
Reasoning about Action and Change in Timed Domains

Yuping Shen and Guangrui Dang and Xishun Zhao
Institution of Logic and Cognition

Department of Philosophy
Sun Yat-sen University, P.R. China 510275

{shyping,danggr,hsszxs}@mail.sysu.edu.cn

Abstract

Reasoning about Action and Change (RAC) has been an im-
portant topic since the early days of Artificial Intelligence re-
search, numerous logical formalisms for RAC were proposed.
Recently, two formalisms named AT and AL2

TC have ex-
tended RAC to so-called timed domains, i.e., domains where
actions are required to be performed within a certain amount
of time or after a certain amount of time has elapsed. How-
ever, we argue that AT has a semantic defect in modeling
timed domains and reasoning in AL2

TC is relatively difficult
due to its higher complexity. In this paper, we propose an ex-
tension of language E called timed action language T E for
RAC in timed domains, which avoids the semantic defect of
AT , in addition, a polynomial translation from T E to Satisfi-
ability Modulo Theory(SMT) is given, s.t. T E can be easily
implemented on top of SMT solvers. Moreover, it is surpris-
ing that the complexity for checking satisfiability and entail-
ment in T E remain the same with E , i.e., we have extended E
to handle timed domains without increasing its complexity.

Introduction
Reasoning about Action and Change (RAC)(Y.Shoham
1987; Reiter 2001; van Harmelen, Lifschitz, and Porter
2007) has been an important topic since the early days of Ar-
tificial Intelligence research. Numerous logical formalisms
and their variants have been proposed to address RAC prob-
lems, e.g., Situation Calculus(Mccarthy and Hayes 1969),
Event Calculus(Kowalski and Sergot 1986), Nonmonotonic
Causal Logic(McCain and Turner 1995), etc. There are also
many efforts devoted to action languages, which are con-
sidered as high-level, natural language-based formalisms for
RAC, e.g., action languages A(Gelfond and Lifschitz 1993),
E(Kakas and Miller 1997), etc.

Recently, the so-called timed action language AT (Simon,
Mallya, and Gupta 2005) and action logic AL2

TC(Cabalar,
Otero, and Pose 2000) extend the study of RAC to handle
timed domains, i.e., domains where actions are required to
be performed within a certain amount of time or after a cer-
tain amount of time has elapsed. E.g., a timed Yale Shooting
domain requires action shoot to occur within some time after
loading the gun, otherwise the scared bird will fly away and
cannot be shot. Such domains are not only considered as toy

Copyright c⃝ 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problems in commonsense reasoning, but also widely stud-
ied as real-world applications, e.g., Assembly Plant(Clarke,
Grumberg, and Peled 2000) and Rail Road Crossing Con-
trol(Alur 1999).

To express timed domains, the concepts of clocks and
clock constraints(Alur 1999) are introduced in AT . E.g.,
saying that a flying bird can only be shot within 5 sec-
onds can be expressed in AT by an effect proposition:
“Shoot causes ¬Alive when x < 5” where x is a clock
and x < 5 a clock constraint. According to the se-
mantics of AT , one can infer that the value proposition:
“¬Alive after Shoot at x < 3” is true, which means the
bird is not alive if we shoot within 3 seconds after the sce-
nario begins. However, since AT is not a narrative-based
logic, the exact time at which an action occurs or a fluent
holds is not known, in other words, it lacks an absolute flow
of time. E.g., in the above effect proposition, “Shoot at x <
3” does not specify the exact time at which action Shoot oc-
curs, and even if we know “¬Alive after Shoot at x < 3”
is true, we still do not know the exact time when ¬Alive
holds. This leads to difficulties to handle real-world appli-
cations which require an absolute time structure to define
synchronized clocks1 for component interacting. It can be
illustrated that AT may give counter-natural results for such
applications, as we shall see in Section 6.

Another work concerning RAC in timed domains is
narrative-based action logicAL2

TC(Cabalar, Otero, and Pose
2000), it has an absolute time structure thus the above defect
can be avoided. However, AL2

TC does not introduce ex-
plicit clocks, which are required by most timed applications,
furthermore, reasoning in AL2

TC is relatively difficult, e.g.,
deciding the satisfiability of a theory concerning the frame
problem lies in ΣP

2 , which is a class widely believed higher
than NP in the polynomial hierarchy. In fact, the author of
(Cabalar, Otero, and Pose 2000) did not present methods for
realize AL2

TC .
In this work, we propose a formalism called timed ac-

tion language T E , which is an extension of the narrative-
based language E . It provides an absolute time structure thus
avoids the semantic defect of AT , and adopts explicit clocks
to suit time applications. Besides, a polynomial translation

1Clocks are said to be synchronized if they advance with the
same rate.

from T E to Satisfiability Modulo Theory(SMT)(Nieuwen-
huis 2009; Clark Barrett and Tinelli 2009) is given, s.t. T E
can be easily implemented on top of efficiently developed,
state-of-the-art SMT solvers like MathSAT(Bozzano et al.
2005), TSAT++(Armando et al. 2004). In addition, it is sur-
prising to see that the complexity for checking satisfiability
and entailment in T E remains the same with E , i.e., NP-
complete and coNP-complete respectively. In other words,
the language E has been extended to handle timed domains
without increasing its complexity.

The rest of the paper is organized as follows. Section 2
recalls some background knowledge about E and in Section
3 the syntax and semantics of T E are presented. Section
4 contains the polynomial time translation from T E theory
to SMT formula and Section 5 provides a brief complexity
analysis of T E . We give some analysis of related work AT

and AL2
TC in Section 6. Conclusion and future work are

presented in Section 7.

Action Language E
The Syntax of E
An action language E (Kakas and Miller 1997) is a 3-tuple
⟨N,∆,Φ⟩, in which N is the set of natural numbers called
time points, ∆ is a non-empty set of action symbols, Φ is a
non-empty set of fluent symbols. A fluent literal is a fluent
symbol possibly preceded by ¬. There are three kinds of
propositions in E :

• C-proposition of the form

A initiates F if C, or A terminates F if C

in which A ∈ ∆, F ∈ Φ and C a set of fluent literals;
• H-proposition of the form A happens-at T in which
A ∈ ∆, T ∈ N;

• T-proposition of the form L holds-at T in which L is a
fluent literal and T ∈ N.

A domain description (or theory) D in E is a finite set of
c-propositions, h-propositions and t-propositions. We illus-
trate the syntax of E by giving a classic example below.

Example: Yale Shooting in E
Let E = ⟨N, {Shoot, Load}, {Loaded,Alive}⟩, a theory
DY S of Yale Shooting consists of the following proposi-
tions:

Load initiates Loaded

Shoot terminates Alive if {Loaded}
Alive holds-at 0, ¬Loaded holds-at 0

Load happens-at 1, Shoot happens-at 2

The semantics of E
To give the meaning of a theory in E , we shall introduce the
semantics of E . Let C be a set of fluent literals and T ∈ N,
an interpretation of a theory in E is a mapping H : Φ ×
N 7→ {True, False}, we say H satisfies C at T , denoted
by H |=T C, if for each fluent symbol F ∈ C, H(F, T) =
True and for each ¬F ∈ C, H(F, T) = False. Let D be

a theory in E , F ∈ Φ, a time point T ∈ N is said to be an
initiation-point (resp. termination-point) for F in H w.r.t.
D, if there is an h-proposition A happens-at T and a c-
proposition A initiates(resp.terminates) F if C in D,
s.t., H |=T C.
Definition 1 (Model of E). A model of a theory D in E is
an interpretation H s.t. for every F ∈ Φ and for every time
points T1 < T3, the following conditions hold:
1. For each t-proposition in D of the form “F (resp. ¬F)

holds-at T”, H(F, T) = True (resp. False).
2. If there is no initiation or termination point T2 for F inH

w.r.t. D s.t. T1 ≤ T2 < T3, then H(F, T1) = H(F, T3),
i.e., fluent values remain unchanged if not affected by any
action.

3. If T1 is an initiation (resp. termination) point for F in
H w.r.t. D and there is no termination (resp. initiation)
point T2 for F in H w.r.t. D s.t. T1 < T2 < T3, then
H(F, T3) = True (resp. False), i.e., initiating (resp.
terminating) a fluent sets its value to True (resp. False).
A theory D in E is satisfiable if it has a model, a t-

proposition L holds-at T is called an entailment of D, writ-
ten as D |= L holds-at T , if it holds under every model of
D. The semantics of E succinctly solves the frame problem,
i.e., to describe what is not changed during the evolution of
a world. Consider the theory DY S , it is not hard to see it
is satisfiable, in all its models (only a unique one indeed),
Alive and ¬Loaded hold at time point 1 by condition 2 in
Definition 1. At time point 2 Loaded holds since it is initi-
ated by Load at time point 1 by condition 3, similarly,Alive
does not hold at time point 3 since it is terminated by Shoot.
In fact, DY S |= ¬Alive holds-at T for any T ≥ 3 and
DY S |= Loaded holds-at T for any T ≥ 2.

Timed Action Language T E
Now we present the main contribution of this paper, i.e., an
extension of E called timed action language T E to handle
timed domains. The notions of clocks and clock constraints
are central to express such domains, which originated from
the theory of timed automata(Alur 1999), and later widely
accepted in modeling timed systems. The language AT also
adopted these notions and we follow the line to invent T E .

The Syntax of T E
A timed action language T E is a 5-tuple
⟨N,∆,Φ,Θ,B(Θ)⟩, where N is the set of natural numbers
called time points, ∆ is a non-empty set of action symbols,
Φ is a non-empty set of fluent symbols, Θ is a non-empty set
of variables over N called clocks, B(Θ) is the set of all clock
constraints built on Θ, each clock constraint ψ ∈ B(Θ) is an
expression of the form x ◃▹ n or x−y ◃▹ n, where x, y ∈ Θ,
◃▹ ∈ {≤, <,=, >,≥} and n ∈ N. The propositions in T E
are defined as follows:
• C-proposition is either of the form

A initiates F resets λ if C when Ψ

or of the form

A terminates F resets λ if C when Ψ

where A ∈ ∆, F ∈ Φ, λ ⊆ Θ a set of clocks, C a set of
fluent literals and Ψ ⊆ B(Θ) a set of clock constraints;

• H-proposition of the form A happens-at T in which
A ∈ ∆, T ∈ N;

• T-proposition of the form L holds-at T in which L is a
fluent literal and T ∈ N.
Intuitively, the c-propositions in T E introduce a new kind

of action effect: clock resetting, together with a new kind of
action precondition: clock constraint. Simply speaking, re-
setting a clock is to start counting its ticks, and executing an
action requires satisfying related clock constraints in addi-
tion to fluent preconditions. Please note that the definitions
of h- and t-propositions remain the same w.r.t. E . Similarly,
a domain description or theory in T E is a finite set of c-, h-,
t-propositions, we give an example below.

Example: Timed Yale Shooting in T E
Let T E = ⟨N, {Load, Shoot}, {Loaded,Alive}, {x},B({x})⟩,
a T E theory DTY S of timed Yale Shooting(Simon, Mallya,
and Gupta 2005; Cabalar, Otero, and Pose 2000) consists of
the following propositions, in which keywords resets λ, if
C, when Ψ are omitted if λ, C, Ψ are empty:

Shoot terminates Alive if {Loaded} when {x < 5}
Load initiates Loaded resets {x}

Alive holds-at 0,¬Loaded holds-at 0
Load happens-at 1, Shoot happens-at 3

This example can be considered as an extension of the clas-
sic Yale Shooting, in the sense that a bird can only be shot
within 5 seconds after loading the gun.

The Semantics of T E
To define proper semantics for T E , we shall first give mean-
ings for clocks and clock constraints, which are originated
from (Alur 1999). The readings of clocks are given by a
clock assignment ν, which maps every x ∈ Θ to a value
in N. We say that ν satisfies a clock constraint ψ, written
as ν |=c ψ, if ψ holds under ν according to the standard
arithmetic semantics. If there exists such a ν, then ψ is also
called satisfiable and ν is a solution to ψ.

For modeling clock advancing and resetting, we introduce
the following definitions. Given δ ∈ N, let ν+δ be the clock
assignment that maps every x ∈ Θ to ν(x) + δ, and for λ ⊆
Θ, let ν[λ := 0] be the clock assignment that maps each xi ∈
λ to 0 and every clock xj ∈ Θ\λ remains unchanged w.r.t.
ν. In particular, ν0 is a clock assignment that maps every
clock to 0. Given a set of clock constraints Ψ, we say ν |=c

Ψ if for each ψ ∈ Ψ, ν |=c ψ. If there exists such a ν, we say
Ψ is satisfiable. E.g., let Θ = {x, y}, ν′ = {⟨x, 5⟩ ⟨y, 1⟩}
satisfies the set of clock constraints {x ≥ 3, y < 2}, ν′ +
2 = {⟨x, 7⟩, ⟨y, 3⟩}, ν′[{x} := 0] = {⟨x, 0⟩, ⟨y, 1⟩} and
ν0 = {⟨x, 0⟩, ⟨y, 0⟩}.

Essentially, a clock assignment gives clock values at one
time point, this is not enough to describe the evolution of
clocks on an absolute time structure, which normally in-
cludes infinite time points. So we introduce clock interpre-
tation for a T E theory, which is a mappingK that maps each

natural number to a clock assignment and K(0) = ν0. Intu-
itively speaking, K gives clock values along with a time line
N, and at the beginning(i.e., time point 0) all clock readings
are 0.

Having defined clock interpretation, we follow E to intro-
duce fluent interpretation, which is a mappingH : Φ×N 7→
{True, False}, moreover, a set of fluent literals C is said
to be satisfied by H at T ∈ N, denoted by H |=T C, if for
each fluent symbol F ∈ C, H(F, T) = True and for each
¬F ∈ C, H(F, T) = False. Now an interpretation of a
T E theory is defined as a pair ⟨H,K⟩, where H is a fluent
interpretation and K is a clock interpretation.

Similar to E , language T E adopts the notions of initiation
and termination point, furthermore, the concept of resetting
point is invented. Let D be a T E theory, ⟨H,K⟩ be an inter-
pretation of T E and F ∈ Φ, a time point T ∈ N is said to be
an initiation point (resp. termination point) of F in ⟨H,K⟩
w.r.t. D, if:
• there exist both an h-proposition A happens-at T , and a

c-proposition A initiates F resets λ if C when Ψ (resp.
A terminates F resets λ if C when Ψ) in D s.t.,

• H |=T C, and K(T) |=c Ψ. Furthermore, if the set of
clocks λ is non-empty, then T is also called a resetting
point for λ in ⟨H,K⟩ w.r.t. D.

Definition 2 (Model of T E). Let D be a T E theory, an
interpretation ⟨H,K⟩ is called a model for D, if for each
F ∈ Φ and time points T1, T2 ∈ N with T1 < T2, the fol-
lowing conditions hold:
1. For each t-proposition in D of the form “F (resp. ¬F)

holds-at T”, H(F, T) = True (resp. False).
2. If there is no initiation point or termination point T ∈

N for F in ⟨H,K⟩ w.r.t. D s.t. T1 ≤ T < T2, then
H(F, T2) = H(F, T1).

3. If T1 is an initiation-point (resp. termination-point) for F
in ⟨H,K⟩ w.r.t. D, and there exists no termination-point
(resp. initiation-point) T for F in ⟨H,K⟩ w.r.t. D s.t.
T1 < T < T2, then H(F, T2) = True(resp. False).

4. If there exists no resetting point T for any clocks s.t. T1 ≤
T < T2, then K(T2) = K(T1) + (T2 − T1).

5. If T1 is a resetting point for sets of clocks λ1, . . . , λn in
⟨H,K⟩ w.r.t. D, and there exists no resetting point T for
any clocks s.t. T1 < T < T2, then K(T2) = K(T1)[λ1 ∪
. . . ∪ λn := 0] + (T2 − T1).
The concepts of satisfiability and entailment in T E , are

defined as the same in E , i.e., a theory D in T E is satisfiable
if it has a model, a t-proposition L holds-at T is called an
entailment of D, written as D |= L holds-at T , if it holds
under every model of D.

It is not hard to see the major modification of the seman-
tics of T E w.r.t. E is the characterization of the clock be-
havior. Simply speaking, all clocks start with 0 and run with
the same rate. The reading of a clock is the elapsed time
since the last time it was reset. We illustrate the mechanism
in Figure 1. In the figure, clocks x and y start with 0 and run
with the same rate, i.e, they are synchronized. At time point
3, x get reset and then at 4 its reading is 1, while clock y was
not affected, it just keeps running.

Time Elapsed0 1 2 3 4 5

x reset at 3

0 1 2 3 1 2

0 1 2 3 4 5y

x

Figure 1: Clock Mechanism in T E

Consider the timed Yale Shooting theory DTY S , accord-
ing to the semantics of T E , it is easy to see it has a unique
model, as shown in Figure 2. Observe that action Load not
only makes the gun Loaded, but also starts counting the
elapsed time, Shoot happens at time point 3 fulfils clock
constraint x < 5, with Loaded holds, the bird is then no
longer Alive from time point 4 forth.

0 1 2 3 4 5

⊥ ⊥ > > > >

> > > > ⊥ ⊥Alive

Loaded

Load Shoot

0 1 1 2 3 4x

Figure 2: The model of timed Yale Shooting theory DTY S

In next section we concern the implementation of T E .
The authors of (Dimopoulos, Kakas, and Michael 2004) pro-
posed a polynomial translation from a theory in E to answer
set programming(ASP), s.t. E can be implemented on top
of answer set programming solvers. Similarly, we propose a
polynomial translation from a T E theory to a SMT formula,
s.t. T E can be implemented on top of SMT solvers.

A SMT Approach to Implement T E
Roughly speaking, SMT concerns the integration of a back-
ground theory solver and a SAT engine, the former handles
constraints from the background theory while the latter per-
forms large scale search without knowing the semantics of
the constraints. SMT has gained a great deal of interest in the
last few years, and has been successfully applied to a number
of optimization/verification/planning problems, e.g., (Aude-
mard et al. 2002; Janhunen, Niemelä, and Sevalnev 2009).
Our approach is to construct a polynomial time translation
from a T E theory into a SMT formula, by computing the
translated formula via SMT solvers, the original theory can
be solved. Compared to implementations based on SAT or
ASP, SMT solvers handle background constraints more effi-
ciently and concisely. The background theory of SMT in-
volved here is so-called linear arithmetic, which is quite
well supported by SMT solvers like MathSAT and TSAT++.

SMT with Linear Arithmetic Relations
The following linear arithmetic concepts come from (Jons-
son and Bäckström 1998) and (Bozzano et al. 2005). Let V

be a set of boolean variables and let X be a set of variables
defined on R. A linear relation is of the form α ⊗ r, where
α is a linear expression (polynomial with degree 1) over X ,
r ∈ R and ⊗ ∈ {<,≤,=, ̸=,≥, >}. Notice that all clock
constraints are linear relations, but not vice versa.2

An SMT-LA-formula(or formula for short) is a combina-
tion of boolean variables from V and linear relations on
X through standard logic connectives ¬,∨,∧,→,↔. E.g.,
((3x1 = 6) → v1) ∧ (v2 ∨ ¬(x2 < 3)) is a formula in
which v1, v2 are boolean variables and x1, x2 are real vari-
ables. An SMT-interpretation I for a formula is a mapping
that maps boolean and real variables to boolean and real val-
ues respectively and preserves constant values. I is called a
model for a formula, if the formula holds under I according
to the standard logical and arithmetic semantics. A formula
is satisfiable if it has at least one model. E.g., the above for-
mula is satisfiable, a SMT-interpretation I that maps v1 to
⊤ and x2 = 4 is a model for it.

Translating T E theory to SMT Formula
Before constructing the translation, it is necessary to men-
tion that although a model of T E theory theoretically con-
cerns infinite time points(i.e., over N), it can be showed only
finitely many time points are needed to represent the model,
these time points are called witness points. Let TPD be the
set of time points occurring in a theory D, a set of wit-
ness points WPD of D, is the set {0} ∪ TPD ∪ {κ}, in
which κ is a natural number s.t. κ ̸= 0 and κ > T for
every T ∈ TPD. The definition and proposition below for-
mally state the above fact, which is crucial to the forthcom-
ing translation.
Definition 3 (Succinct Representation). Let ⟨H,K⟩ be an
interpretation of T E theory D, WPD a set of witness points
of D. Then ⟨H|WPD

,K|WPD
⟩ is called a succinct repre-

sentation of ⟨H,K⟩, in which H|WPD
and K|WPD

is the
restriction of H and K on WPD respectively.

Proposition 1. Let ⟨H,K⟩ be a model of T E theory D,
⟨H|WPD

,K|WPD
⟩ a succinct representation of it. Then

there exists a fast algorithm Extr, s.t. for any T ∈
N, F ∈ Φ, H(F, T) and K(T) can be returned by
Extr(H|WPD

,K|WPD
, T) in polynomial time.

In other words, when referring to a model in T E , it is
enough to give only the fluent/clock values on WPD. This
allows us to describe T E models by SMT models.

Now we present a translation from a theory D of T E =
⟨N,∆,Φ,Θ,B(Θ)⟩ to a SMT formula MFD. For sim-
plicity, assume WPD consists of a complete increasing se-
quence {0, 1, . . . , n−1, n}.3 We first construct the alphabet
for MFD:
• Boolean Variables (b.v.) . For each A ∈ ∆, introduce b.v.
A0, . . . , An−1, where each Ai stands for an action occur-
rence A at i. For each F ∈ Φ, introduce b.v. F0, . . . , Fn

2If we rule out {<,>} from T E , then a restricted SMT instance
called Difference Logic(Janhunen, Niemelä, and Sevalnev 2009) is
sufficient for our translation.

3This will not affect the generality, since we can introduce some
redundant t-propositions to D to fill the gaps in WPD .

and F ′
0, . . . , F

′
n, where each Fi means fluent F holds at

i, and F ′
i means F does not hold at i. In addition, in-

troduce b.v. INIF1 , . . . , INI
F
n , TMNF

1 , . . . , TMNF
n ,

where INIFi (resp. TMNF
i) means fluent F is “going

to hold (resp. not hold)” at i. Moreover, for each clock
x ∈ Θ, introduce b.v. RST x

0 , . . . , RST
x
n−1 where each

RST x
i stands for a reset of clock x at i.

• Real variables. For each clock x ∈ Θ, introduce real vari-
ables x0, . . . , xn, where each xi will store the value of
clock x at i.
The expected SMT formula MFD is a conjunction of the

following formulas:

• Formulas for specifying initial clock values and h-
propositions.∧

x∈Θ

(x0 = 0)
∧

A happens-at T∈D

AT (1)

∧
A∈∆,A happens-at T /∈D,T∈{0,...,n−1}

¬AT (2)

• Formulas for specifying t-propositions.∧
F holds-at T∈D

FT

∧
¬F holds-at T∈D

F ′
T (3)

• Formulas for describing executions of c-propositions.
For a c-proposition p ∈ D of the form

A initiates F resets λ if C when Ψ

or
A terminates F resets λ if C when Ψ

let exe(p, i), i ∈ {0, . . . , n− 1} denote the following for-
mula:

Ai ∧
∧
Ci ∧

∧
Ψ[x/xi, . . . , z/zi] in which:

(i) Ci is the set of boolean variables obtained from C by
replacing each negative literal ¬F ∈ C by F ′

i and each
F ∈ C by Fi;
(ii) Ψ[x/xi, . . . , z/zi] denotes the set of clock constraints
obtained from Ψ by replacing every occurrence of clocks
x, . . . , z by real variables xi, . . . , zi respectively. In par-
ticular, for i ≥ 1, clock constraints of the form x = 0
in Ψ is replaced by b.v. RST x

i . Intuitively, exe(p, i) de-
scribes an execution of a c-proposition p at stage i. Now
let DINI

F (resp. DTMN
F) be the set of all c-propositions in

D for initiating(resp. terminating) fluent F , and letDRST
x

be the set of all c-propositions in D for resetting clock x.
Formulas for describing executions of c-propositions inD
are then given below.

∧
F∈Φ

(
∧

i∈{0,...,n−1}

(INIFi+1 ↔
∨

p∈DINI
F

exe(p, i))) (4)

∧
F∈Φ

(
∧

i∈{0,...,n−1}

(TMNF
i+1 ↔

∨
p∈DTMN

F

exe(p, i))) (5)

∧
x∈Θ

(
∧

i∈{0,...,n−1}

(RST x
i ↔

∨
p∈DRST

x

exe(p, i))) (6)

Formula (4)(resp. (5)) says that a fluent F ∈ Φ is initi-
ated (resp. terminated) at stage i, if and only if at least
one of the c-propositions for initiating (resp. terminating)
F is executed at stage i − 1. Similarly, formula (6) de-
scribes the clock resetting at each stage. Please note that
if DINI

F = ∅, then formula (4) degenerates to∧
F∈Φ

(
∧

i∈{1,...,n}

¬INIFi)

which means if there exists no c-proposition for initiating
F , then F will never be initiated. This also holds for the
cases DTMN

F = ∅ and DRST
x = ∅.

• Formulas for generating fluent effects and describing per-
sistence.∧
F∈Φ

(
∧

i∈{1,...,n}

(Fi ↔ INTF
i ∨(Fi−1∧¬TMNF

i))) (7)

∧
F∈Φ

(
∧

i∈{1,...,n}

(F ′
i ↔ TMNF

i ∨(F ′
i−1∧¬INIFi))) (8)

Formula (7) says that a fluent F holds at stage i, if and
only if it is initiated at stage i or it holds at stage i− 1 and
was not terminated. Formula (8) is similar.

• Formulas for specifying clock values.∧
x∈Θ

(
∧

i∈{1,...,n}

(RST x
i−1 → (xi = 1))) (9)

∧
x∈Θ

(
∧

i∈{1,...,n}

(¬RST x
i−1 → (xi = xi−1 + 1))) (10)

∧
x∈Θ

(
∧

i∈{1,...,n}

(RST x
i−1∨¬RST x

i−1)∧¬(RST x
i−1∧¬RST x

i−1))

(11)
Formulas (9), (10) and (11) say that if a clock is rest then
its value becomes 1 in the next time point, otherwise the
value is increased by 1.

• Formulas for generating complete knowledge at the be-
ginning. ∧
F∈Φ,F holds-at 0/∈D,¬F holds-at 0/∈D

((F ′
0∨F0)∧¬(F ′

0∧F0))

(12)
• Formulas for eliminating inconsistent models.∧

F∈Φ

(
∧

i∈{0,...,n}

(¬(F ′
i ∧ Fi))) (13)

The construction of MFD is now complete, i.e., MFD

is the conjunction of the above numbered SMT formulas.
Observe that each step of the translation/construction can
be done in polynomial time, thus the whole construction is
polynomial.

Proposition 2. The presented translation from a T E theory
to a SMT formula MFD is polynomial.

Furthermore, we have the following theorem:

Theorem 4. Let D be a T E theory and MFD be its
translated SMT formula over witness points WPD. Then
⟨H|WPD

,K|WPD
⟩ is a succinct representation of a model

⟨H,K⟩ of D, if and only if MFD has a SMT model I s.t.
for every F ∈ Φ, every T ∈WPD and every x ∈ Θ,

1. H(F, T) = True (resp. False) if and only if I(FT) = ⊤
(resp. I(F ′

T) = ⊤),
2. K(T)(x) = I(xT).

The proof of Theorem 4 can be done by induction on the
size of WPD and show by cases. The theorem gives com-
pleteness and soundness of the polynomial translation, and
models of T E theory can be easily decoded from models
returned by SMT solvers.

Computational Complexity Analysis
In this section we shall briefly show that the reasoning com-
plexity of T E remains the same with E , this is surprising
since we have extended E to T E to handle timed domains.
We first present a complexity result of SMT satisfiability
checking.

Theorem 5 (SMT-LA SAT). Checking if a given SMT-LA
formula is satisfiable is NP-complete.

The NP-hardness of SMT-LA SAT is obvious. For the
NP membership, according to the main result of (Jonsson
and Bäckström 1998), i.e., checking satisfiability for con-
junction of linear expressions is in P, a non-deterministic
polynomial time procedure for deciding SMT-LA-SAT can
be constructed as follows: for a SMT-LA formula γ, guess a
pure boolean interpretation I, which regards linear expres-
sions in γ also as boolean literals. Quickly check if I sat-
isfies γ, if so, collect linear expressions that were assigned
true under I, form them into a conjunction and apply the
polynomial algorithm in (Jonsson and Bäckström 1998) to
check if the conjunction is satisfiable, if so the γ is satisfi-
able.

Since SMT-LA SAT is in NP, together with Proposition
2, Theorem 4, 5, it implies that checking satisfiability of a
T E theory is also in NP. Furthermore, since T E is a strict
extension of E and it has been prove that checking satisfi-
ability in E is generally NP-hard(Dimopoulos, Kakas, and
Michael 2004), it follows that:

Theorem 6 (T E SAT). Deciding the satisfiability of a T E
theory D is NP-complete.

This is in some sense surprising since T E is a strict exten-
sion of E , however the complexity for satisfiability check-
ing remains the same. It is worth to point out that the re-
sult strongly depend on the fact that all clock values are
given at the beginning, i.e., set to 0, otherwise we do not
know if the problem still in NP. The complexity for check-
ing entailment is closely related to checking satisfiability,
since F holds-at T is an entailment of D if and only if
D ∪ {¬F holds-at T} is unsatisfiable, thus we have:

Corollary 1. Deciding whether a t-proposition is entailed
by a T E theory D is coNP-complete.

It can also be proved in T E a similar result to E :
Proposition 3. A knowledge complete T E theory D has at
most one model and checking satisfiability for D is in P.

In the proposition, a theory D is called knowledge
complete, if for each F ∈ ϕ, either F holds-at 0 or
¬F holds-at 0 in D.

Related Work and Discussion
Besides the timed logics we mentioned in this paper, there
exist variants of Situation Calculus and Event Calculus,
which could be considered as formalisms for reasoning
about time, e.g., Pinto’s Situation Calculus(Pinto and Re-
iter 1995). They are first-order logics and thus generally
more expressive than propositional ones, however, to the
best of our knowledge, they have not been tailored for timed
domains(Alur 1999) so far. Due to space limitations, we
mainly restrict our discussion on AT and AL2

TC .

Timed Action Language AT

As we mentioned before, the defect of AT (Simon, Mallya,
and Gupta 2005) due to the lack of an absolute flow of time.
Simply speaking, without an absolute time structure, AT is
unable to specify clocks values thus AT may provide un-
natural and unexpected results for timed domains that re-
quire synchronized clocks. We informally illustrate this via
a variant of timed Yale Shooting domain, which considers
the shooting scenario in a room equipped with an automated
door. The door can only be opened from outside, and it au-
tomatically closes in 10 seconds if someone opens it. At
the beginning the bird is in the room and the gunman is
out. Also, shooting has to be performed within 5 seconds
after loading, otherwise the scared bird flies away through
the window. The theory in AT is given below, which uses
two clocks x and y:

Shoot causes ¬Alive if Loaded, In when x < 5

Load causes Loaded resets x if ¬Loaded, In
GetIn causes In resets y if ¬In

GetOut causes ¬In if In when y ≤ 10
Initially Alive,¬In,¬Loaded

In order to kill the bird without being trapped in the room,
the gunman has to perform a series of actions which con-
sistent with the clock constraints: GetIn, Load, Shoot and
GetOut. The following value proposition describes such a
case:

¬Alive,¬In after
GetIn;Load at y < 2;Shoot at x < 3;GetOut at y < 8

So, under well-defined semantics, the value proposition
should be true w.r.t. the above theory in AT . However, this
is NOT the case. The value proposition is assigned truth
value unknown, and the theory(augmented with the value
proposition) has no model at all. An intuitive explanation is
that AT does not know the exact running rates of the clocks
and just simply rejects the value proposition. Consequently,
AT cannot describe many real-world timed domains cor-
rectly, while T E gives nice solutions to such applications.

Action Logic AL2
TC

The action logic AL2
TC(Cabalar, Otero, and Pose 2000) is

narrative-based thus avoids the above semantic defect of
AT . However, reasoning in AL2

TC is relatively hard, it can
be proved that deciding the satisfiability of a theory con-
cerning the frame problem in AL2

TC at least lies in ΣP
2 , i.e.,

a class believed higher than NP in the polynomial hierar-
chy. Fairly speaking, this may not be seriously considered
as a “defect” from a theoretical view, sinceAL2

TC also natu-
rally provides a solution to the ramification problem, which
means it is more expressive than T E and AT . But from a
practical point of view, solving ΣP

2 problems is widely con-
sidered more difficult than problems in NP. So far, no poly-
nomial translation from AL2

TC to SMT is known, and no
implementation method is mentioned in (Cabalar, Otero, and
Pose 2000). Another issue is that AL2

TC does not introduce
explicit clocks, which makes it less flexible in describing
timed domains. Informally speaking, explicit clocks allow a
concise representation of clock constraints and provide nat-
ural and clear information of the application.

Conclusion and Future Work
In this paper, we have extended action language E to de-
scribe timed domains without increasing its complexity. The
resulting language is called T E . Compared with related
work, T E overcomes a semantic defect of AT and can be
easily implemented on top of SMT solvers, while another
similar logic, AL2

TC is considered computationally harder
and has no so-called explicit clocks. We expect that besides
manage toy problems in commonsense reasoning, T E can
play a more important role in real-world applications, e.g.,
serves as a verification/model checking tool, etc. The future
work will cover the implementation of T E , and extending it
to deal with more complicated domains, e.g., timed domains
involving ramification problem.

Acknowledgements
The authors would like to thank Nadia Creignou, Camilla
Schwind and anonymous reviewers for their helpful com-
ments. Particularly, the first author would like to thank
Vladimir Lifschitz for his suggestions at KR Doctoral Con-
sortium. This research has been partially supported by
NSFC under Grant 60970040, 60970044, 60736020 and by
Ministry of Eduction of China under Grant 05JJD72040122.

References
Alur, R. 1999. Timed automata. In Halbwachs, N., and
Peled, D., eds., CAV, volume 1633 of Lecture Notes in
Computer Science, 8–22. Springer.
Armando, A.; Castellini, C.; Giunchiglia, E.; and Maratea,
M. 2004. A sat-based decision procedure for the boolean
combination of difference constraints. In SAT2004.
Audemard, G.; Cimatti, A.; Kornilowicz, A.; and Sebas-
tiani, R. 2002. Bounded model checking for timed systems.
In FORTE, 243–259.

Bozzano, M.; Bruttomesso, R.; Cimatti, A.; Junttila, T. A.;
van Rossum, P.; Schulz, S.; and Sebastiani, R. 2005. Math-
sat: Tight integration of sat and mathematical decision pro-
cedures. Journal of Automated Reasoning 35(1-3):265–
293.
Cabalar, P.; Otero, R. P.; and Pose, S. G. 2000. Temporal
constraint networks in action. In Horn, W., ed., ECAI, 543–
547. IOS Press.
Clark Barrett, Roberto Sebastiani, S. A. S., and Tinelli, C.
2009. Satisfiability modulo theories. In Handbook of Sat-
isfiability. IOS Press.
Clarke, E. M.; Grumberg, O.; and Peled, D. A. 2000.
Model Checking. MIT Press.
Dimopoulos, Y.; Kakas, A. C.; and Michael, L. 2004. Rea-
soning about actions and change in answer set program-
ming. In LPNMR, 61–73.
Gelfond, M., and Lifschitz, V. 1993. Representing action
and change by logic programs. Journal of Logic Program-
ming 17(2/3/4):301–321.
Janhunen, T.; Niemelä, I.; and Sevalnev, M. 2009. Com-
puting stable models via reductions to difference logic. In
LPNMR, 142–154.
Jonsson, P., and Bäckström, C. 1998. A unifying approach
to temporal constraint reasoning. Artif. Intell. 102(1):143–
155.
Kakas, A. C., and Miller, R. 1997. A simple declarative
language for describing narratives with actions. Journal of
Logic Programming. 31(1-3):157–200.
Kowalski, R., and Sergot, M. 1986. A logic-based calculus
of events. New Gen. Comput. 4(1):67–95.
McCain, N., and Turner, H. 1995. A causal theory of
ramifications and qualifications. In IJCAI, 1978–1984.
Mccarthy, J., and Hayes, P. J. 1969. Some philosophi-
cal problems from the standpoint of artificial intelligence.
In Machine Intelligence, 463–502. Edinburgh University
Press.
Nieuwenhuis, R. 2009. Sat modulo theories: Enhancing
sat with special-purpose algorithms. In SAT 2009,LNCS
5584, 1–1. Springer-Verlag.
Pinto, J., and Reiter, R. 1995. Reasoning about time in the
situation calculus. Ann. Math. Artif. Intell. 14(2-4):251–
268.
Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
MIT Press.
Simon, L.; Mallya, A.; and Gupta, G. 2005. Design
and implementation of AT : A real-time action description
language. In LOPSTR2005,LNCS3901, 44–60. Springer-
Verlag.
van Harmelen, F.; Lifschitz, V.; and Porter, B., eds. 2007.
Handbook of Knowledge Representation. Elsevier Science.
Y.Shoham. 1987. Reasoning about Action and Change.
MIT Press.

