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Abstract

The paper answers the question raised in the title only
partially. We show that one can quite easily intro-
duce graphical models corresponding to triangulated
(decomposable) graphs, i.e. decomposable models. An-
alyzing all graphical 4-dimensional models we show
that representation of decomposable models is very ef-
ficient and, simultaneously, that cycles in graphs can
bring problems to which we do not bring a solution.

Introduction

When applying Al models to problems of practice one has
always to cope with what is often called “curse of multi-
dimensionality”. Only exceptionally one can manage with
tens of variables, usually one needs hundreds or even thou-
sands of them. This is why a number of models have been
developed in probability theory enabling efficient represen-
tation and processing multidimensional probability distribu-
tions; let us mention above all Graphical Markov Models.
There are several special classes coming under this heading:
the class of graphical models (in the sense the term was used
by the authors of pioneer papers as e.g. (Daroch, Lauritzen
and Speed 1980, Edwards and Havranek 1985)) is the old-
est, Bayesian networks are perhaps the most popular, and
decomposable models are the most efficient.

Considering only the binary case (i.e. all the considered
variables achieve only two values) one needs 2" numbers
to represent a general probability distribution. The problem
of multidimensionality becomes even more alarming when
considering models within Dempster-Shafer theory of evi-
dence, where one needs (in the binary case) 2(2") numbers
to represent a general n-dimensional model. So it is quite
evident that one has to focus to models that can be repre-
sented by a much smaller number of parameters.

In this paper we are going to introduce graphical models,
and especially their proper subfamily decomposable models,
within Dempster-Shafer theory.

Basic Notions
Set notation

In the whole paper we will deal with a finite number of vari-
ables X1, Xo, ..., X, each of which is specified by a finite

set X; of its values. So, we will consider multidimensional
space of discernment

Xy =X;1 x X9 X...xX,,

and its subspaces. For K € N = {1,2,...,n}, X de-
notes a Cartesian product of those X;, for which ¢ € K:

XK = XieKXi-

A projectionof x = (x1,x2,...,x,) € Xy into X will
be denoted 2%, i.e. for K = {iy,4s,...,i¢}

K

= (T4, Tigy -, Tiy) € Xk

Analogously, for K ¢ L € N and A C X, AV will
denote a projection of A into X g:

AR =y eXg:Fx e A (y=2tF)).

Let us remark that we do not exclude situations when K =
0. In this case A0 = ().

In addition to the projection, in this text we will need also
the opposite operation which will be called a join. By a join
of two sets A C X and B C X, we will understand a set

A®B={recXgyr: 2 € A & 2'F € B}.

Notice that if K and L are disjoint then the join of the cor-
responding sets is just their Cartesian product

A® B=Ax B.

For K =L, A®B=ANB. If KNL#}and AKX N
BYENL — () then also A ® B = ().

In view of this paper it is important to realize that if z €
C C Xgur, then 21X € CI¥ and & € C'E, which
means that always

Cccctfgoit.

However, it does not mean that C = CY¥ @ C'L. For
example, considering 3-dimensional frame of discernment
Xy1,2,33 with X; = {a;,a;} for all three i = 1,2,3, and
C = {alagag, ajazas, a1a2(l3} one gets

cH12 @ o238t = {a1az2, 102} ® {azas, azas}
= {a1a2a3, a1a2a3, a1a2a3, a1asa3} # C.



Assignment notation

The role of a probability distribution from a probability
theory is in Dempster-Shafer theory played by any of the
set functions: belief function, plausibility function or basic
(probability or belief) assignment. Knowing one of them,
one can deduce the two remaining. In this paper we will use
exclusively basic assignments.

A basic assignment m on X (K C N) is a function

m: P(XK) — [O, 1],

Z m(A) = 1.
P#AACX g

For the sake of this paper it is reasonable to consider only
normalized basic assignments, for which m(0)) equals al-
ways 0. If m(A) > 0, then A is said to be a focal element
of m.

Having a basic assignment 1m on X - one can consider its
marginal assignment on X, (for L C K), which is defined
(foreach ) £ B C X):

m‘(B) = > m(A).

ACX y:AL=B

for which

Basic assignment m is said to be Bayesian if all its focal
elements are singletons (i.e. m(A) >0 = |A| = 1).
In this case it is easy to show that belief and plausibility
functions coincide, and correspond to a probability measure
on Xy.

Operator of composition

Compositional models were introduced for probability the-
ory in (Jirousek 1997) as an alternative to Bayesian networks
for efficient representation of multidimensional measures.
They were based on a recurrent application of the operator
of composition. Analogous operator within the framework
of Dempster-Shafer theory was introduced in (Jirousek, Vej-
narova and Daniel 2007).

Definition 1 Operator of Composition. For two arbitrary
basic assignments m; on X g and mo on Xy, (K # () # L)
a composition m1 > my is defined for each C' C X by
one of the following expressions:

[a] if mi* " (CHENLY > 0and C = CHX @ CLL then
mq (ClK) . mg(CiL)

(my >mg)(C) = myKOE(CLKnLy ;

[b] if mi* M (CYENL) = 0 and C = CVK x X\ k then

(m1 > mg)(C) = mq (CHF);
[c] in all other cases (my >ms)(C) = 0.

First of all we want to stress that the operator of compo-
sition is something else than the famous Dempster’s rule of
combination (Dempster 1967). For example it is (in contrary
to Dempster’s rule) neither commutative nor associative. In
(JirouSek, Vejnarovd and Daniel 2007) we proved a num-
ber of properties concerning the operator of composition. In
view of the forthcoming text those presented in the follow-
ing assertion are the most important.

Theorem 1 Basic Properties. Let m1 and ms be basic as-
signments defined on X i, X, respectively. Then:

1. mq > meo is a basic assignment on Xgur,;

2. (m1 > mg)lK =my,

3. mibmg =mobm; < m%KnL = m%KﬁL.

Though it is not a topic of this paper, let us mention that
analogously to probability theory, one can easily introduce
models equivalent to Bayesian networks also in Dempster-
Shafer theory with the help of the operator of composition.

Conditional Independence

Let us stress at the very beginning of this section that for
the purpose of this paper we cannot make do with the no-
tion of conditional independence that is used by most of
the other authors. Because of this, we will start discussing
a generally accepted notion of unconditional independence
(Studeny 1993) (some authors call it marginal indepen-
dence (Shenoy 1994), non-interactivity (Klir, G. J. 2006),
marginal non-interactivity (Ben Yaghlane, Smets and Mel-
louli 2002a), independence in random sets (Couso, Moral
and Walley 1999), etc.). In the cited papers the term was in-
troduced either with the help of the conjunctive combination
rule, or with the help of the commonality function. It was
showed in (Jirousek and Vejnarova 2010) that the following
definition is fully equivalent.

Definition 2 Unconditional Independence. Let m be a ba-
sic assignment on X and K, L. C N be nonempty disjoint.
We say that groups of variables X i and X, are independent
with respect to basic assignment m (in notation X 1L L [m])
if forall A C Xxur

mLKUL(A)
le(AlK) . mlL(AlL) if A= ALK x AL
B 0 otherwise.

Notice that this notion possesses the most important prop-
erty of independence from probability theory:

If K 1L L [m] then m is uniquely given by m‘¥ and m'E.

There are several generalizations of the notion of inde-
pendence from Definition 2 to conditional independence.
The most frequently used is the following one, which is
called factorization by Shenoy (1994) and conditional non-
interactivity by Ben Yaghlane, Smets and Mellouli (2002b).

Definition 3 Conditional Non-interactivity. Let m be a ba-
sic assignment on X and K, L, M C N be disjoint (K
and L nonempty). We say that groups of variables X x and
X, are conditionally non-interactive given X j; with respect
to basic assignment m (denoted K L, L|M) if for all
A C XIKULOM

leULUM(A) @mlM(AlM)

_ leu]\/f(ALKUM)@mLLUJVI(ALLUM)’

where (0) denotes the conjunctive combination rule, i.e. non-
normalized Depmpster’s rule of combination.



Nevertheless, this notion does not help us to define graph-
ical models because nothing like factorization lemma (see
Theorem 2 below) can be proved for conditional non-
interactivity. Moreover, as it was showed by Studeny, when
the notion from Definition 2 is used, then it can happen
that for two consistent overlapping basic assignments there
does not exist their common extension with the required
conditional non-interactivity (for the Studeny’s example see
(Ben Yaghlane, Smets and Mellouli 2002b) or (Jirousek and
Vejnarova 2010)). It means that the notion of conditional
non-interactivity does not support multidimensional model
construction. Therefore, in this paper we will use the no-
tion of conditional independence, which was introduced in
(Jirousek 2007, Jirousek and Vejnarovd 2010), and which
differs from the notion of conditional non-interactivity.

Definition 4 Conditional Independence. Let m be a basic
assignment on Xy and K, L, M C N be disjoint, K #*
() ## L. We say that groups of variables Xy and X are
conditionally independent given X y; with respect to m (and
denoteitby K 1L L|M Lm]l/)l, if forany A C X run such
that A = AMKUM @ ALLUM the equality

mLKULUIM(A) . mlM(AlM)
_ leuM<A¢KU]VI) . mlLUM<AlLUM)

holds true, and m!EYLUM (A) = 0 for all the remaining
A C Xgurun for which A # AVKUM @ ALLUM

It is not difficult to show that for M = {) both condi-
tional non-interactivity and conditional independence coin-
cide with the notion of unconditional independence from
Definition 2. It was also showed by Ben Yaghlane, Smets
and Mellouli (Theorem 5.3 in (2002b)) that if K L, L|M
then for all focal elements A of m

A= AlKuM®AlLU1\/I'

Moreover, both conditional non-interactivity and condi-
tional independence meet all the following semigraphoid
axioms (presented here for conditional independence (Pearl
1988, Studeny 1993, Lauritzen 1996, Studeny 2002)):

(Al) K L L|M[m] = L 1L K|M [m]

(A2) K L LUM|J[m] = K I M|J[m]

(A3) K L LUM|J[m] = K 1L L|MU.J[m]

(Ad) (K ILL|MUJ[m]) & (K I M| J[m])
— K 1L LUM]|J[m]

The main difference between our notion of conditional
independence and that of conditional non-interactivity is in
the fact that

e our concept does not suffer from the inconsistency with
marginalization: for two consistent basic assignments m;
and mg (over X and X, respectively) one can always
take their composition mq >me, which, due to Theorem 1,
is an extension of both m; and msy and

K\L 1L L\ K|KNL[mi>msl;

e for our notion, the Dempster-Shafer’s counterpart of the
probabilistic factorization lemma has been proved in
(Jirousek 2010); see Theorem 2 below.

Both these properties are important from the point of view
of multidimensional model representation. They express
the fact that validity of a conditional independence rela-
tion means that the respective basic assignment may be de-
fined with a smaller number of parameters (either just by
its marginals, or with the “factor functions” as expressed by
Theorem 2).

The reader interested in a more thorough comparison
od the notions of conditional independence and conditional
non-interactivity (illustrated with examples) is referred to
(Vejnarova 2010).

Definition 5 Simple Factorization. Consider two
nonempty sets K U L = N. We say that basic as-
signment m factorizes with respect to (K, L) if there exist
two nonnegative set functions

¢ : P(XK) — [Oa +OO)7 ¢ : P(XL) I [Oa +OO)7
such that for all A C X gy,

gb(AlK) . w(AlL) ifA=AlK g AlL
m(A) = .
0 otherwise.

Theorem 2 Factorization Lemma. Let K, C N be
nonempty, K U L = N. m factorizes with respect to (K, L)
if and only if

K\L L L\K|KNL[m).

Theorem 3 Factorization of Composition. Let K, L C N
be nonempty, K U L = N. m factorizes with respect to
(K, L) if and only if

m = le > mlL.

Example

Let us illustrate the space-saving power of the introduced
simple factorization on the simplest possible examples.
Consider for a moment only binary case: we assume |X;| =
2 for all 7.

Considering 2-dimensional situation, we can take into ac-
count only independent variables: {1} 1L {2}[m]. In this
case, according to Definition 2 all focal elements of m are
Cartesian products of subsets of X; with subsets of X,.
Since each X; has three nonempty subsets we get that m
has maximally 9 focal elements and can be uniquely de-
scribed just with 6 numbers: with basic assignments m!{}
and m*12} (see the left column of the Binary part in Table 1).

A little bit more complex situation occurs when consid-
ering 3-dimensional space of discernment (see the right col-
umn of the Binary part in Table 1). Now we can consider
factorization (K, L) = ({1,2}, {2, 3}) corresponding to the
conditional independence {1} L {3}|{2}[m)].

How one can find all sets A C X{172,3} for which
A = AHL2 @ AUZ3}9 It is obvious that this prop-
erty is met by all singletons. However, there are also
other sets having this property like {ajasas,ajazas} or



Table 1: Simple factorization space requirements

Binary: X; = {a;,a;} Ternary: X; = {a;, a;, a;}
frame of discernment X X; x X X; x X9 x X3 X; x X X x Xg x X3
|X]| 4 8 9 27
HACX: A#0D} 15 255 511 134 217 727
factorization (K, L) ({1}, {2} ({1,2},{2,3}) ({1}, {2} ({1,2},{2,3})
HA#AD: A= AK g ALY 9 99 49 124 999
number of factors 2x3=6 2x15=30 2x7=14 2x511=1022

{a1a2as,a1a2as3, ajazds}. The answer to the question sug-
gests itself when one realizes that it is equivalent to the ques-
tion: for which B C X 5y and C C X5 33 it holds that

(Bo0)'12 =B and (BeO)H*3 =,
because these equivalences hold true if and only if
B2 — o2}

Realizing that for 9 subsets B C Xy 9} the respective
projection B'{?} is X2y, for 3 subsets it is {az} and for
another three it is {a@s }, and that the same holds also for the
projection of subsets of X 3}, one gets that there are

Ix9+3x34+3x3=99

nonempty subsets A C X; 5 3y for which 4 = AHLZ @
AH23},
For more details about this example and also how the re-

spective numbers look like also for a ternary case see Ta-
ble 1.

Graphical Models

In probability theory, graphical models were defined as
probability distributions (measures) factorizing with respect
to a system of subsets forming cliques of a graph (Daroch,
Lauritzen and Speed 1980, Edwards and Havranek 1985).
In this paper we will need just a couple of terms from graph
theory; a graph consists of nodes and edges, if all pairs of
nodes are connected in a graph then the graph is complete.
By a clique we understand maximal subset of nodes induc-
ing a complete subgraph. For example, graph in Figure 1(a)
has three cliques: {1,2,3,4}, {3,4,5}, {6}; graph (b) in
this Figure has five cliques: {1,2,3}, {1,4}, {3,6}, {4,5},
{5,6}); the last graph (c) has only two cliques: {1,2,3,4}
and {3,4, 5, 6}. In all these graphs we can see several cycles:
for example 1 —4 —5—3ingraph(a)and1 —4—-5—-6—3
in graph (b). The difference between these two cycles is that
while the latter cycle is chordless, in the former cycle there
is an edge 4 — 3 forming a chord.

For introducing a Dempster-Shafer counterpart of graph-
ical models one needs a notion of a more complex fac-
torization than simple factorization introduced in Defini-
tion 5. The above introduced factorization enables us to

consider only graphs with two cliques; for example see
graph in Figure 1(c). In this specific case factorization with
respect to this graph means factorization with respect to
({1,2,3,4},{3,4,5,6}).

Decomposable models

The above mentioned 2-clique graphs belong to a greater
class of graphs factorization with respect to which does not
bring great problems. Here we have in mind a family of
decomposable graphs. These are the graphs which do not
contain a chordless cycle of length greater then three. In
Figure 1 we have two decomposable graphs, namely (a) and
(c). Graph in Figure 1(b) contains a chordless cycle of length
5: 1 —3—6 — 5 — 4 (graph (c) indeed contains the same
cycle, but this cycle has not only one but three chords).

It is well known that cliques K, Ks, . .., K, of a decom-
posable graph can be ordered to meet so called Running In-
tersection Property (RIP): for all ¢ = 2,...,r there exists
j,1 < j <1, such that

Kiﬂ(Klu...UKi_l)ng.

This offers us a possibility to define decomposable models
using Definition 5 recursively.

Definition 6 Decomposable Basic Assignments. We say
that a basic assignment m is decomposable if it factor-
izes with respect to a decomposable graph in the following
sense (let K1, K», ..., K, be cliques of the considered de-
composable graph ordered so that they meet RIP): for all
i = 2,...,r the marginal m!¥1YYK: factorizes (in the
sense of Definition 5) with respect to (K U.. . UK;_1, K;).

Q—2
N
e’;‘e ® ®
& © &—©®
() (b)

Figure 1: Graphs with 6 nodes
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Flgure 2: Graphlcal models for 4 variables

By a repeated application of Theorem 3 one can see that
decomposable models can easily be represented by a system
of its marginals.

Theorem 4 Composition of Decomposable Models. Con-
sider a decomposable graph with cliques K, Ks, ..., K,.
If this ordering meets RIP then m is decomposable with re-
spect to the graph in question if and only if

m=(...(m"FErom!E2)pmBs)p K-y

Notice that thanks to Theorem 2 one can deduce that for
a decomposable basic assignment m it is possible to read
the system of conditional independence relations valid for
m exactly in the same way as it is done for decomposable
probabilistic measures: If G = (N, E) is a decomposable
graph with respect to which decomposable basic assignment
m factorizes, and if nodes ¢ and j are separated in G by set
M then

15| M [m).

However, let us stress once more: This possibility holds only
for conditional independence (Definition 4) and not for con-
ditional non-interactivity.

4-dimensional models

In the previous subsection we have showed that introduc-
ing decomposable models in Dempster-Shafer theory does
not bring great difficulties. But when considering the whole
class of graphical models we are getting into problems,
which have not been solved, yet. Let us illustrate these prob-
lems on the simplest possible case, on 4-dimensional mod-
els.

Consider all graphs with 4 nodes (see Figure 2). The
complete graph (k) is uninteresting because it has only one
clique and thus any distribution factorizes with respect to
this graph. As the reader can easily check from the follow-
ing list, with the exception of graph (i) all the remaining
graphs are decomposable. Here is the list of the respective
cliques; each sequence is ordered so that it meets RIP:

(@): {1}a {2}7 {3}7 {4}

0 {12}, 13}, (4]
©: {1,2},{3,4}
@: (L2114}, 13)
©: {12} {1.4} {3.4}
®: {1,2},{1,3},{1,4}
(@: {1,2,4},{3}

Table 2: Graphical 4-dimensional models

graph MNFE NP
(a) 81 12
(b) 135 21
(c) 225 30
(d) 297 33
(e) 711 45
) 783 45
(® 765 258
(h) 2115 270
1 2961 60
) 9999 510
k) 65 535 65 535

MNEFE - maximum number of focal elements
NP - number of parameters defining model

(h): {1,2,4},{2,3}
G0: {1,2,3},{1,3,4}
So, the only non-decomposable graph is graph (i) repre-
senting a cycle of length 4: 1 — 2 — 3 — 4. For this specific
situation a reasonable solution can be proposed as follows:

Factorization with respect to 4-cycle. A 4-dimensional ba-
sic assignment m (over X o 3 41) factorizes with respect to
graph in Figure 2(i) if there exist four nonnegative set func-
tions

¢ : 73(D({I,Z}) - [07 +OO)7 ¢ : P(X{QS}) - [05 —’-OO),
p:P(Xyz43) — [0,+00), p:P(Xy43) — [0, +00),

such that for all A C Xy 53 43: If

A= AHL23) o gH134) _ 4l{1.24) o 41{2.34)
then
m(A) = GALIR) (A1) (AL (AL,

and m(A) = 0 if either A # AHL23} @ AHL3AY or A £
A1{1,2,4} ® Al{2’3’4}.



This definition guarantees that m has the same depen-
dence structure as in probability theory a distribution fac-
torizing with respect to graph (i):

4-cycle Factorization Lemma. If a basic assignment
m over X 2 3.4} factorizes with respect to graph in Fig-
ure 2(i) then

{1} 1L {3}{2,4}[m] and {2} AL {4}|{1,3}[m].

The ideas of a factorization over a 4-cycle can be general-
ized to factorization with respect to a general cycle graph. In
such a graph G = (N, E) any couple of non-adjacent nodes
i, j divides the set of all the remaining nodes N \ {i, j} into
two (nonempty) groups K, L such that K and L are sepa-
rated by {4, j}. Each such a couple 4, j poses one require-
ment concerning a form of a focal element A:

A = AWKV @ ALLU{GG) (%)

Since there are | N|- (| N| —3)/2 non-adjacent pairs of nodes
in G it means that the same number of equalities of the form
of (x) have to hold for any focal element of a basic assign-
ment m factorizing with respect to G. Naturally, values
m(A) have to be expressible in a form of a product of |N|
factor functions.

Conclusion

The main message of this contribution was to show that the
new version of the notion of conditional independence in-
troduced in Definition 4 is superior to the notion of condi-
tional irrelevance (used e.g. in (Shenoy 1994, Couso, Moral
and Walley 1999, Yaghlane, Smets and Mellouli 2002b)),
because it supports introduction of factorization, especially
development of decomposable models. Using a simple ex-
ample of factorization with respect to a cycle graph we gave
a hint how it will be possible to define a notion of factoriza-
tion with respect to general graphs.
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