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Abstract

Symmetry had been well studied in classical logics
and constraint programming since a decade. Early,
Krishnamurthy showed that some tricky formulas ad-
mit short proofs when augmenting the propositional
logic resolution proof system by the symmetry rule.
However, in Artificial Intelligence, we usually manip-
ulate incomplete information and need to include un-
certainty to reason on knowledge with exceptions and
non-monotonicity. Several non classic logics are intro-
duced for that purpose, but as far as we know, symmetry
for these frameworks had not been studied yet. Here, we
are interested to extend the notion of symmetry to that
non classical logics such as Preferential logics, X-logics
and Default logics, then give new symmetry inference
rules for the X-logics and the Default logics that can be
used to shorten proofs. Finally, we show how symme-
try reasoning is profitable for these logics and how they
handle some symmetries that do not exist in classical
logics.

Introduction

Symmetry is by definition a multidisciplinary concept. It ap-
pears in many fields ranging from mathematics to artificial
intelligence, chemistry and physics. In general, it returns to
a transformation, which leaves invariant (does not modify
its fundamental structure and/or its properties) an object (a
figure, a molecule, a physical system, a formula or a con-
straints network...). For instance, rotating a chessboard up
to 180 degrees gives a board that is indistinguishable from
the original one. Symmetry is a fundamental property that
can be used to study these various objects, to finely analyze
these complex systems or to reduce the computational com-
plexity when dealing with combinatorial problems.

As far as we know the principle of symmetry in Al
has been first introduced by Krishnamurthy (Krishnamurty
1985) to improve resolution in propositional logic. Symme-
tries for Boolean constraints are studied in depth in (Ben-
hamou and Sais 1992; 1994; Benhamou, Sais, and Siegel
1994). The authors showed how to detect them and proved
that their exploitation is a real improvement for several auto-
mated deduction algorithms efficiency. Since that, many re-
search works on symmetry appeared. For instance, the static
approach used by James Crawford et al. in (Crawford et al.
1996) for propositional logic theories consists in adding con-
straints expressing global symmetry of the problem. This
technique has been improved in (Aloul et al. 2003) and ex-

tended to 0-1 Integer Logic Programming in (Aloul et al.
2004). The notion of interchangeability in Constraint Sat-
isfaction Problems (CSPs) is introduced in (Freuder 1991)
and symmetry for CSPs is studied earlier in (Puget 1993;
Benhamou 1994).

Since a great number of constraints could be added in
the static approach, in CSPs, some researchers proposed
to add the constraints during the search. In (Backofen
and Will 1999; Gent and Smith 2000; Gent, Harvey, and
Kelsey 2002), authors post some conditional constraints
which remove the symmetric of the partial interpretation
in case of backtracking. In (Focacci and Milano 2001;
Fahle, Schamberger, and Sellmann 2001; Puget 2002; Gent
et al. 2003), authors proposed to use each subtree as a no-
good to avoid exploration of some symmetric interpretations
and the group equivalence tree conceptual for value symme-
try elimination is introduced in (Roney-Dougal et al. 2004).
More recently Walsh in (Walsh 2006) studied various new
propagators to break various symmetries among them the
one acting simultaneously on both variables and values.

As stated by Krishnamurthy in his seminal work (Krish-
namurty 1985), symmetry is one of the most promising ap-
proach for deriving short proofs for many tricky formulas.
He proposed a resolution proof system augmented with a lo-
cal symmetry rule (LS-Res) that Stephan Szeider in a more
recent work (Szeider 2005) showed to be stronger than reso-
lution with the global symmetry rule which is itself stronger
than the classical resolution proof system.

On other hand, within the framework of the Artificial in-
telligence, an important paradigm is to take into account in-
complete information (uncertain information, revisable in-
formation...). An essential component of the intelligence
(that is human, animal or artificial) is indeed to be related to
a certain capacity of adaptation of the reasoning. Contrary
to the mode of reasoning formalized by a conventional or a
classical logic, a result deducible from information (from a
knowledge, or from beliefs) is not true but only probable in
the sense that it can be invalidated further, and can be revised
when adding new information. For example, it is admitted
that a normal bird flies. Thus, if it is known that Tweety is
a bird, then one will conclude from it that naturally Tweety
flies. If it is learned thereafter that Tweety is a Penguin, this
conclusion will have to be revised. This is impossible in a
classical logic having the monotony property: an informa-
tion deducible from a knowledge C, it will be always if C is
increased.

To manage the problem of exceptions, several logi-



cal approaches in Artificial intelligence had been intro-
duced. Many non-monotonic formalisms were presented
since about thirty years, but the problem of symmetry within
this framework was not studied. Symmetry reasoning is
however relevant for knowledge representation and non-
monotonic reasoning. For instance, in the previous exam-
ple, it is interesting to consider that the normal birds belong
to the same class with respect to some basic properties, and
then they are all symmetrical in this sense.

In this work, we investigate symmetry in three non-
classical logics: Preferential logic (Bossu and Siegel 1982;
1985; Shoam 1987; Besnard and Siegel 1988; Kraus,
Lehmann, and Magidor 1990), X-logic formalism (Siegel,
Forget, and Risch 2001), and Default logic (Reiter 1980).

The motivation behind symmetry in non-monotonic rea-
soning is to find short proofs for theorem provers that deal
with these logics. For instance in each of the X-logic and
the default logic, we introduced a symmetry rule that can
be used to infer all the symmetrical formulas of a deduced
formula without duplication of efforts. That is, if a formula
is proved to be a theorem in these logics, then we can de-
duce directly by symmetry that all its symmetrical formulas
should be too. Otherwise, if the checked formula is not a
theorem, then we conclude by symmetry that all its sym-
metrical formulas are not theorems. Thus, such symmetry
rules make cuts in the proof and help a theorem prover to
find a short one.

The rest of the paper is organized as follows: Section
2 gives the main definitions of symmetry in propositional
logic. In section 3, we study symmetry in preferential logics.
Section 4 extends symmetry to the X-logic formalism. We
introduce in Section 5 symmetry in Defaults logic. Finally,
Section 6 concludes the work and gives some perspectives.

Symmetry in Propositional Logic
First, we give the semantic symmetry definition in Proposi-
tional logic:

Definition 1 (Semantic symmetry) Let F' be a proposi-
tional formula given in CNF and L its complete set ! of

literals. A semantic symmetry of F' is a permutation o de-
fined on Lp suchthat F |= o(F)and o(F) E F

In other words a semantic symmetry of a formula is a vari-
able permutation that conserves the set of the models of the
formula. It also conserves the set of no-goods (counter mod-
els). Now, we recall the syntactic symmetry definition (Ben-
hamou and Sais 1992; 1994).

Definition 2 (Syntactic symmetry) Let F' be a proposi-
tional formulas given in CNF and L its complete set of
literals. A syntactic symmetry of F' is a permutation o de-
fined on L such that the following conditions hold:

1. Vi€ Lp,o(=l) =-0o(l),
2. 0(F)=F

In other words, a syntactical symmetry of a formula is
a variable permutation that leaves the formula invariant. It
is trivial to see that each syntactic symmetry is a semantic

symmetry, and in general, the converse is not verified. It is
known

!The set of literals of F' containing each variable of F" and its
negation

On other hand, Krishnamurthy introduced the following
symmetry rule to augment the resolution proof system.

Proposition 1 If L is the propositional logic, A a set of for-
mulas of L, B a formula of L and o a syntactic symmetry of
A, then the symmetry rule can defined as follows:

A+ B
At o(B)

Many hard problems for resolution have been shown to
be polynomial when using symmetry in resolution. For in-
stance, finding some of the Ramsey’s numbers or solving the
pigeon-hole problem are known to be exponential for classi-
cal resolution, while short proofs can be made for both them
when adding the symmetry rule to the resolution proof sys-
tem. We will see in Section 4 how to extend this rule to
non-monotonic logics.

Now we deal with the main contribution of this work that
consists in extending symmetry to non-monotonic logics.

Symmetry in Preferential Logic

Symmetry is very important in non-monotonic reasoning,
but it is not investigated until now. Here we extend the no-
tion of symmetry to the preferential logic framework.

For example, it is admitted that a normal student is young.
Thus, if it is known that John is a student, one will conclude
from it rather naturally that John is young. If it is learned
thereafter that John is fifty years old, then the conclusion
saying that John is young will be revised.

It is then important to consider that the normal students
belong to the same class, since they are all symmetrical with
respect to the normal property.

Initially, simplest is to start from a preferential approach,
such as it was initiated by Bossu-Siegel (Bossu and Siegel
1982; 1985), taken again by Shoam (Shoam 1987), and
Besnard-Siegel (Besnard and Siegel 1988) , then by Kraus,
Lehmann and Magidor in (Kraus, Lehmann, and Magidor
1990). All these approaches are build on a classical logic
(propositional calculus, predicate calculus, modal logic)
where the semantic of the inference is given by “A formula
A implies a formula B if each model of A is a model of B”.
However, a preferential approach, in its most general form,
says “A implies B if all the preferred models of A are mod-
els of B”. The preferred models of A are models that have
relevant properties for the management of the exceptions.
This concept of preference can be defined by a relation of
pre-order (a transitive and reflexive relation) between inter-
pretations, the preferred models being the minimal models
for this relation. For our elementary example, if I and J
are interpretations and the pertinent information is ’Young”,
then the pre-order relation can be defined by: I < J iff any
young individual in J is young in /

Definition 3 Let L be a classical logic, and F the set of all
Sformulas of L. If A is a subset of formulas (or a formula) of
F, then A is the set is of the formulas logically implied by
A. The set of formula A is deductively closed if A = A.

Definition 4 A preferential relation < is any pre-order rela-
tion between interpretations (a pre-order relation < is tran-
sitive and reflexive). Besides, if the relation < is antisym-
metric, then < becomes an order.



Intuitively, we can consider the students who are not
young as exceptions (Abnormal students). Therefore I < J
if the set of exceptions of [ is include in the set of exceptions
of J.

Definition 5 If A is a set of formulas, a minimal model M of
A is an interpretation which satisfies A (M + A) and which
is minimal for the relation < defined on the set of models of
A. That is, if M' is a model of A such that M’ < M, then
M < M’ (or;, equivalently, M' = M if < is antisymmetric).

Definition 6 [n a classical manner, if < is a preferential re-
lation, we define the preferential-model logic inference -
as follows: A+ B iff each minimal model of A is a model
of B.

Example 1 To represent the sentences “Generally stu-
dents are young” and “Lea is a student ”, we can
use a preferential approach, that is close to the circum-
scription (McCarthy ). An additional predicate “Abnor-
mal” is added and our first sentence is translated to
“A student, which is not abnormal is young”. Now,
if the predicates St, Ab, and Yo, respectively, de-
notes “Student”, “Abnormal” and “Young”, then in first
order logic, we obtain the following set of formulas:
A = {St(Lea),Vx(St(x) A ~Ab(z)) — Yo(z)}
By instantiating the constant Lea to the variable x, we
translate the set of formulas into propositional logic and ob-
tain the following set of formulas:
A = {St(Lea), (St(Lea) AN ~Ab(Lea) — Yo(Lea)}
Thus :
A = {St(Lea), Ab(Lea) V Yo(Lea)}
The set A has an amount of eight interpretations, among
them the three following which are the models:

M, = {St(Lea), Ab(Lea),Y o(Lea)}
My, = {St(Lea),—Ab(Lea),Yo(Lea)}
Ms = {St(Lea),Ab(Lea),~Yo(Lea)}

In a classical logic, it is impossible to infer from A that Lea
is young. Indeed, A has both models were Lea is young
(M- and Ms), and models were Lea is not young, particu-
larly those where Lea is abnormal (1/3). To obtain the result
“Lea is young”, we will prefer the models that have fewer
abnormal students. Thus, in a preferential model approach,
the relation < can be defined as: M < M’ iff “each indi-
vidual which is abnormal in M is abnormal in M’”. Here,
we consider that the circumscription is made on the predi-
cate Ab, and all the other predicates vary (not fixed). For
instance we can remark that Y o(Lea) varies, it is true in M;
and false in M3. The literal St(Lea) could be fixed, but we
do not find that necessary. According to this relation, we
obtain the following preferences between the models of A:
My, < Ms, Mg < M, My < My, My < Mjs. There-
fore A has only one minimal model which is M5, and Lea
is young in this model. We can then infer that Lea is young
in this preferential approach. It is then important to infer all
the symmetrical of the literal Yo(Lea) with respect to this
preference relation.

Symmetry

We recall that a semantic symmetry of A is a permutation
o of the propositional variables of A such that A and o(A)
have the same models. Now, we extend the definition of

semantic symmetry to preferential-model logics and show
how literals could be symmetrical in this non-classic logic
but not symmetrical in a classic logic.

Definition 7 (Semantic preferential symmetry) IfF_ isa
preferential-model inference, A a set of formulas, and o a
permutation defined on the variables of A, then o is a sym-
metry of A, iff A and o(A) have the same set of minimal
models.

Definition 8 Two literals | and [ are symmetrical in A iff
there exists a semantic preferential symmetry o of A such

that (1) = .

Example 2 If we take the previous example and add
the fact that “John is a student”, then we obtain the
following formula: A'={St(Lea), St(John), Ab(Lea) V
Yo(Lea), Ab(John) VY o(John)} which admits nine mod-
els. It is easy to see that the individuals Lea and John are
symmetrical in both classical and preferential logics in the
sense that each predicate literals where Lea appears is sym-
metrical to the predicate literals where we substitute John
to Lea. If we consider the “abnormal” like the pertinent
information on which it is based the preference and the per-
mutation o=(St(Lea), St(John))(Ab(Lea), Ab(John))
(Yo(Lea),Yo(John)) then we can easily see that
o is a semantic preferential symmetry of the for-
mula A'. Indeed, there is one minimal model that
is M={St(Lea), St(John), ~Ab(Lea), ~Ab(John),
Yo(Lea),Yo(John)} an which is preserved by o. We
can see that the literals Yo(Lea) and Yo(John) are
symmetrical as well as Ab(Lea) and Ab(John).

Now, if we add to A’ the information “John is not
abnormal”, then both Y o(Lea) and Y o(John) as well as
—Ab(Lea) and —Ab(John) remains symmetrical two by
two in the preferential logic since M remains the single
minimal model of the theory where all the literals are true.
However, the literals Yo(Lea) and Yo(John) are not
symmetrical in a classical logic. Indeed, the new formula
contains the following three extended models:

M, = {St(Lea), St(John), Ab(Lea),Y o(Lea),
—Ab(John),Y o(John)}

My, = {St(Lea), St(John),—Ab(Lea),Y o(Lea),
—Ab(John),Yo(John)}

Ms = {St(Lea), St(John), Ab(Lea),—Y o(Lea),

—Ab(John),Yo(John)}

where both literals are not symmetrical. We can see for in-
stance that the model M3 does not remain a model if we
permute Y o(Lea) and Y o(John).

It is then important to see that some literals could be sym-
metrical in a preferential approach but not symmetrical in
a classical logic. This is due to the relaxation of the sym-
metry conditions in the preference approaches that consider
only the minimal models. This information is new and is
promising for symmetry reasoning in non classical logics.

We extended the semantic symmetry notion to preferen-
tial logics, in the next section, we try to extend the notion
of syntactic symmetry to non-classical logics. To do that
we chose the X-logic (Siegel, Forget, and Risch 2001) as a
baseline framework.



Symmetry in X-Logic

We have seen that it is easy to extend the notion of seman-
tic symmetry to preferential-model logics, but the syntactic
symmetry definition in such logics seems to be not trivial.
For this purpose, we will use the X-logic (Siegel, Forget,
and Risch 2001) formalism that looks to have some syntac-
tic important properties that we will use to extend the notion
of syntactic symmetry to non-classical logics.

Definition 9 (X-logic) Let X be a set of formulas of the
propositional logic L (X is not necessary deductively
closed). The non-monotonic inference relation \- x is defined

byAFx Biff(AUB)NX CANX

Remark 1 e In other words, A Fx B if every theorem of
(AU B), which is in X is also a theorem of A. That is, by
adding the knowledge B to A the set of theorems which
are in X does not grow. As the classical logic inference +-
is monotonic, then we also have ANX C (AUB)N X,
and therefore, it is possible to define the X-logic inference

o For the particular case where X = F (the set of all possi-
ble formulas of the logic L), the inference \-x is identical
to the classical inference \-. On other hand if X is empty,
then every formula B can be inferred by A.

The set X can be seen as a potentiometer that regulates the
inference. Intuitively, if a formula A encodes an information
(a knowledge, or some beliefs..), X can be considered as the
set of “pertinent” informations. The set A implies a set B
of information, for the X-logic inference, if the addition of
B to A does not produce more pertinent formulas than those
produced by A alone.

The set X is any set of formula, not necessary closed. It is
possible to deduce some properties on the X-logic by adding
properties on the set X. For example, if the complement
of X, is deductively closed, then the corresponding X-logic
will have very interesting properties such as that one of “Cu-
mulativity” (Siegel, Forget, and Risch 2001). If X is the set
of positive formulas (formulas that do not contain the log-
ical operators — and —), then we obtain the Closed World
Assumption (CWA).

Symmetry

Now we will deal with symmetry in X-logics. We extend
the definition of syntactic symmetry to the framework of X-
logic and give an extended rule of symmetry that can be used
to make short proofs by using symmetrical formulas within
this framework.

Definition 10 Let A be a set of formulas of the proposi-
tional logic, X the subset of pertinent formulas on which
it is build the X-logic inference \-x and o is a variable per-
mutation. The permutation o is a syntactic symmetry of A
in the considered X-logic if the following conditions hold.

1. 0(A) = A
2. 0(X)=X

Now we extend the symmetry rule of Krishnamurthy to
the X-logic framework.

Proposition 2 Let A and B be two formulas or two sets of
formulas of the classical logic L and o a syntactic symmetry

of A in the considered X-logic. We have the following rule:
Abx B
A l_X O’(B)
Proof 1 To prove that A Fx o(B) we shall prove that
AUuc(B)NX =ANX. We have by the hypothesis A +-x
B, thatis (AU B)NX = ANX. Since o is a syntactic sym-
metry of A in the X-logic, then it preserve the propositional
logic theorems. Thus, we have c(AUBN X) =o(ANX)
which is equivalent to 0(AU B) N o(X) = o(A) N o(X).

This gives c(AUB) No(X) = o(A) N o(X) which is
equivalent to c(A)Uo(B)No(X) = o(A) No(X). Since
both A and X are invariant under o, then we deduce
AUco(B)NX = Ano(X). Therefore, At-x o(B).

Example 3 Take for instance the student example encoded
by the following set of formulas: A’'={St(Lea),St(John),
Ab(Lea) V Yo(Lea), Ab(John) V Yo(John)}. Con-
sider the set X={-Ab(Lea),~Ab(John)} and the per-
mutation: o=(St(Lea), St(John))(Ab(Lea), Ab(John))
(Yo(Lea),Yo(John)). The permutation o is a X-logic
symmetry of A'. We have A’ Fx Yo(Lea), and by sym-
metry we have A’ bx Yo(John) since o(Yo(Lea)) =
Yo(John).

This rule could be used to infer all the symmetrical for-
mulas of an inferred formula in the considered X-logic, its
implementation in a theorem prover will help to shorten a
proof of a theorem.

In the next section, we extend symmetry to a more gen-
eral and well known non-monotonic logic that is the Default
logic framework introduced by Reiter (Reiter 1980).

Symmetry in Default logic

We investigate in this section the notion of symmetry in de-
fault logics and study its relationship with the other non-
classical logics discussed before. A Default logic is a non-
monotonic logic that is introduced by Reiter (Reiter 1980)
to formalize reasoning by default assumptions. Before deal-
ing with symmetry in this logic we summarize some of its
background.

Background

Definition 11 A Default theory T is a pair (D, W) where
W is a set of logical formulae, called the background theory,
that formalize the facts that are known for sure. D is a set of
default rules, each one being of the form:

Prerequisite : Justificationy, ..., Justification,

Consequent

Intuitively, this default means that, if the Prerequisite is
true, and each Justification; foralli € {1,...,n} is con-
sistent with our current beliefs, then we are led to believe
that the C'onsequent is true, and infer it (add it to the the-
ory). To define formally the meaning of a default rule, we
need to introduce before that, the important notion of exten-
sions in a Default logic.

An extension of a Default theory T' = (D, W) is a deduc-
tively closed set I of formulae that includes W and which

verifies: if M € D is a default such that « € F, and
vie{l,...,n},0; ¢ E, then vy € E. Formally:



Definition 12 [fTh(E) is the set of logical consequences of
the set of formulae E, then E is an extension of the Default
theory T' = (D, W) if and only if E = U, ., Ei and
the following conditions hold: Eq = W, and,

Vi > 0,Eiy1 = Th(E;) U {y : @8bn ¢ Do e
El,V] S {1, A ,n},_‘ﬁj ¢ E}

A default rule M can be applied to a given default
theory T = (D, W) if its prerequisite « is in W, and the
negation of each of its justifications —(3; is not in the exten-
sion E.

Remark 2 1. When all the defaults of the theory are normal
(in the form “ﬁ—ﬁ ), the condition of the justification —( ¢
E is simplified into —(3 ¢ E;. We get then a more simple
and constructive method to build the extension E.

2. The default rules may be applied in different order, and
this may lead to different extensions E for the same theory

3. If a default contains formulae with free variables, it is
considered to represent the set of all defaults obtained by
giving a value to all these variables.

Example 4 Tuke for instance the known default rule “birds
typically fly”which is formalized by the following default

D = {%ﬁ(%s(x)} This rule means that, if

X is a bird, and it can be assumed that it flies, then we
can conclude that it flies. A background theory contain-
ing some facts about birds is the following one: W =
{Bird(Condor), Bird(Penguin), —Flies(Penguin),
Flies(Fagle)}. We get then the default theory T =
According to this default rule, a condor flies be-
cause Bird(Condor) is true and the justification
Flies(Condor) is not inconsistent with what is cur-
rently known. On the contrary we know that a penguin does
not fly. Thus, Bird(Penguin) does not allow concluding
Flies(Penguin), even if the precondition of the default
Bird(Penguin) is true, the justification Flies(Penguin)
is inconsistent with what is known. Therefore we get a
single extension for the theory T which is:
E = {Bird(Condor), Bird(Penguin), = Flies(Penguin),
Flies(Fagle), Flies(Condor)}

The more important notion in a Default logic is the com-
putation of extensions of a Default theory. Based on this set
of extensions, researchers defined different semantics for a
Default logic. Entailment of a formula from a default theory
T = (D, W) can be defined in different ways:

Definition 13 Given a Default theory T = (D, W) and the
set of all its extensions FEr.

o Skeptical approach: a formula f is entailed by the de-
fault theory T if it is entailed by all its extensions; that is
Ttrs fiff VE € Ep, E+ f.

e Credulous approach: a formula is entailed by a default
theory if it is entailed by at least one of its extensions, that
isThre fiffiE € Ex : EF f.

o Semi-credulous approach: a formula is entailed by a de-
fault theory if it is entailed by at least one of its extensions

and all of these never entail its negation; thatis T Fsc f
iffiE € Ep: EF fandVE € Ep, E ¥ —f.

Symmetry

Now we introduce the notion of symmetry in Default logic
and show how entailment is improved by the property of
symmetry. For this logic we distinguish tow levels of sym-
metry : syntactic symmetry and semantic symmetry. We
define in the following both them and study their relation-
ship.

Definition 14 (Semantic symmetry) Given a Default the-
ory T = (D, W), Vr is the set of its variables and Er the
set of all its extensions. A semantic symmetry o is a variable
permutation defined on Vr such that Ep = Eq (1.

In other words, a semantic symmetry of a default the-
ory T' is a variable permutation that leaves invariant its
set of extensions. It results from this, that each extension
E; € Er is transformed by the symmetry o to another ex-
tension £; = o(E;). These extensions are what we call
symmetrical extensions. It is then possible to get family of
symmetrical extensions without duplication of efforts if we
know that E; is an extension and we have at hand the sym-
metry group of the theory 7'. Unfortunately, computing se-
mantic symmetry is time consuming, since it needs to com-
pute all the extensions. In the following, we will define the
syntactic symmetry, and show that it is a sufficient condition
for semantic symmetry which can be computed efficiently.

Definition 15 (Syntactic symmetry) Given a Default the-
ory T = (D, W), a syntactic symmetry is a permutation o
defined on the set Vp of variables of T that lives the theory T’
invariant. That is, o(T) = T, more precisely, the following
conditions hold: o(D) = D and o(W) = W.

Example 5 Take for instance the student example dis-
cussed before and consider the following default theory

T = ({ZGE Y)Y, {St(Lea), St(John)}). The per-

mutation o=(St(Lea), St(John))(Ab(Lea), Ab(John))
(Yo(Lea),Yo(John)) is a syntactic symmetry since
it leaves T invariant. =~ By considering all the termi-
nal instantiations of the free variable of the defaults
of the theory T we can see that T has one extension
E = {St(Lea), St(John),Yo(Lea),Yo(John)} which
remains invariant under . We conclude that o is also a
semantic symmetry.

Now, if we add Y o(John) to the facts of the theory T of
the previous example, then we get the theory a new theory
T’ for which ¢ is not a syntactic symmetry. However, o
remains a semantic symmetry of 7" since the new theory 7"
has the same extension £ as T'. This, illustrate that semantic
symmetry includes syntactic symmetry.

We give in the following theorem the relationship between
semantic symmetry and syntactic symmetry of a Default
logic.

Theorem 1 Given a Default theory T, if o is a syntactic
symmetry of T, then o is a semantic symmetry of T

Proof 2 The proofis trivial. Since o is a syntactic symme-
try, then o(T) = T. Thus, Ep = Eq (7).

Now we can introduce the new symmetry inference rule
in Default logics. Take for instance the skeptical inference
Fs.



Proposition 3 Let T be a default theory, [ a formula and o
a syntactic symmetry of T. We have the following rule:

Tkrs f
Ttso(f)

Proof 3 To show that T tg o(f) requires to prove that
VE, € Er,Ex b o(f). Let E; € Er, by the definition of
the symmetry o there exists E; such that E; = o(E;). By
the hypothesis, we have T' &g f. Thus E; = f, and then
o(E;) & o(f). Therefore E; = o(f). We conclude that

Trso(f).

Remark 3 The previous rule is also valid for both the cred-
ulous (¢ ) and the semi-credulous (- g¢ ) inferences.

Example 6 Take Example 5. In the theory T, we have T t-g
Yo(Lea). Then by the symmetry inference rule we can make
the entailment T g o(Yo(Lea)). Thus, T g Yo(John).

Now we give an important proposition that uses symmetry
to compute the set of extensions.

Proposition 4 Given a Default theory T = (D, W), a sub-
set of formulae E, and a syntactic symmetry o of T, then E
is an extension of T' iff o (E) is an extension.

Proof 4 Suppose that E is an extension. The permutation
o is a syntactic symmetry, then by Theorem 1 it is a semantic
symmetry. It then preserves the set B of extensions of T.
It results from this, that o(E) € Ep. The converse can be
shown in the same way by considering the inverse symmetry
-1
o~ of o.
Now we discuss the relationship of symmetrical exten-

sions of a Default theory and their corresponding subsets of
defaults that are used to build them.

Proposition 5 Given a Default theory T = (D, W), a sub-
set D1 C D, and a syntactic symmetry o, then there exists
an extension EP' of T obtained by application of the de-
faults of D1, if and only if. there exists an extension E°(P1)
of T obtained by application of the defaults of o(D1).

Proof 5 Suppose that EP1 is an extension of T = (D, W)
obtained by application of the defaults of D1. We shall prove
that there exists an extension E°PV) of T that can be ob-
tained by application of the defaults of o(D;). Since EP
is an extension of T, then from Definition 12, we have the
following: EP+ = Uio.. oo i where: Ey = W, and,
Vi > O,Ei+1 = Th(El) U {’)/ : M € Dl,OL S
Ei,Vje{l,...,n},~B; ¢ EP1}. To show the existence of
the extension E7PV) of T, we set E' = o(EPY), E) =W,

Vi > 0, Bj,, = Th(E}) U{o(y) : Zeko@lenola) ¢

o(D1),0(a) € Ej,Vj € {L,...,n},~0(53;) ¢ E'} and
prove that E' is an extension of T and E' = E°(PV). To
show that E' is an extension of T, we have to show that
E" = Uiz, Ei- To do that, first we have to show that
Vi > 0, E. = o(E;). We prove this property by induc-
tion on i. For the first step (i = 0), we have E), = W,
thus E, = o(W) since o is a syntactic symmetry of T.
It results that E), = o(Ey). Now, we suppose that the
property is verified at the step i, that is, E! = o(FE;),
we shall show that the property holds at the step i + 1,

that is, B}, = o(E;11). By the definition of Ej |, we

have Ej,, = Th(E}) U {o(y) : Zekol@lemol) ¢

o(Dy),0(a) € ELVj € {l,...,n},—~o(B;) ¢ E'}.
By the hypothesis of the induction and the definition of

E', we can rewrite E; | as: E; , = Th(o(E;)) U
{o(y) : A2eBenolBo) ¢ (D)), 0(a) € o(E;),¥j €

{1,...,n},—0(B;) ¢ o(EP1)}. On other hand we have
o(Th(E;)) = Th(o(E;)) since the symmetry o verifies
the following: if A + B, then oc(A) b o(B). There-
fore E{ , = o(Th(E;)) Uo({y : M € Dy, €
Ei,Vj € {1,...,n},—B8; ¢ EP}). We deduce that
Bl = o(Th(E;) U{y : ©=fe € Dy a € E,Vj €
{1,...,n},~8; ¢ EP*}). This implies that E/, , =
0(Eit+1), and then we prove the property. Now we shall
prove that E' is an extension of T. By definition E' =
o(EP1), since EP* is by the hypothesis an extension of T
(EPr = Ui:O,..‘,oo E;), then &' = U(Ui:O,...,oo E,), thus
E' =, 00 o(Ei). On other hand we have shown that
Vi > 0, B} = o(E;), thus E' = U,_.. . Ei,
that E' is an extension of T. As E’ is an extension of T
obtained by application of the defaults of o(D1), then we

obtain E' = E7(P1), Finally, we conclude that there exists

an extension E7PV) of T' that can be obtained by applica-
tion of the defaults of (D1). The converse can be shown in
the same way by considering the inverse symmetry o~ of o.

it results

Now we will show that if the application of a default leads
to an extension of the considered theory, then the application
of each of all its symmetrical defaults leads to an extension
of the theory too.

Proposition 6 IfT = (D, W) is a Default theory and o one
of its syntactic symmetries, then there exists an extension of
T where a default d is applied, if an only if, there exists an
extension where its symmetrical default o(d) is applied.

Proof 6 Let E be an extension of T where d is applied.
This implies that there exists a subset D1 C D such that
d € Dy and E = EP'. By Proposition 5, we deduce that
E°(D1) s an extension of T where o(d) € o(D,) is applied.

From the previous proposition we deduce the following
property:

Corollary 1 Given a Default theory T = (D, W), a default
d € D, and a syntactic symmetry o of T, then there does not
exist an extension of T where the default d is applied, if an
only if, there does not exist an extension where its symmetri-
cal default o(d) is applied.

In Default logic we have the advantage that both syntac-
tic and semantic symmetry are defined. The Default logic
is augmented with a symmetry inference rule that can be
used to shorten proofs. Besides, in the Default logic sym-
metry can be used to compute the set of extensions. Indeed,
when an extension is identified during the enumeration, we
can deduce all of its symmetrical extensions without addi-
tional efforts (Proposition 4). In other words the isomorphic
branches in the search tree corresponding to the application
of symmetrical default sub-sets lead to symmetrical exten-
sions, then we need to explore only one branch and prune



the search space corresponding to the others. In case of fail-
ure to get an extension when applying a default d, Corollary
1 allows us to prune all the research subspaces correspond-
ing to its symmetrical defaults o(d)

Conclusion and perspectives

The main purpose behind this work is to extend the notion
of symmetry to non-classical logics formalisms. We defined
the notion of semantic symmetry in preferential-model log-
ics and showed how some information can be inferred by us-
ing this symmetry extension in preferential logics while such
deductions could not be done in a classical logic. The other
point studied here is the extension of syntactic symmetry
definition to the framework of X-logics where a new symme-
try inference rule was given. Finally we defined both seman-
tic and syntactic symmetries in the more general framework
of Default logic. We showed how symmetry can be used to
improve the search of extensions and introduced a new sym-
metry inference that can be used to make short proofs. In a
future work, one can try to study in depth the relationship
between the semantic symmetry in preferential logic and
the syntactic symmetry defined in the X-logics and establish
their relationship with the symmetry definitions introduced
in Default logics. An other point that we want to investigate
is to implement symmetry to speed up enumeration algo-
rithms that are used to compute extensions of default logics
and provide a proof procedure that will take advantage of
the new symmetry rule. Finally, we are looking to study the
relationship of Default logics and Answer Set Programming
(ASP) in order to compute symmetrical extensions by mean
of symmetrical Answer Sets and Stable Models.
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