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Abstract
Many applications today—from e-commerce to analyzing
scientific data-sets—require the notion ofbest-match. That
is, one needs data thatbestsatisfies one’s criteria. Relational
query languages likeSQL, however, are ill-suited for this. An
SQL query returns tuples that match precisely its conditions.
The skyline clausewas proposed, in part, with this goal in
mind. Skyline combines multiple preference criteria in paral-
lel. (The skyline clause filters out any tuple if there is another
one better than, or equal to, it on all criteria, and strictlybet-
ter than it on at least one.) How to compute skyline queries
efficiently has been well studied. However,SQL with the
skyline clause does not capture many types of preferences.
Skyline conflates the notion offiltering for thebestanswers,
and thepreference semanticsthat defines best. A preference
semantics defines an ordering over the answers, theprefer-
ence graph. For skyline, the resulting preference graph is a
partial order, both acyclic and transitive. We believe, how-
ever, that more general, natural preference semantics may not
preserve transitivity, but result more generally in directed-
acyclic preference graphs instead.
We introduce a generalization of skyline that can result in
directed, acyclic preference graphs instead of partial orders.
We develop thestable skyline semanticsto accommodate this.
We show how stable skylines can be computed.

1. Introduction
“Find me a house in the Annex in good condition for less
than $500,000 with at least three bedrooms and a back-
yard.”1 With an appropriate database at hand, one could
compose a query (say, inSQL) to express this. But what
if the query comes up empty? Our house hunter must try
again with a new query, perhaps by modifying (weaken-
ing) the criteria from the original query. This process can
be long and arduous, and is often unsuccessful because of
it. Kaplan named this seeming behavior of the database
system to withhold informationstonewalling(Kaplan 1981;
1982).

Relational database systems—and, for that matter, other
common information system technologies—do not offer a
solution. They stonewall. A relational queryselectsthe tu-
ples that satisfy the query’s conditions. The person must

∗This work was investigated while Wei Vicky Ning was a grad-
uate student at York University. She is now with Microsoft.

1The Annex is a neighborhood in midtown Toronto.

know something—or quite a bit usually—about thedata in
the database in order to specify these conditions suitably.

There are many applications and tasks today much like the
house hunter’s. The person might not know much about the
data.2 Furthermore, the house hunter’s criteria are notcon-
ditions, per se. Rather, they arepreferences: in reasonable
condition, inexpensive, many bedrooms, andhas a backyard.
The house hunter may not even really expect to find a house
that actually satisfies all these preferences, or that satisfies
them in equal measure. Rather, the house hunter is looking
for thebestoptions, as measured against these preferences.

The skyline clause was proposed in (Börzsönyi, Koss-
mann, and Stocker 2001) as an extension toSQL, with syn-
tax as in Fig. 1. Skyline offers an elegant approach to com-
bining multiple preference criteria in parallel.

select . . . from . . . where . . .
group by . . . having . . .
skyline of A1 [min | max | diff], . . .,

An [min | max | diff]

Figure 1: The proposed skyline clause forSQL.

The skyline operatorfilters the set of tuples derived by
(the rest of) the query. Any tupler is removed if there is
another tuples that is better than, or equal to, tupler on
each skyline criterion (Ai), and is strictly better than tupler
on at least one criterion. In this case, we say thats trumps
r. Tuples is better than tupler on criterionAi max if s’s
Ai value is greater thanr’s. Tuples is better than tupler on
criterionAi min if s’s Ai value is less thanr’s. If there is
a criterionAi diff, thenr cannot be trumped bys if s’s Ai

value is different fromr’s. The answer set is the set of tuples
never trumped, called theskyline set.

Each skyline criterion,Ai max or Ai min, imposes aweak
order over the input tuples.3 The skyline criteria taken to-
gether (conjunctively) then impose apartial order over the
input tuples.4 The skyline set is thecrown of this partial
order.

2A house for $500,000 in the Annex? Really!
3It is not atotal ordersince tuples may have the sameAi value,

thus tying. A weak order is a total order, except for allowingties.
4We can ignorediff here. Note that any criterionAi diff can be

replaced by the criteriaAi max andAi min.



select Address, Agent, Lockbox#, Cond,
Price, #bdrm, Backyard, Style

from HouseListing
where area = ’Annex’
skyline of Cond max, Price min,

#bdrm max, Backyard max,
Style diff;

Figure 2: Skyline query for the house hunter.

The query in Fig. 2 is a skyline query expressing the house
hunter’s query. It is assumed here thatCond (thecondition
of the house) is a numeric score, say, from1..5, with 5 as
the best. Price and #bdrm (number of bedrooms) are as
one would expect.Backyard is a Boolean:1 for true; and0
for false. We have added the criterionStyle diff; this means
the query will find thebesthouses per house-style (e.g., bun-
galow, modern, and Victorian).

One may criticize that the idea skyline is not new. Indeed,
this very same idea has been studied before as themaximal
vector problem, and is the same concept asPareto optimal.
What is new is that skyline introduced the concept to queries
as a means to handle preferences in a natural way within
existing relational query languages.

One might criticize that skyline is too weak in itself to
provide for a useful preference query language. Skyline by
itself provides us only with a limited way to express and
combine preferences. We agree.

Lastly, from the point of view of work in preferences, one
might criticize that the skyline operator conflates the selec-
tion of the best answers and the preference semantics that
orders the answers. Indeed, we will want to separate these
concerns carefully, to consider how we can generalize the
notion of skyline to cover richer types of preferences.

skyline of Price min, #bdrm max,
case style

when ’modern’ then Yr built max
when ’Victorian’ then Yr built min

end

Figure 3: Query with conditional preferences.

Consider the query fragment in Fig. 3. For modern-style
houses, we are interested in ones that are newer. However,
for Victorian-style houses, we prefer the opposite, those that
are older. We want different preferences to apply to different
data. Whether we want a newer house or an older house is
conditional on whether the house’s style is modern or Vic-
torian, respectively.Case is not a preference construct pro-
vided in skyline, but would be a seemingly useful addition.
However, it is far from simple to add such a construction. It
does not work with the skyline semantics as defined.

We propose a way to generalize skyline to provide a basis
for supporting richer preferences such ascase. In 2., we
review related work. In 3., we motivate and define stable
skyline. First, we formalize skyline queries, to show how
“implement” conditional preferences, and to lay the ground-
work for implementing other potentially useful preference

constructions in the future. In 4., we define thestable skyline
semanticswhich accommodates the loss of transitivity. This
preserves the desirable properties that the crown semantics
for SQL with the skyline clause has. We present an algo-
rithm to compute the stable skyline set and discuss further
means to accomplish this efficiently. In 5., we discuss fur-
ther issues, future work, and conclude.

2. Related Work
People have long recognized a need for preferences in
database queries. In (Chang 1976), a deductive query
language calledDEDUCE was proposed for relational
databases which includes preferences. Lacroix and Pirotte
(Lacroix and Pirotte 1977) introduced thedomain relational
calculus(DRC) and theintermediate level language, ILL, as
an English-like language for structured expressions with the
goal of more natural, more expressive query languages. In
(Lacroix and Lavency 1987), Lacroix and Lavency extended
theDRC to provide a preference mechanism. Preferences in
a query are satisfied if possible, but “ignored” when not.

Chomicki introduced a general logical framework for
preferences as preference formulas, and has proposed a rela-
tional operatorwinnow for composing preference relations
in the relational algebra (Chomicki 2002; 2003). His model
andwinnow are quite expressive. He has investigated the
types of preferences that can be expressed and has shown
how they can be composed.Winnow offers a declarative se-
mantics. Chomicki has investigated the effects of types of
preference formulas on thepreference relation(graph), the
order the preferences induce over the potential answer tu-
ples. Thus,winnow is a quite rich model. However, it can be
complex to understand how to write preferences and how to
compose them. It is also not clear, so far, how to realizewin-
now in a relational system. In (Chomicki 2004), Chomicki
derives some special cases ofwinnow-based queries that can
be evaluated efficiently. More work is needed, though, to
identify significant, useful sub-classes ofwinnow that can
be handled well.

In (Kießling 2002), Kiessling has taken an algebraic ap-
proach to constructing a rich preference query language as
an extension toSQL that he callsPreference SQL. A num-
ber of preference operators are introduced, and how they
compose is defined.Preference SQL allows users to write
best-matchqueries by composing their preference criteria
via the preference operators.Preference SQL has been on
the market since 1999, and is used in several commercial
ventures. The system compiles preference queries intoSQL
for evaluation. In (Kießling and Köstler 2002), Kiessling
and Koestler investigate further how to extendSQL and
XPATH for thePreference SQL operators, and present rich
examples of the types of queries that can be composed.

How to compose preferences inPreference SQL mean-
ingfully can be challenging. BecausePreference SQL in-
troduces many new constructs, how to realize it efficiently
is a challenge. It has an operational semantics, but not a
defineddeclarativesemantics. In particular, composition
of the preference operators can raise difficulties. The in-
tended semantics is that the preference relation be a partial
order, but certain compositions can violate this. In (Kießling



2004), Kiessling proposes the concept ofsubstitutable val-
ues(SV’s) andSV relationsto address sound composition of
Preference SQL’s Pareto andprioritized preferences.

The skyline operator was introduced in (Börzsönyi, Koss-
mann, and Stocker 2001) (as discussed in§1.). Much
work since has gone into developing efficient, external, re-
lationally well-behaved algorithms for evaluating skyline
queries (Börzsönyi, Kossmann, and Stocker 2001; Chomicki
et al. 2003; Eng, Ooi, and Tan 2003; Godfrey 2004;
Godfrey, Shipley, and Gryz 2007; Kossmann, Ramsak, and
Rost 2002). By itself, however, skyline is not as expres-
sive aswinnow or Preference SQL. To serve as a foun-
dation for preference queries, theexpressivenessof skyline
needs to be improved. The ideas leading to stable sky-
line are discussed in depth in (Godfrey and Ning 2004;
Ning 2005).

3. Motivation & Background
Let the skyline operator, ‘∇’, correspond to the skyline
clause. It can be treated as a new relational algebra operator.
In the skyline clause in Fig. 1, theAi’s are columns. (Of
course, these may include derived columns, as well.) Each
Ai can be considered as afunction, with its domain as all
potential tuples over that schema, and its range as the real
numbers. Paired with each function,Ai, is a directive that
indicates how the tuples are to be compared with respect to
Ai. Call such a function-directive pair a skylinecomparator,
and the set of function-directive pairs of a skyline clause the
skylinefilter.

For example,skyline of A max, B min, C diff is denoted
by∇{>A,<B, 6=C}. The directivesmax, min, anddiff essen-
tially are the equalityoperators‘>’, ‘ <’, and ‘6=’, respec-
tively, from the perspective of comparing tuples to compute
the skyline.

The single operator ‘>’ (max) would logically suffice;
both ‘<’ and ‘ 6=’ are algebraically redundant, given ‘>’. A
skyline filterF ∪ {6=A} is equivalent toF ∪ {<A, >A}.5 A
skyline filterF ∪ {<A} is equivalent toF ∪ {>(−1 · A)}.
In proofs then, we restrict our attention to ‘>’, dismissing
‘<’ and ‘ 6=’. In discussion and in definitions, we consider
both ‘>’ and 6=’, as ‘6=’ will help to motivate the extensions
we propose. In examples, we shall still employ ‘<’ for nat-
uralness, with it understood that it can be rewritten via ‘>’.

The skyline filter—a set of comparators—then defines
how tuples are to be compared, to determine which will be
returned in the skyline set. Denote a set of tuples asT, which
we shall call the inputtable. For anyT, any skyline filterF
induces an algebraic relation overT. Call this theprefer-
ence graphoverT with respect toF . Let F be composed
of just ‘>’ comparators, without loss of generalization. De-
note the preference graph (relation) by ‘≻F ’; r ≻F s iff

5This may not seem natural for nominal values such asmodern
andVictorian. However, we consider that the column function has
translated these to reals, or integers, so theyare ordered. Likewise,
string data can simply be lexicographically ordered. Whileit would
be nonsensical to use amax comparator for nominal data by itself,
we can sensibly exploit this mechanism to define ‘ 6=’ (diff) in terms
of ‘>’ (max).

(∀(>A) ∈ F . A(r) ≥ A(s)) ∧ (∃(>A) ∈ F . A(r) > A(s)).
Call tuplesr and s incomparablewith respect toF iff

r 6≻F s ands 6≻F r. Denote this byr ∼F s.
For any skyline filterF built over ‘>’ comparators, the

preference graph ‘≻F ’ over T is guaranteed to be a partial
order, and thus isirreflexive, antisymmetric, andtransitive.
The skyline ofT is then defined as thecrownof the partial
order ‘≻F ’ over T. That is, it consists of those tuples inT
that are not trumped with respect toF by any other tuples in
T.
Definition 1 The skyline set is defined as

∇F(T) ≡ {s ∈ T | ¬∃r ∈ T. r ≻F s}

Call this thecrown skyline semantics.6

We can characterize the skyline set viasoundnessand
completenessproperties.
Definition 2 Thesoundnessproperty of skyline sets states
that

∀s ∈ ∇F(T). ¬∃r ∈ T. r ≻F s

Thecompletenessproperty of skyline sets states that

∀r ∈ (T −∇F (T)). ∃s ∈ ∇F (T). s ≻F r

or equivalently

¬∃r ∈ (T −∇F (T)). ∀s ∈ ∇F(T). s 6≻F r

By soundness, we mean that each skyline tuple represents
a besttuple; that is, there is no tuple that is better than it—
that trumps it—with respect to the skyline criteria. By com-
pleteness, we mean that the skyline set representsall the best
tuples, with respect to the skyline criteria. Hence, every non-
skyline tuple is trumped by some skyline tuple. In this way,
the skyline set characterizes the table: for any tuple in the
table, it is either skyline itself, or there is a skyline tuple that
trumps it, and hence, “represents” it in the skyline set.

We can now consider how we might extend this formal-
ism in useful ways, in particular so that we can implement
conditional preferences (as used in the query in Fig. 3).

Note that two tuplesr ands are incomparable either if, for
every(>A) ∈ F , A(r) = A(s), or there are two comparators
(>A), (>B) ∈ F such thatA(r) < A(s) andB(r) > B(s).
A single directivediff (‘ 6=’) by itself can deem two tuples as
incomparable if their values on the corresponding function
differ, regardless of the other comparators.

We add a new directive,equal (‘=’), as the dual ofdiff.
With equal, two tuples are deemed incomparable if their
values on the corresponding function are thesame, regard-
less of the other comparators. If they differ in value on the
function, the other comparators then determine how they re-
late. Interestingly, this addition increases skyline’s expres-
siveness. Skyline with ‘=’ can express preference graphs
that skyline without ‘=’ cannot. Thus,equal is useful in
composing more complex skyline queries.
Definition 3 The meaning ofequal is defined via its effect
in a skyline filter.

6The crown skyline semantics is the semantics for skyline as
originally defined. We shall consider an alternate semantics, the
stable skyline semantics, in §4.



• If (=A) ∈ F andA(r) = A(s), r ∼F s, regardless of any
other comparators inF .

• If (=A) ∈ F andA(r) 6= A(s), r ≻F s iff r ≻F−{=A} s;
• If A(r) 6= A(s) but r 6≻F−{=A} s and s 6≻F−{=A} r,

r ∼F s (as the tuples are considered equivalent with re-
spect to the conditions).

Example 4 Consider a slightly simplified version of the ex-
ample from Fig. 2. The house hunter is interested only
in Victorian and modern-style houses. In both cases,
Price should be minimized and#bdrm should be maxi-
mized. For Victorian-style houses, the house hunter prefers
older houses, and soyr built should be minimized. For
modern-style houses, however, the house hunter prefers
newer houses, and soyr built should be maximized.

Let P = Price, B = #bdrm, Y = Yr built, and S =
Style. Let

H = σstyle=’Victorian’ ∨ style=’modern’(HouseListing)

The skyline query can be composed as

Q: ∇{<P,>B,=S}(
∇{<P,>B,<Y}(σstyle=’Victorian’(H))

∪ ∇{<P,>B,>Y}(σstyle=’modern’(H))
)

The use ofequal in Example 4 is necessary for us to
achieve what we intend. The outer ‘∇’ combines the results
of the skyline over the Victorian houses (with older as a cri-
terion) and the skyline over the modern-style houses (with
newer as a criterion). We want that the Victorian houses
returned be compared against the modern-style houses re-
turned, and vice-versa, with respect to the criteria in com-
mon: lower price and more bedrooms. The ‘=’ directive
is essential to ensure that the Victorian houses are not com-
pared against one anotheragain, but this time with respect
to the fewer criteria (Price and#bdrm); and likewise, that
the modern-style houses are not either.7

A consequence of addingequal, however, is that a sky-
line filter is no longer guaranteed to induce a partial order
(PO) over the set of tuples. Transitivity may be lost. The
preference graph is still guaranteed to be irreflexive and an-
tisymmetric; hence, it is a directed acyclic graph (DAG).

Diff comparators (‘6=’) do not affect transitivity. This is
obvious since adiff comparator can be replaced bymax
comparators (‘>’), and a skyline filter consisting of justmax
comparators clearly induces a partial order.Diff simply par-
titions the tuples, and only tuples in the same partition can
relate (i.e.,r ≻F s).

How canequal (‘=’) affect transitivity then? Anequal
comparator prohibits tuples from the same equality class
(partition) to relate. In essence, it punches holes in the par-
tial order of the preference graph that would be induced by
the filter without itsequal comparators, by making certain
pairs of tuples incomparable which would have been com-
parable otherwise. These “holes” can violate transitivity.

7Ideally, this query would be written with a single ‘∇’ operator
inducing a single preference relation overH. With a generalization
of equal, this can be done (Godfrey and Ning 2004). We have not
done it here out of the need for brevity.

HouseListing
# Price Style Yr built #bdrm
r $340k Victorian 1920 3
s $350k modern 1934 3
t $370k Victorian 1903 3

Figure 4: Table for example breaking transitivity.

Example 5 Consider the tableT in Fig. 4, and the skyline
filter F = {<Price, =Style}. Thus,r ≻F s ands ≻F t.
However,r ∼F t.

Consider Ex. 4 again, theimplicit preference relation, ‘≻’,
induced by the query overH, and the example tuples from
Fig. 4. Because houser is less expensive than houses (and
they tie on number of bedrooms),r ≻ s. Note that since
they are of different styles, we do not compareYr built be-
tween them. Likewise, because houses is less expensive
than houset, s ≻ t. However,r ∼ t, because they are of
the same style andt is older thanr, preferred for Victorian
houses.

4. Stable Skyline Semantics
Considerations
We would like to maintain the same type of semantics for
our generalized skyline as for the original skyline: an answer
tuple is one that is not trumped by any other with respect to
the preference graph. So the answer set with respect to a
query should seemingly just be the set of all tuples that are
not trumped.

Of course, the original semantics for skyline—the crown
skyline semantics, Def. 1—is with transitivity in mind.
Since we now permit DAG preference graphs, we must re-
examine this definition. There are three possible ways to
proceed:
1. recover a partial order from the directed acyclic graph as

the preference graph;
2. continue using the crown skyline semantics anyway; or
3. develop a new skyline semantics that accommodates

directed-acyclic-graph preference graphs naturally.
By idea #1, we want to derive a PO from the DAG. An

obvious way to accomplish this would be to take the tran-
sitive closure of ‘≻F ’, denoted by ‘≻∗

F ’. Then the skyline
could be defined with respect to ‘≻∗

F ’ instead. However, this
is not good! Our purpose for addingequal, for example, is
to defeat certain tuples from trumping certain other tuples.
By using ‘≻∗

F ’, we essentially are undoing the effects of the
equal comparators. Thus, we rule out idea #1.

Idea #2 is simply to keep the same definition, Def. 1, for
skyline: it is those tuples not trumped by any others, with
respect toF . Interestingly, Def. 1 does not depend on ‘≻F ’
overT being a partial order. However, this is not an ideal
solution either. Once ‘≻F ’ over T is not transitive, we can
no longer have bothsoundnessandcompleteness, as defined
in Def. 2. Both these properties are really intended as part of
skyline’s semantics. They are consequences of the skyline
set in Def. 1,whenthe preference graph is a PO. The crown
skyline set—as defined in Def. 1—is no longer necessarily



complete. There are non-skyline tuples potentially in table
T that arenot trumped by any skyline tuple. But these are
not crown skyline tuples themselves—by Def. 1, that is—
because other non-skyline tuples trump them.

Therefore, idea #3 is the direction in which we proceed.
We need to redefineskylineto recapturesoundnessandcom-
pleteness. We shall be able to regain completeness, if we are
willing to redefine slightly our notion of correctness.

Preference semantics that allow for cyclic preference
graphs are, of course, possible. Let us, however, assume
that any query induces anacyclicpreference graph. Skyline
extended withequal, as in§3., will only result in directed,
acyclic preference graphs.

Definition
Loss of transitivity results in that the crown skyline set isno
longer “stable”. Consider tableT and filterF from Fig. 4
and Example 5 (p. 4) again. Onlyr is in ∇F (T). Consider
whens is removed fromT. Now,∇F (T) = {r, t}! So the
addition or deletion ofnon-skylinetuples from the table can
affect what the skyline set is.

We want astability property for the skyline set. (This
will lead back tocompleteness.) Changes to the table over
non-skyline tuples should not change the skyline set. To ac-
complish this, we re-examine our notion of soundness for
skyline.
Definition 6 Stability. Call a subsetS of tableT a stable
skyline setwith respect to filterF andT iff

S = {r ∈ T | ¬∃s ∈ S. s ≻F r}

For a PO filterF , ∇F(T) from Def. 1 is a stable skyline
set with respect toT. For a DAG filterF , for which tran-
sitivity is lost with respect toT, ∇F (T) is not necessarily
a stable skyline set. All tuples inS are pair-wise incompa-
rable, as is the case for∇F (T). And for each tuple from
T− S, there is a tuple inS that trumps it, just as for∇F (T).
However, now a (stable) skyline tuple may be trumped by a
non-skyline tuple. (For any such non-skyline tuple, though,
there is someother skylinetuple that trumps it.) So we mod-
ify our notion ofsoundness: no skyline tuple is trumped by
any otherskylinetuple.

Can we find such anS? Is it unique? We can, and it is
unique. We define this via a transformation and a fixpoint
with respect to the transformation.
Definition 7 DefineSF ,T, given tableS, as follows.

SF ,T(S) = {r ∈ T | ¬∃s ∈ S. s ≻F r}

DefineSF ,T↑ i as follows.
• SF ,T ↑0 = ∅

• SF ,T ↑ i = SF ,T(SF ,T↑(i − 1)), for i > 0

Let Si
F ,T be shorthand forSF ,T↑ i.

Note thatS2

F ,T = ∇F (T) (the crown skyline set by

Def. 1). When ‘≻F ’ over T is a PO,S2

F ,T = lfp(SF ,T),
the least fixpointof SF ,T. When ‘≻F ’ over T is a DAG,
∇F (T) = S2

F ,T still, but it is possible thatS2

F ,T 6=
lfp(SF ,T).

mark depths (table T) {
i := 0;
D := T;
while (D 6= ∅) {

S := {t ∈ D | ¬∃r ∈ D. r ≻F t};
foreach t in S {

t.depth := i;
}
D := D − S;
i++;

}
}

Figure 5: Procedure to mark tuple depths.

We introducetuple depthfor use in proving thatSi
F ,T

reaches fixpoint. The procedure in Fig. 5 assigns adepth
to each tuple. Any tuple not trumped by any other tuple is
assigned depth0; inductively, any tuple not trumped by any
other tuple not of depthi or less is assigned depthi + 1.
Lemma 8 For a tuple t ∈ T of depthi (as assigned by
mark depths in Fig. 5), either∀j ≥ 2(i + 1). t ∈ Sj

F ,T

or ∀j ≥ 2(i + 1). t 6∈ Sj
F ,T.

Theorem 9 For any finite T, the least fixpointof SF ,T,
lfp(SF ,T), is obtained in finite iterations; thus, for any sky-
line filter F and input tableT, there existsk ∈ ω such that
Sk
F ,T = Sk+1

F ,T .
We have established that there is a least fixpoint ofSF ,T,

that it reaches fixpoint in finite iterations, and that it is equiv-
alent to a stable skyline set. Next, we prove that the stable
skyline set is unique.
Lemma 10 Given a finite tableT and skyline filterF , there
exists only one stable skyline set (Def. 6). That is, the stable
skyline set is unique.
Definition 11 Define thestable skyline operator, ‘∇’ , with
respect to filterF and tableT as

∇F (T) = lfp(SF ,T)

Theorem 12 ∇F(T) is equivalent to the unique stable sky-
line set.
Definition 13 Thesoundnessproperty of stable skyline sets
states that

∀s ∈ ∇F (T). ¬∃r ∈ ∇F (T). r ≻F s

That ‘∇’ satisfies the soundness property of Def. 13 is a
direct consequence of the definition ofSF ,T (Def. 7).

Stable skyline semantics has the following advantages
over the original (crown) skyline semantics when DAG pref-
erence graphs are permitted.
1. It preservescompletenessof the set (Def. 2).
2. It has a stability property (Def. 6), which is epistemically

appealing.
3. It is easier to compute than is the crown skyline set. (This

is discussed next.)
4. It enables skyline operations to be composed in sound

ways.



When the preference graph is a partial order, stable sky-
line semantics and the original (crown) skyline semantics
concur.

Computing Stable Skyline
The stable skyline set,∇F(T), is more straightforward than
its formal definition viaSi

F ,T might suggest. It includes the
crown skyline tuples (∇F(T)), as these are not trumped by
any tuples. However, there may be tuples in(T − ∇F(T))
not trumped by any tuples in∇F(T). So∇F(T) also in-
cludes the (crown) skyline of these. And so forth.
Definition 14 Define theuntrumpedset at stagei, Ni

F ,T, as
follows.

Ni
F ,T = {r ∈ (T − Si

F ,T) | ¬∃s ∈ Si
F ,T. s ≻F r }

Then

S2i+1

F ,T = S2i
F ,T ∪ N2i

F ,T for i ≥ 0

S2i+2

F ,T = S2i
F ,T ∪∇F (N2i

F ,T) for i ≥ 0

∇F (T) =

ω⋃

i=0

∇F (N2i
F ,T)

Thus the iterationsSi
F ,T alternate, adding all presently

untrumped tuples in the odd cycles, and reducing these by
only retaining the crown of the newly added tuples in the
even cycles.8

This seems to indicate that we should be able to devise an
algorithm in which each tuple is considered just once, with
respect to the accumulated skyline tuples so far, and either
is discarded or added to the skyline set. We do this next.

sfs (array T) {
// T: The input tuples, topologically sorted.
array S; // For collecting the stable skyline set.

// Initialized empty.
for (i = 0; i < T.length; i++;) {

trumped := false;
j := 0;
while ((j < S.length) ∧ !trumped) {

if (S[j] ≻F T[i]) trumped := true;
j++;

}
if (!trumped) S.add(T[i]);

}
return S;

}

Figure 6: Sort-Filter-Skyline algorithm to compute the sta-
ble skyline.

The algorithm sort-filter-skyline (SFS) in Fig. 6 computes
the stable skyline set,∇F(T). This algorithm is a main-
memory simplification of the externalSFS algorithm we
presented in (Chomicki et al. 2002; 2003). Before the
sfs procedure is called, the input tuples are sorted in an

8Consequently,N2i+1

F,T = 0, for i ≥ 0.

order that represents a linear extension of the “partial or-
der” induced by the filterF ; that is, a total order that
is compatible with the partial order. So any topological
sort of that order suffices. In (Chomicki et al. 2002;
2003), we show it is straightforward to find a suitable topo-
logical sort.

Of course,F may be a DAG filter. However, it can be ex-
tended in a similar way. Consider the filter that results from
F when allequal comparators are removed. It induces a
preference relation that is a partial order. Any topological
sort of that order is also a topological sort of the DAG in-
duced byF .

Once the input tableT has been sorted into arrayT, then
skyline tuples are accumulated into arrayS. Note that a tuple
t in arrayT cannot be trumped with respect toF by any tuple
after it in the array, since the array is topologically sorted
with respect to ‘≻F ’.
Theorem 15 AlgorithmSFS in Fig. 6 computes the stable
skyline set,∇F (T).

None of proposed algorithms for skyline will work to
compute the (crown) skyline set,∇F (T), once the prefer-
ence graph, ‘≻F ’ over T, is no longer transitive. It seems
none could be easily fixed. The algorithms rely inherently
on transitivity of the preference graph. None were designed,
of course, to compute the stable skyline set,∇F(T). Since
they rely on transitivity, it is doubtful they could be adapted.

Once we admit non-transitivity, computing the crown se-
mantics becomes inherently expensive. This is because tu-
ples may be trumped by non-skyline tuples while by no
crown-skyline tuples. Therefore, comparisons that can be
avoided when transitivity is guaranteed now cannot be. With
stable skyline, however, every non-skyline tuple is trumped
by some stable-skyline tuple. Thus, many comparisons can
be avoided, as is possible with crown skyline over partial or-
ders. Stable skyline is much more efficient to compute than
crown skyline for DAG preference relations.

In (Godfrey, Shipley, and Gryz 2007), we establish the
average-case run-time complexities of the generic9 skyline
algorithms. We present a new skyline algorithm,LESS, that
extendsSFS, and establish that it isO(N) average-case run-
ning time.LESS improves onSFS’s performance by elim-
inating tuples more quickly, but assumes transitivity to do
this. It is interesting future work to see ifLESS or other
algorithms can be adapted for stable skyline.

5. Conclusions
Skyline queries offer an elegant way to combine preference
criteria, but they are limited in the preferences that can be
expressed and how they can be combined. We believe that
a generalization of skyline that could handle conditionals
(case) and related preference constructs would go a long
ways towards making skyline a viable basis for a relational
preference query language.

To handlecase requires that skyline be defined over pref-
erence graphs that are directed acyclic graphs, without tran-
sitivity. We introducedstable skylinethat extends skyline

9Algorithms that do not require pre-processing nor pre-existing
data-structures such as indexes.



with a new directive,equal. This provides a natural way to
implementcase for skyline—and, potentially, many other
preference constructs—but with the loss of transitivity. We
developed thestable skyline semanticswhich recovers the
properties ofsoundnessandcompletenessof the skyline set
in an elegant and natural way over directed, acyclic prefer-
ence graphs. We showed how stable skyline could be com-
puted efficiently.

We would like to be able to cover very rich preferences
and preference constructs in skylineSQL queries. Thus,
there is much work still to be done to extend semantics for
skyline further to be able to define these meaningfully.

select Address, Agent, Lockbox#, Cond,
Price, #bdrm, Backyard, Style

from HouseListing
skyline of #bdrm max, Backyard max, 1

Cond max by 1, 2
case style 3

when ’modern’ then Yr built max
when ’Victorian’ then Yr built min

end,
case delta of Cond 4

when 0 then Price min by 5000
when 1 then Price min by 10000
else Price min by 30000

end,
if Cond ≤ 2 then HasGarage max, 5
if neighbourhood = ’Downtown’

then dist to subway min by 1 // km

Figure 7: Future “skyline” query.

Consider the hypothetical “skyline” query in Fig. 7, with
a “natural” interpretation of what the preference constructs
may intend. Type 1 is provided by original skyline. Type 3
is the case-conditional we define. The preference types 2, 4,
and 5 were not accommodated here.

Type 4 demonstrates a different type of conditional we
may wish to support: additional preferences are evaluated
depending on the difference (the delta) between the func-
tional values (in the condition) of the two tuples. In this
case, the greater the difference between the houses’s con-
dition, we expect a larger price difference between them in
order not to rule out the house in worse condition. For exam-
ple, if the first house has condition 5 and the second, 3, the
first house will not trump the second only when the second
is less expensive by more than $30,000. Type 5 represents
a general if-conditional, allowing any general condition to
posit additional preference criteria. For example, for houses
of condition 2 or worse, one that has a garage cannot be
trumped by one that does not.

We plan to study how to define such queries under new
semantics such as the stable skyline, and how to evaluate
efficiently these queries. We want also to map semantic
equivalences, for the types of queries above. These equiv-
alences may enlighten us on how preferences can be com-
posed, and how they can be used to optimize generalized
skyline queries.
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