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Abstract

In this paper, we define a labelling based justification status
of the arguments in an argumentation framework. Our pro-
posal allows for a more fine-grained notion of a justification
status than the traditional extensions-based approaches.In
particular, we are able to distinguish different levels at which
an argument can be accepted or rejected. Our approach is
fully compatible with traditional abstract argumentationin
the sense that it works on standard argumentation frameworks
and can be implemented using existing argumentation-based
proof procedures.

1. Introduction
The main concept in Dung’s theory (Dung 1995) is that of
an argumentation framework, which is essentially a directed
graph in which the nodes represent arguments and the arrows
represent an attack relation.

Given such a graph, different sets of nodes can be ac-
cepted according to various argument based semantics such
as grounded, preferred and stable semantics (Dung 1995),
semi-stable semantics (Caminada 2006c) or ideal semantics
(Dung, Mancarella, and Toni 2007). Many of these seman-
tics can be seen as restricted cases of complete semantics; an
overview is provided in Figure 1. The facts that every sta-
ble extension is also a semi-stable extension and that every
semi-stable extension is also a preferred extension has been
proved in (Caminada 2006c). The facts that every preferred
extension is also a complete extension and that the grounded
extension is also a complete extension have been stated in
(Dung 1995). The ideal extension is also a complete exten-
sion (Dung, Mancarella, and Toni 2007). So complete ex-
tensions can be seen as the base for describing various other
semantics in abstract argumentation.

A different way of defining argumentation semantics than
the traditional extensions approach is the labellings ap-
proach. Where the extensions approach only identifies the
set of arguments that are accepted, the labellings approach
also identifies the set of arguments that are rejected and
the set of arguments that are left undecided. The concept
of argument labellings goes back to work of Pollock (Pol-
lock 1995) and of Jakobovits and Vermeir (Jakobovits and
Vermeir 1999). However, for current purposes we will use
the concept of complete labelling as defined by (Caminada
2006a; Caminada and Gabbay 2009).
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Figure 1: An overview of the different semantics

Essentially, a complete labelling can be seen as a sub-
jective but reasonable position that an agent can take with
respect to which arguments are accepted, rejected or unde-
cided. In each such position the agent can use its own posi-
tion to defend itself if questioned. It is possible to disagree
with a position, but at least the position is internally coher-
ent. The set of all complete labellings thus stands for all
possible and reasonable positions an agent can take.

In (Caminada 2006a), it is stated that complete extensions
and complete labellings are one-to-one related. In essence,
complete extensions and complete labellings are different
ways to describe the same concept.

In the current paper we will propose justification statuses
of arguments based on the notion of a complete labelling.
One of the main advantages of our proposal is that it al-
lows for a more fine-grained notion of a justification sta-
tus than is provided by the traditional extensions-based ap-
proaches. In particular, it allows for six distinct justification
statuses (strong accept, weak accept, strong reject, weak re-
ject, undetermined border line and determined border line)
which correspond with different levels of acceptance and re-
jection. Furthermore, our proposal is fully compatible with
(Dung 1995) in the sense that it works on standard argu-
mentation frameworks and can be implemented using exist-
ing argumentation-based proof procedures (Vreeswijk and
Prakken 2000; Modgil and Caminada 2009).

The remaining part of this paper is organized as follows.
We first state some preliminaries on argument semantics and
argument labellings. Then we define the justification sta-
tus of an argument, describe the methods for determining
it and treat the related issues of computational complexity.
We then round up with a discussion of how our notion of a



justification state relates to existing well-known approaches.

2. Argument Semantics and Argument
Labellings

In this section, we briefly restate some preliminaries regard-
ing argument semantics and argument-labellings. For sim-
plicity, we only consider finite argumentation frameworks.

Definition 1. An argumentation frameworkis a pair
(Ar , att) whereAr is a finite set of arguments andatt ⊆
Ar × Ar .

We say that argumentA attacksargumentB iff (A, B) ∈
att . An argumentation framework can be represented as a
directed graph in which the arguments are represented as
nodes and the attack relation is represented as arrows.

Definition 2 (defense / conflict-free). Let (Ar , att) be an
argumentation framework,A ∈ Ar andArgs ⊆ Ar . Args
is conflict-free iff ¬∃A, B ∈ Args : A attacksB. Args
defendsargumentA iff ∀B ∈ Ar : (B attacksA ⊃ ∃C ∈
Args : C attacksB). Let F (Args) = {A | A is defended
byArgs}.

We say that a set of argumentsArgs attacks an argument
B iff there exists anA ∈ Args that attacksB. We write
Args+ for the set of arguments that are attacked byArgs .

Definition 3 (acceptability semantics). Let (Ar , att) be an
argumentation framework. A conflict-free setArgs ⊆ Ar is
called anadmissible setiff Args ⊆ F (Args), and acom-
pleteextension iffArgs = F (Args).

The concept of complete semantics was originally stated
in terms of sets of arguments. It is equally well possible,
however, to express this concept in terms ofargument la-
bellings. In the current paper, we follow the approach of
(Caminada 2006b; Caminada and Gabbay 2009) where a la-
belling assigns to each argument exactly one label, which
can either bein, out or undec. The labelin indicates that
the argument is accepted, the labelout indicates that the ar-
gument is rejected, and the labelundec indicates that the
status of the argument is undecided, meaning that one ab-
stains from an explicit judgment whether the argument isin

or out.1

Definition 4 ((Caminada and Gabbay 2009)). A labellingis
a functionLab : Ar −→ {in, out, undec}.

We writein(Lab) for {A | Lab(A) = in}, out(Lab) for
{A | Lab(A) = out} andundec(Lab) for {A | Lab(A) =
undec}. Since a labelling can be interpreted as a parti-
tion of the set of arguments in the argumentation frame-
work, we will sometimes write a labellingLab as a triple
(in(Lab), out(Lab), undec(Lab)).

1For instance, an argument that attacks itself (and is not at-
tacked by any other argument) has to be labelledundec in our ap-
proach. If the argument would be labelledin then all its attackers
(itself) would have to beout, and if the argument would be la-
belledout then it has to have an attacker (itself) that isin. Hence,
the argument cannot bein and cannot beout. The situation here
can be compared to the liar paradox.

The idea of acomplete labelling(Caminada 2006b; Cam-
inada and Gabbay 2009) is that for a labelling to be reason-
able, one should be able to give reasons for each argument
one accepts (all attackers are rejected), for each argument
one rejects (it has at least one attacker that is accepted) and
for each argument one abstains from expressing an explicit
opinion about (there are insufficient grounds to accept it and
insufficient grounds to reject it). This is made formal in the
following definition.

Definition 5 ((Caminada and Gabbay 2009)). Let Lab be
a labelling of argumentation framework(Ar , att). We say
thatLab is acomplete labellingiff for eachA ∈ Ar it holds
that:

1. If Lab(A) = in then
∀B ∈ Ar : (B att A ⊃ Lab(B) = out)

2. If Lab(A) = out then
∃B ∈ Ar : (B att A ∧ Lab(B) = in).

3. If Lab(A) = undec then
¬∀B ∈ Ar : (B att A ⊃ Lab(B) = out) and
¬∃B ∈ Ar : (B att A ∧ Lab(B) = in).

As stated in (Caminada 2006b; Caminada and Gabbay
2009), complete labellings coincide with complete exten-
sions in the sense of (Dung 1995).

Theorem 1 ((Caminada and Gabbay 2009)). Let AF =
(Ar , att) be an argumentation framework.

1. If Lab is a complete labelling, thenLab2Ext(Lab) is a
complete extension (whereLab2Ext(Lab) = in(Lab))

2. If Args is a complete extension, thenExt2Lab(Args)
is a complete labelling (whereExt2Lab(Args) =
(Args ,Args+,Ar\(Args ∪Args+)))

Moreover, when restricted to complete labellings and com-
plete extensions, the functionsLab2Ext and Ext2Lab be-
come bijections and each others inverses.

Theorem 1 implies that complete labellings and complete
extensions are one-to-one related. In essence, a complete
extension can be seen as thein-labelled part of a complete
labelling (Caminada 2006b; Caminada and Gabbay 2009).

Before we proceed, we state two propositions that are
used in the remaining parts of this paper.

Proposition 1. Let AF = (Ar , att) be an argumentation
framework andA ∈ Ar . A is in at least one complete exten-
sion iff it is in at least one admissible set.

The validity of Proposition 1 can be seen as follows. Since
every complete extension is also an admissible set, it follows
that if A is in a complete extension, it is also in an admis-
sible set. Furthermore, ifA is in an admissible set, then
from (Dung 1995) it follows thatA is also in a preferred
extension, and every preferred extension is also a complete
extension.

Proposition 2. Let AF = (Ar , att) be an argumentation
framework andA ∈ Ar . A is in all complete extensions iff
A is in the grounded extension.

The validity of Proposition 2 can be seen as follows. Since
the grounded extension is a complete extension, it follows
that if an argument is in every complete extension, it is also



in the grounded extension. Furthermore, since the grounded
extension is the smallest complete extension, it follows that
if an argument is in the grounded extension, it is also in every
complete extension.

3. Justification Statuses of Arguments
In this section we first define the justification statuses of ar-
guments. Then we provide procedures to determine them.
Intuitively, the justification status of an argument consists
of the set of labels that could reasonably be assigned to the
argument.

Definition 6. Let AF = (Ar , att) be an argumenta-
tion framework andA ∈ Ar . The justification sta-
tus of A is the outcome yielded by the functionJS :
Ar → 2{in,out,undec} such thatJS(A) = {Lab(A) |
Lab is a complete labelling ofAF}.

Given the above definition, one would expect there to be
eight (23) possible justification statuses, one for each subset
of {in, out, undec}. However two of these subsets turn out
not to be possible. First of all, it is not possible for a jus-
tification status to be∅, because there always exists at least
one complete labelling (the grounded labelling (Caminada
and Gabbay 2009)). Furthermore, it is also impossible for
a justification status to be{in, out}, because whenin and
out are both included in the justification status, thenundec

should also be included, as is stated by the following theo-
rem.

Theorem 2. Let AF = (Ar , att) be an argumentation
framework andA ∈ Ar . If AF has two complete la-
bellings Lab1 and Lab2 such thatLab1(A) = in and
Lab2(A) = out then there exists a complete labellingLab3

such thatLab3(A) = undec.

Proof. Let CE1 = Lab2Ext(Lab1) and CE2 =
Lab2Ext(Lab2). From Theorem 3 of (Caminada and Gab-
bay 2009) it follows thatCE1 andCE2 are complete ex-
tensions ofAF . Let GE be the grounded extension ofAF .
From (Dung 1995) it follows thatGE is the intersection of
all complete extensions ofAF . From Lab2(A) = out,
it follows that A /∈ CE2 which implies thatA /∈ GE.
FromLab1(A) = in, it follows that∀B ∈ Ar .(BattA ⊃
Lab1(B) = out). Therefore,∀B ∈ Ar .(BattA ⊃ B /∈
GE). So A /∈ GE+. Let Lab3 = Ext2Lab(GE).
GE is a complete extension, soLab3 is a complete la-
belling. SinceA /∈ GE and A /∈ GE+, it holds that
A ∈ Ar\(GE ∪ GE+). SoLab3(A) = undec.

Since∅ and{in, out} are not possible as justification sta-
tuses, there are only 6 possible statuses left to be consid-
ered: {in}, {out}, {undec}, {in, undec}, {out, undec}
and{in, out, undec}. We now examine under which con-
ditions these justification statuses occur.

First, we examine the conditions under which the justifi-
cation status is{in}.

Theorem 3. Let AF = (Ar , att) be an argumentation
framework andA ∈ Ar . ThenJS(A) = {in} iff A is
in the grounded extension.

Proof. “⇒”: SupposeJS(A) = {in}. ThenA is labelled
in by every complete labelling (Definition 6), soA is an
element of each complete extension (Theorem 1) soA is in
the grounded extension (Proposition 2).
“⇐”: Similar as above, but the other way around.

Next, we examine the conditions under which the justifi-
cation status is{out}.

Theorem 4. Let AF = (Ar , att) be an argumentation
framework andA ∈ Ar . ThenJS(A) = {out} iff A is
attacked by the grounded extension.

Proof. “⇒”: SupposeJS(A) = {out}. ThenA is labelled
out by every complete labelling (Definition 6). So in every
complete labelling, there exists at least one atttacker ofA
that is labelledin by this labelling (Definition 5). So every
complete extension contains at least one attacker ofA (The-
orem 1). So also the grounded extension also contains an
attacker ofA. SoA is attacked by the grounded extension.
“⇐”: Similar as above, but the other way around.

Next, we examine the conditions under which the justifi-
cation status is{undec}.

Theorem 5. Let AF = (Ar , att) be an argumentation
framework andA ∈ Ar . ThenJS(A) = {undec} iff

1. A is not in any admissible set and
2. A is not attacked by any admissible set

Proof. “⇒”: SupposeJS(A) = {undec}. Then it holds
that (1)A is not labelledin by any complete labelling and
(2) A is not labelledout by any complete labelling. From
(1) it follows thatA is not an element of any complete exten-
sion (Theorem 1) soA is not an element of any admissible
set (Proposition 1). From (2) it follows that no attacker ofA
is labelledin by any complete labelling (Definition 5) so no
attacker ofA is in any complete extension (Theorem 1) so
no attacker ofA is in any admissible set (Proposition 1) so
A is not attacked by any admissible set. Notice that in this
proof, we did not use the fact thatA is labelledundec by
at least one complete labelling, which after all is implied by
(1) and (2) together with Theorem 2.
“⇐”: Suppose that (1)A is not in any admissible set and (2)
A is not attacked by any admissible set. From (1) it follows
that A is not in any complete extension (Proposition 1) so
A is not labelledin by any complete labelling (Theorem 1).
From (2) it follows that no attacker ofA is in any admissible
set, so no attacker ofA is in any complete extension (Propo-
sition 1) so no attacker ofA is labelledin by any complete
labelling (Theorem 1) soA is not labelledout by any com-
plete labelling (Definition 5). This, together with the earlier
observed fact thatA is not labelledin by any complete la-
belling implies thatA is labelledundec by every complete
labelling. Due to the fact that there always exists at least
one complete labelling (since there always exists at least one
complete extension), this implies thatJS = {undec}.

Next, we examine the conditions under which the justifi-
cation status is{in, undec}.



Theorem 6. Let AF = (Ar , att) be an argumentation
framework andA ∈ Ar . ThenJS(A) = {in, undec} iff

1. A is not in the grounded extension,
2. A is in an admissible set, and
3. A is not attacked by any admissible set.

Proof. “⇒”: SupposeJS(A) = {in, undec}. ThenA is
labelledin by at least one complete labelling,A is labelled
undec by at least one complete labelling and there exists no
complete labelling that labelsA out.
From the fact thatA is labelledundec in at least one com-
plete labelling it follows that there exists at least one com-
plete extension that does not containA (Theorem 1). SoA
is not in the grounded extension (Proposition 2).
From the fact thatA is labelledin by at least one complete
labelling it follows thatA is contained in at least one com-
plete extension (Theorem 1) and that thereforeA is in at
least one admissible set (Proposition 1).
From the fact that there exists no complete labelling that la-
belsA out it follows (Definition 5) that for all argumentsB
that attackA, B is not labelledin by any complete labelling.
Therefore, no argumentB that attacksA is contained in any
complete extension (Theorem 1). Therefore, no argumentB
that attacksA is in any admissible set (Proposition 1). That
is, A is not attacked by any admissible set.
“⇐”: Suppose that (1)A is not in the grounded extension,
(2) A is in an admissible set and (3)A is not attacked by any
admissible set.
From (2) it follows thatA is in a complete extension (Propo-
sition 1) soA is labelledin by a complete labelling (Theo-
rem 1).
From (3) it follows that no admissible set contains an at-
tacker ofA so also no complete extension contains any at-
tacker ofA (Proposition 1). So no complete labelling labels
any attacker ofA in (Theorem 1), soA is not labelledout
by any complete labelling (Definition 5).
From (1) it follows that there exists a complete labelling
whereA is not labelledin (Proposition 2 and Theorem 1).
This, together with the earlier observed fact thatA is not
labelledout by any complete labelling, implies thatA is
labelledundec by at least one complete labelling.

Next, we examine the conditions under which the justifi-
cation status is{out, undec}.

Theorem 7. Let AF = (Ar , att) be an argumentation
framework andA ∈ Ar . ThenJS(A) = {out, undec}
iff

1. A is not in any admissible set,
2. A is attacked by an admissible set, and
3. A is not attacked by the grounded extension.

Proof. “⇒”: SupposeJS(A) = {out, undec}. Then (1)
there exists no complete labelling that labelsA in, (2) there
exists a complete labelling that labelsA out and (3) there
exists a complete labelling that labelsA undec.
From (1) it follows thatA is not an element of any complete
extension (Theorem 1) soA is not an element of any admis-
sible set (Proposition 1).

From (2) it follows thatA is attacked by at least one com-
plete extension (Theorem 1) soA is attacked by at least one
admissible set (Proposition 1).
From (3) it follows that there exists a complete labelling
whereA is not labelledout, so where none of the attack-
ers ofA are labelledin (Definition 5). It then follows that
there exists a complete extension that contains none of the
attackers ofA (Theorem 1). So none of the attackers ofA
are contained in the grounded extension (Proposition 2) so
A is not attacked by the grounded extension.
“⇐”: Suppose that (1) there exists no admissible set that
containsA, (2) there is an admissible set that attacksA, and
(3) A is not attacked by the grounded extension.
From (1) it follows thatA is not an element of any complete
extension (Proposition 1), soA is not labelledin by any
complete labelling (Theorem 1).
From (2) it follows thatA is attacked by a complete exten-
sion (Proposition 1) soA is labelledout by at least one com-
plete labelling (Theorem 1).
From (3) it follows that no attacker ofA is in the grounded
extension. This implies that there exists a complete exten-
sion that does not contain any attacker ofA (Proposition 2).
So there exists a complete labelling where no attacker of
A is labelledin (Theorem 1), so whereA is not labelled
out (Definition 5). This, together with the earlier observed
fact thatA is not labelledin by any complete labelling, im-
plies thatA is labelledundec by at least one complete la-
belling.

Next, we examine the conditions under which the justifi-
cation status is{in, out, undec}.

Theorem 8. Let AF = (Ar , att) be an argumentation
framework andA ∈ Ar . ThenJS(A) = {in, out, undec}
iff

1. A is in an admissible set

2. A is attacked by an admissible set

Proof. “⇒”: SupposeJS(A) = {in, out, undec}. Then
(1) A is labelledin by at least one complete labelling and
(2) A is labelledout by at least one complete labelling.
From (1) it follows thatA is an element of at least one com-
plete extension (Theorem 1) soA is an element of at least
one admissible set (Proposition 1).
From (2) it follows that there is a complete labelling that
labels an attacker ofA in (Definition 5). Therefore there
exists a complete extension that contains an attacker ofA
(Theorem 1), so there exists an admissible set that contains
an attacker ofA (Proposition 1). That is,A is attacked by an
admissible set.
“⇐”: Suppose (1) there exists an admissible set that con-
tainsA and (2) there exists an admissible set that contains
an attacker ofA.
From (1) it follows that there exists a complete extension
that containsA (Proposition 1). so there exists a complete
labelling that labelsA in (Theorem 1).
From (2) it follows that there exists a complete extension
that contains an attacker ofA (Proposition 1), so there exists



a complete labelling that labels an attacker ofA in (Theo-
rem 1), so there exists a complete labelling whereA is la-
belledout.
From the fact that there exists a complete labelling that la-
belsA in and there exists a complete labelling that labelsA
out it follows that there also exists a complete labelling that
labelsA undec (Theorem 2).

From the above theorems, it follows that membership of
an admissible set and membership of the grounded exten-
sion, of the argument itself and of its attackers, is sufficient
to determine the argument’s justification status. The overall
procedure of doing so is shown in Figure 2.

in grounded?
{in}YesNo

attacked by grounded?

No {out}Yes

in admissible?

YesNo

attacked by admissible? attacked by admissible?

YesNo No Yes

{undec} {out, undec} {in, undec}{in, out, undec}

Figure 2: determining the justification status of an argument

4. An Implementation
We now demonstrate the applicability of the theory devel-
oped in the previous sections by describing our software im-
plementation of it.2

Given an argumentation framework as input, the program
implements two main commands:question anddiscuss.
The command “question argument” gives the justification
status of an argument and the command “discuss argu-
ment” allows the user to critically discuss this justification
status.

In order to determine the justification status of an ar-
gument (thequestion command) our implementation fol-
lows the procedure of Figure 2. To determine whether an
argument is in the grounded extension, the algorithm de-
scribed in (Modgil and Caminada 2009) is used. This al-
gorithm is subsequently run for the argument’s attackers in
oder to determine whether the argument is attacked by the
grounded extension. To determine whether an argument is
in an admissible set, the algorithm described in (Vreeswijk
and Prakken 2000; Caminada and Wu 2009) is used. This
algorithm is subsequently run for the argument’s attackers
in order to determine whether the argument is attacked by
an admissible set.

The software is able to defend its answer (thediscuss

command) by entering a discussion game with the user. The

2Available at http://icr.uni.lu/∼yining
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Figure 3: Argumentation Framework

precise discussion game depends on the justification status
of the argument, as well as on which part of this justification
status the user disagrees with. Since the justification status
as calculated by the software can be assumed to be correct,
the discussion will be such that the computer will always win
from the user. After all, the aim of thediscuss command
is to convince the user of the correctness of the justification
status as computed by the software.

Example 1. Let AF be the argumentation framework in
Figure 3.

If the user inputs: “question A” then the program will
give the result “{in, out, undec}”

If the user does not agree with the result, the program will
ask which one of the followings the user does not agree with.

1. A can be accepted.
2. A can be rejected.

If the user disagrees with (1) then the admissible discus-
sion game (Vreeswijk and Prakken 2000; Modgil and Cam-
inada 2009) in favor of argumentA will be started. If the
user disagrees with (2) then an admissible discussion game
(Vreeswijk and Prakken 2000; Modgil and Caminada 2009)
in favor of an attacker ofA that is in an admissible set will
be started.

5. Computational Complexity
We now examine the computational complexity of the var-
ious problems related to assigning labelling-based justifica-
tion statuses. To determine whether the justification status
of an argument is{in} one has to determine whether it is
an element of the grounded extension (Theorem 3) which
is known to be P (Dung 1995). To determine whether the
justification status of an argument is{out} one has to de-
termine whether it is attacked by the grounded extension
(Theorem 4) which means determining membership of the
grounded extension for each of its attackers. Since there are
at mostn attackers (wheren is the number of arguments in
the argumentation framework) the complexity isn times P,
which is P itself. To determine whether an argument has the
justification status{undec} one has to determine whether
it is in an admissible set and whether it is attacked by an
admissible set (Theorem 5). Determining whether it is in
an admissible set is known to be NP-complete (Dimopou-
los and Torres 1996). Determining whether it is attacked by
an admissible set is thereforen times NP-complete, which
is NP-complete itself. Using similar reasoning, one can ob-
tain that determining whether an argument has a justifica-
tion status{in, undec} is NP-complete,{out, undec} is



NP-complete and{in, out, undec} is NP-complete. Since
determining each individual justification status has a com-
putational complexity of NP-complete or below, the overall
worst-case complexity of determining a justification status
is NP-complete. This puts the approach of labelling-based
justification statuses in the same class as the more traditional
approach of credulous preferred.

6. Discussion and Related Work
In this paper, we have presented the justification statuses of
arguments which indicate whether an argument has to be ac-
cepted, can be accepted, has to be rejected, can be rejected,
etc. We then provided some concrete guidelines for deter-
mining these justification statuses, as well as for defend-
ing them using discussion games, and examined the issue
of computational complexity.

We use this labelling based approach for computing the
justification statuses of arguments because it tends to yield
more informative answers than the traditional extensions ap-
proaches.

B

C

A

D

{in, out, undec} {in, out, undec}

{out, undec}

{in, undec}

Figure 4: An example

Take the example in figure 4. Grounded semantics treats
all arguments (A, B, C andD) the same (they are not la-
belledin in the grounded labelling). Credulous preferred
semantics treatsA, B andD the same (they are labelledin
in at least one preferred labelling). Sceptical preferred se-
mantics treatsA, B andC the same (they are not labelled
in in some preferred labellings). Also ideal semantics treats
all arguments the same (they are not in the ideal extension).

However, our labelling based approach for computing the
justification status of an argument allows for a more fine
grained distinction between arguments. According to the hi-
erarchy of the justification statuses in figure 5, argumentD
is the strongest, argumentC is the weakest,A andB are in
between. Unlike sceptical preferred semantics, our labelling
approach does not makeD completely justified although it
does give it a relatively strong status.

We will refer to the justification status{in} asstrong ac-
cept, to{in, undec} asweak accept, to{in, out, undec} as
undetermined borderline, to{undec} asdetermined border-
line, to {out, undec} asweak rejectand to{out} asstrong
reject.

We now study some of the connections between our no-
tion of justification status and a number of existing ap-
proaches. In particular, we examine the connection with

{in}

{in, undec}

{in, out, undec} {undec}

{out, undec}

{out}

ac
ce

pt
an

ce
re

je
ct

io
n

Figure 5: The hierarchy of justification statuses

grounded semantics (Dung 1995), credulous preferred se-
mantics (Vreeswijk and Prakken 2000), sceptical preferred
semantics (Cayrol, Doutre, and Mengin 2003), semi-stable
semantics (Caminada 2006c) and ideal semantics (Dung,
Mancarella, and Toni 2007).

Proposition 3. Let (Ar , att) be an argumentation frame-
work andA ∈ Ar .

1. A is in the grounded extension iff it is strongly accepted
2. A is in at least one preferred extension iffA is strongly

accepted, weakly accepted, or undetermined borderline.
3. if A is in every preferred extension thenA is strongly or

weakly accepted
4. if A is strongly accepted thenA is in every semi-stable

extension
if A is weakly accepted thenA is in at least one semi-
stable extension

5. A is in an ideal set iffA is member of an admissible set
consisting only of strongly or weakly accepted arguments.

The validity of point 1 follows directly from Theorem 3.
The validity of point 2 follows from the fact that an argu-
ment is in a preferred extension iff it is in a complete ex-
tension, and therefore labelledin by a complete labelling.
The validity of point 3 follows from the fact that sceptical
preferred rules out all justification statuses containingout

(strong reject, weak reject and undetermined borderline) as
well as the justification status{undec} (determined border-
line), which means only{in} (strong accept) and{in, out}
(weak accept) remain. The validity of point 4 follows from
Theorem 5 of (Caminada 2006c). The validity of point 5 re-
quires some more explanation, which will be provided in the
appendix.

The labelling based approach for determining justification
statuses is somewhat similar to the approach described in
(Baroni and Giacomin 2007). However, in (Baroni and Gia-
comin 2007) the authors do not specify a concrete semantics
with which to apply their approach to, and as a result of this,
they do not provide any procedures regarding how to deter-
mine the justification status of an argument.

In our current implementation, we have used the dis-
cussion game of (Vreeswijk and Prakken 2000; Caminada
and Wu 2009) to determine membership of an admissible
set, and the discussion game of (Prakken and Sartor 1997;



Modgil and Caminada 2009) to determine membership of
the grounded extension. An alternative would be to use the
algorithm of (Vreeswijk 2006), which determines both of
these memberships in a single pass. Since our notion of jus-
tification status depends only on membership of an admis-
sible set and membership of the grounded extension, one is
free to apply any kind of algorithm that can determine these.

Appendix
An ideal set in the sense of (Dung, Mancarella, and Toni
2007) is an admissible set that is a subset of each preferred
extension. It has been obtained that one can also describe
an ideal set as an admissible set that is not attacked by any
admissible set (Theorem 3.2 of (Dung, Mancarella, and Toni
2007)). This clears the way for proving the following lemma
(which is in essence point 5 of Proposition 3).

Lemma 1. Let (Ar , att) be an argumentation framework
andArgs ⊆ Ar . Args is an admissible set that is not at-
tacked by any admissible set iffArgs is an admissible subet
of {A | J S(A) = {in}} ∪ {A | J S(A) = {in, undec}}

Proof. “⇒”: Let Args be an admissible set that is not at-
tacked by any admissible set. LetA ∈ Args . From the fact
thatA is in an admissible set (and therefore also on a com-
plete extension) it follows thatA is labelledin in at least one
complete labelling. From the fact thatArgs is not attacked
by any admissible set, it follows thatA is not attacked by
any preferred extension and therefore not attacked by any
complete extension. Hence,A is not labelledout by any
complete labelling. This, together with the earlier observed
fact thatA is labelledin by at least one complete labelling
implies thatA ∈ {A | J S(A) = {in}} ∪ {A | J S(A) =
{in, undec}}.
“⇐”: Let Args be an admissible subset of{A | J S(A) =
{in}} ∪ {A | J S(A) = {in, undec}}. Suppose thatArgs
is attacked by an admissible set. That is, there is an argument
A ∈ Args that is attacked by an admissible set. ThenA is
also attacked by a complete extension (since every admissi-
ble set is contained in a preferred extension, which is also a
complete extension). This means thatA is labelledout in
at least one complete labelling. SoA 6∈ {A | J S(A) =
{in}} ∪ {A | J S(A) = {in, undec}}. Contradiction.

So our labelling based approach for defining justification
statuses not only allows us to identify whether an argument
is accepted according to grounded or credulous preferred se-
mantics, it also helps to identify whether an argument is ac-
cepted according to ideal semantics. It is in an ideal set iff
one can build an admissible set around it that consists only
of strongly or weakly accepted arguments.
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