
Operator decision in naval action’s simulations
Isabelle Toulgoat

DCNS Inǵenierie, Le Mourillon, BP 1306, 83 076 Toulon Cedex, France,isabelle.toulgoat@dcnsgroup.com
Pierre Siegel

Universit́e de Provence,France,siegel@cmi.univ-mrs.fr
Yves Lacroix

Syst̀emes Navals Complexes, Avenue Georges Pompidou, 83160, La Valette du Var, France,yves.lacroix@univ-tln.fr
Julien Botto

DCNS Inǵenierie,Le Mourillon, BP 1306, 83 076 Toulon Cedex, France,julien.botto@dcnsgroup.com

Abstract

Naval action’s simulations estimate the operational per-
formance of warships or submarines for a given sce-
nario. In common models, the operator’s reactions are
predefined. This is not realistic: the operator’s decision
can produce unexpected reactions.
This article presents a method to model operator deci-
sion in simulations. This method allows to reason about
incomplete, revisable and uncertain information: an op-
erator has only partial information about his environ-
ment and must revise his decisions. Our method uses a
non-monotonic logic: the rules of behavior are formal-
ized with the default logic, to which we added a consid-
eration of time. Our method uses preferences to manage
choice between different rules, with simple probability
techniques.
This method has been implemented in Prolog, inter-
faced to DCNS simulator framework and applied to a
scenario involving two adverse submarines.

1. Introduction
Naval action’s simulations estimate the operational perfor-
mance of warships or submarines for a given scenario. At
DCNS, the simulator framework ATANOR models complex
scenarios involving several platforms with combat system
and equipment (Toulgoat et al. 2009).
In this simulator framework, the behavior is modelled with
Petri nets (Petri 1962), composed of places, which model
the equipment states and transitions between these places.
These transitions are activated by internal and external
events. Only one place is activated at the same time, which
forbids the simultaneous actions.
The modelling of behavior rules with Petri nets provides
automatic reactions of the combat system to a tactical situa-
tion. This is not realistic: in a tactical situation the decision
of an operator is a key aspect, which can provide unexpected
reactions. Moreover, a disadvantage of the modelling with
Petri nets is to have to revise its implementation for any new
behavior (Ferber 1995).

The purpose of this work is to develop a system allow-
ing to model the behavior of an operator in the performance
simulations. We worked on a study case involving two ad-
verse submarines. This system has to answer several re-
quirements:

• to be able to model the behavior rules of the operator.

• to be able to reason with incomplete, revisable and uncer-
tain information. Indeed, an operator only has a partial
sight of his environment. This environnement is always
changing: the submarine can lose the detection, it hasn’t
the exact position of its adversary, it is just an estima-
tion Therefore he must reason with uncertain and in-
complete information. His decisions must be revised with
the arrival of new information (Sombé 1989) (Cordier and
Siegel 1992).

• to choose between different proposals when the system
proposes several actions for a same situation.

• to allow the addition of new behavior rules, without hav-
ing to modify the knowledge representation and without
calling into question the previous rules (unlike the Petri
nets, in which the modifications are complicated).

• to be able to reason with general rules, without having to
compile in a very precise way all the information. It is not
necessary for the user to describe all the possibilities.

This work is financed by the company DCNS for military
applications: we need a simple and robust program. There-
fore, we used the most known nonmonotonic logic: the de-
fault logic. We added a consideration of time: we have sub-
marine’s data at the timet, and the extensions calculus gives
all the possible extensions at the next timet+1. Each exten-
sion is a proposal for the action of the submarine. We cal-
culate a weight function for each extension, thanks to pref-
erences on defaults. Then, we use simple probability tech-
niques to choose between these extensions. This work has
been implemented using Prolog, and interfaced with DCNS
simulator.

In the following article we will first present the study case
and some behavior rules. Then, we will present the limits
of the classical logic and why we need the non-monotonic
logic. We will explain the formalization of the behavior
rules with the default logic. We use only normal defaults and
Horn clauses in order to symplify the program, though we
could extend this work to other case studies, with more com-
plicated rules. Next we explain the choice between the ex-
tensions thanks to preferences with simple probability tech-
niques. Finally, some results are presented.

2. Case study: submarine detection and
tracking

In a scenario including two submarines, we model the de-
cision of an on watch officer in the submarine according to
the events perceived on the tactical situation. In this pur-
pose, we questioned submariners about this study case, and
we inferred behavior rules.

Here are some examples of these rules:

• Rule 1: As long as the submarine has no detection, it con-
tinues a random research trajectory in its patrol area. Dur-
ing that process, the submarine makes successive straight
sections: it goes straight ahead and sometimes it changes
his course. The submarine is deaf in its rear (behind the
submarine, the sonar’s reception is decreased for several
reasons), this manoeuvre allows the submarine to check
that it isn’t tracked. With this manoeuvre, the subma-
rine covers the entire patrol zone, in order to increase its
chances to detect a intruder.
Remark: it is a rule of minimal change (Ginsberg and
Smith 1987) (Winslett 1988) (Cordier and Siegel 1992).
This rule is applied as long as the submarine has no new
information.

• Rule 2: If the submarine detects another submarine, the
officer engages the following actions:

– Collision avoidance manoeuvre.
– Elaboration of the solution manoeuvre: he manoeuvres

in order to confirm his information about the distance,
the course and the speed of the enemy.

– Bypassing of the enemy manoeuvre: when the officer
is sure not to be detected, he gets closer to the enemy’s
rear, position in which he won’t be detected.

– Tracking manoeuvre: when the submarine is in the en-
emy’s rear, it begins the tracking: it makes straight sec-
tions in the enemy’s rear, avoiding to be detected and
keeping good information about the enemy’s kinemat-
ics.

• Rule 3: If the submarine is detected when it makes one
of the following manoeuvres: elaboration of the solution,
bypassing of the enemy or tracking, it must escape: the
officer manoeuvres in order to go away from the enemy,
aiming the loss of contact.

• Rule 4: If the submarine is a diesel submarine and more
than a few hours passed since the last battery charge, it
must rise to the surface and use the snorkel to take air
from the surface and evacuate exhaust gas.

• Rule 5: If the submarine loses the contact during the
tracking, the officer rallies the last position of the the ad-
versary and searches for it.
If he finds it, he resumes the tracking actions (Rule 2).
If after one hour he hasn’t found him, he resumes the ran-
dom research trajectory (Rule 1).
During this research hour, the submarine can’t rise and
use the snorkel (Rule 4).

• Rule 6: With the sonar called MOAS (Mine and Obsta-
cle Avoidance System), the submarine can detect mines,

big rocks, cliffs. If the submarine detects a big rock, it
changes its course in order to place the rock to one side.

These rules can be in competition: at a same time, it is
possible that the submarine needs to do two actions. For
example, it needs to rise the surface and use the snorkel and
it needs to continue the tracking. The system must be able
to manage these alternative choices.

3. Classical logic and its limits

The classical logics, as the mathematical or the propositional
logics, are monotonic : if we add information or a formula
E’ to a formula E, everything which was deducted from E
will be deducted from E∪ E ’.This monotonicity will gen-
erate problems to reason with incomplete, uncertain and re-
visable information. Indeed, in this case, it can happen that
previously established conclusions turn invalid due to new
information arrival or information change.

• The classical logic doesn’t allow to reason about incom-
plete information. Let us take the rule: ”Generally, a sub-
marine with no detection makes a random research trajec-
tory”. At first sight, we can express this type of informa-
tion with the first order logic:
Rule 1:∀x,¬detection(x) → random trajectory(x)
This formulation is coherent if the only known informa-
tion is ”The submarine has no detection”.
But if we had the rule: ”If more than four hours passed
since the last battery charge, the submarine must rise to
the surface and use the snorkel to take air.”, we express it
with the first order logic:
Rule 2: ∀x, T lc(x) ≥ 4 → snorkel(x), whereT lc de-
notes the time since the last charge andsnorkel the action
of rising to the surface and using the snorkel.
With these rules, it is difficult to manage general rules
containing an important number of exceptions (Sombé
1989).

• The classical logic doesn’t allow to review the informa-
tion: it doesn’t plan to review the previously established
deductions. Let us take again the rules 1 and 2.
Knowing that the submarine has no detection, we deduct
that it must make a random trajectory. But, if we know
that more than four hours passed since the last battery
charge, we conclude that the submarine must use the
snorkel.
We obtain two conclusions which are not consistent: the
submarine can’t make at the same time these two actions.
It illustrates how classical logics don’t allow reviewing
the reasoning and the conclusions. This kind of reasoning
is common in artificial intelligence, as well as in the daily
life.

In the case of a submarine, blind in submersion, the only
information comes from the passive sonar system, this in-
formation is uncertain and incomplete (Prouty 2007). The
officer must be able to revise the decisions with the arrival
of new information. We need a logic which allows to reason
about incomplete, uncertain and revisable information.

4. Non-monotonic logic and default logic
A non-monotonic logic allows to eliminate the monotony
property of the classical logic: if a reasoning gives some
conclusions using some given knowledge, these conclusions
could be reviewed with the addition of new knowledge.
A non-monotonic logic allows to take the incomplete, revis-
able, uncertain information into account. This logic has a
natural similarity with the human reasoning: due to the lack
of information or lack of time, one can reason with partial
knowledge and revise the conclusions when one has more
information.
The default logic, introduced by Ray Reiter (Reiter 1980),
is the most used logic. It formalizes the default reasoning:
sense conclusions can be made, in the absence of opposite
proof. A default logic is defined by∆ = (D,W), W is a set
of facts (formulae from the propositional logic or the first
order logic), and with D, a set of defaults, (inference rules
with specific content, which handle the uncertainty).

Let us remind the definitions of defaults and extensions:

Definition: Default A default is an expression of the

form:
A(X) : B(X)

C(X)
, where A(X), B(X) and C(X) are for-

mulae and X is a set of variables. A(X) is the prerequisite,
B(X) is the justification and C(X) is the consequent. Intu-

itively, the default
A(X) : B(X)

C(X)
means: if A(X) is true, if

it is possible that B(X) is true (B(X) is consistent), then C(X)
is true.
If B(X) = C(X), the default is normal. The normal default
means: ” Normally, the As are Bs”.

Definition: Extension The use of defaults allows to
deduct more formulae from a knowledge base W. To gen-
erate the deducted formulae, we calculate extensions, which
are defined as follows:
E is an extension of∆ if and only if E = ∪i=0,∞Ei , with

E0 = W and fori ≥ O,

Ei+1 = Th(Ei) ∪ {C/(
A : B

C
) ∈ D,A ∈ Ei,¬B /∈ E}

where Th(Ei) is the set of theorems obtained in a
monotonic way fromEi.

It is important to notice that E appears in the definition of
Ei+1. So, we need to know E to findEi, it is not possible to
obtain the extensions with an incremental algorithm.

If we work with normal defaults, the definition of an ex-
tension is changed: we need to verify that¬B /∈ Ei:

E0 = W and fori ≥ O,

Ei+1 = Th(Ei) ∪ {B/(
A : B

B
) ∈ D,A ∈ Ei,¬B /∈ Ei}

whereTh(Ei) is the set of theorem obtained in a monotonic
way fromEi.

For our study case, we only use normal defaults, but we
could extend our work to general defaults.

5. Rules formalization with the default logic

5.1 Time’s consideration

To formalize the rules of behavior, we used the default logic,
to which we added a consideration of time. Indeed, we have
submarines data at the time t, and we have to deduct the sub-
marines instructions at the next time t+1, taking into account
the state of the submarine and updated information. These
instructions will generate the submarine’s updated data for
time t+1. To introduce the time, we used previous work by
Cordier and Siegel (Cordier and Siegel 1992).
We need the time’s consideration in the definitions of the
facts W and the defaults D of the default logic∆ = (D,W).

5.2 Facts definition with time’s consideration

The set of facts W is defined with formulae from the propo-
sitional logic or the first order logic. We use only Horn
clauses. They allow us to write two types of rules:

• the Horn clauses with a positive literal, written as follows:
(g(t)∨¬f1(t)∨. . .∨¬fk(t)), where thefi(t) andg(t) are
positive literal at time t. This formula can also be written
with an implication:(f1(t) ∧ . . . ∧ fk(t)) → g(t). This
type of rules allows to define rules which are always true,
these are classic rules of expert systems.
Example: we formalise a rule such as ”If the submarine
has a random research trajectory, it turns by an angle be-
tweenα andβ”, as follows:random trajectory(Xt) →
turn(Xt, (α, β))

• the Horn clauses with no positive literal, written as:
(¬f1(t)∨ . . .∨¬fk(t)), ie¬(f1(t)∧ . . .∧fk(t)). We use
these rules to define mutual exclusions in pairs, these are
the predicates which cant be executed at the same time:
(¬f1(t) ∨ ¬f2(t)), equivalent to¬(f1(t) ∧ f2(t)).
Example : we can define a rule such as ”The sub-
marine can’t make at the same time a random re-
search trajectory and rise to use the snorkel” as follows:
¬(random trajectory(Xt) ∧ snorkel(Xt)).

5.3 Default definition with time’s consideration

The defaults D are inference rules with specific content, they
allow to manage uncertainty. They express the fact that, if
there is no contradiction to execute an action, the submarine
can do it. We use here only normal defaults. They allow us
to formalize rules such as ”If the submarine has no detection,
then it makes a random research trajectory” in the following

way:
¬detection(Xt) : random trajectory(Xt+1)

random trajectory(Xt+1)
This

default means: ”If the submarine has no detection at time
t and if it can make a random research trajectory at time t+1,
it makes a random research trajectory at time t+1”.

The defaults allow us to define general rules on the behav-
ior of the submarine (rise to the surface to use snorkel, col-
lision avoidance, tracking . . .). Then, the set of facts allows
to specify, for each behavior, the action to realize (change
course, speed, submersion) and the mutual exclusions be-
tween the behaviors.

5.4 Extension calculus

We use extensions calculus to study all the defaults and to re-
tain the defaults which answer to the problem in a coherent
way. Each extension is a possible solution to the problem:
according to the submarine state at the time t, an extension
gives a possible solution of action for the submarine at the
next time t+1. The normal defaults grant the existence of at
least one extension. Generally, we will have several exten-
sions for the same knowledge base.
We could use the answer set programming (Nicolas, Gar-
cia, and Stephan 2005) to calculate the extensions, which
are equivalent. In order to have a simple system, we rather
implement our own extension calculus. The normal defaults
and the Horn clauses allow to implement easily the exten-
sions calculus with the language Prolog. We called our pro-
gramm NoMROD for Non-Monotonic Reasoning for Oper-
ator Decision.

6. Extensions selection with preferences
The aim of this part is to simulate the officer decision. In
a tactical situation, the decision of an operator is a key as-
pect. At each time, the officer has to choose between the
actions. We define a method to choose between the different
extensions proposed. This method allows to simulate differ-
ent types of behavior, depending on the officer’s character.
We distinguish two stages in this method. The first stage
consists in defining general principles for the extension se-
lection, and a weight function for the extension with a multi-
criteria decision aid method. This weight function is a gen-
eral formula, which can be used for other study cases. This
function handles the officer’s behavior at two levels:

• the importance of each default according to different cri-
teria, with preference’s coefficientsC1, . . . , Cn, which al-
low to define preferences on defaults.These coefficients
describe the importance of each action.

• the officer character with the character coefficients
β1, . . . , βn: which criteria will he favor? Thanks to these
character coefficients, we can model different officers:
careful, bold . . .

Next, the second stage is more specific to the study case. We
define a method to select an extension, thanks to the weight
function.

6.1 Extension selection principles

First, we study some principles and requirements to which
the extension selection must answer:

1. to choose the interesting extension and let the others
aside.
Example: NoMROD proposes two extensions: to make
a random research trajectory or to rise to the surface and
use the snorkel to take air.
The random research trajectory is a rule of minimal
change: it is applied while the submarine has no new in-
formation. The officer will choose to rise to the surface,
which is a more important behavior.

2. to choose the extensions which are obligatory for the crew
survival.
For example, the officer can postpone the rising to use the
snorkel, if he is doing another important action (for ex-
ample the tracking). When this rule is verified, the officer
has approximately thirty minutes of battery. When this re-
serve will be practically empty, the officer will be obliged
to rise.

3. to manage the choice between several extensions.
Example:NoMROD proposes two extensions: avoid the
collision with a submarine and avoid the collision with
a big rock. These two behaviors are very important for
the submarine safety. NoMROD must be able to choose
between extensions which have the same importance.

4. to respect the minimal change: while the submarine has
no new information, it stays in the same state, it doesn’t
change its behavior. We must give more chance to an ac-
tion already engaged.
With this rule, the officer will persist in its choices,
he won’t oscillate between several behaviors. However,
NoMROD must be able to stop an action if another be-
comes obligatory.
Example: NoMROD proposes two extensions: to track
the enemy and to rise to the surface and use the snorkel to
take air. We suppose that the system chooses the tracking.
These two extensions will be proposed again while the
rising won’t be executed. The best choice for the officer
is to carry on the tracking, and when the rising becomes
obligatory (the submarine has just enough battery to rise
to the surface), he must execute this action.
When the submarine begins an action, it seems important
to carry on this action during a certain time. The officer
can’t change his opinion too often.

5. the enemy submarine doesn’t have to guess which action
our officer will select.
These principles are some principles of common sense.

Aside from the last principle, the other can be applied gen-
erally to other study cases.

6.2 Extensions weight function
We define a weight function to give weights to the exten-
sions.These weights quantify the extensions importance. In
order to define this weight function, we use a method of
multi-criteria decision aid (MCDA). MCDA aims at mod-
elling the preferences of a decision maker. It allows the deci-
sion maker to solve complex problems, where several crite-
ria must be handled in the choice (Ben Mena 2000),(Vincke
1989). There are several categories of methods in MCDA.
We use the multi-attribute utility theory. This theory is based
on the following axiom:
Every decision maker tries unconsciously to maximize a
function U = U(g1, . . . , gn), which aggregates all the
points of view to be handled (withgi the criteria).
In order to define a general method to define the extensions
weight functions, we use a simple aggregation function: the
weighted sum.

Each extension uses defaults. First, we attribute pref-
erence’s coefficients on defaults. Next, we calculate the

utility function for each extension, and finally we calculate
the weight functions for each extension using the weighted
sums.

Preference’s coefficients on defaults Each default is a
general behavior. In order to specify the importance of be-
haviors, we attribute preference’s coefficients to the defaults.
In a similar way, the preferences are used within a system
of nonmonotonic reasoning, allowing finding an appropriate
compromise solution. For example, Brewka (Brewka 1994)
defined a prioritized default logic, with a definition of order
in which defaults must be applied.
We define different preference’s coefficientsC1, . . . , Cn to
specify the importance of the defaults according to different
criteria.
For example, we can specify the default importance for the
submarine safety, the efficiency on the submarine mission,
the order obedience, ecologist criterion . . .
For each defaultDj , we attribute values to these coefficients
C1j . . . Ckj , . . . , Cnj . We fixed arbitrarily these coefficients
between 0 and 1000.

Utility function Each extension Ei uses defaults:
Ei = {D1 . . . , Dm}.
For each extensionEi, we calculate the scores
{Score1(Ei), . . . , Scoren(Ei)}, which correspond re-
spectively with the coefficientsC1, . . . , Cn.
A scoreScorek(Ei) is the sum of the coefficientsCk of each

default used in the extensionEi: Scorek(Ei) =
m∑

j=1

Ckj .

We suppose that NoMROD proposesp extensions. For
eachScorek(Ei) for an extensionEi, we calculate an utility
functionµk(Ei). The sum of the utility functionsµk must

be egal to 1:
p∑

j=1

µk(Ej) = 1. The scoreScorek(Ei) is di-

vided by the sum of all theScorek(Ej) of thep extensions
proposed by the system:

µk(Ei) =
Scorek(Ei)

p∑
j=1

Scorek(Ej)

. µk(Ei) is the evaluation of the

extensionEi, according to the criterionCi.

Officer’s character We want to model the officer’s char-
acter. According to his character, the officer will use differ-
ent tactics.
For example, a careful officer will give more importance to
the behaviors which ensure the submarine’s safety. A bold
officer will favor the efficient behavior for the submarine
mission. To model these characters, we define character co-
efficientsβ1, . . . , βn in the weight function, such as the sum

of these coefficients is equal to one
n∑

k=1

βk = 1.

Weight function Finally, we use a simple function to
aggregate criteria: the weighted sum. For each extension
Ei, we have:

P (Ei) =
n∑

k=1

βkµk(Ei), with
n∑

k=1

βk = 1 . The sum of

the extension weight functions has the following property:
p∑

i=1

P (Ei) = 1. We obtain a general formula, which could

be easily reused with other study case.

The use of the weighted sum as aggregation function im-
plies some limitations (Grabisch and Labreuch 2005). More
specially, this function can favor the extreme extensions (for
example, an extension with an utility function very small
for a criterion and with an utility function very important
for an other criterion) to the detriment of an other extension
with more well-balanced utility functions. Other aggrega-
tion functions, such as the Choquet intergal (Grabisch 2006),
allow to solve this problem by handling the interaction be-
tween criteria. We will test this aggregation function.

Example of weight function calculus We define four de-
faults: {D1, D2, D3, D4}, and two coefficents: the subma-
rine safetyCsafety , and the efficiency on the submarine mis-
sionCefficiency .

We attribute values to each defaults:
Defaults Csafety Cefficiency

D1 500 600
D2 10 800
D3 1000 900
D4 50 60

We suppose we have to choose between two extensions:
E1 = {D1, D4} andE2 = {D2, D3, D4}.

We calculate the extensions scores:
Scores E1 E2

Scoresafety 550 1060
Scoreefficiency 660 1760

We calculate the utility functions:
µ E1 E2

µsafety
550
1610

1060
1610

µefficiency
660
2420

1760
2420

Finally, we have the weight functions:
P (E1) = βsafety ∗µsafety(E1)+βefficiency ∗µefficiency(E1)
P (E2) = βsafety ∗µsafety(E2)+βefficiency ∗µefficiency(E2)

If the officer prefers to favor the safety of his submarine
rather than the mission efficiency, we can define:βsafety =
0.6 andβefficiency = 0.4. With this example, we obtain:
P (E1) = 0.31 andP (E2) = 0.69.

6.3 Random extension choice
In a tactical situation, the decision of an operator is a key as-
pect, which can provide unexpected reactions. In our study
case, the choice hasn’t to be always determinist. Moreover,
with deterministic reactions, it is easy for the opposing sub-
marine to guess these reactions (principle 5). We need a
choice method, which handles these unexpected reactions.
For these reasons, we don’t choose always the extension

with the maximum weight function. We prefer to intro-
duce an additional part of uncertainty with a random choice.
However, this random choice must be coherent with the prin-
ciples which guide the officers decision, and with the exten-
sion selection principles defined previously.

Random choice The random choice is based on a ran-
dom sampling: we havep extensions:E1, . . . , Ep, and the
respective weight functions:P (E1), . . . , P (Ep), such as

p∑
i=1

P (Ei) = 1. Each weight functionP (Ei) is the prob-

ability for the extension to be chosen.
Example 1: We have to choose between two extensions:

• E1 with the weight functionP (E1) = 0.1.

• E2 with the weight functionP (E2) = 0.9.

With this random choice, we manage the choice between
several extensions (principle 3).

Correction on the extension weight function With this
random sampling, we have problems to solve. The random
choice is realist if we have to choose between extensions
with close weight.
However, if we have an extension with a very important
weight, we want to choose this one (example 1).
We have the same problem in the following example (exam-
ple 2). The system proposes six extensions: five extensions
with the same weight function 0.1 and one with the weight
function equal to 0.5. The random sampling gives as much
chances to be chosen to the five extensions with the weight
function equal to 0.1:5 ∗ 0.1 = 0.5, as to the extension with
the weight function equal to 0.5. In a such case, it seems
more natural to choose the extension with the weight func-
tion equal to 0.5.
We have to modify the weight function, in order to give a
more important weight to the important extension, and less
important weights to the others. In this purpose, we ap-
ply a correction to the weight function: the power function
f(x) = xk, with k > 1.
The correction is applied as follows:

• We have to choose betweenp extensions:E1, . . . , Ep,
and the respective weight functions:P (E1), . . . , P (Ep),

such as
p∑

i=1

P (Ei) = 1.

• We apply the power functionf(x) = xk, with k > 1:
P (E1)k, . . . , P (Ep)k. The more k will be important,
the more the extensions with small weights will be mini-
mized.

• The sum of the weight functions must be equal to
one: we divide with the sum of the extensions weights

P (Ej)k

p∑
i=1

P (Ei)
k

.

This correction gives more importance to the extensions
with high weight function, and less importance to the oth-
ers. For the moment, we don’t fix the value of the powerk,

we want to test different values.
Let us apply this correction on the example 2. We take the
power functionf(x) = x2. The weight function 0.1 be-
comes0.12 = 0.01 and the weight function 0.5 becomes
0.52 = 0.25.
We want the sum of the weight functions equal to 1. The sum

of the weight functions with correction is
6∑

i=1

P (Ei) = 0.3 .

We obtain:

• Five extensions with the weight function
0.12

0.3
= 0.04.

• One extension with the weight function
0.52

0.3
= 0.8.

With the correction, we give more chances to the extension
with the more important weight to be chosen.

Filtering of the extensions with small weight functions
To be sure to choose the most interesting extension and let
the others aside (principle 1), we eliminate the extension
with very small weight functions. We fix a threshold: the
extensions with a weight function smaller than this thresh-
old are removed.

6.4 Respect for minimal change

To respect the minimal change (principle 4), we define
a general rule of minimal change. In this purpose, we
remember the submarine behavior (random research tra-
jectory, collision avoidance, . . .) at the timet. We call
this behaviorBehavior(t), and the condition to be in this
behavior:Prerequisite, which corresponds to the default
prerequisite for this behavior. The general rule of minimal
change is a default:

Dmin ch =
Behavior(t) ∧ Prerequisite(t) : Behavior(t + 1)

Behavior(t + 1)
This rule means: ” If the prerequisite of the previous behav-
ior are always true at the timet, and if it is possible to stay
in this behavior at timet + 1, the submarine can stay in this
behavior at timet + 1”.
The preference’s coefficientsC1 . . . Cn can’t be too impor-
tant, in order to allow new behaviors. This rule gives more
chances to an action already beginning and allows also
persistency (principle 4).

7. Interface with the simulator framework
and results

An interface has been realized between NoMROD and the
DCNS simulator framework ATANOR. ATANOR sends to
NoMROD the information about the submarine at which we
apply the behavior rules (course, speed, submersion, posi-
tion) and about the enemy submarine (detection, position,
speed).

NoMROD compiles the behavior rules, selects an exten-
sion and sends back the instruction of course, speed and sub-
mersion to the simulator framework. On the figure 1, we
have an example of a run of NoMROD, interfaced with the
simulator ATANOR.

Figure 1: Detection and tracking of a submarine

We call Submarine 1 the submarine to which we apply the
behavior rules of NoMROD. And we note Submarine 2 the
enemy submarine, whose behavior is defined by ATANOR.
The goal for the enemy submarine is to cross the patrol
area without being detected. This transit is modeled with
straight sections, which course is selected to match an aver-
age course.
In this scenario, the submarine 1 makes random research tra-
jectory, because it has no detection. When it detects the en-
emy, the officer makes the sequence of actions: collision
avoidance, elaboration of the solution, bypassing the enemy
and tracking. The trajectory evaluated at the beginning is far
from the real trajectory of the submarine 2. The manoeu-
vre of elaboration of the solution allows to obtain a better
estimation of this trajectory.

8. Conclusion

The default logic allowed to formalize the behaviour rules
of an officer in a submarine, by handling the incomplete, un-
certain and revisable information on the environment. The
formalization in default logic allows to write general rules,
the defaults, without having to care about rules previously
established. We have just to define the mutual exclusions
between the different behaviours.
Then the obtained system compiles the available informa-
tion and gives all the possibilities of actions with the exten-
sions. To simulate the officer’s choice, we defined a method
to choose an extension:

• we defined weight functions for extensions, with prefer-
ence’s coefficients on the defaults and a weighted sum;

• we defined a method to choose an extension thanks
to these weight functions with a probability technique:
a random choice with corrections (power function and
threshold) to be coherent with the principles which guide
the officer’s decisions.

We would like now to test another aggregation function:
the Choquet integral, which allows to handle the interaction
between the criteria. We must also work on a general method
to attribute the value of the preference’s coefficients on the
defaults and the character coefficients: we could use learn-
ing to attribute the best values.

References
Ben Mena, S. 2000. Introduction aux méthodes multi-
critères d’aide la d́ecision. Biotchnol.Agron.Soc.envion.
83–93.
Brewka, G. 1994. Adding priorities and specificity to de-
fault logic. In L.Pereira, and D.Pearce., eds.,Lecture Notes
in Artificial Intelligence, 247–260. European Workshop on
Logics in Artificial Intelligence (JELIA’94).
Cordier, M., and Siegel, P. 1992. A temporal revision
model for reasoning about world change. InSecond In-
ternational Conference on Principles of Knowledge Repre-
sentation and Reasoning, 732–739.
Delgrande, J.; Shaub, T.; ; and Tompits, H. 2004. A clas-
sification and survey of preference handling approaches
in non-monotonic reasoning.Computational Intelligence
20(2):308–334.
Ferber. 1995.Les syst̀emes multi-agents. Vers une intelli-
gence collective.InterEditions.
Ginsberg, M., and Smith, D. 1987. Reasoning about action
1: a possible worlds approach.Readings in Non Monotonic
Reasoning.
Grabisch, M., and Labreuch, C. 2005. Fuzzy measures
and integrals in mcda. In J.Figueira; S.Greco; and Ehrgott,
M., eds.,Multiple Criteria Decision Analysis, 563–608.
Springer Verlag.
Grabisch, M. 2006. L’utilisation de l’intégrale de choquet
en aide multicrit̀ere la d́ecision. Newsletter of the Euro-
pean Working Group: Multicriteria Aid for Decisions.
Nicolas, P.; Garcia, L.; and Stephan, I. 2005. Possibilis-
tic stable models. InInternational Joint Conferences on
Artificial Intelligence.
Petri, C. 1962. Fundamentals of a theory of asynchronous
information flow. In1st IFIP World Computer Congress.
Prouty, J. 2007.Displaying uncertainty: a comparison
between submarine subject matter experts. Ph.D. Disserta-
tion, Naval postgraduate school, Monterey, California.
Reiter, R. 1980. A logic for default reasoning.Artificial
intelligence.
Somb́e, L. 1989. Raisonnement sur des informations in-
compl̀etes en intelligence artificielle. Teknea.
Toulgoat, I.; Botto, J.; De lassus, Y.; and Audoly, C. 2009.
Modeling operator decision in underwater warfare perfor-
mance simulations. InConference UDT, Cannes.
Vincke, P. 1989.L’aide multicritère la d́ecision. Ellipses.
Winslett, M. 1988. Reasoning about actions using a pos-
sible model approach. InProceedings of the 7th National
Conference of AI, 89–93.

