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Abstract

We present a probabilistic logic programming frame-
work to reinforcement learning, by integrating rein-
forcement learning, in POMDP environments, with nor-
mal hybrid probabilistic logic programs with probabilis-
tic answer set semantics, that is capable of representing
domain-specific knowledge. We formally prove the cor-
rectness of our approach. We show that the complexity
of finding a policy for a reinforcement learning problem
in our approach is NP-complete. In addition, we show
that any reinforcement learning problem can be encoded
as a classical logic program with answer set semantics.
We also show that a reinforcement learning problem
can be encoded as a SAT problem. We present a new
high level action description language that allows the
factored representation of POMDP. Moreover, we mod-
ify the original model of POMDP so that it be able to
distinguish between knowledge producing actions and
actions that change the environment.

Introduction
Reinforcement learning is the problem of learning to act by
trial and error interaction in dynamic environments. Rein-
forcement learning problems can be represented as Markov
Decision Processes (MDP), under the assumption that accu-
rate and complete model of the environment is known. This
assumption requires the agent to have perfect sensing and
observation abilities.

However, complete and perfect observability is unrealis-
tic for many real-world reinforcement learning applications,
although necessary for learning optimal policies in MDP en-
vironments. Therefore, different model is needed to repre-
sent and solve reinforcement learning problems with partial
observability. This model is Partially Observable Markov
Decision Processes (POMDP). Similar to MDP, POMDP
requires the model of the environment to be known, how-
ever states of the world are not completely known. Con-
sequently, the agent perform actions to make observations
about the states of the worlds. These observations can be
noisy due to imperfect agent’s sensors. Similar to MDP, dy-
namic programming methods, by value iteration, has been
used to learn the optimal policy for a reinforcement learning
problem in POMDP environment.

A logical framework to reinforcement learning in MDP
environment has been developed in (Saad 2008a), which re-

lies on techniques from probabilistic reasoning and knowl-
edge representation by normal hybrid probabilistic logic
programs (Saad and Pontelli 2006). The normal hybrid
probabilistic logic programs framework of (Saad 2008a) has
been proposed upon observing that dynamic programming
methods to reinforcement learning in general and value it-
eration in particular are incapable of exploiting domain-
specific knowledge of the reinforcement learning problem
domains to improve the efficiency of finding the optimal
policy. In addition, these dynamic programming methods
use primitive representation of states and actions as this
representation does not capture the relationship between
states (Majercik and Littman 2003) and makes it difficult
to represent domain-specific knowledge. However, using
richer knowledge representation frameworks for MDP and
POMDP allow efficiently finding optimal policies in more
complex stochastic domains and lead to develop methods
to find optimal policies with larger domains sizes (Majercik
and Littman 2003).

The choice of normal hybrid probabilistic logic programs
(NHPLP) to solve reinforcement learning problems in MDP
environment is based on that; NHPLP is nonmonotonic,
therefore more suitable for knowledge representation and
reasoning under uncertainty; NHPLP subsumes classical
normal logic programs with classical answer set semantics
(Gelfond and Lifschitz 1988), a rich knowledge represen-
tation and reasoning framework, and inherits its knowledge
representation and reasoning capabilities including the abil-
ity to represent and reason about domain-specific knowl-
edge; NHPLP has been shown applicable to a variety of fun-
damental probabilistic reasoning problems including proba-
bilistic planning (Saad 2007), contingent probabilistic plan-
ning (Saad 2009a), the most probable explanation in belief
networks, the most likely trajectory in probabilistic plan-
ning, and Bayesian reasoning (Saad 2008b).

In this view, we integrate reinforcement learning in
POMDP environment with NHPLP, providing a logical
framework that overcomes the representational limitations
of dynamic programming method to reinforcement learn-
ing in POMDP and is capable of representing its domain-
specific knowledge. In addition, the proposed framework
extends the logical framework of reinforcement learning in
MDP of (Saad 2008a) with partial observability. We show
that any reinforcement learning problem in POMDP envi-



ronment can be encoded as a SAT problem. The importance
of that is reinforcement learning problems in POMDP envi-
ronment can be now solved as SAT problems.

Syntax and Semantics of NHPLP
We introduce a class of NHPLP (Saad and Pontelli 2006),
namely NHPLPPO, that is sufficient to represent POMDP.

The Language of NHPLPPO
Let L be a first-order language with finitely many pred-
icate symbols, constants, and infinitely many variables.
The Herbrand base ofL is denoted byBL. Probabilities
are assigned to atoms inBL as values from[0, 1]. An
annotation, µ, is either a constant in[0, 1], a variable
(annotation variable) ranging over[0, 1], or f(µ1, . . . , µn)
(called annotation function) where f is a representation
of a computable total functionf : ([0, 1])n → [0, 1] and
µ1, . . . , µn are annotations. Leta1, a2 ∈ [0, 1]. Then
we say thata1 ≤t a2 iff a1 ≤ a2. A normal probabilis-
tic logic program (np-program) in NHPLPPO is a pair
P = 〈R, τ〉, whereR is a finite set of normal probabilistic
rules (np-rules) andτ is a mappingτ : BL → Sdisj ,
whereSdisj is a set of disjunctive probabilistic strategies
(p-strategies) whose composition functions,c, are mappings
c : [0, 1] × [0, 1] → [0, 1]. A composition function
of a disjunctive p-strategy returns the probability of a
disjunction of two events given the probability values of
its components. An np-rule is an expression of the form
A : µ ← A1 : µ1, . . . , An : µn,

not (B1 : µn+1), . . . , not (Bm : µn+m)
where A, A1, . . . , An, B1, . . . , Bm are atoms andµ, µi

(1 ≤ i ≤ m + n) are annotations. Intuitively, the meaning
of an np-rule is that if for eachAi : µi, the probability of
Ai is at leastµi (w.r.t. ≤t) and for eachnot (Bj : µj), it
is not believablethat the probability ofBj is at leastµj ,
then the probability ofA is µ. The mappingτ associates to
each atomA a disjunctive p-strategy that will be employed
to combine the probability values obtained from different
np-rules havingA in their heads. An np-program is ground
if no variables appear in any of its np-rules.

Probabilistic Answer Set Semantics of NHPLPPO
A probabilistic interpretation (p-interpretation),h, is a
mapping fromBL to [0, 1]. Let P = 〈R, τ〉 be a ground
np-program,h be a p-interpretation, andr be an np-rule
A : µ ← A1 : µ1, . . . , An : µn,

not (B1 : µn+1), . . . , not (Bm : µn+m)
Then, we say
• h satisfiesAi : µi iff µi ≤t h(Ai).
• h satisfiesnot (Bj : βj) iff βj 6≤t h(Bj).
• h satisfiesBody ≡ A1 : µ1, . . . , An : µn, not (B1 :
β1), . . . , not (Bm : βm) iff ∀(1 ≤ i ≤ n), h satisfies
Ai : µi and∀(1 ≤ j ≤ m), h satisfiesnot (Bj : βj).
• h satisfiesA : µ ← Body iff h satisfiesA : µ or h does

not satisfyBody.
• h satisfiesP iff h satisfies every np-rule inR and for every

atomA ∈ BL, we have

cτ(A){{µ|A : µ← Body ∈ R such that h |= Body}} ≤t

h(A).
The probabilistic reductPh of P w.r.t. h is an np-program
without non-monotonic negation,Ph = 〈Rh, τ〉, where:

A : µ← A1 : µ1, . . . , An : µn ∈ Rh iff
A : µ ← A1 : µ1, . . . , An : µn,

not (B1 : β1), . . . , not (Bm : βm) ∈ R and

∀(1 ≤ j ≤ m), βj �t h(Bj). A probabilistic model
(p-model) of an np-programP is a p-interpretation ofP
that satisfiesP . We say that a p-interpretationh of P is a
probabilistic answer set ofP if h is the minimal p-model of
the probabilistic reduct,Ph, of P w.r.t. h.

Partially Observable Markov Decision
Processes

We review finite-horizon POMDP (Kaelbling, Littman, and
Cassandra 1998) with stationary transition functions, sta-
tionary bounded reward functions, and stationary policies.

POMDP Definition
POMDP is a tuple of the form M =
〈S, S0, A, T, λ,R,Ω, O〉 where: S is a finite set of
states;S0 is the initial state distribution;A is a finite set
of stochastic actions;T is stationary transition function
T : S × A × S → [0, 1], where for anys ∈ S anda ∈ A,∑

s′∈S T (s, a, s′) = 1; λ ∈ [0, 1) is the discount factor;
R : S × A × S → R is a stationary bounded reward
function; Ω is a finite set of observations that the agent
observes in the environment; andO is observation function
O : S × A × Ω → [0, 1], where for anys ∈ S anda ∈ A
where

∑
o∈ΩO(s, a, o) = 1. A stationary policy is a

mapping from states to actions of the formπ : S → A. The
value function of a policyπ with respect to an initial state
s0 ∈ So, with finite horizon ofn steps remaining,V π

n (s0),
is calculated by

V π
n (s0) =

∑
s1∈S T (s0, π(s0), s1)

∑
oi∈ΩO(s1, π(s0), oi)[

R(s0, π(s0), s1) + λ V π
n−1(s1)

]
which determines the expected sum of discounted rewards
resulting from executing the policyπ starting froms0. Be-
cause of the agent is unable to completely observe the states
of the world and with reliability, it keeps what is called a be-
lief state. An agent’s belief state is a probability distribution
over the possible world states the agent may think it is in.
Therefore, an action causes a transition from a belief state
to another belief state. Givenb is a believe state anda is an
action, then executinga in the belief stateb results a new
belief stateb′, where the probability of a state,s′, in b′ and
the value function of executing a policyπ in b are given by:

b′(s′) =
O(s′, a, o)

∑
s∈S T (s, a, s′)b(s)

Pr(o|a, b)

V π
n (b) =

∑
s∈S

b(s)V π
n (s).

The optimal policy over the agent’s belief states can con-
structed from the optimal value function over the agent’s be-
lief states which is given byV ∗

n (b) = maxπ V π
n (b).



Discussion
The original model of POMDP does not distinguish be-
tween knowledge producing (sensing) actions and actions
that affects and change the environment (non-sensing ac-
tions). This means that it treats sensing and non-sensing
actions equally in the sense that, like non-sensing actions, a
sensing action affects and change the environment as well
as producing knowledge resulting from observing the en-
vironment. However, (Scherl and Levesque 1993) proved
that sensing actions produce knowledge (make observations)
and does not change the state of the world. Therefore, ac-
tions that change the state of the world are different from the
knowledge producing actions. In addition, the value func-
tion described above makes the agent observing the envi-
ronment at every step of its life with each action it takes.
However, this is not necessary to be always the case, since
it is possible for the agent to start with observing the envi-
ronment then performing a sequence of actions, or the agent
could start with performing a sequence of actions then ob-
serving the environment. To overcome these limitations, we
define the value function of n-step finite horizon POMDP
with respect to an initial states0 ∈ So as:
• if π(s0) is a non-sensing action

V π
n (s0) =

∑
s1∈S

T (s0, π(s0), s1)[R(s0, π(s0), s1) +λV π
n−1(s1)]

• if π(s0) is sensing action

V π
n (s0) =

∑
s1∈S

O(s0, π(s0), s1)[R(s0, π(s0), s1)+λV π
n−1(s1)]

whereO(s0, π(s0), s1) is the probability of observing the
states1, where for someo ∈ Ω, o is observed ins1. Notice
thatO is treated as a mappingO : S×A×S → [0, 1], where
A is the set of sensing actions. For anys ∈ S anda ∈ A,
O(s, a, .) is the probability distribution over states resulting
from executinga in s, such that

∑
s′∈S O(s, a, s′) = 1.

As in the original model of POMDP,T is a mappingT :
S×A×S → [0, 1], whereA is the set of non-sensing actions.
Extension to infinite horizon POMDP can be achieved in a
similar manner. This definition of POMDP distinguishes be-
tween knowledge producing actions and actions that change
the environment. In this view, the optimal policyV ∗

n is given
by: V ∗

n (s0) = maxπ V
π
n (s0).

APO an Action Language for POMDP
We introduce an action language for POMDP,APO. The
proposed action language extends both the action language,
AMD, (Saad 2008a) for representing and reasoning about
MDP, and the action language,P, (Saad 2009a) for repre-
senting and reasoning about imperfect sensing actions with
probabilistic outcomes. An action theory inAPO is capable
of representing the initial state distribution, the executabil-
ity conditions of actions, the discount factor, the reward re-
ceived from executing actions in states, and makes it clear
the distinction between sensing and non-sensing actions.

Language syntax
A fluent is a predicate, which may contain variables. Given
thatF is a set of fluents andA is a set of actions that can

contain variables, a fluent literal is either a fluentf ∈ F
or ¬ f . A conjunction of fluent literals of the forml1 ∧
. . . ∧ ln is conjunctive fluent formula, wherel1, . . . , ln are
fluent literals. Sometimes we abuse the notation and refer
to a conjunctive fluent formula as a set of fluent literals (∅
denotestrue). An action theory,PT, in APO is a tuple
PT = 〈S0,D, λ〉, whereS0 is a proposition of the form (1),
D is a set of propositions from (2-4), and0 ≤ λ < 1 is a
discount factor as follows:

initially { ψi : pi, 1 ≤ i ≤ n (1)

executable a if ψ (2)

a causes { φi : pi : ri if ψi, 1 ≤ i ≤ n (3)

a observes { oi : pi : ri sensing ψi, 1 ≤ i ≤ n (4)

whereψ,ψi, φi, oi, (1 ≤ i ≤ n) are conjunctive fluent for-
mulas,a ∈ A, andpi ∈ [0, 1]. The set of all groundψi and
oi must be exhaustive and mutually exclusive.

The initial agent’s belief state—a probability distribution
over the possible initial states, is represented by (1), that says
each possible initial stateψi holds with probabilitypi. Ex-
ecutability conditionis represented by (2). A non-sensing
action, a, is represented by (3), which says that for each
1 ≤ i ≤ n, a causesφi to hold with probabilitypi and re-
wardri is received in a successor state to a state in whicha
is executed andψi holds. A sensing action,a, is represented
by (4), which says that for each1 ≤ i ≤ n, whenever a
correlatedψi is known to be true,a causes any ofoi to be
known true with probabilitypi and rewardri is received in
a successor state to a state in whicha is executed, where the
literals inψi determine what the agent is observing (sensor
reading literals) and literals inoi determine what the sensor
reports on (sensor report literals). Similar to (Draper, Hanks,
and Weld 1994), when a property of the world cannot be di-
rectly sensed by the sensor, another correlated property of
the world, that can be sensed by the sensor, can be used in-
stead. An action theory is ground if it does not contain any
variables.

In the sequel, we represent an actiona in (3) as a set of the
forma = {a1, . . . , an}, where eachai corresponds toφi, pi,
ri, andψi. For each1 ≤ i ≤ n, (3) can be represented as
ai causes φi : pi : ri if ψi. Similarly, (4) can be
represented asai observes oi : pi : ri sensing ψi.
Example 1 Consider the tiger domain from (Littman, Cas-
sandra, and Kaelbling 1995), which is represented by the ac-
tion theoryPT = 〈S0,D, λ〉, whereexecutable AC if ∅,
for all AC ∈ {openL, openR, listen} and

S0 = initially
{
{tl, htl} : 0.5
{¬tl,¬htl} : 0.5

openL causes
{
{tl} : 1 : −100 if {tl}
{¬tl} : 1 : 10 if {¬tl}

openR causes
{
{¬tl} : 1 : −100 if {¬tl}
{tl} : 1 : 10 if {tl}

listen observes


{tl} : 0.85 : −1 sensing {htl}
{¬tl} : 0.15 : −1 sensing {htl}
{¬tl} : 0.85 : −1 sensing {¬htl}
{tl} : 0.15 : −1 sensing {¬htl}



Semantics
A set of ground literalsφ is consistent if it does not contain
a pair of complementary literals. If a literall belongs toφ,
then we sayl is true inφ, andl is false inφ if ¬ l is in φ. A
set of literalsσ is true inφ if σ is contained inφ. A states
is a complete and consistent set of literals that describes the
world at a certain time point.

Definition 1 Let PT = 〈S0,D, λ〉 be a ground action the-
ory in APO, s be a state,ai causes φi : pi : ri if ψi

(1 ≤ i ≤ n) be inD, anda = {a1, . . . , an} be an action,
where eachai corresponds toφi, pi, ri, andψi for 1 ≤ i ≤
n (similarly for ai observes φi : pi : ri sensing ψi).
Then, the state resulting from executinga in s Φ(ai, s) is:
• l ∈ Φ(ai, s) and¬ l /∈ Φ(ai, s) iff l ∈ φi andψi ⊆ s.
• ¬ l ∈ Φ(ai, s) andl /∈ Φ(ai, s) iff ¬ l ∈ φi andψi ⊆ s.
• Elsel ∈ Φ(ai, s) iff l ∈ s and¬ l ∈ Φ(ai, s) iff ¬ l ∈ s.

Definition 2 Let s be a state, andai causes φi : pi :
ri if ψi (similarly a′i observes oi : p′i : r′i sensing ψi)
(1 ≤ i ≤ n) be in propositions. Then, the transition proba-
bility distribution after executinga (a′) in s is given by

T (s, a, s′) =
{
pi ifs′ = Φ(ai, s)
0 otherwise

O(s, a′, s′) =
{
p′i ifs′ = Φ(a′i, s)
0 otherwise

The reward received in a states′ after executinga (a′) in
s is R(s, a, s′) = ri if s′ = Φ(ai, s), R(s, a′, s′) = r′i if
s′ = Φ(a′i, s), otherwiseR(s, a, s′) = R(s, a′, s′) = 0.

Definition 3 Let s0 be an initial state,s, s′ be states, and
π be a policy inPT. Then, the value function of n-step
remaining,V π

n , ofπ is given by:
• if π(s0) is a non-sensing action andX = T (s0, π(s0), s1)
V π

n (s0) =
∑

s1∈S X
[
R(s0, π(s0), s1) + λ V π

n−1(s1)
]

• if π(s0) is sensing action andY = O(s0, π(s0), s1)
V π

n (s0) =
∑

s1∈S Y
[
R(s0, π(s0), s1) + λ V π

n−1(s1)
]

where aftern steps,V π
0 (sn) = R(sn−1, π(sn−1), sn).

Executing sensing or non-sensing action,π(s), in s causes a
transition to a set of states,σ = {s′1, s′2, . . . , s′m}. Let π(σ)
denotes the set of actionsπ(s′1), π(s′2), . . . , π(s′m) executed
in the statess′1, s

′
2, . . . , s

′
m respectively. Notice that ifπ(σ)

is a singleton, i.e., the same action is executed in every state
in σ, then this corresponds to executing an action in a belief
stateσ = {s′1, s′2, . . . , s′m}. Since executingπ(σ) in σ pro-
duces another set of statesσ′, then executingπ(σ) causes a
transition from a belief state to another belief state.

For finite horizon POMDP, a policyπ : S → A can
be represented as a set of ordered pairs, starting from
the initial belief stateσ0 (the set of initial states inS0),
as π = {(σ0, π(σ0)), (σ1, π(σ1)), . . . , (σn−1, π(σn−1))},
where for 1 ≤ i ≤ n, σi represents a belief state
(a set of states) resulting from executingπ(σi−1) in
σi−1. This set representation of finite horizon poli-
cies in POMDP leads to view a policy as a set of tra-
jectories, where each trajectory takes the formj(n) ≡
s0, π(s0), s1, π(s1), . . . , sn−1, π(sn−1), sn wheres0 is an
initial state inS0 and for all1 ≤ i ≤ n, si ∈ σi andπ(si) ∈
π(σi), such that for any1 ≤ i ≤ n, si = Φ(si−1, π(si−1)).

Let π be a policy for a finite horizon POMDP andTπ be the
set of trajectories representation ofπ, given the trajectory
view of π, the value function ofπ can be now described as:

V π
n (s0) =

∑
j(n)∈Tπ

[
n−1∑
t=0

λt

[
t∏

i=0

X(si, π(si), si+1)

]
Rt+1

]
(5)

whereRt+1 = R(st, π(st), st+1) and

X(si, π(si), si+1) =

{
T (si, π(si), si+1), π(si) is nonsensing
O(si, π(si), si+1), π(si) is sensing

Thus, the optimal policyV ∗
n , the maximum value function

among all policies, is given byV ∗
n (s0) = maxπ V

π
n (s0)

Reinforcement Learning in NHPLPPO
This section uses NHPLPPO to solve reinforcement learning
problems, by encoding an action theory,PT in APO, into
an np-program,ΠPT. The probabilistic answer sets ofΠPT

correspond to valid trajectories inPT, with associated value
function. The np-program encoding of an action theory in
APO follows related encoding described in (Saad 2008a;
2009a; Son et al. 2006). We assume that the length of the op-
timal policy that we are looking for is known and finite. We
use the following predicates:holds(L, T ) for literalL holds
at time momentT , occ(A, T ) for actionA executes at time
T , state(T ) for a state of the world at timeT , reward(T, r)
for the reward received at timeT is r, value(T, V ) for the
value function of a state at timeT is V , andfactor(λ) for
the discount factorλ. If an atom appears in an np-rule inR
with no annotation it is assumed to be associated with the
annotation1. We usep(ψ) to denotep(l1), . . . , p(ln) for p
is a predicate andψ = {l1, . . . , ln}.

Let ΠPT = 〈R, τ〉 be the np-program encoding ofPT =
〈S0,D, λ〉, whereR is the set of the following np-rules.
• Each actiona = {a1, . . . , an} ∈ A, is encoded as

action(ai)← (6)

for all 1 ≤ i ≤ n. Each fluentf ∈ F is encoded as a fact
of the formfluent(f). Fluent literals are encoded as

literal(F ) ← fluent(F ) (7)

literal(¬F ) ← fluent(F ) (8)

To specify that fluentsF and¬F are contrary literals, we
use the following np-rules.

contrary(F,¬F ) ← fluent(F ) (9)

contrary(¬F, F ) ← fluent(F ) (10)

• The initial belief stateinitially {ψi : pi, 1 ≤ i ≤ n
is represented inR as follows. Lets1, s2, . . . , sn be the
set of possible initial states, where for each1 ≤ i ≤ n,
si = {li1, . . . , lim}, and the initial probability distribution
bePr(si) = pi. Moreover, lets = s1 ∪ s2 ∪ . . . ∪ sn,
s′ = s1 ∩ s2 ∩ . . . ∩ sn, ŝ = s − s′. Let sreport =
{ l | l ∈ si andl is a sensor report literal} be the set of all
sensor report literals in allsi. We denotes′′ = { l | l ∈
(ŝ− sreport) ∨ ¬l ∈ (ŝ− sreport)}. Intuitively, s′′ is the
same aŝs after excluding the set of sensor report literals
sreport from ŝ. Let ssense be the set of all pairs(δi, γi),



whereδi andγi are sets of literals contained insi, such
that δi is the set of sensor reading literals andγi is the
set of sensor report literals appearing insi. The set of all
possible initial states are generated as follows: for each
l ∈ s′, we include inR

holds(l, 0)← (11)

which represents a fact that holds in every possible initial
state. It says that the literall holds at time moment 0. In
addition, for eachl ∈ s′′,R includes

holds(l, 0) ← not holds(¬l, 0) (12)

holds(¬l, 0) ← not holds(l, 0) (13)

These np-rules sayl (similarly ¬l) holds at time moment
0, if ¬l (similarly l) does not hold at the time moment 0.
For each(δ, γ) ∈ ψsense, let γ = {l1, . . . , lm}, then for
each1 ≤ i ≤ m,R includes

holds(li, 0)← holds(δ, 0) (14)

The initial probability distribution over the initial states is
encoded as follows, which says that the probability of a
state at time 0 ispi, if li1, . . . , l

i
m hold at the time 0.

state(0) : pi ← holds(li1, 0), . . . , holds(lim, 0) (15)

• Each executability condition of an action of the form (2)
is encoded for each1 ≤ i ≤ n as

exec(ai, T )← holds(ψ, T ) (16)

• For each non-sensing action propositionai causes φi :
pi : ri if ψi, 1 ≤ i ≤ n, in D, let φi = {l1i , . . . , lmi }.
Then,∀(1 ≤ j ≤ m),R includes

holds(lji , T + 1)← occ(ai, T ), exec(ai, T ), (17)

holds(ψi, T )

If a occurs at timeT andψi holds at the same time mo-
ment, thenlji holds at the timeT + 1. Then, we have

state(T + 1) : pi × U ← state(T ) : U, occ(ai, T ),
exec(ai, T ), holds(ψi, T ), holds(φi, T + 1) (18)

whereU is an annotation variable ranging over[0, 1] acts
as a place holder. This np-rule states that ifψi holds in
a state at timeT , whose probability isU , and in whicha
is executable, then the probability of a successor state at
timeT + 1 is pi × U , in whichφi holds.
• For each sensing action propositionai observes oi :
pi : ri sensing ψi, 1 ≤ i ≤ n, in D, let oi =
{l1i , . . . , lmi } andψi = {l′1i , . . . , l

′m
i }. Then,∀(1 ≤ j ≤

m),R includes

observed(l
′j
i , T )← occ(ai, T ), exec(ai, T ),

holds(ψi, T ) (19)

holds(lji , T + 1)← occ(ai, T ), exec(ai, T ),
observed(ψi, T ) (20)

where (19) says that executing the sensing actiona at time
T in whichψi holds causesψi to be observed to be known

true at the same momentT , and (20) states that ifa occurs
at timeT and the literals inψi are observed to be known
true at the same moment, then the literalslji ∈ oi are
known to hold at the time momentT + 1.

state(T + 1) : pi × U ← state(T ) : U, occ(ai, T ),
exec(ai, T ), observed(ψi, T ), holds(oi, T + 1) (21)

The above np-rule says that the probability of a state at
timeT + 1 is pi×U if oi become known true at the same
moment, after executinga in a state at timeT , whose
probability isU , in which the literals inψi are observed
true.

• The rewardri received at timeT + 1 after executinga in
a state at timeT is encoded as

reward(ri, T + 1)← occ(ai, T ), exec(ai, T ) (22)

• The value functionT +1 steps away from the initial state,
S0, given the value functionT steps away fromS0 is en-
coded as
– if a is a non-sensing action

value(V + λT ∗ U ∗ ri, T + 1)← value(V, T ),

factor(λ), state(T + 1) : U, reward(ri, T + 1),

occ(ai, T ), exec(ai, T ), holds(ψi, T ),

holds(φi, T + 1) (23)

– if a is a sensing action

value(V + λT ∗ U ∗ ri, T + 1)← value(V, T ),

factor(λ), state(T + 1) : U, reward(ri, T + 1),

occ(ai, T ), exec(ai, T ), observed(ψi, T ),

holds(oi, T + 1) (24)

where the variablesV ∈ R, λ ∈ [0, 1), U ∈ [0, 1], and
factor(λ) is a fact inR. These np-rules state that the
value function at timeT +1 is equal to the value function
at timeT added to the product of the rewardri received
in a state atT + 1 and the probability of a state at time
T + 1 discounted byλT .
• The following np-rule asserts that a literalL holds atT+1

if it holds atT and its contrary does not hold atT + 1.

holds(L, T + 1)← holds(L, T ),
not holds(L′, T + 1), contrary(L,L′) (25)

• The literal,A, and its negation,¬A, cannot hold at the
same time, whereinconsistent is a literal that does not
appear inPT.

inconsistent← not inconsistent, holds(A, T ),
holds(¬A, T ) (26)

• Actions are generated once at a time by the np-rules:

occ(ACi, T )← action(ACi), not abocc(ACi, T ) (27)

abocc(ACi, T )← action(ACi), action(ACj),

occ(ACj , T ), ACi 6= ACj (28)

• The goal expressionG = g1 ∧ . . . ∧ gm is encoded as

goal← holds(g1, T ), . . . , holds(gm, T ) (29)



Example 2 The np-program encoding of the tiger domain
presented in Example 1 is given byΠ = 〈R, τ〉, whereτ is
arbitrary andR consists of the following np-rules, in addi-
tion to the np-rules (7), (8), (9), (10), (25), (26), (27), (28):

action(openLi)← action(openRi)←
action(listenj)←

for 1 ≤ i ≤ 2 and1 ≤ j ≤ 4. Properties of the world are
described by the fluentstl andhtl which are encoded by

fluent(tl)← fluent(htl)←
The set of possible initial states are encoded by:

holds(tl, 0) ← not holds(¬tl, 0)
holds(¬tl, 0) ← not holds(tl, 0)
holds(tl, 0) ← holds(htl, 0)
holds(¬tl, 0) ← holds(¬htl, 0)

The initial probability distribution is encoded by:

state(0) : 0.5 ← holds(tl, 0), holds(htl, 0)
state(0) : 0.5 ← holds(¬tl, 0), holds(¬htl, 0)

The executability conditions of actions are encoded by:

exec(openLi)← exec(openRi)← exec(listenj)←

for 1 ≤ i ≤ 2 and1 ≤ j ≤ 4. Effects of theopenL are

holds(tl, T + 1)← occ(openL1, T ), exec(openL1, T ),
holds(tl, T )

holds(¬tl, T + 1)← occ(openL2, T ), exec(openL2, T ),
holds(¬tl, T )

Effects of theopenR action are encoded by

holds(¬tl, T + 1)← occ(openR1, T ), exec(openR1, T ),
holds(¬tl, T )

holds(tl, T + 1)← occ(openR2, T ), exec(openR2, T ),
holds(tl, T )

Effects of thelisten action are encoded by

observed(htl, T )← occ(listen1, T ), exec(listen1, T ),
holds(htl, T )

observed(htl, T )← occ(listen2, T ), exec(listen2, T ),
holds(htl, T )

observed(¬htl, T )← occ(listen3, T ), exec(listen3, T ),
holds(¬htl, T )

observed(¬htl, T )← occ(listen4, T ), exec(listen4, T ),
holds(¬htl, T )

holds(tl, T + 1)← occ(listen1, T ), exec(listen1, T ),
observed(htl, T )

holds(¬tl, T + 1)← occ(listen2, T ), exec(listen2, T ),
observed(htl, T )

holds(¬tl, T + 1)← occ(listen3, T ), exec(listen3, T ),
observed(¬htl, T )

holds(tl, T + 1)← occ(listen4, T ), exec(listen4, T ),
observed(¬htl, T )

The probability distribution fromlisten is given by

state(T + 1) : 0.85× V ← occ(listen1, T ), state(T ) : V,
exec(listen1, T ), observed(htl, T ), holds(tl, T + 1)

state(T + 1) : 0.15× V ← occ(listen2, T ), state(T ) : V,
exec(listen2, T ), observed(htl, T ), holds(¬tl, T + 1)

state(T + 1) : 0.85× V ← occ(listen3, T ), state(T ) : V,
exec(listen3, T ), observed(¬htl, T ), holds(¬tl, T + 1)

state(T + 1) : 0.15× V ← occ(listen4, T ), state(T ) : V,
exec(listen4, T ), observed(¬htl, T ), holds(tl, T + 1)

The rewards received from executing the actions are en-
coded by

reward(−100, T + 1)← occ(openL1), exec(openL1)
reward(10, T + 1)← occ(openL2), exec(openL2)
reward(−100, T + 1)← occ(openR1), exec(openR1)
reward(10, T + 1)← occ(openR2), exec(openR2)
reward(−1, T + 1)← occ(listen1), exec(listen1)
reward(−1, T + 1)← occ(listen2), exec(listen2)
reward(−1, T + 1)← occ(listen3), exec(listen3)
reward(−1, T + 1)← occ(listen4), exec(listen4)

The value function is encoded inR by the np-rules:

value(V + λT ∗ U ∗ −100, T + 1)← value(V, T ),
factor(λ), state(T + 1) : U, reward(−100, T + 1),

occ(openL1, T ), exec(openL1, T ),
holds(tl, T ), holds(tl, T + 1)

value(V + λT ∗ U ∗ 10, T + 1)← value(V, T )
factor(λ), state(T + 1) : U, reward(10, , T + 1),

occ(openL2, T ), exec(openL2, T ),
holds(¬tl, T ), holds(¬tl, T + 1)

value(V + λT ∗ U ∗ −100, T + 1)← value(V, T ),
factor(λ), state(T + 1) : U, reward(−100, T + 1),

occ(openR1, T ), exec(openR1, T ),
holds(¬tl, T ), holds(¬tl, T + 1)

value(V + λT ∗ U ∗ 10, T + 1)← value(V, T ),
factor(λ), state(T + 1) : U, reward(10, T + 1),

occ(openR2, T ), exec(openR2, T ),
holds(tl, T ), holds(tl, T + 1)

value(V + λT ∗ U ∗ −1, T + 1)← value(V, T ),
factor(λ), state(T + 1) : U, reward(−1, T + 1),

occ(listen1, T ), exec(listen1, T ),
observed(htl, T ), holds(tl, T + 1)

value(V + λT ∗ U ∗ −1, T + 1)← value(V, T ),
factor(λ), state(T + 1) : U, reward(−1, T + 1),

occ(listen2, T ), exec(listen2, T ),
observed(htl, T ), holds(¬tl, T + 1)

value(V + λT ∗ U ∗ −1, T + 1)← value(V, T ),
factor(λ), state(T + 1) : U, reward(−1, T + 1),

occ(listen3, T ), exec(listen3, T ),
observed(¬htl, T ), holds(¬tl, T + 1)

value(V + λT ∗ U ∗ −1, T + 1)← value(V, T ),
factor(λ), state(T + 1) : U, reward(−1, T + 1),

occ(listen4, T ), exec(listen4, T ),
observed(¬htl, T ), holds(tl, T + 1)

Correctness
In this section we prove that the probabilistic answer sets
of the np-program encoding of an action theory,PT, corre-
spond to trajectories inPT, with associated value function.
Moreover, we show that the complexity of finding a policy
for PT in our approach is NP-complete. Let the domain of
T be{0, . . . , n}. Let Φ be a transition function associated
with PT, s0 be a possible initial state, anda0, . . . , an−1

be a set of actions inA. Recall, any actionai can be rep-
resented asai = {a1i

, . . . , ami
}. Therefore, a trajectory

s0, π(s0), s1, π(s1), . . . , sn−1, π(sn−1), sn in PT can be



also represented ass0 aj0 s1 . . . ajn−1 sn for (1 ≤ j ≤ m)
and (0 ≤ i ≤ n), such that∀(0 ≤ i ≤ n), si is a state,ai

is an action,aji ∈ ai = {a1i , . . . , ami}, aji = π(si), and
si = Φ(aji−1 , si−1).

Theorem 1 Let PT be an action theory inAPO, π be
a policy in PT, and Tπ be the set of trajectories inπ.
Then, s0, π(s0), s1, π(s1), . . . , sn−1, π(sn−1), sn is a tra-
jectory in Tπ iff occ(π(s0), 0), . . . , occ(π(sn−1), n − 1) is
true in a probabilistic answer set ofΠPT.

Intuitively, an action theory,PT inAPO, can be encoded to
an np-program,ΠPT, whose probabilistic answer sets cor-
respond trajectories inPT.

Theorem 2 Let h be a probabilistic answer set ofΠPT,
π be a policy in PT, and Tπ be the set of tra-
jectories in π. Let OCC be a set that contains
h |= τ = occ(π(s0), 0), . . . , occ(π(sn−1), n − 1) iff
s0, π(s0), s1, π(s1), . . . , sn−1, π(sn−1), sn ∈ Tπ. Then,∑

h|=value(n,v) and h|=τ∈OCC v = V π
n (s0)

Theorem 2 states that the summation of the valuesv, appear-
ing in value(n, v) that is satisfied by a probabilistic answer
seth in whichocc(π(s0), 0), . . . , occ(π(sn−1), n−1) is sat-
isfied is equal to the expected sum of discounted rewards
after executing a policyπ starting from a states0.

The np-program encoding of the reinforcement learning
problems, in finite-horizon POMDP, finds optimal policies
using the flat representation of the problem domains. Flat
representation is the explicit enumeration of world states
(Littman, Goldsmith, and Mundhenk 1998). Hence, The-
orem 4 follows directly from Theorem 3.

Theorem 3 ((Littman, Goldsmith, and Mundhenk 1998))
The stationary policy existence problem for finite-horizon
POMDP in the flat representation is NP-complete.

Theorem 4 The policy existence problem for a reinforce-
ment learning problem in POMDP environment using
NHPLPPO with probabilistic answer set semantics is NP-
complete.

Reinforcement Learning using Answer Set
Programming

Reinforcement learning problems in POMDP can be also
encoded as classical normal logic programs with classical
answer set semantics (Gelfond and Lifschitz 1988). Exclud-
ing the np-rules (15), (18), (21) – (24) from the np-program
encoding,ΠPT, of PT, results np-program, denoted by
Πnormal

PT , with only annotations of the form1. As shown
in (Saad and Pontelli 2006), the syntax and semantics of this
class of np-programs are equivalent to classical normal logic
programs with classical answer set semantics.

Theorem 5 Let Πnormal
PT be the normal logic program

resulting after deleting the np-rules (15), (18), (21) –
(24) from ΠPT and π be a policy in PT. Then,
s0, π(s0), s1, π(s1), . . . , sn−1, π(sn−1), sn is a trajectory
in π iff occ(π(s0), 0), . . . , occ(π(sn−1), n− 1) is true in an
answer set ofΠnormal

PT .

Theorem 5 shows that classical normal logic programs with
answer set semantics can be used to solve reinforcement
learning problems in POMDP in two steps. First, a rein-
forcement learning problem,PT, is encoded to a classical
normal logic program whose answer sets correspond to valid
trajectories inPT. From the answer sets of the normal logic
program encoding ofPT, we can determine the set of trajec-
toriesTπ for a policyπ in PT. Second, the value of the pol-
icy π is calculated using (5). Moreover, any reinforcement
learning problem in POMDP environment can be encoded as
a SAT problem. Hence, state-of-the-art SAT solvers can be
used to solve reinforcement learning problems. Any normal
logic program,Π, can be translated into a SAT formula,S,
where the models ofS are equivalent to the answer sets ofΠ
(Lin and Zhao 2004). Therefore, the normal logic program
encoding of a reinforcement learning problemPT can be
translated into an equivalent SAT formula, where the mod-
els ofS correspond to valid trajectories inPT.

Theorem 6 Let PT be an action theory andΠnormal
PT be

the normal logic program encoding ofPT. Then, the mod-
els of the SAT encoding ofΠnormal

PT are equivalent to valid
trajectories inPT.

Reinforcement learning problems can be directly encoded to
SAT (Saad 2009b). This is shown by following corollary.

Corollary 1 LetPT be an action theory. Then,PT can be
directly encoded as a SAT formulaS where the models ofS
are equivalent to valid trajectories inPT.

Conclusions and Related Work
We described a new high level action language,APO, that
allows the factored representation of POMDP. Moreover, we
presented a new reinforcement learning framework by relat-
ing reinforcement learning in POMDP to NHPLP. The trans-
lation from an action theory representation of a reinforce-
ment learning problem inAPO into an NHPLP program is
based on a similar translation from probabilistic planning
into NHPLP (Saad 2007). The difference betweenAPO and
the action languages(Baral, Tran, and Tuan 2002), (Boutilier,
Dean, and Hanks 1999), (Eiter and Lukasiewicz 2003), (Iocchi et
al. 2004), and (Kushmeric, Hanks, and Weld 1995)is thatAPO is
a hight level language and allows the factored specification
of POMDP.

The approaches for solving POMDP to find the opti-
mal policies can be categorized into two main approaches;
dynamic programming approaches and the search-based
approaches (a detailed survey on these approaches can
be found in (Boutilier, Dean, and Hanks 1999)). How-
ever, dynamic programming approaches use primitive do-
main knowledge representation. Moreover, the search-
based approaches mainly rely on search heuristics (Holl-
dobler, Karabaev, and Skvortsova 2006), which have limited
knowledge representation capabilities to represent and use
domain-specific knowledge.

In (Majercik and Littman 2003), a logical approach for
solving POMDP, for probabilistic contingent planning, has
been presented which converts a POMDP specification of



a probabilistic contingent planing problem into a stochas-
tic satisfiability problem and solving the stochastic satisfi-
ability problem instead. Our approach is similar in spirit
to (Majercik and Littman 2003) in the sense that both ap-
proaches are logic based approaches. However, it has
been shown in (Saad 2008b) that NHPLP is more expres-
sive than stochastic satisfiability from the knowledge rep-
resentation point of view. In (Kersting and Raedt 2004;
Kersting, van Ottterlo, and Raedt 2004), based on first-order
logic without nonmonotonic negation, a first-order logic rep-
resentation of MDP has been described. Similar to the first-
order representation of MDP in (Kersting and Raedt 2004;
Kersting, van Ottterlo, and Raedt 2004),APO allows ob-
jects and relations. However, unlikeAPO, (Kersting and
Raedt 2004; Kersting, van Ottterlo, and Raedt 2004) finds
policies in the abstract level. But, NHPLP allows ob-
jects and relations. (Boutilier, Reiter, and Price 2001;
Sanner and Boutilier 2009) presented a more expressive
first-order representation of MDP than (Kersting and Raedt
2004) that is a probabilistic extension to Reiter’s situation
calculus. However, it is more complex than (Kersting and
Raedt 2004).

Although, the approaches in (Kersting and Raedt 2004;
Kersting, van Ottterlo, and Raedt 2004; Boutilier, Reiter, and
Price 2001; Sanner and Boutilier 2009) use first-order logic
to representing MDPs, they do not use the semantics of the
first-order logic to compute optimal policies. Rather, they
use traditional dynamic programming value iteration algo-
rithm to compute optimal policies at the relational (abstract)
level instead of the propositional level. This is different from
our approach, since we use logic (NHPLP, answer set pro-
gramming, and SAT) for both representing POMDPs and
computing their optimal policies. This is because we em-
ploy the semantics of NHPLP, answer set programming, and
SAT to calculate the optimal policies for POMDPs.
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