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Abstract
We propose a systematic investigation on how to modify a
preference relation in a defeasible logic theory to change the
conclusions of the theory itself. We argue that the approach
we adopt is applicable to legal reasoning, where users, in gen-
eral, cannot change facts and rules, but can propose their pref-
erences about the relative strength of the rules.
We provide a comprehensive study of the possible combina-
torial cases and we identify and analyse the cases where the
revision process is successful.

1 Introduction
Typically skeptical non-monotonic formalisms are equipped
with techniques to address conflicts, where a conflict is a
combination of reasoning chains leading to a contradiction.
The most common device to handle conflicts is a preference
or superiority relation over the elements used by the formal-
ism to reason. These elements can be formulae, axioms,
rules or arguments, and the preference relation states that
one of such elements is to be preferred to another one when
both can be used. In this research, motivated by reasoning
in the legal domain, we take the stance that, typically, we do
not have control over these elements and on how to modify
them, but there is some control on how they can be used. A
normal single citizen has no power to change the Law, and
has no power on what norms are effective in the jurisdiction
she is situated in. These powers instead are reserved to per-
sons, entities and institutions specifically designated to do
so, for example, the parliament, and, under some given con-
straints, also by judges (in Common Law juridical system,
especially).

However, a citizen can argue that a norm instead of an-
other norm applies in a specific case. This amounts to say
that one norm is to be preferred to the other in the case.

Prima-facie conflicts appear in legal systems for a few
main reasons, among which we can easily identify three
major representatives: (1) norms from different sources, (2)
norms emitted at different times, and (3) exceptions. These
phenomena are well understood and principles to solve such
issues existed for a long time in legal theory, and are still
used, for instance, as an argument to drive constitutional
judgement against a given norm or a given sentence.

Below we list the three major legal principles, expressing
preferences among rules to be applied (Sartor 2005).

Lex Superior When there is a conflict between two norms
from different sources, the norms originating from the
legislative source higher in the legislative source hierar-
chy takes precedence over the other norm.

Lex Posterior According to this principle a norm emitted
after another norm takes precedence over the older norm.

Lex Specialis This principle states that when a norm is lim-
ited to a specific set of admissible circumstances, and
under more general conditions another norm applies, the
most specific norm prevails.

Furthermore a legislator can explicitly establish that one
norm prevails over a conflicting norm.

In the current literature about formalisms apt to model
normative and legal reasoning, a simple and efficient non-
monotonic formalism which has been discussed in the com-
munity is defeasible logic. This system is described in detail
in the next section.

One of the strong aspects of defeasible logic is its char-
acterisation in terms of argumentation semantics (Governa-
tori et al. 2004). In other words, it is possible to relate it
to general reasoning structure in non-monotonic reasoning,
that is based on the notion of admissible reasoning chain.
An admissible reasoning chain is an argument in favour
of a thesis. For these reasons, much research effort has
been spent upon defeasible logic, and once formulated in a
complete way it encompasses other (skeptical) formalisms
proposed for legal reasoning (Governatori et al. 2004;
Antoniou, Maher, & Billington 2000).

Most interestingly, in defeasible logic we can reach posi-
tive conclusions as well as negative conclusions, thus it gives
understanding to both accept a conclusion as well as reject
a conclusion. This is particularly advantageous when trying
to address the issues determined by reasoning conflicts.

We now introduce an example of a revision mechanism.
This mechanism is used by humans to argue about the cor-
rect conclusions to be taken when conflicts exist.

Charlie is an immigrant living in Italy, who is interested
in joining the Army. His application gets rejected. He thus
appeals against the decision in court. The advocate of the
Army argues in court that the application should be rejected
based upon a constitutional norm (Article 51 of the Italian
Constitution). On the other hand, Bob, Charlie’s advocate,
counter-argues that this is not the case, since Law 91 of 1992



explicitly covers the case of a foreigner who applies for join-
ing the Army for the purpose of obtaining citizenship.

Both lawyers do not discuss about facts and rules that hold
in the case. They disagree about which rule prevails over the
other, Article 51 of the Constitution or Law 91. In particular,
Bob’s argument can be see as an argument where the relative
strength of the two rule is reversed compared to the argument
of the Army’s lawyer.

The mechanism sketched above attains at the notion of
strategic reasoning, where a discussant looks at the best ar-
gument to be used in a case to prove a given claim.

This paper provides a comprehensive study of the condi-
tions under which it is possible to revise a defeasible the-
ory by changing the superiority relation of the theory, that is
changing the relative strength of conflicting rules.

2 Defeasible logics
A defeasible theory consists of five different kinds of knowl-
edge: facts, strict rules, defeasible rules, defeaters, and a su-
periority relation (Antoniou et al. 2001). Examples of facts
and rules below are standard in the literature of the field.

Facts denote simple pieces of information that are consid-
ered always to be true. For example, a fact is that Sylvester
is a cat: cat(Sylvester). A rule r consists of its antecedent
A(r) which is a finite set of literals, an arrow, and its conse-
quent (or head) C(r), which is a single literal. A strict rule is
a rule in which whenever the premises are indisputable (e.g.
facts) then so is the conclusion, e.g.

cat(X)→ mammal(X),

which means “Every cat is a mammal”. A defeasible rule
is a rule that can be defeated by contrary evidence: “Cats
typically eat birds”, written formally:

cat(X)⇒ eatBirds(X).

The underlying idea is that if we know that something is a
cat, then we may conclude that it eats birds, unless there
is other evidence that it may not. Defeasible rules with an
empty antecedent are “almost” facts. Defeaters are rules that
can not be used to draw any conclusions. Their only use is to
prevent some conclusions, i.e. to defeat defeasible rules by
producing evidence to the contrary. An example is “If a cat
has just feeded itself, then it might not eat birds”, formally

justFeeded(X); ¬eatBirds(X).

The superiority relation among rules is used to define where
one rule may override the conclusion of another one, e.g.
given the defeasible rules

r : cat(X) ⇒ eatBirds(X)

r′ : domesticCat(X) ⇒ ¬eatBirds(X)

which would contradict one another if Sylvester is both a cat
and a domestic cat, they do not if we state that r′ > r, leading
Sylvester not to eat birds. Notice that in defeasible logic the
superiority relation determines the relative strength of two
conflicting rules.

Like in (Antoniou et al. 2001), we consider only a propo-
sitional version of this logic, and we do not take in account

function symbols. Every expression with variables repre-
sents the finite set of its variable-free instances.

A defeasible theory D is a triple (F,R,>), where F is a
finite consistent set of literals called facts, R is a finite set of
rules, and > is an acyclic superiority relation on R. The set
of all strict rules in R is denoted by Rs, and the set of strict
and defeasible rules by Rsd . We name R[q] the rule set in R
with head q. A conclusion of D is a tagged literal and can
have one of the following forms:

1. +∆q, which means that q is definitely provable in D, i.e.
there is a definite proof for q, that is a proof using facts,
and strict rules only;

2. −∆q, which means that q definitely not provable in D
(i.e., a definite proof for q does not exist);

3. +∂q, which means that q is defeasibly provable in D;

4. −∂q, which means that q is defeasibly not provable in D.

A proof (or derivation) is a finite sequence
P = (P(1), . . . ,P(n)) of tagged literals satisfying the
conditions defined below.1

+∆: If P(n+1) = +∆q then
(1) q ∈ F or
(2) ∃r ∈ Rs[q]∀a ∈ A(r) : +∆a ∈ P(1..n)

−∆: If P(n+1) =−∆q then
(1) q /∈ F and
(2) ∀r ∈ Rs[q]∃a ∈ A(r) :−∆a ∈ P(1..n)

The proof conditions just given are meant to represent for-
ward chaining of facts and strict rules (+∆), and that it is not
possible to obtain a conclusion just by using forward chain-
ing of facts and strict rules (−∆).

+∂ : If P(n+1) = +∂q then either
(1) +∆q ∈ P(1..n) or
(2) (2.1) ∃r ∈ Rsd [q]∀a ∈ A(r) : +∂a ∈ P(1..n) and

(2.2) −∆∼q ∈ P(1..n) and
(2.3) ∀s ∈ R[∼q] either

(2.3.1) ∃a ∈ A(s) :−∂a ∈ P(1..n) or
(2.3.2) ∃t ∈ Rsd [q] such that
∀a ∈ A(t) : +∂a ∈ P(1..n) and t > s.

−∂ : If P(n+1) =−∂q then
(1) −∆q ∈ P(1..n) and
(2) (2.1) ∀r ∈ Rsd [q] ∃a ∈ A(r) :−∂a ∈ P(1..n) or

(2.2) +∆∼q ∈ P(1..n) or
(2.3) ∃s ∈ R[∼q] such that

(2.3.1) ∀a ∈ A(s) : +∂a ∈ P(1..n) and
(2.3.2) ∀t ∈ Rsd [q] either
∃a ∈ A(t) :−∂a ∈ P(1..n) or t 6> s.

The main idea of the conditions for a defeasible proof (+∂ )
is that there is an applicable rule, i.e., a rule whose all an-
tecedents are already defeasibly provable and for every rule
for the opposite conclusion either the rule is discarded, i.e.,
one of the antecedents is not defeasibly provable, or the rule
is defeated by a stronger applicable rule for the conclusion

1P(1..i) denotes the initial part of the sequence of length i, and
∼p the complement of a literal p.



we want to prove. The conditions for −∂ show that any sys-
tematic attempt to defeasibly prove the conclusion fails.

In this paper, we do not make use of strict rules, nor de-
featers2, since every revision changes only priority among
defeasible rules (the only rules that act in our framework),
but we need to introduce eight new types of tagged literals.
As it will be clear in the rest of the paper, they would be of
significant utility in simplifying the categorisation process,
and consequently, the revision calculus.

5. +Σq, which means there is a reasoning chain supporting
q;

6. −Σq, which means there is not a reasoning chain sup-
porting q;

7. +σq, which means there exists a reasoning chain sup-
porting q that is not defeated by any applicable reasoning
chain attacking it;

8. −σq, which means that every reasoning chain supporting
q is attacked by an applicable reasoning chain;

9. +ϕq, which means there exists a reasoning chain that
defeasibly proves q made of elements such that there does
not exist any rule for the opposite conclusion;

10. −ϕq, which means that for every reasoning chain sup-
porting q there exists an element such that a rule for the
opposite conclusion could fire;

11. +ωq, which means there exists a reasoning chain sup-
porting q that defeasibly proves every its antecedent;

12. −ωq, which means that in every reasoning chain sup-
porting q, at least one of its antecedents is not defeasibly
provable.

The tagged literals can be formally defined as:

+Σ: If P(n+1) = +Σq then
(1) q ∈ F or
(2) ∃r ∈ Rsd [q]∀a ∈ A(r) : +Σa ∈ P(1..n)

−Σ: If P(n+1) =−Σq then
(1) q /∈ F and
(2) ∀r ∈ Rsd [q]∃a ∈ A(r) :−Σa ∈ P(1..n)

+σ : If P(n+1) = +σq then
(1) q ∈ F or
(2) (2.1) ∃r ∈ Rsd [q]∀a ∈ A(r) : +σa ∈ P(1..n) and

(2.2) ∀s ∈ R[∼q]∃a ∈ A(s) such that
−∂a ∈ P(1..n) or s 6> r.

−σ : If P(n+1) =−σq then
(1) q /∈ F and
(2) (2.1) ∀r ∈ Rsd [q]∃a ∈ A(r) :−σa ∈ P(1..n) or

(2.2) ∃s ∈ R[∼q] such that
∀a ∈ A(s) : +∂a ∈ P(1..n) and s > r.

2The restriction does not result in any loss of generality: (1)
the superiority relation does not play any role in proving definite
conclusions, and (2) for defeasible conclusions (Antoniou et al.
2001) proves that it is always possible to remove (a) strict rules
from the superiority relation and (b) defeaters from the theory to
obtain an equivalent theory without defeaters and where the strict
rules are not involved in the superiority relation.

Notice that the definitions given above for ±σ are weak
forms of the notion of support proposed in (Antoniou et al.
2000b; 2000a) for the definition of an ambiguity propagating
variant of defeasible logic, in the sense that these definitions
are less selective than the ones of (Antoniou et al. 2000b).

+ϕ: If P(n+1) = +ϕq then
(1) q ∈ F or
(2) (2.1) ∃r ∈ Rsd [q]∀a ∈ A(r) : +ϕa ∈ P(1..n) and

(2.2) ∀s ∈ R[∼q]∃a ∈ A(s) :−Σa ∈ P(1..n).

−ϕ: If P(n+1) =−ϕq then
(1) q /∈ F and
(2) (2.1) ∀r ∈ Rsd [q]∃a ∈ A(r) :−ϕa ∈ P(1..n) or

(2.2) ∃s ∈ R[∼q]∀a ∈ A(s) : +Σa ∈ P(1..n).

+ω: If P(n+1) = +ωq then
(1) q ∈ F or
(2) ∃r ∈ Rsd [q]∀a ∈ A(r) : +∂a ∈ P(1..n).

−ω: If P(n+1) =−ωq then
(1) q /∈ F and
(2) ∀r ∈ Rsd [q]∃a ∈ A(r) :−∂a ∈ P(1..n).

By the above definitions, it is straightforward to derive the
implication chains reported below in Figure 1(a) -(b) .

+∆ +ϕ +∂

+ω

+σ

+Σ

(a) Plus implication chain

−∆−ϕ−∂

−ω

−σ

−Σ

(b) Minus implication chain

Figure 1: Implication chains.

One could think that +σ implies +ω (and symmetrically,
−ω implies−σ ). It is not so. To better explain this fact, and
the meaning of the proof conditions, we present an illustra-
tive example.
Example 1.

⇒r1 a ⇒r2 c ⇒r3 d
∨ ∧
⇒r4 ¬a ⇒r5 ¬d⇒r6 p

⇒r7 b ⇒r8 ¬c

⇒r9 ¬b

⇒r10 e ⇒r11 f



+ − + −
a +∂ −ϕ ¬a +ω −∂

b +σ −∂ ¬b +σ −∂

c +∂ −∂ ¬c +σ −ω

d +ω −σ ¬d +∂ −ϕ

e +ϕ ¬e −Σ

f +ϕ ¬ f −Σ

p +∂ −ϕ ¬p −Σ

Table 1: The complete conclusion list of Example 1.

with r1 > r4, and r5 > r3. In this theory, we can obtain the
following conclusions:
From the previous definitions and the example, we can take
some theoretical results about the proof tags that will be used
during the revision process described in Section 3.

Proposition 1. Given a consistent defeasible theory D, if we
have +ϕ p for a literal p, then −Σ∼p.

Proof. Let us suppose D is a consistent defeasible theory,
and +ϕ p holds for a literal p. Now, if we assume that
+Σ∼p, we say that there exists a reasoning chain support-
ing∼p which fails somewhere, leading also to−ϕ p to hold,
against the hypothesis. A contradiction.

The opposite does not hold (literal p in Example 1). The
next proposition states formally the following idea: if we
can defeasibly prove a literal p, and we know also that there
exists a chain leading to∼p with all the antecedents defeasi-
bly proved, then such a chain has to be defeated by a priority
rule at the last proof step (by the rule proving p).

Proposition 2. Given a consistent defeasible theory D, if
+∂ p∧+ω∼p holds for a literal p, then −σ∼p.

Proof. By definition of +∂ , we have that condition below

(2.3) ∀s ∈ R[∼q] either
(2.3.1) ∃a ∈ A(s) :−∂a ∈ P(1..n) or
(2.3.2) ∃t ∈ Rsd [q] such that

∀a ∈ A(t) : +∂a ∈ P(1..n) and t > s.

holds for p. In fact condition (2.3.2) has to be true since we
know condition (2.3.1) is not, because

+∂ p =⇒ ∃r ∈ R[p].∀a ∈ A(r) : +∂a
+ω∼p =⇒ ∃s ∈ R[∼p].∀a ∈ A(s) : +∂a

}
=⇒

∃t ∈ R[p].∀a ∈ A(t) : +∂a and t > s.

This is the definition of−σ∼p. Since all the premises of∼p
are defeasibly proved by hypothesis, and we have proved
that the chain is defeated, then it has to loose on the last
proof step.

3 Preference defeasible revision
Here we analyse the processes of revision in a defeasible
theory, when no changes to the rules and facts are allowed.
Henceforth, when no confusion arises, every time we speak
about a (revision) transformation we refer to a (revision)
transformation acting only on the superiority relation.

In the legal domain, when two lawyers dispute a case,
there are four situations in which each of them can be if she
revises the superiority relation employed by the other one.

(a) The revision process supports the argument of reason-
able doubt. Someone proves that the rules imply a given
conclusion. If the preference is revised then we can de-
rive that this is not the case.

(b) The revision process beats the argument of reasonable
doubt. Analogously to situation (a), someone proves
that the rules do not imply a given conclusion. If the
preference is revised then we can derive that this is in-
deed the case.

(c) The revision process supports the argument of proof of
innocence/guilt. Someone proves that the rules imply a
given conclusion. If the preference is revised then we
can derive that the opposite holds.

(d) The revision process cannot support a given thesis.

Revising a defeasible theory by changing only the priority
among its rules means studying how an hypothetic revision
operator works in the three cases reported below:
(1) how to obtain −∂ p, starting from +∂ p;
(2) how to obtain +∂∼p, starting from +∂ p;
(3) how to obtain +∂ p, starting from −∂ p.
We name these three revisions canonical. We provide an
exhaustive analysis, based on the definitions above, in the
next subsections.
The situation (a) is represented by the canonical case (1).
The situation (b) is represented by the canonical case (3).
Situation (c) is represented by the canonical case (2). The
situation (d) arises when the condition +ϕ p holds.

In this case, if one of the parties argues in favour of a the-
sis in a defeasible way, then the counter-part cannot exhibit
a proof of the opposite, independently of the changes in the
superiority relation.

In the cases (1) and (2) analysed below, we know that
−∂¬p holds, since D is a consistent theory in which +∂ p
holds. Furthermore, Proposition 3 allows us not to consider
a tree with branches tagged by ±ϕ .

Notice that some revisions do not indeed modify the
knowledge in the system. For instance, revising a theory
from +∂ p to −∂∼p is useless.

The above reasoning proves that we have canonical re-
visions, revisions that are equivalent to canonical ones and
useless revisions. the following theorem.
Theorem 1. The revision of the preference relation in a de-
feasible theory is either canonical or useless.

Proposition 3 states that if there is no way to defeat a chain
supporting a literal p, there is no revision transformation
which leads to defeasibly derive ∼p.



Proposition 3. Given a consistent defeasible theory D, if for
a literal p holds +ϕ p, then there does not exist a transfor-
mation to obtain +∂∼p.

Proof. Given any theory, to obtain a defeasible proof of a
literal q, there must exist at least a reasoning chain for q,
i.e. +Σq. This is in contradiction with Proposition 1 which
states that if +ϕ∼q holds, also −Σ∼q does.

From the fact that in every consistent theory, +∂ p =⇒
−∂∼p, Proposition 3 states also that with the same premises
it is impossible to revise the theory in order to obtain −∂ p.

From +∂ p to −∂ p
(−ϕ p∧+Σ∼p)

+ω∼p

+σ∼p −σ∼p

−ω∼p

+σ∼p −σ∼p

Figure 2: From +∂ p to −∂ p: revision cases.

We are now ready to go onto the systematic analysis of
the combinations arising from the above defined model. We
list the cases by tagging each macroscopic case by the name
Canonical case and the combinations depending upon the
analytical schema introduced above by the name Instance.

3.1 Canonical case: from +∂ p to −∂ p
Instance−Σ∼p∧+∂ p: this first case is not reported in Fig-
ure 2 since the premises are not true (−Σ∼p holds). This
means there is no supporting chains for ∼p, so we can not
operate on them. Holding −ϕ p, this means there exists at
least one of its premises that could be defeated by a rule
leading to the opposite conclusion. Thus, in order to ob-
tain −∂ p, we have to revise the theory putting at least one
of such rules be able to fire (to defeat, or at least to have
the same power of a rule which actually proves one of the
antecedents in the chain supporting p).

Instance +ω∼p∧+σ∼p: as stated in Proposition 2 this
branch represents an impossible case for any consistent de-
feasible theory.

Instance +ω∼p∧−σ∼p: by the straightforward implica-
tion of Proposition 2, the chain supporting ∼p fails on the
last proof step defeated by priorities for rules which defea-
sibly prove p. Thus, we have only to erase these priorities.

Instance −ω∼p∧+σ∼p: since there exists a chain Pnp
(whilst Pp denotes the proof for p) supporting ∼p which is
never defeated (−ω∼p condition tells us only that such a
chain fails before the last proof step), a revision process does
not have to operate on a chain supporting p. We have to
strengthen Pnp changing so many priorities to let a rule in
Pnp, which leads to an opposite conclusion of a rule in Pp,
have at least the same strength of such a rule in Pp. In this
process, we do not remove any priority rule among elements
in Pp, but only add priority rules to let a rule in Pnp win.

Instance−ω∼p∧−σ∼p: the reasoning chain Pnp support-
ing ∼p is defeated, but not necessarily by a chain proving
p (Pp). The case is analogous of the above, but: probably
we have to act not only on Pnp, but also on Pp; we do not
have only to introduce priority rules, but also to erase (in-
vert) them. This case represents the most general situation,
where less information is given: a revision is possible, but
we do not know a priori where to change the theory.

3.2 Canonical case: from +∂ p to +∂∼p
We follow the cases depicted in the search tree in Figure 2,
in order to explain how a revision operator should work. We
change the root label when revising from +∂ p to +∂∼p,
taking in account the same premises (−ϕ p∧+Σ∼p). Once
more, our revision tree does not take in account tags ±ϕ for
the same reasons explained in Section 3.

Instance +ω∼p∧+σ∼p: as stated in Proposition 2 this
branch represents an impossible case for any consistent de-
feasible theory.

Instance +ω∼p ∧ −σ∼p: Proposition 2 states that the
chain supporting ∼p fails on the last proof step. This, com-
bined with −σ∼p, implies this last step is defeated by a
priority for the rule which defeasibly proves p. In fact, there
would exist more than one chain that fails on the last step,
and also more than one chain which proves p. We propose
two different approaches. We name P the set of chains prov-
ing defeasibly p, Pls ⊆ P the chains that prove defeasibly p
for which there is a priority rule that applies at the last proof
step (against a chain that proves∼p), and N the set of chains
for which the premises hold:

1. We choose a chain in N. We invert the priority rule for
every chain in Pls that wins at the last proof step. We
introduce a new priority for making it win against any
remaining chain in P.

2. In this approach we have two neatly distinguished cases:

(a) ||Pls|| > ||N||: for every chain in N we invert the pri-
ority rules on the last proof step. For every remaining
chain in P, we add a priority rule between the defeasi-
ble rule used in the last proof step of a chain in N and
the rule used in the last proof step of a chain in P (pos-
sibly different for each chain in N) such that the chain
in P looses.

(b) ||N|| > ||Pls||: firstly we choose a number ||Pls|| of
chains in N and invert the priority rule on the step that
makes them loose. If at the end of this step there are
still chains in P that defeasibly prove p, we go on with
the method used for the case (2)(a), only looking at the
subset of chains in N on which we operated at the first
step.

The two approaches rely on different underlying ideas. In
the first case we want a unique winning chain. This makes
the revision procedure faster than the second method, we
do not have to choose every time a different chain where to
act. Moreover, it guarantees to make at most many changes
as the second one (in general, it revises the theory with the
minimum number of changes).



The strength of the second method relies on the concept of
team defeaters: we give power not only to a single element,
but to a team of rules. Thus, in the first method if the only
winning chain would be defeated, the entire revision process
must be repeated, whilst in the second method if one of the
winning rule would be beaten, we have to repair only for it,
but not for all the other chains that continue to win.

Let us consider the following simple example:

⇒r1 p ⇒r2 p
∨ ∨
⇒r3 ¬p ⇒r4 ¬p

The first approach would give in output: {r1 > r3,r4 >
r1,r4 > r2} (if the second chain for ¬p would be chosen to
win), erasing one priority rule and introducing two, whilst
the second approach would lead to have the following prior-
ity rule set: {r3 > r1,r4 > r2}, erasing two priority rules, and
introducing two. It is easy to see that if r4 would be defeated
by a rule rs, in the first case we have to entirely revise the
theory, for example, let r3 win among r1 and r2, while in the
second case we have only to introduce r3 > r2.

Instance −ω∼p ∧+σ∼p: there exists at least a chain
supporting ∼p, which is not defeated. To revise the the-
ory, we have to choose one of them and, starting from ∼p
go back in the chain to the ambiguity point (where holds
P(i) = +∂ pi ∧ P(i + 1) = −∂ pi+1), strengthen the chain
adding a priority rule where a rule leading to an antecedent
in the chain for∼p and a rule for the opposite have the same
strength.

Instance −ω∼p∧−σ∼p: every chain supporting ∼p is
defeated at least one time. A first approach one could be
tempted to use is to go back in the chain searching for the
point where P(i) = +σ pi ∧P(i+ 1) = −σ pi+1. Note that
this is not enough to guarantee the chain to win. Let us con-
sider the following example.

From +∂ to −∂ From +σ to −σ

⇒r1 a ⇒r2 b ⇒r3 c ⇒r4 p
∧

⇒r5 ¬a ⇒r6 ¬c

As it can be easily seen, letting r3 win over r6 is not suf-
ficient. We have also to introduce a priority rule between
r1 and r5. Thus, we have to act exactly as in the previous
case, with the solely difference that every time a rule in the
chain supporting ¬p is defeated, the priority rule has to be
inverted.

3.3 Canonical case: from −∂ p to +∂ p
We start this case, saying that −∂∼p has to hold since, if it
is not so, the case is analogous of the previous revision from
+∂q to +∂∼q. Moreover, we do not take in consideration
the case when −Σp holds, as if there are no chains leading
to p, there will be no revision to obtain +∂ p. The cases are
the ones reported in Figure 3.

Note that +ω p and −σ p can not hold at the same time:
as all the premises for p are proven, the chain has to fail on
the last step, i.e. it has to be defeated by a firing rule for∼p.

From −∂ p to + ∂ p
(−∂∼p∧+Σp)

+ω p∧+σ p −ω p
(−ω∼p)

+σ p −σ p

Figure 3: From −∂ p to +∂ p: revision cases.

This would defeasibly prove ∼p, but this can not happen
since we have stated that −∂∼p holds. Furthermore, −ω p
implies that also −ω∼p holds, since if it is not so, we have
either +ω p, or +∂∼p, both of them against the hypothesis.

Instance +ω p∧+σ p: since there would exist more than
one chain such that +ω p∧+σ p holds, we have to choose
one of them, and introduce as many priority rules as the
number of chains where +ω∼p holds.

Instance−ω p∧+σ p: this case is analogous to the revision
case: From +∂ p to +∂∼p: −ω∼p∧+σ∼p.

Instance −ω p∧−σ p: this case is analogous to the case:
From +∂ p to +∂∼p: −ω∼p∧−σ∼p.

We have to remark that conditions ±σ∼p do not give in-
formation on the revision process, since they do not tell if the
changes will apply on chains for∼p, or not. Referring to the
example proposed below, we can see that, holding +σ∼p,
there exists a revision which involves the chain for ∼p (in-
troducing r1 > r3, and r2 > r4), and the other one that does
not (introducing r5 > r6).

⇒r1 a ⇒r2 p
⇒r3 ¬a⇒r4 ¬p

⇒r5 b ⇒r6 p
⇒r6 ¬b

An analogous situation can be proposed for −σ∼p.

⇒r1 a ⇒r2 p
⇒r3 ¬a⇒r4 b ⇒r5 ¬p

∧
⇒r6 ¬b

⇒r7 c ⇒r8 p
⇒r9 ¬c

In here, there exist two revisions: one introducing r1 > r3
and r2 > r4, and the other one which introduces r7 > r9.

Note that in all the canonical cases, the revision mecha-
nism guarantees that no new cycle can be introduced. we
can formulate the above result, that is a straightforward con-
sequence of the case analysis presented here.

Theorem 2. Revising superiority relation generates a supe-
riority relation.



4 Conclusions and further work
A large number of real-life cases in legal reasoning, informa-
tion security, digital forensic, and even engineering or med-
ical diagnosis, exhibit the two circumstances: (a) different
persons have different preferences, and (b) decision making
depends upon the order in which the rules are indeed ap-
plied. When defeasible rules are in conflict, and then poten-
tially generate inconsistencies, decision making may require
preferences. In the same way, belief revision in presence of
inconsistent information requires preference revision.

Notice that in non-monotonic reasoning, revision is not
necessarily triggered by inconsistencies. (Billington et al.
1999) investigates revision for defeasible logic and relation-
ships with AGM postulates. While the ultimate aim is simi-
lar to that of the present paper – i.e., transforming a theory to
make a previously provable (resp. non provable), non prov-
able (resp. provable) – the approach is different, and more
akin to standard belief revision. More precisely, revision
is achieved by introducing new exceptional rules. Further-
more they discuss how to adapt the AGM postulates for non-
monotonic reasoning.

In this work we are not interested in examining confor-
mance with the AGM postulates. (Governatori & Rotolo
2010) show that, typically, belief revision methodologies are
not suitable to changes in theories intended for legal rea-
soning, and similarly they show that it is possible to revise
theories fully satisfying the AGM postulates, but then the
outcome is totally meaningless from a legal point of view.

Preference revision is one of the aspects of legal inter-
pretation. (Boella et al. 2010a; 2010b) propose a defeasi-
ble logic framework to model extensive and restrictive legal
interpretation. This is achieved by using revision mecha-
nisms on constitutive rules, where the mechanism is defined
to change the strength of existing constitutive rules. It is an
interesting question extensive and restrictive interpretation
can be modelled as preference revision operators.

Closely related to our work are (Prakken & Sartor 1997;
Antoniou 2004). They propose extensions of an argumenta-
tion framework and defeasible logic, where the superiority
relation is dynamically derived from arguments and rules in
given theories. The main difference with these works is that
we investigate general conditions under which it is possible
to modify the superiority relation to change the conclusions
of a theory, while they provide specific mechanisms but no
guarantees that a change will happen. (Prakken & Sartor
1997) is motivated, as us, by legal reasoning, and they use
rules to encode the legal principles we mentioned in the in-
troduction. We leave the investigation to the relationships
with these works as future research.

Apart from the applications sketched above we shall in-
vestigate three limits to the revision operator:

• Revision of preference should not involve minimal defea-
sible rules. This constraint captures the idea that a rule
that wins against all other rules is a basic juridical princi-
ple;

• Under given circumstances the revision process should
not, for at least a subset of “protected” pairs violate the

original preferential order. For instance we should not re-
vise those preferences that are unquestioned because de-
rived by commonly accepted principles or explicitly ex-
pressed by the legislator, as discussed in the introduction.

We unashamedly avoided, in this phase, any computa-
tional analysis of the introduced operator, but clearly a
deeper investigation will include also the definition of that
aspects.
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