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Abstract

Although the preferential model semantics is the standard se-
mantics for non-monotonic reasoning systems, it is not used
for argumentation frameworks. For argumentation frame-
works, instead, argumentation semantics are used. This paper
studies the relation between the two types of semantics. Sev-
eral argumentation semantics are related to additional con-
straints on the preference relation over states in the prefer-
ential model semantics. Moreover, based on the preferential
model semantics a new argumentation semantics is proposed.

Introduction
Argumentation systems are becoming increasingly impor-
tant for common sense and legal reasoning, negotiating
agents, planning, and so on. An important issue is the under-
lying semantics of an argumentation system. The semantics
of an argumentation system containing defeasible arguments
is usually defined with respect to an argumentation frame-
work. An argumentation framework is an abstraction of an
argumentation system with respect to which an argumenta-
tion semantics is defined (Dung 1995).

Argumentation with defeasible arguments is a special
case of non-monotonic reasoning. The preferential model
semantics is the standard semantics for non-monotonic
reasoning systems (Kraus, Lehmann, and Magidor 1990;
Makinson 1988; 1994). This raises the question whether a
preferential model semantics can be defined for argumenta-
tion frameworks? If a preferential model semantics can be
defined, how does it relate to the well-known argumentation
semantics? Finally, does it give us new insights with respect
to how argumentation semantics should be defined?

Paper outline In the next section, the definitions of ar-
gumentation semantics and of preferential model semantics
are given. Section “A preferential model semantics for ar-
gumentation frameworks” proposes a preferential model se-
mantics for argumentation frameworks, and Section “Exam-
ples of preferential models” presents some examples of the
proposed preferential model semantics. Section “The rela-
tion between the two types of semantics” addresses the rela-
tions between several argumentation semantics and the pref-
erential model semantics. Section “Conclusion” concludes
the paper.

Preliminaries
Argumentation semantics
We use Dung’s argumentation framework as a starting point
(Dung 1995).

Definition 1 An argumentation framework is a couple
AF = 〈A,−→〉 where A is a finite set of arguments and
−→⊆ A×A is an attack relation over the arguments.

For convenience, we extend the attack relation−→ to sets
of arguments.

Definition 2 Let A ∈ A be an argument and let S,P ⊆ A
be two sets of arguments. We define:

• S −→ A iff for some B ∈ S, B −→ A.
• A −→ S iff for some B ∈ S, A −→ B.
• S −→ P iff for some B ∈ S and C ∈ P , B −→ C.

We wish to select coherent subsets of arguments E from
the set of arguments A of the argumentation framework
AF = 〈A,−→〉. Such a set of arguments E is called an
argument extension. The arguments of an argument exten-
sion support propositions that give a coherent description of
what might hold in the world. Clearly, a basic requirement
of an argument extension is being conflict-free; i.e., no argu-
ment in an argument extension attacks another argument in
the argument extension. Beside being conflict-free, we will
use two notions of defense against attacking arguments. The
notion of an admissible set of arguments and the notion of
an argument that is acceptable w.r.t. a set of arguments. A
set of admissible arguments defends itself against all attack-
ing arguments and an argument that is acceptable w.r.t. a set
of arguments, is defended by the set against all attacking ar-
guments. In both cases, defense is realized by attacking the
attacker.

Definition 3 Let AF = 〈A,−→〉 be an argumentation
framework and let S ⊆ A be a set of arguments.

• S is conflict-free iff S 6−→ S.
• S is admissible iff S is conflict-free and for every argu-

ment A ∈ A: if A −→ S , then S −→ A.
• A ∈ A is acceptable w.r.t. S iff for every argument B ∈
A, if B −→ A, then S −→ B.



Dung (1995) defines four argumentation semantics in
terms of four types of argument extensions.1

Definition 4 Let AF = 〈A,−→〉 be an argumentation
framework and let E ⊆ A.

• E is a stable extension iff E is conflict-free and for every
argument A ∈ (A− E), E −→ A.

• E is a preferred extension iff E is maximal (w.r.t. ⊆) ad-
missible set of arguments.

• E is a complete extension iff (i) E is an admissible set of
arguments, and (ii) every argument A ∈ A that is accept-
able w.r.t. E belongs to E .

• E is a grounded extension iff E is the minimal (w.r.t. ⊆)
complete extension.

Note that the requirements of the stable semantics are
quite strong. A stable extension defends itself against all ar-
guments not belonging to the extension. As a result a stable
extension need not exist. The odd loops of attacks shown in
Figure 1 are examples of such problematic cases. The pre-
ferred, complete and grounded extension of each of the odd
loops in Figure 1 is the empty set.
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Figure 1: Odd attack loops.

Baroni et al. (2005) argue that none of the extensions pro-
posed by Dung handle odd loops adequately. They propose
to handle odd loops in the same way as even loops by se-
lecting conflict-free subsets of the arguments involved in the
loops. Their CF2 semantics formalizes this point of view.
In the example of Figure 1.a, it gives us the argument exten-
sions: {A}, {B} and {C}.

The CF2 semantics does not capture our intuitions with
respect to the handling of odd loops in all circumstances.
Consider for instance, the odd loop shown in Figure 1.b. Ac-
cording to the CF2 semantics, there are two argument exten-
sions, namely {A} and {B}. However, the self-attack of the
argument C ensures that the argument A cannot depend on
the argument B. Hence, the argument A should always be
acceptable and the argument B never.

Justified arguments The existence of multiple argument
extensions indicates uncertainty about which argument ex-
tension should describe the world. Using a skeptical view,
we can only be certain of arguments that belong to every ar-
gument extension. These arguments are called the justified
arguments. We can believe the propositions supported by
the justified arguments because these arguments are present
in every argument extension.

1In the last decade several new argumentation semantics have
been proposed; for an overview, see (Baroni and Giacomin 2007;
Bench-Capon and Dunne 2007).

Preferential model semantics
Preferential model semantics were introduced by Shoham
(1987) and were subsequently extended to a general seman-
tic theory by Makinson (1988) and Kraus et al. (1990). The
definitions given below are based on the formalization given
by Makinson in (1994).2

We start with a propositional language L for which we
define the preferential model semantics. The preferen-
tial model semantics uses preferential models to define an
agent’s beliefs given its knowledge about the world.
Definition 5 A preferential model P = (S, |=, <) is a triple
where:
• S is a set of states,
• |= ⊆ (S × L) is an arbitrary relation between states and

propositions, called the entailment relation3,
• < ⊆ (S × S) is an arbitrary relation between states,

called the preference relation.
Note that a preferential model does not specify what the
states and the entailment relation exactly are. In general, one
can view a state as an interpretation or a set of interpretations
of propositional or first order logic. So, a state can be viewed
as giving a (partial) description of the world. The entailment
relation can then be viewed as a specification of the seman-
tics of a proposition with respect to a state. For the moment,
however, we do not consider such a restricted view on what
the states and the entailment relation represent. Note that the
preference relation denotes that we prefer a state s to a state
s′ if s < s′.4

A preferential model P = (S, |=, <) can be used to spec-
ify that a state preferentially satisfies a proposition ϕ ∈
L. Preferential entailment focusses on the preferred states
among the states satisfying the proposition.
Definition 6 Let P = (S, |=, <) be a preferential model,
s ∈ S be a state and let ϕ ∈ L be a proposition.

Then s preferentially satisfies ϕ, denoted by s |=< ϕ, iff
s |= ϕ and for no s′ ∈ S: s′ < s and s′ |= ϕ.

We extend the notion of entailment of a proposition to set
of propositions: s |= Σ iff for every σ ∈ Σ, s |= σ. This
immediately gives us the preferential entailment of a set of
propositions: s |=< Σ.5 We need s |=< Σ to define the
preferential consequences of a set of propositions Σ. Prefer-
ential consequences are those propositions that are entailed
(satisfied) by all states that preferentially satisfy the set of
propositions Σ. We will use the preferential entailment op-
erator C< to denote this set of consequences.

2The preferential model semantics should not be confused with
the handling of conflicting arguments using a preference rela-
tion defined over the arguments; see for instance (Dimopoulos,
Moraitis, and Amgoud 2008). A preference relation over argu-
ments expresses in some way the strength of an argument while
a preference relation over states expresses that the world should
correspond to one of the preferred states.

3A state s is said to entail or satisfy a proposition ϕ iff s |= ϕ.
4For historical reasons, namely minimizing exceptions, prefer-

ence is associated with minimality.
5s |=< Σ iff s |= Σ and for no s′ < s: s′ |= Σ iff s ∈

min<‖Σ‖ where ‖Σ‖ = {s ∈ S | s |= Σ}.



Definition 7 Let P = (S, |=, <) be a preferential model,
and let Σ ⊆ L be a set of propositions.

The preferential entailment operator is defined as:

C<(Σ) = {ϕ ∈ L | for all s ∈ S, if s |=< Σ, then s |= ϕ}

A preferential model semantics for
argumentation frameworks

In order to define a preferential semantics for an argumenta-
tion framework, we first have to determine how to interpret
arguments. In an argumentation framework, an argument
gives a warrant for some proposition. This warrant can be
invalidated if it contains defeasible steps (Toulmin 1958).
Therefore, in terms of a preferential model, an argument
expresses that we prefer states that satisfy the proposition
supported by the argument to states that do not.

In an argumentation framework, we have abstracted from
the internal structure of an argument and from the specific
proposition supported by the argument. Therefore, we can-
not describe the preference expressed by an argument by
preferring a state satisfying the proposition supported by
the argument to a state that does not. However, instead of
states satisfying propositions, we may consider states sat-
isfying arguments. The idea is that a state gives a possible
description of the world by specifying a set of valid argu-
ments. Although an argumentation framework abstracts for
the propositions supported by the arguments, we may view
propositions supported by the valid arguments as describing
what holds in a state.

The entailment relation |= of a preferential model P =
(S, |=, <) must specify for each state the arguments that
that we accept to give a correct description of what holds
in world. The entailment relation is therefore a relation be-
tween states and arguments: |=⊆ (S×A). So, the language
L for which a preferential model is defined should consist of
the set of arguments A.

A state need not satisfy all arguments in A. Especially, if
an argument attacks another argument, a state cannot satisfy
both arguments. A state cannot describe the world if it would
satisfy arguments A and B while A attacks B (A −→ B).

Requirement 1 Every state s ∈ S must be conflict-free.
That is, if A −→ B, then s |= A and s |= B may not
hold at the same time.

The set of arguments that are satisfied by a state s ∈ S or a
set of states T ⊆ S will be denoted by A(s) = {A ∈ A |
s |= A} and A(T ) =

⋂
s∈T A(s), respectively.

An attack relation between two arguments does not only
express that both arguments cannot be entailed by one state.
The attack relation also expresses a preference. If an ar-
gument attacks another argument, we should prefer a state
satisfying the attacking argument to a state satisfying the at-
tacked argument. Extending this preference generated by an
attack relation between two arguments to the whole attack
relation, we should prefer a state to another state if the ar-
guments satisfied by the former state attack all arguments
satisfied by the latter state but not by the former state.

Requirement 2 An attack relation −→ over arguments de-
fines a preference relation over states.

We prefer a state s to a state s′ if and only if every argu-
ment satisfied by the state s′ that is no longer satisfied by s
is attacked by an argument in s.

Requirement 2 enables us to define a weak preference re-
lation . over a set of states S.

Definition 8 Let AF = 〈A,−→〉 be an argumentation
framework. Moreover, let S be a set of states and let
|= ⊂ (S × A) be an entailment relations over states and
arguments.

The weak preference relation . ⊂ (S × S) is defined as:
s . s′ iff for every B ∈ A such that s′ |= B and s 6|=
B, there is an A ∈ A such that s |= A and A −→ B.

Note that the weak preference relation . may contain cy-
cles. Therefore, no minimum / preferred state may exist.
The weak preference relation generated by the well known
Nixon diamond contains such a cycle. States involved in a
cycle have the indistinguishable preference.

States with the indistinguishable preference can be
viewed as giving alternative descriptions of what holds in
the world. These alternative descriptions should be made
explicit. The way to do this is by deriving a strict preference
relation < from the weak preference relation .. This will
guarantee that (i) a minimum state always exist, and (ii) mul-
tiple minimum states express indistinguishable preferences
between these states.

We assume that s . s′ describes a strict preference if
s . s′ is not part of a cycle. That is, if there does not exist a
set of states {s1, . . . , sn} such that:

s . s′ . s1 . . . . . sn . s

Therefore, we define s < s′ as: s . s′ and s′ 6.+ s, where
.+ denotes the transitive closure of ..

Note that the preference relation s . s′ generated by the
attack relation also holds if A(s′) ⊆ A(s). Nevertheless,
we have to specify explicitly that we prefer states satisfying
more (w.r.t. ⊂) arguments. The reason is that a cycle in
the preference relation . may involve preferences such as
A(s′) ⊂ A(s). If we have a cycle s < s′ .+ s′′ . s
where s < s′ becauseA(s′) ⊂ A(s), we also have the cycle:
s′ .+ s′′ . s′. So, we have indistinguishable preference
between both s′′ and s, and s′′ and s′. Since A(s′) ⊂ A(s),
we should prefer s to s′.

Definition 9 Let AF = 〈A,−→〉 be an argumentation
framework, and let L be a language. Moreover, let . be
the weak preference relation generated by −→.

The preferential model P = (S, |=, <) for the argumen-
tation framework AF is defined as:

1. S is a set of states and for every conflict-free set of argu-
ments S ⊆ A, there is exactly one state s ∈ S;

2. |= ⊆ (S × A) where for every conflict-free set of argu-
ments S ⊆ A, there is state s ∈ S such that A(s) = S;

3. s < s′ iff A(s′) ⊂ A(s), or s . s′ and s′ 6.+ s.

The first item in the above definition states that for every
conflict-free set of arguments there is a state. The second
item states that the entailment relation is defined between
states and arguments (the language). Moreover, it specifies



that for every consistent set of arguments there is a state sat-
isfying exactly these arguments. The third item specifies the
preference relation using the weak preference relation.

Examples of preferential models
Before formally analyzing the relation between the above
defined preferential model semantics and the argumentation
semantics, we will first look at some examples.

The first example is an argumentation framework with
three arguments A, B and C and the attack relation shown
in Figure 2. Figure 3.a shows the transitive reduction6 of

A CB

Figure 2: An attack chain.

the preference relation . generated by the argumentation
framework. Figure 3.b shows the transitive reduction of the
preference relation <. In this figure we see that there is one
minimum state, which corresponds with the argument exten-
sion of the grounded, the preferred, the stable and the CF2
semantics.
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Figure 3: Preferences generated by an attack chain.

The second example is an argumentation framework with
two argumentsA andB and the attack relation shown in Fig-
ure 4. Figure 5.a shows the preference relation . generated

A B

Figure 4: An even attack loop.

by the argumentation framework. Figure 5.b shows the pref-
erence relation <. In this figure we see that there are two
minimum states, which correspond with the two argument
extensions of the preferred, the stable and the CF2 seman-
tics. The argument extension of the grounded semantics is
consistent with both preferred states.

The third example is an argumentation framework with
three arguments A, B and C and the attack relation shown
in Figure 1.a, which forms an odd loop. Figure 6.a shows
the preference relation . generated by the argumentation
framework. Figure 6.b shows the preference relation <. In
this figure we see that there are three minimum states, which

6The transitive reduction of . is the minimal sub-relation R of
. such that . is contained in the transitive closure of R: .⊆ R+.
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Figure 5: Preferences generated by an even attack loop.
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Figure 6: Preferences generated by an odd attack loop.

correspond with the three argument extensions of the CF2
semantics. The argument extension of the grounded and pre-
ferred semantics are consistent with the preferred states.
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Figure 7: Preferences generated by an odd attack loop with
self-attack.

The fourth example is also an argumentation framework
with three arguments A, B and C and the attack relation
between them forming an odd loop. However, as shown in
Figure 1.b, argument C also attacks itself. Figure 7.a shows
the preference relation . generated by the argumentation
framework. Figure 7.b shows the preference relation <. In
this figure we see that, unlike the previous example, here
there is one minimum state. The extension of the grounded
and preferred semantics are consistent with this preferred
state. The CF2 semantics specifies two argument extensions
for the argumentation framework: {A} and {B}. Only the
first CF2-extension corresponds with the minimum state.

The relation between the two types of
semantics

The examples presented in the previous section suggest that
there is a relation between the proposed preferential model
semantics and some of the well known argumentation se-
mantics. In this section we will investigate this relation.
Moreover, we define a new argumentation semantics and
show that it is equivalent to the preferential model semantics.
We conclude the section by showing that the closure prop-
erty cumulativity holds for the preferential model semantics
and therefore also for the new argumentation semantics.



Preferred states and conflict-free set of arguments
Given a preferential model, we are interested in the mini-
mum / preferred states. The first thing that we can observe
is that such a minimum state satisfies a maximal conflict-free
set of arguments.

Proposition 1 Let P = (S, |=, <) be a preferential model
for an argumentation framework AF = 〈A,−→〉.

For every minimum s in S (w.r.t. <): A(s) = {A ∈ A |
s |= A} is a maximal conflict-free set of arguments.

The relation with argumentation semantics The above
proposition suggests a relation between argument extensions
and preferred / minimum states of the preferential model.
The following theorems make this relation explicit. The
first theorem establishes a relation between the preferential
model semantics and the stable semantics. A stable exten-
sion defends itself against all arguments not belonging to
the extension. This implies that an argument A that is not
attacked by the stable extension E should belong to E . A
cannot attack E because then the stable extension cannot ex-
ist. Therefore, a state s representing the stable extension E
must be a preferred / minimum (w.r.t. <) state. Moreover,
arguments attacking the stable extension E result in weakly
preferring a state s′ to s. Since a stable extension defends
itself against all arguments that do not belong to the exten-
sion, s should be weakly preferred to s′.

Theorem 1 Let P = (S, |=, <) be a preferential model for
an argumentation framework AF = 〈A,−→〉.
A(s) is a stable extension iff s is a minimum state in S,

and for any state s′ ∈ S, if s′ . s, then s . s′.

The restriction on the weak preference relation that has
been used to establish a relation with the stable semantics
can also be used to establish a relation with the preferred
semantics. The state s representing a preferred extension
should also defend itself against all attacking arguments.
However, the state s need not be a preferred / minimum state.
In fact, the state representing a preferred extension is a mini-
mum state among the states defending themselves against all
attacking arguments. To identify the states defending them-
selves against all attacking arguments, we should only con-
sider weakly preferred states where the preference is com-
pletely due to attacking arguments. The following defini-
tion formalizes the restriction on the weak preference rela-
tion and defines the states that defend themselves against all
attacking arguments. The latter states are called admissible
states.

Definition 10 Let . be a preference relation as defined in
Definition 8.

The preference relation that is the result of attacking ar-
guments only is defined as:
�
∼ = {(s, s′) | s . s′,∀A ∈ (A(s)−A(s′)): A −→ A(s′)}

s ∈ S is an admissible state iff for every state s′ ∈ S such
that s′ �∼ s, s . s′.

A preferred / minimum (w.r.t. <) state among the admis-
sible states correspond to a preferred extension.

Theorem 2 Let P = (S, |=, <) be a preferential model for
an argumentation framework AF = 〈A,−→〉.
A(s) is a preferred extension iff s is a minimum (w.r.t. <)

admissible state in S.

An argument is acceptable with respect to a set of argu-
ments if the latter defends the former against all attacking ar-
guments. We can define a somewhat similar notion in terms
of preference over states of a preferential model. We intro-
duce the notion of a state s that is acceptable with respect
to another state s′. Since states are conflict-free, we will
make use of the property that an argument can be added to a
conflict-free set of arguments without introducing conflicts
if the argument is acceptable w.r.t. this set. We therefore
require that the state s satisfies at least the same set of argu-
ments as the state s′. We must also ensure that arguments
satisfied by s′ defend the arguments satisfied by s against
all attacking arguments. Arguments attacking the arguments
of s can be described by states s′′ such that s′′ �∼ s, and the
defense by s′ . s′′.

Definition 11 A state s is acceptable with respect to a state
s′ iff A(s′) ⊆ A(s) and for every state s′′ ∈ S if s′′ �∼ s,
then s′ . s′′.

We can now establish the relation with complete seman-
tics.

Theorem 3 Let P = (S, |=, <) be a preferential model for
an argumentation framework AF = 〈A,−→〉.
A(s) is a complete extension iff s is an admissible state

in S and s is the only state that is acceptable with respect to
s.

The grounded semantics selects the unique subset mini-
mal complete extension.

Theorem 4 Let P = (S, |=, <) be a preferential model for
an argumentation framework AF = 〈A,−→〉.
A(s) is a grounded argument extension iff s is a maximum

(w.r.t. <) state among the states in S that are both admissi-
ble and for which s is the only state acceptable with respect
to s.

The above four theorems imply that the set of preferred
conclusions C<(∅) of the preferential model correspond
with the set of justified arguments.

Corollary 1 Let P = (S, |=, <) be a preferential model for
an argumentation framework AF = 〈A,−→〉.
C<(∅) is the set of justified arguments of the stable, pre-

ferred, complete and grounded semantics if the restrictions
of Theorems 1, 2, 3 and 4 are applied, respectively.

A new argumentation semantics The preferential model
semantics can be used to define a new argumentation se-
mantics. The idea is to use the preference relation on states
to give a new definition of acceptable arguments. We first
define a preference relation on sets of arguments.

Definition 12 Let AF = 〈A,−→〉 be an argumentation
framework and let S, T ⊆ A be two conflict-free sets of
arguments.



The set of arguments T is at least as acceptable as S, de-
noted by T % S, iff for every argument B ∈ S − T there is
an argument A ∈ T − S such that: A −→ B.

The above defined %-relation may contain cycles. There-
fore, to identify a maximally acceptable set of arguments,
similar to the definition of the preference relation < of a
preferential model (Definition 9), we have to take into ac-
count loops of preferences.

Definition 13 Let AF = 〈A,−→〉 be an argumentation
framework and let T % S be an acceptability relation.

A conflict-free set of arguments E ⊆ A is a pm-extension
iff for every conflict-free set of arguments T ⊆ A, if T % E ,
then E %+ T and E 6⊂ T .

Because the pm-extensions are based on the preferential
model semantics, it is not difficult to show that the minimum
states correspond with the pm-extensions.
Theorem 5 Let AF = 〈A,−→〉 be an argumentation
framework and let P = (S, |=, <) be a corresponding pref-
erential model.

For every pm-extension E ⊆ A, there is a minimum state
s ∈ S such that E = A(s), and vice versa.

The closure property Cumulativity is generally consid-
ered to be a desirable property of non-monotonic reasoning
systems. For argumentation frameworks it is less important
since we normally determine the justified arguments starting
form an empty set of arguments; i.e., C<(∅). It may, how-
ever, be useful in creating a proof theory for the proposed
preferential model semantics.

Proposition 2 Let P = (S, |=, <) be a preferential model
for an argumentation framework AF = 〈A,−→〉. More-
over, let the attack relation −→ contain a finite number of
elements.

Then the consequence operator C<(·) defined by the pref-
erential model P = (S, |=, <), is cumulative:

if Σ ⊆ Γ ⊆ C<(Σ), then C<(Σ) = C<(Γ)

Conclusion
In this paper a preferential model semantics for argumenta-
tion frameworks is proposed and is compared with several
well known argumentation semantics.

Argumentation semantics are based on the notion of de-
fense against attacking arguments. The way this notion of
defense is applied leads to different semantics. In the pres-
ences of odd loops, the adequacy of the notion has been de-
bated.

The proposed preferential model semantics is based on
a different notion; preference over states. Here, states are
viewed as descriptions of the world that specify sets of valid
arguments. The attack relation over arguments is used to
define a preference relation over states. A state in which the
attacking argument is valid is preferred to a state in which
the attacked argument is valid.

In the absence of odd loops in the argumentation frame-
work, the preferential model semantics supports the same
argument extensions as the stable semantics. In general, the

argument extensions supported by the different argumenta-
tion semantics proposed by Dung correspond to different re-
strictions on the preference relation of the preferential model
semantics. In the presence of odd loops, without restrictions
on the preference relation, the preferential model semantics
support a different set of argument extensions. In the ab-
sence of nested odd loops, the set of supported argument
extension correspond to those supported by the CF2 seman-
tics. The way the preferential model semantics handles odd
loops, especially, nested odd loops, seems to be more in line
with our intuitions. Based on the preferential model seman-
tics, a new equivalent argumentation semantics has been de-
fined.

Appendix
Proof of Proposition 1 Suppose that A(s) is not a maximal
conflict-free set of argument. Then there is a conflict-free set of
arguments S ⊆ A such that A(s) ⊂ S. According to item 2 of
Definition 9, there is a state s′ ∈ S such that S = A(s′). Then,
according to item 3 of Definition 9, s′ < s. Contradiction. 2

Proof of Theorem 1 (⇒) Let A(s) be a stable argument exten-
sion. Since every argument not in A(s) is attacked by A(s), A(s)
is a maximal conflict-free set of arguments. Therefore, for no
s′ ∈ S, A(s) ⊂ A(s′).

Suppose that there is s′ ∈ S such that s′ < s. Since A(s) 6⊂
A(s′), according to item 3 of Definition 9 and Definition 8, there
is an argument A ∈ A− S such that A −→ S. Since S is a stable
arguments extension, for every argument A ∈ A− S, S −→ A.
Therefore, s . s′. Moreover, since A(s) 6⊂ A(s′), s′ 6< s. Con-
tradiction.

Hence, s is minimum / preferred state in S such that A(s).

(⇐) Let s be a minimum state in S, and for any state s′ ∈ S,
if s′ . s, then s . s′. According to Proposition 1, A(s) is a
maximal conflict-free set of arguments.

Suppose that A(s) is not a stable argument extension. Then for
some A ∈ (A − A(s)), A(s) 6−→ A. Since A(s) is maximal
conflict-free set, A −→ A(s). Let A(s′) = {A} ∪ (A(s)− {B |
A −→ B}). According to Definition 8, s′ . s. This implies
s . s′. Therefore, there must be an argument B ∈ A(s) such that
B −→ A. Contradiction.

Hence, A(s) is not a stable argument extension. 2

Lemma 1 Let P = (S, |=, <) be a preferential model for an ar-
gumentation framework AF = 〈A,−→〉.
A(s) is admissible iff s is an admissible state.

Proof (⇒) Let A(s) be admissible.

Suppose that s′ �∼ s. Then for every B ∈ (A(s′)−A(s)), B −→
A(s). Since A(s) is admissible, A(s) −→ B. Therefore, s . s′.

Hence, for every s′ �∼ s implies s . s′ and therefore, s is an ad-
missible state.

(⇐) Let s ∈ S be an admissible state. Then, s′ �∼ s imply s . s′

for every s′ ∈ S.

Suppose that A(s) is not admissible. Then there must be an
argument B such that B −→ A(s) and A(s) 6−→ B. Let
A(s′) = {B} ∪ (A(s) − {C | B −→ C}). Clearly, s′ �∼ s.
Since A(s) 6−→ B, s 6. s′. Contradiction.

Hence, A(s) is admissible. 2



Proof of Theorem 2 A(s) is a preferred extension iff A(s) is a
maximal, w.r.t. ⊆) admissible set. According to Lemma 1, A(s′)
is admissible iff for every s′′ ∈ S: s′′ �∼ s′ implies s′ . s′′.

Therefore, A(s) is a preferred argument extension iff s maxi-
mizes (w.r.t. ⊆) A(s) among the states {s′ ∈ S | ∀s′′ ∈
S: s′′ �∼ s′ implies s′ . s′′}. Hence, A(s) is a preferred argu-
ment extension iff s is a minimum state w.r.t. < in {s′ ∈ S | ∀s′′ ∈
S: s′′ �∼ s′ implies s′ . s′′}; i.e., s is a minimum, (w.r.t. <) ad-
missible state in S. 2

Lemma 2 Let P = (S, |=, <) be a preferential model for an ar-
gumentation framework AF = 〈A,−→〉. Moreover, let A(s) be
an admissible set of arguments.

Every argument acceptable w.r.t. A(s) belongs to A(s) iff s is
the only state that is acceptable with respect to s.

Proof (⇒) Let very argument A acceptable w.r.t. A(s) belongs
to A(s).

Suppose s′ is acceptable w.r.t. s and s 6= s′. Let s′′ ∈ S be a
state such that s′′ �∼ s′. Then for every B ∈ (A(s′′) − A(s′)),
B −→ A(s′). Since s′ is acceptable w.r.t. s, s . s′′. There-
fore, A(s) −→ B. Hence, for every A ∈ (A(s′) − A(s)), A is
acceptable w.r.t. A(s). But then, A ∈ A(s), contradicting s 6= s′.

Hence, s is the only state that is acceptable with respect to s.

(⇐) Let s be the only state that is acceptable with respect to s.

Suppose that an argument A acceptable w.r.t. A(s) does not belong
toA(s). Since A is acceptable w.r.t. A(s) andA(s) is admissible,
there is a state s′ ∈ S such that A(s′) = {A} ∪ A(s).

Suppose s′′ �∼ s′. Then for every B ∈ (A(s′′) − A(s′)), B −→
A(s′). Since A is an acceptable w.r.t. A(s), A(s) −→ B. There-
fore, s . s′′.

Hence, s′ is acceptable w.r.t. s and s 6= s′. Contradiction.

Hence, every argument acceptable w.r.t. A(s) belongs toA(s). 2

Proof of Theorem 3 A(s) is a complete extension iff A(s) is ad-
missible and every argument acceptable w.r.t. A(s′) belongs to
A(s′). According to Lemma 1, A(s) is admissible iff s is an ad-
missible state. According to Lemma 2, every argument acceptable
w.r.t. A(s) belongs to A(s) iff s is the only state that is acceptable
with respect to s. Therefore, A(s) is a complete extension iff s is
an admissible state in S and s is the only state that is acceptable
with respect to s. 2

Proof of Theorem 4 A(s) is a grounded extension iff A(s) in a
minimal, w.r.t. ⊆, complete extension. Therefore, s is a maximum
(w.r.t. <) state among the states in S that are both admissible and
for which s is the only state acceptable with respect to s. 2

Lemma 3 A(s) is more acceptable thanA(s′),A(s) % A(s′), iff
s . s′.

Proof (⇒) Let A(s) % A(s′). Then, by Definition 12, for every
argument B ∈ A(s′) − A(s) there is an argument A ∈ A(s) −
A(s′) such that A −→ B. Therefore, for every argument B such
that s′ |= B and s 6|= B there is an argument A such that s |= A,
s′ 6|= A and A −→ B. Hence, by Definition 9, s < s′.

(⇐) Let s < s′. Then, by Definition 9, for every argument B
such that s′ |= B and s 6|= B there is an argument A such that
s |= A and A −→ B. B such that s′ |= B and s 6|= B implies
B ∈ A(s′) − A(s). Moreover, s |= A implies A ∈ A(s), and
A −→ B together with s′ |= B implies A 6∈ A(s′) (conflict-free).
Hence, by Definition 13, A(s) % A(s′). 2

Proof of Theorem 5 (⇒) Let S be a pm-extension. By Definition
13, S is conflict-free. Therefore there is an s ∈ S such thatA(s) =
S.

Suppose s is not a minimum state. Then there is a s′ ∈ S such that
s′ < s. According to item 4 of Definition 9, A(s) ⊂ A(s′), or
s′ . s and s 6. s′. According to Definition 13, A(s) 6⊂ A(s′).
Therefore, s′ . s and s 6. s′. This is equivalent to A(s) % A(s′)
and A(s) 6%+ A(s′) according to Lemma 3. Hence according to
Definition 13, S = A(s) is not a pm-extension. Contradiction.

Hence, s is minimum state.

(⇐) Let s be a minimum state. Then A(s) is a conflict-free set of
arguments.

Suppose that A(s) is not a pm-extension. Then there is a conflict-
free set of arguments T ⊆ A such that A(s) ⊂ T , or T % A(s)
and A(s) % T . Since T is conflict-free, there is a state s′ ∈ S
such that A(s) = T . According to Lemma 3, A(s) ⊂ A(s′), or
s′ . s and s 6.+ s′. Then according to item 4 of Definition 9,
there is an s′ ∈ S such that s′ < s. Hence, s is not a minimum
state. Contradiction.

Hence, A(s) is a pm-extension. 2

The proof of Proposition 2 is omitted due to lack of space.
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