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In this paper, we define a labelling based justification statu semicstable extension ideal extension
of the arguments in an argumentation framework. Our pro- sa sa
posal allows for a more fine-grained notion of a justification
status than the traditional extensions-based approadhes. preferred extension /grounded extensior
particular, we are able to distinguish different levels atch isa is

an argument can be accepted or rejected. Our approach is
fully compatible with traditional abstract argumentation

the sense that it works on standard argumentation framework
and can be implemented using existing argumentation-based
proof procedures.

complete extension

Figure 1: An overview of the different semantics

1. Introduction Essentially, a complete labelling can be seen as a sub-

The main concept in Dung’s theory (Dung 1995) is that of Jective but rea_lsonable position that an agent can take with
an argumentation framework, which is essentially a dikcte ~ "eSpect to which arguments are accepted, rejected or unde-
graph in which the nodes represent arguments and the arrowscided. In each such position the agent can use its own posi-
represent an attack relation. tion to defend itself if questioned. It is possible to dissgr
Given such a graph, different sets of nodes can be ac- With a position, but at least the position is internally cohe
cepted according to various argument based semantics suchent. The set of all complete labellings thus stands for all
as grounded, preferred and stable semantics (Dung 1995),Possible and reasonable positions an agent can take.
semi-stable semantics (Caminada 2006c¢) or ideal semantics  In (Caminada 2006a), it is stated that complete extensions
(Dung, Mancarella, and Toni 2007). Many of these seman- and complete labellings are one-to-one related. In essence
tics can be seen as restricted cases of complete semantics; acomplete extensions and complete labellings are different
overview is provided in Figure 1. The facts that every sta- Ways to describe the same concept.
ble extension is also a semi-stable extension and that every In the current paper we will propose justification statuses
semi-stable extension is also a preferred extension has bee of arguments based on the notion of a complete labelling.
proved in (Caminada 2006c¢). The facts that every preferred One of the main advantages of our proposal is that it al-
extension is also a complete extension and that the groundedlows for a more fine-grained notion of a justification sta-
extension is also a complete extension have been stated intus than is provided by the traditional extensions-based ap
(Dung 1995). The ideal extension is also a complete exten- proaches. In particular, it allows for six distinct justiton
sion (Dung, Mancarella, and Toni 2007). So complete ex- statuses (strong accept, weak accept, strong reject, weak r
tensions can be seen as the base for describing various otheject, undetermined border line and determined border line)
semantics in abstract argumentation. which correspond with different levels of acceptance ard re
A different way of defining argumentation semantics than jection. Furthermore, our proposal is fully compatibletwit
the traditional extensions approach is the labellings ap- (Dung 1995) in the sense that it works on standard argu-
proach. Where the extensions approach only identifies the mentation frameworks and can be implemented using exist-
set of arguments that are accepted, the labellings approaching argumentation-based proof procedures (Vreeswijk and
also identifies the set of arguments that are rejected and Prakken 2000; Modgil and Caminada 2009).
the set of arguments that are left undecided. The concept The remaining part of this paper is organized as follows.
of argument labellings goes back to work of Pollock (Pol- We first state some preliminaries on argument semantics and
lock 1995) and of Jakobovits and Vermeir (Jakobovits and argument labellings. Then we define the justification sta-
Vermeir 1999). However, for current purposes we will use tus of an argument, describe the methods for determining
the concept of complete labelling as defined by (Caminada it and treat the related issues of computational complexity
2006a; Caminada and Gabbay 2009). We then round up with a discussion of how our notion of a



justification state relates to existing well-known appioex

2. Argument Semantics and Argument
Labellings

In this section, we briefly restate some preliminaries regar
ing argument semantics and argument-labellings. For sim-
plicity, we only consider finite argumentation frameworks.

Definition 1. An argumentation frameworks a pair
(Ar, att) where Ar is a finite set of arguments and¢ C
Ar x Ar.

We say that argument attacksargumentB iff (A4, B) €
att. An argumentation framework can be represented as a
directed graph in which the arguments are represented a
nodes and the attack relation is represented as arrows.

Definition 2 (defense / conflict-free)Let (Ar, att) be an
argumentation frameworkd € Ar and Args C Ar. Args

is conflict-freeiff -394, B € Args : A attacksB. Args

defendsargumentd iff VB € Ar : (B attacksA D 3C €

Args : C attacksB). Let F(Args) = {A | Ais defended
by Args}.

We say that a set of argumemndsys attacks an argument
B iff there exists and € Args that attacksB. We write
Args™ for the set of arguments that are attackedbys.

Definition 3 (acceptability semantics) et (Ar, att) be an
argumentation framework. A conflict-free sétgs C Ar is
called anadmissible seiff Args C F(Args), and acom-
pleteextension iffArgs = F(Args).

The concept of complete semantics was originally stated
in terms of sets of arguments. It is equally well possible,
however, to express this concept in termsacggument la-
bellings In the current paper, we follow the approach of

w

The idea of a&omplete labellingCaminada 2006b; Cam-
inada and Gabbay 2009) is that for a labelling to be reason-
able, one should be able to give reasons for each argument
one accepts (all attackers are rejected), for each argument
one rejects (it has at least one attacker that is accepted) an
for each argument one abstains from expressing an explicit
opinion about (there are insufficient grounds to acceptdt an
insufficient grounds to reject it). This is made formal in the
following definition.

Definition 5 ((Caminada and Gabbay 2009))et Lab be
a labelling of argumentation framewofrdr, att). We say
that Lab is acomplete labellingff for eachA € Ar it holds
that:

gl. If Lab(A) = inthen

VB € Ar: (B att A D Lab(B) = out)

2. If Lab(A) = out then

dB € Ar : (B att AN Lab(B) = in).
. If Lab(A) = undec then

—VB € Ar: (B att A D Lab(B) = out) and

-3B € Ar: (B att AN Lab(B) = in).

As stated in (Caminada 2006b; Caminada and Gabbay
2009), complete labellings coincide with complete exten-
sions in the sense of (Dung 1995).

Theorem 1 ((Caminada and Gabbay 2009))et AF
(Ar, att) be an argumentation framework.

1. If Lab is a complete labelling, thebab2Ext(Lab) is a

complete extension (whekeb2Ext(Lab) = in(Lab))

2. If Args is a complete extension, th@&xt2Lab(Args)

is a complete labelling (where&xt2Lab(Args)
(Args, Args™, Ar\(Args U Args™)))

Moreover, when restricted to complete labellings and com-
plete extensions, the functionsb2Ext and Ext2Lab be-

(Caminada 2006b; Caminada and Gabbay 2009) where a la- COMe bijections and each others inverses.

belling assigns to each argument exactly one label, which
can either bein, out or undec. The labelin indicates that
the argument is accepted, the labet indicates that the ar-
gument is rejected, and the laheldec indicates that the

status of the argument is undecided, meaning that one ab-

stains from an explicit judgment whether the argumetihis
orout.!

Definition 4 ((Caminada and Gabbay 2009) labellingis
afunctionLab : Ar — {in, out,undec}.

We writein(Lab) for {A | Lab(A) = in}, out(Lab) for
{A | Lab(A) = out} andundec(Lab) for {A | Lab(A) =
undec}. Since a labelling can be interpreted as a parti-
tion of the set of arguments in the argumentation frame-
work, we will sometimes write a labellingab as a triple
(in(Lab), out(Lab), undec(Lab)).

For instance, an argument that attacks itself (and is not at-
tacked by any other argument) has to be labelledkec in our ap-
proach. If the argument would be labelleéd then all its attackers
(itself) would have to beut, and if the argument would be la-
belledout then it has to have an attacker (itself) thatis Hence,
the argument cannot him and cannot beut. The situation here
can be compared to the liar paradox.

Theorem 1 implies that complete labellings and complete
extensions are one-to-one related. In essence, a complete
extension can be seen as thelabelled part of a complete
labelling (Caminada 2006b; Caminada and Gabbay 2009).

Before we proceed, we state two propositions that are
used in the remaining parts of this paper.

Proposition 1. Let AF = (Ar, att) be an argumentation
framework andd € Ar. Aisin atleast one complete exten-
sion iff it is in at least one admissible set.

The validity of Proposition 1 can be seen as follows. Since
every complete extension is also an admissible set, itfiallo
that if A is in a complete extension, it is also in an admis-
sible set. Furthermore, ifl is in an admissible set, then
from (Dung 1995) it follows thatd is also in a preferred
extension, and every preferred extension is also a complete
extension.

Proposition 2. Let AF' = (Ar, att) be an argumentation
framework and4 € Ar. A is in all complete extensions iff
Ais in the grounded extension.

The validity of Proposition 2 can be seen as follows. Since
the grounded extension is a complete extension, it follows
that if an argument is in every complete extension, it is also



in the grounded extension. Furthermore, since the grounded Proof. “=": Suppose7S(A4) = {in}. ThenA is labelled
extension is the smallest complete extension, it folloved th  in by every complete labelling (Definition 6), sé is an
if an argumentis in the grounded extension, itis also inyver element of each complete extension (Theorem 14 $®in
complete extension. the grounded extension (Proposition 2).

“«<": Similar as above, but the other way around. O

3. Justification Statuses of Arguments

In this section we first define the justification statuses of ar
guments. Then we provide procedures to determine them. )
Intuitively, the justification status of an argument cotssis ~ Theorem 4. Let AF = (Ar, att) be an argumentation
of the set of labels that could reasonably be assigned to the framework andA € Ar. ThenJS(A) = {out} iff Ais

Next, we examine the conditions under which the justifi-
cation status ifout}.

argument. attacked by the grounded extension.

Definition 6. Let AF = (Ar,aft) be an argumenta-  pyoof, “=”: Suppose7S(A) = {out}. ThenA is labelled
tion framework andA < Ar. The justification sta- ¢ py every complete labelling (Definition 6). So in every
tus of A is thte outcome yielded by the functions : complete labelling, there exists at least one atttacked of
Ar — 2limoutundec} such that7S(4) = {Lab(4) | that is labelledin by this labelling (Definition 5). So every
Labis a complete labelling oA F'}. complete extension contains at least one attacker @he-

Given the above definition, one would expect there to be orem 1). So also the grounded extension also contains an
eight @3) possible justification statuses, one for each subset attacker ofA. So A is attacked by the grounded extension.
of {in, out, undec}. However two of these subsets turn out “<=": Similar as above, but the other way around. [
not to be possible. First of all, it is not possible for a jus- . . . o
tification status to b@, because there always exists at least ~ Next, we examine the conditions under which the justifi-
one complete labelling (the grounded labelling (Caminada cation status iundec}.

and Gabbay 2009)). Furthermore, it is also impossible for Theorem 5. Let AF = (Ar, att) be an argumentation

a justification status to béin, out}, because whein and framework and4 € Ar. Then7S(A) = {undec} iff
out are both included in the justification status, theidec

should also be included, as is stated by the following theo- 1. 4 is notin any admissible set and
rem. 2. Ais not attacked by any admissible set

Theorem 2. Let AF = (Ar, att) be an argumentation
framework andA € Ar. If AF has two complete la-
bellings Lab; and Laby such thatLab;(A) = in and

Proof. “=": Suppose7S(A) = {undec}. Then it holds
that (1) A is not labelledin by any complete labelling and
~ . . (2) A is not labelledout by any complete labelling. From
sﬁggﬁ(tﬁ;tz %ua;]e_n thire exists a complete labellifgbs (1) it follows thatA is not an element of any complete exten-
avs\A) = undec. sion (Theorem 1) sal is not an element of any admissible
Proof. Let CE, = Lab2Ext(Lab) and CEy = set (Proposition 1). From (2) it follows that no attacker4of
Lab2Ext(Labz). From Theorem 3 of (Caminada and Gab- is labelledin Ipy.any complete labelling (Def|n|t|0n 5) so no
bay 2009) it follows thatCE; and CE, are complete ex- attacker ofA is in any complete extension (Theorem 1) so

tensions ofAF. Let GE be the grounded extension i no attacker ofd is in any admissible set (Proposition 1) so

From (Dung 1995) it follows thaB E is the intersection of < IS not attacked by any admissible set. Notice that in this
all complete extensions o F. From Labs(A) = out proof, we did not use the fact that is labelledundec by

it follows that A ¢ CE, which implies thatd ¢ GE. at least one complete_labelling, which after all is impligd b
From Lab, (A) = in, it follows thatVB € Ar.(BattA D (1) and (2) together with Theorem 2.~

Labi(B) = out). ThereforeVB € Ar.(BattA > B ¢ <" Suppose that (11 is not in any admissible set_and (2)
GE). SoA & GE*. Le’t Lab; = Ext2Lab(GE). A'is not attacked by any admissible set. From (1) it follows

GE is a complete extension, sBabs is a complete la- that A is not in any complete extension (Proposition 1) so

: : + A'is not labelledin by any complete labelling (Theorem 1).
Ze!rﬁl\(g%cﬁélﬁ )?50%223?A)§é:€1§décl.t holds trgt From (2) it follows that no attacker of is in any admissible

set, so no attacker of is in any complete extension (Propo-
Sincefl and{in, out} are not possible as justification sta- ~ Sition 1) so no attacker ol is labelledin by any complete
tuses, there are only 6 possible statuses left to be consid-abelling (Theorem 1) sal is not labellecout by any com-

ered: {in}, {out}, {undec}, {in, undec}, {out,undec} plete labelling (Definition 5). This,.together with the eerl
and{in, out, undec}. We now examine under which con- ~ 0bserved fact thatl is not labelledin by any complete la-
ditions these justification statuses occur. belling implies thatA is labelledundec by every complete
First, we examine the conditions under which the justifi- labelling. Due to the faqt that there always exists at least
cation status i§in}. one complete labelling (since there always exists at lesest o

. complete extension), this implies thdtS = {undec}. O
Theorem 3. Let AF' = (Ar, att) be an argumentation

framework andA € Ar. ThenJS(A4) = {in} iff Ais Next, we examine the conditions under which the justifi-
in the grounded extension. cation status i§in, undec}.



Theorem 6. Let AF = (Ar,att) be an argumentation
framework andd € Ar. Then7S(A) = {in, undec} iff

1. Ais notin the grounded extension,
2. Aisin an admissible set, and
3. Ais not attacked by any admissible set.

Proof. “=": Suppose7S(A) = {in,undec}. ThenA is
labelledin by at least one complete labelling,is labelled
undec by at least one complete labelling and there exists no
complete labelling that label4 out.

From the fact tha#d is labelledundec in at least one com-
plete labelling it follows that there exists at least one eom
plete extension that does not contain(Theorem 1). SAHA

is not in the grounded extension (Proposition 2).

From the fact thatd is labelledin by at least one complete
labelling it follows thatA is contained in at least one com-
plete extension (Theorem 1) and that therefdrés in at
least one admissible set (Proposition 1).

From the fact that there exists no complete labelling that la
bels A out it follows (Definition 5) that for all argument8
that attackA, B is not labelledin by any complete labelling.
Therefore, no argumeii that attacks4 is contained in any
complete extension (Theorem 1). Therefore, no arguent
that attacksd is in any admissible set (Proposition 1). That
is, A is not attacked by any admissible set.

‘<" Suppose that (14 is not in the grounded extension,
(2) Ais in an admissible set and (3)is not attacked by any
admissible set.

From (2) it follows thatA is in a complete extension (Propo-
sition 1) soA is labelledin by a complete labelling (Theo-
rem 1).

From (3) it follows that no admissible set contains an at-
tacker of A so also no complete extension contains any at-
tacker of A (Proposition 1). So no complete labelling labels
any attacker ofd in (Theorem 1), s is not labelledbut

by any complete labelling (Definition 5).

From (1) it follows that there exists a complete labelling
where A is not labelledin (Proposition 2 and Theorem 1).
This, together with the earlier observed fact thais not
labelledout by any complete labelling, implies that is
labelledundec by at least one complete labelling. O

Next, we examine the conditions under which the justifi-
cation status i§out, undec}.

Theorem 7. Let AF (Ar, att) be an argumentation
framework andA € Ar. ThenJS(A) = {out,undec}
iff

1. Ais notin any admissible set,

2. Ais attacked by an admissible set, and

3. Ais not attacked by the grounded extension.

Proof. “=": Suppose7S(A) = {out,undec}. Then (1)
there exists no complete labelling that labdlsn, (2) there
exists a complete labelling that labedsout and (3) there
exists a complete labelling that labelsundec.

From (1) it follows thatA is not an element of any complete
extension (Theorem 1) sé is not an element of any admis-
sible set (Proposition 1).

From (2) it follows thatA is attacked by at least one com-
plete extension (Theorem 1) gbis attacked by at least one
admissible set (Proposition 1).

From (3) it follows that there exists a complete labelling
where A is not labelledout, so where none of the attack-
ers of A are labelledin (Definition 5). It then follows that
there exists a complete extension that contains none of the
attackers ofA (Theorem 1). So none of the attackersAf
are contained in the grounded extension (Proposition 2) so
A is not attacked by the grounded extension.

“«<" Suppose that (1) there exists no admissible set that
containsA, (2) there is an admissible set that attagksand

(3) A is not attacked by the grounded extension.

From (1) it follows that4 is not an element of any complete
extension (Proposition 1), sd is not labelledin by any
complete labelling (Theorem 1).

From (2) it follows thatA is attacked by a complete exten-
sion (Proposition 1) sd is labelledout by at least one com-
plete labelling (Theorem 1).

From (3) it follows that no attacker of is in the grounded
extension. This implies that there exists a complete exten-
sion that does not contain any attackerdofProposition 2).

So there exists a complete labelling where no attacker of
A is labelledin (Theorem 1), so wherd is not labelled
out (Definition 5). This, together with the earlier observed
fact thatA is not labelledin by any complete labelling, im-
plies thatA is labelledundec by at least one complete la-
belling. O

Next, we examine the conditions under which the justifi-
cation status i§in, out, undec}.

Theorem 8. Let AF = (Ar, att) be an argumentation
framework andA € Ar. Then7S(A) = {in, out, undec}
iff

1. Aisinan admissible set

2. Ais attacked by an admissible set

Proof. “=": Suppose7S(A) = {in, out,undec}. Then

(1) A is labelledin by at least one complete labelling and
(2) A is labelledout by at least one complete labelling.

From (1) it follows thatA is an element of at least one com-
plete extension (Theorem 1) sbis an element of at least
one admissible set (Proposition 1).

From (2) it follows that there is a complete labelling that
labels an attacker ofl in (Definition 5). Therefore there
exists a complete extension that contains an attacket of
(Theorem 1), so there exists an admissible set that contains
an attacker ofA (Proposition 1). That is4 is attacked by an
admissible set.

“«<" Suppose (1) there exists an admissible set that con-
tains A and (2) there exists an admissible set that contains
an attacker ofd.

From (1) it follows that there exists a complete extension
that contains4d (Proposition 1). so there exists a complete
labelling that labelsd in (Theorem 1).

From (2) it follows that there exists a complete extension
that contains an attacker df (Proposition 1), so there exists



a complete labelling that labels an attackerdoin (Theo-
rem 1), so there exists a complete labelling wheres la-
belledout.

From the fact that there exists a complete labelling that la-
belsA in and there exists a complete labelling that labels
out it follows that there also exists a complete labelling that
labelsA undec (Theorem 2). O

From the above theorems, it follows that membership of
an admissible set and membership of the grounded exten-
sion, of the argument itself and of its attackers, is sufficie
to determine the argument’s justification status. The divera
procedure of doing so is shown in Figure 2.

in grounded?
L “ves— {in}
y

in admissible?

No

attacked by grounded?

No v\es‘{out}

No Yes

attacked by admissible? attacked by admissi

Yes No Yes

No

{undec} {out, undec} {in, undec}{in, out, undec

Figure 2: determining the justification status of an argumen

4. An Implementation

We now demonstrate the applicability of the theory devel-
oped in the previous sections by describing our software im-
plementation of i

Given an argumentation framework as input, the program
implements two main commandsiestion anddiscuss.
The command{duestion argument” gives the justification
status of an argument and the commaiddscuss argu-
ment” allows the user to critically discuss this justificeti
status.

In order to determine the justification status of an ar-
gument (thegquestion command) our implementation fol-
lows the procedure of Figure 2. To determine whether an

/o

[ ] .4».(:

AY—"1B K
°

E

P

Figure 3: Argumentation Framework

precise discussion game depends on the justification status
of the argument, as well as on which part of this justification
status the user disagrees with. Since the justificationstat
as calculated by the software can be assumed to be correct,
the discussion will be such that the computer will always win
from the user. After all, the aim of th&iscuss command

is to convince the user of the correctness of the justificatio
status as computed by the software.

Example 1. Let AF be the argumentation framework in
Figure 3.

If the user inputs: Guestion A” then the program will
give the result {in, out, undec}”

If the user does not agree with the result, the program will
ask which one of the followings the user does not agree with.

1. A can be accepted.
2. Acan be rejected.

If the user disagrees with (1) then the admissible discus-
sion game (Vreeswijk and Prakken 2000; Modgil and Cam-
inada 2009) in favor of argumemt will be started. If the
user disagrees with (2) then an admissible discussion game
(Vreeswijk and Prakken 2000; Modgil and Caminada 2009)
in favor of an attacker ofd that is in an admissible set will
be started.

5. Computational Complexity

We now examine the computational complexity of the var-
ious problems related to assigning labelling-based joatifi
tion statuses. To determine whether the justification statu
of an argument ifin} one has to determine whether it is
an element of the grounded extension (Theorem 3) which
is known to be P (Dung 1995). To determine whether the
justification status of an argument{sut} one has to de-
termine whether it is attacked by the grounded extension

argument is in the grounded extension, the algorithm de- (Theorem 4) which means determining membership of the
scribed in (Modgil and Caminada 2009) is used. This al- grounded extension for each of its attackers. Since there ar
gorithm is subsequently run for the argument’s attackers in at mostn attackers (where is the number of arguments in
oder to determine whether the argument is attacked by the the argumentation framework) the complexityrisimes P,
grounded extension. To determine whether an argument is Which is P itself. To determine whether an argument has the
in an admissible set, the algorithm described in (Vreeswijk justification statuundec} one has to determine whether
and Prakken 2000; Caminada and Wu 2009) is used. This it is in an admissible set and whether it is attacked by an
algorithm is subsequently run for the argument’s attackers admissible set (Theorem 5). Determining whether it is in

in order to determine whether the argument is attacked by an admissible set is known to be NP-complete (Dimopou-
an admissible set. los and Torres 1996). Determining whether it is attacked by

The software is able to defend its answer (#iecuss an admissible set is thereforetimes NP-complete, which
command) by entering a discussion game with the user. The is NP-complete itself. Using similar reasoning, one can ob-
tain that determining whether an argument has a justifica-

2pavailable at http://icr.uni.lubyining tion status{in,undec} is NP-complete{out,undec} is



NP-complete andin, out, undec} is NP-complete. Since
determining each individual justification status has a com-
putational complexity of NP-complete or below, the overall
worst-case complexity of determining a justification ssatu
is NP-complete. This puts the approach of labelling-based
justification statuses in the same class as the more traditio
approach of credulous preferred.

6. Discussion and Related Work
In this paper, we have presented the justification statuses o

arguments which indicate whether an argument has to be ac-
cepted, can be accepted, has to be rejected, can be rejected,

etc. We then provided some concrete guidelines for deter-
mining these justification statuses, as well as for defend-

ing them using discussion games, and examined the issue

of computational complexity.

We use this labelling based approach for computing the
justification statuses of arguments because it tends td yiel
more informative answers than the traditional extensipas a
proaches.

— T

o .
{in, out, undec} A .B {in, out, undec}

@ C {out, undec}

o ~—

D {in, undec}

Figure 4: An example

Take the example in figure 4. Grounded semantics treats
all arguments 4, B, C' and D) the same (they are not la-
belled in in the grounded labelling). Credulous preferred
semantics treatd, B andD the same (they are labelled
in at least one preferred labelling). Sceptical prefered s
mantics treatsd, B andC the same (they are not labelled
inin some preferred labellings). Also ideal semantics treats
all arguments the same (they are not in the ideal extension).

However, our labelling based approach for computing the
justification status of an argument allows for a more fine
grained distinction between arguments. According to the hi
erarchy of the justification statuses in figure 5, argunient
is the strongest, argumeetis the weakestd and B are in
between. Unlike sceptical preferred semantics, our ladgell
approach does not make completely justified although it
does give it a relatively strong status.

We will refer to the justification statusin} asstrong ac-
cept to{in, undec} asweak accepto {in, out, undec} as
undetermined borderlin¢o {undec} asdetermined border-
line, to {out, undec} asweak rejecand to{out} asstrong
reject

We now study some of the connections between our no-
tion of justification status and a number of existing ap-
proaches. In particular, we examine the connection with

1.
2.

3.

{in}

{in, undec}

7N

{in, out, undec} {undec}

e

{out, undec}

acceptance

rejection

{out}

Figure 5: The hierarchy of justification statuses

grounded semantics (Dung 1995), credulous preferred se-
mantics (Vreeswijk and Prakken 2000), sceptical preferred
semantics (Cayrol, Doutre, and Mengin 2003), semi-stable
semantics (Caminada 2006c) and ideal semantics (Dung,
Mancarella, and Toni 2007).

Proposition 3. Let (Ar, att) be an argumentation frame-
work andA € Ar.

Ais in the grounded extension iff it is strongly accepted

Ais in at least one preferred extension Afis strongly
accepted, weakly accepted, or undetermined borderline.

if A is in every preferred extension thehis strongly or
weakly accepted

. if A is strongly accepted theA is in every semi-stable
extension
if A is weakly accepted theA is in at least one semi-
stable extension

. Aisin an ideal set iffA is member of an admissible set
consisting only of strongly or weakly accepted arguments.

The validity of point 1 follows directly from Theorem 3.
The validity of point 2 follows from the fact that an argu-
ment is in a preferred extension iff it is in a complete ex-
tension, and therefore labelled by a complete labelling.
The validity of point 3 follows from the fact that sceptical
preferred rules out all justification statuses containing
(strong reject, weak reject and undetermined borderline) a
well as the justification statusindec} (determined border-
line), which means onlyin} (strong accept) anflin, out}
(weak accept) remain. The validity of point 4 follows from
Theorem 5 of (Caminada 2006c). The validity of point 5 re-
quires some more explanation, which will be provided in the
appendix.

The labelling based approach for determining justification
statuses is somewhat similar to the approach described in
(Baroni and Giacomin 2007). However, in (Baroni and Gia-
comin 2007) the authors do not specify a concrete semantics
with which to apply their approach to, and as a result of this,
they do not provide any procedures regarding how to deter-
mine the justification status of an argument.

In our current implementation, we have used the dis-
cussion game of (Vreeswijk and Prakken 2000; Caminada
and Wu 2009) to determine membership of an admissible
set, and the discussion game of (Prakken and Sartor 1997;



Modgil and Caminada 2009) to determine membership of
the grounded extension. An alternative would be to use the
algorithm of (Vreeswijk 2006), which determines both of
these memberships in a single pass. Since our notion of jus-
tification status depends only on membership of an admis-
sible set and membership of the grounded extension, one is
free to apply any kind of algorithm that can determine these.

Appendix
An ideal set in the sense of (Dung, Mancarella, and Toni

2007) is an admissible set that is a subset of each preferred
It has been obtained that one can also describe
an ideal set as an admissible set that is not attacked by any

extension.

admissible set (Theorem 3.2 of (Dung, Mancarella, and Toni
2007)). This clears the way for proving the following lemma
(which is in essence point 5 of Proposition 3).

Lemma 1. Let (Ar, att) be an argumentation framework
and Args C Ar. Args is an admissible set that is not at-
tacked by any admissible set.ifrgs is an admissible subet
of {A| JS(A) = {in}} U{A | JS(A) = {in,undec}}

Proof. “=": Let Args be an admissible set that is not at-
tacked by any admissible set. Léte Args. From the fact
that A is in an admissible set (and therefore also on a com-
plete extension) it follows that is labelledin in at least one
complete labelling. From the fact thalrgs is not attacked

by any admissible set, it follows that is not attacked by
any preferred extension and therefore not attacked by any
complete extension. Hencd, is not labelledout by any
complete labelling. This, together with the earlier observ
fact thatA is labelledin by at least one complete labelling
implies thatd € {A | JS(A) = {in}} U{4 | TS(A) =
{in,undec}}.

“<": Let Args be an admissible subset pfA | JS(A) =
{in}} U{A | JS(A) = {in,undec}}. Suppose thatlrgs

is attacked by an admissible set. That s, there is an argumen
A € Args that is attacked by an admissible set. Theis

also attacked by a complete extension (since every admissi-
ble set is contained in a preferred extension, which is also a
complete extension). This means thhis labelledout in

at least one complete labelling. Sb¢ {A | JS(A) =
{in}} U{A | JS(A) = {in,undec}}. Contradiction. O

So our labelling based approach for defining justification
statuses not only allows us to identify whether an argument
is accepted according to grounded or credulous preferred se
mantics, it also helps to identify whether an argumentis ac-
cepted according to ideal semantics. It is in an ideal set iff
one can build an admissible set around it that consists only
of strongly or weakly accepted arguments.
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