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Abstract

The paper first reconsiders one of the main patterns of
plausible reasoning proposed by Polya, namely “a and
b are analogous, a is true, then b true is more cred-
ible”, from a nonmonotonic reasoning point of view.
A representation of the statement “a and b are analo-
gous” is proposed in the setting of the preferential en-
tailment system for nonmonotonic consequences rela-
tions. This representation is then related to the logi-
cal definition recently proposed for analogical propor-
tions, i.e. for statements of the form “a is to b as c is
to d”. Then the last part of the paper introduces a pos-
sibilistic logic treatment of uncertainty associated with
observed analogical proportions for extrapolation rea-
soning. Namely, when an analogical proportion holds
for some observable features describing cases a, b, c,
and d, we may assume that such a proportion still holds
between the other features of d, and the corresponding,
observable and known features of a, b, and ¢, even when
the data are pervaded with uncertainty.

Analogical reasoning and nonmonotonic reasoning have
in common to lead to defeasible plausible conclusions.
Still they have remained almost unrelated up to a few
exceptions. While considerable and successful efforts have
been developed in the last thirty years for formalizing
nonmonotonic reasoning, less attempts have been made
for providing a logical modeling of analogical reasoning,
in spite of the considerable interest for the use of analogy
as a powerful heuristics (Gentner 1989; Sowa and Majum-
dar 2003). Moreover the existing proposals mainly use
first order logic frameworks (Davies and Russell 1987;
Melis and Veloso 1998), or even second order settings
(Schmid et al. 2003), while in the case of analogical
proportions, i.e. statements of the form “a is to b as c is to
d”, a propositional logic representation has been recently
proposed (Miclet and Prade 2009).

In this paper, we start from one of the patterns of plausi-
ble reasoning proposed by (Polya 1954) about half a century
ago. This pattern “if a and b are analogous, and a is true,
then b true is more credible”, refers explicitly to the idea of
analogy. In this paper, we propose a modeling of “a and
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b are analogous” in terms of a nonmonotonic consequence
relation, and we then provide a counterpart of the inference
pattern in the setting of the preferential entailment system
(Kraus, Lehmann, and Magidor 1990). We then provide
a short background on the propositional logic modeling of
analogical proportions, and establish some agreement rela-
tions between analogical proportions and our formalization
of the relation being “analogous”. In the last main part of the
paper we extend an inference mechanism based on analogi-
cal proportions in order to handle uncertain proportions, or
uncertain facts, in the setting of possibilistic logic (already
proved to be useful for encoding default reasoning).

Polya’s analogy-based pattern of plausible
reasoning revisited

Polya (1945) in his famous book “How to Solve It?” advo-
cates the idea that analogical reasoning plays an important
role in mathematical problem solving. In particular, he rec-
ommends the reader when faced to a problem to ask herself
(or himself) questions such as “Can you find a problem
analogous to your problem and solve that?” Later, (Polya
1954) proposed patterns of plausible reasoning in order to
provide a more accurate view of reasoning mechanisms at
work in problem solving. One of these patterns reads

a and b are analogous
a is true

b true is more credible

For (Polya 1954), this pattern is obtained from the more
basic pattern

h implies a
a is true

h true is more credible
by combining it with the deductive pattern

{h true more credible, h implies b}  {b true more credible}



and “summarizing” “h implies a” and “h implies b” by “a
and b are analogous”.

In the following we propose another view of “being
analogous”. Informally speaking, the idea is that a and b
are analogous if b is true in the normal situations where a
is true, and conversely a is true in the normal situations
where b is true. This amounts to say that when q is true b
generally follows and vice-versa. So we have to model an
exception-tolerant entailment. For that purpose, we use a
nonmonotonic consequence relation |~ obeying the postu-
lates of preferential entailment system P (for short) (Kraus,
Lehmann, and Magidor 1990), that we briefly recall below.
Indeed, system P has been shown to be at the root of non-
monotonic reasoning, being equivalent to several other non
monotonic reasoning systems based on different views of
modeling conditionals (Benferhat, Dubois, and Prade 1997).

System P is characterized by a reflexive nonmonotonic
consequence relation |~ obeying the following postulates:

e Left Logical Equivalence: £ p = ¢ and p |~ r imply
qfr

e Right Weakening: p |~ g and ¢ F r imply p |~ r

e Cautious Monotony: p |~ gand p |~ rimply p A g |~ r

e Cut:plvgandpAq | rimplyp |~ r

e OR:plvrandq |~ rimplypVg o r

and some of its noticeable consequences are:

e AND:p v gandp |~ rimplyp |~ gAr
e SipAq~rimpliesp v q—r
e Consequent Modus Ponens: p |~ ¢ — r and p |~ ¢ imply

phr

Using a nonmonotonic consequence relation |~ obeying the
postulates of system P, the above-mentionned view of “be-
ing analogous” amounts to state the following condition for
having a and b analogous, which is denoted a = b:

axbiffabandb |~ a (1

The intuition underlying (1) amounts to say that ¢ and b are
analogous as soon as they are generally true simultaneously.
This definition has some consequences which may look
troublesome at a first glance. Indeed according to (1),
a v banda v centail a A b = a A c (this can be seen as
follows: applying cautious monotony, we get a A b |~ ¢,
and then applying AND to this formula together with
a A'b |~ a obtained by reflexivity and right weakening, we
get a Ab |~ a A ¢; the converse is proved similarly). Thus
if we admit the two default rules “birds fly” and “bird are
omnivorous”, then we can conclude that “flying birds” are
analogous to “omnivorous birds”. Although it may sound
strange, it only amounts to mean that the two kinds of bird
more or less coincide, but certainly not that “omnivorous”
and “flying” are synonymous.

Using the inference rules of System P, definition (1) can
also be rewritten under another form. Since by reflexivity
a p~ a, by AND property we get a |~ a A b. Similarly,

b |~ a A b, and by OR rule, we obtain
ifa~bthenaVblaAb

By Right Weakening and by AND, a Vb | a A b is
equivalent to a Vb |~ a and a V b |~ b. By applying the
Cautious Monotony rule above letting p = a V b, ¢ = a and
r = b, we obtain a |~ b, and similarly b |~ a. This shows
thata Vb |~ aAbis equivalentto a |~ band b |~ a, and thus,

axbiffavblvaAb 2)

This expresses that the normal models of a V b are in the
intersection of the sets of models of a and of b.

Note that one may also think of a definition still stronger
than (1), namely a A =b |~ L and —a A b |~ L (indeed by
S property, it entails (1)), which expresses that there is no
model of a A —b or of =a A b. This is much too strong, since
it would amount to state that a - b and b - a.

However, a definition of “being analogous” weaker
than (1) seems more interesting. By property S,
aVb v aAbentails |~ (aVb) — (aAb), which is
equivalent (by double application of Right Weakening) to
k- (maA=b)V(aAb), still equivalent to |~ (—aVb)A(aV-b),
ie, (@ — b) A (b — a). This is also equivalent to
(@ — b) and |~ (b — a) (by Right Weakening and
by AND). But, this does not entail (1) '. Thus, it leads to
the weaker definition of “a being analogous b, which is
denoted a ~ b:

a~biff ~ (a—b)A(b— a) (3)
and
a ~ bimplies a ~ b @)

Thus a ~ b should be read as “a is weakly analogous to
b”. Then using Consequent Modus Ponens, it can be easily
checked that both

a ~ band |~ aimply b
a =~ band |~ aimply ) b

which correspond to Polya’s pattern. It is clear that these two
options offer relaxed version of a classical logic modeling,
namely,

Fa=bandt aimply - b

'To see that |~ (a — b) is weaker than a |~ b, it is conve-
nient to use the possibility theory semantics of System P (Benfer-
hat, Dubois, and Prade 1997). Then the latter expression is equiva-
lent to IT(a A b) > II(a A —b), while the other reads II(—a V b) >
II(a A —b), where II is a (max-decomposable) possibility measure
(w.r.t. disjunction), and thus II(—a VvV b) = maxz(II(—a), I(aAb)).
Thus, aVb |~ aAb translates into II(aAb) > II((aVb) A—=(aAb)),
while v (a V b) — (a A b) is semantically equivalent to
maz(II(—a A =b),II(a A b)) > II((a V b) A =(a A b)), which
is a weaker constraint.



which would reduce “being analogous” to “being semanti-
cally identical”.

Background on the analogical proportion

Before relating the nonmonotonic view of an analogy rela-
tion that we have just proposed to the notion of analogical
proportion, let us briefly review the set and logical interpre-
tations of an analogical proportion. We first introduce the
set interpretation of analogical proportion since it provides a
view which is probably easier to grasp. Moreover, this is a
suitable viewpoint when it comes to applications where data
representations are more sophisticated than atomic Boolean
values. In that context, the simplest way to understand the
meaning of a statement such as “a is to b as c is to d” is to
consider the 4 items a, b, ¢, d as subsets of binary features
(belonging to a referential X') possessed by these items. As
usual, @ = X \ a denotes the complement of a, i.e. the fea-
tures in X notin a. As suggested in (Lepage 2001), (Stroppa
and Yvon 2005), a, b, ¢, d are in analogical proportion if a
can be changed into b and ¢ into d by “adding and deleting
the same elements”. Using a formal counterpart of this idea
(Miclet and Prade 2009), the analogical proportion, denoted
a : b::c:d,is specified by the following pair of constraints:

anb=cNdandanNb=2c¢Nd (As)

It is straighforward to check that such a formal definition
satisfies the properties that are usually assumed for an ana-
logical proportion, namely:

ea:bua:banda:a::b:bhold, buta:b::b: adoes
not hold in general;

e ifa:b::c:dholdsthena : c::b: dshouldhold (central
permutation);

e ifa:b: c: dholdsthen ¢ : d :: a : b should hold
(symmetry).

As we can see, an analogical proportion @ : b :: ¢ : d
is interpreted as an equality between two pairs
(anband) = (end,e¢nNd). The second property
allows us permuting the means in a proportion and by
combining with the third property, it is an easy game to get
the result below:

Property 1 An analogical proportion a : b :: ¢ : d has 8
equivalent forms:

(i)Ifa:b:c:dholdsthena: c::b:dholds (by central
permutation)

(ii) If a : b :: ¢ : dholds then d : b :: ¢ : a holds (by
symmetry + central permutation + symmetry)

(iii)Ifa:b:c:dholdsthend : c: b: aholds (byii +
central permutation)

(iv)Ifa :b:c:dholdsthen c : d :: a : b holds (by
symmetry)

() Ifa:b:c:dholdsthend : d:: a: cholds (byi+
symmetry)

(vi)Ifa :b::c: dholds then c : a :: d: bholds (by iv +
central permutation)

(vii)Ifa : b :: ¢ : d holds then b : a :: d : ¢ holds (by v +

central permutation)

Table 1: Analogy classes

a b c¢c dib a c¢c dfc b a d
a ¢ b dij|b ¢ a dic a b d
d b ¢ alld a ¢ b|ld b a c
d ¢ b alld ¢ a blld a b c
c d a billec d b ala d ¢ b
b d a cf|la d b ¢c|b d ¢ a
c a d billec b d ala ¢ d b
b a d clla b d c||b ¢ d a

This property tells us that if @ : b :: ¢ : d holds then a to-
tal of 8 permutations (among 24) hold, including this one,
and all the seven ones appearing in the above Property. This
constitutes the first column of Table 1. As noticed in (Lep-
age 2001), the 16 remaining permutations are divided into
two other classes of equivalent analogical proportions, cor-
responding to columns 2 and 3 of Table 1 which exhibits the
three classes with representative on top in bold font.

Leaving the set interpretation for the remaining of the pa-
per, we now interpret analogical proportion over the Boolean
lattice B = {0, 1} with the standard operators V, A, —. Fol-
lowing the lines of (Miclet and Prade 2009), we use a di-
rect translation of the set theoretic definitions where U is
replaced with V, N with A, complementarity with —. To
simplify the notation, we write u = v to denote the formula
u — v A v — u. Of course, this logical notation underlies
the equality of the truth values for v and v. This leads to

Definition 1 a : b :: ¢ : d holds iff
((an=d) = (eA=d))A((manb) = (meAd)) is true (Apool)
Thus, a : b :: ¢ : d is now viewed as a Boolean operator

with truth value 1 only for the 6 following 4-tuples (among
16 cases):

0 0 0 0
1 1 1 1
0 011
1100
01 01
1010

For all the other values of (a,b,c,d), a : b :: ¢ : dis false.
This relation over B* satisfies the properties of analogical
proportion and several equivalent writings have been pro-
posed in (Miclet and Prade 2009) but the most useful in our
context is the following one (clearly equivalent to Definition
1):

Property 2 (a : b :: c¢: d) holds iff

((a—=b)=(c—d)A((b—a)=(d— c))is true

Note that the above expression parallels the difference-based
view of the analogical proportion expressed by (Ase:). The
results holding for the set theoretic interpretation are easy to
restate in the logical setting (see (Prade and Richard 2010a)
for instance). For instance, the proposition below investi-
gates the behavior of analogical proportion with respect to
the negation operator:



Property 3 Ifa : b :: c: dholds then —b: —a :: ¢ : d holds
Ifa:b::c:dholdsthen —a : d:: —b: c holds
Ifa:b::c:dholds then —a : —b :: d : c holds
Ifa:b::c:dholds then —a : —b :: —c : =d holds
a:b::—b: —a holds.

It appears that we have to be careful with “common sense”
reasoning where we could falsely consider thata : b :: —a :
—b holds, while it does not hold in general: for instance,
1:0::1:0holds,but1:0::0: 1 does not hold.

Agreement between analogical proportions
and the idea of being analogous

Thus, the logical expression of an analogical expression is
a:bzc:d=(@—-b=c—>dANb—->a=d— c).
This section aims at showing some agreement between
this definition and the weak view of “being analogous”.
Indeed, using the weak definition of “being analogous”
(i.e., expression 3), we can check that the following pattern,
which fits the intuition, holds

a:bice:d

a~b
c~d

Indeed |~ a : b : ¢ : dentails o (a — b) = (¢ — d).
Since a ~ b entails | a — b, by Right Weakening and
Consequent modus ponens, we get v ¢ — d. Similarly,
one can prove |~ d — ¢, which by AND property gives the
result. In fact, Fa : b:: ¢ : dand ¢ ~ d imply a ~ b, since
due to Right Weakening, & p implies |~ p.

Conversely, it can be checked that two pairs of analogous
items make a defeasible analogical proportion:

a~bc~d
ba:bce:d

Indeed @ ~ band ¢ ~ dentail v a — band |~ ¢ — d,
and thus |~ (¢ — b) A (¢ — d), and by Right Weak-
ening v (a — b) — (¢ — d). Similarly, they entail
I (¢ = d) — (a — b), and thus |~ (@ — b) = (¢ — d).
For the same reason, a ~ b and ¢ ~ dentail | b — a
and v d — ¢, thus |~ (b — a) = (d — ¢), and finally
I~ a : b c: d This property highlights again the fact
that analogical proportions between 4 items is a kind of
“higher order” relation comparing the link between a and b
with the link between ¢ and d. Indeed, as can be seen in the
truth table of the analogical proportion, when a and b are
true simultaneously, the fact that the analogical proportion
a : b :: c: dholds does not require that ¢ and d to be true:
indeed they may also be simultaneously false.

Since v a : b c: disequivalentto v a : ¢ b: d (by
Property 1), we obtain the following pattern, by combining
the two previous patterns

a~bc~d,a~c

b~d
This pattern is reminiscent of the “geometrical” view of
the analogical proportion, as a parallelogram a, b, ¢, d with
parallel and equal sides (see, e.g. (Prade and Richard
2010a)).

Lastly, another way of connecting Polya’s pattern with
analogical proportions would be to interpret an analogical
proportion a : b :: ¢ : d as a statement of the form
(a : b) = (¢ : d) where (a : b) is considered as a com-
plex statement. Indeed, with this reading it is clear that from
(a : b) I (c : d) and the observation that (a : b) holds,
we non monotonically infer that (¢ : d). Besides, a state-
ment such as (¢ : d) could be also understood as ¢ ~ d.
Then from (¢ : d) and ¢, we could non monotonically in-
fer d, since ¢ ~ d is nothing but |~ (¢ — d) A (d — ¢).
In other words, with this view, from a : b :: ¢ : d and the
facts (a : ), ¢, we infer d by a two-stepped non monotonic
inference. At the beginning of the following section, we are
going to encounter a very similar pattern.

Reasoning with analogical proportions in
presence of uncertainty

In its simplest form, analogical reasoning, without any ref-
erence to the notion of proportion, is usually viewed as a
way to infer some new fact on the basis of one observa-
tion. Analogical reasoning has been mainly formalized in
the setting of first order logic (Davies and Russell 1987;
Melis and Veloso 1998). A basic pattern for analogical rea-
soning is then to consider 2 terms s and ¢, to observe that
they share a property P, and knowing that another property
(@ also holds for s, to infer that it holds for ¢ as well (un-
der the implicit hypothesis that P determines () inasmuch
as Au P(u) A =Q(w)). This is known as the “analogical
jump” and can be described with the following simplified
inference pattern:

This pattern, quite different from Polya’s pattern, may
be directly related to the idea of analogical proportion in
different ways. First, taking advantage that “P(s) is to P(t)
as Q(s) is to Q(t)” (indeed they are similar changing s into
t), the above pattern may be restated as

P(s) : P(t) :: Q(s) : Q(b)
P(s), P(t), Q(s)

Q(t)

which is a valid pattern of inference, as we shall see in the
next subsection. Each piece of information may also be en-
coded in a binary way according to the presence or the ab-
sence of P, (), s, or t in the piece of information, as in the



table below, and the encoding d of Q(¢) can be uniquely de-
termined by completing the values of a, b, and ¢ for the dif-
ferent features according to the 4-tuples of values that make
a : b:: c: dtrue (see the table after Definition 1):

P Q s t
a 1 0 1 0 P(s)
b 1 0 0 1 P(t)
c 0 1 1 0 Q(s)
40 10 1 Qu

Analogical proportion as a set of clauses

Since in the proposed approach, an analogical proportion is
basically a Boolean formula, it is legitimate to consider what
could be inferred from a set of given observations linked
through this proportion. Let us start from a simple example
to understand our point. Suppose we observe —a, b and —c
and we consider a new d knowing only that d is in analogical
proportion with the 3 other items a,b,c. We are faced to
the problem of inferring the Boolean value of d. In order
to apply the resolution principle, it is necessary to come to
clausal forms. It can be checked that the logical expression
a:bc:d=((a—=b)=(c—d)A({(b—a)=(d—c))
put in clausal form is equivalent to the conjunction of the
following clauses:

A={-aVbVe,~aVbV-d,aV-cVd-bV-cVd,

aV=bV-c,aV-bVd,—aVeV-dbVeV-d}

Note that we have exactly 8 clauses which cannot be re-
duced. Each clause is falsified by a pattern of 3 literals for
which there does not exist a fourth literal with which to build
up a proportion. Thus, the first clause —a V b V ¢ expresses
syntactically that a —=b —c (i.e., 1 0 0 in semantical terms)
cannot be analogically completed, while a V —b V —c ex-
presses the same w. r. t. ma b cand 0 1 1. Going back to
our inference example, it is easy to check the pattern:

-a b —¢ a:b:c:d
d

by resolution using the 6th clause of the clausal form A of
a : b c: d As expected, we have 6 valid inferences
which are given in Table 2. They correspond to the 6 lines
of the truth table for which the analogical proportion is true.
We may notice that inferring the value of d starting from the
values of a, b, ¢ and the fact that a : b :: ¢ : d holds can
be viewed as an equation solving problem: find d such that
a :b:: c:dholds knowing a, b, c.

The Boolean vector case

We want now to extend the previous technique to the case
of Boolean vectors a = (ay, ..., a,) that encode the multi-
ple binary features that describe a situation. Starting from
a database (training set) where each piece of data is a
row completely informed, we are faced with a learning-
like task when we have to consider a new piece of data

Table 2: Valid inferences with an analogical proportion

a b c ab:cd —a b —c abiicid —a b ¢ ab:c:d

-d
a —b ¢ ab:cd —a b —c abicd a b —c ab:cd
-d d -d

d = (dy,...,dy,), partially informed, i.e. where only some
features k(d) = (di,...,dp),p < n, are known, the values
of the missing features u(d) = (dp+1, - . ., dy) having to be
predicted. In order to perform an inductive step, we adopt
the following general pattern:
Vie[l,p], a;:b; ¢ :d;

Vielp+1,n], aj:bj:ci:d;
It simply means that if the known part k(d) of d is compo-
nentwise in analogical proportion with k(a), k(b) and k(c)
then it should be also true for the unknown part u(d) of d.
This is exactly what analogical reasoning is about: we trans-
fer the knowledge we have on the pair (a, b) to the pair (¢, d)
to predict the missing information about d.
This is obviously a form of reasoning that is not sound, but
which may be useful for trying to guess unknown values.
As previously seen, we are in a position to safely infer d
froma : b :: ¢ : din the Boolean case, then we are done for
the Boolean vector case where we work componentwise.

Example. Let us consider an example where we have 5 bi-
nary attributes (n = 5) and

a= (17 1a 07 07 1)»

b=(1,0,1,1,0),

c¢=1(0,1,0,0,1).
We have to predict the missing values for an item

d= (07 07 17 d47 d5)
Here p = 3, k(d) = (0,0,1),u(d) = (d4,ds). With our
notation, we see that k(a) : k(b) :: k(c) : k(d) holds for
the first three features and we look for the pair of unknown
attributes u(d) = (d4,ds). Then we consider our previous
inference scheme telling us that we should have: 0 : 1 :: 0 :
dyand 1 :0 :: 1 :ds. Starting from the clausal definition
of a : b :: ¢ : d, we use the 6th clause a4 V —bg V d4 which
allows to infer dy4, and the 2nd clause —as V bs V —ds which
allows to infer —d5: it means d4 = 1 and d5 = 0 (that we
could get from the truth table as well).

The uncertain Boolean vector case

We now assume that the binary value of a feature may be
uncertain. Thus the values a;, b;, ¢;, d;, are now associated
with a certainty level: (a;, ), (bi, ), (ci,vi), (di,d;).
Thus one can compute the certainty A that an analogical
proportion holds for the first p features, as in possibilistic
logic (Dubois, Lang, and Prade 1994), namely

A = ming pman(a; 2 b; ¢ dy, oy Biy Vi, 04)

where a; : b; : ¢; : d; = 1 if the analogical proportion
holds, and a; : b; :: ¢; : d; = 0 otherwise.



Then one may consider that we may apply the analogical
proportion with certainty A for completing the missing
values for d;. It amounts to apply possibilistic logic® to the
possibilistic base

K = {(a; : bj :: ¢j : dj, N), (a5, 5), (bj, B5), (cj,75)}

for p+ 1 < 7 < n. Thus, we transfer the uncertainty A with
which the analogical proportion is observed on the first p
features, to the extent to which we believe that the analogical
proportion still holds on the remaining features.

This treatment should not be confused with the extension
of analogical proportion to gradual properties using fuzzy
logic (Prade and Richard 2010b).

Related works

It is obvious that analogical inference, considered as a
kind of logical reasoning, is unsound (in the classical
setting) and then, in some sense, leads to uncertainty.
The pioneering works of (Davies and Russell 1987) is
an attempt to make analogical inference sound by adding
some ‘“‘side knowledge”. This side knowledge (also called
“determination rules”) are considered as being “minimal” to
insure soundness and thus rendering analogical conclusion
sound. Unfortunately, these determination rules are rather
restrictive and generally not easy to define. A more realistic
approach comes from the works of (Qiu 1994) who leaves
the classical setting and allows non monotonicity. A non
monotonic analogical (first-order) logic system (NAR) is
defined, allowing to integrate determination and similarities
(since similarities between two items s and ¢ are useful to
transfer knowledge from s to t).

Another worth mentioning work is the one by (Kerber and
Melis 1996) where two kinds of non monotonic inference
processes are defined to model analogical reasoning. Still
they provide a formal definition, introducing first the notion
of connection between two partial functions: for instance
(population, car) modeling the fact that the number of
inhabitants is linked to the number of registered cars. Using
such a “connection”, they can infer that similar cities have
the same number of registered cars. The uncertainty of the
connection is responsible for the uncertainty of the conclu-
sion. Then to overcome the problem of finding a connection
or if there is no obvious connection, they introduce the
notion of “typical instance” which still allows to infer new
information. The non monotonicity still remains due to the
fact that the knowledge that we are transfering from the
typical instance s to the partially unknown target ¢ is not
necessarily relevant to the typical instance. The classical
bird Tweety example is a good example of this kind of
“uncertain” analogical view of nonmonotonic reasoning.

In the above-mentioned works, the determination rule
may be nonmonotonic. In the view explored in this pa-

2The resolution rule in possibilistic logic is
(Vg a),(mgVrpB)F (pVr,min(a,p))
See (Dubois, Lang, and Prade 1994).

per, the analogy between two situations (as stated in the first
premise of Polya’s pattern), is assessed in terms of an ana-
logical proportion on the basis of observed features, and the
“jump to a plausible conclusion” amounts to state that the
analogy still apply to other partly unknown features. In that
respect, it may be of interest to attach to the analogical pro-
portion applied to the new features an uncertainty level that
does not just reflect the potential uncertainty of the obser-
vations (as discussed in the previous subsection), but rather
represent the expected relevance of what has been observed
w. 1. t. what is predicted.

Concluding remarks

In this note, we have tried first to show how a nonmonotonic
consequence relation could be used as a basis for repre-
senting analogy between two situations, in agreement with
the idea of formal analogical proportions. We have then
outlined how such proportions can be used for analogical
reasoning purposes and can be combined with uncertainty
handling.

Besides, it is worth mentioning that other proportions are
available and have been deeply investigated in (Prade and
Richard 2010a) (Prade and Richard 2010c) recently. It ap-
pears that the general scheme of constraints defining analog-
ical proportion can be slightly modified to give rise to new
interesting proportions, capturing other intuitions than the
standard analogy. These proportions are viewed as Boolean
formula again, with only 6 possibilities for holding as true,
as in the case of the analogical proportion. Obviously, what
has been done here could be done for these other formulas
as well. Interestingly enough, some of these logical propor-
tions have by themselves a nonmonotonic reasoning flavor
(Prade and Richard 2010c).

Acknowledgements

The authors thank the two referees for their valuable com-
ments.

References

Benferhat, S.; Dubois, D.; and Prade, H. 1997. Nonmono-
tonic reasoning, conditional objects and possibility theory.
Artificial Intelligence 92:259-276.

Davies, T. R., and Russell, S. J. 1987. A logical approach
to reasoning by analogy. In IJCAI-87, 264-270. Morgan
Kaufmann.

Dubois, D.; Lang, J.; and Prade, H. 1994. Automated rea-
soning using possibilistic logic: Semantics, belief revision,
and variable certainty weights. IEEE Trans. Knowl. Data
Eng. 6(1):64-71.

Gentner, D. 1989. The Mechanisms of Analogical Learn-
ing. In Similarity and Analogical Reasoning. Cambridge
University Press. 197-241.

Kerber, M., and Melis, E. 1996. Two kinds of non-
monotonic analogical inference. In Gabbay, D. M., and



Ohlbach, H. J., eds., Practical Reasoning, Proc. Interna-
tional Conference on Formal and Applied Practical Rea-
soning (FAPR’96) Bonn, Germany, June 3-7, volume LNAI
1085, 361-374. Springer.

Kraus, K.; Lehmann, D.; and Magidor, M. 1990. Non-
monotonic reasoning, preferential models and cumulative
logics. Artificial Intelligence 44:167-207.

Lepage, Y. 2001. Analogy and formal lan-
guages. In Proc. FG/MOL 2001, 373-378. (see also
http://www.slt.atr.co.jp/ lepage/pdf/dhdryl.pdf.gz).

Melis, E., and Veloso, M. 1998. Analogy in problem solv-
ing. In Handbook of Practical Reasoning: Comput. and
Theor. Aspects. OUP.

Miclet, L., and Prade, H. 2009. Handling analogical pro-
portions in classical logic and fuzzy logics settings. In
Proc. ECSQARU, 638-650. Springer, LNCS 5590.

Polya, G. 1954. Mathematics and Plausible Reasoning.
Vol.2: Patterns of Plausible Inference. Princeton Univer-
sity Press, 2nd ed. 1968.

Prade, H., and Richard, G. 2010a. Analogical propor-
tions: another logical view. In Bramer, M.; Ellis, R.; and
Petridis, M., eds., Research and Development in Intelligent
Systems XXVI, Proc. 29th Ann. Inter. Conf. on Artif. In-
tellig. (SGAI'09), Cambridge, UK, 15-17 December 2009,
121-134. Springer.

Prade, H., and Richard, G. 2010b. Multiple-valued logic
interpretations of analogical, reverse analogical, and par-
alogical proportions. In Proc. 40th IEEE Inter. Symp. on
Multiple-Valued Logic, Barcelona, May 26-28.

Prade, H., and Richard, G. 2010c. Reasoning with logical
proportions. In Proc. 12th Inter. Conf. on the Principles of
Knowledge Representation and Reasoning, Toronto, May
9-13. AAAL

Qiu, G. 1994. Nonmonotonic logic for analogical rea-
soning. In Greiner, R., and D.Subramanian., eds., Working
Notes of the1994 AAAI Fall Symposium on Relevance, New
Orleans, Louisiana, Nov. 46, volume AAAI Technical Re-
port FS-94-02, 161-164.

Schmid, U.; Gust, H.; Kiihnberger, K.; and Burghardt, J.
2003. An algebraic framework for solving proportional and
predictive analogies. Eur. Conf. Cogn. Sci. 295-300.

Sowa, J. F., and Majumdar, A. K. 2003. Analogical reason-
ing. In Proc. Inter. Conf. on Conceptual Structures, LNAI
2746, 16-36. Dresden: Springer-Verlag.

Stroppa, N., and Yvon, F. 2005. Analogical learning and

formal proportions: Definitions and methodological issues.
ENST Paris report.



