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Abstract

An approach to the revision of logic programs under the an-
swer set semantics is presented. For programs P and @), the
goal is to determine the answer sets that correspond to the
revision of P by Q, denoted P * ). A fundamental princi-
ple of classical (AGM) revision, and the one that guides the
approach here, is the success postulate. In AGM revision,
this stipulates that « € K * o. By analogy with the success
postulate, for programs P and (), this means that the answer
sets of ) will in some sense be contained in those of P * Q.
The essential idea is that for P * (), a three-valued answer set
for @), consisting of positive and negative literals, is first de-
termined. The positive literals constitute a regular answer set,
while the negated literals make up a minimal set of naf literals
required to produce the answer set from Q. These literals are
propagated to the program P, along with those rules of @) that
are not decided by these literals. The approach differs from
work in update logic programs in two main respects: first,
we ensure that the revising logic program has higher priority,
and so we satisfy the success postulate; second, for the pref-
erence implicit in a revision P * @, the program () as a whole
takes precedence over P, unlike update logic programs, since
answer sets of () are propagated to P. We show that a core
group of the AGM postulates are satisfied, as are the postu-
lates that have been proposed for update logic programs. As
well, a prototype implementation is available.

Introduction

Answer set programming (ASP) (Baral 2003) has proven to
be well-suited to problems in knowledge representation and
reasoning (KR). The advent of efficient provers (Niemeld
and Simons 1997; Eiter et al. 1997; Gebser et al. 2007) has
led to the successful application of ASP in both KR and con-
straint satisfaction problems. However, an important consid-
eration is that in any nontrivial domain, an agent’s knowl-
edge of the domain will most likely be incomplete or inac-
curate, or it may become out of date as the domain evolves.
Thus, over time an agent will need to adjust its knowledge
after receiving new information concerning the domain.

In ASP there has been a substantial effort in developing
approaches to updating a knowledge base, where a knowl-
edge base is expressed as a logic program under the answer
set semantics. In general, one is given a sequence of logic
programs (P4, ..., P,) where informally rules in P; in some
fashion or other take precedence over rules in P; for j < i.

However, as we argue in the next section, it isn’t clear that
such approaches capture a notion of revision or update of
logic programs, so much as they capture a notion of priority
or preference between rules in a program. Thus such ap-
proaches generally fail to satisfy properties that would be
expected to hold for revision in classical logic. Part of the
reason is that revision appears to be intrinsically more dif-
ficult in a nonmonotonic setting (such as in ASP) than in
a monotonic one, such as in propositional logic. However,
we also suggest that part of the problem is that extant ap-
proaches enforce a notion of priority at the level of the in-
dividual rule; instead we propose that the notion of priority
given in a revision is a program level notion, in that for a
revision specified at P; x P, program P», taken as a whole,
has priority over P;.

In this paper, an approach to the revision of logic pro-
grams is presented. A logic program is taken as a represen-
tation of an agent’s epistemic state, while the corresponding
answer sets are taken as a representation of the agent’s be-
liefs. The approach describes revision, in that the postulate
of success is adhered to; the idea is that for a revision of
P; by Ps, beliefs (viz. elements of an answer set) given by
P> should overrule those in P;. This is carried out by first
determining 3-valued answer sets of P. Each such answer
setis apair (X*, X ), where X T is a regular answer set of
P>, and X~ is a minimum set of negation as failure literals
necessary to produce the answer set X ™. The information in
each such 3-valued answer set, together with the rules of P»
not used in the definition of the answer set, and along with
the program P, is used to define an answer set (or answer
sets) of P x Py.

The assumption of success leads to an approach with a
quite different emphasis from previous approaches. In par-
ticular, for the revision of P; by P», the program P, is
treated as having higher priority than the program F;; this
is in contrast with previous work, wherein the rules in Py
are treated as having higher priority than (some or all) of the
rules in P;. We suggest that this distinction separates ap-
proaches addressing priorities in logic programs from revi-
sion. As well, it leads to an approach with different, and ar-
guably more appropriate, properties from earlier work. For
example, the approach is syntax independent, in that if two
programs are uniform equivalent, then they behave the same
with respect to revision. As well, a prototype has been im-



plemented.

We argue that this approach is an appropriate interpreta-
tion for a notion of revision in logic programs. As well, the
approach may be applied in cases where a problem is ex-
pressed as a sequence of NP-complete problems; for exam-
ple, it allows the natural specification of a problem in which
a 3-colouring of a graph is to be found, followed by a Hamil-
tonian cycle among the yellow vertices.

We discuss these issues in more detail in the next section,
after formal preliminaries have been presented. After this,
intuitions are given, and the following section presents the
formal details and properties of the approach. We conclude
with a brief discussion. Complete proofs are deferred to the
full paper.

Background
Formal Preliminaries

Our language is built from a finite set of atoms P =
{a,b,...}. A literal is an atom «a or its negation —a; L is
the set of literals. For a set X of literals, not(X) = {not a |
a € X}. For a literal [, not [ is sometimes referred to as a
naf (negation as failure) literal or weakly negated literal. For
l € L, atom(l) is the atom corresponding to [; for a set X
of literals, atom(X) = {atom(l) | I € X}. A rule r is of
the form

Ly—Ly,...,L,,not L,y1,...n0t L,,. @))

where Lg, ..., L,, are literalsand 0 < n < m. If n = m
then r is positive. If m = 0, then r is called a fact. We
also allow the situation where Lg is absent, in which case
we denote the head by L; and r is called a constraint. The
literal Ly is called the head of r, and the set {L1,..., Ly,
not Lyy1,...,n0t Ly} is the body of r. We use head(r)
to denote the head of rule 7, and body(r) to denote the
body of . Furthermore, body™ (r) = {L,...,L,} and
body (r) = {Ln+t1,-..,Lm}. An (extended) logic pro-
gram, or simply a program, is a finite set of rules.

A set of literals X is consistent if it does not contain a
complementary pair a, —a of literals and does not contain
1. We say that X is logically closed iff it is either con-
sistent or equals £. The smallest set of literals being both
logically closed and closed under a set P of positive rules is
denoted by Cn/(P). The reduct, P, of P relative to a set
X of literals is defined by PX = {head(r) « body™ (r) |
r € P, body™ (r) N X = (} (Gelfond and Lifschitz 1990).
A set X of literals is an answer set of a logic program P
if Cn(PX) = X. A program P is consistent just if it has
an answer set not equal to £. Thus a program with no an-
swer sets is also counted as inconsistent. For example, the
program P = {a «—, b « a,not ¢, ¢ < not b} has
answer sets AS(P) = {{a, b}, {a,c}}.

Two programs P; and P are equivalent, written P; = P,
if both programs have the same answer sets. Two programs
are strongly equivalent (Lifschitz et al. 2001), written P} =
Py, justif Py U P3 = P, U Ps for every logic program Ps.
Two programs are uniform equivalent (Eiter and Fink 2003),
written P; =, P», justif P U F' = P, U F for every set of
facts F'.

Belief revision

Belief revision is the area of KR that is concerned with how
an agent may incorporate new information about a domain
into its knowledge base. In revision, a formula « is to be
incorporated into the agent’s set of beliefs K, so that the
resulting knowledge base is consistent when « is. Since «
may be inconsistent with K, revision may also necessitate
the removal of beliefs from K in order to retain consistency.
By a principle of informational economy, as many beliefs
as possible are retained from K. A common approach in
addressing belief revision is to provide a set of rationality
postulates for belief change functions. The AGM approach
(Alchourrén et al.  1985; Gérdenfors 1988) provides the
best-known set of such postulates. An agent’s beliefs are
modelled by a set of sentences, called a belief set, closed un-
der the logical consequence operator of a logic that includes
classical propositional logic.

Subsequently, various researchers have argued that it is
more appropriate to consider epistemic states as objects of
revision. Epistemic state K effectively includes information
regarding how the revision function itself changes following
a revision. The belief set corresponding to epistemic state
K is denoted Bel(K). Formally, a revision operator * maps
an epistemic state K and new information « to a revised
epistemic state K * . For set of formulas W, define ¥+« as
Cn(¥ U {a}). Then, the basic AGM postulates for revision
can be given as follows:

(K % 1) Bel(K * a) = Cn(Bel(K * a))

(K %2) o € Bel(K x«)

(K %3) Bel(K xa) C Bel(K) + «

(K % 4) If ma ¢ Bel(K) then Bel(K) + o C Bel(K * )
(K % 5) Bel(K # «) is inconsistent, only if - -«

(K % 6) If o« =4 then Bel(K * o) = Bel(K * 1)

Thus, the result of revising K by « is an epistemic state in
which « is believed in the corresponding belief set (K * 1,
K * 2); whenever the result is consistent, the revised belief
set consists of the expansion of Bel(K') by a (K 3, K x4);
the only time that Bel(K) is inconsistent is when « is incon-
sistent (K « 5); and revision is independent of the syntactic
form of the formula for revision (K * 6).

It can be observed that two of the postulates, (K * 3) and
(K = 4), are inappropriate in a system governed by a notion
nonmonotonic consequence. As a simple example, consider
where the agent believes that a particular individual is a bird
and that it can fly. If it is subsequently learned that the bird
was a penguin, the agent would also modify its knowledge
base so that it believed that the individual did not fly. This
example then violates both (K * 3) and (K * 4). Note that
we can’t circumvent this counterexample by simply exclud-
ing flying-penguin states of affairs, since we would want to
allow the possibility that a penguin (perhaps an extremely
fit penguin) flies, even though penguins, by default, do not
fly. In consequence we focus on postulates (K * 1), (K * 2),
(K % 5) and (K * 6), which we refer to as the core AGM
postulates.



Note that nonmonotonic formalisms can nonetheless be
treated from the standpoint of classical (AGM) revision; the
issue is to express revision in terms of a monotonic founda-
tion. Thus (Delgrande et al. 2008) addresses revision in ASP
from the standpoint of the SE models of a program. This is
in contrast to the work here, and previous work, which ad-
dresses belief change at the level of a logic program, rather
than with respect to the underlying models.

Logic Program Updates

Previous work in ASP that addresses an agent’s evolving
knowledge base has generally been termed logic program
update or update logic programs. In such approaches one
begins with an ordered logic program, comprised of a se-
quence of logic programs P = (Pi,...,P,). Rules in
higher-ranked sets are, in some fashion or another, pre-
ferred over those in lower-ranked sets. Commonly this
is implemented by using the ordering on rules to adju-
dicate which of two rules should be applied when both
are applicable and their respective heads conflict; see for
example (Inoue and Sakama 1999; Alferes et al. 2000;
Eiter et al. 2002). Alternatively, other approaches use the
ordering to “filter” rules, e.g. (Zhang and Foo 1998). Hence,
in one fashion or another, some rules are selected over oth-
ers, and these selected rules are used to determine the re-
sulting answer sets. The following example, due to Patrick
Kriimpelmann, is illuminating.

P={b<}, Po={-a+<b}, P3={a<}

In update logic programs, the rule given in P; is dropped,
since its head conflicts with that of the rule in P5. Yet disre-
garding the rule ing P; yields a consistent result, and more-
over, this is the lowest-ranked rule, so arguably it should be
disregarded.

A major stream of research in ASP has addressed priori-
tised or preference logic programs, where a prioritised logic
program is a pair (P, <) in which < is some ordering over
rules in program P. The intuition here is that some rules take
precedence over (or override or are more important than)
other rules. Syntactically, the form of an update logic pro-
gram, given as a total order on programs, is of course an
instance of a prioritised logic program. We suggest that an
update logic program is in fact best regarded as a prioritised
logic program. This is most clearly seen in those approaches
where the focus is on rules whose heads conflict. Thus, for
example in the approach of (Eiter er al. 2002), preferences
come into play only between two rules when the head of one
is the complementary literal of the other.

We can summarise the preceding by suggesting that previ-
ous work is essentially based at the rule level, in that higher-
ranked rules preempts lower-ranked rules. In contrast, the
approach here is based at the program level; that is for a re-
vision P; * Ps, the program P, is considered as a whole to
have priority over P;. This is effected in a revision P; % Py
by first determining answer sets of P, and then augmenting,
as appropriate, these answer sets with additional information
via P;. (There is more to it than this, as described in the next
section.) Arguably this is the appropriate level of granularity
for revision: If an agent learns new information given in a

program P, it is the program as a whole that comprises the
agent’s (new) knowledge. That is, a rule € P isn’t an iso-
lated piece of knowledge, but rather, given possible negation
as failure literals in body(r), the potential instantiation of r
depends non-locally on the entire program P.

(Eiter er al. 2002) suggests a number of alternative pos-
tulates that may be considered for update program updates.
For our use, they are given as follows:

Initialisation: AS(() « P) = AS(P).
Idempotency: AS(P x P) = AS(P).
Tautology: If head(r) € body™ (r), forall r € P,

then AS(Pl * P2) = AS(Pl)
Associativity: AS(P x (Py x P3)) = AS((Py * Py) * P3).
Absorption: if AS(P,) = AS(Ps) then

AS(Pl *PQ * Pg) = AS(Pl *PQ)
Augmentation: If AS(P,) C AS(P3), then

AS(Py % Py P3) = AS(Py % Ps3).
Disjointness: If atom (P;) N atom(Pz) = (), then

AS((Pl UPQ)*Pg) = AS(Pl *Pg)UAS(PQ*Pg)
Parallelism: If atom(P2) N atom(P3) = (), then

AS(Pl *(PQUPg)) = AS(P1 *PQ)UAS(Pl *P3)
Non-Interference: If atom(Py) N atom(P3) = 0, then

AS(Pl *Pg*Pg):AS(Pl *PS*PQ)
Many of these postulates are elementary and expected, yet
most extant approaches have problems with them. In par-
ticular, most approaches do not satisfy tautology. Moreover,
those that do satisfy tautology most often do so by specifi-
cally addressing this principle. It seems reasonable to sug-
gest that the reason for this lack of adherence to basic postu-
lates is that belief change with respect to ASP is a program-
level operation, and not a rule-level operation.

Logic Program Revision: Intuitions

The overall goal is to come up with an approach to revision
in logic programs (call it LP revision) under the answer set
semantics. The intent is that the approach adhere insofar as
possible to intuitions underlying classical (AGM) revision.
In AGM revision, a belief set K is revised by a formula a to
give another belief set K * . As described earlier, we take
a logic program P as specifying an agent’s epistemic state.
The answer sets of P, AS(P), represent the beliefs of the
agent, and so are analogous to a belief set in AGM revision.

A key characteristic of AGM revision, and one that guides
the approach here, is the success postulate. Recall that in
the AGM approach, the success postulate stipulates that o €
Bel(K *a), or in terms of models, that Mod (Bel(K x«)) C
Mod(«). Informally, in a revision by «, the logical content
of « is retained. By analogy with the success postulate, for
a revision of P; by P», the content of P» is given by its
answer sets, and so in the revision P; * P», the answer sets
of P, should in some sense be contained in those of P; * Ps.
This notion is fundamental; as well, it has very significant
ramifications in an approach to LP revision.

For example, consider the following programs, where we
want to determine P; x Ps:

Example 1
P, = {b—, ¢c—notd}
P, = {a+« notb}



By our interpretation of the success postulate, since {a} is
an answer set of P, it should appear in the answer sets of
Py x Py (that is, {a} should be a subset of some answer set of
P, % Py). However, a was derived by the failure of being able
to prove b in P;. Consequently, if the answer sets of P; are to
appear among the answer sets of P; x P, then the reasons for
the answer sets of P, should also be retained. Consequently
b should not appear in the answer sets of P; * P». Hence we
would want to obtain {a, c} as the answer set of P; * P5.

So adherence to a success postulate requires that, if a lit-
eral not p is used in a higher-ranked set of rules, it should
override positive occurrences in lower-ranked sets. This also
is in keeping with our assertion in the previous section, that
in a revision we consider a program as a whole, and not at
the individual rule level. Moreover, this example serves to
distinguish the present approach from previous work, in that
in previous work the assertion of a fact overrides an assump-
tion of negation as failure at any level. Thus in previous
work on update logic programs for the above example one
would obtain the answer set {b, c}.

Thus in working towards an answer set for a revision
P, x P,, we first determine an answer set for P,. How-
ever, we need to keep track of not just those literals that are
(positively) derivable, but also a set of not literals neces-
sary for the construction of the answer set. Consequently,
we deal with three-valued answer sets. Thus for Example 1,
in considering P;, we need to keep track of the fact that a
was derived in P, and that moreover not b was used in this
derivation, thereby necessitating the blocking of any later
deriving of b in lower ranked rule sets. We write the three
valued answer set of P, in Example 1 as ({a}, {b}). The
three value answer set for Py * P, then is ({a, c}, {b,d});
and the corresponding answer set for P; x Ps is {a, c}.

Consider next a variation of Example 1 where again we
are to determine answer sets for P; x Ps:

Example 2
P = {b—, c}
P, = {a< notb, a+ notc}

The atom ¢ may be obtained by not b or not cin Ps. By ap-
peal to a principle of informational economy (Section ), in a
three valued answer set we retain a minimum number of not
literals sufficient to derive the answer set. In the present ex-
ample, this means that P, has two three-valued answer sets:
({a},{b}) and ({a}, {c}). This leads to the three valued an-
swer sets for P, * Py: ({a,c}, {b}) and ({a, b}, {c}), and
corresponding answer sets {a, ¢} and {a, b}.
Consider finally the programs:

Example 3

P1 = {b <—}

Pg = {CL — b}
P, has answer set () (and three-value answer set (0, 0)).
However in next considering P; in the revision P; x P, one
should be able to use the non-satisfied rule a < b and ob-
tain an answer set {a, b} for P, * P,. This is by way of an

extended notion of informational economy, in which a max-
imal justifiable set of beliefs is desirable. So rules of P, that

are neither applied nor refuted should nonetheless be avail-
able for later steps in the revision.

These examples have dealt with a single occurrence of
revision. Clearly the process can be iterated to a sequence
of programs. Informally, an answer set for a sequence of
programs is determined by finding 3-valued answer sets for
higher-ranked programs, and propagating these answer sets,
along with undecided rules, to lower ranked programs. Con-
sequently, answer sets are built incrementally, with literals at
a higher level being retained at lower levels. In the next sub-
section, for generality, we work with sequences of programs
rather than just pairs.

Logic Program Revision: Approach

This section describes an approach to LP revision based on
the intuitions of the previous subsection. Consider by way
of analogy, classical AGM revision: For a revision K * «,
the formula « is to be incorporated in K; since Bel(K) U
{a} may well be inconsistent, formulas in Bel(K) may be
dropped in order to obtain a consistent result. Similarly in a
revision of programs P x P5: we would like the result to be
consistent if possible.

In outline, the goal is to determine answer sets for P; x Ps.
To this end, an answer set X of P» is determined and it,
along with the rules in Py, say P;, that do not take part in
the definition of X, are propagated to P,. Since the result
should be consistent, we consider maximal subsets of P U
Pj that are consistent with X and use these to determine the
resulting answer sets for the revision. We begin by defining
the relevant notion of an answer set with respect to revision.

By a three-valued interpretation we will mean an ordered
pair of sets X = (X, X~) where XT, X~ C £ and
XT N X~ = (. The intuition is that members of X con-
stitute an answer set of some program, while X~ contains
a minimum set of assumptions necessary for the derivation
of XT. A (canonical) program corresponding to a 3-valued
interpretation is given by

Pgm(X)={a—|ae XT}U{L+—alae X }.

The consequence relation C'n(.) on definite programs is ex-
tended to arbitrary logic programs by the simple expedient
of treating a weakly negated literal not [ as a new atom.
Thus for example Cn({a <, b <« a, ¢ < not d}) is
{a,b}.

The next definition extends the notion of reduct to 3-
valued interpretations.

Definition 1 Let P be a program and X = (X1, X7) a
3-valued interpretation.

PX, the min-reduct of P wrt X, is the program obtained
from P by:
1. deleting every rule r € P where body™(r) N X+ # 0,

and
2. replacing any remaining rule v € P, by

head(r) « body™ (r),not(body~(r) \ X 7).

Part 1 above is the same as in the standard definition of
reduct. In Part 2, just those naf literals appearing in X ~ are



deleted from the bodies of the remaining rules. The follow-
ing definition extends the notion of an answer set to 3-valued
interpretations.

Definition 2 Let P be a program and X = (X+*, X7 ) a
3-valued interpretation.

X = (X*,X7) is a 3-valued answer set for P if
Cn(PXT) = Cn(PX) = X T andforany Y = (X+,Y ™)
where Y~ C X~ we have that Cn(PY) # X+.

The set of 3-valued answer sets of program P is denoted

3A5(P).
Thus for 3-valued answer set X = (X, X ) of P, we have
that Xt is an answer set of P. As well, 3-valued answer sets
include sufficient negation as failure literals for the deriva-
tion of the answer set. Thus, for {a «— not b, a — not c}
there are two 3-valued answer sets ({a}, {b}) and ({a}, {c})
along with answer set {a}.

As suggested at the start of the section, in a revision P; *
P> we need to isolate a subset of P; that is consistent with
P5. We give the necessary definitions next.

Definition 3 Ler Py, P> be programs. Define Py | P, by:
If P; is not consistent, then Py | P, = L.
Otherwise:

PP, = {P'UP,| P C P and
P’ U P, is consistent and
for P' C P" C Py,
P" U Py is inconsistent.}

Thus for P € P; | P, P consists of P, together with a
maximal set of rules from P; such that the P is consistent.

Given a sequence of logic programs (P, ..., P,), the re-
vision process can now be informally described as follows:

1. Let X,, € 3AS(P,); thatis, X,, = (X,F, X)), is a 3-
valued answer set for P,,.

2. In the general case, one has a 3-valued answer set
Xiy1 = (X}, X;,,) from the revision sequence
(Pit1,...,P,;). A maximal set of rules in (P;, ..., P,)
consistent with X, is used to determine a 3-valued
answer set X; = (X5, X;") for the revision sequence
(P, ..., Pp).

3. A 3-valued answer set X; = (X", X;) for the revision

sequence (P, ..., P,) then yields the answer set X, for
the full sequence (P, ..., P,).

With this setting, we can give the main definition for the an-
swer sets of a revision sequence of programs. To this end,
a revision problem is given by a sequence (P,..., P, ) of
logic programs; the goal is to determine answer sets of the
sequence under the interpretation that a higher-indexed pro-
gram, taken as a single entity, takes priority over a lower-
indexed program. We write the revision sequence in nota-
tion closer to that of standard belief revision, as P; .. .* P,;
our goal then is to characterise the resulting answer sets of
Pl * ...k Pn

Definition 4 Let P = (P, ...
programs.

, Pn) be a sequence of logic

X € AS(Py *...* P,) iff there is a sequence:
((vaXl)a ) (P7:7X7L))

such that for 1 < i <mn, P[ is a logic program and X; is a
3-valued interpretation,
and:

1. i) P/ =P, and
ii.) X, is a 3-valued answer set for P,.
2. fori < mn:
i) Pl e Pl(P,UPgm(Xii1)) and
ii.) X is a 3-valued answer set for P}
3 X=X

The case of binary revision is of course simpler. Though
redundant, it is instructive, and so we give it next.

Definition 5 Let Py, P be logic programs. X € AS(P; *
Py) is an answer set of Py x Py if:

1. there is a 3-valued answer set X5 of Py and,

2. for some X', (X,X') is a 3-valued answer set of Py |
(P2 U Pgm(Xg))

Examples

Consider the examples given earlier. For Example 1 we
have:

Py ={b—, ¢+ not d},
For P; * P, we obtain:

Py = P, Xz = ({a},{b})
Plr = {C — not d} X1 = ({CL, C}a {ba d})
U{a «—, L < b},

Thus, P, has 3-valued answer set ({a}, {b}): {a} is a (stan-
dard) answer set for P», and it depends on, at minimum,
the assumption of b being false by default. This in turn re-
quires a commitment to the non-truth of b in next consid-
ering P;. The program P| given by rules of P; consistent
with ({a}, {b}) consists of the single rule ¢ « not d along
with an encoding of the 3-valued interpretation ({a}, {b}).
We obtain the 3-valued answer set ({a, ¢}, {b, d}), with cor-
responding answer set {a, c}.
Consider next Example 2:

P ={b«—, c<},

P, has two 3-valued answer sets ({a}, {b}) and ({a}, {c}).
Again, {a} is a (standard) answer set for P», but it depends
on, at minimum, the assumption of either b or ¢ being false
by default. This in turn requires a commitment to the fal-
sity of one of b or c in next considering P;. As a result, the
3-valued answer set ({a}, {b}) yields the program P] given
by {¢ <, a <, L < b}, while the 3-valued answer set
({a}, {c}) yields the program {b <, a <, L < c}. Con-
sequently for the revision we obtain two 3-valued answer
sets ({a, c}, {b}) and ({a, b}, {c}), with corresponding an-
swer sets {a, ¢} and {a, b}.

For Example 3, where P; = {b <} and P, = {a « b},
we obtain:

P} = Py, Xy = (0,0)
Pr = {b+—}U{a < b}, X1 = ({a,b},{}).

P, = {a < not b}

P, ={a < notb, a«— notc}



Thus there is one 3-valued answer set, ({a, b}, ), with an-
swer set {a, b}.

We consider two more small examples to further illustrate
the approach.

Plz{a(_7 b<_}7 PQZ{J—Haab}

For Py x P,, there are two 3-valued answer sets, ({a}, (),
({b},0) with corresponding answer sets {a}, {b}. This is
what would be desired: P, requires that a and b cannot be
simultaneously true, while P; states that a and b are both
true. In this case, P» is retained, with a “maximal” part of
P, also held.

P ={a+—, d< b},

In this case, P, has three-valued interpretation
({b,c},{a,—a}); hence the derivation of b and ¢ re-
lies on the possibility of a being true, and of a being
false. There is one 3-valued answer set for P, *x P,
({b, ¢, d}, {a,—a}), with answer set {b, ¢, d}.

Properties

We next consider formal properties of the approach.

Section suggested that four of the basic AGM postulates
are appropriate in a nonmonotonic framework. With respect
to these postulates, we obtain the following:

Theorem 1 Let Py, P, Ps be logic programs.

(Ax2) If X € AS(Ps) then there is X' € AS(Py * P)
such that X C X',

(Ax5a) AS(Py*Py)=Lonlyif AS(P2) =L

(Ax5b) AS(Pyx Py) =0onlyif AS(Py) =0

(A*6) If P, =, P3then P, x Py, = P; x Ps.

Thus the result of revision is a set of answer sets (A4 * 1),
which is to say, if an agent’s beliefs are given by a set of
answer sets, corresponding to potential states of the world,
then a revision sequence also yields a set of such beliefs.
The key property of the approach is given by (A * 2), cor-
responding to the success postulate: in a revision P; * Ps,
beliefs as expressed in P, override those of P;. The two
parts of (A * 5) hold by virtue of the fact that in a revi-
sion P; * P,, only some consistent (with P») subset of P;
is used in the revision. (A * 6) is a version of indepen-
dence of syntax. The postulate fails if P, =, Ps is re-
placed by AS(P,) = AS(Ps): acounterexample is given by
P, ={b+<}, P, ={a < not b}, and P3 = {a «— not c}.
Consequently, appropriate versions of the core AGM pos-
tulates hold in the approach. As suggested in Section , the
other two basic postulates are not appropriate in a nonmono-
tonic framework.

With regards to the postulates given in Section for logic
program updates, we obtain the following.

Theorem 2 Let Py, P>, Ps be logic programs.
Then P, P», Ps satisfy initialisation, idempotency, tau-
tology, and non-interference.

Programs Py, P, P5 also satisfy the principle:
UAbsorption: if P, =, Ps then
AS(P1 * PQ *Pg) = AS(P1 * Pg)

P, ={b < not a, ¢« not —a}

These principles are elementary but nonetheless desirable;
as mentioned, the majority of approaches in update logic
programs fail to satisfy tautology.

The remaining principles can be argued to be undesirable,
with the possible exception of associativity. Not surpris-
ingly, absorption fails at the level of answer sets, though
not at the level of uniform equivalence (as given by UAb-
sorption). Augmentation would seem to be related to a no-
tion of monotonicity, and hence is undesirable. Disjointness
and parallelism both clearly fail. Arguably both should fail;
consider the the case where P, = (). Disjointness in this
situation reduces to:

which is clearly undesirable.

Discussion

This paper has described an approach to logic program re-
vision in which the focus is on revision as understood in the
belief revision community. Consequently, the key success
postulate is taken seriously. This leads to an approach with
quite different properties than other approaches that have ap-
peared in the literature. In particular, for a revision Py * P»
the program P is treated as a whole as having higher prior-
ity than P; in that answer sets of P, are propagated to P .
This is in contrast to logic program update, where essen-
tially once selects rules to apply, giving preference to rules
in P», and then applying these selected rules. This distinc-
tion has an important consequence, and requires the use of
three-valued interpretations, in which literals assumed to be
true at a higher ranked program can override literals used as
facts in a lower-ranked program. Thus, the (necessary) use
of not p in a higher ranked program blocks the assertion of
p as a fact in a lower-ranked program. Again, this is a nec-
essary consequence of a strong commitment to the success
postulate.

Arguably the approach helps cast light on the logic-
program-update landscape. We suggest here that approaches
falling under the general heading of update logic programs
are are more appropriately viewed as dealing with prefer-
ences or priorities over rules, rather than revision or update
per se.

The approach at hand seems to fall somewhere between
a syntactic approach and a strongly semantic one, such as
(Delgrande et al. 2008). In (Delgrande et al. 2008), for
example, revision is phrased in terms of the underlying SE
models of a theory. Consequently, very appealing theo-
retical results are obtained, including the large majority of
AGM postulates, as well as the appropriate logic program
update postulates. The disadvantage is that, since revision is
phrased in terms of SE models, it is not immediately clear
how to obtain a reasonable logic program corresponding to
the models given by the revision.

The present approach also does not yield a logic program
that corresponds to a revision (but see below for a discus-
sion); however, it does define the answer sets of a revision
sequence. Moreover, the answer sets obtained via a revision
exhibit reasonable properties — for example, the core AGM



postulates are obtained, including syntax independence un-
der uniform equivalence and a success postulate, as well as
the appropriate set of logic program update postulates. The
approach would seem to have some hope for practical im-
plementation. It would be applicable, clearly, in problems
wherein the answer sets of the most recent program are to
hold sway over the answer sets of lower-ranked programs.
As well, it can be directly applied to problems involving a
sequence of NP complete problems, for example in a situa-
tion where the solution to one problem feeds as input into a
second. A representative example described earlier involves
finding a three colouring for a graph, and then basing an-
other problem (such as Hamiltonian cycle) on the vertices
of a specific colour.
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