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Abstract

Belief operations for non-monotonic formalisms like ex-
tended logic programs do not fit into the classic theory of
AGM belief change. In this work we make use of dependency
theories as abstractions of extended logic programs leading to
a monotonic representation. We adapt the basic AGM postu-
lates of revision and contraction for dependency relations in
order to obtain a clearer view on the belief change problem
for logic programs. We present revision and contraction op-
erations on dependency relations satisfying the proposed pos-
tulates. Finally, we show how AGM compliant belief change
operations for extended logic programs can be derived.

Introduction
If we want agents to perform intelligently in a dynamic en-
vironment we have to enable them to revise their beliefs.
The current beliefs have to be modified, new beliefs have
to be acquired, old beliefs have to be revised or given up.
This is what the theory of belief revision is about; it for-
malizes changes and operators for these. Properties of these
belief change operators have been described thoroughly in
literature, with AGM theory (Alchourron, Gardenfors, and
Makinson 1985) being the most seminal approach.

In this work we consider dynamic belief bases that are
represented by non-monotonic theories and in particular by
extended logic programs. We refer to extended logic pro-
grams whenever talking about logic programs in the follow-
ing. Logic programming is intensively used for knowledge
representation and proved to play an important role for the
development of intelligent systems and advanced reasoning
tasks in those (Gelfond and Lifschitz 1988). For the change
of belief bases represented by extended logic programs sev-
eral approaches have been proposed of which the majority
proved to be not compliant with the AGM belief change the-
ory due to the non-monotonic nature of the formalism as
shown in (Eiter et al. 2002).

In this paper, we define a general framework of depen-
dency relations for extended logic programs in the spirit
of (Bondarenko, Toni, and Kowalski 1993) and (Sefranek
2006). Based on this abstraction we investigate the compli-
ance with classic belief revision theory and reformulate the
AGM postulates for revision on dependency relations. We
transfer results on the connection between contraction and

revision operations in classic belief revision theory to depen-
dency relations and define postulates for different types of
contractions which can be used for the definition of revision
operations. Furthermore, we adapt the notions of kernel-
contraction (Hansson 1994) to our framework and show the
satisfaction of the proposed postulates by our operators as
well as the connection of those to revision operators. Ad-
ditionally, we show how the operators defined in this paper
can be used in order to define new belief operations on logic
programs that extend the capabilities of other approaches.

The paper is structured as follows. First, we give pre-
liminaries on belief revision and logic programming. Then
we introduce a dependency theory as the basis of our work.
Then follows an investigation and adaption of classic belief
revision to dependency relations and the use for logic pro-
grams. We close with a discussion of related work and ideas
for future work.

Preliminaries
In the classic setting of belief change as described by (Al-
chourron, Gardenfors, and Makinson 1985) beliefs are for-
mulated in form of sentences from a logical language L
which is closed under some boolean connectives. A belief
setK is a subset of the language that is closed under a conse-
quence operator Cn(·) such that Cn(K) = K. Because of
the infinite size of belief sets a finite representation is often
desirable and given in form of a belief base. A belief base
BK for some belief set K is a finite set of sentences such
that Cn(BK) = K holds. If new information is acquired it
has to be incorporated into the current set of beliefs. Given
a representation as a belief setK and new information being
represented as a sentence φ of the language L, the operation
of adding φ to the current beliefs is called expansion and de-
noted by K + φ. An expansion can be performed without
problems if the new information φ is consistent withK. The
expansion is uniquely determined as K + φ = Cn(K ∪ φ)
given the six AGM postulates for expansion. In the case of
an inconsistency of K and φ, conflicts arising from the ad-
dition of φ to the current set of beliefs have to be resolved
which amounts to a revision of the beliefs. This means that
some of the current beliefs have to be given up in order to
come to a consistent belief set. The AGM model gives six
basic postulates a revision operator ∗ should obey:
(K ∗ 1) K ∗ φ is a belief set.



(K ∗ 2) φ ∈ K ∗ φ.

(K ∗ 3) K ∗ φ ⊆ K + φ.

(K ∗ 4) If ¬φ 6∈ K, then K + φ = K ∗ φ.

(K ∗ 5) K ∗ φ is inconsistent iff φ is inconsistent.

(K ∗ 6) If φ ≡ ψ, then K ∗ φ = K ∗ ψ.

An extended logic program (Gelfond and Lifschitz 1988)
consists of rules over a set of propositional atoms A using
strong negation ¬ and default negation ‘not’. A literal L can
be an atom A or a negated atom ¬A. The complement of a
literal L is denoted by ¬L and is A if L = ¬A and ¬A if
L = A. Let A be the set of all atoms and Lit the set of all
literals Lit = A ∪ {¬A |A ∈ A}. For X ⊆ Lit we define
not X = {not L | L ∈ X} and denote the set of all default
negated literals byD = not Lit. L = Lit∪D represents the
set of all literals and default negated literals. An assumption
is a default negated literal. A rule r is written as

L← L0, . . . , Lm, not Lm+1, . . . , not Ln.

where the head of the rule H(r) = L is either empty
or consists of a single literal and the body B(r) =
{L0, . . . , Lm, not Lm+1, . . . , not Ln} is a subset of L . The
body consists of a set of literals B(r)+ = {L0, . . . , Lm}
and a set of default negated literals not B(r)− with B(r)− =
{Lm+1, . . . , Ln}. Given this we can write a rule as

H(r)← B(r)+, not B(r)−.

If B(r) = ∅we call r a fact. A set of literals which is consis-
tent, i. e., it does not contain complementary literals L and
¬L, is called a state I . A literal L is true in I iff L ∈ I and
false otherwise. The body B(r) of a given rule r is true in I
iff each L ∈ B(r)+ is true in I and each L ∈ B(r)− is false
in I . A rule r is true in I iff H(r) is true in I whenever B(r)
is true in I . A state I is a model of a program P if r is true
in I for all r ∈ P . The reduct PS of a program P relative to
a set S of literals is defined as:

PS = {H(r)← B+(r) | r ∈ P,B−(r) ∩ S = ∅}.

An answer set of a program P is a state I which is a minimal
model of P I .

Dependency theory
In the following we develop a general dependency theory for
non-monotonic formalisms in general and in particular for
extended logic programs in the spirit of (Bondarenko, Toni,
and Kowalski 1993) and (Sefranek 2006). Here, we focus
on the representation of dependencies in extended logic pro-
grams and define semantics based on this representation.

Non-monotonic formalisms are characterized by their use
of assumptions in what is called a default rule. In extended
logic programs these are given in the form of the negative
part of the body of a rule. A literal can depend on default
negated literals as well as on not default negated literals in
the first instance. We elaborate on the differences later on
and begin with a general definition of a dependency relation.

Definition 1 (Dependency relation). A dependency d is a
tuple of the form d = (L,W), where the dependant L ∈ Lit
depends on the premise W ⊆ L of the dependency d. A
dependency relation R is a set of dependencies. The set of
all dependencies, constructible as defined above based on
the set of propositional atoms A is denoted byRA.

The dependency of a literal on some, possibly default
negated, literals means that the latter have to be known or
assumed in order to infer the former. The rules of a logic
program resemble basic dependencies on whose basis fur-
ther dependencies can be entailed. In order to define the en-
tailment of dependencies we facilitate the notion of depen-
dency sequences which are chains of sequential applicable
dependencies, as specified in the following definition.
Definition 2 (Entailment relation `σ). Let R ⊆ RA be a
dependency relation, and D ⊆ R a set of dependencies in
R; let d = (L,W) ∈ RA be a dependency. D entails d,
in symbols D `σ d, iff there exists a dependency sequence
σ = (d1, . . . , dn), n ≥ 1 of elements di = (Li,Wi) ∈
D, 1 ≤ i ≤ n, which satisfies the following conditions:

(i) dn = (L,Wn)
(ii) W1 ⊆ W ⊆ D

(iii) For each i, 1 ≤ i < n :Wi+1 ⊆ W ∪ {L1, . . . , Li}
By use of the entailment operator, new dependencies are

entailed which result from chaining dependencies such that
all non default negated literals of premises occurring in the
sequence are only dependent on a, possibly empty, set of
assumptions mitigated by the sequence. This behavior is ex-
pressed by condition (ii) which states that the premise of the
generated dependency is a set of assumptions and condition
(iii) which expresses that all non-assumptions occurring in
some premise of some dependency in the sequence need to
be dependent solely on assumptions by means of some sub-
sequence of the dependency sequence. The premise of the
generated dependency can contain any subset of the set of
default negated literals as expressed in (ii). This results in
the entailment of all dependencies that are constructible us-
ing the closure of the premise by consistent assumptions.

Based on the entailment operator for dependencies we de-
fine a consequence operator.
Definition 3 (Consequence operator on dependencies).

Cnσ(R) = R ∪ {d |R `σ d}
This consequence operator on dependencies satisfies the
Tarskian axioms for consequence operators, namely itera-
tion Cnσ(Cnσ(A)) = Cnσ(A), inclusion A ⊆ Cnσ(A)
and monotony A ⊆ B implies Cnσ(A) ⊆ Cnσ(B).

Given an extended logic program, a dependency relation
from this is defined by means of the consequence operator.
Definition 4. For an extended logic program P we define
dependencies for rules. The dependency relation for P is
then defined as:

RP = Cnσ({(H(r),B(r)) | r ∈ P})
RP is closed under Cnσ and in the remainder of this paper
we assume a given dependency relationR to be closed under
Cnσ in general.



Example 5.
P = { A← not B. B ← not A.

C ← A. D ← B.}
Given this program the following dependency relation is
generated for it: RP = {(A, {not B}), (B, {not A}),
(C, {A}), (D, {B}), (C, {not B}), (D, {not A}),
(C, not {B,D}), (D, not {A,C}), (D, not {A,C,D}),
. . . }

Alternative models for a default theory are generated by
different sets of assumptions which satisfy certain proper-
ties. The dependencies that represent the dependence of a
literal on a set of assumptions have a key function as the
dependants of these are prone to be part of a model of the
theory. These models can therefore be characterized using
sets of assumptions which generate the models of the theory.
To characterize models of the underlying theory we intro-
duce an operator to project dependencies onto literals with
respect to a set of assumptions.
Definition 6 (Projection operator). Given a dependency re-
lation R and a set of assumptions ∆ ⊆ D we define the
projection of R onto the set of literals Lit by:

JR(∆) = {L | (L,∆) ∈ R}
Sets of assumptions have to satisfy some conditions in or-

der to be considered a valid characterization of the model of
the theory. These are, generally speaking, consistency and
maximality of the projection and are specified in the follow-
ing definition. Later on, we show that the projection of a
dependency relation given a constrained set of assumptions
corresponds to an answer set of an extended logic program.
Definition 7 (Valid sets of assumptions). A set of assump-
tions ∆ is called a valid set of assumptions with respect to a
dependency relation R iff

(i) for all L ∈ Lit: L ∈ JR(∆) or not L ∈ ∆ but not both
and there exists no set of assumptions ∆′ with JR(∆) ⊂
JR(∆′) satisfying (i). The set of valid sets of assumptions
with respect to R is denoted by TR.

As an example for valid sets of assumptions consider the
following program.
Example 8. Considering Example 5, we get the follow-
ing valid sets of assumptions: ∆1 = not {B,D} and
∆2 = not {A,C}. The according sets of consequences are
JRP

(∆1) = {A,C} and JRP
(∆2) = {B,D}which are also

the only two answer sets of this program.
Definition 9 (Dependency semantics). The semantics of
a dependency relation R is given by its set of valid sets
of assumptions TR. The set of extensions ER of a de-
pendency relation is given as ER = {JR(∆) | ∆ ∈
TR, JR(∆) consistent}.

We can show that the defined dependency semantics for
extended logic programs under the answer set semantics is
sound and complete as stated in the following theorem.
Theorem 10. Given an extended logic program P and the
corresponding dependency relation RP for P . A set of lit-
erals S ⊆ Lit is an extension of RP , ER, iff S is an answer
set of P .

Proofs of all theorems are omitted here due to space re-
strictions.

AGM Revision of Dependency Relations
In the previous section, we introduced a logical framework
consisting of dependency relations and appertaining conse-
quence operators that can be used to model default reason-
ing. We will now turn to investigate belief operations in this
framework, In particular, we will focus on AGM-like belief
revision operators for dependency relations. In the follow-
ing, we will adapt the basic AGM-Postulates (Alchourron,
Gardenfors, and Makinson 1985) as far as possible (or rea-
sonable) to the revision of dependencies.

When incorporating new information, the AGM theory
distinguishes between belief change operations that are able
to resolve conflicts and inconsistencies, and those that sim-
ply expand the prior belief set. The latter ones are usually
called expansions and are realized by the union operator on
sets.

Definition 11 (Expansion). Given a dependency relation R
and a single dependency d, then the expansion of R by d is
defined as R+ d = Cnσ(R ∪ {d}).

For the proper revision of a dependency relation R by a
new dependency d gives rise to some new dependency rela-
tion R ∗ d which is supposed to be closed under the applica-
tion of Cnσ:

(D ∗ 1) Cnσ(R ∗ d) = R ∗ d
So, closed dependency relations (with respect to Cnσ) play
the role of belief sets in this scenario. Secondly, the belief
revision is successful iff d is part of the revised belief set:

(D ∗ 2) d ∈ R ∗ d
The expansion of dependency relations is defined analo-
gously to the classic case, and also for dependencies, we
expect expansions to be an upper bound for revisions:

(D ∗ 3) R ∗ d ⊆ R+ d

The interesting cases of the AGM-Postulates considering
dependency relations regard the definition of consistency.
The fourth AGM postulate states that the expansion of K
by some information α shall be contained of the revision by
this information if it is consistent with the belief-set.

(K ∗ 4) if ¬α 6∈ K, then K + α ⊆ K ∗ α.
The first part of the postulate (¬α 6∈ K) expresses the con-
dition for the consistency of the new information with the set
of beliefs. Within the framework of dependencies the com-
plement of a dependency can be defined for a dependency
d = (L,W) as ¬d = (¬L,W) which leads to the definition
of conflicts in dependency relations.

Definition 12 (Conflict). Given a dependency relation R, it
contains a conflict C ⊆ R iff for some L ∈ Lit and some
∆ ⊆ D it is the case that C = {(L,∆), (¬L,∆)} ⊆ R and
not {L,¬L} ∩ ∆ = ∅. A dependency relation containing
conflicts is called inconsistent, and consistent otherwise. Let
CR denote the set of all conflicts in R.



Example 13.

P = { C ← not A., B ← C.

¬B ← not A. }

Let RP be the dependency relation generated by the
program P . The only conflict in RP is C = {(B,
not {A,¬C,¬A}), (¬B, not {A,¬C,¬A})}.

Where in classic logics the deductive closure and the clas-
sic negation are used to test for conflicts we need to make
use of the conflict definition and semantics of dependency
relations here. A naive reformulation using the negation of
dependencies would be

if {d,¬d} is not a conflict in Cnσ(R+d) then R+d ⊆ R∗d.

But this does not serve as a sufficient condition as it does not
exclude the existence of conflicts in R + d as the following
example illustrates.

Example 14. Consider the revision of R =
Cnσ({(b, {a}), (¬b, ∅)}) by d = (¬a, ∅). Here, {d,¬d} is
a conflict in Cnσ(R + d) does not hold but in spite of that
R+ d is not conflict free.

In classic logic the consequence operator is more power-
ful and by use of contraposition would lead to the violation
of the consistency condition if testing a ∈ Cn(a ⇒ b,¬b).
The appropriate reformulation for dependency relations is
therefore

(D ∗ 4) if R+ d is consistent then R+ d ⊆ R ∗ d
The revision of a dependency relation R by some new

dependency d should yield a consistent, i. e., conflict free,
dependency relation R′ = R ∗ d according to the fifth AGM
postulate

(K ∗ 5) K ∗ α is inconsistent iff α is inconsistent

Note, that this AGM postulate makes an exception for incon-
sistent new information. Since we revise by a single depen-
dency which, by Definition 12, cannot be inconsistent we
drop this condition demanding that:

(D ∗ 5) R ∗ d is consistent

In summary, the reformulation of the basic AGM-Postulates
for revisions of dependency relations yields the following
postulates:

(D ∗ 1) Cnσ(R ∗ d) = R ∗ d
(D ∗ 2) d ∈ R ∗ d
(D ∗ 3) R ∗ d ⊆ R+ d

(D ∗ 4) if R+ d is consistent then R+ d ⊆ R ∗ d
(D ∗ 5) R ∗ d is consistent

In the following sections, we will present revision operators
that, by and large, comply with these lines of thoughts.

Revision via consolidation
In this section we transfer results from classic belief revision
in order to define revision operations by means of consolida-
tion operations. Classic belief revision theory gives means

to define revision operations by means of contraction opera-
tions via the Levi-IdentityK∗α = (K−¬α)+α. Informally
this can be understood as the instruction to first make sure
that no information that entails conflicts with α is contained
in the belief set. Since K is deductively closed the contrac-
tion by ¬α guarantees that the expansion by α will not in-
troduce any conflicts. This is the case since the consequence
operator in classic belief revision includes contraposition.

The contraction by the negation of the information to be
revised by is not sufficient to grant consistency for conse-
quence operators not satisfying contraposition as elaborated
above. For the application of the Levi-Identity to depen-
dency relations we need to make sure that the addition of
the information to be incorporated in our beliefs does not
introduce any conflicts. In general we have to contract by
conflicts, commonly denoted by ⊥, introduced by the new
piece of information.

Our definition for the consistency condition given above
is inherently external1. That is, in order to determine consis-
tency of a dependency relationR with some dependency d it
is not sufficient to consider the original dependency relation
R, but we have to consider the extended set R + d. Based
on this, we need to facilitate a global contraction operator in
order to contract by inconsistency. The use of external revi-
sion leads to the formulation of the belief revision operator
via the reversed Levi-Identity, K ∗ α = (K + α)−¬α. For
dependency relations we reformulate this identity as

R ∗ d = (R+ d)−C ⊥
in general. The contraction by inconsistency is also called a
consolidation operation, leading to the composition of non-
prioritized belief revision operators (Hansson 2001) as we
discuss later on.

It should be noted that another striking difference between
the closure operator on dependencies and the classical de-
ductive closure becomes evident here. The definition of an
external revision operation on classic belief-sets does not
make sense due to the identity of all inconsistent belief-sets
which leads to the loss of all prior information and to the
equality of all revisions. The closure of an inconsistent de-
pendency relation is finite and in general different from the
closure of other inconsistent dependency relations. There-
fore the definition of external revision for closed dependency
relations makes sense.

The formulation of the revision of dependency relations
via the reversed Levi-identity leaves us with the need to de-
fine a global contraction operator on inconsistency. As a first
step we formalize the notion of inconsistency as denoted by
⊥ in general for dependency relations as the set of conflicts
of the dependency relation C. Based on this we define a re-
vision operator for dependency relations using a contraction
operation.
Definition 15 (Revision by dependencies). Given a closed
dependency relation R and a dependency d we define the
revision of R by d as R ∗ d = Cnσ(R ∪ {d}) −C CR+d

with CR+d = {C | C is a conflict in R+ d}. We call the
contraction operation −C a C-contraction.

1Here and in the following we adopt the terminology used in
(Hansson 2001).



This definition gives a formalization of the previous dis-
cussion and transfers the problem to the definition of an ap-
propriate contraction operator for sets of conflicts. The re-
sult of this operation shall be a subset of R, denoted by R′,
that is consistent, or more precisely, that does not contain
any conflict.

For the further specification of the contraction operation
we are going to adapt the basic AGM-postulates for con-
traction for our setting of conflict driven consolidation of
dependency relations as follows:

(D −C 1) Cnσ(R−C CR) = R−C CR
(D −C 2) R−C CR ⊆ R
(D −C 3) if CR = ∅ then R−C CR = R

(D −C 4) CR−CR
= ∅

(D −C 5) R ⊆ (R−C CR) + CR
The first postulate states, that the result of a contraction
should be closed under the consequence operator for depen-
dencies. The second demands that no information is added
to the dependency relation by the contraction operation. The
third postulate requires the contraction by the empty set of
conflicts to be equivalent to the original dependency relation.
The fourth one expresses that the result of the contraction by
a set of conflicts should be successful in the sense that all
conflicts are not contained in the resulting dependency rela-
tion. The fifth property requires the result of the expansion
of a contracted dependency relation by the contracted set
to recover the original dependency relation. This recovery
postulate has been heavily discussed in the past and is not
desirable in many settings (Hansson 2001). The contraction
operations defined in this paper also do not satisfy recovery.

For the connection of the postulates for revision and con-
traction we get the following relation via the reversed Levi-
identity.

Theorem 16. Let−C be a C-contraction operator on depen-
dency relations. If −C satisfies the contraction postulates
D −C 1, D −C 2, D −C 3 and D −C 4 then the revision op-
erator ∗ based on −C by Definition 15 satisfies the revision
postulates D ∗ 1, D ∗ 3, D ∗ 4 and D ∗ 5.

Given the set of postulates for contraction operators by
sets of conflicts in dependency relations we continue by de-
scribing the construction of such an operator. We define the
contraction by a set of conflicts generally as follows.

Definition 17 (Contraction by sets of conflicts). Let R be a
dependency relation and C = {C1, . . . , Cn}, Ci ⊆ R 1 ≤
i ≤ n a set of conflicts. A set of dependencies I ⊆ R is
called an incision set of a set of conflicts C iff

Ci 6⊆ Cnσ(R \ I) for all Ci ∈ C

and no I ′ with I ′ ⊂ I exists.
We define a contraction by sets of conflicts −C as R −C

C = Cnσ(R \ I) with I being an incision set for C.

An incision set is basically a set of dependencies such that
each conflict persistent in the dependency relation is not ex-
istent in the dependency relation without the incision set and
will not be reinstated by the consequence operator.

Theorem 18. Let −C be a C-contraction operator on de-
pendency relations. Then −C satisfies the postulates for C-
contraction D −C 1, D −C 2, D −C 3 and D −C 4.

Revision on base dependencies
As discussed earlier, revision on dependency relations
closed under the consequence operator Cnσ(·) differs from
classic belief revision on deductively closed belief sets due
to the different nature of the consequence operator on depen-
dency relations. In the following, we develop a belief revi-
sion operator on a base representation of the dependency re-
lation which corresponds to the use of belief bases and base
revision in terms of classic belief change (Hansson 2001).
Here, we will solve conflicts based on these dependencies
using a base representation of the dependency relation which
also has the advantage of being more concise. We will in-
troduce a base representation of dependency relations in the
following which basically reduces a dependency relation to
the generating elements, i. e., the dependencies directly cor-
responding to rules.
Definition 19 (Base Dependency). A dependency d ∈ R is
called a base dependency of the dependency relation R iff

Cnσ(R \ d) 6= Cnσ(R).

A base relation Rb for a dependency relation R is a set of
base dependencies such that Cnσ(Rb) = Cnσ(R). A de-
pendency sequence entirely consisting of base dependencies
is called a base sequence (d1, . . . , dn), di ∈ Rb, 1 ≤, i,≤
n.

As an example for the base representation of dependency
relations consider the following program and the generated
dependency relation.
Example 20.

P = {B. ¬A. A← B.}

The dependency relation generated by this program RP is
represented by the following base dependencies.

RbP = {(B, ∅), (¬A, ∅), (A, {B})}

These three dependencies clearly correspond to the three
rules in the program. In the closure of these the transi-
tivity leads to the dependency (A, ∅). The premise clo-
sure would add the following dependencies: (B, {not A}),
(B, {not ¬A}), (B, {not A, not ¬A}), . . . .

Next, we define incisions which, in contrast to the incision
set defined before, address a single conflict. Subsequently
this will be rephrased in terms of a base representation.
Definition 21 (Incision I). Let R be a dependency relation
and C a conflict. A set of dependencies I ⊆ R is called an
incision of a conflict C iff

C 6⊆ Cnσ(R \ I)

and no I ′ satisfying the property above with I ′ ⊂ I exists.
Base dependencies db are atomic in that they can be entailed
only in a trivial way, i. e., via db `σ db. These are inval-
idated, i. e., removed, by simply removing d from RP . In



order to invalidate a non-atomic sequence σ one of the de-
pendencies d′ ∈ σ has to be invalidated in RP . This under-
lies the next definition of base incisions for conflicts as every
dependency can be invalidated by invalidating base depen-
dencies in the end.

Definition 22 (Base incision). A set of base dependencies
Ib is called a base incision of a conflict C iff

C 6⊆ Cnσ
(
Rb \ Ib

)
Kernel contraction
On the level of a base representation of dependencies we
can draw some similarities between kernel-contraction oper-
ations (Hansson 1994) and the just defined base-contraction
on dependency relations. Thus we adapt the notions of ker-
nels and incision functions and to consider all sets of base
dependencies that entail one of the dependencies of a con-
flict.

Definition 23 (Kernel set). Given a dependency relation R
and a dependency d, the kernel set R ⊥σ d consists of all
sets S ⊆ Rb with S `σ d and for all S′ ⊂ S it is S′ 6`σ d.

On the basis of kernel sets we can formulate base inci-
sions by means of incision functions.

Definition 24 (Incision function). Let R be a dependency
relation. An incision function δ for R is a function δ :
22RA → 2RA such that the following conditions hold:

(i) δ(R ⊥ d) ⊆ ∪(R ⊥ d)
(ii) If S ∈ R ⊥ d and S 6= ∅ then (S ∩ δ(R ⊥ d)) 6= ∅

If R ⊥ d = ∅ then δ(R ⊥ d) = ∅
Definition 25 (Kernel contraction). Given a dependency re-
lation R and a dependency d the kernel contraction of R by
d is given as:

R−kd d = Cnσ(Rb \ δ(R ⊥ d))

The contraction operation just defined is a general con-
traction operation by dependencies. For this operation we
reformulate the AGM-postulates for contraction.

(D −d 1) Cnσ(R−d d) = R−d d
(D −d 2) R−d d ⊆ R
(D −d 3) If d 6∈ R, then R− d = R

(D −d 4) d 6∈ R−d d
(D −d 5) R ⊆ (R−d d) + d

The kernel contraction operator defined above satisfies the
postulates which we proposed for d-contraction.

Theorem 26. Let −kd be a kernel d-contraction operator on
dependency relations. Then −kd satisfies the postulates for
d-contraction D −d 1, D −d 2, D −d 3 and D −d 4.

The kernel contraction gives means for the contraction of
single dependencies from some dependency relation. Before
we defined the contraction operation only for sets of con-
flicts. In the following we are going to define the contraction
of sets of conflicts through kernel contractions. For the con-
traction by sets of conflicts each conflict in the set has to be

invalidated. At least one dependency of each conflict cannot
be part of the resulting dependency relation. This does not
correspond to the removal of one of the dependencies of the
conflict since conflicts are only defined on a closed depen-
dency relation but might be generated by other dependencies
which also need to be removed to avoid reinstatement. The
kernel-contraction operator of Definition 25 allows the con-
traction by any dependency and performs the contraction on
the set of base dependencies. We make use of this for the
contraction of sets of conflicts.
Definition 27 (Kernel C-contraction). Given a dependency
relation R and a set of conflicts C = {C1, . . . , Cn} with
∪1≤i≤nCi ⊆ R, a contraction operator is defined:

R−kC C = Cnσ(R ∩
⋂

1≤i≤nR−k di, di ∈ Ci)
This contraction operator does satisfy the postulates

which we proposed for C-contraction, with the exception of
recovery.
Theorem 28. Let −kC be a kernel C-contraction operator on
dependency relations. Then −kC satisfies the postulates for
C-contraction D −C 1, D −C 2, D −C 3 and D −C 4.

Revising logic programs
In the preceding section we introduced the means to per-
form belief revision on dependency relations by dependen-
cies. The dependency relations dealt with are generated by
extended logic programs. In the following we give means
to transfer the result of such a revision operation back to an
extended logic programs. We showed in Theorem 10 that
the semantics defined for dependency relations generated by
conflict free extended logic programs coincide with the an-
swer set semantics. Here, we generate a logic program from
a revised dependency relation.

Given an initial extended logic program P and a single
rule r : H(r)← B(r). we generate the dependency relation
RP and revise it by the dependency d = (L, {B1, . . . , Bn})
which results in a new dependency relationR′ = R∗d. From
this dependency relation we construct a canonical logic pro-
gram representing the revision of P by r.
Definition 29 (Dependency Program). Given a dependency
relation R we define an extended logic program P (R) as
follows: P (R) = {L←W. | (L,W) ∈ Rb)}

Based on this transformation we can define the revision of
a logic program by a rule as follows.
Definition 30. Given an extended logic program P we de-
fine the revision of P by a rule r : H ← B as:

P ∗ r = P (RP ∗ (H,B))

Hence, for the revision of a program by a single rule we
revise the dependency relation generated by the program by
the dependency generated by the rule to be revised by.
Example 31. Consider the following revision of a program
P = {B. A ← B.} by a rule r = ¬A.: P ∗ r = P ′. The
dependency relation generated by this program RP and the
dependency dr are represented by the following base depen-
dencies.

RbP = {(B, ∅), (A, {B})}, dr = (¬A, ∅)



A revision based on a Kernel C-contraction ofRP by dr will
incise one of the two kernels {(¬A, ∅)}, {(¬A, {B}), (B,
∅)} for the conflict C = {(¬A, ∅), (A, ∅)}. Hence a valid
revision is given by incising the second kernel by (¬A, {B})
leading to the resulting dependency relation RP ∗ dr =
Cnσ({(B, ∅), (¬A, ∅)}). From this dependency relation we
obtain the dependency program P ′ = {B.,A.} as the result
of the revision.

In particular we hereby perform belief revision of non-
monotonic extended logic programs by revising monotonic
dependency relations. The latter enable belief operations in
correspondence with the AGM theory.

Discussion

In this paper we defined a dependency relation for extended
logic programs which complies with the answer set seman-
tics. On the basis of this dependency relation we discussed
the AGM postulates for revision. We defined a notion of
conflicts in dependency relations yielding a definition of
consistency. We defined belief revision and contraction op-
erations of different kinds and analyzed their properties by
adapting the AGM-theory. Moreover we moved towards
constructive contraction operations by introducing a base
representation and base contraction operators. Finally, we
showed how these operations can be used to define belief
operations for extended logic programs.

In (Flouris, Plexousakis, and Antoniou 2004) the AGM
theory has been generalized to a broad class of logics.
There a suitable logic is given by some set S of propo-
sitions together with a consequence operator Cn(·). The
latter is a mapping from a set of propositions to a set of
propositions that satisfies the Tarskian axioms. Any tuple
〈S, Cn(·)〉 of this type is considered as a logic. Here, we
consider the set of all dependencies of a set of atoms RA
together with the consequence operator on dependencies
Cnσ(·). The consequence operator on dependencies satis-
fies the Tarskian axioms and therefore 〈RA, Cnσ(·)〉 is a
logic in the sense defined in (Flouris, Plexousakis, and An-
toniou 2004). From this follows directly the existence of
an AGM contraction operation 〈RA, Cnσ(·)〉 that satisfies
the AGM contraction postulates (AGM-1)–(AGM-5). Belief
revision of extended logic programs is performed by most
approaches through syntactic rewriting of programs as sur-
veyed in (Eiter et al. 2002). There, it has also been shown
that those approach fall short in satisfying any non-trivial
AGM-postulates. AGM belief operations on Horn clause
rules have been studied recently, e. g. in (Delgrande 2008;
Booth, Meyer, and Varzinczak 2009) or (Alechina, Jago, and
Logan 2008), which show the satisfaction of AGM style pos-
tulates but are restricted to monotonic logics.

For future work will clearly lie in further elaboration and
the analysis of properties of our approaches. Especially, the
comparison to other approaches is interesting. Also, con-
structive methods shall be developed further and implica-
tions for the resulting extended logic programs need to be
investigated.
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