On the Complexity of Temporal Defeasible Logic

Guido Governatori*
NICTA, Australia
guido.governatori @nicta.com.au

Abstract

In this paper we investigate the complexity of temporal defea-
sible logic, and we propose an efficient algorithm to compute
the extension of a temporalised defeasible theory. We moti-
vate the logic showing how it can be used to model deadlines.

1 Introduction

Defeasible Logic (DL) (Nute 1993; Antoniou et al. 2001) is
based on a logic programming-like language and it is a sim-
ple, efficient but flexible non-monotonic formalism capable
of dealing with many different intuitions of non-monotonic
reasoning. DL has a linear complexity (Maher 2001) and
has also efficient implementations (Bassiliades, Antoniou,
& Vlahavas 2006; Lam & Governatori 2009).

Recently, DL has been extended to capture the temporal
aspects of several specific phenomena, such as legal posi-
tions (Governatori, Rotolo, & Sartor 2005) and modifica-
tions (Governatori et al. 2005; Governatori & Rotolo 2010),
deadlines (Governatori et al. 2007). Although Temporal
Defeasible Logic (TDL) proved to be sufficiently expressive
for those purposes, and many variants of it have been pro-
posed accordingly, no systematic investigation on the proof-
theoretic and computational properties of TDL has been so
far carried out. This paper is a first step in this direction. In
particular, we will show that an expressive variant of TDL,
able to represent, e.g., different types of deadline, is compu-
tationally feasible. We will prove that it is possible to com-
pute the complete set of consequences of any given TDL
theory in linear time, thus preserving the nice computational
features of standard DL.

Section 2 describes a variant of TDL, its formal language
and proof theory, and a possible application to model the
concept of deadline. Section 4 investigates the complexity
of this logic, and proposes an efficient algorithm to compute
the extension of any temporalised defeasible theory.

2 Temporal Defeasible Logic (TDL)

The language of TDL is based on the concept of tempo-
ralised literal, which is an expression such as I’ (or its nega-

*NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT
Centre of Excellence program.

Antonino Rotolo
CIRSFID and Law Faculty,
University of Bologna
antonino.rotolo@unibo.it

tion, —I"), where [is a literal and ¢ is an element of a discrete
totally ordered set .7 of instants of time {f,t,...}: " in-
tuitively means that / holds at time 7. Given a temporalised
literal / the complement ~[is —p’ if [= p’, and p" if [= —p'.

A rule is an expression [bl : A —* m, where [bl is a unique
label of the rule, A is a (finite, possibly empty) set of tempo-
ralised literals, <€ {—,=,~}, m is a temporalised literal
and x is either 7 or T signaling whether we have a persistent
or transient rule. Strict rules, marked by the arrow —, sup-
port indisputable conclusions whenever their antecedents,
too, are indisputable. Defeasible rules, marked by =, can
be defeated by contrary evidence. Defeaters, marked by ~,
cannot lead to any conclusion but are used to defeat some
defeasible rules by producing evidence to the contrary. A
persistent rule is a rule whose conclusion holds at all instants
of time after the conclusion has been derived, unless inter-
rupting events occur; transient rules establish the conclu-
sion only for a specific instant of time. Thus ex; : p> =7 ¢°
means that if p holds at 5, then g defeasibly holds at time
6 and continues to hold after 6 until some event overrides
it. The rule ex; : p°> =7 ¢® means that, if p holds at 5, then
q defeasibly holds at time 6 but we do not know whether it
will persist after 6.

We will use some abbreviations. Given a rule r and a set R
of rules, A(r) denotes the antecedent of r while C(r) denotes
its consequent; R™ denotes the set of persistent rules in R,
and R[y] the set of rules with consequent y. R;, Ry, and
Ryp; are respectively the set of strict rules, the set of strict
and defeasible rules, and the set of defeaters in R.

Note that we assume that defeaters are only transient: if a
persistent defeasible conclusion is blocked at 7 by a transient
defeater, such a conclusion no longer holds after ¢ unless
another applicable rule reinstates it (see below).

There are in TDL three kinds of features: facts, rules, and
a superiority relation among rules. Facts are indisputable
statements, represented by temporalised literals. The supe-
riority relation (<) provides information about the relative
strength of rules, i.e., about which rules can overrule which
other rules. A knowledge base that consists of these items is
called a TDL theory.

Definition 1. A TDL theory is a structure (F,R, <), where
F is a finite set of facts, R is a finite set of rules and < is an
acyclic binary relation over R.

TDL is based on a constructive inference mechanism

based on tagged conclusions. Proof tags indicate the
strength and the type of conclusions. The strength de-
pends on whether conclusions are indisputable (the tag is A),
namely obtained by using facts and strict rules, or they are
defeasible (the tag is d). The type depends on whether con-
clusions are obtained by applying a persistent or a transient
rule: hence, conclusions are also tagged with 7 (persistent)
or T (transient).

Provability is defined below and is based on the concept
of a derivation (or proof) in a TDL theory D.

Definition 2. Given a TDL theory D, a proof P from D is a
finite sequence of tagged temporalised literals such that:

(1) Eachtag is one of the following: +A", —A", +07, —d7%,
+AT) _AT! +81) _8T;

(2) The proof conditions definite provability and defeasible
provability given below are satisfied by the sequence P.

Given a proof P we use P(n) to denote the n-th element of
the sequence, and P[1..n] denotes the first n elements of P.
The meaning of the proof tags is as follows:

o +ATp'r (resp. +A"p'r): we have a definite derivation of
p holding from time ¢, onwards (resp. p holds at 1,,);

o —ATp'r (—A%p'r): we can show that it is not possible to
have a definite derivation of p holding from time 7, on-
wards (resp. p holds at t,);

e +07p'r (resp. +9d7p'): we have a defeasible derivation
of p holding from time 7, onwards (resp. p holds at z,);

e —d7p'r (resp. —d7p'r): we can show that it is not possi-
ble to have a defeasible derivation of p holding from time
t, onwards (resp. p holds at 7).

The inference conditions for negative proof tags (—A and
—0d) are derived from the inference conditions for the cor-
responding positive proof tags by applying the Principle of
Strong Negation introduced by (Antoniou et al. 2006). For
space reasons, in what follows we will list only the positive
version of the inference rules.

Definite Provability

If P(n+1) = +A*p'r, then

)preFifx=r1;or

2) 3r € RY[p'r] such that Va's € A(r) : +Aa" € P[1..n].
where:

@ ye{m 1}

(b) if x = 7, then t[’, <tp;

(c) ifx =1, thent), =1,

If the conclusion is transient (if x = 1), the above condi-
tions are the standard ones for definite proofs in DL, which
are just monotonic derivations using forward chaining. If
the conclusion is persistent (x = 7), p can be obtained at 1,
or, by persistence, at any time t[’, before #,. Finally, notice

that facts lead to strict conclusions, but are taken not to be
persistent. Consider this theory:

(F={p"},R={p" =" ¢"},<=0)

We can derive +A"g", and +A"q' fort > 1;.

Defeasible Provability
If P(n+1) = +3*p'r, then
1) +A*p'r € P[1..n] or
2) —A*~p'r € P[1..n] and
21)3rery, [p'7] such that
Vd'* € A(r) : +9%a' € P[1..n], and
2.2) Vs € R’[~p'~r] either
2.2.1) 3b"% € A(s),—d*b"™ € P[1..n] or
2.2.2) 3w € R¥[p™r] such that
Vcle € A(w) : +0%ce € P[1..n] and s < w.
where
() ye{m 1}
(i) if x = 7, then 1), <t <1p;
(iii) if x = 7, then t1/7 =ty =1tp.
Defeasible derivations run in three phases. In the first phase
we put forward a supported reason (rule) for the conclusion
we want to prove. Then in the second phase we consider
all possible (actual and not) reasons against the desired con-
clusion. Finally in the last phase, we have to rebut all the
counterarguments. This can be done in two ways: we can
show that some of the premises of a counterargument do not
obtain, or we can show that the argument is weaker than an
argument in favour of the conclusion. If x = 7, the above
conditions are essentially those for defeasible derivations in
DL. If x = 7, a proof for p can be obtained by using a per-
sistent rule which leads to p holding at ¢, or at any time tzla
before 7,. In addition, for every instant of time between the
t[’, and t,, p should not be terminated. This requires that
all possible attacks were not triggered (clause 2.2.1) or are
weaker than some reasons in favour of the persistence of p
(clause 2.2.2).
Consider the following theory.

R={r:d" =" r: b%="=e% ry: P ~Tel,
ra: d4 =T e}
=={r3=ry, 11 > r14})

At time t1, rq is the only applicable rule; accordingly we de-
rive +0%€'l. At time f; no rule is applicable, and the only
derivation permitted is the derivation of +0%¢”2 by persis-
tence. At time 73 both r, and r3 are applicable, but 74 is not.
If ry prevailed, then it would terminate e. However, it is re-
butted by r3, so we derive +0%¢"3. Finally at time f4, rule
r4 is applicable, thus we derive +09%—e' and —d™e™, which
means that r4 terminates e. Notice that, even if r4 is weaker
than ry, the latter is not applicable at ¢4, thus it does not offer
any support to maintain e.

Proposition 1. Let D be a TDL theory where the transitive

closure of < is acyclic. For every # € {A,d}, x,y € {m,1}:

e It is not possible that both D+ +#*p' and D+ —#'p';

e ifDF+0*p" and D+ +3°~p', then D+ +A*p' and D+
+N~p'.

Proposition 1 shows the soundness of TDL: it is not pos-
sible to derive a tagged conclusion and its opposite, and
that we cannot defeasibly prove both p and its complemen-
tary unless the definite part of the theory proves them; this

means that inconsistency can be derived only if the theory
we started with is inconsistent, and even in this case the logic
does not collapse to the trivial extensions (i.e., everything is
provable).

Definition 3. Let HBp be the Herbrand Base for a TDL
theory D. The extension of D (denoted by EP) is the 4-tuple
(A*,A=,0%,07), where #° = {p'|p € HBp,D+ +#*p' ,t €
T, #e€{A, 0}, andx € {m, 1}

We will refer to AT and A~ as the definite extension, to
01 and 9~ as the defeasible extension, to AT and 97 as
the positive extension, and to A~ and J~ as the negative
extension.

3 Modelling Deadlines in TDL

In this section we illustrate how the logic at hand can model
deadlines. An alternative analysis has been developed by
(Governatori et al. 2007), but the logic used there was based
on introducing in DL temporal intervals, thus posing com-
plexity limitations. Here, we show that a more efficient vari-
ant of TDL can do the same job. The idea of deadline refers
to the notion of obligation, which is parametrized by tempo-
ral instants. Consider the following example.

Example 1. Customers must pay within 30 days, after re-
ceiving the invoice.

Example 1 states an obligation for customers to pay
within 30 days upon the receipt of an invoice. To keep
our presentation light, we do not explicitly introduce modal
operators to capture obligations (Governatori et al. 2007;
Governatori, Rotolo, & Sartor 2005). Accordingly, an ex-
pression like OBLpay’!, meaning that it is obligatory to pay
at time 71, is logically treated here as a standard temporalised
literal.

We can distinguish achievement obligations, like Exam-
ple 1, from maintenance obligations, like Example 2 below.
For an achievement obligation, a certain condition must oc-
cur at least once before the deadline. For maintenance obli-
gations, a certain condition must obtain during all instants
before the deadline. Consider the following example.
Example 2. Customers must keep a positive balance, for 30
days after opening a bank account.

In Example 2, the deadline only signals that the obliga-
tion is terminated. A violation occurs when the obliged state
does not obtain at some point before the deadline.

Example 1 can be represented as follows. The deadline
refers to an obligation triggered by receipt of the invoice
(inv;,ir): such an obligation is persistent. After that the cus-
tomer is obliged to pay. The obligation terminates only when
it is complied with (inv;,,;,). Note that the obligation itself
may even persist after the deadline (like in Example 1). Gen-
erally, a deadline signals that a violation of the obligation has
occurred (rule inv,;,;).

inv;,; get.invoice’! =% OBLpay’!
invser, OBLpay?2,pay” ~+»* ~OBLpay
inv,,; get_invoice’!,OBLpay’ 3% =7 viol(inv

th+1
)r1+30

Suppose that the set of facts is {get_invoice', pay?’}. We
can derive +8Tget,invoicel, which makes rule inv;,; appli-
cable, leading to +d"OBLpay', that is, an obligation to pay

applies persistently. Rule inv,,,, terminates the obligation at
21. Therefore rule inv,;,; is applicable, and we cannot derive
a violation: —d®viol(inv)3°.

Example 2 can be represented as follows.
pos;,; open_account’! =" OBLpositive'
POS;erm Open_account’! ~»% -OBLpositive
pos,;,; OBLpositive™, —positive” =7 viol(pos)™

Notice that we may have other examples where a main-
tenance obligation holds indefinitely (and not only for 30
days). In those cases, the clause pos,,,,, is not needed and
no termination is required.

By definition, maintenance obligations do not persist after
the deadline. But achievement obligations often do persist,
until they are achieved. However, this is not the case for all
achievement obligations.

Example 3. A wedding cake must be delivered, before the
wedding party.

In Example 3, the obligation to deliver the cake does not
persist after the deadline, since the wedding guests will have
no use for it. (Of course, the couple who ordered the cake,
are entitled not to pay for the cake, or even claim damages
after the deadline has passed without delivery.)

wed;ny, order’’ =" OBLcake"

wedjyiz, wedding? ~* ~OBLcake™

wedyerm OBLcake”?, cake’® ~»7 ~OBLcake/3"!

wed,;,; wedding?, OBLcake” =7 viol(wed)”
Note that we have here two init rules, which jointly state
the time interval within which the cake should be delivered:
wed;ni;, produces a persistent obligation to deliver the cake,
while wed;,;;, states that after the wedding there is no longer
such an obligation.

11 +30

4 Computing Consequences in TDL

In this section we present an algorithm to compute the ex-
tension of a TDL theory. We show that the time complexity
of the algorithm is linear to the size of the theory. Following
the idea of (Maher 2001) the algorithm is based on a series of
(theory) transformations that allow us (1) to assert whether
a literal is provable or not (and the strength of its derivation)
(2) to progressively reduce and simplify a theory.

At this point we have to make precise what we mean for
two theories to be equivalent, and we formally define the
notion of transformation.

Definition 4. Two theories D and D' are equivalent if and
only if they have the same extension, namely D= D' iff EP =
EY. Similarly Dy =y D> means that Dy and D, have the
same consequences in the language ¥.

Definition 5. A transformation is a mapping from TDL the-
ories to TDL theories. A transformation T is correct iff for
all TDL theories D, D =5 T (D) (X is the language of D).

The key ideas behind the approach depends on the follow-
ing properties that allow us to transform theories into ‘sim-
pler’ theories.

Proposition 2. Let D be a theory in TDL. For x,y € {m,7}:
(1) If D+ +0*p', then

DU{r:pl,....pn p' =Ygy =DU{r:p,....plr =" q}.

(2) if D —3*p!, then DU{r: p'!,...,pln,p' =Y q} = D.

The meaning of 1 in the above proposition is that once
we have established that a temporalised literal is positively
provable we can remove it from the body of rules without
affecting the set of conclusions we can derive from the the-
ory. Similarly 2 states that we can safely remove rules from
a theory when one of the elements in the body of the rules is
negatively provable.

Proposition 3. Let D be a TDL theory. If r: =* p' € R and
R[~p]| =0, then D\ +0*p" and D\ —d*~p'.

This proposition gives us the main criterion to assess
whether we can prove a literal. The result is restricted to
theories where the superiority relation is empty. (Antoniou
et al. 2001) showed that for basic defeasible logic it is al-
ways possible to transform a theory into an equivalent the-
ory where the superiority relation is empty. In Section 4.1
we extend the result of (Antoniou ez al. 2001) to cover TDL.

We compute the extension of a TDL theory in three
phases:

1. in the first phase we remove the superiority relation by

creating an equivalent theory where <= 0;

2. in the second phase we use the theory obtained from the
first phase to compute the definite extension;

3. in the third and final phase we use the theory from the first
phase and the definite extension to generate the theory to
be used to compute the defeasible extension.

4.1 Removing Superiority Relation

We are now ready to give the transformation to empty the
superiority relation.

Definition 6. Ler D = (F,R,<) be a TDL theory. Let ¥ be
the language of D. Define elimsup(D) = (F,R’,0), where

coinf () =T inf T (r)°,
St cminf(r)? =% inf = () |y < 1 U
{ra: A(r) =7 =inf* (n)°,
re:—inf™T (r)o ¥ pl | A(r) ="
{ra: A(r) =7 =inf~ (r)°,
ret minf= (1)~ pt | A(r) ~* pf € Rasp]}.

For each r, inf*(r) and inf~(r) are new atoms not in X,
and so are the labels associated to the rules obtained from
the transformation of the superiority relation. Furthermore
all new atoms and labels are distinct.

The transformation is essentially identical to the transfor-
mation given in (Antoniou et al. 2001) to remove the su-
periority relation. The only difference is that for r. we use
a rule of the same type as the rule r, and r. replace. The
reason why we have both inf™ and inf ™ literals is that strict
and defeasible rules can be used in all phases of a defeasible
derivation, while defeaters cannot be used to support a con-
clusion. Thus inf™ are to support conclusions while inf~ to
prevent them.

Proposition 4. The transformation elimsup is correct.

R ={st

2

p' € Rypl}U

Proof. The proof is essentially the same as that given in
(Antoniou et al. 2001). O

4.2 Computing the Definite Extension

Before giving the algorithm to compute the definite exten-
sion we have to introduce some auxiliary notation to refer to
the data structures needed for the algorithm.

Definition 7. Let D be a TDL theory and Hp be the set of
literals in D. For each a € Hp we have the following sets:

e ptimes(a) ={t: Ir € R™al and C(r) =d'};

o ttimes(a) = {r:3r e R'[a] and C(r) =d'};

o fimes(a) = ptimes(a) U ttimes(a).

We use the same abbreviations as those of Section 2. Thus,
e.g., ptimes,(a) is the set of instants associated to Rs[a].

In the presentation of the algorithms we will use intervals
to give a compact representation for sets of contiguous in-
stants. We will use both proper intervals, i.e., intervals with
both start and end time, and punctual intervals, i.e., intervals
corresponding to singletons. We will use [£,#'] for a proper
interval and [¢] for a punctual interval.

Definition 8. Given an interval I we say that t* € 1 iff (1) if
I=[t,f],t <t andt <t* <t or(2)ifI=[t]and * =1.

We adopt a compact but isomorphic representation for the
extensions, namely, elements of extensions are now pairs
(1,I) were [is a literal and I is an interval; thus (/,) cor-
responds to the set of temporalised literals /* such thatz € 1.

In the presentation of the algorithms, given a set S to be
manipulated in a cycle of the computation, we use S’ to de-
note the set S after the computation of the cycle.

Algorithm: ComputeDefinite(D)
Input: a TDL theory D
Output: a theory D' and the definite extension of D
ComputeDefinte(D):
while Hp # 0 or Ry # 0 or H}, # Hp or (AT) At or R' #£R
for each literal a € Hp:
if Ry[a] =0, then A~ = A~ U{(a,[0,])}
if Rs[a] = 0 and Rg[~a] = 0, then Hp = Hp — {a,~a}
for each rule r € R
ifl' €A(r), (I,I) e A" and t € I, then A(r) = A(r) — {I'}
let S = {s ER,:3d € A(s) : t' < min(ptimesg(a)) and
1 ¢ ttimesy(a) }
Ry=R;—S
ifA(r)=0and C(r) = d', then
if » € R™, then
At =ATU {(a,[t,=])}
Ry=(Ry—{s€Ry:d" =C(s),t' >1})—{r}
if r € R*, then
AT = A* U{(a 1)}
Ri=(Rs—{s€Rs:da =C(s)})—{r}
for each literal ac Hp
let t, = min{min{z : (@, [t,]) € AT}, o0}
until times(a) = 0 or min(times(a)) > 1,
let 7, = max{max{z : (a,[’,t]) € A" },0}
A~ =A" U{(a, [ty + 1,min(times(a))]) }
times(a) = times(a) — {min(times(a))}
At each cycle the algorithm ComputeDefinite scans the set
of literals in search of temporalised literals for which there
are no rules for them. This happens in two cases: (i) there
are no rules for a temporalised literal or (ii) all the persistent
rules for the literal have a greater time. For each of such
temporalised literals ComputeDefinite adds them to the neg-
ative definite extension of the theory, and removes all rules
where at least one of these literals occurs.

Then ComputeDefinite scans the set of rules in search of
rules with an empty body. In case of a positive match the
algorithm adds the conclusion of the rule to the positive def-
inite extension (with an open ended interval for a persistent
rule and with a punctual interval otherwise). Finally the
algorithm removes such temporalised literals matching the
newly added conclusions from the body of rules.

We repeat the cycle until (1) there are no more literals to
be examined, or (2) the set of strict rules is empty, or (3) no
addition to the extension happened in the cycle.

Proposition 5. ComputeDefinite is correct.

Proof. Propositions 2 and 3 can be proved for definite
conclusions and strict rules. Then, the correctness of
ComputeDefinite follows immediately. O

4.3 Computing the Defeasible Extension

We are now ready to give the algorithm to compute the de-
feasible extension of a theory. We first give some subrou-
tines corresponding to theory transformation to be used in
the main algorithm.

The first algorithm we consider is concerned with literals
to be tagged with —d.
Algorithm: discard(l,1)
Input: aliteral [and an interval /
discard(1,1):

d-=ad-U{(l,D}

let S={s:1I' cA(s),t €I}

R=R-S

persistence(S)
The algorithm discard adds a literal to the negative defeasi-
ble extension and then removes rules for which we have al-
ready proved that some literal in the antecedent of the rules
is not provable. The literal is parametrised by an interval.
This means that the operation is performed for all instances
of the literal temporalised with an instant in the interval. The
transformation corresponding to it is justified by Proposition
2.2. The algorithm further calls the subroutine persistence
that updates the state of the extension of a theory.

The next algorithm concerns defeasible provable literals.
Algorithm: proved(l,r,I)
Input: aliteral /, a rule r, and an interval /
proved(L,r,1):

ot =90Tu{(,1)}

discard(~1,1)

for each s € R,ifI' € A(s) and 7 € I, then A(s) = A(s) — {I'}

R=R—{r}
As a first step the algorithm inserts a provable literal in the
positive defeasible extension of the theory. Then proved
calls discard with the complementary literal. The next step
is to remove all the instances of the literal temporalised with
an instant in the interval / from the body of rules. Finally
we remove the rule for the set of rules. The transformations
implemented by this algorithm are correct and are justified
by Propositions 2.1, and 3.
Algorithm: persistence(S)
Input: a set of rule §
persistence(S):

for each (I,[t,f']) € 9T

if s € S and C(s) = ~I', then

if 1* = min({k € times(~I),k >1'}), then

replace (,[t,#']) in 9 with (I, [t,*])

proved(1,0,t',1*])
The above algorithm updates the state of literals in the exten-
sion of a theory after we have removed rules we know cannot
longer be fired (i.e., at least one literal in the antecedent of
the rule is provable with —d*). As we have seen in Sec-
tion 2 a conclusion proved using a persistent rule persists
until it is terminated by another (applicable) rule for its com-
plementary. Thus an entry (/,[¢,#']) in d means that / holds

from ¢ to #' — 1. This means that there is a rule for ~/" 1,
When we insert (,[t,']) in @1 we do not know if the rule

for ~1" 1 is applicable or not. The set S passed as param-
eter to the algorithm is the set of rules we have discovered
to be no longer applicable. At this point we can update the
entry for / in ", and we can set it to #”, where ¢” is the next
instant for which we have a rule for ~[. Consider, for exam-
ple, a theory where the rules for p and —p are: r: =% p!,
s:q =T -p'% v: =7 —pl5. In this theory we can prove
+d7p' for 1 <r < 10, no matter whether ¢ is provable or not
at 5. Suppose that we discover that —d*¢>. Then we have to
remove rule s. In the resulting theory from this transforma-
tion can prove +d”p’ for 1 < p < 15. Thus we can update
the entry for / from (Z,[1,10]) to (1,[1,15]).
Algorithm: ComputeDefeasible(D)
Input: a TDL theory D:
Output: a theory D' and the defeasible extension of D.
ComputeDefeasible(D):
while Hp # @ or R # 0 or H}, # Hp or (%) #90* orR' #R
for each literal a € Hp:
1) if Ry4[a] = 0, then
9~ =9 U{(a,[0,])}
R=R—{r:d" €A(r)} for any r.
2) ifde[a] =0 and de[’\‘a] =0, then Hp =Hp — {(17 Na}
for each rule r € R
3)letS={seR: Ja" € A(s): ¢ < min(ptimes(a)) and
1" ¢ ttimes(a) }
R=R-S
persistence(S)
4)if A(r) =0 and C(r) = &, then
if r € R?, then
if t ¢ times(—a) and r ¢ Ryy;, then proved(a, r, t])
else discard(~a, |t])
if r € R™, then
if R[~a] = 0, then proved(a,r, [t,°])
else
if t € times(~a), then discard(~a, [t])
else
let +* = min({k € times(~a)} U {eo})
proved(a,r,[t,t*])
Steps 1)-3) are essentially the same as the first three steps
in ComputeDefinite (with the difference that when we elim-
inate a rule we update the state of the extension instead of
waiting to the end as we did for definite extensions).

At step 4) we search for rules with empty body. Suppose
we have one of such rules, let us say a rule for I’. No matter
what type of rule we have, we know that the complementary
of I, i.e., ~I, cannot be proved at r. So we add (~I,[t]) to
0~ . At this stage we still have to determine whether we can
insert / in @7 and the instant/interval associated to it. We

have a few cases. The rule is a defeater. Defeaters cannot
be used to prove conclusions, so in this case, we are done.
If the rule is transient, then it can prove the conclusion only
at #, and we have to see if there are transient rules for ~/*
or persistent rules for ~I" such that ¢/ <'t. If there are we
have to wait to see if we can discard such rules. Otherwise,
we can add (1, [r]) to d*. Finally, in the last case the rule is
persistent. What we have to do in this case is to search for
the minimum time greater or equal to ¢ in the rules for ~I,
and we can include ([, [t,7']) in 9.

Proposition 6. Let D = (0,R,0) be a TDL theory such that
there is no strict rule with empty body in R; then the trans-
Sformation ComputeDefeasible(D) is correct.

Proof. Since there are no facts and no strict rules with empty
body, strict rules behave exactly as defeasible rules. Then
the proposition follows from Propositions 3 and 4. 0

4.4 Computing the Extension

To compute the full extension of a TDL theory D we use the
following series of transformation:

1. D = elimsup(D);

2. Let Dy, A}, A, be, respectively, the theory, the positive
definite extension, and the negative definite extension ob-
tained from ComputeDefinite(D~);'

3. D) = (0,Rx —{r:d € A(r),(a,I) € AT, and t € I},0).
Let 07 = A/". The defeasible extension is obtained from
ComputeDefeasible(D').

We call the transformation ComputeExtension.

Theorem 7. ComputeExtension is correct.

Proof. The correctness follows from the correctness of the
three steps (Propositions 4, 5 and 6). O

Theorem 8. Given a TDL theory D where <= 0, the exten-
sion of D can be computed in linear time, i.e., O(|R| x |Hp| *
|9b|), where I is the set of distinct instants in D.

Proof. For ComputeDefinite and ComputeDefeasible we
have that for each literal a the set R[a] can be implemented
as an hash table with pointers to the rules, where each
rule is implemented as an ordered list of pairs. The sets
of ptimes and ttimes can be constructed as indexes. This
means that the information stored in them can be accessed
(in the form required by the algorithms ComputeDefinite and
ComputeDefeasible) in linear time.

The algorithms ComputeDefinite and ComputeDefeasible
alternate linear scans of the sets of literals and the set of
rules. During the scan of the literals they identify rules that
can be removed from the set of rules; during the scan of the
rules they identify literals that can be removed at the next
scan of the literals. This means that the number of times we
have to scan the set of rules is bounded by the number of
literals.

The final step of ComputeDefinite is to populate the neg-
ative definite extension. The number of times we have to re-
peat this cycle for a literal is bounded by the number of times

UIn this step we also remove facts, by replacing each fact a’ with
the rule =7 o'.

the literal appears as head of a rule with a distinct instant,
which is then bounded by the number of rules for the literal.
Thus the complexity of ComputeDefinite is O(|R| * |Hp|).
Every time we have to remove a rule in the algorithm
ComputeDefeasible, we call peristence to update the exten-
sion. For each cycle the number of time we call the proce-
dure is bounded by the number of instants such that there is
a particular literal with that instant in the head of a rule.
Hence, the complexity of ComputeExtension is given by
O(IR| * |Hp| + |). O

Notice that the elimsup produces a theory D' where |R'| =
O(|R| + |<|) and Hpy = O(|Hp| + |R|), thus the result of
Theorem 8 gives us O((|R|+ |<|) * (|Hp|+|R|) *|9p|), and
a resulting polynomial (quadratic) complexity, for defeasi-
ble theories where the superiority is not empty. However,
it is possible to use the argument of (Maher 2001) to show
that the number of cycles we have to perform is bounded by
the number of instances of literals occurring in the theory
multiplied by the instant of times explicitly occurring in the
theory.

5 Discussion and Implementation

TDL is an extension of basic defeasible logic (Antoniou et

al. 2001) for which (Maher 2001) proved that the complex-

ity is linear. The extension is twofold: on the syntactic side,
literals are labelled with timestamps, on the conceptual side

TDL introduces persistent and transient conclusions. The

idea of persistent conclusions is that once a conclusion has

been classified as persistent then it continues to hold until
there are some reasons to terminate it. From a computa-
tional point of view, we can propagate persistent conclusions
from one instant to the successive instant unless there are
some reasons that prevent the propagation. Based on this
intuition, if we restrict the language to rules with the form
dl,...,aln = b, such that max({t1,...,t,}) <t, then we can
devise the following procedure (Governatori & Terenziani

2007) to compute the extension of a theory.

e At time 0, consider the sub-theory restricted to the rules
whose consequent is labelled by 0. Then use the algo-
rithms given in (Maher 2001) to compute the extension of
the sub-theory at time 0.

e At time n+ 1, consider the extension at time n. Then for
each positive conclusion (i.e., conclusion whose proof tag
is +d) p;:

— introduce arule 72 : =% p;
— introduce an instance of the superiority relation rj <'s

for each s such that C(s) = ~p;

— remove p? from the body of rules where it occurs;

For each negative conclusion g; remove rules where g;

appears in the body. Compute the extension for the sub-

theory restricted to the rules whose consequent is labelled

with n+ 1.
It is immediate to see that the above theory compute the
extension of a theory D in the interval [0,7] in O(|D| *¢)-
time (where |D| is the size of the theory, i.e., the number
of instances of literals occuring in it). It is clear that the
above procedure applies an incremental swap over the time-
line, and the problem with it is that it cannot look backward.

Therefore the major limitation of it is that it cannot handle
rules where the time of the conclusion precedes the time of
some of its antecedent. Unfortunately, we believe that the
restriction the above procedure relies upon is a very strong
one. It excludes some important application areas, for exam-
ple, among other, legal reasoning where retroactivity is not
unusual and diagnosis where rules typically have the format
excluded by the restriction that the conclusion should not
precedes the antecedents.

An efficient Java implementation of TDL based on the
algorithms presented in this paper is discussed in (Rubino
& Rotolo 2009; Rubino 2009). Initial experiments with the
implementation confirm the linearity (and scalability) of the
approach. The implementation has been tested on both syn-
thetic theories (designed to test particular features of TDL)
and concrete theories obtained from real life scenarios.

On the synthetic side, TDL and the proposed algorithms
can account for compact encodings and efficient computa-
tions. For example consider the theories:
=" p pl =7 pit! for 0 <i <99
The two theories are equivalent (i.e., they generate the same
extension) in the time interval [0, 100], but, trivially, our al-
gorithms compute the extension much more quickly when
given the first theory as input than when the second theory
is used as input. On the practical side, of particular interest
is the formalisation in TDL of the Road Traffic Restriction

Regulation of the Italian town of Piacenza (Rubino 2009;
Governatori, Rotolo, & Rubino 2010).

T : éﬂpo

6 Summary and Related Work

We described an expressive variant of TDL. We showed that
it can be used to capture many aspects of the concept of
deadline. Despite its expressiveness, this logic is compu-
tationally feasible: we proposed an algorithm to compute
conclusions in TDL and proved that the time complexity of
the algorithm is linear to the size of the theory.

Typically there are two mainstream approaches to reason-
ing with and about time. A point based approach, as in the
present paper, and an interval based approach (Allen 1984).
Notice that that the current approach is able to deal with
constituents holding in an interval of time: an expression
= al2] meaning that a holds between 7, and 7, can just be
seen as a shorthand of the pair of rules =" @'l and ~+* —a'.

Non-monotonicity and temporal persistence are covered
by a number of different formalisms, some of which are
quite popular and mostly based on variants of Event Cal-
culus or Situation Calculus combined with non-monotonic
logics (see, e.g., (Shanahan 1997; Turner 1997)). TDL has
some advantages over many of them. While TDL is able to
cover many different aspects, it is possible in TDL to com-
pute the set of consequences of any given theory in linear
time to the size of the theory. To the best of our knowledge,
no logic with the same coverage of TDL is so efficient.

Anyway, we would like to point out that interval and du-
ration based defeasible reasoning has been developed by
(Augusto & Simari 2001; Governatori & Terenziani 2007).
(Governatori & Terenziani 2007) focus on duration and pe-
riodicity and relationships with various forms of causality.

(Augusto & Simari 2001) proposed a sophisticated interac-
tion of defeasible reasoning and standard temporal reason-
ing (i.e., mutual relationships of intervals and constraints on
the combination of intervals). In both cases no complex-
ity results were presented, but it seems that those systems
cannot enjoy the same nice computational properties of the
logic studied here, since both are based on complex tempo-
ral structures.

References

Allen, J. 1984. Towards a general theory of action and time.
Artificial Intelligence 23:123-154.

Antoniou, G.; Billington, D.; Governatori, G.; and Maher, M. J.
2001. Representation results for defeasible logic. ACM Transac-
tions on Computational Logic 2:255-287.

Antoniou, G.; Billington, D.; Governatori, G.; and Maher, M. J.
2006. Embedding defeasible logic into logic programming. The-
ory and Practice of Logic Programming 6:703-735.

Augusto, J., and Simari, G. 2001. Temporal defeasible reasoning.
Knowledge and Information Systems 3:287-318.

Bassiliades, N.; Antoniou, G.; and Vlahavas, I. 2006. A defea-
sible logic reasoner for the Semantic Web. International Journal
on Semantic Web and Information Systems 2:1-41.

Governatori, G., and Rotolo, A. 2010. Changing legal systems:
Legal abrogations and annulments in defeasible logic. Logic Jour-
nal of IGPL 18(1):157-194.

Governatori, G., and Terenziani, P. 2007. Temporal extensions to
defeasible logic. In Proc. Australian AI 2007, 476—485. Springer.
Governatori, G.; Palmirani, M.; Riveret, R.; Rotolo, A.; and Sar-
tor, G. 2005. Norm modifications in defeasible logic. In JURIX
2005. Amsterdam: 10S Press. 13-22.

Governatori, G.; Hulstijn, J.; Riveret, R.; and Rotolo, A. 2007.
Characterising deadlines in temporal modal defeasible logic. In
Proc. Australian AI 2007, 486—496.

Governatori, G.; Rotolo, A.; and Rubino, R. 2010. Implementing
temporal defeasible logic for modeling legal reasoning. In Proc.
JSAI-isAl 2009 Workshop, LNAI. Springer.

Governatori, G.; Rotolo, A.; and Sartor, G. 2005. Temporalised
normative positions in defeasible logic. In ICAIL’05, 25-34.
ACM Press.

Lam, H., and Governatori, G. 2009. The making of SPINdle. In
Proc. RuleML 2009, LNCS, 315-322. Springer.

Mabher, M. J. 2001. Propositional defeasible logic has linear com-
plexity. Theory and Practice of Logic Programming 1:691-711.
Nute, D. 1993. Defeasible logic. In Handbook of Logic in Ar-
tificial Intelligence and Logic Programming, volume 3. Oxford
University Press. 353-395.

Rubino, R., and Rotolo, A. 2009. A java implementation of
temporal defeasible logic. In Proc. RuleML 2009, LNCS, 298—
305. Springer.

Rubino, R. 2009. Una implementazione della logica defeasi-
ble temporale per il ragionamento giuridico. Ph.D. Dissertation,
CIRSFID, University of Bologna.

Shanahan, M. 1997. Solving the Frame Problem: A Mathematical
Investigation of the Common Sense Law of Inertia. Cambridge,
MA: MIT Press.

Turner, H. 1997. Representing actions in logic programs and
default theories: A situation calculus approach. Journal of Logic
Programming 31(1-3):245-298.

