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Abstract

Many applications today—from e-commerce to analyzing
scientific data-sets—require the notionkmst-match That

is, one needs data thiaéstsatisfies one’s criteria. Relational
query languages likBQL, however, are ill-suited for this. An
SQL query returns tuples that match precisely its conditions.
The skyline clausevas proposed, in part, with this goal in
mind. Skyline combines multiple preference criteria ingtar
lel. (The skyline clause filters out any tuple if there is 4ot
one better than, or equal to, it on all criteria, and stribky-

ter than it on at least one.) How to compute skyline queries
efficiently has been well studied. Howev&QL with the
skyline clause does not capture many types of preferences.
Skyline conflates the notion diftering for the bestanswers,
and thepreference semantidhat defines best. A preference
semantics defines an ordering over the answersptéker-
ence graph For skyline, the resulting preference graph is a
partial order, both acyclic and transitive. We believe, how
ever, that more general, natural preference semantics aiay n
preserve transitivity, but result more generally in diegkt
acyclic preference graphs instead.

We introduce a generalization of skyline that can result in
directed, acyclic preference graphs instead of partiadrsd
We develop thetable skyline semantits accommodate this.
We show how stable skylines can be computed.

1. Introduction

“Find me a house in the Annex in good condition for less
than $500,000 with at least three bedrooms and a back-
yard”t With an appropriate database at hand, one could
compose a query (say, QL) to express this. But what

if the query comes up empty? Our house hunter must try
again with a new query, perhaps by modifying (weaken-
ing) the criteria from the original query. This process can
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know something—or quite a bit usually—about tihetain
the database in order to specify these conditions suitably.
There are many applications and tasks today much like the
house hunter’s. The person might not know much about the
data? Furthermore, the house hunter’s criteria are cun-
ditions, per se. Rather, they apgeferencesin reasonable
condition inexpensivemany bedroomsandhas a backyard
The house hunter may not even really expect to find a house
that actually satisfies all these preferences, or thatfigatis
them in equal measure. Rather, the house hunter is looking
for thebestoptions, as measured against these preferences.
The skyline clause was proposed in (Borzsonyi, Koss-
mann, and Stocker 2001) as an extensio8@_, with syn-
tax as in Fig. 1. Skyline offers an elegant approach to com-
bining multiple preference criteria in parallel.

select ... from ... where...
group by ... having ...
skyline of A; [min | max | diff], .. .,
A, [min | max | diff]

Figure 1: The proposed skyline clause 80L.

The skyline operatofilters the set of tuples derived by
(the rest of) the query. Any tupleis removed if there is
another tuples that is better than, or equal to, tupieon
each skyline criterion4;), andis strictly better than tuple
on at least one criterion. In this case, we say thatimps
r. Tuples is better than tuple on criterionA; max if s's
A; value is greater thars. Tuples is better than tuple on
criterion A; min if s's A; value is less than's. If there is
a criterionA,; diff, thenr cannot be trumped by if s's A;
value is different fromr’s. The answer set is the set of tuples

be long and arduous, and is often unsuccessful because ofnever trumped, called trekyline set

it. Kaplan named this seeming behavior of the database
system to withhold informatiostonewalling(Kaplan 1981;
1982).

Each skyline criteriomd; max or A; min, imposes aveak
order over the input tuple$. The skyline criteria taken to-
gether (conjunctively) then imposepartial order over the

Relational database systems—and, for that matter, other input tuples! The skyline set is therown of this partial

common information system technologies—do not offer a
solution. They stonewall. A relational quesglectsthe tu-
ples that satisfy the query’s conditions. The person must

*This work was investigated while Wei Vicky Ning was a grad-
uate student at York University. She is now with Microsoft.
1The Annex is a neighborhood in midtown Toronto.

order.

2A house for $500,000 in the Annex? Really!

%It is not atotal ordersince tuples may have the sakevalue,
thus tying. A weak order is a total order, except for allowiias.

“We can ignordliff here. Note that any criterioh; diff can be
replaced by the criteriA; max and A; min.



select Address, Agent, Lockbox#, Cond, constructions in the future. In 4., we define ttable skyline

Price, #bdr_m,. Backyard, Style semanticsvhich accommodates the loss of transitivity. This
from HouselListing preserves the desirable properties that the crown sersantic
where area = 'Annex’ . for SQL with the skyline clause has. We present an algo-
skyline of Cond max, Price min, rithm to compute the stable skyline set and discuss further

#bdrm max, Backyard max, means to accomplish this efficiently. In 5., we discuss fur-
Style diff; ther issues, future work, and conclude.
Figure 2: Skyline query for the house hunter. 2. Related Work

People have Ic_mg recognized a need for prefe_rences in
The query in Fig. 2 is a skyline query expressing the house database queries. In (Chang 1976), a deductive query

hunter's query. It is assumed here tkzind (the condition language calledDEDUCE was proposed for relational

of the house) is a numeric score, say, fron®, with 5 as databases which includes preferences. Lacroix and Pirotte
the best. Price and#bdrm (number of bedrooms) are as  (Lacroix and Pirotte 1977) introduced tlemain relational

one would expectBackyard is a Boolean1 for true; and0 calculus(DRC) and thentermediate level languagh L, as

for false We have added the criteri@tyle diff; this means  an English-like language for structured expressions viiéh t
the query will find thebesthouses per house-style (e.g., bun- goal of more natural, more expressive query languages. In

galow, modern, and Victorian). (Lacroix and Lavency 1987), Lacroix and'Lavency extendeq
One may criticize that the idea skyline is not new. Indeed, theDRC to provide a preference mechanism. Preferencesin

this very same idea has been studied before amtnémal a query are satisfied if possible, but “ignored” when not.

vector problemand is the same concept Bareto optimal Chomicki introduced a general logical framework for

What is new is that skyline introduced the concept to queries Preferences as preference formulas, and has proposed a rela
as a means to handle preferences in a natural way within tional operatowinnow for composing preference relations
existing relational query languages. in the_relanonal alggbra (Chomlckl 2002; 2Q03). Hls model
One might criticize that skyline is too weak in itself to ~andwinnow are quite expressive. He has investigated the
provide for a useful preference query language. Skyline by types of preferences that can be expressed and has shown
itself provides us only with a limited way to express and how they can be composediinnow offers a declarative se-
combine preferences. We agree. mantics. Chomicki has investigated the effects of types of
Lastly, from the point of view of work in preferences, one ~ Preference formulas on theference relatior{graph), the
might criticize that the skyline operator conflates thesele ~ order the preferences induce over the potential answer tu-
tion of the best answers and the preference semantics thatPles. Thuswinnow is a quite rich model. However, it can be
orders the answers. Indeed, we will want to separate these COmplex to understand how to write preferences and how to
concerns carefully, to consider how we can generalize the COmpose them. Itis also not clear, so far, how to realire

notion of skyline to cover richer types of preferences. now in a relational system. In (Chomicki 2004), Chomicki
derives some special caseswhnow-based queries that can
skyline of Price min, #bdrm max, be evaluated efficiently. More work is needed, though, to
case style identify significant, useful sub-classeswinnow that can
when 'modern’ then Yr_built max be handled well.
when 'Victorian’ then Yr_built min In (KieRRling 2002), Kiessling has taken an algebraic ap-
end proach to constructing a rich preference query language as
an extension t&QL that he callreference SQL. A num-
Figure 3: Query with conditional preferences. ber of preference operators are introduced, and how they

compose is definedreference SQL allows users to write
Consider the query fragment in Fig. 3. For modern-style best-matchqueries by composing their preference criteria

houses, we are interested in ones that are newer. However,via the preference operatoRreference SQL has been on
for Victorian-style houses, we prefer the opposite, thba¢t  the market since 1999, and is used in several commercial
are older. We want different preferences to apply to difiere  ventures. The system compiles preference queriesS@to
data. Whether we want a newer house or an older house is for evaluation. In (Kiel3ling and Kostler 2002), Kiessling
conditional on whether the house’s style is modern or Vic- and Koestler investigate further how to exteB@L and
torian, respectivelyCase is not a preference construct pro-  XPATH for thePreference SQL operators, and presentrich
vided in skyline, but would be a seemingly useful addition. examples of the types of queries that can be composed.
However, it is far from simple to add such a construction. It How to compose preferenceshmeference SQL mean-

does not work with the skyline semantics as defined. ingfully can be challenging. Becauseeference SQL in-
We propose a way to generalize skyline to provide a basis troduces many new constructs, how to realize it efficiently
for supporting richer preferences suchase. In 2., we is a challenge. It has an operational semantics, but not a

review related work. In 3., we motivate and define stable defineddeclarativesemantics. In particular, composition
skyline. First, we formalize skyline queries, to show how of the preference operators can raise difficulties. The in-
“implement” conditional preferences, and to lay the ground tended semantics is that the preference relation be a Ipartia
work for implementing other potentially useful preference order, but certain compositions can violate this. In (Kieg!



2004), Kiessling proposes the conceptsabstitutable val-
ues(SV’'s) andSV relationgo address sound composition of
Preference SQL'’s Pareto andprioritized preferences.

The skyline operator was introduced in (Borzsonyi, Koss-
mann, and Stocker 2001) (as discussed§in). Much
work since has gone into developing efficient, external, re-
lationally well-behaved algorithms for evaluating skgin
queries (Borzsonyi, Kossmann, and Stocker 2001; Chamick
et al. 2003; Eng, Ooi, and Tan 2003; Godfrey 2004;

Godfrey, Shipley, and Gryz 2007; Kossmann, Ramsak, and

Rost 2002). By itself, however, skyline is not as expres-
sive aswinnow or Preference SQL. To serve as a foun-
dation for preference queries, tegpressivenessf skyline

needs to be improved. The ideas leading to stable sky-

line are discussed in depth in (Godfrey and Ning 2004;
Ning 2005).

3. Motivation & Background
Let the skyline operator,V’, correspond to the skyline

clause. It can be treated as a new relational algebra operato

In the skyline clause in Fig. 1, th&;’s are columns. (Of

course, these may include derived columns, as well.) Each

A; can be considered asfanction with its domain as all

(V(>A) € F.A(r) > A(s)) A (3(>A) € F.A(r) > A(s)).

Call tuplesr and s incomparablewith respect toF iff
I % s ands i » r. Denote this by ~ £ s.

For any skyline filter’F built over >’ comparators, the
preference graph- £’ over T is guaranteed to be a partial
order, and thus igreflexiveg antisymmetricandtransitive
The skyline ofT is then defined as therown of the partial
order -’ over T. That is, it consists of those tuplesTh
that are not trumped with respectioby any other tuples in
T.

Definition 1 The skyline set is defined as

Vr(T)={seT|-3reT.r>rs}

Call this thecrown skyline semantick

We can characterize the skyline set waundnessnd
completenesgroperties.
Definition 2 The soundnesgroperty of skyline sets states
that

Vs € VE(T). -IreT.r =5 s
Thecompletenesproperty of skyline sets states that
Vre(T—Vz(T)).3se Ve(T).s>xr

potential tuples over that schema, and its range as the realor equivalently
numbers. Paired with each functiok;, is a directive that S3re (T — VA(T)). ¥s € VA(T). S fpr

indicates how the tuples are to be compared with respect to
A;. Call such a function-directive pair a skylisemparator By soundness, we mean that each skyline tuple represents

and the set of function-directive pairs of a skyline claumse t
skylinefilter.

For exampleskyline of A max, B min, C diff is denoted
by V{>A7<B#C}. The directivesnax, min, anddiff essen-
tially are the equalityoperators' >, ‘ <’, and ‘#£’, respec-
tively, from the perspective of comparing tuples to compute
the skyline.

The single operator>’ (max) would logically suffice;
both ‘<’ and ‘#’ are algebraically redundant, giver*. A
skyline filter 7 U {£A} is equivalent taF U {<A, >A}.° A
skyline filter 7 U {<A} is equivalent toF U {>(—1- A)}.

In proofs then, we restrict our attention to”, dismissing
‘<’ and ‘#'. In discussion and in definitions, we consider
both *>"and #’, as ‘" will help to motivate the extensions
we propose. In examples, we shall still empley for nat-
uralness, with it understood that it can be rewritten wa *

The skyline filter—a set of comparators—then defines
how tuples are to be compared, to determine which will be
returned in the skyline set. Denote a set of tupl€B,aghich
we shall call the inputable For anyT, any skyline filterF
induces an algebraic relation ov&r Call this theprefer-
ence graptoverT with respect taF. Let F be composed
of just ‘>’ comparators, without loss of generalization. De-
note the preference graph (relation) byz"; r =z s iff

This may not seem natural for nominal values suctasern
andVictorian. However, we consider that the column function has
translated these to reals, or integers, so treyordered. Likewise,
string data can simply be lexicographically ordered. Whiteould
be nonsensical to usen@ax comparator for nominal data by itself,
we can sensibly exploit this mechanism to defiaé(diff) in terms
of ‘>’ (max).

abesttuple; that is, there is no tuple that is better than it—
that trumps it—with respect to the skyline criteria. By com-
pleteness, we mean that the skyline set represdiritee best
tuples, with respect to the skyline criteria. Hence, eveny-n
skyline tuple is trumped by some skyline tuple. In this way,
the skyline set characterizes the table: for any tuple in the
table, it is either skyline itself, or there is a skyline taithat
trumps it, and hence, “represents” it in the skyline set.

We can now consider how we might extend this formal-
ism in useful ways, in particular so that we can implement
conditional preferences (as used in the query in Fig. 3).

Note that two tuplesands are incomparable either if, for
every(>A) € F,A(r) = A(s), or there are two comparators
(>A), (>B) € F such thatA(r) < A(s) andB(r) > B(s).

A single directivediff (‘£’) by itself can deem two tuples as
incomparable if their values on the corresponding function
differ, regardless of the other comparators.

We add a new directivegqual (‘="), as the dual ofiff.
With equal, two tuples are deemed incomparable if their
values on the corresponding function are siaene regard-
less of the other comparators. If they differ in value on the
function, the other comparators then determine how they re-
late. Interestingly, this addition increases skyline'pres-
siveness. Skyline with=" can express preference graphs
that skyline without =’ cannot. Thusequal is useful in
composing more complex skyline queries.

Definition 3 The meaning oéqual is defined via its effect
in a skyline filter.

5The crown skyline semantics is the semantics for skyline as
originally defined. We shall consider an alternate semantiee
stable skyline semantici §4.



o If (=A) € FandA(r) = A(s), r ~# s, regardless of any
other comparators it .
o If (=A) € FandA(r) # A(S), r =z siff r =z_=ay S;
o If A(r) # A(s) butr 7/ x_(—py sands #r_—p T,
r ~x s (as the tuples are considered equivalent with re-
spect to the conditions).
Example 4 Consider a slightly simplified version of the ex-
ample from Fig. 2. The house hunter is interested only
in Victorian and modernstyle houses. In both cases,
Price should be minimized an#tbdrm should be maxi-
mized. For Victorian-style houses, the house hunter psefer
older houses, and sgr_built should be minimized. For

HouseListing

# Price Style | Yr_built | #bdrm
r || $340k | Victorian 1920 3
s || $350k | modern 1934 3
t || $370k | Victorian 1903 3

Figure 4: Table for example breaking transitivity.

Example 5 Consider the tablél in Fig. 4, and the skyline
filter 7 = {<Price,=Style}. Thus,r > s ands > t.
Howevery ~ £ t.

modern-style houses, however, the house hunter prefers Consider Ex. 4 again, theplicit preference relation;-’,

newer houses, and so_built should be maximized.
LetP = Price, B = #bdrm, Y = Yr_built, andS =
Style. Let

H = Ostyle="Victorian’ v style:’modern’(HouseLiSting)

The skyline query can be composed as

Q: Vi<p,>B,=5}(
v{<P,>B,<Y} (Ustyle:'Victorian’(H))
U v{<P,>B,>Y} Ustyle:‘modern’(H))

)

The use ofequal in Example 4 is necessary for us to
achieve what we intend. The out&f*combines the results
of the skyline over the Victorian houses (with older as a cri-
terion) and the skyline over the modern-style houses (with
newer as a criterion). We want that the Victorian houses

induced by the query ovéif, and the example tuples from
Fig. 4. Because housss less expensive than houséand
they tie on number of bedrooms),~ s. Note that since
they are of different styles, we do not compafiebuilt be-
tween them. Likewise, because houses less expensive
than housd, s >~ t. However,r ~ t, because they are of
the same style andis older tharr, preferred for Victorian
houses.

4. Stable Skyline Semantics
Considerations

We would like to maintain the same type of semantics for
our generalized skyline as for the original skyline: an agrsw
tuple is one that is not trumped by any other with respect to
the preference graph. So the answer set with respect to a
query should seemingly just be the set of all tuples that are

returned be compared against the modern-style houses re-nqt trymped.

turned, and vice-versa, with respect to the criteria in com-

mon: lower price and more bedrooms. The' ‘directive

is essential to ensure that the Victorian houses are not com-

pared against one anoth&gain, but this time with respect
to the fewer criterialRrice and#bdrm); and likewise, that
the modern-style houses are not either.

A consequence of addirggual, however, is that a sky-
line filter is no longer guaranteed to induce a partial order
(PO) over the set of tuples. Transitivity may be lost. The
preference graph is still guaranteed to be irreflexive and an
tisymmetric; hence, it is a directed acyclic graph (DAG).

Diff comparators &) do not affect transitivity. This is
obvious since aiff comparator can be replaced byax
comparators (>"), and a skyline filter consisting of justax
comparators clearly induces a partial ordeiff simply par-
titions the tuples, and only tuples in the same partition can
relate (i.e.r > £ ).

How canequal (‘=’) affect transitivity then? Arequal
comparator prohibits tuples from the same equality class
(partition) to relate. In essence, it punches holes in thie pa
tial order of the preference graph that would be induced by
the filter without itsequal comparators, by making certain
pairs of tuples incomparable which would have been com-
parable otherwise. These “holes” can violate transitivity

"Ideally, this query would be written with a singl&* operator
inducing a single preference relation olrWith a generalization
of equal, this can be done (Godfrey and Ning 2004). We have not
done it here out of the need for brevity.

Of course, the original semantics for skyline—the crown
skyline semantics, Def. 1—is with transitivity in mind.
Since we now permit DAG preference graphs, we must re-
examine this definition. There are three possible ways to
proceed:

1. recover a partial order from the directed acyclic graph as
the preference graph;

2. continue using the crown skyline semantics anyway; or

3. develop a new skyline semantics that accommodates
directed-acyclic-graph preference graphs naturally.

By idea #1, we want to derive a PO from the DAG. An
obvious way to accomplish this would be to take the tran-
sitive closure of & £’, denoted by &%’. Then the skyline
could be defined with respect te -’ instead. However, this
is not good! Our purpose for addirmgjual, for example, is
to defeat certain tuples from trumping certain other tuples
By using *~7%’, we essentially are undoing the effects of the
equal comparators. Thus, we rule out idea #1.

Idea #2 is simply to keep the same definition, Def. 1, for
skyline: it is those tuples not trumped by any others, with
respect toF. Interestingly, Def. 1 does not depend ony’
overT being a partial order. However, this is not an ideal
solution either. Once> =" over T is not transitive, we can
no longer have botsoundnesandcompletenesss defined
in Def. 2. Both these properties are really intended as ffart o
skyline’s semantics. They are consequences of the skyline
set in Def. 1whenthe preference graph is a PO. The crown
skyline set—as defined in Def. 1—is no longer necessarily



complete. There are non-skyline tuples potentially ingabl
T that arenot trumped by any skyline tuple. But these are
not crown skyline tuples themselves—by Def. 1, that is—
because other non-skyline tuples trump them.

Therefore, idea #3 is the direction in which we proceed.
We need to redefingkylineto recaptursoundnesandcom-
pletenessWe shall be able to regain completeness, if we are
willing to redefine slightly our notion of correctness.

Preference semantics that allow for cyclic preference

graphs are, of course, possible. Let us, however, assume

that any query induces atyclicpreference graph. Skyline
extended withequal, as in§3., will only result in directed,
acyclic preference graphs.

Definition

Loss of transitivity results in that the crown skyline sends
longer “stable”. Consider tabl& and filter 7 from Fig. 4
and Example 5 (p. 4) again. Ontyis in V£(T). Consider
whens is removed fronil. Now, V£(T) = {r,t}! So the
addition or deletion ohon-skylinguples from the table can
affect what the skyline set is.

We want astability property for the skyline set. (This
will lead back tocompletenesy Changes to the table over
non-skyline tuples should not change the skyline set. To ac-
complish this, we re-examine our notion of soundness for
skyline.

Definition 6 Stability. Call a subsefS of tableT a stable
skyline setwith respect to filtetF and T iff

S={reT|-3se€S.s>rr}

For a PO filterF, V #(T) from Def. 1 is a stable skyline
set with respect t@. For a DAG filter F, for which tran-
sitivity is lost with respect tdl', V=(T) is not necessarily
a stable skyline set. All tuples i are pair-wise incompa-
rable, as is the case f&f ~(T). And for each tuple from
T — S, there is a tuple ii$ that trumps it, just as fov = (T).
However, now a (stable) skyline tuple may be trumped by a
non-skyline tuple. (For any such non-skyline tuple, thqugh
there is somether skylinguple that trumps it.) So we mod-
ify our notion ofsoundnessno skyline tuple is trumped by
any otherskylinetuple.

Can we find such aB? Is it unique? We can, and it is
unique. We define this via a transformation and a fixpoint
with respect to the transformation.

Definition 7 DefineSx r, given tableS, as follows.

SFr(S)={reT|-3s€S.s ~xr1}

DefineSx 1 11 as follows.

e Srrl0=10

[ S]:;[rTZI = S]:;]]‘(S]:;]]‘T(Z' — 1)), fori >0
Let S} ; be shorthand fo6 1 1 4.

Note thatS}; = V=(T) (the crown skyline set by
Def. 1). When &5’ over T is a PO,S% 1 = Ifp(Sr 1),
the least fixpointof Sz 1. When %" over T is a DAG,
V#(T) = Sy still, but it is possible thatSs ; #
|fp(S]:’T).

mark_depths (table T) {
i:=0;
D:=T,
while (D # 0) {
Si={teD|-FIreD.r>gt};
foreachtin S {
t.depth :=1i;

}
]_D) =D -S§;
i++;
}
}

Figure 5: Procedure to mark tuple depths.

We introducetuple depthfor use in proving thaS}’Tr
reaches fixpoint. The procedure in Fig. 5 assigrdepth
to each tuple. Any tuple not trumped by any other tuple is
assigned depth; inductively, any tuple not trumped by any
other tuple not of depthor less is assigned depth- 1.
Lemma 8 For a tuplet € T of depth: (as assigned by
mark_depths in Fig. 5), eithervj > 2(i + 1). t € S} ;
orvj >2(i+1).t ¢ Sk .

Theorem 9 For any finite T, the least fixpointof S r,
Ifp(Sx,T), is obtained in finite iterations; thus, for any sky-
line filter 7 and input tableT, there exists: € w such that

k k+1
Srr=SFr1-

We have established that there is a least fixpoir8 sfr,
that it reaches fixpoint in finite iterations, and that it isi&g
alent to a stable skyline set. Next, we prove that the stable
skyline set is unique.

Lemma 10 Given a finite tablél' and skyline filtetF, there
exists only one stable skyline set (Def. 6). That is, thdetab
skyline set is unique.

Definition 11 Define thestable skyline operatptV’, with
respect to filtetF and tableT as

V#(T) = Ifp(Sx,1)

Theorem 12 V £(T) is equivalent to the unique stable sky-
line set.

Definition 13 Thesoundnesproperty of stable skyline sets
states that

Vs e V£(T). -FIre V£(T).r>xs

That V'’ satisfies the soundness property of Def. 13 is a
direct consequence of the definition®f  (Def. 7).

Stable skyline semantics has the following advantages
over the original (crown) skyline semantics when DAG pref-
erence graphs are permitted.

1. It preservesompletenessf the set (Def. 2).

2. It has a stability property (Def. 6), which is epistemigal

appealing.

Itis easier to compute than is the crown skyline set. (This

is discussed next.)

. It enables skyline operations to be composed in sound
ways.

3.



When the preference graph is a partial order, stable sky-
line semantics and the original (crown) skyline semantics
concur.

Computing Stable Skyline

The stable skyline se¥ #(T), is more straightforward than
its formal definition viasif’T might suggest. It includes the
crown skyline tuplesV #(T)), as these are not trumped by
any tuples. However, there may be tuple§Th— V£ (T))
not trumped by any tuples iW £(T). SoV £(T) also in-
cludes the (crown) skyline of these. And so forth.

Definition 14 Define theuntrumpedset at stage, N}’T, as
follows.

Npp={re(T—Syry)|-Is€Srps~rr}
Then

SEE = SELUNZ, fori >0
SEW = SELUVE(NEp)  fori>0
VAT = |JVr(NZEyp)

=0

Thus the iterationS’  alternate, adding all presently
untrumped tuples in the odd cycles, and reducing these by
only retaining the crown of the newly added tuples in the
even cycles.

This seems to indicate that we should be able to devise an
algorithm in which each tuple is considered just once, with
respect to the accumulated skyline tuples so far, and either
is discarded or added to the skyline set. We do this next.

sfs (array T) {
/I T: The input tuples, topologically sorted.
array S; // For collecting the stable skyline set.
/I Initialized empty.
for (i=0;i < T.length; i++;) {
trumped := false;
j=0;
while ((j < S.length) A !trumped) {
if (S[j] > # T[i]) trumped := true;
j++

ﬁ‘ (trumped) S.add(T[i]);
}

return S;

}

Figure 6: Sort-Filter-Skyline algorithm to compute the-sta
ble skyline.

The algorithm sort-filter-skylineSFS) in Fig. 6 computes
the stable skyline setV #(T). This algorithm is a main-
memory simplification of the extern&FS algorithm we
presented in (Chomicki et al. 2002; 2003). Before the
sfs procedure is called, the input tuples are sorted in an

2i+1

E‘(Zonsequentlyt\l]:JI =0, fori > 0.

order that represents a linear extension of the “partial or-
der” induced by the filter7; that is, a total order that
is compatible with the partial order. So any topological
sort of that order suffices. In (Chomicki et al. 2002;
2003), we show it is straightforward to find a suitable topo-
logical sort.

Of course 7 may be a DAG filter. However, it can be ex-
tended in a similar way. Consider the filter that results from
F when allequal comparators are removed. It induces a
preference relation that is a partial order. Any topolobica
sort of that order is also a topological sort of the DAG in-
duced byF.

Once the input tabl& has been sorted into arrdy then
skyline tuples are accumulated into ar@&yNote that a tuple
tin arrayT cannot be trumped with respectioby any tuple
after it in the array, since the array is topologically sdrte
with respect to s £’

Theorem 15 Algorithm SFS in Fig. 6 computes the stable
skyline setV = (T).

None of proposed algorithms for skyline will work to
compute the (crown) skyline se¥ (T), once the prefer-
ence graph,> ' over T, is no longer transitive. It seems
none could be easily fixed. The algorithms rely inherently
on transitivity of the preference graph. None were designed
of course, to compute the stable skyline 38t (T). Since
they rely on transitivity, it is doubtful they could be adegt

Once we admit non-transitivity, computing the crown se-
mantics becomes inherently expensive. This is because tu-
ples may be trumped by non-skyline tuples while by no
crown-skyline tuples. Therefore, comparisons that can be
avoided when transitivity is guaranteed now cannot be. With
stable skyline, however, every non-skyline tuple is truthpe
by some stable-skyline tuple. Thus, many comparisons can
be avoided, as is possible with crown skyline over partial or
ders. Stable skyline is much more efficient to compute than
crown skyline for DAG preference relations.

In (Godfrey, Shipley, and Gryz 2007), we establish the
average-case run-time complexities of the gefesiyline
algorithms. We present a new skyline algorithieSS, that
extendsSFS, and establish that it i9 (V) average-case run-
ning time.LESS improves orSFS’s performance by elim-
inating tuples more quickly, but assumes transitivity to do
this. It is interesting future work to see ifESS or other
algorithms can be adapted for stable skyline.

5. Conclusions

Skyline queries offer an elegant way to combine preference
criteria, but they are limited in the preferences that can be
expressed and how they can be combined. We believe that
a generalization of skyline that could handle conditionals
(case) and related preference constructs would go a long
ways towards making skyline a viable basis for a relational
preference query language.

To handlecase requires that skyline be defined over pref-
erence graphs that are directed acyclic graphs, withow tra
sitivity. We introducedstable skylinghat extends skyline

9Algorithms that do not require pre-processing nor pretads
data-structures such as indexes.



with a new directiveequal. This provides a natural way to
implementcase for skyline—and, potentially, many other
preference constructs—but with the loss of transitivitye W
developed thestable skyline semantiaghich recovers the
properties osoundnesandcompletenessf the skyline set

in an elegant and natural way over directed, acyclic prefer-
ence graphs. We showed how stable skyline could be com-
puted efficiently.

We would like to be able to cover very rich preferences
and preference constructs in skyliB&®QL queries. Thus,
there is much work still to be done to extend semantics for
skyline further to be able to define these meaningfully.

select Address, Agent, Lockbox#, Cond,
Price, #bdrm, Backyard, Style
from HouseListing
skyline of #bdrm max, Backyard max,
Cond max by 1,
case style
when 'modern’ then Yr_built max
when "Victorian’ then Yr_built min
end,
case delta of Cond
when 0 then Price min by 5000
when 1 then Price min by 10000
else Price min by 30000
end,
if Cond < 2 then HasGarage max,
if neighbourhood = 'Downtown’
then dist_to_subway min by 1 // km

WN -

Figure 7: Future “skyline” query.

Consider the hypothetical “skyline” query in Fig. 7, with
a “natural” interpretation of what the preference congsuc
may intend. Type 1 is provided by original skyline. Type 3
is the case-conditional we define. The preference types 2, 4,
and 5 were not accommodated here.

Type 4 demonstrates a different type of conditional we
may wish to support: additional preferences are evaluated
depending on the difference (the delta) between the func-
tional values (in the condition) of the two tuples. In this

case, the greater the difference between the houses’s con-
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