Learning to Act Optimally in Partially Observable Markov Decision Processes
using Hybrid Probabilistic Logic Programs

Emad Saad
Department of Computer Science
Gulf University for Science and Technology
Mishref, Kuwait
saad.e@gust.edu.kw

Abstract

We present a probabilistic logic programming frame-
work to reinforcement learning, by integrating rein-
forcement learning, in POMDP environments, with nor-
mal hybrid probabilistic logic programs with probabilis-
tic answer set semantics, that is capable of representing
domain-specific knowledge. We formally prove the cor-
rectness of our approach. We show that the complexity
of finding a policy for a reinforcement learning problem
in our approach is NP-complete. In addition, we show
that any reinforcement learning problem can be encoded
as a classical logic program with answer set semantics.
We also show that a reinforcement learning problem
can be encoded as a SAT problem. We present a new
high level action description language that allows the
factored representation of POMDP. Moreover, we mod-
ify the original model of POMDP so that it be able to
distinguish between knowledge producing actions and
actions that change the environment.

Introduction

lies on techniques from probabilistic reasoning and knowl-
edge representation by normal hybrid probabilistic logic
programs (Saad and Pontelli 2006). The normal hybrid
probabilistic logic programs framework of (Saad 2008a) has
been proposed upon observing that dynamic programming
methods to reinforcement learning in general and value it-
eration in particular are incapable of exploiting domain-
specific knowledge of the reinforcement learning problem
domains to improve the efficiency of finding the optimal
policy. In addition, these dynamic programming methods
use primitive representation of states and actions as this
representation does not capture the relationship between
states (Majercik and Littman 2003) and makes it difficult
to represent domain-specific knowledge. However, using
richer knowledge representation frameworks for MDP and
POMDP allow efficiently finding optimal policies in more
complex stochastic domains and lead to develop methods
to find optimal policies with larger domains sizes (Majercik
and Littman 2003).

The choice of normal hybrid probabilistic logic programs

Reinforcement learning is the problem of learning to act by (NHPLP) to solve reinforcement learning problems in MDP
trial and error interaction in dynamic environments. Rein- environment is based on that; NHPLP is nonmonotonic,
forcement learning problems can be represented as Markov therefore more suitable for knowledge representation and
Decision Processes (MDP), under the assumption that accu-reasoning under uncertainty; NHPLP subsumes classical
rate and complete model of the environment is known. This hormal logic programs with classical answer set semantics
assumption requires the agent to have perfect sensing and(Gelfond and Lifschitz 1988), a rich knowledge represen-

observation abilities.

However, complete and perfect observability is unrealis-
tic for many real-world reinforcement learning applications,
although necessary for learning optimal policies in MDP en-
vironments. Therefore, different model is needed to repre-
sent and solve reinforcement learning problems with partial
observability. This model is Partially Observable Markov
Decision Processes (POMDP). Similar to MDP, POMDP
requires the model of the environment to be known, how-
ever states of the world are not completely known. Con-

tation and reasoning framework, and inherits its knowledge
representation and reasoning capabilities including the abil-
ity to represent and reason about domain-specific knowl-
edge; NHPLP has been shown applicable to a variety of fun-
damental probabilistic reasoning problems including proba-
bilistic planning (Saad 2007), contingent probabilistic plan-
ning (Saad 2009a), the most probable explanation in belief
networks, the most likely trajectory in probabilistic plan-
ning, and Bayesian reasoning (Saad 2008Db).

In this view, we integrate reinforcement learning in

sequently, the agent perform actions to make observations POMDP environment with NHPLP, providing a logical

about the states of the worlds. These observations can beframework that overcomes the representational limitations
noisy due to imperfect agent’s sensors. Similar to MDP, dy- of dynamic programming method to reinforcement learn-
namic programming methods, by value iteration, has been ing in POMDP and is capable of representing its domain-
used to learn the optimal policy for a reinforcement learning specific knowledge. In addition, the proposed framework

problem in POMDP environment.
A logical framework to reinforcement learning in MDP

extends the logical framework of reinforcement learning in
MDP of (Saad 2008a) with partial observability. We show

environment has been developed in (Saad 2008a), which re-that any reinforcement learning problem in POMDP envi-

ronment can be encoded as a SAT problem. The importance
of that is reinforcement learning problems in POMDP envi-

ronment can be now solved as SAT problems.

Syntax and Semantics of NHPLP

We introduce a class of NHPLP (Saad and Pontelli 2006),

namely NHPLR», that is sufficient to represent POMDP.

The Language of NHPLPpo
Let £ be a first-order language with finitely many pred-

icate symbols, constants, and infinitely many variables.

The Herbrand base of is denoted byB,.. Probabilities
are assigned to atoms i, as values from[0,1]. An
annotation p, is either a constant irf0, 1], a variable
(annotation variablg ranging over0, 1], or f(u1,. .., tn)
(called annotation functioh where f is a representation
of a computable total functiorf : ([0,1])" — [0,1] and
U1, ..,y are annotations. Leti,as € [0,1]. Then
we say thaty; <; as iff a1 < as. A normal probabilis-
tic logic program @p-program) in NHPLPp» is a pair
P = (R, T), whereR is a finite set of normal probabilistic
rules (np-rules) and is a mappingr : Bz — Sasjs
where S4;4; is a set of disjunctive probabilistic strategies
(p-strategies) whose composition functionsare mappings
¢ : [0,1] x [0,1] — [0,1]. A composition function

crayfplA: p — Body € R such that h |= Body} <,
h(A).
The probabilistic reducP” of P w.r.t. h is an np-program
without non-monotonic negatio®” = (R" 7), where:
Aipe— Ay, Ay € RP iff
A:M — Al:ulw"vAn://Lru
not (By: $1),...,n0t (Bm : Bm) € R
V(1 < j < m), B; £ h(Bj). A probabilistic model
(p-mode) of an np-programP is a p-interpretation ofP
that satisfies?. We say that a p-interpretatidgnof P is a
probabilistic answer set d? if & is the minimal p-model of
the probabilistic reductP”, of P w.r.t. h.

and

Partially Observable Markov Decision
Processes
We review finite-horizon POMDP (Kaelbling, Littman, and

Cassandra 1998) with stationary transition functions, sta-
tionary bounded reward functions, and stationary policies.

POMDP Definition

POMDP is a tuple of the form M =
(S,50,A,T,\,R,Q,0) where: S is a finite set of
states; Sy is the initial state distribution/A is a finite set
of stochastic actions;I" is stationary transition function
T:5xAxS —[0,1], where for anys € S anda € A,

of a disjunctive p-strategy returns the probability of a
disjunction of two events given the probability values of
its components. An np-rule is an expression of the form

YowesT(s,a,8") = 1; X € [0,1) is the discount factor;
R : S xAxS — Ris a stationary bounded reward
function; Q is a finite set of observations that the agent

Avp = Arip,... A, observes in the environment; aodis observation function
not (By : piny1), - -, n0t (B - fingm) 0:85xAxQ —[0,1], where for anys € S anda € A
where A, Ay,...,An, By,..., By, are atoms andu, j; where 3", _, O(s,a,0) = 1. A stationary policy is a

(1 <i < m+ n) are annotations. Intuitively, the meaning
of an np-rule is that if for eacl; : p;, the probability of
A, is at leasty; (w.r.t. <;) and for eachhot (B; : p;), it

is not believablethat the probability ofB; is at leasty;,
then the probability ofd is p. The mapping- associates to
each atomA a disjunctive p-strategy that will be employed

to combine the probability values obtained from different

np-rules havingA in their heads. An np-program is ground
if no variables appear in any of its np-rules.

Probabilistic Answer Set Semantics of NHPLR»

A probabilistic interpretation (p-interpretation);, is a
mapping fromB, to [0,1]. Let P = (R,7) be a ground
np-program,h be a p-interpretation, and be an np-rule

A:/J' — Al:lufla”wAn:/ina

not (By : fin41), -0t (B fintm)

Then, we say

o h satisfiesA; : u; iff p; <; h(4;).

o h satisfieswot (B; : 5;) iff 3; £+ h(B;).

e h satisfiesBody = Ay : pa,..., A, © fn,not (B :
B1),...,n0t (By @ Bm) iff ¥Y(1 < i < n),h satisfies
A; iy andV(1 < j < m), h satisfieswot (B; : ;).

e) satisfiesA : p «— Body iff h satisfiesA : p or h does
not satisfyBody.

o h satisfiesP iff h satisfies every np-rule iR and for every
atomA € B, we have

mapping from states to actions of the form S — A. The
value function of a policyr with respect to an initial state
so € S,, with finite horizon ofn steps remainingy,” (so),
is calculated by

Vir(s0) = 25, e5 T(s0,m(50),81) 2_,,cq O(s1,7(50), 04)
[R(s0,7(s0),81) + AV, (s1)]

which determines the expected sum of discounted rewards
resulting from executing the policy starting froms,. Be-
cause of the agent is unable to completely observe the states
of the world and with reliability, it keeps what is called a be-
lief state. An agent’s belief state is a probability distribution
over the possible world states the agent may think it is in.
Therefore, an action causes a transition from a belief state
to another belief state. Givénis a believe state andis an
action, then executing in the belief staté results a new
belief statel’, where the probability of a state’, in &’ and

the value function of executing a polieyin b are given by:

o O(s',a,0) > s T(s,a,s")b(s)
b = Pr(oTa, b)

Vi(b) =Y b(s)Vii(s).
seS
The optimal policy over the agent’s belief states can con-
structed from the optimal value function over the agent’s be-
lief states which is given by (b) = max, V,7(b).

Discussion contain variables, a fluent literal is either a flughte F

The original model of POMDP does not distinguish be- ©OF — f. A conjunction of fluent literals of the formy A
tween knowledge producing (sensing) actions and actions - - - / In iS conjunctive fluent formula, wher, .. ., l,, are
that affects and change the environment (non-sensing ac- fluent I|t(.arals._ Sometimes we abuse the notatlon'and refer
tions). This means that it treats sensing and non-sensing 0 @ conjunctive fluent formula as a set of fluent literdls (
actions equally in the sense that, like non-sensing actions, a denotesirue). An action theoryPT, in Apo is a tuple
sensing action affects and change the environment as well PT = (S0, D, A), wheres; is a proposition of the form (1),

as producing knowledge resulting from observing the en- D iS @ set of propositions from (2-4), afid< A < lis a
vironment. However, (Scherl and Levesque 1993) proved discount factor as follows:

that sensing actions produce knowledge (make observations) initially {¢; : p;, 1<i<n (1)

and does not change the state of the world. Therefore, ac- executable a if ¥ (2)
tions that change the state of the world are different from the . .

knowledge producing actions. In addition, the value func- acauses { ¢; : pi : riif i, 1<i<n (3)

tion described above makes the agent observing the envi- a observes { 0; : p; : r; sensingv¢;, 1<i<n (4)
ronment at every step of its life with each action it takes. \herey,;, ¢s,0;, (1 < i < n) are conjunctive fluent for-
However, this is not necessary to be always the case, sincemulas,a € A, andp; € [0,1]. The set of all ground); and

it is possible for the agent to start with observing the envi- ,, must be exhaustive and mutually exclusive.

ronment then performing a sequence of actions, or the agent Theinitial agent's belief state-a probability distribution
could start with performing a sequence of actions then ob- gver the possible initial states, is represented by (1), that says
serving the environment. To overcome these limitations, we each possible initial state; holds with probabilityp;. Ex-
define the value function of n-Step finite horizon POMDP ecutab”ity conditionis represented by (2) A non_sensing

with respect to an initial state € 5, as: action, a, is represented by (3), which says that for each

e if w(sp) is @a non-sensing action 1 < i < n, a causesp; to hold with probabilityp; and re-

V7 (s0) = Z T(s0,7(s0), 51)[R(s0, 7(s0), 51) + AV,7_1(51)] wardr; is received in a successor state to a state in which
s is executed and; holds. A sensing action, is represented

by (4), which says that for each < i < n, whenever a

o if m(s0) is sensing action correlatedy; is known to be trueg causes any od; to be

Vii(s0) = Y O(s0,m(s0),51)[R(s0,7(s0),51) + AVii_1(s1)] known true with probabilityp; and rewardr; is received in

51€5 a successor state to a state in whidk executed, where the
whereO(sg, 7(s0), s1) is the probability of observing the literals in1; determine what the agent is observing (sensor
states;, where for some € €, o is observed irs;. Notice reading literals) and literals i, determine what the sensor
thatO is treated as a mappir@: Sx Ax S — [0, 1], where reports on (sensor report literals). Similar to (Draper, Hanks,
A is the set of sensing actions. For ang S anda € A, and Weld 1994), when a property of the world cannot be di-
O(s, a,.) is the probability distribution over states resulting rectly sensed by the sensor, another correlated property of
from executinga in s, such thaty .o O(s,a,s’) = 1. the world, that can be sensed by the sensor, can be used in-
As in the original model of POMDP[is a mappingl” : stead. An action theory is ground if it does not contain any

SxAxS — [0, 1], whereA is the set of non-sensing actions. ~ variables. N
Extension to infinite horizon POMDP can be achieved ina Inthe sequel, we represent an actidn (3) as a set of the

similar manner. This definition of POMDP distinguishes be- forma = {a,...,a,}, where each; corresponds tg;, p;,
tween knowledge producing actions and actions that change r;, and;. For eachl < i < n, (3) can be represented as
the environment. In this view, the optimal poli€§ is given a; causes ¢; : p; : r; if ;. Similarly, (4) can be
by: V.*(sg) = max, V,7(s0). represented as observes o; : p; : r; sensing ;.
) Example 1 Consider the tiger domain from (Littman, Cas-
Apo an Action Language for POMDP sandra, and Kaelbling 1995), which is represented by the ac-

We introduce an action language for POMD®,o. The tion theoryPT = (S, D, A), whereexecutable AC'if 0),
proposed action language extends both the action language,for all AC € {openL, openR, listen} and

Anp, (Saad 2008a) for representing and reasoning about Lo {tl,htl} : 0.5

MDP, and the action languag®, (Saad 2009a) for repre- So = initially { (=4, —htl} : 0.5

senting and reasoning about imperfect sensing actions with

probabilistic outcomes. An action theory.ifo, is capable I {tl} : 1: —100 if {¢l}
of representing the initial state distribution, the executabil- OpEnT CAUSES | Ioti} 1 1110 if {tl}
ity conditions of actions, the discount factor, the reward re- {1} : 1: =100 if {~t]}
ceived from executing actions in states, and makes it clear openR Causes{ {t1} :1:10if {t1}

the distinction between sensing and non-sensing actions.
g g {t1} : 0.85 : —1 sensing {htl}

Language syntax listen observes %:iﬁ g'ég) Sensing }Etgz}
A fluent is a predicate, which may contain variables. Given (1) : 015 : —1 sensingg~{—|htl}

that 7 is a set of fluents andl is a set of actions that can

Semantics

A set of ground literalg is consistent if it does not contain

a pair of complementary literals. If a literabelongs top,

then we say is true ing, andi is false ing if = lisin¢. A

set of literalso is true ing if o is contained inp. A states

is a complete and consistent set of literals that describes the
world at a certain time point.

Definition 1 LetPT = (Sy, D, \) be a ground action the-
ory in App, s be a stateg; causes ¢; : p; : r; if Y,
(1 <i<n)beinD,anda = {ay,...,a,} be an action,
where eachu; corresponds t@;, p;, r;, and; for 1 < i <
n (similarly for a; observes ¢; : p; : r; sensing).
Then, the state resulting from executin@ s ®(a;, s) is:

ol c P(a;,s)and— 1 ¢ B(a,,s) iff | € ¢, andy); C s.

o[€ P(a;,s)andl ¢ ®(a;,s)iff =1 € ¢; and); C s.

e Elsel € ®(a;,s)iffl € sand—1 € ®(a;, s)iff =1 € s.
Definition 2 Let s be a state, and; causes ¢; Di
r; if 4, (similarly a; observes o; : p}: 7} sensing)
(1 < i < n) be in propositions. Then, the transition proba-
bility distribution after executing (a’) in s is given by

n_) Dpi ifs' = ®(as,s)
I(s,a,5) = { 0 otherwise
/ . A !
o D; ifs’ = (I)(CLZ-,S)
O(s,d’,) = { 0 otherwise

The reward received in a staté after executingz (a’) in
sisR(s,a,8) = r;if s = ®(a;,s), R(s,a’,8") = r}if
s’ = ®(al, s), otherwiseR (s, a, s’) = R(s,d’,s") = 0.

Definition 3 Let sq be an initial state,s, s’ be states, and
w be a policy inPT. Then, the value function of n-step
remaining,V,T, of = is given by:
e if (s0) is @ non-sensing action amdl = T'(sg, 7(s0), $1)
Vi (s0) = Yoy,e5 X [Rls0,m(s0),81) + AV, (s1)]
o if m(s0) is sensing action antl’ = O(sg, 7(s0), 51)
Vi(s0) = Y. esY [R(so,m(s0),51) + AV, (s1)]
where aftem steps Vi (sn) = R(Sn—1,7(Sn—1), $n)-

Executing sensing or non-sensing actinfs), in s causes a
transition to a set of states,= {s, s5,...,s.,}. Letw(o)
denotes the set of actiongs}), n(s5), ..., n(s,,) executed
in the states’, s, ..., s,, respectively. Notice that if (o)
is a singleton, i.e., the same action is executed in every state
in o, then this corresponds to executing an action in a belief
statec = {s!,sh,...,s],}. Since executing (o) in o pro-
duces another set of staigs then executingr(o) causes a
transition from a belief state to another belief state.

For finite horizon POMDP, a policyr : S — A can
be represented as a set of ordered pairs, starting from
the initial belief statesy (the set of initial states irby),
asmw {(O—Oa 71—(0-0))7 (017 ﬂ-(o—l))v) (Un—la 71—(0—71,—1))}5
where forl < ¢ < n, o; represents a belief state
(a set of states) resulting from executingo;_1) In
o,—1. This set representation of finite horizon poli-
cies in POMDP leads to view a policy as a set of tra-
jectories, where each trajectory takes the fojm) =
50, 7(80), 81, (1), -+ s Sn—1,T(Sn—1), S, Wheresg is an
initial state inSy and for alll <+ <n,s; € o; andn(s;) €
(o), such that forany <i < n, s; = ®(s;_1,7(si-1)).

Let 7 be a policy for a finite horizon POMDP afd be the
set of trajectories representation 1of given the trajectory
view of 7, the value function ofr can be now described as:

VJ(SQ) = Z |:i)\t :| Rt+1:|

j(n)ET, Lt=0
®)

t

|:H X(Si, 71'(81'), Si+1)

whereR ;11 = R(s¢, m(s¢), s¢+1) and

T(si,m(8i), Si+1), 7(s:) is nonsensing

X(si,7(si), i) = { O(si,m(8:), 8i+1), m(8i) is sensing

Thus, the optimal policy/,*, the maximum value function
among all policies, is given by, (sg) = max, V;7(so)

Reinforcement Learning in NHPLPp»

This section uses NHPLR, to solve reinforcement learning

problems, by encoding an action theoBT in Ape, into

an np-programiIpr. The probabilistic answer sets Obt

correspond to valid trajectories T, with associated value

function. The np-program encoding of an action theory in

Apo follows related encoding described in (Saad 2008a;

2009a; Son et al. 2006). We assume that the length of the op-

timal policy that we are looking for is known and finite. We

use the following predicatesiolds(L, T') for literal L holds

at time momenft’, occ(A, T) for action A executes at time

T, state(T) for a state of the world at tim&, reward(T, r)

for the reward received at tiE is r, value(T, V') for the

value function of a state at tiniE is V, and factor(X) for

the discount factoA. If an atom appears in an np-rule ia

with no annotation it is assumed to be associated with the

annotationl. We usep(v)) to denotep(ly),...,p(l,) for p

is a predicate ant¢h = {l,...,10,}.
LetIlptr = (R, 7) be the np-program encoding BT =

(So, D, \), whereR is the set of the following np-rules.

e Each actioru = {ay,...,a,} € A, is encoded as

action(a;) —

(6)

forall 1 <i < n. Each fluentf € F is encoded as a fact
of the form fluent(f). Fluent literals are encoded as

literal(F) <« fluent(F) @)
literal(—~F) <« fluent(F) (8)

To specify that fluentg’ and—F" are contrary literals, we
use the following np-rules.

contrary(F,—F) «— fluent(F) 9

— fluent(F) (20)

The initial belief statdnitially {«; pi,1 <i<n
is represented ik as follows. Letsy, s, ..., s, be the
set of possible initial states, where for edck< i < n,
s; = {lt,...,11,}, and the initial probability distribution
be Pr(s;) = p;. Moreover, lets = s; U sa U ... U sy,
s = s NsygN...Ns,, 5 =s5—s. Lets™rort =
{l]1 € s; andl is a sensor report literd|be the set of all
sensor report literals in all;. We denotes” = {1 |1 €
(5 — smeporty v =l € (5 — smePort)}. Intuitively, s” is the
same ag after excluding the set of sensor report literals
srerert from 3. Let s%¢™s¢ be the set of all pairéd;, v;),

contrary(—F, F)

whered; and~; are sets of literals contained i3, such
that 9; is the set of sensor reading literals apdis the

set of sensor report literals appearingsjn The set of all
possible initial states are generated as follows: for each
l € ¢/, we include inR

holds(1,0) «— (11)

which represents a fact that holds in every possible initial
state. It says that the literdholds at time moment 0. In
addition, for eachl € s, R includes

holds(1,0) «— not holds(—l,0) (12)
holds(—l,0) « not holds(l,0) (13)

These np-rules say(similarly —7) holds at time moment

0, if =l (similarly I) does not hold at the time moment 0.

For each(d,~) € ¢, lety = {l4,...,ln}, then for
eachl < i < m, Rincludes .

holds(l;,0) < holds(d,0) (24)

The initial probability distribution over the initial states is
encoded as follows, which says that the probability of a
state at time O ig;, if I3, ...,[!, hold at the time O.

state(0) : p; < holds(l%,0), ..., holds(l’,,0) (15)

Each executability condition of an action of the form (2)
is encoded for each< i < n as

exec(a;, T) «— holds(¢,T) (16)

For each non-sensing action propositigncauses ¢; :
pi - T‘Zifw“].SZSH,lnD,IetQSZ:{ZZl,7llm
Then,V(1 < j <m), Rincludes

holds(lg, T+ 1) « occ(a;, T), exec(a;, T),
holds(v;,T')

If a occurs at timel" andv; holds at the same time mo-
ment, theri] holds at the tim&@ + 1. Then, we have

state(T + 1) : p; x U « state(T) : U, occ(a;, T), °
exec(a;, T), holds(v;, T), holds(¢;, T + 1) (18)

whereU is an annotation variable ranging oJer1] acts

as a place holder. This np-rule states thap,itholds in

a state at timd", whose probability i€/, and in whicha

is executable, then the probability of a successor state at *
timeT + 1isp; x U, in which ¢; holds.

For each sensing action proposition observes o;

17

i r; sensing ¢;, 1 < ¢ < n, in D, leto; _
{1}, ...im}yandey; = {I;,...,1;"}. ThenV(1 < j <
m), R includes
[]

observed(l;j, T) « occ(a;, T), exec(a;, T),
holds(v;, T) (19)

holds(I?, T 4+ 1) — occ(a;, T), exec(a;, T),
observed(y;,T) (20)

[]
where (19) says that executing the sensing actiattime

T in which; holds causes; to be observed to be known

true at the same moment and (20) states thatifoccurs
at timeT and the literals inp; are observed to be known

true at the same moment, then the Iiterélse 0; are
known to hold at the time momefft + 1.

state(T + 1) : p; x U « state(T) : U, occ(a;, T),

exec(a;, T), observed(y;, T), holds(o;, T + 1) (21)
The above np-rule says that the probability of a state at
timeT + 1isp; x U if o; become known true at the same
moment, after executing in a state at timel’, whose
probability isU, in which the literals iny); are observed
true.
The reward-; received at timd” + 1 after executing: in
a state at timé” is encoded as

reward(r;, T + 1) < occ(a;, T), exec(a;, T) (22)

The value functior?” + 1 steps away from the initial state,
So, given the value functiofi’ steps away fron®, is en-
coded as
—if a is a non-sensing action
value(V + A" « U s ry, T 4+ 1) — value(V,T),
factor(N), state(T + 1) : U, reward(r;, T + 1),
occ(ai, T), exec(a;, T), holds(v;, T),
holds(¢;, T + 1) (23)
—if a is a sensing action

value(V + A" « U s ry, T 4+ 1) — value(V,T),
factor(X\), state(T + 1) : U, reward(r;, T + 1),
occ(a;, T), exec(as;, T), observed(v;, T),
holds(o;, T + 1) (24)
where the variable¥” € R, \ € [0,1), U € [0,1], and
factor(\) is a fact inR. These np-rules state that the
value function at timd@” + 1 is equal to the value function
at timeT" added to the product of the rewargdreceived
in a state af” + 1 and the probability of a state at time
T + 1 discounted by”.
The following np-rule asserts that a litedaholds at"+1
if it holds at7T" and its contrary does not hold At+ 1.
holds(L,T + 1) < holds(L,T),
not holds(L', T + 1), contrary(L, L") (25)
The literal, A, and its negation;~A, cannot hold at the
same time, wherénconsistent is a literal that does not
appear inPT.
inconsistent < not inconsistent, holds(A,T),
holds(—A,T) (26)

Actions are generated once at a time by the np-rules:
occ(AC*, T) « action(AC?), not abocc(AC*,T) (27)

abocc(ACH, T) « action(AC"), action(ACY),

occ(ACT | T), AC" # AC? (28)
The goal expressioi = g1 A ... A g, iS encoded as
goal — holds(g1,T),...,holds(gm,T) (29)

Example 2 The np-program encoding of the tiger domain

presented in Example 1 is given By= (R, 7), wherer is

arbitrary and R consists of the following np-rules, in addi-
tion to the np-rules (7), (8), (9), (10), (25), (26), (27), (28):

action(openL;) «—
action(listen;) «—
for1 <i<2andl < j < 4. Properties of the world are
described by the fluents and htl which are encoded by
Sfluent(tl) «— fluent(htl) —
The set of possible initial states are encoded by:

holds(tl,0) «— not holds(—tl,0)
holds(—tl,0) «— mnot holds(tl,0)
holds(tl,0) «— holds(htl,0)
holds(—tl,0) <« holds(—htl,0)

The initial probability distribution is encoded by:

state(0) : 0.5 «— holds(tl,0), holds(htl,0)
state(0) : 0.5« holds(—tl,0), holds(=htl,0)
The executability conditions of actions are encoded by:
exec(openL;) «—
forl1 <i<2andl < j < 4. Effects of thepenL are
holds(tl, T + 1) « occ(openLy,T), exec(openLy,T),
holds(tl, T)
holds(—tl,T + 1) « occ(openLs, T), exec(openLs, T,
holds(—tl, T
Effects of thepen R action are encoded by
holds(—tl, T + 1) < occ(openRy,T), exec(openRy,T),
holds(—tl, T)
holds(tl, T + 1) < occ(openRa, T), exec(openRy, T),
holds(tl, T)

action(openR;) «—

exec(openR;) «— exec(listen;) «—

Effects of théisten action are encoded by

observed(htl, T) «— occ(listeny,T), exec(listeny, T')
holds(htl, T
exec(listens, T)
holds(htl, T
yexec(listens, T)
holds(—htl, T
,exec(listeny,T)

)
)
)
holds(=htl, T)
)
)
)
)

observed(htl, T") « occ(listens,
observed(—htl, T) « occ(listens,

observed(—htl, T) «— occ(listeny,

observed(htl, T
sexec(listens, T)
observed(htl, T
exec(listeng, T')
observed(—htl, T
exec(listeny, T)
observed(—htl, T

The probability distribution frondisten is given by

state(T + 1) : 0.85 x V' «— occ(listeny,T), state(T') : V,
exec(listeny, T), observed(htl, T), holds(tl, T + 1)
state(T + 1) : 0.15 X V'« occ(listens, T, state(T) : V,
exec(listeng, T), observed(htl, T), holds(—tl, T + 1)
state(T + 1) : 0.85 x V — occ(listens, T), state(T') : V,
exec(listeng, T), observed(—htl, T), holds(—tl, T + 1)

holds(—tl, T + 1) < occ(listena,

(),
(T)
(T)
holds(tl, T + 1) «— occ(listeny, T), exec(listeny, T')
(T)
holds(—tl, T + 1) « occ(listens, T),
(),

holds(tl,T + 1) «— occ(listeny,

state(T + 1) : 0.15 x V «— occ(listeny, T'), state(T') : V,
exec(listeny, T), observed(—htl, T), holds(tl, T + 1)

The rewards received from executing the actions are en-

coded by
reward(— 100 T + 1) « occ(openLy), exec(openL)
reward(10,T + 1) « occ(openLs), exec(openLs)
reward(— 00 T + 1) « occ(openRy), exec(openRy)
reward(10,T + 1) « occ(openRs), exec(openRsy)
reward(—1,T + 1) « occ(listeny), exec(listeny)
reward(—1,T + 1) « occ(listens), exec(listens)
reward(—1,T + 1) « occ(listens), exec(listens)
reward(—1,T + 1) « occ(listeny), exec(listeny)

The value function is encoded by the np-rules:

value(V + AT « U * =100, T + 1) « value(V,T),
factor(N), state(T + 1) : U, reward(—100,T + 1),
occ(openLl7 T), exec(openLl, T),

holds(tl, T), holds(tl, T + 1)

value(V + AT« U 10, T 4+ 1) < value(V, T)
factor(N), state(T + 1) : U, reward(10,,T + 1),
occ(openLq, T), exec(openLa,T),

holds(—itl, T), holds(—tl, T + 1)

value(V + AT« U % =100, T + 1) « value(V,T),
factor(X), state(T + 1) : U, reward(—100,T + 1),
occ(openRy,T), exec(openRy,T),

holds(—tl, T), holds(—tl, T + 1)

value(V + AT x U %10, T + 1) « value(V, T),
factor(N), state(T + 1) : U, reward(10,T + 1),
occ(openRy, T'), exec(openRz, T),

holds(tl, T), holds(tl, T + 1)

value(V + AT« U x —1,T + 1) « value(V,T),
factor(N), state(T + 1) : U,reward(—1,T + 1)
occ(listeny, T), exec(listeny, T),
observed(htl, T), holds(tl, T + 1)

value(V + AT« U x —1,T + 1) « value(V,T),
factor(N), state(T + 1) : U, reward(—1,T + 1),
occ(listens, T), exec(listens, T,
observed(htl, T'), holds(—tl, T + 1)

value(V + AT« U x =1, T + 1) « value(V,T),
factor(N), state(T + 1) : U, reward(—1,T + 1),
occ(listens, T), exec(listens, T,

observed(—htl, T), holds(—tl, T + 1)

value(V + AT« U x —1,T + 1) « value(V,T),
factor(N), state(T' + 1) : U,reward(—1,T + 1)
occ(listeny, T), exec(listeny, T)
observed(—htl,T), holds(tl, T + 1

)

)
Correctness

In this section we prove that the probabilistic answer sets

of the np-program encoding of an action thed™f", corre-

spond to trajectories iRPT, with associated value function.

Moreover, we show that the complexity of finding a policy

for PT in our approach is NP-complete. Let the domain of
T be{0,...,n}. Let® be a transition function associated

with PT, so be a possible initial state, ang), ..., a,_1

be a set of actions inl. Recall, any actiom; can be rep-
resented a&; = {ay,,...,am,}. Therefore, a trajectory
80,7(80), 81, 7(81), -+ Sn—1,7(Sn—1), 8, In PT can be

also represented &g aj, si...a;,_ , S, for (1 < j < m)
and 0 < i < mn), suchthat/(0 < i < n), s; is a stateq;
is an actionga;, € a; = {ai,,...,am,}, a;, = 7(s;), and
S; — @(ajifl,si,l).

Theorem 1 Let PT be an action theory indpp, 7™ be
a policy in PT, and T, be the set of trajectories im.
Then, sg, 7(s0), $1,7(81), -+, Sn—1, T(Sp—1), Sn, IS A tra-
jectory in T, iff occ(mw(so),0),...,0cc(m(sp—1),n — 1) is
true in a probabilistic answer set dfp.

Intuitively, an action theoryT in Ape, can be encoded to
an np-programlIpr, whose probabilistic answer sets cor-
respond trajectories iRT.

Theorem 2 Let h be a probabilistic answer set dip,

m be a policy in PT, and 7, be the set of tra-
jectories in . Let OCC be a set that contains
h E 7 = oce(n(s),0),...,0cc(n(sp-1),n — 1) iff

$0,7(80), 81, (1), -+ s Sn—1,7(Sn—1), $n € Tr. Then,

_ T
hE=value(n,v) and hl=T€OCC v= Vn (SO)

Theorem 2 states that the summation of the valyeppear-

ing in value(n,v) that is satisfied by a probabilistic answer
seth in whichoce(r(sg),0), . .., occ(m($p—1),n—1) is sat-
isfied is equal to the expected sum of discounted rewards
after executing a policy starting from a state,.

The np-program encoding of the reinforcement learning
problems, in finite-horizon POMDP, finds optimal policies
using the flat representation of the problem domains. Flat
representation is the explicit enumeration of world states
(Littman, Goldsmith, and Mundhenk 1998). Hence, The-
orem 4 follows directly from Theorem 3.

Theorem 3 ((Littman, Goldsmith, and Mundhenk 1998))
The stationary policy existence problem for finite-horizon
POMDP in the flat representation is NP-complete.

Theorem 4 The policy existence problem for a reinforce-
ment learning problem in POMDP environment using
NHPLPr» with probabilistic answer set semantics is NP-
complete.

Reinforcement Learning using Answer Set
Programming

Reinforcement learning problems in POMDP can be also
encoded as classical normal logic programs with classical
answer set semantics (Gelfond and Lifschitz 1988). Exclud-
ing the np-rules (15), (18), (21) — (24) from the np-program
encoding,Ilpr, of PT, results np-program, denoted by
pgrmal " with only annotations of the form. As shown

in (Saad and Pontelli 2006), the syntax and semantics of this
class of np-programs are equivalent to classical normal logic
programs with classical answer set semantics.

Theorem 5 Let TIp%™! be the normal logic program
resulting after deleting the np-rules (15), (18), (21) —

(24) from Ilpr and © be a policy in PT. Then,
50, 7(80), 81, 7(51), -+ Sn—1,7(Sn—1), S, IS a trajectory
in 7 iff occ(m(s0),0),...,0cc(m(sp—1),n — 1) is true in an

normal

answer set of 5%

Theorem 5 shows that classical normal logic programs with
answer set semantics can be used to solve reinforcement
learning problems in POMDP in two steps. First, a rein-
forcement learning problen®T, is encoded to a classical
normal logic program whose answer sets correspond to valid
trajectories ilPT. From the answer sets of the normal logic
program encoding & T, we can determine the set of trajec-
toriesT; for a policyn in PT. Second, the value of the pol-
icy is calculated using (5). Moreover, any reinforcement
learning problem in POMDP environment can be encoded as
a SAT problem. Hence, state-of-the-art SAT solvers can be
used to solve reinforcement learning problems. Any normal
logic program/[II, can be translated into a SAT formul8,
where the models & are equivalent to the answer setdbf
(Lin and Zhao 2004). Therefore, the normal logic program
encoding of a reinforcement learning probldT can be
translated into an equivalent SAT formula, where the mod-
els of S correspond to valid trajectories IAT.

Theorem 6 Let PT be an action theory andl%™e be
the normal logic program encoding &T. Then, the mod-
els of the SAT encoding bFg% ™! are equivalent to valid
trajectories inPT.

Reinforcement learning problems can be directly encoded to
SAT (Saad 2009b). This is shown by following corollary.

Corollary 1 LetPT be an action theory. The®T can be
directly encoded as a SAT formufawhere the models &
are equivalent to valid trajectories iRT.

Conclusions and Related Work

We described a new high level action languade,o, that
allows the factored representation of POMDP. Moreover, we
presented a new reinforcement learning framework by relat-
ing reinforcement learning in POMDP to NHPLP. The trans-
lation from an action theory representation of a reinforce-
ment learning problem i po into an NHPLP program is
based on a similar translation from probabilistic planning
into NHPLP (Saad 2007). The difference betweks, and

the action language@®aral, Tran, and Tuan 2002), (Boutilier,
Dean, and Hanks 1999), (Eiter and Lukasiewicz 2003), (locchi et
al. 2004), and (Kushmeric, Hanks, and Weld 19@3hatA po is

a hight level language and allows the factored specification
of POMDP.

The approaches for solving POMDP to find the opti-
mal policies can be categorized into two main approaches;
dynamic programming approaches and the search-based
approaches (a detailed survey on these approaches can
be found in (Boutilier, Dean, and Hanks 1999)). How-
ever, dynamic programming approaches use primitive do-
main knowledge representation. Moreover, the search-
based approaches mainly rely on search heuristics (Holl-
dobler, Karabaev, and Skvortsova 2006), which have limited
knowledge representation capabilities to represent and use
domain-specific knowledge.

In (Majercik and Littman 2003), a logical approach for
solving POMDP, for probabilistic contingent planning, has
been presented which converts a POMDP specification of

a probabilistic contingent planing problem into a stochas-
tic satisfiability problem and solving the stochastic satisfi-
ability problem instead. Our approach is similar in spirit
to (Majercik and Littman 2003) in the sense that both ap-
proaches are logic based approaches.
been shown in (Saad 2008b) that NHPLP is more expres-
sive than stochastic satisfiability from the knowledge rep-
resentation point of view. In (Kersting and Raedt 2004;
Kersting, van Ottterlo, and Raedt 2004), based on first-order
logic without nonmonotonic negation, a first-order logic rep-
resentation of MDP has been described. Similar to the first-
order representation of MDP in (Kersting and Raedt 2004;
Kersting, van Ottterlo, and Raedt 2004, allows ob-
jects and relations. However, unliképo, (Kersting and
Raedt 2004; Kersting, van Ottterlo, and Raedt 2004) finds
policies in the abstract level. But, NHPLP allows ob-
jects and relations. (Boutilier, Reiter, and Price 2001,
Sanner and Boutilier 2009) presented a more expressive
first-order representation of MDP than (Kersting and Raedt
2004) that is a probabilistic extension to Reiter’s situation
calculus. However, it is more complex than (Kersting and
Raedt 2004).

Although, the approaches in (Kersting and Raedt 2004;
Kersting, van Ottterlo, and Raedt 2004; Boutilier, Reiter, and
Price 2001; Sanner and Boutilier 2009) use first-order logic
to representing MDPs, they do not use the semantics of the
first-order logic to compute optimal policies. Rather, they
use traditional dynamic programming value iteration algo-
rithm to compute optimal policies at the relational (abstract)
level instead of the propositional level. This is different from
our approach, since we use logic (NHPLP, answer set pro-
gramming, and SAT) for both representing POMDPs and
computing their optimal policies. This is because we em-
ploy the semantics of NHPLP, answer set programming, and
SAT to calculate the optimal policies for POMDPs.

References

Baral, C.; Tran, N.; and Tuan, L. C. 2002. Reasoning about
actions in a probabilistic setting. WAAI

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: structural assumptions and computa-
tional leverageJournal of Al Researcth1(1).

Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic
dynamic programming for first-order mdps. Aith IJCAL
Draper, D.; Hanks, S.; and Weld, D. 1994. Probabilistic
planning with information gathering and contingent execu-
tion. In 2nd International Conference on Artificial Intelli-
gence Planning Systems

Eiter, T., and Lukasiewicz, T. 2003. probabilistic reason-
ing about actions in nonmonotonic causal theorie<.9tin
Conference on UAI

Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. I&@SLP. MIT Pres.

Holldobler, S.; Karabaev, E.; and Skvortsova, O. 2006.
Flucap: A heuristic search planner for first-order mdps.
JAIR27:419-4309.

However, it has

locchi, L.; Lukasiewicz, T.; Nardi, D.; and Rosati, R. 2004.
Reasoning about actions with sensing under qualitative and
probabilistic uncertainty. 116th European Conference on
Artificial Intelligence

Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence101:99-134.

Kersting, K., and Raedt, L. D. 2004. Logical markov
decision programs and the convergence of logicak)td(
In 14th International Conference on Inductive Logic Pro-
gramming

Kersting, K.; van Ottterlo, M.; and Raedt, L. D. 2004.
Bellman goes relational. IICML.

Kushmeric, N.; Hanks, S.; and Weld, D. 1995. An algo-
rithm for probabilistic planningArtificial Intelligenc76(1-
2):239-286.

Lin, F., and Zhao, Y. 2004. Assat: Computing answer sets
of a logic program by sat solversAtrtificial Intelligence
157(1-2):115-137.

Littman, M.; Cassandra, A.; and Kaelbling, L. 1995.
Learning policies for partially observable environments:
scaling up. InL2th ICML

Littman, M.; Goldsmith, J.; and Mundhenk, M. 1998. The
computational complexity of probabilistic planningour-
nal of Artificial Intelligence Research1-36.

Majercik, S., and Littman, M. 2003. Contingent planning
under uncertainty via stochastic satisfiabilifytificial In-
telligencel47(1-2):119-162.

Saad, E., and Pontelli, E. 2006. A new approach to hybrid
probabilistic logic programsAnnals of Mathematics and
Artificial Intelligence48(3-4):187-243.

Saad, E. 2007. Probabilistic planning in hybrid proba-
bilistic logic programs. Irist International Conference on
Scalable Uncertainty Management

Saad, E. 2008a. A logical framework to reinforcement
learning using hybrid probabilistic logic programs. In
Second International Conference on Scalable Uncertainty
Management

Saad, E. 2008b. On the relationship between hybrid prob-
abilistic logic programs and stochastic satisfiability. In
Second International Conference on Scalable Uncertainty
Management

Saad, E. 2009a. Probabilistic planning with imperfect
sensing actions using hybrid probabilistic logic programs.
In Third International Conference on Scalable Uncertainty
Management

Saad, E. 2009b. Probabilistic reasoning by sat solvers. In
Tenth ECSQARU

Sanner, S., and Boutilier, C. 2009. Practical solution tech-
niques for first-order mdpsAIJ 173:748-788.

Scherl, R., and Levesque, H. 1993. The frame problem and
knowledge producing actions. WAAL

Son, T.; Baral, C.; Nam, T.; and Mcllraith, S. 2006.

Domain-dependent knowledge in answer set planning.
ACM Transactions on Computational Logi¢4):613—657.

