT D; that
model is precisely a tree of situations constrained ap-
propriately using the successor state axioms and action
precondition axioms of D.

Definition 4 (Canonical Structure)2 Suppose D =
2This definition is similar to the notion of k-ary n-labeled

situation tree associated with a BAT defined in (Ternovskaia
1999).

Df ∪ Dap ∪ Dss ∪ DS0
is a BAT. Then a structure M

is a canonical structure for D iff it is a pair (D,LD),
where

• D ⊆ UA
∗ is the domain of M, satisfying the following

property: if an action sequence α is in D then any
prefix α′ of α (i.e., α = α′α′′ for some α′′ ∈ UA

∗) is
in D;

• LD is a labeling function D → V n such that LD([]) =
~v0 and LD(α) = 〈c1(α), . . . , cn(α)〉 ∈ V n.

Here, ~v0 is the initial vector of fluent values, and ci
is the characteristic function of fluent Fi.

Notice that in the definition above, the pair (D,LD) is
in fact a situation tree constrained using the BAT D.
The domain D is the set of nodes of the tree; and for
any sequence α and 1 ≤ j ≤ k, αAj is the j-th son
of the node α labeled by value vector LD(α). Figure 2
shows a canonical structure for the RW system depicted
in Figure 1. The labeling tri,j of the edges denotes an
action corresponding to the transition (Si, Sj) ∈ R. De-
tails of the BAT underlying this tree will be clearer in
Section ”An Example”. It suffices here to mention that
〈N1, N2, T1, T2, C1, C2〉 is the vector of fluents describ-
ing the properties of the system. The vector ~v0 of initial
values for the root of the situation tree is 〈1, 1, 0, 0, 0, 0〉,
and the vectors labeling the other nodes of the tree de-
pend on the characteristic functions of each fluent.

Now, we show how to effectively construct a basic
action theory from a given Kripke structure.

Theorem 2 Suppose K = (P,W,R,w0, L) is a Kripke
structure. Then one can effectively construct a BAT
DK whose canonical structure M is obtained from the
computational tree CTK of K such that

K has CTK iff |=M DK.

Proof:
Let DK = Df ∪Dss ∪Dap ∪DS0

be the following BAT.

Fluents: for each p ∈ P , introduce a fluent p(s); for
each state wi ∈W , introduce a fluent statei(s).

Actions: for each transition (wi, wj) ∈ R where
wi, wj ∈W , introduce an action tri,j .

Initial database (DS0
): Whenever p ∈ L(w0), in-

troduce the axiom p(S0), otherwise introduce ¬p(S0);
introduce axiom state0(S0) and, for all wi 6= w0, in-
troduce axioms ¬statei(S0). We also need to intro-
duce finitely many non-fluent predicates tr(i, j) where
0 ≤ i, j < |W |, such that trans(i, j) is true if and only
if (wi, wj) ∈ R.

Action precondition axioms (Dap): for each transi-
tion tri,j , we have the axiom

Poss(tri,j , s) ≡ trans(i, j) ∧ statei(s).

Successor state axioms (Dss): For every i, 0 ≤ i <
|W |,

320 Technical Report IfI-06-04

Action and Change

5

2

2,4tr 2,5

5,05,7tr4,74,73,63,0

6,2

1,3

tr trtr

tr

trtr

<1,1,0,0,0,0><0,0,1,0,0,1><0,0,1,0,0,1><0,0,1,0,0,1><0,0,0,1,1,0><1,1,0,0,0,0>

The canonical structure:

trtr

<1,0,0,0,0,1><0,0,1,1,0,0><0,0,1,1,0,0><0,1,0,0,1,0>

<1,0,0,1,0,0><0,1,0,1,0,0>

<1,1,0,0,0,0>

The computational tree:

21111221

077760

443

1

0

w wwwww ww

wwwww w

w

wwww

w

w

<0,1,0,1,0,0> <1,0,0,1,0,0> <1,0,0,1,0,0> <0,1,0,1,0,0> <0,1,0,1,0,0> <0,1,0,1,0,0> <0,1,0,1,0,0> <1,0,0,1,0,0>

tr0,1

tr0,1

tr0,2

tr0,2 tr7,1
tr7,1 tr0,2tr0,1tr7,1

tr1,4

Figure 2: Computation tree and canonical structure of the RW system

statei(do(a, s)) ≡
∨|W |

j=1
a = trj,i ∨

statei(s) ∧
∧|W |

j=1
a 6= tri,j .

For every p ∈ P , suppose Wp = {wi| |=wi
p}. Then,

p(s) ≡
∨

wi∈Wp

statei(s).

Hence we could easily get the successor state axiom for
p(s).

Now we show that K has CTK iff |=M DK.
Suppose K has CTK. Then the proof proceeds by
constructing the canonical structure corresponding to
CTK. It is easy to show that the BAT constructed
above is satisfiable in this canonical structure.

Suppose |=M DK and D ⊆ UA
∗. Then LD([]) = ~v0

specifies the root of CTK by telling exactly which fluent
of the form state0 is true and which other fluents are
true in the state w0 of the Kripke structure K. Further-
more, LD(ωAj) = 〈c1(w), . . . , cn(w)〉 ∈ V n determines
the fluent values in situation ωAj by telling which flu-
ent of the form statei is true and which other fluents are
true in the state w of K corresponding to the execution
of the transitions encoded in ωAj . Thus each path in
M starting in [] yields a corresponding path in CTK.
�

Model Checking

CTL

The temporal logics that are used for specifying prop-
erties in MC are subsets of the logic CTL∗ (Clarke
& Sistla 1986) which expresses a branching time logic
by extending linear time temporal logic with behavior
quantifiers. The logic CTL is the smallest set of formu-
las inductively defined as follows.

Situation formulas

– true and false are atomic situation formulas, as
well as are p and ¬p for all p ∈ P .

– If φ and ψ are situation formulas, then φ∧ψ and φ∨ψ
are situation formulas.

– If φ is a behavior formula, then Aφ (“φ holds for all
behaviors”) and Eφ (“φ holds for some behavior”) are
situation formulas.

Behavior formulas

– If φ and ψ are situation formulas, then Xφ (“next
time φ”), and φUψ (“φ until ψ”) are behavior formu-
las.

Moreover, Fφ (“φ holds at some future state on a
behavior”) and Gφ (“φ holds at all future states on a
behavior”) for behavior formula φ abbreviate trueUφ
and ¬F¬φ respectively.

DEPARTMENT OF INFORMATICS 321

11TH NMR WORKSHOP

Semantics

Here, we semantically characterize CTL formulas by
translating them to formulas of the decidable fragment
of the situation calculus described in Subsection ”The
Situation Calculus”. CTL formulas are interpreted over
Kripke structures. We shall denote the suffix of the
behavior σ = S0, s1, s2, . . . that starts at situation sj

by σj . Given a Kripke structure K = (P,W,R,w0, L),
by Theorem 2 we first get a BAT DK corresponding
to K. We then introduce the notation φ[s] to denote
the situation calculus formula obtained from a given
expression φ by restoring the situation argument s in
all the fluents occurring in φ. Finally, we view a CTL
formula (Op φ)[s] as a macro defined in the situation
calculus as follows:

p[s] =df

∨

wi∈Wp

statei(s), where p is an atomic

proposition and Wp = {w| |=w p},

(¬φ)[s] =df ¬ φ[s]

(φ1 ∧ φ2)[s] =df φ1[s] ∧ φ2[s],

EXφ[s] =df (∃a).P oss(a, s) ∧ φ[do(a, s)],

A(ψ1Uψ2)[s] =df (∀s′).succ∗(s, s′) ∧ ψ2[s
′] ⊃

(∀s′′).s v s′′ @ s′ ⊃ ψ1[s
′′],

E(ψ1Uψ2)[s] =df (∃s′).succ∗(s, s′) ∧ ψ2[s
′]∧

(∀s′′).s v s′′ @ s′ ⊃ ψ1[s
′′].

Here, succ∗(s, s′) is defined as follows:

succ∗(s, s′) =df s v s′ ∧ executable(s′),

meaning that s′ is a subsequent situation of s and s′ is
executable. Further operators are defined in terms of
those above:

(φ1 ∨ φ2)[s] =df ¬(¬φ1 ∧ ¬φ2)[s],

(φ1 ⊃ φ2)[s] =df (¬φ1 ∨ φ2)[s],

AXφ[s] =df (¬EX¬φ)[s],

EFφ[s] =df E(trueUφ)[s],

AFφ[s] =df A(trueUφ)[s],

EGφ[s] =df (¬AF¬φ)[s],

AGφ[s] =df (¬EF¬φ)[s].

Usually, the semantics of CTL is given in terms of sit-
uations (states) and behavior (paths) formulas (Clarke
& Sistla 1986). We can introduce this distinction here
by viewing the situations in the situation formulas as
“snapshots” of the world and those in behavior formu-
las as “histories”. For later convenience, given CTL
formula φ we will always denote the corresponding se-
mantic formula of φ at any situation s as Qφ(s).

Checking Properties

Above, we have defined the semantics of CTL formu-
las in terms of a translation of these formulas into
formulas of a decidable fragment of the situation cal-
culus. Now, we define the model checking task in

terms of a logical entailment. Given a Kripke structure
K = (P,W,R,w0, L) and a CTL formula φ, we first
construct a BAT DK using the algorithm in the proof
of Theorem 2. We then construct a situation calculus
formula Qφ(s) corresponding to φ using the method de-
scribed in Subsection ”Semantics”. All these construc-
tions are done in polynomial time and yield axioms and
formulas that are polynomial in the size of both K and
φ. Now model checking the system K against the prop-
erty φ for initial state w0 amounts to establishing the
entailment

DK |= Qφ(S0).

In (De Giacomo, Ternovskaia, & Reiter 1997), dynamic
properties of reactive systems are expressed by using
the transition semantics and second order formulas ex-
pressing least and greatest fix-point properties. Here,
following (Clarke, Grumberg, & Peled 1999), we specify
properties by using transition relation R of the Kripke
structure representing a reactive system and second
order formulas expressing least and greatest fix-point
properties. We use the following theorem from (Clarke,
Grumberg, & Peled 1999) reformulated in the situation
calculus to that end:

Theorem 3 Suppose that K is a Kripke structure and
that we identify each CTL formula φ with the set
{s | K, s |= φ} ⊆ 2SK . Then each of the basic CTL
operators may be characterized as a least or greatest
fix-point of an appropriate predicate transformer in the
following way:

EFφ[s] ≡ µZ .[φ[s] ∨EX(Z)[s]],

AFφ[s] ≡ µZ .[φ[s] ∨ AX(Z)[s]],

EGφ[s] ≡ νZ .[φ[s] ∧ EX(Z)[s]],

AGφ[s] ≡ νZ .[φ[s] ∧ AX(Z)[s]],

A(φ1Uφ2)[s] ≡ µZ .[φ2[s] ∨ φ1[s] ∧ AX(Z)[s]],

E(φ1Uφ2)[s] ≡ µZ .[φ2[s] ∨ φ1[s] ∧ EX(Z)[s]].

An Example
Now, we effectively construct a BAT from the Kripke
structure of Figure 1 representing the RW system.

Actions: tr0,1, tr0,2, tr1,3, tr1,4, tr2,4, tr2,5, tr3,0,
tr3,6, tr4,7, tr5,0, tr6,2, tr7,1.

Fluents: T1(s), T2(s), N1(s), N2(s), C1(s), C2(s),
state0(s), state1(s), state2(s), state3(s), state4(s),
state5(s), state6(s), state7(s).

Initial database:

N1(S0) ∧N2(S0) ∧ ¬T1(S0) ∧ ¬T2(S0) ∧ ¬C1(S0)∧

¬C2(S0) ∧ trans(0, 1) ∧ trans(0, 2) ∧ trans(1, 3)∧

trans(1, 4) ∧ trans(2, 4) ∧ trans(2, 5) ∧ trans(3, 0)∧

trans(3, 6) ∧ trans(4, 7) ∧ trans(5, 0) ∧ trans(5, 7)∧

trans(6, 2) ∧ trans(7, 1) ∧ state0(S0) ∧ ¬state1(S0)∧

¬state2(S0) ∧ ¬state3(S0) ∧ ¬state4(S0)∧

¬state5(S0) ∧ ¬state6(S0) ∧ ¬state7(S0).

322 Technical Report IfI-06-04

Action and Change

Action precondition axioms:

Poss(tr0,1, s) ≡ trans(0, 1) ∧ state0(s),

P oss(tr0,2, s) ≡ trans(0, 2) ∧ state0(s),

P oss(tr1,3, s) ≡ trans(1, 3) ∧ state1(s),

P oss(tr1,4, s) ≡ trans(1, 4) ∧ state1(s),

P oss(tr2,4, s) ≡ trans(2, 4) ∧ state2(s),

P oss(tr2,5, s) ≡ trans(2, 5) ∧ state2(s),

P oss(tr3,0, s) ≡ trans(3, 0) ∧ state3(s),

P oss(tr3,6, s) ≡ trans(3, 6) ∧ state3(s),

P oss(tr4,7, s) ≡ trans(4, 7) ∧ state4(s),

P oss(tr5,0, s) ≡ trans(5, 0) ∧ state5(s),

P oss(tr6,2, s) ≡ trans(6, 2) ∧ state6(s),

P oss(tr7,1, s) ≡ trans(7, 1) ∧ state7(s).

Successor state axioms:

state0(do(a, s)) ≡ a = tr3,0 ∨ a = tr5,0∨

state0(s) ∧ a 6= tr0,1 ∧ a 6= tr0,2,

state1(do(a, s)) ≡ a = tr0,1 ∨ a = tr7,1∨

state1(s) ∧ a 6= tr1,3 ∧ a 6= tr1,4,

state2(do(a, s)) ≡ a = tr0,2 ∨ a = tr6,2∨

state2(s) ∧ a 6= tr2,4 ∧ a 6= tr2,5,

state3(do(a, s)) ≡ a = tr1,3∨

state3(s) ∧ a 6= tr3,0 ∧ a 6= tr3,6,

state4(do(a, s)) ≡ a = tr1,4 ∨ a = tr2,4∨

state4(s) ∧ a 6= tr4,7,

state5(do(a, s)) ≡ a = tr2,5∨

state5(s) ∧ a 6= tr5,0 ∧ a 6= tr5,7,

state6(do(a, s)) ≡ a = tr3,6∨

state6(s) ∧ a 6= tr6,2,

state7(do(a, s)) ≡ a = tr4,7 ∧ a = tr5,7∨

state7(s) ∧ a 6= tr7,1.

Abbreviations:

T1(s) ≡ state1(s) ∨ state4(s) ∨ state7(s),

T2(s) ≡ state2(s) ∨ state4(s) ∨ state6(s),

N1(s) ≡ state0(s) ∨ state2(s) ∨ state5(s),

N2(s) ≡ state0(s) ∨ state1(s) ∨ state3(s),

C1(s) ≡ state3(s) ∨ state6(s),

C2(s) ≡ state5(s) ∨ state7(s).

Simulation

To generate finite sequences of actions of the given
concurrent system DK and check if property Qφ(S0) is
satisfied , we solve the following deduction task:

DK |= (∃s).Do(execActions(N), S0, s) ∧Qφ(S0),

where N is a constant natural number and
execActions(N) is the GOLOG procedure defined in
the section on GOLOG.

To generate non-terminating sequences of actions and
check if DK |= Qφ(S0), we solve the following deduction
task:

DK |= checkCTL(φ),

where abbreviation checkCTL(φ) represents a sentence
obtained by replacing all the predicate succ∗(s, s′) in
Qφ(S0) by

∃δ.T rans∗(execActions, s, δ, s′),

and execActions is the following GOLOG procedure
that infinitely generates transitions of the system at
random.

proc execActions

while true (π a)[Poss(a)?; a]; endWhile

endProc .

T rans∗(execActions, s, δ, s′) represents the execution
of (non-terminating) GOLOG program execActions
starting from situation s and getting to situation s′ with
program δ remained. The detailed semantics of Trans∗

is given in (De Giacomo, Ternovskaia, & Reiter 1997).
For example, to check CTL formula whether A(ψ1Uψ2)
holds for concurrent system K, we are to solve whether

DK |= (∀s).(∃δ).T rans∗(execActions, S0, δ, s) ∧
ψ2[s] ⊃ (∀s′).(s′ @ s ⊃ ψ1[s

′]).

Sample Properties

Some simple properties of the RW system expressed
in CTL are: EG(N2 ⊃ EX N2), AG(N2 ⊃ EF C2),
EG(¬C1 ∧ ¬C2), EF (C1 ∧ C2), etc. By restoring the
situation argument s, these properties can be viewed
as macros defined in the situation calculus, which still
match the intuitive semantics of the CTL formulas. For
instance,

(EG(N2 ⊃ EX N2))[s]

≡ (¬AF (N2 ∧ ¬EX N2))[s]

≡ ¬A(trueU(N2 ∧ ¬EX N2))[s]

≡ ¬(∀s′).succ∗(s, s′) ∧ (N2 ∧ ¬EX N2)[s
′]

⊃ (∀s′′).s v s′′ @ s′ ⊃ true[s′′]

≡ (∃s′).succ∗(s, s′) ∧N2(s
′) ⊃ (EX N2)[s]

≡ (∃s′).succ∗(s, s′) ∧N2(s
′) ⊃

(∃s′′).succ(s′, s′′) ∧N2(s
′′).

(AG(N2 ⊃ EF C2))[s]

≡ (¬EF (N2 ∧ ¬EF C2))[s]

≡ (¬E(trueU(N2 ∧ ¬EF C2))[s]

≡ ¬(∃s′).succ∗(s, s′) ∧N2(s
′) ∧ (¬EF C2)[s

′]

≡ (∀s′).succ∗(s, s′) ∧N2(s
′) ⊃ (E(trueUC2))[s

′]

≡ (∀s′).succ∗(s, s′) ∧N2(s
′) ⊃

(∃s′′).succ∗(s′, s′′) ∧ C2(s
′′).

DEPARTMENT OF INFORMATICS 323

11TH NMR WORKSHOP

Discussion

Ours can be considered as a symbolic model checking
approach without BDDs, similar to the approach de-
scribed in (Biere et al. 1999). In fact we show how to
reduce model checking to entailment in a decidable sub-
set of the situation calculus. An early work heading in
this direction is reported in (Rajan, Shankar, & Srivas
1995); unfortunately, lack of technical detail does not
allow a comparison with our approach.

Notice that (Reiter 2001) gives an implementation
technique for BATs such as the one of Section ”An
Example”. This technique justifies a straightforward
translation of the BATs to a form suitable for a Prolog
implementation. This technique could be applied here.
This would amount to implementing a predicate, e.g.
checkCTL(φ), where φ is a CTL formula, for checking
whether the BAT entails Qφ(S0). The same technique
could be used to simulate the system modeled by the
BAT. Since CTL properties involve the predicate @,
any interpreter for checking these properties will nec-
essarily be non-Markovian (Gabaldon 2002) meaning
that effects of actions are explained by taking into ac-
count all past situations. All this however remains to
be accounted for.

A perceived advantage of our framework is the rich-
ness of the situation calculus which is more expressive
than branching time temporal logic (Pinto 1994). A
systematic study of fragments richer than the one con-
sidered in this paper remains to be undertaken. It re-
mains also to see how our framework can be turned
into a practical tool using well-known automata theo-
retic semantics for the situation calculus in the style of
(Vardi & Wolper 1986).

The fragment L0
0 is powerful enough to express rel-

atively realistic systems. In general however, we can
define fragments Lj

i, with increasing indexes i and j.

What is the exact expressive power of L0
0? What

do we gain in expressive power with the fragments
Lj

i, i = 1, 2, · · · , j = 1, 2, · · · ? All these questions
are worth pursuing.

References

Biere, A.; Cimatti, A.; Clarke, E.; and Zhu, Y. 1999.
Symbolic model checking without bdds. In Proceed-
ings of TACAS/ETAPS’99, 193–207. Berlin: Springer
Verlag.

Clarke, E.M. Emerson, E., and Sistla, A. 1986. Au-
tomatic verification of finite-state concurrent systems
using temporal logic specifications. ACM Transactions
on Programming Languages and Systems 8:244–263.

Clarke, E.; Grumberg, O.; and Peled, D. 1999. Model
Checking. Cambridge, MA: MIT Press.

De Giacomo, G.; Ternovskaia, E.; and Reiter, R. 1997.
Non-terminating processes in the situation calculus.
AAAI’97 Workshop.

Emerson, E., and Trefler, R. 1999. From asymmetry
to full symmetry: New techniques for symmetry re-

duction in model checking. In Pierre, L., and Kropf,
T., eds., Correct Hardware Design and Verification
Methods. Proceedings of the 10th IFIP WG, 142–156.
Springer Verlag. LNC 1703.

Gabaldon, A. 2002. Non-markovian control in the
situation calculus. In Eighteenth national conference
on Artificial intelligence, 519–524. Menlo Park, CA,
USA: American Association for Artificial Intelligence.

Harel, D.; Tiuryn, J.; and Kozen, D. 2000. Dynamic
Logic. Cambridge, MA, USA: MIT Press.

Hoare, C. A. R. 1969. An axiomatic basis for computer
programming. Commun. ACM 12(10):576–580.

Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. 1997. Golog: A logic programming lan-
guage for dynamic domains. J. of Logic Programming,
Special Issue on Actions 31(1-3):59–83.

McCarthy, J. 1963. Situations, actions and causal
laws. Technical report, Stanford University.

Pinto, J. 1994. Temporal Reasoning in the Situation
Calculus. Ph.D. Dissertation, Department of Com-
puter Science, University of Toronto, Toronto.

Pirri, F., and Reiter, R. 1999. Some contributions to
the metatheory of the situation calculus. Journal of
the ACM 46(3):325–364.

Plotkin, G. 1981. A structural approach to operational
semantics, tr-daimi-fn 19. Technical report, Comp.
Science Dpt., Aarhus University.

Pnueli, A. 1977. The temporal logic of programs. In
Proceedings of the 18th IEEE Symposium on founda-
tions of Computer Science, 46–57. IEEE Computer
Society.

Pnueli, A. 1981. A temporal logic of concurrent pro-
grams. Theoretical Computer Science 13:45–60.

Rajan, S.; Shankar, N.; and Srivas, M. 1995. An
integration of model checking with automated proof
checking. In Wolper, P., ed., Proceedings of the 7th
International Conference on Computer Aided Verifi-
cation, 84–97. Springer Verlag. LNC 939.

Reiter, R. 2001. Knowledge in Action: Logical Foun-
dations for Describing and Implementing Dynamical
Systems. Cambridge: MIT Press.

Ternovskaia, E. 1999. Automata theory for reason-
ing about actions. In Proceedings of the Sixteenth In-
ternational Joint Conference on Artificial Intelligence,
153–158.

Vardi, M., and Wolper, P. 1986. An automata-
theoretic approach to automatic program verification.
In Proceedings of the First Annual Symposium on
Logic in Computer Science. IEEE Computer Society
Press.

Wolper, P. 1998. The algorithmic verifica-
tion of reactive systems. 1998 francqui chair lec-
tures given at the fundp (namur). Lecture Notes,
http://www.montefiore.ulg.ac.be/˜pw/cours/.

324 Technical Report IfI-06-04

Action and Change

DEPARTMENT OF INFORMATICS 325

11TH NMR WORKSHOP

4.2 Designing a FLUX Agent for the Dynamic Wumpus World

Designing a FLUX Agent
for the Dynamic Wumpus World

Michael Thielscher
Department of Computer Science

Dresden University of Technology, Germany
mit@inf.tu-dresden.de

Abstract

Following an earlier proposal by Michael Genesereth, the
Wumpus World has been described in (Russell & Norvig
2003) as an example for autonomous agents that need to rea-
son logically about their actions and sensor information they
acquire. The dynamic Wumpus World extends the original
specification by several challenging aspects: a more complex
environment, dynamic changes, and unexpected action fail-
ure. In (Thielscher 2005b) we have specified an agent for the
simple Wumpus World using the high-level action program-
ming language FLUX. In this paper we present the design
of a FLUX agent for the extended problem with the help of
advanced features such as dynamic state properties and a so-
lution to the qualification problem.

Introduction
Cognitive Robotics (McCarthy 1958; Lespérance et al.
1994) is concerned with the problem of endowing agents
with the high-level cognitive capability of reasoning. Intel-
ligent agents rely on this ability when drawing inferences
from sensor data acquired over time, when acting under in-
complete information, and in order to exhibit plan-oriented
behavior. For this purpose, agents form a mental model of
their environment, which they constantly update to reflect
the changes they have effected and the sensor information
they have acquired. A simulated environment, the Wum-
pus World as defined in (Russell & Norvig 2003) is a good
example of a problem for controlling an agent that needs
to choose its actions not only on the basis of the current
status of its sensors but also on the basis of what it has
previously observed or done. Moreover, some properties
of the environment can be observed only indirectly, which
requires the agent to logically combine observations made
at different stages. The dynamic Wumpus World1 extends
the original problem by a variety of challenging features:
a more complex environment with walls between cells, dy-
namic changes, and unexpected action failures which are not
immediately recognizable.

In (Thielscher 2005b) we have specified an agent for the
simple Wumpus World using the high-level action program-
ming language FLUX (Thielscher 2005a), which supports

1www.cl.inf.tu-dresden.de/˜mit/LRAPP/

the design of intelligent agents that reason about their ac-
tions on the basis of the fluent calculus (Thielscher 1999).
A constraint logic program, FLUX comprises a method for
encoding incomplete states along with a technique of updat-
ing these states according to a declarative specification of
the elementary actions and sensing capabilities of an agent.
Incomplete states are represented by lists (of fluents) with
variable tail, and negative and disjunctive state knowledge
is encoded by constraints. In a series of experiments with a
grid of fixed size (Sardina & Vassos 2005), the runtime be-
havior of the FLUX agent, with its efficient constraint solv-
ing mechanism, turned out to be superior to that of a similar
GOLOG agent for the Wumpus World. Moreover, thanks
to a solution to the computational frame problem under in-
complete information, paired with the inference technique
of progression, experiments described in (Thielscher 2005b)
showed that the FLUX agent scaled up well.

In this paper we present the design of a FLUX agent for
the dynamic Wumpus World, which requires to combine
three extensions of the original framework:
• We use dynamic state properties in FLUX, which may

change independent of the actions of the agent; hence,
the agent can rely on them only at the time when they are
explicitly sensed.

• We use the notion of implicational state constraints in
FLUX (Thielscher 2005c) in order to represent condi-
tional dependencies among fluents that arise from the fact
that in the extended Wumpus World the presence of a pit
can only be sensed if it is not obstructed by a wall.

• We address the Qualification Problem (McCarthy 1977),
which arises whenever the successful execution of ac-
tions cannot be predicted with certainty. Agents for the
dynamic Wumpus World rely on a solution to this prob-
lem in order to be able both to realize that some of their
foregoing actions must have failed and to recover from
this (Thielscher 2001).

The contribution of this paper is not to provide a new the-
oretical result, but rather to demonstrate how an existing
knowledge representation language can be used to axiom-
atize a non-trivial domain, and how the action programming
language and system FLUX can be used to design an intelli-
gent agent that employs its ability to reason about actions to
effectively act in this complex environment.

326 Technical Report IfI-06-04

Action and Change

1 2 3 4 5

1

2

3

4

5

Figure 1: An example scenario in a dynamic Wumpus World where the 5 × 5 -cave features three pits, gold in cell (5, 5), and
the Wumpus currently in cell (5, 1). The agent is in its home square (1, 1) currently facing north.

The paper is organized as follows. The next section
contains an informal description of the dynamic Wumpus
World. Thereafter we axiomatize this environment as a
fluent calculus theory, which provides the necessary back-
ground knowledge for an agent to reason about the effects
of its actions in this world. We then describe a strategy for
a FLUX agent for the dynamic Wumpus World, and in the
final section we report on some initial experiments with our
program.

The Dynamic Wumpus World
Just like in the simple Wumpus World, the agent moves in a
regular grid of cells, some of which contain bottomless pits,
which are to be avoided, and somewhere in the grid there is
a hostile creature called Wumpus and a heap of gold, which
the agent should find and bring home. The agent can indi-
rectly sense the presence of a pit and the Wumpus by notic-
ing a breeze and a stench, respectively, next to these cells,
and it can sense the gold once it enters the right location.
The agent has exactly one arrow which it can shoot at any
time in any direction and which kills the Wumpus if the lat-
ter happens to be somewhere on the trajectory.

The structure of the environment in the dynamic Wumpus
World is, however, a more complex one, where cells may be
separated by walls; see Figure 1 for an example. A wall can
be sensed only when the agent stands next to it and faces it.
Furthermore, the Wumpus may make arbitrary moves (syn-
chronously with any physical action of the agent). The most
challenging feature of the extended problem is that the ac-
tion of going forward to an adjacent cell may fail with a
small likelihood, and the agent has no direct means to notice
this failure. Suppose, for example, the agent has acquired
complete knowledge of the wall structure in Figure 1 and
happens to be in cell (5, 3), from where it attempts to take a

step northward. Even if the agent afterwards turns to check
the walls around its current location, it is impossible to de-
cide whether it has actually reached cell (5, 4), for the wall
structure in the two cells are identical. Only by making a fur-
ther step northward to (5, 5) (and verifying that it now faces
a wall) can the agent be sure that its actions were indeed suc-
cessful. Therefore, an agent that maintains an internal model
of the environment has to take into account that this model
may be erroneous.

The Background Theory
Fluents and states
In the fluent calculus, states are axiomatized on the basis of
atomic components which are modeled as functions into the
pre-defined sort FLUENT . The FLUX agent for the original
Wumpus World described in (Thielscher 2005b) employs a
systematic exploration strategy based on auxiliary parame-
ters encoding the cells that it has visited and the path it has
taken in order to backtrack from regions that have been com-
pletely explored. These parameters were kept outside the
internal world model of the agent. In the dynamic Wumpus
World, however, the agent’s world model may be erroneous
due to unnoticed failures when moving around. A success-
ful recovery from action failure then requires not only to
re-adjust its own positions, but also to revise its belief re-
garding the cells it has visited and the current path. These
parameters must therefore be part of the internal state rep-
resentation and hence be modeled as additional fluents. Be-
cause the Wumpus moves around freely, a further difference
to the state representation in (Thielscher 2005b) is that the
location of the creature can no longer be modeled as a flu-
ent (to which the frame assumption applies); rather it has to
be treated as a dynamic, situation-dependent property. The

DEPARTMENT OF INFORMATICS 327

11TH NMR WORKSHOP

Name Type Meaning
At N × N 7→ FLUENT position of the agent
Facing {1, 2, 3, 4} 7→ FLUENT orientation of the agent
Has {Arrow, Gold} 7→ FLUENT possessions of the agent
Gold N × N 7→ FLUENT location of the gold
Pit N × N 7→ FLUENT cells containing a pit
Dead FLUENT Wumpus is dead
Wall N × N × N × N 7→ FLUENT walls between two cells
Visited N × N 7→ FLUENT visited cells
Backtrack N × N × {1, 2, 3, 4} 7→ FLUENT element of the current path

Figure 2: The fluents for the dynamic Wumpus World. The numbers 1 . . . 4 encode the four directions north, east, south, and
west. An instance Backtrack(x, y, d) is true if the agent entered square (x, y) by going into direction d.

table in Figure 2 lists the fluents that we use to model the
dynamic Wumpus World, the first six of which are adopted
from the original axiomatization in (Thielscher 2005b).

States in the fluent calculus are formalized using the pre-
defined sort STATE. Every FLUENT is of this sort, rep-
resenting a singleton state, and the special function ◦ :
STATE × STATE 7→ STATE is used to compose sub-states.
The special constant ∅ : STATE denotes the empty state. A
fluent is then defined to hold in a state just in case the latter
contains it:2

Holds(f, z)
def
= (∃z′) z = f ◦ z′

This definition is accompanied by the foundational axioms
of the fluent calculus, which ensure that a state can be iden-
tified with the fluents that hold in it; see, e.g., (Thielscher
2005a). Let Z0 denote the initial state of the agent, then the
agent may know the following:

Holds(At(x, y), Z0) ≡ x = 1 ∧ y = 1
Holds(Facing(d), Z0) ≡ d = 1
Holds(Has(Arrow), Z0) ∧ ¬Holds(Has(Gold), Z0)
¬Holds(Dead, Z0) ∧ ¬Holds(Pit(1, 1), Z0)
Holds(Visited(x, y), Z0) ≡ x = 1 ∧ y = 1
(∃x, y) Holds(Gold(x, y), Z0)

(1)

Actions and situations
Adopted from the situation calculus (McCarthy 1963; Reiter
2001), actions are modeled in the fluent calculus by terms
into the pre-defined sort ACTION . Sequences of actions are
represented by situations (sort SIT) with the help of a con-
stant S0 : SIT , denoting the initial situation, and the func-
tion Do : ACTION × SIT 7→ SIT , denoting the successor
situation reached after performing an action in a situation.
Situations and states are related by the pre-defined function
State : SIT 7→ STATE, accompanied by the definition3

Holds(f, s)
def
= Holds(f, State(s))

2Throughout the paper, variables of sort FLUENT and STATE
will be denoted by the variables f and z , respectively, possibly
with sub- or superscript.

3Throughout the paper, variables of sort ACTION and SIT will
be denoted by the variables a and s , respectively, possibly with
sub- or superscript.

The agent in the dynamic Wumpus World can perform the
same actions as in the original problem; see Figure 3. As in
the situation calculus, preconditions of actions are axioma-
tized with the help of the predicate Poss : ACTION× SIT . In
the Wumpus World, all action can always be executed with
the exception of Go, Shoot, and Exit, whose preconditions
are as follows:

Poss(Go, s) ≡ (∃d, x, y, x′, y′) (Holds(At(x, y), s)∧
Holds(Facing(d), s)∧
Adjacent(x, y, d, x′, y′)∧
¬Holds(Wall(x, y, x′, y′), s))

Poss(Shoot, s) ≡ Holds(Has(Arrow), s)

Poss(Exit, s) ≡ Holds(At(1, 1), s)

The auxiliary predicate Adjacent(x, y, d, x′, y′) means that
(x′, y′) is adjacent to (x, y) in direction d.

Effects of actions are specified with the help of an ax-
iomatic definition for removal and addition of fluents:

z1 − f = z2

def
= (z2 = z1 ∨ z2 ◦ f = z1)

∧¬Holds(f, z2)

z1 + f = z2

def
= z2 = z1 ◦ f

Based on this definition, the frame problem is solved in
the fluent calculus by so-called state update axioms, which
define the effects of an action a in a situation s as the
difference between the current State(s) and its successor
State(Do(a, s)); for example,
Poss(Grab, s) ⊃

(∃x, y) (Holds(At(x, y), s) ∧ Holds(Gold(x, y), s)∧
State(Do(Grab, s)) = State(s) + Has(Gold))

∨
¬(∃x, y) (Holds(At(x, y), s) ∧ Holds(Gold(x, y), s))∧

State(Do(Grab, s)) = State(s)

Poss(Exit, s) ⊃ State(Do(Exit, s)) = State(s) − At(1, 1)

Sensor information may provide the agent with additional
knowledge of a successor state. We represent the result of
sensing in the dynamic Wumpus World with the help of ad-
ditional situation-dependent predicates:

Stench, Breeze, Glitter, Bump, Scream : SIT

328 Technical Report IfI-06-04

Action and Change

Name Type Meaning
Go ACTION go forward to the adjacent cell
TurnRight ACTION make a quarter turn clockwise
TurnLeft ACTION make a quarter turn counterclockwise
Grab ACTION grab the gold
Shoot ACTION shoot the arrow
Exit ACTION exit the cave

Figure 3: The actions for the dynamic Wumpus World.

Because the Wumpus moves around freely and its position is
not represented as a fluent (which would persists by default),
the predicate Stench(s) will only be used for the defini-
tion of the agent’s strategy. Predicate Breeze(s) provides
knowledge as to whether one of the four cells next to the
agent’s location contains a pit, provided there is no wall in
between:

Breeze(s) ≡ (∃x, y, x′, y′, d) (Holds(At(x, y), s)∧
Holds(Pit(x′, y′), s)∧
Adjacent(x, y, d, x′, y′)∧
¬Holds(Wall(x, y, x′, y′), s))

A glitter indicates that gold is at the current location:
Glitter(s) ≡ (∃x, y) (Holds(At(x, y), s)∧

Holds(Gold(x, y), s))

A bump is perceived in case the agent faces a wall:
Bump(s) ≡ (∃x, y, d, x′, y′) (Holds(At(x, y), s)∧

Holds(Facing(d), s)∧
Adjacent(x, y, d, x′, y′)∧
Holds(Wall(x, y, x′, y′), s))

For the sake of simplicity, we assume that the knowledge of
the five sensing predicates is given to the agent whenever it
performs one of the actions TurnRight, TurnLeft , Shoot,
or Go.4 The state update axioms for the first three of these
actions are as follows:
Poss(TurnRight, s) ⊃
(∃d) (Holds(Facing(d), s)∧

State(Do(TurnRight, s)) =
State(s) − Facing(d) + Facing(d mod 4 + 1))

Poss(TurnLeft, s) ⊃
(∃d) (Holds(Facing(d), s)∧

State(Do(TurnRight, s)) =
State(s) − Facing(d) + Facing((d + 2) mod4 + 1))

Poss(Shoot, s) ⊃
Scream(Do(Shoot, s))∧

State(Do(Shoot, s)) = State(s) − Has(Arrow) + Dead
∨
¬Scream(Do(Shoot, s))∧
State(Do(Shoot, s)) = State(s) − Has(Arrow)

4This is conceptually simpler than the use of an extension of the
fluent calculus which is based on an explicit model of the knowl-
edge of an agent and which allows to explicitly reason about the
effects of sensing actions (Thielscher 2000).

The last axiom uses the sensor predicate Scream(s), which
is true if the agent hears a scream, that is, in case the arrow
hit the Wumpus.

Abnormalities
The most challenging aspect of the dynamic Wumpus World
is the possibility of unexpected action failure. Specifically,
when the agent attempts to go forward, it may actually re-
main where it was. The main difficulty stems from the
fact that this is usually not immediately recognizable. This
is an instance of the general Qualification Problem (Mc-
Carthy 1977), which arises whenever unexpected circum-
stances, albeit unlikely, may prevent an autonomous agent
from performing the intended actions. Planning and act-
ing under this proviso requires the agent to rigorously as-
sume away, by default, all of the possible but unlikely ab-
normal qualifications of its actions, lest the agent is un-
able to make decisions which are perfectly rational although
they cannot guarantee success. We adopt here a solu-
tion to this problem where a fluent calculus axiomatiza-
tion is embedded in a so-called default theory (Reiter 1980;
Thielscher 2001). To this end, let Ab(s) be a situation-
dependent predicate denoting the “abnormality” that a Go-
action fails in situation s. The state update axiom for this
action then comprises both the regular and the abnormal ef-
fect:

Poss(Go, s) ⊃
¬Ab(s) ∧ (∃d, x, y, x′, y′) (Holds(At(x, y), s)∧

Holds(Facing(d), s)∧
Adjacent(x, y, d, x′, y′)∧
[¬Holds(Visited(x′, y′), s) ∧ State(Do(Go, s)) =

State(s) − At(x, y)
+ At(x′, y′) + Visited(x′, y′)

+ Backtrack(x′, y′, d)
∨Holds(Visited(x′, y′), s) ∧ State(Do(Go, s)) =

State(s) − At(x, y) + At(x′, y′)])
∨
Ab(s) ∧ State(Do(Go, s)) = State(s)

(2)

The entire fluent calculus axiomatization Σ is then accom-
panied by a single default rule:

: ¬Ab(s)

¬Ab(s)
(3)

Reasoning with a default theory is based on the notion of
extensions, which—thanks to the simple structure of our de-
fault (Reiter 1980)—can be defined as maximally consistent

DEPARTMENT OF INFORMATICS 329

11TH NMR WORKSHOP

sets
Σ ∪ {¬Ab(σ) : σ ground SIT term}

This allows agents to predict the success of a Go-action
by default, but also to find explanations for (and to recover
from) unexpected observations. For example, suppose for
the sake of argument that the agent is already aware of the
wall between cells (2, 1) and (2, 2) (cf. Figure 1). Let
S denote the current situation where the agent is at (1, 1)
and faces north. Suppose further that the agent turns right,
then attempts to go to square (1, 2), and finally turns left to
double-check the wall:

S′ = Do(TurnLeft, Do(Go, Do(TurnRight, S)))

Our default theory then contains a unique extension, where
all instances of Ab are false and which thus entails

Holds(At(2, 1), S′) ∧ Holds(Facing(1), S ′)

and hence
Bump(S′)

due to the wall between (2, 1) and (2, 2). If, however, the
observation

¬Bump(S′)

is added to the axiomatization, the default theory thus aug-
mented admits a unique extension again, in which all in-
stances of Ab are false except for Ab(Do(TurnRight, S)).
This together with the state update axioms, in particular the
second disjunct in (2), entails

Holds(At(1, 1), S′)

This shows how an agent can explain an observation which
contradicts its expectations, and how it can automatically
recover by finding a minimal set of positive Ab-instances
which are consistent with the observations.

FLUX
FLUX (Thielscher 2005a; 2005d) is a high-level program-
ming method for the design of intelligent agents that rea-
son about their actions on the basis of the fluent calcu-
lus (Thielscher 1999). A constraint logic program, FLUX
comprises a method for encoding incomplete states along
with a technique of updating these states according to a
declarative specification of the elementary actions and sens-
ing capabilities of an agent. Incomplete states are repre-
sented by lists (of fluents) with variable tail, and negative
and disjunctive state knowledge is encoded by constraints.
The incomplete initial state knowledge of the agent in the
dynamic Wumpus World (cf. (1)), for example, is encoded
in FLUX by the following clause:

init(Z0) :-
Z0 = [at(1,1),facing(1),has(arrow),

visited(1,1),gold(X,Y) | Z],
not_holds_all(at(_,_),Z),
not_holds_all(facing(_),Z),
not_holds_all(visited(_,_),Z),
not_holds(has(gold),Z),
not_holds(dead,Z),
not_holds(pit(1,1),Z).

Constraint not_holds(f,z) encodes the fluent calcu-
lus formula ¬Holds(f, z), and not_holds_all(f,z)
stands for (∀~x)¬Holds(f, z), where ~x are the variables
in f .

State update axioms in the fluent calculus can be directly
translated into FLUX as clauses which define the predicate
state_update(Z1,A,Z2,Y) with the intended mean-
ing that performing action a in state z1 and sensing ~y
yields updated state z2 . As an example, we give the specifi-
cation of the regular effects of action Go with sensor input
for breeze, glitter, and wall—the other state update axioms
are encoded in a similar fashion:
state_update(Z1,go,Z2,[Br,Gl,Bm]) :-

holds(at(X,Y),Z1),
holds(facing(D),Z1),
adjacent(X,Y,D,X1,Y1),
(not_holds(visited(X1,Y1),Z1),
update(Z1,[at(X1,Y1),

visited(X1,Y1),
backtrack(X1,Y1,D)],
[at(X,Y)],Z2)

;
holds(visited(X1,Y1),Z1),
update(Z1,[at(X1,Y1)],

[at(X,Y)],Z2)),
breeze(X1,Y1,Br,Z2),
glitter(X1,Y1,Gl,Z2),
bump(X1,Y1,D,Bm,Z2).

Standard FLUX predicate update(Z1,P,N,Z2) means
that the update of incomplete state z1 by positive and neg-
ative effects p and n, respectively, results in state z2 .

Due to the possible existence of walls, the evaluation of
the sensor input in the dynamic Wumpus World requires to
use a recent extension of FLUX which allows to express
conditional state knowledge in form of a state constraint
if_then_holds(f,g,z), encoding the fluent calculus
formula Holds(f, z) ⊃ Holds(g, z) (Thielscher 2005c):
breeze(X,Y,Percept,Z) :-

XE#=X+1, XW#=X-1, YN#=Y+1, YS#=Y-1,
(Percept=false,

if_then_holds(pit(XE,Y),
wall(X,Y,XE,Y),Z),

if_then_holds(pit(XW,Y),
wall(X,Y,XW,Y),Z),

if_then_holds(pit(X,YN),
wall(X,Y,X,YN),Z),

if_then_holds(pit(X,YS),
wall(X,Y,X,YS),Z)

; Percept=true).

The current expressiveness of FLUX does not allow to give
a complete account of the conditional knowledge of pits that
follows from sensing a breeze. Fortunately, this is not nec-
essary in order that the agent functions effectively, because
the agent will always enter a square only if this is known
to be safe. Hence, there is no need to distinguish between
not knowing whether a cell is safe and knowing for sure that
there is a pit!

330 Technical Report IfI-06-04

Action and Change

The other two sensors are encoded in a straightforward
manner:
glitter(X,Y,Percept,Z) :-
Percept=false,

not_holds(gold(X,Y),Z)
;
Percept=true,

holds(gold(X,Y),Z).

bump(X,Y,D,Percept,Z) :-
adjacent(X,Y,D,X1,Y1),
(Percept=false,

not_holds(wall(X,Y,X1,Y1),Z),
not_holds(wall(X1,Y1,X,Y),Z)

;
Percept=true,

holds(wall(X,Y,X1,Y1),Z),
holds(wall(X1,Y1,X,Y),Z)).

The state update axiom given above merely encodes the
normal effect of the Go-action. The solution to the Qualifi-
cation Problem in FLUX (Thielscher 2005d) requires to en-
code the abnormal effects of actions by an additional clause;
in our case (cf. (2)),

ab_state_update(Z1,go,Z2,
[Br,Gl,Bm]) :-

Z2 = Z1,
holds(at(X,Y),Z2),
holds(facing(D),Z2),
breeze(X,Y,Br,Z2),
glitter(X,Y,Gl,Z2),
bump(X,Y,D,Bm,Z2).

The application of default rule (3) is modeled in FLUX
as follows: Predicate state_update is used by default
whenever the world model gets updated after an action has
been performed (via predicate execute, see below). Only
when the agent, upon executing an action, makes an obser-
vation which is inconsistent with the world model thus up-
dated, predicate ab_state_update can be additionally
used in order to find a sequence of updates which is consis-
tent with the sequence of observations that have been made;
for details we refer to (Thielscher 2005d).

The Strategy
FLUX allows to define complex behaviors by means of strat-
egy programs. These strategies are independent of the back-
ground specification, which allows to devise and compare
different strategies. In the following, we describe a specific
strategy for the dynamic Wumpus World, which is similar to
the systematic exploration defined in (Thielscher 2005b) for
the simple environment.

After initializing the world model, the agent executes a
loop where it either grabs the gold, if possible, and goes
home, or it explores a new cell, if possible, and otherwise it
backtracks. If the latter is not possible, too, then the agent
believes it is at its home square and exits (without having
found the gold). The latter may fail, because of an erroneous
world model, in which case the agent remains somewhere in
the environment and continues with its revised model:

main_loop(Z) :-
knows_val([X,Y],at(X,Y),Z),
(knows(gold(X,Y),Z) ->

execute(grab,Z,Z1), go_home(Z1)
;
explore(X,Y,Z,Z1)

-> main_loop(Z1)
;
backtrack(X,Y,Z,Z1)

-> main_loop(Z1)
;
execute(exit,Z,Z1),
(knows_val([X1,Y1],at(X1,Y1),Z1)

-> main_loop(Z1)
; true)).

Here, the standard FLUX predicate knows_val(X,F,Z)
means that the agent knows arguments ~x of fluent f so
that f holds in state z ; predicate knows(F,Z) is true
if fluent f is known to hold in state z ; and predicate
execute(A,Z1,Z2) means that the actual execution of
action a in state z1 leads to state z2 .

The agent can take an exploration step if it is adjacent to
a cell which has not been visited, which is not blocked by a
wall, and which is known not to house a pit. If these condi-
tions are satisfied, then the agent enters this cell and makes
three turns in order to gain information about the wall struc-
ture. The agent needs this information to decide whether it
can continue with the exploration. Knowledge of the wall
structure also helps with locating the pits in case a breeze is
being sensed. But even when the agent knows the complete
wall structure, double-checking the presence of walls helps
with recognizing a failed Go-action as early as possible:

explore(X,Y,Z1,Z7) :-
wumpus_alert(X,Y,Z1,Z2),
adjacent(X,Y,D,X1,Y1),
knows_not(visited(X1,Y1),Z2),
knows_not(wall(X,Y,X1,Y1),Z2),
knows_not(pit(X1,Y1),Z2)
->
turn_to(D,Z2,Z3),
execute(go,Z3,Z4),
execute(turn_left,Z4,Z5),
execute(turn_left,Z5,Z6),
execute(turn_left,Z6,Z7).

Here, the standard FLUX predicate knows_not(F,Z)
means that the agent knows that fluent f is false in state z .
The auxiliary predicate adjacent(X,Y,D,X1,Y1) de-
fines cell (x1, y1) to be adjacent to cell (x, y) in direc-
tion d. Auxiliary predicate wumpus_alert defines the
reaction in case the agent senses a stench while it knows that
the Wumpus is still alive. Whenever this happens, our agent
either turns into a direction with no wall and shoots the ar-
row, in the hope of hitting the Wumpus. In case the agent has
already used its arrow unsuccessfully, then upon sensing a
stench it backtracks to the previous location (we omit the de-
tails). Finally, auxiliary predicate turn_to(D,Z1,Z2)
means to turn into direction d.

DEPARTMENT OF INFORMATICS 331

11TH NMR WORKSHOP

If no exploration step is possible, the agent backtracks ac-
cording to the following definition:

backtrack(X,Y,Z1,Z3) :-
knows_val([D],backtrack(X,Y,D),Z1),
R is (D+1) mod 4 + 1,
turn_to(R,Z1,Z2),
execute(go,Z2,Z3).

(Note that R is the reverse of direction D). According to its
definition, predicate backtrack(X,Y,Z1,Z3) is false
if state z1 does not contain a fluent Backtrack(x, y, d),
which means that the agent is in cell (1, 1) (or rather that
it believes it is).

Once the agent has found the gold, it uses the backtrack-
ing information to find its way to the home square. As above,
if the agent believes it is at its home square then it exits,
which may fail because of an erroneous world model, in
which case the agent remains somewhere in the environment
and continues with backtracking:

go_home(Z) :-
knows_val([X,Y],at(X,Y),Z),
(backtrack(X,Y,Z,Z1)

-> go_home(Z1)
;
execute(exit,Z,Z1),
(knows_val([X1,Y1],at(X1,Y1),Z1)

-> go_home(Z1)
; true)).

Discussion
In order to test the agent program, we ran a series of ex-
periments with the scenario depicted in Figure 1. Of a total
of 30 runs, 47% were successful in that the agent managed
to locate and grab the gold and to exit safely. In 30% of the
test cases, the agent stayed alive but did not find the gold,
because the Wumpus came in the way and the agent did not
guess its location correctly when shooting the arrow. In 23%
of the runs the Wumpus killed the agent by moving into its
location.

The agent was always able to recover from action fail-
ure. In some cases, where one or more Go actions failed
at early stages, the agent built up a largely erroneous model
of the environment and it took until the very end, when the
agent intended to exit, to detect the abnormalities. Gener-
ally, the later an abnormality was detected, the longer it took
to infer the correct position because the space of possible
explanations is exponential in the total number of Go ac-
tions. One way to improve the computational behavior of
this recovery process would be to begin with searching for
explanations in which just k = 1 failure occurs, and to it-
eratively increase k until a consistent sequence of updates
is found. Under the assumption that failures are rare, this
would avoid computing a large portion of the search space.
Generally speaking, abnormalities should only be used for
the specification of truly exceptional effects of actions. If
the Go action in the Wumpus World did not have a high
chance of succeeding, then it had better be specified by a
nondeterministic state update axiom, lest the agent has to
frequently recover from an erroneous world model.

References
Lespérance, Y.; Levesque, H.; Lin, F.; Marcu, D.; Reiter,
R.; and Scherl, R. 1994. A logical approach to high-level
robot programming—a progress report. In Kuipers, B., ed.,
Control of the Physical World by Intelligent Agents, Papers
from the AAAI Fall Symposium, 109–119.
McCarthy, J. 1958. Programs with Common Sense. In
Proceedings of the Symposium on the Mechanization of
Thought Processes, volume 1, 77–84. (Reprinted in: (Mc-
Carthy 1990)).
McCarthy, J. 1963. Situations and Actions and Causal
Laws. Stanford University, CA: Stanford Artificial Intelli-
gence Project, Memo 2.
McCarthy, J. 1977. Epistemological problems of artificial
intelligence. In Reddy, R., ed., Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
1038–1044. Cambridge, MA: MIT Press.
McCarthy, J. 1990. Formalizing Common Sense. Norwood,
New Jersey: Ablex. (Edited by V. Lifschitz).
Reiter, R. 1980. A logic for default reasoning. Artificial
Intelligence 13:81–132.
Reiter, R. 2001. Knowledge in Action. MIT Press.
Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach (Second Edition). Prentice-Hall.
Sardina, S., and Vassos, S. 2005. The wumpus world in
IndiGolog: A preliminary report. In Morgenstern, L., and
Pagnucco, M., eds., Proceedings of the Workshop on Non-
monotonic Reasoning, Action and Change at IJCAI, 90–95.
Thielscher, M. 1999. From situation calculus to fluent cal-
culus: State update axioms as a solution to the inferential
frame problem. Artificial Intelligence 111(1–2):277–299.
Thielscher, M. 2000. Representing the knowledge of a
robot. In Cohn, A.; Giunchiglia, F.; and Selman, B., eds.,
Proceedings of the International Conference on Principles
of Knowledge Representation and Reasoning (KR), 109–
120. Breckenridge, CO: Morgan Kaufmann.
Thielscher, M. 2001. The qualification problem: A solu-
tion to the problem of anomalous models. Artificial Intelli-
gence 131(1–2):1–37.
Thielscher, M. 2005a. FLUX: A logic programming
method for reasoning agents. Theory and Practice of Logic
Programming 5(4–5):533–565.
Thielscher, M. 2005b. A FLUX agent for the Wumpus
World. In Morgenstern, L., and Pagnucco, M., eds., Pro-
ceedings of the Workshop on Nonmonotonic Reasoning,
Action and Change at IJCAI, 104–108.
Thielscher, M. 2005c. Handling implicational and univer-
sal quantification constraints in flux. In van Beek., ed., Pro-
ceedings of the International Conference on Principle and
Practice of Constraint Programming (CP), volume 3709 of
LNCS, 667–681. Sitges, Spain: Springer.
Thielscher, M. 2005d. Reasoning Robots: The Art and
Science of Programming Robotic Agents, volume 33 of Ap-
plied Logic Series. Kluwer.

332 Technical Report IfI-06-04

Action and Change

DEPARTMENT OF INFORMATICS 333

11TH NMR WORKSHOP

4.3 A Semantics for ADL as Progression in the Situation Calculus

A Semantics for ADL as Progression in the Situation Calculus
Jens Claßen and Gerhard Lakemeyer

Department of Computer Science
RWTH Aachen
52056 Aachen

Germany
〈classen|gerhard〉@cs.rwth-aachen.de

Abstract
Lin and Reiter were the first to propose a purely declarative
semantics of STRIPS by relating the update of a STRIPS
database to a form of progression in the situation calculus.
In this paper we show that a corresponding result can be ob-
tained also for ADL. We do so using a variant of the situa-
tion calculus recently proposed by Lakemeyer and Levesque.
Compared to Lin and Reiter this leads to a simpler technical
treatment, including a new notion of progression.

Introduction
Lin and Reiter (Lin & Reiter 1997) were the first to propose
a purely declarative semantics of STRIPS (Fikes & Nilsson
1971) by relating the update of a STRIPS database to a form
of progression of a corresponding situation-calculus theory.
More precisely, they show that when translating STRIPS
planning problems into basic action theories of Reiter’s sit-
uation calculus (Reiter 2001), then the STRIPS mechanism
of adding and deleting literals after an actionA is performed
is correct in the sense that the conclusions about the future
that can be drawn using the updated theory are the same as
those drawn from the theory before the update.

Given that today’s planning languages like PDDL (Fox &
Long 2003) go well beyond STRIPS, it seems natural to ask
whether Lin and Reiter’s results can be extended along these
lines. One advantage would be to have a uniform framework
for specifying the semantics of planning languages. Perhaps
more importantly, as we will argue in more detail at the end
of the paper, this would also provide a foundation to bring
together the planning and action language paradigms, which
have largely developed independently after the invention of
STRIPS.

In this paper we propose a first step in this direction by
considering the ADL fragment of PDDL (Pednault 1989;
1994). In contrast to Lin and Reiter, we use a new vari-
ant of the situation calculus called ES recently proposed by
Lakemeyer and Levesque (Lakemeyer & Levesque 2004).
This has at least two advantages: for one, there is no need to
switch the language when translating formulas of the plan-
ning language into the new situation calculus because there
are no situation terms to worry about (in ES, situations oc-
cur only in the semantics); for another, semantic definitions
like progression become simpler as it is no longer necessary

to consider arbitrary first-order structures but only certain
ones over a fixed universe of discourse. As Lakemeyer and
Levesque recently showed (Lakemeyer & Levesque 2005),
these simplifications do not lead to a loss of expressiveness.
In fact, they show that second-order ES captures precisely
the non-epistemic fragment of the situation calculus and the
action language Golog (Levesque et al. 1997).1

The main technical contributions of this paper are the fol-
lowing: we show how to translate an ADL problem descrip-
tion into a basic action theory of ES; we develop a notion
of progression, which is similar to that of Lin and Reiter but
also simpler given the semantics underlying ES; finally, we
establish that updating an ADL database (called a state) after
performing an action is correct in the sense that the resulting
state corresponds precisely to progressing the corresponding
basic action theory. The result is obtained for both closed
and open-world states.

With the exception of Lin and Reiter (Lin & Reiter 1997),
the approaches to giving semantics to planning languages
have all been meta-theoretic. When Pednault introduced
ADL (1989; 1994), he provided a semantics that defined op-
erators as mappings between first-order structures that are
defined by additions and deletions of tuples to the relations
and functions of that structures. He presented a method of
deriving a situation calculus axiomatization from ADL oper-
ator schema, but did not show the semantic correspondence
between the two. Despite the fact that PDDL was built upon
ADL, it was not until PDDL2.1 that a formal semantics was
provided. The focus in (Fox & Long 2003) was more on for-
malizing the meaning of the newly introduced temporal ex-
tensions and concurrent actions; nonetheless, the predicate-
logic subset of Fox and Long’s semantics represents a gener-
alization of Lifschitz’ state transition semantics for STRIPS
(1986). However, they compile conditional effects into the
preconditions of the operators, propositionalize quantifiers
and only consider the case of complete state descriptions.
An exhaustive study of the expressiveness and compilability
of different subsets of the propositional version of ADL is
given in (Nebel 2000).

The paper proceeds as follows. We first introduce ES and
show how basic action theories are formulated in this logic.

1The correspondence with the full situation calculus is close but
not exact.

334 Technical Report IfI-06-04

Action and Change

Next, we define ADL problem descriptions and provide a
formal semantics by mapping them into basic action theo-
ries. We then define progression and establish the correct-
ness of updating an ADL state with respect to progression.
Before concluding, we give an outlook on applying the re-
sults to combine planning and the action language Golog.

The Logic ES
For the purpose of this paper, we only need the objective (i.e.
non-epistemic), first-order subset of ES.

The Language
The language consists of formulas over symbols from the
following vocabulary:
• variables V = {x1, x2, . . . , y1, y2, . . . , a1, a2, . . .};
• fluent predicates of arity k: F k = {F k

1 , F
k
2 , . . .}; for

example, At;
we assume this list includes the distinguished predicate
Poss;

• rigid functions of arity k: Gk = {gk
1 , g

k
2 , . . .}; for ex-

ample, paycheck, moveB;
• connectives and other symbols: =, ∧, ¬, ∀, ¤, round

and square parentheses, period, comma.
For simplicity, we do not include rigid (non-fluent) predi-
cates or fluent (non-rigid) functions. The terms of the lan-
guage are the least set of expressions such that

1. Every first-order variable is a term;
2. If t1, . . . , tk are terms and g ∈ Gk, then g(t1, . . . , tk) is a

term.
We let R denote the set of all ground terms. For simplicity,
instead of having variables of the action sort distinct from
those of the object sort as in the situation calculus, we lump
both of these together and allow ourselves to use any term as
an action or as an object. Finally, the well-formed formulas
of the language form the least set such that

1. If t1, . . . , tk are terms and F ∈ F k, then F (t1, . . . , tk) is
an (atomic) formula;

2. If t1 and t2 are terms, then (t1 = t2) is a formula;
3. If t is a term and α is a formula, then [t]α is a formula;
4. If α and β are formulas, then so are (α ∧ β), ¬α, ∀x.α,
¤α.

We read [t]α as “α holds after action t” and ¤α as “α holds
after any sequence of actions”. As usual, we treat ∃x.α,
(α ∨ β), (α ⊃ β), and (α ≡ β) as abbreviations. We call a
formula without free variables a sentence.

In the following, we will call a sentence fluent, when it
does not contain ¤ and [t] operators and does not mention
Poss. In addition, we introduce the following special nota-
tion: A type τ is a symbol from F 1, i.e. a unary predicate.
Then we define:

∀x:τ. φ def
= ∀x. τ(x) ⊃ φ

We will often use the vector notation to refer to a tuple of
terms (~t) or types (~τ). If ~r denotes r1, . . . , rk and~t stands for

t1, . . . , tk, then (~r = ~t) means (r1 = t1) ∧ · · · ∧ (rk = tk).
Further, ~τ(~t) serves as an abbreviation for τ1(t1) ∧ · · · ∧
τk(tk).

The semantics
Intuitively, a world w will determine which fluents are true,
but not just initially, also after any sequence of actions. For-
mally, let P denote the set of all pairs σ:ρ where σ ∈ R∗ is
considered a sequence of actions, and ρ = F (r1, . . . , rk) is
a ground fluent atom from F k. A world then is a mapping
from P to truth values {0, 1}.

First-order variables are interpreted substitutionally over
the rigid termsR, that is, R is treated as being isomorphic to
a fixed universe of discourse. This is similar to L (Levesque
& Lakemeyer 2001), where standard names are used as the
domain.

Here is the complete semantic definition: Given a world
w, for any formula α with no free variables, we define
w |= α as w, 〈 〉 |= α where 〈〉 denotes the empty action
sequence and
w, σ |= F (r1, . . . , rk) iff w[σ:F (r1, . . . , rk)] = 1;
w, σ |= (r1 = r2) iff r1 and r2 are identical;
w, σ |= (α ∧ β) iff w, σ |= α and w, σ |= β;
w, σ |= ¬α iff w, σ 6|= α;
w, σ |= ∀x. α iff w, σ |= αx

r , for every r ∈ R;
w, σ |= [r]α iff w, σ · r |= α;
w, σ |= ¤α iff w, σ · σ′ |= α, for every σ′ ∈ R∗;

The notation αx
t means the result of simultaneously replac-

ing all free occurrences of the variable x by the term t; σ1 ·σ2

denotes the concatenation of the two action sequences.
When Σ is a set of sentences and α is a sentence, we write

Σ |= α (read: Σ logically entails α) to mean that for every
w, if w |= α′ for every α′ ∈ Σ, then w |= α. Finally, we
write |= α (read: α is valid) to mean {} |= α.

Basic Action Theories
As shown in (Lakemeyer & Levesque 2004), we are able to
define basic action theories in a way very similar to those
originally introduced by Reiter:

Given a set F of fluent predicates, a set of sentences Σ is
called a basic action theory over F iff it only mentions the
fluents in F and is of the form Σ = Σ0 ∪Σpre ∪Σpost, where
• Σ0 is a finite set of fluent sentences,
• Σpre is a singleton of the form2

¤Poss(a) ≡ π, where π is
fluent with a being the only free variable;

• Σpost is a finite set of successor state axioms of the form3

¤[a]F (~x) ≡ γF , one for each fluent F ∈ F \ {Poss},
where γF is a fluent sentence whose free variables are
among ~x and a.
2We follow the convention that free variables are universally

quantified from the outside. We also assume that ¤ has lower syn-
tactic precedence than the logical connectives, so that ¤Poss(a) ≡
π stands for ∀a.¤(Poss(a) ≡ π).

3The [t] construct has higher precedence than the logical con-
nectives. So ¤[a]F (~x) ≡ γF abbreviates ∀a.¤([a]F (~x) ≡ γF).

DEPARTMENT OF INFORMATICS 335

11TH NMR WORKSHOP

The idea is that Σ0 represents the initial database, Σpre is
one large precondition axiom and Σpost the set of successor
state axioms for all fluents in F (incorporating Reiter’s so-
lution (1991) to the frame problem).

The ADL subset of PDDL
ADL was proposed by Pednault (1989) as a planning for-
malism that constitutes a compromise between the highly
expressive situation calculus on the one hand and the com-
putationally more beneficial STRIPS language on the other.
Recently, it has been used as the basis for the definition of
a general planning domain definition language called PDDL
(Ghallab et al. 1998; Gerevini & Long 2005a).

Here, we are interested in the ADL subset of PDDL, i.e.
the language we obtain by only allowing the :adl require-
ment to be set. This implies that, beyond the definition of
standard STRIPS operators, equality is supported as built-in
predicate and preconditions may contain negation, disjunc-
tion and quantification (therefore they are normal first-order
formulas using the domain’s predicates together with the ac-
tion’s object parameters and the domain objects as the only
function symbols). Further, conditional effects are allowed
and objects may be typed.

ADL Operators: The General Form
Formally, an ADL operator A is given by a triple
(~y:~τ , πA, εA), where ~y:~τ is a list of variable symbols with
associated types4, πA is a precondition formula with free
variables among ~y and εA is an effect formula with free
variables among ~y. The ~y are the action’s parameters, πA

is called the precondition and εA the effect of A, for short.
The name of the operator A has to be a symbol from Gp

(the function symbols of arity p), where p is the number of
parameters ~y of A (possibly zero).

A precondition formula is of the following form: An
atomic formula F (~t) is a precondition formula, if each of the
ti is either a variable or constant (i.e. terms are not nested).
Similarly, an equality atom (t1 = t2) is a precondition for-
mula, if each ti is a variable or a constant. If φ1 and φ2

are precondition formulas, then so are φ1 ∧ φ2, ¬φ1 and
∀x:τ.φ1

5.
The effect formulas are defined as follows: An atomic for-

mula F (~t) is an effect formula, if each of the ti is either a
variable or a constant. Similarly, a negated atomic formula
¬F (~t) is an effect formula, if each ti is a variable or a con-
stant. If ψ1 and ψ2 are effect formulas, then ψ1 ∧ ψ2 and
∀x:τ.ψ1 are as well. If γ is a precondition formula and ψ is
an effect formula not containing “⇒” and “∀”, then γ ⇒ ψ
is an effect formula.

Therefore, effect formulas are always conjunctions of sin-
gle effects. An effect of the form γ ⇒ ψ is called a condi-
tional effect. Nesting of conditional effects is disallowed.

4~y:~τ is to be understood as a list of pairs yi:τi.
5Recall that ∨, ∃ etc. are treated as abbreviations, therefore dis-

junction and existential quantification is allowed as well.

ADL Operators: The Normal Form
We say that an ADL operator A is in normal form, if its
effect εA looks as follows:

∧
Fj
∀ ~xj: ~τFj

. (γ+
Fj ,A(~xj) ⇒ Fj(~xj)) ∧∧

Fj
∀ ~xj: ~τFj

. (γ−Fj ,A(~xj) ⇒ ¬Fj(~xj))
(1)

We mean here that for each Fj , there is at most one conjunct
· · · ⇒ Fj(~x) and also at most one conjunct · · · ⇒ ¬Fj(~x);
neither is it required that there are conjuncts for all predi-
cates of a theory nor is the ordering important.

ADL Problem Descriptions
A problem description for ADL now is given by:

1. a finite list of types τ1, . . . , τl,Object (Object is a special
type that has to be always included);
• along with this a finite list of statements of the form

τi:(either τi1 · · · τiki
) (2)

defining some of the types as compound6types; a prim-
itive type is one that does not appear on the left-hand
side of such a definition and is distinct from Object;

2. a finite list of fluent predicates F1, . . . , Fn;
• associated with each Fj a list of types τj1 , . . . , τjkj

(one for each argument of Fj)
3. a finite list of objects with associated primitive types
o1:τo1

, . . . , ok:τok
(object symbols are taken from G0);

4. a finite list of ADL operators A1, . . . , Am (with associ-
ated descriptions in the above general form);

5. an initial state I (see below) and
6. a goal description G in form of a precondition formula.
I and G may only contain the symbols from items 1 to 3;
the formulas in the descriptions of the Ai have to be con-
structed using only these symbols and the respective opera-
tor’s parameters. We further require that all the symbols are
distinct. In particular, this forbids using a type also as an Fj

and using an object also as an Ai.
The purpose of the Object type is to serve as a dummy

whenever an action argument, predicate argument or object
is not required to be of any specific type. All objects oi are
implicitly of this type; Object is a super-type of all other
types. Therefore, it is not allowed to appear anywhere in an
“either” statement.

In the case of closed-world planning, the initial state de-
scription I is simply given by a finite set of ground fluent
atoms F (~r); the truth value of non-appearing atoms is as-
sumed to be FALSE. When we are doing open-world plan-
ning, I is defined by a finite set of ground atoms F (~r)
and negated ground atoms ¬F (~r) (literals); non-appearing
atoms are assumed to have an initially unknown truth value
(I is a belief state, i.e. a representation of a set of possible
world states).

6τi is to be understood as the union of the τij . For simplicity,
we assume that these definitions do not contain cycles, although
one can think of examples where this would make sense (e.g. defin-
ing two types as equal).

336 Technical Report IfI-06-04

Action and Change

Example
For illustration, let’s consider a variant of Pednault’s well-
known briefcase example (Pednault 1988; Ghallab et al.
1998) dealing with transporting objects between home and
work using a briefcase. We have the following problem de-
scription:

1. Types:
Object, Item,Location
The Object type is the general superclass introduced
above. Items are objects that may be transported. A
Location is a place where we may move objects to.

2. Predicates with associated types of arguments:
At(Item,Location), In(Item)

At(x1, x2) denotes that item x1 currently is at location x2,
In(x1) means that x1 is in the briefcase.

3. Objects with associated types:
briefcase:Item, paycheck:Item, dictionary:Item
office:Location, home:Location

4. Operators:
moveB =

(〈y1:Location, y2:Location〉,
At(briefcase, y1) ∧ ¬(y1 = y2),

At(briefcase, y2) ∧ ¬At(briefcase, y1)∧
∀z:Item. In(z) ⇒ At(z, y2) ∧ ¬At(z, y1))

The briefcase can be moved from y1 to y2 if it is at the
starting location y1 and y1 is not identical to the destina-
tion y2. After moving, the briefcase is at the destination
and no longer at the starting location, which equally holds
for everything that is in the briefcase.
putInB =

(〈y1:Item, y2:Location〉,
¬(y1 = briefcase),
At(y1, y2) ∧ At(briefcase, y2) ⇒ In(y1))

This operator allows to put something into the briefcase,
if it is not the briefcase itself. When applied to an object
that is not at the same location as the briefcase, the action
has no effect.
takeOutOfB =

(〈y1:Item〉, In(y1),¬In(y1))

Something is removed from the briefcase.
emptyB =

(〈〉, TRUE,∀z:Item. In(z) ⇒ ¬In(z))

Everything is removed from the briefcase.
5. Initial State (in a closed world):

I = {At(briefcase, home), At(paycheck, home),
At(dictionary, home), In(paycheck)}

6. Goal description:
G = At(briefcase, office) ∧ At(dictionary, office)∧

At(paycheck, home)

Mapping ADL to ES
In this section, we generalize the approach of (Lin & Reiter
1997) for STRIPS to show that applying ADL operators can
as well be expressed as a certain form of first-order progres-
sion in the situation calculus ES. Below, we will construct,
given an ADL problem description in normal form, a corre-
sponding basic action theory Σ. The restriction to normal-
form ADL is no loss of generality, as the following theorem
shows.
Theorem 1 The operators of an ADL problem description
can always be transformed into an equivalent normal form.

Here are the operators from the example, put into normal
form:
moveB =

(〈y1:Location, y2:Location〉,
At(briefcase, y1) ∧ ¬(y1 = y2),

∀x1:Item. ∀x2:Location.
((x1 = briefcase ∨ In(x1)) ∧ x2 = y2)

⇒ At(x1, x2) ∧
∀x1:Item. ∀x2:Location.

((x1 = briefcase ∨ In(x1)) ∧ x2 = y1)
⇒ ¬At(x1, x2))

putInB =

(〈y1:Item, y2:Location〉,
¬(y1 = briefcase),
∀x1:Item. At(x1, y2) ∧ At(briefcase, y2) ⇒ In(x1))

takeOutOfB =

(〈y1:Item〉,

In(y1),

∀x1:Item. (x1 = y1) ⇒ ¬In(x1))

emptyB =

(〈〉,

TRUE,
∀x1:Item. In(x1) ⇒ ¬In(x1))

The Successor State Axioms Σpost

It is not a coincidence that the normal form (1) resembles
Reiter’s (1991) normal form effect axioms which are com-
bined out of individual positive and negative effects and
which he then uses to construct his successor state axioms
as a solution to the frame problem. Generalizing his ap-
proach (also applied in (Pednault 1994)), we transform a set
of operator descriptions to a set of successor state axioms as
follows, assuming (without loss of generality by Theorem 1)
that all operators are given in normal form. Let

γ+
Fj

def
=

∨

γFj,Ai
∈NF (Ai)

∃~yi.a = Ai(~yi) ∧ γ
+
Fj ,Ai

(3)

By “γFj ,Ai
∈ NF (Ai)” we mean that there only is a dis-

junct for Ai, 1 ≤ i ≤ m if there really exists a γFj ,Ai
in

the normal form of the effect of Ai. Recall that the normal
form did not require that there is a ∀ ~xj: ~τFj

. (γ+
Fj ,A(~xj) ⇒

DEPARTMENT OF INFORMATICS 337

11TH NMR WORKSHOP

Fj(~xj)) for every Fj of the domain. We only obtain ones for
Fj that did already appear7positively in the original effect of
A.

Using a similar definition for γ−Fj
, we get the successor

state axiom for Fj :

¤[a]Fj(~xj) ≡ γ+
Fj

∧ ~τFj
(~xj) ∨ Fj(~xj) ∧ ¬γ−Fj

(4)

Differing from the usual construction, we introduced the
conjunct ~τFj

(~xj) to ensure that Fj can only become true
for instantiations of the ~xj that are consistent with the type
definitions for Fj’s arguments.

For each type τi, we additionally include a successor state
axiom

¤[a]τi(x) ≡ τi(x) (5)

to define it as a situation-independent predicate (recall that
by the definition of the semantics, all predicates are initially
assumed to be fluent).

In the example, we get

γ+
At = ∃y1.∃y2.a = moveB(y1, y2) ∧

((x1 = briefcase ∨ In(x1)) ∧ x2 = y2)
(6)

γ−At = ∃y1.∃y2.a = moveB(y1, y2) ∧
((x1 = briefcase ∨ In(x1)) ∧ x2 = y1)

(7)

γ+
In = ∃y1.∃y2.a = putInB(y1, y2) ∧

(At(x1, y2) ∧ At(briefcase, y2))
(8)

γ−In = ∃y1.a = takeOutOfB(y1)∧ (x1 = y2) ∨
a = emptyB ∧ In(x1)

(9)

Notice that, as stated above, not all operators are men-
tioned in γ+

At , but only those that possibly cause a posi-
tive truth value for At. Therefore, the construction pre-
sented here still incorporates a solution to the frame prob-
lem. Our Σpost now consists of the following sentences:
¤[a]At(x1, x2) ≡ γ+

At ∧ Item(x1) ∧ Location(x2)
∨ At(x1, x2) ∧ ¬γ−At

¤[a]In(x1) ≡ γ+
In ∧ Item(x1)
∨ In(x1) ∧ ¬γ−In

¤[a]Object(x) ≡ Object(x)
¤[a]Item(x) ≡ Item(x)
¤[a]Location(x) ≡ Location(x)

The Precondition Axiom Σpre

Further, a precondition axiom can be obtained in a similar
fashion, that is a case distinction for all operators of the
problem domain:

π
def
=

∨

1≤i≤m

∃~yi:~τi.a = Ai(~yi) ∧ πAi
(10)

The types ~τi are those stated in the parameter list of Ai, and
πAi

simply is the unmodified precondition for the operator

7more precisely for those Fj appearing positively in εA outside
of the antecedent γ of a conditional effect γ ⇒ ψ

Ai. In our example, we obtain:

π = ∃y1:Location.∃y2:Location.a = moveB(y1, y2) ∧
At(briefcase, y1) ∧ ¬(y1 = y2) ∨

∃y1:Item.∃y2:Location. a = putInB(y1, y2) ∧
¬(y1 = briefcase) ∨

∃y1:Item. a = takeOutOfB(y1) ∧
In(y1) ∨

a = emptyB ∧
TRUE

(11)

The Initial Description Σ0

Finally, we are left with defining the initial description Σ0.
Here, we not only have to encode the information about the
initial state of the world, but also everything that is con-
cerned with the typing of objects. For all “either” statements
of the form (2), we need a sentence

τi(x) ≡ τi1(x) ∨ · · · ∨ τiki
(x) (12)

in Σ0. Further, we include

Fj(xj1 , . . . , xjkj
) ⊃ τj1(xj1) ∧ · · · ∧ τjkj

(xjkj
) (13)

for each type declaration of predicate arguments. Next, for
each primitive type τi such that oj1 , . . . , ojki

are all objects
declared to be of type τi, we include the sentence

τi(x) ≡ x = oj1 ∨ · · · ∨ x = ojki
(14)

The final sentence needed for translating the type definitions
is

Object(x) ≡ τ1(x) ∨ · · · ∨ τl(x) (15)

Although the above sentences in themselves only establish
type consistency in the initial situation (there are no ¤ op-
erators here), the special form of Σpost defined earlier en-
sures that these facts will remain true in successor situations.
More precisely, we have here an example where state con-
straints are resolved by compiling them into successor state
axioms (Lin & Reiter 1994).

We now come to the encoding of the actual initial world
state. In the case of a closed world, we include for each Fj

the sentence

Fj(~xj) ≡ ~xj = ~o1 ∨ · · · ∨ ~xj = ~oko
(16)

assuming that Fj(~o1), . . . , Fj(~oko
) are all the atoms in I

mentioning Fj . If we are however dealing with an open-
world problem, we instead include the sentence

~xj = ~o1 ∨ · · · ∨ ~xj = ~oko
⊃ Fj(~xj), (17)

where Fj(~o1), . . . , Fj(~okj
) are all the positive literals in I

using Fj ; and the sentence

~xj = ~o1 ∨ · · · ∨ ~xj = ~oko
⊃ ¬Fj(~xj) (18)

when ¬Fj(~o1), . . . ,¬Fj(~oko
) are all the negative literals in

I using Fj .

338 Technical Report IfI-06-04

Action and Change

In our closed-world example, we end up with a Σ0 con-
sisting of:

At(x1, x2) ⊃ (Item(x1) ∧ Location(x2))

In(x1) ⊃ Item(x1)

Item(x) ≡ ((x = briefcase) ∨ (x = paycheck) ∨
(x = dictionary))

Location(x) ≡ ((x = office) ∨ (x = home))
Object(x) ≡ (Item(x) ∨ Location(x))

At(x1, x2) ≡ ((x1 = briefcase ∧ x2 = home) ∨
(x1 = paycheck ∧ x2 = home) ∨
(x1 = dictionary ∧ x2 = home))

In(x1) ≡ (x1 = paycheck)

Correctness
Finally, we will show the correspondence between the state-
transitional semantics for ADL of adding and deleting lit-
erals and first-order progression in ES. The following defi-
nition is derived from Lin and Reiter’s original proposal of
progression, but is simpler due to the fact that we do not
need to consider arbitrary first-order structures.

A set of sentences Σr is a progression of Σ0 through a
ground term r (wrt Σpre and Σpost) iff:

1. all sentences in Σr are fluent in 〈r〉;
2. Σ0 ∪ Σpre ∪ Σpost |= Σr;
3. for every world wr with wr |= Σr ∪Σpre ∪Σpost, there is a

world w with w |= Σ0 ∪ Σpre ∪ Σpost such that:
wr, r · σ |= F (~t) iff w, r · σ |= F (~t)

for all σ ∈ R∗ and all primitive formulas F (~t) such that
F ∈ F (including Poss).

A formula that is fluent in 〈r〉 is one which is equivalent to
[r]φ for some fluent8 formula φ, i.e. it only talks about the
fluents’ values in the situation 〈r〉. Intuitively, for an ob-
server standing in the situation after r was performed (and
only looking “forward” in time), it is impossible to distin-
guish between a world w satisfying the original theory Σ
and a world wr that satisfies Σr ∪ Σpre ∪ Σpost.

We now want to address the issue of how to obtain such a
progression. The result will be that for a basic action theory
that is a translation from an ADL problem (and therefore the
member of a restricted subclass of the general form of action
theories), it is quite easy to construct such a set. Given an
ADL problem description and an action A(~p) (i.e. an opera-
tor and object symbols as instantiations for A’s parameters),
we make, under the condition that Σ0 ∪ Σpre |= Poss(A(~p)),
the following modifications to the state description I:
• in the case of closed-world planning:

– for all objects ~o and all fluent predicates Fj such that
Fj(~o) is type-consistent
if Σ0 |= γ+

Fj

~xj a

~o A(~p)
: add Fj(~o)

8Recall that our terminology contains both the notions of flu-
ent predicates (like At) as well as that of fluent formulas (e.g.
∃x.At(x, home) ∧ In(x)); they should not be confused.

– for all objects ~o and all fluent predicates Fj such that
Fj(~o) is type-consistent
Σ0 |= γ−Fj

~xj a

~o A(~p)
: delete Fj(~o)

• in the case of open-world planning:
– for all objects ~o and all fluent predicates Fj such that
Fj(~o) is type-consistent
Σ0 |= γ+

Fj

~xj a

~o A(~p)
: add Fj(~o), delete ¬Fj(~o)

– for all objects ~o and all fluent predicates Fj such that
Fj(~o) is type-consistent
Σ0 |= γ−Fj

~xj a

~o A(~p)
: add ¬Fj(~o), delete Fj(~o)

If we denote the set of literals to be added by Adds and the
ones to be deleted by Dels, then the new state description is

I ′ = (I ∪Adds) \Dels.

Here it is assumed that we only consider symbols (objects,
fluents, operators) that appear in the given problem descrip-
tion, which yields only finitely many combinations. The fact
that we only have to check type-consistent atoms further re-
stricts the number of atoms to be treated. Formally, Fj(~o)
being type-consistent means that Σ0 ∪ { ~τFj

(~o)} is satisfi-
able.
Theorem 2 Let I ′ be the set obtained in the above construc-
tion applied to a given (closed- or open-world) ADL prob-
lem description and a ground action r = A(~p). Further let

Σr = {[r]ψ | ψ ∈ Σ0(I
′)},

where Σ0(I
′) means the result of applying the constructions

in (12)-(18) to I ′ instead of I . For all fluent predicates Fj in
the problem description, let the consistency condition

|= (γ+
Fj

∧ γ−Fj
)a
r

hold. Then Σr is a progression of Σ0 through r
• in the closed-world case;
• in the open-world case only under the additional condi-

tion that whenever for some γ∗Fj
(where ∗ ∈ {+,−}) it

holds that Σ0 ∪ {γ∗Fj

~xj a

~o r
} is satisfiable, then

Σ0 |= γ∗Fj

~xj a

~o r
.

For space reasons, we will not present a proof here. The
main reason for being able to establish the result lies in the
finiteness of the domain to be considered. Whereas ES’s se-
mantics assumes a domain with countably infinite many ob-
jects and actions, PDDL, as a language that is used in prac-
tical implementations, only allows problem domains with a
finite number of operators and items. We utilize the typing
constructs to reconcile these two views.

The additional condition for open-world problems can
be illustrated with a small example: consider an operator
A = (∅, TRUE, P ⇒ Q1 ∧ ¬P ⇒ Q2) and an open world
initial state description of I = ∅. Applying A to I leads to a
situation whose state is described byQ1∨Q2, since it is both
possible that P holds and that it does not hold. Obviously,
the resulting state is not representable by a set of literals,

DEPARTMENT OF INFORMATICS 339

11TH NMR WORKSHOP

therefore we cannot apply the above progression scheme.
In fact, mainly because of such undefined states, the open-
world requirement is not included in the PDDL language
definition anymore since version 2.1 (Fox & Long 2003),
restricting its application to purely closed-world planning.

Notice that in the closed-word case, our special form of
basic action theories constitutes a proper subclass of what
is called “relatively complete databases” in (Lin & Reiter
1997). It is therefore not surprising that a progression of
such theories exists. Theorem 2 however additionally estab-
lishes that our class of action theories is also closed under
progression, since the progression result Σr is of the same
form as the original Σ0. Progression steps may thus be ap-
plied iteratively.

On the other hand, in both the open- and closed-world
case, Lin and Reiter’s progression for “strongly context-
free” theories (for which they show the correspondence to
STRIPS) is a special case of our result. This agrees with
what one would expect from the fact that ADL action de-
scriptions can be viewed as a generalization of STRIPS op-
erators.

Now let us return to our example again to see how the
closed-world progression works in this case. We assume that
we want to progress through the action moveB(home, office)
(abbreviated as m). The first thing to notice is that

Σ0 ∪ Σpre |= Poss(m)

iff, using (11), unique names for actions and the fact that
home and office are both Locations,

Σ0 ∪ Σpre |= At(briefcase, home) ∧ ¬(home = office)

iff, with unique names for objects (recall that our semantics
does not distinguish between objects and actions)

Σ0 ∪ Σpre |= At(briefcase, home)

which is obviously the case, therefore we may proceed. The
reader may verify (considering (6) and (7)) that

• Σ0 |= γ+
At

a x1 x2

mbriefcase office

• Σ0 |= γ+
At

a x1 x2

mpaycheck office

• Σ0 |= γ−At
a x1 x2

mbriefcase home

• Σ0 |= γ−At
a x1 x2

mpaycheck home

and that these are all type-consistent instantiations for
x1, x2 such that γ+

At
a

m respectively γ−At
a

m are entailed by Σ0.
Because there are no disjuncts for moveB in (8) and (9),
γ+

In
a

m and γ−In
a

m are not entailed for any instantiation of x1.
The new initial state then is
I ′ = {At(dictionary, home), In(paycheck),

At(briefcase, office), At(paycheck, office)}.
We obtain the progression Σm consisting of

[m](At(x1, x2) ⊃ (Item(x1) ∧ Location(x2)))
[m](In(x1) ⊃ Item(x1))
[m](Item(x) ≡ ((x = briefcase) ∨ (x = paycheck)∨

(x = dictionary)))
[m](Location(x) ≡ ((x = office) ∨ (x = home)))
[m](Object(x) ≡ (Item(x) ∨ Location(x)))
[m](At(x1, x2) ≡ ((x1 = dictionary ∧ x2 = home)∨

(x1 = briefcase ∧ x2 = office)∨
(x1 = paycheck ∧ x2 = office)))

[m](In(x1) ≡ (x1 = paycheck))
Notice that the only changes, compared to Σ0, are the “[m]”
in front of each formula (to denote the situation after m has
been performed) and the new instances for At.

Outlook: Embedding ADL planning in Golog
The situation calculus (and, as (Lakemeyer & Levesque
2005) showed, also ES) constitutes the foundation9 on which
the semantics of the agent programming language Golog
(Levesque et al. 1997) is defined. The language gives a
programmer the freedom to on the one hand specify the
agent’s behaviour only roughly by using nondeterministic
constructs and where it is the system’s task to find a de-
terministic strategy to achieve its goal. On the other hand,
the programmer may utilize deterministic constructs known
from imperative programming languages. Nonetheless there
is some drawback with this general purpose approach which
can be illustrated best by considering the following com-
pletely nondeterministic Golog program:
achieve(Goal) := while (¬Goal) do (πa) a endWhile
The program corresponds to the task description of find-

ing sequential plans: As long as the condition Goal is
not fulfilled, nondeterministically pick some action a and
execute it. Although it is thus possible to do sequential
planning in Golog, the performance of the Golog system
can usually not compete with current state-of-the-art plan-
ners like FF (Hoffmann & Nebel 2001; Hoffmann 2003;
Hoffmann & Brafman 2005), LPG (Gerevini et al. 2005),
HSP2 (Bonet & Geffner 2001a), Fast Downward (Helmert
& Richter 2004) or TLPlan (Bacchus & Ady 2001). The
reason is that current Golog implementations resolve non-
determinism by a simple backtracking mechanism, whereas
planners resort to efficient techniques like heuristic search,
e.g. (Bonet & Geffner 2001b).

The idea now is, using the results presented here, to em-
bed ADL-based planners (more precisely planners that take
the ADL subset of PDDL as an input language) into Golog,
to combine the benefits of both systems. We envision that
whenever, during the execution of a Golog program, a plan-
ning problem arises (i.e. an achieve(G) subgoal has to be
solved), the necessary parts of the current situation and the
subgoal are transformed into a planning problem instance
and handed over to the planner. Once a solution (a sequence
of actions) is found, it is transformed back into Golog and
the program execution continues, where PDDL serves in

9Valid executions of Golog programs are expressed by a sit-
uation calculus (respectively ES) formula that is entailed by the
underlying basic action theory.

340 Technical Report IfI-06-04

Action and Change

both cases as an interface language. The results in this paper
show that, as long as the action theory underlying the Golog
program is obtained by a translation from an ADL problem
description, this method is semantically well-founded.

Conclusion
We presented an alternative definition for the semantics of
ADL operators as progression in first-order ES knowledge
bases. This establishes the basis for embedding existing
state-of-the-art planners that take ADL as an input language,
into an interpreter for the robot programming language
Golog, to obtain a powerful language that is equally suited
for autonomously constructing complete plans (utilizing the
planner) and letting the programmer specify preconstructed
plans with residual nondeterminism (by means of the usual
Golog constructs) to be resolved by the system. Such an em-
bedding into an ES-based Golog interpreter (currently under
development) is the focus of future work, as well as giving
semantics to larger fragments of PDDL (Edelkamp & Hoff-
mann 2004; Gerevini & Long 2005b) with features such as
numeric fluents, time, or preferences.

References
Bacchus, F., and Ady, M. 2001. Planning with resources
and concurrency: A forward chaining approach. In Proc.
IJCAI-2001, 417–424.
Bonet, B., and Geffner, H. 2001a. Heuristic Search Planner
2.0. AI Magazine 22(3):77–80.
Bonet, B., and Geffner, H. 2001b. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th international planning
competition. Technical Report 195, Institut für Informatik,
Universität Freiburg.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artif. Intell. 2(3/4):189–208.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. J. Artif.
Intell. Res. (JAIR) 20:61–124.
Gerevini, A., and Long, D. 2005a. BNF description of
PDDL3.0. http://zeus.ing.unibs.it/ipc-5/
bnf.pdf.
Gerevini, A., and Long, D. 2005b. Plan constraints and
preferences in PDDL3. Technical report, Department of
Electronics for Automation, University of Brescia, Italy.
Gerevini, A.; Saetti, A.; Serina, I.; and Toninelli, P.
2005. Planning with derived predicates through rule-action
graphs and relaxed-plan heuristics. Technical report, Uni-
versita degli Studi di Brescia, Dipartimento di Elettronica
per l Automazione, Brescia, Italy.
Ghallab, M.; Howe, A.; Knoblock, C.; McDermott,
D.; Ram, A.; Veloso, M.; Weld, D.; and Wilkins,
D. 1998. PDDL—the planning domain defini-
tion language. ftp://ftp.cs.yale.edu/pub/
mcdermott/software/pddl.tar.gz.

Helmert, M., and Richter, S. 2004. Fast Downward – mak-
ing use of causal dependencies in the problem represen-
tation. http://ls5-www.cs.uni-dortmund.de/
˜edelkamp/ipc-4/Proc/downward.pdf.
Hoffmann, J., and Brafman, R. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
Proc. ICAPS-05, 71–80.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state vari-
ables. Journal of Artificial Intelligence Research 20:291–
341.
Lakemeyer, G., and Levesque, H. J. 2004. Situations, si!
situation terms, no! In Proc. KR2004. AAAI Press.
Lakemeyer, G., and Levesque, H. J. 2005. Semantics for a
useful fragment of the situation calculus. In Proc. IJCAI-
05.
Levesque, H. J., and Lakemeyer, G. 2001. The Logic of
Knowledge Bases. MIT Press.
Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. Journal of Logic Program-
ming 31:59–84.
Lifschitz, V. 1986. On the semantics of STRIPS. In
Georgeff, M. P., and Lansky, A. L., eds., Reasoning about
Actions and Plans: Proceedings of the 1986 Workshop, 1–
9. Timberline, Oregon: Morgan Kaufmann.
Lin, F., and Reiter, R. 1994. State constraints revisited.
Journal of Logic and Computation 4(5):655–678.
Lin, F., and Reiter, R. 1997. How to progress a database.
Artif. Intell. 92(1-2):131–167.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. J. Artif. Intell. Res.
(JAIR) 12:271–315.
Pednault, E. P. D. 1988. Synthesizing plans that contain
actions with context-dependent effects. Computational In-
telligence 4:356–372.
Pednault, E. P. D. 1989. ADL: Exploring the middle
ground between STRIPS and the Situation Calculus. In
Proc. KR1989, 324–332. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc.
Pednault, E. P. D. 1994. ADL and the state-transition
model of action. J. Log. Comput. 4(5):467–512.
Reiter, R. 1991. The frame problem in the situation cal-
culus: a simple solution (sometimes) and a completeness
result for goal regression. Artificial intelligence and math-
ematical theory of computation: papers in honor of John
McCarthy 359–380.
Reiter, R. 2001. Knowledge in action : logical founda-
tions for specifying and implementing dynamical systems.
Cambridge, Mass.: MIT Press. The frame problem and the
situation calculus.

DEPARTMENT OF INFORMATICS 341

11TH NMR WORKSHOP

342 Technical Report IfI-06-04

Action and Change

4.4 Planning ramifications: When ramifications are the norm, not
the ’problem’

Planning ramifications: When ramifications are the norm, not the ‘problem’

Debora Field
Dept. of Computer Science, University of Liverpool

Liverpool L69 3BX, UK
debora@csc.liv.ac.uk

Allan Ramsay
School of Informatics, University of Manchester

PO Box 88, Manchester M60 1QD, UK
allan.ramsay@manchester.ac.uk

Abstract

This paper discusses the design of a planner whose intended
application required us to solve the so-called ‘ramification
problem’. The planner was designed for the purpose of plan-
ning communicative actions, whose effects are famously un-
knowable and unobservable by the doer/speaker, and depend
on the beliefs of and inferences made by the observer/hearer.
Our fully implemented model can achieve goals that do not
match action effects, but that are rather entailed by them,
which it does by reasoning about how to act: state-space plan-
ning is interwoven with theorem proving in such a way that a
theorem prover uses the effects of actions as hypotheses.1

Introduction
Seeing the word ‘ramification’ so often bound to the word
‘problem’, it is easy to get the impression from the litera-
ture that the ramifications of actions are viewed by the AI
planning community as an annoying hindrance to their AI
planning ambitions. We, however, see ramifications very dif-
ferently. They are the focus of our planning ambition and
the mechanism of its success. Why? Because we are inter-
ested in modelling an every-day human activity which is to-
tally dependent upon the ramifications of actions: human-to-
human communication.

As far as communication is concerned, each man (and
woman) is an island. I have things I want you to believe,
and to this end I do my best to make appropriate signs to
you—in writing, speech, smoke signals, facial gestures, and
so on. You see my signs, and you decide for yourself what
they mean. There is nothing I can do to ensure that you re-
ceive the message I want you to get. All I can do is make my
signs, and put my trust in the ramifications of my actions.

Consider the human, John. Imagine John’s current goal is
to get human Sally to believe the proposition John is kind.
John has no direct access to the environment he wishes to
affect—he cannot simply implant John is kind into Sally’s
belief state. John knows that Sally has desires and opinions
of her own, and that he will have to plan something that he

1Initially supported by an EPSRC grant, with recent develop-
ments partially funded under EU-grant FP6/IST No. 507019 (PIPS:
Personalised Information Platform for Health and Life Services).

considers might well lead Sally to infer John is kind. This
means that when John is planning his action—whether to
give Sally some chocolate, pay her a compliment, tell her he
is kind, lend her his credit card—he has to consider the many
different messages Sally might infer from the one thing John
chooses to say or do.

To plan communicative acts is, then, to plan actions by
taking into account their possible ramifications. How do we
do this? We took a backward-chaining theorem prover, and
adapted it for hypothetical reasoning about the effects of ac-
tions. Our backward-chaining reasoner essentially says, “I
could prove this backwards if you allowed me to introduce
these hypotheses”. The fully implemented model is thus able
to plan to achieve goals that do not match action effects,
but that are entailed by them. Our planner was developed by
first adapting (Manthey & Bry 1988)’s first-order theorem
prover, Satchmo, into a theorem prover for a highly inten-
sional logic (Ramsay 2001), namely, a constructive version
of property theory (Turner 1987). To this was added a deduc-
tion theory of knowledge and belief (Konolige 1986) so that
the planner can reason with its beliefs about the world, in-
cluding its beliefs about others’ beliefs. State-space planning
(based on foundational work in classical planning (Newell,
Shaw, & Simon 1957; Newell & Simon 1963; Green 1969;
McCarthy & Hayes 1969; Fikes & Nilsson 1971)) was then
interwoven with theorem proving in such a way as to enable
planning for entailed goals.

Satchmo

The theorem prover we present was developed by extend-
ing Manthey and Bry’s (1988) first-order theorem prover,
Satchmo (SATisfiability CHecking by MOdel generation).
For model generation we convert the standard form to SE-

QUENT FORM, where a sequent is a formula of the form
Γ ⇒ ∆ where Γ is >, an atomic formula, or a conjunc-
tion of atomic formulae, and ∆ is ⊥, an atomic formula,
or a disjunction of atomic formulae. Satchmo was designed
for carrying out proof by contradiction, where you show that
some formulaA follows from a set of assumptions α by con-
verting α ∪ {¬A} to normal form, and showing that this set

DEPARTMENT OF INFORMATICS 343

11TH NMR WORKSHOP

has no models. The goal is to show that the set of sequents
obtained from the assumptions α and the negation ¬A of the
goal supports a proof of ⊥, since this means that no model
of α can be a model of ¬A, and hence that all models of α
are models of A (i.e., α |= A).

Model generation proceeds by distinguishing between
HORN SEQUENTS, and DISJUNCTIVE SEQUENTS. A Horn sequent
has a single literal as its consequent; a disjunctive sequent
has a disjunction as its consequent. The proof proceeds in
two stages:

(MG-i) Try to prove ¬A by backward chaining among
the Horn sequents.

(MG-ii) If this fails, find a disjunctive sequent whose
antecedent can be proved using the Horn se-
quents, but whose consequent cannot. Add
each disjunct from the consequent in turn, and
try again. The point here is that if we know Γ
and Γ ⇒ A1 ∨ A2, then we know that either
A1 or A2 must hold. So if we can show that
⊥ follows from what we know already plus ei-
ther of A1 or A2, then we know that ⊥ actually
follows from what we know already.

A constructive epistemic intensional logic
The original presentation of Satchmo is unsuitable for our
purposes, since it assumes a classical version of predicate
logic, whereas we use a constructive epistemic logic.

An epistemic logic is necessary because the program
needs to be able to do reasoning about what agents believe,
including what they believe about the beliefs of other agents.
The theorem prover embodies a deduction model of be-
lief (Konolige 1986), rather than a ‘possible worlds’ model
(Hintikka 1962; Kripke 1963). In a deduction model, agents
are allowed to have sets of beliefs that are incomplete, inac-
curate, and inconsistent, to have imperfect inference strate-
gies, and to do inference—which is much more useful for
modelling human epistemic reasoning than an agent who
is logically omniscient and automatically knows everything
that follows from his belief set.

We use a constructive logic, because we consider it is es-
sential for our purpose—to model natural language—as we
will now briefly argue. Our argument falls under two themes:
(i) We need a theorem prover that can reason with formu-
lae in which propositions are quantified over; (ii) We need
a theorem prover that more closely models the way people
do reasoning, including reasoning about a proposition that a
person believes to be false.

A theorem prover for property theory
There are a number of phenomena in natural language that
we can cope with if we are allowed to quantify over proposi-
tions, but that seem otherwise very hard to capture. Consider
the word ‘only’. If S says to H:

I only touched it

(with a voiced stress on touched), S is invitingH to compare
the action A that S did do (touched) with some other action
A′ that S did not do, and which is in some way stronger
than A (broke, perhaps). To represent the meaning of ‘only’
we require intensional meaning postulates—intensional, be-
cause they comment on the truth or falsity of other parts of
the sentence. For ‘only’ we need something like:

∀P∀X(only(P,X) ⇒
(P.X&∃P ′(similar(P, P ′)&¬P ′.X)))

This axiom says that if only(P,X) holds, where P is
some property and X is an arbitrary entity (possibly a prop-
erty itself), then P does hold of X , but there is some prop-
erty P ′ which is similar to P , and which you might have
expected to hold of X , but which in fact fails to do so. So
then, to adequately represent the meaning of even a com-
mon little word like ‘only’, not to mention many other nat-
ural language constructions, we need to be able to quantify
over propositions (Ramsay 1994).

Quantifying over propositions, however, opens the way to
the paradoxes of negative self-reference—Russell’s set, the
Epimenedes paradox, Grelling’s paradox, and so on. There-
fore, we need some way of preventing this that still ad-
mits common natural language usage (e.g., the many self-
referring pronouns: ‘this’, ‘me’, ‘himself ’ . . .), which the
earlier classical solutions to this problem do not (e.g., White-
head and Russell’s (1910) THEORY OF TYPES, and MONTAGUE

SEMANTICS (Thomason 1974)).
Turner’s PROPERTY THEORY (1987) provides a solution to

this problem by allowing you to say whatever you want, but
then placing constraints on what can be proved. Turner’s
analysis involves taking a classical treatment of first-order
logic, and adding λ-abstraction and β-reduction to it (or at
any rate, operations which look extremely like λ-abstraction
and β-reduction). It allows propositions and properties to oc-
cur as arguments, and thus provides the expressive power we
need. It provides an operator for constructing terms corre-
sponding to propositions and properties, so that they can ap-
pear in the positions where terms are required (i.e., as pred-
icate arguments), together with a series of predicates for re-
trieving the truth conditions of such a term. The main ad-
vantage of Property Theory over languages like Montague
Semantics is that it is a type-free language, and hence pro-
vides considerable extra expressive power. Spelling out the
meaning of a word like ‘only’ requires you to produce un-
typed intensional meaning postulates—untyped because this
word can apply to phrases of (almost) any syntactic type, so
that their semantic analysis must apply to phrases of almost
any semantic type.

Turner’s Property Theory is, then, attractive for our nat-
ural language purposes. Unfortunately, (Herzberger 1982)
shows that it is impossible to provide a normal form for

344 Technical Report IfI-06-04

Action and Change

Turner’s version of the logic, and hence it is very difficult to
implement a theorem prover for it. Our solution to this is to
take a constructive treatment of first-order logic, allow unre-
stricted use of both λ-abstraction and β-reduction, and avoid
the paradoxes by placing constraints on the assumptions that
can be used in a well-founded proof (Ramsay 2001).

Modelling human reasoning

The way humans do every-day reasoning is, we consider,
quite different from the way reasoning is handled under clas-
sical logic. In classical logic, for example, and using our
general knowledge, we judge the following formulae to be
true:

(1) Earth has one moon ⇒ Elvis is dead
(2) Earth has two moons ⇒ Elvis is alive
(3) Earth has two moons ⇒ Elvis is dead

(1) is true simply because antecedent and consequent are
both true formulae. We find this truth odd, however, because
of the absence of any discernible relationship between an-
tecedent and consequent. (2) and (3) are true simply because
the antecedent is false, which seems very counter-intuitive.
Even more peculiarly, the following formula is provable in
classical logic in all circumstances:

(4) (Earth has one moon ⇒ Elvis is dead) or
(Elvis is dead ⇒ Earth has one moon)

but it feels very uncomfortable to say that it must be the case
that one of these implies the other.

In order to avoid having to admit proofs like this, and to be
able to do reasoning in a slightly more human-like way, we
choose constructive logic and natural deduction. In order to
prove P ⇒ Q by natural deduction, one must show that Q is
true when P is true; if P is not true, constructive logic does
not infer P ⇒ Q. This treatment of implication hints at a
relationship between P and Q which is absent from material
implication.

Taking a constructive view also allows us to simplify
our reasoning about when the hearer believes something
of the form P ⇒ Q, and hence (because of the construc-
tive interpretation of ¬P as P ⇒ ⊥) about whether
she believes ¬P . We will assume that believes(H,P)
means that H could infer P on the basis of her belief set,
not that she already does believe P , and we will exam-
ine the relationship between believes(H,P ⇒ Q) and
believes(H,P) ⇒ believes(H,Q).

Consider first believes(H,P) ⇒ believes(H,Q). Un-
der what circumstances could you convince yourself that this
held?

For a constructive proof, you would have to assume that
believes(H,P) held, and try to prove believes(H,Q). So
you would say to yourself ‘Suppose I were H , and I be-
lieved P . Would I believe Q?’ The obvious way to answer
this would be to try to prove Q, using your own rules of

inference. Suppose you came up with such a proof. Assum-
ing that H’s rules of inference were the same as yours, you
would then be able to assume that she could also carry out
this proof. But if that were the case, then she would have
a proof of P ⇒ Q available to her, and hence it would be
reasonable to conclude believes(H,P ⇒ Q).

Suppose, on the other hand, that you believed
believes(H,P ⇒ Q), and that you also believed
believes(H,P). This would mean that you thought
that H had both P ⇒ Q and P available to her. But if
you had these two available to you, you would be able to
infer Q, so since H is very similar to you, she should also
be able to infer Q. So from believes(H,P ⇒ Q) and
believes(H,P) we can infer believes(H,Q), or in other
words, (believes(H,P ⇒ Q)) ⇒ (believes(H,P) ⇒
believes(H,Q)).

We thus see that if we take believes(H,P) to mean ‘If I
wereH I would be able to prove P ’, then (believes(H,P ⇒
Q)) and (believes(H,P) ⇒ believes(H,Q)) are equiv-
alent. This has considerable advantages in terms of the-
orem proving, since it means that much of the time we
can do our reasoning by switching to the believer’s point
of view and doing perfectly ordinary first-order reason-
ing. If, in addition, we treat ¬P as a shorthand for
P ⇒ ⊥, we see that believes(H,¬P) is equivalent to
believes(H,P) ⇒ believes(H,⊥). If we take the fur-
ther step of assuming that nobody believes ⊥, we can see
that believes(H,¬P) ⇒ ¬believes(H,P) (though not
¬believes(H,P) ⇒ believes(H,¬P)). We cannot, how-
ever, always assume that everyone’s beliefs are consistent,
so we may not always want to take this further step (note
that in possible worlds treatments, we are forced to assume
that everyone’s beliefs are consistent), but it is useful to be
able to use it as a default rule, particularly once we under-
stand the assumptions that lie behind it.

Constructive Satchmo
We have said that the original presentation of Satchmo is
unsuitable for our purposes, since it assumes a classical ver-
sion of predicate logic. This means that you can prove P

by showing that ¬P is unsatisfiable, and you can also use
equivalences such as ((P ⇒ Q) ⇒ R) ⇐⇒ ((Q ⇒
R)&(P or R)), which are not available in constructive
logic. We therefore need to adapt Satchmo so that it works
properly for constructive logic, and so that it can handle epis-
temic information.

We do this in two stages: first we have to convert our prob-
lem into an appropriate normal form, and then we have to
adapt the basic Satchmo engine to work constructively with
this normal form. Epistemic information is represented by
using Wallen’s (1987) notion of CONTEXT, which in our case
is epistemic context.

The construction of a normal form proceeds in three
stages.

DEPARTMENT OF INFORMATICS 345

11TH NMR WORKSHOP

(i) We start by making very straightforward textual changes,
to make standard logical form look a bit more like Prolog,
and to get rid of existential quantifiers.

NF-1 Replace (A & B) by (A’, B’) and
(A or B) by (A’; B’), where A’ and
B’ are the normal forms of A and B.

NF-2 Replace not(A) by (A’ ⇒ absurd).
NF-3 Replace P ⇒ (Q ⇒ R) by

((P & Q) ⇒ R)’.
NF-4 Replace believes(J,A)

by A@@[believes(J)]. (See below for
further discussion of epistemic contexts)

NF-5 Skolemise away existential quantifiers, and re-
move all universal quantifiers.

(ii) Separate the result of (i) into Horn and non-Horn clauses,
and convert the Horn clauses to ordinary Prolog.

PL-1 If the normal form of P is atomic then assert it
as a Prolog fact.

PL-2 If the normal form of P is (Q , R) then deal
with Q and R individually.

PL-3 If the normal form of P is (Q ; R) then as-
sert split(Q ; R) as a Prolog fact.

PL-4 If the normal form of P is (K ⇒ Q) where Q
is atomic then assert Q :- K as a Prolog rule.

PL-5 If the normal form of P is (K ⇒ (Q , R))
then deal with (K ⇒ Q) and (K ⇒ R) in-
dividually.

PL-6 If the normal form of P is (K ⇒ (Q ; R))
then assert split(Q ; R) :- K as a Pro-
log rule.

PL-7 If the normal form of P is
(A ⇒ B) ⇒ C then assert C :-
(A => B) as a Prolog rule. See (MG-3) for
further discussion of this rule.

(iii) Perform any optimisations that you can on these.

OP-1 Remove all ‘pure literals’ (Kowalski 1975)
from the clause set, and store for easy restora-
tion if they later become ‘impure’.

OP-2 Satchmo can be made to perform very poorly
if you include disjunctive clauses where one
or both disjuncts is actually irrelevant, so opti-
mise relevance by banning the use of a split
clause until it has been shown that its conse-
quents will contribute to a proof of G. Do this
by asserting a rule which will itself add the
split clause when its consequents have been
shown to be relevant.

OP-3 Include a ‘loop checking’ procedure which
ensures that any loops which might arise in
the automatically generated model are checked
(see later for how this is done).

OP-4 Cut out unnecessary multiple proofs of the
same goal. If the head of a rule is ground at the
point when called, we know there is no point
in finding multiple proofs of it, so place a Pro-
log cut, to be invoked iff the head was ground
at the point when the clause was called.

Once we have the problem converted to normal form, we
can use the following adaptation of the basic model genera-
tion algorithm.

MG-1 If you can prove A by using Prolog facts and
rules then you can prove it.

MG-2 You can prove A if you can prove
split(P , Q) and any of (i) P ⇒ A
and Q ⇒ A, or (ii) P ⇒ A and not(Q), or
(iii) not(P) and Q ⇒ A.

MG-3 To prove A ⇒ B, assert A and try to prove
B. If asserting A allows you to prove B then
you have a proof of A ⇒ B. Whether or not
you succeed in proving B, you must retract A
afterwards.

(MG-1) and (MG-2) are exactly as in the original presenta-
tion of Satchmo, except that since Satchmo works by try-
ing to show that the hypotheses + the negation of the goal
are unsatisfiable, it always tries to prove absurd, whereas
a constructive version has to show that the goal itself is
provable from the hypotheses (though the second pair of
routes through (MG-2) allow you to do this slightly indi-
rectly). (MG-3)2 is introduced because Satchmo relies on
the classical equivalence between ((P ⇒ Q) ⇒ R) and
((Q ⇒ R)&(P or R)) when constructing normal forms.
This equivalence is no longer available: if we want to prove
P ⇒ Q we have to use ⇒-introduction. In particular, if
you want to prove not(P), as you might as a consequence
of using (MG-2(ii)) or (MG-2(iii)), then you will have to do
this by using (MG-3) to prove P ⇒ absurd. There fol-
lows a skeletal implementation of this.

% You can prove A either directly
prove(A):-

A.
% or by proving (P or Q),(P => A)and(Q => A)
prove(A):-

split(P;Q),
% Check you haven’t tried this already
\+ (P;Q),
prove(P => (A or absurd)),
prove(Q => (A or absurd)).

% To prove (P => A), assert P
% and try to prove A (with some funny
% bookkeeping to tidy up after yourself)
(P => A):-

assert(P),
(prove(A) -> retract(P);
(retract(P), fail)).

2MG-3 is equivalent to⇒-introduction from standard construc-
tive logic. If you start by checking that B is not provable without A,
you get RELEVANT IMPLICATION (Anderson & Belnap jr. 1975).

346 Technical Report IfI-06-04

Action and Change

Figure 1:

Initial State Goal Condition

cba

a

c

b

The key non-cosmetic differences between this and
Satchmo are that (i) this version implements a constructive
version of first-order logic rather than a classical one, and
(ii) it is slightly more direct when faced with clauses of the
form ((P ⇒ Q) ⇒ R). Most of the work in Satchmo
is performed in the backward chaining phase where the Pro-
log facts and rules are being used to prove specific goals. By
converting ((P ⇒ Q) ⇒ R) to R :- (P ⇒ Q), we
ensure that this rule is activated when it is required, at the
cost of having to prove P ⇒ Q by asserting P and showing
that Q follows from it. If we convert ((P ⇒ Q) ⇒ R) to
R :- (P ⇒ Q) and split(R ; P), we end up hav-
ing to explore the consequences of asserting P anyway.

Planning by hypothesising actions
Now that the theorem prover has been introduced, let us
move on to how the theorem prover is used to hypothesise
actions in order to achieve goals that do not match action
effects, but that are entailed by them. First, a ‘blocks world’
example will be given to illustrate what we mean by ‘plan-
ning ramifications’. Following this will be an explanation of
how information concerning which actions have been hy-
pothesised is carried around in the model. Finally, a descrip-
tion of the model’s planning procedure will be given.

An example
Figure 2 shows a list of facts describing a simple knowl-
edge state, which asserts: that j knows (strongly believes)
there is a certain configuration of blocks (three, each on the
table); that everyone knows about two actions: ‘stack’ and
‘unstack’; and that everyone knows that ‘above’ is the tran-
sitive closure of ‘on’.
The Initial State in Figure 1 is a pictorial representation of
the knowledge state shown in Figure 2, while the Goal Con-
dition in Figure 1 pictures the following proposition:

believes(j, above(a,b) & on(a,c))

This is the plan solution returned when we call the planner
to achieve this proposition from the initial state described by
state 1:3

3For clarity’s sake, a number of details are missing from Fig-
ure 2 which are present in the model, including constraints on the
recursive above(,) rule and on the effects of actions.

Figure 2:

state_1(
believes(j, isblock(a) & isblock(b)
& isblock(c) & on(a,table) & on(b,table)
& on(c,table) & clear(a) & clear(b)
& clear(c))

& forall(Y,
believes(Y,
action(doer(slave),stack(slave,F,G),
precons(isblock(G) & isblock(F)
& on(F,table)
& clear(G) & clear(F)),
add(on(F,G)),
delete(on(D,table) & clear(G)))))

& forall(Y,
believe(Y,
action(doer(slave), unstack(slave,F,G),
precons(on(F,G) & clear(F)
& isblock(F) & isblock(G)),
add(clear(G) & on(F,table)),
delete(on(F,G)))))

& forall(Y,
believes(Y,
(on(P,Q) => above(P,Q))))

& forall(Y,
believes(Y,
((on(R,Q) & above(P,R))
=> above(P,Q)))).

[stack(slave,c,b),stack(slave,a,c)]

Disregarding epistemic matters for the moment, in order
to achieve above(a,b) & on(a,c), something different from
an action with an above(,) expression in its add list is
needed (note that although the goal contains a predicate of
the form above(,), the add list of action stack does not
contain any above predicates). Placing a onto b, for exam-
ple, will make above(a,b) proveable, but it will also make
the achievement of on(a,c) impossible. By reasoning with
the rules that describe the meaning of above as the tran-
sitive closure of on, the theorem prover hypothesises that
the proposition on(a,X) & on(X,b) might enable the proof of
above(a,b) to be completed. It also knows that on(X,Y) is an
effect of action stack(X,Y). A proof of the preconditions of
action stack(a,X) is invoked by the planning search, and the
process continues (with backtracking), until a full plan solu-
tion is found. Thus the planner is able to find stack actions
to achieve above goals, because it knows that the effects of
stack(X,Y) include on(X,Y), while also knowing that the ram-
ifications of stack(X,Y) include above(X,Z).

Labels

Now we come to explain how information concerning which
actions have been hypothesised is carried around in the
model. As a starting point for this, we refer again to the
theorem prover’s loop-checking mechanism. The programs
we are concerned with are generated automatically from sets

DEPARTMENT OF INFORMATICS 347

11TH NMR WORKSHOP

of statements, and it is not appropriate to restrict what can
be said in this language, just because we are worried about
the theorem prover getting into a loop. In order to prevent
infinite loops of reasoning occurring, we include an abbre-
viated copy of the proof stack in a ‘label’ (after (Gabbay
1996)). The label carries non-logical, arbitrary information
about the progress of a proof, and is used for a variety of
purposes. Labels are threaded through the clause, so that in-
formation can be passed from one subgoal to the next. For
loop checking we add the current goal to the goal stack at
the points where we are about to call something which might
lead us into a loop, and we start this call by explicitly look-
ing to see whether we are in a loop.4 Another use for the
labels is to carry around the equivalence classes that result
from using rules relating to equality, which we use for dy-
namically rewriting clauses (rewriting the entire clause set,
as proposed by (Gallier et al. 1993), is very expensive if you
have large clause sets: we prefer to rewrite clauses as we use
them, using information encoded in the label).

The two most important entries in the label (as far as
this paper is concerned) are (i) the hypothetical actions that
the theorem prover collects, and (ii) a note of the epistemic
context of the proposition to which the label belongs. Re-
ferring again to the blocks-world example, Figure 3 shows
above(a,b), with its label, at the point in the search
where the theorem prover has identified some actions that
would achieve it.

The label is carried around as the first argument of the
goal predicate above. The arguments a and b of the goal
are the last arguments of the label (lines (32) and (33)). The
normal form above(a,b)@@[believe(j)] of the goal
is carried around in the label for goal protection purposes,
and can be seen as an argument of top in line (2). The stack
for the loop checker is trail(C), seen on line (3). The ac-
tions stack(slave,E,b) and stack(slave,a,E)
that have been found can be seen in lines (7 ff) and (20 ff) as
arguments of hypotheses(...). The epistemic context
[believe(j)] of the goal is seen in line (31). Let us say
a brief word here about epistemic entailment.

Epistemic entailment During a proof, a call is made to
procedure checkContexts to see whether the epistemic
context of a proposition is entailed by the epistemic context
of the proposition from which it is being currently proved.
The KNOWLEDGE AXIOM, TRANSMISSIBILITY AXIOM, and an INTRO-

SPECTION AXIOM (a two-way reading of the so-called POSITIVE

INTROSPECTION AXIOM (Hintikka 1962)) hold for knowledge as

4Clearly, the definition of checkloop is critical here—if you
define it too tightly you will lose proofs which are actually avail-
able; if you define it too loosely, you will still get into loops. For
practical purposes, we choose to define it quite tightly, so that we
have some confidence that the algorithm will terminate (it is there-
fore, of course, bound to be incomplete. That’s a choice you have to
make—the more loops you cut out, the more potentially provable
theorems you miss).

Figure 3:

1. above(label(shared(refs(B),
2. top(above(a, b) @@ [believe(j)])),
3. nonshared(trail(C),
4. D,
5. hypotheses([{,(above(a, b)
6. @@ [believe(j)],
7. (action(doer(slave),
8. stack(slave, E, b),
9. precons(isblock(b)
10. & isblock(E)
11. & on(E,table)
12. & clear(b)
13. & clear(E)),
14. add(on(E, b)),
15. delete(on(E, table)
16. & clear(b))),
17. [believe(j)]))},
18. {,(above(a, b)
19. @@ [believe(j)],
20. (action(doer(slave),
21. stack(slave, a, E),
22. precons(isblock(E)
23. & isblock(a)
24. & on(a,table)
25. & clear(E)
26. & clear(a)),
27. add(on(a, E)),
28. delete(on(a, table)
29. & clear(E))),
30. [believe(j)]))}]),
31. context([believe(j)]))),
32. a,
33. b)

modelled by the program. The axioms that hold for belief
are the INTROSPECTION AXIOM and a mutual belief axiom.

Mutual beliefs are beliefs that conversants believe that
they share. For example, we represent ‘John believes that
he and Sally mutually believe that pigs can’t fly’, in standard
logic as:

believes(john,
believes(sally,
mutuallybelieve([john,sally]),
not(fly(pigs))))

A mutual belief that p by j and s entails an infinite number
of beliefs (Bjp, Bsp, BjBsp, BsBjp, BjBsBjp . . .), how-
ever, this does not present a difficulty for the theorem prover,
because, as mentioned above, the theorem prover embodies
a deduction model of belief.

Now we will discuss in more detail how the actions got
into the label, and how they are used to derive a solution to
a planning problem.

Procedure
It is difficult to decide which is the more helpful way to de-
scribe our model. It is both a planner that employs a theorem

348 Technical Report IfI-06-04

Action and Change

prover to hypothesise actions, and it is a theorem prover that
employs a planning search. It is perhaps more intuitive to
depict the model as the former, because the user calls the
planning search, and the planning search calls the theorem
prover; however, since the theorem prover hypothesises ac-
tions (a single action, or a series of actions), there is clearly
a fuzzy boundary between theorem proving and planning in
the model.

What we can say is that whereas the theorem prover posits
desirable series of actions, it does not of itself invoke a
search to find out whether the actions are doable (and to
make them doable if they are not); this testing of and plan-
ning for preconditions is carried out by the planning search
(which again invokes the theorem prover to hypothesise de-
sirable actions). Here is a more formal and more detailed
explanation.

The user calls plan to return a plan that would achieve
some goal G from some initial state W0 (which has already
been asserted into the Prolog database), and plan calls the
theorem prover.

The theorem prover first reasons to see whether
W0 |= G. It ensures no plan search is carried out by in-
sisting that the argument of hypotheses (carried in the
label) be the empty list. If W0 |= G, the empty plan is
returned to the user as the solution. Otherwise, the theorem
prover is called a second time, this time with a variable as
the argument of hypotheses.

Now the theorem prover distributes the epistemic context
of G over the conjuncts of G. We will illustrate using our
blocks-world example, so goal G

(above(a,b) & on(a,c))@@[believes(j)]

becomes G′

above(a,b)@@[believes(j)]
& on(a,c)@@[believes(j)]

Next, the first conjunct above(a,b)@@
[believes(j)] of G′ is addressed, and an action
is identified whose effects entail it. How is this done? Ad-
dressing conjunct above(a,b)@@[believes(j)] of
G′, the theorem prover finds that above(a,b) is the con-
sequent of a rule whose antecedent is on(a,b), and whose
epistemic context is [believes(Y)] (see Figure 2). The
epistemic context is distributed over the rule,5 and a proof is
sought of antecedent on(a,b)@@[believes(Y)].

Now the theorem prover is looking for an action whose
effects would render on(a,b)@@[believes(Y)] true.
Individual action effects are stored as ‘hypothetical facts’ in
the Prolog database. Figure 4 shows a skeletal version of the
effect on(F,G) of action stack(slave,F,G) as it is
stored in the database:6

5See earlier (‘Modelling human reasoning’) for our justification
of this move.

6In order to make our presentation as clear as possible for the
reader, we have missed out much of the body of the rule presented

Figure 4:

0. on(label(..., hypotheses(D),
1. context(E)),
2. F, G) :-
3. checkContexts([believes(H)],E),
4. hypothesis(
5. label(hypotheses(D),
6. context([believes(H)])),
7. action(doer(slave),
8. stack(slave,F,G),
9. precons(isblock(G)
10. & isblock(F)
11. & on(F,table)
12. & clear(G)
13. & clear(F)),
14. add(on(F,G)),
15. delete(on(F,K)&clear(G))).

This hypothetical fact says “on(F,G) would be true, if
you allowed me to introduce these hypotheses”. The hy-
pothesis the theorem prover wants to introduce here is
stack(J,F,G) (lines (4)–(15)).

Continuing with the example, the hypothetical fact
on(F,G) is unified with our current subgoal on(a,b),
and (among other things) a check is made to see whether
the epistemic context [believes(j)] of the subgoal is
entailed by the epistemic context [believes(H)] of the
action, which it is (see lines (1), (3), and (6)). Now the
label of on(a,b) is threaded through into the label of
above(a,b), carrying with it the list of hypothetical facts
(which contains one fact at the moment in our example),
and the list is returned to plan. Now the epistemic con-
text of the action stack(slave,a,b) is distributed over
the action’s preconditions, and plan is called to prove the
(now epistemic) preconditions of stack(slave,a,b).
Thus the whole planning procedure starts again from the
beginning, this time with the preconditions of a desir-
able action as the goal. In our example, all the precondi-
tions of stack(slave,a,b) are true, and so the action
stack(slave,a,b) is applied (the add list facts are
added to the Prolog database, and the delete list facts are
deleted). A goal protection check is made, which succeeds,
and the next conjunct on(a,c)@@[believes(j)] of
the goal G′ is addressed.

The procedure continues for the second goal conjunct
much as just described for the first, except this time
there is no need to invoke an above(,) rule to find
a desirable action. However, the goal protection check
fails, because to achieve on(a,c)@@[believes(j)],

in Figure 4. Present in the actual body are procedures for checking
whether the head of a rule is ground, for loop checking, and for
managing equivalence classes (all mentioned earlier), as well as
some additional constraints on stack. The label is also missing a
lot of arguments, most of which have been mentioned already. The
preconditions list has also been simplified.

DEPARTMENT OF INFORMATICS 349

11TH NMR WORKSHOP

the planner would have to ‘unachieve’ the earlier
achieved goal above(a,b)@@[believes(j)]. Con-
sequently, Prolog fails and backtracks to try an al-
ternative proof of above(a,b). This time the theo-
rem prover collects two hypothetical facts in its list
of hypotheses, and returns them to plan. Figure 3
above shows the model’s representation of the goal
above(a,b)@@[believes(j)] at this stage, when the
goal has just been returned to plan along with the hypothet-
ical facts that would enable its proof to be completed. Notice
that stack(slave,E,b) and stack(slave,a,E)
are included as arguments of hypotheses(...), being
the two actions that need performing before the proof of
above(a,b)@@[believes(j)] can be completed.

Having more than one action to deal with this time,
plan makes a plan to achieve the preconditions of the
first action stack(slave,E,b), applies that plan, does
a goal protection check, and then repeats the proce-
dure for the second action stack(slave,a,E) (which
by now is fully instantiated), with backtracking, until a
plan is found that will achieve the first goal conjunct
above(a,b)@@[believes(j)] from W0. The grow-
ing plan by this stage is [stack(c,b),stack(a,c)].
Now the second conjunct on(a,c)@@[believes(j)]
of the goal G′ is addressed, and the theorem prover finds
that W1 models on(a,c)@@[believes(j)], so a plan
solution has been found.

Comments on procedure

The example that has been given is a simple task, chosen
to keep the necessary explanation to a minimum. One fac-
tor that makes it simple is that there are only two con-
juncts in the goal condition, and only one of these is an
above(,) goal. The planner can, however, achieve goals
having many conjuncts, and including many above(,)
goals, including those which require multiple recursive calls
of the above(,) rules in order to be achieved.

Another factor that makes the example simple is that, due
to the fact that all the blocks are on the table and clear in
the initial state, no planning is required to achieve the pre-
conditions of the hypothesised actions. The example is not
typical, however, and there are many tasks the planner can
achieve which require preconditions to be achieved, not sim-
ply proved true.

The simplicity of the example has made it unnecessary to
describe aspects of the plan search that have been specially
designed to overcome unhelpful goal interactions (as first
discussed by (Sussman 1974; Sacerdoti 1975)). These in-
clude a cross-plan-splicing procedure we call ‘Think Ahead’
(Field & Ramsay 2004). It works by incorporating thinking
about the preconditions of chronologically later actions into
the planning of earlier actions, which it does by exploiting
the chronological information in the antecedent of a recur-
sive domain-specific inference rule.

The reader may have noticed that our actions have an ex-
plicit ‘doer’ who is always ‘slave’:

forall(Y,
believes(Y,
action(doer(slave),stack(slave,F,G)...)))

This is done because we want to maintain a clear dis-
tinction between three agent types: (i) the agent who knows
about actions and does all the thinking (Y in the stack op-
erator); (ii) the agent who will supposedly execute the ac-
tion (slave in stack); and (iii) the agent who observes
the action. No explicit observer is mentioned in the stack
operator, because we have represented stacking as a non-
communicative action, which is generally the case.7 Our
operators for communicative actions, however, require both
speaker (doer) and hearer (observer) to be made explicit, so
that preconditions lists can refer to both the speaker’s beliefs
and the hearer’s beliefs.

General comments and further work
The reader may have observed that there are perhaps alarm-
ingly large amounts of quoted Prolog in this paper. Although
this may appear unorthodox, we feel it serves our purpose
well to include the code, and so we hope that the reader will
forgive us. We are aiming to exploit the efficiency of Prolog
as an engine for backward chaining through Horn clauses.
The inclusion of a substantial amount of Prolog in the dis-
cussion is intended to show how we can obtain directly exe-
cutable Prolog from problems stated in epistemic logic.

The authors do recognise that most of the AI commu-
nity views ramifications as a problem (a part of the FRAME

PROBLEM (McCarthy & Hayes 1969)), and not the norm. We
concede that, whereas our presented model makes plans to
achieve what we might call ‘positive ramifications’ (new
propositions which become provable in the new state, but
which are not listed in an operator’s add list), there has
been no mention thus far of what we might call ‘negative
ramifications’—facts in the knowledge base which are ren-
dered false by the application of an action, but which do not
appear in the action operator’s delete list, and which there-
fore remain in the knowledge base, leading to potential in-
consistencies.

Currently no procedure is implemented in the model to
deal with negative ramifications, because there is no need
for it. This is because the inferences made by the entertain-
ment of hypotheses are only held at run-time, they are not
collected into a cache to be asserted in the knowledge base
for later reference. We recognise that there may be an argu-
ment for cacheing inferences, annotated by the hypotheses
that were being entertained at that point. However, in our

7It is, however, easy to think of situations in which stacking a
block is done to convey a message, for example, a mother stack-
ing a block to communicate to her baby how stacking is done. In
fact, we consider most ‘physical’ actions as potential communica-
tive actions.

350 Technical Report IfI-06-04

Action and Change

natural language domain, the costs are likely to outweigh
the benefits, because we very seldom repeat inferences un-
der the same sets of assumptions. If we were to cache in-
ferences, we would probably appeal to the EXTENDED STRIPS

ASSUMPTION (Reiter 1978, p. 407) (formulae not in the delete
list of an operator will remain true after the action’s per-
formance, unless it can be shown otherwise), and employ a
reasoning maintenance system (after (Doyle 1987)). At the
point of the addition of a cache of inferences to the knowl-
edge base, the RMS would use necessary supporting condi-
tions to identify and delete any propositions in the database
which the new propositions contradicted.

References

Allen, J.; Hendler, J.; and Tate, A. 1990. Editors. Readings
in planning. San Mateo, California: Morgan Kaufmann.

Anderson, A. R., and Belnap jr., N. 1975. Entailment:
the Logic of Relevance and Necessity, vol. 1. New Jersey:
Princeton University Press.

Doyle, J. 1987. A truth maintenance system. In (Ginsberg
1987), pp. 259–79.

Feigenbaum, E. A., and Feldman, J. 1995. Editors. Com-
puters and thought. Cambridge, Massachusetts: MIT Press.
First published in 1963 by McGraw-Hill Book Company.

Field, D., and Ramsay, A. 2004. How to build towers
of arbitrary heights, and other hard problems. In Proc.
23rd Workshop of the UK Planning and Scheduling Special
Interest Group (PLANSIG), 20–21 December 2004, Cork,
Ireland.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2: 189–208.

Gabbay, D. M. 1996. Labelled deductive systems. Oxford
University Press: Oxford.

Gallier, P.; Narendran, P.; Plaisted, D.; Raatz, S.; and Sny-
der, W. 1993. An algorithm for finding canonical sets of
ground rewrite rules in polynomial time. Journal of the
Association for Computing Machinery 40(1): 1–16.

Ginsberg, M. L. 1987. Readings in nonmonotonic reason-
ing. Los Angeles, California: Morgan Kauffmann.

Green, C. 1969. Application of theorem proving to prob-
lem solving. In Proc. 1st International Joint Conference on
Artificial Intelligence (IJCAI), pp. 219–39.

Herzberger, H. 1982. Notes on naive semantics. Journal
of Philosophical Logic 11: 61–102.

Hintikka, J. 1962. Knowledge and belief: An introduction
to the two notions. New York: Cornell University Press.

Konolige, K. 1986. A deduction model of belief. London:
Pitman.

Kowalski, R. 1975. A proof procedure using connection

graphs. In Journal of the Association for Computing Ma-
chinery 22(4): 572–595.

Kripke, S. 1963. Semantical considerations on modal
logic. In Acta Philosophica Fennica 16: 83–94.

Manthey, R., and Bry, F. 1988. Satchmo: a theorem prover
in Prolog. Proc. 9th International Conference on Auto-
mated Deduction (CADE-9), volume 310 of Lecture Notes
in Artifcial Intelligence, pp. 415–434, Berlin: Springer-
Verlag.

McCarthy, J., and Hayes, P. J. 1969. Some philosophi-
cal problems from the standpoint of artificial intelligence.
Machine Intelligence 4: 463–502.

Newell, A., and Simon, H. A. 1963. GPS, a program
that simulates human thought. In (Feigenbaum & Feldman
1995), pp. 279–93.

Newell, A.; Shaw, J. C.; and Simon, H. A. 1957. Empir-
ical explorations with the logic theory machine. In Proc.
Western Joint Computer Conference 15: 218–239.

Ramsay, A. M. 1994. Focus on “Only” and “Not”. In
Y. Wilks. Editor. Proc. 15th International Conference on
Computational Linguistics (COLING-94), Kyoto, pp. 881–
885.

Ramsay, A. 2001. Theorem proving for untyped construc-
tive λ-calculus: implementation and application. In the
Logic Journal of the Interest Group in Pure and Applied
Logics, Vol. 9(1): 83–100.

Reiter, R. 1978. On closed world data bases. In H. Gal-
laire and J. Minker. Editors. Logic and Data Bases, pp. 55–
76. New York: Plenum Press, 1978. Reprinted in (Ginsberg
1987), pp. 300–333.

Sacerdoti, E. D. 1975. The nonlinear nature of plans.
In Proc. 4th International Joint Conference on Artificial
Intelligence (IJCAI), Tbilisi, Georgia, USSR, pp. 206–14.
Reprinted in (Allen, Hendler, & Tate 1990), pp. 162–70.

Sussman, G. J. 1974. The virtuous nature of bugs.
In Proc. Artificial Intelligence and the Simulation of Be-
haviour (AISB) Summer Conference. Reprinted in (Allen,
Hendler, & Tate 1990), pp. 111–17.

Thomason, R. H. 1974. Editor. Formal Philosophy: Se-
lected papers of Richard Montague. New Haven: Yale Uni-
versity Press.

Turner, R. 1987. A theory of properties. In Journal of
Symbolic Logic 52(2):455–472.

Wallen, L. 1987. Matrix proofs for modal logics. Proc.
10th International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 917–23.

Whitehead, A. N., and Russell, B. 1910. Principia mathe-
matica. Cambridge: Cambridge University Press.

DEPARTMENT OF INFORMATICS 351

11TH NMR WORKSHOP

352 Technical Report IfI-06-04

Action and Change

4.5 Resolving Conflicts in Action Descriptions

Resolving Conflicts in Action Descriptions

Thomas Eiter and Esra Erdem and Michael Fink and Ján Senko
Institut für Informationssysteme 184/3,

Technische Universität Wien
Favoritenstraße 9-11, 1040 Wien, Austria

email:{eiter, esra, michael, jan}@kr.tuwien.ac.at

Abstract

We study the problem of resolving conflicts between
an action description and a set of conditions (possibly
obtained from observations), in the context of action
languages. In this formal framework, the meaning of
an action description can be represented by a transition
diagram—a directed graph whose nodes correspond to
states and whose edges correspond to transitions de-
scribing action occurrences. This allows us to charac-
terize conflicts by means of states and transitions of the
given action description that violate some given condi-
tions. We introduce a basic method to resolve such con-
flicts by modifying the action description, and discuss
how the user can be supported in obtaining more pre-
ferred solutions. For that, we identify helpful questions
the user may ask (e.g., which specific parts of the action
description cause a conflict with some given condition),
and we provide answers to them using properties of ac-
tion descriptions and transition diagrams. Finally, we
discuss the computational complexity of these questions
in terms of related decision problems.

Introduction
Action languages (Gelfond & Lifschitz 1998) are a formal
tool for reasoning about actions, where an agent’s knowl-
edge about a domain in question is represented by a declar-
ative action description that consists of logical formulas.
Consider for instance a light bulb with a switch. When
the light is off, then toggling the switch turns the light on;
this can be expressed in the action description language
C (Giunchiglia & Lifschitz 1998) by the formula

causedLight after Toggle ∧ ¬Light . (1)

On the other hand, at every state, if the light bulb is broken
then the light is off. This can be expressed by the formula

caused¬Light if Broken. (2)

Other pieces of knowledge, like laws of inertia, may be also
included. The meaning of such an action description can be
represented by a transition diagram—a directed graph whose
nodes correspond to the states of the world and the edges to
the transitions describing action occurrences. For instance,

the transition diagram of the action description above (con-
sisting of (1), (2), and the inertia laws) is presented in Fig-
ure 1.

Note that the action description above is “buggy”, since
the effects of toggling the switch are not completely speci-
fied. Our goal is to “repair” such descriptions taking into ac-
count some additional information, such as observations or
axioms about the action domain, which can be represented
in an action query language (Gelfond & Lifschitz 1998). For
example, when the light bulb is broken, toggling the switch
may lead to a state where the light is off; this information is
possibly obtained from some observations of the agent, and
can be expressed in an action query language, e.g., by the
statement

possibly¬Light after Toggle if Broken. (3)

Some of the additional information may conflict with the
action description. For instance, condition (3) does not hold
relative to the action description above, since at the state
where the light bulb is broken and the light is off, toggling
the light switch is not possible. Thus, there is a conflict be-
tween the action description and this condition.

In this paper, we consider such conflicts, and how the
agent’s action description can be modified to resolve them.
This may be accomplished in many different ways, and there
is no canonical method which works satisfactorily in all
cases. According to (Eiteret al. 2005), one might aim at
dropping a smallest set of candidate formulas to resolve the
conflict. In our example, dropping (1) would work. How-
ever, under further conditions, like

necessarily¬Light after Toggle if Light , (4)

the conflict cannot be resolved just by dropping formulas:
removing any of (1), (2) and inertia laws will not lead to an
edge from a state where the light is on to a state where the
light is off. A refined approach is needed which, semanti-
cally, modifies the transition diagram by suitable changes of
the formulas to “repair” the action description such that the
given queries (i.e., conditions) hold.

This paper makes two main contributions in this direction:

DEPARTMENT OF INFORMATICS 353

11TH NMR WORKSHOP

¬Broken
Light

Broken
¬Light

¬Broken
¬Light

{} {}{}, {Toggle}

{Toggle}

Figure 1: Transition diagram of the action description{ (1),
(2), (7)}.

1. It provides a precisenotion of conflictbetween an action
description and a set of queries, and presents a basic algo-
rithm to resolve such conflicts. The idea is to modify the
transition diagram of the action description by adding or
deleting transitions so that all given conditions are satis-
fied; such a modification of the transition diagram is pos-
sible by adding, deleting or modifying some formulas in
the action description. Based on this idea, our algorithm
calculates a repair whenever it is possible.

2. Intuitive repair preferences might be difficult to formal-
ize (e.g., both syntactic and semantic aspects might play a
role) and thus to achieve with the basic algorithm above.
In such cases, the designer might want toask questions
about the action description, the transition diagram, and
the extra information, whose answers could guide her
to come up with an appealing repair in an iterative re-
pair process. For that, we explore several kinds of such
questions and determine properties of action descriptions,
transition diagrams, and extra information which are help-
ful in answering them. We also analyze the computational
complexity of related problems.

Preliminaries
Transition diagrams. We start with apropositional ac-
tion signatureL = 〈F,A〉 that consists of a setF of fluent
names, and a setA of action names. Satisfaction of a propo-
sitional formulaG over atomsAt ⊆ F∪A by an interpreta-
tion P 7→ I(P) ∈ {t, f} for all P ∈ At as usual, is denoted
by I |= G. An action is an interpretation ofA, denoted by
the set of action names that are mapped tot.

A transition diagramof L consists of a setS of states, a
functionV : F × S → {f, t} such that each states in S is
uniquely identified by the interpretationP 7→ V (P, s), for
all P ∈ F, and a subsetR ⊆ S × 2A ×S of transitions. We
say thatV (P, s) is thevalueof P in s. The statess′ such that
〈s,A, s′〉 ∈ R are the possibleresults of the executionof the
actionA in the states. We can think of a transition diagram
as a labeled directed graph. Every states is represented by
a vertex labeled with the functionP 7→ V (P, s) from flu-
ent names to truth values; we denote bys the set of fluent
literals satisfied by this function. Each triple〈s,A, s′〉 ∈ R

is represented by an edge froms to s′ and labeledA. See
Figure 1 for an example.

Action descriptions. We consider a subset of the action
description languageC (Giunchiglia & Lifschitz 1998) that

consists of two kinds of expressions (calledcausal laws):
static laws

causedL if G, (5)

whereL is a fluent literal orFalse, andG is a propositional
combination of fluent names; anddynamic lawsof the form

causedL if G after U , (6)

whereL andG are as above, andU is a propositional com-
bination of fluent names and action names. In (5) and (6) the
part if G can be dropped ifG is True.1 An action descrip-
tion is a set of causal laws. For instance, one formalization
of the light domain described in the introduction can be ex-
pressed in this language by the causal laws (1), (2), and the
inertia laws

inertial Light ,¬Light

inertial Broken,¬Broken.
(7)

Here an expression of the forminertial L1, ..., Lk stands for
the causal lawscausedLi if Li after Li for i ∈ {1, ..., k}.

The meaning of an action description can be represented
by a transition diagram as follows. We say that a causal lawl

is applicableto a transition〈s,A, s′〉 in a transition diagram,
if

• l is a static law (5), such thats′ |= G; or

• l is a dynamic law (6), such thats′ |= G ands∪A |= U .2

We denote byD(tr) the set of all causal laws in an ac-
tion descriptionD that are applicable to a transitiontr; by
HD(tr) the set of the heads of all causal laws inD(tr); and
by sat(HD(tr)) the set of interpretations ofF that satisfy
HD(tr).

Let D be an action description with an action signature
L = 〈F,A〉. Then the transition diagram〈S, V,R〉 de-
scribedbyD, denotedT (D), is defined as follows:

• S is the set of all interpretationss of F such that, for every
static law (5) inD, s |= G ⊃ L,

• V (P, s) = s(P),

• R is the set consisting of all transitions〈s,A, s′〉 such that
sat(HD(〈s,A, s′〉)) = {s′}.

We denote byS(D) (resp. R(D)) the set of states (resp.
transitions) ofT (D). For instance the transition diagram
described by the action description consisting of (1), (2),(7)
is shown in Figure 1.

Conditions. For expressing extra conditions, we consider
here a language with two kinds of statements (“queries”)
about an action description:possibility queriesandneces-
sity queriesof the respective forms

possiblyψ after A if φ (8)

1
True (resp. False) is the empty conjunction (resp. disjunc-

tion).
2We identify statess with the interpretationsP 7→ V (P, s).

354 Technical Report IfI-06-04

Action and Change

necessarilyψ after A if φ (9)

where φ and ψ are propositional combinations of fluent
names, andA is an action. These queries are syntactically
different from the ones presented in (Gelfond & Lifschitz
1998) and (Eiteret al. 2005); on the other hand, semanti-
cally they constitute a fragment of an extension of the action
query languageP (Gelfond & Lifschitz 1998) (from which
we draw the term “query”) and the condition language in
(Eiter et al. 2005) (see Related and Further Work for a dis-
cussion).

A queryq of form (8) (resp., (9))is satisfied at states in
a transition diagramT , denotedT, s |= q, if either s 6|= φ,
or for some (resp., every) transition〈s,A, s′〉 of T s′ |= ψ

holds. We say thatT entails a setQ of queries (denoted
T |=Q), if T, s |= q for everyq ∈ Q and for every states in
T . Accordingly, an action descriptionD entailsQ (denoted
D |=Q) if T (D) |= Q.

Example 1 Let us consider the light domain described in
the introduction as our running example. LetD be the action
description consisting of (2), (1), and (7); andQ be the set
of two queries: possibility query (3) and the necessity query
(4), denoted byqp andqn respectively. Figure 1 showsT (D)
(i.e., the transition diagram ofD). Then it can be easily
verified that, at state{¬Light , Broken}, since there is no
transition from this state with actionToggle, the queryqn is
trivially satisfied whileqp is not satisfied.

What a query describes is different from what a causal law
does: action descriptions allow us to describe a transition
diagram, based on causal explanations (what “is caused”),
whereas queries allow us to state assertions (what “holds”)
about transition diagrams. These assertions may, e.g., be
observations or axioms about the action domain. (See (Gel-
fond & Lifschitz 1998) for a discussion on action query lan-
guages.)

Conflicts in Action Descriptions
Given an action descriptionD and a setQ of queries, we
say that there is aconflict betweenD andQ, if D 6|= Q.
Our goal is to resolve these conflicts by modifying the action
description.

Conflicts can be characterized, from a semantic point of
view, in terms of states and transitions “violating” some
queries. We assume that the states of the world are correctly
described by the given action description. Thus conflicts are
existing transitions (for the violation of a necessity query)
and non-existing transitions (for the violation of a possibil-
ity query) that cause such conflicts. The idea is then to “re-
pair” an action description by a syntactic modification, such
as adding, deleting, or modifying some of its causal laws,
so that the detected conflicts are resolved by adding and/or
deleting some transitions in the transition diagram.

For an action descriptionD and a setQ of queries,
the states and transitions violating possibility and necessity

queries inQ, respectively, are as follows.

• A states of T (D) violatesa possibility queryq of form (8)
in Q, if T (D), s 6|= q.

• A transitiontr = 〈s,A, s′〉 of T (D) violatesa necessity
queryq of form (9) inQ (denotedtr 6|= q), if s |= φ and
s′ 6|= ψ.

Example 2 (cont’d) From T (D) we can identify the
following conflicts: the single state violating the
possibility query qp is {¬Light , Broken}, and the
single transition violating the necessity queryqn is
〈{Light ,¬Broken}, {Toggle}, {Light ,¬Broken}〉.

Since we suppose that states of the world are correctly
described byD, we do not need to modify the static laws in
D for a repair.

A Method for Resolving Conflicts
Under the assumption above, we can resolve conflicts be-
tween an action descriptionD and a setQ of queries by the
algorithm presented in Figure 2. Before we explain how this
algorithm works, let us describe the notation used in it.

For a setQ of queries, we denote byQp (resp.Qn) the
set of possibility (resp. necessity) queries inQ. Then

confp(D,Q) = {(q, s) | q ∈ Qp, s∈S(D), T (D), s 6|= q}
confn(D,Q) = {(q, tr) | q ∈ Qn, tr∈R(D), tr 6|= q}.

For any tripletr = 〈s,A, s′〉, wheres ands′ are states
and A is an action, and a dynamic causal law of form
l = causedL if U after G, 〈s,A, s′〉 |= l if either l is not
applicable totr, or s′ |= L.

A repair item is an expression of form(modify , l, l′), or
(add , l), wherel andl′ are dynamic causal laws. Arepair is
a set of repair items. For an action descriptionD and a re-
pairM , we denote byM(D) the action description obtained
from D by applying the modifications specified by the re-
pair items in a repairM : (add , l) modifiesD by addingl;
(modify , l, l′) modifiesD by replacingl with l′; all repair
items are executed in parallel, i.e., ifM comprises several
modify items for the same lawl, all corresponding modifi-
cationsl′ are generated and eventually replacel. The repairs
used by the algorithm RESOLVE(D,Q) are as follows (in
causal laws, a states stands for

∧
L∈s L, and an actionA for∧

X∈AX ∧
∧

X∈A\A ¬X):

Delete(〈s,A, s′〉) =
{(add , causedFalse if s′ after A ∧ s)}

Insert(Tr ,D) =
{(add , causedL if s′ after A ∧ s) |

〈s,A,s′〉∈Tr , L∈s′}

∪ {(modify , l, causedL if G after U ∧ α(Tr , l)),
(modify , l, causedL if G ∧ L after U ∧A ∧ s) |
l=causedL if G after U, l∈D,
〈s,A,s′〉∈Tr , 〈s,A,s′〉 6|= l}

DEPARTMENT OF INFORMATICS 355

11TH NMR WORKSHOP

Algorithm RESOLVE(D,Q) : Mod , Incon

Input: An action description,D, and a set of queries,Q.
Output: A repair,Mod , and a set of queries,Incon.

Mod := ∅; Incon := ∅;
for all (q, tr) ∈ confn(D,Q) do

Mod := Mod ∪ Delete(tr);
D′ := Mod(D); Ins := ∅;
for all (q, s) ∈ confp(D′, Q) do

(q = possiblyψ after A if φ)
Cands := {〈s,A, s′〉 | s′ ∈ S(D), s′ |= ψ,

〈s,A, s′〉 |= q′,∀q′ ∈ Qn};
if (Cands 6= ∅) then

selecttr ∈ Cands;
Ins := Ins ∪ {tr};

else
Incon := Incon ∪ {q};

return Mod ∪ Insert(Ins,D′), Incon;

Figure 2: An algorithm to resolve conflicts.

whereα(Tr , l) =
∧

〈s,A,s′〉∈Tr ,〈s,A,s′〉6|=l ¬A ∨ ¬s.

In the algorithm above, first every transitiontr violating
the necessity queries inQ is removed, by adding toD the
causal lawsDelete(tr). The new action description,D′, en-
tailsQn. Then, for each states violating a possibility query
q = possiblyψ after A if φ inQ relative toD′, a setCands

of transition candidatestr (triples of form〈s,A, s′〉 where
s′ ∈ S(D)) that, when added toT (D′), would satisfyq at s
(i.e.,s′ |= ψ) but not violate any necessity queries inQ (i.e.,
tr |= q′,∀q′ ∈ Qn), is computed. If such transition can-
didates exist (i.e.,Cands 6= ∅), by introducing only one of
these candidates intoT (D′), the violation ofq at s is pre-
vented; otherwise no repair ofD exists forQ (i.e., Incon is
not empty, and it contains the possibility queries that con-
flict with some necessity query inQ). The setIns denotes
all the transition candidates to be introduced intoT (D′) so
that no possibility query is violated in any state. AddingIns

to T (D′) can be achieved by adding toD′ the causal laws
Insert(Ins,D ′).

Theorem 1 For any repairMod and setIncon of queries
output byRESOLVE(D,Q), the following hold:

1. D |= Q iff Mod = ∅ andIncon = ∅;

2. Incon = ∅ iff ∃D′ such thatS(D) = S(D′) andD′ |=Q;

3. if Incon = ∅, thenMod(D) |= Q.

The selection of a transition candidatetr ∈ Cands for
repairing a possibility query constitutes a choice point of
the algorithm, where further heuristics can be employed to
prune the set of repairs. We could, e.g., prefer transition

candidates thatrespect inertia conditionsor computemini-
mal modifications, i.e., repairs such that the modifications to
T (D) are minimal w.r.t. addition or deletion of transitions.

Example 3 (cont’d) Stipulating preference of transition
candidates that respect inertia, the basic method resolvesthe
conflicts as follows. First, the only transition violatingqn
(i.e., 〈s1,{Toggle},s1〉, wheres1 = {Light ,¬Broken}) is
deleted fromT (D) by adding the law:

causedFalse if Light∧¬Broken after
Toggle∧Light∧¬Broken.

Then, to resolve conflicts withqp, the only transition can-
didate respecting inertia (i.e.,{〈s2,{Toggle},s2〉}, where
s2 ={¬Light ,Broken}) is introduced intoT (D′) by replac-
ing (1) with the laws:

caused¬Light if ¬Light∧Broken after
Toggle∧¬Light ∧ Broken,

causedBroken if ¬Light∧Broken after
Toggle∧¬Light ∧ Broken,

causedLight if Light after Toggle∧¬Light∧Broken,

causedLight after Toggle∧¬Light∧¬Broken.

We remark that algorithm RESOLVE can be implemented
to use polynomial work space, producing its output, which
is exponential in general, as a stream. After computing
RESOLVE(D,Q), to get a more concise description, one
may drop redundant causal laws that might have been in-
troduced (e.g., (6) whereU ≡ False), and apply some
equivalence preserving transformations (e.g., replacingtwo
lawscausedL after A∧U andcausedL after A∧¬U with
causedL after A.) Note also, that if there exists a re-
pair for D, then there always also exists a repairD′ of
polynomial size. Informally speaking,D′ can be obtained
by expressing all necessity queries as dynamic laws and
dispensing causality for all actions occurring in queries
(causedL if L after A, for every literalL). Such a repair
is independent ofD apart from static laws and semanti-
cally it amounts to a complete transition graph w.r.t. actions
occurring in queries modulo transitions violating necessity
queries. Thus, it is even less appealing than solutions com-
puted by RESOLVE(D,Q), which aim at making modifica-
tions as local as possible on single transitions (in order to
retain the original semantics ofD as much as possible even
in case of further modifications). In most cases, however,
neither of these basic repairs will be satisfactory. This moti-
vates the utilization of additional knowledge of certain prop-
erties for repair.

Towards User-Assisted Repairs
With the method described above we can automatically re-
pair an action descriptionD with respect to a setQ of
queries, under the assumption that the states of the world
are described correctly byD. However, we may end up with

356 Technical Report IfI-06-04

Action and Change

an action description with many causal laws, some possibly
redundant or implausible. To get a more appealing descrip-
tion most often requires respecting additional knowledge or
intuitions of thedesignerabout the action description.

Usually, this knowledge cannot be easily formalized, as
the following example illustrates:

Example 4 The designer ofD might use her knowledge
about the domain, i.e., light bulbs and switches, to infer from
the conflict with the observation expressed inqn that the du-
ality of the toggle action has not been modeled correctly,
and that the conflict withqp is due to neglecting the effects
of toggling when the bulb is broken. Hence, instead ofD,
she might considerD′ consisting of (2), (7), and:

causedLight after Toggle ∧ ¬Light ∧ ¬Broken

caused¬Light after Toggle ∧ Light ∧ ¬Broken.
(10)

Note that this description is more concise and plausible than
the one generated by the basic method (see Example 3).

For (interactively) providing support to a designer repair-
ing an action description, we present some questions that
she may ask aboutQ,D, andT (D). Answers to these ques-
tions are obtained from useful properties of queries, action
descriptions, and transition diagrams.

Questions about queries and causal laws.To better un-
derstand the reasons for conflicts, the designer may want to
check the given queriesQmake sense with each other. Then
the question is:

D1: If Q is contradictory relative toD, which queries
in Q are contradictory?

We understand contradiction in a setQ as follows:

Definition 1 A setQ of queries iscontradictoryrelative to
an action descriptionD, if there is no action descriptionD′

such thatS(D) = S(D′) andD′ |= Q.

With an answer toD1, the designer may drop contradictory
queries fromQ. Here are some sufficient conditions to find
these queries.

Proposition 1 A setQ of queries is contradictory relative
toD, if Q includes some query (8) such that somes∈S(D)
satisfiesφ, but nos∈S(D) satisfiesψ.

Proposition 2 A set Q of queries is contradic-
tory relative to D, if Q includes a necessity query
necessarilyψ′ after A if φ′ and a possibility query (8) such
that some state inS(D) satisfiesφ ∧ φ′, but no state in
S(D) satisfiesψ ∧ ψ′.

Example 5 In our running example (i.e., Exam-
ple 1), if Q had contained the querypossibly Light ∧
Broken after Toggle if True then, due to Proposition 1,Q
would be contradictory relative toD.

If the given set of queries is not contradictory, then she may
ask:

D2: If D does not satisfy a particular necessity query
q in Q, which dynamic causal laws inD violateq?

We understand violation of a query as follows:

Definition 2 A dynamic causal lawl∈D violatesa given
necessity queryq, if there is a transitiontc = 〈s,A, s′〉
in T (D) such thattc violatesq, l is applicable totc, and
s′ satisfies the head ofl.

Once the designer finds out which causal laws violate
which queries, she may want to repair the action descrip-
tion in a way that some causal laws (e.g., the inertia laws)
are not modified at all:

D3: Can we resolve a conflict betweenD andQ, with-
out modifying a setD0 of causal laws inD?

To answerD3 the following definition and proposition are
helpful.

Definition 3 A transition diagramT satisfiesa setD of
causal laws (denotedT |= D), if, for each transitiontc =
〈s,A, s′〉 in T , for each causal lawl∈D, l is not applicable
to tc or s′ satisfies the head ofl.

Proposition 3 Let D be an action description, andQ be
a set of queries. If there exists a transition diagramT such
thatT |= D andT |= Q, then there exists an action descrip-
tionD′, such thatS(D) = S(D′),D ⊆ D′ andT = T (D′).

With this proposition, we can answerD3 by checking if any
transition diagram, having statesS(D), that satisfiesD0 also
entailsQ.

Example 6 In our running example it is possible to repairD
without modifying the inertia laws: there exists an action de-
scription containing the inertia laws and satisfying the given
queries (cf. Example 4).

In another scenario, the designer may suspect that the def-
inition of a particular fluent causes problems, so she may
want to know whether some particular laws have to be mod-
ified in order to obtain a repair:

D4: Do we have to modify a setD0 of dynamic causal
laws inD to resolve a conflict betweenD andQ?

For this, due to the proposition below, we can check whether
none of the transition diagrams, with the same states asD

(and thus asD0), that satisfyD0, entailsQ.

Proposition 4 LetD0 be an action description, andQ be a
set of queries. If there exists an action descriptionD, such
thatS(D0) = S(D),D0 ⊆ D andD |= Q, then there exists
a transition diagramT such thatT |= D0 andT |= Q.

DEPARTMENT OF INFORMATICS 357

11TH NMR WORKSHOP

Questions about states and transitions. Alternatively,
the designer may want to extract some information from
T (D). For instance, an answer to the following question
gives information about states violating a queryq in Q:

T1: Which states ofT (D) that satisfy a given formula
φ′, violateq?

Example 7 In Example 1, if we just consider states where
the light is on (i.e.,φ′ = Light), then the only state at which
a query ofQ is violated is{Light ,¬Broken}.

An answer to the following question gives information
about transitions violating a necessity queryq in Q:

T2: Given formulasψ′ and φ′, which transitions
〈s,A, s′〉 of T (D) such thats satisfiesφ′ ands′ sat-
isfiesψ′, violateq?

With such information extracted from the transition dia-
gram, the designer might decidehow to modify the action
descriptionD.

Suppose thatD does not satisfy a possibility query (8)
in Q. The designer may want to learn about possible transi-
tion candidates that, when added toT (D) by modifying the
definition of some literalL in D, might lead to a repair:

T3: Given a literalL, for every states of T (D) such
that s satisfiesφ, is there some under-specified transi-
tion candidatetc = 〈s,A, s′〉 for D such thats′ satis-
fiesψ ∧ L andL is under-specified relative totc? If
there is, then what are they?

Here under-specification is understood as follows:

Definition 4 A transition candidatetc = 〈s,A, s′〉 for D
is under-specified, if {s′} ⊂ sat(HD(tc)). A literal L
is under-specifiedrelative to a transition candidatetc, if
{L,L} ∩HD(tc) = ∅.

With a positive answer toT3, the designer may try to
modify the descriptionD, for instance, by adding the law
causedL if ψ after A ∧ φ.

Complexity Results

In this section, we consider computational aspects of the
problems in the previous section and report complexity re-
sults for associated decision problems, respectively exis-
tence problems.

First let us remind the following result from (Eiteret al.
2005): Given an action descriptionD and a setQ of queries,
decidingD |= Q isΠp

2
-complete in general. Note that, when

Q contains the single querypossiblyTrue after A if True,
which expresses the executability of an actionA at every
state, this result conforms with the ones reported in (Turner
2002; Lang, Lin, & Marquis 2003).

In the following, we formally state two central results and,
informally discuss how to obtain further results. The first

Table 1: Complexity results (completeness) for problems
D1–D4, T1–T3.

Problem D1 D2 D3 D4 T1 T2 T3
Σp

2
NP Πp

2
Σp

2
Σp

2
NP Πp

2

Qn = ∅ PNP

|| O(1) Πp
2

Σp
2

Σp
2

O(1) Πp
2

Qp = ∅ O(1) NP O(1) O(1) NP NP Πp
2

main result is about the existence of a conflict resolution be-
tween an action descriptionD andQ without modifying a
subsetD0 of D.

Theorem 2 GivenD, Q, andD0 ⊆ D, deciding if there
exists someD′, such thatS(D)=S(D′), D0⊆D

′, and
D′ |=Q, is Πp

2
-complete.

We can showΠp
2
-hardness even forD0 = ∅; for suchD0,

complexity drops only if in additionQ is restricted to queries
of form (8) (to PNP

|| -completeness, i.e., polynomial time
with parallel queries to anNP-oracle, see, e.g., (Johnson
1990)).

The second main result is about the existence of a conflict
resolution between an action descriptionD andQ without
modifying the transition diagram described byD.

Theorem 3 GivenD andQ, deciding if there exists some
D′, such thatS(D)=S(D′),D′ |=Q, andR(D)⊆R(D′), is
Πp

2
-complete.

We remark that if some repair ofD for Q is known to
exist, then deciding the above problem iscoNP-complete.

Table 1 shows complexity results for the decision prob-
lems resp. existence problems related to the questions above
(denotedD1–D4, resp. T1–T3) for the general case, and
whenQn=∅, orQp=∅.

Deciding whetherQ is contradictory w.r.t.D (D1) is Σp
2
-

complete in general. Intuitively, this is because decidingthe
violation of a possibility queryq is Σp

2
-complete. We have

to guess a violating state and verify, by means of anNP-
oracle, for corresponding transition candidates that theydo
not satisfyq. Since we can express necessity queries by dy-
namic causal laws, this source of complexity carries over to
deciding whether a set of (mixed) queriesQ is contradictory.
From these observations,Σp

2
-completeness of the existence

version ofT1 (i.e., whether such a state exists) is straight-
forward. However, ifQn=∅, to show thatQ is contradictory
w.r.t. D, it is sufficient to test whether, for some query (8)
in Qp, some state satisfiesφ but no state satisfiesψ. This
amounts to a Boolean combination of SAT instances, whose
evaluation is inPNP

|| . ForQp=∅, note that a setQn of ne-
cessity queries cannot be contradictory.

On the other hand, deciding whether a necessity queryq

is violated is inNP: Guess and verify in polynomial time a
transition violatingq. Thus, e.g., deciding whether a causal

358 Technical Report IfI-06-04

Action and Change

law l∈D violatesq∈Qn (i.e., D2) is NP-complete, as well
as the existence version ofT2.

D3 is the problem considered in Theorem 2,D4 is the
complementary problem, and corresponding results have
been discussed above. Finally, the property ofT3 fails
if there exists a states satisfyingφ, such that no under-
specified transition candidatetc = 〈s,A, s′〉 for D exists,
such thats′ |= ψ ∧ L. Since for a givens, this can be
checked with anNP-oracle, failure of the property is inΣp

2
.

Related and Further Work
In (Eiter et al. 2005), the authors describe a method to
minimally modify an action description, when new causal
laws are added, by deleting some causal laws, so that given
queries are satisfied. In the method above, we obtain an ac-
tion description by adding or modifying some causal laws,
motivated by some reasons for conflicts. For some prob-
lems, as discussed in the introduction, just dropping causal
laws as in (Eiteret al. 2005) does not lead to a solution,
whereas our method above does.

Similar to (Eiteret al. 2005), (Sakama & Inoue 2003)
discusses how to minimally update a logic program syntac-
tically so that given observations are satisfied. A seman-
tical approach to updating a logic program by changes to
Kripke structures (which are related to transition diagrams)
is given in (Sefŕanek 2000), but no conditions are consid-
ered. In (Zhang, Foo, & Wang 2005) the authors describe
how to resolve conflicts between a logic program and a set
of constraints by “forgetting” some atoms in the program;
in (Zhang & Foo 2005), they describe how logic programs
can be updated following this approach.

That an action description can be transformed into a
logic program (resp. a propositional theory) (Lifschitz &
Turner 1999) might suggest applying update approaches for
logic programming mentioned above (resp. for proposi-
tional logic (Winslett 1990; Katsuno & Mendelzon 1991)),
when applicable (there is no given condition, the action de-
scription is inconsistent, etc.), and then obtaining an action
description from the respective output. However, such trans-
formations (to and from action descriptions) may lose infor-
mation about the causal structure of the action domain and
yield large and unintuitive action descriptions. In our work,
we aim at preserving the causal structure, and keeping the
action description intuitive and concise.

In (Balduccini & Gelfond 2003), the authors extend an
action description, encoded as a logic program, with “con-
sistency restoring” rules, so that when the action description
and given observations are incompatible, these rules can be
“applied” to get some consistent answer set. This, however,
is more geared towards handling exceptions. Lifschitz de-
scribes in (Lifschitz 2000) an action domain in languageC
such that every causal law is defeasible (by means of an ab-
normality predicate). Then, to formulate some other varia-
tions of the domain (e.g., to satisfy some observations), the

agent can just add new causal laws. Some of these laws are
to “disable” some existing causal laws. In (Balduccini &
Gelfond 2003) and (Lifschitz 2000), the causal laws of the
original domain description are not modified.

Ongoing and future work includes an implementation of
the method described above for resolving conflicts, and the
investigation of the use of a SAT solver or an answer set
solver to answer the questions discussed above (as suggested
by the computational complexity results of the correspond-
ing decision problems, presented in Table 1). Furthermore,
(Eiteret al. 2005) employs a richer language for conditions,
in which like in an extension of action query languageP
(Gelfond & Lifschitz 1998), e.g., conditions on sequences
of action occurrences can be expressed. However, “repair”
of such conditions is not immediate (e.g., many possibili-
ties exist to eliminate “bad” trajectories from the transition
diagram in general). This remains for future study.

Acknowledgments
We thank anonymous referees for comments and sugges-
tions on a draft of this paper. This work is supported by
the Austrian Science Fund (FWF) grant P16536-N04.

References
Balduccini, M., and Gelfond, M. 2003. Logic programs
with consistency-restoring rules. InWorking notes of AAAI
Spring Symposium, 9–18.

Eiter, T.; Erdem, E.; Fink, M.; and Senko, J. 2005. Up-
dating action domain descriptions. InProc. of IJCAI-05,
418–423.

Gelfond, M., and Lifschitz, V. 1998. Action languages.
ETAI 3:195–210.

Giunchiglia, E., and Lifschitz, V. 1998. An action lan-
guage based on causal explanation: Preliminary report. In
Proc. AAAI, 623–630.

Johnson, D. S. 1990. A catalog of complexity classes. In
van Leeuwen, J., ed.,Handbook of Theoretical Computer
Science, volume A. MIT Press, Cambridge, MA. chapter 2,
67–161.

Katsuno, H., and Mendelzon, A. O. 1991. On the differ-
ence between updating a knowledge base and revising it.
In Proc. KR, 387–394.

Lang, J.; Lin, F.; and Marquis, P. 2003. Causal theories
of action: A computational core. InProc. of IJCAI, 1073–
1078.

Lifschitz, V., and Turner, H. 1999. Representing transition
systems by logic programs. InProc. LPNMR, 92–106.

Lifschitz, V. 2000. Missionaries and cannibals in the causal
calculator. InPrinciples of Knowledge Representation and
Reasoning: Proc. Seventh Int’l Conf., 85–96.

Sakama, C., and Inoue, K. 2003. An abductive framework

DEPARTMENT OF INFORMATICS 359

11TH NMR WORKSHOP

for computing knowledge base updates.TPLP 3(6):671–
713.

Sefŕanek, J. 2000. A Kripkean semantics for dynamic logic
programming. In Parigot, M., and Voronkov, A., eds.,Proc.
7th International Conference on Logic for Programming
and Automated Reasoning (LPAR 2000), Reunion Island,
France, November 11-12, 2000, volume 1955 ofLecture
Notes in Computer Science, 469–486. Springer.

Turner, H. 2002. Polynomial-length planning spans the
polynomial hierarchy. InProc. of Eighth European Conf.
on Logics in Artificial Intelligence (JELIA’02), 111–124.

Winslett, M. 1990. Updating Logical Databases. Cam-
bridge University Press.

Zhang, Y., and Foo, N. Y. 2005. A unified framework
for representing logic program updates. In Veloso, M. M.,
and Kambhampati, S., eds.,Proceedings Twentieth Na-
tional Conference on Artificial Intelligence and the Sev-
enteenth Innovative Applications of Artificial Intelligence
Conference, July 9-13, 2005, Pittsburgh, Pennsylvania,
USA, 707–713. AAAI Press AAAI Press / The MIT Press.

Zhang, Y.; Foo, N.; and Wang, K. 2005. Solving logic
program conflicts through strong and weak forgettings. In
Proc. IJCAI-05, 627–632.

360 Technical Report IfI-06-04

Action and Change

DEPARTMENT OF INFORMATICS 361

11TH NMR WORKSHOP

4.6 An Extended Query Language for Action Languages

An Extended Query Language for Action Languages
(and its Application to Aggregates and Preferences)

James P. Delgrande
School of Computing Science

Simon Fraser University
Burnaby, B.C.

Canada V5A 1S6
jim@cs.sfu.ca

Torsten Schaub∗

Institut für Informatik
Universität Potsdam
Postfach 90 03 27

D–14439 Potsdam, Germany
torsten@cs.uni-potsdam.de

Hans Tompits
Institut für Informationssysteme 184/3

Technische Universität Wien
Favoritenstraße 9–11

A–1040 Vienna, Austria
tompits@kr.tuwien.ac.at

Abstract

This paper continues our earlier work in representing
arbitrary preferences in causal reasoning and planning
systems, albeit in an oblique fashion. Previously, we de-
fined a very general query language relative to histories;
from this we specified a second language in which pref-
erences on histories are defined. This in turn allowed us
to define the notion of a most preferred history in a set of
histories. In this paper, we extend these languages in two
directions. First, we add a conditional construct that al-
lows one to select between terms. Second, we add a ca-
pability for defining macros. With these two added con-
structs, one can now define aggregate quantities, such as
the total cost of actions in a history, the maximum value
of a fluent in a history, or a count of the number of times
a fluent goes to zero in a history. Via the preference lan-
guage, one can then express a preference for histories
(or, plans) with minimum action cost, maximum value
of a fluent, or in which a fluent is most often zero. We
argue that this substantially increases the range of con-
cepts about which one can express preferences.

Introduction
The traditional formulation of planning involves deter-
mining how a given goal can be attained, beginning
from some initial state and by means of a given set of
actions which alter the state of the world. A plan suc-
ceeds just when it is executable and attains the goal; oth-
erwise, it fails. However, in realistic situations, things
are not quite so simple. Thus, there may be require-
ments specifying that a plan should be as short as pos-
sible or that total cost, where costs are associated with
actions, be minimised. As well, there may be preferred
conditions, that are desirable to attain, but not neces-
sary. Thus, in getting to the airport, the goal is to in-
deed arrive at the airport in good time; I may prefer to
be able to pick up a coffee en route, but this preference
is subordinate to the overall goal of getting to the air-
port. As well, there may be other preferences, such as
preferring to take transit to driving, going by a partic-
ular route, etc. Each preference partitions the space of

∗Affiliated with the School of Computing Science at Si-
mon Fraser University, Burnaby, Canada.

successful plans into those that satisfy the preference
and those that do not. The goal of a planning problem
now shifts to determining a preferred plan, in which a
maximal set of preferences is satisfied, along with the
goal. Such preferences also make sense outside of plan-
ning domains, and in fact apply to arbitrary sequences
of temporal events. Hence, it is perfectly rational to
prefer that one’s favourite sport’s team wins the cham-
pionship, even though in the typical course of events
one has no control over how the team performs.

In earlier work (Delgrande, Schaub, & Tompits 2004;
2005), we considered the problem of using general pref-
erences over (fluent and action) formulas to determine
preferences among temporal histories, or plans. While
we focussed on histories as they are used in action de-
scription languages (Gelfond & Lifschitz 1998), our ap-
proach was, and is, applicable to any planning formal-
ism. A history is defined as an interleaved sequence
of states (of the world), and actions that take one state
in a sequence to the next. We first specified a query
language, QΣ,n, (over some signature Σ and histories
of maximum length n) in which one can determine
whether an arbitrary expression is true in a given his-
tory. Given this language, we defined a preference-
specification language, PΣ,n, that allows the definition
of preference relations between histories. Via the lan-
guage PΣ,n, we showed how to specify general prefer-
ences in temporal, causal, or planning frameworks. As
well, the approach provided a very general language in
which other “higher-level” constructs could be encoded,
and in which other approaches could be expressed and
so compared.

In the present paper, our motivating interest lies
with being able to express preferences over aggregate
quantities—that is, quantities that in some sense express
a collective property of a set of fluent values. If actions
come with a measure of their cost and duration, then
two corresponding aggregate quantities of these mea-
sures would be the total action cost of a plan and the
total duration of a plan. Clearly, in many cases these
are quantities that one would want to minimise or, in a
preference framework, prefer those plans with the min-
imal action cost or duration.

362 Technical Report IfI-06-04

Action and Change

Such aggregates can be defined in our query lan-
guage quite simply, given the addition of two capabil-
ities. First, we extend the query language with a con-
ditional term-forming operator. Syntactically, this op-
erator is of the form (φ ? t1 : t2). This term denotes
t1 if φ is true; otherwise, it denotes t2. Second, we
add a “macro definition” capability, external to the lan-
guage. That is, assertions in the query language can
now contain macros that look exactly like fluents; given
an appropriate set of macro definitions, these macros
“compile out” so that one obtains assertions in the orig-
inal language. Given this macro capability along with
the conditional construct, one can define complex ag-
gregate notions that can then take part in preference ex-
pressions. Thus, in our preference language we can now
express a preference for histories with minimum action
cost, maximum value of a fluent, or in which a fluent is
zero at the most time points.

The next section briefly covers related work. This is
followed by a section on the history-specific query lan-
guage RΣ,n. This language extends our earlier query
language QΣ,n with the new conditional operator. The
following section describes adding a macro capability
to this language and illustrates how aggregates can now
be defined. The penultimate section describes the defi-
nition and use of our preference language PΣ,n in this
extended setting. The last section provides a brief dis-
cussion.

Background
Reasoning with preferences is an active area that is re-
ceiving increasing attention in AI. Hence, while the
main topic of this paper is expressing aggregate quanti-
ties in our extended query language, our primary goal
is the definition of a general language for specifying
preferences on histories (or plans or other temporal se-
quences). Since histories and plans (implicitly or ex-
plicitly) involve sequences of states of the world, ex-
pressing aggregates and preferences over aggregates are
of particular interest in planning systems.

In AI, Wellman & Doyle (1991) earlier suggested
that the notion of goal is a relatively crude measure for
planners to achieve, and instead that a relative prefer-
ence over possible plan outcomes constitutes (or should
constitute) a fundamental objective for planning. They
show how to define goals in terms of preferences and,
conversely, how to define (incompletely) preferences in
terms of sets of goals. Here, we maintain a strict di-
vision between (hard) goals and (soft) preferences, al-
though a framework along the lines of Wellman and
Doyle is expressible in our method simply by taking the
overarching goal as being>—i.e., all valid histories are
the subject of the preferences.

Myers & Lee (1999) assume that there is a set of
desiderata, such as affordability or time, whereby suc-
cessful plans can be ranked. A small number of plans
is generated, where the intent is to generate diver-
gent plans. The best plan is then chosen, based on a

notion of Euclidean distance between these select at-
tributes. Hence, they deal implicitly with aggregate
quantities, with a concrete, quantitative notion of pref-
erence, applied to a small set of successful and presum-
ably representative plans. In related work, Haddawy &
Hanks (1992) use a utility function to guide a planner.

One approach to preferences in planning has been
proposed by Son & Pontelli (2004), where a language
for specifying preferences between histories is pre-
sented. This language is an extension of action lan-
guage B (Gelfond & Lifschitz 1998), and is subse-
quently compiled into logic programs under the answer-
set semantics. The notion of preference explored is
based on so-called desires (what we call absolute pref-
erences in previsous work (Delgrande, Schaub, & Tom-
pits 2004)), expressed via formulas built by means of
propositional as well as temporal connectives such as
always, until, etc. From desires, preferences among his-
tories are induced as follows: Given a desire φ, a history
H is preferred to H ′ if H |= φ but H ′ 6|= φ.

Similarly, Bienvenu & McIlraith (2005) address plan-
ning with preferences in the situation calculus. Pref-
erences are founded on the notion of basic desire for-
mulas, whose members are somewhat analogous to for-
mulas in our language QΣ,n. These formulas in turn
are used in the composition of atomic preference for-
mulas (essentially chains of preferences) and general
preference formulas. As the authors note, this approach
extends and modifies that of Son & Pontelli (2004)
although expressed in terms of the situation calculus
rather than an action language. Based on a concrete
means of explicitly combining preferences, a best-first
planner is given. Fritz & McIlraith (2005) employ a
subset of this language in an approach to compile pref-
erences into DT-Golog.

Eiter et al. (2003) describe planning in an answer-set
programming framework where action costs are taken
into account. The approach allows the specification
of desiderata such as computing the shortest plan, the
cheapest plan, or some combination of these criteria.
This is achieved by employing weak constraints, which
filter answer sets, and thus plans, based on quantitative
criteria.

A General Query Language for Histories
Histories and Queries on Histories
In specifying histories, we extend the notation of Gel-
fond & Lifschitz (1998) in their discussion of transition
systems. As described, virtually any general planning
system (or indeed causal-reasoning formalism) could be
used to provide a setting for our approach; as well, the
approach is more broadly applicable than just to plan-
ning problems.

Definition 1 An action signature Σ is a quadruple
〈D,F, V,A〉, where D is a set of value names, F is a
set of fluent names, V : F → 2D \ ∅ assigns a domain
to each fluent, and A is a set of action names.

DEPARTMENT OF INFORMATICS 363

11TH NMR WORKSHOP

Σ is propositional iff D = {0, 1}, and it is finite iff
D, F , and A are finite. Moreover, a fluent name f ∈ F
is propositional iff V (f) = {0, 1}.
For simplicity we will assume throughout that action
signatures are finite and thatD is the set of non-negative
integers.
Definition 2 Let Σ = 〈D,V, F,A〉 be an action signa-
ture.

A history, H , over Σ is a sequence
(s0, a1, s1, a2, s2, . . . , sn−1, an, sn),

where n ≥ 0, and
• each si, 0 ≤ i ≤ n, is a mapping assigning each

fluent f ∈ F a value v ∈ V (f), and
• a1, . . . , an ∈ A.

The functions s0, . . . , sn are called states, and n is
the length of history H , symbolically |H|.

The states of a history may be thought of as possi-
ble worlds, and the actions take one possible world into
another.

We need to be able to refer to fluent and action names
in a history. Since a fluent’s value will vary depending
on the time point under consideration, we also need to
be able to refer to time points and their relations. To this
end, we define a query language on histories of maxi-
mum length n over an action signature Σ, namedRΣ,n.
Definition 3 Let Σ = 〈D,F, V,A〉 be an action signa-
ture and n ≥ 0 a natural number.

The alphabet ofRΣ,n consists of the following items:
1. a set V = {i, j, . . . } of time-stamp variables, or sim-

ply variables,
2. the set of integers,
3. the sets D, F , and A,
4. the sentential connectives ‘¬’ and ‘⊃’, and the quan-

tifier symbol ‘∃’,
5. the arithmetic function symbols ‘+’, ‘−’, and ‘·’, the

arithmetic relation symbol ‘<’, and the equality sym-
bol ‘=’, and

6. the parentheses ‘(’ and ‘)’, and the symbols ‘?’
and ‘:’.
Terms inRΣ,n are of two types: those denoting time

points and those denoting fluent values.
Definition 4 Let Σ = 〈D,F, V,A〉 be an action signa-
ture and n ≥ 0 a natural number.

The terms ofRΣ,n are as follows:
1. A time term is an arithmetic term recursively built

from V ∪ {0, . . . , n}, employing + and · (as well as
parentheses) in the usual manner.

2. A (fluent) value term is either a member of D, an
expression of the form f(t), where f ∈ F and t is
a time term, or an arithmetic term recursively built
from value terms, employing +, −, and · in the usual
manner. Additionally, if φ is a formula (cf. Defini-
tion 5) and e1 and e2 are value terms, then φ ? e1 : e2

is a value term.

The intent here is that, in RΣ,n, time terms range over
the numbers 0, . . . , n only, while fluent value terms may
denote arbitrarily large integers. So, our definition of
the class of formulas of RΣ,n, given next, will accom-
modate that, for instance, f(0) = 5 is well formed,
where f is a fluent name, with intended interpretation
that f has value 5 at time point 0, whereas ∃if(0) = i
is not well formed.

Definition 5 Let Σ = 〈D,F, V,A〉 be an action signa-
ture and n ≥ 0 a natural number.

The formulas ofRΣ,n are as follows:

1. A time atom is an expression of the form (t1 < t2) or
(t1 = t2), where t1, t2 are time terms.
A value atom is either an expression of form a(t),
where a ∈ A and t is a time term, or an expression
of the form (v1 < v2) or (v1 = v2), where v1, v2 are
value terms.
An atom containing no variables is ground.

2. A literal is an atom possibly preceded by the negation
sign ¬.

3. A formula is a Boolean combination of atoms, along
with quantifier expressions of form ∃v, for v ∈ V ,
formed in the usual recursive fashion.

4. A query is a closed formula, i.e., with no free time-
stamp variables.

For a propositional fluent f and time term e, we write
f(e) for f(e) = 1 and ¬f(e) for f(e) = 0; in such a
case, f(e) is said to be true or false (or equivalently true
at e or false at e), respectively.

We define the operators ∧, ∨, and ≤, and the univer-
sal quantifier ∀, in the usual way. Parentheses may be
dropped in formulas if no ambiguity arises, and we may
write quantified formulas like Qv1Qv2 α as Qv1, v2 α,
for Q ∈ {∀,∃}. For formula α, variables v1, . . . , vk,
and numbers i1, . . . , ik, α[v1/i1, . . . , vk/ik] is the re-
sult of uniformly substituting vj by ij in α, for each
j ∈ {1, . . . , k}. Thus, if v1, . . . , vk are the free vari-
ables in α, then α[v1/i1, . . . , vk/ik] is a closed formula.

Variables range over time points, and so quantifica-
tion applies to time points only. Atoms consist of ac-
tions or fluents indexed by a time point, or of a predi-
cate on arithmetic (time point) expressions. Atoms are
used to compose formulas in the standard fashion, and
queries consist of closed formulas. This means that we
remain within the realm of propositional logic, since
quantified expressions ∀v and ∃v can be replaced by
the conjunction or disjunction (respectively) of their in-
stances.

Example 1 Let pickup ∈ A, red ∈ F , and i, j ∈ V .
Then,

pickup(4), red(i+ j), i < j + 2

are atoms. As well,

red(j) ∧ (∀k (k < j) ⊃ ¬red(k)),
ageJohn(t) > ageMary(t+ 1)

364 Technical Report IfI-06-04

Action and Change

are formulas but not queries, and

∃i, j((i+ 2 < j) ∧ pickup(i) ∧ ¬red(j)),
∃i(ageJohn(i) > ageMary(i+ 1)),
∃i(¬(ageJohn(i) = 35)),
(((0 = 1)?1 : 0) = 0)

are closed formulas and so queries (assuming an ap-
propriate action signature).

The intent of the first formulas above is that it be true
in a history in which pickup is true at some time point
and three or more time points later red is false. For
the last formula above, we have that 0 = 1 is false,
therefore the value of ((0 = 1)?1 : 0) is 0, and since
0 = 0 is true, the formula is true.

The following operators, which basically correspond
to similar ones well-known from linear temporal logic
(LTL), can be defined:

• �b = ∀i b(i);

• ♦b = ∃i b(i); and

• (bU g) = ∃i
(
g(i) ∧ ∀j((j < i) ⊃ b(j))

)
.

Here, b and g are propositional fluent names or action
names. Informally, �b expresses that b always holds,
♦b that b holds eventually, and bU g that b holds con-
tinually until g holds. Other LTL operators are likewise
expressible.

Semantics of Queries
The definition of truth of a query with respect to a his-
tory is done in two parts. First, we define an inter-
pretation function I that gives the denotation of terms;
from this we define the notion of truth. To ease detail,
we use the notation that for a ground term t, val(t) is
the value of t according to standard integer arithmetic.
Note that although the next two definitions are inter-
dependent, these definitions of denotation and truth are
strictly compositional.

Definition 6 Given query languageRΣ,n and a history
H = (s0, a1, s1, . . . , ak, sk) over Σ of length k ≤ n,
the denotation IH is given by:

1. If t is a ground time term, then:

IH(t) =

{ 0 if val(t) < 0;
k if val(t) > k;
val(t) otherwise.

2. If t is a ground fluent value term, then:
(a) if t is f(t′), for f ∈ F , then IH(t) = si(f), where

i = IH(t′);
(b) if t is φ ? e1 : e2, then:

ifH |=RΣ,n φ, then IH(t) = IH(e1), otherwise
IH(t) = IH(e2);

(c) otherwise, IH(t) = val(t).

The rationale behind Part 1 in the definition above is to
allow that, while a time term calculation may refer to
a time point greater than the length of a history or less
than time point 0, its denotation should not. Hence, if
val(t) is greater than the length k of history H , then a
ground atomic query φ(t) will be satisfied by H if it is
satisfied at the last state of H .

It can be observed for a ground time term t, that
0 ≤ IH(t) ≤ n, while for a value term we do not nec-
essarily obtain that IH(t) ∈ D. This conforms to intu-
itions: fluents have value only within a history, and time
points need to refer to times within a history. On the
other hand, value terms are used (among other things)
to determine aggregate quantities. Thus, we could have
a propositional domain with D = {0, 1}; however, if
we wanted to count the number of times that a light was
on, say, we would need other integer values.

Now we can define what it means for a history to
satisfy a query expressed inRΣ,n.

Definition 7 Let H = (s0, a1, s1, . . . , ak, sk) be a his-
tory over Σ of length k ≤ n, and let Q be a query of
RΣ,n.

We define H |=RΣ,n Q as follows:

1. If Q = a(t) is a ground action atom, then H |=RΣ,n

Q iff a = aIH(t).
2. If Q = (v1 ◦ v2), for ◦ ∈ {<,=}, is a ground (flu-

ent or time) atom, then H |=RΣ,n Q iff (IH(v1) ◦
IH(v2)).

3. If Q = ¬α, then H |=RΣ,n Q iff H 6|=RΣ,n α.
4. If Q = α ⊃ β, then H |=RΣ,n Q iff H 6|=RΣ,n α or
H |=RΣ,n β.

5. If Q = ∃vα, then H |=RΣ,n Q iff, for some 0 ≤ i ≤
n, H |=RΣ,n α[v/i].
If H |=RΣ,n Q holds, then H satisfies Q. For sim-

plicity, if RΣ,n is unambiguously fixed, we also write
|= instead of |=RΣ,n .

We have the following results concerning complexity
inRΣ,n.

Theorem 1 Let Σ be an action signature and n ≥ 0 a
natural number.

1. Given a history H = (s0, a1, s1, . . . , ak, sn) over Σ
of length n and a query

Q = (Q1i1)(Q2i2) . . . (Qmim) C

ofRΣ,n, where Qi ∈ {∀,∃}, 1 ≤ i ≤ m, and C con-
tains no quantifiers, then deciding whetherH |=RΣ,n

Q holds can be determined in O(|C|m) time.
2. Given a query Q of RΣ,n, then deciding whether

there is a history H over Σ of length n such that
H |=RΣ,n Q holds is PSPACE-complete.

The proof of the first part is straightforward, since for
each quantifier expression (Qi)α, one needs to test the
n substitution instances of α conjunctively (for univer-
sal quantification) or disjunctively (for existential quan-
tification). For the second part, for showing that the

DEPARTMENT OF INFORMATICS 365

11TH NMR WORKSHOP

problem is at least in PSPACE, the reduction is from
satisfiability of quantified Boolean formulas to formulas
of RΣ,1; for showing that it is no worse than PSPACE,
the reduction is from formulas of RΣ,n to formulas of
linear-time temporal logic (LTL).

The languageRΣ,n is quite expressive. Indeed, it can
be shown thatRΣ,n subsumes the languages P , Q, and
R due to Gelfond & Lifschitz (1998), as well as our
earlier language QΣ,n (Delgrande, Schaub, & Tompits
2005), with respect to expressivity.

Macros
In realistic applications, one is often faced with non-
propositional fluents, such as temperature, amount of
rain, etc. Moreover, actions often have associated costs
and other measures, such as duration. Frequently too,
one is interested in aggregates of such quantities—for
example, determining the total rainfall, total cost of ac-
tions, maximum value attained over an interval, and so
on. In the next section, we will see how these types
of quantities permit preference statements expressing
certain optimisations or desiderata. In this section, we
show how, using our conditional construct (? :)
along with the addition of a macro capability, we can
express aggregates of fluent values without adding to
the overall complexity of the language.

Definition of Macros
Macros are defined as follows:
Definition 8 Let Σ = 〈D,F, V,A〉 be an action signa-
ture and n > 0. Then, the alphabet of a macro language
over Σ and n consists of the alphabet ofRΣ,n, together
with

1. a set of fluent names F ′, where F ∩ F ′ = ∅, and
2. a set of parameter names P = {$1, $2, . . . }.

We refer to 〈Σ, F ′〉 as the (macro) signature for such
a macro language.

The fluent names in F ′ serve as macro names, while
the elements of P1 serve as parameters for the macros,
and for which terms will be substituted in the macro
expansion.
Definition 9 Given a macro signature 〈Σ, F ′〉 and n >
0, a macro M is a sequence

(〈ν1, µ1〉, . . . , 〈νm, µm〉),

where
1. each νi is of the form f(t), where f ∈ F ′, and either
t ∈ {0, . . . , n} or t is the parameter name $i, and

2. each µi is a value term over 〈D,F ∪ F ′, V, A〉, but
with added primitive terms P, formed in the expected
recursive manner.
1In the present paper we use only parameter $1, since we

deal just with unary macros. The inclusion of P anticipates a
possible generalization to many-placed macros (which in turn
makes conceptual sense only if the languageRΣ,n is general-
ized to allow flunets of arity greater than 1).

In a formula involving macros, µi[x/t] will be the for-
mula µi with every occurrence of parameter x replaced
by term t.

Definition 10 Let φ be a formula and

M = (〈ν1, µ1〉, . . . , 〈νm, µm〉)

a macro.

• νi matches value term t in φ, if
– νi = f(a),
– t ∈ D or
t = f(b) and if a is a constant, then a = b.

Matches will be understood to be symmetric.
• φ[νi/µi] is defined by:

for every t = f(b) in φ that matches νi = f(a),
replace t in φ by µi[$1/b].

• φM , the macro expansion of φ by M , is defined
by: ((. . . ((φ[ν1/µ1])[ν2/µ2]) . . .)[νk, µk])∗, where
θ∗ denotes iteration of the implicit operators to a
fixed point.
The macro expansion of a set of macros is defined in
the obvious manner.

Note that the definition of a macro expansion ensures,
for a macro (〈ν1, µ1〉, . . . , 〈νm, µm〉), that for i < j, νi
will be expanded before νj . Of course, the macro ex-
pansion is not always defined; for example, the macro
(〈f($1), f($1)〉) can lead to problems. Rather, with ap-
propriately defined macros, one now may express ag-
gregate functions.

Example 2 The following macro can be used to find the
maximum value that fluent f takes on in a history of
length n:

(〈maxf , maxfh(n)〉,
〈maxfh(0), f(0)〉,
〈maxfh($1), ((f($1) > maxfh($1− 1)) ?

f($1) : maxfh($1− 1))〉).

So, for example, in a history of length 2, the macro
maxf simply stands for the following expression (high-
lighting the structure by underlining):

(f(2) > (f(1) > f(0) ? f(1) : f(0)) ?

f(2) : (f(1) > f(0) ? f(1) : f(0))).

That is, neither maxf nor its “helper macro” maxfh
appear in the actual expression. Last, given the associ-
ated mappings s0 : f 7→ 2, s1 : f 7→ 3, and s2 : f 7→ 1,
the expression in Example 1 evaluates to 3.

It is important to note that aggregates like maxfh(i)
are merely macros representing nested value terms.
Thus, in particular, they are not fluents nor are they
terms in the languageRΣ,n.

366 Technical Report IfI-06-04

Action and Change

Example 3 The following macro sums the values of f
in a history:

(〈sumf , sumfh(n)〉,
〈sumfh(0), f(0)〉,
〈sumfh($1), f($1) + sumfh($1− 1)〉).

Example 4 A similar definition as in the previous ex-
ample can be given for counting all occurrences of
(propositional fluent) f being true:

(〈cntf , cntfh(n)〉,
〈cntfh(0), f(0) ? 1 : 0〉,
〈cntfh($1), cntfh($1− 1) + (f($1) ? 1 : 0)〉).

Further refinements are easily specified, as illustrated
next.

Example 5 Preferring histories with the globally mini-
mum number of days (states) on which it rained more
than t litres can be modelled by an extension of the
count macro:

(〈cntf , cntfh(n)〉,
〈cntfh(0), (f(0) ≤ t) ? 0 : 1〉,
〈cntfh($1), cntfh($1− 1) + ((f($1) ≤ t) ? 0 : 1)〉).

For modelling action costs, we associate with each
action a fluent yielding the cost of the corresponding ac-
tion and then sum the fluent. This is simple, and more-
over allows us to associate with an action other mea-
sures, such as duration.

Correctness of Macros
The correctness of a macro (that is to say, the macro
does what it is supposed to do) can be determined infor-
mally by inspection, or by an inductive argument. An-
other approach is to define a term corresponding to a
macro as an extension to the language RΣ,n, and then
prove that this new term corresponds to the value com-
puted by the macro. This as well gives a means for
specifying the semantics of a macro (after a fashion)
and also the semantics of aggregates. We illustrate with
two examples.

To begin with, consider where we wish to define a flu-
ent that will correspond to the maximum value of some
other fluent obtained so far in a history. Specifically, for
fluent f , we want to define a fluent fmaxfh , where

fmaxfh(i) = max
0≤j≤i

f(j).

We can do this by extending Definition 6 as follows:

IH(fmaxfh(i)) ={ IH(f(0)), if i = 0;
IH(f(i) > fmaxfh(i− 1) ?
f(i) : fmaxfh(i− 1)), otherwise.

We can now define fluent fmaxf to correspond to
fmaxfh(n) – that is, extend the interpretation function
so that IH(fmaxf) = IH(fmaxfh(n)). It is now a

straightforward, albeit tedious, task to show that any
formula φ that mentions fluent fmaxf has precisely the
same truth value in any history as does the macro ex-
pansion of macro maxf in the formula φ with all occur-
rences of fmaxf replaced by maxf .

Similarly, we can define a fluent fsumf that will cor-
respond to the sum of the values of fluent f obtained so
far in a history; i.e., we can define

fsumf (i) =
∑

0≤j≤i

f(j).

We do this by extending Definition 6 as follows:

IH(fsumf (i)) ={
IH(f(0)), if i = 0;
IH(f(i) + fsumf (i− 1)), otherwise. (1)

Again, we can show that the truth value of formulas
mentioning fsumf will correspond to the macro ex-
pansion of corresponding formulas mentioning macro
sumf .

The overall structure of these correspondences is
clear. In the case of macros, we typically have a recur-
sive expansion based on time points, and that terminates
at time point 0 or n. In the case of the interpretation
function IH (relative to history H), this recursive ex-
pansion is mirrored in a recursive definition of the value
of intermediate fluents. Thus, in this case, the value of a
defined fluent (such as fmaxf) can be determined from
the underlying fluent (viz. f) by a process akin to macro
expansion.

The overall scheme can be obviously extended to
more than one fluent, and more than a single time point
for each step. For example, we can define a fluent ex
that counts the number of times the value of fluent f
exceeds that of g two time points ago, as follows:

IH(ex (i)) ={ 0, if i = 0 or i = 1
IH(f(i) > g(i− 2) ?

ex (1− i) + 1 : ex (1− i)) , otherwise.

From this, a corresponding macro can straightfor-
wardly be defined. This in turn suggests a methodol-
ogy for constructing macros: First, give a mathematical
definition for the desired mathematical concept, for ex-
ample, the sum of fluent f is given by max0≤j≤n f(j).
This can then be defined within our language RΣ,n, as
done in (1), and then essentially discharged from the
language by the macro definition in Example 3.

Application: Expressing Preferences on
Histories

In this section, we sketch a major application of our lan-
guage, and in particular of the conditional construct and
macros, to expressing preferences between histories.

DEPARTMENT OF INFORMATICS 367

11TH NMR WORKSHOP

A Preference Language
We briefly summarise our earlier work on preferences
and a preference language; for formal details see (Del-
grande, Schaub, & Tompits 2005). The central notion
of this approach is of a preference frame, consisting of
a pair (H,P), where
• H is a set of histories and
• P is a set of preferences on histories.
Histories are as in the preceding sections. A prefer-
ence specifies an individual criterion for distinguishing
among histories. A preference defines a binary relation,
consisting of pairs of histories where one history is pre-
ferred to the other, according to the preference. We de-
fine a preference among two histories directly in terms
of a formula φ; this formula is in a language PΣ,n that
extends QΣ,n so that one can now also refer to his-
tories, in the following sense. We define that Hh is
not less preferred than Hl, written Hl �φ Hh, just if
〈Hl,Hh〉 |= φ, where φ expresses a preference condi-
tion between these two histories in PΣ,n. Hl �φ Hh

holds if φ is true by evaluating it with respect to Hl and
Hh. This requires that we are able to refer to fluent and
action names at time points and in histories. Preferences
are expressed by means of a formula composed of
• Boolean combinations of fluents and actions indexed

by time points and by a history, and
• quantifications over time points.
Indexing with respect to time points and histories is
achieved via labelled atoms of form ` : b(i). Here, ` is
a label, either l or h, referring to a history which is con-
sidered to be lower or higher ranked, respectively, b is
an action or fluent name, and i is a time point. Semanti-
cally, 〈Hl,Hh〉 |= l : b(i) holds if b holds at time point i
in historyHl; and analogously for 〈Hl,Hh〉 |= h : b(i).
This is extended to labelled formulas in the expected
fashion.

For example, we can express that history Hh is pre-
ferred to history Hl if fluent f is true at some point in
Hh but never true in Hl by the formula

φ = (h : ∃if(i)) ∧ (l : ∀i¬f(i)), (2)

providing 〈Hl,Hh〉 |= φ holds.
Each preference φ ∈ P induces a binary relation �φ

on H . Depending on the type of preference encoded
in P , one would supply a strategy from which a maxi-
mally preferred history is selected. Thus for preferences
only of the form (2), indicating which fluents are desir-
able, the maximally preferred history might be the one
which was ranked as “preferred” by the greatest number
of preferences in P .

Expressing Preferences among Histories
We define a preference among two histories, Hl and
Hh, directly in terms of a formula φ:

Hl �φ Hh iff 〈Hl,Hh〉 |= φ. (3)

The intent with 〈Hl,Hh〉 |= φ is that φ expresses a
condition in which Hh is at least as preferred as Hl.
This requires that we be able to talk about the truth val-
ues of fluents and actions in Hl and Hh. Using our
query language on histories, RΣ,n, and the notion of
truth in a history for a query, we can define a preference-
specification language, enabling the definition of pref-
erence relations between histories, as in (3).
Definition 11 Let Σ = 〈D,F, V,A〉 be an action sig-
nature and n ≥ 0 a natural number.

We define the preference-specification language PΣ,n

overRΣ,n as follows:
1. The alphabet of PΣ,n consists of the alphabet of the

query language RΣ,n, together with the symbols l
and h, called history labels, or simply labels.

2. Atoms of PΣ,n are either time atoms of RΣ,n or ex-
pressions of the form ` : q, where ` ∈ {l,h} is a label
and q is an action or value atom ofRΣ,n.
Atoms of the form ` : p are also called labelled atoms,
with ` being the label of ` : p. We call ` : p ground iff
p is ground.

3. Formulas of PΣ,n are built from atoms, as introduced
above, in a similar fashion as formulas of RΣ,n. We
call formulas of PΣ,n also preference formulas.

4. A preference axiom, or simply axiom, is a closed
preference formula, i.e., containing no free time-
stamp variables.
For a formula α of RΣ,n and a history label ` ∈
{l,h}, by ` : α we understand the formula resulting
from α by replacing each action or value atom b(t) of
α by the labelled atom ` : b(t). Informally, a labelled
atom ` : p expresses that p holds in a history associated
with label `. This is made precise as follows.

Definition 12 Let Σ be an action signature and n ≥
0. Let φ be a preference axiom of PΣ,n and Hl,Hh

histories over Σ with |Hi| ≤ n, for i = l, h.
The relation 〈Hl,Hh〉 |=PΣ,n φ is recursively defined

as follows:

1. If φ = ` : p is a ground labelled atom, for ` ∈ {l,h},
then 〈Hl,Hh〉 |=PΣ,n φ iff

(a) Hl |=RΣ,n p, for ` = l, and
(b) Hh |=RΣ,n p, for ` = h.

2. Otherwise, 〈Hl,Hh〉 |=PΣ,n φ is defined analogously
as the truth conditions for |=RΣ,n .

If 〈Hl,Hh〉 |=PΣ,n φ holds, then 〈Hl,Hh〉 is said to
satisfy φ. If Σ and n are clear from the context, we may
simply write |= instead of |=PΣ,n .

Definition 13 Let φ be a preference axiom ofPΣ,n. For
historiesHl,Hh over Σ of maximum length n, we define

Hl �φ Hh iff 〈Hl,Hh〉 |=PΣ,n φ.

Note that the employment of the symbol�φ is purely
suggestive at this point, since �φ may have none of the
properties of an ordering.

We give some illustrations next.

368 Technical Report IfI-06-04

Action and Change

Example 6 The formula(
h : (∃if1(i) ∧ ∀i¬f2(i))

)
∧(

l : (∃if2(i) ∧ ∀i¬f1(i))
)

expresses a preference of f1 over f2 in the sense that,
for all histories Hl,Hh, we prefer Hh over Hl when-
ever it holds that Hh satisfies f1 but not f2, whilst Hl

satisfies f2 but not f1.

Given this, we can now state a preference for histories
where the fluent f is maximum (as defined in Exam-
ple 2). In place of macro maxf , we employ two macros,
h:maxf and l :maxf .

In the former case, we have the macro definition:2

(〈h:maxf , h:maxfh(n)〉,
〈h:maxfh(0), h : f(0)〉,
〈h:maxfh($1),

((h : f($1) > h:maxfh($1− 1)) ?
(h : f($1)) : (h:maxfh($1− 1))〉).

The macro l :maxf is defined analogously. This enables
the expression of the preference:

h:maxf ≤ l :maxf . (4)

Similarly, we can state a preference for histories
where the values for f are maximum over every subin-
terval [0, i] where 0 ≤ i ≤ n by:

∀i(h:maxfh(i) ≤ l :maxfh(i)).

Since our designated fluent f could in fact be mea-
suring a quantity such as action cost or action duration,
the preceding examples show how one can express pref-
erences for plans (assuming that the histories are pro-
duced by a planner) that maximize certain quality mea-
sures.

As a last example, we can express a preference for
the range of values of f being maximal in one of (at
least) three ways. This can be directly expressed, given
our macro maxf and a suitable definition of minf by:

(h:maxf − h:minf) ≤ (l :maxf − l :minf).

Otherwise, one could directly encode a macro express-
ing this notion, or, third, one could define a macro
maxdiff that expands to maxf −minf .

The preference frame with the preference (4) induces
a total preorder on the set of histories H . It is then
a simple matter to select the most preferred history or
histories. Of course, things may get much more com-
plicated, particularly in the presence of different forms
of preferences or multiple types of preferences. For de-
tails on such issues, see (Delgrande, Schaub, & Tompits
2005).

2To be sure, this isn’t great notation. On the one hand,
h:maxf is a macro name (composed of 6 characters) while
h : f($1) is a semantic entity in our language PΣ,n once a
term is substituted in for $1 in the macro expansion.

Conclusion
We have addressed the problem of expressing general
preferences that include aggregate quantities over his-
tories. Thus, inter alia, we addressed adding prefer-
ences, including preferences on aggregates, in planning
systems. We first defined a query language, RΣ,n, that
extended our earlier query language QΣ,n (Delgrande,
Schaub, & Tompits 2005) by the addition of a condi-
tional term-forming operator. In addition, we defined
the notion of macros for this language. Given this, we
showed how our second language PΣ,n could be em-
ployed for defining general preferences including pref-
erences on aggregate quantities. As before, the frame-
work allows the expression of conditional preferences,
or preferences holding in a given context, as well as
(trivially) absolute preferences, expressing a general de-
sirability that a formula hold in a history.

We have argued previously that the overall approach
is very general and flexible; specifically, we argued that
previous approaches to preferences in planning are ex-
pressible in our formalism. With the added aggregate
capability we can now express aggregate preferences
like those discussed by Eiter et al. (2003), but notably
within our broader preference framework. As well,
while the approach is formulated within the framework
of action languages, our results are applicable to general
planning formalisms.

In a planning context, our approach would amount to
generating plans and selecting the most preferred plan
based on the preferences. As such, the approach is read-
ily adaptable to an anytime algorithm, in which one may
select the currently-best plan(s), but with the hope of a
more-preferred plan being generated. An obvious topic
for future work is to directly generate a preferred plan
(rather than selecting from candidate plans); however,
this appears to be a significantly difficult problem. An-
other topic for future work is to generalize our notion
of macro, perhaps allowing for fluent arguments. Thus,
if it can be carried out with no additional computational
overhead, rather than having a macro maxf for the max-
imum value of fluent f , it would be more convenient to
express this as max (f) where f is now an argument for
a general max macro.

Acknowledgements The first author was partially
supported by a Canadian NSERC Discovery Grant. The
second author was partially supported by DFG under
grant SCHA 550/6, TP C. The authors are grateful to
Yannis Dimopoulos for getting them interested in pref-
erences on aggregrates.

References
Bienvenu, M., and McIlraith, S. 2005. Specifying
and generating preferred plans. In McIlraith, S.; Pep-
pas, P.; and Thielscher, M., eds., Seventh International
Symposium on Logical Formalizations of Common-
sense Reasoning, 25–32.

DEPARTMENT OF INFORMATICS 369

11TH NMR WORKSHOP

Delgrande, J.; Schaub, T.; and Tompits, H. 2004.
Domain-specific preferences for causal reasoning and
planning. In Dubois, D.; Welty, C.; and Williams, M.,
eds., Proceedings of the Ninth International Confer-
ence on the Principles of Knowledge Representation
and Reasoning, 673–682. Whistler, BC: The AAAI
Press/The MIT Press.
Delgrande, J.; Schaub, T.; and Tompits, H. 2005.
A general framework for expressing preferences in
causal reasoning and planning. In McIlraith, S.; Pep-
pas, P.; and Thielscher, M., eds., Seventh International
Symposium on Logical Formalizations of Common-
sense Reasoning, 46–54.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and
Polleres, A. 2003. Answer set planning under ac-
tion costs. Journal of Artificial Intelligence Research
19:25–71.
Fritz, C., and McIlraith, S. 2005. Compiling qual-
itative preferences into decision-theoretic Golog pro-
grams. In IJCAI’05 Workshop on Nonmonotonic Rea-
soning, Action and Change, 45–52.
Gelfond, M., and Lifschitz, V. 1998. Action lan-
guages. Electronic Transactions on AI 3. Available
at http://www.ep.liu.se/ej/etai/.
Haddawy, P., and Hanks, S. 1992. Representations
for decision-theoretic planning: Utility functions for
deadline goals. In Proceedings of the Third Inter-
national Conference on the Principles of Knowledge
Representation and Reasoning, 71–82.
Myers, K., and Lee, T. 1999. Generating qualitatively
different plans through metatheoretic biases. In Pro-
ceedings of the AAAI National Conference on Artifi-
cial Intelligence, 570–576.
Son, T., and Pontelli, E. 2004. Planning with
preferences in logic programming. In Lifschitz, V.,
and Niemelä, I., eds., Proceedings of the Seventh In-
ternational Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’04), volume 2923
of Lecture Notes in Artificial Intelligence, 247–260.
Springer Verlag.
Wellman, M., and Doyle, J. 1991. Preferential seman-
tics for goals. In Proceedings of the AAAI National
Conference on Artificial Intelligence, 698–703.

370 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

5 Argumentation, Dialogue, and Decision Making

An Argument is a set of statements related in such a way that it supports a proposition
which represents its conclusion. From this informal definition, an exciting and exceed-
ingly fertile area of research has developed. Over the years, interest in argumentation
has expanded dramatically, driven in part by theoretical advances but also by successful
demonstrations of a wide range of practical applications.

Historically, argumentation has been an effective approach to nonmonotonic reason-
ing since the work of John Pollock, Ronald P. Loui, and others in the eighties, who
showed that argumentation is a very natural way of conceptualising this form of com-
monsense reasoning. In the early nineties Dung and others showed that argumentation
is also very suitable as a general framework for relating nonmonotonic logics of differ-
ent styles. Finally, in recent years argument-based systems have been introduced in the
area of Multi-Agent Systems producing a plethora of work based on the introduction
of the rational exchange of information which has opened to research a wide range of
application domains.

Argumentation can be studied on its own, but it also has interesting relations with
other topics, such as dialogue and decision. For instance, argumentation is an essential
component of phenomena such as fact finding investigations, negotiation, legal proce-
dure and online dispute mediation. However, only recently researchers have begun to
explore the use of argumentation in these contexts.

Argumentation has brought to the NMR community a perspective that has been con-
sistently shown to be useful in approaching problems that have been studied in the field
since its beginnings and, at the same time, has opened new areas that were unexplored
until its inception. In the years since the first NMR’s Session on Argument, Dialogue,
and Decision, much progress has been achieved by the argumentation community which
has grown at an increasingly fast pace. In the present Session a number of remarkably
interesting works have been included.

The workshop was divided in three sections. On the first one, Lianne Bodenstaff,
Henry Prakken, and Gerard Vreeswijk studied the logical formalisation and imple-
mentation of dialogue systems for argumentation in their work On Formalising Dia-
log Systems for Argumentation in Event Calculus. Anthony Hunter, in Approximate
Arguments for Efficiency in Logical Argumentation, proposes to ameliorate the com-
putational problem of generating actual arguments by using approximate arguments.
Next, Laura Cecchi, Pablo Fillottrani, and Guillermo Simari in On Complexity of DeLP
through Game Semantics, consider the complexity of two decision problems: the prob-
lem of existence of an argument, and the problem of recognizing an argument as such
in the context of the DeLP system.

During the first part of the afternoon, Leila Amgoud and Mathieu Serrurier, in their
work An Argumentation Framework for Concept Learning, focus on the version space
approach to concept learning and provide an argumentation-based framework which
translates the problem of classifying examples into a decision one. Carlos Chesñevar
and Guillermo Simari, propose An Abstract Model for Computing Warrant in Skeptical
Argumentation Frameworks, which introduces a novel approach to model the search
space of possible arguments necessary for warrant computation in a skeptical abstract
argumentation framework. Geoffroy Aubry and Vincent Risch consider the role of
deceitful arguments in argumentation frameworks in Managing Deceitful Arguments
with X-logics by introducing the notion of lie as a new kind of possible answer for an
agent.

In the last part of the session four presentations were included. In Comparing De-
cisions in an Argumentation-based Setting, Leila Amgoud and Henri Prade, after re-
marking that argument-based decision making have until now relied only on one type

DEPARTMENT OF INFORMATICS 371

11TH NMR WORKSHOP

of arguments, propose a systematic typology that identifies new types of arguments, and
explore decision principles that can be used for comparing decisions. Nicolas Rotstein
and Alejandro García’s Defeasible Reasoning about Beliefs and Desires shows how a
deliberative agent can represent beliefs and desires and perform defeasible reasoning
in order to support its derived beliefs. Pietro Baroni and Massimiliano Giacomin in
Refining SCC Decomposition in Argumentation Semantics: A First Investigation argue
that a finer decomposition than the proposed SCC-recursive approach to argumenta-
tion semantics which considers some suitably defined internal substructures of strongly
connected components may be appropriate. Additionally, they support, in some cases,
more intuitive results than those in the original approach.

Emil Weydert is investigating the possibility of a "competition" for comparing dif-
ferent argumentation systems. In his talk How to model arguments in scientific texts:
A proposal for comparing nonmonotonic reasoning, he will motivate the need for such
a competition, and discuss the possibility of basing the competition on representing,
and reasoning with, scientific knowledge, a domain where there is much conflicting
information, and there is the potential for some interesting issues for argumentation
systems.

Session chairs

Leila Amgoud
(amgoud@irit.fr)

Guillermo R. Simari
(grs@cs.uns.edu.ar)

Program committee

Philippe Besnard
(besnard@irit.fr)

Carlos I. Chesñevar
(cic@eps.udl.es)

Phan Minh Dung
(dung@cs.ait.ac.th)

Thomas F. Gordon
(thomas.gordon@fokus.fraunhofer.de)

Peter McBurney
(p.j.mcburney@csc.liv.ac.uk)

Simon Parsons
(parsons@sci.brooklyn.cuny.edu)

Henry Prakken
(henry@cs.uu.nl)

Iyad Rahwan
(irahwan@acm.org)

Francesca Toni
(ft@doc.ic.ac.uk)

Bart Verheij
(b.verheij@ai.rug.nl)

Gerard Vreeswijk
(gv@cs.uu.nl)

372 Technical Report IfI-06-04

amgoud@irit.fr
grs@cs.uns.edu.ar
besnard@irit.fr
cic@eps.udl.es
dung@cs.ait.ac.th
thomas.gordon@fokus.fraunhofer.de
p.j.mcburney@csc.liv.ac.uk
parsons@sci.brooklyn.cuny.edu
henry@cs.uu.nl
irahwan@acm.org
ft@doc.ic.ac.uk
b.verheij@ai.rug.nl
gv@cs.uu.nl

Argumentation, Dialogue, and Decision Making

Schedule Wednesday 31 May 2006 (Rydal-Elterwater Room)
Session Chairs: L. Amgoud and G. Simari

• 10.30 L. Bodenstaff, H. Prakken, and G. Vreeswijk, On formalizing dialog sys-
tems for argumentation in event calculus

• 11.00 A. Hunter, Approximate arguments for efficiency in logical argumentation

• 11.30 L. Cecchi, P. Fillottrani, G. Simari, On complexity of DeLP through game
semantics

• 12.00 Lunch

• 14.00 L. Amgoud and M. Serruruer, An argumentation framework for concept
learning

• 14.30 C. Chesnevar and G. Simari, An abstract model for computing warrant in
skeptical argumentation frameworks

• 15.00 G. Aubry abd V. Risch, Managing deceitful arguments with X-logics

• 15.30 Coffee

• 16.00 L. Amgound and H. Prade, Comparing decisions in an argumentation-
based setting

• 16.30 N. Rotstein and A. Garcia, Defeasible reasoning about beliefs and desires

• 17.00 P. Baroni and M. Giacomin, Refining SCC decomposition in argumentation
semantics: A first investigation

• 17.30 E. Weydert, How to model arguments in scientific texts: A proposal for
comparing nonmonotonic reasoning strategies

DEPARTMENT OF INFORMATICS 373

11TH NMR WORKSHOP

5.1 On Formalising Dialog Systems for Argumentation in Event
Calculus

On Formalising Dialogue Systems for Argumentation in the Event Calculus
Lianne Bodenstaff

Department of Computer Science
University of Twente

The Netherlands
l.bodenstaff@ewi.utwente.nl

Henry Prakken
Department of Information and

Computing Sciences
Utrecht University

and
Faculty of Law

University of Groningen
The Netherlands
henry@cs.uu.nl

Gerard Vreeswijk
Department of Information and

Computing Sciences
Utrecht University
The Netherlands

gv@cs.uu.nl

Abstract

This paper studies the logical formalisation and implemen-
tation of dialogue systems for argumentation, motivated by
the claim that this benefits their formal investigation and im-
plementation. A case study is described in which a dialogue
system of Prakken is formalised in Shanahan’s version of the
‘full’ Event Calculus and then implemented as a Prolog pro-
gram. Then a second case study is briefly summarised in
which a dialogue system of Parsons, Wooldridge and Am-
goud is formalised in the same way. From the case studies
some conclusions are drawn on the usefulness of the formal-
isation method.

Introduction
Logical specification of dialogue systems benefits both the
formal investigation of such systems and their implemen-
tation in declarative programming languages. Such imple-
mentation in turn supports the design of flexible dialogue
systems, in which variations in the communication language
or protocol can be handled easier than when they are hard-
coded in a lower-level programming language. This paper
studies the logical specification of a class of dialogue sys-
tems that have so far largely been specified in semi-formal
ways, viz. systems involving argumentation.

When intelligent agents interact, the need for argumenta-
tion can arise in various ways. For instance, collaborating
agents who must jointly solve a problem may argue about
the pros and cons of the various possible solutions (Atkin-
son, Bench-Capon, & McBurney 2005), or self-interested
negotiating agents may try to persuade each other to ac-
cept their offers by arguing about the merits and drawbacks
of these offers (Rahwan et al. 2003). Various dialogue
systems for persuasive argumentation have been proposed,
e.g. (Gordon 1994; Amgoud, Maudet, & Parsons 2000;
Parsons, Wooldridge, & Amgoud 2003; Atkinson, Bench-
Capon, & McBurney 2005; Prakken 2005) but most of them
have so far not been fully formally specified in a declarative
way. Some are specified in informal mathematical metalan-
guage, while other systems are functionally specified. Two
notable exceptions are Brewka (2001) and Artikis, Sergot, &
Pitt (2003), who formalise systems in, respectively, the Situ-
ation and Event Calculus. However, these papers study sin-
gle and particular systems that lack several features of other
systems, which therefore still await further investigation.

Locution Description P PWA
claim ϕ a player claims x x

that ϕ is the case
claim S a player claims the x

set of propositions S
why ϕ a player asks why x x

ϕ is the case
concede ϕ a player concedes x x

proposition ϕ
concede S a player concedes x

the set of propositions S
argue A a player puts forward x

argument A
retract ϕ a player retracts x

proposition ϕ

Table 1: Some speech acts for argumentation

This paper aims at contributing to such investigation by
carrying out a case study in which a dialogue system for ar-
gumentation of Prakken (2005) is formalised in a variant of
the Event Calculus and then implemented as a Prolog pro-
gram. After that a second case study will be briefly sum-
marised in which a system of Parsons, Wooldridge, & Am-
goud (2003) was formalised in the same way. We end with
a discussion of related research and some conclusions.

The system to be formalised
Like most dialogue systems for argumentation, the one of
Prakken (2005) is specified as a dialogue game. Such a
game firstly has a topic language Lt with a logic L, spec-
ifying how to represent and reason with domain informa-
tion. Secondly, a dialogue game has a communication lan-
guage Lc with a protocol P : the former specifies the well-
formed locutions, or speech acts, while the latter regulates
their use. Table 1 displays a possible set of locutions for ar-
gumentation dialogues and indicates which of them are part
of Prakken (2005) (P) and Parsons, Wooldridge, & Amgoud
(2003) (PWA). In this table, the locution argue A consists of
premises (prem(A)) and conclusion (conc(A)). The proto-
col of a dialogue game specifies the ‘rules of the game’, i.e.,
it specifies the allowed moves at each point in a dialogue. A
dialogue game also has effect rules, which specify the effects
of utterances on the players’ commitments. For instance, an

374 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

utterance of claim ϕ initiates the speaker’s commitment to
ϕ while the utterance of retract ϕ terminates such commit-
ment. Finally, a dialogue game has termination rules and
sometimes outcome rules.

We now summarise in more detail the P system as
it is specified in informal mathematical metalanguage in
(Prakken 2005). In fact, the system specified below is an in-
stance of a framework allowing for alternative instantiations
on the just-mentioned building blocks. The protocol of P is
very liberal in its structural aspects: essentially, both players
can speak whenever they like, except that they cannot speak
at the same time. Also, they may reply to any earlier move
of the other player instead of having to reply to the last such
move, and they may move alternative replies to the same
move, possibly even in the same turn (a turn is a sequence of
moves of one player). Other protocols defined in (Prakken
2005) impose restrictions on these points; one of them, con-
cerning relevance of moves, will be briefly discussed later
below.

The topic language and its logic are assumed to be some
argumentation logic fitting the format of Dung’s (1995) in
which arguments can be formed by chaining deductive and
defeasible inference rules into trees and in which arguments
can be defeated on their use of defeasible inference rules.
Dialogues are between a proponent P and opponent O of a
single dialogue topic t ∈ Lt. The protocol is based on the
following ideas. Each dialogue move except the initial one
replies to one earlier move in the dialogue of the other party
(its target). Thus a dialogue can be regarded in two ways:
as a sequence (reflecting the order in which the moves are
made) and as a tree (reflecting the reply relations between
the moves). Each replying move is either an attacker or a
surrender. For instance, a claim p move can be attacked
with a why p move and surrendered with a concede p move;
and a why p move can be attacked with an argue A move
where A is an argument with conclusion p, and surrendered
with a retract p move. When s is a surrendering and s′ is
an attacking reply to s′′, we say that s′ is an attacking coun-
terpart of s. The communication language Lc is specified
in Table 2. In this table, ϕ is from Lt and arguments A and

Acts Attacks Surrenders
claim ϕ why ϕ concede ϕ
why ϕ argue A (conc(A) = ϕ) retract ϕ
argue A why ϕ (ϕ ∈ prem(A)), concede ϕ

argue B (B defeats A) (ϕ ∈ prem(A) or
ϕ = conc(A))

concede ϕ
retract ϕ

Table 2: Reply structure

B are well-formed arguments from L, while defeat relations
between arguments are determined according to L.

The protocol for Lc is defined in terms of the notion of a
dialogue, which in turn is defined with the notion of a move.

• The set M of moves is defined as N × {P,O} × Lc ×
N, where the four elements of a move m are denoted by,
respectively:

– id(m), the identifier of the move,
– pl(m), the player of the move,
– s(m), the speech act performed in the move,
– t(m), the target of the move.

• The set of finite dialogues, denoted by M<∞, is the set of
all finite sequences m1, . . . ,mi, . . . from M such that

– each ith element in the sequence has identifier i,
– t(m1) = 0;
– for all i > 1 it holds that t(mi) = j for some mj

preceding mi in the sequence.

For any dialogue d = m1, . . . ,mi, . . . the sequence
m1, . . . ,mi is denoted by di, where d0 denotes the empty
dialogue.

When t(m) = id(m′) we say that m replies to m′ in d and
that m′ is the target of m in d. We sometimes slightly abuse
notation and let t(m) denote a move instead of just its iden-
tifier. When s(m) is an attacking (surrendering) reply to
s(m′) we also say that m is an attacking (surrendering) re-
ply to m′.

Protocols are in (Prakken 2005) defined as follows. A
protocol on M is a set P ⊆ M<∞ satisfying the condition
that whenever d is in P , so are all initial sequences that d
starts with. A partial function Pr : M<∞ −→ P(M) is
derived from P as follows:

• Pr(d) = undefined whenever d �∈ P ;

• Pr(d) = {m | d,m ∈ P} otherwise.

The elements of dom(Pr), the domain of Pr, are called
the legal finite dialogues. The elements of Pr(d) are called
the moves allowed after d. If d is a legal dialogue and
Pr(d) = ∅, then d is said to be a terminated dialogue.

Our present protocol for Lc is now defined in Table 3.

For all moves m it holds that m ∈ Pr(d) if and only if m
satisfies all of the following rules:

• R1: pl(m) ∈ T (d);1

• R2: If d �= d0 and m �= m1, then s(m) is a reply to s(t(m))
according to Lc.
• R3: If m replies to m′ then pl(m) �= pl(m′).
• R4: If there is an m′ in d such that t(m) = t(m′) then

s(m) �= s(m′).
• R5: For any m′ ∈ d that surrenders to t(m), m is not an

attacking counterpart of m′.
• R6: If d = ∅ then s(m) is of the form claim ϕ or argue A.
• R7: If m concedes the conclusion of an argument moved

in m′ then m′ does not reply to a why move.

Table 3: The protocol for Lc.

1T (d) denotes the player(s) whose turn it is to move in d.

R1 says that the player of a move must be to move. (T
returns for each dialogue the player(s) to move.) R2-R4 for-
malise the idea of a dialogue as a move-reply structure that
allows for alternative replies. R5 says that once a move is

DEPARTMENT OF INFORMATICS 375

11TH NMR WORKSHOP

surrendered, it may not be attacked any more. R6 says that
each dialogue begins with a claim or an argument; the initial
claim or the conclusion of the initial argument is the topic
of the dialogue. Finally, R7 ensures that statements, when
conceded, are conceded as claims or premises instead of as
conclusions of arguments whenever possible.

The commitment rules of the protocol define the effects
of a move on the players’ commitment sets. As is well
known, the agents’ commitments should be carefully distin-
guished from their beliefs: commitments are an agent’s pub-
licly declared or accepted points of view, known to the other
players, while beliefs are only known to the agent holding
them; these beliefs may well be inconsistent with the agent’s
commitments. The commitment rules assign to each player-
dialogue pair a (possibly empty) set of formulas from Lt.
Below Cpl(d,m) denotes the commitment set of player pl in
dialogue d as continued with move m. At the beginning of
the dialogue, the commitment sets of both players are empty
and then they are updated according to the following rules.

• If s(m) = claim ϕ then Cpl(d, m) = Cpl(d) ∪ {ϕ}
• If s(m) = why ϕ then Cpl(d,m) = Cpl(d)
• If s(m) = concede ϕ then Cpl(d, m) = Cpl(d) ∪ {ϕ}
• If s(m) = retract ϕ then Cpl(d, m) = Cpl(d) \ {ϕ}
• If s(m) = argue A then Cpl(d, m) = Cpl(d) ∪

prem(A) ∪ {conc(A)}
The turntaking rule is very liberal: the proponent starts

with making a single move, then the turn switches to the op-
ponent and after her first move it is both player’s turn. Thus
at any time after the second move both players can make an
utterance, except that they cannot speak at the same time.
In (Prakken 2005) several more strict turntaking rules are
also defined and in (Bodenstaff 2005) one of them is for-
malised, viz. the turntaking rule for so-called relevant di-
alogues: in such dialogues the turn switches to the hearer
after the speaker has succeeded in making the ‘current state’
of the dialogue favour his position (see also below).

Finally, termination was above implicitly defined as the
situation where the player(s) to move cannot make a legal
move. This means that to impose some desired termination
condition (e.g. that the opponent has become committed to
the dialogue topic or the proponent is not committed to the
dialogue topic any more) the protocol should be defined such
that there are no legal moves after the condition is satisfied.

The Event Calculus
The Event Calculus (EC) is a theory specified in first-order
logic about events and their effects on states-of-affairs in the
world (called ‘fluents’ in EC). EC was originally developed
by Kowalski & Sergot (1986); in this paper we use a variant
of Shanahan (1999) called the ‘Full Event Calculus’. Its ax-
ioms express principles like ‘If an event happens at time T
that initiates a some fluent then that fluent starts to hold at T ’
and ‘If a fluent holds at T and nothing terminates it then it
also holds at T + 1’. The latter is commonly called the ‘law
of inertia’; it can be overruled by axioms expressing when a
fluent is terminated. In applications of EC its general axioms
must be supplemented with domain-specific axioms.

Our use of EC for the specification of dialogue protocols
is motivated by the fact that a dialogue game can be seen
as a dynamic system where dialogue utterances are events
that initiate and terminate various aspects of the ‘dialogical
world’, such as a player being the player-to-move or not, a
player being committed to a certain proposition or not and a
move being legal or not. Such aspects will be modelled as
fluents, the value of which can change as an effect of utter-
ances made during the dialogue.

By itself EC is just a first-order theory about actions and
their effects. To fully capture the law of inertia it needs to
be extended with nonmonotonic features. Shanahan (1999)
adds a circumscription policy to the EC in order to rea-
son with EC in circumscription. We instead follow Kowal-
ski & Sergot’s original logic-programming approach, since
this allows the modelling of temporal persistence of fluents
through negation-as-failure: if termination of a fluent cannot
be derived, it can be assumed to persist. Thus, for instance,
a proposition added to a player’s commitments can be as-
sumed to remain a commitment until this is explicitly ter-
minated. Also, it can be elegantly modelled that the present
protocol allows replies to any earlier move in the dialogue
and not only to the last move. This is modelled by the fact
that the legality of a reply persists until it is explicitly termi-
nated.

To be able to reason about fluents, they are in EC reified.
Reification means that the fluents are treated as first-class
objects so that they can be used as arguments of predicates.
For example, the sentence ‘at time point 2 it is the turn of
player P’ can be represented as follows.

HoldsAt(Turn(P), 2)

Here the formula Turn(P) is reified as a term to allow it to
be an argument of the predicate HoldsAt .

The axioms of the Full EC make use of a number of spe-
cial predicates. We now describe their meaning informally
and indicate how they can be used in the specification of di-
alogue games. The first two predicates concern the effects
of an action on the value of a fluent.

Initiates(α, β, τ) means that fluent β starts to hold after
event α at time τ . This formula will be used in the follow-
ing ways. Firstly, it will be used to express the addition of a
statement to a player’s commitment set in effect of an utter-
ance. For instance,

Initiates(move(1, P, claim q , 0),CS(P, q), 1)

says that proponent’s claim of q in his first move adds q to
his commitments (the move identifier following the speech
act is the move’s target, in this case the dummy value 0 to ex-
press that the claim is the dialogue’s first move). In a similar
way it can be expressed that in effect of an utterance another
move becomes legal. For instance,

Initiates(
move(1, P, claim q , 0),
Legal(move(id, O,why q , id), t))

says that a claiming of q in the proponent’s first move initi-
ates the legality of a challenge of q by the opponent. Finally,
the fact that a move makes a player the player-to-move can
be expressed in a similar way.

376 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

Terminates(α, β, τ) means that fluent β ceases to hold af-
ter event α at time τ . This predicate is the ‘mirror predicate’
of Initiates: it can be used in an analogous way as that predi-
cate for expressing the deletion of a commitment, the termi-
nation of legality of a move and the termination of a player
being the one to move.

At the beginning of a dialogue certain fluents will hold
and certain fluents will not hold. The following two predi-
cates can be used to express the begin situation of a dialogue.

InitiallyP (β) means that fluent β holds at the beginning
of the dialogue. This formula will be used for defining the
commitment set of the players and the legal moves at the
beginning of the dialogue.

InitiallyN (β) means that fluent β does not hold at the be-
ginning of the dialogue. The formula will be used to de-
fine which moves are not legal at the beginning of the di-
alogue, which player is not allowed to make a move and
which propositions a player is not committed to.

HoldsAt(β, τ) means that fluent β holds at time point τ
and is used to express that a fluent holds at a certain time
point. For instance, the formula

HoldsAt(Legal(move(4, O,why q , 1), 4))

expresses that a challenge of q by the opponent is legal at
move 4 as a reply to move 1. Such formulas will (often with
variables) be used in the conditions of the rules for move
legality, turntaking and termination.

Happens(α, τ1, τ2) means that event α starts at time point
τ1 and ends at time point τ2. This predicate will be used
to express all moves made during the dialogue. Since a di-
alogue move is assumed to have no duration, it will always
hold that τ1 = τ2.

Besides persistence of a fluent, it must be possible to ex-
press termination and initiation of fluents at certain time
points. This can be done with the predicates Clipped and
Declipped; they are used in the general axioms of EC
but we will not use them in our domain-specific axioms.
Clipped(τ1, β, τ2) means that fluent β is terminated between
times τ1 and τ2. Declipped(τ1, β, τ2) means that fluent β is
initiated between times τ1 and τ2.

We next list the general axioms of the full EC. Following
convention, variables are assumed to be implicitly univer-
sally quantified. The unique-name axioms, which are part
of EC, are left implicit, as well as the usual definitions of
(in)equality. The first two axioms concern the conditions
that should be met in order for a fluent to persist. The third
axiom concerns the conditions for a fluent to terminate to
hold. Then three axioms are presented which express ex-
actly the opposite. The fourth axiom expresses when a flu-
ent does not persist and the fifth and sixth axiom express
what conditions should be met for a fluent to start to hold.
The last axiom ensures that an event takes a non-negative
amount of time. Note that in our Prolog implementation the
occurrences of classical negation ¬ in the conditions of the
axioms will be implemented as negation-as-failure, to cap-
ture the law of inertia.

1. HoldsAt(f, t)← InitiallyP (f) ∧ ¬Clipped(0, f, t)
This axiom states that if a fluent initially holds and is not

terminated between time point 0 and time point t then the
fluent still holds at time point t.

2. HoldsAt(f, t3) ← Happens(a, t1, t2) ∧
Initiates(a, f, t1) ∧ (t2 < t3) ∧ ¬Clipped(t1, f, t3)
This axiom states that if event a which initiates fluent
f occurs then fluent f starts to hold until fluent f is
terminated.

3. Clipped(t1, f, t4) ↔ ∃a, t2, t3(Happens(a, t2, t3) ∧
(t1 < t3) ∧ (t2 < t4) ∧ Terminates(a, f, t2))
This axiom states that if and only if there exists an event a
which occurs and terminates fluent f then fluent f is said
to be clipped.

4. ¬HoldsAt(f, t)← InitiallyN (f) ∧ ¬Declipped(0, f, t)
This axiom states that if a fluent did not initially hold and
was not initiated between time point 0 and time point t
then the fluent does not hold at time point t.

5. ¬HoldsAt(f, t3) ← Happens(a, t1, t2) ∧
Terminates(a, f, t1)∧ (t2 < t3)∧¬Declipped(t1, f, t3)
This axiom states that if event a which terminates fluent
f occurs then fluent f does not hold as long as fluent f is
not initiated.

6. Declipped(t1, f, t4) ↔ ∃a, t2, t3(Happens(a, t2, t3) ∧
(t1 < t3) ∧ (t2 < t4) ∧ Initiates(a, f, t2))
This axiom states that if and only if there exists an event
a which occurs and initiates fluent f then fluent f is said
to be declipped.

7. Happens(a, t1, t2)→ (t1 ≤ t2)
This axiom ensures that the time an event takes can never
be negative.

Formalising the P system
This section contains the main contribution of this article:
our specification of the P system in EC. The following flu-
ents will be used in addition to those of the general EC ax-
ioms.

• move(id , p, s, tr) This fluent states that this is the id th

move where participant p states locution s targeted at tr .
Initially, id will be equal to tr but they will diverge when
a participant makes an illegal move: then no other fluents
are changed but time moves with one unit, so the time
point is raised while the move identifier is not.

• Legal(m) This fluent expresses that move m is legal,
where m is a tuple move(id , p, s, tr). Fluents of this form
hold initially for initial claim and argue moves by the pro-
ponent, while they are initiated for moves that are a well-
formed reply to a certain locution, when a locution of that
type is moved. So every move, when legal, initiates the
legality of one or more moves as a reply to that move.

• CS (p, ϕ) This fluent represents that participant p is com-
mitted to proposition ϕ. CS stands for commitment set;
fluents of this form are initiated and terminated according
to the commitment rules of the dialogue system.

• Turn(p) is a fluent which is initiated when the turn shifts
to participant p.

• P stands for proponent.

DEPARTMENT OF INFORMATICS 377

11TH NMR WORKSHOP

• O stands for opponent.

• p and p̄ are defined as: p̄ = O if and only if p = P and
p̄ = P if and only if p = O.

Table 4 indicates to which parts of the dialogue system
the various predicates pertain.

Predicates BB
Happens(move(id , p, s, tr), t) Comm.

Language
InitiallyP (Legal(ϕ)), Protocol
InitiallyN (Legal(ϕ))
Initiates(move(id , p, s, tr),Legal(ϕ), t), Protocol
Terminates(move(id , p, s, tr),Legal(ϕ), t)
InitiallyN (CS(p, ϕ)) Commit.

Rules
Initiates(move(id , p, s, tr),CS(p, ϕ), t), Commit.
Terminates(move(id , p, s, tr),CS(p, ϕ), t) Rules
InitiallyP (Turn(p)), Turntaking
InitiallyN (Turn(p))
Initiates(move(id , p, s, tr),Turn(p2), t), Turntaking
Terminates(move(id , p, s, tr),Turn(p2), t)

Table 4: Predicates used

A dialogue is specified as a sequence of unconditional
Happens clauses. Accordingly, the predicate Happens is
to be instantiated with a fluent move(id , p, s, tr). For ex-
ample, Happens(1, P, claim(q), 0) expresses that the pro-
ponent claimed q in the first move.

The formalisation of the protocol first specifies which
initial moves are legal. Initially the only legal moves are a
claim or an argue move by the proponent. After his first
move the legality of these moves terminates.

InitiallyP (Legal(move(1, P, s, 0))) ←
s = claim ϕ ∨ s = argue A

InitiallyN (Legal(move(id , p, s, tr))) ←
p = O ∨
(id �= 1) ∨
(s �= claim ϕ ∧ s �= argue A) ∨
(t �= 0)

Terminates(move(1, P, s1, 0),Legal(move(1, P, s2, 0)), t)
←
HoldsAt(Legal(move(1, P, s1, 0)), t)

The next formulas specify how the legality of non-initial
moves is initiated, capturing rules R2, R3, R4 and R7 of the
protocol. Defeats(B,A) means ‘argument B defeats argu-
ment A’. Note that the rules for argue moves assume that
the well-formedness of arguments and their defeat relations
are determined by external means.

The general format of the legality-initiating rules is as fol-
lows:

m1 initiates the legality of m2 if
m1 was moved legally, and
pl(m1) is the player-to-move, and
s(m2) is a well-formed reply to s(m1), and
the specific conditions for m2, if any, are satisfied.

Actually, in the rule for replies to initial moves only the
third condition needs to be stated:

Initiates(move(1, P, claim ϕ, 0),Legal(move(id , O, s, 1)), t)
←
s = why ϕ ∨ s = concede ϕ

The first rule for replies to non-initial moves also uses
the first and second condition, while the second such rule
uses all four conditions:

Initiates(move(id , p,why ϕ, tr),Legal(move(id2, p̄, s, id)), t)
←
HoldsAt(Legal(move(id , p,why ϕ, tr)), t) ∧
HoldsAt(Turn(p), t) ∧
((s = argue A ∧ conc(A) = ϕ) ∨ (s = retract ϕ))

Initiates(move(id , p, argue A, tr),Legal(move(id2, p̄, s, id)), t)
←
HoldsAt(Legal(move(id , p, argue A, tr)), t) ∧
HoldsAt(Turn(p), t) ∧
((s = why ϕ ∧ ϕ ∈ prem(A))
∨
(s = argue B ∧Defeats(B, A))
∨
(s = concede ϕ ∧ ϕ = conc(A)∧
¬(Happens(move(tr , p̄,why ϕ, tr2), t2) ∧ t2 < t)

∨
(s = concede ϕ ∧ ϕ ∈ prem(A)))

Next the conditions are specified under which the legality
of non-initial moves terminates. The first rule below
says that after a move with a specific content is made, it
terminates to hold as a legal move with that specific content
and the same target.

Terminates(move(id , p, s, tr),Legal(move(id2, p, s, tr)), t)
←
HoldsAt(Turn(p), t) ∧
HoldsAt(Legal(move(id , p, s, tr)), t)

The second rule captures protocol rule R5 and states
that when a move is a surrendering move to a target the
attacking counterpart of this move at the same target
terminates to be legal.

Terminates(move(id , p, s1, tr),Legal(move(id2, p, s2, tr)), t)
←
HoldsAt(Legal(move(id , p, s1, tr)), t) ∧
HoldsAt(Legal(move(id2, p, s2, tr)), t) ∧
HoldsAt(Turn(p), t) ∧
((s1 = concede ϕ ∧ s2 = why ϕ)
∨
(s1 = concede ϕ ∧ s2 = argue A ∧ ¬ϕ = conc(A))
∨
(s1 = retract ϕ ∧ s2 = argue A ∧ ϕ = conc(A)))

Summarising, EC’s ‘law of inertia’ is used in this for-
malisation as follows. Initially, only a claim and argue
move are legal and all other moves are illegal. After a move
is made its legality is terminated (but only with that specific
content) and the legality of well-formed replies to that
move’s speech act is initiated. Such legality persists until
the move is made. The illegality of moves persists until its
legality is initiated as just described.

378 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

As for the commitment rules, at the start of the dialogue
the commitment sets of both players are empty. When
a move is made, the speaker’s commitments are updated
according to the commitment rules of the P system.

InitiallyN (CS(p, ϕ))

Initiates(move(id , p, s, tr),CS(p, ϕ), t) ←
HoldsAt(Legal(move(id , p, s, tr)), t) ∧
HoldsAt(Turn(p), t) ∧
(s = claim ϕ ∨ s = concede ϕ)

Terminates(move(id , p, retract ϕ, tr),CS(p, ϕ), t) ←
HoldsAt(Legal(move(id , p, retract ϕ, tr)), t) ∧
HoldsAt(Turn(p), t)

Initiates(move(id , p, argue A, tr),CS(p, ϕ), t) ←
HoldsAt(Legal(move(id , p, argue A, tr)), t) ∧
HoldsAt(Turn(p), t) ∧
(ϕ = conc(A) ∨ ϕ = prem(A))

The turntaking rules are that the first move is always
made by the proponent after which the turn switches to the
opponent. After the second move, the turn of the proponent
is initiated but that of the opponent does not terminate.

InitiallyP (Turn(P))

InitiallyN (Turn(O))

Terminates(move(1, P, s, 0),Turn(P), t) ←
HoldsAt(Legal(move(1, P, s, 0)), t)

Initiates(move(id , p1, s, tr),Turn(p2), t) ←
HoldsAt(Legal(move(id , p1, s, tr)), t) ∧
((id = 1 ∧ p1 = P ∧ tr = 0 ∧ t = 1 ∧ p2 = O)
∨
(id = 2 ∧ p1 = O ∧ tr = 1 ∧ t = 2 ∧ p2 = P))

A Prolog implementation
We next briefly describe a Prolog implementation of
our formalisation. The source code is available at
www.ewi.utwente.nl/˜bodenstaffl. The imple-
mentation computes in any state of a dialogue the players’
commitments, whether the moves made were legal, who is
to move and what are the legal next moves. It can thus be
used as a ‘dialogue consultant’ by a player, referee or ex-
ternal observer. A Prolog program consists of a database of
clauses, which is essentially a set of if-then rules ‘head if
body’ where the head is a first-order atom and the body a
disjunction of conjunctions of literals. Facts can be speci-
fied with clauses with empty body. Variables in Prolog are
written as capitals and anonymous variables are written as
underscores. Constants are denoted by lowercase letters or
numbers. A typical clause is of the form A : − B, C which
means ‘if B and C then A’. Logical ‘or’ is written as a semi-
colon.

In Prolog, negation is interpreted as ‘negation as failure’
which means that a negated atom holds if the atom itself can-
not be derived. Since our EC formalisation contains classi-
cal negations, we first need to convert our formalisation to
a general logic program. This can be done as follows. The

negations in the conditions of the general EC axioms can
safely be translated as negation-as-failure to capture the law
of inertia. Furthermore, the negations in the conditions of
our specific axioms can be translated as negation-as-failure
since in the current application the closed-world assumption
can safely be made: a dialogue state can be completely spec-
ified, so what is not specified can be assumed false. How-
ever, for classical negations in the consequents of axioms
a special predicate not holds at has to be introduced and
the program has to be designed such that for no fluent both
holds at(F ,T) and not holds at(F ,T) can be derived (in
our program this was straightforward). The resulting general
logic program can then easily be implemented in a Prolog
program.

The implementation of, for example, Axiom 4 now is as
follows.

not holds at(F, T) : −
initially n(F),
\+ declipped(0, F, T).

(where \+ denotes negation as failure). When con-
sulting a program through the Prolog interpreter,
queries can be entered. A query is, for example,
?− initiates(move(1, p, claimq, 0), turn(p), 2). Pro-
log will try to match facts in the database with the query.
If this attempt fails Prolog will try to find rules where the
conclusion matches the query. Prolog will assign the values
of the query to the variables in the rule . Next Prolog will
try to satisfy all variables in the premises. Besides queries
where Prolog is only able to answer ‘yes’ or ‘no’ it is also
possible to leave anonymous variables in the query. Now
Prolog will return a proper assignment to the variables if
there is one. After returning the first set of possible values,
the user of the interpreter can enter a semicolon after which
Prolog will give another assignment if there is one, else
Prolog will return ‘no’.

An argument in the implementation is represented as
since(p, s) and should be read as ‘p since s’. The support
for proposition p, namely s, should be entered as a list. In
Prolog a list is of the form: [p, q, r, . . .]. In our test runs
no defeat relations where used but they could be added as
Initially p clauses. Note that, just as our above formalisa-
tion, our implementation assumes that arguments are created
and defeat relations are established by some reasoner exter-
nal to and combined with the Prolog program.

The following queries are useful for planning the first
move.

holds at(turn(P), 0).
holds at(cs(P, A), 0).
holds at(legal(move(1, P, S, 0)), 0).

In return to these queries Prolog will show whose turn it
is, what the commitments of the participants are and which
moves are legal at time point 0. When the dialogue pro-
ceeds these queries can be used with different time points
to plan the following move and to check the effects of
moves on the players’ commitments. These queries can

DEPARTMENT OF INFORMATICS 379

11TH NMR WORKSHOP

also be entered with constants and in negated form, as in
not holds at(legal(move(3, o, claim q, 2)), 4). To enter a
move the assert command is used. assert is a built-in
predicate which adds its argument as a fact to the program.
Asserting a clause always succeeds in Prolog.

We now demonstrate the program by simulating the fol-
lowing dialogue according to the P system. The knowledge
base of the proponent is {z; q; z, q → a} and the one of the
opponent is {d; d→ c}.

Time point Move CSP CSO

T1 move(1, P, claim a, 0) {a}
T2 move(2, O,why a, 1) {a}
T3 move(3, P, argue A, 2) {a, z, q}

conc(A) = a,
prem(A) = z, q

T4 move(4, O, argue B, 3) {a, z, q} {c, d}
conc(B) = c,
prem(B) = d

T5 move(5, P,why d, 4) {a, z, q} {c, d}
T6 move(6, O, retract d, 5) {a, z, q} {c, d}
After loading the program the fist move by the proponent

is entered.

?− assert(happens(move(1, p, claim(a), 0), 1)).
Yes

?−

To plan the next move, a query is entered to find out
which participant is allowed to utter which locution.

?− holds at(legal(move(2, P, S, 1)), 2).
P = o

S = why(a);
P = o

S = concede(a);
No

?−

Only the opponent is allowed to make a move and its
only legal locutions are why a and concede a. We proceed
by asserting the next move. After that also the remaining
part of the dialogue is given as it is simulated in Prolog.

?− holds at(legal(move(3, P, A, 2)), 3).
P = p

A = argue(since(a, G511));
P = p

A = retract (a);
No

?− assert(happens(move(3, p, argue(since(a, [z, q])), 2), 3)).
Yes

?− holds at(legal(move(4, P, A, 3)), 4).
P = o

A = why(z);
P = o

A = why(q);
P = o

A = argue(G481);

No

?− assert(happens(move(4, o, argue(since(c, [d])), 3), 4)).
Yes

?− holds at(legal(move(5, P, S, 4)), 5).
P = p

S = concede(d);
P = p

S = why(d);
P = p

S = argue(G481);
P = p

S = concede(c);
No

?− assert(happens(move(5, p, why(d), 4), 5)).
Yes

?− holds at(legal(move(6, P, S, 5)), 6).
P = o

S = argue(since(d, G660));
P = o

S = retract (d);
No

?− assert(happens(move(6, o, retract (d), 5), 6)).
Yes

?− holds at(legal(move(7, P, A, N)), 7).
P = o

A = concede(a)
N = 1;
P = p

A = retract (a)
N = 2;
P = o

A = why(z)
N = 3;
P = o

A = why(q)
N = 3;
P = o

A = concede(z)
N = 3;
P = o

A = concede(q)
N = 3;
P = p

A = argue(G500)
N = 4;
P = p

A = concede(c)
N = 4;
P = p

A = concede(d)
N = 4;
No

?−

It should be noted that two other moves are legal at
time point 7 but are not returned by Prolog in the last
question holds at(legal(move(7, P, A, N)), 7). These moves
are move(7, p, argue(since(a, Phi)), 2) where Phi cannot be
[z, q] and move(7, o, argue(Psi), 3) where Psi cannot be

380 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

[d] because the moves with these propositions already
happened at time point 3 and 4 respectively. Prolog
fails to return these two clauses because not all avail-
able propositions are legal to use in these argue moves.
However, when a specific query is entered, for example,
holds at(legal(move(7, p, argue(since(a, b)), 2)), 7), Pro-
log will answer affirmatively.

Other case studies

To test the generality of the above approach we applied it
in (Bodenstaff 2005) to two other protocols. Firstly, we ex-
tended the above formalisation of the P system to a stricter
instantiation of the framework of (Prakken 2005), in which
all moves have to satisfy a condition of relevance. This no-
tion is defined in terms of a notion of dialogical status of a
move. Briefly, a move is in if it is surrendered or else all
its attacking replies are out, and a move is out if it has an
attacking reply that is in. A move is relevant if changing the
dialogical status of its target also changes the dialogical sta-
tus of the initial move; the turn shifts as soon as the dialog-
ical status of the initial move has changed. In consequence,
each turn now consists of zero or more surrenders followed
by zero or one attacker (if zero, then the dialogue terminates
automatically). We straightforwardly added this to our for-
malisation of P by adding definitions of dialogical status and
relevance, changing the turntaking rule and giving all rules
that initiate move legality a single extra condition that the
move is relevant.

Secondly, we applied our approach to the system for
persuasion dialogue of Parsons, Wooldridge, & Am-
goud (2003). The communication language of the PWA sys-
tem was displayed above in Table 1 (which renames some
terms of PWA for ease of comparison). The main differ-
ences with the P system are the absence of a locution for
retractions and the replacement of the argue locution with a
claim S locution for a set S of propositions; the latter is to be
moved in reply to a why ϕ move. The explicit reply structure
of the P system is implicitly built into PWA’s protocol, where
in addition a claim of a proposition can also be answered
with a claim of its negation. PWA’s protocol rules refer to
the players’ internal states, in requiring that their claims and
concessions must respect their “assertion and acceptance at-
titudes”. For instance, an agent with a “sceptical” assertion
attitude may claim a proposition only if he can construct a
justified argument for it on the basis of his own knowledge.
As for the structural aspects of a dialogue, the PWA proto-
col is much stricter than that of P: essentially, in PWA the
turn shifts after every move and no alternative replies to a
move are allowed, except to a claim S move, of which each
member of S can be challenged or conceded in turn. PWA’s
commitment rules are essentially the same as those of P. A
dialogue terminates when a player is to move but can make
no legal moves; in that case he has to “concede the game”.

In formalising PWA in EC, most of our domain-specific
EC predicates turned out to be useful but some new pred-
icates had to be added to deal with assertion and conces-
sion attitudes and with the stricter structural nature of the
protocol. These features also required several new axioms

and modification of existing axioms. Nevertheless, our sec-
ond case study provides support for the generality of our
approach.

Related work
As for related work, three publications are particularly rel-
evant to our investigations. Firstly, Yolum & Singh (2004)
apply the event calculus to reasoning about commitments to
action in trading scenarios. However, they do not address
argumentation and do not model reasoning about legality of
dialogue moves.

Brewka (2001) reconstructs and then formalises an argu-
mentation protocol of Rescher (1977) in a version of the situ-
ation calculus (Reiter 2001). The Rescher/Brewka system is
in some respects simpler and in other respects more complex
than the P system. Its underlying logic is default logic and
its communication language has no explicit reply structure.
Arguments are implicitly moved as claim replies to chal-
lenges. Players may make any new claim and may retract
their own commitments and challenge or concede the other
player’s commitments at any time. The system has no turn-
taking rules. Dialogues terminate by convention, after which
a determiner is allowed to declare one of the players the win-
ner in a way constrained by the players’ final commitments.
Since Brewka distinguishes ‘possible’ from ‘legal’ moves,
players can move illegal moves but then the other player can
reply with an object locution, after which the effects of the
illegal move are undone. Brewka’s work was a source of
inspiration for our investigations but because of the differ-
ences in dialogue systems and formalisation languages it is
difficult to give a precise comparison, especially since EC
and situation calculus are rather different in style.

Perhaps the closest to the present investigations is the
work of Artikis, Sergot, & Pitt (2003), who formalise a mod-
ified variant of the Rescher/Brewka system in the C+ lan-
guage of Giunchiglia et al. (2004) and then implement it in
Giunchiglia et al.’s “causal calculator”. The C+ language is
closer to EC than the situation calculus (in fact, Artikis, Pitt,
& Sergot (2002) used EC to formalise the contract net proto-
col). Artikis, Sergot, & Pitt refine Brewka’s notion of legal
dialogue moves into a distinction between ‘permitted’ and
‘valid’ moves. A move is valid if its player has the “power”
to move it, i.e., if uttering certain words ‘counts as’ a certain
speech act. As is well-known from legal theory, powers and
permissions are logically unrelated; our ‘legality’ of moves
corresponds to Artikis, Sergot, & Pitt’s validity of moves but
our approach could incorporate their refinements if required
by the formalised dialogue system. The same holds for their
formalisations of object moves and the determiner’s role.

Conclusion
In this paper we investigated the suitability of the Event Cal-
culus for logical formalisation of dialogue systems for ar-
gumentation and subsequent implementation in declarative
programming languages. We have contributed to previous
work in this direction as follows. Generally speaking, by ap-
plying EC to systems with some new features, our case stud-
ies have confirmed and reinforced the earlier findings that

DEPARTMENT OF INFORMATICS 381

11TH NMR WORKSHOP

EC (and similar formalisms) are suitable for logical formal-
isation of dialogue systems for argumentation. More specif-
ically, we have made the following contributions. Firstly,
while in the dialogue systems studied by Brewka (2001) and
Artikis, Sergot, & Pitt (2003) the protocol is mainly defined
in terms of the players’ commitments, we have focussed on
systems in which it is largely defined in terms of an explicit
reply structure of the communication language, with a dis-
tinction between attacking and surrendering replies. Sec-
ondly, we have focussed on systems with a more liberal di-
alogue structure and with varying turntaking rules. Finally,
we have (in more detail in (Bodenstaff 2005)) shown how
the constraining of dialogues by a notion of relevance can
be formalised.

Our Prolog implementation of the P system illustrated that
the formalisation of dialogue systems in a logical calculus
supports their declarative implementation. Such implemen-
tation in turn arguably supports the design of flexible di-
alogue systems, in which variations in the communication
language or protocol can be handled easier than when they
are hard-coded in a lower-level programming language. Of
course, whether these advantages over, for instance, func-
tional specifications indeed hold must still be investigated
but the present paper has helped in making such investi-
gations possible by further developing the logic-based ap-
proach. Another research topic is the design of intelligent
agents who interact within a persuasion protocol. Agents
could use a declarative implementation of a dialogue system
to reason about the moves they are allowed to make and their
effects, and use some internal decision-making or planning
mechanism to choose from the available moves.

Acknowledgements
The research reported in this paper was partially supported
by the EU under IST-FP6-002307 (ASPIC).

References
Amgoud, L.; Maudet, N.; and Parsons, S. 2000. Mod-
elling dialogues using argumentation. In Proceedings of
the Fourth International Conference on MultiAgent Sys-
tems, 31–38.

Artikis, A.; Pitt, J.; and Sergot, M. 2002. Animated speci-
fications of computational societies. In Proceedings of the
First International Conference on Autonomous Agents and
Multiagent Systems (AAMAS-02), 1053–1062.

Artikis, A.; Sergot, M.; and Pitt, J. 2003. An executable
specification of an argumentation protocol. In ICAIL ’03:
Proceedings of the Ninth International Conference on Ar-
tificial Intelligence and Law, 1–11. New York, NY, USA:
ACM Press.

Atkinson, K.; Bench-Capon, T.; and McBurney, P. 2005.
A dialogue game protocol for multi-agent argument over
proposals for action. Journal of Autonomous Agents and
Multi-Agent Systems 11:153–171.

Bodenstaff, L. 2005. Formalisation of argumentation pro-
tocols in event calculus. Master’s thesis, Utrecht Univer-
sity. http://www.ewi.utwente.nl/˜bodenstaffl.

Brewka, G. 2001. Dynamic argument systems: A formal
model of argumentation processes based on situation cal-
culus. Journal of Logic and Computation 11(2):257–282.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence
77(2):321–357.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2004. Nonmonotonic causal theories. Artificial
Intelligence 153:49–104.
Gordon, T. 1994. The Pleadings Game: an exercise in
computational dialectics. Artificial Intelligence and Law
2:239–292.
Kowalski, R., and Sergot, M. 1986. A logic-based calculus
of events. New Generation Computing 4(1):67–95.
Parsons, S.; Wooldridge, M.; and Amgoud, L. 2003. Prop-
erties and complexity of some formal inter-agent dialogues.
Journal of Logic and Computation 13. 347-376.
Prakken, H. 2005. Coherence and flexibility in dialogue
games for argumentation. Journal of Logic and Computa-
tion 15:1009–1040.
Rahwan, I.; Ramchurn, S.; Jennings, N.; McBurney, P.;
Parsons, S.; and Sonenberg, L. 2003. Argumentation-based
negotiation. The Knowledge Engineering Review 18:343–
375.
Reiter, R. 2001. Knowledge in Action: Logical Foun-
dations for Describing and Implementing Dynamical Sys-
tems. Cambridge, MA, USA: MIT Press.
Rescher, N. 1977. Dialectics: A Controversy-Oriented
Approach to the Theory of Knowledge. Albany, NY, USA:
State University of New York Press.
Shanahan, M. 1999. The event calculus explained. Lecture
Notes in Computer Science 1600:409–430.
Yolum, P., and Singh, M. 2004. Reasoning about commit-
ments in the Event Calculus: an approach for specifying
and executing protocols. Annals of Mathematics and Arti-
ficial Intelligence 42:227–253.

382 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

5.2 Approximate Arguments for Efficiency in Logical Argumenta-
tion

Approximate Arguments for
Efficiency in Logical Argumentation

Anthony Hunter
Department of Computer Science

University College London
Gower Stree, London WC1E 6BT, UK

Abstract

There are a number of frameworks for modelling argumenta-
tion in logic. They incorporate a formal representation of in-
dividual arguments and techniques for comparing conflicting
arguments. A common assumption for logic-based argumen-
tation is that an argument is a pair 〈Φ, α〉 where Φ is minimal
subset of the knowledgebase such that Φ is consistent and Φ
entails the claim α. Different logics are based on different
definitions for entailment and consistency, and give us dif-
ferent options for argumentation. For a variety of logics, in
particular for classical logic, the computational viability of
generating arguments is an issue. Here, we propose amelio-
rating this problem by using approximate arguments.

Introduction
Argumentation is a vital aspect of intelligent behaviour by
humans. Consider diverse professionals such as politicians,
journalists, clinicians, scientists, and administrators, who all
need to collate and analyse information looking for pros and
cons for consequences of importance when attempting to un-
derstand problems and make decisions.

There are a number of proposals for logic-based for-
malisations of argumentation (for reviews see (Prakken &
Vreeswijk 2000; Chesnevar, Maguitman, & Loui 2001)).
These proposals allow for the representation of arguments
for and against some claim, and for attack relationships be-
tween arguments. In a number of key examples of argumen-
tation systems, an argument is a pair where the first item in
the pair is a minimal consistent set of formulae that proves
the second item which is a formula. Furthermore, in these
approaches, the notion of attack is a form of undercut, where
one argument undercuts another argument when the claim of
the first argument negates the premises of the second argu-
ment.

In this paper, we consider how we can undertake argu-
mentation more efficiently. Let us start by considering the
construction of individual arguments. If Δ is a knowledge-
base, and we are interested in a claim α, we look for an
argument 〈Φ, α〉 where Φ ⊆ Δ. Deciding whether a set of
propositional classical formulae is classically consistent is
an NP-complete decision problem and deciding whether a
set of propositional formulae classically entails a given for-
mula is a co-NP-complete decision problem. However, if
we consider the problem as an abduction problem, where

we seek the existence of a minimal subset of a set of for-
mulae that implies the consequent, then the problem is in
the second level of the polynomial hierarchy (Eiter & Gott-
lob 1995). Even worse deciding whether a set of first-order
classical formulae is consistent is an undecidable decision
problem. So even finding the basic units of argumentation is
computationally challenging.

Proof procedures and algorithms have been developed for
finding preferred arguments from a knowledgebase follow-
ing for example Dung’s preferred semantics (see for exam-
ple (Prakken & Sartor 1997; Kakas & Toni 1999; Cayrol,
Doutre, & Mengin 2001; Dimopoulos, Nebel, & Toni 2002;
Dung, Kowalski, & Toni 2006)). However, these tech-
niques and analyses do not offer any ways of ameliorating
the computational complexity inherent in finding arguments
and counterarguments even though it is a significant source
of computational inefficiency.

A possible approach to ameliorate the cost of entailment
is to use approximate entailment: Proposed in (Levesque
1984), and developed in (Schaerf & Cadoli 1995), classical
entailment is approximated by two sequences of entailment
relations. Approximate entailment has been developed for
anytime coherence reasoning (Koriche 2002). However, the
approach still needs to be further developed and evaluated
for finding arguments and counterarguments in argumenta-
tion. This would need to start with a conceptualization of
the notions of argument and counteragument derived using
approximate entailment and approximate coherence.

In this paper, we take a different approach by presenting
a new solution that uses approximate arguments. First we
review an existing version of logic-based argumentation in
order to illustrate our ideas, and then we present our frame-
work for approximate arguments.

Logical argumentation
In this section we review an existing proposal for logic-
based argumentation (Besnard & Hunter 2001). We consider
a classical propositional language with classical deduction
denoted by the symbol �. We use α, β, γ, . . . to denote for-
mulae and Δ, Φ, Ψ, . . . to denote sets of formulae.

For the following definitions, we first assume a knowl-
edgebase Δ (a finite set of formulae) and use this Δ through-
out. We further assume that every subset of Δ is given an
enumeration 〈α1, . . . , αn〉 of its elements, which we call its

DEPARTMENT OF INFORMATICS 383

11TH NMR WORKSHOP

canonical enumeration. This really is not a demanding con-
straint: In particular, the constraint is satisfied whenever we
impose an arbitrary total ordering over Δ. Importantly, the
order has no meaning and is not meant to represent any re-
spective importance of formulae in Δ. It is only a convenient
way to indicate the order in which we assume the formulae
in any subset of Δ are conjoined to make a formula logically
equivalent to that subset.

The paradigm for the approach is a large repository of in-
formation, represented by Δ, from which arguments can be
constructed for and against arbitrary claims. Apart from in-
formation being understood as declarative statements, there
is no a priori restriction on the contents, and the pieces of
information in the repository can be as complex as possible.
Therefore, Δ is not expected to be consistent. It need even
not be the case that every single formula in Δ is consistent.

The framework adopts a very common intuitive notion of
an argument. Essentially, an argument is a set of relevant
formulae that can be used to classically prove some claim,
together with that claim. Each claim is represented by a for-
mula.
Definition 1. An argument is a pair 〈Φ, α〉 such that: (1)
Φ ⊆ Δ; (2) Φ �� ⊥; (3) Φ � α; and (4) there is no Φ′ ⊂ Φ
such that Φ′ � α. We say that 〈Φ, α〉 is an argument for α.
We call α the claim of the argument and Φ the support of
the argument (we also say that Φ is a support for α).

Example 1. Let Δ = {α, α → β, γ → ¬β, γ, δ, δ →
β,¬α,¬γ}. Some arguments are:

〈{α, α → β}, β〉
〈{¬α},¬α〉

〈{α → β},¬α ∨ β〉
〈{¬γ}, δ → ¬γ〉

Arguments are not independent. In a sense, some encom-
pass others (possibly up to some form of equivalence). To
clarify this requires a few definitions as follows.
Definition 2. An argument 〈Φ, α〉 is more conservative
than an argument 〈Ψ, β〉 iff Φ ⊆ Ψ and β � α.

Example 2. 〈{α}, α ∨ β〉 is more conservative than
〈{α, α → β}, β〉.

Some arguments directly oppose the support of others,
which amounts to the notion of an undercut.
Definition 3. An undercut for an argument 〈Φ, α〉 is an
argument 〈Ψ,¬(φ1 ∧ . . . ∧ φn)〉 where {φ1, . . . , φn} ⊆ Φ.

Example 3. Let Δ = {α, α → β, γ, γ → ¬α}.
Then, 〈{γ, γ → ¬α},¬(α ∧ (α → β))〉 is an undercut
for 〈{α, α → β}, β〉. A less conservative undercut for
〈{α, α → β}, β〉 is 〈{γ, γ → ¬α},¬α〉.
Definition 4. 〈Ψ, β〉 is a maximally conservative under-
cut of 〈Φ, α〉 iff 〈Ψ, β〉 is an undercut of 〈Φ, α〉 such that
no undercuts of 〈Φ, α〉 are strictly more conservative than
〈Ψ, β〉 (that is, for all undercuts 〈Ψ′, β′〉 of 〈Φ, α〉, if Ψ′ ⊆
Ψ and β � β′ then Ψ ⊆ Ψ′ and β′ � β).

The value of the following definition of canonical under-
cut is that we only need to take the canonical undercuts into
account. This means we can justifiably ignore the potentially
very large number of non-canonical undercuts.

Definition 5. An argument 〈Ψ,¬(φ1∧. . .∧φn)〉 is a canon-
ical undercut for 〈Φ, α〉 iff it is a maximally conservative
undercut for 〈Φ, α〉 and 〈φ1, . . . , φn〉 is the canonical enu-
meration of Φ.

An argument tree describes the various ways an argument
can be challenged, as well as how the counter-arguments to
the initial argument can themselves be challenged, and so on
recursively.

Definition 6. A complete argument tree for α is a tree
where the nodes are arguments such that

1. The root is an argument for α.
2. For no node 〈Φ, β〉 with ancestor nodes

〈Φ1, β1〉, . . . , 〈Φn, βn〉 is Φ a subset of Φ1 ∪ · · · ∪ Φn.
3. The children nodes of a node N consist of all canonical

undercuts for N that obey 2.

The second condition in Definition 6 ensures that each ar-
gument on a branch has to introduce at least one formula
in its support that has not already been used by ancestor ar-
guments. This is meant to avoid making explicit undercuts
that simply repeat over and over the same reasoning pattern
except for switching the role of some formulae (e.g. in mu-
tual exclusion, stating that α together with ¬α ∨ ¬β entails
¬β is exactly the same reasoning as expressing that β to-
gether with ¬α ∨¬β entail ¬α, because in both cases, what
is meant is that α and β exclude each other). As a notational
convenience, in examples of argument trees the � symbol
is used to denote the claim of an argument when that argu-
ment is a canonical undercut (no ambiguity arises as proven
in (Besnard & Hunter 2001)).

Example 4. Let Δ= {α ∨ β, α → γ,¬γ,¬β, δ ↔ β}. For
this, two argument trees for the consequent α∨¬δ are given.

〈{α ∨ β,¬β}, α ∨ ¬δ〉 〈{δ ↔ β,¬β}, α ∨ ¬δ〉
↑ ↑

〈{α → γ,¬γ},�〉 〈{α ∨ β, α → γ,¬γ},�〉
A complete argument tree is an efficient representa-

tion of the counterarguments, counter-counterarguments,
. . . Furthermore, if Δ is finite, there is a finite number of
argument trees with the root being an argument with con-
sequent α that can be formed from Δ, and each of these
trees has finite branching and a finite depth (the finite tree
property). Note, also the definitions presented in this sec-
tion can be used directly with first-order classical logic, so
Δ and α are from the first-order classical language. Inter-
estingly, the finite tree property also holds for the first-order
case (Besnard & Hunter 2005).

Motivation for approximation
We now turn to the potential for approximation when build-
ing argument trees. When building arguments, and hence
argument trees, it is tempting to think that automated rea-
soning technology can do more for us than it is guaranteed
to. For each argument, we need a minimal set of formu-
lae that proves the claim. An automated theorem prover
(an ATP) may use a “goal-directed” approach, bringing in
extra premises when required, but they are not guaranteed

384 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

to be minimal. For example, supposing we have a knowl-
edgebase {α, α ∧ β}, for proving α ∧ β, the ATP may start
with the premise α, then to prove β, a second premise is
required, which would be α ∧ β, and so the net result is
{α, α ∧ β} � α ∧ β, which does not involve a minimal set
of premises. In addition, an ATP is not guaranteed to use a
consistent set of premises since by classical logic it is valid
to prove anything from an inconsistency.

So if we seek arguments for a particular claim δ, we need
to post queries to an ATP to ensure that a set of premises
entails δ, that the set of premises is minimal for this, and that
it is consistent. So finding arguments for a claim α involves
considering subsets Φ of Δ and testing them with the ATP
to ascertain whether Φ � α and Φ �� ⊥ hold. For Φ ⊆
Δ, and a formula α, let Φ?α denote a call (a query) to an
ATP. If Φ classically entails α, then we get the answer Φ �
α, otherwise we get the answer Φ �� α, In this way, we
do not give the whole of Δ to the ATP. Rather we call it
with particular subsets of Δ. So for example, if we want
to know if 〈Φ, α〉 is an argument, then we have a series of
calls Φ?α, Φ?⊥, Φ \ {φ1}?α,...,Φ \ {φk}?α, where Φ =
{φ1, .., φk}. So the first call is to ensure that Φ � α holds,
the second call is to ensure that Φ �� ⊥ holds, the remaining
calls are to ensure that there is no subset Φ′ of Φ such that
Φ′ � α holds. Now if Φ � α holds, but some of the further
calls fail (i.e. Φ is not minimal or it is inconsistent) we still
have an “approximate argument”. So rather than throwing
this away, we can treat it as an intermediate finding, and use
it as part of an “approximate argument tree” which we can
build with fewer calls to the ATP than building a complete
argument tree, and this approximate argument tree can then
be refined, as required, with the aim of getting closer to a
complete argument tree. We formalize this next.

Approximate argumentation
An approximate argument is a pair [Φ, α] where Φ ⊆ L and
α ∈ L. This is a very general definition. It does not assume
that Φ is consistent, or that it entails α, or that it is even a
subset of the knowledgebase Δ.

To focus our presentation in this paper, we will restrict
consideration to a particular class of approximate argu-
ments, namely entailments. If Φ ⊆ Δ and Φ � α, then
[Φ, α] is an entailment. Furthermore, we will consider some
subclasses of entailments defined as follows: If [Φ, α] is an
entailment, and there is no Φ′ ⊂ Φ such that Φ′ � α, then
[Φ, α] is a miniment; If [Φ, α] is an entailment, and Φ �� ⊥,
then [Φ, α] is an altoment; And if [Φ, α] is a miniment, and
[Φ, α] is an altoment, then [Φ, α] is a preargument. Each
of these kinds of entailment is defined as a relaxation of
the definition for an argument: The support of an entail-
ment implies the consequent, but neither an entailment nor
an altoment has a support that is necessarily a minimal set
of assumptions for implying the consequent and neither an
entailment nor a miniment is necessarily a consistent set of
assumptions for implying the consequent.

Example 5. Let Δ = {α,¬α ∨ β, γ,¬β,¬γ}. So en-
tailments for β include {A1, A2, A3, A4, A5} of which
{A1, A3, A5} are altoments, {A2, A5} are miniments, and

A5 is a preargument.

A1 = [{α,¬α ∨ β, γ, β}, β]
A2 = [{γ,¬γ}, β]
A3 = [{α,¬α ∨ β, γ}, β]
A4 = [{α,¬α ∨ β, γ,¬γ}, β]
A5 = [{α,¬α ∨ β}, β]

An altoment is a “potentially overweight proof” in the
sense that there are more assumptions in the support than
required for the consequent, and a miniment is a “minimal
proof” in the sense that if any formula is removed from the
support there will be insufficient assumptions in the support
for the consequent to be entailed.

Some simple observations that we can make concerning
entailments include: (1) If [Γ, α] is an altoment, then there
is a Φ ⊆ Γ such that 〈Φ, α〉 is an argument; (2) If [Γ, α] is
an entailment, then there is a Φ ⊆ Γ such that [Φ, α] is a
miniment; and (3) If [Φ, α] is a preargument, then 〈Φ, α〉 is
an argument.

An approximate undercut for an approximate argument
[Φ, α] is an approximate argument [Ψ, β] such that β �
¬(∧Φ) (where if Φ = {φ1, .., φn}, and 〈φ1, . . . , φn〉 is the
canonical enumeration of Φ, then ∧Φ is φ1 ∧ .. ∧ φn).

An approximate tree is a tree T where each node is an
approximate argument from Δ. There are various kinds of
approximate tree. Here we define three particular kinds: (1)
An entailment tree for α is an approximate tree where each
node is an entailment and the root is for α; (2) An altoment
tree for α is an approximate tree where each node is an alto-
ment and the root is for α; and (3) A preargument tree for
α is an approximate tree where each node is a preargument
and the root is for α. For these trees, we do not impose that
the children of a node are approximate undercuts, but in the
way we construct them, we will aim for this.

Example 6. In the following, T1 is an entailment tree, T2 is
an altoment tree, and T3 is a preargument tree.

T1 [{β,¬β, δ, δ ∨ β, (β ∨ δ) → α}, α]
↗ ↖

[{φ,¬δ, δ ∨ ¬β},¬β] [{φ,¬φ},¬δ]

T2 [{β, δ, δ ∨ β, (β ∨ δ) → α}, α]
↗ ↖

[{φ,¬δ, δ ∨ ¬β},¬β] [{φ,¬β,¬δ ∨ β},¬δ]

T3 [{β, β → α}, α]
↑

[{γ, γ → ¬β},¬(β ∧ (β → α))]
Obviously, all preargument trees are altoment trees, and

all altoment trees are entailment trees.

Definition 7. A complete preargument tree is a preargu-
ment tree where (1) for no node [Φ, β] with ancestor nodes
[Φ1, β1], . . . , [Φn, βn] is Φ a subset of Φ1∪· · ·∪Φn and (2)
for each node with a preargument [Φ, β], the children nodes
consist of all the prearguments of the form [Ψ,¬(∧Φ)].

The first condition above ensures that the support of each
preargument on a branch has to include at least one premise
that has not been used by its ancestors. The second condi-
tion above ensures that the children nodes of a node consist

DEPARTMENT OF INFORMATICS 385

11TH NMR WORKSHOP

of all prearguments that are approximate undercuts negating
the conjunction of the support of the parent. This mirrors the
definition for an argument tree (Definition 6) and the follow-
ing result shows they are isomorphic. As an illustration, T3

in Example 6 is a complete preargument tree.

Proposition 1. If T is a complete preargument tree, then
there is an argument tree T ′ and there is a bijection f from
the nodes in T to the nodes in T ′ such that for all the prear-
guments [Φ, α] in T , f([Φ, α]) = 〈Φ, α〉.

From the above result, we see that not only is each prear-
gument effectively equivalent to an argument (i.e. each
preargument [Φ, α] is corresponds to an argument 〈Φ, α〉),
but that also the constraints on the definition are sufficient
for each approximate undercut to behave equivalently to a
canonical undercut.

The following definition of refinement is a relationship
that holds between some altoment trees. It holds when each
altoment in T2 uses the same or fewer assumptions than
its corresponding altoment in T1 and its claim is weaker
or the same as its corresponding altoment in T1. For this,
let Support([Φ, α]) be Φ, and let Claim([Φ, α]) be α, where
[Φ, α] is an entailment.

Definition 8. Let T1 and T2 be altoment trees. T2 is a
refinement of T1 iff there is a bijection f from the nodes
of T1 to the nodes of T2 such that for all nodes A in
T1, Support(A) ⊆ Support(f(A)) and Claim(f(A)) �
Claim(A). We call f the refinement function.

Proposition 2. If T2 is a refinement of T1 with refinement
function f , then for all [Φ1, α1] ∈ T1, if f([Φ1, α1]) =
[Φ2, α2], then 〈Φ2, α2〉 is more conservative than 〈Φ1, α1〉.

Refinement is useful because we can build a tree using
altoments, and then refine those altoments as part of a pro-
cess of obtaining a better approximate tree, and if required,
a complete preargument tree. We consider this process more
generally for entailments in the next section.

Constructing approximate trees
To render the construction, and improvement, of approxi-
mate trees implementable, we define the revision steps that
can be undertaken on a tree T as follows where T ′ is the re-
sult of the revision step, and all entailments come from the
knowledgebase Δ.

1. T ′ is obtained by resupport from T by taking an entail-
ment [Φ, α] in T and removing one formula, say φ, such
that [Φ \ {φ}, α] is an entailment.

2. T ′ is obtained by reconsequent from T by replacing
an entailment [Φ, α] in T with entailment [Φ, α′] where
[Ψ, β] is the parent of [Φ, α] in T and [Ψ, β] is the parent
of [Φ, α′] in T ′ and α �≡ α′ and α′ ≡ ¬(∧Ψ).

3. T ′ is obtained by expansion from T by taking an entail-
ment [Φ, α] in T and adding an entailment [Ψ, β] such that
[Ψ, β] is an approximate undercut of [Φ, α] and it has not
been shown that Ψ � ⊥.

4. T ′ is obtained by contraction from T by removing an
entailment [Ψ, β] (and all its offspring) such that [Ψ, β] is
a miniment and Ψ � ⊥.

5. T ′ is obtained by deflation from T by removing an en-
tailment [Ψ, β] (and all its offspring) such that [Ψ, β] is a
child of [Φ, α] and Ψ ∪ Φ �� ⊥.

We explain the revision steps as follows: Resupport weak-
ens the support of an entailment to remove an unnecessary
premise; Reconsequent strengthens the claim of an entail-
ment so that it negates the conjunction of its parents support;
Expansion adds a new approximate undercut to the tree (as-
suming that it has not been shown to have an inconsistent
support); Contraction removes a node which has become an
inconsistent miniment (after previously being subject to re-
support); and Deflation removes a node with a support that
is consistent with the support of its parent (after previously
one or other being subject to resupport). Illustrations of us-
ing revision steps are given in Example 7 and Example 8.

Example 7. Each of the following three trees is an altoment
tree. Furthermore, T2 is a resupport of T1 and T3 is an
expansion of T2.

T1 [{α, α → β,¬γ, δ}, β] T2 [{α, α → β, δ}, β]
↑ ↑

[{γ, γ → ¬α, σ},¬α] [{γ, γ → ¬α, σ},¬α]

T3 [{α, α → β, δ}, β]
↑

[{γ, γ → ¬α, σ},¬α]
↑

[{¬γ},¬γ]
The next result shows that we can obtain a complete prear-

gument tree by some finite sequence of revision steps.

Theorem 1. If Tn is a complete preargument tree for α, then
there a sequence 〈T1, ..., Tn〉 of approximate trees for α, s.t.
T1 is an altoment tree with just a root node, and for each i,
where i < n, Ti+1 is obtained by a revision step from Ti.

Starting with an altoment tree for α that contains one
node, and then using a sequence of revision steps to obtain
a complete preargument tree, does not necessarily offer any
computational advantages over constructing a complete ar-
gument tree directly (by finding an argument for the root,
and then finding canonical undercuts to the root, and then
by recursion, finding canonical undercuts to the canonical
undercuts). To revise an approximate tree involves calls to
the ATP, and so the more we revise an approximate tree,
the less there is an efficiency advantage over constructing
a complete argument tree. The real benefit of approximate
argumentation is that an intermediate tree (in the sequence
above) is more informative (than a partially constructed ar-
gument tree) since it tends to have more nodes, and thereby
better indicate the range of potential conflicts arising in Δ.
So, in comparison with an argument tree, an approximate
tree is less cautious (it compromises on the correctness of
the arguments used), is less expensive (it uses fewer calls to
an ATP and each call made would also be made to construct
each argument in the corresponding argument tree), and is
more informative (in reporting on potential conflicts in Δ).

To obtain an entailment tree, we use the following algo-
rithm which has an upper limit on the number of revision
steps used.

386 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

Definition 9. The algorithm Generate(Δ, Φ, α, λ) returns
an entailment tree that is constructed in a fixed number of
cycles (delineated by the number λ), for a knowledgebase
Δ, and an altoment [Φ, α] for the root of the entailment tree
that is returned.

Generate(Δ, Φ, α, λ)
Let T be the node [Φ, α]
Let counter = 0
While counter ≤ λ and there is

a revision step T ′ of T
Let T = T ′
Let counter = counter + 1

Return T

The aim of using the above algorithm is to start with an
entailment for α as the root, and then incrementally revise
this entailment tree to get as close as possible to a complete
preargument tree within an acceptable number of iterations.

Example 8. Let Δ = {α, α → β, δ, γ,¬α∨¬β, β} For trees
T1, .., T7 below, Ti+1 is obtained from Ti by the revision step
given in brackets. Let � denote the claim that is the negation
of the conjunction of the support of its parent.

[{α, α → β, δ}, α ∧ β]

(3) [{α, α → β, δ}, α ∧ β]
↑

[{α,¬α ∨ ¬β},¬β]

(3) [{α, α → β, δ}, α ∧ β]
↗ ↖

[{α,¬α ∨ ¬β},¬β] [{¬α ∨ ¬δ, δ},¬α]

(1) [{α, α → β}, α ∧ β]
↗ ↖

[{α,¬α ∨ ¬β},¬β] [{¬α ∨ ¬δ, δ},¬α]

(2) [{α, α → β}, α ∧ β]
↗ ↖

[{α,¬α ∨ ¬β}, �] [{¬α ∨ ¬δ, δ},¬α]

(1) [{α, α → β}, α ∧ β]
↗ ↖

[{¬α ∨ ¬β}, �] [{¬α ∨ ¬δ, δ},¬α]

(2) [{α, α → β}, α ∧ β]
↗ ↖

[{¬α ∨ ¬β}, �] [{¬α ∨ ¬δ, δ}, �]
The following shows that if we run the

Generate(Δ, Φ, α, λ) algorithm for sufficient time, it
will eventually result in a complete preargument tree for α.

Theorem 2. For all propositional knowledgebases Δ
and altoment [Φ, α], there is a λ ∈ N such that
Generate(Δ, Φ, α, λ) returns an altoment tree T for α, and
T is a complete preargument tree for α.

Corollary 1. Let 〈T1, ..., Tn〉 be a sequence of entailment
trees for α such that T1 is an altoment tree with just a root
node, and for each i, where 1 ≤ i < n, Ti+1 is obtained by

a revision step from Ti. If Tn is such that no further revision
steps are possible on it, then Tn is a complete preargument
tree for α.

We can improve the algorithm by incorporating selection
criteria to prefer some revision steps over others. For ex-
ample, we may prefer: (1) an expansion that adds a node
higher up the tree rather than lower down the tree; (2) re-
support steps on nodes with large supports rather than those
with small supports; (3) as many expansion steps as pos-
sible in order to get an impression of as many as possible
of the conflicts that potentially exist. By adopting selection
criteria, we aim to have more meaningful (from a user’s per-
spective) approximate trees returned when the threshold for
the number of revision steps undertaken by the algorithm.

Bias in approximate trees
In this section, we consider another way to bias the construc-
tion of approximate trees by amending the revision steps
available. To explain and motivate this, we first require some
further definitions. For an approximate tree T , each node in
T is either an attacking node or a defending node. If a
node Ar is the root, then Ar is a defending node. If a node
Ai is a defending node, then any child Aj of Ai is an attack-
ing node. If a node Aj is an attacking node, then any child
Ak of Aj is a defending node. The intuition of this nomen-
clature is apparent in the following definition for judging.
Definition 10. The win judge is a function, denoted Win,
from the set of approximate trees to {yes, no} such that
Win(T) = yes iff mark(Ar) = U where Ar is the root
node of T . For a node Ai, mark(Ai) = U when it is
undefeated, and mark(Ai) = D it is defeated. Decid-
ing whether a node is defeated or undefeated depends on
whether or not all its children are defeated: For all non-leaf
nodes Ai, mark(Ai) = D iff there is a child Aj of Ai s.t.
mark(Aj) = U . For all leaves Al, mark(Al) = U .

So Win(T) is yes when the approximate argument at the
root is defended from all attacks. This is a well-studied crite-
rion for argumentation (e.g. (Garcı́a & Simari 2004)) though
there are some interesting alternatives. However we stress
at this point that we believe the primary purpose of logical
argumentation is to highlight the key arguments and coun-
terarguments in the knowledgebase Δ rather than applying
a judge function. Nonetheless, the win judge is a useful way
of assessing the conflicts in a knowledgebase.
Example 9. Consider the following preargument tree T
where A1 = [{δ, δ → σ}, σ], A2 = [{¬γ,¬γ → ¬δ}, �], A3

= [{α, β, α∧β → γ}, �], A4 = [{γ∨δ}, �], A5 = [{¬α}, �],
and A6 = [{¬β}, �].

A1

↗
A2

↗ ↖
A3 A4

↗ ↖
A5 A6

Hence, Win(T) = yes holds. The intuition in this example
is that A4 is sufficient to defeat A2 irrespective of A3. And

DEPARTMENT OF INFORMATICS 387

11TH NMR WORKSHOP

so the existence of A5 and/or A6 does not affect the ability
of A4 to defeat A2 and hence allow A1 to be undefeated.

We now consider how we can incorporate bias into the
construction of altoment trees. For this, we adapt the revi-
sion step of resupport as follows: T ′ is obtained by attack-
resupport from T by taking an entailment [Φ, α] for an at-
tacking node in T and removing one formula, say φ, such
that [Φ \ {φ}, α] is an entailment. Using this alternative to
resupport, we can define the following type of biased tree.

Definition 11. Let 〈T1, ..., Tn〉 be a sequence of altoment
trees for α such that T1 is a node with an altoment [Φ, α],
and for each i, where 1 ≤ i < n, Ti+1 is obtained by
an attack-resupport, reconsequent, contraction, or deflation
step from Ti, and when no such step is possible for Ti, then
Ti+1 is obtained by an expansion step of Ti. If Tn is such
that no further step is possible, then Tn is an attack-bias
tree for α started from [Φ, α].

For purposes of comparison, suppose we have a λ s.t.
Generate(Δ, Φ, α, λ) returns a complete preargument tree
T for α. In this case, we say that T is a complete preargu-
ment tree for α started from [Φ, α].

Proposition 3. If T is an attack-bias tree, then each attack-
ing node is a preargument, whereas each defending node is
an altoment but not necessarily a preargument.

The above result means that in an attack-bias tree it is
easier to undercut a defending node than an attacking node.
This leads us to the following result.

Proposition 4. Let Ta be a attack-bias tree started from
[Φ, α], and let Tp be a complete preargument tree started
from [Φ, α]. If Win(Ta) = yes, then Win(Tp) = yes.

Constructing an attack-bias tree may involve fewer revi-
sion steps than constructing a complete preargument tree,
and from the above, it provides a bound on the outcome of
the corresponding complete preargument tree. We can de-
fine further biased constructions such as for a defence-bias
tree by restricting resupport steps to the defending nodes.

Discussion
Much progress has been made on developing formalisms
for argumentation. Some algorithms for argumentation
have been developed (for example (Kakas & Toni 1999;
Cayrol, Doutre, & Mengin 2001; Baroni & Giacomin 2002;
Garcı́a & Simari 2004)). However, relatively little progress
has been made in developing techniques for overcoming the
computational challenges of constructing arguments. Even
though there is a proposal for storing information about pre-
vious calls to an ATP in a form of lemma generation called
contouring (Hunter 2006), and there are proposals for mak-
ing defeasible logic programming more efficient by storing
non-instantiated arguments in a database, again for reducing
the number of called to an ATP (Capobianco, Chesnevar, &
Simari 2005), and by the use of prunning strategies (Ches-
nevar, Simari, & Godo 2005), there does appear to be a
pressing need to look more widely for approaches for im-
proving the efficiency of argumentation.

In this paper, we have introduced a framework for approx-
imate arguments that can be used as useful intermediate re-
sults when undertaking argumentation using an ATP. Find-
ing approximate arguments requires fewer calls to an ATP,
but it involves compromising the correctness of arguments.
Our next step is to undertake empirical studies with the al-
gorithm to investigate this efficiency-correctness trade-off.

Approximate arguments may also be a useful vehicle for
studying approximate arguments as arising in human cog-
nition, and may be important for characterising some kinds
of discussions and negotiations in multi-agent dialogue sys-
tems where agents may put forward approximate arguments
that are not altoments, or even not entailments (perhaps for
competitive reasons or through ignorance).

Whilst our presentation is based on a particular approach
to logic-based argumentation, we believe the proposal could
be adapted for a range of other logic-based approaches
to argumentation (for example (Garcı́a & Simari 2004;
Amgoud & Cayrol 2002)) by adapting our definitions for
approximate arguments and for revision steps.

Acknowledgements
The author is very grateful to Philippe Besnard for feedback
on an earlier draft of this paper.

References
Amgoud, L., and Cayrol, C. 2002. A model of reasoning
based on the production of acceptable arguments. Annals
of Mathematics and Artificial Intelligence 34:197–216.

Baroni, P., and Giacomin, M. 2002. Argumentation
through a distributed self-stabilizing approach. J. Exper-
imental & Theoretical AI 14(4):273–301.

Besnard, P., and Hunter, A. 2001. A logic-based theory of
deductive arguments. Artificial Intelligence 128:203–235.

Besnard, P., and Hunter, A. 2005. Practical first-order ar-
gumentation. In Proc. of the 20th National Conference on
Artificial Intelligence (AAAI’2005), 590–595. MIT Press.

Capobianco, M.; Chesnevar, C.; and Simari, G. 2005.
Argumentation and the dynamics of warranted beliefs in
changing environments. International Journal on Au-
tonomous Agents and Mutliagent Systems 11:127–151.

Cayrol, C.; Doutre, S.; and Mengin, J. 2001. Dialectical
proof theories for the credulous preferred semantics of ar-
gumentation frameworks. In Proc. ECSQARU’01, volume
2143 of LNCS, 668–679. Springer.

Chesnevar, C.; Maguitman, A.; and Loui, R. 2001. Logical
models of argument. ACM Comp. Surveys 32:337–383.

Chesnevar, C.; Simari, G.; and Godo, L. 2005. Comput-
ing dialectical trees efficiently in possibilistic defeasible
logic programming. In Proceedings of the 8th Internta-
tional Logic Programming and Non-monotonic Reasoning
Conference, Lecture Notes in Computer Science. Springer.

Dimopoulos, Y.; Nebel, B.; and Toni, F. 2002. On the com-
putational complexity of assumption-based argumentation
for default reasoning. Artificial Intelligence 141:57–78.

388 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

Dung, P.; Kowalski, R.; and Toni, F. 2006. Dialectic proof
procedures for assumption-based, admissible argumenta-
tion. Artificial Intelligence 170(2):114–159.
Eiter, T., and Gottlob, G. 1995. The complexity of logic-
based abduction. Journal of the ACM 42:3–42.
Garcı́a, A., and Simari, G. 2004. Defeasible logic program-
ming: An argumentative approach. Theory and Practice of
Logic Programming 4(1):95–138.
Hunter, A. 2006. Contouring of knowledge for intelligent
searching for arguments. In Proceedings of the European
Conference on Artificial Intelligence (ECAI’06). (in press).
Kakas, A., and Toni, F. 1999. Computing argumentation in
logic programming. J. Logic and Computation 9:515–562.
Koriche, F. 2002. Approximate coherence-based reason-
ing. J. of Applied Non-classical Logics 12(2):239–258.
Levesque, H. 1984. A logic of implicit and explicit belief.
In Proceedings of the National Conference on Artificial In-
telligence (AAAI’84), 198–202.
Prakken, H., and Sartor, G. 1997. Argument-based ex-
tended logic programming with defeasible priorities. Jour-
nal of Applied Non-Classical Logics 7:25–75.
Prakken, H., and Vreeswijk, G. 2000. Logical systems for
defeasible argumentation. In Gabbay, D., ed., Handbook of
Philosophical Logic. Kluwer.
Schaerf, M., and Cadoli, M. 1995. Tractable reasoning via
approximation. Artificial Intelligence 74:249–310.

DEPARTMENT OF INFORMATICS 389

11TH NMR WORKSHOP

5.3 On Complexity of DeLP through Game Semantics

On the Complexity of DeLP through Game Semantics∗

Laura A. Cecchi
Depto. Ciencias de la Computación - Fa.E.A.

Universidad Nacional del Comahue
Buenos Aires 1400

(8300) Neuquén - ARGENTINA
lcecchi@uncoma.edu.ar

Pablo R. Fillottrani and Guillermo R. Simari
Depto. de Ciencias e Ingenierı́a de la Computación

Universidad Nacional del Sur
Av. Alem 1253

(8000) Bahı́a Blanca - ARGENTINA
{prf,grs}@cs.uns.edu.ar

Abstract

Defeasible Logic Programming (DeLP) is a general argumen-
tation based system for knowledge representation and reason-
ing. Its proof theory is based on a dialectical analysis where
arguments for and against a literal interact in order to deter-
mine whether this literal is believed by a reasoning agent. The
semantics GS is a declarative trivalued game-based semantics
for DeLP that is sound and complete for DeLP proof theory.
Complexity theory is an important tool for comparing differ-
ent formalism and for helping to improve implementations
whenever it is possible. In this work we address the prob-
lem of studying the complexity of some important decision
problems in DeLP. Thus, we characterize the relevant deci-
sion problems in the context of DeLP and GS, and we define
data and combined complexity for DeLP. Since DeLP com-
putes every argument from a set of defeasible rules, it is of
central importance to analyze the complexity of two decision
problems. The first one can be defined as “Is a set of defea-
sible rules an argument for a literal under a defeasible logic
program?”. We prove that this problem is P-complete. The
second decision problem is “Does there exist an argument for
a literal under a defeasible logic program?”. We prove that
this problem is in NP. Furthermore, we study data complex-
ity of query answering in the context of DeLP. As far as we
know, data complexity has not been introduced in the context
of argumentation systems.

KEYWORDS: Argumentation Systems, Defeasible Rea-
soning, Logic Programming, Game-based Semantics,
Complexity

Introduction
Defeasible Logic Programming (DeLP) is a general argu-
mentation based tool for knowledge representation and rea-
soning (Garcı́a & Simari 2004)1. Its proof theory is based

∗This research was partially supported by the Secretarı́a Gen-
eral de Ciencia y Tecnologı́a of the Universidad Nacional del Sur,
by the Universidad Nacional del Comahue (Proyecto de Investi-
gación 04/E062), by the Agencia Nacional de Promoción Cientı́fica
y Tecnológica (PICT 2002 No. 13096, PICT 2003 15043, PAV
076) and by the National Research Council (CONICET), AR-
GENTINA.

1The interested reader can find an on-line interpreter for DeLP
in http://lidia.cs.uns.edu.ar/DeLP

on a dialectical analysis where arguments for and against
a literal interact in order to determine whether this literal
is believed by a reasoning agent. The semantics GS is a
declarative trivalued game-based semantics for DeLP that
links game-semantics (Abramsky & McCusker 1997) and
model-theory. Soundness and completeness of GS with re-
spect to DeLP proof theory have been proved (Cecchi &
Simari 2004).

Complexity theory is an important tool for comparing dif-
ferent formalism, and for helping to improve implementa-
tions whenever it is possible. For this reason, it is important
to analyze the computational complexity and the expressive
power of DeLP. The former tells us how difficult it is to an-
swer a query, while the latter gives a precise characterization
of the concepts that are definable as queries.

Even thought complexity for nonmonotonic reasoning
systems has been studied in depth for several formalisms
such us default logic, autoepistemic logic, circumscription,
abduction and logic programming (Cadoli & Schaerf 1993;
Dantsin et al. 2001) until recently not many complexity re-
sults for argumentation systems have been reported.

This situation can be explained in part by the fact that,
historically, implementations of argumentation systems have
been limited to areas with no real time response restriction
(see (Verheij 1998; Gordon & Karacapilidis 1997)). Re-
cently, however, several applications have been developed,
and implemented using argumentation systems related, for
instance, with multiagent systems and web search (Atkin-
son, Bench-Capon, & Mc Burney 2004; Chesñevar & Ma-
guitman 2004a; 2004b; Bassiliades, Antoniou, & Vlahavas
2004). Scalability and robustness of such approaches heav-
ily depend on the computational properties of the underly-
ing algorithms. It is hence crucial to study these properties
in order to expand the application fields of argumentation
systems.

Different computational complexity results (Dimopoulos,
Nebel, & Toni 2002; Bench-Capon 2003; Amgoud & Cayrol
2002; Dunne & Bench-Capon 2002) have been presented on
argumentation abstract framework (Bondarenko et al. 1997;
Dung 1995), based on admissibility and preferability seman-
tics. However, those results do not apply directly to DeLP,
because its semantics are quite different. Another notable
study of the computational complexity of defeasible systems

390 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

has been done in (Maher 2001). But, defeasible theory an-
alyzed in this work greatly differs from DeLP in several
points, such as knowledge representation (facts and strict
rule, defeasible and defeaters rules) and their proof theories.

When measuring the complexity of evaluating queries in
a specific language, we distinguish between several kinds
of complexity according to (Vardi 1982; Papadimitriou &
Yannakakis 1997; Dantsin et al. 2001). Data complexity
is the complexity of evaluating a specific query in the lan-
guage, when the query is fixed, and we study the complexity
of applying this query to arbitrary databases; the complex-
ity is thus given as a function of the size of the database.
Program or Expression complexity appears when a specific
database is fixed, and we study the complexity of applying
queries represented by arbitrary expressions in the language;
the complexity is given as a function of the length of the ex-
pression. Combined complexity considers both query and
database instance as input variables.

In this work we are concerned with the study of complex-
ity of some important decision problems of DeLP. The sys-
tem and its asociated game semantics GS are analyzed intro-
ducing relevant decision problems in relation to the possible
query answers.

Since DeLP builds the arguments from a defeasible logic
program results of central importance to consider and eval-
uate two questions: “is a set of defeasible rules an argument
for a literal under a defeasible logic program?” which has
been proved to be P-complete, and does there exit an argu-
ment for a literal under a defeasible logic program? which
has been proved to be in NP.

We define data, expression and combined complexity in
the context of DeLP, in order to evaluate the efficiency of
DeLP implementations. In particular, we study data com-
plexity of query answering to assess DeLP applications over
database technologies. As far as we know data complexity
has not been introduced in the context of argumentation sys-
tems.

The paper is structured as follows. In the following sec-
tion we briefly outline the fundamentals of DeLP, and de-
scribe the declarative game-based semantics GS. Then, we
discuss DeLP through GS semantics pointing out the deci-
sion problems that are of central importance, and we define
data, expression and combined complexity in the context of
DeLP. Afterwards, we give complexity results on the exis-
tence of an argument for a literal L under a defeasible logic
program P , and on the decision problem of whether a sub-
set of defeasible rules is an argument for a literal L under
P . Next, we analyze data complexity for DeLP, and we
present complexity results for two decision problems on en-
tailment. In the last section, we summarize the main con-
tributions of this work, and we present our conclusions and
future research lines.

DeLP and Game Semantics GS
We will start by introducing some of the basic concepts in
DeLP (see (Garcı́a & Simari 2004)). In the language of
DeLP a literal L is a atom A or a negated atom ∼A, where
∼ represents the strong negation in the logic programming
sense. The complement of a literal L, denoted as L, is de-

fined as follows: L =∼A, if L is an atom, otherwise if L is
a negated atom, L = A. Let X be a set of literals, X is the
set of the complement of every member in X .

Definition 1 A strict rule is an ordered pair, denoted
“Head ← Body”, where “Head” is a ground literal, and
“Body” is a finite set of ground literals. A strict rule
with head L0 and body {L1, . . . Ln, n > 0} is written as
L0 ← L1, . . . Ln. If body is the empty set, then we write
L0., and the rule is called a Fact. A defeasible rule is an
ordered pair, denoted “Head —≺ Body”, where “Head” is
a ground literal, and “Body” is a finite, non-empty set of
ground literals. A defeasible rule with head L0 and body
{L1, . . . Ln, n > 0} is written as L0

—≺ L1, . . . Ln.
A defeasible logic program P , abbreviated de.l.p., is a set
of strict rules and defeasible rules. We will distinguish the
subsets ΠF of facts, ΠR of strict rules, Π = ΠF ∪ ΠR and
the subset Δ of defeasible rules.

We denote by Lit the set of all the ground literals that
can be generated considering the underlying signature of a
de.l.p. an we denote by Lit+ the set of all the atoms in Lit.

Intuitively, whereas Π is a set of certain and exception-
free knowledge, Δ is a set of defeasible knowledge, i.e.,
tentative information that could be used, whenever nothing
is posed against it.

By definition a de.l.p. may be an infinite set of strict and
defeasible rules but for complexity analysis we restrict our-
selves to finite defeasible logic programs.

DeLP proof theory is based on developments in non
monotonic argumentation systems (Pollock 1987; Simari &
Loui 1992). An argument for a literal L is a minimal subset
of Δ that together with Π consistently entails L. The no-
tion of entailment corresponds to the usual SLD derivation
used in logic programming, performed by backward chain-
ing on both strict and defeasible rules, where negated atoms
are treated as a new atom in the underlying signature. Thus,
an agent can explain a literal L, throughout this argument.

In order to determine whether a literal L is supported from
a de.l.p. a dialectical tree for L is built. An argument for L
represents the root of the dialectical tree, and every other
node in the tree is a defeater argument against its parent. At
each level, for a given a node we must consider all the argu-
ments against that node. Thus every node has a descendant
for every defeater. A comparison criteria is needed for deter-
mining whether an argument defeats another. Even though
there exist several preference relations considered in the lit-
erature, in this first approach we will abstract away from that
issue.

We will say that a literal L is warranted if there is an ar-
gument for L, and in the dialectical tree each defeater of the
root is itself defeated. Recursively, this leads to a marking
procedure of the tree that begins by considering the fact that
leaves of the dialectical tree are undefeated arguments as a
consequence of having no defeaters. Finally, an agent will
believe in a literal L, if L is a warranted literal.

There exist four possible answers for a query L: YES if L
is warranted, NO if L is warranted (i.e., the complement of L
is warranted), UNDECIDED if neither L nor L are warranted,

DEPARTMENT OF INFORMATICS 391

11TH NMR WORKSHOP

and UNKNOWN if L is not in the underlying signature of the
program.

We have briefly given an intuitive introduction to the
DeLP language and the dialectical procedure for obtain-
ing a warranted conclusion. For complete details on DeLP
see (Garcı́a & Simari 2004).

Games have an analogy with a dispute and, therefore, that
analogy extends to argument-based reasoning. A dispute can
be seen as a game where in an alternating manner, the player
P, the proponent, starts with an argument for a literal. The
player O, the opponent, attacks the previous argument with
a counterargument strong enough to defeat it. The dispute
could continue with a counterargument of the proponent,
and so on. When a player runs out of moves, i.e., that player
can not find a counterargument for any of his adversary’s ar-
guments, the game is over. If the proponent’s argument has
not been defeated then she has won the game.

The semantics GS is a declarative trivalued game-based
semantics for DeLP that links game-semantics (Abramsky
& McCusker 1997) and model theory. Soundness and com-
pleteness of GS with respect to DeLP proof theory have been
proved (Cecchi & Simari 2004). In the following we present
some notions of GS, for more details see (Cecchi & Simari
2000; 2004).

Let X be a set and {x1, . . . , xn} ⊆ X , X∗ is the set of
finite sequences over X and [x1 . . . xn] denotes the sequence
of the elements x1, . . . , xn. We write |s| for the length of a
finite sequence and si for the ith element of s, 1 ≤ i ≤ |s|.
Concatenation of sequences is indicated by juxtaposition. If
t = su for some sequences t, s, u, then we say that s is a
prefix of t. Let Pref(S) be a set of prefix of S, then S is
prefix closed if S = Pref(S).

In order to use a game to capture the dialectical procedure,
we need to define in a declarative way the movements of
such game: the argument. The followings definitions are
based on the notation introduced in (Lifschitz 1996).

Definition 2 Let X be a set of ground literals. The set X
is rigorously closed under a de.l.p. P , if for every strict
rule Head ← Body of P , Head ∈ X whenever Body ⊆
X , and for every defeasible rule Head′ —≺ Body′ of P ,
Head′ ∈ X whenever Body′ ⊆ X .
The set X is consistent if there is no literal L such that
{L,L} ⊆ X . Otherwise, we will say that X is inconsis-
tent.
We say that X is logically closed if it is consistent or it is
equal to Lit.

Intuitively, if the set of knowledge of an agent is rigorously
closed under a de.l.p., the agent will not believe in a literal
that she cannot explain.

Definition 3 Let P be a de.l.p.. The set of rigorous conse-
quences of P , denoted CnR(P), is the least set of literals
w.r.t. inclusion, such that it is logically closed and rigorously
closed under P .

Even though rigorous consequences do not reflect the un-
derlying ideas of strict and defeasible rules, they are very
useful for introducing a declarative definition of argument.

Definition 4 Let P = 〈Π,Δ〉 be a de.l.p.. We say that
〈A, L〉 is an argument structure for a ground literal L, if A
is a set of defeasible rules of Δ, such that:

1. L ∈ CnR(Π ∪ A)

2. CnR(Π ∪ A) �= Lit

3. A is minimal w.r.t. inclusion, i.e., there is no A′ ⊆ A
such that satisfies (1) and (2).

For convenience we will simply speak of argument in-
stead of argument structure whenever this does not lead to
misunderstandings. Let’s introduce game concept and GS
semantics.

Definition 5 Let P = (Π,Δ) be a de.l.p., L a literal and
〈A, L〉 an argument structure for L. A game for 〈A, L〉 with
respect to P , that we denote G(〈A, L〉,P), is a structure

(MG(〈A, L〉, P), JG(〈A, L〉, P), PG(〈A, L〉, P))

where

• MG(〈A, L〉, P) is a set of argument structure.
• JG(〈A, L〉, P) : MG(〈A, L〉, P) × I → {P, O} where I is an

enumerable index;
• PG(〈A, L〉, P) ⊆ M∗

G(〈A, L〉, P), where PG(〈A, L〉, P) is a non-
empty, prefix-closed set.
Each sequences s of PG(〈A, L〉, P) satisfy:

1. s = [〈A, L〉]s′, s′ possibly empty.
2. For all i, 1 < i ≤ |s|

JG(〈A, L〉, P)(s1, 1) = P
JG(〈A, L〉, P)(si, i) = JG(〈A, L〉, P)(si−1, i − 1)

P = O and O = P.
3. If s ∈ PG(〈A, L〉, P), then for each argument structure

〈A2, L2〉 that is a legal move for s|s|, there exists a se-
quence t ∈ PG(〈A, L〉, P), such that t = s[〈A2, L2〉].

4. No other sequence belongs to PG(〈A, L〉, P).

Movements in a game are the introduction of arguments.
A legal move in the game over a sequence s is an argument
A such that strictly defeats s|s| or defeats non strictly s|s|
and s|s| strictly defeats s|s|−1. Furthermore, such legal move
A cannot be part of another argument in s, ie we cannot in-
troduce more than once an argument neither for nor against
the first move. Finally, this move must be consistent with
every move made by the same player in the sequence s.

For every argument A for a literal L we can built a game
whose first move is 〈A, L〉. Thus, a family of games will be
obtained considering all the arguments for L.

Definition 6 Let P be a de.l.p., L a literal un-
der the signature of P , 〈A1, L〉, . . . , 〈An, L〉
all the argument structures of L under P and
G(〈A1, L〉,P), G(〈A2, L〉,P), . . . , G(〈An, L〉,P) the
corresponding games for the arguments of L.

{G(〈A1, L〉,P), G(〈A2, L〉,P), . . . , G(〈An, L〉,P)}

is the game family of L and we denote it as F(L,P).

392 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

Definition 7 Let a be the first proponent movement in the
game. A sequence s is complete if s = [a]s1, with s1 poten-
tially empty, then there is no movement b ∈ MG(〈A, L〉, P)

such that [a]s1[b] ∈ PG(〈A, L〉, P). A sequence s is pre-
ferred if each opponent movement has a proponent answer.
In other words, a sequence s is preferred if |s| is odd.

Definition 8 A strategy over a game G is a set of sequences
S, such that for all sequence s ∈ S, either:
• s is preferred; or
• there exists other sequence s′ ∈ S, such that s′ is pre-

ferred and s and s′ has a prefix t, |t| = n, n is even and
sn+1 �= s′n+1.

Definition 9 Let P be a de.l.p., L ∈ Lit and
G(〈A, L〉,P) ∈ F(L,P). We say that P wins the game
G(〈A, L〉,P) or that G(〈A, L〉,P) is won by P, if the set
of complete sequences of PG(〈A, L〉, P) is an strategy. Other-
wise, we say that O wins the game or that G(〈A, L〉,P) is
won by O.

A player can win a game even though he does not win
every complete sequence in such game. In (Prakken & Sar-
tor 1997) the authors have developed an argument-based ex-
tended logic programming system which differs from DeLP
in its winning rule: a player wins a dialogue tree if and only
if he wins all the branches of the tree.

Definition 10 Let P be a de.l.p.. A game-based interpre-
tation for P , or G-Interpretation for P for short, is a tuple
〈T, F 〉, such that T and F are subsets of atoms of the under-
lying signature of P and T ∩ F = ∅.

In the previous definition T stands for true while F stands
for false. The set of atoms UNDECIDED is defined as the set
U = Lit+ − {T ∪ F}.

Each game can finish in two possible ways: won by the
proponent P or won by the opponent O. There is no possi-
bility for a draw. As the first move is made by the P, we are
interested in those games won by this player.

Definition 11 Let P be a de.l.p., h an atom of the under-
lying signature of P , F(h,P) the game family for h and
F(h,P) the game family for h under a de.l.p. P . A game-
based model for P , that we name G-Model of P , is a G-
interpretation 〈T, F 〉 such that:
• If there exists a game G(〈A, h〉 in the family F(h,P) won

by P, then h belongs to T .
• If there exists a game G(〈A, h〉,P) in the family F(h,P)

won by P, then h belongs to F .

Since we only consider literals under the signature of
de.l.p., the G-model definition does not contemplate the an-
swer UNKNOWN. The minimal G-model defines a sound and
complete semantics GS for DeLP (Cecchi & Simari 2004).
We will say that GS entails a literal L from a de.l.p. P , de-
noted by P |=GS L, whenever L ∈ T or L ∈ F , being
〈T, F 〉 the minimal G-model of P .

The following theorem relates proof theory and game-
based semantics, showing soundness and completeness.

Theorem 1 Let P be a de.l.p. and L a literal. L is warranted
under P if and only if L belongs to the set T or L belongs
to the set F of the minimal G-models 〈T, F 〉 of P under GS
semantics.

We have briefly presented the DeLP language, its proof
theory and its declarative game-based semantics GS. Now,
we will be able to analyze the system and study some com-
plexity properties.

Discussion on GS Complexity
DeLP is a defeasible reasoning system where every conse-
quence of a de.l.p. is analyzed considering all the arguments
for and against it. The trivalued game semantics GS char-
acterizes such reasoning by two sets T and F , since T ∪ F
is the set of all warranted literals. Undecided literals are the
remaining literals L for which there is no warrant for it nor
for its complement. When considering DeLP in relation to
game semantics, there are two relevant computational deci-
sion problems to analyze in the context of a de.l.p. P:

• GAMESAT: Deciding whether there is a game for a literal
α won by the proponent P in the context of a de.l.p. P .

• NOWINGAME: Deciding whether there is no game for a
literal α neither for the complement of α won by the pro-
ponent P in the context of a de.l.p. P .

The former problem involves just finding a game that is
won by the proponent. In order to capture the latter, it is
necessary to find all the games for the literal and for its com-
plement, and to establish that none of them is won by the
proponent.

A positive GAMESAT answer for a given de.l.p. P and a
literal L implies that L ∈ T , being 〈T, F 〉 the minimal G-
model, i.e., P |=GS L. A positive GAMESAT answer for L
means that L ∈ F in the minimal G-model, i.e., P |=GS L.

The NOWINGAME decision problem for a de.l.p. P and a
literal L is equivalent to determining if given the minimal
G-model 〈T, F 〉 of P , L ∈ Lit+ −{T ∪F}, i.e., P �|=GS L
and P �|=GS L.

In this case, three interesting situation can be contem-
plated, and establish the followings decision problems:

• Whether there is no game for a literal L, neither for its
complement L. The game families for a literal L and
for its complement L, F(L,P) and F(L,P) respectively,
are empty. L has no argument neither for nor against it.
Therefore, the agent has no information about such query.

• Whether there is no game for a literal L, and the non
empty set of all games in the family of its complement
L are won by the opponent. The game family for a lit-
eral L, F(L,P), is empty and only games won by the
opponent are in the non empty family F(L,P). L has no
argument for and all the arguments for its complement are
defeated. Therefore, the agent has no information for L,
and he cannot defend its complement. In a similarly way,
we can define the case where the agent cannot defend a
literal L, and has no information about its complement.

DEPARTMENT OF INFORMATICS 393

11TH NMR WORKSHOP

• Whether all games in the non empty families for L and
for its complement L are won by the opponent. F(L,P)
and F(L,P) are non empty set and all the argument are
defeated. The agent cannot defend any argument neither
for nor against the literal L.

In order to determine the computational complexity of the
decision problems introduced above, we will study DeLP
from two approaches: combined and data complexity. Com-
bined complexity of a fragment of logic programming has
been defined and used in (Dantsin et al. 2001):

Complexity of (some fragment of) logic programming:
is the complexity of checking if for variable programs
P and variable ground atoms A, P |= A.

On the other hand, the notion of data complexity is borrowed
from relational database theory (Vardi 1982). Databases are
nowadays the main tool for storing and retrieving very large
sets of data. Data complexity allows us to study DeLP as a
query language measuring its complexity focus on the size
of the databases, and using defeasible and strict rules for
inference purpose. Data complexity is a key measure to de-
termine the efficiency of argumentation system implementa-
tions based on database technologies.

For methodological and complexity issues, it is important
to distinguish in a de.l.p. the input data from the inference
rules. Thus, hereafter, we will denote P = 〈ΠF ,ΠR ∪ Δ〉,
where ΠF is a finite set of ground facts, and ΠR∪Δ is a finite
set of ground strict and defeasible rules. Making an analogy
with database concepts, ΠF represents the input databases,
also called the extensional part, and ΠR ∪ Δ are the infer-
ence rules, called the intensional part of the database. We
define a Boolean query as a finite set of strict and defeasible
rules together with a ground literal L. The intended intuitive
meaning of defining such query is the following: we want
to know whether a literal L is entailed by GS from ΠR ∪ Δ
together with the database ΠF .

Following the principle and notions above, in the context
of DeLP we will define data, program and combined com-
plexity as follows.

Definition 12 Let Ω be any of the decision problems intro-
duced above, P = 〈ΠF ,ΠR ∪Δ〉 and (ΠR ∪Δ, L) a query:

• The data complexity of Ω is the complexity of Ω when the
query is fixed, and the database varies, i.e., parameters
ΠR ∪ Δ and L are fixed.

• The program or expression complexity of Ω is the com-
plexity of Ω when the database instance is fixed, and the
query varies, i.e., the parameter ΠF is fixed.

• The combined complexity of Ω is the complexity where
every parameter ΠF , ΠR ∪ Δ and L vary.

Expression and combined complexity are quite close and
they are rarely differentiated. For this reason we will only
discuss data and combined complexity.

In order to carry out this complexity analysis we will first
focus on the complexity of determining whether there is an
argument A for a literal L. Then we will study if the game
played with initial move A is won by the proponent.

The complexity of computing arguments
Arguments and counterarguments are the movements in
a game, and hence the core of DeLP. Dung’s formal-
ism (Dung 1995) and some extensions that have been devel-
oped (Bench-Capon 2002; 2003; Amgoud & Cayrol 2002),
offer a powerful tool for the abstract analysis of defeasible
reasoning. However, these approaches operate with argu-
ments and their attack and defeat relation at an abstract level,
avoiding to deal with the underlying logical language used to
structure the arguments. On the other hand DeLP does con-
struct the arguments and analyzes the defeater relationship.
Thus, studying the decision problem: “is a given subset of
defeasible rules an argument for a literal under a de.l.p.?” is
of central importance.

Following the definition of argument this problem has
three parts: is L a consequence of Π ∪A?, is Π ∪A consis-
tent?, and is there a subset A′ of A such that it is consistent
with Π and that together with Π derives L?

Let P = 〈ΠF ,ΠR ∪ Δ〉 be a de.l.p., L be a literal and
A ⊆ Δ. The first condition of definition 4, that involves rig-
orous consequences concept is L ∈ CnR(Π ∪ A). In (Cec-
chi & Simari 2000), we have defined the following transfor-
mation Φ from a de.l.p. into a propositional definite logic
program, i.e., a propositional logic program with just Horn
clauses. Let A be an atom. Φ(A) = A, Φ(∼ A) = A′ where
A′ is a new atom not in the signature of the de.l.p. and the
transformation of a conjunction is Φ(A,B) = Φ(A),Φ(B).
Φ(H —≺ B) = Φ(H) ← Φ(B) and all other rules remain
the same Φ(H ← B) = Φ(H) ← Φ(B) . We will use this
transformation, and the following lemma in order to reduce
the rigorous consequences of a de.l.p. into consequences of
propositional Horn clauses.

Lemma 1 Let DP be a definite logic program, and M be
the minimal model of DP , then M = CnR(DP).

We are interested in computing the time complexity of
verifying whether L ∈ CnR(Π ∪ A). We shall construct a
logic program with just Horn clauses, denoted HP(Π,A, L)
such that L ∈ CnR(Π ∪ A) if and only if HP(Π,A, L) |=
yes .

Suppose that A1, . . . , An are all the atoms in Π ∪ A. We
define HP(Π,A, L) as follows:

HP(Π,A, L) = Φ(Π) ∪ Φ(A) ∪ {yes ← Φ(L)}∪
{yes ← Φ(Ai),Φ(Ai) : 1 ≤ i ≤ n}

Even though the SAT decision problem is NP-complete,
both checking whether a definite propositional logic pro-
gram DP satisfies a ground atom A, i.e., DP |= A, and
HORNSAT, i.e., the decision problem whether there is a truth
assignment that satisfies a collection of Horn clauses, are P-
complete (Dantsin et al. 2001; Papadimitriou & Yannakakis
1997).

Lemma 2 HP(Π,A, L) is a transformation from a de.l.p. P
into propositional Horn clauses such that verifying whether
a literal L belongs to CnR(P) is equivalent to verifying

394 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

Algorithm: Minimal
Input: A an argument for a literal L, and Π a set of strict
rules.
Output: true if A is a minimal argument for L, false other-
wise

minimal=true
Aux= A
While minimal and not Aux = ∅ do

select H —≺ B ∈ Aux
A′ = A− {H —≺ B}
if L ∈ CnR(Π∪A′)

then minimal=false
else Aux= Aux - {H —≺ B}

Figure 1: Algorithm for verifying if a set of defeasible rules
is minimal with respect to set inclusion for deriving a literal
L.

whether yes is entailed from the transformed propositional
Horn program. Thus, L ∈ CnR(P) reduces to DP |= yes,
being DP a propositional Horn program.

Proof: In order to prove our claim, we have to establish
that:

1. L ∈ CnR(Π ∪ A) if and only if HP(Π,A, L) |= yes.

We will consider two cases:
• Π ∪ A is consistent.

L ∈ CnR(Π ∪ A) if and only if Φ(L) ∈ Φ(CnR(Π ∪
A)) if and only if Φ(L) ∈ CnR(Φ(Π ∪ A))(see (Cec-
chi & Simari 2000)) if and only if, by lemma 1, Φ(L)
is in the minimal model of Φ(Π ∪ A) if and only
if HP(Π,A, L) |= yes by the definition of minimal
model, the monotonicity property and the use of the
rule yes ← Φ(L).

• Π ∪ A is inconsistent.
L ∈ CnR(Π ∪ A) = Lit if and only if there ex-
ists i, 1 ≤ i ≤ n, such that Φ(Li) and Φ(Li) are in
Φ(CnR(Π ∪ A)) if and only if Φ(Li) and Φ(Li) are
in the minimal model of HP(Π,A, L) if and only if
HP(Π,A, L) |= yes by definition of minimal models,
monotonicity property and the use of the rule yes ←
Φ(Li),Φ(Li).

2. HP is computed in logarithmic space: the transformation
is quite simple, and is feasible in logarithmic space, since
rules can be generated independently of each other except
those of the form yes ← Φ(Li),Φ(Li) which depends on
the literal in the input.

Therefore HP(Π,A, L) is a reduction from L ∈ CnR(Π ∪
A) into propositional Horn clauses. �

Theorem 2 Let P = (ΠF ,ΠR ∪ Δ) a de.l.p., A ⊆ Δ, and
L a literal. Determining whether L ∈ CnR(Π ∪ A) is P-
complete.

Proof: • Membership: Given a definite logic program
P the least fixpoint T∞

P
of the operator TP can be com-

puted in polynomial time (Papadimitriou 1994; Dantsin

et al. 2001) : the number of iterations is bounded by the
number of rules plus one. Each iteration step is feasible
in polynomial time. Thus finding the minimal model of a
logic program with just Horn clauses is in P (Dantsin et
al. 2001).
By lemma 2, L ∈ CnR(Π∪A) has been reduced to propo-
sitional logic programming. Therefore, L ∈ CnR(Π∪A)
is in P.

• Hardness: Horn rules are strict rules in a de.l.p., and the
minimal model of a definite logic program DP is equal to
CnR(DP). Therefore, by applying reduction by general-
ization, we have that DP |= L reduce to L ∈ CnR(DP).
Propositional logic programming is P-complete (Dantsin
et al. 2001). This suffices to complete the proof.

�

Until now we have proved that the first condition of ar-
gumentation definition is P-complete. Now we will analyze
the rest of the issues we need for computing an argument.
We will denote the cardinality of the language by |Lit| and
defeasible rules cardinality by |Δ|.

In Figure 1, we present an algorithm for verifying whether
a set of defeasible rules is minimal with respect to set inclu-
sion for entail a literal L. Worst case of the minimality con-
dition is considered assuming that the argument has at most
|Δ| defeasible rules, i.e., Δ is an argument for some literal.
Computing the minimality condition involves |Δ| loops ver-
ifying that L ∈ CnR(Π ∪ A′), which is in P. Thus, this
problem is solvable in polynomial time, and, therefore, it is
in P.

Finally, to check whether the set of defeasible rules is
consistent under a de.l.p., we verify that there is no atom
such that the atom and its complement are members of
CnR(Π∪A). In the worst case, when CnR(Π∪A) is consis-
tent, this algorithm must control every atom in the signature
of the de.l.p.. Thus, to check if it is consistent is proportional
to the number of atoms |Lit|/2 and therefore it is in P.

Theorem 3 The decision problem “is a given subset of de-
feasible rules an argument for a literal under a de.l.p.?” is
P-complete.

Proof:
Membership: (sketch) From the above development it fol-
lows membership to P.
Hardness: We employ a reduction from DP |= L, being
DP a propositional Horn program. Consider the following
transformation r(DP) = DP ′ = 〈Π,Δ〉, where Π = DP
and Δ is empty. r is a transformation computed in loga-
rithmic space such that whenever a literal L is entailed by a
propositional Horn program DP , the decision problem “is a
given subset of Δ = ∅ an argument for L under DP ′” finish
in an accepting state.

L is in the minimal model of a propositional Horn pro-
gram if and only if L ∈ CnR(DP) if and only if ∅ is an
argument for L, since is minimal and consistent with Π, if
and only if “is a given subset of Δ = ∅ an argument for

DEPARTMENT OF INFORMATICS 395

11TH NMR WORKSHOP

L under DP ′” finish in an accepting state. Thereby estab-
lishing that the decision problem “is a given subset of de-
feasible rules an argument for a literal under a de.l.p.?” is
P-complete. �

Our final aim is to determine the complexity of comput-
ing the set of all the arguments under a de.l.p.. This is moti-
vated in that GAMESAT and NOWINGAME require for play-
ing a game to compute every argument that defeats each ar-
gument introduced in a previous move. A subset A ⊆ Δ
may be a potential argument of different literals in the lan-
guage. Thus, the maximum number of checks for potential
arguments that depends on the size of the set of defeasible
rules and on the size of Lit, is |Lit| ∗ 2|Δ|.

Lemma 3 Let AP be the polynomial time needed for the
decision problem “is a given subset of defeasible rules an
argument for a literal l under a de.l.p.?”. Then, the upper
bound time for computing all the arguments is |Lit| ∗ 2|Δ| ∗
AP .

The result above states an exponential upper bound for
computing X , the set of all the arguments in Dung’s formal-
ism (Dung 1995).

Even though we must verify whether every subset of
Δ is an argument for every literal in the language of the
de.l.p., because the consistency condition in the defini-
tion of argument, A ⊆ Δ cannot be an argument for a
literal and for its complement, so we will consider only
|Lit|

2
∗ 2|Δ| = |Lit| ∗ 2|Δ|−1 potential arguments in order to

play a game or equivalently to build the dialectical tree. This
upper bound could be improved by considering minimality
over the arguments, i.e., no A1 ⊆ Δ would be an argument
for a literal L if A2 is an argument of L and A2 ⊆ A1.

Finally, we consider the argument existence decision
problem.

Corollary 1 (Argument Existence) The decision problem
“whether there is an argument for a literal L under a de.l.p.”
is NP.

Proof: We can guess any subset of Δ, and verify whether
this subset is an argument for a literal L under de.l.p. in poly-
nomial time. This proves membership in NP. �

These results contrast with those of (Parsons, Wooldridge,
& Amgoud 2003), where determining whether there is an ar-
gument for a formula h is ΣP

2 -complete. Even thought there
are some similarities between argument definitions, they dif-
fer in the underlying logic. While in DeLP approach an
argument is a subset of defeasible rules, and the inference
mechanism to obtain it is logic programming based, an ar-
gument in the formalism described in (Parsons, Wooldridge,
& Amgoud 2003) is a subset of formulas of a propositional
language, and � stands for classical inference.

Data Complexity for DeLP
In order to determine the upper bound for the data complex-
ity of the decision problems GAMESAT and NOWINGAME,

we will first analyze the dialectical tree structure over the
size of the facts and the strict and defeasible rules.

The dialectical tree is explored in a complete depth first
way, as minimax does. If the maximum depth of the tree
is m, and there are b legal movements at each point, then
the time complexity will be O(bm)(Russell & Norvig 2003).
If we implement the technique alpha-beta pruning, and we
consider that successors are examined in random order, then
the time complexity will be roughly O(b

3m

4)(Russell &
Norvig 2003). The maximum depth of a dialectical tree for
an argument under a de.l.p. with |Δ| defeasible rules is 2|Δ|,
i.e., we can consider every potential argument in one branch
of the tree. Any argument can appear more than once in the
tree but at most once in every branch, because of the accept-
able argumentation line definition. What about branch fac-
tor: there exists |Lit|/2 literals that can be in conflict with
the last argument. These literals may have at most 2|Δ| po-
tential arguments. So our branching factor is in the worst
case |Lit|/2 ∗ 2|Δ|. Thus, exploring the dialectical tree as
minimax does has an upper bound of O((|Lit|∗2|Δ|−1)2

|Δ|

).
Every time we must insert a neighbour node B of a node

A in the tree structure or equivalently, when a player makes
a move, we must check if it is a legal move in the game, i.e.,
if B attacks and defeats A, and if B does not introduce in-
consistency. In order to determine whether B is a defeater
of A, we must take into account the preference criterion be-
tween arguments. Any preference criterion defined among
arguments could be used in DeLP. For this reason, the com-
plexity class of the following decision problem “whether an
argument can be considered in the tree structure of a game”
will be left parameterized in the class C.

Theorem 4 Let C be the complexity class for the decision
problem:“whether an argument can be considered in the tree
structure of a game”. The upper bound for data complexity
of GAMESAT is NPC .

Proof: For fixed ΠR ∪ Δ, the size of the dialectical tree
for an argument 〈A, L〉 is polynomial in the size of the lit-
erals in ΠF . Furthermore, computing each argument is in
P, and considering each argument in the tree structure is in
C. In order to decide whether a literal L belongs to the set
T of the minimal G-model, we guess for an argument of L
such that the game played from this argument is won by the
Proponent. The number of arguments is polynomial when
ΠR ∪ Δ is fixed, and determining whether the game is won
by the Proponent can be done with a C oracle. This proves
membership in NPC . �

Since NOWINGAME is a conjunction of GAMESAT com-
plements an immediate corollary to the result above follows
naturally.

Corollary 2 Let C be the complexity class for the decision
problem:“whether an argument can be considered in the tree
structure of a game”. The upper bound for data complexity
of NOWINGAME is co-NPC .

396 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

Decision Complexity
Problem

Is L ∈ CnR(Rules)? P-complete
Is 〈A, L〉 an argument? P-complete

Argument Existence NP
GAMESAT Data Complexity NPC

NOWINGAME Data Complexity co − NPC

Table 1: Problems studied, and the main complexity results
obtained.

Even though we have not analyzed in depth the complex-
ity for computing the preference criterion, we illustrate this
concept with two different cases.

In (Chesñevar & Maguitman 2004a; 2004b), the authors
use specificity (Simari & Loui 1992) as a syntax-based cri-
terion among conflicting arguments, preferring those argu-
ments which are more informed or more direct, in order to
assess natural language usage based on the web corpus and
to evaluate and rank search results, respectively. Computing
specificity depends strongly on the set 2|Lit|.

Other DeLP implementations use a static preference re-
lation (Chesñevar et al. 2004). In this case, the preference
criterion is computed by comparing arguments values. Such
values are obtained through different mathematical formulas
applied to the certainty of a formula in the language. Com-
puting such preference criterion involves just a comparison
between two certainty values. However, an extra cost is con-
sidered in the argument construction procedure, since the
certainty value is computed keeping a trace of all uncertain
information used to derive a goal.

Conclusion and Future Work
We have analyzed complexity of DeLP through the GS
semantics, pointing out some relevant decision problems.
In particular, we have analyzed in depth GAMESAT and
NOWINGAME. In order to achieve our aim, we have distin-
guished database and a query from a de.l.p., and we have de-
fined data, expression and combined complexity in the con-
text of DeLP. As far as we know, argumentation systems
have not been studied yet as a query language, and, there-
fore, there is no previous data complexity analysis for de-
feasible reasoning. Table 1 summarizes the problems stud-
ied and the main complexity results obtained.

As DeLP do not assume as input the argument set, the
first results that has been established where related to argu-
ments, the movements of a game. We have focused on the
existence of an argument in order to play a game, and on ver-
ifying whether a set is an argument. We state an exponential
upper bound for the set of all the arguments. Because of the
underpinning logic of DeLP our complexity results are a bit
better than those based on classical logic.

Data complexity results on GAMESAT and NOWINGAME
give a guideline for determining expressive power for DeLP.
Since our results are parameterized, we can state a lower

bound on NP, otherwise known as Σ1
1, which coincides with

the class of properties of finite structures expressible in ex-
istential second-order logic (Fagin 1974).

When analyzing Data complexity we have fixed the query
and we have parametrized the preference criteria. Thus an
interesting topic for future research is to study to what extent
this results can be applied to others rule-based argumenta-
tion systems whose theory proof is rather similar.

As future work we will analyze combined complexity of
the decision problems introduced. We are studying the ex-
pressive power of DeLP in order to compare this system with
other non monotonic formalisms.

References
Abramsky, S., and McCusker, G. 1997. Game Seman-
tics. In Schwichtenberg, H., and Berger, U., eds., Logic
and Computation: Proceedings of the 1997 Marktoberdorf
Summer School. Springer-Verlag.
Amgoud, L., and Cayrol, C. 2002. A reasoning model
based on the production of acceptable arguments. Annals
of Math and Artificial Intelligence 34:197–215.
Atkinson, K.; Bench-Capon, T.; and Mc Burney, P. 2004. A
dialogue game protocol for multi-agent argument over pro-
posals for action. Technical Report ULCS-04-007, Depart-
ment of Computer Science, University of Liverpool, Liver-
pool, U.K.
Bassiliades, N.; Antoniou, G.; and Vlahavas, I. 2004. A
defeasible logic reasoner for the semantic web. In Proc.
of the Workshop on Rules and Rule Markup Languages for
the Semantic Web, 49–64.
Bench-Capon, T. J. M. 2002. Value-based argumentation
frameworks. In NMR 2002, 443–454.
Bench-Capon, T. J. M. 2003. Persuasion in Practical Ar-
gument Using Value Based Argumentation Frameworks.
Journal of Logic and Computation 13(3):429–448.
Bondarenko, A.; Dung, P.; Kowalski, R.; and Toni, F. 1997.
An Abstract, Argumentation-Theoretic Approach to De-
fault Reasoning. Artificial Intelligence 93(1-2):63–101.
Cadoli, M., and Schaerf, M. 1993. A survey of complex-
ity results for nonmonotonic logics. Journal of Logic Pro-
gramming 17:127–160.
Cecchi, L. A., and Simari, G. R. 2000. Sobre la Relación
entre la Definición Declarativa y Procedural de Argumento.
In VI CACiC, 465–476.
Cecchi, L. A., and Simari, G. R. 2004. Sobre la relación
entre la Semántica GS y el Razonamiento Rebatible. In
X CACiC - Universidad Nacional de La Matanza, 1883–
1894.
Chesñevar, C., and Maguitman, A. 2004a. An Argumenta-
tive Approach to Assessing Natural Language Usage based
on the Web Corpus. In Proc. of the European Conference
on Artificial Intelligence (ECAI) 2004, 581–585.
Chesñevar, C., and Maguitman, A. 2004b. ARGUENET:
An Argument-Based Recommender System for Solving
Web Search Queries. In Proc. of the 2nd IEEE Intl. IS-
2004 Conference, 282–287.

DEPARTMENT OF INFORMATICS 397

11TH NMR WORKSHOP

Chesñevar, C.; Simari, G.; Alsinet, T.; and Godo, L. 2004.
A Logic Programming Framework for Possibilistic Argu-
mentation with Vague Knowledge. In Proc. of the UAI-
2004, 76–84.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Computing Surveys (CSUR) 33(3):374 – 425.
Dimopoulos, Y.; Nebel, B.; and Toni, F. 2002. On
the Computational Complexity of Assumption-based Ar-
gumentation for Default Reasoning. Artificial Intelligence
141(1):57–78.
Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning and logic
programming and n-person games. Artificial Intelligence
77:321–357.
Dunne, P. E., and Bench-Capon, T. 2002. Coherence in
finite argument systems. Artificial Intelligence 141:187–
203.
Fagin, R. 1974. Generalized first-order spectra and
polynomial-time recognizable sets. In Karp, R., ed.,
Complexity of Computation. SIAM-AMS Proceedings, vol-
ume 7, 43–73.
Garcı́a, A. J., and Simari, G. R. 2004. Defeasible Logic
Programming: An Argumentative Approach. Theory and
Practice of Logic Programming 4(1):95–138.
Gordon, T., and Karacapilidis, N. 1997. The Zeno Argu-
mentation Framework. In ACM., ed., The Sixth Interna-
tional Conference on Artificial Intelligence and Law, 10–
18.
Lifschitz, V. 1996. Foundations of logic programming. In
Brewka, G., ed., Principles of Knowledge Representation.
CSLI Publications. 1–57.
Maher, M. J. 2001. Propositional defeasible logic has lin-

ear complexity. Theory and Practice of Logic Program-
ming 1(6):691–711.
Papadimitriou, C. H., and Yannakakis, M. 1997. On the
complexity of database queries (extended abstract). In
PODS ’97: Proceedings of the sixteenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database
systems, 12–19. New York, NY, USA: ACM Press.
Papadimitriou, C. 1994. Computational Complexity.
Addison-Wesley Publishing Company.
Parsons, S.; Wooldridge, M.; and Amgoud, L. 2003. Prop-
erties and complexity of some formal inter-agent dialogue.
Journal of Logic and Computation 13(3):347–376.
Pollock, J. 1987. Defeasible Reasoning. Cognitive Science
11:481–518.
Prakken, H., and Sartor, G. 1997. Argument-based ex-
tended logic programming with defeasible priorties. Jour-
nal of Applied Non-Classical Logics 7:25–75.
Russell, S., and Norvig, P. 2003. Artificial Intelligence:
A modern approach. New Jersey: Prentice Hall, second
edition.
Simari, G. R., and Loui, R. P. 1992. A mathematical treat-
ment of defeasible reasoning and its implementation. Arti-
ficial Intelligence 53:125–157.
Vardi, M. Y. 1982. The complexity of relational query
languages. In Proceedings of the Fourteenth Annual ACM
Symposium on Theory of Computing, STOC82, 137–146.
New York, NY, USA: ACM Press.
Verheij, B. 1998. Argumed - a template-based argu-
ment mediation system for laweyers. In Hage, J.; Bench-
Capon, T. J.; Koers, A.; de Vey Mestdagh, C.; and Grütters,
C., eds., Legal Knowledge Based Systems. JURIX: The
Eleventh Conference, 113–130.

398 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

DEPARTMENT OF INFORMATICS 399

11TH NMR WORKSHOP

5.4 An Argumentation Framework for Concept Learning

An Argumentation Framework for Concept Learning

Leila Amgoud and Mathieu Serrurier
IRIT - CNRS

118, route de Narbonne, 31062 Toulouse, France
{amgoud, serrurier}@irit.fr

Abstract

Concept learningis an important problem in AI that consists
of, given a set of training examples and counter-examples on
a particular concept, identifying a model that is coherent with
the training examples, i.e that classifies them correctly. The
obtained model is intended to be reused for the purpose of
classifying new examples. Version space is one of theformal
frameworks developed for that purpose. It takes as input a
consistent set of training examples on the concept to learn, a
set of possible models, calledhypothesisordered by general-
ity, and returns the hypothesis that are coherent with the train-
ing examples. The returned set of hypothesis is calledversion
spaceand is described by its lower and upper bounds.
This paper provides an argumentation-based framework that
captures the results of the version space approach. The basic
idea is to construct arguments in favor of/against each hy-
pothesis and training example, to evaluate those arguments
and to determine among the conflicting arguments the ac-
ceptable ones. We will show that the acceptable arguments
characterize the version space as well as its lower and up-
per bounds. Moreover, we will show that an argumentation-
based approach for learning offers an additional advantage by
allowing the handling of common problems in classical con-
cept learning. Indeed, it is possible to reason directly with
sets of hypothesis rather than one, and to deal with inconsis-
tent sets of training examples. Lastly, the framework trans-
lates the problem of classifying examples into a decision one.

Introduction
Machine learning aims at buildingmodelsthat describe a
conceptfrom a set oftraining examples. The models are
intended to be sufficiently general in order to be reused on
new examples. When teexhe concept to learn is binary, i.e.
examples of that concept can be either true or false, the
problem is calledconcept learning. In (Mitchell 1982),
Mitchel has proposed the famous general and abstract
framework, calledversion space learning, for concept
learning. That framework takes as input a consistent set of
training exampleson the concept to learn, a set of possible
models, calledhypothesisordered bygenerality, and returns
the hypothesis that are coherent with the training examples.
The returned set of hypothesis is calledversion spaceand is
described by its lower and upper bounds.
Besides, argumentation has become an Artificial In-
telligence keyword for the last fifteen years, es-

pecially in sub-fields such as non monotonic rea-
soning, inconsistency-tolerant reasoning, multiple-
source information systems (Amgoud & Cayrol 2002;
Prakken & Sartor 1997; Simari & Loui 1992;
Gómez & Ches̃nevar 2003). Argumentartion follows
three steps: i) to construct arguments and counter-
arguments for a statement, ii) to select the “acceptable”
ones and, finally, iii) to determine whether the statement
can be accepted or not.

This paper claims that argumentation can also be
used as an alternative approach for concept learning, which
not only retrieves in an elegant way the results of the
version space learning framework, but also offers several
other advantages. In this argumentation-based approach,
the concept learning problem is reformulated as follows:
given a set of examples (the training ones, and/or additional
examples) and a set of hypothesis, what should be the class
of a given example? To answer this question, arguments
are constructed in favor of all the possible classifications
of the examples. A classification can come either from
an hypothesis or from a training example. The obtained
arguments may be conflicting since it may be the case that
the same example is affected to different classes. We will
show that the acceptability semantics defined in (Dung
1995) allow us to identify and characterize the version
space as well as its lower and upper bounds.
The framework presents also the following features that
make it original and flexible:

1. it handles i) the case of a consistent set of training exam-
ples; ii) the case of an inconsistent set of training exam-
ples; and iii) the case of an empty set of training examples;

2. it allows one to reason directly on the set of hypothesis;

3. examples are classified on the basis of the whole set of hy-
pothesis rather than only one hypothesis as it is the case
in standard concept learning. Indeed, in the standard ap-
proach, a unique hypothesis is chosen, and all the exam-
ples are classified on the basis of that hypothesis.

4. it presents different original and intuitive decision criteria
for choosing the class of an example.

The paper is organized as follows. We first present the ver-
sion space learning framework, then we introduce the basic

400 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

argumentation framework of Dung (Dung 1995). The third
section introduces our argumentation-based framework for
learning.

Vesion Space Learning
The aim of this section is to introduce the version space
framework developed by Mitchel in (Mitchell 1982). Let
X denote afeature spaceused for describing examples. El-
ements ofX may then be pairs (attribute, value), first order
facts, . . . This setX is supposed to be equipped with an
equivalence relation≡. Let U = {0, 1} be aconcept space,
where1 means that the example of the concept is positive,
and0 means that the example is negative.
The version space framework takes as input ahypothesis
spaceH, and a setS of m training examples.

S = {(xi, ui)i=1,...,m s.txi ∈ X andui ∈ U}
Note that the setS contains both positive examples (i.e. the
value ofx− i is equal to 1), and negative ones (i.e. the value
of x − i is equal to 0). Otherwise, the learning problem be-
comes trivial and not genuine. An important notion in con-
cept learning is that of consistency. In fact, a set of examples
is said to be consistent if it does not contain two logically
equivalent examples with two different values. Formally:

Definition 1 (Consistency) The setS of training examples
is consistentiff @ (x1, u1), (x2, u2) ∈ S such thatx1 ≡ x2

andu1 6= u2. Otherwise,S is saidinconsistent.

Regarding thehypothesis spaceH, it may be, for instance,
decision trees, propositional sets of rules, neural nets. . . An
hypothesish is a mapping fromX toU (i.e. h: X 7→ U). The
setH is supposed to be equipped with apartial preorder�
that reflects the idea that some hypothesis are more general
than others in the sense that they classify positively more
examples. This preorder defines a lattice on the hypothesis
space. Formally:

Definition 2 (Generality order on hypothesis) Let h1, h2

∈ H. h1 is more generalthan h2, denoted byh1 � h2, iff
{x ∈ X |h1(x) = 1} ⊇ {x ∈ X |h2(x) = 1}.
Before defining the output of the framework, let us first in-
troduce a key notion, that ofsoundness.

Definition 3 (Soundness)Let h ∈ H. An hypothesish is
soundwith respect to a training example(x, u) ∈ S iff
h(x) = u. If ∀(xi, ui) ∈ S, h is sound w.r.t(xi, ui), thenh
is said to besoundwith S.

The framework identifies theversion space, which is the set
V of all the hypothesis ofH that are sound withS. The
idea is that a “good” hypothesis should at least classify the
training examples correctly.

Definition 4 (Version space)

V = {h ∈ H| h is sound withS}
Version space learning aims at identifying theupperand the
lower bounds of this version spaceV. The upper bound will
contain the most general hypothesis, i.e the ones that clas-
sify more examples, whereas the lower bound will contain
the most specific ones, i.e the hypothesis that classify less
examples.

Definition 5 (General hypothesis)The set ofgeneral hy-
pothesisis VG = {h ∈ H | h is sound withS and@ h′ ∈ H
with h′ sound withS, andh′ � h}.
Definition 6 (Specific hypothesis)The set ofspecific hy-
pothesisis VS = {h ∈ H | h is sound withS and @ h′ ∈
H with h′ sound withS, andh � h′}.
From the above definition, we have the following simple
property characterizing the elements ofV.

Property 1 (Mitchell 1982)

V = {h ∈ H|∃h1 ∈ VS ,∃h2 ∈ VG, h2 � h � h1}

In (Mitchell 1982), an algorithm that computes the version
spaceV by identifying its upper and lower boundsVS and
VG has been proposed.

The above framework has some limits. First, finding the
version space is not sufficient for classifying examples out
of the training set. This is due to possible conflicts between
hypothesis. Second, it has been shown that the complexity
of the algorithm that identifiesVS andVG is very high. In
order to palliate that limit, learning algorithms try in general
to reach only one hypothesis in the version space by using
heuristical exploration ofH (from general to specific explo-
ration, for instance FOIL (Quinlan 1990), or from specific
to general exploration, for instance PROGOL (Muggleton
1995)). That hypothesis is then used for classifying new ob-
jects. Moreover, it is obvious that this framework does not
support inconsistent set of examples:

Property 2 (Mitchell 1982) If the setS is inconsistent, then
the version spaceV = ∅.
A consequence of the above result is that no concept can
be learned. This problem may appear in the case of noisy
training data set.

Let us illustrate the above definitions through the fol-
lowing example in which we try to learn the concept “a
sunny day”.

Example 1 (Learning the concept sunny day)In this
example, the feature space is a pair (attribute, value).
Three attributes are considered: pressure, temperature,
and humidity. Four training examples are given, and are
summarized in Table below. For instance (pressure, low),
(temperature, medium), and (humidity, high) is a negative
example for the concept a sunny day, whereas the (pressure,
medium), (temperature, medium), and (humidity, low) is a
positive one.

pressure temperature humidity sunny
low medium high 0

medium medium low 1
low medium medium 0

medium high medium 1

Let us suppose that the hypothesis spaceH is the space of
constrainson the values of each attribute. Indeed, the con-
straints are conjunctions of accepted values of attributes.

DEPARTMENT OF INFORMATICS 401

11TH NMR WORKSHOP

The special constraint∅ (resp. ?) means that no (resp. all)
values of attributes are accepted. If a vector of values of
attributes match all the constraints, then it is considered as
a positiveexample, otherwise it is anegativeone. The hy-
pothesis〈∅, ∅, ∅〉 and〈?, ?, ?〉 are respectively the lower and
the upper bound of the hypothesis spaceH. Using the ver-
sion space learning algorithm, we get:VG = {〈 medium
∨ high, ?, ?〉} andVS = {〈 medium, medium∨ high, low
∨ medium〉}. HereVS and VG contain both only one hy-
pothesis. The hypothesis inVG, for instance, considers as
positive examples of the sunny day concept all features that
havemedium or high values for the pressure attribute.

Abstract Argumentation Framework
Argumentation is a reasoning model that follows the follow-
ing steps:

1. Constructingargumentsand counter-arguments.

2. Defining thestrengthsof those arguments.

3. Evaluating theacceptabilityof the different arguments.

4. Concluding or defining thejustified conclusions.

In (Dung 1995), an argumentation system is defined as fol-
lows:

Definition 7 (Argumentation system) An argumentation
system(AS) is a pair〈A,R〉. A is a set arguments andR⊆
A × A is a defeasibility relation. We say that an argument
A defeats an argumentB iff (A,B) ∈ R (or A R B).

Note that to each argumentation system is associated an ori-
ented graph whose nodes are the different arguments, and
the edges represent the defeasibility relationship between
them. Among all the conflicting arguments, it is important
to know which arguments to keep for inferring conclusions
or for making decisions. In (Dung 1995), different seman-
tics for the notion of acceptability have been proposed. Let’s
recall them here.

Definition 8 (Conflict-free, Defence)LetB ⊆ A.

• B is conflict-freeiff there exist noAi, Aj ∈ B such that
Ai R Aj .

• B defendsan argumentAi iff for each argumentAj ∈ A,
if Aj R Ai, then there existsAk ∈ B such thatAk R Aj .

Definition 9 (Acceptability semantics) LetB be a conflict-
free set of arguments, and letF : 2A 7→ 2A be a function
such thatF(B) = {A | B defendsA}.
• B is acomplete extensioniff B = F(B).
• B is a grounded extensioniff it is the minimal (w.r.t. set-

inclusion) complete extension.

• B is a preferred extensioniff it is a maximal (w.r.t. set-
inclusion) complete extension.

• B is a stable extensioniff it is a preferred extension that
defeats all arguments inA\B.

Let {E1, . . ., En} be the set of all possible extensions under
a given semantics.

Note that there is only one grounded extension which may
be empty. It contains all the arguments which are not de-
feated, and also the arguments which are defended directly
or indirectly by non-defeated arguments.
The last step of an argumentation process consists of de-
termining, among all the conclusions of the different argu-
ments, the “good” ones, calledjustified conclusions.

An Argumentation Framework for Concept
Learning

The aim of this section is to propose an instantiation of
the general and abstract framework of Dung that allows
learning concepts from sets of trainng examples. We will
show that this argumentation-based model captures the
results of the version space learning presented in a previous
section. The sets ofversion space, specificand general
hypothesis are characterized in our model. Since the
classical approach of version space learning considers only
the case where the set of training examples is consistent,
we will present two versions of our model. In the first one,
the setS is supposed to be consistent. This model is then
generalized to the case whereS can be inconsistent. We
will show that even in this latter case, the version spaceV
is not always empty, thus it is still possible to learn concepts.

Throughout this section, we will consider a features
spaceX , a concept spaceU = {0, 1}, a hypothesis space
H, which is equipped with a partial preordering� (see
Definition 2), and a setS of m > 0 training examples.

Consistent Case
In order to instantiate the abstract framework of Dung, one
needs to define the setA or arguments as well as the defea-
sibility relationship between those arguments. In our partic-
ular application, one needs to argue about particular classifi-
cations, thus arguments are constructed in favor of assigning
particular values fromU to an example inX . Indeed, an ar-
gument in favor of the pair(x, u) represents the reason of
assigning the valueu to the examplex. Two reasons can be
distinguished:

1. (x, u) is a training example inS,

2. there exists a hypothesish ∈ H that classifiesx in u.

Definition 10 (Argument) An argumentis a triplet A =
〈h, x, u〉 such that:

1. h ∈ H, x ∈ X , u ∈ U
2. If h 6= ∅, thenu = h(x)
3. If h = ∅, then(x, u) ∈ S
h is called thesupportof the argument, and(x, u) its con-
clusion. LetExample(A) = x, andValue(A) = u.
LetA be the set of arguments built from(H,X ,U).

Note that from the above definition for any trainng example
(xi, ui) ∈ S, ∃〈∅, xi, ui〉 ∈ A. LetAS = {〈∅, x, u〉 ∈ A}
(i.e. the set of arguments coming from the training exam-
ples).

402 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

Property 3 Let S be a set of training examples.|S| =
|AS |1.

Proof This follows from the above definition, and from the
fact that a hypothesish cannot be empty.

Since the setS of training examples is not empty, thenAS
is not empty as well.

Property 4 AS 6= ∅.
Proof This follows directly from the above property, i.e.|S|
= |AS |, and the assumption thatS 6= ∅.
Let us illustrate the notion of argument through example 1.

Example 2 In example 1, there are exactly four arguments
with an empty support, and they correspond to the training
examples:A∅ = {a1 = 〈∅, (pressure, low)∧ (temperature,
medium)∧ (humidity,high), 0〉,
a2 = 〈∅, (pressure, medium)∧ (temperature, medium)∧
(humidity, low), 1〉,
a3 = 〈∅, (pressure, low)∧ (temperature, medium)∧ (hu-
midity, medium), 0〉,
a4 = 〈∅, (pressure, medium)∧ (temperature, high)∧ (hu-
midity, medium), 1〉}. There are also arguments with a non-
empty support such as:
〈a5 = 〈 ? , medium∨ high, ?〉, (pressure, low)∧ (tempera-
ture, high)∧ (humidity, high), 1〉},
a6 = 〈〈 medium∨ high, ?, ?〉, (pressure, low)∧ (tempera-
ture, high)∧ (humidity, high), 0〉,
a7 = 〈〈 medium, medium∨ high, ?〉, (pressure, low)∧ (tem-
perature, high)∧ (humidity, high), 0〉.
In (Amgoud & Cayrol 2002; Prakken & Sartor 1997; Simari
& Loui 1992), it has been argued that arguments may have
different strengths depending on the quality of informa-
tion used to construct them. In (Simari & Loui 1992),
for instance, arguments built from specific information are
stronger than arguments built from more general ones. In
our particular application, it is clear that arguments with
an empty support are stronger than arguments with a non-
empty one. This reflects the fact that classifications given by
training examples take precedence over ones given by hy-
pothesis inH. It is also natural to consider that arguments
using more general hypothesis are stronger than arguments
with less general hypothesis.

Definition 11 (Comparing arguments) Let 〈h, x, u〉,
〈h′, x′, u′〉 be two arguments ofA. 〈h, x, u〉 is preferredto
〈h′, x′, u′〉, denoted by〈h, x, u〉 Pref〈h′, x′, u′〉, iff:

• h = ∅ andh′ 6= ∅, or
• h � h′.

Property 5 The relation Pref is a partial preorder.

Proof This is due to the fact that the relation� is a partial
preorder.

Now that the set of arguments is built, it is possible to define
the defeasibility relationR between arguments inA. Here
again, there are two ways in which an argumentA can attack
another argumentB:

1|| denotes the cardinal of a given set

1. by rebutting its conclusion. This situation occurs when
the two arguments have contradictory conclusions, i.e. the
same example is classified in different ways.

2. by undercuttingits support. This occurs when the sup-
port of B classifies in a different way the example of
the conclusion ofA. However, this relation is only re-
stricted to training examples. Indeed, only arguments
built from training examples are allowed to undercut other
arguments. The idea behind this is that training examples
are the only, in some sense, certain information one has,
and thus cannot be defeated by hypothesis. However, hy-
pothesis have controversial status.

Definition 12 (Rebutting) Let 〈h, x, u〉, 〈h′, x′, u′〉 be two
arguments ofA. 〈h, x, u〉 rebuts〈h′, x′, u′〉 iff x ≡ x′, u 6=
u′.

Example 3 In example 2, we have for instance :
a5 rebutsa6, a5 rebutsa7, a6 rebutsa5, anda7 rebutsa5.

Definition 13 (Undercutting) Let 〈h, x, u〉, 〈h′, x′, u′〉 be
two arguments ofA. 〈h, x, u〉 undercuts〈h′, x′, u′〉 iff h = ∅
andh′(x) 6= u.

Example 4 In example 2, we have for instance :
a1 undercutsa5, a2 undercutsa5, a3 undercutsa5, anda4

undercutsa5.

The rebutting and undercutting relations are used in most
argumentation systems that handle inconsistency in knowl-
edge bases.

Property 6 If S is consistent, then@ A, B ∈ AS such that
A rebutsB, or A undercutsB.

Proof Let A = 〈∅, x, u〉, B = 〈∅, x′, u′〉 ∈ S such thatA
rebutsB. According to Definition 12,x ≡ x′ andu 6= u′.
This contradicts the fact thatS is consistent.

The two above conflict relations are brought together in a
unique relation, called “Defeat”.

Definition 14 (Defeat) Let A = 〈h, x, u〉, B = 〈h′, x′, u′〉
be two arguments ofA. A defeatsB iff:

1. A rebuts (resp. undercuts)B, and
2. (A PrefB), or (not(A PrefB) and not(B PrefA))

Example 5 With the argument defined in ex. 2 we have for
instance :
a1 defeatsa5, a2 defeatsa5, a3 defeatsa5, a4 defeatsa5, a5

defeatsa6, a5 defeatsa7 anda6 defeatsa5.

From the above definition, it is easy to check that an argu-
ment with a empty support cannot be defeated by an argu-
ment with a non-empty support.

Property 7 ∀ A ∈ AS , @ B ∈ A\AS s.tB defeatsA.

Proof LetA ∈ AS andB ∈ A\AS such thatB defeatsA.
This means thatB rebutsA (because according to Definition
13, an argument with a non-empty support cannot undercut
an argument with an empty one. Moreover, according to
Definition 14, we have eitherB Pref A, or (not(B Pref A)
and not(A Pref B)). This is impossible because according
to Definition 11, arguments inAS are always preferred to
arguments with a non-empty support.

DEPARTMENT OF INFORMATICS 403

11TH NMR WORKSHOP

The argumentation system for concept learning is then the
following:
Definition 15 (Argumentation system) An argumentation
systemfor concept learning (ASCL) is a pair〈A, defeat〉,
whereA is the set of arguments (see Definition 10) and de-
feat is the relation defined in Definition 14.

Let us now identify the acceptable arguments of the above
ASCL. It is clear that the arguments that are not defeated at
all will be acceptable. LetC denote that set of non-defeated
arguments.
Proposition 1 If S is consistent, thenAS ⊆ C.

Proof Let A ∈ AS . Let us assume that∃B ∈ A such
that B defeatsA. According to Property 7,B /∈ A\AS .
Thus,B ∈ AS . Moreover,B defeatsA means thatB rebuts
A. This means then thatA classifies a training example in
u, andB classifies an equivalent example inu′ 6= u. This
contradicts the fact that the setS is consistent.

From the above proposition and Property 4, it is clear that
the ASCL has a non-empty grounded extension.
Proposition 2 (Grounded extension)If S is consistent,
then the argumentation system〈A, defeat〉 has a non empty
grounded extensionE .

Proof This is due to the fact thatAS 6= ∅ andAS ⊆ C.

Note that the system〈A, defeat〉 is not always finite. By
finite we mean that each argument is defeated by a finite
number of arguments. This is due to the fact thatH andX
are not always finite.
Proposition 3 If H and X are finite, then the system
〈A, defeat〉 is finite.

When an argumentation system is finite, its characteristic
functionF is continuous. Consequently, the least fixed point
of this function can be defined by an iterative application of
F to the empty set.
Proposition 4 If the argumentation system〈A, defeat〉 is
finite, then the grounded extensionE is:

E =
⋃
F i≥0(∅) = C ∪ [

⋃
i≥1

F i(C)].

Let us now analyze the other acceptability semantics,
namely preferred and stable ones. From Proposition 2, one
concludes that the ASCL〈A, defeat〉 has at least one non-
empty preferred extensions.
Proposition 5 If S is consistent, then the ASCL
〈A, defeat〉 has n ≥ 1 non-empty preferred exten-
sions.

Proof In (Dung 1995), it has been shown that the grounded
extension is included in very preferred extension. Since the
grounded extension is not empty (according to Proposition
2, then there exists at least one non-empty preferred exten-
sion).

In general, the preferred extensions of an argumentation sys-
tem are not stable. However, in our ASCL these extensions
coincide. This result is due to the fact that the oriented graph
associated to the above ASCL has no odd length circuits.
However, it may contain circuits of even length.

Proposition 6
• The graph associated with the system〈A, defeat〉 has no

odd length circuits.
• The preferred extensions and stable extensions of the sys-

tem〈A, defeat〉 coincide.

Proof (Sketch of the proof) Part 1: Let A,B, C be three
arguments such thatA defeatsB, B defeatsC, andC de-
featsA.

Case 1: Let us suppose thatA ∈ AS .
Accroding to Property 6,B ∈ A\AS . According to Prop-
erty 7,C should be inA\AS . Contradiction because ac-
cording to Property 7,C cannot defeatA, which is inAS .

Case 2: Let us suppose thatA,B, C ∈ A\AS . This means
that A rebuts B, B rebuts C, and C rebuts A (ac-
cording to Definition 13). Consequently,Example(A)
≡ Example(B) ≡ Example(C), and Value(A) 6=
Value(B), Value(B) 6= Value(C). Due to the fact that
U = {0, 1}, we haveValue(A) = Value(C). This con-
tradicts the assumption thatC rebutsA.

Part 2: This is a consequence of the fact that there is no odd
circuits in the system.

Note, however, that the intersection of all the preferred (sta-
ble) extensions coincides with the grounded extension.

Proposition 7 Let 〈A, defeat〉 be a ASCL. LetE be its
grounded extension, andE1, . . . , En its preferred (stable) ex-
tensions.E =

⋂
i=1,...,n Ei.

Let us now show how the above ASCL can retrieve the
results of the version space learning, namely the version
space and its lower and upper bounds. Before doing that,
we start first by introducing some useful notations.

Let Hyp be a function that returns for a given set of
arguments, their non empty supports. In other words, this
function returns all the hypothesis used to build arguments:

Definition 16 LetT ⊆ A.

Hyp(T) = {h | ∃ 〈h, x, u〉 ∈ T andh 6= ∅}
Now we will show that the argumentation-based model for
concept learning computes in an elegant way the version
spaceV (see Definition 4).

Proposition 8 Let 〈A, defeat〉 be a ASCL. LetE be its
grounded extension, andE1, . . . , En its preferred (stable) ex-
tensions. If the setS is consistent then:

Hyp(E) = Hyp(E1) = . . . = Hyp(En) = V

whereV is the version space.

Proof LetEi be an extension under a given semantics.

Hyp(Ei) ⊆ V: Leth ∈ Hyp(Ei), then∃ 〈h, x, u〉 ∈ Ei.
Let us assume that∃(xi, ui) ∈ S such thath(xi) 6= ui.
This means〈∅, xi, ui〉 undercuts〈h, x, u〉 (according to
Definition 13). Consequently,〈∅, xi, ui〉 defeats〈h, x, u〉.
However, according to Property 3,〈∅, xi, ui〉 ∈ AS , thus
〈∅, xi, ui〉 ∈ Ei. Contradiction becauseEi is an extension,
thus by definition it is conflict-free.

404 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

V ⊆ Hyp(Ei): Let h ∈ V, and let us assume thath /∈
Hyp(Ei). Sinceh ∈ V, then∀(xi, ui) ∈ S, h(xi) = ui (1)
Let (x, u) ∈ S, thus h(x) = u and consequently
〈h, x, u〉 ∈ A. Moreover, sinceh /∈ Hyp(E), then
〈h, x, u〉 /∈ E. Thus,∃ 〈h′, x′, u′〉 that defeats〈h, x, u〉.
• Case 1:h′ = ∅. This means that〈∅, x′, u′〉 undercuts
〈h, x, u〉 andh(x′) 6= u′ Contradiction with (1).

• Case 2: h′ 6= ∅. This means that〈h′, x′, u′〉 rebuts
〈h, x, u〉. Consequently,x ≡ x′ andu 6= u′. However,
sinceh ∈ V, thenh is sound withS. Thus,〈∅, x, u〉 de-
feats〈h′, x′, u′〉, then〈∅, x, u〉 defeats〈h, x, u〉. Since
〈∅, x, u〉 ∈ S, then〈h, x, u〉 ∈ F(C) and consequently,
〈h, x, u〉 ∈ Ei. Contradiction.

The above result is of great importance. It shows that to get
the version space, one only needs to compute the grounded
extension.
We can also show that if a given argument is is an exten-
sionEi, then any argument based on an hypothesis from the
version space that supports the same conclusion is in that
extension. Formally:

Proposition 9 Let 〈A, defeat〉 be a ASCL, andE1, . . . , En

its extensions under a given semantics. If< h, x, u >∈ Ei,
then∀h′ ∈ V s.t.h′ 6= h if h′(x) = u then< h′, x, u >∈ Ei.

Proof Let Ei be a given extension, and let〈h, x, u〉 ∈ Ei.
Let h′ ∈ V such thath′(x) = u. Let us assume that
〈h′, x, u〉 /∈ Ei.

Case 1: Ei ∪ {〈h′, x, u〉} is not conflict-free. This means
that ∃ 〈h”, x”, u”〉 ∈ Ei such that〈h”, x”, u”〉 defeats
〈h′, x, u〉. Consequently,〈h”, x”, u”〉 undercuts〈h′, x, u〉
if h” = ∅, or 〈h”, x”, u”〉 rebuts〈h′, x, u〉 if h” 6= ∅.
If h” = ∅, thenh′(x”) 6= u”, this contradicts the fact that
h′ ∈ V.
If h” 6= ∅, thenx” ≡ x andu” 6= u and eitherh” � h′,
or h′, h” are not comparable. Thus,〈h”, x”, u”〉 rebuts
〈h, x, u〉. Since〈h, x, u〉, 〈h”, x”, u”〉 ∈ Ei, thenh andh”
are not comparable. But, this means that〈h, x, u〉 defeats
〈h”, x”, u”〉, and 〈h”, x”, u”〉 defeats〈h, x, u〉. Conse-
quently,Ei is not conflict-free. Contradiction becauseEi

is an extension.

Case 2: Ei does not defend〈h′, x, u〉. This means that∃
〈h”, x”, u”〉 defeats〈h′, x, u〉.
• Case 1:h” = ∅. This means thath′(x”) 6= u”. Con-

tradiction becauseh′ ∈ V.
• Case 2:h” 6= ∅. This means thatx ≡ x”, u 6= u”, and

h” � h′. Thus,〈h”, x”, u”〉 rebuts〈h, x, u〉.
If h � h”, then 〈h, x, u〉 defeats〈h”, x”, u”〉, thus
〈h, x, u〉 defends〈h′, x, u〉.
If h” � h, then〈h”, x”, u”〉 defeats〈h, x, u〉. However,
since〈h, x, u〉 ∈ E , thenE defends〈h, x, u〉 against
〈h”, x”, u”〉. Thus,E defends〈h′, x, u〉. Contradiction

Using the grounded extension, one can characterize the up-
per and the lower bounds of the version space. The upper

bound corresponds to the most preferred w.r.t Pref argu-
ments of the grounded extension, whereas the lower bound
corresponds to the less preferred ones.

Proposition 10 Let 〈A, defeat〉 be a ASCL, andE its
grounded extension.

• VG = {h | ∃ <h, x, u> ∈ E s.t ∀ <h′, x′, u′> ∈ E , not
(<h′, x′, u′> Pref<h, x, u>)}.

• VS = {h | ∃ <h, x, u> ∈ E s.t ∀ <h′, x′, u′> ∈ E , not
(<h, x, u> Pref<h′, x′, u′>)}.

Proof
VG = {h | ∃ <h, x, u> ∈ E s.t ∀ <h′, x′, u′> ∈ E , not
(<h′, x′, u′> Pref<h, x, u>)}.
• Let h ∈ VG, thush ∈ V, and∀h′ ∈ V, h � h′. Since

h ∈ V, thus,h ∈ Hyp(E), with E an extension. Then,
∃〈h, x, u〉 ∈ E . Sinceh � h′ for any h′ ∈ V, then
h � h′ for any h′ ∈ Hyp(E). Thus,〈h, x, u〉 Pref
〈h′, x′, u′〉, ∀ 〈h′, x′, u′〉 ∈ E .

• Let 〈h, x, u〉 ∈ E such that∀ 〈h′, x′, u′〉 ∈ E , and
not(〈h′, x′, u′〉Pref〈h, x, u〉). Thus,h ∈ Hyp(E), and
∀ h′ ∈ Hyp(E), not(h′ � h), thush ∈ VG.

VS = {h | ∃ <h, x, u> ∈ E s.t ∀ <h′, x′, u′> ∈ E , not
(<h, x, u> Pref<h′, x′, u′>)}.
• Let h ∈ VS , thus@h′ ∈ V such thath � h′. Since

h ∈ VS , thenh ∈ V and consequently,h ∈ Hyp(E).
This means that∃〈h, x, u〉 ∈ E . Let us assume that
∃〈h′, x′, u′〉 ∈ E such that〈h, x, u〉 Pref 〈h′, x′, u′〉,
thush � h′. Contradiction with the fact thath ∈ VS .

• Let 〈h, x, u〉 ∈ E such that∀ 〈h′, x′, u′〉 ∈ E , and
not(〈h, x, u〉Pref〈h′, x′, u′〉), thus not(h � h′). Since
h ∈ V, and∀h′ ∈ V, not(h � h′), thenh ∈ VS .

As said before, the last step of an argumentation process
consists of defining thestatusof the conclusions, in our case,
the classification of examples. In what follows we present
two decision criteria: The first one, called universal vote,
consists of accepting those classifications that are in any ex-
tension. However, it is clear that this kind of voting may not
classify all the examples. Thus, we propose a second cri-
terion, called majority vote, that allows to associate a class
to each example. The conclusions here are the ones that are
supported by a majority of arguments that appear in the dif-
ferent extensions. Formally:

Definition 17 Let 〈A, defeat〉 be a ASCL, andE1, . . . , En

its extensions under a given semantics. Letx ∈ X andu ∈
U .

Universal vote: x is universally classifiedin u iff ∀Ei, ∃
<h, x, u> ∈ Ei. UV denotes the set of all universally
classified examples.

Majority vote: x is majoritarily classifiedin u iff |{<
h, x, u > |∃Ei, < h, x, u >∈ Ei}| ≥ |{< h, x, u′ >
|u′ 6= u, ∃Ei, < h, x, u′ >∈ Ei}|. MV denotes the set of
all majoritarily conclusions accepted by majority vote.

The universally classified examples are those which are sup-
ported by arguments in all the extensions. From a learning
point of view, these correspond to examples classified by the

DEPARTMENT OF INFORMATICS 405

11TH NMR WORKSHOP

most general hypothesis in the version space. Thus, accord-
ing to Proposition 7, we have the following result:

Property 8 Let〈A, defeat〉 be a ASCL, andE its grounded
extension :

UV = {(x, u)|∃ < h, x, u >∈ E}

It is easy to check that the set of universally classified exam-
ples is included in the set of majoritarily classified ones.

Property 9 Let 〈A, defeat〉 be a ASCL, andE1, . . . , En its
extensions under a given semantics :

UV ⊆ MV

Proof This result follows directly from the fact that the ex-
tensions are conflict-free.

Inconsistent Case
Let us now consider the case whereS is inconsistent, with
S can be partionned intoS1, . . . ,Sn, suth that eachSi is
a maximal (for set inclusion) consistent subsets ofS. This
means that some training examples are classified in different
classes. However, all the elements ofS are supposed to be
equally preferred. In this case, two arguments supporting
such conflicting training examples rebut each other, thus can
defeat each other as well.

LetAS1 , . . .,ASn be the sets of arguments with an empty
support and whose conclusions are respectively in the sub-
sets of training examplesS1, . . . ,Sn. It is clear that each set
ASi is conflict-free, however, it is defeated by arguments in
ASj

with i 6= j.
As in the consistent case, arguments with an empty sup-

port are preferred to arguments built from hypothesis. In
what follows,ASCLi will denote the argumentation system
in the inconsistent case. Note that all the above definitions
of an argument, of defeat, do not change. It can be checked
that the corresponding oriented graph ofASCLi does not
contain odd length circuits.

Proposition 11
• The graph associated to the systemASCLi has no odd

length circuits.
• In theASCLi 〈A, defeat〉, preferred extensions and sta-

ble ones coincide.

As a consequence of the above result, the systemASCLi

has preferred extensions that are also stable. Moreover, the
grounded extension of this system coincides with the inter-
section of all the preferred extensions. LetE1, . . . , En be
the preferred extensions of that system, andE its grounded
extension.

Proposition 12 If S is inconsistent and non empty, then the
ASCLi 〈A, defeat〉 has still n ≥ 1 non-empty preferred
extensions. Moreover,E =

⋂
i=1,...,n Ei.

However, the grounded extension can be empty in this par-
ticular case of inconsistent training examples. The above re-
sult is of great importance since it shows that even in this
particular case of inconsistent training example, it is still
possible to classify examples.

Note that each preferred/stable extension contains one of
the setsAS1 , . . .,ASn

. Moreover, the same setASi
may be-

long to several extensions at the same time. It can be shown
that all the hypothesis that are used to build arguments in a
given extension are sound with the subset of training exam-
ples of that extension. Indeed, for each consistent subset of
S, we get the extensions of the consistent case previously
studied.

Case of an Empty Set of Training Examples
Another interesting case is when the set of training exam-
ples is empty. In this case, the learning problem consists
of classifying examples only on the basis of a setH of hy-
pothesis. This is, indeed, a particular case of the previous
case whereS is inconsistent. The corresponding argumen-
tation system constructs then arguments only on the basis
of hypothesis, thus there is no argument with an empty sup-
port. This system satisfies exactly the same properties as the
ASCLi. For instance, the corresponding graph has no odd
length circuits. Moreover, it contains at least one non-empty
preferred extension, which is also stable. The grounded ex-
tension of this sytstem is the intersection of all the preferred
extensions.

Conclusion
This paper has proposed, to the best of our knowledge, the
first argumentation-based framework for concept learning.
This framework considers the learning problem as a process
that follows four main steps: it first constructs arguments
in favor of classifications of examples from a set of training
examples, and a set of hypothesis. Conflicts between argu-
ments may appear when two arguments classify the same
example in different classes. Once the arguments identi-
fied, it is possible to compare them on the basis of their
strengths. The idea is that arguments coming from the set
of training examples are stronger than arguments built from
the set of hypothesis. Similarly, arguments based on general
hypothesis are stronger than arguments built from more spe-
cific hypothesis. Indeed, such preference relation between
arguments ensures that during the learning process, only hy-
pothesis that are sound with the training examples are kept,
and general hypothesis are privileged to less specific ones.
We have shown that acceptability semantics of the ASCL re-
trieves and even characterizes the version space and its upper
and lower bounds. Thus, the argumentation-based approach
gives another interpretation of the version space as well as its
two bounds in terms of arguments. We have also shown that
when the set of training examples is inconsistent, it is still
possible to learn concepts, and to classify examples of it. In-
deed, in this particular case, the version space is empty as it
is the case in the version space learning framework. A last
and not least feature of our framework consists of defining
the class of each example on the basis of all the hypothesis
and not only one, and also to suggest four intuitive decision
criteria for that purpose.
A first extension of this framework would be to explore the
proof theories in argumentation that test directly whether a
given argument is in the grounded extension without com-

406 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

puting this last. This means that one may know the class of
an example without exploring the whole hypothesis space.

This framework can easily be generalized to the case of
classification problems in which an example can be affected
to a class among a set of possible classes. It could also be
extended in order to handle qualitative uncertainty and pref-
erences on examples. It can also be extended to handle the
regression problem in which the concept takes the form of a
continuous function.

Acknowledgments
This work was supported by the Commission of the Euro-
pean Communities under contract IST-2004-002307, ASPIC
project “Argumentation Service Platform with Integrated
Components”.

References
Amgoud, L., and Cayrol, C. 2002. Inferring from inconsis-
tency in preference-based argumentation frameworks.Int.
Journal of Automated ReasoningVolume 29 (2):125–169.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming andn-person games.Artificial Intelligence
77:321–357.
Gómez, S. A., and Chesñevar, C. I. 2003. Integrating de-
feasible argumentation with fuzzy art neural networks for
pattern classification. InProc. ECML’03.
Mitchell, T. 1982. Generalization as search.Artificial
intelligence18:203–226.
Muggleton, S. 1995. Inverse entailment and Progol.New
Generation Computing13:245–286.
Prakken, H., and Sartor, G. 1997. Argument-based ex-
tended logic programming with defeasible priorities.Jour-
nal of Applied Non-Classical Logics7:25–75.
Quinlan, J. R. 1990. Learning logical definitions from
relations.Machine Learning5:239–266.
Simari, G. R., and Loui, R. P. 1992. A mathematical treat-
ment of defeasible reasoning and its implementation.Arti-
ficial Intelligence and Law53:125–157.

DEPARTMENT OF INFORMATICS 407

11TH NMR WORKSHOP

408 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

5.5 An Abstract Model for Computing Warrant in Skeptical Argu-
mentation Frameworks

An Abstract Model for Computing Warrant
in Skeptical Argumentation Frameworks

Carlos Iván Ches̃nevar
Departament of Computer Science

Universitat de Lleida
Jaume II, 69 – 25001 Lleida,SPAIN

Email: cic@eps.udl.es

Guillermo Ricardo Simari
Dept. of Computer Science and Engineering

Universidad Nacional del Sur
Alem 1253 – 8000 Bah́ıa Blanca,ARGENTINA

Email: grs@cs.uns.edu.ar

Abstract

Abstract argumentation frameworks have played a major role
as a way of understanding argument-based inference, result-
ing in different argument-based semantics. The goal of such
semantics is to characterize which are the rationally justi-
fied (or warranted) beliefs associated with a given argumen-
tative theory. In order to make such semantics computa-
tionally attractive, suitable argument-based proof procedures
are required, in which a search space of arguments is exam-
ined looking for possible candidates that warrant those be-
liefs. This paper introduces an abstract approach to model the
computation of warrant in a skeptical abstract argumentation
framework. We show that such search space can be defined
as a lattice, and illustrate how the so-called dialectical con-
straints can play a role for guiding the efficient computation
of warranted arguments.

Keywords: Argumentation, Defeasible Reasoning, Non-
monnotonic Reasoning.

Introduction and Motivations
Over the last ten years, interest in argumentation has ex-
panded dramatically, driven in part by theoretical advances
but also by successful demonstrations of a wide range of
practical applications. In this context, abstract argumenta-
tion frameworks have played a major role as a way of un-
derstanding argument-based inference, resulting in different
argument-based semantics. In order to compute such seman-
tics, efficient argument-based proof procedures are required
for determining when a given argumentA is warranted. This
involves the analysis of a potentially large search space of
candidate arguments related toA by means of an attack re-
lationship.

This paper presents a novel approach to model such
search space for warrant computation in a skeptical abstract
argumentation framework. We show that such search space
can be defined as a lattice, and illustrate how some con-
straints (called dialectical constraints) can play a role for
guiding the efficient computation of warranted arguments.

The rest of this paper is structured as follows. The next
Section presents the basic ideas of an abstract argumentation
framework with dialectical constraints, which includes sev-
eral concepts common to most argument-based formalisms.
The notion of argumentation line is presented, highlighting
its role for modeling so-called dialectical trees as relevant

useful data structures for computing warrant. After these
preliminaries, the following Section shows how dialectical
trees can be used to analyze the search space associated
with computing warrants in an argumentation framework.
We show that such search space can be represented as a lat-
tice. Subsequently, we devote a Section to go into different
criteria which can lead to compute warrant more efficiently
on the basis of this lattice characterization. Finally, we dis-
cuss some related work and present the main conclusions
that have been obtained.

An Abstract Argumentation Framework with
Dialectical Constraints

Abstract argumentation frameworks (Dung 1993; Vreeswijk
1997; Jakobovits 1999; Jakobovits & Vermeir 1999) are for-
malisms for modelling defeasible argumentation in which
some components remain unspecified. In such abstract
frameworks usually the underlying knowledge representa-
tion language, the actual structure of an argument and the
notion of attack among arguments are abstracted away, as
the emphasis is put on differentargument-based semantics
which are associated with identifying sets of ultimately ac-
cepted arguments.

In this paper we are concerned with the study of war-
rant computation in argumentation systems, with focus on
skeptical semantics for argumentation. As a basis for our
analysis we will use an abstract argumentation framework
(following Dung’s seminal approach to abstract argumenta-
tion (Dung 1995; 1993)) enriched with the notion ofdialec-
tical constraint, which will allow us to model distinguished
sequences of arguments. The resulting, extended framework
will be called anargumentation theory.

Definition 1 (Dung 1995; 1993) An argumentation frame-
work Φ is a pair〈Args, R〉, whereArgs is a finite set of ar-
guments andR is a binary relation between arguments such
thatR ⊆ Args× Args. The notation(A,B) ∈ R (or equiv-
alentlyARB) means thatA attacksB.

Thus defined, an Argumentation FrameworkΦ can be
seen as a collection of directed graphs (di-graphs) in which
nodes correspond to arguments, and an edge between two
nodes corresponds to an attack. We will writeLinesΦ

to denote the set of all possible sequences of arguments

DEPARTMENT OF INFORMATICS 409

11TH NMR WORKSHOP

[A0,A1,A2, . . . ,Ak] in Φ where for any pair of arguments
Ai, Ai+1 it holds thatAi R Ai+1, with 0 ≤ i ≤ k − 1.
Argumentation lines define a domain onto which different
kinds ofconstraintscan be defined. As such constraints are
related to sequences which resemble an argumentation di-
alogue between two parties, we call themdialectical con-
straints. Formally:

Definition 2 Let Φ = 〈Args, R〉 be an argumentation
framework. Adialectical constraintC in the context ofΦ
is any functionC : LinesΦ → {True, False}.

A dialectical constraint imposes a restriction characteriz-
ing when a given argument sequenceλ is valid in a frame-
work Φ (i.e., C(λ) = True). An argumentation theory is
defined by combining an argumentation framework with a
particular set of dialectical constraints. Formally:

Definition 3 An argumentation theoryT (or just atheory
T) is a pair(Φ,DC), whereΦ is an argumentation frame-
work, andDC = {C1,C2, . . . ,Ck} is a finite (possibly
empty) set ofdialectical constraints.

Given a theoryT = (Φ,DC), the intended role ofDC
is to avoidfallaciousreasoning (Aristotle ; Hamblin 1970;
Rescher 1977; Walton 1995) by imposing appropriate con-
straints on argumentation lines to be considered rationally
acceptable. Such constraints are usually defined on dis-
allowing certain moves which might lead to fallacious sit-
uations. Typical constraints to be found inDC are non-
circularity (repeating the same argument twice in an argu-
mentation line is forbidden),commitment(parties cannnot
contradict themselves when advancing arguments), etc. It
must be noted that a full formalization for dialectical con-
straints is outside the scope of this work. We do not claim
to be able to identify every one of such constraints either,
as they may vary from one particular argumentation frame-
work to another; that is the reason whyDC is included as a
parameter inT . In this respect a similar approach is adopted
in (Kakas & Toni 1999), where different characterizations of
constraints give rise to different logic programming seman-
tics.

Argumentation Lines

As already discussed before, argument games provide a use-
ful form to characterize proof procedures for argumentation
logics.1 Such games model defeasible reasoning as a dispute
between two parties (ProponentandOpponentof a claim),
who exchange arguments and counterarguments, generat-
ing dialogues. A propositionQ is provably justified on the
basis of a set of arguments if its proponent has awinning
strategyfor an argument supportingQ, i.e. every counter-
argument (defeater) advanced by the Opponent can be ul-
timately defeated by the Proponent. We believe that such
argument game was first used in a computational setting

1See an in-depth discussion in (Prakken 2005).

in (Simari, Ches̃nevar, & Garćıa 1994a), and similar formal-
izations have been also applied in other argument-based ap-
proaches, e.g. in Prakken-Sartor’s framework for argumen-
tation based on logic programming (Prakken & Sartor 1997)
and in Defeasible Logic Programming (DeLP) (Garcı́a &
Simari 2004) and its extensions, notably P-DeLP (Chesñevar
et al. 2004). Dialogues in such argument games have been
given different names (dialogue lines, argumentation lines,
dispute lines, etc.). A discussion on such aspects of differ-
ent logical models of argument can be found in (Chesñevar,
Maguitman, & Loui 2000; Prakken & Vreeswijk 2002).
In what follows we will borrow some basic terminology
from (Ches̃nevar, Simari, & Godo 2005) for our formaliza-
tion, which will provide the necessary elements for the in-
tended analysis.

Definition 4 Let T = (Φ,DC) be an argumentation the-
ory. An argumentation lineλ in T is any finite sequence
of arguments[A0, A1, . . . ,An] as defined before. We will
say thatλ is rooted inA0, and that thelengthof λ is n + 1,
writing | λ | = s to denote thatλ hass arguments. We will
also writeLinesA to denote the set of all argumentation lines
rooted inA in the theoryT .

Definition 5 Let T be an argumentation theory and letλ =
[A0,A1, . . . ,An] be an argumentation line in T. Thenλ′ =
[A0,A1,A2, . . . ,Ak], k ≤ n, will be called aninitial argu-
mentation segmentin λ of lengthk, denotedbλck. When
k < n we will say thatλ′ is a proper initial argumentation
segment inλ. We will use the terminitial segmentto refer
to initial argumentation segments when no confusion arises.

Example 1 Consider a theoryT = (Φ,DC), with DC =
∅, where the setArgs is {A0,A1,A2,A3,A4 }, and assume
that the following relationships hold:A1 defeatsA0, A2

defeatsA0, A3 defeatsA0, A4 defeatsA1. Three different
argumentation lines rooted inA0 can be obtained, namely:

λ1 = [A0,A1,A4]
λ2 = [A0,A1,A2]
λ3 = [A0,A3]

In particular,bλ1c2 = [A0,A1] is an initial argumentation
segment inλ1.

Example 2 Consider a theoryT ′ = (Φ,DC) where the set
Args is {A0, A1 }, and assume that the following relation-
ships hold:A0 defeatsA1, andA1 defeatsA0. An infinite
number of argumentation lines rooted inA0 can be obtained
(e.g.λ1 = [A0], λ2 = [A0,A1], λ3 = [A0,A1 ,A0], λ4 =
[A0,A1 ,A0,A1], etc.).

Remark 1 Note that from Def. 4, given an argumen-
tation line [A0, A1, A2, . . . , An] every subsequence
[Ai,Ai+1, . . .Ai+k] with 0 ≤ i, i + k ≤ n is also an ar-
gumentation line. In particular, every initial argumentation
segment is also an argumentation line.

410 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

Intuitively, an argumentation lineλ is acceptable iff it sat-
isfies every dialectical constraint of the theory it belongs to.
Formally:

Definition 6 Given an argumentation theoryT = (Φ,DC),
an argumentation lineλ is acceptablewrt T iff Ci(λ) =
True, for everyCi ∈DC.

In what follows, we will assume without loss of gener-
ality that the notion of acceptability imposed by dialecti-
cal constraints is such that ifλ is acceptable wrt a theory
T = (Φ,DC), then any subsequence ofλ is also accept-
able.

Assumption 1 If λ is an acceptable argumentation line wrt
a theoryT = (Φ,DC), then any subsequence ofλ is also
acceptable wrtT .

Example 3 Consider the theoryT ′ in Ex. 2, and assume that
DC={ Repetition of arguments is not allowed}. Thenλ1

andλ2 are acceptable argumentation lines inT ′, butλ3 and
λ4 are not.

Definition 7 Let T be an argumentation theory, and letλ
andλ′ be two acceptable argumentation lines inT . We will
say thatλ′ extendsλ in T iff λ = bλ′ck, for somek < | λ′ |,
that is,λ′ extendsλ iff λ is a proper initial argumentation
segment ofλ′.

Definition 8 Let T be an argumentation theory, and letλ be
an acceptable argumentation line inT . We will say thatλ
is exhaustiveif there is no acceptable argumentation lineλ′
in T such that| λ | < | λ′ |, and for somek, λ = bλ′ck, that
is, there is noλ′ such that extendsλ. Non-exhaustive argu-
mentation lines will be referred to aspartial argumentation
lines.

Example 4 Consider the theoryT presented in Ex. 1. Then
λ1, λ2 andλ3 are exhaustive argumentation lines whereas
bλ1c2 is a partial argumentation line. In the case of the the-
ory T ′ in Ex. 2, the argumentation lineλ2 extendsλ1. Ar-
gumentation lineλ2 is exhaustive, as it cannot be further
extended on the basis ofT ′ with the dialectical constraint
introduced in Ex. 3.

We will distinguish the setS = {λ1, λ2, . . . , λk} of ar-
gumentation lines rooted in the same initial argument and
with the property of not containing lines that are initial sub-
sequences of other lines in the set.

Definition 9 Given a theoryT , a setS = {λ1, λ2, . . . , λn}
of argumentation lines rooted in a given argumentA, de-
notedSA, is called abundle setwrt T iff there is no pair
λi, λj ∈ SA such thatλi extendsλj .

Example 5 Consider the theoryT = (Φ,DC) from Ex. 1,
and the argumentation linesλ1, λ2, andλ3. ThenSA0 =
{λ1, λ2, λ3} is a bundle set of argumentation lines wrtT .

As we will see next, a bundle set of argumentation lines
rooted in a given argumentA provides the basis for concep-
tualizing a tree structure calleddialectical tree.

Dialectical Trees
A bundle setSA consists of argumentation lines rooted in
a given argumentA which can be “put” together in a tree
structure. Formally:

Definition 10 Let T be a theory, and letA be an argument
in T , and letSA = {λ1, λ2, . . . , λn} be a bundle set of
argumentation lines rooted inA. Then, thedialectical tree
rooted inA based onSA, denotedTA, is a tree structure
defined as follows:

1. The root node ofTA isA.
2. Let F={tail(λ), for everyλ ∈ SA}, andH={head(λ),

for everyλ ∈ F}.2
If H = ∅ thenTA has no subtrees.
Otherwise, ifH = {B1, . . . ,Bk}, then for everyBi ∈ H,
we define

getBundle(Bi) = {λ ∈ F | head(λ) = Bi}
We putTBi as an immediate subtree ofA, whereTBi is a
dialectical tree based ongetBundle(Bi).

We will write TreeA to denote the family of all possible di-
alectical trees based onA. We will represent asTreeT the
family of all possible dialectical trees in the theoryT .

Example 6 Consider the theoryT = (Φ,DC) from Ex. 1.
In that theory it holds thatSA0 = {λ1, λ2, λ3} is a bundle
set. Fig. 1(a) shows an associated dialectical treeTA0 .

The above definition shows how to build a dialectical tree
from a bundle set of argumentation lines rooted in a given
argument. It is important to note that the “shape” of the re-
sulting tree will depend on the order in which the subtrees
are attached. Each possible order will produce a tree with
a different geometric configuration. All the differently con-
formed trees are nevertheless “equivalent” in the sense that
they will contain exactly the same argumentation lines as
branches from its root to its leaves. This observation is for-
malized by introducing the following relation which can be
trivially shown to be an equivalence relation.

Definition 11 Let T be a theory, and letTreeA be the set
of all possible dialectical trees rooted in an argumentA in
theoryT . We will say thatTA is equivalent toT ′A, denoted
TA ≡τ T ′A iff they are obtained from the the same bundle
setSA of argumentation lines rooted inA.

Given an argumentA, there is a one-to-one correspon-
dence between a bundle setSA of argumentation lines
rooted inA and the corresponding equivalence class of di-
alectical trees that share the same bundle set as their origin
(as specified in Def. 10). In fact, a dialectical treeTA based

2The functionshead(·) and tail(·) have the usual meaning in
list processing.

DEPARTMENT OF INFORMATICS 411

11TH NMR WORKSHOP

on SA is justan alternative wayof expressing the same in-
formation already present inSA. Each member of an equiv-
alence class represents a different way in which a tree could
be built. Each particular computational method used to gen-
erate the tree from the bundle set will produce one particular
member on the equivalence class. In that manner, the equiv-
alence relation will represent a tool for exploring the com-
putational process of warrant and as we will see later, trees
provide a powerful way of conceptualize the computation of
warranted arguments. Next, we will define mappings which
allow to re-formulate a bundle setSA as a dialectical tree
TA and viceversa.

Definition 12 Let T be an argumentative theory, and letSA
be a bundle set of argumentation lines rooted in an argument
A of T . We define the mapping

T : ℘(LinesA) \ {∅} 7→ TreeA

asT(SA) =def TA, whereTreeA is the quotient set ofTreeA
by≡τ , andTA denotes the equivalence class ofTA.

Proposition 1 For any argumentA in an argumentative the-
ory T , the mappingT is a bijection.3

As the mappingT is a bijection, we can also define the
inverse mappingS =def T−1 which allow us to determine the
associated bundle set of argumentation lines corresponding
to an arbitrary class of dialectical trees rooted in an argument
A.

In what follows, we will use indistinctly aset notation
(a bundle set of argumentation lines rooted in an argument
A) or a tree notation(a dialectical tree rooted inA), as the
former mappingsS andT allow us to go from any of these
notation to the other.

The following proposition shows that dialectical trees can
be thought of as structures in which any subtreeT ′A of a
dialectical treeTA is also a dialectical tree.

Proposition 2 Let T be a theory, andTA a dialectical tree
in T . Then it holds that any subtreeT ′A of TA, rooted inA,
is also a dialectical tree wrtT .

Acceptable dialectical trees
The notion of acceptable argumentation line will be used to
characterize acceptable dialectical trees, which will be fun-
damental as a basis for formalizing the computation of war-
rant in our setting.

Definition 13 Let T be a theory, a dialectical treeTA in T
is acceptable iff every argumentation line in the associated
bundle setS(TA) is acceptable. We will distinguish the sub-
setATreeA (resp.ATreeT) of all acceptable dialectical trees
in TreeA (resp.TreeT).

As acceptable dialectical trees are a subclass of dialectical
trees, all the properties previously shown apply also to them.
In the sequel, we will just write “dialectical trees” to refer to
acceptable dialectical trees, unless stated otherwise.

3Proofs not included for space reasons.

0

1

4

3

2 (a)

D

0

1

4

3

2
U U

U

D

(b)

Figure 1: (a) Dialectical tree and (b) marked dialectical tree
for Example 6

Definition 14 A dialectical treeTA will be calledexhaus-
tive iff it is constructed from the setSA of all possible ex-
haustive argumentation lines rooted inA, otherwiseTA will
be calledpartial.

Besides, the exhaustive dialectical tree for any argument
A can be proven to be unique.

Proposition 3 Let T be a theory, and letA be an argument
in T . Then there exists a unique exhaustive dialectical tree
TA in T (up to an equivalence wrt≡τ as defined in Def. 11)

Acceptable dialectical trees allow to determine whether
the root node of the tree is to be accepted (ultimatelyunde-
feated) or rejected (ultimatelydefeated) as a rationally justi-
fied belief. Amarking functionprovides a definition of such
acceptance criterion. Formally:

Definition 15 Let T be a theory. A marking criterion for
T is a functionMark : Tree

T
→ {D, U}. We will write

Mark(Ti) = U (resp.Mark(Ti) = D) to denote that the root
node ofTi is marked asU -node (resp.D-node).

Several marking criteria can be defined for capturing
skeptical semantics for argumentation. A particular crite-
rion (which we will later use in our analysis for strategies
for computing warrant) is theAND-OR marking of a dialec-
tical tree (Simari, Ches̃nevar, & Garćıa 1994a), which cor-
responds to Dung’s grounded semantics (Dung 1995).

Definition 16 Let T be a theory, and letTA be a dialectical
tree. The and-or marking ofTA is defined as follows:

1. If TA has no subtrees, thenMark(TA) = U .
2. If TA has subtreesT1, . . . ,Tk then

412 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

(a) Mark(TA) = U iff Mark(Ti) = D, for all i = 1 . . . k.
(b) Mark(TA) = D iff there exists Ti such that

Mark(Ti) = U , for somei = 1 . . . k.

Proposition 4 Let T be a theory, and letTA be a dialectical
tree. The and-or marking defined in Def. 16 assigns the same
mark to all the members ofTA.

Remark 2 As a design criterion, it would be sensible to re-
quire that a particular marking criterion would respect that
every member of a given equivalence class will be marked
in the same way. This will provide an “invariance” of mark-
ing with respect to the particular way the algorithm intro-
duced in Def. 10 builds the tree. In such manner, that in-
variance will allow to work with the bundle set disregard-
ing the circumstantial element of the equivalence class at
hand. Each marking procedure is affected by the geomet-
ric properties of the tree. For instance, the classical and-or
tree traversal will work best with trees that have their short-
est branches to the left (Simari, Chesñevar, & Garćıa 1994a;
Simari, Ches̃nevar, & Garćıa 1994b; Ches̃nevar, Simari, &
Godo 2005), but other procedures could work better on dif-
ferent configurations. Working with the bundle set, and
transforming it in abundle listby using some preprocess-
ing algorithm could result in significant speed-ups. Pur-
suing these observations is outside the scope and length
restrictions of this paper, but has been addressed else-
where (Ches̃nevar & Simari 2005).

Definition 17 Let T be an argumentative theory andMark
a marking criterion forT . An argumentA is a warranted
argument(or justwarrant) in T iff the exhaustive dialectical
treeTA is such thatMark(TA) = U .

Example 7 Consider the exhaustive dialectical treeTA0

in Ex. 6 shown in Fig. 1(a). Fig. 1(b) shows the corre-
sponding marking by applying Def. 16, showing thatA0

–the root ofTA0– is an ultimately defeated argument, i.e.
Mark(TA0) = D. HenceA0 is not a warranted argument.
In Fig. 2 the and-or marking from deep-first, left to right,
in (a) will have to traverse the whole tree, meanwhile in (b)
only visits two modes. Both trees belong to same equivalent
class.

Warrant Computation via Dialectical Trees
As stated in the introduction, our main concern is to model
warrant computation in skeptical argumentation frame-
works. Fix-point definitions are very expressive declara-
tively, but tree structures lend themselves naturally to im-
plementation. In fact, some implementations of skeptical
argumentation systems (e.g. DeLP (Garcı́a & Simari 2004))
rely on tree structures (such as dialectical trees) which can
be computed by performing backward chaining at two lev-
els. On the one hand, arguments are computed by backward
chaining from a query (goal) using a logic programming ap-
proach (e.g. SLD resolution). On the other hand, dialectical
trees can be computed by recursively analyzing defeaters for

1
D

42
U U

(a)

D

0

1

4

3

2
U U

U

D
(b)

3
U

0
D

Figure 2: (a) Dialectical tree and (b) Symmetric dialectical
tree for Example 6

a given argument, defeaters for those defeaters, and so on.
In particular, in more complex and general settings (such as
admissibility semantics) dialectical proof procedures have
been developed (Dung, Kowalski, & Toni 2006) using a sim-
ilar strategy to compute warranted belief.

In our abstract model we will use dialectical trees to for-
malize warrant computation. As indicated in (Chesñevar,
Simari, & Godo 2005), the process of building an arbitrary
dialectical treeTA0 can be thought of as acomputationstart-
ing from an initial tree (consisting of a single node) and
evolving into more complex trees by adding new arguments
(nodes) stepwise. Elementary steps in this computation can
be related by means of a precedence relationship “v” among
trees:

Definition 18 Let T be a theory,A an argument and letTA,
T ′A be acceptable dialectical trees rooted inA. We define a
relationshipv ⊆ TreeA × TreeA . We will write TA @ T ′A
wheneverT ′A can be obtained fromTA by extending some
argumentation lineλ in TA by exactly one argument. As
usual, we will writeTAvT ′A iff TA = T ′A or TA@T ′A. We
will also write TAv∗T ′A iff there exists a (possibly empty)
sequenceT1, T2, . . . ,Tk such thatTA = T1v . . .vTk = T ′A.

From Def. 18 the notion of exhaustive dialectical tree can
be recast as follows: A dialectical treeTi is exhaustive iff
there is noTj 6= Ti such thatTi @ Tj . Every dialectical tree
Ti can be seen as a ‘snapshot’ of the status of a disputation
between two parties (proponent and opponent), and the rela-
tionship “v” allows to capture the evolution of such dispu-
tation.4In particular, note that for any argumentative theory

4Note however thatTi v Tj does not imply that one party has
advanced some argument inTi and the other party has replied in
Tj . Thus our framework provides a setup to defineunique-and

DEPARTMENT OF INFORMATICS 413

11TH NMR WORKSHOP

A
0
D

A
2
A
3

A
0
D

A
2

A
1

A
0

D

A
2

A
3

A
1

A
0

D

A
2

Initial

argument

Exhaustive

Dialectical

Tree

T
0

U
A
0

T
1 T

2 T
3

T
4

T
5

T
6

T
8

T
9

T
11

T
7

T
10

A
1

A
0
D

A
2
A
3

A
4

A
1

A
0
D

A
2

A
4

A
1

A
0
D

A
3

A
4

A
1

A
0

D

A
3

A
1

A
0
U

A
4

A
1

A
0
D

A
0
D

A
3

Figure 3:Lattice for all possible dialectical trees rooted in an ar-
gumentA0 (Example 8)

T , given an argumentA the ordered set(TreeA ,v∗) is a
poset, where the least element isA and the greatest element
is the exhaustive dialectical treeTA.

We are now concerned with the following question:can
we enumerate all possible ways of computing the exhaustive
dialectical treeTA rooted in a given initial argumentA?
The answer is yes. In fact, as we will see in the next defini-
tions, we can provide a lattice characterization for the space
of all possible dialectical trees rooted in a given argument
A. In order to characterize a lattice for dialectical trees we
will provide two operations:

• Joinof dialectical trees (∨), which given two dialectical treesT1

andT2 will compute the “union” ofT1 andT2, in the sense that
it will contain all defeaters present either inT1 or in T2.

• Meetof dialectical trees (∧), which given two dialectical trees
T1 andT2 will compute the “intersection” ofT1 andT2, in the
sense that it will contain all defeaters present only inT1 and in
T2.

Definition 19 Let T be an argumentative theory, and letT1

andT2 be dialectical trees rooted inA. We define themeet
and join of T1 andT2, (written T1 ∧ T2 andT1 ∨ T2) as
follows:

• λ is an argumentation line inT1 ∨ T2 iff

1. λ ∈ T1 and there is noλ′ ∈ T2 such thatλ′ extends λ,
or

2. λ ∈ T2 and there is noλ′ ∈ T1 such thatλ′ extends λ

• λ is an argumentation line inT1 ∧ T2 iff λ = bλ1ck =
bλ2ck, for somek > 0 such thatλ1 ∈ T1 andλ2 ∈ T2

and there is noλ′ that extendsλ satisfying this situation.

The next two results follow naturally from the previous
definition.

Proposition 5 The operations∧ and∨ are well-defined, i.e.
for any dialectical treesT1 andT2 rooted in a given argument

multi-move protocolsas defined by Prakken (Prakken 2005).

A, T1 ∧ T2 andT1 ∨ T2 are also dialectical trees rooted in
A.

Proposition 6 Let T be an argumentation theory, andλ an
acceptable argumentation line inT . Then it holds that

1. λ ∈ T1∨T2 iff λ ∈ T1 or λ ∈ T2

2. λ ∈ T1∧T2 iff λ ∈ T1 and λ ∈ T2

3. λ 6∈ T1∧T2 iff λ 6∈ T1 or λ 6∈ T2

The next lemma shows that for any argumentation theory
T the set of all possible acceptable dialectical trees rooted in
a particular argument can be conceptualized as a lattice.

Lemma 1 Let A be an argument in a theoryT , and let
(ATreeA,v∗) be the associated poset. Then(ATreeA,∨,∧)
is a lattice.

Given the lattice(ATreeA,∨,∧), we will write T ⊥A to de-
note the bottom element of the lattice (i.e., the dialectical
tree involving onlyA as root node) andT >A to denote the top
element of the lattice (i.e., the exhaustive dialectical tree).

Example 8 Consider the theoryT from Ex. 1, and the ex-
haustive dialectical tree rooted inA0 shown in Ex. 6. The
complete lattice associated withA0 is shown in Fig. 3.

Computing Warrant Efficiently
In the preceding Section we have shown that given an argu-
mentative theoryT , for any argumentA in T there is a lat-
tice (ATreeA,∨,∧) whose bottom element is a dialectical
tree with a single node (the argumentA itself) and whose
top element is the exhaustive dialectical treeTA. In that lat-
tice, wheneverTk = Ti∨Tj it is the case thatTivTk and
TjvTk.

In Fig. 3 corresponding to Example 8 we can see that
for dialectical treesT2 and T3, it holds thatMark(T2) =
Mark(T3) = D (assuming thatMark is defined as in Def. 16).
Clearly, it is the case that any treeTi whereT2vTi or T3vTi

satisfies thatMark(Ti) = D. In other words, whichever
is the way the treeT2 (or T3) evolves into a new tree in
(ATreeA0 ,∨,∧) it turns out that the associated marking re-
mains unchanged. We formalize that situation as follows:

Definition 20 Let T be an argumentation theory, and letTA
be a dialectical tree, such that for everyT ′A evolving from
TA (i.e., TA v∗T ′A) it holds thatMark(TA) = Mark(T ′A).
ThenTA is asettled dialectical treein T .

Now we have a natural, alternative way of characterizing
warrant.

Proposition 7 Let T be a theory, and letA be an argument
in T . ThenA is a warrant wrtT iff Mark(TA) = U , where
TA is a settled dialectical tree.

Clearly, computing settled dialectical trees is less expen-
sive than computing exhaustive dialectical trees, as fewer
nodes (arguments) are involved in the former case. Follow-
ing Hunter’s approach (Hunter 2004), in what follows we

414 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

A

TA

Optimal
A

Optimally settled

dialectical tree

Minimal
A

Minimally settled

dialectical tree

Settled
A

Settled dialectical trees

Exhaustive dialectical tree

Figure 4: Search space for computing dialectical trees rooted
in A

will formalize thecostof computing a dialectical tree as a
functioncost : Tree

T
→ <. As explained in (Hunter 2004),

several issues can be considered when computing such cost.
The next definition refines the class of settled dialectical

trees by distinguishing those trees involvingas few argu-
ments as possiblein order to determine whether the root of
the tree is ultimately a warranted argument according to the
marking procedure. From the many possible minimally set-
tled dialectical trees rooted in a given argumentA, a dialec-
tical treeT is optimally settledif there is noT ′ that is less
expensive thanT.

Definition 21 A dialectical treeT is aminimally settled di-
alectical treeiff there is noT ′@T such thatT ′ is a settled
dialectical tree. A dialectical treeT is anoptimally settled
dialectical treeiff T is minimally settled, and for any other
settled treeT ′, cost(T) ≤ cost(T ′).

Example 9 Consider the theoryT from Ex. 1, and the com-
plete lattice(ATreeA0 ,∨,∧) shown in Fig. 3. ThenT2 and
T3 are minimally settled dialectical trees.

Let SettledA, MinimalA andOptimalA be the sets of all
settled, minimally settled and optimally settled dialectical
trees for an argumentA, resp. Clearly, it holds that

OptimalA ⊆ MinimalA ⊆ SettledA ⊆ ATreeA.

The setsSettledA, MinimalA andOptimalA can be iden-
tified in any lattice(ATreeA,∨,∧), as shown in Figure 4.
The borderline on top of the lattice denotes all possible min-
imally settled dialectical treesT1, . . . ,Tk rooted inA. Some
of such trees in that set may be optimal. Any dialectical tree
that evolves from settled dialectical treesT1, . . . ,Tk will be
also a settled dialectical tree. In particular, the exhaustive
dialectical tree is also settled.

Dialectical Constraints (Revisited)
As we have analyzed in the previous Section, the lattice as-
sociated with any argumentA accounts for the whole search
space for detecting ifA is warranted. To do so it is not nec-
essary to compute the exhaustive dialectical tree rooted in
A; rather, it suffices to focus search on settled dialectical
trees, as they involve less nodes and are consequently more
efficient.

When determining whether a conclusion is warranted,
argument-based inference engines are supposed to compute
a sequence of dialectical treesT1, T2, . . . ,Tk such thatTk is a
settled dialectical tree. For skeptical argumentation seman-
tics, argument-based engines like DeLP (Garcı́a & Simari
2004; Ches̃nevaret al. 2003; Simari, Ches̃nevar, & Garćıa
1994a) usedepth-first searchto generate dialectical trees for
queries and determine if a given literal is warranted. Such
search can be improved by applyingα − β pruning, so that
not every node (argument) is computed. In other words,
depth-first search favors naturally the computation of settled
dialectical trees.

The natural question that arises next is how to compute
minimally settled trees. Given a theoryT = (Φ,DC), it
turns out that the set of dialectical constraintsDC can help
to provide a way of approximating such minimally settled
trees, based on the fact that in depth-first search theorder in
which branches are generated is important: should shorter
branches be computed before longer ones, then the result-
ing search space can be proven to be smaller on an aver-
age search tree (Chesñevar, Simari, & Godo 2005). Usu-
ally heuristics are required to anticipate which branches are
likely to be shorter than the average.

Constraints inDC can help provide such kind of heuris-
tics. Thus, for example, in Defeasible Logic Program-
ming (Garćıa & Simari 2004; Ches̃nevaret al. 2003) and
Possibilistic Defeasible Logic Programming (Chesñevaret
al. 2004) the setDC includes as a constraint thatargu-
ments advanced by the proponent (resp. opponent) should
not be contradictoryin any argumentation line. The fol-
lowing heuristics (Ches̃nevar, Simari, & Godo 2005) can
be shown to favor the computation of shorter argumenta-
tion lines when applying depth-first search in the context of
Possibilistic Defeasible Logic Programming:if the current
argumentA0 is a leaf node in a dialectical treeT, and has
different candidate defeatersA1, A2, . . . ,Ak, then theAi

which shares as many literals as possible withA0 should be
chosen when performing the depth-first computation ofTA0 .

By applying the above heuristics it can be shown that the
branching factor for arguments belowA0 is reduced. In
other words, depth-first computation of dialectical trees fa-
vors naturally the construction of minimally settled dialec-
tical trees, whereas by applying the above heuristics an ap-
proximation to optimally settled dialectical trees is obtained.

Relevance in Dialectical Trees
In (Prakken 2000) the notion ofrelevancewas introduced in
the context of argument games and the characterization of
protocols for liberal disputes. According to (Prakken 2000),
a move is relevant in a disputeD iff it changes the disputa-

DEPARTMENT OF INFORMATICS 415

11TH NMR WORKSHOP

tional status ofD’s initial move.5 In our context, dialectical
trees correspond to such disputes. In the setting presented
in (Prakken 2000), moves are performed by both parties in-
volved in a dispute (Proponent and Opponent).

Interestingly, there is a clear relation between minimally
settled dialectical trees and this notion of relevance, as the
notion of extending an argumentation line by one argument
(as introduced in Def. 18) can be recast as performing a
move.

Definition 22 Let T = (Φ,DC) be an argumentation the-
ory, and letTA1 , T ′A1

be acceptable dialectical trees. We
will say that there is amoveM from TA to T ′A, denoted as
Move(TA, T ′A), iff TA @T ′A.

It must be remarked that a proper conceptualization of
move in argumentation demands more parameters, such as
identifying the argumentation line in which a argument is in-
troduced, who is the player (Proponent or Opponent) mak-
ing the move, etc. Such an approach has been formalized
by (Prakken 2000; 2005). Our approach in this case is inten-
tionally over-simplified, as it just aims to relate the notion
of relevance and the notion of minimally settled dialectical
trees. In fact, note that Def. 22 allows us to formalize the
computation of an acceptable dialectical treeTk rooted in
A0 as a sequence of movesMove(T0, T1), Move(T1, T2),
. . . , Move(Tk−1, Tk), whereT0 is a dialectical tree with a
single nodeT ⊥A0

. Following Prakken’s notion of relevance,
we can express this concept in our setting as follows:

Definition 23 A move M = Move(TA, T ′A) is relevant iff
Mark(TA) 6= Mark(T ′A).

The following proposition shows that minimally settled
trees are only those obtained by performing a sequence of
relevant moves ending in a settled dialectical tree.

Proposition 8 LetT be an argumentation theory, and letTA
be a dialectical tree. ThenTA is minimally settled iff there is
a sequence of movesM1, M2, . . . ,Mk such that every move
Mi is relevant, andMk results in a settled dialectical tree.

Related Work
Dialectical constraints have motivated research in argu-
mentation theory in different directions. As stated be-
fore, the main role of such constraints is to avoidfalla-
cious reasoning (Aristotle ; Hamblin 1970; Rescher 1977;
Walton 1995). In our proposal dialectical constraint are
left as a particular parameter to be included in the argu-
mentation theory. It must be remarked that different for-
malizations of argument-based dialectical proof procedures
have included particular dialectical constraints as part of
their specification. In (Simari, Chesñevar, & Garćıa 1994a;
Simari, Ches̃nevar, & Garćıa 1994b), an approach to model

5The notion of relevance as well as some interesting properties
were further studied and refined (Prakken 2005).

different dialectical constraints was presented. These con-
straints were applied as part of the procedure used for con-
structing dialectical trees by discarding “ill-formed” argu-
mentation lines. In (Besnard & Hunter 2001) the authors
present a logic of argumentation which disallows repetition
of arguments in argument trees (Besnard & Hunter 2001,
p.215):

For no node (φ, β) with ancestor nodes(φ1, β1),
(φ2, β2), . . . ,(φk, βk) isφ a subset ofφ1∪φ2∪. . .∪φk.

In a similar manner, other approaches (like (Kakas & Toni
1999)) compute different semantics for logic programming
on the basis of an argumentative approach formalized in
terms of trees. Some properties can be used to render the
construction of such trees more efficient. Thus, in the case of
computing well-founded semantics via trees, defense nodes
(which account for Proponent’s argument in an argumenta-
tion line) cannot attack any other defense node in the tree.
Similarly, in (Dung, Kowalski, & Toni 2006) the notion of
dispute tree is used to compute assumption-based, admissi-
ble argumentation. As the authors indicate, in order for an
abstract dispute tree to beadmissible, there is a further re-
quirement that “the proponent does not attack itself”. Such
kind of restrictions can be seen as particular dialectical con-
straint in the context of our proposal.

Recently there have been other research oriented towards
formalizing dialectical proof procedures for argumentation.
To the best of our knowledge, none of such works formalizes
the dialectical search space through a lattice as presented in
this paper. Our work complements previous research con-
cerning the dynamics of argumentation, notably (Prakken
2001) and (Brewka 2001). In particular, Prakken (Prakken
2001) has analyzed the exchange of arguments in the context
of dynamic disputes. Our approach can also be understood
in the light of his characterization of dialectical proof theo-
ries (Prakken 2005). However, although Prakken develops a
very comprehensive general framework, in our understand-
ing some important computational issues (e.g. search space
considerations) are not taken into account. Hunter (Hunter
2004) analyzes the search space associated with dialectical
trees taking into account novel features such as thereso-
nanceof arguments. His interesting formalization combines
a number of features that allow to assess the impact of di-
alectical trees, contrasting shallow vs. deep trees. However,
search space considerations as modeled in this paper are out-
side the scope of his approach. In (Kakas & Toni 1999) a
throughout analysis of various argumentation semantics for
logic programming is presented on the basis of parametric
variations of derivation trees. In contrast with that approach,
our aim in this paper was not to characterize different emerg-
ing semantics, but rather to focus on the role of dialectical
trees as a way of modeling the search space when comput-
ing warrants. Besides, in (Kakas & Toni 1999) the authors
concentrate in normal logic programming, whereas our ap-
proach is more generic.

Conclusions. Future Work
In this paper we have presented a novel approach to model
the search space associated with warrant computation in an

416 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

abstract argumentation framework. We have shown how the
notion of dialectical tree can be used constructively to model
different stages in the process of computing warranted argu-
ments. We have shown how the process of computing war-
rant can be recast into computing dialectical trees within a
lattice, illustrating how dialectical constraints can play a role
for guiding an efficient computation of warranted literals.

Part of our future work is related to studying theoretical
properties of the proposed framework, analyzing their inci-
dence for developing efficient argument-based inference en-
gines. In this context we think that the notion of equivalence
classes associated with dialectical trees can be specially use-
ful as discussed in Remark 2. Research in this direction is
currently being pursued.

Acknowledgements We thank anonymous reviewers for com-
ments which helped to improve the final version of this paper.
This research was partially supported by Projects TIC2003-00950,
TIN2004-07933-C03-01/03, by Ramón y Cajal Program (Ministe-
rio de Ciencia y Tecnologı́a, Spain), by CONICET (Argentina), by
the Secretarı́a General de Ciencia y Tecnologı́a de la Universidad
Nacional del Sur and by Agencia Nacional de Promoción Cient́ıfica
y Tecnoĺogica (PICT 2002 No. 13096).

References
Aristotle. On Sophistical Refutations. eBooks@Adelaide,
Translated by W. A. Pickard-Cambridge, web edition at
http://etext.library.adelaide.edu.au/a/
aristotle/sophistical/ , The University of Adelaide
Library, 2004 edition.

Besnard, P., and Hunter, A. 2001. A logic-based theory of deduc-
tive arguments.Artificial Intelligence1:2(128):203–235.

Brewka, G. 2001. Dynamic argument systems: A formal model of
argumentation processes based on situation calculus.J. of Logic
and Computation11(2):257–282.

Ches̃nevar, C., and Simari, G. 2005. Computing warrant in an
abstract model for skeptical argumentation frameworks: formal-
ization and properties. InTechnical Report 343 – University of
LLeida & LIDIA.

Ches̃nevar, C.; Dix, J.; Stolzenburg, F.; and Simari, G. 2003. Re-
lating Defeasible and Normal Logic Programming through Trans-
formation Properties.Theoretical Computer Science290(1):499–
529.

Ches̃nevar, C. I.; Simari, G.; Alsinet, T.; and Godo, L. 2004. A
Logic Programming Framework for Possibilistic Argumentation
with Vague Knowledge. InProc. of the Intl. Conf. in Uncertainty
in Art. Intelligence. (UAI 2004). Banff, Canada, 76–84.

Ches̃nevar, C.; Maguitman, A.; and Loui, R. 2000. Logical Mod-
els of Argument.ACM Computing Surveys32(4):337–383.

Ches̃nevar, C.; Simari, G.; and Godo, L. 2005. Computing di-
alectical trees efficiently in possibilistic defeasible logic program-
ming. LNAI/LNCS Springer Series (Proc. of the 8th Intl. Confer-
ence on Logic Programming and Nonmonotonic Reasoning LP-
NMR 2005)158–171.

Dung, P.; Kowalski, R.; and Toni, F. 2006. Dialectic proof proce-
dures for assumption-based, admissible argumentation.Artificial
Intelligence170(2):114–159.

Dung, P. 1993. On the Acceptability of Arguments and its Funda-
mental Role in Nomonotonic Reasoning and Logic Programming.
In Proceedings of the 13th. International Joint Conference in Ar-
tificial Intelligence (IJCAI), Chamb́aery, Francia, 852–857.

Dung, P. 1995. On the acceptability of arguments and its funda-
mental role in nonmonotonic reasoning, logic programming and
n-person games.Artificial Intelligence77(2):321–358.

Garćıa, A., and Simari, G. 2004. Defeasible Logic Programming:
An Argumentative Approach.Theory and Practice of Logic Pro-
gramming4(1):95–138.

Hamblin, C. L. 1970.Fallacies. Methuen, London.

Hunter, A. 2004. Towards Higher Impact Argumentation. In
Proc. of the 19th American National Conf. on Artificial Intelli-
gence (AAAI’2004), 275–280. MIT Press.

Jakobovits, H., and Vermeir, D. 1999. Dialectic semantics for
argumentation frameworks. InICAIL, 53–62.

Jakobovits, H. 1999. Robust semantics for argumentation frame-
works. Journal of Logic and Computation9(2):215–261.

Kakas, A., and Toni, F. 1999. Computing argumentation in logic
programming.Journal of Logic Programming9(4):515:562.

Prakken, H., and Sartor, G. 1997. Argument-based extended
logic programming with defeasible priorities.Journal of Applied
Non-classical Logics7:25–75.

Prakken, H., and Vreeswijk, G. 2002. Logical Systems for De-
feasible Argumentation. In Gabbay, D., and F.Guenther., eds.,
Handbook of Philosophical Logic. Kluwer Academic Publishers.
219–318.

Prakken, H. 2000. Relating protocols for dynamic dispute with
logics for defeasible argumentation.Synthese (to appear).

Prakken, H. 2001. Relating protocols for dynamic dispute with
logics for defeasible argumentation.Synthese (special issue on
New Perspectives in Dialogical Logic)127(4):187:219.

Prakken, H. 2005. Coherence and flexibility in dialogue games
for argumentation.Journal of Logic and Computation15:1009–
1040.

Rescher, N. 1977.Dialectics, a Controversy-Oriented Approach
to the Theory of Knowledge. Albany, USA: State University of
New York Press.

Simari, G.; Ches̃nevar, C.; and Garcı́a, A. 1994a. The Role of Di-
alectics in Defeasible Argumentation. InAnales de la XIV Confer-
encia Internacional de la Sociedad Chilena para Ciencias de la
Computacíon, 260–281. Universidad de Concepción, Concepcíon
(Chile).

Simari, G. R.; Ches̃nevar, C. I.; and Garcı́a, A. J. 1994b. Focusing
Inference in Defeasible Argumentation. InProc. of IV Iberoamer-
ican Congress on Artificial Intelligence,IBERAMIA’94.

Vreeswijk, G. 1997. Abstract Argumentation Systems.Artificial
Intelligence90:225–279.

Walton, D. 1995. A Pragmatic Theory of Fallacy (Studies in
Rhetoric and Communication Series). The University of Alabama
Press, Tuscaloosa.

DEPARTMENT OF INFORMATICS 417

11TH NMR WORKSHOP

5.6 Managing Deceitful Arguments with X-logics

Managing Deceitful Arguments with X-Logics

Geoffroy Aubry and Vincent Risch
InCA team, LSIS - UMR CNRS 6168
Domaine universitaire de Saint-Jérôme

13397 Marseilles cedex 20, France
email: {geoffroy.aubry, vincent.risch}@lsis.org

Abstract

In most works on negotiation dialogues, agents are sup-
posed to be ideally honest. However, there are many
situations where such a behaviour cannot always be ex-
pected from the agents (e.g. advertising, political ne-
gotiation, etc.). The aim of this paper is to reconsider
the role of deceitful arguments in argumentation frame-
works. We propose a logical tool for representing and
handling deceitful arguments in a dialogue between two
formal agents having to face their respective knowledge
and trying to convince each other. X-logics, a non-
monotonic extension of classical propositional logics, is
used as the background formalism for representing the
reasoning of the agents on arguments. Starting from a
previous work dedicated to the generation of new argu-
ments, we propose to define the notion of lie as a new
kind of possible agent’s answer. Finally we describe the
way an agent may trick and how the other agent may
detect it.

Introduction
Logics has been historically assigned by philosophy the task
of defining the rules of correct reasoning. As such, it was
first considered as a tool in argumentation and rhetoric, be-
fore its formal developments in the foundation of mathemat-
ics meant to “delimit” it (in a large sense) to proof theory.
A major distinction then arised from this situation: whereas
the inner nature of arguments makes them questionable, the-
orems are held to be beyond dispute. A definitive break
seemed to be set between logics and argumentation, lead-
ing a philosopher like Perelman to regard human argumen-
tation as being beyond the reach of formal logics. New
developments in logics however have conducted to recon-
sider partly this pessimistic view. In recent years the rep-
resentation and the simulation of simplified models of ar-
gumentation with logical tools has been the object of im-
portant progresses (Prakken & Vreeswijk 2002). Obviously,
all these models initially assume a form of exchange of ar-
guments. In addition they address and characterize many
distinct fundamental notions such as (for instance) accept-
ability (Dung 1995), preference among arguments (Amgoud
& Cayrol 1998), argumentation trees (Besnard & Hunter
2001), relative strenght of arguments (Bench-Capon 2003),
or dialectic proofs (Dung, Kowalski, & Toni 2006). An-

other important feature of these models is also that they as-
sume some kind of rational behaviour in the exchange of
arguments, that is that the agents (implicitly or explicitly)
involved can be fully trusted. However, there are many con-
texts in which this assumption seems much too strong, typi-
cally situations in which the object of the discussion covers
important issues for at least one part (e.g. financial or politi-
cal negotiation, or yet, advertising). Actually the purpose of
argumentation as a part of rhetoric is indeed to propose and
stress values to which each agent believes or feint to believe
regarding her respective goals. In this respect, the ability to
represent, manage, and detect deceitful arguments appears
as a major step toward a complete formal theory of argu-
mentation, and as such, was already questioned in (Ham-
blin 1970)’s pioneering work. In this paper, and following
(Aubry & Risch 2005), we address this question via the use
of X-logics, a nonmonotonic extension of classical proposi-
tional logics. Extending their approach, devoted to the ques-
tion of the generation of new arguments, we propose a log-
ical approach to the notion of deceitful argument, and show
how agents may generate lies while maintaining the consis-
tency of their knowledge. The question of the detection of
lies is briefly considered via the notion of commitment store
(Hamblin 1970). Our paper is organized as follows: sec-
tion 2 below briefly introduces standard notations, section 3
recalls X-logics, section 4 introduces the notions of agent,
attitudes, kinds of answers and arguments, while section 5
concerns deceitful arguments.

Notations

Formally our language is classical propositional logic de-
noted by L. Formulas are denoted by lowercase letters
whereas sets of formulas are denoted by shift case letters.
The symbols � and ⊥ are the usual truth values, and ¬, ∨,
∧, ⇒, ⇔ the usual connectors. Classical consequence re-
lation is denoted by �. A finite set E of formulas is logi-
cally interpreted by the conjunction of its elements, that is
a sentence. We abuse the notation ¬E as a shorthand for
the negation of the conjunction of the formulas in E, e.g.
E = {e1, . . . , en}, hence ¬E = ¬e1 ∨ · · · ∨ ¬en. We
denote by E the set of classical consequences of E (i.e.
E = {f | E � f}), and by 2E , the powerset of E. A
finite consistent set of formulas is called a knowledge base.

418 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

X-logics
X-logics were defined in (Siegel & Forget 1996) as an at-
tempt for defining a proof theory for nonmonotonic log-
ics from any classical logic with a given set X of formu-
las. Whereas classically K � f iff K ∪ {f} = K, X-
logics can be considered as a generalization (hence a weak-
ening) of �, namely �X , defined such that K �X f iff
K ∪ {f} ∩ X = K ∩ X , i.e. �X is monotonic only on
X . When X = L, �X amounts to be just �. If X = {⊥}
then K �X f is equivalent to K � ¬f which describes the
consistency relation between K and f (“K∧f is satisfiable”
holds), provided K is consistent by itself. If X = ∅, all the
formulas can be entailed. Note that K �X f if every theo-
rem (regarding �) of K ∪ {f} which is in X is a theorem of
K (by adding f to K the set of classical theorems which are
in X does not grow). Indeed, since classical consequence
relation is monotonic, in order to check whether K �X f
it is sufficient to check whether K ∪ {f} ∩ X ⊆ K. In
other words, K �X f iff ∀x ∈ X \ K, K ∪ {f} � x.
Although this was already proved independently, this shows
that X-logics are supraclassical. Actually and as shown in
(Bochman 2003), X-logics coincide with permissive infer-
ence relations which are completely characterized by Left
Logical Equivalence, Right Weakening, Reflexivity, Con-
junctive Cautious Monotony, Cut and Or.

Let us make use of the following terminology: if K �X f
we say that f is compatible with K regarding X , and incom-
patible otherwise. The notion of compatibility encompasses
the notion of consistency, whereas formulas can be incom-
patible with K regarding X without being inconsistent with
K. The following properties obviously hold:

Property 1.

1. (metacoherence) A formula cannot be both compatible
and incompatible.

2. (paraconsistency of compatibility) Both a formula and its
negation can be compatible with K regarding X .

3. (paraconsistency of incompatibility) Both a formula and
its negation can be incompatible with K regarding X .

Example 2.

• {a} �{⊥} a ∧ b, and {a} �{⊥} ¬(a ∧ b)

• {a} �{⊥,b,¬b} a ∧ b, and {a} �{⊥,b,¬b} ¬(a ∧ b)

• {a} �{b∧c} b, but {a, c} �{b∧c} b

Agents, attitudes, answers and arguments
In the literature, some argumentation theories consider the
notion of proponent-opponent (Rescher 1977; Vreeswijk
1992) whereas other describe argumentation systems in
which arguments made from a unique set of formulas are
linked together, in a kind of abstract game among arguments
(Lin & Shoham 1989; Dung 1995; Amgoud & Cayrol 1998;
Besnard & Hunter 2001). Following (Simari & Loui 1992;
Amgoud & Parsons 2002), (Aubry & Risch 2005), we intro-
duce a notion of agent, but with the objective to map each
agent with a unique X-inference.

Definition 3. (Aubry & Risch 2005) An agent is a couple
[K,X] where K is a knowledge base, and X ⊇ {⊥}, a
set of formulas. The set of agents, a subset of 2L × 2L, is
denoted by A.

Compatibility extends naturally to the notion of admissi-
bility of a formula by an agent, i.e. a formula is admissible
by an agent [K,X] iff this formula is compatible with K
regarding X; it is non-admissible otherwise 1. Intuitively
K is used as a representation of the factual knowledge of
an agent, whereas X corresponds to formulas that an agent
cannot admit unless they are part of her factual knowledge.
In other words, formulas in X delineate negatively the hopes
of the agent (since the agent does not admit these formulas),
whereas the positive counterpart indeed should correspond
to the agent’s expectations (the agent accept everything but
formulas of X , unless she has to take account of them be-
cause there are already part of her knowledge). In the fol-
lowing, we will call X the forbidden formulas. The require-
ment that X contains at least the contradiction is motivated
by the natural expectation that an agent should reason con-
sistently. The notion of admissibility determines four possi-
ble distinct attitudes that an agent may adopt concerning a
given formula, as shown in (Aubry & Risch 2005):

Definition 4 (Attitudes). (Aubry & Risch 2005) Consider an
agent [K,X] and a formula f :

• [K,X] is for f iff K �X f and K �X ¬f

• [K,X] is neutral about f iff K �X f and K �X ¬f

• [K,X] is puzzled by f iff K �X f and K �X ¬f

• [K,X] is against f iff K �X f and K �X ¬f

By extension, an agent is for (resp. neutral about, against,
puzzled by) a set of formulas iff she is for (resp. neu-
tral about, against, puzzled by) the conjunction of the for-
mulas of this set.

In figure 1, the four corners of the median layout are as-
sociated with the attitudes, and are clearly generated by both
the two edges above and below corresponding to the admis-
sible or non-admissible character of f and ¬f respectively.

f is admissible f is non-admissible

f is admissible

f is non-admissible

Puzzled

Neutral

For

AgainstX f

X f

X f
X f

K

K

K
K

Figure 1: Generative octahedron of attitudes of an agent
[K,X] in front of a formula f

1Note that our notion of admissibility differs from the notion
previously defined in (Bondarenko et al. 1997) and in (Dung,
Kowalski, & Toni 2006).

DEPARTMENT OF INFORMATICS 419

11TH NMR WORKSHOP

Yet, as shown in (Aubry & Risch 2005), given an agent Φ
and a formula f :

• Φ is for f iff she is against ¬f ,

• Φ is neutral about f iff she is neutral about ¬f ,

• Φ is puzzled by f iff she is puzzled by ¬f ,

• Φ is for the tautologies and against the contradictions.

The different possible attitudes of an agent in front of a
set of formulas yield a partition of this set. Confrontation
operators are introduced in order to associate each attitude
with the formulas of a particular partition.

Definition 5. (Aubry & Risch 2005) The operator |+ (resp.
|0, |− and |p) maps an agent and a set E of formulas with the
subsets of E such that this agent is for (resp. neutral about,
against or puzzled by) these subsets:

|+ : A× 2L −→ 22L

Φ |+ E �−→ {P ⊆ E | Φ is for P}

As shown further down, confrontation operators are
meant to be used by an agent for deciding precisely which
are the points of agreement or disagreement she has with the
different parts of a given argument.

Example 6. Consider Φ an agent with the following knowl-
edge base and set of forbidden formulas (where A and
B denote respectively “Amelia” and “Brandon”): KΦ =
{B-comes ⇒ Annoyed,¬B-comes ⇒ Sad, A-comes ⇔
Happy}, XΦ = {⊥, Annoyed, Sad}. The attitudes of Φ
regarding the set E = {B-comes, A-comes, B-comes ⇒
Annoyed, A-comes ∧ ¬Happy} yield the following partition
of E:

Φ |+ E =
{
{B-comes ⇒ Annoyed}

}
Φ |0 E =

{
{A-comes}, {A-comes, B-comes ⇒ Annoyed}

}
Φ |− E =

{
{A-comes∧¬Happy}, {B-comes, A-comes}, ∗

}
Φ |p E =

{
{B-comes}, {B-comes, B-comes ⇒ Annoyed}

}

The symbol ∗ in Φ |− E stands for each subset of E
containing either of the two other sets stated in Φ |− E.

In order to link the attitudes of an agent with the construc-
tion of new arguments (Aubry & Risch 2005) make use of
the following notion of answer. Roughly, an answer is a
set of formulas fixed by the attitude of an agent regarding
a given set of formulas this agent is faced with. Consider
X = {x1, . . . , xn}, and let us use conceivable (X) as a
shorthand for {¬x1, . . . ,¬xn}.

Definition 7 (Answer). (Aubry & Risch 2005) An answer
of the agent [K,X] to a consistent set A of formulas is a
consistent set R of formulas such that, for some K ′ ⊆ K
and some X ′ ⊆ (X \ {⊥}):

1. R = K ′ ∪ conceivable (X ′)

2. K ′
�{⊥}∪X′ A

The set of answers given by [K,X] to A is written RA
[K,X].

The first point constrains answers to contain only knowl-
edge or negations of forbidden formulas of the agent. The

second point specifies that an answer to a set A necessar-
ily contains formulas which are conflicting with A: ∃x ∈
({⊥} ∪ X ′) \ K ′, K ′ ∪ A � x. In other words, an an-
swer K ′ ∪ conceivable (X ′) to A is such that A is non-
admissible by the “virtual” agent [K ′, {⊥} ∪ X ′]. The con-
tradiction is present here for technical reasons: for instance,
this allows to answer R = K ′ = {a} to A = {¬a} without
having to add X ′ = {⊥} in R.

Following directly from definition 7: (1) no answer is
empty, (2) any answer of an agent to a given set of formu-
las is inconsistent with this set. In addition, the following
property holds:

Property 8 (Existence of an answer). (Aubry & Risch 2005)
If an agent is against or puzzled about a subset of a consis-
tent set of formulas, then there exists an answer of this agent
to this set. The opposite does not hold.

In the following, we consider two easy but important re-
finements of definition 7, namely coherent, and relevant an-
swers. Let us define the first of these two notions:

Definition 9 (Coherent answer). An answer of the agent
Φ = [K,X] is called a coherent answer of Φ iff it is con-
sistent with K.

As stated further down, each answer of an agent Φ to A
(and especially coherent answers) is potentially the support
of a counterargument of Φ (that is the reason why to believe
the conclusion of this counterargument) to an argument con-
taining A. Note however this does not limit agents to gener-
ate only disputing arguments (remind that Φ is for A iff she
is against ¬A). Answers that are not coherent will drive
us to deceitful arguments, and as such definition 9 plays an
important role as the counterpart of the notion of lie, consid-
ered further down.

Let us now come to the second refinement of definition 7.
In most works on argumentation, only minimal arguments
are considered: they only contains formulas necessary to
elaborate the conclusion of the argument. Among the pos-
sible answers of an agent to a set of formulas A, some of
them are included in others: they contain less superfluous
information. In the limit case, the minimal answers are only
made with formulas necessary to elaborate the conclusion
¬A. Such answers are called relevant 2.

Definition 10 (Relevant answer). (Aubry & Risch 2005) An
answer of the agent Φ to a set A of formulas is called rele-
vant iff it does not contain any other answer of RA

Φ . The set
of relevant answers given by Φ to A is written RrA

Φ .

RrA
Φ =

{
R ∈ RA

Φ | ∀R′ ⊂ R, R′ /∈ RA
Φ

}

Now, given an agent [K,X] facing a set A of formulas,
her set of relevant answers can be shared among three sub-
sets. The first contains the answers only made from the
knowledge of this agent. Hence this subset is not empty
when K∪A is inconsistent. The second category of answers
is made of those exclusively constructed from the forbidden

2Note that the notion of relevant move previously defined in
(Prakken 2005) has a different meaning, since it is defined in the
context of a dialogue.

420 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

formulas of this agent. Finally, the relevant answers neither
in the first nor in the second subset are made from at least
one formula of the set of knowledge of this agent and one
formula of the set of forbidden formulas of this agent.

This partitioning can be considered via “virtual” agents.
The answers only made from the knowledge of the agent
[K,X] are actually answers of an agent [K, {⊥}], while the
answers only made of the forbidden formulas of the agent
[K,X] are answers of the agent [∅, X].

These different sets of relevant answers are fully charac-
terized in (Aubry & Risch 2005).

Answers are used as a tool for generating new argu-
ments by an agent, where arguments are defined following a
very common intuitive view (Simari & Loui 1992; Elvang-
Gøransson, Krause, & Fox 1993; Amgoud & Cayrol 1998;
Besnard & Hunter 2001), i.e. an argument is a set of relevant
formulas that can be used to classically prove some formula,
together with that formula. This notion is made more precise
here by taking account of both notions of agent and answer.

Definition 11 (Argument). (Aubry & Risch 2005) Consider
A, a set of formulas. An argument α of an agent Φ is any
pair 〈R,¬A〉 such that R is a relevant answer of Φ to A.
The set of arguments of an agent Φ is written ArgΦ, i.e.

∀Φ,∀R,∀A, 〈R,¬A〉 ∈ ArgΦ iff R ∈ RrA
Φ

The set of all arguments is denoted by Arg. Finally, R is
called the support of the argument, denoted by supp (α),
while ¬A is called the conclusion of the argument, denoted
by concl (α).

From the definition of an answer (definition 7), we have
indeed that the conclusion of an argument is classically en-
tailed by the support of this argument. Let us now address
the question of the use of arguments by an agent. The two
complementary notions of attack and defense of an argument
in the context of a dispute are well known in philosophy.
Following a solid tradition (e.g. (Schopenhauer 2004)) we
consider that an argument can be attacked (resp. defended)
either on the premises (the support) or on the conclusion.
Hence we allow arguments to be decomposed into elements
that an agent can analyze for such further attack or defense.
Thus, the elements of an argument are taken as parts of the
support, together with the conclusion:

Definition 12 (Elements of an argument). The elements of
an argument 〈S, c〉, written elements (〈S, c〉), are given by
a mapping from Arg to 22L

such that:

elements (〈S, c〉) = {E ∈ 2L | E ⊆ S} ∪ {{c}}

The two relations of attack and defense are then defined
classically. Note however that generally, defending argu-
ments is considered through reinstatement: an argument that
is defeated by another argument can be justified only if it is
reinstated by a third argument (this corresponds to (Dung
1995)’s notion of acceptability). Actually, the notions of
attitude and the generation of agent’s answers allow us to
define a pure relation of defense of arguments.

Definition 13. The set of arguments of an agent Φ attacking
(resp. defending) an argument α is written Argatt(α)

Φ (resp.

Argdef(α)
Φ), where:

• Argatt(α)
Φ = {〈R,¬A〉 | R ∈ RrA

Φ, A ∈ elements (α)}

• Argdef(α)
Φ = {〈R,

∧
a∈A A〉 | R ∈ Rr{¬A}

Φ ,
A ∈ elements (α)}

The following property links the attack and the defense of
arguments with the attitudes of an agent:

Property 14. Consider t ∈ {supp () , concl ()}.
∀Φ,∀A,∀α:

• A ∈ Φ |− t(α) ⇒ ∃R, 〈R,¬A〉 ∈ Argatt(α)
Φ

• A ∈ Φ |+ t(α) ⇒ ∃R, 〈R,
∧

a∈A a〉 ∈ Argdef(α)
Φ

• A ∈ Φ |p t(α) ⇒

⎧⎨
⎩

∃R1,∃R2,

〈R1,¬A〉 ∈ Argatt(α)
Φ

〈R2,
∧

a∈A a〉 ∈ Argdef(α)
Φ

Sketch of proof. Applying property 8 then definition 11.

Note that property 14 makes our intuition about the atti-
tudes of an agent to coincide with her expected behaviour:
an agent is puzzled by one element of an argument because
she can both attack and defend this argument. Similarly, the
fact that an agent is neutral about some element of an ar-
gument does not allow this agent to construct any coherent
answer, and hence does not allow her to attack or to defend
this argument (unless by lying as seen further down).

Example 15. Consider two agents Φ and Ψ arguing about
the text of the future European constitution (denoted by
x) in order to decide whether x should be accepted or
not. The knowledge of Φ regarding x is that x men-
tions the concept of trade market, that x pretends to be
a constitution as well as to set up new political founda-
tions for Europe, and that the need of political foundations
requires a constitution anyway. On the other hand, Φ is
not ready to give up the idea that a constitution should
not include any reference to trade markets. Hence, we
have KΦ = {x, x ⇒ tradeM, x ⇒ constitution, x ⇒
newPoliticalF, newPoliticalF ⇒ constitution}, and XΦ =
{⊥,¬((constitution ∧ tradeM) ⇒ ¬admissible)}. The
knowledge of the agent Ψ is that x refers to trade markets,
and as such, has to be considered a treaty rather than a con-
stitution. Moreover Ψ thinks that a treaty can be accepted.
Hence, KΨ = {x, x ⇒ tradeM, x ⇒ treaty, treaty ⇔
¬constitution, treaty ⇒ admissible}, while XΨ = {⊥}.

Assume now the claim made by Ψ in front of Φ that x
should be accepted, i.e. α1

Ψ = 〈{x ⇒ treaty, treaty ⇒
admissible}, x ⇒ admissible〉.

Since {x ⇒ admissible} ∈ Φ |− concl
(
α1

Ψ

)
, Φ can

compute a counterargument: α1
Φ = 〈{x, x ⇒ tradeM, x ⇒

constitution, (constitution ∧ tradeM) ⇒ ¬admissible)},
¬(x ⇒ admissible)〉.

Now Ψ analyzes α1
Φ: Ψ |+ supp

(
α1

Φ

)
= {{x}, {x ⇒

tradeM}, {(constitution ∧ tradeM) ⇒ ¬admissible)}, ∗},
where ∗ stands for each subset of the set containing ∗, and Ψ

DEPARTMENT OF INFORMATICS 421

11TH NMR WORKSHOP

is against any other elements of α1
Φ. Ψ set up the following

argument: α2
Ψ = 〈{x, x ⇒ treaty, treaty ⇔ ¬constitution},

¬(x ⇒ constitution)〉. On her turn, Φ defends her po-
sition: α2

Φ = 〈{x ⇒ newPoliticalF, newPoliticalF ⇒
constitution},¬¬(x ⇒ constitution)〉.

Deceitful arguments
Deceitful arguments are untruthful arguments made with the
intention to deceive. An agent using such kind of argument
cheats with her current knowledge about the world, and does
so with the intention to trick the other agent. We consider
here two ways of cheating: the first one has to do with some
kind of dilution of an argument, whereas the second one
refers directly to lies. Let us informaly consider dilution
first.

Given an initial argument, in order to narrow the possi-
bilities of counterarguments to consider, (Besnard & Hunter
2001) introduce the following notion of conservativity:

Definition 16. (Besnard & Hunter 2001) An argument 〈S,
c〉 is more conservative than an argument 〈S′, c′〉 iff S ⊆ S′

and c′ � c.

Selecting only the most conservative counterarguments
allows to summarize the different possibilities of answer (as
shown in (Aubry & Risch 2005)). However, depending on
the goal of the agent beginning a discussion, the most con-
servative argument may not be the most suitable one as first
argument:

Example 17. Consider a commercial agent Φ who wants
sell a scooter of trademark label-Z to a client Ψ.
Φ = [{scooter, label-Z, scooter ⇒ edgeOut, edgeOut ⇒
¬trafficJam}, {⊥}].

Φ uses the following argument: 〈{scooter ⇒
edgeOut, edgeOut ⇒ ¬trafficJam}, (scooter ∧ label-Z) ⇒
¬trafficJam〉. But the agent Ψ considers it as a diluted ar-
gument since she does not understand why an unsophisti-
cated scooter is not enough to avoid the traffic jams. She
can then address the following argument to the commercial
agent: 〈{scooter ⇒ edgeOut, edgeOut ⇒ ¬trafficJam},
scooter ⇒ ¬trafficJam〉. Since Φ is for each element of
this argument, she cannot generate any counterargument.

Hence depending on how much Ψ is careful, the first ar-
gument of Φ seems to be useless while a less conservative
argument may appear more appropriate. A new kind of an-
swer can assist our commercial agent to stick up for herself,
which drive us two the second way by which an agent may
cheat:

Definition 18 (Lie). M is a lie of the agent Φ regarding the
set of formulas A iff both M is a relevant answer of Φ to A,
and M is not a coherent answer of Φ. The set of lies of Φ
regarding A is denoted by R�A

Φ .

The ability for an agent to construct answers inconsistent
with her knowledge relies on the use of an X-inference in
the definition of an answer (definition 7), and precisely on
the fact that an agent [K,X] can use a formula from X ∩K.
Indeed, K �X A iff ∃x ∈ X \ K, K ∪ A � x. But
a given answer R = K ′ ∪ conceivable (X ′) of this agent

to A only satisfies K ′
�{⊥}∪X′ A, that is: ∃x ∈ ({⊥} ∪

X ′) \ K ′, K ′ ∪ A � x. Hence a formula of X ∩ K \ K ′ is
the reason why K �X A, which explains why the answer is
inconsistent with the knowledge of the agent.

Property 19. Let M be a relevant answer of the agent
[K,X] to the set A of formulas. M is a lie of this agent
regarding A iff there exists a formula of M \K inconsistent
with K.

Proof. (⇒) Since M ∈ R�A
[K,X], K ∪ (M \K) � ⊥. It has

been proved in (Aubry & Risch 2005) that for any answer
R of [K,X], R \ K is either empty or a singleton. Hence
∃m ∈ M \ K, K ∪ {m} � ⊥. (⇐) By assumption, ∃m ∈
M \K, K∪{m} � ⊥. Hence K∪M � ⊥. From definition
18, it follows that M ∈ R�A

[K,X].

Corollary 20. For every agent [K,X] and for every set of
formulas A, if the intersection of X and the deductive clo-
sure of K is empty, then this agent cannot generate any lie
regarding A: ∀[K,X],∀A,X ∩ K = ∅ ⇒ R�A

[K,X] = ∅

Proof. We prove the contrapositive, that is that R�A
[K,X] �=

∅ ⇒ X ∩ K �= ∅. Assume M ∈ R�A
[K,X]. From

property 19, ∃m ∈ M \ K, K ∪ {m} � ⊥. Then
∃m ∈ conceivable (X) ,K � ¬m. Hence ∃x ∈ X,K � x,
i.e. X ∩ K �= ∅.

This corollary leads to the conclusion that an agent with
no knowledge ([∅, X]), or whose way of reasoning is re-
duced to sole consistency ([K, {⊥}]) cannot generate any
lie. Note however that a relevant answer of the agent [∅, X]
to a set A can be a lie regarding A for an agent with the same
set of forbidden formulas but with an adequate knowledge
base:

Example 21. Let both Φ and Ψ be two agents such that
Φ = [∅, {⊥, a}], and Ψ = [{a}, {⊥, a}]. With A = {a} we
get: R�A

Φ = ∅, and RrA
Φ =

{
{¬a}

}
, but: R�A

Ψ =
{
{¬a}

}
.

A lie can be generated for attacking an argument while
defending another argument:

Example 22 (Lie, attack, and defense). Let Φ be an agent
such that: Φ = [{a, a ⇒ (b ∧ c)}, {⊥, a ∧ b}]. An agent Ψ
set an argument α such that {b} ∈ elements (α). Then Φ
could attack α while generating a lie: β = 〈{a,¬(a ∧ b)},

¬b〉 ∈ Argatt(α)
Φ , and {a,¬(a ∧ b)} ∈ R�

{b}
Φ . But if Ψ

had set an argument α′ with {¬b} ∈ elements (α′), then Φ
could have defended α′ with both the same lie and the same
argument β: β ∈ Argdef(α′)

Φ .

Finally, suppose that an agent Φ generates an argument
α constructed from a lie, for answering an argument β. If
α ∈ Argdef(β)

Φ (resp. α ∈ Argatt(β)
Φ), we cannot presume

whether there exists a coherent argument (i.e. not a lie) of Φ
attacking β (resp. defending β). In other words we cannot
assume that Φ is against (resp. for) any element of β:

422 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

Example 23 (Lie and neutral attitude). Let Φ be an agent
such that: Φ = [{a}, {⊥,¬b ∨ a}]. Now consider an argu-
ment α such that A = {¬b} belongs to elements (α). Then
Φ is neutral about A, but she could set up a counterargument
to α, as far as it is constructed from a lie: 〈{¬(¬b ∨ a)}, b〉.

Coming back to example 17, conferring the commercial
agent the ability to lie allows her to push further her initial
argument.

Example 24 (continuation of example 17). Consider
a commercial agent Φ′ who still wants to sell a
scooter of trademark label-Z to a client Ψ. Φ′ =
[{scooter, label-Z, scooter ⇒ edgeOut, edgeOut ⇒
¬trafficJam}, {⊥, (scooter ∧ ¬label-Z) ⇒ ¬trafficJam}].

Φ′ set up the following argument: 〈{scooter ⇒
edgeOut, edgeOut ⇒ ¬trafficJam}, (scooter ∧ label-Z) ⇒
¬trafficJam〉. The client address the following argument to
the commercial agent: 〈{scooter ⇒ edgeOut, edgeOut ⇒
¬trafficJam}, scooter ⇒ ¬trafficJam〉. Just like Φ in
the example 17, the agent Φ′ is for each element of this
argument, but she can now generate a counterargument:
〈{¬((scooter ∧ ¬label-Z) ⇒ ¬trafficJam)},¬(scooter ⇒
¬trafficJam)〉.

Lies can be advantageous in negotiation dialogues when
a goal is to be achieved. But it is possible to counter-
balance this. Since the work of the philosopher Hamblin
(Hamblin 1970), formal dialogue systems typically establish
and maintain public sets of commitments called commitment
stores for each agent. More than one notion of commitment
is present in the literature on dialogues games 3 but essen-
tially they can bee seen as a tool of memorization for the
arguments advanced by each agent. If an agent Ψ considers
an argument α from an agent Φ as a diluted argument (such
as for instance in examples 17 and 24), then Ψ can ques-
tion Φ about one or the other of the elements of α, and hope
either a clarification (in example 17 where finally Φ agree
with Ψ), or detect an inconsistency in the commitment store
of Φ (in example 24 where Φ′ has advanced two arguments
whose supports are inconsistent together).

Conclusion
X-logics allows agents to cope with singular answers,
namely those ones allowing the agent to produce an argu-
ment inconsistent with her knowledge, while keeping con-
sistency in the knowledge base. This ability relies on the
possibility for the agent to use expectations (if any) that con-
tradict her knowledge. This way, a formal notion of lie is de-
fined that seems to match the standard intuition. Moreover,
a very simplified form of commitment store allows to define
a formal way for detecting such lies. Of course, many ques-
tions still deserve to be addressed. A first question may con-
cern how our system could be embedded in standard mod-
els of dialogue. Especially, having defined how agents may
cheat, we are now concerned with the notion of strategy of
an argumentative exchange. In this respect, it might be inter-
esting to see how our system could be used for the formal-

3For recent works on the question, see for instance (Maudet &
Chaib-draa 2003; Bentahar et al. 2004).

ization of some of the strategies described in (Schopenhauer
2004). Another may be more exciting question in the same
direction concerns how an agent can exchange arguments
with herself, thus allowing the representation of a form of in-
trospection. Finally, some technical questions are still unan-
swered or under study, such as a link between the four pos-
sible attitudes of an agent with Belnap’s four valued logic,
or the comparison with the three attitudes described in (Par-
sons, Wooldridge, & Amgoud 2003).

Acknowledgments
The authors are grateful to the anonymous reviewer for their
helpful comments.

References
Amgoud, L., and Cayrol, C. 1998. On the acceptability
of arguments in preference-based argumentation. In UAI,
1–7.
Amgoud, L., and Parsons, S. 2002. Agent dialogues with
conflicting preferences. In ATAL ’01: Revised Papers from
the 8th International Workshop on Intelligent Agents VIII,
190–205. London, UK: Springer-Verlag.
Aubry, G., and Risch, V. 2005. Toward a logical tool
for generating new arguments in an argumentation based
framework. In ICTAI’05. Hong Kong, China: IEEE Com-
puter Society. ISBN: 0–7695-2488–5.
Bench-Capon, T. 2003. Persuasion in practical argument
using value-based argumentation frameworks. Journal of
Logic and Computation 13(3):429–448.
Bentahar, J.; Moulin, B.; Meyer, J.-J. C.; and Chaib-draa,
B. 2004. A logical model for commitment and argu-
ment network for agent communication. In AAMAS ’04:
Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, 792–799.
Washington, DC, USA: IEEE Computer Society.
Besnard, P., and Hunter, A. 2001. A logic-based theory of
deductive arguments. Artificial Intelligence 128(1-2):203–
235.
Bochman, A. 2003. Brave nonmonotonic inference and its
kinds. Annals of Mathematics and Artificial Intelligence
39(1–2):101–121.
Bondarenko, A.; Dung, P.; Kowalski, R.; and Toni, F. 1997.
An abstract, argumentation-theoretic framework for default
reasoning. Artificial Intelligence 93(1-2):63–101.
Dung, P. M.; Kowalski, R. A.; and Toni, F. 2006. Di-
alectic proof procedures for assumption-based, admissible
argumentation. Artificial Intelligence 170(2):114–159.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence
77(2):321–358.
Elvang-Gøransson, M.; Krause, P.; and Fox, J. 1993. Di-
alectic reasoning with inconsistent information. In Hecker-
man, D., and Mamdani, E. H., eds., UAI ’93, The Catholic
University of America, Providence, Washington, DC, USA,
114–121. Morgan Kaufmann.

DEPARTMENT OF INFORMATICS 423

11TH NMR WORKSHOP

Hamblin, C. L. 1970. Fallacies. Methuen.
Lin, F., and Shoham, Y. 1989. Argument systems: A uni-
form basis for nonmonotonic reasoning. In Kaufmann, M.,
ed., KR’89, 245–255.
Maudet, N., and Chaib-draa, B. 2003. Commitment-based
and dialogue-game based protocols – new trends in agent
communication language. Knowledge Engineering Review
17(2):157–179.
Parsons, S.; Wooldridge, M.; and Amgoud, L. 2003. Prop-
erties and complexity of some formal inter-agent dialogues.
J. Log. Comput. 13(3):347–376.
Prakken, H., and Vreeswijk, G. 2002. Logical systems
for defeasible argumentation. In Gabbay, D., and Guenth-
ner, F., eds., Handbook of Philosophical Logic, volume 4.
Dordrecht: Kluwer Academic, 2nd edition. 219–318.
Prakken, H. 2005. Coherence and flexibility in dialogue
games for argumentation. Journal of Logic and Computa-
tion 15:1009–1040.
Rescher, N. 1977. Dialectics, A Controversy-Oriented Ap-
proach to the Theory of Knowledge. State University of
New York Press, Albany.
Schopenhauer, A. 2004. The Art Of Controversy.
Kessinger Publishing. translated by T. Bailey Saunders.
Siegel, P., and Forget, L. 1996. A representation theorem
for preferential logics. In KR’96, 453–460. Morgan Kauf-
mann.
Simari, G. R., and Loui, R. P. 1992. A mathematical treat-
ment of defeasible reasoning and its implementation. Arti-
ficial Intelligence 53(2-3):125–157.
Vreeswijk, G. 1992. Reasoning with defeasible arguments:
Examples and applications. In Pearce, D., and Wagner,
G., eds., Logics in AI: Proc. of the European Workshop
JELIA’92. Berlin, Heidelberg: Springer. 189–211.

424 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

DEPARTMENT OF INFORMATICS 425

11TH NMR WORKSHOP

5.7 Comparing Decisions in an Argumentation-based Setting

Comparing decisions on the basis of a bipolar typology of arguments

Leila Amgoud and Henri Prade

Institut de Recherche en Informatique de Toulouse
118, route de Narbonne, 31062 Toulouse, France

{amgoud, prade}@irit.fr

Abstract

Arguments play two types of roles w.r.t. decision, namely
helping to select an alternative, or to explain a choice. Until
now, the various attempts at formalizing argument-based de-
cision making have relied only on one type of arguments, in
favor of or against alternatives.
The paper proposes a systematic typology that identifies eight
types of arguments, some of them being weaker than others.
First the setting emphasizes thebipolar nature of the eval-
uation of decision results by making an explicit distinction
between prioritizedgoalsto be pursued, and prioritizedrejec-
tionsthat are stumbling blocks to be avoided. This is the basis
for an argumentative framework for decision. Each decision
is supportedby arguments emphasizing its positive conse-
quences in terms of goals certainly satisfied, goals possibly
satisfied, rejections certainly avoided and rejections possi-
bly avoided. A decision can also beattackedby arguments
emphasizing its negative consequences in terms of certainly
or possibly missed goals, or rejections certainly or possibly
led to by that decision. The logical properties of this frame-
work are studied. The richness of the proposed typology
makes it possible to partition the set of alternatives into four
classes, giving thus astatusto decisions, which may berec-
ommended, discommended, controversialor neutral. Each
class may be refined into sub-classes taking advantage of the
strengths of the different types of arguments. This typology is
also helpful from an explanation point of view for being able
to use the right type of arguments depending on the context.
The paper also presents a preliminary investigation onde-
cision principlesthat can be used for comparing decisions.
Three classes of principles can be considered:unipolar, bipo-
lar or non-polarprinciples depending on whether i) only ar-
guments pro or only arguments cons, or ii) both types, or iii)
an aggregation of them into a meta-argument are used.

Key words: Decision making, Argumentation

Introduction
Decision making, often viewed as a form of reasoning to-
ward action, has raised the interest of many scholars includ-
ing philosophers, economists, psychologists, and computer
scientists for a long time. Any decision problem amounts to
select the best option(s) among different alternatives.

The decision problem has been considered from different
points of view. Classicaldecision theory, as developed by
economists, has focused mainly on identifyingcriteria for

comparing different alternatives. The inputs of this approach
are a set offeasibleactions, and a function that assesses the
value of their consequences when the actions are performed
in a given state. The output is a preference relation between
actions. A decision criterion, such as the classical expected
utility (Savage 1954), should then be justified on the basis of
a set of postulates to which the preference relation between
action should obey. Note that such an approach considers a
group of candidate actions as a whole rather than focusing
on a candidate action individually. Moreover, the candidate
actions are supposed to be feasible.

More recently, some researchers in AI have advocated the
need for a new approach in which the different aspects that
may be involved in a decision problem (such as the goals
of the agent, the feasibility of an action, its consequences,
the conflicts between goals, the alternative plans for achiev-
ing the same goal, etc) can be handled. In (Bratman 1987;
Bratman, Israel, & Pollack 1988), it has been argued that
this can be done by representing the cognitive states, namely
agent’s beliefs, desires and intentions (thus the so-called
BDI architecture). The decision problem is then to select
among the conflicting desires a consistent and feasible sub-
set that will constitute the intentions. The above line of re-
search takes its inspiration in the work of philosophers who
have advocated practical reasoning (Raz 1978). Practical
reasoning mainly deals with the adoption, filling in, and re-
consideration of intentions and plans. Moreover, it allows
reasoning about individual actions using for instance the
well-knownpractical syllogism(Walton 1996):

• G is a goal for agent a

• Doing action A is sufficient for agent a to carry out goal
G

• Then, agent a ought to do action A

In this setting, a candidate action may be rejected because
it may lead to the violation of other important goals, or to
other bad consequences, etc.

In this paper, we are concerned with an argumenta-
tive counterpart of classical decision theory. Humans use
arguments for supporting, attacking or explaining choices.
Indeed, each potential choice has usually pros and cons of
various strengths. Adopting such an approach in a decision
support system would have some obvious benefits. On

426 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

the one hand, not only would the user be provided with a
“good” choice, but also with the reasons underlying this rec-
ommendation, in a format that is easy to grasp. On the other
hand, argumentation-based decision making is expected to
be more akin with the way humans deliberate and finally
make or understand a choice. This argumentative view of
decision has not been much considered until recently even
if the idea of basing decisions on arguments pros and cons
is very old and was already somewhat formally stated by
Benjamin Franklin (Franklin 1887) more than two hundred
years ago.
Articulating decisions on the basis of arguments is relevant
for different decision problems or approaches such as
decision under uncertainty, multiple criteria decisions, or
rule-based decisions. For instance, in medical domains,
decisions are usually to be made under incomplete or
uncertain information, and the potential results of candidate
decisions may be evaluated from different criteria. More-
over, there may exist some expertise under the form of
decision rules that associate possible decisions with given
contexts. Thus, the different types of decision problems
interfere, and consequently a unified argumentation-based
model may be still more worth developing.
Whatever the decision problem is, the basic idea is that
candidate decisions may lead to positively or negatively
assessed results. This gives birth to arguments in favor
of (pros) or against (cons) a decision in a given context.
Different attempts at formalizing argument-based decision
making can be found in the literature (Fox & Das 2000;
Fox, Krause, & Ambler 1992; Bonet & Geffner 1996;
Brewka & Gordon 1994; Amgoud & Prade 2004;
Dubois & Fargier 2005; Amgoud, Bonnefon, & Prade
2005). These works do not much discuss the nature of
arguments in a decision analysis, and usually rely on
one type of argument that may be in favor of or against
alternatives.
This paper emphasizes thebipolar nature of the evaluation
of decision results, by making an explicit distinction
betweengoals having a positive flavor, and rejections,
with a negative flavor, that are stumbling blocks to be
avoided. This, for instance, applies to criteria scales where
the positive grades (associated with positive results) are
separated from the negative ones (associated with negative
results) by one or several neutral values.

The paper proposes a systematic typology that identifies
eight types of arguments. Some of them are weaker than
others, since they rather reflect the existence of examples
or counter-examples as supporting or challenging possible
choices. In the proposed framework, each decision is
supportedby arguments emphasizing its positive features in
terms of goals certainly satisfied, goals possibly satisfied,
rejections certainly avoided and rejections possibly avoided.
The possibility that a goal may be reached or that a rejection
may be avoided is assessed in practice by the existence of
relevant known examples. A decision can also beattacked
by arguments emphasizing its negative features in terms of
certainly or possibly missed goals, or rejections certainly
or possibly led to by that decision. The richness of the

proposed typology makes it possible to partition the set
of alternatives into four classes, giving thus astatus to
decisions, which may berecommended, discommended,
controversialor neutral. Each class may be refined into
sub-classes taking advantage of the strengths of the different
types of arguments.

The aim of this paper is also to present a general discus-
sion and a first study of the different classes of argument-
based decision principles. In the following, we argue that
three main classes of principles can be distinguished:

1. Unipolar principlesthat focus only on one type of argu-
ments when comparing choices (either arguments pros or
arguments cons)

2. Bipolar principlesthat take into account both types of ar-
guments but still keeping the distinction between the two
types

3. Non-polar principlesthat consist of aggregating the two
types of arguments into a meta-argument and compare
pairs of choices on the basis of their meta-arguments.

Note that, the use of suffix “polar” here refers to the di-
chotomy between arguments pros and arguments cons (and
not to the bipolar structure induced by goals and rejections).

A general framework for decision making
Solving a decision problem amounts to defining a pre-
ordering, usually a complete one, on a setD of possible
choices (or decisions), on the basis of the different conse-
quences of each decision. Argumentation can be used for
defining such a pre-ordering. An argumentation-based deci-
sion process can be decomposed into the following steps:

1. Constructing arguments infavor/againsteach decision in
D.

2. Evaluating the strength of each argument.

3. Comparing decisions on the basis of their arguments.

4. Defining a pre-ordering onD.

In (Amgoud, Bonnefon, & Prade 2005), an argumentation-
based decision framework is defined as follows:

Definition 1 (Argumentation-based decision framework)
An argumentation-based decision frameworkis a tuple<D,
A,�, .Princ> where:

• D is a set of all possible choices.

• A is a set of arguments.

• � is a (partial or complete) pre-ordering onA.

• .Princ (for principle for comparing decisions), defines a
(partial or complete) pre-ordering onD, defined on the
basis ofA.

Theoutputof the framework is a (complete or partial) pre-
ordering.Princ, onD. d1 .Princ d2 means that the decision
d1 is at least as preferred asthe decisiond2 w.r.t. theprinci-
plePrinc.

DEPARTMENT OF INFORMATICS 427

11TH NMR WORKSHOP

Notation: Let A, B be two arguments ofA, and� be a pre-
order (maybe partial) onA. A � B means thatA is at least
as ‘strong’ asB.
� and≈ will denote respectively the strict ordering and the
relation of equivalence associated with the preference be-
tween arguments, defined as follows:

• A � B iff A � B and not (B � A) (meaning thatA is
strictly stronger thanB),

• A≈B iff A�B andB �A (meaning thatA is as strong
asB).

Different definitions of� or different definitions of.Princ

may lead to different decision frameworks that may not re-
turn the same results.

Logical language
In what follows, letL be a propositional language. FromL
we can distinguish the four following sets:

1. The setD gathers all the possiblealternatives, or deci-
sions. These candidate actions are assumed to be feasible.
Elements ofD are supposed to be represented by literals.

2. The setK represents thebackground knowledgethat is
assumed to be consistent. Elements ofK are formulas of
L.

3. The setG gathers thegoalsof an agent. A goal represents
what the agent wants to achieve, and has thus a positive
flavor. This base is assumed to be consistent too, i.e. an
agent is not allowed to have contradictory goals. Note that
a goal may be expressed in terms of a logical combination
of constraints on criteria values, and does not necessarily
refer to one criterion. Elements ofG are supposed to be
literals.

4. The setR gathers therejectionsof an agent. A rejection
represents what the agent wants to avoid. Clearly rejec-
tions express negative preferences. The set{¬r|r ∈ R}
is assumed to be consistent since acceptable alternatives
should satisfy¬r due to the rejection ofr. However, note
that if r is a rejection, this does not necessarily mean that
¬r is a goal. For instance, in case of choosing a medical
drug, one may have as a goal the immediate availability
of the drug, and as a rejection its availability only after at
least two days. As it can be guessed on this example, ifg
is a goal onlyr such thatr ` ¬g can be a rejection, and
conversely. This means that rejection can be more spe-
cific than the negation of goals. Moreover, recent cogni-
tive psychology studies (Cacioppo, Gardner, & Bernston
1997) have confirmed the cognitive validity of this dis-
tinction between goals and rejections. Elements ofR are
supposed to be literals.

Definition 2 A decision problemis a tupleT = 〈D, K, G,
R〉.

A new typology of arguments
When solving a decision problem, there may exist several
alternative solutions. Each alternative may have arguments
in its favor (called PROS), and arguments against it (called

CONS). In the following, an argument is associated with an
alternative, and always either refers to a goal or to a rejec-
tion.

Arguments PROS point out the existence of good con-
sequences or the absence of bad consequences for a given
alternative. More precisely, we can distinguish between two
types of good consequences, namely the guaranteed satis-
faction of a goal whenK ∪ {d} ` g, and the possible satis-
faction of a goal whenK∪{d} 6` ¬g, with d ∈ D andg ∈ G.
Note that this latter situation corresponds to the existence of
an interpretation that satisfiesK, d, andg. This leads to the
following definition:

Definition 3 (Types of positive arguments PRO)Let T
be a decision problem. Apositively expressed argument in
favor ofan alternatived is a pairA = 〈d, g〉 such that:

1. d ∈ D, g ∈ G,K ∪ {d} is consistent

2. • K ∪ {d} ` g (arguments of Type SPP), or
• K ∪ {d} 6` ¬g (arguments of Type WPP)

The consistency ofK ∪ {d} means thatd is applicable in
the contextK, in other words that we cannot prove fromK
thatd is impossible. This means that impossible alternatives
w.r.t. K have been already taken out when defining the set
D.
Note that SPP arguments are stronger than WPP ones since
(K ∪ {d} ` g) entails (K ∪ {d} 6` ¬g). SPP stands for
“Strong Positive PROS”, whereas WPP is short for “Weak
Positive PROS”. Clearly, WPP arguments have interest only
when the corresponding SPP do not exist. From a practical
point of view, SPP arguments will be generally expressed by
only exhibiting a minimal subsetS of K such thatS ∪ {d}
` g, while a WPP argument corresponds to the existence
of (at least) one known case whereg was satisfied whiled
was applied. This means that together withK, the agent
stores a case memory of already experienced choices. Let
ArgSPP (d) (resp.ArgWPP (d)) be the set of all arguments
of type SPP (resp. WPP) in favor ofd in the sense of the
above definition. The following inclusion holds:

Property 1 Letd ∈ D. ThenArgSPP (d) ⊆ ArgWPP (d).

Similarly, there are two forms of absence of bad conse-
quences that lead to arguments PROS: the first one amounts
to avoid a rejection for sure, i.e.K ∪ {d} ` ¬r, and the
second form corresponds only to the possibility of avoiding
a rejection (K ∪ {d} 6` r), which can be testified in prac-
tice by the existence of a case counter-example assuring that
K ∧ d ∧ ¬r is consistent (withr ∈ R). This leads to the
following definition:

Definition 4 (Types of negative arguments PROS)Let T
be a decision problem. Anegatively expressed argument in
favor ofan alternative is a pairA = 〈d, r〉 such that:

1. d ∈ D, r ∈ R,K ∪ {d} is consistent

2. • K ∪ {d} ` ¬r (arguments of Type SNP), or
• K ∪ {d} 6` r (arguments of Type WNP)

Here again, SNP arguments are stronger than WNP ones
sinceK ∪ {d} ` ¬r entailsK ∪ {d} 6` r. SNP stands for

428 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

“Strong Negative PROS”, while WNP means “Weak Nega-
tive PROS”. LetArgSNP (d) (resp.ArgWNP (d)) be the set
of all arguments of type SNP (resp. WNP) in favor ofd.

Property 2 Letd ∈ D. ThenArgSNP (d) ⊆ ArgWNP (d).

Arguments CONS highlight the existence of bad conse-
quences for a given alternative, or the absence of good ones.
As in the case of arguments PROS, there are a strong form
and a weak form of both situations. Namely, negatively ex-
pressed arguments CONS are defined either by exhibiting a
rejection that is necessarily satisfied, or a rejection that is
possibly satisfied. Formally:

Definition 5 (Types of negative arguments CONS)Let T
be a decision problem. Anegatively expressed argument
againstan alternatived is a pairA = 〈d, g〉 such that:

1. d ∈ D, r ∈ R,K ∪ {d} is consistent

2. • K ∪ {d} ` r (arguments of Type SNC), or
• K ∪ {d} 6` ¬r (arguments of Type WNC)

Let ArgSNC(d) (resp. ArgWNC(d)) be the set of all
arguments of type SNC (resp. WNC) againstd, where C
stands for Cons.

Property 3 Letd ∈ D. ThenArgSNC(d) ⊆ ArgWNC(d).

Lastly, the absence of positive consequences can also be
seen as an argument against (CONS) an alternative. A strong
form and a weak form of positively expressed arguments
against an alternative can be defined as follows:

Definition 6 (Types of arguments CONS)Let T be a de-
cision problem. Apositively expressed argument againstan
alternative is a pairA = 〈d, g〉 such that:

1. d ∈ D, g ∈ G,K ∪ {d} is consistent

2. • K ∪ {d} ` ¬g (arguments of Type SPC), or
• K ∪ {d} 6` g (arguments of Type WPC)

Let ArgSPC(d) (resp.ArgWPC(d)) be the set of all argu-
ments of type SPC (resp. WPC) againstd.

Property 4 Letd ∈ D. ThenArgSPC(d) ⊆ ArgWPC(d).

Let us consider positively expressed arguments for instance.
Observe that for a given alternatived and a fixed goalg, all
the types of arguments cannot take place at the same time.
Formally,

Property 5 SPP and WPC (resp. SPC and WPP, and SPP
and SPC) arguments are mutually exclusive.

In the first two cases, this is due to the opposite character-
istic conditions of the definitions. The last exclusion is due
to the consistency ofK ∪ {d}, and thusg and¬g cannot be
obtained simultaneously. Taking into account the subsump-
tions between weak and strong forms of arguments, the fol-
lowing result holds:

Property 6 Letd ∈ D andg ∈ G. There are only three pos-
sible situations w.r.t a positively expressed argument linking
d and g, namely: i) there is an SPP argument, ii) there is
an SPC argument, iii) there are both an WPP and an WPC
arguments.

The above property reflects the three possible epistemic
statuses of a knowledge base (K ∪ {d}) w.r.t a proposition
(hereg), which may be true, false, or having an unknown
truth status. In the latter case, emphasizing either a WPP
argument, or a WPC argument is a matter of optimism vs
pessimism to which we come back later. Since WPP and
WPC arguments are somewhat neutralizing each other, we
will not consider them in the decision status classification
that we introduce now.

Decision status
In the previous section, we have shown that each decision
may be supported by two types of strong arguments, and at-
tacked by two other types of strong arguments. In summary,
given a decisiond ∈ D, we will have the following sets of
arguments:

• ArgSPP (d) = those arguments which capture the goals
that are reached when applyingd

• ArgSNP (d) = those arguments which capture the rejec-
tions that are avoided when applyingd

• ArgSNC(d) = those arguments which capture the rejec-
tions that are not avoided when applyingd

• ArgSPC(d) = those arguments which capture the goals
that are missed when applyingd

Note that when a given set is empty, for instanceArgSPP (d)
= ∅, this does not mean at all that decisiond cannot lead
to any goal, but rather we cannot be certain that a goal is
reached as some information is missing. The above types
of arguments supporting or attacking a choiced give birth
to four main differentstatusesfor that decision: recom-
mended, discommended, neutral andcontroversial(see Ta-
ble 1 for the straightforward formal definitions). Recom-
mended choices are those choices that have only arguments
in favor of them and no arguments against them (whatever
their type). Discommended choices are those choices that
have no arguments in favor of them and only arguments
against them. Regarding neutral choices, they have neither
arguments in favor of them, nor arguments against. Choices
that have at the same time arguments in favor of them and
arguments against are said controversial. As shown in Table
1, there are 9 situations in which a choice is controversial.

Property 7 Letd ∈ D. Thend is either fully recommended,
or fully discommended, or controversial or neutral.

Note that one may give priority to SPP and SNC arguments,
which directly state that a goal is reached, or a rejection is
not missed respectively. SNP and SPC arguments that are
in favor of or against a choice only indirectly can be used
for refining the two first types of arguments. For instance, in
Table 1, a choice that has both SPP and SNP arguments in
favor of it is strongly recommended, whereas a choice with
only SPP arguments in favor of it is only recommended.

This classification of choices is of interest from a per-
suasion or explanation perspective, since e.g recommended
choices are more easily arguable than controversial ones.
This does not mean that recommended choices are always
better than any other as we shall see in the next section.

DEPARTMENT OF INFORMATICS 429

11TH NMR WORKSHOP

Status Sub-status Combination
Recommended Strongly recom. 〈ArgSPP (d) 6= ∅, ArgSNP (d) 6= ∅, ArgSNC(d) = ∅, ArgSPC(d) = ∅〉

Recom. 〈ArgSPP (d) 6= ∅, ArgSNP (d) = ∅, ArgSNC(d) = ∅, ArgSPC(d) = ∅〉
Weakly recom. 〈ArgSPP (d) = ∅, ArgSNP (d) 6= ∅, ArgSNC(d) = ∅, ArgSPC(d) = ∅〉

Discommended Strongly discom. 〈ArgSPP (d) = ∅, ArgSNP (d) = ∅, ArgSNC(d) 6= ∅, ArgSPC(d) 6= ∅〉
Discom. 〈ArgSPP (d) = ∅, ArgSNP (d) = ∅, ArgSNC(d) 6= ∅, ArgSPC(d) = ∅〉
Weakly discom. 〈ArgSPP (d) = ∅, ArgSNP (d) = ∅, ArgSNC(d) = ∅, ArgSPC(d) 6= ∅〉

Neutral 〈ArgSPP (d) = ∅, ArgSNP (d) = ∅, ArgSNC(d) = ∅, ArgSPC(d) = ∅〉
Controversial 〈ArgSPP (d) 6= ∅, ArgSNP (d) 6= ∅, ArgSNC(d) 6= ∅, ArgSPC(d) 6= ∅〉

〈ArgSPP (d) 6= ∅, ArgSNP (d) 6= ∅, ArgSNC(d) 6= ∅, ArgSPC(d) = ∅〉
〈ArgSPP (d) 6= ∅, ArgSNP (d) 6= ∅, ArgSNC(d) = ∅, ArgSPC(d) 6= ∅〉
〈ArgSPP (d) 6= ∅, ArgSNP (d) = ∅, ArgSNC(d) 6= ∅, ArgSPC(d) 6= ∅〉
〈ArgSPP (d) 6= ∅, ArgSNP (d) = ∅, ArgSNC(d) 6= ∅, ArgSPC(d) = ∅〉
〈ArgSPP (d) 6= ∅, ArgSNP (d) = ∅, ArgSNC(d) = ∅, ArgSPC(d) 6= ∅〉
〈ArgSPP (d) = ∅, ArgSNP (d) 6= ∅, ArgSNC(d) 6= ∅, ArgSPC(d) 6= ∅〉
〈ArgSPP (d) 6= ∅, ArgSNP (d) = ∅, ArgSNC(d) = ∅, ArgSPC(d) 6= ∅〉
〈ArgSPP (d) = ∅, ArgSNP (d) 6= ∅, ArgSNC(d) = ∅, ArgSPC(d) 6= ∅〉

Table 1: Decision status

Principles for comparing decisions
In the following we are interested in discussing possible
choices for.Princ. The relation� is assumed to be given. It
may be either a partial or a complete preorder. This preorder
may account for the certainty of the pieces of knowledge in-
volved in the argument and/or to the importance of the goal
to which the argument pertains. However, this will not be
detailed in the following.

Comparing choices on the basis of the sets of PROS or
CONS arguments that are associated with them is a key
step in an argumentative decision process. Depending on
what sets are considered and how they are handled, one can
roughly distinguish between three categories of principles:

Unipolar principles: are those that only refer to either the
arguments PROS or the arguments CONS.

Bipolar principles: are those that reason on both types of
arguments at the same time.

Non-polar principles: are those where arguments PROS
and arguments CONS a given choice are aggregated into
a uniquemeta-argument. It results that the negative and
positive polarities disappear in the aggregation.

Below we present the main principles that can be thought
of for each category. In what follows,ArgPro(d) =
ArgSPP (d) ∪ ArgSNP (d), andArgCons(d) = ArgSNC(d)
∪ ArgSPC(d). Moreover, the functionResult returns for
a given set of arguments, all the goals/rejections involved in
those arguments.

Unipolar principles

In this section we present basic criteria for comparing deci-
sions on the basis of only arguments PROS. Note that similar
ideas apply to arguments CONS.

We start by presenting those criteria that do not involve
the strength of arguments, then their respective refinements
when strength is taken into account.

A first natural criterion consists of preferring the decision
d1 over d2 if for each argument<d2, g>, there exists an
argument<d1, g>, while the reverse is not true. Formally:

Definition 7 Letd1, d2 ∈ D.
d1 . d2 iff Result(ArgPro(d2)) ⊆ Result(ArgPro(d1)).

This partial preorder is refined by the followingcomplete
preorder in terms of cardinality, i.e preferring the decision
that has more arguments PROS.

Definition 8 (Counting arguments PROS) Let d1, d2 ∈
D.
d1 . d2 iff |ArgPro(d1)| ≥ |ArgPro(d2)|.
When the strength of arguments is taken into account in the
decision process, one may think of preferring a choice that
has a dominant argument, i.e. an argument PROS that is
preferred to any argument PROS the other choices.

Definition 9 Letd1, d2 ∈ D.
d1 . d2 iff ∃ A ∈ ArgPro(d1) such that∀ B ∈ ArgPro(d2),
A � B.

The above definition relies heavily on the relation� that
compares arguments. Thus, the properties of this criterion
depends on those of�. Namely, it can be checked that the
above criterion works properly only if� is a complete pre-
order.

Property 8 If the relation� is a complete preorder, then.
is also a complete preorder.

Note that the above relation may be found to be too restric-
tive, since when the strongest arguments in favor ofd1 and
d2 have equivalent strengths (in the sense of≈), d1 andd2

are also seen as equivalent. However, we can refine the
above definition by ignoring the strongest arguments with
equal strengths, by means of the followingstrict preorder.

430 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

Definition 10 Letd1, d2 ∈ D, and� a complete preorder.
Let (P1, . . ., Pr), (P ′

1, . . ., P ′
s) be the vectors of arguments

PROS the decisionsd1 and d2 respectively. Each of these
vectors is assumed to be decreasingly ordered w.r.t� (e.g.
P1 � . . . � Pr). Letv = min(r, s).
d1 . d2 iff:

• P1 � P ′
1, or

• ∃ k ≤ v such thatPk � P ′
k and∀ j < k, Pj ≈ P ′

j , or

• r > v and∀ j ≤ v, Pj ≈ P ′
j .

Note that in all the above criteria, the two types of arguments
PROS are considered as having the same importance. Thus,
reasoning with goals is as important as reasoning with rejec-
tions. However, this may be debatable, since one may prefer
arguments ensuring that a goal is reached to an argument
that shows that a rejection is avoided, since the latter is the
least thing that can be expected. On the basis of this new
source of preference between arguments, the above criteria
can be further reformulated by processing separately the two
sets of arguments. More precisely, we can apply the above
definitions only for the set of arguments of type SPP, and
only in case of ties to apply again the same definitions on
SNP arguments. We may even a different criterion on the
set SNP of arguments.

Another point that is worth discussing is the impact of
possible dependencies between goals (or rejections) on the
decision criteria. Namely, assume that two goals are, for
instance, redundant, i.e they are logically equivalent giving
K. Applying the cardinality-based criterion may lead to
privilege decisions reaching redundant goals. This maybe
debatable although allowing for redundancy is clearly a way
of stressing the importance of a goal (or a rejection). Note
that not all the above criteria are sensible to redundancy, for
instance the first one (Definition 7).

Till now, we have only discussed decision criteria
based on arguments PROS. However, the counterpart
criteria when arguments CONS are considered can also be
defined. Thus, the counterpart criterion of the one defined
in Definition 7 is the following partial preorder:

Definition 11 Letd1, d2 ∈ D. d1 . d2 iff
Result(ArgCons(d1)) ⊆ Result(ArgCons(d2)).

Similarly, it refinement in terms of cardinality is given by
the following complete preorder:

Definition 12 (Counting arguments CONS) Let d1, d2 ∈
D.
d1 . d2 iff |ArgCons(d1)| ≤ |ArgCons(d2)|.
The criteria that take into account the strengths of argu-
ments have also their counterparts when handling arguments
CONS.

Definition 13 Letd1, d2 ∈ D.
d1 . d2 iff ∃ B ∈ ArgCons(d2) such that ∀ A ∈
ArgCons(d1), B � A.

As in the case of arguments PROS, when the relation� is
a complete preorder, the above relation is also a complete
preorder, and can be refined into the following strict one.

Definition 14 Letd1, d2 ∈ D.
Let (C1, . . ., Cr), (C ′

1, . . ., C ′
s) be the vectors of arguments

CONS the decisionsd1 and d2. Each of these vectors is
assumed to be decreasingly ordered w.r.t� (e.g.C1 � . . .�
Cr). Letv = min(r, s).
d1 � d2 iff:

• C ′
1 � C1, or

• ∃ k ≤ v such thatC ′
k � Ck and∀ j < k, Cj ≈ C ′

j , or

• v < s and∀ j ≤ v, Cj ≈ C ′
j .

Finally, it may be also worth distinguishing between SNC
and SPC arguments, and to privilege those which are SNC
since they are the most striking ones. Similar ideas given in
the case of arguments PROS apply.

Bipolar principles
Let’s now define some principles where both types of argu-
ments (PROS and CONS) are taken in account when com-
paring decisions. Generally speaking, we can conjunctively
combine the criteria dealing with arguments PROS with
their counterpart handling arguments CONS. For instance,
the criterion given in Definition 8 can be combined with that
given in Definition 12 into the following one:

Definition 15 Letd1, d2 ∈ D.
d1 . d2 iff

1. |ArgPro(d1)| ≥ |ArgPro(d2)|, and
2. |ArgCons(d1)| ≤ |ArgCons(d2)|.
However, note that unfortunately this is no longer a complete
preorder. Similarly, the criteria given respectively in Defini-
tion 9 and Definition 13 can be combined into the following
one:

Definition 16 Letd1, d2 ∈ D.
d1 . d2 iff:

• ∃ A ∈ Argpros(d1) such that∀ B ∈ Argpros(d2), A �
B.

• @ A’ ∈ ArgCons(d1) such that∀ B’ ∈ ArgCons(d2), A
� B.

This means that one prefers a decision which has at least one
supporting argument which is better than any supporting
argument of the other decision, and also which has not a
very strong argument against it.
Note that the above definition can be also refined in the
same spirit as Definitions 10 and 14.

Another family of bipolar decision criteria applies the
Franklin principle which is a natural extension to the
bipolar case of the idea underlying Definition 10. This
criterion consists, when comparing pros and CONS a
decision, of ignoring pairs of arguments pros and CONS
which have the same strength. After such a simplification,
one can apply any of the above bipolar principles. In what
follows, we will define formally the Franklin simplification.

Definition 17 (Franklin simplification) Letd ∈ D.
Let P = (P1, . . ., Pr), (C = C1, . . ., Cm) be the vectors
of the arguments PROS and CONS the decisiond. Each of
these vectors is assumed to be decreasingly ordered w.r.t�

DEPARTMENT OF INFORMATICS 431

11TH NMR WORKSHOP

(e.g.P1 � . . . � Pr).
Theresult of the simplificationis P ′ = (Pj+1, . . ., Pr), C ′ =
(Cj+1, . . ., Cm) such that:

• ∀ 1≤ i≤ j, Pi ≈Ci and (Pj+1 �Cj+1 or Cj+1 � Pj+1)
• If j = r (resp.j = m), thenP ′ = ∅ (resp.C ′ = ∅).

Non-polar principles
In some applications, the arguments in favor of and against a
decision are aggregated into a uniquemeta-argumenthaving
a unique strength. Thus, comparing two decisions amounts
to compare the resulting meta-arguments. Such a view is
well in agreement with current practice in multiple princi-
ples decision making, where each decision is evaluated ac-
cording to different principles using the same scale (with a
positive and a negative part), and an aggregation function is
used to obtain a global evaluation of each decision.

Definition 18 (Aggregation criterion) Letd1, d2 ∈ D. Let
<P1, . . ., Pn> and<C1, . . ., Cm> (resp.<P1’, . . ., Pl’>
and <C1’, . . ., Ck ’>) the vectors of the arguments PROS
and CONS the decisiond1 (resp.d2).
d1 . d2 iff h(P1, . . ., Pn, C1, . . ., Cm)� h(P1’, . . ., Pl’, C1’,
. . ., Ck ’), whereh is anaggregation function.

A simple example of this aggregation attitude is computing
the difference of the number of arguments PROS and CONS.

Definition 19 Letd1, d2 ∈ D.
d1 . d2 iff |ArgPros(d1)| − |ArgCons(d1)| ≥
|ArgPros(d2)| - |ArgCons(d2)|.
This has the advantage to be again a complete preorder,
while taking into account both PROS and CONS arguments.

Conclusion
The paper has proposed an argumentation-based framework
for decision making. The framework emphasizes clearly
the bipolar nature of the consequences of choices by distin-
guishing goals to be pursued from rejections to be avoided.
This bipolar setting gives birth to two kinds of arguments
for each choice: arguments in favor of that choice and ar-
guments against it. Moreover, we have shown that there
are four types of arguments PROS a choice (resp. against
a choice), and some of them are stronger than others. The
different types of arguments allow us to give a unique sta-
tus to each choice (recommended, discommended, neutral
or controversial). We have also proposed different criteria
for comparing pairs of choices. The proposed approach is
very general and includes as particular cases already studied
argumentation-based decision principles (Fox & Das 2000;
Amgoud & Prade 2004; Dubois & Fargier 2005). Besides,
the richness of the different possible behaviors when arguing
a decision in this framework should be compared to the ac-
tual practice of humans as studied in cognitive psychology.

Acknowledgments
This work was supported by the Commission of the Euro-
pean Communities under contract IST-2004-002307, ASPIC
project “Argumentation Service Platform with Integrated
Components”.

References
Amgoud, L., and Prade, H. 2004. Using arguments for
making decisions. InProceedings of the 20th Conference
on Uncertainty in Artificial Intelligence, 10–17.
Amgoud, L.; Bonnefon, J.-F.; and Prade, H. 2005. An
argumentation-based approach to multiple criteria deci-
sion. In Proceedings of the 8th European Conference on
Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, ECSQARU’2005, 269–280.
Bonet, B., and Geffner, H. 1996. Arguing for decisions:
A qualitative model of decision making. In E. Horwitz,
F. J. e., ed.,Proc. 12th Con. on Uncertainty in Artificial
Intelligence (UAI’96), 98–105.
Bratman, M.; Israel, D.; and Pollack, M. 1988.Plans and
resource bounded reasoning., volume 4. Computational
Intelligence.
Bratman, M. 1987.Intentions, plans, and practical reason.
Harvard University Press, Massachusetts.
Brewka, G., and Gordon, T. 1994. How to buy a Porsche:
An approach to defeasible decision making. InWorking
Notes of the AAAI-94 Workshop on Computational Dialec-
tics, 28–38.
Cacioppo, J.; Gardner, W.; and Bernston, G. 1997. Be-
yond bipolar conceptualizations and measures: The case
of attitudes and evaluative space.Personality and Social
Psychology Review1, 1:3–25.
Dubois, D., and Fargier, H. 2005. On the qualitative com-
parison of sets of positive and negative affects. InProceed-
ings of ECSQARU’05.
Fox, J., and Das, S. 2000.Safe and Sound. Artificial Intel-
ligence in Hazardous Applications. AAAI Press, The MIT
Press.
Fox, J.; Krause, P.; and Ambler, S. 1992. Arguments,
contradictions and practical reasoning. InProceedings of
the 10th European Conference on AI, ECAI’92.
Franklin, B. 1887.Letter to J. B. Priestley, 1772, in The
Complete Works, J. Bigelow, ed.New York: Putnam.
Raz, J. 1978. Practical reasoning.Oxford, Oxford Univer-
sity Press.
Savage, L. 1954.The Foundations of Statistics. New York:
Dover. Reprinted by Dover, 1972.
Walton, D. 1996.Argument schemes for presumptive rea-
soning, volume 29. Lawrence Erlbaum Associates, Mah-
wah, NJ, USA.

432 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

5.8 Defeasible Reasoning about Beliefs and Desires

Defeasible Reasoning About Beliefs and Desires

Nicolás D. Rotstein and Alejandro J. Garcı́a
Artificial Intelligence Research and Development Laboratory,

Department of Computer Science and Engineering, Universidad Nacional del Sur,
Email: {ndr,ajg}@cs.uns.edu.ar

Abstract

In this paper we show how a deliberative agent can repre-
sent beliefs and desires and perform defeasible reasoning in
order to support its derived beliefs. Strict and defeasible fil-
tering rules can be used by the agent for selecting among its
desires a proper one that fits in the particular situation it is in-
volved. Thus, defeasible argumentation will be used for rea-
soning about desires. Application examples from a robotic
soccer domain will be given.

Introduction
This article addresses the problem of having a deliberative
intelligent agent built upon an architecture that relies on sets
of Beliefs and Desires (e.g., the BDI architecture (Bratman,
Israel, & Pollack 1991; Rao & Georgeff 1995; Rao 1996)).
The proposed approach allows the agent to perform defea-
sible reasoning in order to support its derived beliefs and
offers a defeasible argumentation framework for selecting
desires.

In our approach, the agent will represent information that
it perceives directly from its environment, and in addition to
these perceived beliefs, the agent may represent other knowl-
edge in the form of strict and defeasible rules. Then, using
a defeasible argumentation formalism it will be able to to
obtain a warrant for its derived beliefs.

We will introduce a reasoning formalism for selecting
those desires that are suitable to be carried out by the agent.
In order to perform this selection, the agent will use its be-
liefs (that represent the current situation) and a defeasible
logic program composed by filtering rules.

Warranting agent’s beliefs and perception
In this approach, agent’s beliefs will correspond to the se-
mantics1 of a defeasible logic program PB = (ΠB,ΔB). In
this kind of programs (Garcı́a & Simari 2004) two different
sets are distinguished: the set ΔB for representing tentative
knowledge in the form of defeasible rules; and the set ΠB

for representing non-tentative, sound knowledge in the form
of strict rules and facts. The information that the agent per-
ceives directly from its environment is represented in ΠB

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1Since the semantics of DeLP is skeptical, there is only one.

with a subset of facts denoted Φ. Thus, in the set ΠB two
disjoint subsets will be distinguished: the subset Φ of per-
ceived beliefs that will be updated dynamically, and a subset
Π formed with strict rules and facts that will represent sta-
tic knowledge. Therefore, ΠB= Φ ∪ Π. As we will explain
below, in order for program PB to behave correctly, some
restrictions over ΠB will be imposed.

In addition to the perceived beliefs, the agent may use
strict and defeasible rules from PB in order to obtain a war-
rant for its derived beliefs (see Definition 1). A brief expla-
nation of how warrants are obtained using the defeasible ar-
gumentation formalism of DeLP, and the definitions of facts,
strict and defeasible rules are included below (the interested
reader is referred to (Garcı́a & Simari 2004) for a detailed
explanation).

Representing knowledge and reasoning with DeLP
In DeLP, knowledge is represented using facts, strict rules
or defeasible rules:

• Facts are ground literals representing atomic information
or the negation of atomic information using the strong
negation “∼” (e.g., hasBall(opponent)).

• Strict Rules are denoted L0← L1, . . . , Ln, where
the head L0 is a ground literal and the body
{Li}i>0 is a set of ground literals. (e.g.,
∼hasBall(myTeam)← hasBall(opponent)).

• Defeasible Rules are denoted L0 –≺L1, . . . , Ln,
where the head L0 is a ground literal and the
body {Li}i>0 is a set of ground literals. (e.g.,
∼pass(mate1) –≺marked(mate1)).

Syntactically, the symbol “–≺ ” is all that distinguishes a
defeasible rule from a strict one. Pragmatically, a defea-
sible rule is used to represent defeasible knowledge, i.e.,
tentative information that may be used if nothing could be
posed against it. A defeasible rule “Head –≺Body” is un-
derstood as expressing that “reasons to believe in the an-
tecedent Body provide reasons to believe in the consequent
Head” (Simari & Loui 1992).

A Defeasible Logic Program P is a set of facts, strict
rules and defeasible rules. When required, P is denoted
(Π,Δ) distinguishing the subset Π of facts and strict rules,
and the subset Δ of defeasible rules. Observe that strict

DEPARTMENT OF INFORMATICS 433

11TH NMR WORKSHOP

and defeasible rules are ground. However, following the
usual convention (Lifschitz 1996), some examples will use
“schematic rules” with variables. Given a “schematic rule”
R, Ground(R) stands for the set of all ground instances of
R. Given a program P with schematic rules, we define (Lif-
schitz 1996): Ground(P) =

⋃
R∈P Ground(R). In order

to distinguish variables, they are denoted with an initial up-
percase letter.

Strong negation is allowed in the head of program rules,
and hence may be used to represent contradictory knowl-
edge. From a program (Π,Δ) contradictory literals could be
derived, however, the set Π (which is used to represent non-
defeasible information) must possess certain internal coher-
ence. Therefore, Π has to be non-contradictory, i.e., no pair
of contradictory literals can be derived from Π. Given a lit-
eral L the complement with respect to strong negation will
be denoted L (i.e., a=∼a and ∼a=a).

DeLP incorporates an argumentation formalism for the
treatment of the contradictory knowledge that can be derived
from (Π,Δ). This formalism allows the identification of the
pieces of knowledge that are in contradiction. A dialectical
process is used for deciding which information prevails. In
particular, the argumentation-based definition of the infer-
ence relation makes it possible to incorporate a treatment of
preferences in an elegant way.

In DeLP a literal L is warranted from (Π,Δ) if there ex-
ists a non-defeated argument A supporting L. In short, an
argument for a literal L, denoted 〈A, L〉, is a minimal set of
defeasible rules A⊆Δ, such that A∪Π is non-contradictory
and there is a derivation for L from A∪Π. In order to estab-
lish if 〈A, L〉 is a non-defeated argument, argument rebut-
tals or counter-arguments that could be defeaters for 〈A, L〉
are considered, i.e., counter-arguments that by some crite-
rion are preferred to 〈A, L〉. Since counter-arguments are
arguments, there may exist defeaters for them, and defeaters
for these defeaters, and so on. Thus, a sequence of argu-
ments called argumentation line is constructed, where each
argument defeats its predecessor in the line (for a detailed
explanation of this dialectical process see (Garcı́a & Simari
2004)).

In DeLP, given a query Q there are four possible an-
swers2: YES, if Q is warranted; no, if the complement of
Q is warranted; undecided, if neither Q nor its complement
is warranted; and unknown, if Q is not in the language of the
program.

Perceived and Warranted Beliefs
As stated above, agent’s beliefs will correspond to the se-
mantics of a defeasible logic program (ΠB,ΔB), and the set
ΠB will represent perceived and static information (ΠB= Φ
∪ Π). Since ΠB has to be non-contradictory, some restric-
tions about perception are imposed:

1. We assume that perception is correct in the sense that it
will not give a pair of contradictory literals. Whenever
this happens both literals will be ignored.

2The implementation (interpreter) of DeLP that satisfies the se-
mantics described in (Garcı́a & Simari 2004) is currently accessible
online at http://lidia.cs.uns.edu.ar/DeLP.

2. We will also require that no perceived literal in Φ can be
derived directly from Π.

Thus, if Π is non-contradictory and these two restrictions
are satisfied, then ΠB will also be non-contradictory. The
next definition introduces the different types of belief that an
agent will obtain from a defeasible logic program (ΠB,ΔB).

Definition 1 (belief types) A perceived belief is a fact in Φ
that represents information that the agent has perceived di-
rectly from its environment. A strict belief is a literal that
is not a perceived belief, and it is derived from ΠB = Π ∪
Φ (i.e., no defeasible rules are used for its derivation). A
defeasible belief is a warranted literal L supported by an
argument 〈A, L〉 that uses at least one defeasible rule (i.e.,
A �= ∅). Finally, a derived belief is a strict or a defeasible
belief. We will denote with Bs the set of strict beliefs, and
with Bd the set of defeasible beliefs. Therefore, in any given
situation the beliefs of an agent will be B = Φ ∪ Bs ∪ Bd.

Observe that the sets Φ, Bs and Bd are disjoint sets. Ob-
serve also that, although perceived beliefs are facts in ΠB,
there can be other facts in ΠB that are not perceived. For in-
stance, facts that represent agent’s features, roles, etc. These
facts that do not represent perceived information are persis-
tent in the sense that they will not change with perception.
For example: myRole(defender), opponent(o1).

In this approach we assume a perception function that pro-
vides the agent with information about its environment. This
function will be invoked by the agent in order to update its
perceived beliefs set Φ. When this happens the new infor-
mation obtained must override the old one following some
criterion. Updating a set of literals is a well-known problem
and many solutions exist in the literature.

Example 1 Consider an agent Ag that has the following
program (ΠB,ΔB). Here, the set ΠB was divided distin-
guishing the subset Φ of perceived facts, and the subset Π
of non-perceived information.

Φ=

{
hasBall(t1)
marked(t1)

}

Π=

⎧⎪⎨
⎪⎩

mate(t1)
opponent(o1)
∼mate(X)← opponent(X)
∼receive(self)← hasBall(self)

⎫⎪⎬
⎪⎭

ΔB=

{
receive(self) –≺hasBall(X),mate(X)
∼receive(self) –≺marked(self)
∼receive(self) –≺hasBall(X),∼mate(X)

}

In this example, Ag has the following perceived beliefs:
hasBall(t1) (the player t1 has the ball), and marked(t1)
(its teammate t1 is marked). Besides its perceived beliefs, it
has two other facts that are strict beliefs: mate(t1) (t1 is a
teammate) and opponent(o1) (o1 is an opponent). The set
Π has also two strict rules representing that “an opponent
is not a teammate” and that “Ag cannot receive the ball
from itself”. Observe that it can also infer the strict belief:
∼mate(o1) (o1 is not a teammate).

The set of defeasible rules ΔB represents that: “if
a teammate has the ball, then Ag may receive a pass

434 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

from it”, “being marked is a good reason for not re-
ceiving a pass”, and “if the one that has the ball is
not a teammate, then there are good reasons for not re-
ceiving the ball from it”. Thus, from (ΠB,ΔB), the ar-
gument {receive(self) –≺hasBall(t1),mate(t1)} has no
defeaters, and therefore, there is a warrant for one defeasi-
ble belief: receive(self) (Ag may receive a pass).

Consider now that, upon perception, the set Φ is up-
dated to Φ= {hasBall(t1), marked(t1), marked(self)}
(i.e., the original situation has changed only in that the
agent is now being marked); then, from this new program,
the argument for receive(self) has a “blocking defeater”,
what means that the DeLP answer for receive(self) and
∼receive(self) will be both UNDECIDED. Figure 1 shows
this situation, where two incomparable arguments block
each other. There, arguments are depicted as triangles con-
taining the defeasible rules that form them. The double ar-
row represents that both arguments attack each other with
equal strength.

Figure 1: Undecided situation due to blocking defeaters.

Consider a new situation where Φ= {hasBall(o1)}.
Here, the DeLP answer for receive(self) is NO, because
there is a warrant for ∼receive(self) supported by the non-
defeated argument:

{∼receive(self) –≺hasBall(o1),∼mate(o1)}.

A preference criterion between contradictory arguments
is needed in order to prevent blocking situations. For a
deeper discussion on this matter we refer to (Chesñevar, Ma-
guitman, & Loui 2000; Prakken & Vreeswijk 2002).

The following propositions show that, although PB rep-
resents contradictory information, the sets of beliefs B of an
agent will be non-contradictory.

Proposition 1 The set of beliefs B of an agent is a set of
warranted literals.
Proof: As proved in (Garcı́a & Simari 2004), empty argu-
ments have no defeaters and therefore, if a literal can be de-
rived from ΠB then it is warranted. Thus, perceived beliefs
are warranted literals, because a fact has an empty argu-
ment that supports it. Strict beliefs are also warranted be-
cause they are derived using only strict rules and facts from
ΠB and therefore, supported by an empty argument. Defea-
sible beliefs are warranted by definition.

Proposition 2 The set of beliefs B of an agent is a non-
contradictory set.
Proof: In order to be a contradictory set, it should have two
complementary beliefs (L and ∼L). However, proposition 1

states that B is a set of warranted literals, and from a defea-
sible logic program it is not possible to obtain a warrant for
a literal L and also a warrant for ∼L.

Desires Filtering and Selection
In our approach, agents desires will be represented by a set
of literals D. This set will contain a literal for representing
each desire that the agent might want to achieve, along with
its complement; that is, if L ∈ D, then L ∈ D. As we will
explain in detail below, we will assume that beliefs and de-
sires are represented with separate names, i.e., D ∩ B= ∅,
(see Remark 1).

Example 2 According to our application domain, the set D
of all possible desires for a robotic soccer agent could be:

D=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

shoot ∼shoot
pass(Mate) ∼pass(Mate)
carry ∼carry
mark(Opp) ∼mark(Opp)
goto(Place) ∼goto(Place)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

That is, the set of possible desires of the agent includes: to
shoot on goal, to pass the ball to a teammate, to carry the
ball, to mark an opponent, to go to a specific position in the
field, and each corresponding complement.

The set D represents all the desires that the agent may
want to achieve. However, depending on the situation in
which it is involved, there could be some desires that will be
impossible to be carried out. For example, consider a situa-
tion in which the agent does not have the ball and the ball is
in a place p, then, the desire shoot will not be possible to be
carried out, whereas goto(p) could be a possible option.

Therefore, agents should reason about its desires in order
to select the appropriate ones. Following the spirit of the
BDI model, once appropriate desires are detected, the agent
may select (and commit to) a specific intention (goal), and
then select appropriate actions to fulfill that intention.

In this section, we will introduce a reasoning formalism
for selecting from D those desires that are suitable to be car-
ried out. In order to perform this selection, the agent will use
its beliefs (representing the current situation) and a defeasi-
ble logic program (ΠF ,ΔF) composed by filtering rules as
defined below.

Definition 2 (Filtering rule) Let D be the set of desires of
an agent, a filtering rule is a strict or defeasible rule that has
a literal L ∈ D in its head and a non-empty body.

Observe that a filtering rule can be either strict or defeasi-
ble and, as we will explain below, the effect in the filtering
process will be different. Note also that a filtering rule can-
not be a single literal (i.e., a fact). Below we will explain
how to use filtering rules in order to select desires, but first
we will introduce an example to provide some motivation.

Example 3 Considering the set D introduced in Example 2,
the following filtering rules can be defined for selecting de-
sires:

ΠF =

{ ∼carry← ∼hasBall
∼shoot← ∼hasBall

}

DEPARTMENT OF INFORMATICS 435

11TH NMR WORKSHOP

ΔF =

⎧⎪⎨
⎪⎩

shoot –≺theirGoalieAway
carry –≺noOneAhead
∼shoot –≺farFromGoal
∼carry –≺shoot

⎫⎪⎬
⎪⎭

Consider a particular situation in which the agent does
not have the ball (i.e., ∼hasBall holds as a belief), then
from the agent’s beliefs and the filtering rules (ΠF ,ΔF) of
Example 3 there are warrants for ∼carry and ∼shoot. In
this situation the agent should not consider selecting the de-
sires carry and shoot because there are warranted reasons
against them.

Suppose now another situation in which the agent has
the ball and the opponent goalie is away from its position
but the agent is far from the goal (i.e., {theirGoalieAway,
farFromGoal} ⊂ B). Then, from the agent’s beliefs and
the filtering rules (ΠF ,ΔF) of Example 3, there are argu-
ments for both shoot and ∼shoot. Since these two argu-
ments defeat each other, a blocking situation occurs and the
answer for each one is UNDECIDED. In contrast with the
previous situation, here there are no strong reasons against
selecting the desire shoot, and as we will show below, in
this formalism an undecided desire will be eligible.

In Definition 3 below, we will introduce a mechanism for
filtering the set of desires D in order to obtain a subset of D
containing only those desires achievable in the current situ-
ation. In order to do that, beliefs and filtering rules should
be used in combination. Hence, we need to explain how two
defeasible logic programs can be properly combined.

Combining beliefs with filtering rules
In this formalism, agents will have a defeasible logic pro-
gram (de.l.p.) (ΠB,ΔB) containing rules and facts for deriv-
ing beliefs, and a de.l.p. (ΠF ,ΔF) with filtering rules for se-
lecting desires. Observe that the union of two de.l.p. might
not be a de.l.p., because the union of two sets of consis-
tent strict rules could be contradictory (e.g., ΠF ={(a← b),
(∼a← c)} and ΠB={b, c}). Therefore, in order to guar-
antee that ΠB ∪ ΠF is not contradictory, a merge revi-
sion operator is needed. Therefore, instead of simply hav-
ing (ΠB ∪ ΠF , ΔB ∪ ΔF) we will impose to have (ΠB

◦ ΠF , ΔB ∪ ΔF ∪ ΔX), where “◦” is a merge revision
operator (Fuhrmann 1997). The mechanism of this opera-
tor (Falappa, Kern-Isberner, & Simari 2002) “is to add ΠB

to ΠF and then eliminate from the result all possible incon-
sistency by means of an incision function that makes a cut
over each minimally inconsistent subset of ΠB ∪ ΠF .”

Observe that in particular in our approach the set ΠF will
contain only strict rules representing filtering rules, whereas
the set ΠB will contain beliefs representing the agent per-
ception of the environment. Therefore, the elements of ΠB

can not be ignored or deleted. Hence, the conflicting set X
of ΠB◦ΠF will be defined by eliminating all the conflicting
strict rules from ΠB and ΠF . Thus, if literals L and ∼L can
be derived from ΠB∪ΠF , those strict rules that have L or
∼L in their heads will be in X .

The merge revision operator will remove the inconsis-
tency from ΠB ∪ ΠF on behalf of some criterion. This could
be achieved, for example, by deleting all the rules in conflict,
but the part of the knowledge represented by these rules will

be lost. Another option is to convert the status of the (strict)
rules involved in the conflict, turning them into defeasible
rules (Falappa, Kern-Isberner, & Simari 2002). This crite-
rion intends to keep the encoded information that would be,
otherwise, lost.

Therefore, in our case, the union of two de.l.p. like
(ΠB,ΔB) and (ΠF ,ΔF) will be a program (Π,Δ), where Π
= ΠB◦ΠF and Δ = ΔB ∪ ΔF ∪ ΔX . The set Π is obtained
using a merge revision operator ◦ that eliminates X , and the
set ΔX is a set of defeasible rules obtained transforming
each strict rule r ∈ X in a defeasible rule.

Example 4 Here we show how the merge revision operator
works. Consider having the following sets:

ΠF ={(a← b), (∼a← c)}
ΠB={b, c}
Note that in this case ΠF ∪ ΠB is a contradictory set.

Therefore, it cannot be part of a valid de.l.p. As stated above,
we will apply the merge revision operator instead of per-
forming the union of both sets. Hence, we have:

ΠB◦ΠF = {b, c}
ΔX={(a –≺b), (∼a –≺c)}
Thus, after the application of the merge operator, no

knowledge is lost (although it is certainly weakened), be-
cause it is now encoded under the form of defeasible rules.

Selecting desires
The next definition introduces a mechanism for filtering the
set of desires D in order to obtain a subset containing only
those desires achievable in the current situation.

Definition 3 (Current desires) Let K = (ΠB ◦ ΠF , ΔB ∪
ΔF ∪ ΔX) be a defeasible logic program where (ΠB,ΔB)
contains rules and facts for deriving beliefs, and (ΠF ,ΔF)
contains filtering rules. Given a set D of desires, the set Dc

of Current Desires will be defined as:

Dc = {δ ∈ D | there is no warrant for δ from K}
Thus, the set Dc will be a subset of the set D and, at

any given moment, it will contain those desires that have
a chance of being achieved. Observe that a literal L will not
belong to Dc when its complement L is warranted.

Example 5 Let’s consider a subset of the set of desires
from example 2:

D=

{
shoot ∼shoot
carry ∼carry
goto(Place) ∼goto(Place)

}

Taking the filtering rules from example 3:

ΠF =

{ ∼carry← ∼hasBall
∼shoot← ∼hasBall

}

ΔF =

⎧⎪⎨
⎪⎩

shoot –≺theirGoalieAway
carry –≺noOneAhead
∼shoot –≺farFromGoal
∼carry –≺shoot

⎫⎪⎬
⎪⎭

Then, if we consider the following perceived beliefs:

436 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

ΠB=Φ=

{
theirGoalieAway
noOneAhead

}
We will have these current desires:

Dc=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

shoot
carry
∼carry
goto(Place)
∼goto(Place)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Using the filtering rules from (ΠF ,ΔF), the argument of
Figure 2 for shoot can be built. This argument has no de-
featers, therefore, its conclusion shoot is warranted (i.e., the
DeLP answer is YES). Hence, shoot will belong to the
set Dc of current desires. An argument for desire carry
also exists, but it is blocked by a counter-argument hold-
ing ∼carry, as shown in Figure 3; then, both carry and
∼carry DeLP answers are UNDECIDED, and they are in-
cluded intoDc. Finally, considering the desires goto(Place)
and ∼goto(Place), we can see that there are no filtering
rules regarding to them, so their DeLP answers are UN-
KNOWN, and both will belong to Dc.

Figure 2: Undefeated argument for shoot.

Figure 3: Blocking situation for carry and ∼carry.

You may notice that if neither Q nor Q has a warrant built
from (ΠB ◦ ΠF , ΔB ∪ ΔF ∪ ΔX), then both will be in-
cluded into the set Dc. Therefore, the agent will have to
consider these two options (among the rest of the current
desires) in order to choose an intention, although they are in
contradiction.

In this work we will require having B and D as two sepa-
rate sets. If a literal is allowed to belong to both sets, then,
when joining the (ΠB,ΔB) and (ΠF ,ΔF) de.l.p. programs,
an undesirable mix of concepts would arise. Note that this is
not a strong restriction, because the fact that a literal could
be both a belief and a desire brings about well-known repre-
sentational issues.

Remark 1 We will assume that no literal L ∈ D belongs
to B. That is, a desire cannot be perceived or derived as a

belief.

Example 6 Here we will show why it is important to take
Remark 1 into consideration, keeping literals from B and D
apart. Consider the following sets of beliefs and desires:

(ΠB,ΔB) = ({x, y},{a –≺y})
D= {a, ∼a}

And we will consider these filtering rules:

(ΠF ,ΔF) = ({},{∼a –≺x})

Here, ΠB◦ΠF = {x, y}; and ΔB ∪ ΔF ∪ ΔX = {a –≺y,
∼a –≺x}. We have that ‘∼a’ has an argument based on
ΔF , and ‘a’ has an argument built from (ΠB,ΔB). By Def-
inition 3, both literals will belong to Dc. However, if we let
this happen, we will be letting the beliefs rules decide which
desires are going to be in Dc. Although the argumentation
process involved in the selection of the current desires po-
tentially requires some dialectical analysis to be performed
upon the rules defined in (ΠB,ΔB), the elements ofDc should
be determined only by the filtering rules in (ΠF ,ΔF).

A simple way of satisfying the restriction imposed by Re-
mark 1 could be to distinguish literals in D with a partic-
ular predicate like “desire”. For example: desire(shoot),
∼desire(shoot), desire(pass(Mate)), etc. Thus, assum-
ing that no belief is represented with the predicate name
“desire”, then literals representing beliefs will be, by con-
struction, different from the ones representing desires. Al-
though this alternative is supported by this formalism, in the
examples given in this paper we will use the convention of
having different names for desires and beliefs.

The set Dc can be also defined in terms of DeLP answers.
As stated in the last section about DeLP, given a literal Q
there are four possible answers for the query Q: YES, NO,
UNDECIDED, and UNKNOWN. Thus, given Q ∈ D, Q will
be in Dc if, from (ΠB ◦ ΠF , ΔB ∪ ΔF ∪ ΔX), the answer
for Q is YES, UNDECIDED or UNKNOWN.

Next, we introduce several propositions and properties
that show how different characteristics of both D and
(ΠF ,ΔF) determine the contents of Dc.

Proposition 3 Given a literal Q ∈ D, if there is no filtering
rule in (ΠF ,ΔF) with head Q nor its complement Q, then
{ Q, Q } ⊆ Dc.
Proof: If Q ∈ D, then Q �∈ B (remark 1), and since Q is
not in the head of any filtering rule, then it is not possible to
obtain a warrant for Q. Therefore, by Definition 3, Q will
be included into the set Dc of current desires.

Consider the sets ΠF , ΔF , ΠB and D from Example 5;
we have that goto(Place) and ∼goto(Place) belong to
D, but there are no filtering rules in (ΠF ,ΔF) with head
goto(Place) nor ∼goto(Place). Note that both literals are
in Dc, which corresponds with Proposition 3.

Observe that the proof of Proposition 3 can also be ex-
pressed in terms of DeLP answers. Since there are no rules
with head Q nor its complement, and Q �∈ B, then Q is not
in the language of (ΠB ◦ ΠF , ΔB ∪ ΔF ∪ ΔX). Therefore,
from (ΠB ◦ ΠF , ΔB ∪ ΔF ∪ ΔX) the answer for Q will be
UNKNOWN (the same holds for Q). Because these answers

DEPARTMENT OF INFORMATICS 437

11TH NMR WORKSHOP

are different from NO, Q and Q will be included into the set
Dc of current desires.

Proposition 4 Given a literal Q ∈D, if Q is warranted from
K = (ΠB ◦ ΠF , ΔB ∪ ΔF ∪ ΔX), then Q ∈ Dc and Q �∈
Dc.
Proof: Since Q has a warrant built from K, then there is no

warrant for Q, therefore, Q ∈ Dc. To prove that Q �∈ Dc, we
have to show that there is a warrant for the complement of
Q (i.e., Q) which is true by hypothesis.

Considering the case shown in Example 5, see that de-
sire shoot has a warrant built from (ΠB ◦ ΠF , ΔB ∪ ΔF ∪
ΔX), and shoot belongs to Dc, but ∼shoot does not, which
coincides with the assertion of Proposition 4.

The next proposition shows that the set Dc of current de-
sires will not be empty if the set D of desires is not empty.
This does not depend on the set of filtering rules nor the set
of beliefs.

Proposition 5 For any K = (ΠB ◦ ΠF , ΔB ∪ ΔF ∪ ΔX),
D will not be empty if, and only if, Dc is not empty.
Proof:

(⇒) Let L and L be two elements of D, then one of the three
following cases holds:
(a) L is warranted from K, therefore, L ∈ Dc.
(b) L is warranted from K, therefore, L ∈ Dc

(c) Neither L nor L is warranted from K, therefore, both L
and L will belong to Dc.
Hence, in any case, Dc will not be empty.
(⇐) Trivial from Definition 3. That is, if Dc is not empty,
then D cannot be empty.

Given an agent with K = (ΠB ◦ ΠF , ΔB ∪ ΔF ∪ ΔX),
and a set of desires D, the following properties hold:

1. For every literal L ∈ D, it cannot be the case that neither
L nor L do not belong to Dc.
Suppose that L and L are not in Dc, then, the complement
of each (i.e., L and L) must be warranted from K, which
is not allowed in DeLP. Observe that, if both literals are
warranted, then both literals have to belong to Dc, which
contradicts the initial supposition.

2. If there are no filtering rules then Dc= D.
This is a particular case of Proposition 3. If there are no
filtering rules (i.e., ΠF = ∅ and ΔF = ∅) then no element
of D will have its complement warranted, so every ele-
ment of D will be in Dc.

3. If there are no desires warranted from K, then Dc= D.
If no element of D is warranted from K, then no element
of D will have its complement warranted from K (L ∈ D
implies that L ∈ D). Thus, every element of D will be in
Dc.

4. If there is, at least, one element of D that is warranted
from K, then Dc will be a proper subset of D.
If L belongs to D and is warranted from K, then L �∈ Dc.

Application to Robotic Soccer
Robotic soccer has proven to be a system complex enough
to test many of the features of any reasoning system. The

robots are controlled by software agents, each of which has
a set of high-level actions to perform, such as kicking the
ball with a given strength or moving in a given direction. At
every moment, an agent has to choose which action to do
next. That choice can be made using a reasoning system, in
this case, a defeasible argumentation system.

In this Section we will show how a player makes a deci-
sion based on the model proposed in this paper. The scenario
has three players belonging to one team (‘self’, ‘t1’ and ‘t2’
in Figure 4) and three players from the opposite team (‘o1’,
‘o2’ and ‘o3’ in Figure 4). We will analyze the reasoning
performed by the player named ‘self’. Regarding knowl-
edge representation, the belief predicates will be written ac-
cording to the Close World Assumption, and everything that
cannot be proved will be assumed false.

Let’s suppose that we have a soccer-playing agent, with a
desires set including the options shoot, pass and carry, be-
ing in the situation depicted in Figure 4. The agent will per-
ceive the positions of the ball and all the other players, and
will reason about what to do next. The agent will have dif-
ferent rules, like pass(self, t1) –≺marked(self), that will
be a reason for passing the ball to t1.

Figure 4: ‘self’ decides to pass the ball to ‘t1’

In this situation, the agent has the following perceptions:

Φ=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

marked(self),
oppositeF ield(self),
noOneAhead(t1),
hasBall(self),
betterPosition(self, t1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

The knowledge is represented through a de.l.p., defining
reasons for and against every element belonging to the set
D via strict and defeasible rules. In this example, the sets
ΔF and ΠF are the following:

ΠF = {
(∼shoot(P)← ∼hasBall(P)),
(∼pass(Src,)← ∼hasBall(Src)),

438 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

(∼carry(P)← ∼hasBall(P)) }

ΔF = {
(shoot(P) –≺oppositeF ield(P), noOneAhead(P)),
(shoot(P) –≺oppositeF ield(P), not marked(P)),
(shoot() –≺goalieAway(opposite)),

(∼shoot(P) –≺pass(P,)),
(∼shoot(P) –≺carry(P)),

(pass(Src,) –≺marked(Src)),
(pass(Src, Tgt) –≺betterPosition(Tgt, Src)),

(∼pass(Src, Tgt) –≺playerBetween(Src, Tgt)),
(∼pass(, T gt) –≺marked(Tgt)),
(∼pass(Src,) –≺shoot(Src)),
(∼pass(Src,) –≺carry(Src)),

(carry(P) –≺noOneAhead(P)),

(∼carry(P) –≺shoot(P)),
(∼carry(P) –≺pass(P,)) }

At the particular moment of Figure 4, the player has the
following Beliefs set:

B =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

marked(self),
oppositeF ield(self),
noOneAhead(t1),
hasBall(self),
betterPosition(self, t1),
teammate(t1),
myRole(forward)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Observe that some of these beliefs are perceived
(e.g., marked(self)), while other are persistent (e.g.,
teammate(t1)).

Once built the internal representation of the world, the
agent performs DeLP queries over the elements of its set D,
gathering their corresponding answers:

• Shooting on goal: If you consider program P , along with
the set B of Beliefs, it is clear that no argument can be
built for the desire shoot(self), because every rule with
head shoot(self) has at least one literal in its body that
does not hold. As you can see in Figure 4, there are no
significant common-sense reasons to shoot on goal.
On the other hand, an argument for ∼shoot(self) can be
constructed from P: the one built upon the argument of
being able to perform a pass to a teammate. That counter-
argument is undefeated: there are no reasons against it.
Figure 4 illustrates this situation, and shows that passing
the ball to player ‘t1’ seems to be the better choice to make
at that moment.
The answer given from the interpreter is NO and the agent
will no longer consider shooting on goal.

• Passing the ball: From program P , one argument can be
stated for pass(self, t1), based on the reason that player
‘self’ is marked. None of the rules that could build an
argument against it holds, so this one is undefeated. As
explained above, from the situation we are considering, it
is reasonable to think that this may be a good choice.
The answer given from the interpreter is YES and the
agent will have a strong reason to pass the ball to ‘t1’.

• Carrying the ball: there are no rules from which an ar-
gument for carrying the ball could be built. Program P
and Figure 4 coincide in this matter: there seems to be no
reason for carrying the ball. On the other hand, the afore-
mentioned argument for passing the ball is an undefeated
reason for not doing it.
The interpreter answers NO and the agent will no longer
consider this desire.

Once gathered all the DeLP answers, the set Dc of current
desires can be built:

Dc= { pass(self, t1) }
This means that, in this situation, the player has a clear
choice: the selected intention must be perform a pass to
‘t1’, because it is the only current desire and it is war-
ranted.

Related work
In a very recent paper (Rahwan & Amgoud 2006), Rahwan
and Amgoud have proposed an argumentation-based ap-
proach for practical reasoning that extends (Amgoud 2003)
and (Amgoud & Cayrol 2002), introducing three different
instantiations of Dung’s abstract argumentation framework
in order to reason about beliefs, desires and plans, respec-
tively. This work is, in our concern, the one that is most re-
lated to our approach and, as we will show next, it have many
points in common with our work. Both approaches use a
defeasible argumentation formalism for reasoning about be-
liefs and desires (in their work, they also reason about plans,
but this is out of the scope of our presentation). Like us,
they separate in the language those rules for reasoning about
belief from those rules for reasoning about desires; and, in
both approaches, it is possible to represent contradictory in-
formation about beliefs and desires. Since both approaches
use a defeasible argumentation formalism, they construct ar-
guments supporting competing desires, and these arguments
are compared and evaluated in order to decide which one
prevails. Their notion of desire rule is very similar to our
notion of filtering rule.

Although both approaches have many things in common,
they also differ in many points. In their case, two differ-
ent argumentation frameworks are needed in order to rea-
son about desires: one framework for beliefs rules and other
framework for desires rules. The last one depends directly
on the first one, and since there are two kinds of arguments,
a policy for comparing mixed arguments is given. In our
case, only one argumentation formalism is used for reason-
ing with both types of rules. In their object language, be-
liefs and desires include a certainty factor for every formula,
and no explicitly mention of perceived information is given.
In our case, uncertainty is represented by defeasible rules
(see (Garcı́a & Simari 2004)) and perceived beliefs are ex-
plicitly treated by the model. Besides, although both ap-
proaches use defeasible argumentation, the argumentative
formalism used in their approach differs from ours. In their
case, the comparison of arguments relies on the certainty

DEPARTMENT OF INFORMATICS 439

11TH NMR WORKSHOP

factor given to each formula, and they do not distinguish be-
tween proper and blocking defeaters.

The use of defeasible argumentation for reasoning in BDI
architectures is not new and it was originally mention in
the seminal paper (Bratman, Israel, & Pollack 1991) and
in other more recent works like (Parsons, Sierra, & Jen-
nings 1998). Other related work includes (Thomason 2000)
and (Broersen et al. 2001), where a formalism for reason-
ing about beliefs and desires is given. However, these last
formalisms differ from our because they do not use argu-
mentation.

Conclusions and future work
In this paper we have shown how a deliberative agent can
represent its perception and beliefs using a defeasible logic
program. The information that the agent perceives directly
from its environment is represented with a subset of per-
ceived beliefs that is updated dynamically, and a subset
Π formed with strict rules and facts represent other static
knowledge of the agent. Defeasible argumentation is used
in order to warrant agents (derived) beliefs.

Strict and defeasible filtering rules have been introduced
to represent knowledge for selecting desires and a defeasible
argumentation can be used for selecting a proper desire that
fits in the particular situation the agent is involved.

With this formalism, agents can reason about its desires
in order to select the appropriate ones. However, follow-
ing the spirit of the BDI model, once appropriate desires are
detected, the agent should select (and commit to) a specific
intention (goal), and then select appropriate actions to fulfill
that intention. We are currently working in extending this
approach to consider the representation of agent’s intentions
and reasoning about them.

References
Amgoud, L., and Cayrol, C. 2002. A reasoning model
based on the production of acceptable arguments. Annals of
Mathematics and Artificial Intelligence 34(1-3):197–215.

Amgoud, L. 2003. A formal framework for handling con-
flicting desires. In Proceedings of the 7th European Con-
ference on Symbolic and Quantitative Approaches to Rea-
soning with Uncertainty, ECSQARU’2003, 552–563.

Bratman, M. E.; Israel, D.; and Pollack, M. 1991. Plans
and resource-bounded practical reasoning. In Cummins,
R., and Pollock, J. L., eds., Philosophy and AI: Essays at
the Interface. Cambridge, Massachusetts: The MIT Press.
1–22.

Broersen, J.; Dastani, M.; Hulstijn, J.; Huang, Z.; and
van der Torre, L. 2001. The boid architecture: conficts
between beliefs, obligations, intentions and desires. In Pro-
ceedings of Fifth International Conference on Autonomous
Agents (Agents2001). Montreal, Canada: ACM Press. 9–
16.

Chesñevar, C. I.; Maguitman, A. G.; and Loui, R. P. 2000.
Logical Models of Argument. ACM Computing Surveys
32(4):337–383.

Falappa, M. A.; Kern-Isberner, G.; and Simari, G. R. 2002.
Belief revision, explanations and defeasible reasoning. Ar-
tificial Intelligence Journal 141:1–28.
Fuhrmann, A. 1997. An Essay on Contraction. Studies
in Logic, Language and Information, CSLI Publications,
Stanford, California.
Garcı́a, A. J., and Simari, G. R. 2004. Defeasible logic
programming: An argumentative approach. Theory and
Practice of Logic Programming 4(1):95–138.
Lifschitz, V. 1996. Foundations of logic programming. In
Brewka, G., ed., Principles of Knowledge Representation.
CSLI. 69–127.
Parsons, S.; Sierra, C.; and Jennings, N. 1998. Agents
that reason and negotiate by arguing. Journal of Logic and
Computation 8(3):261–292.
Prakken, H., and Vreeswijk, G. 2002. Logical systems for
defeasible argumentation. In D.Gabbay., ed., Handbook of
Philosophical Logic, 2nd ed. Kluwer Academic Pub.
Rahwan, I., and Amgoud, L. 2006. An argumentation-
based approach for practical reasoning. In Proceedings
of the 5th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2006).
Rao, A. S., and Georgeff, M. P. 1995. BDI-agents: from
theory to practice. In Proceedings of the First International
Conference on Multiagent Systems.
Rao, A. S. 1996. AgentSpeak(L): BDI agents speak out in
a logical computable language. In van Hoe, R., ed., Seventh
European Workshop on Modelling Autonomous Agents in a
Multi-Agent World.
Simari, G. R., and Loui, R. P. 1992. A mathematical treat-
ment of defeasible reasoning and its implementation. Arti-
ficial Intelligence 53(2–3):125–157.
Thomason, R. 2000. Desires and defaults: A framework
for planning with inferred goals. In Proceedings of the sev-
enth international Confenrence on Principle of Knowledge
Representation and Reasoning (KR’00), 702–713.

440 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

DEPARTMENT OF INFORMATICS 441

11TH NMR WORKSHOP

5.9 Refining SCC Decomposition in Argumentation Semantics: A
First Investigation

Refining SCC decomposition in argumentation semantics: a first investigation

Pietro Baroni and Massimiliano Giacomin
Dipartimento di Elettronica per l’Automazione, University of Brescia

Via Branze 38
25123 Brescia Italy

{baroni,giacomin}@ing.unibs.it

Abstract

In the recently proposed SCC-recursive approach to ar-
gumentation semantics, the strongly connected compo-
nents of an argumentation framework are used as the
basic elements for the incremental construction of ex-
tensions. In this paper we argue that a finer decompo-
sition, considering some suitably defined internal sub-
structures of strongly connected components, called au-
tonomous fragments, may be appropriate and support,
in some cases, more intuitive results than the origi-
nal approach. We cast this proposal within the SCC-
recursive framework, show that it satisfies some funda-
mental requirements and provide some examples of its
potential advantages.

Introduction
The notion of SCC-recursiveness has recently been intro-
duced (Baroni, Giacomin, & Guida 2005; Baroni & Gia-
comin 2004a) as a general scheme for argumentation seman-
tics. On one hand, SCC-recursiveness is able to encompass
most significant existing proposals such as grounded seman-
tics (Pollock 1992) and preferred semantics (Dung 1995),
on the other hand, it provides a sound basis for the defini-
tion and investigation of novel semantics proposals. In par-
ticular, the SCC-recursive CF2 semantics (Baroni & Gia-
comin 2004b; Baroni, Giacomin, & Guida 2005) has been
shown to produce intuitively plausible results in some cases,
involving odd-length cycles, which are quite problematic for
other semantics. The definition of SCC-recursiveness stands
on some widely accepted basic principles which can be re-
garded as a common ground for any argumentation seman-
tics: the conflict free principle, the reinstatement principle
(Prakken & Vreeswijk 2001), and the directionality princi-
ple. In particular, the last one suggests that defeat depen-
dencies among arguments can be taken into account follow-
ing the partial order induced by the decomposition of the
graph representation of an argumentation framework into
Strongly Connected Components (SCCs). In some cases it
emerges however that this decomposition is, in a sense, still
“too rough” to capture some intuitively significant aspects of
the defeat graph topology and a further decomposition may
be appropriate. This work starts from this observation and
presents a preliminary investigation about why and how such
a finer decomposition can be carried out in the framework of

SCC-recursive semantics. The paper is organized as follows.
In the following section we recall the necessary background
concepts on SCC-recursiveness, while in the next one we in-
troduce some motivating examples for our investigation. We
then introduce the notion of autonomous fragments within
a strongly connected component and show how this notion
can be exploited within the SCC-recursive scheme. After
exemplifying the application of the proposed approach, we
conclude the paper with some final remarks.

SCC-recursiveness
We first give an account of SCC-recursiveness as introduced
in (Baroni, Giacomin, & Guida 2005). The approach lies
in the frame of the general theory of abstract argumentation
frameworks proposed by Dung (Dung 1995).

Definition 1 An argumentation framework is a pair AF =
〈A,→〉, where A is a set, and →⊆ (A × A) is a binary
relation on A, called attack relation.

In the following we will always assume that A is finite. An
argumentation framework AF = 〈A,→〉 can be represented
as a directed graph, called defeat graph, where nodes are the
arguments and edges correspond to the elements of the at-
tack relation. In the following, the nodes that attack a given
argument α are called defeaters of α and form a set which is
denoted as parentsAF(α):
Definition 2 Given an argumentation framework AF =
〈A,→〉 and a node α ∈ A, we define parentsAF(α) =
{β ∈ A | β → α}. If parentsAF(α) = ∅, then α is called
an initial node.

Since we will frequently consider properties of sets of ar-
guments, it is useful to extend to them the notations defined
for the nodes:

Definition 3 Given an argumentation framework AF =
〈A,→〉, a node α ∈ A and two sets S, P ⊆ A, we define:

S → α ≡ ∃β ∈ S : β → α

α → S ≡ ∃β ∈ S : α → β

S → P ≡ ∃α ∈ S, β ∈ P : α → β

outparentsAF(S) = {α ∈ A | α /∈ S ∧ α → S}
In Dung’s theory, an argumentation semantics is defined

by specifying the criteria for deriving, given a generic argu-
mentation framework, the set of all possible extensions, each

442 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

one representing a set of arguments considered to be accept-
able together. Typically an argument is considered justified
if and only if it belongs to all extensions. Given a generic
argumentation semantics S, the set of extensions prescribed
by S for a given argumentation framework AF = 〈A,→〉
is denoted as ES(AF). If it holds that ∀AF, |ES(AF)| = 1,
then the semantics S is said to follow the unique-status ap-
proach, otherwise it is said to follow the multiple-status ap-
proach (Prakken & Vreeswijk 2001).

SCC-recursiveness is a property of the extensions which
relies on the graph theoretical notion of strongly connected
components (SCCs).

Definition 4 Given an argumentation framework AF =
〈A,→〉, the binary relation of path-equivalence between
nodes, denoted as PEAF ⊆ (A×A), is defined as follows:

• ∀α ∈ A, (α, α) ∈ PEAF

• given two distinct nodes α, β ∈ A, (α, β) ∈ PEAF if and
only if there is a path from α to β and a path from β to α.

The strongly connected component of AF are the
equivalence classes of nodes under the relation of path-
equivalence. The set of the SCCs of AF is denoted as
SCCSAF. A particular case is represented by the empty
argumentation framework: when AF = 〈∅, ∅〉 we assume
SCCSAF = {∅}.

We extend to SCCs the notion of parents, namely the set
of the other SCCs that attack a SCC S, which is denoted
as sccparAF(S), and we introduce the definition of proper
ancestors, denoted as sccancAF(S):
Definition 5 Given an argumentation framework AF =
〈A,→〉 and a SCC S ∈ SCCSAF, we define

sccparAF(S) = {P ∈ SCCSAF | P �= S and P → S}
and

sccancAF(S) = sccparAF(S)∪
⋃

P∈sccparAF(S)

sccancAF(P)

A SCC S such that sccparAF(S) = ∅ is called initial.
It is well-known that the graph obtained by considering

SCCs as single nodes is acyclic. In other words, SCCs can
be partially ordered according to the relation of attack. Fol-
lowing the above definition, initial SCCs are those which
are not preceded by any other one in this partial order. Of
course, in any argumentation framework there is at least
one initial SCC. This fact lies at the heart of the definition
of SCC-recursiveness, which is based on the intuition that
extensions can be built incrementally starting from initial
SCCs and following the above mentioned partial order. In
other words, the choices concerning extension construction
carried out in an initial SCC do not depend on those con-
cerning the other ones, while they directly affect the choices
about the subsequent SCCs and so on.

While the basic underlying intuition is rather simple,
the formalization of SCC-recursiveness is admittedly rather
complex and involves some additional notions. Due to space
limitations, we can only give here a quick account, while
referring the reader to (Baroni, Giacomin, & Guida 2005)
for more details and examples. First of all, the choices in

the antecedent SCCs determine a partition of the nodes of a
generic SCC S into three subsets:

Definition 6 Given an argumentation framework AF =
〈A,→〉, a set E ⊆ A and a set S ⊆ A, we define:

• DAF(S, E) = {α ∈ S | (E ∩ outparentsAF(S)) → α}
• PAF(S, E) = {α ∈ S | (E ∩ outparentsAF(S)) �→

α ∧ ∃β ∈ (outparentsAF(S) ∩ parentsAF(α)) : E �→
β ∧ α �→ β}

• UAF(S, E) = S \ (DAF(S, E) ∪ PAF(S, E)) =
= {α ∈ S | (E ∩ outparentsAF(S)) �→ α ∧ ∀β ∈
(outparentsAF(S) ∩ parentsAF(α)) E ∪ {α} → β}
Definition 6 is a generalized version (useful for the sequel

of the paper) of the corresponding Definition 18 of (Baroni,
Giacomin, & Guida 2005). In words, the set DAF(S, E)
consists of the nodes of S attacked by E from outside S,
the set UAF(S, E) includes any node α of S that is not at-
tacked by E from outside S and is defended by E or de-
fends itself (i.e. the defeaters of α from outside S are all
attacked by E or by α itself), and PAF(S, E) includes any
node α of S that is not attacked by E from outside S and
is not defended by E or by itself (i.e. at least one of the
defeaters of α from outside S is not attacked by E nor
by α). It is easy to verify that, when S is a SCC, as in
the original Definition 18 of (Baroni, Giacomin, & Guida
2005), DAF(S, E), PAF(S, E) and UAF(S, E) are deter-
mined only by the elements of E that belong to the SCCs
in sccancAF(S) and it may not be the case that a node
α ∈ S defends itself against an attack coming from outside
S. Regarding E as a part of an extension which is being
constructed, the idea is then that arguments in DAF(S, E),
being attacked by nodes in E, cannot be chosen in the con-
struction of the extension E (i.e. do not belong to E ∩ S).
Selection of arguments to be included in E is therefore re-
stricted to (S \ DAF(S, E)) = (UAF(S, E) ∪ PAF(S, E)),
which, for ease of notation, will be denoted in the following
as UPAF(S, E).

To formalize this aspect, we define the restriction of an
argumentation framework to a given subset of its nodes:

Definition 7 Let AF = 〈A,→〉 be an argumentation frame-
work, and let S ⊆ A be a set of arguments. The restriction
of AF to S is the argumentation framework AF↓S = 〈S,→
∩(S × S)〉.

Inspired by the reinstatement principle, we require the se-
lection of nodes within a SCC S to be carried out on the
restricted argumentation framework AF↓UPAF(S,E) without
taking into account the attacks coming from DAF(S, E).

Combining these ideas and skipping some details not
strictly necessary in the context of the present paper, we can
finally recall the definition of SCC-recursiveness:

Definition 8 A given argumentation semantics S is SCC-
recursive if and only if for any argumentation framework
AF = 〈A,→〉, ES(AF) = GF(AF,A), where for any
AF = 〈A,→〉 and for any set C ⊆ A, the function
GF(AF, C) ⊆ 2A is defined as follows:
for any E ⊆ A, E ∈ GF(AF, C) if and only if

• in case |SCCSAF| = 1, E ∈ BFS(AF, C)

DEPARTMENT OF INFORMATICS 443

11TH NMR WORKSHOP

• otherwise, ∀S ∈ SCCSAF

(E ∩ S) ∈ GF(AF↓UPAF(S,E), UAF(S, E) ∩ C)

where BFS(AF, C) is a function, called base function, that,
given an argumentation framework AF = 〈A,→〉 such that
|SCCSAF| = 1 and a set C ⊆ A, gives a subset of 2A.

Since this definition is somewhat arduous to examine in
its full detail, we just give some “quick and dirty” indica-
tions which are useful for the sequel of the paper (in partic-
ular, we do not consider the meaning of the parameter C in
the description, as not necessary for the comprehension of
this paper). The set of extensions ES(AF) of an argumenta-
tion framework AF is given by GF(AF,A), namely by the
invocation of the function GF which receives as parameters
an argumentation framework (in this case the whole AF) and
a set of arguments (in this case the whole A). The function
GF(AF, C) is defined recursively. The base of the recursion
is reached when AF consists of a unique SCC: in this case
the set of extensions is directly given by the invocation of a
semantic-specific base function BFS(AF, C). In the other
case, for each SCC S of AF the function GF is invoked re-
cursively on the restriction AF↓UPAF(S,E).

Note that the restriction concerns UPAF(S, E), namely
the part of S which “survives” the attacks of the preced-
ing ones in the partial order. The definition also has a con-
structive interpretation, which suggests an effective (recur-
sive) procedure for computing all the extensions of an ar-
gumentation framework AF = 〈A,→〉 once a specific base
function characterizing the semantics is assigned. A partic-
ular role in this context is played by the initial SCCs. In
fact, for any initial SCC I , since by definition there are no
outer attacks, the set of defended nodes coincides with I , i.e.
UPAF(I, E) = UAF(I, E) = I for any E. This gives rise
to the invocation GF(AF↓I , I) for any initial SCC I . Since
AF↓I obviously consists of a unique SCC, according to Def-
inition 8 the base function BFS(AF↓I , I) is invoked, which
returns the extensions of AF↓I according to the semanticsS.
Therefore, the base function can be first computed on the ini-
tial SCCs, where it directly returns the extensions prescribed
by the semantics. Then, the results of this computation are
used to identify, within the subsequent SCCs, the restricted
argumentation frameworks on which the procedure is recur-
sively invoked.

All SCC-recursive semantics “share” this general scheme
and only differ by the specific base function adopted. It
has been shown that all semantics encompassed by Dung’s
framework are SCC-recursive and the relevant base func-
tions have been identified. Among them, in the follow-
ing we will mainly refer to grounded semantics (denoted as
GR) and preferred semantics (denoted as PR) considered
the “best” representatives of the unique-status and multiple-
status approach respectively.

Moreover, defining and experimenting new SCC-
recursive semantics is quite easy since it simply amounts
to defining a base function operating on single-SCC argu-
mentation frameworks. As shown in (Baroni, Giacomin, &
Guida 2005), the base function has only to respect two very
simple conditions in order to ensure that the resulting exten-
sions satisfy the fundamental requirements of being conflict-

free and of agreement with grounded semantics.
As to the conflict-free property, it is sufficient that the base

function returns only conflict-free subsets.

Definition 9 A semantics S satisfies the conflict-free prop-
erty if and only if ∀AF, ∀E ∈ ES(AF) E is conflict-free.

Definition 10 The base function of a SCC-recursive seman-
tics S is conflict-free if and only if ∀AF = 〈A,→〉 and
∀C ⊆ A each element of BFS(AF, C) is conflict-free.

Proposition 1 (Theorem 48 of (Baroni, Giacomin, & Guida
2005)) Given a SCC-recursive semantics S, if its base func-
tion is conflict-free then S satisfies the conflict-free property.

As to the agreement with grounded semantics, it is suffi-
cient that the base function properly deals just with the sim-
plest case of non-empty argumentation framework (a single
node not attacking itself).

Proposition 2 (Theorem 52 of (Baroni, Giacomin, & Guida
2005)) Let S be a SCC-recursive semantics identified by a
conflict-free base function such that

BFS(〈{α}, ∅〉, {α}) = {{α}}

For any argumentation framework AF = 〈A,→〉, ∀E ∈
ES(AF), the grounded extension GE(AF) ⊆ E.

Thanks to these properties, four original SCC-recursive
semantics have been defined in (Baroni, Giacomin, & Guida
2005) in a relatively straightforward way. In particular, the
SCC-recursive semantics called CF2 (Baroni & Giacomin
2003; Baroni, Giacomin, & Guida 2005) has been shown to
provide a good behavior in several critical examples, while
featuring a very simple base function: BF CF2(AF, C) =
MCFAF, where MCFAF denotes the set made up of all the
maximal conflict-free sets of AF (note that the parameter C
plays no role at all in this case).

Motivating examples
In the SCC-recursive approach, SCCs play the role of ba-
sic decomposition elements on which the semantics-specific
base function is applied. In CF2 semantics, as well as in
the SCC-recursive formulation of grounded, stable, and pre-
ferred semantics, the base function does not take into ac-
count the “internal topology” of the SCC to which it is ap-
plied. Roughly speaking, since all elements of a SCC are
mutually reachable, it has been implicitly assumed in (Ba-
roni, Giacomin, & Guida 2005) that they can be treated as
“equivalent” in the construction of extensions.

Though this hidden assumption is reasonable in most sit-
uations, there are cases where it can be regarded as question-
able.

As a first example, consider the argumentation framework
AF1 represented in Figure 1. AF1 clearly consists of a
single SCC, so its extensions in a SCC-recursive seman-
tics are directly obtained by applying the base function to
the whole AF1. In the case of CF2 semantics it turns out
that ECF2(AF1) = MCFAF1 = {{β}, {γ}}. According to
both grounded and preferred semantics, the only extension
in this case is the empty set: EPR(AF1) = EGR(AF1) =

444 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

Figure 1: A self-defeating node within a three-length cycle
(AF1).

{∅}. Therefore in all these semantics no argument is in-
cluded in all the prescribed extensions and can be consid-
ered justified. However, this result can be questioned. In
fact, one may object that the node α, being self-defeating,
is intrinsically weak and should not be able to affect the
justification status of the arguments it attacks. In this per-
spective, α should be ruled out, β, not receiving attacks any-
more, should be regarded as justified and, as a consequence,
γ should not be justified. While this kind of behavior is not
supported by any of the above mentioned semantics, it could
be obtained by a sort of ad-hoc rule or by some form of graph
preprocessing devoted to suppress all self-defeating nodes.

Other examples call however for a more general
approach to this kind of situation. Consider the
argumentation framework AF2 represented in Fig-
ure 2, which also consists of a unique SCC. Ac-
cording to CF2 semantics we have ECF2(AF2) =
MCFAF2 = {{α, δ}, {α, ε}, {γ, δ}, {β, ε}}, while
EPR(AF2) = EGR(AF2) = {∅}. Again, no argument is
justified according to any of the above semantics. While
this may sound very reasonable, other interpretations are
possible, depending on the meaning ascribed to odd-length
cycles. In fact, it can be noted that arguments α, β, and γ
form a three length cycle, independently of δ and ε. CF2
semantics is based on the idea that even- and odd-length
cycles share the same nature and should be treated equally
(Baroni & Giacomin 2003) in a “length-independent” way.
However, as pointed out in (Prakken & Vreeswijk 2001),
a different point view is also possible where “odd defeat
loops are of an essentially different kind than even defeat
loops”. For instance, one might state that odd-length cycles
are like paradoxes, i.e. situations where nothing can be
believed, while even-length cycles are like dilemmas, i.e.
situations where a choice needs to be made. According
to this view, the arguments α, β, and γ should in a sense
“annul” each other and lose the power of affecting other
nodes, leaving then δ undefeated and, consequently, ε
defeated. It has to be acknowledged that the choice of
the “most appropriate” result is a matter of debate and
may depend on case-specific considerations too (Horty
2002) and that some critical examples may be dealt with

Figure 2: A three-length cycle within a five-length
cycle(AF2).

by applying some rationality postulates at the level of
argument structure and construction (Caminada & Amgoud
2005). At an abstract level, it is however desirable that
the alternative view presented above can be encompassed
within the general SCC-recursive scheme. As it emerges
from the above examples, this requires, first of all, the
capability to distinguish some significant substructures (the
self-defeating node in the first case, the three length-cycle
in the second case) within a single SCC: this aspect is dealt
with in the next section.

Decomposing a SCC into autonomous
fragments

We follow the idea of identifying, within a SCC S, the sub-
sets of nodes that can be considered “autonomously” in the
incremental construction of extensions. These subsets will
be called autonomous fragments and the set of autonomous
fragments of S will be denoted as AU(S). A first intuitive
requirement is that each fragment is strongly connected by
itself and, while respecting this property, is as small as possi-
ble. Moreover, to be autonomous, fragments should not “in-
terfere”, namely should not intersect each other. To define
significant minimal strongly connected fragments within a
“conventional” SCC we need to modify the definition of path
equivalence, substituting the clause that each node is always
path-equivalent to itself with the requirement that the node
is self-defeating.

Definition 11 Given an argumentation framework AF =
〈A,→〉 and a set Q ⊆ A, let AF′ = AF↓Q. The bi-
nary relation of path-mutuality restricted to Q, denoted as
PMQ ⊆ (Q × Q), is defined as follows:

• ∀α ∈ Q, (α, α) ∈ PMQ if and only if (α, α) ∈→;
• given two distinct nodes α, β ∈ Q, (α, β) ∈ PMQ if and

only if in AF′ there is a path from α to β and a path from
β to α.

We define the notion of fragments of a SCC S as follows.

Definition 12 Given a non-empty argumentation frame-
work AF = 〈A,→〉 and a SCC S ∈ SCCSAF, a non-empty
set F ⊆ S is called a fragment of S if and only if ∀α, β ∈ F ,

DEPARTMENT OF INFORMATICS 445

11TH NMR WORKSHOP

(α, β) ∈ PMF . The set of fragments of S is denoted as
FR(S).

Note that α and β are not necessarily distinct in Definition
12 and that the fragments belonging to FR(S) generally
intersect each other. In particular, S ∈ FR(S) unless S
consists of a unique non self-defeating argument, namely
S = {α} and AF↓S = 〈{α}, ∅〉 (such a SCC will be called
monadic). We have therefore the guarantee that FR(S) �= ∅
if S is not monadic.

The set AU(S) of autonomous fragments of a non
monadic SCC S is derived from FR(S) by applying the
following algorithm.

Definition of algorithm AU

Step 1
let Σ = FR(S);
BEGIN MAIN LOOP
Step 2
let Σmin = {F ∈ Σ | �G ∈ Σ : G � F};
Step 3
let AU(S) = {F ∈ Σmin | ∀G ∈ Σmin : G �= F,
F ∩ G = ∅};
Step 4
if AU(S) �= ∅
then

EXIT;
else
let Σ = Σ \ Σmin;
goto Step 2;

endif
END MAIN LOOP

In Step 1 the variable Σ is initialized to contain the set
of all fragments of S. Then the algorithm enters a loop. In
Step 2 the set Σmin of the elements of Σ which are mini-
mal with respect to set inclusion is identified, according to
the intuition that autonomous fragments are as small as pos-
sible. In Step 3 the condition of non interference is veri-
fied, by selecting for inclusion into AU(S) the elements of
Σmin which have empty intersection with any other element
of Σmin (note that it may be the case that no such element
exist in Σmin at a given iteration of the main loop). If a non-
empty AU(S) has been identified in Step 3, then in Step 4
the algorithm terminates, otherwise all elements of Σmin are
dropped from Σ and a new iteration of the main loop begins.

Proposition 3 Let S be a non monadic SCC of an argumen-
tation framework AF, then algorithm AU is guaranteed to
terminate by producing a non-empty set AU(S).

Recall that, since S is non monadic, S ∈ FR(S) and there-
fore S ∈ Σ since the initialization of Σ in Step 1. Moreover,
the finiteness of S ensures that Σ is finite. Then two situ-
ations may occur. If it holds that Σ = {S}, then clearly
Σmin = {S} is assigned in Step 2 and AU(S) = {S} is
assigned in Step 3, which determines algorithm termination.
Otherwise Σ � {S} and S /∈ Σmin since the other elements
of Σ are proper subsets of S. Then two cases are possible:
the algorithm terminates with a non-empty AU(S) or a new

Figure 3: Two three-length cycles within a four-length
cycle(AF3).

iteration begins after subtracting Σmin from Σ. In the new
iteration it still holds that S ∈ Σ and we can iterate the same
reasoning: then, the finiteness of Σ ensures that one of the
two termination cases considered above is reached in a finite
number of iterations. �

To complete the definition of AU(S), the cases of a
monadic SCC and of an empty SCC (which occurs only in
an empty argumentation framework) have to be covered.

Definition 13 Given an argumentation framework AF =
〈A,→〉 and a SCC S ∈ SCCSAF, the set of autonomous
fragments of S, denoted as AU(S), is defined as follows:

• AU(S) = {S}, if S is monadic or S = ∅;

• AU(S) is the result of applying algorithm AU to S, oth-
erwise.

By inspection of Step 3 of algorithm AU , it can be noted
that the elements of AU(S) are disjoint.

Let us now examine some examples of application of al-
gorithm AU . Every argumentation framework AF i con-
sidered in the following consists of a single SCC Si (i.e.
SCCSAFi

= {Si}), which coincides with the set of all argu-
ments of AFi. In the case of AF1 (Figure 1), FR(S1) =
{{α}, S1} and algorithm AU terminates in one iteration
with AU(S1) = Σmin = {{α}}.

In the case of AF2 (Figure 2), FR(S2) = {{α, β, γ}, S2}
and algorithm AU terminates in one iteration with
AU(S2) = Σmin = {{α, β, γ}}.

Consider now AF3 (Figure 3). FR(S3) =
{{α, β, γ}, {β, γ, δ}, S3}. Then in the first iteration of
the main loop Σmin = {{α, β, γ}, {β, γ, δ}}, and, since
the intersection of the two elements of Σmin is not empty,
AU(S) = ∅ in Step 3 and Σ = {S3} results in the else
branch of Step 4. In the subsequent iteration, the algorithm
terminates with AU(S3) = {S3} = {{α, β, γ, δ}}.

In AF4 (Figure 4), FR(S4) = {{α, β}, {γ, δ}, S4}.
Then in the first iteration of the main loop Σmin =
{{α, β}, {γ, δ}} and, since the intersection of the two el-
ements of Σmin is empty, the algorithm terminates with
AU(S4) = {{α, β}, {γ, δ}}.

446 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

Figure 4: Two two-length cycles within a four-length
cycle(AF4).

Figure 5: Two two-length cycles within a four-length cycle
with a self-defeating node(AF5).

In AF5 (Figure 5), FR(S5) = {{δ}, {α, β}, {γ, δ}, S5}.
Then in the first iteration of the main loop Σmin =
{{α, β}, {δ}} and, since the intersection of the two elements
of Σmin is empty, the algorithm terminates with AU(S5) =
{{α, β}, {δ}}.

Exploiting autonomous fragments in
SCC-recursive semantics

Let us now continue our investigation by looking for a way
to take into account the notion of autonomous fragment
within the SCC-recursive scheme. Since this notion is in-
troduced at the level of single SCCs, the most direct way
is considering it within the definition of the base function,
which operates at this level. Each base function BF consid-
ered in (Baroni, Giacomin, & Guida 2005) directly selects
a set of subsets of a SCC S. An AU-aware base function
(denoted in the following as BF ′) should instead take into
account the autonomous fragments of S. Our intuition is
that each autonomous fragment represents the minimal topo-
logical unit to which some semantics-specific principle can

be applied for extension construction. Therefore, we sug-
gest that a semantics-specific fragment function FF is ap-
plied to each autonomous fragment F and returns a set of
subsets of F . Each of these subsets is regarded as an el-
ementary building block in extension construction. More-
over, if AU(S) = {S} the result should be the same as in
the non AU-aware case, therefore FF should be equal to
BF in this case. More articulated considerations need to
be applied when |AU(S)| �= 1 or Y(AU(S)) �= S (where
Y(Q) �

⋃
P∈Q P , given that Q is a set of sets). Let us

consider orderly these cases.
If |AU(S)| �= 1, several autonomous fragments are con-

sidered separately and, for each autonomous fragment F i,
a set of subsets of Fi is produced by FF . They need then
to be combined: the most direct way is considering all pos-
sible combinations of these subsets except those which in-
fringe the conflict-free principle. In other words, all possible
conflict-free combinations obtained by selecting one subset
for each Fi are considered.

If Y(AU(S)) = S, i.e. the whole S has been considered
since autonomous fragments are a partition of S, the above
mentioned combinations represent the result of the applica-
tion of BF ′ to S. Otherwise, there are some elements of S
which are not included in any autonomous fragment. We fol-
low the idea that the inclusion in the extensions of the other
elements of S should be determined by the choices carried
out within the autonomous fragments AU(S). In a sense,
autonomous fragments are evaluated first, then the results of
this evaluation are taken into account when the remaining
elements of S (if any) are considered.

In line with the fundamental principles of SCC-
recursiveness, this amounts to invoke recursively the gen-
eral function GF on a restricted argumentation framework,
derived taking into account the choices in AU(S).

Having provided an outline of the underlying ideas, we
need to put them in formal terms.

Let BFS be the base function of a SCC-recursive seman-
tics S; the corresponding AU-aware base function BF ′

S is
defined as follows.

Definition 14 Given a SCC-recursive semantics S with
base function BFS(AF, C), the corresponding AU-aware
base functionBF ′

S(AF, C) is a function that given an argu-
mentation framework AF = 〈A,→〉 such that |SCCSAF| =
1 (i.e. SCCSAF = {A}) and a set C ⊆ A, gives a subset of
2A as follows:
E ∈ BF ′

S(AF, C) if and only if E is conflict-free and
(E ∩ Y(AU(A))) ∈ UCFS(AU(A), AF, C) and
if A \ Y(AU(A)) �= ∅, ∀S ∈ SCCSAF↓A\Y(AU(A))

(E ∩ S) ∈ GF ′(AF↓UPAF(S,E), UAF(S, E) ∩ C)

where

• UCFS(Σ, AF, C) is a function which given a set Σ of
disjoint subsets of A returns a set of subsets of Y(Σ) as
follows: E ∈ UCFS(Σ, AF, C) if E is conflict-free and
∀Q ∈ Σ, E ∩ Q = BFS(AF↓Q, C ∩ Q);

• GF ′ is the general recursive function in the AU -aware
scheme (see Definition 15 below).

DEPARTMENT OF INFORMATICS 447

11TH NMR WORKSHOP

Definition 14 is rather complex and not really elegant.
This reflects the preliminary state of this investigation: de-
vising a simpler formulation is one of the directions of future
work. To illustrate its main features we note that:

• the base function BF is applied to each autonomous frag-
ment and the resulting sets are combined in all possible
conflict-free manners (through function UCF);

• the output of UCF is used directly as output of BF ′

if the union of all autonomous fragments Y(AU(A))
completely covers the SCC A, since in this case A \
Y(AU(A)) = ∅ and therefore the second part of the defi-
nition does not apply;

• in particular, the AU-aware base function BF ′ coin-
cides with BF when there is only one autonomous
fragment coinciding with the SCC A itself, since
UCFS({A}, AF, C) is invoked in this case, leading to
E ∩A = BFS(AF↓A, C ∩ A) = BFS(AF, C);

• if A \ Y(AU(A)) �= ∅, the construction of the output
of BF ′ proceeds recursively using the output of UCF
as starting point and invoking the general SCC-recursive
function GF ′ “as usual” on the parts of A not covered by
Y(AU(A)), i.e. on the SCCs of the restricted argumenta-
tion framework AF↓A\Y(AU(A)).

Besides complications, taking into account the internal
structure of SCCs has another downside: there are cases
where BF ′

S(AF, C) = ∅. This may happen, for instance,
when A\Y(AU(A)) = ∅ and UCFS(AU(A), AF, C) = ∅,
i.e. the autonomous fragments cover the whole SCC and
there are no conflict-free combinations of the subsets se-
lected within them. This would lead to the unpleasant situa-
tion of non-existence of extensions for some argumentation
frameworks. A (still not elegant) solution consists in intro-
ducing a provision for this case in the semantics definition.

Definition 15 Given a SCC-recursive semantics S with
base function BFS(AF, C), the corresponding AU -aware
semantics S ′ is defined as follows: for any argumentation
framework AF = 〈A,→〉, ES′(AF) = GF ′(AF,A), where
for any AF = 〈A,→〉 and for any set C ⊆ A, the function
GF ′(AF, C) ⊆ 2A is defined as follows:
for any E ⊆ A, E ∈ GF ′(AF, C) if and only if

• in case |SCCSAF| = 1, E ∈ BF∗
S(AF, C)

• otherwise, ∀S ∈ SCCSAF (E ∩ S) ∈
GF ′(AF↓UPAF(S,E), UAF(S, E) ∩ C)

where BF∗
S(AF, C) = BF ′

S(AF, C) if BF ′
S(AF, C) �=

∅, BF∗
S(AF, C) = {∅} otherwise.

Essentially an AU -aware semantics is just a SCC-
recursive semantics with a special base function BF ∗,
which, apart a particular case, coincides with the AU-aware
base function BF ′. In turn, BF ′ exploits the original base
function BF in the cases where a SCC does not admit sig-
nificant autonomous fragments.

Proving fundamental properties of AU -aware semantics
turns out to be relatively easy, in virtue of its adherence to
the general SCC-recursive scheme, whose properties are an-
alyzed in (Baroni, Giacomin, & Guida 2005).

Let us consider well-foundedness of recursion first.

Proposition 4 Recursion in Definition 14 is well-founded.

Definition 14 involves an indirect recursion: it invokes the
GF ′ function on each SCC S of AF↓A\Y(AU(A)) and such
function in turn invokes the AU -aware base function BF ′

S
in the first branch of Definition 15. To verify the well-
foundedness of this indirect recursion, first note that since
AU(A) �= ∅ (Proposition 3) and, by Definition 12, ∀F ∈
AU(A) F �= ∅, it turns out that Y(AU(A)) �= ∅. As a con-
sequence, the restricted argumentation framework consid-
ered in the recursive branch AF↓A\Y(AU(A)) (and therefore
also any of its SCCs) has a strictly lesser number of argu-
ments than |A|. Observe also that if A \ Y(AU(A)) = ∅,
the recursive part of Definition 14 is not invoked. This im-
plies that subsequent invocations (if any) of the recursive
branch of BF ′

S (reached through GF ′) operate on progres-
sively smaller non-empty argumentation frameworks. Due
to the hypothesis of finiteness of A, this leads to consider
the case where BF ′

S is invoked on an argumentation frame-
work AF = 〈A,→〉 such that |A| = 1. Such argumen-
tation framework consists necessarily of a unique SCC: by
Definition 13, in this case it holds AU(A) = {A}, and, as
a consequence, A \ Y(AU(A)) = ∅ which represents the
non-recursive case of Definition 14. �

Proposition 5 The definition of an AU -aware SCC-
recursive semantics S ′ is well-founded.

The definition of an AU -aware SCC-recursive semantics
is a case of the general SCC-recursive scheme with a well-
defined base function (Proposition 4). Then the conclusion
directly derives from the properties of the general SCC-
recursive scheme shown in (Baroni, Giacomin, & Guida
2005). �

In the same line, we now show that an AU-aware SCC-
recursive semantics S ′ shares with its non AU-aware ver-
sion the fundamental properties of being conflict-free and
agreeing with grounded semantics.

Proposition 6 Any AU -aware SCC-recursive semantics S ′

satisfies the conflict-free property.

As recalled in Proposition 1, for any SCC-recursive se-
mantics T , if its base function BFT is conflict-free then
T satisfies the conflict-free property. Since S ′ is a special
case of SCC-recursive semantics, where BF ∗

S plays the role
of BFT , it is sufficient to show that BF∗

S is conflict free,
namely that all elements of BF ∗

S(AF, C) are conflict free.
By Definition 15, this in turn corresponds to require that
BF ′

S(AF, C) is conflict-free, which holds by Definition 14.
�

As to agreement with grounded semantics, it has to be
verified that if the sufficient condition for agreement stated
in Proposition 2 is satisfied by BF , then it is satisfied also
by BF∗.

Proposition 7 If a SCC-recursive semantics S satisfies the
hypothesis of Proposition 2, the corresponding AU-aware
semantics S ′ satisfies it as well.

We need to show that BF∗
S(〈{α}, ∅〉, {α}) = {{α}}.

This immediately follows from the fact that 〈{α}, ∅〉

448 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

is an argumentation framework consisting of a sin-
gle monadic SCC and therefore BF ∗

S(〈{α}, ∅〉, {α}) =
BF ′

S(〈{α}, ∅〉, {α}) = BFS(〈{α}, ∅〉, {α}) = {{α}}. �

Putting AU-aware semantics at work
Having shown that, despite its rather articulated form, our
attempt to define AU-aware semantics preserves the funda-
mental properties that are desirable for any semantics, its
practical impact remains to be analyzed. First, let us remark
that in all the examples discussed in (Baroni, Giacomin, &
Guida 2005) every SCC S is such that AU(S) = {S} and
therefore no differences emerge when considering an AU -
aware semantics wrt. its non AU-aware version. Let us now
review the motivating examples introduced above, examin-
ing the behavior of the AU -aware versions of preferred and
CF2 semantics, denoted as PR′ and CF2′ respectively.

Since all examples involve an argumentation framework
AFi consisting of a single SCC Si, Definition 15 directly
leads to consider the following invocation of the AU-aware
base function: ES′(AFi) = BF ′

S(AFi, Si).
Example 1. Let us start with AF1 (Figure 1), recalling

that AU(S1) = {{α}} and, therefore, Y(AU (S1)) = {α}.
Since Y(AU(S1)) � S1 both parts of Definition 14 ap-
ply. The first part states that for any extension E, E ∩
Y(AU(S1)) = UCFS(AU(S1), AF1, S1). Since AU(S1)
contains just one element, UCFS(AU(S1), AF1, S1) =
BFS(AF1↓{α}, {α}). Since AF1↓{α} consists of a single
self-defeating argument and BF S(AF1↓{α}, {α}) = {∅}
either with S = CF2 or S = PR, it turns out that
E ∩ {α} = ∅. In words, α can not be included in any exten-
sion.

Then, according to the second part of Definition 14, E∩T
is computed recursively for all T ∈ SCCSAF1↓S1\{α} =
{{β}, {γ}}. Following the SCC order within AF1↓S1\{α},
{β} has to be considered first, yielding E ∩ {β} =
GF ′(AF1↓UPAF1 ({β},E), UAF1({β}, E) ∩ S1).Since E ∩
Y(AU(S1)) = E ∩ {α} = ∅, it turns out that β is
not attacked by E nor is defended by E from the attack
coming from α, therefore UPAF1({β}, E) = {β} and
UAF1({β}, E) = ∅. As a consequence, E ∩ {β} =
GF ′(AF1↓{β}, ∅), which by the first clause of Definition 14
yields E∩{β} = BF ′

S′(〈{β}, ∅〉, ∅), resulting in E∩{β} =
{β} with S = CF2, and in E ∩ {β} = ∅ with S = PR.

Turning to {γ}, we have E ∩ {γ} ∈
GF ′(AF1↓UPAF1 ({γ},E), UAF1({γ}, E) ∩ S1). In the
case of CF2 semantics, since E ∩ {β} = {β} for any E,
we have UPAF1({γ}, E) = UAF1({γ}, E) = ∅, which
skipping some further purely formal steps leads to consider
the empty argumentation framework and therefore to
conclude E ∩ {γ} = ∅. In the case of preferred semantics,
it holds that UPAF1({γ}, E) = {γ}, UAF1({γ}, E) = ∅,
which (skipping again some steps) gives E ∩ {γ} = ∅.

Summing up, we obtain ECF2′(AF1) = {{β}}, while
EPR′(AF1) = ∅. This shows that the AU-aware version
of CF2 semantics provides a different (and intuitively more
acceptable) result wrt. the non AU-aware one.

Example 2. In the case of AF2 (Figure 2), AU(S2) =
{{α, β, γ}}. As to the first part of Definition 14, for any ex-

tension E, E∩Y(AU(S2)) = UCFS(AU(S2), AF2, S2) =
BFS(AF2↓{α,β,γ}, {α, β, γ}). Here the two semantics
differ since in the case of preferred semantics E ∩
{α, β, γ} ∈ BFPR(AF2↓{α,β,γ}, {α, β, γ}) = {∅},
while in the case of CF2-semantics E ∩ {α, β, γ} ∈
BFCF2(AF2↓{α,β,γ}, {α, β, γ}) = {{α}, {β}, {γ}}. In
both cases, E ∩ T has to be computed recursively for all
T ∈ SCCSAF2↓S2\{α,β,γ} = {{δ}, {ε}}, on the basis of the
choices carried out for E ∩ {α, β, γ}.

Let us examine the case of preferred semantics first,
where there is just one choice for E ∩ {α, β, γ} = ∅. Fol-
lowing the SCC order within AF2↓S2\{α,β,γ}, {δ} has to
be considered first. Since {δ} is exactly in the same situ-
ation as {β} in Example 1, skipping the analogous formal
steps made explicit in Example 1 we obtain E ∩ {δ} = ∅.
Consequently, when considering the subsequent SCC of
AF2↓S2\{α,β,γ}, namely {ε}, we are in a completely anal-
ogous situation as for {γ} in Example 1 and we obtain
E ∩ {ε} = ∅.

In summary, we obtain EPR′(AF2) = EPR(AF2) = {∅}.
Let us turn to CF2-semantics, where there are three

choices for E ∩ {α, β, γ}, namely {α}, {β}, and {γ}, each
being the starting point for the construction of one or more
extensions, to be completed by possibly adding elements of
AF2↓S2\{α,β,γ}.

Consider first the case where E ∩ {α, β, γ} = {α}. We
note that in this case E defends δ by attacking β, and there-
fore UPAF2({δ}, E) = UAF2({δ}, E) = {δ}. Thus δ and
ε are in the same situation as β and γ respectively in AF1.
This leads to E ∩ {δ} = {δ} and E ∩ {ε} = ∅, obtaining a
first extension E1 = {α, δ}.

Let us now examine the case E ∩ {α, β, γ} = {β}.
In this case E attacks δ, and therefore UPAF2({δ}, E) =
UAF2({δ}, E) = ∅; skipping some purely formal steps this
clearly leads to E ∩ {δ} = ∅. As a consequence, it turns
out that UPAF2({ε}, E) = UAF2({ε}, E) = {ε}, which
leads to E ∩ {ε} = {ε}, thus obtaining a second extension
E2 = {β, ε}.

Finally, assume E ∩ {α, β, γ} = {γ}. In this case E
neither attacks nor defends δ, therefore UAF2({δ}, E) = ∅,
while UPAF2({δ}, E) = {δ}. Since only UPAF2({δ}, E)
is relevant in the definition of BFCF2, this gives rise to E ∩
{δ} = {δ} and, consequently, E∩{ε} = ∅, obtaining a third
extension E3 = {γ, δ}.

Summing up, ECF2′(AF2) = {{α, δ}, {β, ε}, {γ, δ}} �=
ECF2(AF2) = {{α, δ}, {α, ε}, {β, ε}, {γ, δ}}. As to the
justification status of arguments, the difference does not
manifest itself, since, according to the AU -aware version
of CF2 semantics too, no argument is included in all exten-
sions. It is however interesting that the extension {α, ε} is
not prescribed by the AU -aware version of CF2 semantics,
as not compatible with the idea of choosing first within the
autonomous fragment {α, β, γ} and then propagating the ef-
fects on the rest of the argumentation framework.

Neither the AU -aware version of preferred semantics nor
of CF2 captures the intuition underlying the example that
the three-length cycle {α, β, γ} could be regarded as a sort
of “null element”, leaving δ undefeated and γ defeated. The

DEPARTMENT OF INFORMATICS 449

11TH NMR WORKSHOP

search for a semantics featuring this kind of behavior re-
mains open.

Example 3. Consider now AF3 (Figure 3). Since
AU(S3) = {S3} the behavior of any non AU -aware seman-
tics and of its AU -aware version is the same and therefore
will not be discussed here.

Example 4. In AF4 (Figure 4), AU(S4) =
{{α, β}, {γ, δ}}. In this case Y(AU(S4)) = S4, and
therefore ES′(AF4) = UCFS(AU(S4), AF4, S4). This
means that first the base function BFS is evaluated sepa-
rately for AF4↓{α,β} and AF4↓{γ,δ}. Both fragments con-
sist of a couple of rebutting arguments, a prototypical case
often referred to as “Nixon diamond” where any multiple-
status semantics admits two extensions, each correspond-
ing to the choice of one of the arguments. We have there-
fore BFS(AF4↓{α,β}, S4 ∩ {α, β}) = {{α}, {β}}, and
BFS(AF4↓{γ,δ}, S4∩{γ, δ}) = {{γ}, {δ}} both with S =
PR and S = CF2. All conflict free combinations of the
elements of {{α}, {β}} and {{γ}, {δ}} are then returned
by function UCF , yielding ES′(AF4) = {{α, δ}, {β, γ}} =
ES(AF4) both with S = PR and S = CF2. Therefore, in
this case the use of AU-aware semantics does not give rise
to different results.

Example 5. Differences appear instead in AF5 (Figure
5), where AU(S5) = {{α, β}, {δ}}.

First, UCFS(AU(S5), AF5, S5) has to be evaluated,
which requires in turn evaluating BF S(AF5↓Q, S5 ∩ Q)
for Q ∈ {{α, β}, {δ}}. We have BFS(AF5↓{α,β}, S5 ∩
{α, β}) = {{α}, {β}}, and BFS(AF5↓{δ}, S5 ∩ {δ}) =
{∅} both with S = PR and S = CF2.

Considering the conflict free combinations, we derive
UCFS(AU(S5), AF5, S5) = {{α}, {β}}.

Therefore, with both semantics, we have two starting
choices for E ∩ Y(AU(S5)), namely {α} and {β}. The
restricted argumentation framework AF5↓{γ} remains to be
considered, which clearly consists of a single SCC {γ}.
Consider first the case E∩Y(AU(S5)) = {α}; since E does
not attack γ and γ defends itself against the attack coming
from δ, we have UPAF5({γ}, E) = UAF5({γ}, E) = {γ},
and therefore we obtain BF S(AF5↓{γ}, S5 ∩ {γ}) = {γ},
both with S = PR and S = CF2. This leads to consider
E = {α, γ} which, not being conflict free, is not compatible
with Definition 14 and is discarded.

The development of the case E ∩ Y(AU(S5)) = {β}
is analogous and leads to consider E = {β, γ} which is
conflict free and compatible with Definition 14.

In summary, ES′(AF5) = {{β, γ}} both with S = PR
and S = CF2. Note that this is the same result as for
non AU -aware preferred semantics, since EPR(AF5) =
{{β, γ}} while a difference appears for CF2 semantics
where ECF2(AF5) = {{β, γ}, {α}}.

Thus the AU -aware version of CF2 semantics agrees
with preferred semantics in this case (while the non AU -
aware version does not) and achieves a behavior which is
intuitively plausible if self-defeating arguments are consid-
ered as “null elements” in an argumentation framework.

Conclusions
We have provided an initial investigation about the poten-
tial use of the novel notion of autonomous fragments within
SCC-recursive argumentation semantics. The presented re-
sults are quite preliminary and further work is needed in or-
der to improve the definition of AU -aware semantics and
explore more deeply its properties. Though our analysis has
started from specific examples, we remark that the aim of
the paper is not to achieve a “better” treatment of particular
cases but rather to suggest an interesting perspective about
argumentation semantics design. In fact, it emerges that dif-
ferent solutions are obtained by changing the semantics be-
havior with respect to topology, e.g. choosing between the
AU-aware and the non AU -aware version of a semantics,
without affecting the underlying notion of extension, rep-
resented by the base function BF . This suggest that the
“design” of an argumentation semantics can be conceived as
composed, in a modular way, by the answers to two “orthog-
onal” questions: i) how to take into account the defeat graph
topology in extension construction and ii) which principles
rule the identification of extensions within the basic topo-
logical entities considered. Identifying alternative answers
to these questions and properly combining and comparing
them appears to be a very interesting research line to pursue.

References
Baroni, P., and Giacomin, M. 2003. Solving seman-
tic problems with odd-length cycles in argumentation. In
Proc. of the 7th European Conf. on Symbolic and Quan-
titative Approaches to Reasoning with Uncertainty (EC-
SQARU 2003), 440–451.
Baroni, P., and Giacomin, M. 2004a. A general recur-
sive schema for argumentation semantics. In Proc. of
the 16th European Conf. on Artificial Intelligence (ECAI
2004), 783–787.
Baroni, P., and Giacomin, M. 2004b. A recursive approach
to argumentation: motivation and perspectives. In Proc.
of the 10th Int. Workshop on Non-Monotonic Reasoning
(NMR 2004), 50–58.
Baroni, P.; Giacomin, M.; and Guida, G. 2005. Scc-
recursiveness: a general schema for argumentation seman-
tics. Artificial Intelligence 168(1-2):165–210.
Caminada, M., and Amgoud, L. 2005. An axiomatic ac-
count of formal argumentation. In Proc. of the 20th Nat.
Conf. on Artificial Intelligence (AAAI 2005), 608–613.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming, and n-person games. Artificial Intelligence
77(2):321–357.
Horty, J. F. 2002. Skepticism and floating conclusions.
Artificial Intelligence 135(1–2):55–72.
Pollock, J. L. 1992. How to reason defeasibly. Artificial
Intelligence 57(1):1–42.
Prakken, H., and Vreeswijk, G. A. W. 2001. Logics for de-
feasible argumentation. In Gabbay, D. M., and Guenthner,
F., eds., Handbook of Philosophical Logic, Second Edition.
Dordrecht: Kluwer Academic Publishers.

450 Technical Report IfI-06-04

Belief Change and Updates

6 Belief Change and Updates

Belief change and nonmonotonic reasoning go hand in hand. As the area has matured,
research in belief change has taken several interesting turns and seen many new devel-
opments. Moreover, it has permitted researchers to look upon other areas of research
with a new perspective. As a way of capturing commonsense reasoning, for instance,
belief change provides a unique perspective. Belief change has both benefitted from
insights adapted from nonmonotonic reasoning while at the same time sharing its own
unique view on reasoning to influence research directions in this area.

The specialized session on Belief Change and Updates is a one-day event bringing
together researchers interested in the area of belief change and its relationship with
nonmonotonic reasoning. The goal is to promote further development of the theory
of belief change and explore relationships with other areas of research, particularly
nonmonotonic reasoning but also knowledge representation and reasoning, logics of
belief and knowledge, and artificial intelligence in general.

This session attracted nine excellent contributions to the field. Each paper was
reviewed by at least two members of the session’s program committee. All papers
were deemed acceptable for publication although one contribution was considered only
mildly related to the aims of the session.

Jerôme Lang’s contribution About Time, Revision and Update challenges the often
quoted view that belief revision deals with static environments while belief update deals
with dynamic environments. His proposal maintains that belief revision deals with ob-
servations that provide new information about the past, present and future. On the other
hand, belief update deals with new information as the result of ontic actions. However,
he notes that it is not possible to capture the effects of all ontic actions when belief up-
date is required to satisfy some of the postulates proposed by Katsuno and Mendelzon
in 1992. Eduardo Ferme and Martin Krevneris’ paper on Ensconcement Based Con-
traction’s Axiomatic: Preliminary Version provides an axiomatic characterisation for a
form of belief change based on ensconcements developed by Williams in 1992. This
class of operators deals with change in belief bases. In their paper on Elaborating Do-
main Descriptions Andreas Herzig, Laurent Perrussel and Ivan Varzinczak provide a
mechanism for elaborating action theories in propositional dynamic logic (PDL). Their
proposal uses belief contraction to elaborate domain theories once discrepancies in the
effects of actions are encountered. Richard Booth, Souhila Kaci and Leendert van der
Torre’s paper on Merging Rules investigates the idea of merging conditional statements.
It achieves this by unifying approaches to belief merging. They look at notions based
on consistency and on implication to show how such rules can be merged. The pa-
per by Julien Seinturier, Pierre Drap and Odile Papini on A Reversible Framework for
Propositional Bases Merging develops a methodology for merging belief bases using
polynomials. A feature of this approach is that it allows the merging process to be
reversed. Laurent Perrussel, Jean-Marc Thevenin and Thomas Meyer’s contribution A
Mutual Enrichment for Agents Through Nested Belief Change: A Semantic Approach
investigates the interchange of nested beliefs among multiple agents and the subsequent
revision that occurs on these beliefs. In this way, nested beliefs and agent preferences
are communicated among an agent community allowing for richer forms of interaction.
In a paper entitled Getting Possibilities from the Impossible Corinna Elsenbroich, Dov
Gabbay and Odinaldo Rodrigues investigate a notion of abductive reasoning that is tol-
erant of inconsistencies in the initial knowledge base. Traditional abduction attempts
to determine an explanation ε for an observation given a knowledge base ∆ such that
∆ ∪ ε 6` ⊥. However, it is incapable of appropriately dealing with the case where
the initial knowledge base ∆ is itself inconsistent. This paper addresses this important
problem by ensuring that the explanation occurs in all maximal consistent subsets of the

DEPARTMENT OF INFORMATICS 451

11TH NMR WORKSHOP

knowledge base. In a paper on Rethinking Semantics of Dynamic Logic Programming
Jan Sefranek considers updating of logic programs. He suggests replacing the Causal
Rejection Principle—in case of conflicts, reject certain of the conflicting rules—by an
approach that ignores dependencies between conflicting rules. Furthermore, it applies
to both ordered and non-ordered information.

Session chairs

Andreas Herzig
(Andreas.Herzig@irit.fr)

Maurice Pagnucco
(morri@cse.unsw.edu.au)

Program committee

Salem Benferhat
(benferhat@cril.univ-artois.fr)

Alexander Bochman
(bochmana@hait.ac.il)

Richard Booth
(ribooth@gmail.com)

John Cantwell
(cantwell@infra.kth.se)

Samir Chopra
(schopra@sci.brooklyn.cuny.edu)

Hans van Ditmarsch
(hans@cs.otago.ac.nz)

Wiebe van der Hoek
(WiebevanderHoek@csc.liv.ac.uk)

David Makinson
(makinson@dcs.kcl.ac.uk)

Thomas Meyer
(Thomas.Meyer@nicta.com.au)

Abhaya Nayak
(abhaya@ics.mq.edu.au)

Odile Papini
(papini@univ-tln.fr)

Pavlos Peppas
(pavlos@upatras.gr)

Henri Prade
(prade@irit.fr)

Hans Rott
(hans.rott@psk.uni-regensburg.de)

Steven Shapiro
(shapiro@informatik.uni-leipzig.de)

Renata Wassermann
(renata@ime.usp.br)

452 Technical Report IfI-06-04

Andreas.Herzig@irit.fr
morri@cse.unsw.edu.au
benferhat@cril.univ-artois.fr
bochmana@hait.ac.il
ribooth@gmail.com
cantwell@infra.kth.se
schopra@sci.brooklyn.cuny.edu
hans@cs.otago.ac.nz
WiebevanderHoek@csc.liv.ac.uk
makinson@dcs.kcl.ac.uk
Thomas.Meyer@nicta.com.au
abhaya@ics.mq.edu.au
papini@univ-tln.fr
pavlos@upatras.gr
prade@irit.fr
hans.rott@psk.uni-regensburg.de
shapiro@informatik.uni-leipzig.de
renata@ime.usp.br

Belief Change and Updates

Schedule Thursday 1 June 2006 (Rydal-Elterwater Room) Session Chairs: A Herzig
and M Pagnucco

• 10.30 J Lang, About time, revision, and update

• 11.00 E Ferme and M Krevneris, Ensconcement-based contraction’s axiomatic

• 11.30 A Herzig, L Perrussel and I Varzinczak, Elaborating domain description

• 12.00 Lunch

• 14.00 R Booth, S Kaci, and L van der Torre, Merging rules

• 14.30 J Seinturier, P Drap, and O Papini, A reversible framework for proposi-
tional bases merging

• 15.00 L Perrussel, J-M Thevenin and T Meyer, A mutual enrichment for agents
through nested belief change: A semantic approach

• 15.30 Coffee

• 16.00 C Elsenbroich, D Gabbay, and O Rodrigues, Getting possibilities from the
impossible

• 16.30 J Sefranek, Rethinking semantics of dynamic logic programming

DEPARTMENT OF INFORMATICS 453

11TH NMR WORKSHOP

454 Technical Report IfI-06-04

Belief Change and Updates

6.1 About time, revision and update

About time, revision and update

Jérôme Lang
IRIT – CNRS / Universit Paul Sabatier

31062 toulouse Cedex, France
lang@irit.fr

Abstract

In papers on belief change we often read sentences such
as “belief revision has to do with static worlds, while
belief update has to do with dynamic worlds”. As al-
ready argued in a few papers, this is not as simple as
that. In this position paper I would like to elaborate on
the following question: what is the exact scope of belief
revision and belief update? In particular, I will focus
on belief update and argue that it has to be understood
as a particular case of action progression.

Introduction

In papers on belief change we often read sentences such
as “belief revision has to do with static worlds, while
belief update has to do with dynamic worlds, the in-
put formula being then a notification of the change”.
A few papers, including (Friedman & Halpern 1996),
have already argued that this is not as simple as that.
However the discussion is far from being closed. In this
short note I would like to elaborate on the following
question: what is the exact scope of belief revision and
belief update, and more generally belief change opera-
tors?

The point is that in order to assess ths scope of the
belief change operators, we need to be able to talk about
the properties of the system (the world and the avail-
able acrtions) and those pertaining to the agent’s state
knowledge. Now, establishing a taxonomy of logical
frameworks for dealing with action and change is the
very topic of Sandewall’s book (Sandewall 1995). Given
this, it is somewhat surprising that belief change pro-
cesses have never (as far as I know) been analyzed from
the point of view of such a taxonomy.

A few papers, especially (Friedman & Halpern 1996),
try to address the point and argue that before dis-
cussing about postulates and representation theorems
we should first make it clear what kind of knowledge we
are representing and processing. Still, they do not try
to connect their discussion to the clear taxonomy elab-
orated by Sandewall, and moreover there is still much
to do, partly because since then (both (Sandewall 1995)
and (Friedman & Halpern 1996) are at least 10 years
old), and some new classes of belief change operators

have been introduced. Moreover, Sandewall’s taxon-
omy has to be reactualized a little bit to be applied to
the variety of belief change processes.

Here I write a first attempt to assess the specialities
(both of the world – ontological – and of the agent’s
beliefs – epistemological) under which belief revision
is a suitable process, and the same for belief update.
I choose to write this paper in a rather non-technical
way, priviledging examples and informal discussion over
formal definitions and results (in particular, I will not
enter deeply into the details of Sandewall’s taxonon-
omy, and I will refer to ontological and epistemological
specialities in an unformal way.) Rather, this paper
is intended to raise some discussions during the NMR
workshop.

Background and notations

We assume throughout the paper that a single agent
(often denoted, for short, by “we” or “I”) is reasoning
about a dynamical system on which (s)he may partially
act, and that she can partly observe.

There is a number of possible assumptions that we
can make about the nature of the system and its mod-
elling (called ”ontological specialities”) and the nature
of the agent’s belief about the system (called ”epistemo-
logical specialities”)1. Rather than listing them all and
relating them to Sandewall’s original taxonomy (which
would take long and could be the topic of another pa-
per), we are only listing those that are of relevance as
far as belief revision and belief update arer concerned.

In the rest of the paper, if PS is a finite set of propo-
sitional symbols, then LPS is the language generated
from PS, the usual connectives and the Boolean con-
stants ⊤, ⊥.

Time Time can be either continuous, or infinite dis-
crete, or finite, or even one-shot (a single time point).

1Here however, I mix them both, because the distinction
between them is not always clear, especially in the presence
of sensing actions: for instance, should the fact that an
observation stemming from a sensing action is always correct
be considered as an epistemological assumption (property of
the agent’s knowledge: what he perceives is correct) or as a
property of the sensing action concerned?

DEPARTMENT OF INFORMATICS 455

11TH NMR WORKSHOP

In the rest of the paper we assume it to be finite. The
time scale is T = {1, . . . , N}. The process is one-shot
of N = 1.

Fluents For the sake of simplicity we identify fluents
with state variables (a variable that does not change
over time will just be encoded by a fluent together with
a strong persistency law.) Fluents can be continuous or
discrete. There might be dependencies between fluents
(including ramifications) or not. In the rest of the paper
we take a finite set V of binary fluents (a finite set of
propositional variables).

For every fluent x ∈ V and every time point t ∈
{1, . . . , N}, we define the new propositional symbol xt,
meaning “x at time t” (thus, xt is true if and only if
x holds at time t.) Let Vt = {xt | x ∈ V }. For any
formula ϕ of LV and any t ≤ N , ϕt is the propositional
formula of LVt obtained by replacing each variable x in
ϕ by xt.

States and trajectories Once N and V are fixed,
we can define states and trajectories. S = 2V (respec-
tively St = 2Vt) is the set of states (i.e., propositional
interpretations) for LV (respectively for LVt). Elements
of S (respectively St) are denoted by s (resp. st.)

Let S1→N = S1 × . . .×SN = 2V1∪...∪VN . Elements of
S1→N are called trajectories and are denoted by τ , τ ′

etc. For the sake of notation we write τ = 〈s1, . . . , sN 〉
instead of s1 ∪ . . . ∪ st.

For any ϕ ∈ LV , Mod(ϕ) is the set of states satisfying
ϕ. For any X ∈ S, for(X) is the formula of LV (unique
up to logical equivalence) such that Mod(for(s)) = X .
If X = {s} the we write for(s) instead of for({s}).

Actions and events There is a finite set ACT of
actions available to the agent. ACT may be empty
(action-free environment).

Generally speaking, an action A has two types of ef-
fects: an ontic (or physical) effect and an epistemic
effect. Taking an exemple from (Herzig et al. 2000),
if the action consists in tossing a coin, the ontic ef-
fect is that the next value of the fluent heads (which
is true if the current visible side of the coin is heads)
may change, whereas its epistemic effect is that the new
value of the fluent is observed. This distinction between
ontic and epistemic effects is classical in most setting,
from cognitive robotics and logics of action and belief
to Partially Observable Markov Decision Processes and
Kalman filtering. For the sake of simplicity we consider
only (purely) ontic and (purely) epistemic actions, with-
out loss of generality, since an arbitrary action can be
decomposed into a purely ontic action followed by a
purely epistemic action.

For the sake of simplicity, in this paper we identify
an ontic action A with to a transition graph RA on S.
RA(s, s′) means that s′ is accessible from s after A.
RA(s) = {s′ | RA(s, s′)} is the set of states that can
obtain after performing A in s. If RA(s) is a singleton
for all s then A is deterministic. If RA(s) = ∅ then A
is inexecutable at s. A is fully executable iff RA(s) 6= ∅

for every s.2

An epistemic action e corresponds to a set of possible
observations, plus a feedbackfounction fe from S to 2O,
where O is a finite observation space. o ∈ fe(s) means
that observation o may be obtained as feedback when
performing e in state s. For the sake of simplicity, we
identify O with LV , that is, we consider that obser-
vations are propositional formulas (note however that
this implies a loss of generality.) The simplest possible
epistemic actions are truth tests, and correspond to two
possible observations, ϕ and ¬ϕ, for some propositional
formula ϕ. An epistemic action e is truthful iff for all
s ∈ S, o ∈ O, o ∈ fe(s) implies s |= o, deterministic iff
for all s ∈ S, fe(s) is a singleton, and fully executable
iff for all s ∈ S, fe(s) 6= ∅.

In addition to actions there may be possible events
(or exogeneous actions.) The dynamics of an event is
identical to the dynamics of an ontic action (i.e., it
is expressed as a transition function.) However, ac-
tion are agent-trigerred (therefore the agent is always
aware of action occurrences) whereas events are nature-
triggered, so that the agent is not directly aware of an
event’s occurrence, but may only abduce event occur-
rences by observing some of its effects on the state of
the world, as in (Boutilier 1998). The inertia assump-
tion implies that events (other than the empty event)
should be minimized (in this context they are caled sur-
prises in (Sandewall 1995)), although this does not need
to be the case.

Belief revision is no more about static

worlds than logic is about birds

When it comes to position belief revision relatively to
belief update, one often reads the following sentence (or
something alike): “belief revision consists in incorporat-
ing some new information about a static world, while
belief update consists in incorporating to a belief base
about an old state of the world a piece of information
notifying some change in the world”3

First, there is a little bit of ambiguity about the word
“static” itself; stating that the world is static either

2Note that expressing an ontic action as a transition
graph implies some loss of generality, for several reasons.
First, it rules out the possibility to have graded (e.g. prob-
abilistic) effects: second, it rules out actions with delayed
effects.

3Reformulating what a referee pointed out to me, a more
charitable reading of this static/dynamic dichotomy is that
in belief revision, the part of the world described by the set of
fluents V is static – one could talk about “domain staticity”.
In his/her exact formulation, the referee said something a
bit different: “given input α, in some sense, in the case of
revision, the assumption is that the world has not changed
with respect to α (...)”. Retsricting staticity only to what
concerns α (which would, for instance, mean that we assume
that only fluents appearing in the formula α are required not
to change) is not sufficient: such a principle would imply
that a ∧ b revised by α = ¬b (or by α = b) should be equal
to b (since a has nothing to do with α in both cases).

456 Technical Report IfI-06-04

Belief Change and Updates

means that the world we are referring to is a photogra-
phy of the world at a given time point (and all pieces
of informations refer to this single time point); or that
the world its perfectly inert (times passes, but the world
remains unchanged.) This is not really a problem, how-
ever.

More importantly, nothing in the AGM theory of be-
lief revision implies that we should restrict its appli-
cation to static worlds. Belief revision (Alchourrón,
Gärdenfors, & Makinson 1985) is meant to map a be-
lief set K (a closed propositional theory) and a new
piece of information α (a consistent propositional for-
mula) whose truth is held for sure, into a new belief set
K ∗ α taking account of the new piece of information
without rejecting too much of the previous beliefs. The
initial belief set as well as the new piece of information
may talk about the state of an evolving world at differ-
ent time points. As remarked in Friedman and Halpern
(Friedman & Halpern 1999), what counts is not that the
world is static, but that the language used to describe
the world is static. The latter can be guaranteed simply
by time-stamping the formulas in the initial belief set
K as well as the “input” formula α.

In the rest of this Section I simply develop informally
the above argument, mainly by illustrating it on various
examples. There is nothing really original in this Sec-
tion, since the argument that time-stamping variables
allows for dealing with dynamic worlds in a pure be-
lief revision framework already appears in (Friedman &
Halpern 1999). However, I feel there is a need to insist
on this; furthermore, I want to develop the argument in
more detail than they do, and to point out connections
to some related work which is posterior to (Friedman
& Halpern 1999).

(Many) examples

Example 1
1. I sent yesterday a letter with the correct address on

it.

2. if a letter was sent yesterday with the correct address
on it then today the letter is received.

Then I learn that the address on the letter was wrong
(for instance, because the recipient has moved without
notifying his new address to the post service, and I used
the old address.) What do I believe now?

Example 1 is clearly a case for belief revision, more
precisely, this is a revision by some new information
about the past. A way of writing it formally con-
sists in letting K = Cn(CorrectAddress1 , Sent1 ↔
Received2), ψ = ¬CorrectAddress1 . With any “rea-
sonable” 4 revision operator, the revision of K by ψ
contains the intended conclusion ¬Received2.

4I don’t want to go into the details of specific belief
revision operators. In all examples I give, any change-
minimizing revision operator – that is, one of the usual revi-
sion operators commonly seen in the literature, except limit
cases such as full meet revision – will give the intended re-
sult.

Example 2
1. I sent yesterday a letter with the correct address on

it.

2. if a letter was sent yesterday with the correct address
on it then today the letter is received.

Then I learn that the recipient has not received the letter
yet. What do I believe now?

Example 2 is again a case for belief revision – this
time, a revision by some new information about the
present. A way of writing it formally consists in let-
ting K as in Example 1 and ψ = ¬Received1. What
the revision of K by ψ contains depends on the relative
entrenchment of the different pieces of belief. Assum-
ing that the law governing the delivery of letters is more
firmly entrenchment than both facts, the revision of K
by ψ contains ¬Sent1 ∨ ¬CorrectAddress15.

Example 3 Today is wednesday (time 3). Time 1 is
monday and time 2 is tuesday.

1. Yesterday I heard on the radio that the minister for
nonmonotonic reasoning of some country resigned.
Unfortunately, at that time I was busy with the vac-
uum cleaner and I could not hear well so I have now
a doubt: was that in Austria or in Australia?

2. Until monday, the nonmon minister in Austria was
Mr. Mozart whereas the nonmon minister of Aus-
tralia was Dr. Darwin.

3. Usually, nonmon ministers tend to keep their position
for quite a long time.

Today, I learn that Mr. Tweety has just been nominated
as the new nonmon minister of Australia (which means
that Dr. Darwin no longer is.) What do I believe now?

Example 3 is a sequence of two belief revision steps.
Using the propositional symbols M (Mozart is nonmon
minister of Austria) and D (Darwin is nonmon minister
of Australia), and assuming that the revision operator
used minimizes change:

• on monday I believe M1, D1, as well as the persis-
tency laws X1 → X2, X2 → X3 for X ∈ {M,D},
therefore I also believe M2, D2,M3: on monday, I ex-
pect that Mozart and Darwin will remain nonmon
ministers until wednesday.

• the first revision by ¬M2 ∨ ¬D2 leads me to believe
M1, D1, M2 ⊕ D2, M2 → M3, D2 → D3, as well
as M3 ⊕ D3. This revision step lead me to give up
the belief that both fluents M and D persisted from
time monday to tuesday: minimization of change
makes me believe that exactly one of them persisted.
Moreover, on tuesday I still believe that Mozart and
Darwin were nonmon ministers in their countries on
monday, and I also believe that on wednesday, either
Mozart or Darwin (and exactly one of them) will still
be nonmon minister.

5Actually, if the revision operator used minimizes change,
the revision of K by ψ contains either ¬Sent1 ⊕¬Correct−
address1.

DEPARTMENT OF INFORMATICS 457

11TH NMR WORKSHOP

• the later revision by ¬D3 makes me now believe
M1, D1, M2,¬D2, M3,¬D3: on wednesday, I under-
stand that the resigning minister was Darwin, and
therefore that Mozart was still minister on tuesday,
and is still on wednesday.

Note that this scenario is also a case for belief extrapola-
tion (Dupin de Saint-Cyr & Lang 2002), which is fully
consistent with the above interpretation, since belief
extrapolation is a particular form of revision on time-
stamped beliefs.

Example 4 Until now I believe that when something is
flying, its mass does not change. Today I’ve just seen a
penguin flying at a speed close to the speed of light and I
observe that its mass changed. What do I believe now?

This is a case where we have to revise a generic
rule governing the evolution of the world by an
observation that contradicts it. The problem of
revising action laws by observations has been recently
considered in (Eiter et al. 2005), who however made
no mention of this connection to belief revision.
My previous beliefs were Flying1(x), (Mass(x) =
y)1 → (Mass(x) = y)2

6, which I revised by
Flying(tweety)1 ∧ Closetolightspeed(tweety)1 ∧
(Mass(Tweety) = m)1 ∧ (Mass(Tweety) = m + ε)2.
The expected outcome is a new action law that takes
account of the observed limit case7.

Discussion

The examples above all illustrated different situations
where belief revision works and where the world is ev-
erything but static. Rather, in these examples we have
to incorporate a new piece of information into a be-
lief base, both of them tell about an evolving world.
This argues towards arguing the scope of belief revi-
sion includes dynamic worlds, possibly incorrect obser-
vations8, and unexpected events. Actions can even be
dealt with, provided that what we revise with (the “in-
put formula”) is an observation. The important point
is that, following the AGM postulates, revision should
coincide with expansion as soon as the input formula
is consistent with the initial belief base; this property,
which could be called closure by optimism9, assumes
that beliefs are normally correct.

6Even if I make use of variables, this is just for a commod-
ity of notation, as I do not want to step out of propositional
logic. Just assume we have a fixed, finite domain and that
these rules are propositionalized by instantiation on every
element of the domain.

7Unlike previous examples, which viewed revision as in-
corporation as new evidence, we have here a case for revision
of a generic rule by an example (see (Dubois 2006) for a dis-
cussion on this point.)

8Unreliable observations can be dealt with even in a stan-
dard AGM framework, satisfying the acceptance postulate,
provided that unreliable observations are in the initial belief
base and not in the ”input formula”.

9I’m borrowing this expression to Didier Dubois.

Belief update is a specific case of action

progression

The very meaning of belief update is much less clear
than that of belief revision. The literature on belief up-
date abunds in ambiguous explanations such as “while
revision deals with static worlds, update deals with dy-
namic, evolving worlds”, “update consists in making
the belief base after being notified of a change occurring
in the real world”10. These formulations contain many
ambiguities. First, the numerous examples of the previ-
ous section, all dealing with an evolving world, suggest
that the opposition between revision and update relies
on the possibility or not that the state of the world may
evolve is not correct. Second, not all dynamic scenar-
ios are properly handled with belief update. Therefore,
claiming that belief update is the right belief change op-
eration for dealing with evolving worlds is unsufficient.
Take Example 3, for instance. With most update oper-
ators, updating M ∧D first by ¬M ∨ ¬D and then by
¬D will lead to believe only ¬D at time 3. This is due
to postulate (U8) below, which is the key property of
belief update, stating that possible models are updated
independently (I’ll come back later on this point.) This
raises the following question: what is a “notification
of change”? Example 3 deals with two notifications of
change, still it cannot be formulated as a belief update
problem.

Because the language LV is generated by a finite
number of propositional variables, we can consider, as
in (Katsuno & Mendelzon 1991), belief update as trans-
forming a propositional formulas into another proposi-
tional formula (rather than transforming a closed the-
ory into a closed theory): an update operator is an
operator from LV × LV to LV . We recall here the
Katsuno-Mendelzon postulates for belief update. They
have been discussed and criticized in many places, in-
cluding (Herzig & Rifi 1999), who argued that not all
these postulates should be required. In the following
we call “update operator” any operator from LV × LV

to LV satisfying at least (U1) and (U8). If ϕ and α
are two propositional formulae of LV , and ⋄ an update
operator, then ϕ ⋄ α is the update of ϕ by α.

U1 ϕ ⋄ α |= α.

U2 If ϕ |= α then ϕ ⋄ α ≡ K.

U3 If ϕ and α are both satisfiable then ϕ ⋄ α is satis-
fiable.

U4 If ϕ ≡ ψ and α ≡ β then ϕ ⋄ α ≡ ψ ⋄ β.

U5 (ϕ ⋄ α) ∧ β |= ϕ ⋄ (α ∧ β).

U6 If ϕ ⋄ α |= β and ϕ ⋄ β |= α then ϕ ⋄ α ≡ ϕ ⋄ β.

U7 If ϕ is complete then (ϕ⋄α)∧ (ϕ⋄β) |= ϕ⋄ (α∨β).

U8 (ϕ ∨ ψ) ⋄ α ≡ (ϕ ⋄ α) ∨ (ψ ⋄ α).

10These formulations appear in the original paper (Kat-
suno & Mendelzon 1991), which may be one of the explana-
tions for such a long persistence of ambiguity.

458 Technical Report IfI-06-04

Belief Change and Updates

The key point is postulate U8 which, by requiring
that all models of the initial belief set be updated sep-
arately, forbids us to infer new beliefs about the past
from later observations. This inadequacy of update to
handle observations is not new (see e.g. (Boutilier 1998;
Dupin de Saint-Cyr & Lang 2002)), but is not often
mentioned in papers about belief update: indeed, say-
ing that updating ϕ by α corresponds to incorporating
an observation α reflecting a change in the world is in-
correct (see the end of this section.)

One could try to argue that such scenarios (such as
Example 3) are both a case for revision and update,
depending whether the formulation of the problem uses
time-stamped variables or not. This line of argumen-
tation fails: expressing Example 3 as a belief update
problem still leads to the counterintuitive results that
we do not learn anything about M . Besides, several au-
thors remarked that, unless belief bases are restricted
to complete bases, a belief update operator cannot be
a belief revision operator. For instance, it is shown in
(Herzig 1998; Peppas et al. 1996) that the AGM postu-
lates are inconsistent with U8 as soon as the language
contains at least two propositional symbols.

Actually, update has to be understood as a partic-
ular form of action progression (for purely ontic ac-
tions). Action progression (as considered in the liter-
ature of reasoning about action and logic-based plan-
ning) consists in determining the belief base obtained
from an old belief state after a given action was per-
formed This strong connection between belief update
an action progression was first mentioned in (del Val
& Shoham 1994), who argue that updating an initial
belief base K by a formula α corresponds to one par-
ticular action; they formalize such actions in a formal
theory of actions based on circumscription, and their
framework for reasoning action is then used to derive a
semantics for belief update. The relationship between
update and action progression appears (more or less ex-
plicitly) in several other papers, including (Liberatore
2000b), who expresses several belief update operators
in a specific action language. (See also the concluding
Section.) Still, the relationship between update and ac-
tion progression still needs to be investigated in more
detail – this is what I am trying to do next.

As said in the background section, a purely ontic ac-
tion A corresponds to a transition graph RA on S. For
any formula ϕ ∈ LV , the progression of ϕ by A is the
propositional formula (unique up to logical equivalence)
whose models are the states that can obtain after per-
forming A in a state of Mod(ϕ): prog(ϕ,A) is defined
by

prog(ϕ,A) = form





⋃

s|=ϕ

RA(s)



 (1)

The weak (or deductive) regression (or preimage11) of ψ
by A is the formula whose models are the states from

11The terminology preimage / strong preimage comes
from the planning literature.

which the execution of A possibly leads to a model of
ψ, i.e.

reg(ψ,A) = form ({s,RA(s) ∩Mod(ψ) 6= ∅})

The strong (or abductive) regression (or strong preim-
age) of ψ by A is the formula whose models are the
states from which the execution of A certainly leads to
a model of ψ, i.e.

Reg(ψ,A) = form ({s,RA(s) ⊆Mod(ψ)})

See for instance (Lang, Lin, & Marquis 2003) on the
meaning of these two notions. 12

Clearly enough, (1) is identical to (U8). Therefore,
for any update operator (and more generally any opera-
tor satisfying (U8)) and any input formula α, updating
by α is an action progression operator. The next ques-
tions are: (a) Which action is this exactly? (b) What is
the class of actions that correspond to a belief update?
(c) If update is progression, are there belief change
operators corresponding to weak and strong regression?

Question (a) first. Updating/progressing states sep-
arately as in (U8) and (1) means that the action is
feedback-free. Indeed, a feedback would allow us to
eliminate some states after the action has been per-
formed, which in turn would lead us to eliminate some
states before the action took place (see (Boutilier 1998;
Dupin de Saint-Cyr & Lang 2002))13. This comes down
to say that belief update assumes unobservability: the
set of possible states after A is performed is totally de-
termined by the set of possible states before it is per-
formed and the transition system ciorresponding to A.
In other words, what you foresee is what you get: once
we have decided to perform A, waiting until is has ac-
tually been performed will not bring us any new infor-
mation.

12Remark that the probabilistic variant of action pro-
gression is the well-known action progression operator for
stochastic actions: let p is a probability distribution over S
and A a stochastic action described by a stochastic matrix
p(.|., A), where p(s′|s,A) is the probability of obtaining s′

after performing A in s. Then progP (p,A) is the probability
distribution over S defined by

progP (p,A)(s′) =
X

s∈S

p(s)p(s′|s, A)

Mapping each probability distribution p into the belief state
B(p) = for({s|p(s) > 0}) consisting of those states deemed
possible by p, i.e.,

B(progP (p,A)) = prog(B(p),A)

As argued in (Dubois & Prade 1993), the probabilistic vari-
ant of belief update is Lewis’ imaging (Lewis 1973).

13Unless the state of the world after the action is per-
formed is totally disconnected from the state of the world be-
fore the action is performed, which only happens if RA(s) =
S for all s. In this case, a feedback never allows for learning
anything about the past state of the world. Clearly, this
case is a very degenerated one.

DEPARTMENT OF INFORMATICS 459

11TH NMR WORKSHOP

Now, we know that update(α) is a feedback-free ac-
tion. Can we describe update(α) in more details? Pos-
tulate (U1) means that update(α) has to be understood
as “make α true”. More precisely, due to the absence
of feedback reflected by (U8), updating ϕ by α pre-
cisely means this, which could be seen as a dialogue
between an agent and a robot: “All I know about the
state of the world is that is satisfies ϕ. Please, go to the
real world, see its real state, and whatever this state,
act so as change it into a world sastisfying α, following
some rules” (given that the robot will not communicate
with the agent once it will be the real world.) These
rules to be followed by the robot are dictated by the
choice of the update operator ⋄. If ⋄ satisfies (U2),
then the rules state that if the α is already true then
the robot should not do anything and let the world as it
is. If ⋄ is change-minimizing such as the PMA (Winslett
1990), then the rules are that the robot should “make
α true, without changing more variables than neces-
sary”. More generally, when ⋄ is a Katsuno-Mendelzon
operator, associated with a collection of similarity pre-
orders (one for each world), the robot should “make α
true by changing s into one of the states that are most
similar to it” 14. When ⋄ is a forgetting-based opera-
tion, such as in (Herzig 1996; Doherty, Lukasziewicz, &
Madalińska-Bugaj 1998), then the rules state “make α
true, without changing the truth values of the variables
which are irrelevant to α.” And so on.

Writing things more formally: given an update op-
erator ⋄ and a formula α, let update(⋄, α) be the ontic
action defined by: for all s, s′ ∈ S,

s′ ∈ Rupdate(⋄,α)(s) iff s′ |= for(s) ⋄ α

Then

Proposition 1 If ⋄ satisfies (U1) and (U8) then
update(⋄, α) is a ontic action, and ϕ ⋄ α ≡ prog(ϕ, α).

In Proposition 1, requiring (U3) in addition to (U1)
and (U8) would correspond to having update(⋄, α) fully
executable. We may wonder what new properties of
update(⋄, α) obtain when other postulates are required.
(U2) is particularly interesting in this respect. For any
action A, let Inv(A) be the set of invariant states for
A, that is, the set of all states s such that RA(s) = {s}.

Proposition 2 Let ⋄ satisfying (U1) and (U8). Then
⋄ satisfies (U2) if and only if for all s ∈ S,
Rupdate(⋄,α)(s) ⊆ Inv(update(⋄, α)).

Thus, the inertia postulate (U2) together with
(U1) means that any state that can be reached by
update(⋄, α) is an invariant state. (A quick proof of
the left-to-right direction: by (U1), update(⋄, α) maps

14Note that, as argued in (Peppas et al. 1996), this sim-
ilarity has here be understood as an ontological notion (s
being closer to s1 than to s2 may, in practice, reflect that
from s it is easier to go to s1 than to s2) and not as an
epistemic notion of similarity, as it would be the case for
belief revision (again see (Peppas et al. 1996)).

any state to a set of states satisfying α; then by (U2),
any of these states is invariant by update(⋄, α).) 15.

The other postulates will not have any direct effect on
the properties of update(⋄, α) considered as an isolated
action, because they relate different actions of the form
update(⋄, α). Noticeably, requiring (U4) corresponds
to the equality between update(⋄, α) and update(⋄, β)
when α and β are logically equivalent.

Let us not consider question (b). Obviously, given a
fixed update operator ⋄ satisfying (U1), (U4) and (U8),
there are actions that are not of the form update(⋄, α)
(this is obvious because there are 22n

actions of the
form update(⋄, α) and 2n+2n

possible actions, where
n = |V |.)16.

Now, what happens if we allow ⋄ to vary? The ques-
tion now is, what are the actions that can be expressed
as update(⋄, α), for some update operator ⋄ and some
α? Here is a first answer:

Proposition 3 Let A be an ontic action such that A
is fully executable and RA(s) ⊆ Inv(A) for all s ∈ S.
Then there exists an update operator ⋄ satisfying all the
Katsuno-Mendelzon postulates, and a formula α such
that A = update(⋄, α).

The proof is constructive: α is taken such that
Mod(α) = Inv(A), and the collection of faithful or-
derings is defined by s1 <s s2 if and only if s = s1 6= s2
or (s 6= s1, s 6= s2, s1 ∈ Inv(A), s2 6∈ Inv(A)); and
s1 ≤s s2 iff not (s2 <s s1).

Putting Propositions 2 and 3 together we get

Corollary 1 Let A be an ontic action. There exists an
update operator ⋄ satisfying all the Katsuno-Mendelzon
postulates, and a formula α such that A = update(⋄, α),
if and only if A is fully executable and RA(s) ⊆ Inv(A)
for all s ∈ S.

Now, question (c). Is there a natural definition of re-
verse update which would be to action regression what
update is to progression? The point is that we do not
have one, but two notions of action regression, which
naturally leads to two notions of reverse update.

Definition 1 Let ⋄ be an update operator.

• the weak reverse update associated with ⋄ is defined
by: for all ψ, α ∈ LV ,

ψ ⊙ α = for({s | for(s) ⋄ α 6|= ¬ψ})

15Note that if Rupdate(⋄,α)(s) ⊆ Inv(update(⋄, α)) for
all s, then update(⋄, α) is involutive, i.e., Rupdate(⋄,α) ◦
Rupdate(⋄,α) = Rupdate(⋄,α), but the converse fails to hold.

16Here is another proof, more intuitive: let V = {p}, thus
S = {p,¬p}, and consider the actions A = switch(p), such
that RA(p) = {¬p} and RA(¬p) = {p}. Assume there is
a formula α such that A = update(⋄, α); then U1 enforces
α ≡ ⊤; therefore, if A = update(⋄, α) then by (U4), A =
update(A,⊤). Now, let A′ be the identity action; we also
have that if A′ can be expressed as an update action for ⋄,
then A′ = update(⋄,⊤). Therefore, at most one of A and
A′ can be expressed as an update action for ⋄.

460 Technical Report IfI-06-04

Belief Change and Updates

• the strong reverse update associated with ⋄ is defined
by: for all ψ, α ∈ LV ,

ψ ⊗ α = for({s | for(s) ⋄ α |= ψ})

Intuitively, weak reverse update corresponds to (de-
ductive) postdiction: given that the action “make α
true” has been performed and that we now know that
ψ holds, all we can say about the state of the world be-
fore the action was performed is that it satisfied ψ⊙α.

As to strong reverse update, it is an abductive form
of postdiction, better interpreted as follows: given that
a rational agent has a goal ψ and has performed “make
α true”, the states of the world before the action was
performed in which the action was guaranteed to suc-
ceed are those satisfying ψ ⊗ α.

Example 5 Let ⋄ be the PMA update operator
(Winslett 1990).

• ¬a⊙ (¬a ∨ ¬b) ≡ (¬a ∨ b) and ¬a⊗ (¬a ∨ ¬b) ≡ ¬a.
• ¬(a ∨ b) ⊙ (¬a ∨ ¬b) ≡ (a ∨ b) ⊗ (¬a ∨ ¬b) ≡ (a ∨ b).

Here are now some interesting properties of weak and
strong reverse update. These properties will vary, of
course, with the properties required for belief update.
We start with the basic postulates (U1), (U4) and (U8).

Proposition 4 Let ⋄ be an update operator satisfying
(U1), (U4) and (U8).

SW0 if ψ ≡ ψ′ and α ≡ α′ then ψ ⊙ α ≡ ψ′ ⊙ α′ and
ψ ⊗ α ≡ ψ′ ⊗ α′.

W1 ψ ⊙ α ≡ (ψ ∧ α) ⊙ α;

W2 ψ |= (ψ ⊙ α) ⋄ α;

S1 (ψ ∧ α) ⊗ α |= ψ ⊗ α;

S2 (ψ ⊗ α) ⋄ α |= ψ.

SW3 ψ ⊗ α |= ψ ⊙ α.

Note that W1 entails: if ψ |= ¬α then ψ ⊙ α ≡ ⊥.
Example 5 shows that not only the converse impli-

cation of (SW3) fails to hold, but also that so does
the converse implication of (S1): let ψ = (a ∨ b),
α = (¬a∨¬b), then ψ⊗α = (a∨ b), and (ψ ∧α)⊗α ≡
(a↔ ¬b) ⊗ (¬a ∨ ¬b) ≡ (a ↔ ¬b), which is not equiva-
lent to ψ ⊗ α. Likewise, the converse of (W2) and (S2)
fail to hold.

Other properties of reverse update are obtained when
(U2) is required for ⋄.

Proposition 5 Let ⋄ be an update operator satisfying
(U1), (U2) and (U8).

S4 ψ ∧ α |= ψ ⊗ α;

W5 (ψ ⊙ α) ⊙ α ≡ ψ ⊙ α.

S5 (ψ ⊗ α) ⊗ α ≡ ψ ⊗ α.

S4, together with SW3, entails (W4) ψ ∧ α |= ψ ⊙ α.
(S4) and (W4) entail: if ψ |= α then ψ |= ψ ⊗ α and
ψ |= ψ ⊙ α. Which entails in turn: α |= α ⊗ α and
α |= α⊙ α.

Pursuing the investigation on reverse update does not
only have a theoretical interest: weak (deductive) re-
verse update allows for postdiction, while strong (abuc-
tive) reverse update allows for goal regression, when the

actions performed are updates. Anyway, in this paper
I won’t try to go further, as my goal was just to show
how weak and strong reverse update can be defined. A
last word: for those who would have wondered about
that: reverse update has nothing to do with erasure
(Katsuno & Mendelzon 1991).

In the section on revision we have seen that it is possi-
ble (and relevant) to revise some beliefs about the past,
present and future by some new information about the
past / the present / the link between both. Can we do
the same for belief update? Is it meaningful to update
by some information about the past, the future, or the
way the world evolves?

Recall that we argued that updating by α cor-
responds to performing the action “make α true”.
Therefore, updating by some information the past,
even if this can be written formally, is no less than
weird17. Updating by some information about the
present is no less weird. Updating by information
about the next time point is exactly what usual belief
update is about. Updating by some information about
some remote future can be meaningful as well. For
instance, updating the current belief at ∨ bt by ¬bt+2

means that the robot is asked to perform an action
(following the rule dictated by the update operator)
whose result will be that b will be false at time t + 2.
In an inert context where we have no reason to believe
that b will be assigned to false earlier than at t+ 2, we
expect that everything the result of the update implies
at time t+ 1 is at+1 ∨ bt+1.

A last point. Now that we know that update(α) is an
action progression operator, we also know that it can be
described by a propositional action theory such as those
described in (Giunchiglia et al. 2004) etc., at least in
the following obvious way: for each state s consider the
causal rule

if for(s) then α causes s ⋄ α

The union of all these rules, once compiled in a
propositional action theory Σα, will be the proposi-
tional encoding of the update operator. The ques-
tion is now whether update(α) can be described as
simple (that is, short) action theories. The answer
depends, of course, on the update operator. Results
on computational complexity, however, allow for giv-
ing a quick negative answer for many update opera-
tors. Indeed, we know (Lang, Lin, & Marquis 2003)
that, given an action A specified as a set of causal
rules or as a propositional action theory ΣA, and two
formulas ϕ, ψ, checking whether prog(ϕ, α) |= ψ is
coNP-complete. Let now ⋄ an update operator such
as checking whether ϕ ⋄ α |= ψ is C-complete for
some class above coNP in the complexity hierarchy.

17It might be argued that this happened in some political
contexts that I don’t have to recall here – but this, of course,
was making other agents believe at time t′ > t that some
formula, that was true at time t, was actually false – this is
definitely another story...

DEPARTMENT OF INFORMATICS 461

11TH NMR WORKSHOP

Then, if there were a way of expressing update(⋄, α)
(for all α) by a polynomially large action theory, then
we would have C = coNP, which is highly unlikely.
Now, most update operators are above coNP – most
of them being Πp

2-complete (Eiter & Gottlob 1992;
Liberatore 2000a). This implication is actually an
equivalence. For instance, let us state formally the re-
sult for the PMA:

Proposition 6 Let ⋄ = ⋄PMA. Then 1. and 2. are
equivalent:

1. there exists a polysize function Σ : LV → LVt∪Vt+1

such that for all s, s′ ∈ S, (st, s
′
t+1) |= Σ(α) if and

only if (s, s′) ∈ Rupdate(⋄,α).

2. the polynomial hierarchy collapses at the first level.

Similar results would hold with most update op-
erators of the literature, with the noticeable excep-
tions of the following two ones: the MPMA (Do-
herty, Lukasziewicz, & Madalińska-Bugaj 1998), WSS

(Winslett 1990), WSS↓, WSS↓
dep (Herzig 1996; Herzig

& Rifi 1999), as well as the update operator proposed
in (Herzig et al. 2001). All those update operators
consists first in forgetting (in the sense of (Lin & Reiter
1994)) a set of variables (for instance, those that appear
in the input formula α, or those in which α depends
etc.), and then expanding by α. For these, checking
whether ϕ ⋄α |= ψ is ‘ only” coNP-complete. And here
is the translation, given here for WSS:

Σ(α) = αt+1 ∧
∧

v 6∈V ar(α)

vt ↔ vt+1

It is now time to summarize and discuss the scope
of belief update. We have extensively argued that up-
dating a belief base K by a formula α has to be inter-
preted as progressing (or projecting) K by the action
make α true. The “input formula” α is an expected
action effect, and not an observation: standard belief
update precludes any possibility of feedback. Observa-
tions lead to filter out some possible states; an obser-
vation at time t + 1 leads to filter out not only some
possible states for time t + 1, but also some possible
states for time t, because the state of the world at time
t and the state of the world at time t+1 are correlated,
by default persistence rules or other dynamic rules18.
The only case where belief update would be compati-
ble with interpreting α as an observation would be the
one where not the faintest correlation would exist be-
tween the state of the world at different time points –
a totally degenerate and uninteresting case, as argued
above. Thus, belief update is suitable only for (some
specific) ontic action progression with no feedback.

Concluding remarks

Let us first summarize what we have said do far. Both
revision and update deal with dynamic worlds, but they

18This very principle is the basis for generalized update
(Boutilier 1998), which integrates revision and update.

strongly differ in the nature of the information they are
processing. Revision aims at correcting some initial be-
liefs about the past, the present and even the future
state of the world by some newly observed information
again about the past or the present state of the world.
Update has nothing do to with observations: it is meant
to project some belief state forward given the knowledge
that some particular ontic action has been performed,
without any feedback being observed. We have seen that
if updating by α corresponds to progressing by a specific
action (depending both on the update operator and on
α), conversely, not all ontic actions can be expressed as
updates, even if the update operator is allowed to vary,
as soon as updates are required to satisfy the staticity
postulate (U2) in addition to the basic postulates (U1),
(U4) and (U8). Then, unsurprisingly, the relationship
of update to action progression draws a similar relation-
ship between action regression and “reverse update”.

In complex environments, especially planning under
incomplete knowledge, actions are complex and have
both ontic and epistemic effects; the belief change pro-
cess then is very much like the feedback loop in par-
tially observable planning and control theory: per-
form an action, project its effects on the current be-
lief state, then get the feedback, and revise the pro-
jected belief state by the feedback. Or, equivalently,
if one chooses to separate the ontic and the epistemic
effects of actions, by having two disjoint sets of ac-
tions (ontic and epistemic), then ontic actions lead to
projection only, while epistemic actions lead to revi-
sion only (see also (Cossart & Tessier 1999)). Two
recent lines of work consider both kinds of actions
in a belief change framework: (Shapiro et al. 2000;
Shapiro & Pagnucco 2004), who express revision and
update in the situation calculus, and (Hunter & Del-
grande 2005). Both works make it clear that update
corresponds to ontic actions while revision correspond
to epistemic actions and observations. However, this
raises the following question: given that not all ontic
actions can be expressed as updates, how restrictive is
it to limit the available ontic actions to the latter ones?
Why not going more general? Of course, one could give
up belief update and move to causal theories of actions.
But the point is that if we shall then lose the nice fea-
tures of belief update, including its ability to deal with
disjunctive effects. Another possibility would consist
in enriching belief update by allowing for nondetermin-
istic, conditional and concurrent updates, such as in
(Herzig et al. 2001). This is left for further research.

Acknowledgements
I have been discussing and arguing with Andreas Herzig
for ten years about the very meaning of belief update.
Without these discussions I would never have had the
idea of writing this position paper. The issues ad-
dressed in this paper owe a lot to discussions and/or
joint works with Florence Dupin de Saint-Cyr – Bannay,
Jim Delgrande, Didier Dubois, Andreas Herzig (again),
Sébastien Konieczny, Gabriele Kern-Isberner, Fangzhen

462 Technical Report IfI-06-04

Belief Change and Updates

Lin, and Pierre Marquis. Thanks as well to the partici-
pants of the Dagstuhl seminar “Belief change in rational
agents: perspectives from Artificial Intelligence, Philos-
ophy and Economics”, August 2005.

References

Alchourrón, C.; Gärdenfors, P.; and Makinson, D.
1985. On the logic of theory change : partial meet
contraction and revision functions. Journal of Sym-
bolic Logic 50:510–530.

Boutilier, C. 1998. A unified model of qualitative belief
change: a dynamical systems perspective. Artificial
Intelligence 1-2:281–316.

Cossart, C., and Tessier, C. 1999. Filtering vs revi-
sion and update: let us debate! In ECSQARU’99,
5th European conference on symbolic and quantitative
approaches to reasoning with uncertainty.

del Val, A., and Shoham, Y. 1994. Deriving properties
of belief update from theories of action. J. of Logic,
Language, and Information 3:81–119.

Doherty, P.; Lukasziewicz, W.; and Madalińska-Bugaj,
E. 1998. The PMA and relativizing change for action
update. In Proc. KR’98, 258–269.

Dubois, D., and Prade, H. 1993. Revision and update
in numerical formalisms. In Proceedings of IJCAI93.

Dubois, D. 2006. Three views on belief revision. sub-
mitted.

Dupin de Saint-Cyr, F., and Lang, J. 2002. Belief
extrapolation (or how to reason about observations
and unpredicted change). In Proceedings of KR2002,
97–508.

Eiter, T., and Gottlob, G. 1992. On the complexity
of propositional knowledge base revision, updates and
counterfactuals. Artificial Intelligence 57:227–270.

Eiter, T.; Erdem, E.; Fink, M.; and Senko, J. 2005.
Updating action domain descriptions. In IJCAI 2005,
418–423.

Friedman, N., and Halpern, J. 1996. Belief revision:
A critique. In Proceedings of KR’96, 421–431.

Friedman, N., and Halpern, J. 1999. Modelling be-
liefs in dynamic systems. part ii: revision and update.
JAIR 10:117–167.

Gärdenfors, P. 1988. Knowledge in Flux: Modeling
the Dynamics of Epistemic States. MIT Press.

Giunchiglia, F.; Lee, J.; Lifschitz, V.; Cain, N. M.;
and Turner, H. 2004. Nonmonotonic causal theories.
Artificial Intelligence.

Herzig, A., and Rifi, O. 1999. Propositional belief
update and minimal change. Artificial Intelligence
115:107–138.

Herzig, A.; Lang, J.; Longin, D.; and Polacsek, T.
2000. A logic for planning under partial observability.
In Proc. of AAAI’2000, 768–773.

Herzig, A.; Lang, J.; Marquis, P.; and Polacsek, T.
2001. Actions, updates, and planning. In Proceedings
of IJCAI’2001, 119–124.

Herzig, A. 1996. The PMA revisited. In Proceedings
of KR’96, 40–50.

Herzig, A. 1998. Logics for belief base updating.
In Handbook of Defeasible Reasoning and Uncertainty
Management Systems. Kluwer Academic Press.

Hunter, A., and Delgrande, J. 2005. Iterated belief
change: a transition system approach. In Proceedings
of IJCAI05.

Katsuno, H., and Mendelzon, A. 1991. Propositional
knowledge base revision and minimal change. Artificial
Intelligence 52:263–294.

Lang, J.; Lin, F.; and Marquis, P. 2003. Causal the-
ories of action: a computational core. In Proceedings
of the Eighteenth International Joint Conference on
Artificial Intelligence (IJCAI’03), 1073–1078.

Lewis, D. 1973. Counterfactuals. Harvard University
Press.

Liberatore, P. 2000a. The complexity of belief update.
Artificial Intelligence 119:141–190.

Liberatore, P. 2000b. A framework for belief update.
In Proceedings of JELIA-2000.

Lin, F., and Reiter, R. 1994. Forget it! In Proceedings
of the AAAI Fall Symposium on Relevance, 154–159.

Peppas, P.; Nayak, A.; Pagnucco, M.; Foo, N.; Kwok,
R.; and Prokopenko, M. 1996. Revision vs. update:
taking a closer look. In Proceedings of ECAI96.

Sandewall, E. 1995. Features and Fluents. Oxford
University Press.

Shapiro, S., and Pagnucco, M. 2004. Iterated belief
change and exogeneous actions in the situation calcu-
lus. In Proceedings of ECAI04.

Shapiro, S.; Pagnucco, M.; Lespé-rance, Y.; and
Levesque, H. J. 2000. Iterated belief change in the
situation calculus. In Proc. of KR’00, 527–538.

Winslett, M. 1990. Updating Logical Databases. Cam-
bridge University Press.

DEPARTMENT OF INFORMATICS 463

11TH NMR WORKSHOP

464 Technical Report IfI-06-04

Belief Change and Updates

6.2 An axiomatic characterization of ensconcement-based contrac-
tion

An axiomatic characterization of ensconcement-based contraction
(Preliminary Version)

Eduardo Fermé
Departamento de Matemática e Engenharias

Universidade da Madeira
ferme@uma.pt

Mart ı́n Krevneris
Soluciones Informaticas Coop.

mkrev@2vias.com.ar∗

Abstract

In this paper we propose an axiomatic characteriza-
tion for ensconcement-based contraction function, be-
lief base function proposed by Williams. We relate this
function with other kinds of base contraction functions.

Introduction
The logic of theory change became a major subject in philo-
sophical logic and artificial intelligence in the middle of
the 1980’s. The most important model, now known as the
AGM model of belief change, was proposed by Alchourrón,
Gärdenfors and Makinson in (Alchourrón, Gärdenfors, &
Makinson 1985). The AGM model is a formal framework
to characterize the dynamics and state of belief of a ratio-
nal agent. The beliefs of an agent are represented by a set
of sentences closed under logical consequence. The AGM
model has acquired the status of a standard model, and has
been characterized in at least five different equivalent ways:
Postulates, partial meet functions, epistemic entrenchment,
safe/kernel contractionandGrove’ sphere-systems.
One of the most important variants in the AGM model is to
represent the beliefs of an agent by abelief base, a set of
sentences that is not (necessarily) closed under logical con-
sequence.
Partial meet contraction and kernel contraction had been
characterized for belief bases. Mary-Anne Williams pro-
posed a model of contraction based in an “ensconcement”,
closely related with epistemic entrenchment. In this paper
we provide an axiomatic characterization ofensconcement-
based contraction functions.

Contraction functions for Belief Bases
The use of logically closed sets to represent beliefs has re-
ceived much criticism. Among them we can mention: 1. Be-
lief sets make no distinction between basic beliefs and those
which were inferred from them. 2. They are computability
intractable. 3. Belief Bases can distinguish between differ-
ent inconsistent belief states.

∗We would like to thank the audience at the Dagstuhl Seminar
of Belief Change in Rational Agents for many helpful comments
and stimulating suggestions. Thanks also due to the anonymous
referee for his numerous perceptive remarks and criticisms; and
thanks to José Castanheira for corrections concerning presentation.

Several authors propose the use of belief bases for logic of
theory change. We will use the belief base theory proposed
by Hansson(Hansson 1991), where a belief base is any set
of sentences.

Formal preliminaries: We will assume a languageL
that is closed under truth-functional operations and a con-
sequence operatorCn for L. Cn satisfies the standard
Tarskian properties, namely inclusion (A ⊆ Cn(A)),
monotony (ifA ⊆ B, thenCn(A) ⊆ Cn(B)), and itera-
tion (Cn(A) = Cn(Cn(A))). It is supraclassical and com-
pact, and satisfies deduction (ifβ ∈ Cn(A ∪ {α}), then
(α → β) ∈ Cn(A)). A ⊢ α will be used as an alternative
notation forα ∈ Cn(A), ⊢ α for α ∈ Cn(∅) andCn(α) for
Cn({α}). Upper-case letters denote subsets ofL. Lower-
case Greek letters denote elements ofL. Base expansion is
simply a set union, i.e.,A + α = A ∪ {α}. A contraction
of A with respect toα involves removal of a set of sentences
from A so thatα is no longer implied.

Partial Meet Contraction
We can construct a base contraction function using there-
maindersets, i.e., maximal subsets ofA that fail to imply
α:

Definition 1 (Alchourrón & Makinson 1981) LetA be a be-
lief base andα a sentence. The setA⊥α (A remainderα) is
the set of sets such thatB ∈ A⊥α if and only if:

• B ⊆ A

• B 6⊢ α

• There is no setB′ such thatB ⊂ B′ ⊆ A andB′ 6⊢ α

Definition 2 (Alchourrón, Gärdenfors, & Makinson 1985;
Hansson 1991) The partial meet base contraction operator
onA based on a selection functionγ is the operator−γ such
that for all sentencesα:

A −γ α = ∩γ(A⊥α)

Hansson characterized partial meet base contraction in
terms of postulates:

Theorem 3 (Hansson 1991) LetA be a belief base. An op-
erator− onA is a partial meet contraction function forA if
and only if− satisfies

SuccessIf 6⊢ α, thenA−α 6⊢ α.

DEPARTMENT OF INFORMATICS 465

11TH NMR WORKSHOP

Inclusion A−α ⊆ A.
RelevanceIf β ∈ A andβ /∈ A−α then there is some

set A′ such thatA−α ⊆ A′ ⊆ A andα 6∈ Cn(A′) but
α ∈ Cn(A′ ∪ {β}).

Uniformity If it holds for all subsetsA′ of A that α ∈
Cn(A′) if and only if β ∈ Cn(A′), thenA − α = A − β.

Partial meet base contraction also satisfies other interest-
ing properties as we will see in the following observation:

Observation 4 (Hansson 1999) LetA be a belief base and
− an operator onA. Then:

1. If − satisfiesinclusionandrelevance, then it satisfies
vacuity(If A 6⊢ α, thenA − α = A).

2. If − satisfiesuniformity, then it satisfiesextensionality
(If ⊢ α ↔ β, thenA − α = A − β).

3. If − satisfiesinclusionandrelevance, then it satisfies
failure (If ⊢ α, thenA − α = A).

Kernel Contraction
In (Hansson 1994) Hansson introducedKernel Contraction,
a generalization of Safe Contraction(Alchourrón & Makin-
son 1985). It is based on a selection among the sentences of
a setA that contribute effectively to implyα; and on how to
use this selection in contracting byα. Formally:

Definition 5 (Hansson 1994) LetA be a set inL andα a
sentence. ThenA⊥⊥α is the set such thatB ∈ A⊥⊥α if and
only if:

{

B ⊆ A
B ⊢ α
If B′ ⊂ B thenB′ 6⊢ α

A⊥⊥α is called thekernel set ofA with respect toα and
its elements are theα-kernelsof A.

Definition 6 (Hansson 1994) LetA be a set of sentences.
Let A⊥⊥α be the kernel set ofA with respect toα. An inci-
sion functionσ for A is a function such that for all sentences
α:

{

σ(A⊥⊥α) ⊆
⋃

(A⊥⊥α)
∅ 6= B ∈ A⊥⊥α, thenB ∩ σ(A⊥⊥α) 6= ∅

Definition 7 (Hansson 1994) LetA be a set of sentences
andσ an incision function forA. The kernel contraction
−σ for A is defined as: :

A−σα = A \ σ(A⊥⊥α).

An operator− for a setA is a kernel contraction if and
only if there is an incision functionσ for A such thatA−α =
A−σα for all sentencesα.

Hansson also provided an axiomatic characterization for
kernel contraction.

Theorem 8 (Hansson 1994) The operator− for a set of sen-
tencesA is a kernel contraction if and only if it satisfiessuc-
cess, inclusion, uniformityand

Core retainment If β ∈ A andβ /∈ A−α then there is
some setA′ such thatA′ ⊆ A andα /∈ Cn(A′) but α ∈
Cn(A′ ∪ {β}).

Sincecore retainmentis weaker thanrelevance, it follows
that, for belief bases, all partial meet contractions are kernel
contractions. There exist two more conservative types of
kernel contraction:

A kernel contraction issmoothif and only if for all sub-
setsA′ of A that: if A′ ⊢ β and β ∈ σ(A⊥⊥α) then
A′ ∩ σ(A⊥⊥α) 6= ∅ (Hansson 1994).

A kernel contraction isrelevantif and only if for all β ∈
σ(B⊥⊥α), there is anX such that(B \ σ(B⊥⊥α)) ⊆ X ⊆
B, X 6⊢ α andX ∪ {β} ⊢ α (Falappa, Fermé, & Kern-
Isberner 2006).

Theorem 8 (cont.)

• (Hansson 1994)− is smooth if and only if it also satisfies:

Relative ClosureA ∩ Cn(A − α) ⊆ A − α.

• (Falappa, Fermé, & Kern-Isberner 2006)− is relevant if
and only if it also satisfiesrelevance.

Ensconcement
Mary-Anne Williams (Williams 1992; 1994b; 1995) defines
anensconcementrelation on a belief base A as a transitive
and connective relation� that satisfies the following three
conditions:1

(�1) If β ∈ A \ Cn(∅), then{α ∈ A : β ≺ α} 6⊢ β.

(�2) If 6⊢ α and⊢ β, thenα ≺ β

(�3) If ⊢ α and⊢ β, thenα � β

�1 says that the formulae that are strictly more ensconced
thanα do not (even conjointly) implyα. Conditions�2 and
�3 say that tautologies are the most ensconced formulae.
Given an ensconcement relation, a cut operator is defined
by:

cutA(α) = {β ∈ A : {γ ∈ A : β � γ} 6⊢ α}

Lemma 9 (Williams 1994a)
If α ∈ A, cutA(α) = {β ∈ A : α ≺ β}

The previous Lemma says that whenα is an explicit be-
lief, its cut is the subset ofA such that its members are
strictly more ensconced thanα. Other interesting properties
of cut are:

Lemma 10

(a) If α ≺ β, thencutA(α ∧ β) = cutA(α).
(b) If α ≺ β, thencutA(α) ⊢ β andcutA(β) 6⊢ α.
(c) If β =� α, thencutA(α ∧ β) = cutA(α) = cutA(β).

1α ≺ β meansα � β andβ 6� α. α =� β meansα � β and
β � α.

466 Technical Report IfI-06-04

Belief Change and Updates

(d) If 6⊢ α, cutA(α) 6⊢ α.
(e) If A 6⊢ α, cutA(α) = A

(f) If cutA(α) ⊢ β, thencutA(α ∧ β) = cutA(α).
(g) If cutA(α) 6⊢ β, thencutA(α ∧ β) = cutA(β).

We can define a base contraction operator− using thecut
operator:

Definition 11 Let A be a belief base and≺ an ensconce-
ment relation. Then− is an Ensconcement-Based Contrac-
tion Function if and only if:

β ∈ A − α if and only if β ∈ A and either (i)α ∈ Cn(∅)
or (ii) cutA(α) ⊢ α ∨ β}2

Axiomatic for Ensconcement-Based
Contraction Function

In this section we are going to investigate the postulates that
characterize the Ensconcement-Based Contraction Func-
tion. The following postulates are well known in the belief
revision literature:

SuccessIf 6⊢ α, thenA − α 6⊢ α.
Inclusion A − α ⊆ A.
Vacuity If A 6⊢ α, thenA ⊆ A − α.
Extensionality If ⊢ α ↔ β, thenA − α = A − β

Conjunctive Factoring A−α∧β =

{

A − α or
A − β or
A − α ∩ A − β

The question that arises here is what is the postulate that
characterizes the notion of “minimal change” in ensconce-
ment. We propose the following postulate:

Disjunctive Elimination If β ∈ A andβ /∈ A − α then
A − α 6⊢ α ∨ β.

It is important to note the relation betweendisjunctive
eliminationand other postulates:

Observation 12 Let A be a belief base and− an operator
onA that satisfiesdisjunctive elimination. Then− satisfies:

Relative ClosureA ∩ Cn(A − α) ⊆ A − α.
If − also satisfiesinclusionthen it satisfies:
Failure If ⊢ α thenA − α = A.

By means of Disjunctive Elimination we can characterize
Ensconcement-Based Contraction Functions:

Theorem 13 Let A be a belief base. An operator− of A is
an ensconcement-based contraction onA if and only if it sat-
isfiessuccess, inclusion, vacuity, extensionality, disjunctive
eliminationandconjunctive factoring.

2Note that condition (ii) requires thatcutA(α) ⊢ α∨ β instead
of the more intuitive conditioncutA(α) ⊢ β. Mary-Anne Williams
calls a contraction based in this alternative condition “Brutal The-
ory Base Contraction”. Brutal Theory Base Contraction is closely
related to Severe Withdrawal (Rott 1991), whereas Ensconcement-
Based Contraction is closely related to AGM contraction.

Due to Observation 12 every ensconcement-based con-
traction function satisfiesfailure andrelative closure.

Observation 14 An ensconcement-based contraction func-
tion− onA does not, in general, satisfiesuniformity.

Ensconcement and minimal change
As we showed, ensconcement-based contraction satisfies
vacuity, failureandrelative success. Vacuityguarantees the
minimal change (i.e. to do nothing) when the sentence to be
contracted is not implied by the original belief base.Failure
(Fuhrmann & Hansson 1994), means that when instructed
to do the impossible (to contract a tautology), the minimal
change is to do nothing.Relative closurewas introduced
in (Hansson 1994) and ensures that original beliefs that are
implied by the contracted set are notgratuitouslyremoved.

In the previous section, we referred thatdisjunctive elim-
ination is the postulate that characterizes the notion of min-
imal change in ensconcement-based contraction. In its orig-
inal formulation (where the precondition is the same as in
core retainmentand relevance) the consequenceA − α 6⊢
α ∨ β appears as a negative condition. However if we refor-
mulate the postulate as

If β ∈ A andA − α ⊢ α ∨ β, thenβ ∈ A − α.

we can see the postulate as a condition for a sentenceβ “to
survive” the contraction process. If we reformulaterelative
closureas “If β ∈ A andA−α ⊢ β, thenβ ∈ A−α” we can
seedisjunctive eliminationas a weaker version ofrelative
closure, that requires that original beliefs that are implied by
the contracted set should be elements of the contracted set.

In belief bases,disjunctive eliminationis a condition
weaker thanrelevance:

Observation 15 Let A be a belief base. Thenrelevanceim-
pliesdisjunctive elimination.

In (Rott 2000), Rott points out that ensconcement-based
contraction gratuitously loses independent beliefs with a
low priority in the belief base, as we see in the following
example:

Let A = {α, β, β → δ} and assume,α independent ofβ.
Let≺ be an ensconcement forA such thatβ ≺ α ≺ β → δ.
Let − be the ensconcement-based contraction forA based
on≺. HenceA − α = {β → δ}, andβ was loosed.

This happens because, in general,core-retainmentfails
for ensconcement-based contractions. We note also that
even if an ensconcement-based contraction satisfies core re-
tainment it may not satisfyrelevance:

Observation 16 Let A be a belief base and− and operator
on A. Thencore retainmentanddisjunctive eliminationdo
not imply relevance.

The difference betweenrelevanceanddisjunctive elimi-
nationdisappears if A is a belief set.

Observation 17 Let A be a belief set and− and operator
on A that satisfiesinclusionandvacuity. Thendisjunctive
eliminationimpliesrelevance.

DEPARTMENT OF INFORMATICS 467

11TH NMR WORKSHOP

Maps between different base contraction
functions

Mary-Anne Williams demonstrated that an ensconcement
based contraction can be related with an AGM contraction
function:

Observation 18 (Williams 1994a)
For every ensconcement-based contraction− on a belief

base baseA there is an AGM contraction÷ on the corre-
sponding belief setCn(A) (that satisfies the basic and sup-
plementary postulates for belief set contraction) such that for
all sentencesα:

A − α = Cn(A) ÷ α ∩ A

We can generalize this result just for the basic postulates:

Observation 19 Let A be a belief base. Let− be an oper-
ator onA. Then− satisfiessuccess, inclusion, vacuity, ex-
tensionalityanddisjunctive eliminationiff there exists some
basic AGM contraction÷ for Cn(A) such that

A − α = Cn(A) ÷ α ∩ A

We will call − a basic related-AGM base contraction.

Due to Observations 4 and 15 it follows that every partial
meet contraction is a basic related-AGM base contraction.
With this remark we can construct the actual map of the base
contraction functions as follows:

Figure 1: Map among different kinds of base contraction
functions

Conclusions and Future Works
We found an axiomatic for ensconcement-based contraction
and we defined a new contraction operator (basic related-
AGM). With these results we extended the maps among dif-
ferent kinds of base contraction functions. In the near future
we intend to analyze the following open questions:

• How to use the relationshipA−α = Cn(A)÷α∩A for
other contraction functions like Levi contraction, Semi-
Contraction or Severe Withdrawal (for an overview of
these functions see (Fermé & Rodriguez 1998a; Fermé &
Rodrı́guez 1998b; Rott & Pagnucco 1991)).

• How to extend the results for belief bases of partial meet
contraction and kernel contraction for supplementary pos-
tulates.

• How to elucidate the relation among different kinds of
supplementary postulates for belief bases.

Appendix: Proofs
Proof of Theorem 13

From Ensconcement-based Contraction to Postulates:

SuccessLet 6⊢ α and assume byreductio that A − α ⊢
α. Then it follows by compactness that there exists a finite
subset ofA − α, A′ = {β1, ..., βk} and such thatA′ ⊢ α.
Then it follows by definition of− thatcutA(α) ⊢ α∨βi, i =
1...k. ThencutA(α) ⊢ α ∨ (β1 ∧ β2 ∧ ... ∧ βk) ⊢ α. Hence
cutA(α) ⊢ α. Contradiction.

Inclusion Trivial.
Vacuity Let A 6⊢ α and letβ ∈ A. By lemma 10(e)

it follows that cutA(α) = A, from which it follows that
cutA(α) ⊢ α ∨ β, hence by definition of−, β ∈ A − α.

Extensionality Let⊢ α ↔ β. ThencutA(α) = cutA(β),
and the rest follows trivially.

Disjunctive Elimination Let β ∈ A andβ /∈ A − α.
Then it follows from definition of− thatcutA(α) 6⊢ α ∨ β.
Assume byreductio that A − α ⊢ α ∨ β. Then com-
pactness yields that there exists a finite subset ofA − α,
A′ = {β1, ..., βk} and such thatA′ ⊢ α ∨ β. It follows by
definition of− that cutA(α) ⊢ α ∨ βi, i = 1...k. Then
cutA(α) ⊢ α ∨ (β1 ∧ β2 ∧ ... ∧ βk) ⊢ α ∨ β. Hence
cutA(α) ⊢ α ∨ β. Contradiction.

Conjunctive Factoring If ⊢ α∧ β trivial by definition of
−. Let 6⊢ α ∧ β. We will prove by cases:

1. cutA(α) ⊢ β: Then by lemma 10 (f)cutA(α ∧ β) =
cutA(α). We will prove by double inclusion thatA−α∧β =
A − α. Let γ ∈ A − α ∧ β. It follows by definition
of − that γ ∈ A and cutA(α ∧ β) ⊢ (α ∧ β) ∨ γ, then
cutA(α ∧ β) ⊢ α ∨ γ. HencecutA(α) ⊢ α ∨ γ, from which
we can conclude thatγ ∈ A − α.
For the other hand, letγ ∈ A − α. Then it follows by
definition of− that γ ∈ A and cutA(α) ⊢ α ∨ γ. Then
cutA(α∧β) ⊢ α∨γ. cutA(α) ⊢ β yieldscutA(α) ⊢ β∨γ,
thencutA(α∧β) ⊢ β∨γ. HencecutA(α∧β) ⊢ (α∧β)∨γ.
From definition we can conclude thatγ ∈ A − α ∧ β.

2. cutA(β) ⊢ α: Due to the symmetry of the case, it
follows thatA − α ∧ β = A − β.

3. cutA(α) 6⊢ β andcutA(β) 6⊢ α: It follows by lemma
10 (g) thatcutA(α ∧ β) = cutA(α) = cutA(β). Let γ ∈
A−α∧β. By definitionγ ∈ A andcutA(α∧β) ⊢ (α∧β)∨γ
iff cutA(α ∧ β) ⊢ α ∨ γ and cutA(α ∧ β) ⊢ β ∨ γ iff
cutA(α) ⊢ α ∨ γ andcutA(β) ⊢ β ∨ γ iff γ ∈ A − α and
γ ∈ A − β.

From Postulates to Ensconcement-based Contraction:

Let − be an operator toA that satisfiessuccess, in-
clusion, vacuity, extensionality, disjunctive elimination
and conjunctive factoring. In order to prove that− is an
ensconcement-based contraction we must prove that there

468 Technical Report IfI-06-04

Belief Change and Updates

exists a relationship� such that≺ satisfies�1 - �3 and
such that

ebcA − α =

{

{β ∈ A : cutA(α) ⊢ α ∨ β} if 6⊢ α
A otherwise

wherecut is defined in terms of�.
Let� defined as follows:

α � β iff

{

A − α ∧ β 6⊢ α
or
⊢ α ∧ β

�1 Let γ ∈ A \ Cn(∅) and assume byreductiothatH =
{α ∈ A : γ ≺ α} ⊢ γ. Using our constructionγ ≺ α
means thatA − α ∧ γ ⊢ α, 6⊢ α ∧ γ andA − α ∧ γ 6⊢ γ.
6⊢ α ∧ γ is redundant, thenH = {α ∈ A : A − α ∧ γ ⊢ α
andA−α∧γ 6⊢ γ}. It follows byconjunctive factoringthat
A − αi ∧ γ = A − γ for eachαi ∈ H . ThenH = {α ∈
A : A − γ ⊢ α andA − γ 6⊢ γ}. Hence bysuccessand
relative closureH = A − γ. SuccesscontradictsH ⊢ γ,
sinceA − γ 6⊢ γ.
�2 Let 6⊢ α and⊢ β. Due tosuccessit follows thatA −

α ∧ β 6⊢ α ∧ β, thenA − α ∧ β 6⊢ α. Thenα � β. Since
⊢ β, thenA − α ∧ β ⊢ β and due to6⊢ α ∧ β it follows that
β 6� α. Henceα ≺ β.
�3 Let α, β ∈ A. Let⊢ α and⊢ β. Then⊢ α∧β. Hence

α � β.
ebcWe will prove by cases:
1. ⊢ α. Follows trivial byfailure.
2. 6⊢ α
2.1 A 6⊢ α. Vacuityyields A − α = A. On the other

handcutA(α) = A, from which it follows that{β ∈ A :
cutA(α) ⊢ α ∨ β} = A.

2.2A ⊢ α.
2.2.1α ∈ A. We will first replace≺ in cutA by our con-

struction:
Due to lemma 9

cutA(α) = {δ ∈ A : α ≺ δ}
cutA(α) = {δ ∈ A : α � δ andδ 6� α}
cutA(α) = {δ ∈ A : A − α ∧ δ 6⊢ α and

A − α ∧ δ ⊢ δ}
it follows by conjunctive factoringthatA−α∧ δ = A−α.
Then

cutA(α) = {δ ∈ A : A − α ⊢ δ},
hence byrelative closureandinclusion,

cutA(α) = A − α
Replacing inebc:

β ∈ A− α iff β ∈ A andA− α ⊢ α ∨ β,
that trivially follows frominclusionanddisjunctive elimina-
tion.

2.2.2α 6∈ A. First we will constructA′ = A ∪ {α} and
let�′ such that for allβ, γ in A, β �′ γ iff β � γ, α ≺′ β if
cutA(α∧β) 6= cutA(β), β ≺′ α if cutA(α∧β) 6= cutA(α)
andα =� β if cutA(α ∧ β) = cutA(α) = cutA(β). Let
cut′A′(α) defined in terms ofA′ and�′. Due to previous
proof 2.2.1, we will prove this case proving that{β ∈ A :
cutA(α) ⊢ α ∨ β} = {β ∈ A′ : cut′A′(α) ⊢ α ∨ β}. To
do that we must prove (a)�′ is an ensconcement and (b)
Cn(cutA(β)) = Cn(cut′A′(β)). Part (a) is trivial. For part
(b) we have thatcut′A′(β) = {δ ∈ A′ : {γ ∈ A′ : δ �′

γ} 6⊢ β} = {δ ∈ A ∪ {α} : {γ ∈ A ∪ {α} : δ � γ} 6⊢ β}.
If α 6∈ cut′A′(β) it follows that cut′A′(β) = cutA(β). If
α ∈ cut′A′(β) it follows that {γ ∈ A′ : α � γ} 6⊢ β},
from which it follows thatα 6� β. Thenβ ≺ α, hence
(by lemma 10 (b))cutA(β) ⊢ α, from which it follows that
Cn(cutA(β)) = Cn(cut′A′(β)).

Proof of observation 14 Counterexample: LetA = {α ∧
β, α∨γ, γ}, such thatγ ≺ α∧β ≺ α∨γ. ThencutA(α) =
cutA(β) = {α∨γ}. γ ∈ A−α, sincecutA(α) ⊢ α∨γ, but
γ /∈ A − β, sincecutA(β) 6⊢ α ∨ γ. Henceuniformityfails.

Proof of observation 15 Let β ∈ A andβ 6∈ A−α. Then
by relevancethere is some setA′ such thatA−α ⊆ A′ ⊆ A
andα 6∈ Cn(A′) but α ∈ Cn(A′ ∪ {β}), from which it
follows by deduction thatβ → α ∈ Cn(A′). Hence (due to
α 6∈ Cn(A′)), α ∨ β 6∈ Cn(A′).

Proof of observation 16 Counterexample: (Assume that
core retainmentanddisjunctive eliminationare satisfied for
all δ 6= α). Let A = {β, γ → α, γ ∧ (β → α)}. Let
A−α = {γ → α}. Disjunctive eliminationis satisfied since
A−α 6⊢ α∨β andA−α 6⊢ α∨(γ∧(β → α)). To show that
core retainmentis satisfied forβ let H = {γ ∧ (β → α)}
and forγ∧(β → α) let H = {γ → α}. However,relevance
fails for β.

Proof of observation 17 Let β ∈ A andβ 6∈ A−α. Then
it follows by disjunctive eliminationthatA−α 6⊢ α∨β. By
deduction theorem(A−α)+¬β 6⊢ α, from which it follows
that(A − α) + ¬β ∨ α 6⊢ α. Let B = (A − α) + ¬β ∨ α.
Due toβ ∈ A andβ 6∈ A − α vacuityyields thatA ⊢ α.
From inclusionA − α ⊆ A. Hence (by monotony)B ⊆
A+¬β∨α = A. B 6⊢ α, andB +β ⊢ α. Hence− satisfies
relevance.

Proof of observation 19
(For this proof we assume that the reader is familiar with the
AGM contraction functions).
⇐. Let ÷ an operator onCn(A) that satisfies the basic
AGM postulates (closure, success, vacuity, inclusion, re-
coveryand,extensionality), and let− such thatA − α =
Cn(A) ÷ α ∩ A.
Success, inclusion, vacuityandextensionalitytrivially fol-
low trivially from definition. Fordisjunctive eliminationlet
β ∈ A andβ 6∈ A − α. Then (byclosure) Cn(A ÷ α) 6⊢ β,
from which it follows byrecoverythatCn(A÷α) ⊢ ¬α∨β.
Then it follows bysuccessandvacuity that Cn(A ÷ α) 6⊢
α ∨ β. HenceA − α 6⊢ α ∨ β.
⇒ Let − be an operator onA that satisfiessuccess, inclu-
sion, vacuity, extensionalityanddisjunctive eliminationand
let÷ defined as follows:

Cn(A) ÷ α = Cn(A − α ∪ (
⋃

βi∈A

α → βi))

We must prove: (i) that÷ is a basic AGM contraction func-
tion, (ii) that÷ satisfiesA − α = Cn(A) ÷ α ∩ A.
(i) Closurefollows trivially from definition.Successandex-
tensionalityfollows trivially from definition and−success
and −extensionalityrespectively. Vacuity follows from
−vacuityand from(

⋃

βi∈A α → βi) ⊆ Cn(A). For re-

DEPARTMENT OF INFORMATICS 469

11TH NMR WORKSHOP

coverylet γ ∈ Cn(A) andγ 6∈ Cn(A) ÷ α, we must prove
that α → γ ∈ Cn(A) ÷ α that follows trivially from our
definition of÷.
(ii) We must prove thatA− α = Cn(A−α∪ (

⋃

βi∈A α →

βi)) ∩ A. We will prove by double inclusion. Letγ be a
sentence. If⊢ γ → α, trivial by success. Let6⊢ γ → α.
For one side letγ ∈ A − α. Then by inclusionγ ∈ A
and the rest follows trivially. For the other side letγ ∈
Cn(A − α ∪ (

⋃

βi∈A α → βi)) ∩ A. Thenγ ∈ A and
γ ∈ Cn(A − α ∪ (

⋃

βi∈A α → βi)) from which it follows
(due to

⋃

βi∈A α → βi ⊢ ¬α∨γ and
⋃

βi∈A α → βi 6⊢ α∨γ
) that A − α ⊢ α ∨ γ. Hence bydisjunctive elimination
γ ∈ A − α.

References
Alchourrón, C., and Makinson, D. 1981. Hierarchies of
regulations and their logic. In Hilpinen, R., ed.,New Stud-
ies in Deontic Logic: Norms, Actions, and the Foundations
of Ethics, 125–148.

Alchourrón, C., and Makinson, D. 1985. On the logic of
theory change: Safe contraction.Studia Logica44:405–
422.

Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet contraction and
revision functions.Journal of Symbolic Logic50:510–530.

Falappa, M.; Fermé, E.; and Kern-Isberner, G. 2006. On
the logic of theory change: Relations between incision and
selection functions. InProceedings 17th European Confer-
ence on Artificial Intelligence, ECAI06. (to appear).

Fermé, E., and Rodriguez, R. 1998a. A brief note about the
Rott contraction.Logic Journal of the IGPL6(6):835–842.

Fermé, E., and Rodrı́guez, R. 1998b. Semi-contraction:
Axioms and construction.Notre Dome Journal of Formal
Logic39(3):332–345.

Fuhrmann, A., and Hansson, S. O. 1994. A survey of
multiple contraction.Journal of Logic, Language and In-
formation3:39–74.

Hansson, S. O. 1991.Belief Base Dynamics. Ph.D. Dis-
sertation, Uppsala University.

Hansson, S. O. 1994. Kernel contraction.Journal of Sym-
bolic Logic59:845–859.

Hansson, S. O. 1999. A survey of non-prioritized belief
revision.Erkenntnis50:413–427.

Rott, H., and Pagnucco, M. 1991. Severe withdrawal (and
recovery).Journal of Philosophical Logic28:501–547.

Rott, H. 1991. Two methods of constructing contractions
and revisions of knowledge systems.Journal of Philosoph-
ical Logic20:149–173.

Rott, H. 2000. “Just because”. Taking belief bases seri-
ously. In Buss, S.; Hajek, P.; and Pudlak, P., eds.,Logic
Colloquium ’98 - Proceedings of the Annual European
Summer Meeting of the Association for Symbolic Logic.
Lecture Notes in Logic, volume 13. Prague: Association
for Symbolic Logic.

Williams, M.-A. 1992. Two operators for theory bases.
In Proc. Australian Joint Artificial Intelligence Conference,
259–265. World Scientific.
Williams, M.-A. 1994a. On the logic of theory base
change. In MacNish., ed.,Logics in Artificial Intelligence,
number 835 in Lecture Notes Series in Computer Science.
Springer Verlag.
Williams, M.-A. 1994b. Transmutations of knowledge
systems. In Doyle, J.; Sandewall, E.; and Torasso, P.,
eds.,Proceedings of the fourth International Conference
on Principles of Knowledge Representation and Reason-
ing. Bonn, Germany: Morgan Kaufmann. 619–629.
Williams, M.-A. 1995. Iterated theory base change: A
computational model. InProc. of the 14th IJCAI, 1541–
1547.

470 Technical Report IfI-06-04

Belief Change and Updates

DEPARTMENT OF INFORMATICS 471

11TH NMR WORKSHOP

6.3 Elaboraing domain descriptions

Elaborating domain descriptions

Andr easHerzig Laur ent Perrussel Ivan Varzinczak�
IRIT – 118routedeNarbonne

31062ToulouseCedex – France
e-mail:fherzig,perrusse,ivang@irit.fr

Abstract

In this work we addressthe problemof elaborating domain
descriptions(alias action theories),in particular thosethat
areexpressedin dynamiclogic. We definea generalmethod
basedoncontractionof formulasin aversionof propositional
dynamic logic with an incorporatedsolution to the frame
problem.We presentthesemanticsof our theorychangeand
definesyntacticaloperatorsfor contractingadomaindescrip-
tion. We establishsoundnessandcompletenessof theopera-
torsw.r.t. thesemanticsfor descriptionsthatsatisfya princi-
ple of modularitythatwe have proposedelsewhere.We also
investigateanexampleof changingnon-modulardomainde-
scriptions.

Intr oduction
Supposeasituationwhereanagenthasalwaysbelievedthat
if thelight switch is up, thenthereis light in theroom.Sup-
posenow thatsomeday, she observes thatevenif theswitch
is in theupperposition,the light is off. In sucha case,the
agentmustchangeherbeliefsabouttherelationbetweenthe
propositions“the switch is up” and“the light is on”. This
exampleis an instance of the problemof changing propo-
sitional belief basesand is largely addressedin the litera-
ture aboutbelief change(Gärdenfors1988)andbelief up-
date(Katsuno& Mendelzon1992).

Next, let our agentbelieve that whenever the switch is
down,aftertogglingit, thereis light in theroom.Thismeans
that if the light is off, in every stateof the world that fol-
lows theexecutionof togglingtheswitch,theroomis lit up.
Then, during a blackout, the agent togglesthe switch and
surprisinglytheroomis still dark.

Imaginenow that theagentnever worriedabouttherela-
tion betweentogglingtheswitchandthematerialit is made
of, in thesensethatsheever believed that just toggling the
switchdoesnotbreakit. Nevertheless,in astressful day, she
togglestheswitchandthenobservesthatshehadbrokenit.

Completingthe waysidecrossour agentexperimentsin
discovering the world’s behavior, supposeshe hasbelieved
thatit is alwayspossibleto toggletheswitch,providedsome
conditionslike beingcloseenoughto it, having a freehand,
the switch is not broken, etc, aresatisfied. However, in a�Supportedby a fellowship from the governmentof the FED-
ERATIVE REPUBLIC OF BRAZIL. Grant: CAPESBEX 1389/01-7.

beautifulApril fool’s day, theagentdiscoversthatsomeone
hasgluedtheswitchand,consequently, it is no longerpos-
sibleto toggleit.

Thelastthreeexamplesillustratesituationswherechang-
ing the beliefsaboutthe behavior of the actionof toggling
theswitchis mandatory. In thefirst one,togglingtheswitch,
oncebelieved to bedeterministic,hasnow to beseenasnon-
deterministic,or alternatively to have adifferentoutcomein
a specificcontext (e.g. if the power stationis overloaded).
In thesecondexample,togglingtheswitchis known to have
side-effects (ramifications)one was not aware of. In the
last example,the executabilityof the action underconcern
is questionedin thelight of new informationshowing acon-
text thatwasnot known to precludeits execution.Carrying
outmodificationsis whatweherecall elaboratingadomain
description,which hasto do with the principle of elabora-
tion tolerance(McCarthy 1988).

Suchcasesof theorychangearevery importantwhenone
dealswith logical descriptionsof dynamicdomains:it may
alwayshappenthatonediscoversthatanactionactually has
abehavior thatis differentfrom thatonehasalwaysbelieved
it had.

Up to now, theory change hasbeenstudiedmainly for
knowledgebasesin classical logics, both in termsof revi-
sion and update. Only in a few recentworks it hasbeen
consideredin the realmof modal logics, viz. in epistemic
logic (Hansson1999), and in action languages(Eiter et
al. 2005). Recently, several works (Shapiroet al. 2000;
Jin & Thielscher2005)have investigatedrevision of beliefs
aboutfacts ofthe world. In our examples,this would con-
cerne.g.thecurrentstatusof theswitch: theagentbelieves
it is up, but is wrongaboutthis andmight subsequentlybe
forcedto revisehis beliefsaboutthecurrentstateof affairs.
Suchbelief revision operationsdo not modify the agent’s
beliefs about the actionlaws. In oppositionto that, here
we areinterestedexactly in suchmodifications.Theaim of
this work is to make asteptoward that issueandproposea
framework thatdealswith thecontractionof actiontheories.

Dynamic logic, morespecificallypropositionaldynamic
logic (PDL (Harel 1984)), has been extensively used in
reasoningabout actions in the last years(Castilho, Gas-
quet,& Herzig1999;Castilho,Herzig,& Varzinczak2002;
Zhang& Foo 2001;Foo & Zhang2002;Zhang, Chopra,&

472 Technical Report IfI-06-04

Belief Change and Updates

Foo 2002). It hasshown to be a viable alternative to situ-
ation calculusapproachesbecauseof its simplicity andex-
istenceof proof proceduresfor it. In this work we inves-
tigate the elaborationof domaindescriptionsencodedin a
simplifiedversionof sucha logical formalism,viz. themul-
timodallogicKn. Weshow how atheoryexpressedin terms
of static laws, effect laws andexecutability laws is elabo-
rated:usually, a law hasto bechangeddueto its generality,
i.e., the law is too strong andhasto be weakened. It fol-
lows that elaboratingan actiontheorymeanscontractingit
by static,effect or executabilitylaws, beforeexpandingthe
theorywith morespecificlaws.

Thepresenttext is organizedasfollows: in thenext sec-
tion wedefinethelogical framework weusethroughoutthis
work andshow how actiontheoriesareencoded.Thenwe
presentour semanticsof theorychangeand its syntactical
counterpart. After that we establishsoundnessand com-
pletenessof ourchangeoperatorsw.r.t. thesemantics,where
completenessis conditionedby a notionof modularitythat
we have proposedin previous work. We then analysean
exampleof correctinga non-modular theory. Beforecon-
cluding,weaddressrelatedwork on thefield anddiscusson
how elaborationtoleranttheframework hereproposedis.

Background
Following thetradition in thereasoningaboutactionscom-
munity, actiontheoriesaregoing to becollectionsof state-
mentsthat have the particular form: “if context, then ef-
fect after every executionof action” (effect laws); and “if
precondition, then action executable” (executability laws).
Statementsmentioningno actionat all representlaws about
theworld (staticlaws). Besidesthat, statementsof theform
“if context, theneffect after someexecutionof action” will
beusedasa causalnotionto solve theframeandtheramifi-
cationproblems.

Logical preliminaries
Let Act = fa1;a2; : : :g bethesetof all atomicactioncon-
stantsof a given domain. An exampleof atomicaction is
toggle. To eachatomicactiona thereis associateda modal
operator[a].Prop = fp1;p2; : : :g denotesthesetof all propositional
constants, also calledfluentsor atoms. Examplesof those
arelight (“the light is on”) andup (“the switchis up”). The
setof all literalsisLit = fl1; l2; : : :g, whereeachli is either
p or :p, for somep 2 Prop. If l = :p, thenwe identify :l
with p.

We usesmall Greekletters'; ; : : : to denoteclassical
formulas. They arerecursively definedin theusualway:

' ::= p j > j ? j :' j ' ^ ' j ' _ ' j '! ' j '$ '
Fml is the set of all classicalformulas. An example of
a classical formula is up ! light. By val(') we de-
note the set of valuations making ' true. We view a
valuation as a maximally-consistentset of literals. ForProp = flight;upg, therearefour valuations:flight;upg,flight;:upg, f:light;upg andf:light;:upg. Givenasetof

formulas�, by lit(�) wedenotethesetof all literalsappear-
ing in formulasof �.

We denotecomplex formulas(with modal operators)by�; 	; : : : They arerecursively definedin thefollowing way:� ::= ' j [a]� j :� j � ^ � j � _ � j �! � j �$ �hai is thedualoperatorof [a], definedashai� =def :[a]:�.
An exampleof acomplex formula is:up! [toggle]up.

The semanticsis that of multimodal logic K (Popkorn
1994).

Definition 1 A Kn-model is a tupleM = hW;Ri where
W is a setof valuations,andR a function mappingaction
constantsa to accessibilityrelationsRa � W�W.

Definition 2 GivenaKn-modelM = hW;Ri,
� j=Mw p (p is trueatworldw of modelM) if p 2 w;

� j=Mw [a]� if for everyw0 suchthatwRaw0, j=Mw0 �;� truthconditionsfor theother connectivesareasusual.

Definition 3 M is a modelof � (notedj=M �) if andonly

if for all w 2 W, j=Mw �. M is a modelof a setof formulas

� (notedj=M �) if andonly if j=M � for every� 2 �. A
formula� is a consequenceof thesetof global axioms� in
theclassof all Kn-models(noted� j=Kn �) if andonly if for

everyKn-modelM , if j=M �, thenj=M �.

Describing the behavior of actionsin Kn
Given a domain,we areinterestedin theorieswhosestate-
mentsdescribethe behavior of actions. Kn allows for the
representationof suchstatements,thatwe call action laws.
Herewe distinguishseveral typesof them.Thefirst kind of
statementrepresentsthestaticlaws, whichareformulasthat
musthold in everypossiblestateof theworld.

Definition 4 A staticlaw is a formula' 2 Fml.
An exampleof a staticlaw is up! light, sayingthat if the
switchis up, thenthelight is on. Thesetof all staticlawsof
adomainis denotedby S � Fml.

The secondkind of action law we consideris given by
theeffect laws. Theseareformulasrelatinganactionto its
effects,whichcanbeconditional.

Definition 5 An effect law for actiona is of theform ' ![a] , where'; 2 Fml.
The consequent is the effect which alwaysobtainswhen
actiona is executedin astatewheretheantecedent' holds.
If a is a nondeterministicaction, thenthe consequent is
typically a disjunction. The setof effect laws of a domain
is denotedby E . An exampleof an effect law is :up ![toggle]light, sayingthatwhenever theswitchis down, after
toggling it, theroomis lit up. If is inconsistent,we have
a special kind of effect law that we call an inexecutability
law. For example,broken! [toggle]? expressesthattoggle
cannotbeexecutedif theswitch is broken.

Finally, wealsodefineexecutabilitylaws, whichstipulate
thecontext whereanactionis guaranteedto beexecutable.
InKn, theoperatorhai is usedto expressexecutability. hai>
thusreads“the executionof a is possible”.

DEPARTMENT OF INFORMATICS 473

11TH NMR WORKSHOP

Definition 6 An executabilitylaw for actiona is of theform'! hai>, where' 2 Fml.
For instance,:broken! htogglei> saysthat toggling can
be executedwhenever the switch is not broken. The set of
all executabilitylawsof agivendomainis denotedbyX .

The restof this work is devotedto theelaborationof ac-
tion modelsandtheories.

Modelsof contraction
Whenanactiontheoryhastobechanged,thebasicoperation
is thatof contraction. (In belief-baseupdate(Winslett1988;
Katsuno& Mendelzon1992) it hasalso beencalled era-
sure.) In this sectionwedefineits semantics.

In generalwe might contractby any formula�. Herewe
focuson contractionby oneof the threekindsof laws. We
thereforesupposethat� is either', where' is classical,or'! [a] , or'! hai>.

For thecaseof contractingstaticlawsweresortto existing
approachesin orderto changethesetof staticlaws. In the
following, we considerany belief changeoperator suchas
Forbus’ updatemethod(Forbus1989),or thepossiblemod-
elsapproach(Winslett1988;1995),or WSS(Herzig& Rifi
1999) or MPMA (Doherty, Łukaszewicz, & Madalinska-
Bugaj 1998).

Contractionby ' correspondsto adding new possible
worlds to W. Let 	 be a contractionoperatorfor classical
logic.

Definition 7 Let hW;Ri be a Kn-model and' a classical
formula. The set of modelsresultingfrom contracting by' is the singleton hW;Ri�' = fhW0;Rig suchthat W0 =
W	 val(').

Observe thatRshould,apriori, changeaswell, otherwise
contractingaclassicalformulamayconflictwithX .1 For in-
stance,if :'! hai> 2 X andwe contractby ', theresult
may makeX untrue. However, given the amountof infor-
mationwe have at hand,we think thatwhatever we do with
R (addingor removing edges),wewill alwaysbeableto find
acounter-exampleto theintuitivenessof theoperation,since
it is domaindependent.For instance,addingedgesfor ade-
terministicactionmayrenderit nondeterministic. Deciding
on what changesto carry out on R whencontractingstatic
laws dependson theuser’s intuition, andunfortunatelythis
informationcannot begeneralizedandestablishedoncefor
all. Weopt for apriori doingnothingwith Randpostponing
correctionof executabilitylaws.

Action theoriesbeingdefinedin termsof effect andexe-
cutability laws, elaboratinganactiontheorywill mainly in-
volvechangesin thesetwo setsof laws. Let usconsidernow
boththesecases.

Supposethe knowledgeengineeracquiresnew informa-
tion regardingtheeffect of actiona. Thenit meansthat the

1We are indebtedto the anonymousrefereesfor pointing this
out to us.

law underconsiderationis probably too strong,i.e., theex-
pectedeffectmaynotoccurandthusthelaw hasto beweak-
ened.Considere.g.:up! [toggle]light, andsupposeit has
to beweakenedto themorespecific(:up^ :blackout) ![toggle]light.2 In orderto carry out sucha weakening,first
thedesignerhasto contractthesetof effect lawsandsecond
to expandtheresultingsetwith theweakenedlaw.

Contractionby'! [a] amountsto addingsome‘coun-
terexample’ arrows from '-worlds to : -worlds. To ease
sucha task,we needa definition. Let PI(') denotetheset
of primeimplicatesof '.

Definition 8 Let '1; '2 2 Fml. NewCons'1('2) =
PI('1 ^ '2) n PI('1) computesthe new consequencesof'2 w.r.t. '1: the set of strongestclausesthat follow from'1 ^ '2, but do not follow from '1 alone(cf. e.g. (Inoue
1992)).

For example, the set of prime implicates of p1 is justfp1g, that of the formula p1 ^ (:p1 _ p2) ^ (:p1 _
p3 _ p4) is fp1;p2;p3 _ p4g, hence we have that
NewConsp1((:p1 _ p2) ^ (:p1 _ p3 _ p4)) = fp2;p3 _
p4g.
Definition 9 Let hW;Ri be a Kn-modeland' ! [a] an
effect law. The modelsresultingfrom contractingby ' ![a] is hW;Ri�'![a] = fhW;R[R0ai : R0a � f(w;w0) :
j=hW;Riw '; j=hW;Riw0 : andw0 n w � lit(NewConsS(:))gg.
In our context, lit(NewConsS(:)) correspondsto all the
ramificationsthatactiona canproduce.

Supposenow the knowledgeengineerlearnsnew infor-
mation about the executability of a. This usually occurs
when thereare executability laws that are too strong, i.e.,
theconditionin thetheoryguaranteeingtheexecutabilityof
a is too weakandhasto bemademorerestrictive. Let e.g.htogglei> be the law to be contracted, andsupposeit has
to beweakenedto themorespecific:broken! htogglei>.
To implement sucha weakening, the designerhasto first
contractthesetof executability laws andthento expandthe
resultingsetwith theweakenedlaw.

Contractionby'! hai> correspondsto removing some
arrows leaving worlds where' holds. Removing suchar-
rows hasas consequencethat a is no longer always exe-
cutablein context '.

Definition 10 Let hW;Ri be a Kn-model and' ! hai>
anexecutabilitylaw. Thesetof models that resultfrom the
contractionby ' ! hai> is hW;Ri�'!hai> = fhW;R0i :
R0 = Rn R00a ;R00a � f(w;w0) : wRaw0 and j=hW;Riw 'gg.

In thenext sectionwe make asteptowardsyntacticalop-
eratorsthatreflectthesemanticfoundationsfor contraction.

2Theotherpossibilityof weakeningthelaw, i.e.,replacingit by:up ! [toggle](light _ :light) looks silly. We werenot ableto
find exampleswherechangingthe consequentcould give amore
intuitive result. In this sense,we preferto alwaysweakena given
law by strengtheningits antecedent.

474 Technical Report IfI-06-04

Belief Change and Updates

Contracting an action theory
Having establishedthe semanticsof action theorycontrac-
tion,wecanturnto its syntacticalcounterpart.Nevertheless,
beforedoingthatwehaveto consideranimportantissue.As
thereadermight have expected,thelogical formalismof Kn
alonedoesnot solve theframeproblem.For instance,8><
>:

up! light;:up! [toggle]up;
up! [toggle]:up;htogglei>

9>=
>; 6j=Kn broken! [toggle]broken:

Thus,we needa consequencerelationpowerful enoughto
dealwith theframeand ramificationproblems.This means
that the deductive power of Kn hasto be augmentedin or-
der to ensurethat the relevant frame axiomsfollow from
the theory. Following the logical framework developed
in (Castilho,Gasquet,& Herzig 1999),we considermeta-
logical informationgiven in theform of a dependencerela-
tion:

Definition 11 A dependencerelation is a binary relation
;� Act� Lit.

Theexpressiona; l denotesthattheexecution of action
a maychangethe truth valueof the literal l. On the other
hand,ha; li =2 ; (written a 6; l) meansthat l can never
be causedby a. In our example we have toggle ; light
and toggle ; :light, which meansthat action toggle may
causea changein literals light and:light. We do not have
toggle; :broken, for togglingtheswitchnever repairsit.

Weassume; is finite.

Definition 12 A modelof a dependencerelation; is aKn-
modelM suchthatj=M f:l ! [a]:l : a 6; lg.

Given a dependencerelation;, the associatedconse-
quencerelationin thesetof modelsfor; is notedj=

;

. For
ourexampleweobtain8><
>:

up! light;:up! [toggle]up;
up! [toggle]:up;htogglei>

9>=
>; j=

;

broken! [toggle]broken:
Wehave toggle 6; :broken, i.e.,:brokenis nevercausedby
toggle. Thereforein all contexts wherebrokenis true,after
every executionof toggle, brokenstill remainstrue. The
consequenceof this independenceis that the frameaxiom
broken! [toggle]brokenis valid in themodelsof;.

Sucha dependence-basedapproachhasbeenshown (De-
molombe,Herzig,& Varzinczak 2003)to subsumeReiter’s
solutionto the frameproblem(Reiter1991)andmoreover
treatstheramificationproblem,evenwhenactionswith both
indeterminateand indirect effects are involved (Castilho,
Herzig,& Varzinczak2002;Herzig& Varzinczak2004a).

Definition 13 An action theory is a tuple of the formhS; E ;X ;;i.
In ourexample,thecorrespondingactiontheoryis

S = fup! lightg; E = � :up! [toggle]up;
up! [toggle]:up

�

X = fhtogglei>g; ; =
8><
>:

htoggle; lighti;htoggle;:lighti;htoggle;upi;htoggle;:upi

9>=
>;

And we have S; E ;X j=
;

:up ! [toggle]light. (For par-
simony’s sake, we write S; E ;X j=

;

� insteadof S [E [X j=
;

�.)

Let hS; E ;X ;;i be anactiontheoryand� aKn-formula.hS; E ;X ;;i�� is the actiontheoryresulting from the con-
tractionof hS; E ;X ;;i by�.

Contractinga theoryby a static law ' amountsto using
any existing contractionoperatorfor classicallogic. Let 	
be suchan operator. Moreover, basedon (Herzig & Varz-
inczak2005b),we alsoneedto guaranteethat' doesnot
follow from E , X and;. We define contractionof a do-
maindescriptionby astaticlaw asfollows:

Definition 14 hS; E ;X ;;i�' = hS�; E ;X�;;i, whereS� = S 	 ' andX� = f('i ^ ') ! hai> : 'i !hai> 2 X g.
We now considerthecaseof contractinganactiontheory

by anexecutabilitylaw ' ! hai>. For every executability
in X , we ensurethat actiona is executableonly in contexts
where:' is thecase.Thefollowing operatordoesthejob.

Definition 15 hS; E ;X ;;i�'!hai> = hS; E ;X�;;i,
whereX� = f('i ^ :')! hai> : 'i ! hai> 2 X g.
For instance,contractingglued! htogglei> in ourexample
wouldgiveusX� = f:glued! htogglei>g.

Finally, to contracta theoryby'! [a] , for everyeffect
law in E , we first ensurethat a still haseffect whenever' doesnot hold, second we enforcethat a hasno effect in
context :' excepton thoseliteralsthatareconsequencesof: . Combiningthis with thenew dependence relationalso
linking a to literalsinvolvedby: , wehavethata maynow
produce: asoutcome.In otherwords,theeffect law has
beencontracted.Theoperatorbelow formalizesthis:

Definition 16 hS; E ;X ;;i�'![a] = hS; E�;X ;;�i,
with ;�=; [fha; li : l 2 lit(NewConsS(:))g andE� = f('i ^ :') ! [a] : 'i ! [a] 2 Eg [f(:' ^:l)! [a]:l : ha; li 2 (;� n;)g.
For instance,contractingthe law blackout ! [toggle]light
from ourtheorywouldgiveusE� = f(:up^:blackout)![toggle]up; (up^ :blackout)! [toggle]:upg.

Results
In this sectionwe presentthemain results that follow from
our framework. Theserequirethe actiontheoryundercon-
siderationto be modular(Herzig & Varzinczak2005b). In
our framework, an action theory is saidto be modularif a
formulaof agiventypeentailedby thewholetheorycanalso
bederivedsolely from its respective module(theset of for-
mulasof thesametype) togetherwith thestatic lawsS. As
shown in (Herzig & Varzinczak2005b),to make adomain
descriptionsatisfysucha propertyit is enoughto guarantee

DEPARTMENT OF INFORMATICS 475

11TH NMR WORKSHOP

that thereis no classicalformulaentailedby thetheorythat
is notentailedby thestaticlawsalone.

Definition 17 ' 2 Fml is an implicit static law ofhS; E ;X ;;i if andonly if S; E ;X j=
;

' andS 6j= '.

A theory is modularif it hasno implicit staticlaws. Our
conceptof modularity of theories was originally defined
in (Herzig& Varzinczak2004b;2005b),but similar notions
have also beenaddressedin the literature (Cholvy 1999;
Amir 2000a;Zhang,Chopra,& Foo 2002; Lang, Lin, &
Marquis2003;Herzig& Varzinczak2005a).A modularity-
basedapproachfor narrativereasoningaboutactionsisgiven
in (Kakas,Michael,& Mill er2005).

To witnesshow implicit static lawscanshow up,consider
thequitesimpleactiontheorybelow, depictingthewalking
turkey scenario(Thielscher1995):

S = fwalking! aliveg; E = � [tease]walking;
loaded! [shoot]:alive

�

X = f hteasei>; hshooti> g ;
; = � hshoot;:loadedi; hshoot;:alivei;hshoot;:walkingi; htease;walkingi

�

With this domaindescriptionwe have S; E ;X j=
;

alive:
first, fwalking ! alive; [tease]walkingg j=

;

[tease]alive,
secondj=

;

:alive! [tease]:alive (from theindependence
tease6; alive), andthenS; E j=

;

:alive ! [tease]?. As
long as S; E ;X j=

;

hteasei>, we musthave S; E ;X j=
;

alive. As S 6j= alive, the formula alive is an implicit static
law of hS; E ;X ;;i.

Modular theories have several advantages(Herzig &
Varzinczak2004b;). For example,consistency of amodular
actiontheorycanbe checked by just checkingconsistency
of S: if hS; E ;X ;;i is modular, thenS; E ;X j=

;

? if and
only if S j= ?. Deductionof an effect of a sequenceof
actionsa1; : : : ;an (prediction)doesnot needto take into
accountthe effect laws for actionsother than a1; : : : ;an.
This appliesin particularto plan validation whendeciding
whetherha1; : : : ;ani' is thecase.

Throughoutthiswork wehaveusedmultimodallogicKn.
For an assessmentof the modularityprinciple in the Situa-
tion Calculus,see(Herzig& Varzinczak2005a).

Herewe establishthatour operatorsarecorrectw.r.t. the
semantics.Our first theoremestablishesthat thesemantical
contractionof the modelsof hS; E ;X ;;i by � produces
modelsof hS; E ;X ;;i�� .

Theorem1 Let hW;Ri beamodelof hS; E ;X ;;i, andlet� be a formula that hasthe form of oneof the threelaws.
For all modelsM , if M 2 hW;Ri�� , thenM is a modelofhS; E ;X ;;i�� .

It remains to prove that the other way round, the mod-
els of hS; E ;X ;;i�� result from the semanticalcontrac-
tion of modelsof hS; E ;X ;;i by �. This doesnot hold
in general,as shown by the following example: suppose
there is only one atom p and oneaction a, and consider

the theory hS; E ;X ;;i such that S = ;, E = fp ![a]?g, X = fhai>g, and;= ;. The only model of
that action theory is M = hff:pgg; f(f:pg; f:pg)gi.
By definition, M�

p!hai> = fM g. On the other hand,hS; E ;X ;;i�p!hai> = h;; fp ! [a]?g; f:p ! hai>g; ;i.
The contractedtheory has two models: M andM 0 =hffpg; f:pgg; (f:pg; f:pg)i. While:p is valid in thecon-
tractionof the modelsof hS; E ;X ;;i, it is invalid in the
modelsof hS; E ;X ;;i�p!hai>.

Fortunately, wecanestablisha resultfor thoseactionthe-
ories that are modular. The proof requiresthreelemmas.
Thefirst onesaysthat for a modulartheorywe canrestrict
ourattentionto its ‘big’ models.

Lemma 1 Let hS; E ;X ;;i bemodular. ThenS; E ;X j=
;� if and only if j=hW;Ri � for every model hW;Ri ofhS; E ;X ;;i suchthatW= val(S).

Notethatthelemmadoesnotholdfor non-modulartheories,
asfhW;Ri : hW;Ri is amodelof hS; E ;X ;;i andW =
val(S)g is emptythen.

Thesecondlemmasaysthatmodularityis preservedun-
dercontraction.

Lemma 2 Let hS; E ;X ;;i be modular, and let � be a
formula of the form of one of the three laws. ThenhS; E ;X ;;i�� is modular.

The third one establishesthe required link betweenthe
contractionoperatorsandcontractionof ‘big’ models.

Lemma 3 Let hS; E ;X ;;i be modular, and let � be a
formula of the form of one of the three laws. If M 0 =hval(S);R0i is a model of hS; E ;X ;;i�� , then there is a
modelM of hS; E ;X ;;i suchthatM 0 2M�� .

Puttingthethreeabove lemmastogetherweget:

Theorem2 Let hS; E ;X ;;i bemodular,� beaformulaof
theform of oneof thethreelaws,andhS�; E�;X�;;�i behS; E ;X ;;i�� . If it holdsthatS�; E�;X� j=

;
� 	 , then

for every modelM of hS; E ;X ;;i andeveryM 0 2 M��
it holdsthatj=M 0 	 .

Ourtwo theoremstogetherestablishcorrectnessof theop-
erators:

Corollary 1 Let hS; E ;X ;;i bemodular, � bea formula
of theform of oneof thethreelaws,andhS�; E�;X�;;�i
behS; E ;X ;;i�� . ThenS�; E�;X� j=

;
� 	 if andonly if

for every modelM of hS; E ;X ;;i andeveryM 0 2 M��
it holdsthatj=M 0 	 .

Wegive anecessaryconditionfor successof contraction:

Theorem3 Let � be aneffect or anexecutabilitylaw such
thatS 6j=Kn �. Let hS�; E�;X�;;�i behS; E ;X ;;i�� . IfhS; E ;X ;;i is modular, thenS�; E�;X� 6j=

;
� �.

476 Technical Report IfI-06-04

Belief Change and Updates

Contracting implicit static laws
Therecanbemany reasonswhy atheoryshouldbechanged.
Following (Herzig & Varzinczak2004b; 2005b;), herewe
focusonthecasewhereit hassomeclassical consequence'
thedesigneris notawareof.

If ' is takenasintuitive, then,normally, nochangehasto
be doneat all, unlesswe want to keepabideon the modu-
larity principle andthus make ' explicit by addingit to S.
In thescenarioexampleof lastsection,if theknowledgeen-
gineer’s universehasimmortal turkeys, thenshewould add
thestaticlaw alive to S.

The other way round, if ' is not intuitive, as long as' is entailedby hS; E ;X ;;i, the goal is to avoid such
an entailment,i.e., what we want is S�; E�;X� 6j=

;
� ',

wherehS�; E�;X�;;�i is hS; E ;X ;;i�� . In the men-
tionedscenario,theknowledgeengineerconsidersthathav-
ing immortal turkeys is not reasonable andthusdecidesto
changethedomaindescriptionto hS�; E�;X�;;�i sothatS�; E�;X� 6j=

;
� alive.

This meansthataction theoriesthatarenot modularneed
to be changed,too. Such a changingprocessis driven
by the problematicpart of the theory detectedby the al-
gorithmsdefinedin (Herzig & Varzinczak2004b)and im-
provedin (Herzig& Varzinczak).

The algorithm works as follows: for eachexecutability
law ' ! hai> in the theory, constructfrom E and; a
setof inexecutabilitiesf'1 ! [a]?; : : : ; 'n ! [a]?g that
potentiallyconflict with ' ! hai>. For eachi, 1 � i � n,
if '^'i is satisfiablew.r.t.S, mark:('^'i) asanimplicit
static law. Incrementallyrepeatthis procedure(addingall
the:(' ^ 'i) thatwerecaughtto S) until no implicit static
law is obtained.

For an exampleof the executionof the algorithm, con-
siderhS; E ;X ;;i asabove. For the actiontease, we have
theexecutability hteasei>. Now, from E , and; we try to
build an inexecutability for tease. We take [tease]walking
andcomputethenall indirecteffectsof teasew.r.t. S. From
walking ! alive, we get that alive is an indirect effect of
tease, giving us [tease]alive. But htease;alivei =2;, which
meansthe frameaxiom:alive ! [tease]:alive holds. To-
getherwith [tease]alive, this gives us the inexecutability:alive ! [tease]?. As S [f>;:aliveg is satisfiable (>
is the antecedentof theexecutabilityhteasei>), we get the
implicit static law alive. For this exampleno other inexe-
cutability for teasecanbederived,sothecomputationstops.

It seemsthat in general implicit static laws arenot intu-
itive. Thereforetheir contractionis more likely to happen
thantheiraddition.3 In theexampleabove,the actiontheory
hasto becontractedby alive.4 In orderto contractthe action
theory, thedesignerhasseveral choices:

3In all the examplesin whichwehavefoundimplicit staticlaws
that areintuitive they are so evident that the only explanationfor
not having themexplicitly statedis that they have beenforgotten
by thetheory’s designer.

4Herethechangeoperationis a revision-basedoperationrather
thananupdate-basedoperationsincewemainly “fix” thetheory.

1) Contractthe setS. (In this case,suchanoperationis not
enough,sincealive is a consequenceof the restof the the-
ory.)

2) Weaken the effect law [tease]walking to alive ![tease]walking, sincethe original effect law is too strong.
This meansthat in a first stagethedesignerhasto contract
the theoryandin a secondoneexpandtheeffect laws with
theweaker law. Thedesignerwill usuallychoosethisoption
if shefocuseson thepreconditionsof theeffectsof actions.

3) Weaken the executability law hteasei> by rephrasingit
as alive ! hteasei>: first the executability is contracted
andthentheweaker oneis addedto theresulting setof ex-
ecutabilitylaws. Thedesignerwill choosethis optionif she
focusesonpreconditionsfor actionexecution.

The analysisof this example shows that the choice of
what changehas to be carriedout is up to the knowledge
engineer. Such a task can get more complicatedwhen
ramificationsare involved. To witness,supposeour sce-
nario hasbeenformalizedas follows: S = fwalking !
aliveg, E = f[shoot]:aliveg, X = fhshooti>g, and;=fhshoot;:aliveig. From this action theory we can derive
the inexecutability walking ! [shoot]? and thus the im-
plicit static law :walking. In this casewe have to change
the theory by contracting the frame axiom walking ![shoot]walking (which amounts to addingthe missingindi-
rectdependenceshoot; :walking).

Elaboration tolerance
Theprincipleof elaborationtolerancehasbeenproposedby
McCarthy (McCarthy 1988). Roughly, it statesthat the ef-
fort required to addnew informationto a given representa-
tion (new lawsorentities)shouldbeproportionalto thecom-
plexity of theinformationbeingadded,i.e., it shouldnot re-
quire thecompletereconstructionof theold theory(Shana-
han1997).

Sincethen many formalismsin the reasoningaboutac-
tionsfield claim, in a moreor lesstacit way, to satisfysuch
a principle. However, for all this time therehasbeena lack
of goodformal criteriaallowing for theevaluationof theory
changedifficulty and, consequently, comparisonsbetween
differentframeworksare carriedout in asubjectiveway.

Theproposalby Amir (Amir 2000b)madethefirst steps
in formally answeringwhat difficulty of changinga theory
meansby formalizing oneaspectof elaborationtolerance.
The basicidea is as follows: let T0 be the original theory
and let T1 and T2 be two equivalent (and different) theo-
riessuchthateachoneresultsfrom T0 by theapplicationof
somesequenceof operations(additionsand/ordeletionsof
formulas).TheresultingtheorywhosetransformationfromT0 hastheshortestlength(numberof operations)is takenas
themostelaborationtolerant.

Nevertheless,in the referredwork only addition/deletion
of axioms is considered,i.e., changesin the logical lan-
guageor contractionof consequencesof the theorynot ex-
plicitly statedin the original set of axiomsare not taken
into account.This meansthateventheformal settinggiven
in (Amir 2000b)is notenoughto evaluatethecomplexity of

DEPARTMENT OF INFORMATICS 477

11TH NMR WORKSHOP

theorychangein a broad sense.Hencethecommunitystill
needsformal criteriathat allow for thecomparisonbetween
morecomplex changescarriedoutby frameworkslikeours,
for example.

Of course, how elaboration tolerant a given up-
date/revision methodis stronglydependson its underlying
formalismfor reasoningaboutactions,i.e., its logical back-
ground,thesolutionto theframeproblemit implements,the
hypothesisit relieson,etc. In whatfollows we discusshow
thedependence-based approachhereusedbehaveswhenex-
pansionis considered.Most of the commentsconcerning
consequencesof expansioncan alsobe statedfor contrac-
tion. Wedothatwith respectto someof thequalitativecrite-
ria givenin (McCarthy 1998).In all thatfollowswesuppose
thattheresultingtheoryis consistent.

Adding effect laws In the dependence-basedframework,
adding the new effect law ' ! [a] to the theory de-
mandsa changein the dependencemodule;. In that
case,the maximumnumberof statementsaddedto ; isjfl : l 2 lit(NewConsS())gj (dependencesfor all indirect
effectshave to bestated,too). This is due to theexplanation
closurenatureof thereasoningbehinddependence(for more
details,see(Castilho,Gasquet,& Herzig 1999)). Because
of this, accordingto Shanahan (Shanahan1997),explana-
tion closureapproachesare not elaborationtolerantwhen
dealingwith the ramificationproblem. In orderto achieve
that,theframework shouldhave amechanismbehaving like
circumscriptionthatautomaticallydealswith ramifications.
This raisesthe question: “if we hadan automatic(or even
semi-automatic)procedureto do the job of generatingthe
indirectdependences,couldwe saytheframework is elabo-
rationtolerant?”.Wethink wecananswerpositively to such
a question,and,supportedby Reiter(Reiter2001),we are
working on a semi-automaticprocedurefor generatingthe
dependencerelationfrom aset of effect laws.

Adding executability laws Such a task demandsonly a
changein thesetX of executabilities,possiblyintroducing
implicit staticlawsasasideeffect.

Adding static lawsBesidesexpandingthesetS, addingnew
(indirect)dependencesmaybe required(seeabove).

Adding frame axioms If the frameaxiom:l ! [a]:l has
to bevalid in theresultingtheory, expungingthedependence
a; l shoulddo thejob.

Adding a new action name Without lossof generality we
can assumethe actionin questionwas alreadyin the lan-
guage. In that case,we expect just to add effect or exe-
cutability laws for it. For the former, at most jLitj depen-
denceswill beaddedto;. (We point out neverthelessthat
therequirementmadein (McCarthy 1998)that theaddition
of an action irrelevant for a given plan in the old theory
shouldnot precludeit in the resultingtheoryis too strong.
Indeed,it is not difficult to imaginea new actionforcing an
implicit static law from which an inexecutability for some
action in the plan canbe derived. The sameholds for the
itembelow.)

Adding a new fluent name In the sameway, we cansup-
posethe fluent was alreadyin the language. Sucha task

amountsthusto oneor moreof theabove expansions.There
will beatmost2� jActj new elementsaddedto;.

Relatedwork
Following (Li & Pereira 1996; Liberatore 2000),
Eiter etal. (Eiter et al. 2005) have investigated update
of action domain descriptions. They define a version
of action theory update in an action languageand give
complexity resultsshowing how hardsucha taskcanbe.

Updateof actiondescriptionsin their senseis alwaysrel-
ative to someconditions(interpretedasknowledgepossibly
obtainedfrom earlierobservationsandthatshouldbekept).
Thischaracterizesaconstraint-basedupdate.In theexample
they give,changemustbecarriedoutpreservingtheassump-
tion thatpushingthebutton of theremotecontrol is always
executable.Actually, themethodis moresubtle, asnew ef-
fect laws areaddedconstrainedby the addition of viz. an
executability law for the new actionunderconcern. In the
example,the constraint(executability of push)was not in
theoriginalactiondescriptionandmustfigurein theupdated
theory.

They describedomainsof actionsin a fragmentof theac-
tion languageC (Gelfond& Lifschitz 1998). However they
do not specify which fragment,so it is not clear whether
theclaimedadvantagesC hasoverA really transferto their
framework. At onehand,their approachdealswith indirect
effects,but they donot talk aboutupdatingatheoryby a law
with a nondeterministicaction.Anyway, exceptfor concur-
rency, their accountcan be translatedinto ours, as shown
in (Castilho,Gasquet,& Herzig 1999).

Eiteretal. consideranactiontheoryT ascomprisingtwo
main components:Tu, the part of the theory that must re-
mainunchanged,andTm, thepartconcerningthestatements
that areallowed to change.The crucial informationto the
associatedsolutionto theframeproblemis alwaysin Tu.

Given anactiontheoryT = Tu[Tm, ((Tu[Tm); T 0; C)
is theproblemof updatingT by T 0 � S [E warrantingthe
resultsatisfiesall constraintsin C � S [X .

Even though they do not explicitly statepostulatesfor
their kind of theoryupdate,they establishconditionsfor the
updateoperatorto be successful.Basically, they claim for
consistency of theresultingtheory;maintenanceof thenew
knowledgeandthe invariablepart of the description;satis-
factionof theconstraintsin C; andminimal change.

In someexamplesthat they develop, the illustrated“par-
tial solution” doesnot satisfyC dueto theexistenceof im-
plicit laws (cf. Example1, wherethereis an implicit inex-
ecutability law). To achieve a solution, while keepingC,
someotherlawsmustbedropped(in theexample,theagent
givesupastaticlaw).5

Just to seethe link betweenupdateby subsumedlaws
and addition of implicit static laws, we note that Propo-
sition 1 in the referredwork is the sameas Theorem14
in (Herzig & Varzinczak2005b): every implicit static law
in HerzigandVarzinczak’ssenseis trivially asubsumedlaw
in Eiteretal.’s sense.

5This doesnot meanhowever thattheupdatedtheorywill nec-
essarilycontainno implicit law.

478 Technical Report IfI-06-04

Belief Change and Updates

With their methodwe canalsocontractby a static andan
effect law. Contractionof executabilities arenot explicitly
addressed,andweakening(replacingalaw by aweakerone)
is left asfuturework.

A main differencebetweenthe approachin (Eiter et al.
2005)andoursis thatwe do not needto addnew fluentsat
everyelaborationstage: westill work onthesamesetof flu-
ents,refiningtheirbehavior w.r.t. anactiona. In Eiteretal.’s
proposalanupdateforceschangingall thevariablerulesap-
pearingin the actiontheory by addingto eachone a new
updatefluent. This is a constraintwhenelaborating action
theories.

Concluding remarks
In thiswork wehavepresentedageneral method for chang-
ing adomain description(aliasactiontheory)given any for-
mulawewantto contract.

We have defineda semanticsfor theorycontractionand
also presentedits syntacticalcounterpartthroughcontrac-
tion operators.Soundnessandcompletenessof suchoper-
atorswith respectto the semanticshave beenestablished
(Corollary1).

We have alsoshown that modularity is a necessarycon-
dition for a contractionto besuccessful(Theorem3). This
givesfurtherevidencethatour modularitynotionis fruitful.

We have analysedan exampleof contractionof a non-
modulartheoryby animplicit staticlaw thatis unintended.

Becauseof forcing formulasto beexplicitly statedin their
respective modules(and thus possiblymaking them infer-
able in independentlydifferentways), intuitively modular-
ity couldbeseento diminishelaborationtolerance.For in-
stance,whencontracting a classicalformula' from a non-
modulartheory, it seemsreasonableto expectnot to change
the set of static laws S, while the theory being modular
surely forces changing sucha module. However it is not
difficult to conceivenon-modulartheoriesin whichcontrac-
tion of a formula' maydemanda changein S aswell. To
witness,supposeS = f'1 ! '2g in anactiontheoryfrom
whosedynamicpartwe (implicitly) infer :'2. In this case,
acontractionof :'1 keeping:'2 wouldnecessarilyaskfor
a changein S. We point out nevertheless thatin bothcases
(modularandnon-modular)theextrawork in changingother
modulesstaysin themechanicallevel, i.e., in themachinery
thatcarriesout themodification,anddoesnot augmentin a
significantway theamountof work theknowledgeengineer
is expectedto do.

What is thestatusof theAGM-postulatesfor contraction
in our framework? First, contractionof staticlaws satisfies
all the postulates, assoonas the underlyingclassicalcon-
tractionoperation	 satisfiesall of them.

In thegeneralcase,however, ourconstructionsdonotsat-
isfy the central postulateof preservation hS; E ;X ;;i�� =hS; E ;X ;;i if S; E ;X 6j=

;

�. Indeed,supposewe have a
languagewith only oneatom p, anda modelM with two
worldsw = fpg andw0 = f:pg suchthatwRaw0, w0Raw,

andw0Raw0. Thenj=M p ! [a]:p and 6j=M [a]:p, i.e.,M
is a modelof the effect law p ! [a]:p, but not of [a]:p.

Now thecontractionM�[a]:p yieldsthemodelM 0 suchthat

Ra = W� W. Then 6j=M 0
p ! [a]:p, i.e., the effect law

p ! [a]:p is not preserved. Our contractionoperationthus
behavesratherlikeanupdateoperation.

Now let usfocusontheotherpostulates. Sinceouropera-
tor hasabehavior which is closeto theupdatepostulate,we
focuson the following basicerasurepostulatesintroduced
in (Katsuno& Mendelzon1991). Let Cn(T) be the setof
all logical consequencesof a theoryT .

KM1 Cn(hS; E ;X ;;i��) � Cn(hS; E ;X ;;i)
PostulateKM1 doesnot alwayshold becauseit is possible
to make theformula' ! [a]? valid in theresultingtheory
by removing elementsof Ra (cf. Definition10).

KM2 � =2 Cn(hS; E ;X ;;i��)
Under the condition that hS; E ;X ;;i is modular, Postu-
lateKM2 is satisfied(cf. Theorem3).

KM3 If Cn(hS1; E1;X1;;i) = Cn(hS2; E2;X2;;i)
and j=Kn �1 $ �2, then Cn(hS1; E1;X1;;i��2) =
Cn(hS2; E2;X2;;i��1).

Theorem4 If hS1; E1;X1;;i and hS2; E2;X2;;i are
modularand the propositionalcontractionoperator	 sat-
isfies PostulateKM3 , then PostulateKM3 is satisfiedfor
every�1; �2 2 Fml.

Herewe have presentedthecasefor contraction,but our
definitionscanbeextendedto revision, too. Our resultscan
alsobe generalizedto the casewhere learningnew actions
or fluentsis involved. This meansin generalthatmorethan
onesimple formula shouldbe addedto the belief baseand
mustfit togetherwith therestof thetheorywith aslittle side-
effects as possible. We are currently defining algorithms
basedonouroperatorsto achieve that.

Acknowledgments
We aregratefulto theanonymousrefereesfor many useful
commentsonanearlierversionof thispaper.

References
Amir, E. 2000a. (De)compositionof situationcalculus
theories.In Proc.AAAI’2000, 456–463.AAAI Press/MIT
Press.
Amir, E. 2000b. Toward a formalization of elaboration
tolerance: Adding and deletingaxioms. In Frontiers of
BeliefRevision. Kluwer.
Castilho,M. A.; Gasquet,O.; andHerzig,A. 1999. For-
malizing action and change in modal logic I: the frame
problem.J. of Logic andComputation9(5):701–735.
Castilho,M. A.; Herzig,A.; andVarzinczak,I. J. 2002. It
dependson the context! a decidablelogic of actions and
plansbasedon a ternarydependencerelation. In NMR’02,
343–348.
Cholvy, L. 1999.Checkingregulationconsistency by using
SOL-resolution.In Proc. Int. Conf. onAI andLaw, 73–79.

DEPARTMENT OF INFORMATICS 479

11TH NMR WORKSHOP

Demolombe,R.; Herzig,A.; andVarzinczak,I. 2003. Re-
gressionin modallogic. J. of AppliedNon-ClassicalLogics
(JANCL)13(2):165–185.

Doherty, P.; Łukaszewicz, W.; andMadalinska-Bugaj, E.
1998.ThePMA andrelativizing changefor actionupdate.
In Proc.KR’98, 258–269.MorganKaufmann.

Eiter, T.; Erdem,E.; Fink, M.; andSenko, J. 2005.Updat-
ing actiondomaindescriptions. In Proc. IJCAI’05, 418–
423. MorganKaufmann.

Foo,N. Y., andZhang,D. 2002.Dealingwith theramifica-
tion problemin theextendedpropositionaldynamic logic.
In Advancesin Modal Logic, volume3. World Scientific.
173–191.

Forbus, K. D. 1989. Introducingactions into qualitative
simulation.In Proc. IJCAI’89, 1273–1278.MorganKauf-
mann.

Gärdenfors,P. 1988. Knowledge in Flux: Modeling the
Dynamicsof EpistemicStates. MIT Press.

Gelfond,M., andLifschitz, V. 1998. Action languages.
ETAI 2(3–4):193–210.

Hansson,S. O. 1999. A Textbookof Belief Dynamics:
TheoryChangeandDatabaseUpdating. Kluwer.

Harel, D. 1984. Dynamic logic. In Handbookof Philo-
sophicalLogic, volumeII. D. Reidel,Dordrecht.497–604.

Herzig, A., and Rifi, O. 1999. Propositional belief
baseupdate and minimal change. Artificial Intelligence
115(1):107–138.

Herzig,A., andVarzinczak,I. Metatheoryof actions:be-
yondconsistency. To appear.

Herzig, A., and Varzinczak,I. 2004a. An assessment
of actionswith indeterminateandindirect effectsin some
causalapproaches.Technical Report2004–08–R,Institut
derechercheen informatiquedeToulouse (IRIT), Univer-
sitéPaulSabatier.

Herzig,A., andVarzinczak,I. 2004b. Domaindescriptions
shouldbemodular. In Proc.ECAI’04, 348–352.IOSPress.

Herzig,A., andVarzinczak,I. 2005a.Cohesion,coupling
andthe meta-theoryof actions. In Proc. IJCAI’05, 442–
447. MorganKaufmann.

Herzig,A., andVarzinczak,I. 2005b. On the modularity
of theories.In Advancesin ModalLogic, volume5. King’s
CollegePublications.93–109.

Inoue,K. 1992.Linearresolutionfor consequencefinding.
Artificial Intelligence56(2–3):301–353.

Jin, Y., andThielscher, M. 2005. Iteratedbelief revision,
revised. In Proc. IJCAI’05, 478–483.MorganKaufmann.

Kakas,A.; Michael, L.; andMiller, R. 2005. Modular-E : an elaborationtolerant approachto the ramification
andqualificationproblems. In Proc. 8th Intl. Conf. Logic
Programming and Nonmonotonic Reasoning, 211–226.
Springer-Verlag.

Katsuno,H., andMendelzon,A. O. 1991. Propositional
knowledgebaserevision and minimal change. Artificial
Intelligence52(3):263–294.

Katsuno,H., andMendelzon, A. O. 1992. On the differ-
encebetweenupdating aknowledgebaseandrevisingit. In
Gärdenfors,P., ed.,Belief revision. CambridgeUniversity
Press.183–203.
Lang,J.;Lin, F.; andMarquis,P. 2003. Causaltheoriesof
action– a computationalcore. In Proc. IJCAI’03, 1073–
1078.MorganKaufmann.
Li, R., andPereira,L. 1996. What is believed is what is
explained. In Proc. AAAI’96, 550–555.AAAI Press/MIT
Press.
Liberatore,P. 2000. A framework for belief update. In
Proc.JELIA’2000, 361–375.
McCarthy, J. 1988.Mathematicallogic in artificial intelli-
gence. Daedalus.
McCarthy, J. 1998. Elaborationtolerance.In Proc. Com-
monSense’98.
Popkorn,S. 1994.First Stepsin Modal Logic. Cambridge
UniversityPress.
Reiter, R. 1991.The frameproblemin thesituationcalcu-
lus: A simplesolution(sometimes)andacompletenessre-
sult for goalregression.In Artificial IntelligenceandMath-
ematicalTheoryof Computation:Papers in Honorof John
McCarthy. AcademicPress.359–380.
Reiter, R. 2001. Knowledge in Action: Logical Founda-
tionsfor SpecifyingandImplementingDynamicalSystems.
Cambridge,MA: MIT Press.
Shanahan,M. 1997. Solvingthe frameproblem: a math-
ematicalinvestigation of thecommonsenselaw of inertia.
Cambridge,MA: MIT Press.
Shapiro,S.; Pagnucco,M.; Lesṕerance,Y.; andLevesque,
H. J. 2000. Iteratedbelief changein thesituationcalculus.
In Proc.KR’2000, 527–538.MorganKaufmann.
Thielscher, M. 1995. Computingramificationsby post-
processing.In Proc. IJCAI’95, 1994–2000.MorganKauf-
mann.
Winslett,M.-A. 1988. Reasoningaboutactionusingapos-
siblemodelsapproach.In Proc.AAAI’88, 89–93.Morgan
Kaufmann.
Winslett, M.-A. 1995. Updating logical databases.In
Handbookof Logic in Artificial IntelligenceandLogic Pro-
gramming, volume4. OxfordUniversityPress.133–174.
Zhang,D., andFoo,N. Y. 2001.EPDL:A logic for causal
reasoning. In Proc. IJCAI’01, 131–138. Morgan Kauf-
mann.
Zhang,D.; Chopra,S.; andFoo, N. Y. 2002. Consistency
of actiondescriptions.In PRICAI’02, Topicsin Artificial
Intelligence. Springer-Verlag.

480 Technical Report IfI-06-04

Belief Change and Updates

DEPARTMENT OF INFORMATICS 481

11TH NMR WORKSHOP

6.4 Merging Rules

Merging Rules: Preliminary Version

Richard Booth
Faculty of Informatics

Mahasarakham University
Mahasarakham 44150, Thailand

richard.b@msu.ac.th

Souhila Kaci
CRIL

Rue de l’Université SP 16
62307 Lens Cedex, France

kaci@cril.univ-artois.fr

Leendert van der Torre
ILIAS

University of Luxembourg
Luxembourg

leon.vandertorre@uni.lu

Abstract

In this paper we consider the merging of rules or con-
ditionals. In contrast to other approaches, we do not
invent a new approach from scratch, for one particular
kind of rule, but we are interested in ways to general-
ize existing revision and merging operators from belief
merging to rule merging. First, we study ways to merge
rules based on only a notion of consistency of a set of
rules, and illustrate this approach using a consolidation
operator of Booth and Richter. Second, we consider
ways to merge rules based on a notion of implication
among rules, and we illustrate this approach using so-
calledmin andmax merging operators defined using
possibilistic logic.

Introduction
We are interested in the merging or fusion of rules or con-
ditionals. When there are several sources of rules that are
in some sense conflicting, incoherent or inconsistent, thena
rule merging operator returns a weaker non-conflicting set
of rules. Such merging operators can be used in many areas
of artificial intelligence, for example when merging regula-
tions in electronic institutions, merging conditional default
rules, or merging conditional goals in social agent theory.

In general, there are two approaches to develop operators
and algorithms to merge rules. One approach starts from a
particular kind of rule, and develops a merging operator for
a particular application domain. The other approach tries
to generalize existing operators from belief merging, which
have been developed as a generalization of belief revision
operators. In this paper we follow in the latter approach, and
we address the following research questions:

1. How to define a general framework to study rule merging
and develop rule merging operators?

2. Given a merging operator for belief merging, how can we
use it for rule merging?

3. Defeasible rules can be stratified into a prioritized rule
base. How can we use this stratification in rule merging?

Though many notions of rules have been defined, they are
typically represented as syntactic objectsφ → ψ in a meta-
language, expressing a conditional statement “ifφ thenψ”,
whereφ andψ are formulas of an object language, for ex-
ample propositional or first-order logic. Given a set of such

rulesR expressed as pairs of formulas of a languageL, we
can apply the rules to a contextS, consisting of formulas of
L, which results again in a set of sentences ofL. In this pa-
per, following conventions from input/output logic (Makin-
son & van der Torre 2000), we writeout(R,S) for the result
of applying the rules ofR to S.

A crucial ingredient of belief merging operators is a no-
tion of inconsistency. However, since rules are typically rep-
resented in the meta-language, there is no obvious choice of
rule inconsistency which can be used. To use a merging op-
erator for rule merging, we have to define when a set of rules
is conflicting or contradictory. We discuss various ways to
define the inconsistency of a set of rules, and illustrate how
a merging operator for belief merging can be used for rule
merging using a generalization of the so-called AGM partial
meet approach (Alchourrón, Gärdenfors, & Makinson 1985;
Hansson 1999) due to (Booth & Richter 2005).

Moreover, a notion of consistency is sufficient to define
selection operators, but in general we need also a notion of
implication among rules. For example, when we interpret
the arrow→ as an implication in conditional logic, or as the
material implication of propositional logic, then two rules
φ→ ψ andξ → ϕ imply the ruleφ∧ξ → ψ∨ϕ. Moreover,
if we merge the former two rules, the latter one may be the
result. We illustrate this using merging operators from pos-
sibilistic logic (Dubois, Lang, & Prade 1994), a logic that
associates with a formula a numerical value between 0 and
1. One interpretation of this value is that it represents a strat-
ification of the formulas in the knowledge base in formulas
with higher and lower priority. A particular kind of condi-
tionals has been defined, and these conditionals have been
stratified using a stratification algorithm.

The layout of this paper is as follows. We first discuss the
inconsistency of a set of rules, and illustrate it on the merg-
ing operator of Booth and Richter. Then we discuss rule
implication, and illustrate it on merging operators defined
using possibilistic logic.

Preliminaries: Unless otherwise indicated, our back-
ground logic in this paper will be a propositional logicL
containing the usual propositional connectives, including
material implication which we denote by⊃. For any set of
formulasS, Cn(S) is the set of logical consequences ofS.
We will sayS isCn-consistent ifS is classically consistent.
Ω is the set of all propositional interpretations relative toL.

482 Technical Report IfI-06-04

Belief Change and Updates

Rules, alias conditionals, will be of the formφ → ψ where
φ, ψ ∈ L. ThusL2 is the set of all rules.

Rule consistency
Applying rules
In this paper we make only minimal assumptions on
out(R,S) in general. We assumeout(R,S) is a logically
closed set of formulas ofL. We also assume that a rule
can be applied when the context is precisely the body of
the rule, and that a set of rules cannot imply more than the
materialization of the rules, that is, then assuming that the
set of rules are formulas ofL by interpreting the condition
as a material implication. There are many additional
properties one may want to impose on the application of
rules.

Let R be a set of pairs from a logicL, let S be a set of
formulas ofL, out(R,S) ⊆ L is assumed to satisfy the fol-
lowing conditions:

1. out(R,S) = Cn(out(R,S))

2. If φ→ ψ ∈ R, thenψ ∈ out(R, {φ});

3. out(R,S) ⊆ Cn(S ∪ {φ ⊃ ψ | φ→ ψ ∈ R})

Seven kinds of such rules have been studied in the in-
put/output logic framework (Makinson & van der Torre
2000). One example, calledsimple-minded outputin
(Makinson & van der Torre 2000), is

out1(R,S) = Cn({ψ ∈ L | (φ→ ψ) ∈ R andφ ∈ Cn(S)}).

We will refer to this operation again later in this section.
Many other examples can be defined. They satisfy additional
properties, such as the monotonicity property that the output
out(R,S) increases if eitherR or S increases.

Consistency of output
Since rules are defined as pairs of formulas ofL, we can
define the consistency of a set of rules in terms ofCn-
consistency. In input/output logic, the following two notions
of consistency have been defined for a set of rules relative to
a given contextS (Makinson & van der Torre 2001):

Output constraint A set of rulesR satisfies the output con-
straint whenout(R,S) isCn-consistent.

Input/output constraint A set of rulesR satisfies the
input/output constraint whenS ∪ out(R,S) is Cn-
consistent.

When the application of a set of rulesout(R,S) always
contains the inputS, then these two kinds of constraints ob-
viously coincide. However, there are several intuitive no-
tions of rules, such as norms, which do not have this prop-
erty, and where the two constraints are distinct.

Rule consistency
We consider a weak and a strong notion of consistency of
a set of rules. A set is weakly consistent when it does not
lead toCn-inconsistent output for the inputs of the available
rules, and it is strongly consistent when it does not lead to

Cn-inconsistency for any consistent context. Strong con-
sistency is sometimes used, for example, when developing
institutional regulations.

Weak consistencyFor all φ → ψ ∈ R, we have
out(R, {φ}) isCn-consistent.

Strong consistencyFor anyCn-consistentS ⊆ L, we have
thatout(R,S) isCn-consistent.

Example: A consolidation operator
(Booth & Richter 2005) assume a very abstract framework
based on the abstract framework for fuzzy logic due to
(Gerla 2001). They just need three ingredients:

(i) a setL0 of formulas,

(ii) a setW of abstractdegreeswhich can be assigned to
the formulas inL0 to createfuzzy belief bases, and

(iii) a special subsetCon of these fuzzy belief bases which
specifies those fuzzy bases which are meant to beconsis-
tent, in whatever sense.1

For the setL0 they assume no particular structure – it is
just an arbitrary set, while the only thing assumed aboutW
in general is that it is a complete distributive lattice. For-
mally, a fuzzy belief base is a functionu : L0 →W . F(L0)
denotes the set of all fuzzy bases. Ifu(ϕ) = a, then this is
interpreted as the information that the degree ofϕ is at least
a, i.e., it could in actual fact be bigger thana, but the infor-
mation contained inu doesn’t allow us to be more precise.
The partial order overW is denoted by≤W . The “fuzzy”
subset relation⊑ between fuzzy bases is defined by

u ⊑ v iff u(ϕ) ≤W v(ϕ) for all ϕ ∈ L0.

So⊑ is an “information ordering”:u ⊑ v iff the information
contained inv is more “precise” thanu. Under these defini-
tions(F(L0),⊑) itself forms a complete distributive lattice.
Given any setX ⊆ F(L0) of fuzzy bases the infimum and
supremum ofX under⊑ are denoted by

d
X and

⊔

X re-
spectively, withu ⊔ v being written rather than

⊔

{u, v},
etc. In the simplest case we can takeW = {0, 1} with 0, 1
standing for true and false respectively. In this case the fuzzy
bases just reduce to (characteristic functions of) crisp belief
bases and we can writeϕ ∈ u rather thanu(ϕ) = 1, while
⊑,

⊔

,
d

reduce to the usual⊆,
⋃

,
⋂

.
The setCon ⊆ F(L0) is required to satisfy two condi-

tions. First, it is assumed to bedownwards closedin the
latticeF(L0):

If v ∈ Con andu ⊑ v thenu ∈ Con.

The second condition is slightly more involved, and corre-
sponds to a type of compactness condition:

Definition 1 Con is logically compactiff
⊔

X ∈ Con for
anyX ⊆ Con such thatu, v ∈ X implies there existsw ∈
X such thatu ⊔ v ⊑ w.

1Actually for (iii) they start off assuming adeductionoperator
D which for each fuzzy base returns a new fuzzy base denoting its
fuzzyconsequences. However, as they point out, only the plain no-
tion of consistency is required for their formal results. (See Section
7 of (Booth & Richter 2005).)

DEPARTMENT OF INFORMATICS 483

11TH NMR WORKSHOP

In other words, the supremum of every directed family of
consistent fuzzy bases is itself consistent.

Given all this, we can make the following definitions, as-
suming some fixedu ∈ F(L0):

Definition 2 u⊥ is defined to be the set of maximally con-
sistent fuzzy subsets ofu, i.e.,v ∈ u⊥ iff
(i). v ⊑ u.
(ii) . v ∈ Con.
(iii) . If v ⊏ w ⊑ u thenw 6∈ Con.
A selection function (foru) is a functionγ such that∅ 6=
γ(u⊥) ⊆ u⊥.

From a selection functionγ we define aconsolidationop-
erator !γ for u by setting

u!γ =
l
γ(u⊥).

Definition 3 ! is apartial meet fuzzy base consolidationop-
erator (foru) if ! =!γ for some selection functionγ for u.

Partial meet fuzzy base consolidation can be thought of
as a special case of a more general operation of partial meet
fuzzy baserevision. In fact consolidation amounts to a revi-
sion by a “vacuous” revision input(ϕ/0W) representing the
new information that the degree ofϕ is at least0W , where
0W is the minimal element of the latticeW . This more
general operation was studied and axiomatically character-
ized in (Booth & Richter 2005). The following character-
ization of partial meet fuzzy consolidation does not appear
in (Booth & Richter 2005), though it can be proved using
similar methods.

Theorem 1 ! is a partial meet fuzzy consolidation operator
iff ! satisfies the following three conditions:

1. u! ∈ Con.
2. u! ⊑ u
3. For all φ ∈ L0, b ∈ W , if b 6≤W u!(φ) andb ≤W u(φ)

then there existsu′ ∈ Con such thatu! ⊑ u′ ⊑ u and
u′ ⊔ (φ/b) 6∈ Con.

In 3, u!(φ) is the degree assigned toφ by the fuzzy baseu!,
while (φ/b) denotes that fuzzy base which assignsb toφ and
0W to every other formula.

Application
Given an arbitrary setR ⊆ L2 (possibly infinite) of rules,
we need to formally define whenR is consistent. For now,
we use the earlier-defined notion of strong consistency for
out1, which we will refer to as consistent1 .

Definition 4 Let R ⊆ L2 be a set of rules. We sayR
is consistent1 iff out1(R, φ) is Cn-consistent for allCn-
consistentφ ∈ L.

Using results of (Makinson & van der Torre 2000), we get
an alternative characterization of consistent1 :

Proposition 1 The following are equivalent:
(i). R is consistent1 .
(ii) . For all Cn-consistentφ ∈ L, φ→ ⊥ cannotbe derived
from R using the rule-setRules1 that contains SI: derive
(φ ∧ ξ) → ψ fromφ → ψ, WO: deriveφ → (ψ ∨ ϕ) from
φ→ ψ, AND: deriveφ→ (ψ∧ϕ) fromφ→ ψ andφ→ ϕ.

To help define merging operators for rules, our aim now
is to define an operation which takes an arbitrary set of rules
R and returns a new rule setR! which is consistent1 . We
set up the following definitions:

Definition 5 R ⊥ is defined to be the set of maximally
consistent1 subsets ofR, i.e.,X ∈ R⊥ iff
(i). X ⊆ R.
(ii) . X is consistent1 .
(iii) . If X ⊂ Y ⊆ R thenY is inconsistent1 .
A selection function (forR) is a functionγ such that∅ 6=
γ(R⊥) ⊆ R⊥.

From a given selection functionγ we then define a con-
solidation operator forR by setting

R!γ =
⋂

γ(R⊥).

Definition 6 ! is a partial meet consolidationoperator (for
R) if ! =!γ for some selection functionγ for R.

What are the properties of this family of consolidation op-
erators? It turns out the following is a sound and complete
set of properties for partial meet consolidation.

1. R! is consistent1 .

2. R! ⊆ R.

3. If φ → ψ ∈ R \ R! then there existsX such that
R! ⊆ X ⊆ R, X is consistent1 , andX ∪ {φ → ψ}
is inconsistent1 .

Theorem 2 ! is a partial meet consolidation operator iff!
satisfies 1–3 above.

Now, by considering the special caseL0 = L2,W =
{0, 1}, andCon = consistent1 we obtain Theorem 2 as just
an instance of Theorem 1. However, to be able to do this
we need to check that consistent1 satisfies the conditions re-
quired of it:

Theorem 3 consistent1 is downwards closed and logically
compact.

Proof: The easiest way to show these is by considering
the proof-theoretical characterization of consistent1 from
Proposition 1(ii) .

To show consistent1 is downwards closed in this case
means to show that ifR is consistent1 andR′ ⊆ R then
R′ is consistent1 . But if R′ is inconsistent1 thenφ → ⊥
is derivable fromR′ usingRules1, for someCn-consistent
φ. If R′ ⊆ R then obviously any derivation fromR′ is a
derivation fromR. Hence this impliesR is inconsistent1 .

To show consistent1 is logically compact means to show
that

⋃

X is consistent1 for any setX of consistent1 rule
bases such thatR,R′ ∈ X implies there existsR′′ ∈ X
such thatR ∪ R′ ⊆ R′′. But suppose for contradiction
consistent1 wasnot logically compact. Then there is some
setX of consistent1 rule bases satisfying the above condi-
tion and such that

⋃

X is inconsistent1 . This means for
someCn-consistentφ there is a derivation ofφ → ⊥ from
⋃

X usingRules1. LetA1, . . . , An be the elements of
⋃

X
used in this derivation, and letR1, . . . , Rn be rule bases in
X such thatAi ∈ Ri. By repeated application of the above

484 Technical Report IfI-06-04

Belief Change and Updates

condition onX we know there existsR′′ ∈ X such that
R1 ∪ . . . ∪ Rn ⊆ R′′. Hence our derivation ofφ → ⊥ is
also a derivation fromR′′. Thus we have found an element
of X (namelyR′′) which is inconsistent1 – contradicting
the assumption thatX contains only consistent1 rule bases.
Thus consistent1 is logically compact.

Remark
The proof above clearly goes through independently of the
actual rules which belong toRules1. We could just as eas-
ily substituteRules2 = Rules1 ∪ {OR}: deriveφ ∨ ξ → ψ
from φ → ψ andξ → ψ, or Rules3 = Rules1 ∪ {CT}: de-
rive φ → ϕ from φ → ψ andφ ∧ ψ → ϕ, or Rules4 =
Rules1∪{OR, CT}. This means Theorem 3 also holds if we
replace consistent1 with consistenti for anyi ∈ {1, 2, 3, 4},
where we defineR is consistenti iff outi(R, φ) is Cn-
consistent for allCn-consistentφ ∈ L. This follows from
results in (Makinson & van der Torre 2000) which state
ψ ∈ outi(R, φ) iff φ→ ψ is derivable fromR usingRulesi.

Rule implication

Merging operators may mergeφ∧ψ and¬φ intoψ, which il-
lustrates that merging operators not necessarily select a sub-
set of the formulas from the conflicting sources, like the con-
solidation operators discussed in the previous section, but
they may also contain a formula implied by one of the for-
mulas of the sources. When we want to adapt such an op-
erator for rule merging, we have to define not only the con-
sistency of a set of rules, but also when rules imply other
rules.

There are many notions of rule implication in the lit-
erature. For example, consider the material implication
in propositional logic, thusφ → ψ = φ ⊃ ψ. We
have for example thatφ ⊃ ψ implies (φ ∧ ξ) ⊃ ψ and
φ ⊃ (ψ ∨ ξ), or thatφ ⊃ ψ together withψ ⊃ ξ implies
φ ⊃ ξ. Such properties have been studied more system-
atically traditionally in conditional logic, or more recently
in input/output logic (Makinson & van der Torre 2000;
Bochman 2005). But these are just examples, and do not
directly provide a general solution. In particular, it doesnot
solve the question how to use merging operators for rules
defined in a meta-language, in which case we only have an
operationout(R,S) defining how to apply a set of rules.

For the general case we propose the following definition
of implication among rules. Following the convention in in-
put/output logic, we overload the operator ‘out’ to refer to
this operation too (the two kinds of operations are distin-
guished by the number of their arguments).

out(R) = {φ→ ψ | φ = ∧S, ψ ∈ out(R,S)}.

Example: merging in possibilistic logic

Prioritized information is represented in possibilistic logic
(Dubois, Lang, & Prade 1994) by means of a set of weighted
formulas of the formB = {(φi, ai) : i = 1, · · · , n}. The
pair (φi, ai) means that the certainty (or priority) degree of
φi is at leastai which belongs to the unit interval[0, 1]. A
possibility distribution is associated to a possibilisticbase as

follows: ∀ω ∈ Ω,

πB(ω) =

{

1 if ∀(φi, ai) ∈ B,ω |= φi
1−max{ai : (φi, ai) ∈ B andω 6|= φi}

otherwise.

Whenπ(ω) > π(ω′) we say thatω is preferred to (or more
satisfactory than)ω′. For the rest of this section we simplify
by assuming our languageL is generated by onlyfinitely
many propositional variables.

A possibilistic baseB = {(φi, ai) : i = 1, · · · , n}
is consistent iff the set of propositional formulas
{φi : (φi, ai) ∈ B} associated withB isCn-consistent.

⊕ : [0, 1]k → [0, 1] is ak merging operator when it sat-
isfies the following two conditions. The first condition says
that if an alternative is fully satisfactory for all agents then
it will be also fully satisfactory w.r.t. the result of merging.
The second condition is the monotonicity property.

(i). ⊕(1, · · · , 1) = 1
(ii). ⊕(a1, · · · , an) ≥ ⊕(b1, · · · , bn) if ai ≥ bi for all

i = 1, · · · , n.

For example, letB1 = {(φi, ai) : i = 1, · · · , n} and
B2 = {(ψj , bj) : j = 1, · · · ,m} be two possibilistic bases.
Using⊕, the result of mergingB1 andB2, written asB⊕, is
defined as follows (Benferhatet al. 1999):

B⊕ = {(φi, 1−⊕(1− ai, 1)) : (φi, ai) ∈ B1}
∪{(ψj , 1−⊕(1, 1− bj)) : (ψj , bj) ∈ B2}
∪{(φi ∨ ψj , 1−⊕(1− ai, 1− bj))}.

(1)

We suppose that the bases (possibilistic bases in this section
and rule bases in the following sections) areindividually
consistent. Inconsistency occurs after their merging.

GivenB⊕, theusefulresult of merging – from which in-
ferences are drawn – is defined as a subset ofB⊕ composed
of the consistent most prioritized formulas ofB⊕, as far as
possible. Formally we have:

Definition 7 (Useful result of merging) Let B⊕ be the re-
sult of mergingB1, · · · , Bn using⊕. Let B⊕≥a

= {φi :
(φi, ai) ∈ B⊕, ai ≥ a} and Inc(B⊕) = max{ai :
(φi, ai) ∈ B⊕,B⊕≥ai

isCn-inconsistent}. The useful part
ofB⊕ is:

ρ(B⊕) = {(φi, ai) : (φi, ai) ∈ B⊕, ai > Inc(B⊕)}.

Another more qualitative representation of a possibilistic
base has been studied in possibilistic logic, based on a well
ordered partition of formulas (so without explicit weights!)
B = B1; · · · ;Bn, where formulas ofBi are prioritized over
formulas ofBj for i < j.

Let B = B1; · · · ;Bn and B′ = B′
1; · · · ;B

′
m. The

useful result of mergingB andB′ using themin operator,
written as Bmin, is Bmin,1; · · · ;Bmin,max(n,m), where
Bmin,i = (Bi ∪ B′

i) if
⋃

1≤j≤i(Bj ∪ B
′
j) isCn-consistent,

empty otherwise.

The useful result of mergingB andB′ using themax
operator isBmax,1; · · · ;Bmax,max(n,m), whereBmax,i =

DEPARTMENT OF INFORMATICS 485

11TH NMR WORKSHOP

(∪φ∈Bi,ψ∈B
′
1
∪···∪B′

i
(φ∨ψ))∪ (∪φ∈B1∪···∪Bi,ψ∈B

′
i
(φ∨ψ))

with Bi (resp. B′
i) is composed of tautology wheni > n

(resp.i > m).

A possibility distributionπ can also be written under a
well ordered partition, of the set of all possible worldsΩ, of
the form(E1, · · · , En) such that
• E1 ∪ · · · ∪ En = Ω,

• Ei ∩ Ej = ∅ for i 6= j,

• ∀ω, ω′ ∈ Ω, ω ∈ Ei, ω
′ ∈ Ej with i < j iff π(ω) >

π(ω′).

Rules in possibilistic logic
The qualitative representation of a possibilistic base is apar-
ticular kind of rules, using Algorithm 1 to compute the possi-
bility distribution associated with a set of rules (Pearl 1990;
Benferhat, Dubois, & Prade 1992). LetR = {φi → ψi :
i = 1, · · · , n}, and letC = {(L(Ci), R(Ci)) : L(Ci) =
Mod(φi ∧ ψi), R(Ci) = Mod(φi ∧ ¬ψi), φi → ψi ∈ R},
whereMod(ξ) is the set of worlds satisfyingξ.

Algorithm 1: Possibility distribution associated with a
rule base.

begin
l← 0 ;
while Ω 6= ∅ do

– l← l+ 1 ;
–El = {ω : ∀(L(Ci), R(Ci)) ∈ C, ω 6∈ R(Ci)} ;
if El = ∅ then

Stop (inconsistent rules);
El = Ω;

– Ω = Ω− El ;
– C = C\{(L(Ci), R(Ci)) : L(Ci) ∩ El 6= ∅} ;

return (E1, · · · , El)

end

Algorithms have been defined to translate one represen-
tation into another. For example, Algorithm 2 translates a
set of rules into a possibilitic base given in a well ordered
partition (Benferhat, Dubois, & Prade 2001).

Algorithm 2: TranslatingR intoB.

begin
m← 0 ;
while R 6= ∅ do

–m← m+ 1 ;
–A = {φk ⊃ ψk : φk → ψk ∈ R} ;
– Hm = {φk ⊃ ψk : φk → ψk ∈ R,A ∪
{φk} isCn-consistent};
– if Hm = ∅ then Stop (inconsistent rules);
–R = R\{φk → ψk : φk ⊃ ψk ∈ Hm};

return Σ = Σ1; · · · ; Σn s.t.Σi = Hm−i+1.

end

Let R be a set of rules andΣ = Σ1; · · · ; Σn be its
associated possibilistic base using Algorithm 2. We

define a stratification ofR as R = R1; · · · ;Rn with
Ri = {φk → ψk : φk ⊃ ψk ∈ Σi}. This stratification ofR
will be used in the next section.

Moreover, the associated rule base ofΣ = Σ1; · · · ; Σn is
(Benferhatet al. 2001):

R = {⊤ → Σn,

¬Σn−1 ∨ ¬Σn → Σn−1,

· · · ,

¬Σ1 ∨ ¬Σ2 → Σ1},

whereΣi =
∧

φ∈Σi
φ.

Merging rules in possibilistic logic
For the particular kind of rules defined in possibilistic logic,
we can thus define a merging operator as follows. Given a
set of rules, transform the set of rules to a possibilistic base.
Then apply a merging operator from possibilistic logic. Fi-
nally, transform the useful part of the merged base back into
a set of rules.

Definition 8 LetR andR′ be two rule bases. The result of
mergingR andR′ using themin operator, written asRmin,
is obtained by translatingR andR′ toB andB′ using Algo-
rithm 2, mergingB andB′ according to themin operator,
and translating the useful result of merging back into a set
of rules. The result of mergingR andR′ using themax
operator is defined analogously.

Instead of this indirect way, we also define the merger
directly. We consider again the min and max mergers.

Definition 9 Let R and R′ be two rule bases, and let
R1; . . . ;Rn andR′

1; . . . ;R
′
m be their stratifications accord-

ing to Algorithm 2. LetR[k] be the set of rules in the first
k equivalence classes,

⋃

i=1...k(Ri ∪R
′
i). The merger ofR

andR′ according tomin, written asRmin, isR[k] such that
{φl ⊃ ψl : φl → ψl ∈ R[k]} is Cn-consistent, andk is
maximal.

Definition 10 LetR andR′ be two rule bases. The merger
of R andR′ according tomax, written asRmax, is {(φ ∧
ξ)→ (ψ ∨ ϕ) | φ→ ψ ∈ R, ξ → ϕ ∈ R′}.

The direct merging approach is twofold interest. It avoids
the different translations and also provides more intuitive re-
sults at the syntactic level.

Example 1 Assume there is only a single ruleφ→ ψ which
is merged with the empty base. The indirect approach leads
to {⊤ → (φ ⊃ ψ)} and the direct approach leads to{φ →
ψ}. The two sets are equivalent in the sense that they lead
to the same possibility distribution using Algorithm 1.

The indirect and direct approaches are in this sense equiv-
alent.

Proposition 2 Let R andR′ be two rule bases. LetR1

(resp.R2) be the result of mergingR andR′ using themin
operator following Definition 8 (resp. Definition 9). Then
R1 andR2 are equivalent in the sense that they induce the
same possibility distribution.
This result holds for themax operator as well.

486 Technical Report IfI-06-04

Belief Change and Updates

The latter example illustrates that the kind of rules studied
in possibilistic logic are of a particular kind, and it raises the
question how the merging operation can be generalized for
arbitrary rules. This is studied in the following section.

Application
We now consider the generalization of this approach for an
arbitrary notion of rules. We first introduce the following
generalization of the stratification Algorithm 2.

Algorithm 3: Stratification of a rule baseR.

begin
m← 0 ;
while R 6= ∅ do

–m← m+ 1 ;
– Hm = {φk → ψk : φk → ψk ∈
R, out(R, φk) ∪ {φk} isCn-consistent};
– if Hm = ∅ then Stop (inconsistent base);
– removeHm fromR;

return R = R1; · · · ;Rn s.t.Ri = Hm−i+1.

end

That Algorithm 3 is a generalization of Algorithm 2 can
be seen by settingout(R) = {φ ⊃ ψ | φ → ψ ∈ R} in the
above.

The following example illustrates two distinct kinds of ex-
amples of rule sets.

Example 2 Consider the following two:

1. ⊤ → f , d→ ¬f
2. ⊤ → ¬f , f → w

Both examples will be stratified in two equivalence classes
using the algorithm above, but for completely different rea-
sons. In the first example, ”d” causes an inconsistency, and
in the second example, ”f” is an inconsistency. (the first is
the usual kind of specificity in the Tweety example, the sec-
ond is the contrary-to-duty studied in deontic logic; the first
is an exception, the second a violation). The first base is
stratified into{d → ¬f}; {⊤ → f} and the second base is
stratified into{f → w}; {⊤ → ¬f}.

Proposition 3 A set of rules is inconsistent, according to
Algorithm 3, when for all rules(φ, ψ) ∈ R, we have that
out(R, {φ}) isCn-inconsistent.

We can use the proposition to define a merging operator
according to the min operator, which is again a selection
operator. We therefore can use the same definition as above;
clearly it is again a generalization.

Definition 11 Let R and R′ be two rule bases, and let
R1; . . . ;Rn andR′

1; . . . ;R
′
m be their stratifications accord-

ing to Algo. 3. LetR[k] be the set of rules in the firstk
equivalence classes,

⋃

i=1...k(Ri ∪ R
′
i). The merger ofR

andR′ according tomin, written asRmin, isR[k] such that
R[k] is consistent according to Algo. 3, andk is maximal.

For the merging operator based on max, we have to use
the notion of implication inout. We simply use the same
operator as above.

Definition 12 LetR andR′ be two rule bases. The merger
of R andR′ according tomax, written asRmax, is {(φ ∧
ξ)→ (ψ ∨ ϕ) | φ→ ψ ∈ R, ξ → ϕ ∈ R′}.

Variations
The product operator in possibilistic logic may be seen as
a combination of the min and the max operator, in the
sense that the merger contains both selections and disjunc-
tion. We conjecture that it can be defined analogously in
our generalized setting. There are other ways to general-
ize Algorithm 2 for an arbitrary notion of rules. If we write
R[φ] = {(ξ → ψ) ∈ R|(φ↔ ξ) ∈ Cn(∅)}, we can find al-
ternatives for the relative line of the algorithm, for example:

– Hm = {φk → ψk : φk → ψk ∈
R, out(R, φk)} isCn-consistent};

– Hm = {φk → ψk : φk → ψk ∈ R, out(R \
R[φk], {φk}) isCn-consistent};

Summary
In this paper we introduce a general framework to study rule
merging and develop rule merging operators as a general-
ization of belief merging operators. We use simple rules
defined as pairs of formulas of a base logic, i.e., as condi-
tionals. We distinguish weak consistency of rules only in
contexts of the given rules, and strong consistency for all
possible consistent contexts. We define a notion of implica-
tion among rules based on implication in the base language:

out(R) = {φ→ ψ | φ = ∧S, ψ ∈ out(R,S)}.
We use the framework to study two examples.

Booth and Richter introduce a merging operator based on
a notion of consistency. Using our strong notion of consis-
tency of a set of rules, we define a rule merging operator. For
the proof of completeness we use a proof-theoretical char-
acterization. This illustrates a general point: to use belief
merging operators for rule merging, we may need to prove
some additional properties of the rule system, such as a no-
tion of compactness.

In possibilistic logic, a framework has been proposed to
study a variety of merging operators. Since also a kind of
rules have been studied in the framework of possibilistic
logic, these merging operators can also be used for this par-
ticular kind of rules. When generalizing the operators for
other kinds of rules, several new issues arise.

Since we considered only two examples of generalizing
belief merging operators to rule merging, there are many
possible studies for further research. We expect that a study
of such examples will lead to a further refinement of our
general framework.

Acknowledgements
Thanks are due to the reviewers for some helpful comments.

References
Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet functions
for contraction and revision.Journal of Symbolic Logic
50:510–530.

DEPARTMENT OF INFORMATICS 487

11TH NMR WORKSHOP

Benferhat, S.; Dubois, D.; Prade, H.; and Williams, M.
1999. A practical approach to fusing and revising priori-
tized belief bases. InProc. of EPIA 99, 222–236.
Benferhat, S.; Dubois, D.; Kaci, S.; and Prade, H. 2001.
Bridging logical, comparative and graphical possibilistic
representation frameworks. InConf. on Symbolic and
Quantitative Approaches to Reas. and Uncert., 422–431.
Benferhat, S.; Dubois, D.; and Prade, H. 1992. Represent-
ing default rules in possibilistic logic. InInt. Conf. of Prin-
ciples of Knowledge Rep. and Reas. (KR’92), 673–684.
Benferhat, S.; Dubois, D.; and Prade, H. 2001. Towards a
possibilistic logic handling of preferences.Applied Intelli-
gence14(3):303–317.
Bochman, A. 2005.Explanatory non-monotonic reason-
ing. World scientific.
Booth, R., and Richter, E. 2005. On revising fuzzy belief
bases.Studia Logica80(1):29–61.
Dubois, D.; Lang, J.; and Prade, H. 1994. Possibilistic
logic. In Handbook of Logic in Artificial Intelligence and
Logic Programmingpages 439–513.
Gerla, G. 2001.Fuzzy Logic: Mathematical Tools for Ap-
proximate Reasoning. Kluwer Academic Publishers.
Hansson, S. O. 1999.A Textbook of Belief Dynamics.
Kluwer Academic Publishers.
Makinson, D., and van der Torre, L. 2000. Input-output
logics. Journal of Philosophical Logic29:383–408.
Makinson, D., and van der Torre, L. 2001. Constraints
for input-output logics. Journal of Philosophical Logic
30(2):155–185.
Pearl, J. 1990. System Z: A natural ordering of defaults
with tractable applications to default reasoning. In Eds,
R. P., ed.,Proceedings of the 3rd Conference on Theoret-
ical Aspects of Reasoning about Knowledge (TARK’90),
121–135. Morgan Kaufmann.

488 Technical Report IfI-06-04

Belief Change and Updates

DEPARTMENT OF INFORMATICS 489

11TH NMR WORKSHOP

6.5 A reversible framework for propositional bases merging

A reversible framework for propositional bases merging
Julien Seinturier and Odile Papini

LSIS UMR CNRS 6168 - Equipe INCA - Université de Toulon et du Var
Avenue de l’Université - BP20132, 83957 LA GARDE CEDEX - FRANCE

{papini, seinturier}@univ-tln.fr

Pierre Drap
MAP UMR CNRS 694

Ecole D’architecture de Marseille Pierre.Drap@gamsau.archi.fr

Keywords
Knowledge representation, Knowledge composition, Decision.

Abstract
The problem of merging multiple sources information is cen-
tral in several domains of computer science. In knowledge
representation for artificial intelligence, several approaches
have been proposed for merging propositional bases. How-
ever none of these approaches allows us the reversibility of
the merging process. In this paper, we propose a very gen-
eral reversible framework for merging ordered as well as not
ordered pieces of information coming from various sources
either ordered or not. A semantic approach of merging in
the proposed reversible framework is first presented, stem-
ming from a representation of total pre-orders by means of
polynomials on real numbers. The syntactic counter-part is
then presented, based on belief bases weighted by polyno-
mials on real numbers. We show the equivalence between
semantic and syntactic approaches. Finally, we show how
this reversible framework is suitable for easily representing
the approach of merging propositional bases stemming from
Hamming distance and how the proposed framework is suit-
able for generalizing the revision of an epistemic state by an
epistemic state to the fusion of several epistemic states.

Introduction
Merging information coming from different sources is an
important issue in various domains of computer science
like knowledge representation for artificial intelligence, de-
cision making or databases. The aim of fusion is to ob-
tain a global point of view, exploiting the complementar-
ity between sources, solving different existing conflicts, re-
ducing the possible redundancies. Among the various ap-
proaches of multiple sources information merging, logical
approaches gave rise to increasing interest in the last decade
(Baral et al. 1992; Revesz 1993; Lin 1996; Revesz 1997;
Cholvy 1998). Most of these approaches have been defined
within the framework of classical logic, more often propo-
sitional, and have been semantically defined. Different pos-
tulates characterizing the rational behaviour of fusion op-
erators have been proposed (Konieczny & Pérez 1998) and
various operators have been defined according to whether
explicit or implicit priorities are available (Konieczny &

Pérez 1998), (Laffage & Lang 2000). More recently, new
approaches have been proposed like semantic merging for
propositional bases stemming from the Hamming distance
(Konieczny, Lang, & Marquis 2002) or syntactic fusion in
a possibilistic framework (Dubois, Lang, & Prade 1994;
Benferhat et al. 2002a) which is a real advantage at a com-
putational point of view. However these frameworks do not
allow for the reversibility of the fusion operations. On a
theoretical point of view, reversibility is interesting because
it involves the definition of a new framework that enables
to express priorities independantly from the merging oper-
ators. When facing real scale applications, large amount
of data are produced by numerous users. Robust merg-
ing techniques and error recovering techniques are neces-
sary. Data management applications require the reversibility
of the merging process in case of errors. In archaeologi-
cal applications, various kinds of errors linked to the mea-
sure process may occur. Besides, several surveys of a same
object, made at two different instants by a same person or
by two different persons may lead to inconsistencies. In-
deed, the result of the fusion in a first survey is performed
from measures and hypothesis on the object stemming from
archeologists’ expert knowledge. In the following surveys,
new measures may conflict with the hypothesis of the previ-
ous survey. Excavations generally take place during several
years, surveys made at a certain year may produce knowl-
edge that may invalidate the hypothesis made years before,
therefore there is a necessity to come back to initial infor-
mation. We propose a very general reversible framework
for fusion. This framework is suitable for both ordered or
not ordered sources as well as for items of information with
explicit or implicit priorities or without priorities. Informa-
tion is represented in propositional calculus and the fusion
operation are semantically and syntactically defined. The
reversibility of the fusion operations is obtained by an ap-
propriate encoding of the pre-orders on interpretations and
on formulas by polynomials on real numbers (Papini 2001;
Benferhat et al. 2002b).

Preliminaries and notations
In this paper we use propositional calculus, denoted by LPC ,
as knowledge representation language with the usual con-
nectives ¬, ∧, ∨, →, ↔. The lower case letters a, b, c, · · ·,
are used to denote propositional variables, the lower case

490 Technical Report IfI-06-04

Belief Change and Updates

Greek letters φ, ψ, · · ·, are used to denote formulas, the up-
per case letters A, B, C, are used to denote sets of formulas.
We denote by W the set of interpretations1 and by Mod(ψ)
the set of models of ψ, that is Mod(ψ) = {ω ∈ W , ω |= ψ}
where |= denotes the inference relation used for drawing
conclusions. Let ψ and φ be formulas and X be a set of for-
mulas, ψ |= φ denotes thatMod(ψ) ⊆Mod(φ) andX |= φ
denotes that ∀ψ ∈ X , Mod(ψ) ⊆ Mod(φ). The symbol ≡
denotes logical equivalence, and ψ ≡ φ means that ψ |= φ
and φ |= ψ.

Pre-orders and polynomials

The aim of this section is to briefly recall some definitions
on polynomials and to remind how polynomials can be used
to represent total pre-orders as well as changes on total pre-
orders(Papini 2001)(Benferhat et al. 2002b).

Polynomials and pre-order on polynomials Let IR be the
set of real numbers. We denote by IR[x] the set of polynomi-
als such that p =

∑n

i=0 pi x
i, pi ∈ IR. We call right (resp.

left) shift of k positions a multiplication (resp. division) by
xk. The support of a polynomial p is the set of elements
of IN, denoted by Sp, composed by the indices i for which
pi 6= 0. Moreover, max(Sp) = deg(p), and max(∅) = 0,
deg(p) denotes the degree of p.

Pre-orders on polynomials Let p and q be two polyno-
mials on real numbers such that p = Σk

i=0 pi x
i and

q = Σl
i=0 qi x

i. We use various pre-orders for compar-
ing polynomials.

Maximum The pre-order ≤MAX is:
p ≤MAX q iff maxk

i=0(pi) ≤ maxl
i=0(qi).

Where maxl
i=0(qi) denotes the maximum of the set

{q0, · · · , ql}

Sum The pre-order ≤SUM is:
p ≤SUM q iff Σk

i=0pi ≤ Σl
i=0qi.

Weighted sum Let {ai, 1 ≤ i ≤ k} and {bj , 1 ≤ j ≤ l}
two sets of scalars. The pre-order ≤WS is:
p ≤WS q iff Σk

i=0ai × pi ≤ Σl
j=0bj × qj .

Lexicographic The pre-order ≤LEX is:
p ≤LEX q iff ∃i ∈ IN ∀j ∈ IN, j < i, (pj =
qj and pi < qi).

Leximax Let v and w be two vectors composed by the
coefficients of p and q ordered in increasing order. Let p′ =
Σn

i=0vi x
i and q′ = Σm

j=0wj x
j be two polynomials built

with the components of v and w respectively. The pre-order
≤LMAX is such that p ≤LMAX q iff p′ ≤LEX q′.

1Interpretations are represented by set of literals.

Representing pre-orders by polynomials Let (A, ≤A)
be a finite set with a total pre-order. Representing ≤A by
polynomials requires the definition of a weighting function
that assigns each element ai ofA a polynomial. This weight-
ing function is such that rk(ai) ∈ IN is the rank of ai in the
pre-order ≤A

2. From the binary decomposition of rk(ai),
denoted by (v0, . . . , vm), with 2m−1 ≤ rk(ai) < 2m, we
build a polynomial p(ai) such that p(ai) = Σm

i=0vm−i x
i.

These polynomials are ordered according to the lexico-
graphic order to represent ≤A. For details see (Papini
2001).

Semantic approach
From a semantic point of view, the priorities between in-
terpretations are represented by polynomials as well as the
result of the merging by classical fusion operators. Let
E = {K1, . . . , Kn} be a set of n propositional bases
representing the information provided by n sources . We
use two kinds of total pre-orders, a pre-order between the
bases, called external pre-order and pre-orders on the inter-
pretations of LPC relative to each base, called internal pre-
orders. In the reversible framework, external and internal
pre-orders are total pre-orders represented by polynomials.
In the following, preferred elements are minimal elements
in total the pre-order.

External pre-order Let E = {K1, . . . , Kn} be a set
of propositional bases, an external weighting function is a
function q that assigns each base Ki an integer called ex-
ternal weight and denoted by q(Ki). An external pre-order
denoted by ≤E is defined such that:

∀Ki, Kj ∈ E, Ki ≤E Kj iff q(Ki) ≤ q(Kj)

where q(Ki) = rk(Ki). When the sources are explicitly
ordered, the weights q(Ki) are the ranks within the total pre-
order ≤E . When the sources are not ordered, the bases are
equally preferred and ∀Ki ∈ E, q(Ki) = 0.

Internal pre-order Let Ki ∈ E be a propositional bases
and W be the set of interpretations of LPC . An internal
weighting function assigns each interpretation ω a polyno-
mial on real numbers called internal weight and denoted by
pKi

(ω). For each base Ki, an internal pre-order denoted by
≤Ki

is defined such that:

∀ωj , ωk ∈ W , ωj ≤Ki
ωk iff pKi

(ωj) ≤ pKi
(ωk)

Three cases arise. When a total pre-order is given for Ki,
the pKi

(ω) are encoded by polynomials as mentioned in the
polynomial pre-order representation section.3. When Ki is
implicitely pre-ordered the pKi

(ω) can be computed using,
for example the Hamming distance (see section 6) and en-
coded by constant polynomials (or integers). Finally, when

2We call rank of ai in the pre-order ≤A the index of ai in the
list of the elements of A ordered in ascending ordering according
to ≤A.

3For the sake of homogeneity, since pre-orders are represented
by polynomials, weights are encoded by polynomials which reflect
the rank of the interpretations in the total pre-order.

DEPARTMENT OF INFORMATICS 491

11TH NMR WORKSHOP

no pre-order is defined all the interpretations are equally pre-
ferred and we have ∀ω ∈ W , pKi

(ω) = 0.

Global weight computation
For the semantic approach in the reversible framework, ex-
ternal and internal pre-orders are represented by polynomi-
als. The merging is the combination of these pre-orders in a
global pre-order. This is done by the combination of exter-
nal and internal weights in a global weight independant of
the merging operator.

Definition 1 Let q(Ki) be the external weight for the bases
Ki, 1 ≤ i ≤ n. The global external weight is such that:

q⊕ = Σn−1
j=0 q(Kj+1)x

j

However, the bases cannot be identified by their rank. It is
necessary to define an absolute ranking in order to define
an inversible function. An absolute ranking defines a one to
one correspondence between ranks and bases. The absolute
ranking function is only used to encode internal pre-orders in
the global pre-order. The absolute ranking is not a merging
priority definition.

Definition 2 Let E = {K1, . . . , Kn} be a set of propo-
sitional bases. An absolute ranking funtion, denoted by r, is
an application from E to IN which assigns each base Ki an
absolute rank r(Ki) such that:

• if Ki <E Kj then r(Ki) < r(Kj).
• else if Ki =E Kj and i < j then r(Ki) < r(Kj).

The Global weight of an interpretation is the sum of all
the internal weights shifted as many times as necessary
in order to produce disjoint supports. The aim of the
disjoint supports is to ensure that each coefficient of an
internal weight is not summed with a coefficient from
another internal weight. The number of shifts depends
on the absolute rank of a base. More formally, for a set
E = {K1, . . . , Kn} of propositional bases, with internal
weights pki

(ω), 1 ≤ i ≤ n and external weights q(Ki). Let
r be the absolute ranking funtion for E. The global weight
for an interpretation ω, denoted by pK1⊕···⊕Kn

(ω) is such
that

pK1⊕···⊕Kn(ω) = Σni=1 pKi(ω) x
Σ

r(Ki)−1
j=1 MAX

r−1(j)

with MAXr−1(j) = maxω′∈W deg(pr−1(j)(ω
′)) + 1. In the

following for the sake of simplicity, we denote by p⊕(ω) the
global weight.

Semantic merging within the reversible framework
In the semantic approach, merging expresses a global pre-
order on the global weights. The result is the set of pre-
ferred interpretations in this pre-order. Within the reversible
framework, the global pre-order, denoted by ≤K1⊕···⊕Kn

is
such that ∀ω, ω′ ∈ W , ω ≤K1⊕···⊕Kn

ω′ iff p⊕(ω) ≤
p⊕(ω′). The choice of the merging operator provides a
way for comparing global weight polynomials. The use of
≤MAX provides the behavior of the MAX merging oper-
ator, the use of ≤SUM provides the behavior of the SUM
merging operator, and so on. The following example illus-
trates the reversible framework for merging.

Example 1 Let’s use the well known example given in (Revesz
1993). LetK1 = {(s∨o)∧¬d}, K2 = {(¬s∧d∧¬o)∨ (¬s∧
¬d ∧ o)} and K3 = {s ∧ o ∧ d} three propositional bases. The
set of interpretations W is sucht that ω0 = {¬s,¬d,¬o}, ω1 =
{¬s,¬d, o}, ω2 = {¬s, d,¬o}, ω3 = {¬s, d, o}, ω4 =
{s,¬d,¬o}, ω5 = {s,¬d, o}, ω6 = {s, d,¬o}, ω7 = {s, d, o}.
The external pre-order is K3 ≤E K1 =E K2 thus the exter-
nal weights are q(K1) = 2, q(K2) = 2, q(K3) = 1. The
computation of external global weight gives q⊕ = 2 + 2x +
x2. The absolute ranking function is defined by r(K1) = 2,
r(K2) = 3, r(K3) = 1 and r−1(1) = K3, r−1(2) = K1,
r−1(3) = K2. Table 1 shows the result of the computation of in-
ternal and global weights. We have MAXr−1(1) = MAXK3 =
maxω′∈W deg(pK3(ω

′)) + 1 = 2,MAXr−1(2) = MAXK1 =
2 and MAXr−1(3) = MAXK2 = 3. For an interpretation
ωi the global weight is p⊕(ωi) = pK3 (ωi) + pK1 (ωi)x

2 +
pK2(ωi)x

4. If we use the SUM merging operator, the pre-order
≤SUM is used and the global pre-order is ω1 =SUM ω2 =SUM

ω5 =SUM ω7 <SUM ω3 =SUM ω4 =SUM ω6 <SUM ω0. Min-
imal interpretations in this pre-order are the set Mod(K1 ⊕ · · · ⊕
Kn) = {ω1, ω2, ω5, ω7}.

ω pK1 pK2 pK3 p⊕
ω0 x 1 1 + x 1 + x+ x3 + x4

ω1 1 0 x x+ x2

ω2 x 0 x x+ x3

ω3 x 1 1 1 + x3 + x4

ω4 1 x2 x x+ x2 + x6

ω5 0 1 1 1 + x4

ω6 x 1 1 1 + x3 + x4

ω7 x x2 0 x3 + x6

Table 1: Interprétations, internal and global weights

ω ≤MAX ≤SUM ≤WS ≤LEX ≤LMAX

ω0 1 4 6 5 5
ω1 1 2 3 1 1
ω2 1 2 3 2 2
ω3 1 3 5 4 4
ω4 1 3 5 6 6
ω5 1 2 3 3 3
ω6 1 3 5 4 4
ω7 1 2 4 7 7

Table 2: Interprétations and rank for differents merging operators

Reversibility
Reversibility allows us to retrieve the external pre-order as
well as internals pre-orders from the global weight. Let q⊕
be the external weight polynomial, by the construction of
the polynomial, the number of propositional bases is n =
deg(q⊕) + 1. Moreover from the polynomial encoding of
the global external weight, it is possible to retrieve all the
externals weights

q(Ki) =
q⊕ mod xi

xi−1

492 Technical Report IfI-06-04

Belief Change and Updates

and therefore the absolute ranks. Polynomials also allow
us to retrieve the internal weights from global weights as-
signed to interpretations. Since the construction of global
weights right shifts the internal weights in order to produce
disjunct supports, the inverse operation consists in break-
ing the global weight into internal weights by left shifting a
number of times equal to the maximum degree of the support
corresponding to the greatest internal weight of the base.
More formally, for each interpretationω and for each propo-
sitional base Ki we have:

pKi(ω) =
p⊕(ω)mod x

Σ
r(Ki)

l=1
MAX

r−1(l)

x
Σ

r(Ki)−1
k=1

MAX
r−1(k)

Example 2 Using the results of example 1, we illustrate the re-
versibility. From the polynomial q⊕ = 2 + 2x + 1x2 we can
retreive the number of merged bases that is deg(q⊕) + 1 = 3.
Moreover, we can retreive the external weights since q(K1) =

q⊕ mod x1 = 2, q(K2) =
q⊕ mod x2

x
= 2, and q(K3) =

q⊕ mod x3

x2 = 1 and thus K3 ≤E K1 =E K2. The external
weights allows us to recover the absolute ranks r(K1) = 2,
r(K2) = 3, r(K3) = 1 and r−1(1) = K3, r−1(2) = K1,
r−1(3) = K2. We can retrieve the internal weights as fol-
lows. With MAXr−1(1) = MAXK3 = 2, MAXr−1(2) =
MAXK1 = 2 and MAXr−1(3) = MAXK2 = 3. For ex-
ample, let p⊕(ω3) = 1 + x3 + x4 be the global weight for the
interpretation ω3. The internal weights are the followings :

pK1(ω) =
p⊕(ω) mod x

Σ
r(K1)
l=1

MAX
r−1(l)

x
Σ

r(K1)−1
k=1

MAX
r−1(k)

=

p⊕(ω) mod x
MAXK3

+MAXK1

x
MAXK3

= 1+x3+x4 mod x4

x2 = x

then pK2(ω) = 1+x3+x4 mod x7

x4 = 1 and pK3(ω) =

1 + x3 + x4 mod x2 = 1.

Syntactic approach

Let B = {Σ1, . . . , Σn} be a set of n weighted bases.
Each base Σi is a finite set of weighted formulas such that
Σi = {(φj , pΣi

(φj)) | φj ∈ LPC , pΣi
(φj) ∈ IR[x]}. In

the reversible framework, external and internal preferences
are respectively represented by an external total pre-order
on the weighted bases and by internal total pre-orders on
the formulas. These total pre-orders are encoded by poly-
nomials. In the syntactic approach, preferred items of the
total pre-orders on the formulas are the maximum in the pre-
orders.

External pre-order Let B = {Σ1, . . . , Σn} be a set of
weighted bases, an external weighting function is a function
that assigns each weighted base an integer denoted by q(Ki).
An external pre-order denoted by ≤B is defined such that:

∀Σi, Σj ∈ B, Σi ≤B Σj iff q(Σi) ≤ q(Σj)

where q(Ki) = rk(Σi). When the sources are explicitly
ordered, the weights q(Σi) are the ranks within the total pre-
order ≤B. When the sources are not ordered, the bases are
equally preferred and ∀Σi ∈ B, q(Σi) = 0.

Internal pre-order Let Σi ∈ B be a weighted base. An
internal weighting function for Σi assigns each formula φ
of Σi a polynomial on real numbers denoted by pΣi

(φ). An
internal pre-order denoted by ≤Σi

is defined such that:

∀φ, ψ ∈ Σi, φ ≤Σi
ψ iff pΣi

(φ) ≤ pΣi
(ψ)

Three cases arise. When a total pre-order is given for the
Σi, the pΣi

(φ) are encoded by polynomials as mentioned in
polynomial pre-orders section. When Σi is implicitly pre-
ordered the pΣi

(φ) can be computed as constant polynomi-
als. Finally, when no pre-order is defined all the formulas
are equally preferred and we have ∀φ ∈ Σi, pΣi

(φ) = 0.

Computation of the global weighted base
The merging of weighted bases is the construction of a base
containing the formulas of each base, the disjunctions of two
formulas coming from two bases, the disjunctions of three
formulas coming from three bases, and so on until disjunc-
tions of n formulas coming from n bases. For that, a global
weight has to be computed.

Definition 3 Let q(Σi) be the external weight for Σi. The
global external weight is such that:

q⊗ = Σn−1
j=0 q(Σj+1) x

j

In the syntactic approach for merging, global weighted base
is composed by formulas with a global weight. This weight
has to take into account the external pre-order. However, the
bases cannot be identified by their rank. It is necessary to de-
fine an absolute ranking function in order to define inversible
function.

Definition 4 Let B = {Σ1, . . . , Σn} be a set of weighted
bases. An absolute ranking function, denoted by r, is an
application from B to IN which assigns each base Σi an ab-
solute rank r(Σi) such that:

• if Σi <B Σj then r(Σi) < r(Σj)

• else if Σi =B Σj and i < j then r(Σi) < r(Σj)

The construction of the global weighted base requires the
definition of the disjunction of k formulas, denoted by Dk.
The disjunction is such that:

Dk = φj1 ∨ · · · ∨ φji
∨ · · · ∨ φjk

where each φji
comes from a different base Σi. Moreover,

we denote by s the mapping which assigns each formula
of Dk the weighted base from where it is coming from.
More formally, let Dk = φj1 ∨ · · · ∨ φji

∨ · · · ∨ φjk
, if

(φji, pΣl
(φji)) ∈ Σl, then s(φji) = Σl. The definition of

Dk and s allows us to define a global weight.

Definition 5 Let Dk = φj1 ∨ · · · ∨ φji
∨ · · · ∨ φjk

be a
disjunction of formulas coming from k weighted bases. The
global weight of Dk, denoted by pΣ1⊗···⊗Σn

(Dk) is such
that:

pΣ1⊗···⊗Σn
(Dk) =

k∑

i=1

ps(φji)(φji)×x
Pr(s(φji))−1

m=1 MAX
r−1(m)

with MAXr−1(m) = maxφ′∈r−1(m)(deg(pr−1(m)(φ
′)) +

1).

DEPARTMENT OF INFORMATICS 493

11TH NMR WORKSHOP

For the sake of simplicity, p⊗(Dk) denotes
pΣ1⊗···⊗Σn

(Dk). The global weighted base consists
in all the possible disjunctions of formulas from the bases
of B assigned a global weight. More formally:
Definition 6 Let B = {Σ1, . . . , Σn} be a set of weighted
bases. Let Dk be a disjunction of k formulas. The global
weighted base, denoted by Σg is such that:

Σg =
n⋃

k=1

{(Dk, p⊗(Dk))}

Syntactic merging and reversible framework
The result of the merging process in the syntactical ap-
proach is the set of weighted formulas of maximal global
weights according to the pre-order defined as follows. Let
(φ, p⊗(φ)), (ψ, p⊗(ψ)) ∈ Σg two weighted formulas of
the global stratified base. The global pre-order, denoted by
≤Σ1⊗···⊗Σn

is such that:

φ ≤Σ1⊗···⊗Σn
ψ iff p⊗(φ) ≤ p⊗(ψ)

The choice of a merging operator involves the use of a spe-
cific pre-order on polynomials. For example, the use of the
MAX operator involves the use of the ≤MAX pre-order.
The following example illustrates the syntactic merging.
Example 3 Let B = {Σ1, Σ2,Σ3} be a set of weighted bases
such that Σ1 = {(φ1, 1)}, Σ2 = {(φ2, x

2)} and Σ3 =
{(φ3, 1 + x)}. We give an arbitrary external pre-order pre-order
is such that Σ3 ≤B Σ1 =B Σ2, thus the external weights are
q(Σ1) = 2, q(Σ2) = 2 and q(Σ3) = 1. The computation of
external global weight gives

q⊗ = q(Σ1)× x
0 + q(Σ2)× x

1 + q(Σ3)× x
2

= q(Σ1) + q(Σ2)x + q(Σ3)x
2

= 2 + 2x + x2

The absolute ranking function is defined by r(Σ1) = 2, r(Σ2) =
3, r(Σ3) = 1 and r−1(1) = Σ3, r−1(2) =
Σ1, r

−1(3) = Σ2. We have MAXr−1(1) = MAXΣ3 =

maxφ′∈Σ3
deg(pΣ3(φ

′)) + 1 = 2,MAXr−1(2) = MAXΣ1 =
1 and MAXr−1(3) = MAXΣ2 = 3. Moreover s(φ1) = Σ1,
s(φ2) = Σ2 and s(φ3) = Σ3. According to the definition,
(φi, p⊗(φi)) ∈ Σg and the global internal weights p⊗(φi) are
computed as follows:

p⊗(φ1) =
Pk

i=1 ps(φ1)(φ1)× x
Pr(s(φ1))−1

m=1 MAX
r−1(m)

=
Pk

i=1 pΣ1 (φ1)× x
Pr(Σ1)−1

m=1 MAX
r−1(m)

= pΣ1(φ1)× x
MAX

r−1(1)

= pΣ1(φ1)× x
MAXΣ3

= pΣ1(φ1)× x
2 = x2

Using the same way we have p⊗(φ2) = x5 and p⊗(φ3) =
1 +x. For disjunctions of more than one formula, the computation
is recursive. As we can see:
p⊗(φ1 ∨ φ3) = pΣ1 (φ1)× x

MAXΣ3 + pΣ3(φ3)× x
0

= p⊗(φ1) + p⊗(φ3)
= x2 + x + 1

The computation of all the disjunctions Dk and all the global
weights gives the global weighted base:

Σg = {(φ1, x
2), (φ2, x

5), (φ3, 1 + x),
(φ1 ∨ φ2, x

5 + x2), (φ1 ∨ φ3, x
2 + x+ 1),

(φ2 ∨ φ3, x
5 + x+ 1),

(φ1 ∨ φ2 ∨ φ3, x
5 + x2 + x+ 1)}

A global pre-order characterizes the behavior of the merging op-
erator, for example, if the operator SUM is used, the result of the
merging is Σ1⊗Σ2⊗Σ3 = {(φ1∨φ2∨φ3, x

5 +x2 +x+1)}.

Reversibility
The reversibility allows us to retrieve the external and inter-
nal pre-orders from the global weight. Let q⊗ be the exter-
nal weight polynomial, the number of propositional bases
is n = deg(q⊗) + 1. Moreover, it is possible to retrieve
external weights:

q(Σi) =
q⊗ mod xi

xi−1

and therefore the absolute ranks. Polynomials also allow us
to retrieve internal weights assigned to the formulas. Since
the construction of global weight rights shift the internal
weights in order to produce disjunct supports, the inverse
operation consists in breaking the global weight into in-
ternal weights by left shifting a number of times equal to
the maximum degree of the support corresponding to the
greatest internal weight of the base. More formally, let
ψ = φj1 ∨ · · · ∨ φji

∨ · · · ∨ φjn
be a formula coming

from the disjunction of n formulas, that is a formula wich
weight is composed of a maximum number of monoms, we
have

pΣi
(φj) =

p⊗(ψ) mod xΣ
r(s(φj))

l=1 MAX
r−1(l)

x
Σ

r(s(φj))−1

k=1 MAX
r−1(k)

Example 4 Coming back to the previous example, (φ1 ∨ φ2 ∨
φ3, x

5 + x2 + x+ 1) is the formula coming from Σg with weight
composed of a maximum number of monoms. The polynomial
q⊗ = 2 + 2x + x2 allows us to know that three bases have
been merged because deg(q⊗) + 1 = 3. Moreover, q(Σ1) = 2,
q(Σ2) = 2, q(Σ3) = 1. The external weights enable to re-
cover the function r with r(Σ1) = 2, r(Σ2) = 3, r(Σ3) = 1
and therefore r−1(1) = Σ3, r

−1(2) = Σ1, r
−1(3) = Σ2.

Moreover s(φ1) = Σ1, s(φ2) = Σ2 and s(φ3) = Σ3 The inter-

nal weights are pΣ1(φ1) =
p⊗(ψ) mod x

Σ
r(s(φ1))
l=1

MAX
r−1(l)

x
Σ

r(s(φ1))−1
k=1

MAX
r−1(k)

=

x5+x2+x+1 mod x3

x2 = 1, pΣ2(φ2) = x5+x2+x+1 mod x6

x3 = x2,

and pΣ3 (φ3) = x5+x2+x+1 mod x2

x0 = 1 + x.

Equivalence between semantic and syntactic
approaches

We now show the equivalence between the semantic and
syntactic approaches in the reversible framework. For that,
like in the possibilistic framework or in the system Z (Ben-
ferhat et al. 2002a) (Pearl 2003) we use a function de-
noted by κΣi

which for each weighted base Σi attaches to
each interpretation ω the maximal weight of the formulas
of Σi falsified by ω. More formally, ∀ω ∈ W , κΣi

(ω) =
max({pΣi

(φ), (φ, pΣi
(φ)) ∈ Σi and ω 6|= φ}). This func-

tion allows us to define the syntactic counterpart of a propo-
sitional base.

Definition 7 Let E = {K1, . . . , Kn} be a set of propo-
sitional bases and let B = {Σ1, . . . , Σn} be a set of

494 Technical Report IfI-06-04

Belief Change and Updates

weighted bases, Σi is syntactic counterpart of Ki iff ∀ω ∈
W , κΣi

(ω) = pKi
(ω). Moreover, B is syntactic counter-

part of E if and only if each weighted base of Σi de B is a
syntactic counterpart of Ki ∈ E and q(Ki) = q(Σi) (the
external pre-orders are the same).

Equivalence between the two approaches is provided by the
construction of the syntactic counterpart of a set of proposi-
tional bases. For that, we construct the syntactic counterpart
of a propositional base as follows. For each interpretation
ω ranked according to the internal pre-orders. We first gen-
erate all the formulas falsified by ω for Ki and attach to
them the internal weight pKi

(ω). We then remove the for-
mulas falsified by an interpretation already processed. We
finally remove subsummed formulas 4 and discard the for-
mulas with null weight. From the construction of the syn-

Algorithm 1 syntactic counterpart
Σ← ∅, M ← ∅, S ← ∅, T ← ∅
for each ω ∈ W do
S ← ∅, T ← ∅
Σ′ ← {(Dj , pKi(ω)), 1 ≤ j ≤ card(ω), ω 6|= Dj)}
M ← M ∪ Σ′

S ← {(Dj , pKi(ω)) ∈ Σ′, ∃(Dj , pKi(ω
′)) ∈

M, with pKi(ω
′) < pKi(ω)}

Σ′ ← Σ′ − S
T ← {(Dk, pKi(ω)) ∈ Σ′ | ∃(Dj , pKi(ω)) ∈ Σ′, Dk |=
Dj}
Σ′ ← Σ′ − T
Σ← Σ ∪ Σ′

end for
Σ ← {(φ, pΣi(φ)) ∈ Σi | pΣi(φ) 6= 0}
return Σ

tactic counterpart of a set of propositional bases, we show
the equivalence between semantic and syntactic approaches
for merging within in the reversible framework.

Proposition 1 Let E = {K1, . . . Kn} be a set of propo-
sitional bases and let B = {Σ1, . . . Σn} be its syntactic
counterpart.

∀ω ∈ W , κΣ1⊗···⊗Σn
(ω) = pK1⊕···⊕Kn

(ω)

The proof is based on the construction of the global pre-
order according to the semantic approach and the global
weighted base according to the syntactic approach. We
shows that the global weights are the same in the two ap-
proaches.

Generalizations
The approach for merging propositional belief bases stem-
ming from Hamming distance (S. & R. 2005) can be easily
captured within our reversible framework. In this approach
no pre-order between sources is considered. In contrast lo-
cal pre-orders are implicit pre-orders induced by the Ham-
ming distance between interpretations. A distance between
an interpretation ω and a propositional belief base Ki is de-
fined by d(ω, Ki) = minω′∈Mod(Ki)(d(ω, ω

′)). In our

4(φ, pΣi (φ) is subsummed by (ψ, pΣi(ψ) iff ψ |= φ and
pΣi(ψ)) ≤ pΣi(φ)

framework, for each belief base Ki an internal weight is a
constant polynomial such that pKi

(ω) = d(ω, Ki). Per-
forming the merging of n propositional belief bases amounts
to compute a global weight as presented, the distance based
fusion operators are represented within the reversible frame-
work by pre-orders on polynomials. The pre-orders ≤MAX ,
≤SUM , ≤WS and ≤LMAX are used to compare the polyno-
mials corresponding to the global weights for the fusion op-
erators MAX , SUM , WS et LMAX given in (Konieczny
& Pérez 1998). Like in (Benferhat et al. 2002a), the
proposed framework gives a syntactic counterpart to the
distance based fusion operations and moreover brings re-
versibility to both semantic and syntactic approaches. Be-
sides the proposed reversible framework allows us to gen-
eralize the revision of an epistemic state by another epis-
temic state to the fusion of several epistemic states. Let
Ψ1, . . . , Ψn, be n epistemic states. each epistemic state
Ψi can be represented by a total pre-order on interpretations
≤Ψi

or by a weighted belief base Σi. In case of revision
n = 2. Revision can be easily captured within the proposed
framework. According to a semantical point of view, the two
epistemic states Ψ1 and Ψ2 are respectively represented by
the internal pre-orders ≤Ψ1 and ≤Ψ2 . For the revision of Ψ1

by Ψ2, the external pre-order is Ψ1 <E Ψ2. For the revi-
sion with memory proposed in (Papini 2001), the global pre-
order is obtained from the lexicographic pre-order on poly-
nomials ≤LEX . Under these hypothesis, we found again the
results presented in (Benferhat et al. 2000). According to
the syntactic approach, the two epistemic states Ψ1 and Ψ2

are respectively represented by the weighted bases Σ1 and
Σ2. The external pre-order is the same as for the semantic
approach and is denoted by Ψ1 <B Ψ2. After the construc-
tion of the global weight, the global pre-order on formulas
is obtained by means of the lexicographic pre-order on poly-
nomials. For n > 2, the reversible framework makes it pos-
sible to represent the fusion of epistemic states.

Conclusion
In this paper we presented a very general reversible frame-
work for merging propositional belief bases. It makes it pos-
sible to represent within the same framework the case where
the sources are ordered or not as well as the case where the
items of information are explicitely or implicitely ordered
or not ordered. We proposed both semantic and syntactic
approaches for fusion within the reversible framework and
we showed the equivalence between the semantic and syn-
tactic approaches. We sowed that the proposed framework
allows us to represent with a reversible framework the ap-
proach of merging propositional belief bases with implicit
priorities stemming from Hamming distance and to provide
a syntactic counterpart. We also showed that this framework
allows for generalizing the revision of an epistemic state by
another epistemic state to fusion of epistemic states in the
case where the epistemic states are represented by total pre-
orders.

In the context of submarine archeology, the construction
of models of archeological objects requires photogrammet-
ric measures and measures in laboratory. These measures
are represented in propositional calculus and the proposed

DEPARTMENT OF INFORMATICS 495

11TH NMR WORKSHOP

reversible framework is suitable for the fusion of such pieces
of information. However, we also have to deal with struc-
tured , semi-structured or hierarchical pieces of information.
The fusion of such items of information is still problematical
and will be the focus of a future work.

Acknowledgements
This work was supported by the Region PACA and COMEX
company. We also thank the anonymous rewievers for their
helpful remarks.

References
Baral, C.; Kraus, S.; Minker, J.; and Subrahmanian, V.
1992. Combining knowledge bases consisting in first or-
der theories. Computational Intelligence 8(1):45–71.

Benferhat, S.; Konieczny, S.; Papini, O.; and Perez, R. P.
2000. Iterated revision by epistemic states: axioms, se-
mantics and syntax. In Proceedings of the 14th European
conference on Artificial Intelligence (ECAI 2000), 13–17.

Benferhat, S.; Dubois, D.; Kaci, S.; and Prade, H. 2002a.
Possibilistic Merging and Distance-based Fusion of Propo-
sitional Information. Annals of Mathematics and Artificial
Intelligence 34((1-3)):217–252.

Benferhat, S.; Dubois, D.; Lagrue, S.; and Papini, O.
2002b. Making revision reversible: an approach based
on polynomials. Fundamenta Informaticae 53((3-4)):251–
288.

Cholvy, L. 1998. Reasoning about merging information.
Handbook of Defeasible Reasoning and Uncertainly Man-
agement Systems 3:233–263.

Dubois, D.; Lang, J.; and Prade, H. 1994. Possibilistic
Logic. in Handbook of Logic in Artificial Intelligence and
Logic Programming 3:439–513.

Konieczny, S., and Pérez, R. P. 1998. On the logic of merg-
ing. In Proceedings of the Sixth International Conference
on Principles of Knowledge Representation and Reasoning
(KR’98), Trento, 488–498.

Konieczny, S.; Lang, J.; and Marquis, P. 2002. Distance-
based merging: A general framework and some complexity
results. In Proceedings of the Eighth International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR’02), 97–108.

Laffage, C., and Lang, J. 2000. Logical representation
of preferences for group decision making. In 7th Interna-
tional Conference on Krinciples of Knowledge Representa-
tion and Reasoning, 457–468.

Lin, J. 1996. Integration of weighted knowledge bases.
Artificial Intelligence 83:363–378.

Papini, O. 2001. Iterated revision operations stemming
from the history of an agent’s observations (extended ver-
sion). In Williams, M. A., and Rott, H., eds., Frontiers of
Belief revision, 279–301. Kluwer Academic Press.

Pearl, J. 2003. System Z: a natural ordering of default
with tractable applications to default reasoning. In Proc.
of the 3rd Conf. on Theoritical Aspects of Reasoning about

Knowledge (TARK’90), volume 2, 121–135. Morgan Kauf-
mann.
Revesz, P. Z. 1993. On the semantics of theory
change: arbitration between old and new information. 12th

ACM SIGACT-SGMIT-SIGART symposium on Principes of
Databases 71–92.
Revesz, P. Z. 1997. On the semantics of arbitration. Jour-
nal of Algebra and Computation 7(2):133–160.
S., K., and R., P. P. 2005. Propositionnal belief base
merging or how to merge belief/goals coming from several
sources and some links with social choice theory. Euro-
pean Journal of Operational Research 160(3):785–802.

496 Technical Report IfI-06-04

Belief Change and Updates

DEPARTMENT OF INFORMATICS 497

11TH NMR WORKSHOP

6.6 Mutual Enrichment for Agents Through Nested Belief Change

Mutual Enrichment for Agents Through Nested Belief Change
A Semantic Approach

Laurent Perrussel and Jean-Marc Thévenin
IRIT–Université Toulouse 1, Manufacture des Tabacs

21 allée de Brienne, F-31042
Toulouse Cedex - France

laurent.perrussel@irit.fr, thevenin@univ-tlse1.fr

Thomas Meyer
National ICT Australia and

Univerity of New South Wales
Sydney, Australia

thomas.meyer@nicta.com.au

Abstract

This paper focuses on the dynamics of nested beliefs in the
context of agent interactions. Nested beliefs represent what
agents believe about the beliefs of other agents. We consider
the tell KQML performative which allows agents to send their
own beliefs to others. Whenever agents accept a new belief,
or refuse to change their own beliefs after receiving a mes-
sage, both receiver and sender enrich their nested beliefs by
refining their beliefs about (i) the other agent’s beliefs and
(ii) the preferences of the other agent. The main objective
of nested beliefs is to improve cooperation between agents.
We propose a logical formalisation of the acquisition process
of nested beliefs and preferences. This acquisition process is
the first step toward the elaboration of sophisticated interac-
tion protocols.

Introduction
In a multi-agent context nested beliefs represent what agents
believe about the beliefs of other agents. Several papers have
shown how nested beliefs improve interaction and coopera-
tion among agents (Fagin et al. 1995; Grasso, Cawsey, &
Jones 2000; Cohen & Levesque 1990; Kinny et al. 1992;
Sperber & Wilson 1986). Agents can
• initiate messages to solve discrepancies such as in argu-

mentation dialogues (Grasso, Cawsey, & Jones 2000): the
aim is that two agents try to converge toward a mutual be-
lief. If agents handle beliefs and nested beliefs, they can
evaluate how close they are from a common agreement;

• build teams and joint goals (Cohen & Levesque 1990;
Kinny et al. 1992): nested beliefs are the first step that
enable to establish mutual belief which next help to en-
sure that all members of a team share the same goal;

• evaluate the relevance of the messages they intend to send
(Sperber & Wilson 1986): nested beliefs help agents in-
volved in a persuasion dialogue to define in a more effi-
cient way the relevant arguments.

There are very few papers dealing with the problem of
how agents acquire nested beliefs (Herzig & Longin 2000;
Dragoni, Giorgini, & Serafini 2002). None of them describe
this process in the context of cooperative dialogues. In this
paper we propose an acquisition process for nested beliefs
which describes how agents construct nested beliefs as they
receive information. The acquisition of nested beliefs is the

foundation on which we can build sophisticated dialogues or
cooperation protocols.

We consider multi-agent dialogues based on the tell
KQML performative (Finin, Labrou, & Mayfield 1997)
which enables an agent to send a message to inform a re-
ceiver agent that a statement holds in its own belief base. To
increase the benefit of the cooperation we suppose that the
sender provides the source of this statement (Perrussel &
Thévenin 2004). The receiver may accept or ignore the in-
coming statement leading to non-prioritised revision of basic
beliefs (Hansson 1999). Indeed to perform, revision agents
need to be able to define preferences over their basic beliefs
and thus the incoming statement may be considered as less
preferred than conflicting basic beliefs. A common way to
define preferences over basic beliefs is to maintain prefer-
ences over agents at the origin of basic beliefs; these pref-
erences represent the degree of trust that an agent has in the
other agents (Ramchurn, Hunyh, & Jennings 2004).

Based on this, we can define the acquisition of nested be-
liefs for the receiver of a tell performative. Since we con-
sider a cooperative context, agents are supposed to be hon-
est and thus regardless of the acceptance of the tell perfor-
mative, the receiver is informed that the sender believes the
incoming statement. After a tell performative the receiver
performs non-prioritised revision on its nested beliefs about
the sender. Since the sender provides the source of its be-
liefs, the receiver can deduce the preferences of the sender
over the source of its beliefs, i.e. the receiver can deduce
nested preferences concerning the sender.

Considering that the receiver may ignore the incoming
statements, the sender can also enrich its nested beliefs in
several ways. For this, we introduce two performatives
accept and deny which enable the receiver agent to inform
the sender whether or not it actually changed its own beliefs
after a tell. Using these performatives the sender can enrich
its nested beliefs in several ways. After an accept the sender
believes that the receiver believes in the content of the tell.
If, during the revision process, an inconsistency occurs in
the nested beliefs of the receiver, the sender can refine its
knowledge about the preferences of the receiver. This is
also the case after a deny statement.

Consider, for example, agent Peter receiving messages
from agent Paul and the police department. Suppose Peter

498 Technical Report IfI-06-04

Belief Change and Updates

considers Paul to be less reliable than the police department.
At time 0, Paul tells Peter that John is a murderer (origin
Paul). At time 1 Peter accepts the message. At time 2, Paul
tells Peter that if John is a murderer, John will go to jail
(origin Paul). Peter accepts the message and consequently
Peter believes that John will go to jail at time 3. In addition,
Peter believes that Paul believes both statements. After the
second accept, Paul also believes that Peter believes both
statements. At time 4, the police department tells Peter
that John is not a murderer (origin Police). Because of
his preferences, Peter accepts message at time 5 and now
believes John is not a murderer. In addition, Peter believes
that the police department believes John is not a murderer.
After the accept message, the police believes that Peter
believes John is not a murderer. Because he believes that
Paul still believes that John is a murderer, at time 6, Peter
tells Paul that John is not a murderer and the origin of
this information is the police. Whether or not Paul accepts
Peter’s message, Paul has to change his nested beliefs about
Peter. Paul now believes that Peter believes John is not a
murderer and that Peter considers the police to be more
reliable than himself.

As we can see, messages received by an agent trigger
changes in its nested beliefs. A new nested belief may entail
inconsistencies with the already adopted nested beliefs. So
agents have to reconsider not only their nested beliefs, but
also their nested preferences.

The paper is structured as follows. First we present a log-
ical system for representing nested beliefs, preferences and
performatives tell, accept, and deny. This is followed by a
description of the organisation of a cooperative tell/accept-
deny dialogue. After that, we describe the mutual enrich-
ment; first for the receiver and then for the sender. We con-
clude with a discussion on related work and outlining some
future work.

The Logical Framework
To represent an agent’s beliefs we use signed statements.
A signed statement is a pair 〈statement, origin of the sta-
tement〉 (usually the sender of the statement). Let L0 be a
propositional language and A a set of agent identities. We
define a signed statement as a pair 〈φ0, a〉 where φ0 is a L0-
formula and a ∈ A is the origin of φ0. Let S be the set of
all sets of signed statements: S = 2L0×A. A set S ∈ S
of signed statements is consistent iff the conjunction of its
propositional formulae is consistent:

∧
〈φ0,b〉∈S φ0 6|=L0 ⊥.

We assume that inference for agents is a one step process.

Belief state
The belief state of an agent is a pair 〈set of signed state-
ments, set of sets of signed statements〉. The first set de-
scribes the basic beliefs of the agent: what it currently be-
lieves. The second set describes the nested beliefs of the
agent: what it believes about the basic beliefs of other
agents. We focus on nested beliefs in a dialogue context:
what a receiver agent believes about the sender of a state-
ment. In this context we handle nested beliefs at only one
level. Nested beliefs are organised as one set for each agent.

Basic and nested beliefs change with respect to the flow of
messages and thus are indexed by integers which represent
state labels.

Definition 1 (Belief state) A belief state BSn
a of agent a

is a pair 〈CBn
a , NB

n
a 〉 s.t. (i) CBn

a ∈ S represents
the basic beliefs of agent a at time n and (ii) ∀CBn

a,b ∈
NBn

a , CB
n
a,b ∈ S represents the nested beliefs of agent a

about agent b at n. We require that CBn
a = CBn

a,a and that
every CBn

a,b ∈ NBn
a be consistent. Let B be the set of all

possible belief states.

Observe that the requirement thatCBn
a = CBn

a,a is a simple
introspection property. Agents revise their basic beliefs and
nested beliefs each time they received a tell performative.
Let S be a consistent set of signed beliefs and ∗ be a revision
operator (Gärdenfors 1988); S∗〈φ0,a〉 denotes the revision of
S by 〈φ0, a〉.

Preferences of agents
Preferences may be defined taking various matters into ac-
count (Perrussel & Thévenin 2004; Perrussel 2003; del
Cerro et al. 1998). We simply assume that agents have pref-
erences over the set of agents A which describe the reliabil-
ity of the sources of information (Dragoni & Giorgini 1999;
Perrussel & Thévenin 2004), i.e. the level of trust an agent
has about the other agents with which it interacts. We sup-
pose that agents are equally reliable when they can’t be dis-
tinguished, which entails a total preorder. Let �n

a be a total
preorder over A representing agent a’s preferences at time
n. b �n

a c stands for agent c is at least as preferred as b for
agent a at time n. b ≺n

a c stands for agent c is strictly pre-
ferred to b: b �n

a c and c 6�n
a b at n. b =n

a c stands for agents
b and c are equally preferred: b �n

a c and c �n
a b.

As is the case for beliefs, agents can handle nested pref-
erences. Nested preferences represent what agents believe
about the preferences of other agents. c �n

a,b dmeans: agent
a believes that for agent b agent d is at least as preferred as
c at n. The meaning of ≺n

a,b, respectively =n
a,b, is similar to

the meaning of ≺n
a , respectively =n

a .

Definition 2 (Preference state) A preference state PSn
a of

agent a is a pair 〈�n
a , NP

n
a 〉 s.t. (i) �n

a is a total preorder
representing basic preferences of agent a at time n and (ii)
every �n

a,b∈ NPa is a total preorder representing agent
b’s preferences according to a at time n. We require that
�n

a=�n
a,a. P is the set of all possible preference states.

The sequence of belief and preference states of each agent is
represented by a function D which associates integers rep-
resenting state labels, and agent identities with the agent
states:

D : N → A→ B ×P
Let D(n)(a) = 〈BSn

a , PS
n
a 〉 = 〈〈CBn

a , NB
n
a 〉, 〈�n

a
, NPn

a 〉〉. From the pair 〈BSn
a , PS

n
a 〉 we extract a pair

representing the basic belief and preferences of a: let
DB be a function based on D s.t. for all a and n,
DB(a)(n) = 〈CBn

a ,�n
a〉. Nested beliefs and preferences

entail the definition of other basic models. Let NBn
a , NPn

a
be the nested beliefs and preferences based on D(n)(a).

DEPARTMENT OF INFORMATICS 499

11TH NMR WORKSHOP

Let DB
N(a) be a function issued from D s.t. for all b,

DB
N(a)(n)(b) = 〈CBn

a,b,�n
a,b〉. So DB

N(a)(n) represents
all beliefs and preferences appearing as nested beliefs and
preferences in D(n)(a).

Let S be any set of signed statements (basic or nested
beliefs) and � the corresponding preference relation (basic
or nested). The logical closure of S w.r.t. � is obtained
as follows. By min(S,�) we denote the set of the least
preferred agent identities w.r.t. � among agent identities
signing beliefs of S:

min(S,�) = {a|〈φ0, a〉 ∈ S and ∀〈ψ0, b〉 ∈ S, a � b}

We suppose that statements entailed by S are signed with
the least preferred agent identities of the minimal subsets of
S entailing them:

Cn(S,�) ={〈ψ0, a〉|∃S′ ⊆ S s.t.
∧

〈φ0,b〉∈S′

φ0 |=L0 ψ0

and @S′′ ⊂ S′ s.t.
∧

〈φ0,b〉∈S′′

φ0 |=L0 ψ0

and a ∈ min(S′,�)}
∪ {〈ψ0, a〉| |=L0 ψ0 and a ∈ A}

Example 1 We continue with our running example. At
time 3, agent peter has the following belief state
〈CB3

peter, NB
3
peter〉:

CB3
peter = {〈murd, paul〉, 〈murd→ jail, paul〉}

CB3
peter,paul = {〈murd, paul〉, 〈murd→ jail, paul〉}

CB3
peter,police = ∅

Considering that peter does not know paul and police’s
preferences at the beginning, the preference state 〈�3

peter

, NP 3
peter〉 of peter is:

paul ≺3
peter peter ≺3

peter police

paul =3
peter,paul peter =3

peter,paul police

paul =3
peter,police peter =3

peter,police police

The first line represents peter’s basic preferences and the
last two lines the nested preferences of peter. According to
these belief and preference states we get that:

〈jail, paul〉 ∈ Cn(CB3
peter,�3

peter)

Notice that the belief and preference states correspond to the
following value of function D:

D(3)(peter) = 〈〈CB3
peter, NB

3
peter〉, 〈�3

peter, NP
3
peter〉〉

Action performatives
Now, we present the performatives which lead to the dynam-
ics of belief and preference states change. As mentioned
in the introduction, an agent may issue a tell performative
to inform a receiver agent about its basic beliefs. The re-
ceiver uses a prioritised belief revision operator ∗ to change
its nested beliefs about the sender. As an acknowledgment

of the tell performative, the receiver informs the sender with
an accept (respectively deny) performative if the incoming
statement has been incorporated in its basic beliefs. The
sender in turn applies prioritised revision to its nested be-
liefs about the receiver.

We represent these interactions between agents using the
following three performatives:

• Tell(s, r, φ0, a) stands for: agent s informs r that it be-
lieves φ0 signed by a according to the standard KQML se-
mantics (Finin, Labrou, & Mayfield 1997). When receiv-
ing a Tell performative, agent r revises its belief state by
〈φ0, a〉 in a non-prioritised way (Hansson 1999) accord-
ing to its preferences.

• Accept(r, s, p) stands for: agent r informs s that it ac-
cepts the performative p. If p = Tell(s, r, φ0, a) then
Accept(r, s, p) means that agent r has revised its basic
beliefs by 〈φ0, a〉 and thus believes φ0.

• Deny(r, s, p) stands for: agent r informs s that it re-
fuses to process the performative p. If performative p =
Tell(s, r, φ0, a) it means that agent r has not revised its
basic beliefs by 〈φ0, a〉.

Definition 3 (Performative) The set PERF of all perfor-
mative actions is defined as follows. If φ0 ∈ L0 s.t.
φ0 6|=L0 ⊥, s, r, a ∈ A, then Tell(s, r, φ0, a) ∈ PERF . If
p ∈ PERF then Accept(r, s, p), Deny(r, s, p) ∈ PERF .

The dynamics of the system is given by performatives. At
each step one agent receives a performative and may change
its state accordingly, i.e. performatives are viewed as transi-
tion functions. The sequence of states will be defined with
respect to a sequence of performatives. A sequence of ac-
tions σ is a function which associates integers with perfor-
matives:

σ : N → PERF

Example 2 We continue our running example. The perfor-
matives that occur at 0, 1, 2 and 3 define the following se-
quence:

σ(0) = Tell(paul, peter,murd)
σ(1) = Accept(peter, paul, Tell(paul, peter,murd))
σ(2) = Tell(paul, peter,murd→ jail)
σ(3) = Accept(peter, paul, Tell(paul, peter,murd→ jail))

Dynamics of a cooperative dialogue
In this section, we describe how basic beliefs and prefer-
ences and performatives are linked when we consider a co-
operative dialog. In the following, we formally describe
what we mean by a cooperative dialogue. First, we ex-
press the honesty postulate (Hon) as follows. This postu-
late, which is recommended in a cooperative context, states
that if a Tell performative occurs, then at the same time
the sender believes the corresponding signed statement. Let
CBn

s be the basic belief of agent s at n w.r.t. D.

(Hon) For any n if σ(n) = Tell(s, r, φ0, a) then 〈φ0, a〉 ∈
Cn(CBn

s ,�n
s).

500 Technical Report IfI-06-04

Belief Change and Updates

This actually enforces the standard KQML semantics of
Tell (Finin, Labrou, & Mayfield 1997).

In the following we constrain the basic preferences of all
agents so that these preferences should not change. We jus-
tify this constraint with one of the aims of this paper: how
agents can deduce nested preferences. This aim becomes
useless if first agents are not honest and second agents al-
ways change their basic preferences.
(FPref) For any n and any a ∈ A �n

a=�n+1
a .

This bring us to the receiver’s acknowledgement in a cooper-
ative context. Whenever agent r receives Tell(s, r, φ0, a),
r determines if its beliefs are consistent with φ0, and if not,
which beliefs have to be dropped by taking into account its
preference relation. Due to the non-prioritised aspect the re-
ceiver may deny or accept the Tell performative. If agent
r believes ¬φ0 and the signatures of ¬φ0 are at least as pre-
ferred as a (the signature of φ0), agent r denies the Tell
performative. It means that basic preferences are used to im-
plement non-prioritised revision on basic beliefs. In the next
sections we show that nested preferences change according
to the prioritised revision applied to nested beliefs.

(DT) σ(n + 1) = Deny(r, s, Tell(s, r, φ0, a)) iff σ(n) =
Tell(s, r, φ0, a) &∃〈¬φ0, b〉 ∈ Cn(CBn

r ,�r) s.t. a �r

b.

Otherwise there is no conflict or a is strictly more preferred
than all the signatures of ¬φ0, and r thus accepts the Tell
performative.
(AT) σ(n+1) = Accept(r, s, Tell(s, r, φ0, a)) iff σ(n) =
Tell(s, r, φ0, a) & ∀〈¬φ0, b〉 ∈ Cn(CBn

r ,�r), b ≺r a

In other words, in a cooperative context, if agent r has no
reason to refuse an incoming statement, then it should accept
it. At the opposite, if it refuses an incoming statement then it
should have a rationale which justifies this refusal. It means
that the nested beliefs and preferences of agents which are
not involved in a dialogue do not change. Agents are honest
and thus they change their beliefs only if they received a tell
performative. The conditions (KeNB1-1) and (KeNB1-2)
enforce this constraint.
(KeNB1-1) if σ(n) = Tell(s, r, φ0, a) then (∀b ∈ A −
{r})D(n+ 1)(b) = D(n)(b).

(KeNB1-2) if σ(n) = Accept(r, s, p) or Deny(r, s, p) then
(∀b ∈ A− {s})D(n+ 1)(b) = D(n)(b).

Dynamics of the Receiver
In this section, we describe the dynamics of the nested be-
liefs and nested preferences of agent r for the Tell perfor-
mative. First, the nested beliefs and preferences about all
agents except s are unchanged. Condition (KeNB2) propa-
gates them to the next state and ensures that no new nested
beliefs or preferences appear.
(KeNB2) If σ(n) = Tell(s, r, φ0, a) then

(∀b ∈ A− s})(D(n+ 1))B
N(r)(b) = (D(n))B

N(r)(b).

Next, agent r changes its beliefs about s, whether or not it
ignores the input statement. Because agents are supposed to
be honest, agent r performs a standard prioritised revision

of its nested beliefs about s by signed statement 〈φ0, a〉. For
the next condition, let ∗ be a revision function andD be a dy-
namic model and D(n)B

N(r)(s) = 〈CBn
r,s,�n

r,s〉. Condition
(AdNB1) states that after the Tell performative r believes
that s believes φ0 and thus does not believe ¬φ0 anymore
(because belief states are consistent).
(AdNB1) If σ(n) = Tell(s, r, φ0, a) then
CBn+1

r,s = (CBn
r,s)

∗
〈φ0,a〉.

As mentioned before, we do not insist on a specific method
for revising nested beliefs.

If agent r currently believes that s believes ¬φ0 signed by
b then it refines the s preferences as follows. According to
the honesty principle and condition (AT), a is better than b.
In addition, we require that the nested preferences of agent
s about all agents except a are unchanged. And lastly, if
r does not believe that s believes ¬φ0 then it cannot draw
conclusion about agent s preferences. Indeed, agent r can
refine preferences only if it faces inconsistencies during the
revision process. So, we require that if r does not believe
that s believes ¬φ0 then all the nested preferences about s
are unchanged.

In order to formalise these requirements, we provide an
explicit procedure that refines preferences. The receiver re-
fines its nested preferences because it can remove some pref-
erences; i.e. it helps agent r to go toward an order that is
more precise.
(Ad-KeNP1) Let D(n)B

N(r)(s) = 〈CBn
r,s, �n

r,s〉. Let
σ(n) = Tell(s, r, φ0, a). All nested preferences at n
are propagated at time n + 1 as follows: �n+1

r,s = (�n
r,s

−{a �n
r,s b|〈¬φ0, b〉 ∈ CBn

r,s}) ∪ {b �n
r,s a|〈¬φ0, b〉 ∈

CBn
r,s}.

It is easily shown that this condition preserves the ordering
for nested preference as a total preorder.

Dynamics of the Sender
In this section we describe the dynamics of the sender’s
nested beliefs and preferences with respect to the performa-
tives Accept and Deny. Firstly, the nested beliefs of agents
not involved in the Accept or Deny performative do not
change.
(KeNB3) If σ(n) = Accept(r, s, p) or Deny(r, s, p) and
σ(n− 1) = Tell(s, r, φ0, a) then
(∀b ∈ A− {a})(D(n+ 1))B

N(s)(b) = (D(n))B
N(s)(b).

Next, we focus on the nested beliefs about r. According
to condition (AT), if r accepts the message of s, agent s
believes that r believes φ0 and thus does not believe ¬φ0,
which results in s revising its nested beliefs about r with
〈φ0, a〉 (a prioritised revision).
(AdNB3-1) If σ(n) = Accept(r, s, Tell(s, r, φ0, a)) then
CBn+1

s,r = (CBn
s,r)

∗
〈φ0,a〉.

According to condition (DT), if r refuses the Tell perfor-
mative then s concludes that r believes ¬φ0 and r believes
that the signature of ¬φ0 has to be more trusted than a. So
s revises its nested beliefs about r with the signed statement
〈¬φ0, b〉 (again, a prioritised revision) so that signature b of

DEPARTMENT OF INFORMATICS 501

11TH NMR WORKSHOP

¬φ0 is preferred to a w.r.t. the nested preferences of s about
r:
(AdNB3-2) If σ(n) = Deny(r, s, Tell(s, r, φ0, a)) then
CBn+1

s,r = (CBn
s,r)

∗
〈¬φ0,b〉 s.t. a �s,r b.

This bring us to the sender’s nested preferences. Firstly,
the sender’s nested preferences about agents other than r
do not change. This is, in fact, a consequence of condition
(KeNB3). Next, agent s draws conclusions about a depend-
ing on whether r accepts or refuses a Tell performative.
Whenever agent r accepts, agent s refines its nested pref-
erences only if s currently believes that r believes ¬φ0. In
that context s refines agent r’s preferences. We require that
a be strictly more preferred than the signatures of ¬φ0 if r
accepts the performative Tell(s, r, φ0, a). We also require
that if r refuses the message, the nested preferences of s
about the signatures of ¬φ0 change. According to condition
(DT) they have to be as preferred as a. Finally, we need a
requirement, similar to those for the receiver’s nested prefer-
ences, for those nested preferences, about r, of s that do not
change. In order to formalise these requirements, we give an
explicit procedure to change the nested preferences, as in the
case for the receiver’s nested preferences. The Accept per-
formative helps the sender to refine its nested preferences
since it allows to remove some preferences; i.e. it helps
agent s to go toward a stricter order. Removing preferences
means that agent s already believes that r believes ¬φ0 and
thus a is strictly preferred to all the signatures of ¬φ0.
(Ad-KeNP2) Let D(n)B

N(s)(r) = 〈CBn
s,r, �n

s,r〉. Let
σ(n) = Tell(s, r, φ0, a) and σ(n + 1) = Accept(r, s,
Tell(s, r, φ0, a)). All nested preferences at n are prop-
agated at time n + 1 as follows: �n+1

s,r =�n
s,r −{a �n

s,r

b|〈¬φ0, b〉 ∈ CBn
s,r} ∪ {b �n

s,r a|〈¬φ0, b〉 ∈ CBn
s,r}.

If r does not accept the incoming message, agent s also
changes its nested beliefs about r. The Deny performative
does not help agent s to refine its nested preferences since
we only add nested preferences.
(AdNP3) Let D(n)B

N(s)(r) = 〈CBn
s,r, �n

s,r〉. Let σ(n) =
Tell(s, r, φ0, a) and σ(n+ 1) =
Deny(r, s, Tell(s, r, φ0, a)). All nested preferences at
n are propagated at time n + 1 as follows: �n+1

s,r =�n
s,r

∪ {a �n
s,r b|〈¬φ0, b〉 ∈ CBn

s,r}.
Again, it is easily shown that the conditions preserves the
ordering for nested preference as total preorder.
Example 3 We now conclude our example. Let us sup-
pose that each agent shares the same kind of revision func-
tion ∗ defined as safe base revision actions (Alchourrón &
Makinson 1985; Nebel 1989; 1992). At time 4, the police
tells peter that John is not a murderer, and peter accepts
it. Formally, p4 = Tell(police, peter,¬murd, police) and
p5 = Accept(peter, police, p4). According to conditions
(AdNB1) and (AdNB3-1) we get the new nested beliefs:

〈¬murd, police〉 ∈ CB4
peter,police

〈¬murd, police〉 ∈ CB5
police,police

In other words the police believes that peter believes that
John is not a murderer. At time 1 peter accepted paul’s

message that John is a murderer (murd) which gives the
following nested belief and preference (because of condition
(KeNB1)):

〈murd, paul〉 ∈ CB1
paul,peter

paul =peter police ∈ �1
paul,peter

At time 6, this nested belief is still true according to the
accepted behaviour of nested belief given by conditions
(KeNB1-1), (KeNB1-2), (AdNB3-1) and (Ad-KeNP2). At
time 6 peter tells paul that John is not a murderer: p6 =
Tell(peter, paul,¬murd, police). According to condi-
tions (AdNB1) and (Ad-KeNP1) we obtain the following new
nested beliefs and preferences for paul:

〈¬murd, police〉 ∈ CB6
paul,peter

paul <peter police ∈ �6
paul,peter

So, at stage 6 paul has refined its nested preferences about
peter. At the beginning of the dialogue paul does not know
whether peter prefers paul or the police. At stage 6, paul
believes that peter prefers the police to himself.

Conclusion
We have presented a formalisation for handling the dynam-
ics of nested beliefs and preferences in the context of agent
interactions where agents are cooperative. We have shown
how agents acquire nested beliefs and preferences. For this
we have presented a logical framework to describe nested
beliefs, preferences, and performatives. This framework
is useful for specifying properly the expected behaviour of
agents handling the Tell, Accept and Deny performatives.

Related work includes that of (Dragoni, Giorgini, & Ser-
afini 2002), which proposes a logic-based definition for
nested belief change and mental state construction related to
agent-communication languages. Our proposal differs from
theirs in that it deals with preferences of agents. Our work
is also closely related to (Roorda, van der Hoek, & Meyer
2002; Perrussel & Thévenin 2004) where it is shown how to
embed basic belief change in a logical system. We extend
this by considering nested beliefs and preferences.

We have started to build a logical language based on
dynamic epistemic logic (Meyer & van der Hoek 1995;
van der Hoek & Wooldridge 2003) in order to reason about
dialogues. Our aim is to define a semantics based on the se-
mantics proposed in this paper. Moreover, this will give us
a proof theory which will help us to reason about dialogue
specifications. In a more long term, we plan to revisit per-
suasion protocols (Parsons, Wooldridge, & Amgoud 2002)
so that agents, with the help of nested beliefs and prefer-
ences, produce smarter arguments in order to be more con-
vincing.

References
Alchourrón, C., and Makinson, D. 1985. The logic of
theory change: safe contraction. Studia Logica 44:405–
422.
Cohen, P., and Levesque, H. 1990. Rational Interaction as
the Basis for Communication. In Cohen, P.; Morgan, J.;

502 Technical Report IfI-06-04

Belief Change and Updates

and Pollack, M., eds., Intentions in Communication, 221–
256. MIT Press.
del Cerro, L.; Herzig, A.; Longin, D.; and Rifi, O.
1998. Belief reconstruction in cooperative dialogues. In
Giunchiglia, F., ed., Proc. of AIMSA’98, volume 1480 of
LNCS, 254–266. Springer Verlag.
Dragoni, A., and Giorgini, P. 1999. Revising beliefs
received from multiple sources. In Williams, M., and
Rott, H., eds., Frontiers of Belief Revision, Applied Logic.
Kluwer.
Dragoni, A.; Giorgini, P.; and Serafini, L. 2002. Mental
States Recognition from Communications. J. Logic Com-
putat. 12(1):119–136.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning About Knowledge. Cambridge MA: The MIT
Press.
Finin, T.; Labrou, Y.; and Mayfield, J. 1997. KQML as
an agent communication language. In Bradshaw, J., ed.,
Software Agents. MIT Press.
Gärdenfors, P. 1988. Knowledge in flux: Modeling the
Dynamics of Epistemic States. MIT Press.
Grasso, F.; Cawsey, A.; and Jones, R. 2000. Dialectical
argumentation to solve conflicts in advice giving: a case
study in the promotion of healthy nutrition. International
Journal of Human-Computer Studies 53(1077–1115).
Hansson, S. O. 1999. A survey of non-prioritized belief
revision. Erkenntnis 50:413–427.
Herzig, A., and Longin, D. 2000. Belief dynamics in co-
operative dialogues. J. of Semantics 17(2). vol. published
in 2001.
Kinny, D.; Ljungberg, M.; Rao, A. S.; Sonenberg, E.; Tid-
har, G.; and Werner, E. 1992. Planned team activity. In
Castelfranchi, C., and Werner, E., eds., Artificial Social
Systems — Proceedings of MAAMAW’92, volume 830 of
LNAI, 226–256. Springer-Verlag.
Meyer, J.-J. C., and van der Hoek, W. 1995. Epistemic
Logic for AI and Computer Science. Cambridge University
Press.
Nebel, B. 1989. A knowledge level analysis of belief revi-
sion. In Brachman, R.; Levesque, H.; and Reiter, R., eds.,
Principles of Knowledge Representation and Reasoning:
Proceedings of the first International Conference (KR’89),
301–311. Toronto (ON), Canada: Cambridge University
Press.
Nebel, B. 1992. Syntax-based approaches to belief revi-
sion. In Gärdenfors, P., ed., Belief revision, volume 29 of
Journal of Cambridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press. 52–88.
Parsons, S.; Wooldridge, M.; and Amgoud, L. 2002.
An analysis of formal inter-agent dialogues. In Gini, M.;
Ishida, T.; Castelfranchi, C.; and Johnson, W. L., eds., Pro-
ceedings of AAMAS’02, 394–401. ACM Press.
Perrussel, L., and Thévenin, J. 2004. A logical approach
for describing (dis)belief change and message processing.
In Proceedings of AAMAS’04, 614–621. IEEE C.S.

Perrussel, L. 2003. Handling sequences of belief change in
a multi-agent context. In Schillo, M.; Klusch, M.; Muller,
J.; and Tianfield, H., eds., Proceedings of MATES’03, vol-
ume 2831 of LNCS. Springer.
Ramchurn, S. D.; Hunyh, D.; and Jennings, N. R. 2004.
Trust in multi-agent systems. Knowledge Engineering Re-
view.
Roorda, J.; van der Hoek, W.; and Meyer, J. 2002. Iterated
Belief Change in MAS. In Castelfranchi, C., and Johnson,
W., eds., Proceedings of AAMAS’02, 889–896. ACM Press.
Sperber, D., and Wilson, D. 1986. Relevance. Harvard
University Press.
van der Hoek, W., and Wooldridge, M. 2003. Towards a
logic of rational agency. Journal of the IGPL 11(2):133–
157.

DEPARTMENT OF INFORMATICS 503

11TH NMR WORKSHOP

504 Technical Report IfI-06-04

Belief Change and Updates

6.7 Getting Possibilities from the Impossible

Getting Possibilities from the Impossible

Corinna Elsenbroich, Dov Gabbay, Odinaldo Rodrigues
Department of Computer Science

King’s College London
corinna.j.elsenbroich@kcl.ac.uk, dov.gabbay@kcl.ac.uk, odinaldo.rodrigues@kcl.ac.uk

Abstract

Abduction is often constructed as a consistent expansion of a
database, i.e. abduction demands that a database∆ expanded
by an explanationε is not inconsistent;∆∪ ε 6|= ⊥. The con-
straint is sensible if we stay within classical logic. Without
it we end up with every formula inconsistent with∆ being
an explanation for any other formula. But what if∆ is in-
consistent itself? Then consistent abduction battles like Don
Quixote against windmills. All we want from abduction is
that it does notintroduceinconsistency into a set∆.
This article proposes a proof theory for abduction that can be
applied to inconsistent databases by demanding that an ab-
ductively derived formula must be from the intersection of all
maximal consistent subsets of the database.

Introduction
Understanding the form of reasoning traditionally called ab-
duction is essential for common sense reasoning as our rea-
soning from observations to explanations is a fundamental
source of new knowledge, i.e. learning. In general, abduc-
tion is a form of backward reasoning from a set of events
back to a cause. For example from a set of clues to a mur-
derer (criminology), a set of symptoms to a disease (medical
diagnosis), or from a malfunction in a system to a faulty part
in a system (model-based diagnosis). Formally, this infer-
ence can be expressed as

B
A → B

A

Within classical logic this is anon sequiturinference, called
affirming the consequent. Thus we have to constrain this
reasoning in some ways and cannot just add this rule to
a deductive calculus. There are different constraints for
abduction, the most common go by the following names:1

Consistency Minimality Relevance1 Relevance2
∆ + A 6|= ⊥ A is minimal. A 6|= B ∆ 6|= B, A 6|= B

These criteria can be taken in a pick and choose fashion. For
example, we might want consistent and minimal abduction

1The constraint Relevance2 is often calledexplanatory abduc-
tion, cf. (Aliseda-Llera 1997).

but leave the case, whereB is added as its own explana-
tion, as a limiting case and thus forsake both relevance cri-
teria. However, the most fundamental of the above table is
consistency. There is basically no definition of abduction in
the literature that does not have the requirement of consis-
tency, unless the inference is left completely unconstrained2

as∆ + A |= B. The reason for this requirement is clear. If
our object language is classical logic, the addition ofA to a
set∆ could lead to a trivialisation ofCn(∆ + A) by incon-
sistency, thus leading to every formula inconsistent with∆
being an explanation for every formula.

The first effect of the consistency rule is that abduction in
the literature is seen as a special form of belief expansion3.
This means that a setE of explanations forB is found and an
elementA ∈ E is selected and then added to the database. If
however no consistent explanation is found, eitherB itself
is added (expansion as the limiting case) or the abduction is
declined (failure as the limiting case).4

Clearly this is a restrictive view of abduction and has
the problem that abduction cannot challenge our back-
ground theory∆ as it never triggers a revision. This prob-
lem was identified by Lobo and Uzcategui in (Lobo &
Uzcátegui1996a,1996b,1997) where the authors define ab-
ductive change on top of an AGM revision operator. This
way formulae arrived at by abductive inference might trig-
ger a revision of beliefs.

Although we are in favour of abduction challenging∆
and abduction not being restricted to the lucky, consistent
cases, we think that it is dangerous to treat abductively in-
ferred beliefs equal to knowledge. After all, explanationsare
hypothetical and abductive inference can be superseded by
new information.5 Any revision framework must deal with
this hypothetical character of abduction and the above cited
expansion and revision frameworks do not.

This problem becomes especially pressing when the the-
ory ∆ is inconsistent from the outset. We might be able

2Often referred to asplain abduction.
3Used here as a technical term in line with the AGM framework

of belief change, cf. (Alchourrón, G̈ardenfors, & Makinson 1985)
and (Alchourŕon & Makinson 1982).

4For a detailed discussion of abductive belief expansion see
(Pagnucco1996, 1995) and (Dias & Wassermann 2001).

5Abduction is an intrinsically non-monotonic form of reason-
ing.

DEPARTMENT OF INFORMATICS 505

11TH NMR WORKSHOP

to find a set of explanations for some observation and per-
form a revision on∆ with the selected explanationA. This
revision however would be according to AGM constraints.
Thus the revision is triggered by a hypothetically inferred
formula and might occur in a part of the theory that iscom-
pletely independentof the newly obtained beliefs. Still it
would trigger a decision of which formulae to contract to
restore consistency.

To combat the first problem of enlarging the scope of ab-
duction to explanations that might be inconsistent with a
theory, we define a proof theory for abduction in the next
section, where abductive inferences are modalised, i.e. ex-
planations are inferred as possibilities. This way all possible
explanations can be added to a proof without causing incon-
sistency with each other. On potentially causing inconsis-
tency with the theory, explanations can be retracted.

To combat the second problem, where the underlying the-
ory is inconsistent from the outset, we adapt the above proof
theory to a paraconsistent setting. In the remainder of the
article we give semantics for both proof theories which intu-
itively capture the syntactic frameworks introduced and we
show correspondence between syntax and semantics.

Abductive Proof Theory
In constructing an abductive proof theory, the main idea is to
apply a rule of inference within a proof to specific formulae
under certain conditions. The starting point for the original
idea of what is calledadaptive logic6 was a paraconsistent
logic which denies the application of the disjunctive syllo-
gism. However, if the specific formulae the rule is applied
to are consistent the disjunctive syllogism is a truth preserv-
ing rule of inference. In an adaptive logic, in thesespecific
casesthe application of the disjunctive syllogism is permit-
ted. Similarly, the rule of inference

B
A → B

A

is a fallacy, i.e. a non-permitted rule of inference in classical
logic. However, if we want to deduce a formulaB from a
set∆ containing the rulesA1 → B,. . . ,An → B, someAi

must be true.7 Thus, if all otherAj are known to be false, the
inference toAi seems reasonable. Thus we can describe a
proof rule saying that ifAi does not cause inconsistency, i.e.
it is not in the set of eliminatedAj , we can infer it. As we
are looking for anAi that does not cause inconsistency, we
have to define the proof rule with respect to a database∆ in
order to be able to check for inconsistency. Thus the above
proof rule is stated with respect to some∆ as follows:8

∆ ⊢ A → B ∆ + A 6⊢ ⊥
∆ ⊢ A

Now however, we might have the situation that the set
∆′ = ∆ + A, we obtain after application of the proof rule

6Cf. Batens et al. in (Batens 1989).
7We assume that our set is exhaustive. Within an abduction

framework this is a common assumption when abduction is only
concerned with explanation-selection.

8For abbreviation we use∆ + A for ∆ ∪ {A}.

for abduction, gives us other explanations as well. These
explanations might not be inconsistent with∆ but with A.
At this point A is blocking the addition of other explana-
tions. In order to safeguard against this situation we have to
make an addition to this rule. Let us define the language of
abductive proofs in order to describe the proof theory. Let
us have a classical propositional logic with modus ponens
as rule of inference. We use a division into an object and a
metalanguage.

Definition 1.

LetP be an infinite set of propositional variablesp, q,
With this set we associate two languages,L0 andLA1, s.th.
L0 has the logical connectives¬,∨,∧,→ defined in the tra-
ditional way.LA1 has the additional operator〈B〉A. A for-
mulaC of LA1 is either:

1. A of L0 or

2. 〈B〉A, whereA,B ∈ L0.

We call formulae of the form〈B〉A strict LA1-formulae.
Formulae in the normal propositionalL0 language can be
deduced by the standard rules of the propositional calculus.

Remark 2.

∆ ⊢L0
A ⇔ ∆ ⊢CL A

The inference to anLA1 formula is conditional on the
inferred formula not causing inconsistency.

On top of the basic propositional logic⊢A0
, we define

two versions of abduction, oneconsistent (⊢AC
) and

one minimal (⊢AM
). Both of those have the same basic

structure. Firstly, we annotate the explanationAi with a
modal operator〈B〉 saying thatAi is a possible explanation
for B. This way we know why the formula entered the
proof as well as avoiding that several different explanations,
that are inconsistent with each other, produce an incon-
sistency within the database∆. We will call this careful
proving. On an abduction step where〈B〉A is added, we
put ∆ + A 6⊢ ⊥ as a condition. This means that any proof
line depending on〈B〉A only holds until ¬A occurs in
the proof. When¬A is deduced,〈B〉A is deleted, as well
as all lines depending on it. We call thisprovisional proving.

Definition 3.

[Rule for Consistent Abduction]

∆ ⊢AC
A → B, ∆ + A 6⊢AC

⊥

∆ ⊢AC
〈B〉A

The above rule captures the definition of consistent ab-
duction as defined in the table in the introduction. We inter-
pret the formula modally like a possibility operator, with the
amendment that〈B〉 means that there is a possibleB-world,
i.e. a world whereB is true, in whichA is true. Thus we
label the world byB. Let w be aB-world, then we have
w |= A → B andw |= B and due to the condition,A de-
ducesB consistently. Thus in this world,A is a possible
consistent explanation forB.

We can define a further kind of abduction from the table
in the introduction,minimal abduction.

506 Technical Report IfI-06-04

Belief Change and Updates

Definition 4.
[Rule for Minimal Abduction]9

∆ ⊢AM
A → B ∀C : ∆ 6⊢AM

C → A ∆ + A 6⊢AM
⊥

∆ ⊢AM
〈B〉A

We still have the condition of consistency, but on top of this
we have the condition, that the formulaA is not implied by
any other formula in∆, making sure that we find the expla-
nation at the greatest depth. The interpretation of〈B〉A is
the same as above.

We need one more rule for further deductions with abduc-
tion formulae. As this rule applies to⊢AC

as well as⊢AM

we omit the subscripts.

Definition 5.

[Propagation of〈B〉]

∆ ⊢A 〈B〉A ∆ ⊢A A → C

∆ ⊢A 〈B〉C

Additionally to this we have reflexivity forLA1 formulae:

∀〈B〉A ∈ ∆

∆ ⊢A 〈B〉A

Note that for each of the abduction logics the respective
three rules are theonly rules coveringLA1-formulae. Es-
pecially, we do not have a rule for left monotonicity. Thus,
when∆ is expanded,LA1-formulae, that were derivable be-
fore, might cease to be derivable, as the inference is only
conditional. We show an example in which∆ is expanded
with further facts so that earlier abductions are eliminated.

When faced with an abduction, we can have different poli-
cies. We might want to find all possible explanations at
the start and then wait for elimination; alternatively we can
adopt alazy abductionpolicy, so that we only abduce one
formula at the time and only let deletion of this abduction
trigger further search for explanations. In the following ex-
ample we adopt a lazy approach for simplicity of presenta-
tion.

Example
Sherlock Holmes and Dr Watson are called to Dartmoor; to
Colonel Ross’ training stables King’s Pyland. His invalu-
able race horse Silver Blaze, first favourite for the Wessex
Cup, was abducted a few nights before and the trainer, John
Straker, was found dead on the moor. It is assumed that a
stranger abducted the horse, the trainer went after the ab-
ductor and was killed in action. There are however other
possible explanations for a run-away horse than a stranger.
The door to the stable might have been left open and the
horse ran away. Alternatively, not a stranger abducted the
horse, but someone known in the stables. During the inves-
tigations Holmes finds out that the door was not left open.
The puzzle is solved when Holmes finds out that the dog did
not bark on the night in question and ‘deduces’, as Conan
Doyle called it, that it must have been a familiar person ab-
ducting the horse as otherwise the dog would have barked.
The solution is that John Straker took the horse to the moors

9∀C should be restricted toC 6= A to exclude tautologies. For
efficiency we can constrain it to allC that appear in∆.

to injure its ankle in order to rig the coming race. In this en-
deavour the horse kicked him to death and ran to the neigh-
bouring farm, where the owner, as well keeping race horses,
kept it to make sure that one oftheir horses wins the race.
We formalise this example in the following initial database.
Let ∆′ = ∆ + (n ∧ d o).

∆ = {nobody ∧ door open → horse gone ((n ∧ d o) → h),

somebody → horse gone (sm → h),

friend → somebody (fr → sm),

stranger → somebody (st → sm),

friend → ¬dog barks (fr → ¬d b),

nobody → ¬dog barks (n → ¬d b),

stranger → dog barks (st → d b)}

Observation:h

The observationh has a special information status as it is the
observation we want to explain. Other information entering
later in the example, like¬d o is processed as a simple ex-
pansion. We want to explain why the horse is gone but not
why the door is not open.
1. ∆ ⊢AM

(n ∧ d o) → h ∀C : ∆ 6⊢AM
C → (n ∧ d o) ∆′ 6⊢AM

⊥

2. ∆ ⊢AM
〈h〉(n ∧ d o)

We now get the new information that the door was
closed(¬d o).10 Let ∆1 = ∆ + ¬d o and∆′

1 = ∆ + (n ∧
d o) + ¬d o.

1. ∆ ⊢AM
(n ∧ d o) → h ∀C : ∆ 6⊢AM

C → (n ∧ d o) ∆′ 6⊢AM
⊥

2. ∆1 ⊢AM
〈h〉(n ∧ d o) ∀C : ∆1 6⊢AM

C → (n ∧ d o) ∆′

1 ⊢AM
⊥

At this point we have to delete the two lines and start anew.
Let ∆′′

1 = ∆1 + st.

1. ∆ ⊢AM
(n ∧ d o) → h ∀C : ∆ 6⊢AM

C → (n ∧ d o) ∆ 6⊢AM
⊥

2. ∆1 ⊢AM
〈h〉(n ∧ d o) ∀C : ∆′

1 6⊢AM
C → (n ∧ d o) ∆′

1 ⊢AM
⊥

3. ∆1 ⊢AM
sm → h ∀C : ∆1 6⊢AM

C → st ∆′′

1 6⊢AM
⊥

4. ∆1 ⊢AM
st → sm

5. ∆1 ⊢AM
st → h ∀C : ∆1 6⊢AM

C → st ∆′′

1 6⊢AM
⊥

6. ∆1 ⊢AM
〈h〉st

Now we get to know that the dog did not bark(¬d b). We
have to check the previous conditions now for the new sets
∆2 = ∆1 + ¬d b and∆′

2 = ∆2 + st.

1. ∆ ⊢AM
(n ∧ d o) → h ∀C : ∆ 6⊢AM

C → (n ∧ d o) ∆′ 6⊢AM
⊥

2. ∆1 ⊢AM
〈h〉(n ∧ d o) ∀C : ∆1 6⊢AM

C → (n ∧ d o) ∆′

1 ⊢AM
⊥

3. ∆1 ⊢AM
sm → h ∀C : ∆1 6⊢AM

C → sm ∆′′

1 + sm 6⊢AM
⊥

4. ∆1 ⊢AM
st → sm

5. ∆1 ⊢AM
st → h ∀C : ∆1 6⊢AM

C → st ∆′′

1 6⊢AM
⊥

6. ∆2 ⊢AM
〈h〉st ∀C : ∆2 6⊢AM

C → st ∆′

2 ⊢AM
⊥

Again we have some more deletion to do as another condi-
tion does not hold. We delete the lines that depend on the
condition thatst does not cause inconsistency, leaving only
lines 3, 4 in our proof. Let∆′′

2 = ∆2 + fr.

10Note that the new information is processed differently from the
abduced information. Abduced formulae only occur as expansions
of ∆ in the condition columns (Column2&3) whereas real infor-
mation is added in Column 1 and thus is a ‘real’ expansion to the
belief base.

DEPARTMENT OF INFORMATICS 507

11TH NMR WORKSHOP

1. ∆ ⊢AM
(n ∧ d o) → h ∀C : ∆ 6⊢AM

C → (n ∧ d o) ∆′ 6⊢AM
⊥

2. ∆1 ⊢AM
〈h〉(n ∧ d o) ∀C : ∆1 6⊢AM

C → (n ∧ d o) ∆′

1 ⊢AM
⊥

3. ∆1 ⊢AM
sm → h ∀C : ∆1 6⊢AM

C → sm ∆′′

1 + sm 6⊢AM
⊥

4. ∆1 ⊢AM
st → sm

5. ∆1 ⊢AM
st → h ∀C : ∆1 6⊢AM

C → st ∆′′

1 6⊢AM
⊥

6. ∆2 ⊢AM
〈h〉st ∀C : ∆2 6⊢AM

C → st ∆′

2 6⊢AM
⊥

7. ∆2 ⊢AM
fr → h ∀C : ∆2 6⊢AM

C → fr ∆′′

2 6⊢AM
⊥

8. ∆2 ⊢AM
〈h〉fr

We now have an inference to‘ friend’ as an explanation for
the observation that the horse is gone. For∆2 this is the only
formula for which both conditions hold. In∆ we could have
had ‘nobody ∧ door open’, ‘ stranger’ or ‘ friend’, (in ∆′ still
‘stranger’ or ‘ friend’).

Restricted Access Logics and Abduction
In this section we adapt the above proof theory based on
classical logic to the setting, where the database∆ is incon-
sistent.

Paraconsistent logic is the naughty child standing in the
corner of the logic class. It seems to propose that the world
is not cut up into true and false. For some formulae it might
be the case that the formula as well as its negation are true,
or that a formula is true and false at the same time. Usually
paraconsistent logics are formalised by restricting the infer-
ence rules. For example, the disjunctive syllogism is not a
permitted rule of inference for most paraconsistent logics.

Another approach to paraconsistency is not to weaken the
proof rules but to restrict access to data, so that in the same
proof only consistent formulae may occur. This idea was
first entertained by Rescher and Manor in (Rescher & Manor
1970). In (Gabbay & Hunter 1993) Gabbay and Hunter de-
velop a concise proof theory to enable reasoning from in-
consistent databases. Fully fledged propositional classical
logic is at our disposal but rules can only be applied to con-
sistent subsets of the original (inconsistent) database∆. As
we only want our abduction to be performed on the consis-
tent part of the database we find this approach very fruitful
and we discuss it in more detail.

To provide a framework where inconsistency can be con-
trolled we label the formulae in our database. We have the
set of natural numbersN such thati ∈ N is a label and,
if A is a formulai : A is a labelled formula. A labelled
database is a database consisting of formulae each of which
is labelled with a unique singleton set. We have all rules of
propositional classical logic at our disposal but have to make
sure that the sets they are applied to are consistent. To facil-
itate this a functionh(i) is defined on the labels as follows:

h(i) = 1 iff {A|j ⊆ i and j : A ∈ ∆} 6⊢ ⊥

The conditionh(i) = 1 makes sure that no inconsistency
was used in the proof, thus ensuring that the proof is per-
formed from a consistent subset of∆.

Definition 6.

[Labelled Rules of RAc]

i : A, j : B, h(i ∪ j) = 1
∧I

i ∪ j : A ∧ B

i : A ∧ B, h(i) = 1
∧E

i : A

∅ : A
...
i : B, h(i) = 1

→ I
i : A → B

∅ : ¬A
...
i : ⊥, h(i) = 1

RAA
i : A

i : A, j : A → B, h(i ∪ j) = 1
→ E

i ∪ j : B

i : ⊥, h(i) = 1
EFQ

i : A

i : A, j : ¬A, h(i ∪ j) = 1
¬E

i ∪ j : ⊥

∅ : A
...
i : ⊥, h(i) = 1

¬I
i : ¬A

Definition 7.

∆ ⊢c A iff ∃i such that there is a proof ofi : A from ∆
using the RAc proof rules.

This is the basic restricted consequence relation RAc defined
in (Gabbay & Hunter 1993) and it will suffice for our pur-
pose. We cite two examples from the original paper for il-
lustration.

Let us have the database∆ = {(1) : ¬a, (2) : ¬a →
¬b, (3) : a}. The first deduction of¬b is admitted, the sec-
ond is not:

1. (1) : ¬a, (2) : ¬a → ¬b, h(1 ∪ 2) = 1

(1 ∪ 2) : ¬b

2. (1) : ¬a, (3) : a, h(1 ∪ 3) 6= 1

(1 ∪ 3) : ⊥, h(1 ∪ 3) 6= 1

(1 ∪ 3) : ¬b

We can now define the abduction rules on top of RAc.
The conditionh(i) 6= 1 should be read as holding for alli.

Definition 8.

[RAc-Consistent and RAc-Minimal Abduction]

i : A → B, h(i) = 1 i : A → B, h(i) = 1
j : A → ¬B, h(j) 6= 1 j : A → ¬B, h(j) 6= 1

k : C → B, h(k) 6= 1
k : ¬A, h(k) 6= 1 l : ¬A, h(l) 6= 1
i′ : 〈B〉A i′ : 〈B〉A

Definition 9.

[Propagation of〈B〉]
i′ : 〈B〉A, h(i′) = 1,
j : A → C, h(j) = 1,
k : A → ¬C, h(k) 6= 1

PropP
i′ ∪ j : 〈B〉C

The subscriptsC andM are omitted as the rule holds for
both. As we discussed before, we want abduction only to
apply to the consistent core of∆. This is expressed in the
condition thatA → ¬B is not deducible from any consistent
subset.

508 Technical Report IfI-06-04

Belief Change and Updates

Example Let us again take our Sherlock Holmes Story,
however this time with an inconsistent initial database.

∆ = {(1) : st → h, (2) : fr → h, (3) : st → d b, (4) : d b, (5) : d b → ⊥};

We can now try to perform abduction in order to explain the
horse being abducted,h.

1. (1) : st → h (3 ∪ 5) : ¬st 1 = h(1) = h(3 ∪ 5)

Thus the inference to2. (1′) : 〈h〉st is blocked as¬st is deriv-
able from the consistent subset

{(3) : st → d b, (5) : d b → ⊥}.

That an abduction from an inconsistent setfails is the
situation that we would have had in our normal logic as
well. In ∆ we have another potential explanation available
for h. The following is a successful abduction of〈h〉fr:

2. (2) : fr → h (4 ∪ 5) : ¬fr 1 = h(1) 6= h(4 ∪ 5)

3. (2′) : 〈h〉fr

¬fr can, in theory, be deduced from∆ by EFQ with the label(4 ∪
5). However,h(4∪5) 6= 1 and thus in our system the deduction
fails and the abduction is allowed.

We now have a proof theory for abduction to be applied
to consistent databases and a simple adaptation of this proof
theory to inconsistent sets. Clearly, it is sufficient to have
the RAc abduction proof theory as the consistent case is a
limiting case of it. In the next section we describe semantics
for these syntactic frameworks.

Semantics
In this section we introduce semantics for abduction. The
process of abduction is expressed as a modal expansion of
models, as can be seen in Figure 1.

[∆ + B]

[∆ + C]

[∆ + D]

[∆ + A]

[∆]

[∆ + D][∆ + A]

[∆ + A]

[∆ + D]

[∆ + D]

[∆ + E]

[∆ + E]

[∆ + F]
add¬B and¬F

[∆ + C]

add¬E and¬C

add¬A

Figure 1: Abduction with ExplanationsA,B,C,D,E, F

The proof theories described in the last sections are essen-
tially dynamic and the dynamic of this form of reasoning has
to be mirrored in the semantics. Static semantic defines the
meaningof a sentence as itstruth conditions. In the research
of applying logical semantics to natural language, a para-
digm shift has occurred as described by Groenendijk et.al. in
(Groenendijk, Stokhof, & Veltman 1996), away from defin-
ing the meaning of a sentence as itstruth conditional content
to meaning of a sentence as itsinformation change potential.

In logic it is obviously not only the meaning of sentences
that is defined as the conditions under which it is true, but as
well the consequence relation is defined as that, i.e.

∆ |= A iff [∆] ⊆ [A]

meaning that if all the sentences in∆ are true,A must be
true as well.

Abduction is the transference of this new definition of
meaning as change to information state to a consequence
relation. The following are the three consequence relations
defined in Veltman’s framework11 for the operatormight(M)
which defines inference to compatible formulae.

Definition 10.

[Consequence Relations]

Let L be a set and consider a frameF = (Σ, ([p]F)p∈L).
fix, rge anddo stand for fixpoint, range and domain of a
binary relation respectively.◦ stands for relational composi-
tion.

1. Test Consequence:
F |=tc p1 . . . pn → q iff fix([p1]F)∩ . . .∩fix([pn]F) ⊆
fix([q]F)

2. Ignorant Consequence:
F |=ic p1 . . . pn → q iff (⊤, t) ∈ ([p1]F) ◦ . . . ◦ ([pn]F)
implies(t, t) ∈ ([q]F)

3. Update Test Consequence:
F |=utc p1 . . . pn → q iff rge([p1]F ◦ . . . ◦ [pn]F) ⊆
fix([q]F)

The first clause is the same as the classical consequence rela-
tion, where any state that supports the premises supports the
conclusion.|=ic and|=utc are more dynamic interpretations
of consequence where|=ic is a special case of|=utc start-
ing from a state of ignorance. Consequence relation3. is the
one we find most interesting. It says that a set of premises
supports a conclusion (or an argument isvalid) iff any state
that can be obtained by addition of the premises supports
the conclusion. This informal interpretation of consequence
relation 3. is just what abduction means, that a state in
which an explanationA is added supports the observation
B. The only additional constraint is that the state in which
A is added does not produce the empty set.

The facette of these semantics that is interesting for us is
that the update is formulated within a modal setting. This
modal formulation ofMA as A might hold gives us the
tools that we need for hypothetical reasoning, i.e. for the
inference thatA might be the right explanation forB. The

11Cf. (Veltman 1996) and (van der Does, Groeneveld, & Velt-
man 1997)

DEPARTMENT OF INFORMATICS 509

11TH NMR WORKSHOP

semantics introduced formight and adapted for abduction
in this section equates satisfiability with acceptance in the
sense that∆ |= A, i.e. ∆ satisfiesA, iff [∆ + A] = [∆], i.e.
A is already accepted in∆.

However, apart from the similarities of this semantics to
the abductive proof rule described in the section on abduc-
tive proof theory, these semantics do not capture fully what
an abductiveupdate of an information state involves. Al-
though theMA models hypothetical addition of a formula to
an information state, or database, abduction involves more
than that. Abduction is aspecifichypothetical update fol-
lowing from an observationB and the belief in a certain
rule by whichA → B. Thus our semantics should model
this specificity as well as the hypothetical character of the
update.

In the proof theory we accomplished the specificity by la-
beling the〈B〉-operator with the observationB. In relation
to the proof theory described above, these semantics corre-
spond to the proof rule that we can infer〈B〉A iff ¬A is not
derivable from the database, asi |= 〈B〉A iff i[A] 6= ∅.

In the update semantics the semantic definition of a for-
mula changed from the conditions under which the formula
is true to what effect the addition of the formula has on a be-
lief state on addition. We adopt this framework to abduction,
modelling it closely on theUpdate Test Consequence.

Definition 11.

[Abductive Consequence]

Let ∆ be a set and[∆] the associated sets of models. fix and
rge stand for fixpoint and range respectively. In abductive
logic, a consequence is valid iff.

[∆] |=Abd A → B iff rge [∆ + A] ⊆ fix [∆ + B]

We now prove soundness and completeness of the abduction
rules of the consistent proof theory with respect to a special
abductive update semantics.

The update semantics for might are defined as follows:

Definition 12.

[Information Structures, Models, Updates]

An information structureis a structureI := 〈I,c ,⊤, Fi〉
consisting of a Boolean algebra〈I,c ,⊤〉 with a family of
operatorsFi : In −→ I. A modelfor a set of propositional
variables P = {p, q, . . .} is an information structure
I := 〈I,c ,⊤, [[p]]I〉p∈P , where the update function
[[p]]I : I −→ I must satisfy:

1. i[[p]] ⊆ i introspective

2. If i ⊆ j theni[[p]] ⊆ j[[p]] monotone

3. If i ⊆ j[[p]] theni ⊆ i[[p]] stable

With every formulaA an update function[A]I : I −→ I is
given as follows:

a. i[p] = i[[p]]
b. i[¬A] = i − i[A]
c. i[A ∧ B] = i[A] ∧ i[B]

d. i[MA] =
{

i if i[A] 6= ∅

∅ otherwise .

Essentially, an information structure is a set of possible
worlds where each worldw ∈ I is a functionw : P 7→
{⊤,⊥} expressed by the valuation function[[]]I . On top
of that we have the update function[A] for each formulaA
recursively defined as above.

The foundation of the semantics for abduction is the same
as above. We model abduction as an operation that allows
inference to a formulaA as apossible explanationfor B
(〈B〉A) iff A is acceptable in a set∆ ([∆ + A] 6= ∅) and
there is a certain relation betweenA andB (rge [∆ + A] ⊆
fix [∆ + B]). To express this we replace clause d. by the
following clauses for the modal operator in the two abduc-
tions.

Definition 13.
[Semantics for Abduction]

Let [∆] be the set of models for∆. ∆ |= A iff [∆ + A] =
[∆]. Let satisfiability for consistent abduction|=AC

be de-
fined as follows:

d-C. [∆+〈B〉A] =

{

[∆] if [∆ + A] 6= ∅

& rge [∆ + A] ⊆ fix [∆ + B]
∅ otherwise .

For minimal abduction|=AM
we substitute the semantic de-

finition with

d-M. [∆+〈B〉A] =











[∆] if [∆ + A] 6= ∅

&∀C ∈ ∆, rge [∆ + C] 6⊆ fix [∆ + A]
& rge [∆ + A] ⊆ fix [∆ + B]
∅ otherwise .

Now we take the abductive logics defined in Definitions 3,
4 and 5 and show soundness and completeness of these log-
ics with respect to the semantics defined above. Our first
consideration is that we build a supra-classical logic. That
means that we can use the completeness of the propositional
part of our logic. We now have to show that the abductive
addition is complete with respect to the specific update se-
mantics in 13. However, as we are dealing with a very re-
stricted logic, we show that any abductive inference can be
reduced to a propositional inference. The strategy for doing
this is as follows. We take any set∆ and reduce it to a set
∆0 that does not containLA1 formulae, in such a way that
although∆ 6= ∆0, the deductive closures are equivalent, i.e.
Cn(∆) = Cn(∆0).

Definition 14.
[Reduction of∆ to ∆0]

If ∆ does not contain anyLA1 formulae,∆ = ∆0. Other-
wise, enumerate all formulae of the form〈X〉Y ∈ ∆ from
1 − n. Then the set∆n−1 is defined recursively as follows:

510 Technical Report IfI-06-04

Belief Change and Updates

Cn(∆0)

Cn(∆)

Canonical Model

∆0

∆

Figure 2: Reduction ofLA1-set∆ to ∆0

∆n−1 =

{

∆n\〈X〉Y if ∃Z 6= Y,∆n ⊢AC
〈X〉Z

&∆ ⊢AC
Z → Y ∆

(∆n\〈X〉Y) ∪ Y → X otherwise .

∆0 is a set withoutLA1 formulae.

This definition is important as we now can reduce any proof
of aLA1-formula to an initial propositional proof of an im-
plication. We need this preliminary Lemma for the proofs of
soundness and completeness.

Lemma 15.

For any〈B〉A, if ∆0 ⊢Abd 〈B〉A, there∃X s.th. ∆0 ⊢Abd

X → B and∆0,X 6⊢Abd ⊥.
Proof: Assume that∆0 ⊢Abd 〈B〉A. By definition,∆0 does
not contain anyLA1-formulae. We have to consider two
cases:

1. ∆0 ⊢Abd A → B and∆0 6⊢Abd ⊥. ThenX = A.

2. ∆0 ⊢Abd 〈B〉C and∆0 ⊢Abd C → A. For ∆0 ⊢Abd

〈B〉C, either∆0 ⊢Abd C → B and∆0, C 6⊢Abd ⊥, or
propagation is applied again to someD s.th. ∆0 ⊢Abd

〈B〉D and∆0 ⊢Abd D → C. At some point we end up
with a Z which cannot be abduced by propagation any-
more. �

With this reduction we can proof soundness as follows.

Theorem 16.

[Soundness of Consistent Abduction]

If ∆ ⊢AC
A then∆ |=AC

A.

Proof: We only prove soundness of the abduction rule and
the propagation rule. AssumeA = 〈B〉C and ∆ ⊢AC

〈B〉C. By our reduction we know that∆0 ⊢AC
〈B〉C. As

we do not have anyLA1 formula in ∆0, this can only be
done by application of either the abduction rule or the prop-
agation rule. Thus one of the following must hold:

1. Either∆0 ⊢AC
C → B and ∆0 + C 6⊢AbdC

⊥. By
soundness of propositional logic we have that∆0 |=AbdC

C → B and∆0 + C 6|=AbdC
⊥. By Definition 11 above

we have that rng [∆0 + C] ⊆ fix [∆0 + B] and that
[∆0 + C] 6= ∅. By clause d-C. of Definition 13 we have
that [∆0 + 〈B〉C] = [∆0], thus[∆0] |=AbdC

〈B〉C and
finally [∆] |=AbdC

〈B〉C.

2. Alternatively,∆0 ⊢AC
D → C and∆0 ⊢AbdC

〈B〉D for
someD. Let D be theX of Lemma 15. Then∆0 |=AbdC

D → C and∆0 |=AbdC
D → B and [∆0 + D] 6= ∅

by definition of∆0 together with Lemma 15. That means
rng [∆0 + D] ⊆ fix [∆0 + B], rng [∆0 + D] ⊆
fix [∆0+C] and[∆0+D] 6= ∅. Thus there exists a world
i ∈ [∆] s.th. i[D] 6= ∅. As it holds for allj ∈ [∆0 + D]
thatj ⊆ fix [∆0 + C] andj ⊆ fix [∆0 + B], this holds
in particular fori. Hence∃i|i 6= ∅ and i[C] ⊆ i[B].
Thus [∆0 + 〈B〉C] = [∆0] and as[∆0] = [∆] we have
∆ |=AC

〈B〉C. �

Theorem 17.

[Soundness of Minimal Abduction]

If ∆ ⊢AM
A then∆ |=AM

A.

Proof: Similar to above just with the extra condition that
if A = 〈B〉C, ∀D, i[D] 6⊆ i[C]. From ∆0 ⊢ 〈B〉C we
know that∆0 6⊢AM

D → C for anyD. Thus the semantic
condition holds and∆ |=AM

〈B〉C. �

We now prove completeness of consistent, minimal abduc-
tion respectively with respect to the semantics described
above. Then the canonical model of them will be the same
and due to completeness ofL0 the result holds as well for
LA1, cf. Figure 2.

Theorem 18.

[Completeness of Consistent Abduction]

If ∆ |=AC
A then∆ ⊢AC

A.

Proof: We know that ifA is aL0 formula, the above holds
as we simply have propositional logic. So let us assume
that A = 〈B〉C and∆ 6⊢AC

〈B〉C. We reduce∆ to ∆0

according to Definition 14. We have∆0 6⊢AC
〈B〉C. By the

definition of∆0 we know that

∆0 6⊢AC
C → B or ∆0 + C ⊢AC

⊥.

By completeness of propositional logic we have that

∆0 6|=AC
C → B or ∆0 + C |=AC

⊥.

By Definition 11 we have that

rng [∆0 + C] 6⊆ fix [∆0 + B] or [∆0 + C] = ∅.

By Definition 13 d-C. this means that[∆0 + 〈B〉C] 6=
[∆0] unless[∆0] = ∅. This however is impossible as
∆0 6⊢AC

C → B. As [∆0] = [∆], ∆ 6|=AC
〈B〉C. �

Theorem 19.

[Completeness of Minimal Abduction]

If ∆ |=AM
A then∆ ⊢AM

A.

Proof: The strategy of this proof is the same as before. We
just have to adapt the semantic definition for minimal abduc-
tion. We know that we can go over from∆ 6⊢AM

〈B〉C we
can go over to∆0 6⊢AM

〈B〉C. By completeness of propo-
sitional logic we have

∃D 6= C|∆0 ⊢AM
D → C or

∆0 6⊢AM
C → B or

∆0 + C ⊢AM
⊥.

By completeness of propositional logic we have that

DEPARTMENT OF INFORMATICS 511

11TH NMR WORKSHOP

∃D 6= C|∆0 |=AM
D → C or

∆0 6|=AM
C → B or

∆0 + C |=AM
⊥.

By Definition 11 we have that

∃D| rng [∆0 + D] ⊆ fix [∆0 + C] or
rng [∆0 + C] 6⊂ fix [∆0 + B] or

[∆0 + C] = ∅.

By Definition 13 d-M. this means that[∆0 + 〈B〉C] 6= [∆0]
unless [∆0] = ∅. This however is impossible as
∆0 6⊢AM

C → B. As [∆0] = [∆], ∆ 6|=AM
〈B〉C. �

We now have to refine the update semantics for the incon-
sistent case, as for an inconsistent∆, [∆] = ∅ thus trivial-
ising the definition of

∆ |=P A iff [∆ + A] = [∆].

So we have to think about how we can still have models on
which we perform the abduction. In the normal abduction
the models give a tree structure where the models of the hy-
pothetical explanations are the children of the root models
of ∆, (cf. Figure 3.a). For an inconsistent∆ we define the
models to be the models of consistent subsets∆C

i of ∆. Let
us call this set of sets of models[∆]. Classically,[∆] = ∅ if
∆ is inconsistent, but for our paraconsistent logic we define
[∆] as just the tree structure in Figure 3.b, expressed by

[∆] =

n
⋃

i=1

[∆C
i]

Thus we interpret an inconsistency similar to a modal in-
terpretation. In inconsistent information state an agent does
not know which model corresponds to the real world, but it
is either one of the models that satisfy the negated formula,
say¬A or A.

On top of these consistent subset models we define ab-
duction as shown in Figure 3.c. With an abduction we are
adding another level of hypothetical reasoning to the model.
The agent with an inconsistent information state does not
know which consistent subset captures the facts and on top
of all these possible consistent subsets we have the possible
abductions.

Now we know the general structure of the models we are
working with and have to adapt the updated semantics, that
served us so well for the consistent case, to the inconsistent
case. We have to define how an update with a formula
A changes the models of[∆] and under which conditions
[∆ + A] = [∆]. The second part is easily done as shown in
the following definition.

Definition 20.

1. ForA ∈ L0 we define∆ |=P A as

[∆ + A] = [∆] iff ∃∆C : [∆C + A] = [∆C]

2. For strictLA1 formulae we define∆ |=P 〈X〉Y as

[∆ + 〈B〉A] = [∆] iff ∀∆C : [∆C + 〈B〉A] = [∆C]

where[∆C + 〈B〉A] = [∆C] is defined exactly as in Def-
inition 13 depending on whether we want to model acon-
sistentor minimalabduction.

[∆]

[∆ + A]

[∆ + B]

[∆ + C]

a) Consistent∆ with explanationsA, B, C.

[Delta]

b) Model of an Inconsistent Delta.

[∆C
1]

[∆C
i

]

[∆C
n]

[∆C
1] [∆C

n]

[∆C
i

]

[∆]

c) ∆ with explanationsA, B, C.

[∆C
1 + A] [∆C

1 + C]

[∆C
1 + B]

[∆C
i

+ B]

[∆C
i

+ A] [∆C
i

+ C]

[∆C
n + A]

[∆C
n + B]

[∆C
n + C]

Figure 3: Consistent and Inconsistent Models

Condition 1. means that there must be at least one∆C where
A is true in allw ∈ [∆C]. Condition 2. is a lot stronger,
i.e. it has to hold for all[∆C] that there exists aw s.th.
w[〈B〉A] = w. When reasoning with inconsistent informa-
tion we cannot make the same strong conditions for truth as
we apply to classical logic, hence in Condition 1. we only
demand that there exists a maximal consistent subset that
satisfiesA. However, when we get into the realms of hypo-
thetical reasoning, i.e. abduction, we want the constraints as
strong as we can make them. Condition 2. means that we
can only abduceA for someB, if A → B is always true,
¬A is never true, or expressed differently, ifA → B is true
in the consistent core of∆ and¬A is false in the consistent
core.

Defining how a model changes when new information ar-
rives is more difficult. In Definition 12, the update of an
information statei with an atom is defined as

i[p] = i[[p]]

thus returning exactly those worlds in whichp is true. This
is clearly not the definition we want as it might be the case
that i[¬p] = i and by addition ofp, we would delete viable

512 Technical Report IfI-06-04

Belief Change and Updates

worlds. However, we lifted the inconsistency by introducing
a layer of consistent models into the tree structure. This
has to be reflected in the semantic definition. Thus, for all
[∆C] which do not satisfy¬p we want as a return[∆C + p]
just as defined in Definition 12. For the[∆C] that satisfy
¬p however, we do not want change on addition ofp to ∆.
Thus we arrive at the following definition.

Definition 21.

Let A be aL0-formula.

[∆+A] =

n
⋃

i=1

([∆C
i +A]|[∆C

i +A] 6= ∅, [∆C
j]|[∆C

j +A] = ∅)

ForLA1-formulae we have the following:

[∆+〈X〉Y] =

{

⋃n

i=1[∆
C
i] if ∀∆C : [∆C + Y] 6= ∅

∅ otherwise .

Obviously, ifA is in all consistent subsets, then[∆ + A] =
[∆]. Thus we have the logic we described in the beginning
as a limiting case of RAc-abduction.

Conclusion and Future Work

We introduced a propositional proof theory for abduction
which captures the important dynamic features of explana-
tory reasoning. In addition we provided an adaptation of the
proof theory to inconsistent databases. This work puts ab-
duction into an new setting altogether. First it is not usual
to define abduction as a proof theory. Secondly, to define
it modally we express the hypothetical character of abduc-
tion. Thirdly, we showed a way to broaden the application
of abduction to inconsistent databases by modifying the re-
strictive overall consistency condition usually used to con-
strain abductive inference. This feature of abduction is not
only formally interesting but has implications for the imple-
mentability of an abduction framework. When an abductive
proof theory is to be applied to a given database, there is
no intrinsic reason, why the database should be consistent.
In case it is inconsistent, no abduction that is constrained
by consistency could ever be performed. It is however not
workable to just give up consistency. Our proposal ensures
that abductions on inconsistent sets can be performed with-
out degenerating into triviality.

We as well gave semantics for theses two proof theories.
For the normal abductive proof theory we proved soundness
and completeness. The proof of this for RAc-abduction is
future work. However, the proofs of soundness and com-
pleteness for para-consistent as well as para-minimal abduc-
tion will work in a similar way as the soundness and com-
pleteness of the normal abductive proof theory.

Additional future work is to make the proof theories goal
directed. This is again done with an eye on implementa-
tion. For the normal proof theory this has been achieved in
(Elsenbroich 2006) but for the paraconsistent adaptation this
is outstanding work.

References
Alchourrón, C. A., and Makinson, D. 1982. The logic of
theory change: Contraction functions and their associated
revision functions.Theoria.
Alchourrón, C. A.; G̈ardenfors, P.; and Makinson, D. 1985.
The logic of theory change: Partial meet contraction and
revision functions.TheJournalof SymbolicLogic 50(2).
Aliseda-Llera, A. 1997.SeekingExplanations:Abduction
in Logic, Philosophyof ScienceandArtificial Intelligence.
Ph.D. Dissertation, ILLC University of Amsterdam.
Batens, D. 1989. Dynamic dialectical logics. In Priest,
G., ed.,ParaconsistentLogic. Essayson the Inconsistent.
Munchen, Philosophia Verlag. 187–217.
Dias, W., and Wassermann, R. 2001. Abductive expansion
of belief bases. InProceedingsof theIJCAI Workshopon
AbductiveReasoning.
Elsenbroich, C. 2006.Instinct for Detection. Ph.D. Dis-
sertation, King’s College London.
Gabbay, D., and Hunter, A. 1993. Restricted access log-
ics for inconsistent information. In Clarke, M.; Kruse, R.;
and Moral, S., eds.,LectureNotesin ComputerScience,
volume 747 ofECSQARU’93. Springer. 137–144.
Groenendijk, J.; Stokhof, M.; and Veltman, F. 1996. Coref-
erence and modality. In Lappin, S., ed.,Handbookof
ContemporarySemanticTheory. Oxford: Blackwell. 179–
216.
Lobo, J., and Uzćategui, C. 1996a. Abduction and
change. InProcceedingof theNon-MonotonicReasoning
Workshop.
Lobo, J., and Uzćategui, C. 1996b. Abductive change op-
erators.FundamentaInformaticae 27(4):385–411.
Lobo, J., and Uzćategui, C. 1997. Abductive consequence
relations.Artificial Intelligence 89:149–171.
Pagnucco, M.; A.C.Nayak; and N.Y.Foo. 1995. Abduc-
tive reasoning, belief expansion and nonmonotonic conse-
quence. InProceedingsof the ICLP-95 Joint Workshop
on Deductive Databasesand Logic Programmingand
Abduction in DeductiveDatabasesandKnowledge-based
Systems.
Pagnucco, M. 1996.The Role of Abductive Reasoning
Within theProcessof Belief Revision. Ph.D. Dissertation,
University of Sydney.
Rescher, N., and Manor, R. 1970. On inference from in-
consistent premises.TheoryandDecision 1:179–219.
van der Does, J.; Groeneveld, W.; and Veltman, F. 1997.
An update on ??might??Journalof Logic, Languageand
Information 6(4):361–380.
Veltman, F. 1996. Defaults in update semantics.Journalof
PhilosophicalLogic (25):221–261.

DEPARTMENT OF INFORMATICS 513

11TH NMR WORKSHOP

514 Technical Report IfI-06-04

Belief Change and Updates

6.8 Rethinking Semantics of Dynamic Logic Programming

Rethinking Semantics of Dynamic Logic Programming

Ján Šefránek
Institute of Informatics, Comenius University Bratislava, Slovakia, sefranek@fmph.uniba.sk

Abstract

A dynamic logic program represents an evolving knowledge
base. Research in the field is dominated by the causal rejec-
tion principle: the conflicting rule from the less preferred pro-
gram is rejected in the case of conflict. Some drawbacks of
the causal rejection principle (irrelevant updates, inconsisten-
cies which cannot be solved according to the causal rejection
principle, disagreement with other fields relevant for updates
of nonmonotonic knowledge bases such as belief revision or
preferences handling) are identified and discussed in the pa-
per. The discussion of those drawbacks pointed out the role
of assumptions and dependencies on assumptions for a care-
ful attitude to the topic. A solution based on a dependency
framework is presented and evaluated in the paper.

Keywords: multidimensional dynamic logic program-
ming, nonmonotonic knowledge base, stable model seman-
tics, belief revision, update, preference, dependency frame-
work.

Introduction
Background. Multidimensional dynamic logic program-
ming (MDyLP) (Alferes et al. 1998; Leite et al. 2001;
Leite 2003; Alferes et al.2005; Banti et al. 2005) con-
tributed to logic-based knowledge representation research
by focusing on dynamic aspects of knowledge. MDyLP
can be considered as a formal model of (evolving) non-
monotonic knowledge bases (NMKB). Evolution of (incom-
plete) knowledge is a key to understanding of nonmonotonic
reasoning. Therefore, a foundational research of the frame-
work proposed by MDyLP is of interest also for other ap-
proaches to non-monotonic reasoning and knowledge repre-
sentation.

Problem. However, there are some drawbacks of the ap-
proach that didn’t attract a sufficient attention until now.
They are connected to the causal rejection principle (CRP),1

which dominates research in the field. We will identify and
discuss

� irrelevant updates,

1If there is a conflict between the heads of rules then reject the
less preferred rule.

� inconsistencies which cannot be solved according to the
causal rejection principle,

� disagreement with other approaches relevant for updates
of NMKB (f.ex. with research in the fields of belief re-
vision or preferences handling, see (Gärdenfors and Rott
1995; Delgrande et al. 2003) and many others).

Proposed solution. Non-monotonic (defeasible, default)
assumptions play a crucial role in non-monotonic reason-
ing. Our analysis of drawbacks of CRP leads to an opinion
that the attention should be moved from conflicts of rules
to conflicts involving assumptions and dependencies on as-
sumptions. A dependency framework is proposed in the pa-
per. Rejection or insertion of rules is avoided; the frame-
work is aiming at a coherent view on a (possibly incoherent)
MDyLP2 by ignoring some dependencies. Our approach is
close to the spirit of answer set programming (thanks to the
stress on sets of assumptions, see ([Konczak et al. 2004;
Novák draft)).

The presented dependency framework evolved from our
Kripkean semantics of MDyLP (Šefránek 2000; Šefránek
2004). It can be said that the Kripkean semantics served
as a scaffold for the proposal of the dependency framework,
which is simpler, more general, has better intuitive and com-
putational properties. We believe that our approach3 con-
tributes to a shift from a discussion of examples and coun-
terexamples to a principle-based approach (see also (Alferes
et al.2005; Banti et al. 2005)) to the updates of NMKB topic.

Contributions. Main contributions of the paper are as fol-
lows:

� some drawbacks of MDyLP, which did not attract a suffi-
cient attention until now are discussed,

� a dependency framework is proposed in which those
drawbacks are overcome,

� a method of constructing a coherent semantic view on a
set of dependencies is presented,

2We use the shorthand MDyLP both for MDyL- programs and
programming. It is hoped that this ambivalence do not cause prob-
lems.

3For a preliminary report see (Hpomola et al. 2005).

DEPARTMENT OF INFORMATICS 515

11TH NMR WORKSHOP

� properties of the semantics based on dependencies on as-
sumptions are discussed.

Roadmap. First basic definitions relevant for understand-
ing MDyLP are recapped. Then the dependency framework
is introduced. After that we analyze solutions of conflicts
between dependencies. Postulates specifying solutions of
conflicts are introduced. Next, drawbacks caused by the
principle of causal rejection are analyzed. Semantics of
logic program updates based on the dependency framework
is described. Finally, our approach is evaluated, contribu-
tions are summarized and open problems characterized.

Multidimensional dynamic logic programming
Let

�
be a set of atoms. The set of literals is defined as������� �	��

��� ��������� ���

. Literals of the form
��� ���

,
where

��� �
are called subjective (

��� �
is intended as de-

fault negation). Notation: ����� � �
!��� �"�$#%�$� ���
. A

convention:
��� � ��� �&�'���

. If (is a set of literals then��� � (�
!��� ��)*#+)*� (�
.

A rule is each expression of the form
)-,.)0/21435343617)98

,
where :<;>= ,

)�1?)9@
are literals. If A is a rule of the form

as above, then
)

is denoted by B�CEDGFIH A+J and

)0/K1435343417)98 �

by � � FML�HNA+J . A finite set of rules is called generalized logic
program (program hereafter).

The set of conflicting literals is defined as O�PRQ �
 H)S/M1?)UT J #')�/V� ��� �W)UT �
. Two rules A /+1 A T are called

conflicting, if BXCEDGFYHNA / J and BXCEDGFIHNA T J are conflicting liter-
als. Notation: A /-Z A T . A set of literals [is consis-
tent if it does not contain a pair of conflicting literals, i.e.H\[^]_[RJY`^OSPRQ �-a

. An interpretation is a consistent set
of literals. A total interpretation is an interpretation b such
that for each atom

�
either

�c� b or
��� �0�'� b . Let b be

an interpretation. Then b�d � be`f����� � .
A literal is satisfied in an interpretation b iff

)*� b . A set
of literals [is satisfied in b iff [hg*b .

The basic semantic concepts introduced by (Alferes et al.
1998; Leite et al. 2001; Leite 2003; Alferes et al.2005) are
recapped below.

Definition 1 ((Alferes et al. 1998)) A total interpretation [
is a stable model of a program i iff

[�kj CED2l � H\i � [d J 1
where i � [Sd is considered as a Horn theory and

j C7DMl � H i �
[SdmJ is the least model of the theory. A program is coherent
iff it has a stable model. n
Definition 2 ((Leite et al. 2001)) A multidimensional dy-
namic logic program (also multiprogram hereafter) is a pairop� H q 1?r J , where

rs� Hut 17v J is an acyclic digraph,# t # ;>w , and q �
 i @��RxW� t �
is a set of (generalized

logic) programs.
We denote by

xzy|{
that there is a path from

x
to

{
andxU}~{

means that
xUy�{

or
x���{

. If
x

and
{

are incomparable
w.r.t.

}
, it is denoted by � . If

x�y�{
, we say that i%� is more

preferred than i @
(we denote it by i @ y i � with a little

abuse of
y

). n

If
r

is a path, we speak about dynamic logic program. If
o

is a multiprogram then
�

is the set of all atoms occurring in� �6�
� i�� and for each i @�� q an interpretation of i @
is a

consistent subset of
�^����� � �

.

Definition 3 (Dynamic stable model, (Leite et al. 2001))
Let

o
be a multiprogram. A total interpretation � is called

dynamic stable model of
o

iff

� �|j CED2l � H
�@ �
� i @���� CN��H o�1 ��J�J ��� C\�mH o�1 ��J?J 1 (1)

where
� C ��H o�1 ��J �
 A � i @f#0� AM� � iI�^H xfy>{!1 A Z

A2� 1 � # � � � F+L�H AM��J?J � and
� C �mH o�1 ��J �
!��� �&�$#%��� A ��@ �
� i @ H �	� B�CEDGFIH A+J 1 � # � � � FML�HNA+J?J � . n

Refined dynamic stable model is defined in (Alferes et
al.2005) similarly, with only a little difference – conditionx<}�{

is used in the definition of rejected rules instead
of

x�y'{
. We will use for that modified concept notation� C �G��H o�1 ��J). The set of all refined dynamic stable models

of
o

is denoted by
� � ����H o J . Troubles with tautological

and cyclic updates of dynamic logic programs are overcome
in refined semantics. However, the refined semantics for the
general case of multiprograms is not known. The well sup-
ported semantics of multiprograms is defined in (Banti et al.
2005), in order to improve the behaviour of semantics based
on CRP. The well supported semantics for MDyLP coincides
with the refined one on dynamic logic programs.

We will use refined semantics in the analysis of exam-
ples, which contain elementary dynamic logic programs of
the form � i 1��&�

, where i y �
. i can be viewed as an

original program and
�

as an updating program. We have
chosen the most simple case in order to be comprehensible,
but the analysis of examples is relevant for CRP in general.

Dependency framework
A specification of a semantics of multiprograms in terms
of dependencies and assumptions is presented in this paper.
Our approach is aiming at overcoming some drawbacks of
semantics based on the causal rejection principle. The basic
features of proposed dependency framework are described
in this section.4

Two notions of dependency relation are going to be de-
fined. First, a more general one and second, a dependency
relation generated by a program.

Definition 4 (Dependency relation) A dependency rela-
tion is a set of pairs

 H)01E¡ J #M)*�V�����
,
¡ g �����61?)	¢�f¡ �

.
A literal

)
depends on a set of literals

¡
,
)�¢�h¡

, with
respect to a program i (

)k£h¤	¡
) iff there is a sequence

of rules �NA / 153435361 A 8 �
, :¥;�¦ , and

� B�C7D!F�HNA 8 J �§)
,

4We could choose between two policies. The first one begins
with a motivation and then provides a formal framework. The sec-
ond one, to the contrary, uses the formal framework for an analysis
of motivating examples. We prefer the second one in this paper.
Motivation for our framework is detailed later.

516 Technical Report IfI-06-04

Belief Change and Updates

�
¡p# � � � FML�HNA / J ,

� for each
x
, ¦�� x�� : ,

¡ ��
 B�CEDGFIH A / J 143534341 BXCEDGFIHNA @ J � # �
� � FML�HNA @�� / J .
It is said that the dependency relation

£ ¤
is generated by

the program i . n
Notice that a literal cannot depend on itself (also in a context
of other literals). The dependency relation

£ ¤
cannot be

identified with derivability from i . If i �
�� ,	� �
then� £ ¤
 � �

, but
�

is not derivable from i .

Definition 5 (Closure property) A closure operator O j
as-

signs the set of all pairs

 H)017¡ J #�)-£ ¡�
 H ��� H)|£�
����) � � � � ¡ H) � £ ¡ J�J?J � to a dependency relation£

.
A dependency relation

£
has the closure property iff��� H £ J �&£

. n
Notice that

£ ¤
has the closure property.

Proposition 6 Let i be a program. Then
��� H £ ¤ J �&£ ¤

.

Proof sketch: Suppose that
)h£h¤���1���) � �_� � ¡) � £ ¤¡

. Consider a sequence of rules, satisfying the conditions
of Definition 4 such that each

) � �h� � ¡
is derived from¡

. Concatenate a sequence deriving
)

from
�

. We have
proved

) £�¤�¡
, n

Example 7 Let i be
�� , ��� ���
� , ��� � �
� , �
� , � �

It holds that
� £ ¤
!��� ��� �

,
�¥£ ¤
!��� � ���

, � £ ¤
����
,� £�¤
 � �

, � £�¤

��� ��� �
,

� £ ¤

��� � ���
, but also� £�¤

��� ���21 ��� � � �

,
� £ ¤
!��� � � 1 ��� � � � or

� £ ¤
!��� � � 1 ��� � � 1 ��� � � �
etc. We can see that some dependen-

cies of
)

on
¡

are of crucial interest, namely those, where¡ g§�����N� and
¡

generates (or contributes to a generation)
of a stable model. n

We have seen in Example 7 that dependencies on subjec-
tive literals are crucial from the viewpoint of stable seman-
tics. Therefore the role of (default) assumptions is empha-
sized.

Definition 8 (SSOA, TSSOA) � L g �����N� is called a
sound set of assumptions (SSOA) with respect to the depen-
dency relation

£
iff the set

O ��� H�� L J �
) �)Ux ��#M)�£ �&L �9� � L
is non-empty and consistent.

It is said that � L , a SSOA, is total (TSSOA) iff for each��� �
holds either

��� O � � H�� L J or
��� ����� O � � H � L J .n

Example 9 Let
£

be

 H � 1

��� � � � J 1 H ��� � � 1
!��� � � � J � .

There is no TSSOA w.r.t.
£

. Both

!��� � � � and

��� � � �
are SSOAs w.r.t.

£
.

An important remark: updates of conflicting multipro-
grams can be viewed as a construction of TSSOAs from
SSOAs while ignoring some dependencies. n

Next theorem shows that the dependency framework is
relevant from the stable (answer set) semantics point of view.

Theorem 10 (is a TSSOA w.r.t.
£h¤

iff !#" �%$ H (_J is a
stable model of i .

Let [be a stable model of i . Then there is (g������N� , a
TSSOA w.r..t.

£ ¤
s.t. [� O ��� $ H (_J . n

Semantics based on assumptions and dependencies.
Consider two mappings & 1 &�� . Let & assigns to each pro-
gram i the set of all its stable models. Let & � assigns to
each program i the set of all TSSOAs w.r.t.

£h¤
. We have

seen in Theorem 10 that (the semantics characterized by) &
is equivalent to (the semantics characterized by) & � . So, we
can speak about a semantics based on assumptions and de-
pendencies.

Dependencies in a multiprogram. We intend to use our
framework for handling conflicting dependencies in a multi-
program. Note that dependencies in a multiprogram are well
defined:

Proposition 11 Let
o

be a multiprogram. Then
£('*),+.- ¤)

is well defined. It holds

�@ �
�
£�¤) g £/'0),+.- ¤) 1

but the converse inclusion does not hold. n
We are going to introduce an approach (and some con-

cepts) which enables to handle conflicts involving depen-
dencies and assumptions.

Conflicts, solutions, postulates
There are essentially two possible sources of incoherence in
a (multi)program

o
:

1. two conflicting literals depend on a set of literals;

2. a literal
)

depends on a set of literals
¡

and
��� ��) �¡

; dependencies on subjective literals are crucial in our
framework, so we are focused only on the case that

)
is

an atom.

Definition 12 Let
£

be a dependency relation. It is said
that

£
contains a conflict ! (where ! g £

) iff for some��� �
is ! �
 H �"121 J 1 H ��� ���"131 J #41 g ����� � �

or ! �
 H � 121 J #51 g§�����N� 1 ��� �m�|�61 �
. n

We are interested in solving conflicts between dependen-
cies generated by multiprograms. It is assumed here that the
preference relation on programs is preserved also for corre-
sponding dependency relations, i.e. if i @

is more preferred
than i � then

£ ¤)
is more preferred than

£h¤87
.

DEPARTMENT OF INFORMATICS 517

11TH NMR WORKSHOP

Definition 13 Let
o

be a multiprogram and ! g £ '0),+.-
be

a conflict.
It is said that a set of dependencies

�
is a solution of the

conflict ! iff ! ¢g O j H � @ �
� £ ¤) � � J . � is called minimal
iff there is no proper subset of

�
which is a solution of ! .

Let
�

and
� � be minimal solutions of ! . It is said that

� �
is more suitable than

�
iff there is an injection � ��� ����� �

such that
� � ��� ��H?H � �%£ ¤ 7 � �%H � J �%£ ¤) J
	 {V}<x J . If

the cardinality of
�

and
� � is the same then for at least one� ��� � holds

{Wy x
.

A minimal solution
�

of a conflict ! is called good solu-
tion iff there is no more suitable solution of ! . n

Some comments to the definition: A solution of a conflict
is focused on dependencies generated by a single program.
Only elementary pieces of a chain of dependencies (depen-
dencies from some

£ ¤)
,

x¥� t) are ignored.5 It is more
suitable to ignore less preferred dependencies. Good solu-
tions consist of minimally preferred dependencies and the
principle of minimal change is obeyed. Note that in general
there are different good solutions of a conflict. Another ap-
proach to alternative solutions of a conflict is presented in
(Šefránek 2006a).

Our attention is focused also on conflicting assumptions.
First a notion of falsified assumptions is defined. It is used
in the analysis of Example 18.

Definition 14 An assumption
��� ���

, where
��� �

, is fal-
sified in a dependency relation

£
iff

� £ a
,

��� �"� ¢£ a
and

a
is a SSOA w.r.t.

£
.

A set of assumptions � L�g>�����N� is falsified in
£

iff it
contains a literal falsified in

£
. n

We can now proceed to postulates. Our goal is to transfer
the discussion about problems with logic program updates
from examples and counterexamples to some general prin-
ciples.6 Our postulates specify which dependencies should
be ignored (i.e. not considered when creating a coherent
semantic view on a set of dependencies). We believe that
the postulates are clear and can be continually improved, if
needed (note that a translation of many formalisms to the
dependency framework is possible). The construction of a
coherent semantic view on a set of dependencies presented
in this paper satisfies the postulates.

It is supposed in Postulates below that
� a dependency relation

£
is given,

� a finite set � �
 £"/M143534361�£�8 �
, where

£ @�
 £
, is given,

� an acyclic, transitive and irreflexive preference relation �
on � is defined.

5Our approach does not reject or insert some rules. Its ambition
is to provide a coherent view on a (possibly incoherent) MDyLP
(NMKB) by ignoring some dependencies.

6An allied approach is presented in (Alferes et al.2005; Banti
et al. 2005) as regards irrelevant updates (according to our termi-
nology). We discuss the case of irrelevant updates in (Šefr ánek
2006b).

If
£ @ 1�£ � � � and

£ @ � £ � , it is said that
£ � (

£ @
) is

more (less) preferred as
£ @

(
£ �). Similarly, if

� �%£ � and� � �%£ @
, it is said that

�
(
� �) is more (less) preferred than

� �
(
�
).

Postulate 1 Let � L be a set of assumptions falsified in
£

.
Then all dependencies of the form

)�£ ¡
, where � L�g ¡

,
are ignored.

Note that Postulate 2 is a generalization of two special
cases (for two kinds of conflicts from Definition 12. The
postulate corresponds partly to the CRP, but it also extends
the possibilities of solving conflicts. Moreover, the general
formulation of Postulate 2 enables also other kinds of so-
lutions of a conflict of the form

) / £ ¡�1?) T £ ¡ �
than those enabled by CRP, see Example 20 (we empha-
size that bridging the gap between belief revision commu-
nity and dynamic logic programming community is enabled
as a consequence). Postulate 2 admits non-determinism: al-
ternative good solutions of a conflict are possible. This non-
determinism is an appropriate one in the context of stable
model semantics.

Postulate 2 Let ! be a conflict. If there is a set [of good
solutions of ! , then one

�>� [is selected and ignored.

Finally, the last postulate is introduced below. The pos-
tulate enables to distinguish more preferred TSSOAs (stable
models) in order to be able solve the problems in the style of
prioritized logic programming. Of course, there are different
motivations behind (logic program) updates and preferential
reasoning. On the other hand, multidimensional dynamic
logic programming is aiming at distinguishing various kinds
of preferences (w.r.t. time, agents, hierarchical instances,
domains of knowledge, hierarchy of power, viewpoint etc.
etc.) and we expect that it should (even must) be able also
to select more preferred stable models in the style of prior-
itized logic programming. May be, different strategies of
conflict solving along different dimensions in a multipro-
gram are needed (for a more detailed discussion see Exam-
ple 21). We are proposing a first step toward that goal below.
A preference relation on sets of assumptions is defined.

Example 15 If a less preferred program is i �
�� ,��� � � �
and a more preferred program, its update, is

� �
 ��, ��� � ���
, we get two standard TSSOAs: � L / �
!��� � ���

and �&L T �
!��� � � �
(and corresponding standard

stable models).
However, we can consider � L /

as more preferred than� L T
. An example from (Delgrande et al. 2003) is discussed

in Example 21. n
We accept that sometimes it is useful also discriminate a

preference relation on (sets of) assumptions. It enables to
gain capabilities of logic programming with preferences in
multidimensional dynamic logic programming, see Example
21.

Definition 16 Let be [�H ��� � � J �
 x�� t #~� A �
i @ ��� ���k� � � FML�HNA+J � .

518 Technical Report IfI-06-04

Belief Change and Updates

Let be
)�1?) � � �����N� . The assumption

)
is preferred at

least as the assumption
) � iff for each maximal

x"� [�H) ��J
and each maximal

{W� [�H) J holds either
xU}�{

or
x � {

.)
is more preferred than

) � iff
)

is preferred at least as
) �

and for at least one pair
xE1 {

holds
x9y�{

.
A set of subjective literals [is more preferred than the set

of subjective literals [R� iff each
) � [� [�� is preferred at

least as each
) � � [� � [and there is an

)|� [� [� more
preferred as each

) � � [�� � [. n
Definition 17 Let

o � H q 1?r J be a multiprogram,
r �

H\t 1?v J , let be
x71��!1 �U� t .

It is said that a set of assumptions �&L is falsified w.r.t.
a more preferred set of assumptions (and a dependency
relation

�%� C���g £/')���� ¤)
iff

� (is a TSSOA w.r.t.
�Y� C	� ,

� there are
) / � (and

) T � � L such that
��� �V) T �

O ��

����� HN(�J ,
� (is not falsified and it is also not falsified w.r.t. some1

and some
�%� C�� � g £ ')��
� ¤)

, where
��y �

,
�Y� C	� g�Y� C	� � , 1

is a TSSOA w.r.t.
�Y� C	� � . n

We will use a shorthand “wrt-falsified” supposing that the
corresponding more preferred set of assumptions and the
corresponding dependency relation are implicitly clear or it
does not matter what set of assumptions and what depen-
dency relation are considered.

Finally, the last postulate is introduced for the case, if a
preference relation on sets of assumptions is defined.

Postulate 3 Let � be an acyclic, transitive and irreflexive
preference relation on sets of assumptions. If � L is wrt-
falsified, then all dependencies of the form

)	£ ¡
, where� LWg ¡

, are ignored.

Semantics of multiprograms based on assumptions and
dependencies. We outline now a preliminary characteri-
zation of semantics of a multiprogram (in our dependency
framework). The semantics is characterized by a map-
ping from a multiprogram

o
to a set of pairs of the formH �&L 1��Y� C	�0J , where

�Y� C	� g £/'0),+.- ¤)
and � L is a TSSOA

w.r.t.
�Y� C	� . It means that our semantics is looking for a

conflict-free subset of
£ '),+.- ¤)

and for a reasonable set of
assumptions (while Postulates 1 – 3 are satisfied). Technical
details of the semantics are motivated and elaborated below.

Semantics based on rejection of rules
We will point out some drawbacks of semantics based on re-
jection of rules in this section. Only examples of the form� i 1��&�

, where i y��
, are used (with the only exception).

Refined dynamic stable model semantics is used in the anal-
ysis of the examples, but our arguments are applicable to
any semantics focused only on conflicts between the heads
of rules (hence, also to the general multiprograms).

We are proceeding to an example illustrating problem of
irrelevant updates.

Example 18 ((Eiter et al. 2002))

i �<x�� x�� ������� ��� , x�� x�� A � x " x "��x�� x�� A � x " x "�� ,�k� ��� ��x�� x�� A � x " x "�� , ��� ��x�� x�� ������� ���
� � ���	H��\i 1E�&� J �
G

��� �%x�� x�� A � x " x "�� 1 ��� �mx � x�� ��� ��� ��� � 1
 x�� x�� A � x " x "�� 1�x�� x�� ������� ��� �G�

.
Notice that

x�� x�� A � x " x "�� £�¤"!$#
!��� �fx�� x�� ������� ��� �
,��� �ex�� x�� A � x " x "�� £�¤"!$#

��� �ex�� x�� ������� ��� �

, but the as-
sumption

��� �Rx�� x�� �	� ��� �
�
is falsified in

£ ¤%!$#
because ofx � x�� ��� ��� �
� £ ¤"!$#�a

. Information given by
�

do not over-
ride the information of i (which is based on the empty set of
assumptions). The only TSSOA w.r.t.

£ ¤"!$#
is

a
. Consider

Postulate 1.
Irrelevant updates are analyzed in a more detail in

(Šefránek 2006b).
In general, troubles with all semantics based on rejection

of rules are caused also by a too free choice of an interpre-
tation involved in the fixpoint condition (1). We mean an in-
terpretation containing falsified assumptions (default nega-
tions). Interpretations generated by falsified assumptions do
not provide an appropriate candidate for a semantic charac-
terization of a multiprogram. A remark is in place: conflicts
involving assumptions did not attract an adequate attention
until now. n

Incompleteness of updates based on CRP is illustrated by
the next example.

Example 19 7

i �
 � �'& � x�& " ��,)(� " x��+* �� �
 (� " x���*�, ��� � � �'& � x�& " � � 3
There is no conflict between heads of rules. Hence, no

rule can be rejected and the meaning of i � �
cannot be

updated according to CRP. However, there is a kind of con-
flict between both programs. i � �

has no stable model, but
both i and

�
are coherent.

There is no clear reason why to solve conflicts between
heads of rules and not to solve other conflicts. Also con-
flicts caused by some assumptions and conflicts between
dependencies on some assumptions are relevant (for non-
monotonic reasoning).

The third postulate of (Katsuno and Mendelzon 1991),
3[KM] hereafter (if both , and - are satisfiable then ,/.0-
is also satisfiable, where , is a knowledge base, - is an up-
date and . is an update operation) cannot be satisfied by a
semantics focused only on rejection of rules with conflicting
heads. n

We propose to ignore less preferred dependencies in order
to cut off a dependency of an atom

�
on the assumptions

containing
��� ���

.8

7This is a variant of an example from (Pereira and Pinto 2005).
8We do not exclude that reasoning based on reduction ad absurd

(Pereira and Pinto 2005) is useful for knowledge based systems.
However, we prefer here constructive mode of reasoning and a kind
of compatibility with answer set programming paradigm.

DEPARTMENT OF INFORMATICS 519

11TH NMR WORKSHOP

Another of the drawbacks is that CRP is not able to rec-
ognize alternative solutions of a given inconsistency (note a
striking difference w.r.t. the belief revision research).

Example 20 9

i �
�� ,��3��, � ���

��� � � , � �
� C �!��H��\i 1E�&�61
!��� � � 13� � J �
�� , �

and� � ���kH�� i 1��&� J �
G

��� � � 1 � �G�
. However, it is not

clear why
� ,

can be rejected and
� ,

cannot be rejected.
There are two (if we respect the preference relation)
maximal coherent subsets of incoherent i � �

and two
corresponding stable models – besides

!��� � � 13� �
also
!��� �*�21 ���

.
Alternative solutions of this conflict using nonmono-

tonic integrity constraints are proposed in (Šefránek 2006a).
However, notice that the more general formulation of Pos-
tulate 2 in present paper enables alternative solutions, too.n

Let us proceed to logic programs with preferences. Note
that there is a trivial correspondence between prioritized
logic programs and multidimensional dynamic logic pro-
grams. Consider first static preferences (on rules). Let a
MDyLP

o
be given. If i @ y i � then for each A � i @

and
each AM� � i � holds A y AM� . Otherwise, rules are incompara-
ble.

Conversely, let a prioritized logic program be given as a
pair H
 A @ #�x&� b � 14y J . The corresponding MDyLP we ob-
tain as a set of programs (singletons) i @ �
 A @ � preservingy

: i @�y iI� iff A @�y A6� .
If preference relation is a dynamic one, then a dynamic

preference relation on programs is needed. A possibility of
such extension of MDyLP is supposed (f.ex. in (Alferes et
al. 1998)), but we are not aware of a realization of the pos-
sibility. However, it is feasible and straightforward.

Example 21 10 i / �
 � , ��� � � � 1 i T �
�� , � 1 i�� �
 ��, � 1 ��� � � � ; i / y i � , i / �9i T ��i � .� � ���kH�� i 1��&� J �
G
�� 1 �21 ��� � � � 1
�� 1 � 1 ��� �*� �G�
. There are

no conflicting rules in this multiprogram, hence no rule can
be rejected.

The more preferred model (not only) according to (Del-
grande et al. 2003) is

�� 13�M1 ��� � � � .
Suppose now that �&L / �
!��� � � � is more preferred than� L T �
!��� ��� �

. Hence, “it is not known
�
” seems not to be

a reasonable assumption and we can consider it as falsified
by the more preferred set of assumptions.

In technical terms introduced in Definition 16:[�H ��� � � J �
 ¦ �
and [�H ��� � � J �
��X�

, hence
��� � �

is more preferred than
��� � �

. Further,

��� � � � is a TSSOA

w.r.t.
£ ¤���! ¤	� ! ¤	

, it is neither falsified nor wrt-falsified and
finally,

� � O � � $ ��� $ �
� $
 H
!��� � � � J . Therefore,

!��� � � �

is
falsified w.r.t.

!��� � � � and
£ ¤�� ! ¤	� ! ¤	

.

9This example is due to Martin Bal áž. More thorough discus-
sion of this Example is in (Šefr ánek 2006a).

10This is an adapted version of an example from (Delgrande et
al. 2003). For a more thorough discussion see (Šefr ánek 2006a).

There is an intuitive difference between updates and pref-
erences (see (Alferes and Pereira 2000)). However, the mul-
tidimensional approach of MDyLP should represent also
preferential reasoning. May be, different strategies for dif-
ferent dimensions are needed. Moreover, there are some
problems with very notion of update, if default negations
are allowed (even in heads of rules). We will devote a future
research to the topic of updates and revisions of NMKBs. n

A coherent semantic view on a set of
dependencies

We are going to define a reasonable semantic view on a set
of dependencies

£
. The view will be a set of dependencies�Y� C	� , which is

� coherent (in the sense defined below),
� a subset of

£
.

Definition 22 (Coherent dependency relation) A depen-
dency relation

£
is called coherent iff there is a TSSOA

w.r.t.
£

. A dependency relation is called incoherent iff it is
not a coherent one. n
Consequence 23 Let a dependency relation

£
be coherent.

Let � L be a TSSOA w.r.t.
£

. Then there is no ! g £
s.t.! �
 �c£ � L 1 ��� � �c£ � L #�� � ���

or ! �
 �'£
� L #M�k� � � ��� ���k� � L �

.

Proof: O � � H �&L
J is consistent. n
In general,

£/'0),+.- ¤)
can be incoherent. Our approach to

semantics of MDyLP is focused on looking for assumptions
which can serve as TSSOA w.r.t. a corresponding subset of
given dependency relation

£ ') + - ¤)
. Note that more rea-

sonable semantic views on a set of dependencies are possi-
ble (of course, this can be expected – stable model semantics
is at the background of our constructions).

There are different TSSOAs w.r.t. different subsets of£ ¤"!$#
in next example.

Example 24

i �
!��� ���S, ��� � � �k�
 ��, ��� � ���� � � , ��� �*� � � , ��� �*� �
� L / �

��� � ��� 1 � L T �
!��� � � �

,
�Y� C	� /<� O j H?H £�¤� £ # J �

��� �*��£ ¤
!��� � ���G� J 1 �%� C�� T � O j H?H £ ¤ � £ #

J �
!��� � � £ ¤

��� �*� �!� J .�%� C�� /
is coherent (� L /

is a TSSOA w.r.t.
�Y� C	� /

) and
also

�%� C�� T
is coherent (�&L T

is a TSSOA w.r.t.
�%� C�� T

) n
We are aiming to construct all possible dependency

(sub)relations which are coherent (w.r.t. a TSSOA), see Ex-
ample 24. Note that also coherent dependency relations can
be revised (until we obtain all possible pairs of the formH�� 1 �Y� C	�0J , where � is a TSSOA w.r.t.

�%� C�� . Hence, we
are aiming to solve conflicts connected to some subsets of����� � .

520 Technical Report IfI-06-04

Belief Change and Updates

Definition 25 If
1 g �����N� is fixed and ! g £

be a con-
flict (i.e. ! �
 H � 121 J 1 H ��� �*�"131 J # 1 g.�����N� �

or! �
 H �"121 J #*1 g ����� � 1 ��� ��� � 1 �
), then it is said

that ! is a conflict of
1

. n
If we are looking for coherent subsets of a dependency re-

lation, we are focused on solving conflicts of candidates for
TSSOAs. Pairs of assumptions and dependencies are rele-
vant for our semantics of dynamic logic programs.

We will describe a construction of a coherent dependency
relation from an incoherent

£ '*) + - ¤)
. The constructed re-

lation represents – in a sense – a coherent semantic view on
an incoherent multiprogram. We present a nondeterminis-
tic algorithm which iteratively finds preferred minimal so-
lutions of conflicts in

£ '*) + -
and simultaneously constructs

TSSOAs, see Figure 1. The algorithm iteratively solves con-
flicts and modifies assumptions. Observe that Postulates of
Section Conflicts, solutions, postulates are obeyed in the al-
gorithm.

Let describe the behaviour of the algorithm. It is assumed
that there is a set � containing pairs of the form H�� 1 �Y� C	�0J ,
where � are assumptions and

�Y� C	� is a dependency rela-
tion. � is neither falsified in

£ '),+.- ¤)
(nor falsified w.r.t.

a more preferred set of assumptions, if a preference rela-
tion on sets of assumptions is accepted). Initially,

�Y� C	� is£/'),+.- ¤)
.

If � is a TSSOA w.r.t.
�Y� C	� , the task is done. Otherwise,

conflicts are solved in a REPEAT – UNTIL cycle. First a set
of all good solutions of a conflict is identified. For each good
solution a coherent view

�%� C�� @
is computed. Only the first

computed view is processed, alternative views are collected
in � .

The value of variable
x

is = after the for each-cycle, if there
is no solution of the conflict and the computation failed. If
� is not a TSSOA and the conflict has been solved in the
current run of the REPEAT-UNTIL cycle and if there are no
more conflicts in current

�%� C�� �
then O �

��� ��� H ��J is con-

sistent but not complete and the cycle is finished in the next
run because of

xe� = . Otherwise, � is a TSSOA w.r.t. the
computed

�Y� C	� � .
We have to overcome the final complication before pro-

ceeding to the semantic characterization of multiprograms.
It is proposed to accept minimal sets of assumptions. Let a
multiprogram

o
be given. If

1
and

1 � are TSSOAs w.r.t.�Y� C	� 1 �%� C�� � g £ ') + - ¤)
, respectively, and

1
 1 � , then
only

1
is selected as a proper semantic characterization ofo

. See next Example as an illustration.

Example 26 11

i �
�� , ��� � � �k�

��� � � , ��� �0� �
�S, ���

� L / �
!��� � � � ,
� £�¤"!$# � L / 13�_£ ¤"!$# �&L /

. �&L T �
!��� � � 1 ��� � � �
,

�%� C�� T � O j H�H £ ¤ � £ # J �
�� £ ¤
!��� � � �G�
.

11This Example is proposed by J.Leite.

INPUT: a pair H�� 1 �Y� C	�0J from � , where � g �����N� ,�Y� C	�§g £/'),+.- ¤)
OUTPUT: a pair H � 1��Y� C	� � J , where � is a TSSOA w.r.t.�Y� C	� � or the decision that it is not possible to construct an
TSSOA from �
begin

if � is a TSSOA w.r.t.
�Y� C	� then RETURN H�� 1 �%� C���J

fi�%� C�� � � � �%� C��
REPEAT

if
�%� C�� � contains a conflict ! of � then
SELECT the set q of all

�
, good solutions of !

fixU� � = ;
for each

�>� q doxR� �<x�� ¦ ;
�Y� C	� �@ � � O j H �%� C�� � � � J

if
x�� ¦ then � � � � � H�� �@ 1��Y� C	� �@ J fi;�Y� C	� � � � �Y� C	� � /

od
if

x�� = then FAILURE := true
else FAILURE := false fi

UNTIL � is a TSSOA w.r.t.
�Y� C	� � or FAILURE

if not FAILURE then RETURN H � � 1��Y� C	� � J
else RETURN FAILURE fi

end

Figure 1: Non-deterministic algorithm removing conflicts
and computing TSSOAs

There are two TSSOAs: � L /
w.r.t.

£�¤%!$#
and � L T

w.r.t.�Y� C	� T
. The second one contains more non-monotonic as-

sumptions and we prefer to accept minimal sets of assump-
tions. n
Definition 27 Let

o
be a multiprogram. Let�Y� C	� g £/'0),+.- ¤)

be coherent and � be a TSSOA
w.r.t.

�Y� C	� .
It is said that � is a good set of assumptions (GSOA) w.r.t.�Y� C	� iff there is no TSSOA � � w.r.t. a

�%� C�� � g £/'*),+.- ¤)
s.t. ���
 � . n
Definition 28 (Semantics of multiprograms) Semantics
of multiprograms is a mapping & from multiprograms
to sets of pairs of the form H�� 1 �%� C���J , where

�%� C�� is a
coherent subset of

£ '�),+.- ¤)
w.r.t. assumptions � and � is

a GSOA w.r.t.
�Y� C	� . n

We can create canonical programs12 determined by all
GSOAs of a multiprogram.

Definition 29 Let

 � / 143435341 � 8 �

be all GSOAs w.r.t.
 �Y� C	� /M153434341 �Y� C	� 8 �
, respectively, of a multiprogram

o
.

Then a program of the form

) , � @ #) �

O ��

�����) H�� @ J 1?) ¢� � @�1�x_� ¦ 143435361 : �
is called canonical

12For similar construction see (Nov ák draft; Šefr ánek 2004;
Šefr ánek 2000).

DEPARTMENT OF INFORMATICS 521

11TH NMR WORKSHOP

program representing a (maximally) coherent semantic view
on

o
. n

Theorem 30 Let � be a canonical program represent-
ing a multiprogram

o
. The set of all stable mod-

els of � coincide with the set of sets

 O �

��� �) H � @ J #

� @
is a GSOA w.r.t.

�%� C�� @ �
Evaluation

Some important properties of the semantics based on depen-
dency framework are presented in this section.

We consider 3[KM] as a criterion of completeness of our
approach: if all programs from a multiprogram are coherent
then a coherent view (on the dependency relation generated
by the programs of multiprogram) is required. Solution of
all conflicts generated by interactions of programs seems to
be a reasonable minimal condition for maintaining coher-
ence of multiprograms. Incoherence of a single program is
a problem of another kind than solution of conflicts between
programs.

An analogy of 3[KM] is satisfied in our dependency
framework. We express it first for the simplest case.

Theorem 31 Let �\i 1E�&�
be a multiprogram. If

£h¤
and

£ #
are coherent then there is also a coherent dependency rela-
tion

�Y� C	�§g £ ¤"!$#
.

Proof: Suppose that there is no � L which is a TSSOA
w.r.t.

£ ¤"!$#
. It means that for each �&L is O � � $ ��� H �&L
J

inconsistent or incomplete. Incompleteness is excluded if
TSSOAs w.r.t.

£ #
or

£�¤
are considered.

Consider � L which is a TSSOA w.r.t.
£ #

and it is not
falsified. We supposed that there is a conflict ! contained in£�¤"!$#

, i.e.
� £�¤"!$# �&L ,

��� ��� £�¤"!$# � L or
� £�¤"!$#

� L ,
��� � � � � L . Of course, the conflict is not caused by£ #

, so there is
� g £ ¤

such that O j H £ ¤"!$# � � J does not
contain ! .

If �&L is falsified: let be (�
 � � � # � £ ¤a 1 ��� �0�'� � L �
. It holds for each TSSOA � ���

w.r.t.
£h¤

that (g�O � ��$ H�� ��� J . If � ���
is falsified w.r.t. a set of

assumptions
1

and
£ ¤"!$#

then there is nothing to prove (
1

is not falsified and it is a TSSOA w.r.t.
£ #

, the situation
can be reduced to that of the previous paragraph).

Hence, assume that � �+�
is not falsified w.r.t. to some

set of assumptions and
£�¤%!$#

. Therefore, only conflicts of
the form

 �c£�¤"!$# � �+�!1 ��� �&� £�¤"!$# � ��� �
have to be

solved (and there is a good solution of such conflicts).
Finally, conflicts removing can be repeated until a coher-

ent subset is reached. n
Consequence 32 Let

o � � o��V143435361 o��E�
be a dynamic

logic program. If each
£ ¤)

is coherent then there is also
a coherent dependency relation

�Y� C	�§g £(' 7 ¤ 7
.

Conflicts among incomparable programs are not solvable
in a natural way, so for the general case of multiprograms
we accept also the condition that the union of incomparable
programs is coherent.

Theorem 33 Let
o � H q 1?r J be a multiprogram. Let be£ ¤)

coherent for each
x¥� t . Let 	 be the set of all in-

comparable programs in
o

(i.e., for each i @?1 iI� � 	 1�x ¢�^{
holds

x � {
), let be
 �
 xR� t # i @U� 	 �

.
If

£ ') +�� ¤)
is coherent, then there is also a coherent de-

pendency relation
�%� C���g £ ' 7 +.- ¤87

.

Our framework is immune w.r.t. tautological updates.

Proposition 34 (Tautological updates) Let i be a pro-
gram,
 be a tautology (i.e. BXCEDGF�H�
�J � � � F+L�H�
�J) and�c�

 �

. Then each GSOA w.r.t.
£h¤"!$#

is a GSOA w.r.t.£ ¤
.

Proof is trivial -
�

does not generate a new dependency. n
Consequence 35 Let

o
be a multiprogram (some of the pro-

grams in q may be empty). Let for each
x�� t there is a

(possibly empty) set of tautologies � @
. Let & H o J be the set

of all GSOAs w.r.t. corresponding
�Y� C	�	g £('0),+.- ¤)

.
Then the set of all GSOAs w.r.t. the corresponding�Y� C	�§g £/'0),+.- ¤) ! �) is precisely & H o J .
Irrelevant updates (and unsupported cyclic updates, as a

special case) are avoided in our semantics.
Rejection of conflicting rules (according to the dynamic

stable model semantics) is satisfied in the dependency
framework.

Proposition 36 If A � � CN��H o�1 ��J then there is a good so-
lution of conflict ! �
 B�CEDGFIH A+J £ ¤) � 1 ��� � B�CEDGFIH A+J £ ¤ 7
� �

, where
xRy�{

.

Conclusions, discussion, open problems
We summarize main contributions of the paper as follows:

� some drawbacks of CRP, which did not attract a sufficient
attention until now, were discussed,

� a step toward bridging the gap between the research in
dynamic logic programming on the one hand and belief
revision or preferences handling on the other hand is done,

� a dependency framework (close in the spirit to stable
model semantics) has been developed as a basis for an
analysis of conflicts contained in a MDyLP and also for
their solution,

� a semantics of MDyLP based on the dependency frame-
work has been developed,

� a set of postulates governing solution of conflicts is pro-
posed,

� the proposed semantics is immune w.r.t. tautological,
cyclic and irrelevant updates, it is complete (w.r.t 3[KM]),
rejection of conflicting rules is satisfied,

� the semantics uses a construction of a coherent semantic
view on a set of dependencies (a non-deterministic algo-
rithm is presented); the construction respects postulates
expressed in the paper; the semantics avoids drawbacks
analyzed in the paper.

522 Technical Report IfI-06-04

Belief Change and Updates

Remarks of technical nature: Only generalized logic pro-
grams are considered in the paper in order to support a sim-
ple discussion of refined dynamic stable semantics (Alferes
et al.2005). However, an extension to generalized extended
logic programs (GELP) is straightforward and will be pre-
sented in a forthcoming paper. Examples with pairs of pro-
grams i and

�
, where

�
is more preferred than i , are used

in order to be as clear and simple as possible. However, the
construction is applicable (and results hold) for the general
case.

Presented approach opens some problems and topics for
our ongoing or future research.

At the first place we would like to mention the problem
of updates of NMKB. Second postulate of (Katsuno and
Mendelzon 1991) cannot be taken literally because of the
presence of default (nonmonotonic) assumptions in NMKB.
We believe that our dependency framework represents a
good starting point for better understanding of updates of
NMKB. Similarly, the relation of updates and revisions in
the framework of NMKB is an open and interesting prob-
lem including a construction of a unified view on update and
revision (revisions of incomplete and imprecise knowledge
about changing world).

We are aiming at a more detailed elaboration of postu-
lates for logic program updates. An evaluation of our Krip-
kean semantics (Šefránek 2000; Šefránek 2004) in terms of
postulates and also an evaluation and comparison of other
frameworks for NMKB and defeasible reasoning (argumen-
tation) in terms of the dependency framework is a topic for
future research. Default negations in heads should be re-
thought. A challenging task is to use different strategies
for conflict solutions along different dimensions in MDyLP.
The relation of our approach to prioritized logic programs
deserves a more detailed attention. A detailed analysis and
comparison of the refined extension principle to irrelevant
updates should be done. Satisfaction of fifth postulate of
(Katsuno and Mendelzon 1991) and existence of a state con-
densing operator of (Leite 2003) in our framework is also an
interesting open problem. We intend to investigate connec-
tions of our approach to other approaches to belief revision
based on a notion of dependency (Darwiche and Pearl 1997;
del Cerro and Herzig 1996) and others. Last, but not least,
computational properties of our semantics have to be stud-
ied. Some of the problems mentioned above are topics of an
ongoing research.

Acknowledgments. The work was supported under grants
APVV-20-P04805 and VEGA 1/3112/06. I am grateful
to one of the anonymous reviewers for his comments and
also to Martin Baláž, Martin Homola and Jozef Šiška for
many discussions about a previous version of the depen-
dency framework.

References

Alferes, J.J., Pereira, L.M.: Reasoning with logic program-
ming. Springer 1996

Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H.,
Przymusinski, T.C.: Dynamic logic programming. In:
Procs. of KR’98. (1998) 98–109
Alferes, J.J., Pereira, L.M.: Updates and preferences, Proc.
of JELIA 2000. Springer.
Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: The re-
fined extension principle for semantics of dynamic logic
programming. Studia Logica 1 (2005)
Banti, F., Alferes, J.J., Brogi, A., Hitzler, P.: The well sup-
ported semantics for multidimensional dynamic logic pro-
grams. LPNMR 2005, LNCS 3662, Springer, 356-368
Darwiche, A., Pearl, J.: On the logic of iterated belief revi-
sion. Artificial Intelligence, 89, 1997
del Cerro, L.F., Herzig, A,: Belief change and dependence.
Procs.of TARK VI, Morgan Kaufmann, 1996
Delgrande, J., Schaub, T., Tompits, H.: A Framework
for Compiling Preferences in Logic Programs, Theory and
Practice of Logic Programming 3(2), 2003, pp. 129-187
Eiter, T., Sabbatini, G., Fink, M., Tompits, H.: On proper-
ties of update sequences based on causal rejection. Theory
and Practice of Logic Programming (2002) 711–767
Gärdenfors, P., Rott, H.: Belief revision. In: Handbook
of Logic in Artificial Intelligence and Logic Program-
ming, vol. 4 (Epistemic and Temporal Reasoning), Clare-
don Press. Oxford 1995
Homola, M., Šefránek, J., Baláž, M., Ab-
stract dependency theory: preliminary report.
http://www.computational-logic.org/content/events/iccl-
ss-2005/talks/MartinHomola.ps
Katsuno, H., Mendelzon, A.O.: On the difference between
updating a knowledge base and revising it. Proc. of KR’91
Konczak, K., Linke, T., Schaub, T.: Graphs and Colorings
for Answer Set Programming: Abridged Report. LPNMR
2004: 127-140
Leite, J.A., Alferes, J.J., Pereira, L.M.: Multi-dimensional
dynamic knowledge representation. In: LPNMR 2001,
Springer, 365–378
Leite, J.A.: Evolving Knowledge Bases: Specification and
Semantics. IOS Press (2003)
Novák, P.: Stable Model Semantics Algorithm: Approach
Based on Relation of Blocking Between Sets of Defaults;
2004; http://peter.aronde.net/publications.html
Pereira, L.M., Pinto, A.M.: Revised Stable Models - A Se-
mantics for Logic Programs. EPIA 2005: 29-42

Šefránek, J.: Semantic considerations on rejection. In:
Procs. of NMR 2004.
Šefránek, J.: A Kripkean semantics for logic program
updates. : In M. Parigot, A. Voronkov (eds.), Logic for
Programming and Automated Reasoning. Springer 2000,
LNAI 1955
Šefránek, J.: Nonmonotonic integrity constraints. In Fink
M., Tompits, H., Woltran, S. (eds.): Proc. of 20th Work-
shop on Logic Programming (WLP 2006), Vienna, 2006.

Šefránek, J.: Irrelevant updates of nonmonotonic knowl-
edge bases. Accepted as a poster for ECAI 2006.

DEPARTMENT OF INFORMATICS 523

	Answer Set Programming
	Modular Equivalence for Normal Logic Programs
	A Tool for Advanced Correspondence Checking in Answer-Set Programming
	On Probing and Multi-Threading in Platypus
	Towards Efficient Evaluation of HEX-Programs
	Tableaux Calculi for Answer Set Programming
	Approaching the Core of Unfounded Sets
	Elementary Sets for Logic Programs
	Debugging inconsistent answer set programs
	Forgetting and Conflict Resolving in Disjunctive Logic Programming
	Analysing the Structure of Definitions in ID-logic
	Well-Founded semantics for Semi-Normal Extended Logic Programs

	Theory of NMR and Uncertainty
	Three views on the revision of epistemic states
	A revision-based approach for handling inconsistency in description logics
	Merging stratified knowledge bases under constraints
	Merging Optimistic and Pessimistic Preferences
	Distance-Based Semantics for Multiple-Valued Logics
	On Compatibility and Forward Chaining Normality
	Incomplete knowledge in hybrid probabilistic logic programs
	Extending the role of causality in probabilistic modeling
	Model and experimental study of causality ascriptions
	Decidability of a Conditional-probability Logic with Non-standard Valued Probabilities
	About the computation of forgetting symbols and literals
	Handling (un)awareness and related issues in possibilistic logic: A preliminary discussion
	On the Computation of Warranted Arguments within a Possibilistic Logic Framework with Fuzzy Unification
	Preference reasoning for argumentation: Non-monotonicity and algorithms

	NMR Systems and Applications
	DR-Prolog: A System for Reasoning with Rules and Ontologies on the Semantic Web
	An Application of Answer Set Programming: Superoptimisation A Preliminary Report
	COBA 2.0: A Consistency-Based Belief Change System
	Modelling biological networks by action languages via answer set programming
	A Non-Monotonic Reasoning System for RDF Metadata
	Relating Defeasible Logic to the Well-Founded Semantics for Normal Logic Programs
	ProLogICA: a practical system for Abductive Logic Programming

	Action and Change
	Model Checking Meets Theorem Proving
	Designing a FLUX Agent for the Dynamic Wumpus World
	A Semantics for ADL as Progression in the Situation Calculus
	Planning ramifications: When ramifications are the norm, not the 'problem'
	Resolving Conflicts in Action Descriptions
	An Extended Query Language for Action Languages

	Argumentation, Dialogue, and Decision Making
	On Formalising Dialog Systems for Argumentation in Event Calculus
	Approximate Arguments for Efficiency in Logical Argumentation
	On Complexity of DeLP through Game Semantics
	An Argumentation Framework for Concept Learning
	An Abstract Model for Computing Warrant in Skeptical Argumentation Frameworks
	Managing Deceitful Arguments with X-logics
	Comparing Decisions in an Argumentation-based Setting
	Defeasible Reasoning about Beliefs and Desires
	Refining SCC Decomposition in Argumentation Semantics: A First Investigation

	Belief Change and Updates
	About time, revision and update
	An axiomatic characterization of ensconcement-based contraction
	Elaboraing domain descriptions
	Merging Rules
	A reversible framework for propositional bases merging
	Mutual Enrichment for Agents Through Nested Belief Change
	Getting Possibilities from the Impossible
	Rethinking Semantics of Dynamic Logic Programming

