NFSYS

RESEARCH
REPORT

Institut fur Informationssysteme

Arbeitsbereich

Wissensbasierte Systeme

Technische Universitat Wien
Favoritenstrae 9-11
A-1040 Wien, Austria

+43-1-58801-18405
+43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FUR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

15TH INTERNATIONAL WORKSHOP ON
NON-MONOTONIC REASONING
(NMR 2014)

VIENNA, AUSTRIA, JUuLY 17-19, 2014
PROCEEDINGS

Sébastien Konieczny and Hans Tompits (eds.)

INFSYS RESEARCHREPORT1843-14-01
JuLy 2014

INFSYS RESEARCHREPORT
INFSYS RESEARCHREPORT1843-14-01, ULy 2014

PROCEEDINGS OF THELSTH INTERNATIONAL WORKSHOP ON
NON-MONOTONIC REASONING (NMR 2014)

VIENNA, AUSTRIA, JULY 17-19, 2014

Sébastien Konieczny and Hans Tompits
(Volume Editors)

1 Editors’ address: Sébastien Konieczny, CRIL-CNRS, Ractéés Sciences, Université d’Artois, 62300 Lens, Frapemail:
konieczny@ocril fr.

Hans Tompits, Institut fir Informationssysteme, Arble@iseich Wissensbasierte Systeme, Technische UniveW§ien, Fa-
voritenstraf3e 9-11, 1040 Vienna, Austria, e-mail: ton@iks.tuwien.ac.at.

Copyright(© 2014 by the authors

Preface

This volume consists of the contributions presented at Hile [hternational Workshop on Non-Monotonic Reasoning
(NMR 2014), which was held at the Vienna University of Teclogy, Austria, from July 17 to 19, 2014.

The NMR workshop series is the premier specialized forumdsearchers in non-monotonic reasoning and related
areas. Its aim is to bring together active researchers ibtbad area of non-monotonic reasoning, including belief
revision, reasoning about actions, argumentation, datblarprogramming, preferences, non-monotonic reasdoing
ontologies, uncertainty, and other related topics.

Previous NMR workshops were held in New Paltz (New York, U8A)984, Grassau (Germany) in 1988, South
Lake Tahoe (California, USA) in 1990, Plymouth (Vermont,A)JSn 1992, Schoss Dagstuhl (Germany) in 1994,
Timberline (Oregon, USA) in 1996, Trento (Italy) in 1998 d8kenridge (Colorado, USA) in 2000, Toulouse (France)
in 2002, Whistler (Canada) in 2004, Lake District (UK) in Z)®Bydney (Australia) in 2008, Toronto (Canada) in
2010, and Rome (Italy) in 2012.

Itis a tradition for many years that NMR is collocated witle imternational Conference on Principles of Knowl-
edge Representation and Reasoning (KR) as well as with thhational Workshop on Description Logics (DL)—and
this year is no exception. Additionally, like for the lasteen in 2012, NMR and DL share an invited speaker as well
as common technical sessions. A particular noteworthyifatitat all of these events are organized as part of the
Vienna Summer of Logic, that also hosts FLoC 2014, the Feégl@tangic Conference. As that, our event is part of the
probably largest gathering of logic-related events in tisélny of science.

We would like to thank our three invited speakers, Philippserard (IRIT at Université Toulouse Il Paul Sabatier),
Patrick Blackburn (University of Roskilde; joint speakeittwDL 2014), and Hans Rott (Universitat Regensburg), as
well as all the Track Chairs and Program Committee Membextshtblped us to organize such a great event!

For the workshop, 33 technical papers have been acceptedeTachnical contributions cover the full spectrum
of NMR, from declarative programming, uncertainty, caitgainference, and non-monotonic logics, to description
logics, belief change, and argumentation. There are alstsibations dedicated to system descriptions and a special
track on benchmarks for NMR.

We would like to thank all authors, reviewers, and partioiggdor their involvement in our event, as well as all the
people who helped in organizing the workshop. Particulavgywould like to thank Thomas Schmidleithner who did
an exceptional job for taking care of the web-presence of NMIR4. As well, we would also like to acknowledge the
valuable asset of having the EasyChair conference managesystem at our disposal. Last, but not least, we thank
our sponsors, KR Inc. and the Artificial Intelligence Jouraad the Kurt Godel Society as the principal organizer of
the Vienna Summer of Logic.

July 2014

Sébastien Konieczny and Hans Tompits,
NMR 2014 Workshop Chairs

Organization

Workshop Chairs

Sébastien Konieczny CRIL-CNRS, Univerggtd’Artois)
Hans Tompits Yienna University of Technoloyy

Track Chairs
Actions, Causality, and Belief Change Track

Renata Wasserman Ufiversidade de & Paulg

Declar ative Programming Track

Tomi Janhunen Aalto University

Argumentation and Dialog Track

Paul E. Dunne Wniversity of Liverpod|

Preferences, Norms, and Trust Track

Mehdi Dastani Utrecht University

NMR and Uncertainty Track

Lluis Godo Universitat Autonoma de Barcelojpa

Commonsense and NMR for Ontologies Track

Guilin Qi (Southeast University Chipa

Systems and Applications Track

Esra Erdem $abanci University

Benchmarksfor NMR Track

Sébastien Konieczny CRIL-CNRS, Univergitd’Artois)

Vi INFSYS RR 1843-14-01

Program Committee

Marcello Balduccini
Christoph Beierle
Richard Booth
Gerhard Brewka
Jan Broersen
Nadia Creignou
Mehdi Dastani
Marina De Vos
James P. Delgrande
Marc Denecker
Jurgen Dix

Paul E. Dunne

Ulle Endriss

Esra Erdem
Patricia Everaere
Wolfgang Faber
Michael Fink
Martin Gebser
Michael Gelfond
Lluis Godo

Guido Governatori
Sven Ove Hansson
Andreas Herzig
Zhisheng Huang
Anthony Hunter
Katsumi Inoue
Tomi Janhunen

Gabriele Kern-Isberner

Sébastien Konieczny
Joohyung Lee
Thomas Meyer
Alessandra Mileo
Marie-Laure Mugnier
Nir Oren

Maurice Pagnucco
Ramon Pino Perez
Henri Prade

Guilin Qi

Francesco Ricca
Ken Satoh

Steven Schockaert

Drexel University

FernUniversitt in Hagen

University of Luxembouig

Wniversity of LeipziQ

Utrecht University

Aix-Marseille Universig)

Utrecht University

University of Bath

Simon Fraser Universily

K.U. Leuven

Clausthal University of Technolopy
Wniversity of Liverpodl

University of Amsterdajn

$abanci University

Universié de Lille)

Wniversity of Huddersfield

(Vienna University of Technoloyy

Aalto University

Texas Tech University

Universitat Autonoma de Barcelopa
NICTA

K{'H Royal Institute of Technoloyy
Wniversie Toulouse Il Paul Sabatigr
\(rije University Amsterdain

University College London

KNational Institute of Informatics, Japan
Aalto University

Téchnische Universit Dortmund
Upiversie d'Artois)

Arizona State Universi}y

Wniversity of Kwazulu-Natal and CSIR Meraka Instifute
Digital Enterprise Research Institute, Galway
Universie Montpellier 2

University of Aberdeén

The University of New South Wajes
Upiversidad de Los Andgs

Universié Toulouse Il Paul Sabatigr
(Southeast University China

University of Calabria

KNational Institute of Informatics and The Graduate
University of Advanced Studies, Japan
Ceardiff University

Guillermo Ricardo Simari Wniversidad Nacional del Syr

Terrance Swift
Eugenia Ternovska
Hans Tompits
Francesca Toni
Mirek Truszczynski
Serena Villata

CENTRIA, Universidade Nova de Lishoa
Simon Fraser Universidy

Yienna University of Technoloyly

lhperial College Londaon

University of Kentucky

INRIA Sophia Antipolis

Kewen Wang Griffith University)

Renata Wasserman Ufiversidade de & Paulg

Emil Weydert University of Luxembouig
Stefan Woltran Yienna University of Technoloyly

Local Organization

Hans Tompits

Thomas Schmidleithner (Webpage)
Eva Nedoma (Secretary)

Additional Referees

Jean-Franois Baget
Gerald Berger
Bart Bogaerts
Giovanni Casini
Kristijonas Cyras
Jo Devriendt
Jianfeng Du
Sarah Alice Gaggl|
Antonis Kakas
Hiroyuki Kido
Ho-Pun Lam
Marius Lindauer
Marco Manna
Max Ostrowski
Chiaki Sakama
Daria Stepanova
Kazuko Takahashi
Shahab Tasharrofi
Zhe Wang
Zhigiang Zhuang

PROCEEDINGS OFNMR 2014

VIl

Table of Contents

Invited Talks

Four Floors for the Theory of Theory Change
Hans Rott

Fragments of Logic, Language, and Computation
Patrick Blackburn

Revisiting Postulates for Inconsistency Measures
Philippe Besnard

Uncertainty

Nonmonotonic Reasoning as a Temporal Activity
Daniel Schwartz

Probabilistic Inductive Logic Programming based on Ans@&etr Programming
Matthias Nickles and Alessandra Mileo

A Plausibility Semantics for Abstract Argumentation Frameks
Emil Weydert

Declarative Programming 1

An Approach to Forgetting in Disjunctive Logic ProgramsttReeserves Strong Equivalence
James P. Delgrande and Kewen Wang

Three Semantics for Modular Systems
Shahab Tasharrofi and Eugenia Ternovska

Generalising Modular Logic Programs
Joao Moura and Carlos Viegas Dasio

Systems 1

The Multi-engine ASP Solver ME-ASP: Progress Report
Marco Maratea, Luca Pulina, and Francesco Ricca

Preliminary Report on WASP 2
Mario Alviano, Carmine Dodaro, and Francesco Ricca

10

20

29

38

45

55

64

68

X INFSYS RR 1843-14-01

Declarative Programming 2

On Strong and Default Negation in Logic Program Updates
Martin Slota, Martin Bahz, and Joao Leite

Belief Change

Inference in the FO(C) Modelling Language
Bart Bogaerts, Joost Vennekens, Marc Denecker, and Jan &amdssche

FO(C) and Related Modelling Paradigms
Bart Bogaerts, Joost Vennekens, Marc Denecker, and Jan &amBdssche

Belief Merging within Fragments of Propositional Logic
Nadia Creignou, Odile Papini, Stefan Rmmele, and Stefatravol

Belief Revision and Trust
Aaron Hunter

Joint NMR/DL Contributed Papers

On the Non-Monotonic Description Logid LC+T yin
Oliver Fernandez Gil

An Argumentation System for Reasoning with Conflict-minifaraconsistent £C
Wenzhao Qiao and Nico Roos

Benchmarks

Some Thoughts about Benchmarks for NMR
Daniel Le Berre

Towards a Benchmark of Natural Language Arguments
Elena Cabrio and Serena Villata

Argumentation 1

Analysis of Dialogical Argumentation via Finite State Mawods
Anthony Hunter

Abduction in Argumentation: Dialogical Proof Procedures énstantiation

Richard Booth, Dov Gabbay, Souhila Kaci, Tjitze Rienstraj aeendert Van Der Torre

Non-Monotonic Reasoning and Story Comprehension
Irene-Anna Diakidoy, Antonis Kakas, Loizos Michael, anth Riiller

73

82

90

97

107

114

123

133

138

146

156

165

PROCEEDINGS OFNMR 2014 XI

Causality and Inference

Tableau vs. Sequent Calculi for Minimal Entailment 175
Olaf Beyersdorff and Leroy Chew

Revisiting Chase Termination for Existential Rules andrtB&tension to Nonmonotonic Negation 184
Jean-Franois Baget, Fabien Garreau, Marie-Laure Mugnérd Swan Rocher

Causality in Databases: The Diagnosis and Repair Conmactio 194
Babak Salimi and Leopoldo Bertossi

Declarative Programming 3

Interactive Debugging of ASP Programs 203
Kostyantyn Shchekotykhin

Semantics and Compilation of Answer Set Programming witheBalized Atoms 214
Mario Alviano and Wolfgang Faber

A Family of Descriptive Approaches To Preferred Answer Sets 223
AlexanderSimko

Systems 2
KR3: An Architecture for Knowledge Representation and Reaspiti Robotics
Representation and Reasoning in Robotics 233

Shiqgi Zhang, Mohan Sridharan, Michael Gelfond, and JererggttV

An ASP-Based Architecture for Autonomous UAVs in Dynamic/Eonments: Progress Report 242
Marcello Balduccini, William Regli, and Duc Nguyen

Nonmonotonic L ogics

Implementing Default and Autoepistemic Logics via the Logi GK 252
Jianmin Ji and Hannes Strass

Argumentation 2

Compact Argumentation Frameworks 263
Ringo Baumann, Wolfgang Dvorak, Thomas Linsbichler, Har8teass, and Stefan Woltran

Extension-based Semantics of Abstract Dialectical Framnlesv 273
Sylwia Polberg

Xl INFSYS RR 1843-14-01

Credulous and Skeptical Argument Games for Complete Sécsant
Conflict Resolution based Argumentation 283
Jozef Fris

On the Relative Expressiveness of Argumentation Framesydt@rmal Logic Programs and
Abstract Dialectical Frameworks 292
Hannes Strass

Four Floors for the Theory of Theory Change

Hans Rott
Universitidt Regensburg
Department of Philosophy
93040 Regensburg, Germany
hans.rott@ur.de

Abstract

The theory of theory change due to Alchourrn, Grdenfors, and
Makinson (“AGM”) has been widely known as being charac-
terised by two packages of postulates. The basic package con-
sists of six postulates and is very weak, the full package adds
two further postulates and is very strong. Revisiting the three
classic constructions of partial meet contraction, safe con-
traction, and entrenchment-based construction, and tracing
the idea of limited discriminative powers in agents, I argue
that four intermediate levels can be distinguished that play
important roles within the AGM theory.

Fragments of Logic, Language, and Computation

Patrick Blackburn
University of Roskilde
Department of Philosophy and Science Studies
Centre for Culture and Identity
Universitetsvej 1, 4000 Roskilde, Denmark
patrickb@ruc.dk

Abstract

Amsterdam-style logicians view modal logic as a fragment
of classical logic, and description logicians view their own
formalisms in much the same way. Moreover, first-order logic
itself can be viewed as a modest fragment of the higher-order
logics of Frege and Russell, a fragment with useful model-
theoretic properties. All in all, the fine structure of logic is a
key topic in contemporary research, as the intensive study of
(say) the 2-variable and various guarded fragments attest.

In this talk I want to consider the role of logical fragments
in applications. I will focus on applications in natural lan-
guage, as this is an area rich in non-monotonic and defeasible
inference. Moreover, as my perspective is that of computa-
tional (rather than theoretical) linguistics, I am interested in
efficient solutions to computational tasks - that is, in frag-
ments of computation. Drawing on a running example in-
volving applications of description logic and classical plan-
ning to a dialogue system, I will discuss the role of com-
putation to provide “pragmatic glue” that lets us work with
small well-explored logical fragments, while simultaneously
providing the dynamics required to model various forms of
non-monotonicity.

Revisiting Postulates for Inconsistency Measures

Philippe Besnard

CNRS

IRIT — Université Paul Sabatier
118 rte de Narbonne, 31062 Toulouse cedex 9, France
besnard@irit. fr

Abstract

We discuss postulates for inconsistency measures as
proposed in the literature.We examine them both indi-
vidually and as a collection. Although we criticize two
of the original postulates, we mostly focus on the mean-
ing of the postulates as a whole. Also and accordingly,
we discuss a number of new postulates as substitutes
and/or as alternative families.

Introduction

In (Hunter and Konieczny 2008; Hunter and Konieczny
2010), Hunter and Konieczny have introduced postulates
for inconsistency measures over knowledge bases. Let us
first make it clear that the phrase “inconsistency measure”
refers to the informal meaning of a measure, not to the
usual formal definition whose countable additivity require-
ment would leave no choice for an inconsistency measure,
making all minimal inconsistent knowledge bases in each
cardinality to count as equally inconsistent (unless making
some consistent formulas to count as more inconsistent than
others!). However, we stick with the usual range R U {oc}
(so, the range is totally ordered and O is the least element).
The intuition is: The higher the amount of inconsistency in
the knowledge base, the greater the number returned by the
inconsistency measure.

Let us emphasize that we deal with postulates for incon-
sistency measures that account for a raw amount of incon-
sistency: E.g., it will clearly appear below that an inconsis-
tency measure I satisfying the (Monotony) postulate due to
Hunter-Konieczny precludes I to be a ratio (except for quite
special cases, see (Hunter and Konieczny 2010)).

HK Postulates

Hunter and Konieczny refer to a propositional language' £
for classical logic . Belief bases are finite sequences over
L. K is comprised of all belief bases over L, in set-theoretic
form (i.e., a member of K is an ordinary set?).

According to Hunter and Konieczny, a function I over be-
lief bases is an inconsistency measure if it satisfies the fol-
lowing properties, VK, K’ € K., Va,3 € L

'For simplicity, we use a language based on the complete set of
connectives {—, A, V}.
’In the conclusion, we mention the case of multisets.

S I(K)=0iff Kt/ L
- I(KUK') > I(K)

- If avis free? for K then I(K U {a}) = I(K)
(Free Formula Independence)

-Ifat Band ot/ L then I(K U{a}) > I(KU{B})
(Dominance)

(Consistency Null)
(Monotony)

We start by arguing against (Free Formula Independence)
and (Dominance) in the next section. We browse in the
subsequent section several consequences of HK postulates,
stressing the need for more general principles in each case.
We then introduce various postulates supplementing the
original ones, ending with a new axiomatization. We also
devote a full section to a major principle, replacement of
equivalent subsets. The section preceding the conclusion can
be viewed as a kind of rejoinder backing (Monotony) and
(Free Formula Independence) via the main new postulate.

Objections to HK Postulates
Objection to (Dominance)
In contrapositive form, (Dominance) says:

Forat 8,if (K U{a}) < I(KU{8})thenak L (1)

but it makes sense that the lefthand side holds while o t/ L.
An example is as follows. Let K = {a AbAcA--- A z}.
Take 8 = —aV (=bA—cA---A—-z) while @« = ~a. We may
hold I(K U {a}) < I(K U {f}) on the following grounds:

- The inconsistency in I (K U {a}) is —a vs a.

- The inconsistency in I(K U {8}) is either as above (i.e.,
—avsa)oritis—-bA-cA---A=zvsbAcA---A zthat
may be viewed as more inconsistent than the case —a vs a,
hence, {a AbAcA---Az}U{—aV (-bA—cA---AN-z)}
can be taken as more inconsistent overall than {a Ab A c A
-+ Az} U{—a} thereby violating (1) because « I/ L here.

Objection to (Free Formula Independence)
Unfolding the definition, (Free Formula Independence) is:
If K" U{a}F L for no consistent subset K’ of K (2)
then I(K U {a}) = I(K)

3A formula ¢ is free for X iff Y U {a} I L for no consistent
subset Y of X.

(Hunter and Konieczny 2010) has an example of a consistent
free formula whose rightmost conjunct contradicts a consis-
tent part of a formula of K and so does its leftmost conjunct.
A different case (where no minimal inconsistent subset is a
singleton set) is K = {a A ¢,b A —c} and & = —a V —b.
Atoms a and b are compatible but a A b is contradicted by «,
and K U {a} may be regarded as more inconsistent than K:
(2) is failed.

Consequences of HK Postulates
Proposition 1 (Monotony) entails

- if I(KU{anp}) = I(KU{a, 8}) then I KU{aAB}) >
I(KU{p})

Proof Assume I(K U{aA3}) = I(K U{«, 8}). However,
(Monotony) ensures I(K U {«,3}) > I(K U {3}. Hence
the result.]

That is, if I conforms with adjunction (roughly speaking,
it means identifying {«, 5} with {a A 5}) then I respects
the idea that adding a conjunct cannot make the amount of
inconsistency to decrease.

Notation. « = (3 denotes that both o - 3 and 5 F « hold.
Also, a = [- «y is an abbreviation for « = S and 3 - ~
(so0, a = [I/ v means that & = (5 and 3 I/).

Proposition 2 (Free Formula Independence) entails

-ifa=T then (K U{a}) = I(K)
(Tautology Independence)

Proof A tautology is trivially a free formula for any K. ®

Unless 8t L, there is however no guarantee that the fol-
lowing holds:

-ifa=Tthen I(KU{aAB}) =I(KU{3})
(‘T -conjunct Independence)

Proposition 3 (Dominance) entails

-I(KU{oaq,...,on}) =1(KU{B1,...,0n})

whenever a; = B; 1/ L fori=1..n (Swap)

Proof For i = 1..n, a; = (; so that (Dominance) can be
applied in both directions. As a consequence, for ¢ = 1..n,
it clearly holds that I(K U {(31,...,Bi—1,Qi,...,an}) =
I(KU{ﬂl,...,61‘,@“_1,...,05”}). ||

Proposition 3 fails to guarantee that I be independent of any
consistent subset of the knowledge base being replaced by
an equivalent (consistent) set of formulas:

-if K't/ Land K/ = K" then (K UK') = [(KUK")
(Exchange)

Proposition 3 guarantees that any consistent formula of the
knowledge base can be replaced by an equivalent formula
without altering the result of the inconsistency measure.
Clearly, postulates for inconsistency measures are expected
not to entail [(K U{a}) = (KU {B}) fora =g+ L.
However, some subcases are desirable: [(K U {a V a}) =
I(KU{a}), (KU{aApB}) =I(KU{BAa}), and so
on, in full generality (i.e., even for o - L) but Proposition 3
fails to ensure any of these.

Proposition 4 (Dominance) entails
-ifaNBV Lthen (K U{aApB}) > I(KU{G})

Proof Apply (Dominance) to the valid inference o A G F 3
and the result ensues. [|

Proposition 4 means that [respects the idea that adding a
conjunct cannot make amount of inconsistency to decrease,
in the case of a consistent conjunction (however, one really
wonders why this not guaranteed to hold in more cases?).

Proposition 5 Due to (Dominance) and (Monotony)
-Forac K, ifal/ Landat Gthen ([KU{B}) = I(K)
Proof I(K U {a}) = I(K) as a € K. By (Dominance),

I(KU{a}) > I(KU{B}). Therefore, I (K) > I(KU{8}).
The converse holds due to (Monotony). [|

Proposition 5 guarantees that a consequence of a consistent
formula of the knowledge base can be added without alter-
ing the result of the inconsistency measure. What about a
consequence of a consistent subset of the knowledge base?
Indeed, Proposition 5 is a special case of
(An) For {a1,...,an} C K, if {oq,..., 0} I/ L and
{ar,...,an} b B then I(K U{3}) = I(K)
That is, Proposition 5 guarantees (A,,) only for n = 1 but
what is the rationale for stopping there?

Example 1 Let K = {—b, aAb, bAc}. Proposition 5 ensures
that I(K U {a,c}) = I(KU{a}) = I(K U{c}) = I(K).
Although a N\ c behaves as a and c with respect to all contra-
dictions in K (i.e., aAbvs —band b/Acvs —b), HK postulates
fail to ensure I(K U {a A c}) = I(K).

Replacement of Equivalent Subsets
The value of (Exchange)
Firstly, (Exchange) is not a consequence of (Dominance)
and (Monotony). An example is K1 = {aAcAe,bAdN—e}
and Ko = {a Ae,c Ae,b AdA —e}. Due to (Exchange),
I(K;) = I(K>) but HK postulates do not impose equality.
Next are a few results showing properties of (Exchange).

Proposition 6 (Exchange) is equivalent to each of these:
- The family (Ay)n>1
K = K", K"t/ L then [(KUK') = I((K\K")UK")
-IfK'=K"and K'Y/ Land KNK' =10
then I(K UK') = (K UK")
-If {Ki,...,K,} is a partition of K \ Ko where Ky is
defined as Ko = {a € K | a - L} such that K; t/ 1 and
K] =K, fori=1.nthenI(K) = I(K(UK{U---UK],)
Proof Assume (A4,,) foralln > land K/ = K"t/ L. (i) Let
K'={a,...,ay}. Define (K}),>0 where K = K UK"
and K}, = Kj U {a;j11}. Itis clear that K" I/ L and
K" F ajy1 and K" C KJ’-. Hence, (A,,) can be ap-
plied to K and this gives [(K}) = I(K; U {a;41}) =
I(K},,). Overall, I(Kj) = I(K,,). Le., (K UK") =
I(K U K' U K"). (i) Let K" = {B1,...,5,}. Con-
sider the sequence (K/);>o where K] = K U K’ and

j
1 = K/ U{Bj1}. Clearly, K" i/ L and K' = ;11

and K/ C K ;»’ . Hence, (4,) can be applied to K ;»’ and
this gives I(K}') = I(K} U {Bj+1}) = I(K},). Over-
all, [(KY) = [(K!!). Le., (K UK") = I(K UK’ UK").
Combining the equalities, (K U K') = I(K U K"). That
is, the family (A,,),,>1 entails (Exchange).

We now show that the family (A,),>1 is entailed by the
second item in the statement of Proposition 6, denoted
(Exchange’), which is:

IfK't/ Land K' = K"}
then I(K UK') = I((K \ K') UK")

Let {ay,...,an} € K such that {ay,...,a,} ¥ L and
{a1,...,an} F B.So, {a1,...,a,} = {a1,...,an, B}
For K/ = {a1,...,an}, K" = Hoa,...,an,0}
(Exchange) gives I(K) = I(K \ {a1,...,an}) U
{ag,...,an, B} = I(KU{3}).
By transitivity, we have thus shown that (Exchange) is en-
tailed by (Exchange’). Since the converse is obvious, the
equivalence between (Exchange), (Exchange’) and the fam-
ily (A;)n>1 holds.

It is clear that the third item in the statement of Proposi-
tion 6 is equivalent with (Exchange).

Consider now (Exchange”), the last item in the statement
of Proposition 6:

If {Ky,...,K,} is a partition of K\ K where
Ky ={a € K| akF L} such that

K; % 1L and K] = K; for i = 1..n then
I(K)=I(KoUK{U---UK)).

(i) Assume (Exchange’). We now prove (Exchange”). Let
{Ki,..., Ky} be apartition of K \ Ky satisfying the condi-
tions of (Exchange”). Trivially, I(K) = I(KoU K \ Ky) =
I(K()UK1U' . UKn) Then, K,L\Kn = Kz fori =1..n—1.
Applying (Exchange’) yields I(Ky U K; U --- U K,) =
I(KoUK,U- - -UK") hence I(K) = I(KoUKU---UK).
Applying (Exchange’) iteratively upon K, 1, K, o, ...,
K gives I(K) =I(KoUK{U---UK)).

(ii) Assume (Exchange’). We now prove (Exchange’). Let
K' i/ 1L and K" = K'. Clearly, (K U K')g = Ky and
(KUK')\ (KUK'")y = (K \ Ky) UK'. As each for-
mula in K \ Ky is consistent, K \ K can be partitioned into
{Ky,...,K,}suchthat K; I/ 1 fori = 1..n (take n = 0 in
the case that K’ = Kj). Then, {K; \ K',..., K, \ K', K’}
is a partition of (K \ Ky) U K' satisfying the conditions
in (Exchange”). Now, I(K U K') = I(Ko U (K1 \ K') U
- U (K, \ K') U K'). Applying (Exchange’) with each
K; substituting itself and K’ substituting K’, we obtain
IKUK=I(KoU(Ki\K")U---U(K,\ K')UK").
Thatis, I(K U K') = I((K \ K') UK"). m

Proposition 7 (Exchange) entails (Swap).
Proof Taking advantage of transitivity of equality, it will be

sufficient to prove I(K U {fB1,...,8i—1, Q... ,qn}) =
I(K U{p1,...,0i,Q+t1,...,a5}) for i = 1l.n. Dueto
a; = f; and B; K/ L, it holds that {o;} / L

and {o;} = {«a;,0;}. As a consequence, (Exchange)
can be applied to K U {f1,...,8i—1,%+1,...,a,} for
K" = {a;} and K" = {ay,;}. Accordingly, I(K U
{B1,..-,Bi—1,i,...,an}) is then equal to I(((K U

{617 s aﬂifbaﬁklu BREE) Oén}) \ {ai}) U {ahﬁi}) and the
latteriSI(KU{ﬂl,...,61‘7041‘4_1,...,0471}). |

That (Exchange) entails (Swap) is natural. Surprisingly,
(Exchange) also entails (Tautology Independence).

Proposition 8 (Exchange) gives (Tautology Independence).

Proof The non-trivial case is « ¢ K. Apply (Exchange’) for
K’ ={a}tand K" =, s0, (KU{a}) = I((K\{a})U®)
ensues. Le., [(K U {a}) = I(K). [

The value of an adjunction postulate
In keeping with the meaning of the conjunction connective
in classical logic, consider a dedicated postulate in the form

- I(K U{a, B}) = I(K U{a A BY)
(Adjunction Invariancy)

Proposition 9 (Adjunction Invariancy) entails

- I(K U e, BY) = I((K \ {a, 8}) U{a A B})

(Disjoint Adjunction Invariancy)
-I(K)=1({\K}) (Full Adjunction Invariancy)
where \ K denotes aq A ... N\ «, for any enumeration
Qat,...,on of K.

Proof Let K = {a1,...,a,}. Apply iteratively (Adjunc-
tion Invariancy) as I({aq A ... A @1, Q... 0 }) =
I({a1/\.../\ai,ai+1,...,an}) fori = 2..n. |

Proposition 10 Assuming I({aA(BA7Y)}) = I{(aAB)A
v} and I({a A B}) = I({B A a}), (Disjoint Adjunction In-
variancy) and (Full Adjunction Invariancy) are equivalent.

Proof Assume (Full Adjunction Invariancy). K U {«, 8} =
(K \ {a,8}) U {a, 5} yields I(K U {a, 3}) = I((K \
{a, 8}) U{a, 5}). By (Full Adjunction Invariancy), I ((K \
fa,8}) U 10, 81) = A (K \ {a, 8)) U {a, 1)}) and
the latter can be written I({y1 A ... A v A & A (})
for some enumeration 7i,...,7, of K \ {a,f}. ILe.,
IK U {a.8)) = I({m A A% Aan BY). By
(Full Adjunction Invariancy), I((K \ {o,0}) U {a A

8} = IA (K \{a,8}) U{a A 3})}) that can be writ-
ten I7({y1 A ... Ay, A a A (}) for the same enumeration
Y1y--yn of K\ {a, 8}. So, I(K U{e,3}) = I((K \
{a, 6}) U{a A B}). As to the converse, it is trivial to use
(Disjoint Adjunction Invariancy) iteratively to get (Full Ad-
junction Invariancy).]

A counter-example to the purported equivalence of (Ad-
junction Invariancy) and (Full Adjunction Invariancy) is
as follows. Let K = {a,b,—b A —a}. Obviously, I(K U
{a,b}) = I(K) since {a,b} C K. (Full Adjunction In-
variancy) gives I(K) = I({A\,cx 7}) ie. [(K U{a,b}) =
I({A ex7}) = I({anbA=bA—a}). A different case of ap-
plying (Full Adjunction Invariancy) gives I(K U{aAb}) =
I\ exugany) = I{a Ab A =b A —a Aa A DbY).
However, HK postulates do not provide grounds to infer
I{aAbA-bDA—-a}) = I{aANbDA=bA-aAaAb})
hence (Adjunction Invariancy) may fail here.

(Adjunction Invariancy) provides a natural equivalence
between (Monotony) and a principle which expresses that
adding a conjunct cannot make the amount of inconsistency
to decrease:

Proposition 11 Assuming (Consistency Null), (Adjunction
Invariancy) yields that (Monotony) is equivalent with
- I(K U{anBY) = I(K U {a})

(Conjunction Dominance)

Proof Assume (Monotony), a simple instance of which is
I(K U {a}) < I(K U {a,}). (Adjunction Invariancy)
gives I (K U{a, 8}) = I(K U{a A 3}). As a consequence,
I(K U{a}) < I(K U{a A 3}). This inequality shows that
(Conjunction Dominance) holds.

Assume (Conjunction Dominance). First, consider K # ().
Let « € K. Thus, I(K U {a}) < I(K U {a A 8} by
(Conjunction Dominance). (Adjunction Invariancy) gives
I(K U{«,8}) = I(K U{a A 3}). Hence, I(K U {a}) <
I(KU{a,p}). Le, I(K) < I(K U{3}) because @ € K.
For K’ € K, it is enough to iterate this finitely many times
(one for every 3 in K’ \ K) to obtain I(K) < I(K U K’).
Now, consider K = (. By (Consistency Null), I(K) = 0
hence I(K) < I(K UK’). [|

(Free Formula Independence) yields (Tautology Indepen-
dence) by Proposition 2 although a more general principle
(e.g., (T-conjunct Independence) or the like) ensuring that
I be independent of tautologies is to be expected. The next
result shows that (Adjunction Invariancy) is the way to get
both postulates at once.

Proposition 12 Assuming (Consistency Null), (Adjunction
Invariancy) yields that (T-conjunct Independence) and
(Tautology Independence) are equivalent.

Proof For o = T, (Adjunction Invariancy) and (Tautology
Independence) give I(K U {a A 8}) = I(K U {«,(}) =
I(K U {B}). As to the converse, let § € K. Therefore,
I(K) = I(KU{B}) = I(KU{aAB}) = I(KU{a, B}) —
I(K U {a}). At to the case K = (), it is settled by means of
(Consistency Null). [|

(Adjunction Invariancy) provides for free various principles
related to (idempotence, commutativity, and associativity of)
conjunction as follows.

Proposition 13 (Adjunction Invariancy) entails
-I(KU{ana})=1(KU{a})

- I(KU{aAB}) = I(KU{BANa})

- I(KU{aA(BAY)}) = TIKU{(aAB)Aq})

Proof () I(KU{aAa})=I(KU{a,a}) =I1(KU{a}).
(i) I(K U{a A B}) = I(K U{a, B}) = I(KU{B,a}) =
I(KU{BAa}). () I[(KU{aA(BAy)}) = (KU
{a,8A7}) = I(K U{a,B,7}) = I(KU{aAB,7}) =
I(K U {(anB) A7}). m

(Adjunction Invariancy) and (Exchange) are two principles
devoted to ensuring that replacing a subset of the knowledge
base with an equivalent subset does not change the value
given by the inconsistency measure. The contexts that these
two principles require for the replacement to be safe differ:

1. For K’ I/ 1, (Exchange) is more general than (Adjunction
Invariancy) since (Exchange) guarantees I(K U K') =
I(K U K") for every K” = K’ but (Adjunction In-
variancy) ensures it only for K"/ = {AK] | & =
{K{,.., K] }} where & ranges over the partitions of K.

2. For a - L, (Adjunction Invariancy) is more general than
(Exchange) because (Adjunction Invariancy) guarantees
I(K U{a,B}) = I(K U{a A §}) but (Exchange) does
not guarantee it.

Revisiting HK Postulates
Sticking with (Consistency Null) and (Monotony)

First, (Consistency Null) or a like postulate is indispensable
because there seems to be no way to have a sensible incon-
sistency measure that would not be able to always discrimi-
nate between consistency and inconsistency.

(Monotony) is to be kept since contradictions in classical
logic (and basically all logics) are monotone (Besnard 2010)
wrt information: That is, extra information cannot make a
contradiction to vanish.

We will not retain (Monotony) as an explicit postulate,
because it ensues from our schematic postulate (see later).

Intended postulates

(Tautology Independence) and (T-conjunct Independence)
are due postulates. More generally, it would make no sense,
when determining how inconsistent a theory is, to take into
account any inessential difference in which a formula can
be written (e.g., o V (3 instead of 8 V «). Define o’ to be
a prenormal form of « if o/ is obtained from « by applying
(posibly repeatedly) one or more of the following principles:
commutativity, associativity and distribution for A and V,
De Morgan laws, double negation equivalence. Henceforth
the next* postulate:

- If 3 is a prenormal form of o, I(K U {«a})=I1(K U{3})
(Rewriting)

As (Monotony) essentially means that extra information
cannot make amount of inconsistency to decrease, the same
idea must apply to conjunction because A 3 cannot involve
less information than «. Thus, another due postulate is:

-I(KUu{anp}) 2 I(KU{a})
(Conjunction Dominance)

Indeed, it does not matter whether « or 3 or both be incon-
sistent: It definitely cannot be rational to hold that there is
a case (even a single one) where extending K with a con-
junction would result in /ess inconsistency than extending
K with one of the conjuncts.

Taking care of disjunction

It is very difficult to assess how inconsistent a disjunction is,
but bounds can be set. Indeed, a disjunction expresses two
alternative possibilities; so, accrual across these would make
little sense. That is, amount of inconsistency in « V 3 cannot
exceed amount of inconsistency in either « or 3, depend-
ing on which one involves a higher amount of inconsistency.
Hence the following postulate.

“Insharp contrast to (Irrelevance of Syntax) that allows for de-
structive transformation from « to 3 when both are inconsistent,
(Rewriting) takes care of inhibiting purely deductive transforma-
tions (the most important one is presumably from o A L to _L).

- I(K Uf{a Vv 8)) < max(I(K U{a}),I(K U {5}))

(Disjunct Maximality)
Two alternative formulations for (Disjunct Maximality) are
as follows.

Proposition 14 Assume [(KU{aV(}) = [(KU{BVa}).
(Disjunct Maximality) is equivalent with each of
I(K U {a}) > I(K U{g))

then I(K U{a}) > I(KU{aV G})
- either I(K U{aV £}) < I(K U{a})

or (KU {aVg}) <I(KU{B})
Proof Let us prove that (Disjunct Maximality) entails the
first item. Assume I (K U {a}) > I(K U{3}).Le., I(K U
{a}) = max(I(K U {a}),I(K U{#})). Using (Disjunct
Maximality), I(K U {a V 8}) < max(I(K U {a}), I(K U
{B}),ie. (K U{a})) > I(K U{aV §}). As to the con-
verse direction, assume that if J(K U {a}) > I(K U {3})
then I(K U {a}) > I(K U {«a V (}). Consider the case
max(I(K U {a}),I(K U {8})) = I(K U {a}). Hence,
I(K U{a}) > I(K U{B}). According to the assumption,
it follows that I(K U {«}) > I(K U {a V §}). That is,
max(I (K U{a}), I(KU{3})) > I(K U{aV #}). Simi-
larly, the case max(I (K U{a}), I(KU{3})) = I(KU{3})
gives (K U{pB}) > I(KU{BV a}). Then, (K U{3}) >
I(KU{aV }) in view of the hypothesis in the statement of
Proposition 14. That is, max(I(K U {a}), (K U{3})) >
I(K U{aV 3}). Combining both cases, (Disjunct Maximal-
ity) holds.
The equivalence of (Disjunct Maximality) with the last item
is due to the fact that the codomain of [is totally ordered. B

Although it is quite unclear how to weigh inconsistencies out
of a disjunction, they must weigh no more than out of both
disjuncts (whether tied together by a conjunction or not),
which is the reason for holding
- I(KU{anB)) = I(KU{avB))

(A-over-V Dominance)
and its conjunction-free counterpart
- I(K U{e, B}) = I(K U{a Vv (})
Proposition 15 Assume [(KU{aAB}) = [(KU{BAa}).
(Conjunction Dominance) and (Disjunct Maximality) entail
(A-over-V Dominance).
Proof Given I(KU{aAB}) = I(KU{BA«a}), (Conjunction
Dominance) gives I (K U{aAB}) > I(KU{a})and I(KU
{anp}) > I(KU{B}). Therefore, max(I (K U{a}), (KU
{8})) < I(KU{aAp}). Inview of (Disjunct Maximality),
I(KU{aVg}) <max(I(K U{a}),I(K U{B})), and it
accordingly follows that [(K U{aV (}) < I(KU{aAS})

holds. u
Proposition 16 (Monotony) and (Disjunct Maximality) en-
tail

- I(KU{a,B}) 2 I(KU{aVB})

Proof Due to (Monotony), I(K U {a}) < I(K U {«, 8})
and I(K U {f}) < I(K U {a,(}). As a consequence,
max(I(K U {a}),I(K U{5})) < I(K U {a,(}). Then,
I(KU{aVg}) <max(I(KU{a}),I(K U{3})) dueto
(Disjunct Maximality). I(K U {a, 5}) > I(K U {a V 5})
easily ensues.]

A schematic postulate
This is to be presented in two steps.

1. (Monotony) expresses that adding information cannot re-
sult in a decrease of the amount of inconsistency in the
knowledge base. Considering a notion of primitive con-
flicts that underlies amount of inconsistency, (Monotony)
is a special case of a postulate stating that amount of in-
consistency is monotone with respect to the set of primi-
tive conflicts C(K) of the knowledge base K: If C(K) C
C(K') then I(K) < I(K').

Clearly, [is to admit different postulates depending on
what features are required for primitive conflicts (see Ta-
ble 1).

2. Keep in mind that an inconsistency measure refers to

logical content of the knowledge base, not other aspects
whether subject matter of contradiction, source of infor-
mation,... This is because an inconsistency measure is
only concerned with guantity, i.e. amount of inconsis-
tency (of course, it is possible for example that a contra-
diction be more worrying than another -and so, making
more pressing to act (Gabbay and Hunter 1993) about it-
but this has nothing to do with amount of inconsistency).
Now, what characterizes logical content is uniform sub-
stitutivity. Hence a postulate called (Substitutivity Domi-
nance) stating that renaming cannot make the amount of
inconsistency to decrease: If c K = K’ for some substi-
tution o then I(K) < I(K').

Combining these two ideas, we obtain the next postulate

- If C(o K) CC(K") for some substitution o, I(K) <I(K’)
(Subsumption Orientation)

Fact 1 Every postulate of the form

-I(X) < I(Y)forall X € KgandY € K such that
condition C'x y holds

or of the form

-I(X) = I(Y) forall X € Ke andY € K. such that
condition C'x y holds

is derived from (Subsumption Orientation) and from any
property of C ensuring that condition C holds.

Individual properties of C ensuring condition C' for a
number of postulates, including all those previously men-
tioned in the paper, can be found in Table 1.

(Variant Equality) in Table 1 is named after the notion of
a variant (Church 1956):

- If o and o’ are substitutions s.t. c K = K’ and 0’ K/ = K
then I(K) = I(K')
(Variant Equality)

New system of postulates (basic and strong versions)

All the above actually suggests a new system of postulates,
which consists simply of (Consistency Null) and (Sub-
sumption Orientation). The system is parameterized by the
properties imposed upon C in the latter. In the range induced
by C, a basic system emerges, which amounts to the next list:

: Specific postulate entailed b
Specific property for C (gustZm];)tion Orientation) Y
No property needed (Variant Equality)

No property needed (Substitutivity Dominance)
C(KU{a})=C(K)fora=T (Tautology Independence)
C(KU{anp})=C(KU{B})fora=T (T -conjunct Independence)

C(KU{a}) =C(K U{d'}) for ¢ prenormal form of « (Rewriting)

C(K)CC(KuU{a}) (Instance Low)

C(K) CC(KU{a}) (Monotony)

C(KU{aVp}) CC(KU{aAB}) (A-over-V Dominance)

C(KU{a}) CC(KU{aAB}) (Conjunction Dominance)

C(KU{a,B8}) =C(KU{aApB}) (Adjunction Invariancy)

C(KU{aVpg}) CC(KU{a})orC(K U{S}) (Disjunct Maximality)

C(KU{aVp}) 2C(KU{a})orC(KU{B} (Disjunct Minimality)

C(KUK')=C(KUK"for K"=K'l/ L (Exchange)

C(KU{a1,...,an}) =C(KU{B1,...0n})ifa, =0 I/ L (Swap)

CIKU{p}) CC(KU{a})foraF Gandalt/ L (Dominance)

C(K U{a}) = C(K) for a free for K (Free Formula Independence)

Table 1: Conditions for postulates derived from (Subsumption Orientation).

Basic System

I(K)=0iff Kt/ L (Consistency Null)
If o' is a prenormal form of «
then I(K U {a}) = I(KU{d'}) (Rewriting)

If c K C K’ for some substitution o
then I(K) < I(K') (Instance Low)
I(K U{aV 8}) < max(I(K U{a}), I(K U {3}))
(Disjunct Maximality)
=I(KU{a})
(Tautology Independence)
Ifa =T then (K U{aApB}) =I(KU{3})
('T-conjunct Independence)
I(K U{a}) <I(KU{aApB}) (Conjunction Dominance)

At the other end of the range is the strong system below
(except for (Dominance) and (Free Formula Independence),
it captures all postulates listed in Table 1).

If « = T then I(K)

Strong System

I(K)=0iff Kt/ L (Consistency Null)
If o' is a prenormal form of «
then I(K U {a}) = I(K U{d'}) (Rewriting)

If c K C K’ for some substitution o
then I(K) < I(K') (Instance Low)
I(K U {aV 3}) < max(I(K U {a}), I(K U {3}))
(Disjunct Maximality)
I(K U fa v 8}) = min(I(K U {a}), I(K U {8}))
(Disjunct Minimality)
If K" = K't/ 1 then [KUK') = I(KUK") (Exchange)
I(K U{a,B}) = I(K U{a A 8}) (Adjunction Invariancy)

HK Postulates as (Subsumption Orientation)

Time has come to make sense’® of the HK choice of
(Free Formula Independence) together with (Monotony), by
means of Theorem 1 and Theorem 2.

>Still not defending the choice of (Free Formula Independence).

Theorem 1 Let C be such that for every K € K. and for
every X C L which is minimal inconsistent, X € C(K)
iff X C K. If I satisfies both (Monotony) and (Free For-
mula Independence) then I satisfies (Subsumption Orienta-
tion) restricted to its non-substitution part, namely

ifC(K) C C(K") then I(K) < I(K").

Proof Let C(K) C C(K'). Should K be a subset of K’,
(Monotony) yields I (K) < I(K') as desired. So, let us turn
to K ¢ K'. Consider ¢ € K \ K'. If ¢ were not free for
K, there would exist a minimal inconsistent subset X of K
such that ¢ € X. Clearly, X ¢ K’. The constraint imposed
on C in the statement of the theorem would then yield both
X € C(K) and X ¢ C(K'), contradicting the assumption
C(K) C C(K'). Hence, ¢ is free for K. In view of (Free
Formula Independence), I(K) = I(K \ {p}). The same
reasoning applied to all the (finitely many) formulas in K \
K’ gives I(K) = I(K N K'). However, K N K is a subset
of K’ so that using (Monotony) yields [(K N K') < I(K")
hence I(K) < I(K'). [|

DefineE={X e K, |VX' C X, X'F 1l & X=X}
Then, C is said to be governed by minimal inconsistency iff
C satisfies the following property

if C(K)N= C C(K') NE then C(K) C C(K).

It means that those Z in C(K') which are not minimal incon-
sistent cannot override set-inclusion induced by minimal in-
consistent subsets —i.e., no such Z can, individually or col-
lectively, turn C(K) NE C C(K') N Zinto C(K) L C(K').
Theorem 2 Let C be governed by minimal inconsistency
and be such that for all K € K. and all X C L which
is minimal inconsistent, X € C(K) iff X C K. I satis-
fies (Monotony) and (Free Formula Independence) whenever
I satisfies (Subsumption Orientation) restricted to its non-
substitution part, namely

ifC(K) C C(K") then I(K) < I(K").

Proof Trivially, if X C K then X C K U {«a}. By the
constraint imposed on C in the statement of the theorem, it
follows that if X € C(K) then X € C(K U {a}). Since C
is governed by minimal inconsistency, C(K) C C(K U{a})
ensues and (Subsumption Orientation) yields (Monotony).
Let o be a free formula for K. By definition, « is in no
minimal inconsistent subset of KU{«}.So, X C Kiff X C
K U {a} for all minimal inconsistent X . By the constraint
imposed on C in the statement of the theorem, X € C(K)
iff X € C(K U {a}) ensues for all minimal inconsistent
X. In symbols, C(K) N E = C(K U {a}) N Z. Since C is
governed by minimal inconsistency, it follows that C(K) =
C(K U{a}). Thus, (Free Formula Independence) holds, due
to (Subsumption Orientation). [|

These theorems mean that, if substitutivity is left aside,
(Subsumption Orientation) is equivalent with (Free Formula
Independence) and (Monotony) when primitive conflicts are
essentially minimal inconsistent subsets. These postulates
form a natural pair if it is assumed that minimal inconsis-
tent subsets must be the basis for inconsistency measuring.

Conclusion

We have proposed a new system of postulates for inconsis-
tency measures, i.e.

I(K) = 0 iff K is consistent (Consistency Null)

IfC(cK) C C(K') for a substitution o then I(K) < I(K')
(Subsumption Orientation)

parameterized by the requirements imposed on C.

Even in its strong version, the new system omits both (Dom-
inance) and (Free Formula Independence), which we have
argued against. We have investigated various postulates, ab-
sent from the HK set, giving grounds to include them in the
new system. We have shown that (Subsumption Orientation)
accounts for the other postulates and provides a justification
for (Free Formula Independence) together with (Monotony),
through focussing on minimal inconsistent subsets.

We do not hold that the new system, in basic or strong ver-
sion, captures all desirable cases, we more modestly claim
for improving over the original HK set. In particular, we be-
lieve that the HK postulates suffer from over-commitment
to minimal inconsistent subsets. Crucially, such a comment
applies to postulates (they would exclude all approaches that
are not based upon minimal inconsistent subsets) but it does
not apply to measures themselves: There are excellent rea-
sons to develop a specific measure (Knight 2002) (Mu, Liu
and Jin 2012) (Jabbour and Raddaoui 2013) ...

As to future work, we must mention taking seriously be-
lief bases as multisets —giving a counterpart to the idea that
e.g. {aNbA-aA-bAaAbA-aA-b} might be viewed
as more inconsistent than {a A b A —a A —b}.

Acknowledgments
Many thanks to Hitoshi Omori for insightful discussions.

References

Philippe Besnard. Absurdity, Contradictions, and Logical
Formalisms. Proc. of the 22nd IEEE International Confer-

ence on Tools with Artificial Intelligence (ICTAI-10), Arras,
France, October 27-29, volume 1, pp. 369-374. IEEE Com-
puter Society, 2010.

Alonzo Church. Introduction to Mathematical Logic.
Princeton University Press, 1956.

Dov Gabbay and Anthony Hunter. Making Inconsistency
Respectable 2: Meta-Level Handling of Inconsistent Data.
Proc. of the 2nd European Conference on Symbolic and
Qualitative Approaches to Reasoning and Uncertainty (EC-
SQARU’93), M. Clarke, R. Kruse, and S. Moral (eds.),
Grenada, Spain, November 8-10, Lecture Notes in Com-
puter Science, volume 747, pp. 129-136. Springer, 1993.

John Grant. Classifications for Inconsistent Theories. Notre
Dame Journal of Formal Logic 19(3): 435-444, 1978.

John Grant and Anthony Hunter. Measuring Inconsistency
in Knowledgebases. Journal of Intelligent Information Sys-
tems 27(2): 159-184, 2006.

John Grant and Anthony Hunter. Analysing Inconsistent
First-Order Knowledgebases, Artificial Intelligence 172(8-
9): 1064-1093, 2008.

John Grant and Anthony Hunter. Measuring the Good and
the Bad in Inconsistent Information. Proc. of the 22nd In-
ternational Joint Conference on Artificial Intelligence (1J-
CAr'll), T. Walsh (ed.), Barcelona, Catalonia, Spain, July
16-22, pp. 2632-2637. AAAI Press, 2011.

Anthony Hunter and Sébastien Konieczny. On the Measure
of Conflicts: Shapley Inconsistency Values. Artificial Intel-
ligence 174(14): 1007-1026, 2010.

Anthony Hunter and Sébastien Konieczny. Measuring In-
consistency through Minimal Inconsistent Sets. Proc. of the
11th Conference on Principles of Knowledge Representation
Reasoning (KR’08), Sydney, Australia, September 16-19, G.
Brewka and J. Lang (eds.), pp. 358-366. AAAI Press, 2008.

Said Jabbour and Badran Raddaoui. Measuring Inconsis-
tency through Minimal Proofs. Proc. of the 12th Euro-
pean Conference on Symbolic and Qualitative Approaches
to Reasoning and Uncertainty (ECSQARU’13), L. C. van
der Gaag (ed.), Utrecht, The Netherlands, July 8-10, Lec-
ture Notes in Computer Science, volume 7958, pp. 290-301.
Springer, 2013.

Kevin Knight. Measuring Inconsistency. Journal of Philo-
sophical Logic 31(1): 77-98, 2002.

Kedian Mu, Weiru Liu and Zhi Jin. A General Framework
for Measuring Inconsistency through Minimal Inconsistent
Sets. Knowledge Information Systems 27(1): 85-114, 2011.

Kedian Mu, Weiru Liu and Zhi Jin. Measuring the Blame of
each Formula for Inconsistent Prioritized Knowledge Bases.
Journal of Logic and Computation 22(3): 481-516, 2012.
Matthias Thimm. Inconsistency Measures for Probabilistic
Logics. Artificial Intelligence 197: 1-24, 2013.

Nonmonotonic Reasoning as a Temporal Activity

Daniel G. Schwartz
Department of Computer Science
Florida State University
Tallahassee, FL 32303

Abstract

A dynamic reasoning system (DRS) is an adaptation
of a conventional formal logical system that explicitly
portrays reasoning as a temporal activity, with each ex-
tralogical input to the system and each inference rule
application being viewed as occurring at a distinct time
step. Every DRS incorporates some well-defined logic
together with a controller that serves to guide the rea-
soning process in response to user inputs. Logics are
generic, whereas controllers are application-specific.
Every controller does, nonetheless, provide an algo-
rithm for nonmonotonic belief revision. The general no-
tion of a DRS comprises a framework within which one
can formulate the logic and algorithms for a given ap-
plication and prove that the algorithms are correct, i.e.,
that they serve to (i) derive all salient information and
(i1) preserve the consistency of the belief set. This pa-
per illustrates the idea with ordinary first-order predi-
cate calculus, suitably modified for the present purpose,
and an example. The example revisits some classic non-
monotonic reasoning puzzles (Opus the Penguin, Nixon
Diamond) and shows how these can be resolved in the
context of a DRS, using an expanded version of first-
order logic that incorporates typed predicate symbols.
All concepts are rigorously defined and effectively com-
putable, thereby providing the foundation for a future
software implementation.

1. Introduction

This paper provide a brief overview of a longer paper
that has been accepted for publication, subject to revi-
sion, as (Schwartz 2013). The full text of that paper (64
pages) may be viewed in the arXiv CoRR repository at
http://arxiv.org/abs/1308.5374.

The notion of a dynamic reasoning system (DRS) was in-
troduced in (Schwartz 1997) for purposes of formulating
reasoning involving a logic of ‘qualified syllogisms’. The
idea arose in an effort to devise rules for evidence combina-
tion. The logic under study included a multivalent semantics
where propositions P were assigned a probabilistic ‘likeli-
hood value’ I(P) in the interval [0, 1], so that the likelihood
value plays the role of a surrogate truth value. The situa-
tion being modeled is where, based on some evidence, P
is assigned a likelihood value /1, and then later, based on
other evidence, is assigned a value /5, and it subsequently

10

is desired to combine these values based on some rule into
a resulting value /3. This type of reasoning cannot be rep-
resented in a conventional formal logical system with the
usual Tarski semantics, since such systems do not allow that
a proposition may have more than one truth value; otherwise
the semantics would not be mathematically well-defined.
Thus the idea arose to speak more explicitly about different
occurrences of the propositions P where the occurrences are
separated in time. In this manner one can construct a well-
defined semantics by mapping the different time-stamped
occurrences of P to different likelihood/truth values.

In turn, this led to viewing a ‘derivation path’ as it evolves
over time as representing the knowledge base, or belief
set, of a reasoning agent that is progressively building and
modifying its knowledge/beliefs through ongoing interac-
tion with its environment (including inputs from human
users or other agents). It also presented a framework within
which one can formulate a Doyle-like procedure for non-
monotonic ‘reason maintenance’ (Doyle 1979; Smith and
Kelleher 1988). Briefly, if the knowledge base harbors in-
consistencies due to contradictory inputs from the environ-
ment, then in time a contradiction may appear in the rea-
soning path (knowledge base, belief set), triggering a back-
tracking procedure aimed at uncovering the ‘culprit’ propo-
sitions that gave rise to the contradiction and disabling (dis-
believing) one or more of them so as to remove the incon-
sistency. Accordingly the overall reasoning process may be
characterized as being ‘nonmonotonic’.

Reasoning is nonmonotonic when the discovery and intro-
duction of new information causes one to retract previously
held assumptions or conclusions. This is to be contrasted
with classical formal logical systems, which are monotonic
in that the introduction of new information (nonlogical ax-
ioms) always increases the collection of conclusions (theo-
rems). (Schwartz 1997) contains an extensive bibliography
and survey of the works related to nonmonotonic reason-
ing as of 1997. In particular, this includes a discussion of
(1) the classic paper by McCarthy and Hayes (McCarthy and
Hayes 1969) defining the ‘frame problem’ and describing
the ‘situation calculus’, (ii) Doyle’s ‘truth maintenance sys-
tem’ (Doyle1979) and subsequent ‘reason maintenance sys-
tem’ (Smith and Kelleher 1988), (iii) McCarthy’s ‘circum-
scription’ (McCarthy 1980), (iv) Reiter’s ‘default logic’ (Re-
iter 1980), and (v) McDermott and Doyle’s ‘nonmonotonic

logic’ (McDermott and Doyle 1980). With regard to tempo-
ral aspects, there also are discussed works by Shoham and
Perlis. (Shoham 1986; 1988) explores the idea of making
time an explicit feature of the logical formalism for reason-
ing ‘about’ change, and (Shoham 1993) describes a vision
of ‘agent-oriented programming’ that is along the same lines
of the present DRS, portraying reasoning itself as a temporal
activity. In (Elgot-Drapkin 1988; Elgot-Drapkin et al. 1987;
1991; Elgot-Drapkin and Perlis 1990; Miller 1993; Perlis et
al. 1991) Perlis and his students introduce and study the no-
tion of ‘step logic’, which represents reasoning as ‘situated’
in time, and in this respect also has elements in common
with the notion of a DRS. Additionally mentioned but not
elaborated upon in (Schwartz 1997) is the so-called AGM
framework (Alchourdn et al. 1985; Gardenfors 1988; 1992),
named after its originators. Nonmonotonic reasoning and
belief revision are related in that the former may be viewed
as a variety of the latter.

These cited works are nowadays regarded as the classic
approaches to nonmonotonic reasoning and belief revision.
Since 1997 the AGM approach has risen in prominence, due
in large part to the publication (Hansson 1999), which builds
upon and substantially advances the AGM framework. AGM
defines a belief set as a collection of propositions that is
closed with respect to the classical consequence operator,
and operations of ‘contraction’, ‘expansion’ and ‘revision’
are defined on belief sets. (Hansson 1999) made the impor-
tant observation that a belief set can conveniently be repre-
sented as the consequential closure of a finite ‘belief base’,
and these same AGM operations can be defined in terms
of operations performed on belief bases. Since that publi-
cation, AGM has enjoyed a steadily growing population of
adherents. A recent publication (Fermé and Hansson 2011)
overviews the first 25 years of research in this area.

The DRS framework has elements in common with AGM,
but also differs in several respects. Most importantly, the
present focus is on the creation of computational algorithms
that are sufficiently articulated that they can effectively be
implemented in software and thereby lead to concrete appli-
cations. This element is still lacking in AGM, despite Hans-
son’s contribution regarding finite belief bases. The AGM
operations continue to be given only as set-theoretic abstrac-
tions and have not yet been translated into computable algo-
rithms.

Another research thread that has risen to prominence is
the logic-programming approach to nonmonotonic reason-
ing known as Answer Set Programming (or Answer Set Pro-
log, aka AnsProlog). A major work is the treatise (Baral
2003), and a more recent treatment is (Gelfond and Kahl
2014). This line of research develops an effective approach
to nonmonotonic reasoning via an adaptation of the well-
known Prolog programming language. As such, this may
be characterized as a ‘declarative’ formulation of nonmono-
toniticy, whereas the DRS approach is ‘procedural’. The ex-
tent to which the two systems address the same problems
has yet to be explored.

A way in which the present approach varies from the orig-
inal AGM approach, but happens to agree with the views ex-
pressed by (Hansson 1999, cf. pp. 15-16), is that it dispenses

11

with two of the original ‘rationality postulates’, namely, the
requirements that the underlying belief set be at all times
(i) consistent, and (ii) closed with respect to logical entail-
ment. The latter is sometimes called the ‘omniscience’ pos-
tulate, inasmuch as the modeled agent is thus characterized
as knowing all possible logical consequences of its beliefs.

These postulates are intuitively appealing, but they have
the drawback that they lead to infinitary systems and thus
cannot be directly implemented on a finite computer. To
wit, the logical consequences of even a fairly simple set
of beliefs will be infinite in number. Dropping these pos-
tulates does have anthropomorphic rationale, however, since
humans themselves cannot be omniscient in the sense de-
scribed, and, because of this, often harbor inconsistent be-
liefs without being aware of this. Thus it is not unreasonable
that our agent-oriented reasoning models should have these
same characteristics. Similar remarks may be found in the
cited pages of (Hansson 1999).

Other ways in which the present work differs from the
AGM approach may be noted. First, what is here taken as a
‘belief set’ is neither a belief set in the sense of AGM and
Hansson nor a Hansson-style belief base. Rather it consists
of the set of statements that have been input by an external
agent as of some time ¢, together with the consequences of
those statements that have been derived in accordance with
the algorithms provided in a given ‘controller’. Second, by
labeling the statements with the time step when they are en-
tered into the belief set (either by an external agent or de-
rived by means of an inference rule), one can use the la-
bels as a basis for defining the associated algorithms. Third,
whereas Gérdenfors, Hansson, and virtually all others that
have worked with the AGM framework, have confined their
language to be only propositional, the present work takes the
next step to full first-order predicate logic. This is significant
inasmuch as the consistency of a finite set of propositions
with respect to the classical consequence operation can be
determined by truth-table methods, whereas the consistency
of a finite set of statements in first-order predicate logic is
undecidable (the famous result due to Goédel). For this rea-
son the present work develops a well-defined semantics for
the chosen logic and establishes a soundness theorem, which
in turn can be used to establish consistency. Last, the present
use of a controller is itself new, and leads to a new efficacy
for applications.

The notion of a controller was not present in the previous
work (Schwartz 1997). Its introduction here thus fills an im-
portant gap in that treatment. The original conception of a
DRS provided a framework for modeling the reasoning pro-
cesses of an artificial agent to the extent that those processes
follow a well-defined logic, but it offered no mechanism for
deciding what inference rules to apply at any given time.
What was missing was a means to provide the agent with a
sense of purpose, i.e., mechanisms for pursuing goals. This
deficiency is remedied in the present treatment. The con-
troller responds to inputs from the agent’s environment, ex-
pressed as propositions in the agent’s language. Inputs are
classified as being of various ‘types’, and, depending on the
input type, a reasoning algorithm is applied. Some of these
algorithms may cause new propositions to be entered into

the belief set, which in turn may invoke other algorithms.
These algorithms thus embody the agent’s purpose and are
domain-specific, tailored to a particular application. But in
general their role is to ensure that (i) all salient propositions
are derived and entered into to the belief set, and (ii) the be-
lief set remains consistent. The latter is achieved by invoking
a Doyle-like reason maintenance algorithm whenever a con-
tradiction, i.e., a proposition of the form P A =P, is entered
into the belief set.

This recent work accordingly represents a rethinking, re-
finement, and extension of the earlier work, aimed at (1) pro-
viding mathematical clarity to some relevant concepts that
previously were not explicitly defined, (ii) introducing the
notion of a controller and spelling out its properties, and
(iii) illustrating these ideas with a small collection of ex-
ample applications. As such the work lays the groundwork
for a software implementation of the DRS framework, this
being a domain-independent software framework into which
can be plugged domain-specific modules as required for any
given application. Note that the mathematical work delin-
eated in (Schwartz 2013) is a necessary prerequisite for the
software implementation inasmuch as this provides the for-
mal basis for an unambiguous set of requirements specifica-
tions. While the present work employs classical first-order
predicate calculus, the DRS framework can accommodate
any logic for which there exists a well-defined syntax and
semantics.

The following Section 2 provides a fully detailed defi-
nition of the notion of a DRS. Section 3 briefly describes
the version of first-order predicate logic introduced for the
present purpose and mentions a few items needed for the
ensuing discussion. Section 4 illustrates the core ideas in an
application to multiple-inheritance systems, showing a new
approach to resolving two classic puzzles of nonmontonic
reasoning, namely Opus the Penguin and Nixon Diamond.

2. Dynamic Reasoning Systems

A dynamic reasoning system (DRS) comprises a model of an
artificial agent’s reasoning processes to the extent that those
processes adhere to the principles of some well-defined
logic. Formally it is comprised of a “path logic’, which pro-
vides all the elements necessary for reasoning, and a ‘con-
troller’, which guides the reasoning process.

Propositions

Theorems

Inference
Rules

Figure 1: Classical formal logical system.

12

Axiom Schemas

Propositions

Schema

Instantiation Rules
Inference

Rules

Derivation Path

Figure 2: Dynamic reasoning system.

For contrast, and by way of introductory overview, the
basic structure of a classical formal logical system is por-
trayed in Figure 1 and that of a DRS in Figure 2. A classical
system is defined by providing a language consisting of a
set of propositions, selecting certain propositions to serve as
axioms, and specifying a set of inference rules saying how,
from certain premises one can derive certain conclusions.
The theorems then amount to all the propositions that can
be derived from the axioms by means of the rules. Such sys-
tems are monotonic in that adding new axioms always serves
to increase the set of theorems. Axioms are of two kinds:
logical and extralogical (or ‘proper’, or ‘nonlogical’). The
logical axioms together with the inference rules comprise
the ‘logic’. The extralogical axioms comprise information
about the application domain. A DRS begins similarly with
specifying a language consisting of a set of propositions. But
here the ‘logic’ is given in terms of a set of axioms schemas,
some inference rules as above, and some rules for instantiat-
ing the schemas. The indicated derivation path serves as the
belief set. Logical axioms may be entered into the derivation
path by applying instantiation rules. Extralogical axioms are
entered from an external source (human user, another agent,
a mechanical sensor, etc.). Thus the derivation path evolves
over time, with propositions being entered into the path ei-
ther as extralogical axioms or derived by means of infer-
ence rules in accordance with the algorithms provided in the
controller. Whenever a new proposition is entered into the
path it is marked as ‘believed’. In the event that a contra-
diction arises in the derivation path, a nonmonotonic belief
revision process is invoked which leads to certain previously
believed propositions becoming disbelieved, thereby remov-
ing the contradiction. A brief overview of these two compo-
nents of a DRS is given in Sections 2.1 and 2.2.

2.1. Path Logic

A path logic consists of a language, axiom schemas, infer-
ence rules, and a derivation path, as follows.

Language: Here denoted £, this consists of all expres-
sions (or formulas) that can be generated from a given set
o of symbols in accordance with a collection of production
rules (or an inductive definition, or some similar manner of

definition). As symbols typically are of different types (e.g.,
individual variables, constants, predicate symbols, etc.) it
is assumed that there is an unlimited supply (uncountably
many if necessary) of each type. Moreover, as is customary,
some symbols will be logical symbols (e.g., logical connec-
tives, quantifiers, and individual variables), and some will
be extralogical symbols (e.g., individual constants and pred-
icate symbols). It is assumed that £ contains at least the
logical connectives for expressing negation and conjunction,
herein denoted — and A, or a means for defining these con-
nectives in terms of the given connectives. For example, in
the following we take — and — as given and use the standard
definition of A in terms of these.

Axiom Schemas: Expressed in some meta notation, these
describe the expressions of £ that are to serve as logical ax-
ioms.

Inference Rules: These must include one or more rules
that enable instantiation of the axiom schemas. All other in-
ference rules will be of the usual kind, i.e., stating that, from
expressions having certain forms (premise expressions), one
may infer an expression of some other form (a conclusion
expression). Of the latter, two kinds are allowed: logical
rules, which are considered to be part of the underlying
logic, and extralogical rules, which are associated with the
intended application. Note that logical axioms are expres-
sions that are derived by applying the axiom schema in-
stantiation rules. Inference rules may be viewed formally as
mappings from £ into itself.

The rule set may include derived rules that simplify de-
ductions by encapsulating frequently used argument pat-
terns. Rules derived using only logical axioms and logical
rules will also be logical rules, and derived rules whose
derivations employ extralogical rules will be additional ex-
tralogical rules.

Derivation Paths: These consist of a sequences of pairs
(Lo, Bo), (L1, B1), ..., where L is the sublanguage of £
that is in use at time ¢, and B; is the belief set in effect at
time . Such a sequence is generated as follows. Since lan-
guages are determined by the symbols they employ, it is use-
ful to speak more directly in terms of the set o, comprising
the symbols that are in use at time ¢ and then let L; be the
sublanguage of L that is based on the symbols in o;. With
this in mind, let o be the logical symbols of L, so that L is
the minimal language employing only logical symbols, and
let By = (). Then, given (L, By), the pair (L¢11, Byy1) is
formed in one of the following ways:

1. 0441 = oy (sothat L, = L;)and By is obtained from
B, by adding an expression that is derived by application
of an inference rule that instantiates an axiom schema,

2. 0141 = oy and B, is obtained from B; by adding an ex-
pression that is derived from expressions appearing earlier
in the path by application of an inference rule of the kind
that infers a conclusion from some premises,

3. 04+1 = o, and an expression employing these symbols is
added to B; to form B, 1,

4. some new extralogical symbols are added to o, to form
ot+1, and an expression employing the new symbols is
added to B; to form B, 1,

13

5. o441 = oy and By, is obtained from B, by applying a
belief revision algorithm as described in the following.

Expressions entered into the belief set in accordance with
either (3) or (4) will be extralogical axioms. A DRS can gen-
erate any number of different derivation paths, depending on
the extralogical axioms that are input and the inference rules
that are applied.

Whenever an expression is entered into the belief set it is
assigned a label comprised of:

1. A time stamp, this being the value of the subscript t+1 on
the set B, formed by entering the expression into the
belief set in accordance with any of the above items (1)
through (4). The time stamp serves as an index indicating
the expression’s position in the belief set.

2. A from-list, indicating how the expression came to be en-
tered into the belief set. In case the expression is entered
in accordance with the above item (1), i.e., using a schema
instantiation rule, this list consists of the name (or other
identifier) of the schema and the name (or other identi-
fier) of the inference rule if the system has more than one
such rule. In case the expression is entered in accordance
with above item (2), the list consists of the indexes (time
stamps) of the premise expressions and the name (or other
identifier) of the inference rule. In case the expression is
entered in accordance with either of items (3) or (4), i.e.,
is a extralogical axiom, the list will consist of some code
indicating this (e.g., es standing for ‘external source’) pos-
sibly together with some identifier or other information
regarding the source.

3. A to-list, being a list of indexes of all expressions that
have been entered into the belief set as a result of rule
applications involving the given expression as a premise.
Thus to-lists may be updated at any future time.

4. A status indicator having the value bel or disbel according
as the proposition asserted by the expression currently is
believed or disbelieved. The primary significance of this
status is that only expressions that are believed can serve
as premises in inference rule applications. Whenever an
expression is first entered into the belief set, it is assigned
status bel. This value may then be changed during be-
lief revision at a later time. When an expression’s status
is changed from bel to disbel it is said to have been re-
tracted.

5. An epistemic entrenchment factor, this being a numeri-
cal value indicating the strength with which the propo-
sition asserted by the expression is held. This terminol-
ogy is adopted in recognition of the work by Girdenfors,
who initiated this concept (Gardenfors 1988; 1992), and
is used here for essentially the same purpose, namely, to
assist when making decisions regarding belief retractions.
Depending on the application, however, this value might
alternatively be interpreted as a degree of belief, as a cer-
tainty factor, as a degree of importance, or some other
type of value to be used for this purpose. Logical axioms
always receive the highest possible epistemic entrench-
ment value, whatever scale or range may be employed.

6. A knowledge category specification, having one of the
values a priori, a posteriori, analytic, and synthetic. These
terms are employed in recognition of the philosophical
tradition initiated by Immanuel Kant (Kant 1935). Logi-
cal axioms are designated as a priori; extralogical axioms
are designated as a posteriori; expressions whose deriva-
tions employ only logical axioms and logical inference
rules are designated as analytic; and expressions whose
derivations employ any extralogical axioms or extralogi-
cal rules are designated as synthetic.

Thus when an expression P is entered into the belief set,
it is more exactly entered as an expression-label pair (P, \),
where A is the label. A DRS’s language, axiom schemas,
and inference rules comprise a logic in the usual sense. It is
required that this logic be consistent, i.e., for no expression
P is it possible to derive both P and —P. The belief set may
become inconsistent, nonetheless, through the introduction
of contradictory extralogical axioms.

In what follows, only expressions representing a posteri-
ori and synthetic knowledge may be retracted; expressions
of a priori knowledge are taken as being held unequivocally.
Thus the term ‘a priori knowledge’ is taken as synonymous
with ‘belief held unequivocally’, and ‘a posteriori knowl-
edge’ is interpreted as ‘belief possibly held only tentatively’
(some a posteriori beliefs may be held unequivocally). Ac-
cordingly the distinction between knowledge and belief is
somewhat blurred, and what is referred to as a ‘belief set’
might alternatively be called a ‘knowledge base’, as is often
the practice in Al systems.

2.2. Controller

A controller effectively determines the modeled agent’s pur-
pose or goals by managing the DRS’s interaction with its
environment and guiding the reasoning process. With re-
gard to the latter, the objectives typically include (i) deriving
all expressions salient to the given application and entering
these into the belief set, and (ii) ensuring that the belief set
remains consistent. To these ends, the business of the con-
troller amounts to performing the following operations.

1. Receiving input from its environment, e.g., human users,
sensors, or other artificial agents, expressing this input as
expressions in the given language £, and entering these
expressions into the belief set in the manner described
above (derivation path items (3) and (4)). During this op-
eration, new symbols are appropriated as needed to ex-
press concepts not already represented in the current L;.

2. Applying inference rules in accordance with some ex-
tralogical objective (some plan, purpose, or goal) and en-
tering the derived conclusions into the belief set in the
manner described above (derivation path items (1) and
2)).

3. Performing any actions that may be prescribed as a re-
sult of the above reasoning process, e.g., moving a robotic
arm, returning a response to a human user, or sending a
message to another artificial agent.

4. Whenever necessary, applying a ‘dialectical belief revi-
sion’ algorithm for contradiction resolution in the manner

14

described below.

A contradiction is an expression of the form P A —P.
Sometimes it is convenient to represent the general notion of
contradiction by the falsum symbol, L. Contradiction reso-
lution is triggered whenever a contradiction or a designated
equivalent expression is entered into the belief set. We may
assume that this only occurs as the result of an inference
rule application, since it obviously would make no sense to
enter a contradiction directly as an extralogical axiom. The
contradiction resolution algorithm entails three steps:

1. Starting with the from-list in the label on the contradic-
tory expression, backtrack through the belief set following
from-lists until one identifies all extralogical axioms that
were involved in the contradiction’s derivation. Note that
such extralogical axioms must exist, since, by the con-
sistency of the logic, the contradiction cannot constitute
analytical knowledge, and hence must be synthetic.

2. Change the belief status of one or more of these extralogi-

cal axioms, as many as necessary to invalidate the deriva-
tion of the given contradiction. The decision as to which
axioms to retract may be dictated, or at least guided by,
the epistemic entrenchment values. In effect, those ex-
pressions with the lower values would be preferred for
retraction. In some systems, this retraction process may
be automated, and in others it may be human assisted.

3. Forward chain through to-lists starting with the extralog-

ical axiom(s) just retracted, and retract all expressions
whose derivations were dependent on those axioms.
These retracted expressions should include the contradic-
tion that triggered this round of belief revision (otherwise
the correct extralogical axioms were not retracted).

This belief revision algorithm is reminiscent of G. W. F.
Hegel’s ‘dialectic’, described as a process of ‘negation of
the negation’ (Hegel 1931). In that treatment, the latter (first
occurring) negation is a perceived internal conflict (here a
contradiction), and the former (second occurring) one is an
act of transcendence aimed at resolving the conflict (here re-
moving the contradiction). In recognition of Hegel, the be-
lief revision/retraction process formalized in the above algo-
rithm will be called Dialectical Belief Revision.

3. First-Order Logic

The paper (Schwartz 2013) defines a notion of first-order
theory suitable for use in a DRS, provides this with a well-
defined semantics (a notion of model), and establishes a
Soundness Theorem: a theory is consistent if it has a model.
The notions of theory and semantics are designed to accom-
modate the notion of a belief set evolving over time, as well
as inference rules that act by instantiating axiom schemas.
A first-order language L is defined following the notations
of (Hamilton 1988). This includes notations A" as pred-
icate symbols (here the n-th m-ary predicate symbol) and
a,, for individual variables. Then, in the path logic, the lan-
guages at each successive time step are sublanguages of L.
The semantics follows the style of (Shoenfield 1967). The
axiom schemas of (Hamilton 1988) are adopted. The infer-
ence rules are those of (Hamilton 1988) together with some

rules for axiom schema instantiation. The formalism is suf-
ficiently different from the classical version that new proofs
of all relevant propositions must be restated in this context
and proven correct. The treatment also establishes the valid-
ity of several derived inference rules that become useful in
later examples, including:

Hypothetical Syllogism From P — @ and Q — R
infer P — R, where P, (), R are any formulas.

Aristotelian Syllogism From (Vz)(P — @) and
P(a/z), infer Q(a/x), where P, () are any formulas, x is
any individual variable, and a is any individual constant.

Subsumption From (Vz)(a(z) — (G(x)) and
(Va)(B(x) — (). infer (V)(a(z) — (). where
«, 3, are any unary predicate symbols, and x is any in-
dividual variable.

Contradiction Detection From P and —P infer L,
where P is any formula.

Conflict Detection From (Vz)-(PAQ), P(a/x), and
Q(a/x) infer L, where P, are any formulas, x is any
individual variable, and a is any individual constant.

4. Example: Multiple Inheritance with
Exceptions

The main objective of (Schwartz 1997) was to show how a
DRS framework could be used to formulate reasoning about
property inheritance with exceptions, where the underlying
logic was a probabilistic ‘logic of qualified syllogisms’. This
work was inspired in part by the frame-based systems due to
(Minsky 1975) and constitutes an alternative formulation of
the underlying logic (e.g., as discussed by (Hayes 1980)).

What was missing in (Schwartz 1997) was the notion of
a controller. There a reasoning system was presented and
shown to provide intuitively plausible solutions to numerous
‘puzzles’ that had previously appeared in the literature on
nonmonotonic reasoning, e.g., Opus the Penguin (Touretsky
1984), Nixon Diamond (Touretsky et al. 1987), and Clyde
the Elephant (Touretsky et al. 1987). But there was noth-
ing to guide the reasoning processes—no means for provid-
ing a sense of purpose for the reasoning agent. The present
work fills this gap by adding a controller. Moreover, it deals
with a simpler system based on first-order logic and remands
further exploitation of the logic of qualified syllogisms to a
later work. The kind of DRS developed in this section will
be termed a multiple inheritance system (MIS).

For this application the language £ discussed in Sec-
tion 3 is expanded by including some typed predicate sym-
bols, namely, some unary predicate symbols Agk), Aék), e
representing kinds of things (any objects), and some unary
predicate symbols Agp), Agp), ... representing properties
of things. The superscripts k£ and p are applied also
to generic denotations. Thus an expression of the form
(Vz)(a®) (z) — BP)(x)) represents the proposition that all
as have property . These new predicate symbols are used
here purely as syntactical items for purposes of defining an
extralogical ‘specificity principle’ and some associated ex-

15

tralogical graphical structures and algorithms. Semantically
they are treated exactly the same as other predicate symbols.

A multiple-inheritance hierarchy H will be a directed
graph consisting of a set of nodes together with a set of links
represented as ordered pairs of nodes. Nodes may be either
object nodes, kind nodes, or property nodes. A link of the
form (object node, kind node) will be an object-kind link,
one of the form (kind node, kind node) will be a subkind-
kind link, and one of the form (kind node, property node)
will be a has-property link. There will be no other types
of links. Object nodes will be labeled with (represent) in-
dividual constant symbols, kind nodes will be labeled with
(represent) kind-type unary predicate symbols, and property
nodes will be labeled with (represent) property-type unary
predicate symbols or negations of such symbols. In addi-
tion, each property type predicate symbol with bear a nu-
merical subscript, called an occurrence index, indicating an
occurrence of that symbol in a given hierarchy H. These
indexes are used to distinguish different occurrences of the
same property-type symbol in H. An object-kind link be-
tween an individual constant symbol a and a predicate sym-
bol a®) will represent the formula a(*) (), a subkind-kind
link between a predicate symbol a(¥) and a predicate symbol
) will represent the formula (Vz)(a®) (z) — g*)(z)),
and a has-property link between a predicate symbol a(*)
and a predicate symbol ﬂip) will represent the formula

(V) (¥ (2) — 317 (x).

Given such an H, there is defined on the object nodes
and the kind nodes a specificity relation > (read ‘more spe-
cific than’) according to: (i) if (nodey, nodesy) is either an
object-kind link or a kind-kind link, then node; >, nodes,,
and (ii) if node; >, nodes and nodey >, nodes, then
node; >4 nodes. We shall also have a dual generality rela-
tion >, (read ‘more general than’) defined by node; >,
nodes iff nodey; >4 node;. It follows that object nodes
are maximally specific and minimally general. It also fol-
lows that I may have any number of maximally general
nodes, and in fact that it need not be connected. A maxi-
mally general node is a rootf node. A path in a hierarchy H
(not to be confused with the path in a path logic) will be a
sequence nodey, . ..,node, wherein, node; is a root node
and, for each i = 1,...,n — 2, the pair (node;+1,node;)
is a subkind-kind link, and, the pair (node,,node,_1) is
either a subkind-kind link or an object-kind link. Note that
property nodes do not participate in paths as here defined.

It is desired to organize a multiple inheritance hierarchy as
a directed acyclic graph (DAG) without redundant links with
respect to the object-kind and subkind-kind links (i.e., here
ignoring has-property links), where, as before, by a redun-
dant link is meant a direct link from some node to an ances-
tor of that node other than the node’s immediate ancestors
(i.e., other than its parents). More exactly, two distinct paths
will form a redundant pair if they have some node in com-
mon beyond the first place where they differ. This means that
they comprise two distinct paths to the common node(s). A
path will be simply redundant (or redundant in H) if it is a
member of a redundant pair. A path contains a loop if it has
more than one occurrence of the same node. Provisions are

made in the following algorithms to ensure that hierarchies
with loops or redundant paths are not allowed. As is custom-
ary, the hierarchies will be drawn with the upward direction
being from more specific to less (less general to more), so
that roots appear at the top and objects appear at the bot-
tom. Kind-property links will extend horizontally from their
associated kind nodes.

In terms of the above specificity relation on H, we can
assign an address to each object and kind node in the fol-
lowing manner. Let the addresses of the root nodes, in
any order, be (1), (2),(3),.... Then for the node with ad-
dress (1), say, let the next most specific nodes in any or-
der have the addresses (1,1), (1,2), (1,3),...; let the nodes
next most specific to the one with address (1,1) have ad-
dresses (1,1,1),(1,1,2),(1,1,3),...; and so on. Thus an
address indicates the node’s position in the hierarchy relative
to some root node. Inasmuch as an object or kind node may
be more specific than several different root nodes, the same
node may have more than one such address. Note that the
successive initial segments of an address are the addresses
of the nodes appearing in the path from the related root node
to the node having that initial segment as its address. Let >
denote the usual lexicographic order on addresses. We shall
apply > also to the nodes having those addresses. It is easily
verified that, if node; > nodes and the node, address is an
initial segment of the node; address, then node; > nodes,
and conversely. For object and kind nodes, we shall use the
term specificity rank (or just rank) synonymously with ‘ad-
dress’.

Since, as mentioned, it is possible for any given object or
kind node to have more than one address, it thus can have
more than one rank. Two nodes are comparable with respect
to the specificity relation >, however, only if they appear
on the same path, i.e., only if one node is an ancestor of
the other, in which case only the rank each has acquired due
to its being on that path will apply. Thus, if two nodes are
comparable with respect to their ranks by the relation >,
there is no ambiguity regarding the ranks being compared.

Having thus defined specificity ranks for object and kind
nodes, let us agree that each property node inherits the rank
of the kind node to which it is linked. Thus for property
nodes the rank is not an address.

Bird®

y . CanFlygp)

. Penguin®)

// A

—— —CanFlyép)

/ |
/ |

Tweety Opus

Figure 3: Tweety the Bird and Opus the Penguin as an MIS.

An example of such a hierarchy is shown in Figure 3.
Here ‘Tweety’ and ‘Opus’ may be taken as names for the in-

16

dividual constants a; and as, and Blrd(k)’ ‘Penguln(k)

and CanFly(p)* can be taken as names, respectively, for the
unary predicate symbols Agk), Aék), and Aﬁ”). [Note: The
superscripts are retained on the names only to visually iden-
tify the types of the predicate symbols, and could be dropped
without altering the meanings.] The links represent the for-

mulas

(Vz)(Penguin® (z) — Bird™ (z))

(Va)(Blrd(k)()—>canF1y§P>(x))
)(P ()

(Vz)(Penguin® () — —CanFlygp
Bird® (Tweety)
Penquin® (Opus)

The subscripts 1 and 2 on the predicate symbol CanFly(p)

the graph distinguish the different occurrences of this sym-
bol in the graph, and the same subcripts on the symbol oc-
currences in the formulas serve to correlate these with their
occurrences in the graph. Note that these are just separate oc-
currences of the same symbol, however, and therefore have

identical semantic interpretations. Formally, CanFly(p) and

CanFly? can be taken as standing for Ag’l)) and Agz) with

the lower subscripts being regarded as extralogical notations

indicating different occurrences of Ai”),

This figure reveals the rationale for the present notion of
multiple-inheritance hierarchy. The intended interpretation
of the graph is that element nodes and kind nodes inherit
the properties of their parents, with the exception that more
specific property nodes take priority and block inheritances
from those that are less specific. Let us refer to this as the
specificity principle. In accordance with this principle, in
Figure 3 Tweety inherits the property CanFly from Bird, but
Opus does not inherit this property because the inheritance
is blocked by the more specific information that Opus is a
Penguin and Penguins cannot fly.

Flier

Is—a T

Bird

Is—aT

Penguin

Is—aT

Opus

Is—not—-a

Is—a

Tweety

Figure 4: Tweety the Bird and Opus the Penguin, original
version.

Figure 3 constitutes a rethinking of the well-known ex-
ample of Opus the penguin depicted in Figure 4 (adapted
from (Touretsky1984)). The latter is problematic in that, by
one reasoning path one can conclude that Opus is a flier,
and by another reasoning path that he is not. This same
contradiction is implicit in the formulas introduced above,

since if one were to apply the axioms and rules of first-
order logic discussed in Section 3, one could derive both

CanFly® (Opus) and =CanFly? (Opus), in which case
the system would be inconsistent.

Formal Specification of an Arbitrary MIS

We are now in a position to define the desired kind of DRS.
For the path logic, let the language be the one described
above, obtained from the £ of Section 3 by adjoining the
additional unary kind-type and property-type predicate sym-
bols, let the axiom schemas and inference rules be those dis-
cussed in Section 3 together with Aristotelian Syllogism and
Contradiction Detection. In this case, derivation paths will
consist of triples (L, By, H;), where these components re-
spectively are the (sub)language (of £), belief set, and mul-
tiple inheritance hierarchy at time ¢. In accordance with Sec-
tion 2, let Ly be the minimal sublanguage of £ consisting of
all formulas that can be built up from the atomic formula L,
and let By = (. In addition, let Hy = 0.

The MIS controller is designed to enforce the above speci-
ficity principle. Contradictions can arise in an MIS that has
inherently contradictory root nodes in its multiple inheri-
tance hierarchy. An example of this, the famous Nixon Di-
amond (Touretsky 1987), will be discussed. The purpose
of the MIS controller will be (i) to derive and enter into
the belief set all object classifications implicit in the mul-
tiple inheritance hierarchy, i.e., all formulas of the form
a®)(a) that can be derived from formulas describing the
hierarchy (while observing the specificity principle), and
(ii) to ensure that the belief set remains consistent. Item
(i) thus defines what will be considered the salient infor-
mation for an MIS. Also, the MIS controller is intended to
maintain the multiple inheritance hierarchy as a DAG with-
out redundant paths with respect to just the object and kind
nodes. Formulas that can be input by the users may have
one of the forms (i) ¥ (a), (ii) (Vz)(a® (z) — *)(z)),
(iii) (Vz)(a®(z) — pP)(2)), and (v) (V) (¥ (2) —
—3(P)(z)). It will be agreed that the epistemic entrenchment
value for all input formulas is 0.5.

We may now define some algorithms that are to be exe-
cuted in response to each type of user input. There will be
eight types of events. Event Types 1, 6, 7 and 8 correspond
to user inputs, and the others occur as the result of rule appli-
cations. In all such events it is assumed that, if the formula
provided to the controller already exists and is active in the
current belief set, its input is immediately rejected. In each
event, assume that the most recent entry into the derivation
path is (L;, By, Hy). For the details of the algorithms, please
see (Schwartz 2013).

Event Type 1: A formula of the form o*) (a) is provided
to the controller by a human user.

Event Type 2: A formula of the form o*) (a) is provided
to the controller as a result of an inference rule application
(Aristotelian Syllogism).

Event Type 3: A formula of the form (") (a) is provided
to the controller as a result of an inference rule application
(Aristotelian Syllogism).

17

Event Type 4: A formula of the form —a(?)(a) is pro-
vided to the controller as a result of an inference rule appli-
cation (Aristotelian Syllogism).

Event Type 5: The formula _L is provided to the controller
as the result of an application of Contradiction Detection.

Event Type 6: A formula of the form (Vz)(a(®) (z) —
B (x)) is provided to the controller by a human user.

Event Type 7: A formula of the form (Vz)(a®) (z) —
B%P)(x)) is provided to the controller by a human user.

Event Type 8: A formula of the form (Vz)(a(®) (z) —
—3)(z)) is provided to the controller by a human user.

Main Results

That an MIS controller produces all relevant salient infor-
mation as prescribed above can be summarized as a pair of
theorems.

Theorem 5.1. The foregoing algorithms serve to maintain
the hierarchy with respect to the object and kind nodes as a
directed acyclic graph without redundant links.

Theorem 5.2. After any process initiated by a user input
terminates, the resulting belief set will contain a formula of
the form a*) (a) or a®(a) or ~a(P)(a) iff the formula is
derivable from the formulas corresponding to links in the
inheritance hierarchy, observing the specificity principle.

That the algorithms serve to preserve the consistency of
the belief set is established as:

Theorem 5.3. For any derivation path in an MIS, the be-
lief set that results at the conclusion of a process initiated by
a user input will be consistent with respect to the formulas of
the forms a®) (a), (Vz)(a® (z) — BP)(z)), and aP)(a).

Illustration 1

Some of the algorithms associated with the foregoing events
can be illustrated by considering the inputs needed to create
the inheritance hierarchy shown in Figure 3. This focuses
on the process of property inheritance with exceptions. Let
us abbreviate ‘Bird’, ‘Penguin’, and ‘CanFly’, respectively,
by ‘B’, ‘P’, and ‘CF’. In accordance with the definition of
derivation path in Section 2.1, the language Ly will con-
sist only of the formula L, and the belief set By = (. In
accordance with the definition of an MIS, Hy = (). We con-
sider inputs of the afoermentioned formulas, with each input
comprising a type of event initiating a particular reasoning
algorithm. These inputs and event types are:

() — B®™(2)), Type 6
P (x)), Type 7

The specificity principle is invoked during the last event.
This results in the following belief set (omitting formula la-
bels):

(Var)(P¥) (z) — BW ()

(var) (BM) () — CF}” ()
(va) (P®)(2) — ~CFY ()

B*) (Tweety)

CF) (Tweety)

P*)(Opus)

B*) (Opus)

—\Cng) (Opus)

Thus is is seen that, in this example, the algorithms serve
to derive all salient information, i.e., all formulas of the
forms a*)(a), a(P)(a), and aP) (a) that are implicit in the
graph, while at the same time correctly enforcing the speci-

ficity principle. It may also be observed that the belief set is
consistent.

Illustration 2

This considers an application of Contradiction Detection.
The classic Nixon Diamond puzzle (cf. Touretsky et al.
1987) is shown in Figure 5. Here a contradiction arises be-
cause, by the reasoning portrayed on the left side, Nixon is
a pacifist, whereas, by the reasoning portrayed on the right,
he is not. The resolution of this puzzle in the context of an
MIS can be described in terms of the multiple inheritance
hierarchy shown in Figure 6.

Pacifist

7/ \\Snot a

Quaker Republican

\//a

Nixon

Figure 5: Nixon Diamond, original version.

(k) p)

Quaker*L—» Paciﬁst(lp) Republican™ — ﬂPaciﬁst;

AR 4

Nixon

Figure 6: Nixon Diamond as an MIS.

The links in Figure 6 represent the formulas

18

(Vz)(Quaker® (z) — Paciﬁstgp) (x))
(Vz)(Republican® () — ﬂPaciﬁstgp) (2))
Quaker®) (Nixon)

Republican®) (Nixon)

The action of the algorithms may be traced similarly as
in Ilustration 1. Let ‘Quaker’, ‘Republican’ and ‘Pacifist’
denote the predicate symbols A, A% and A, and ab-
breviate these by ‘Q’, ‘R’ and ‘P’. Let ‘Nixon’ denote the
individual constant a;. Lg, By, and Hy will be as before.
The inputs and their event types are:

(¥)(Q(")() = P (), Type 7.
(Vo) (R¥) () — —'ng) (x)), Type 8.
Q) (Nixon), Type 1.

R*) (Nixon), Type 1.

These lead to the following belief set (again omitting for-
mual labels):

At this point Dialectical Belief Revision is invoked. All
the formulas that were input by the user are candidates for
belief change. Suppose that the formula (Vz)(R®*) (z) —

ﬂng)(a:)), is chosen. Then the procedure forward chains
through to lists, starting with this formula, and changes to

disbel the status first of =P (Nixon), and then of L. This
results in a belief set with these three formulas removed (dis-
believed) leaving only the left side of the hierarchy in Fig-
ure 6. Thus again all salient information is derived and the
resulting belief set is consistent.

Further well-known puzzles that can be resolved similarly
within an MIS are the others discussed in (Schwartz 1997),
namely, Bosco the Blue Whale (Stein 1992), Suzie the Platy-
pus (Stein 1992), Clyde the Royal Elephant (Touretsky et
al. 1987), and Expanded Nixon Diamond (Touretsky et al.
1987).

References

Alchourén, C. E.; Girdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: partial meet contraction and
revision functions. Journal of Symbolic Logic 50(2):510—
530.

Baral, C. 2003. Knowledge Representation, Reasoning, and
Declarative Problem Solving. Cambridge University Press.
Delgrande, J. P., and Farber, W., eds. 2011. Logic Program-
ming and Nonmonotonic Reasoning 1 1th International Con-

ference, LPNMR 201 1. Lecture notes in Computer Science,
Volume 66452011, Springer Verlag.

Doyle, J. 1979. A truth maintenance system. Artificial Intel-
ligence 12:231-272.

Elgot-Drapkin, J. J. 1988. Step Logic: Reasoning Situated
in Time. PhD thesis, University of Maryland, College Park.
Technical Report CS-TR-2156 and UMIACS-TR-88-94.
Elgot-Drapkin, J. J.; Miller, M.; and Perlis, D. 1987. Life
on a desert island: ongoing work on real-time reasoning. In
FEM. Brown, ed., The Frame Problem in Artificial Intelli-
gence: Proceedings of the 1987 Workshop, pp. 349-357, Los
Altos, CA: Morgan Kaufmann.

Elgot-Drapkin, J. J.; Miller, M.; and Perlis, D. 1991. Mem-
ory, reason, and time: the step-logic approach. In R. Cum-
mins and J. Pollock, eds, Philosophy and Al: Essays at the
Interface, pp. 79-103. MIT Press.

Elgot-Drapkin, J. J., and Perlis, D. 1990. Reasoning situated
in time I: basic concept. Journal of Experimental and Theo-
retical Artificial Intelligence 2(1):75-98.

Gelfond, M. and Kahl, Y., Knowledge Representation, Rea-
soning, and the Design of Intelligent Agents: The Anwer Set
Programming Approach, Cambridge University Press, 2014.
Hayes, P. J. 1980. The logic of frames. In D. Metzing, ed.,
Frame Conceptions and Text Understanding, Berlin: Walter
de Gruyter, pp. 46-61.

Fermé, E., and Hansson, S. O. 2011. AGM 25 years: twenty-
five years of research in belief change. J. Philos Logic,
40:295-331.

Girdenfors, P. 1988. Knowledge in Flux: Modeling the
Dynamics of Epistemic States. Cambridge, MA: MIT
Press/Bradford Books.

Girdenfors, P., ed. 1992. Belief Revision. Cambridge Uni-
versity Press.

Ginsberg, M. L., ed. 1987. Readings in Nonmonotonic Rea-
soning. Los Altos, CA: Morgan Kaufmann.

Hamilton, A. G. 1988. Logic for Mathematicians, Revised
Edition, Cambridge University Press.

Hansson, S.O. 1999. A Textbook of Belief Dynamics: Theory
Change and Database Updating. Dordercht, Kluwer Aca-
demic Publishers.

Hegel, G.W.F. 1931. Phenomenology of Mind. J.B. Baillie,
trans, 2nd edition. Oxford: Clarendon Press.

Kant, 1. 1935 Critique of Pure Reason. N.K. Smith, trans.
London, England: Macmillan.

McCarthy, J. 1980. Circumscription—a form of nonmono-
tonic reasoning. Artificial Intelligence, 13:27-39, 171-172.
Reprinted in (Ginsberg 1987), pp. 145-152.

McCarthy, J., and Hayes, P. 1969. Some philosophical prob-
lems from the standpoint of artificial intelligence. Stanford
University. Reprinted in (Ginsberg 1987), pp. 2645, and
in V. Lifschitz, ed., Formalizing Common Sense: Papers by
John McCarthy, Norwood, NJ: Ablex, 1990, pp. 21-63.
McDermott, D., and Doyle, J. 1980. Non-monotonic logic—
I. Artificial Intelligence 13:41-72. Reprinted in (Ginsberg
1987), pp. 111-126.

Miller, M. J. 1993. A View of One’s Past and Other Aspects
of Reasoned Change in Belief. PhD thesis, University of

19

Maryland, College Park, Department of Computer Science,
July. Technical Report CS-TR-3107 and UMIACS-TR-93-
66.

Minsky, M. 1975. A framework for representing knowledge.
In P. Winston, ed., The Psychology of Computer Vision, New
York: McGraw-Hill, pp. 211-277. A condensed version has
appeared in D. Metzing, ed., Frame Conceptions and Text
Understanding, Berlin: Walter de Gruyter, Berlin, 1980, pp.
1-25.

Perlis, D.; Elgot-Drapkin, J. J.; and Miller, M. 1991. Stop
the world—I want to think. In K. Ford and F. Anger, eds.,
International Journal of Intelligent Systems: Special Issue
on Temporal Reasoning, Vol. 6, pp. 443—456. Also Technical
Report CS-TR-2415 and UMIACS-TR-90-26, Department
of Computer Science, University of Maryland, College Park,
1990.

Reiter, R. 1980. A logic for default reasoning. Artificial In-
telligence 13(1-2):81-132. Reprinted in (Ginsberg 1987),
pp. 68-93.

Schwartz, D. G. 1997. Dynamic reasoning with qualified
syllogisms. Artificial Intelligenc 93:103-167.

Schwartz, D .G. 2013. Dynamic reasoning systems. ACM
Transactions on Computational Intelligence, accepted sub-
ject to revision February 7, 2014.

Shoenfield, J. R. 1967. Mathematical Logic, Association for
Symbolic Logic.

Shoham, Y. 1986. Chronological ignorance: time, nonmono-
tonicity, necessity, and causal theories. Proceedings of the
American Association for Artificial Intelligence, AAAI’86,
Philadelphia, PA, pp. 389-393.

Shoham, Y. 1988. Reasoning about Change: Time and Cau-
sation from the Standpoint of Artificial Intelligence. Cam-
bridge, MA: MIT Press.

Shoham, Y. 1993. Agent-oriented programming. Artificial
Intelligence 60:51-92.

Smith, B., and Kelleher, G., eds. 1988. Reason Maintenance
Systems and Their Applications. Chichester, England:Ellis
Horwood.

Stein, L. A. 1992. Resolving ambiguity in nonmonotonic in-
heritance hierarchies. Artificial Intelligence 55(2-3).

Touretzky, D. 1984. Implicit ordering of defaults in inheri-
tance systems. Proceedings of the Fifth National Conference
on Artificial Intelligence, AAAI'84, Austin, TX, Los Altos,
CA: Morgan Kaufmann, pp. 322-325. Reprinted in (Gins-
berg 1987), pp. 106-109, and in G. Shafer and J. Pearl, eds.,
Readings in Uncertain Reasoning, San Mateo, CA: Morgan
Kaufmann, 1990, pp. 668—671.

Touretzky, D. S.; Horty, J .E.; and Thomason, R.H. 1987. A
clash of intuitions: the current state of nonmonotonic mul-
tiple inheritance systems. Proceedings of the International
Joint Conference on Artificial Intelligence, IJCAI’87, Milan,
Italy. pp. 476-482.

Probabilistic Inductive Logic Programming Based on Answer Set Programming*

Matthias Nickles” and Alessandra Mileo
{matthias.nickles,alessandra.mileo}@deri.org
¢ INSIGHT/DERI Galway
National University of Ireland, Galway
> Department of Information Technology
National University of Ireland, Galway

Abstract

We propose a new formal language for the expressive
representation of probabilistic knowledge based on Answer
Set Programming (ASP). It allows for the annotation of
first-order formulas as well as ASP rules and facts with
probabilities and for learning of such weights from data
(parameter estimation). Weighted formulas are given a
semantics in terms of soft and hard constraints which
determine a probability distribution over answer sets. In
contrast to related approaches, we approach inference by
optionally utilizing so-called streamlining XOR constraints,
in order to reduce the number of computed answer sets. Our
approach is prototypically implemented. Examples illustrate
the introduced concepts and point at issues and topics for
future research.

Keywords: Uncertainty Reasoning, Answer Set Program-
ming, Probabilistic Inductive Logic Programming, Statistical
Relational Learning, SAT

1 Introduction

Reasoning in the presence of uncertainty and relational
structures (such as social networks and Linked Data) is an
important aspect of knowledge discovery and representa-
tion for the Web, the Internet Of Things, and other po-
tentially heterogeneous and complex domains. Probabilis-
tic logic programing, and the ability to learn probabilistic
logic programs from data, can provide an attractive approach
to uncertainty reasoning and statistical relational learning,
since it combines the deduction power and declarative na-
ture of logic programming with probabilistic inference abili-
ties traditionally known from less expressive graphical mod-
els such as Bayesian and Markov networks. A very suc-
cessful type of logic programming for nonmonotonic do-
mains is Answer Set Programming (ASP) (Lifschitz 2002;
Gelfond and Lifschitz 1988). Since statistical-relational ap-
proaches to probabilistic reasoning often rely heavily on the

*This work is an extended and revised version of A. Mileo,
M. Nickles: Probabilistic Inductive Answer Set Programming by
Model Sampling and Counting. First International Workshop on
Learning and Nonmonotonic Reasoning (LNMR 2013), Corunna,
Spain, 2013.

20

propositionalization of first-order or other relational infor-
mation, ASP appears to be an ideal basis for probabilistic
logic programming, given its expressiveness and the exis-
tence of highly optimized grounders and solvers. However,
despite the successful employment of conceptually related
approaches in the area of SAT for probabilistic inference
tasks, only a small number of approaches to probabilis-
tic knowledge representation or probabilistic inductive logic
programming under the stable model semantics exist so far,
of which some are rather restrictive wrt. expressiveness and
parameter estimation techniques. We build upon these and
other existing approaches in the area of probabilistic (in-
ductive) logic programming in order to provide a new ASP-
based probabilistic logic programming language (with first-
order as well as ASP basic syntax) for the representation
of probabilistic knowledge. Weights which directly repre-
sent probabilities can be attached to arbitrary formulas, and
we show how this can be used to perform probabilistic in-
ference and how weights of hypotheses can be inductively
learned from given relational examples. To the best of our
knowledge, this is the first ASP-based approach to proba-
bilistic (inductive) logic programming which does not im-
pose restrictions on the annotation of ASP-rules and facts as
well as FOL-style formulas with probabilities.

The remainder of this paper is organized as follows: the
next section presents relevant related approaches. Section
3 introduces syntax and semantics of our new language.
Section 4 presents our approach to probabilistic inference
(including examples), and Section 5 shows how formula
weights can be learned from data. Section 6 concludes.

2 Related Work

Being one of the early approaches to the logic-based rep-
resentation of uncertainty sparked by Nilsson’s seminal
work (Nilsson 1986), (Halpern 1990) presents three differ-
ent probabilistic first-order languages, and compares them
with a related approach by Bacchus (Bacchus 1990). One
language has a domain-frequency (or statistical) semantics,
one has a possible worlds semantics (like our approach), and
one bridges both types of semantics. While those languages
as such are mainly of theoretical relevance, their types of se-
mantics still form the backbone of most practically relevant
contemporary approaches.

Many newer approaches, including Markov Logic Networks

(see below), require a possibly expensive grounding (propo-
sitionalization) of first-order theories over finite domains.
A recent approach which does not fall into this category
but employs the principle of maximum entropy in favor
of performing extensive groundings is (Thimm and Kern-
Isberner 2012). However, since ASP is predestined for effi-
cient grounding, we do not see grounding necessarily as a
shortcoming. Stochastic Logic Programs (SLPs) (Muggle-
ton 2000) are an influential approach where sets of rules
in form of range-restricted clauses can be labeled with
probabilities. Parameter learning for SLPs is approached in
(Cussens 2000) using the EM-algorithm. Approaches which
combine concepts from Bayesian network theory with rela-
tional modeling and learning are, e.g., (Friedman et al. 1999;
Kersting and Raedt 2000; Laskey and Costa 2005). Prob-
abilistic Relational Models (PRM) (Friedman et al. 1999)
can be seen as relational counterparts to Bayesian networks
In contrast to these, our approach does not directly relate
to graphical models such as Bayesian or Markov Networks
but works on arbitrary possible worlds which are gener-
ated by ASP solvers. ProbLog (Raedt, Kimmig, and Toivo-
nen 2007) allows for probabilistic facts and definite clauses,
and approaches to probabilistic rule and parameter learn-
ing (from interpretations) also exist for ProbLog. Inference
is based on weighted model counting, which is similarly
to our approach, but uses Boolean satisfiability instead of
stable model search. ProbLog builds upon the very influen-
tial Distribution Semantics introduced for PRISM (Sato and
Kameya 1997), which is also used by other approaches, such
as Independent Choice Logic (ICL) (Poole 1997). Another
important approach outside the area of ASP are Markov
Logic Networks (MLN) (Richardson and Domingos 2006),
which are related to ours. A MLN consists of first-order for-
mulas annotated with weights (which are not probabilities).
MLNs are used as “templates” from which Markov networks
are constructed, i.e., graphical models for the joint distri-
bution of a set of random variables. The (ground) Markov
network generated from the MLN then determines a prob-
ability distribution over possible worlds. MLNs are syntac-
tically similar to the logic programs in our framework (in
our framework, weighted formulas can also be seen as soft
or hard constraints for possible worlds), however, in con-
trast to MLLN, we allow for probabilities as formula weights.
Our initial approach to weight learning is closely related to
certain approaches to MLN parameter learning (e.g., (Lowd
and Domingos 2007)), as described in Section 5.

Located in the field of nonmonotonic logic programming,
our approach is also influenced by P-log (Baral, Gelfond,
and Rushton 2009) and abduction-based rule learning in
probabilistic nonmonotonic domains (Corapi et al. 2011).
With P-log, our approaches shares the view that answer
sets can be seen as possible worlds in the sense of (Nils-
son 1986). However, the syntax of P-log is quite different
from our language, by restricting probabilistic annotations to
certain syntactical forms and by the concept of independent
experiments, which simplifies the implementation of their
framework. In distinction from P-log, there is no particular
coverage for causality modeling in our framework. (Corapi
et al. 2011) allows to associate probabilities with abducibles

21

and to learn both rules and probabilistic weights from given
data (in form of literals). In contrast, our present approach
does not comprise rule learning. However, our weight learn-
ing algorithm allows for learning from any kind of formulas
and for the specification of virtually any sort of hypothesis
as learning target, not only sets of abducibles. Both (Corapi
et al. 2011) and our approach employ gradient descent for
weight learning. Other approaches to probabilistic logic pro-
gramming based on the stable model semantics for the logic
aspects include (Saad and Pontelli 2005) and (Ng and Sub-
rahmanian 1994). (Saad and Pontelli 2005) appears to be a
powerful approach, but restricts probabilistic weighting to
certain types of formulas, in order to achieve a low com-
putational reasoning complexity. Its probabilistic annotation
scheme is similar to that proposed in (Ng and Subrahmanian
1994). (Ng and Subrahmanian 1994) provides both a lan-
guage and an in-depth investigation of the stable model se-
mantics (in particular the semantics of non-monotonic nega-
tion) of probabilistic deductive databases.

Our approach (and ASP in general) is closely related to
SAT solving, #SAT and constraint solving. ASP formulas
in our language are constraints for possible worlds (legiti-
mate models). As (Sang, Beame, and Kautz 2005) shows,
Bayesian networks can be ‘“translated” into a weighted
model counting problem over propositional formulas, which
is related to our approach to probabilistic inference, although
details are quite different. Also, the XOR constraining ap-
proach (Gomes, Sabharwal, and Selman 2006) employed for
sampling of answer sets (Section 4) has originally been in-
vented for the sampling of propositional truth assignments.

3 Probabilistic Answer Set Programming
with PrASP

Before we turn to probabilistic inference and parameter es-
timation, we introduce our new language for probabilistic
non-monotonic logic programming, called Probabilistic An-
swer Set Programming (PrASP).

Syntax: Just add probabilities

To remove unnecessary syntax restrictions and because we
will later require certain syntactic modifications of given
programs which are easier to express in First-Order Logic
(FOL) notation, we allow for FOL statements in our logic
programs, using the F2LP conversion tool (Lee and Palla
2009). More precisely, a PrASP program consists of ground
or non-ground formulas in unrestricted first-order syntax
annotated with numerical weights (provided by some do-
main expert or learned from data). Weights directly repre-
sent probabilities. If the weights are removed, and provided
finite variable domains, any such program can be converted
into an equivalent answer set program by means of the trans-
formation described in (Lee and Palla 2009).

Let @ be a set of function, predicate and object symbols
and L(®) a first-order language over & and the usual connec-
tives (including both strong negation “-” and default nega-
tion “not”) and first-order quantifiers.

Formally, a PrASP program is a non-empty finite set
{([p], fi)} of PrASP formulas where each formula f; €

L(P) is annotated with a weight [p]. A weight directly rep-
resents a probability (provided it is probabilistically sound).
If the weight is omitted for some formula of the program,
weight [1] is assumed. The weight p of [p] f is denoted as
w(f). Weighted formulas can intuitively seen as constraints
which specify which possible worlds are indeed possible,
and with which probability.

Let A~ denote PrASP program A stripped of all weights.
Weights need to be probabilistically sound, in the sense that
the system of inequalities (1) - (4) in Section 3 must have at
least one solution (however, in practice this does not need to
be strictly the case, since the constraint solver employed for
finding a probability distribution over possible worlds can
find approximate solutions often even if the given weights
are inconsistent).

In order to translate conjunctions of unweighted formu-
las in first-order syntax into disjunctive programs with a
stable model semantics, we further define transformation
Ip : L(®)UdLp(®P) — dLp(P), where dLp(P) is the set
of all disjunctive programs over ¢. The details of this trans-
formation can be found in (Lee and Palla 2009)'. Applied to
rules and facts in ASP syntax, Ip simply returns these. This
allows to make use of the wide range of advanced possi-
bilities offered by contemporary ASP grounders in addition
to FOL syntax (such as aggregates), although when defin-
ing the semantics of programs, we consider only formulas
in FOL syntax.

Semantics

The probabilities attached to formulas in a PrASP program
induce a probability distribution over answer sets of an or-
dinary answer set program which we call the spanning pro-
gram associated with that PrASP program. Informally, the
idea is to transform a PrASP program into an answer set
program whose answer sets reflect the nondeterminism in-
troduced by the probabilistic weights: each annotated for-
mula might hold as well as not hold (unless its weight is
[0] or [1]). Of course, this transformation is lossy, so we
need to memorize the weights for the later computation of a
probability distribution over possible worlds. The important
aspect of the spanning program is that it programmatically
generates a set of possible worlds in form of answer sets.
Technically, the spanning program p(A) of PrASP pro-
gram A is a disjunctive program obtained by transforma-
tion Ip(A’). We generate A’ from A by removing all weights
and transforming each formerly weighted formula f into
a disjunction f|not f, where not stands for default nega-
tion and | stands for the disjunction in ASP (so probabili-
ties are “default probabilities” in our framework). Note that
f|not f doesn’t guarantee that answer sets are generated for
weighted formula f. By using ASP choice constructs such as
aggregates and disjunctions, the user can basically generate
as many answer sets (possible worlds) as desired.

!The use of the translation into ASP syntax requires either an
ASP solver which can deal directly with disjunctive logic programs
(such as claspD) or a grounder which is able to shift disjunctions
from the head of the respective rules into the bodies, such as gringo
(Gebser, Kaufmann, and Schaub 2012).

22

Formulas do not need to be ground - as defined in Sec-

tion 3, they can contain existentially as well as universally
quantified variables in the FOL sense (although restricted to
finite domains).
As an example, consider the following simple ground PrASP
program (examples for PrASP programs with variables and
first-order style quantifiers are presented in the next sec-
tions):

[0.7] q <— p.
[0.3] p.
[0.2] —p & 1.

The set of answer sets (which we take as possible
worlds) of the spanning program of this PrASP program is
{{p7 q}, {_p7 7“}7 {}7 {p}}

The semantics of a PrASP program A and single PrASP
formulas is defined in terms of a probability distribution over
a set of possible worlds (in form of answer sets of p(A)) in
connection with the stable model semantics. This is analo-
gously to the use of Type 2 probability structures (Halpern
1990) for first-order probabilistic logics with probabilities,
but restricted to finite domains of discourse.

Let M = (D, ©, 7, 1) be a probability structure where D
is a finite discrete domain of objects, © is a non-empty set
of possible worlds, 7 a function which assigns to the sym-
bols in @ (see Section 3) predicates, functions and objects
over/from D, and y a discrete probability function over ©.
Each possible world is a Herbrand interpretation over .
Since we will use answer sets as possible worlds, defining
I'(a) to be the set of all answer sets of answer set program a
will become handy. For example, given p(A) as (uncertain)
knowledge, the set of worlds deemed possible according to
existing belief p(A) is I'(p(A)) in our framework.

We define a (non-probabilistic) satisfaction relation of
possible worlds and unannotated programs as follows: let
A~ be is an unannotated program. Then (M, 0) Eg A~ iff
0 € T(lp(A7)) and € O (from this it follows that ©
induces its own closed world assumption - any answer set
which is not in © is not satisfiable wrt. Fg). The probability
1({0}) of a possible world 6 is denoted as Pr(6) and some-
times called “weight” of 6. For a disjunctive program), we
analogously define (M, 0) Eg ¢ iff 6 € T'(¢)) and § € O.

To do groundwork for the computation of a probability
distribution over possible worlds © which are “generated”
and weighted by some given background knowledge in form
of a PrASP program, we define a (non-probabilistic) sat-
isfaction relation of possible worlds and unannotated for-
mulas: let ¢ be a PrASP formula (without weight) and 6
be a possible world. Then (M,0) Fa ¢ iff (M,0) Eo
p(A)Ulp(é) and © =T (p(A)) (we say formula ¢ is true in
possible world 0). Sometimes we will just write § =5 ¢ if
M is given by the context. A notable property of this defini-
tion is that it does not restrict us to single ground formulas.
Essentially, an unannotated formula ¢ can be any answer
set program specified in FOL syntax, even if its grounding
consists of multiple sentences. Observe that © restricts F
to answer sets of p(A). For convenience, we will abbreviate
(M,a) ':A ¢as 0 ':A ¢

Pr(¢) denotes the probability of a formula ¢, with

Pr(¢) = u({6 € © : (M,0) Fp ¢}). Note that this holds
both for annotated and unannotated formulas: even if it has
a weight attached, the probability of a PrASP formula is
defined by means of p and only indirectly by its manually
assigned weight (weights are used below as constraints for
the computation of a probabilistically consistent y). Further
observe that there is no particular treatment for conditional
probabilities in our framework; Pr(al|b) is simply calculated
as Pr(a Ab)/Pr(b).
While our framework so far is general enough to account
for probabilistic inference using unrestricted programs and
query formulas (provided we are given a probability distri-
bution over the possible answer sets), this generality also
means a relatively high complexity in terms of computabil-
ity for inference-heavy tasks which rely on the repeated ap-
plication of operator =, even if we would avoid the trans-
formation [p and restrict ourselves to the use of ASP syntax.
The obvious question now, addressed before for other
probabilistic logics, is how to compute p, i.e., how to ob-
tain a probability distribution over possible worlds (which
tells us for each possible world the probability with which
this possible world is the actual world) from a given anno-
tated program A in a sound and computationally inexpensive
way.
Generally, we can express the search for probability distri-
butions in form of a number of constraints which constitute a
system of linear inequalities (which reduce to linear equali-
ties for point probabilities as weights). This system typically
has multiple or even infinitely many solutions (even though
we do not allow for probability intervals) and computation
can be costly, depending on the number of possible worlds
according to p(A).
We define the parameterized probability distribution
(A, ©) over a set O of answer sets as the solution (for all
Pr(6;)) of the following system of linear equations and an
inequality (if precisely one solution exists) or as the solution
with maximum entropy (Thimm and Kern-Isberner 2012),
in case multiple solutions exist 2. We require that the given
weights in a PrASP program are chosen such that the fol-
lowing constraint system has at least one solution.

S Pr(0:) =w(h) (1)
0,€0:0;F A f1
S Pr(:) = w(fa) 2)
0;,€0:0,FAfn
D 0i=1 3)
0;,€0
V0, €0 :0< Pr(6;) <1 4)

Atthis, A = {f1, ..., fn} is a PrASP program.
The canonical probability distribution p(A) of A is de-
fined as (A, T'(p(A))). In the rest of the paper, we refer to

2Since in this case the number of solutions of the system of lin-
ear equations is infinite, de facto we need to choose the maximum
entropy solution of some finite subset. In the current prototype im-
plementation, we generate a user-defined number of random solu-
tions derived from a solution computed using a constrained variant
of Singular Value Decomposition and the null space of the coeffi-
cient matrix of the system of linear equations (1)-(3).

23

1(A) when we refer to the probability distribution over the
answer sets of the spanning program of a given PrASP pro-
gram A.

4 Inference

Given possible world weights ((A)), probabilistic infer-
ence becomes a model counting task where each model has
a weight: we can compute the probability of any query for-
mula ¢ by summing up the probabilities (weights) of those
possible worlds (models) where ¢ is true. To make this vi-
able even for larger sets of possible worlds, we optionally
restrict the calculation of u(A) to a number of answer sets
sampled near-uniformly at random from the total set of an-
swer sets of the spanning program, as described in Section
4.

Adding a sampling step and computing
probabilities

All tasks described so far (solving the system of
(in)equalities, counting of weighted answer sets) become in-
tractable for very large sets of possible worlds. To tackle
this issue, we want to restrict the application of these tasks
to a sampled subset of all possible worlds. Concretely, we
want to find a way to sample (near-)uniformly from the total
set of answer sets without computing a very large number
of answer sets. While this way the set of answer sets can-
not be computed using only a single call of the ASP solver
but requires a number of separate calls (each with different
sampling constraints), the required solver calls can be per-
formed in parallel. However, a shortcoming of the sampling
approach is that there is currently no way to pre-compute the
size of the minimally required set of samples.

Guaranteeing near-uniformity in answer set sampling
looks like a highly non-trivial task, since any set of answers
obtained from ASP solvers as a subset of the total set of an-
swer sets is typically not uniformly distributed but strongly
biased in hardly foreseeable ways (due to various interplay-
ing heuristics applied by modern solvers), so we could not
simply request any single answer set from the solver.

However, we can make use of so-called XOR constraints

(a form of streamlining constraints in the area of SAT solv-
ing) for near-uniform sampling (Gomes, Sabharwal, and
Selman 2006) to obtain samples from the space of all an-
swer sets, within arbitrarily narrow probabilistic bounds, us-
ing any off-the-shelf ASP solver. Compared to approaches
which use Markov Chain Monte Carlo (MCMC) methods to
sample from some given distribution, this method has the ad-
vantage that the sampling process is typically faster and that
it requires only an off-the-shelf ASP solver (which is in the
ideal case employed only once per sample, in order to obtain
a single answer set). However, a shortcoming is that we are
not doing Importance Sampling this way - the probability of
a possible world is not taken into account but computed later
from the samples.
Counting answer sets could also be achieved using XOR
constraints, however, this is not covered in this paper, since
it does not comprise weighted counting, and we could nor-
mally not use an unweighted counting approach directly.

XOR constraints were originally defined over a set of
propositional variables, which we identify with a set of
ground atoms V' = {ay,...,a,}. Each XOR constraint is
represented by a subset D of V U {true}. D is satisfied by
some model if an odd number of elements of D are satisfied
by this model (i.e., the constraint acts like a parity of D).
In ASP syntax, an XOR constraint can be represented for
example as : — #even{ ay, ., apn } (Gebser et al.
2011).

In our approach, XOR constraints are independently at
random drawn from a probability distribution X(|V],0.5)
over the set V' of all possible XOR constraints over all
ground atoms of the ground answer set program resulting
from p(A). X(]V],0.5) is defined such that each XOR
constraint is drawn from this distribution independently at
random with probability 0.5 and includes true with prob-
ability 0.5. In effect, any given XOR constraint is drawn
with probability 2= (IVI+1]) (see (Gomes, Sabharwal, and
Selman 2006) for details). Since adding an XOR constraint
to an answer set program eliminates any given answer set
with probability 0.5, it cuts the set of answer sets in half
in expectation. Iteratively adding a small number of XOR
constraints to an answer set program therefore reduces
the number of answer sets to a small number also. If this
process results in a single answer set, the remaining answer
set is drawn near-uniformly from the original set of answer
sets, as shown in (Gomes, Sabharwal, and Selman 2006).
Since for answer set programs the costs of repeating the
addition of constraints until precisely a single answer set
remains appears to be higher than the costs of computing
somewhat too many models, we just estimate the number
of required constraints and choose randomly from the
resulting set of answer sets. The following way of answer
set sampling using XOR constraints has been used before in
Xorro (a tool which is part of the Potassco set of ASP tools
(Gebser et al. 2011)) in a very similar way.

Function sample: i) — ~

Given any disjunctive program v, the following procedure
computes a random sample v from the set of all answer
sets of 1):

1y — ground(1))

ga «— atoms(1y)

xors «— XOR constraints {zory,...,zor,} over ga,
drawn from X(|V|,0.5)

P —pUzxors

-y «— an answer set selected randomly from I'(¢))

At this, the number of constraints n is set to a value large
enough to produce one or a very low number of answer sets
(loga(]gal) in our experiments).

We can now compute (A, ©') (i.e., Pr(0) for each 6 €
©’) for a set of samples ©’ obtained by multiple (ideally
parallel) calls of sample from the spanning program p(A) of
PrASP program A, and subsequently sum up the weights of
those samples (possible worlds) where the respective query
formula (whose marginal probability we want to compute)
is true. Precisely, we approximate Pr(¢) for a (ground or

24

non-ground) query formula ¢ using:

Pr(¢) ~ Pr(0")
{6/cO’:0" =50}

(&)

for a sufficiently large set ©’ of samples.
Conditional probabilities Pr(a|b) can simply be computed
as Pr(a Ab)/Pr(b).

If sampling is not useful (i.e., if the total number of
answer sets © is moderate), inference is done in the same
way, we just set ©' = ©. Sampling using XOR constraints
costs time too (mainly because of repeated calls of the
ASP solver), and making this approach more efficient is an
important aspect of future work (see Section 6).

As an example for inference using our current implementa-
tion, consider the following PrASP formalization of a simple
coin game:

coin(l..3).

[0.6] coin_out (1,heads).

[[0.5]] coin_out (N, heads)

1{coin_out (N, heads),
:— coin(N) .

:— coin_out (N, tails),

:— not n_win.

At this, the line starting with [[0.5]] ... is syntactic
sugar for a set of weighted rules where variable N is
instantiated with all its possible values (i.e.,

:— coin(N), N != 1.
coin_out (N, tails) }1

n_win
win

coin (N) .

[0.5] coin_out (2,heads) :— coin(2), 2 != 1
and
[0.5] coin_out (3,heads) :- coin(3), 3 != 1).

It would also be possible to use [0.5] as annotation of
this rule, in which case the weight 0.5 would specify the
probability of the whole non-ground formula instead.

Our prototypical implementation accepts query formulas
in format [?] a (computes the marginal probability of
a) and [?|b] a (computes the conditional probability
Pr(alb)). E.g.,

coin_out (1,tails).

coin_out (1,heads) | coin_out (1,tails).

coin_out (1, heads) & coin_out (2,heads)
& coin_out (3, heads) .

win.

[?|coin_out (1,heads) & coin_out (2,heads)

coin_out (3,heads)] win.

...yields the following result

[0.3999999999999999] coin_out (1,tails).

[1] coin_out (1,heads) | coin_out(l,tails).

[0.15] coin_out (1,heads) & coin_out (2, heads)
& coin_out (3, heads) .

[0.15] win.

[1|coin_out (1,heads) & coin_out (2,heads)
& coin_out (3,heads)] win.

In this example, use of sampling does not make any dif-
ference due to its small size. An example where a difference
can be observed is presented in Section 5. This example also
demonstrates that FOL and logic programming / ASP syntax
can be freely mixed in background knowledge and queries.
Another simple example shows the use of FOL-style vari-
ables and quantifiers mixed with ASP-style variables:

p
#
[
[
[
[

With this, the following query:

[?2] v(X).
#domain p (Z) .
(2] ![2]: v(Z).
[?2]1 2[2]: v(Z2).

...results in:

[(0.1] !'[z2]: v(Z).
[0.8499999999999989]

The result of query [?] !'[Z]: v(Z) with
universal quantifier ![Z] is Pr(Vz.w(z)) = 0.1,
which is also the result of the equivalent queries
[?2] v(1) & v(2) & v(3) and [?] v(X). In
our example, this marginal probability was directly given
as weight in the background knowledge. In contrast to X,
variable Z is a variable in the sense of first-order logic (over
a finite domain).

The result of ?[2]: v (2) is Pr(3z.v(z)) (e, 2[Z]:
represents the existential quantifier) and could likewise be
calculated manually using the inclusion-exclusion principle
as Pr(v(l) V v(2) V v(3)) = Pr(v(l)) + Pr(v(2)) +
Pr(v(3))—Pr(v(1)Av(2)) — Pr(v(1) Av(3)) — Pr(v(2) A
v(3)) + Pr(v(1) Av(2) Av(3)) = 0.85.

Of course, existential or universal quantifiers can also be
used as sub-formulas and in PrASP programs.

?2[2]: v(Z).

An alternative approach: conversion into an
equivalent non-probabilistic answer set program

An alternative approach to probabilistic inference without
computing p and without counting of weighted possible
worlds, would be to find an unannotated first-order program
A’ which reflects the desired probabilistic nondeterminism
(choice) of a given PrASP program A. Instead of defining
probabilities of possible worlds, A’ has answers sets whose
frequency (number of occurrences within the total set of an-
swer sets) reflects the given probabilities in the original (an-
notated) program. To make this idea more intuitive, imagine
that each possible world corresponds to a room. Instead of
encountering a certain room with a certain frequency, we
create further rooms which have all, from the viewpoint of
the observer, the same look, size and furniture. The number
of these rooms reflects the probability of this type of room.
E.g., to ensure probability % of some literal p, A’ is created
in a way such that p holds in one third of all answer sets of
A’. This task can be considered as an elaborate variant of the
generation of the (much simpler) spanning program p(A).
Finding A’ could be formulated as an (intractable) rule
search problem (plus subsequently the conversion into ASP
syntax and a simple unweighted model counting task): find
a non-probabilistic program A’ such that for each annotated
formula [p]f in the original program the following holds

25

(under the provision that the given weights are probabilis-
tically sound):

{m:meT (), m [}
IT(A)]

Unfortunately, the direct search approach to this would be
obviously intractable.

However, in the special case of mutually independent
formulas we can omit the rule learning task by conditioning
each formula in A by a nondeterministic choice amongst the
truth conditions of a number of “helper atoms” h; (which
will later be ignored when we count the resulting answer
sets), in order to “emulate” the respective probability
specified by the weight. If (and only if) the formulas are
mutually independent, the obtained A’ is isomorphic to the
original probabilistic program. In detail, conditioning means
to replace each formula [w] f by formulas 1{hq,..., h,}1,
f <« hi|...|hm and not f «— not (hq|...|hy,), where the
h; are new names (the aforementioned “helper atoms”),
I — w and m < n (remember that we allow for weight

n
constraints as well as FOL syntax).

=p. (6)

In case the transformation accurately reflects the original
uncertain program, we could now calculate marginal prob-
abilities simply by determining the percentage of those an-
swer sets in which the respective query formula is true (ig-
noring any helper atoms introduced in the conversion step),
with no need for computing p(A).

As an example, consider the following program:

coin(l..10).

[0.6] coin_out (1,heads).

[[0.5]] coin_out (N,heads) :- coin(N), N != 1.

1{coin_out (N, heads),
:— coin (N) .

n_win :— coin_out (N,tails),

win :— not n_win.

coin_out (N, tails) }1

coin (N) .

Since coin tosses are mutually independent, we can trans-
form it into the following equivalent un-annotated form (the
hpatom, are the “helper atoms”. Rules are written as dis-
junctions):

coin(l..10).
1l{hpatoml, hpatom2, hpatom3, hpatom4, hpatom5}1.
(coin_out (1, heads))
| —(hpatoml |hpatom2|hpatom3) .
not (coin_out (1,heads))
| (hpatoml|hpatom2|hpatom3) .
1{hpatom6, hpatom7}1.

(coin_out (10, heads)) | - (hpatom6) .
not (coin_out (10,heads)) | (hpatom6).
1{hpatom8, hpatom9}1.

(coin_out (9,heads)) | - (hpatom8).

not (coin_out (9,heads)) | (hpatom8).
1{hpatoml0, hpatoml1}1.

(coin_out (8,heads)) | - (hpatomlO) .
not (coin_out (8,heads)) | (hpatomlO).
1{hpatoml2, hpatoml3}1.

(coin_out (7,heads)) | - (hpatoml2).
not (coin_out (7,heads)) | (hpatoml2).
l1{hpatoml4, hpatoml5}1.

(coin_out (6,heads)) | - (hpatoml4).

not (coin_out (6,heads)) | (hpatoml4).
l{hpatoml6, hpatoml7}1.

(coin_out (5,heads)) | - (hpatoml6) .
not (coin_out (5,heads)) | (hpatoml6) .
l{hpatoml8, hpatoml9}1.

(coin_out (4,heads)) | - (hpatoml8).
not (coin_out (4,heads)) | (hpatoml8).
1{hpatom20, hpatom21}1.

(coin_out (3,heads)) | - (hpatom20) .
not (coin_out (3,heads)) | (hpatom20).
l{hpatom22, hpatom23}1.

(coin_out (2,heads)) | - (hpatom22).
not (coin_out (2,heads)) | (hpatom22).

1{coin_out (N, heads), coin_out (N,tails)}1
:— coin(N) .
n_win :—- coin_out (N,tails),

win :— not n_win.

coin (N) .

Exemplary query results:

[0.001171875] win.
[0.998828125] not win.
[0.6] coin_out (1,heads).
[0.5] coin_out (2,heads) .

What is remarkable here is that no equation solving task
(computation of 1(A)) is required to compute these results.
However, this does not normally lead to improved inference
speed, due to the larger amount of time required for the com-
putation of models.

S Weight Learning

Generally, the task of parameter learning in probabilistic in-
ductive logic programming is to find probabilistic parame-
ters (weights) of logical formulas which maximize the like-
lihood given some data (learning examples) (Raedt and Ker-
sting 2008). In our case, the hypothesis H (a set of formu-
las without weights) is provided by an expert, optionally to-
gether with some PrASP program as background knowledge
B. The goal is then to discover weights w of the formulas H
such that Pr(E|H,, U B) is maximized given example for-
mulas F = ey, e, Formally, we want to compute

argmazy (Pr(E|Hyw U B)) = argmaz .. (H Pr(e;|Hw U B))
e, €E

O]

(Making the usual i.i.d. assumption regarding the individual
examples in E. H,, denotes the hypothesis weighted with
weight vector w.)

This results in an optimization task which is related but
not identical to weight learning for, e.g., MLNs and (Corapi
et al. 2011). In MLNSs, typically a database (possible world)
is given whose likelihood should be maximized, e.g. using a
generative approach (Lowd and Domingos 2007) by gradi-
ent descent. Another related approach distinguishes a priori
between evidence atoms X and query atoms Y and seeks
to maximize the likelihood Pr(Y|X), again using gradient
descent (Huynh and Mooney 2008). At this, cost-heavy in-
ference is avoided as far as possible, e.g., by optimization of
the pseudo-(log-)likelihood instead ot the (log-)likelihood or
by approximations of costly counts of true formula ground-
ings in a certain possible world (the basic computation in
MLN inference). In contrast, the current implementation of

26

PrASP learns weights from any formulas and not just liter-
als (or, more precisely as for MLNs: atoms, where negation
is implicit using a closed-world assumption). Furthermore,
the maximization targets are different (Pr(possible world)
or Pr(Y|X)) vs. Pr(E|H, U B)).

Regarding the need to reduce inference when learning,
PrASP parameter estimation should in principle make no ex-
ception, since inference can still be costly even when proba-
bilities are inferred only approximately by use of sampling.
However, in our preliminary experiments we found that at
least in relatively simple scenarios, there is no need to re-
sort to inference-free approximations such as pseudo-(log-
)likelihood. The pseudo-(log-)likelihood approach presented
in early works on MLNs (Richardson and Domingos 2006)
would also require a probabilistic ground formula indepen-
dence analysis in our case, since in PrASP there is no obvi-
ous equivalent to Markov blankets.

Note that we assume that the example data is non-
probabilistic and fully observable.

Let H = {fi,..., fn} be a given set of formulas and a
vector w = (w!,...,w™) of (unknown) weights of these
formulas. Using the Barzilai and Borwein method (Barzi-
lai and Borwein 1988) (a variant of the gradient descent
approach with possibly superlinear convergence), we seek
to find w such that Pr(F|H,, U B) is maximized (H,, de-
notes the formulas in H with the weights w such that each
fi is weighted with w?). Any existing weights of formulas
in the background knowledge ar not touched, which can sig-
nificantly reduce learning complexity if is comparatively
small. Probabilistic or unobservable examples are not con-
sidered.

The learning algorithm (Barzilai and Borwein 1988) is as
follows:

Repeat for £ = 0, 1, ... until convergence:
Set s3, = O%V(PT(E\HW U B))
Set wi4+1 = Wi + Sk

Setyy, = V(Pr(E|Hy,,, UB)) — V(Pr(E|H,, U B))

k41

T
— SkYk
Set Q41 = s{sk
At this, the initial gradient ascent step size ag and the
initial weight vector wg can be chosen freely. Pr(E|H,,UB)
denotes [[, . Pr(ei|H, U B) inferred using vector w as

weights for the hypothesis formulas, and

V(Pr(E|Hw U B)) = ®

0 (&)

(wPT(E‘Hw U B)7 cery

0
WPT(EHJH, U B))

Since we usually cannot practically express Pr(FE|H,, U
B) in dependency of w in closed form, at a first glance, the
above formalization appears to be not very helpful. How-
ever, we can still resort to numerical differentiation and ap-
proximate

V(Pr(E|H, UB)) =
. P?"(E|H(w1+h w™n) U B) — PT"(E'H(,W]
(Himy h

(10)

..........

s wm4h) @] B) - P?"(E‘H(wl
h—0 h

~~~~~

12)

by computing the above vector (dropping the limit operator)
for a sufficiently small i (in our prototypical implemen-
tation, h = \/ew; is used, where ¢ is an upper bound to
the rounding error using the machine’s double-precision
floating point arithmetic).

This approach has the benefit of allowing in principle for
any maximization target (not just E). In particular, any
unweighted formulas (unnegated and negated facts as well
as rules) can be used as (positive) examples.

As a small example both for inference and weight learn-
ing using our preliminary implementation, consider the fol-
lowing fragment of a an nonmonotonic indoor localization
scenario, which consists of estimating the position of a per-
son, and determining how this person moves a certain num-
ber of steps around the environment until a safe position is
reached:

[0.6] moved(1l).

[0.2] moved(2).

point (1..100).

l{atpoint (X) :point (X) } 1.

distance (1) :— moved(l).

distance (2) :— moved(2).

atpoint (29) | atpoint (30) | atpoint (31)
| atpoint (32) | atpoint (33)
| atpoint (34) | atpoint (35) |
| atpoint (37) -> selected.

safe :—- selected, not exception.

exception :— distance(l).

atpoint (36)

The spanning program of this example has 400 answer
sets. Inference of
Pr(safe|distance(2)) and Pr(safe|distance(1)) without
sampling requires ca. 2250 ms using our current unopti-
mized prototype implementation. If we increase the number
of points to 1000, inference is tractable only by use of sam-
pling (see Section 4).
To demonstrate how the probability of a certain hypoth-
esis can be learned in this simple scenario, we remove
[0.6] moved(l) from the program above (with 100
points) and turn this formula (without the weight annotation)
into a hypothesis. Given example data safe, parameter es-
timation results in Pr(moved(1)) = 0, learned in ca. 3170
ms using our current prototype implementation.

6 Conclusions

With this introductory paper, we have presented a novel
framework for uncertainty reasoning and parameter esti-
mation based on Answer Set Programming, with support
for probabilistically weighted formulas in background
knowledge, hypotheses and queries. While our current
framework certainly leaves room for future improvements,
we believe that we have already pointed out a new venue
towards more practicable probabilistic inductive answer
set programming with a high degree of expressiveness.

27

Ongoing work is focusing on performance improvements,
theoretical analysis (in particular regarding minimum
number of samples wrt. inference accuracy), empirical
evaluation and on the investigation of viable approaches to
PrASP structure learning.

Acknowledgments
This work is supported by the EU FP7 CityPulse Project un-
der grant No. 603095. http://www.ict-citypulse.eu

References

Bacchus, F. 1990. [, a logic for representing and reason-
ing with statistical knowledge. Computational Intelligence
6:209-231.

Baral, C.; Gelfond, M.; and Rushton, N. 2009. Probabilistic
reasoning with answer sets. Theory Pract. Log. Program.
9(1):57-144.

Barzilai, J., and Borwein, J. M. 1988. Two point step size
gradient methods. IMA J. Numer. Anal.

Corapi, D.; Sykes, D.; Inoue, K.; and Russo, A. 2011. Proba-
bilistic rule learning in nonmonotonic domains. In Proceed-
ings of the 12th international conference on Computational
logic in multi-agent systems, CLIMA’11, 243-258. Berlin,
Heidelberg: Springer-Verlag.

Cussens, J. 2000. Parameter estimation in stochastic logic
programs. In Machine Learning, 2001.

Friedman, N.; Getoor, L.; Koller, D.; and Pfeffer, A. 1999.
Learning probabilistic relational models. In In IJCAI, 1300—
1309. Springer-Verlag.

Gebser, M.; Kaufmann, B.; Kaminski, R.; Ostrowski, M.;
Schaub, T.; and Schneider, M. 2011. Potassco: The potsdam
answer set solving collection. AI Commun. 24(2):107-124.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Conflict-
driven answer set solving: From theory to practice. Artificial
Intelligence.

Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Proc. of the 5th Int’l
Conference on Logic Programming, volume 161.

Gomes, C. P.; Sabharwal, A.; and Selman, B. 2006. Near-
uniform sampling of combinatorial spaces using xor con-
straints. In NIPS, 481-488.

Halpern, J. Y. 1990. An analysis of first-order logics of
probability. Artificial Intelligence 46:311-350.

Huynh, T. N., and Mooney, R. J. 2008. Discriminative struc-
ture and parameter learning for markov logic networks. In
25th Int. Conf. on, 416-423.

Kersting, K., and Raedt, L. D. 2000. Bayesian logic pro-
grams. In Proceedings of the 10th International Conference
on Inductive Logic Programming.

Laskey, K. B., and Costa, P. C. 2005. Of klingons and star-
ships: Bayesian logic for the 23rd century. In Proceedings
of the Twenty-first Conference on Uncertainty in Artificial
Intelligence.

Lee, J., and Palla, R. 2009. System f2Ip - computing an-
swer sets of first-order formulas. In Erdem, E.; Lin, F.; and



Schaub, T., eds., LPNMR, volume 5753 of Lecture Notes in
Computer Science, 515-521. Springer.

Lifschitz, V. 2002. Answer set programming and plan gen-
eration. Al 138(1):39-54.

Lowd, D., and Domingos, P. 2007. Efficient weight learn-
ing for markov logic networks. In In Proceedings of the
Eleventh European Conference on Principles and Practice
of Knowledge Discovery in Databases, 200-211.

Muggleton, S. 2000. Learning stochastic logic programs.
Electron. Trans. Artif. Intell. 4(B):141-153.

Ng, R. T., and Subrahmanian, V. S. 1994. Stable se-
mantics for probabilistic deductive databases. Inf. Comput.
110(1):42-83.

Nilsson, N. J. 1986. Probabilistic logic. Artificial Intelli-
gence 28(1):71-87.

Poole, D. 1997. The independent choice logic for mod-
elling multiple agents under uncertainty. Artificial Intelli-
gence 94:7-56.

Raedt, L. D., and Kersting, K. 2008. Probabilistic inductive
logic programming. In Probabilistic Inductive Logic Pro-
gramming, 1-27.

Raedt, L. D.; Kimmig, A.; and Toivonen, H. 2007. Problog:
A probabilistic prolog and its application in link discovery.
In IJCAI, 2462-2467.

Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine Learning 62(1-2):107-136.

Saad, E., and Pontelli, E. 2005. Hybrid probabilistic
logic programming with non-monotoic negation. In In
Twenty First International Conference on Logic Program-
ming. Springer Verlag.

Sang, T.; Beame, P.; and Kautz, H. A. 2005. Performing
bayesian inference by weighted model counting. In AAAI
475-482.

Sato, T., and Kameya, Y. 1997. Prism: a language for
symbolic-statistical modeling. In In Proceedings of the 15th
International Joint Conference on Artificial Intelligence (1J-
CAI97, 1330-1335.

Thimm, M., and Kern-Isberner, G. 2012. On probabilistic
inference in relational conditional logics. Logic Journal of
the IGPL 20(5):872-908.

28



A Plausibility Semantics for Abstract Argumentation Frameworks

Emil Weydert

Individual and Collective Reasoning Group
ILIAS-CSC, University of Luxembourg

Abstract

We propose and investigate a simple plausibility-based
extension semantics for abstract argumentation frame-
works based on generic instantiations by default knowl-
edge bases and the ranking construction paradigm for
default reasoning.'

1 Prologue

The past decade has seen a flourishing of abstract argumen-
tation theory, a coarse-grained high-level form of defeasible
reasoning introduced by Dung [Dung 95]. It is characterized
by a top-down perspective which ignores the logical fine
structure of arguments and focuses instead on logical (con-
flict, support, ...) or extra-logical (preferences, ...) relations
between given black box arguments so as to identify reason-
able argumentative positions. One way to address the com-
plexity of enriched argument structures carrying interacting
relations, and to identify the best approaches for evaluating
Dung’s basic attack frameworks as well as more sophisti-
cated argumentation systems, is to look for deeper unifying
semantic foundations allowing us to improve, compare, and
judge existing proposals, or to develop new ones.

A major issue is to what extent an abstract account can
adequately model concrete argumentative reasoning in the
context of a sufficiently expressive, preferably defeasible
logic. The instantiation of abstract frameworks by more fine-
grained logic-based argument constructions and configura-
tions is therefore an important tool for justifying or criti-
cising abstract argumentation theories. Most of this work is
however based on the first generation of nonmonotonic for-
malisms, like Reiter’s default logic or logic programming.
While these are closer to classical logic and the original
spirit of Dung’s approach, it is well known that they fail
to model plausible implication. In fact, they are haunted by
counterintuitive behaviour and violate major desiderata for
default reasoning encoded in benchmark examples and ra-
tionality postulates [Mak 94]. For instance, the only way to
deal even with simple instances of specificity reasoning are
opaque ad hoc prioritization mechanisms.

!"This is an improved - polished and partly revised - version of
my ECSQARU 2013 paper. It adds a link to structured argumen-
tation, refines the semantic instantiation concept, and discusses at-
tacks between inference pairs.

29

The goal of the present work is therefore to supple-
ment existing instantiation efforts with a simple ranking-
based semantic model which interprets arguments and at-
tacks by conditional knowledge bases. The well-behaved
ranking construction semantics for default reasoning [Wey
96, 98, 03] can then be exploited to specify a new exten-
sion semantics for Dung frameworks which allows us to di-
rectly evaluate the plausibility of argument collections. Its
occasionally unorthodox behaviour may shed a new light on
basic argumentation-theoretic assumptions and concepts.

We start with an introduction to default reasoning based
on the ranking construction paradigm. After a short look
at abstract argumentation theory, we show how to interpret
abstract argumentation frameworks by instantiating the ar-
guments and characterizing the attacks with suitable sets
of conditionals describing constraints over ranking mod-
els. Based on the concept of generic instantiations, i.e. us-
ing minimal assumptions, and plausibility maximization, we
then specify a natural ranking-based extension semantics.
We conclude with a simple algorithm, some instructive ex-
amples, and the discussion of several important properties.

2 Ranking-based default reasoning

We assume a basic language L closed under the usual propo-
sitional connectives, together with a classical satisfaction
relation |= inducing a monotonic entailment relation F C
2L x L. The model sets of (L, =) are denoted by [p] =
{m | m = ¢}, resp. [X] = Neexnly] for £ C L. By, is the
boolean proposition algebra over B, = {[¢] | ¢ € L}. Let
Cn(S) = {v | S+ o}

Default inference is an important instance of nonmono-
tonic reasoning concerned with drawing reasonable but po-
tentially defeasible conclusions from knowledge bases of the
form 3 U A, where 3 C L is a set of assumptions or facts,
e.g. encoding knowledge about a specific state of affairs in
the domain language L, and A C L(—,~~) is a collection of
conditionals expressing strict or exception-tolerant implica-
tional information over L, which is used to guide defeasible
inference. L(—,~) ={¢ - ¥ | v, € L} U {p ~ ¢ |
@, € L} is the corresponding flat conditional language on
top of L. In the following we will focus on finite > and A.
A7 ={p = ¢ | ¢ = 1,0 ~ 9} collects the material
implications corresponding to the conditionals in A.

The strict implication ¢ — 1 states that ¢ necessarily



implies ), forcing us to accept ¥ given . The default im-
plication ¢ ~» 1 tells us that ¢ plausibly/normally implies
1), and only recommends the acceptance of ¢ given . The
actual impact of a default depends of course on the context
3 U A and the chosen nonmonotonic inference concept |~,
which will be discussed later.

We can distinguish two perspectives in default rea-
soning: the autoepistemic/context-based one, and the
plausibilistic/quasi-probabilistic one. The former is exem-
plified by Reiter’s default logic, where defaults are usually
modeled by normal default rules of the form ¢ : v /4 (if ¢,
and it is consistent that 1), then 1)). A characteristic feature
is that the conclusions are obtained by intersecting suitable
equilibrium sets, known as extensions.

The alternative is to use default conditionals interpreted
by some preferential or valuational semantics, e.g. System Z
[Pea 90, Leh 92], or probabilistic ME-based accounts [GMP
93] (ME = maximum-entropy). For historical reasons and
technical convenience (closeness to classical logic), the first
approach has received most attention, especially in the con-
text of argumentation. However, this ignores the fact that
the conditional semantic paradigm has a much better record
when it comes to the natural handling of benchmark exam-
ples and the satisfaction of rationality postulates [Mak 94].
It therefore seems promising to investigate whether such
semantic-based accounts can also help to instantiate and
evaluate abstract argumentation frameworks.

Our default conditional semantics for interpreting argu-
mentation frameworks is based on the simplest plausibility
measure concept able to reasonably handle independence
and conditionalization, namely Spohn’s ranking functions
[Spo 88, 12], or more generally, ranking measures [Wey
94]. These are quasi-probabilistic belief valuations express-
ing the degree of surprise or implausibility of propositions.
Integer-valued ranking functions were originally introduced
by Spohn to model the iterated revision of graded plain be-
lief. We will consider [0, 00];.cq;-valued ranking measures?,
where oo expresses doxastic impossibility.

Definition 2.1 (Ranking measures)

A map R : By, — ([0,00],0,00,+,>) is called a real-
valued ranking measure iff R([T]) = 0, R([F]) =
R(0) = oo, and for all A,B € By, R(AU B) =
min<{R(A), R(B)}. R(.|.) is the associated conditional
ranking measure defined by R(B|A) = R(ANB)—R(A) if
R(A) # o0, else R(B|A) = oo. Ry is the uniform ranking
measure, i.e. Ro(A) = 0 for A # 0. If B = B, we will use
the abbreviation R(p) := R([¢]).

For instance, the order of magnitude reading interprets rank-
ing measure values R(A) as exponents of infinitesimal prob-
abilities P(A) = pae(4Y), which explains the parallels with
probability theory. The monotonic semantics of our condi-
tionals —, ~» is based on the satisfaction relation |=,. The
corresponding truth conditions are

o RE,pp— v iff R(p A1) = 0.
o RiEy o~ iff R(pAY)+1< R(pA ).

2 Although for us, rational values would actually be sufficient.

30

That is, we assume that a strict implication ¢ — 1) states
that ¢ A =) is doxastically impossible.

Note that we may replace ¢ — 1) by ¢ A =) ~ F, i.e. it
would be actually enough to consider L(~). We use < with
a threshold because this provides more discriminatory power
and also guarantees the existence of minima for relevant
ranking construction procedures. The exchangeability of ar-
bitrary 7,7’ # 0,00 by automorphisms allows us to focus,
by convention, on the threshold 1. For AU{d} C L(—,~),
we set

[Alok = {R| R Erx A}, A b §iff [A]ok C [0] k-

k& 1s monotonic and verifies the axioms and rules of prefer-
ential conditional logic and disjunctive rationality (threshold
semantics: no rational monotony) for ~» [KLM 90].

But it is important to understand that the central con-
cept in default reasoning is not some monotonic condi-
tional logic for L(—»,~»), but a nonmonotonic meta-level
inference relation |~ over L U L(—,~+) specifying which
conclusions ¢ € L can be plausibly inferred from finite
YUA C LU L(—»,~). We write ¥ U A |~ 1, or alter-

natively & foa ¢, and set CR (2) = {¢ | £ foa ¥}

The ranking semantics for plausibilistic default reasoning
is based on nonmonotonic ranking choice operators Z which
map each finitte A C L(—,~) to a collection Z(A) C
[A]x of preferred ranking models of A. A corresponding
ranking-based default inference notion % can then be spec-
ified by

S & o iff forall R € Z(A), R gk AS ~ 1),

Similarly, we can also define a monotonic inference concept
characterizing the strict consequences.

S HX o) iff forall R € Z(A), R =i AS — 1.

If Z(A) = [A]y, & is, modulo cosmetic details, equiv-
alent to preferential entailment (System P) [KLM 90]. If
<pt¢ describes the pointwise comparison of ranking mea-
sures, i.e. R <, R’ iff forall A € By R(A) < R'(A),
then Z(A) = {Min<, [A],+} essentially characterizes
System Z [Pea 90]. Because these approaches fail to ade-
quately deal with inheritance to exceptional subclasses, we
introduced and developed the construction paradigm for de-
fault reasoning [Wey 96, 98, 03], which is a powerful strat-
egy for specifying reasonable Z based on Spohn’s Jeffrey-
conditionalization for ranking measures. The resulting de-
fault inference notions are well-behaved and show nice in-
heritance features. The essential idea is that defaults do not
only specify ranking constraints, but also admissible con-
struction steps to generate them. In particular, for each de-
fault o ~» 1), we are allowed to uniformly shift upwards
(make less plausible/increase the ranks of) the ¢ A —-
worlds, which amounts to strengthen belief in the corre-
sponding material implication ¢ — . If W is finite, this
is analogous to specifying the rank of a world by adding a
weight > 0 for each default it violates. More formally, we
define a shifting transformation R — R + r[p] such that for
each ranking measure R, x, p € L, and r € [0, 00], we set

(B +rp])(x) = min{R(x A p) + 7, R(x A =p)}-
This corresponds to uniformly shifting p by r.



Definition 2.2 (Constructibility)
Let A = {p; ~ / — ¢ | i < n} C L(—,~). A
ranking measure R’ is said to be constructible from R over
A, written R’ € Constr(A, R), iff there are v; € [0, ]
st. R = R+ Eign’ri [QOZ‘ A —\¢i].3

For instance, we obtain a well-behaved robust default infer-
ence relation, System J [Wey 96], just by setting Z;(A) =
Constr(A, Ro) N [A]. To implement shifting minimiza-
tion, we may strengthen System J by allowing proper shift-
ing (r; > 0) only if the targeted ranking constraint interpret-
ing a default ¢; ~ ; is realized as an equality constraint
R(pi Ni) +1 = R(p; A —1p;). Otherwise, the shifting
wouldn’t seem to be justified in the first place.

Definition 2.3 (Justifiable constructibility)

R is called a justifiably constructible model of A, written
R € Zj;(A) iff R =i A, R = Ro + Xi<nri[es A ),
and for eachrj > 0, R(p; AN;) +1 = R(p; A —1j).

It follows from a standard property of entropy maximiza-
tion (ME) that the order-of-magnitude translation of ME,
in the context of a nonstandard model of the reals with in-
finitesimals [GMP 93, Wey 95], to the ranking level always
produces a canonical justifiably constructible ranking model
Ry We set T,,.(A) = {R5.}. Hence, if A}, F,
R&. € Tj;(A) # 0.1f Z;;(A) is a singleton, we have
therefore /7= |~™¢. This holds for instance for minimal
core default sets A [GMP 93], where no doxastically pos-
sible @; A —;, ie. A P w; A - ~ F, is covered by
other ¢; A —1);. However, because of its fine-grained quan-
titative character, |~"*¢ is actually representation-dependent,
i.e. the solution depends on how we describe a problem
in L, it is not invariant under boolean automorphisms of
Br. Fortunately, there are two other natural representation-
independent ways to pick up a canonical justifiably con-
structible model.

e System JZ is based on on a natural canonical hierarchi-
cal ranking construction in the tradition of System Z and
ensures justifiable constructibility [Wey 98, 03]. It consti-
tutes a uniform way to implement the minimal informa-
tion philosophy at the ranking level.

e System JJR is based on the fusion of the justifiably con-
structible ranking models of A, i.e. Zj;,(A) = {R$},}.
where for all A € Bz, R$},.(A) = Min<, T;;(A). p777
may be of particular interest because its canonical rank-
ing model is at least as plausible as every justifiably con-

structible one.

Note that for non-canonical Z;;(A), it is possible that
R$, & T;;(A). We have 77 C ™€, J2 |~797, Fortu-
nately, for the generic default sets we will use to interpret
abstract argumentation frameworks, all four turn out to be
equivalent. To conclude this section, let us consider a simple
example with a single JJ-model.

Big birds example:
Non-flying birds are not inferred to be small.

3Similar ideas can be found in [BSS 00, KI 01].

31

{B,~F}U{B~+» S, B~ F,mS~ =F} |t S

The canonical JI/ME/JZ/JJR-model is then

R=Ry+ 1[-F]+2[-SAF].But R}, BA-F~ S
because R(BA—-FAS)=R(BA-FA-S)=1

3 Abstract argumentation

The idea of abstract argumentation theory, launched by
Dung [Dun 95], has been to replace the traditional bottom-
up strategy, which models and exploits the logical fine struc-
ture of arguments, by a top-down perspective, where argu-
ments become black boxes evaluated only based on knowl-
edge about specific logical or extra-logical relationships
connecting them. It is interesting to see that such a coarse-
grained relational analysis often seems sufficient to deter-
mine which collections of instantiated arguments are reason-
able. In addition to possible conceptual and computational
gains, the abstract viewpoint offers furthermore a powerful
methodological tool for general argumentation-theoretic in-
vestigations.

An abstract argumentation framework in the original
sense of Dung is a structure of the form A = (A, ),
where A is a collection of abstract entities representing ar-
guments, and > is a possibly asymmetric binary attack re-
lation modeling conflicts between arguments. To grasp the
expressive complexity of real-world argumentation, several
authors have extended this basic account to include further
inferential or cognitive relations, like support links, prefer-
ences, valuations, or collective attacks. Our general defini-
tion* [Wey 11] for the first-order context is as follows.

Definition 3.1 (Hyperframeworks) A general abstract ar-
gumentation framework, or hyperframework (HF), is just a
structure of the form A = (A, (R;)ier, (Pj)jes), where A
is the domain of arguments, the R; are conflictual, and the
P; non-conflictual relations over A. B C A is said to be
conflict-free iff it does not instantiate a conflictual relation.

For instance, standard Dung frameworks (A, >) carry one
conflictual and no non-conflictual relations. The general in-
ferential task in abstract argumentation is to identify reason-
able evaluations of the arguments described by A, e.g. to find
out which sets of arguments describe acceptable argumen-
tative positions. These are called extensions. In Dung’s sce-
nario, the extensions are £ C A obeying suitable acceptabil-
ity conditions in the context of A, the minimal requirement
being the absence of internal conflicts. For instance, E is ad-
missible iff it is conflict-free and each attacker of an a € E
is attacked by some b € E. E is grounded/preferred iff it
is minimally/maximally admissible, it is stage iff £ U >"F
is maximal, semi-stable if it is also admissible, and stable
iff A— E = p"F. Here >"F is the relational image of
E, ie. the set of a € A attacked by some b € E. In con-
crete decision contexts, we may however also want to ex-
ploit finer-grained assessments of arguments, like prioritiza-
tions or classifications. This suggests a more general seman-
tic perspective [Wey 11].

Definition 3.2 (Hyperextensions) A hyperframework se-
mantics is a map & associating with each hyperframework

4 A bit of an overkill for this paper, but we couldn’t resist.



A = (A, (Ri)ier, (Pj)jcs) of a given signature a collec-
tion E(A) of distinguished evaluation structures expanding
A, of the form (A, InA, (Fi)hen). In? is here a conflict-
free subset of A. The elements of E(A) are called hyperex-
tensions of A.

In* plays here the role of a classical extension, whereas the
Fn (h € H) express more sophisticated structures over ar-
guments, e.g. a posteriori plausibility orderings, value predi-
cates, or completions of framework relations considered par-
tial. If H = (), we are back to Dung.

4 Concretizing arguments

Ideally, abstract argumentation frameworks should be
reconstructible as actual abstractions of logic-based argu-
mentation scenarios. Such an anchoring seems required
to develop, evaluate, and apply the abstract models in a
suitable way. In a first step, this amounts to instantiate the
abstract arguments from the framework domain by logical
entities representing concrete arguments, and to interpret
the abstract framework structure by specific inferential or
evaluational relationships fitting the conceptual intentions
the abstract level tries to capture. In what follows we will
sketch a natural hierarchy of instantiation layers, passing
from more concrete, deep instantiations, to more abstract,
shallow ones, with a focus on the intermediate level.

Structured instantiations:

We start with logic-based structured argumentation over a
defeasible conditional logic L5 = (L U L(—,~),° ),
with (L, F) as a classical Tarskian background logic. For the
moment, we do not impose any further a priori conditions
on Ls. But eventually we will turn to specific ranking-based
default formalisms. In the context of L, a concrete defeasi-
ble argument a for a claim v, € L, exploiting some given
general knowledge base XU A, is modeled by a finite rooted
defeasible inference tree 7, whose nodes s are tagged by
local claims ns € L U L(—»,~>) such that

e the root node is tagged by v,

o the leaf nodes are tagged by s € ¥, U A, U A, where
A={T}u{p - v, ~ ¢ | ¢ € L} (basic tautologies),

e the non-leaf nodes are tagged by 1, € L s.t. Ty 9 0,
where I'; is the set of claims from the children of s.

3a UA, is the contingent premise set of a, the premises be-
ing the claims of the leaf nodes. Within concrete arguments,
the local justification steps, e.g. from I, to 7, are typically
assumed to be elementary, like instances of modus ponens.
To handle reasoning by cases, which holds for plausible im-
plication, we may also apply the disjunctive modus ponens
for — and ~, e.g.

Ls={p1V...Von, o1~ ¥1,...,0n > P}

R 1 VoV by (= ).
If 'y C L(—»), we can replace ~° by -° and obtain a strict
inference step. For our purposes we may ignore the exact
nature of the justification steps. Note that the correctness of
local inference steps does not entail the global correctness

32

of the argument a. Consider for instance ¥, U A, = {p} U
{© ~ 1, 1) ~» =}, which is consistent w.r.t. )°= pZ.

{e}U{p~ 9} o dand {y} U {y ~ =9} P -,
but ¥, U A, £ . This example looks odd because ac-
cepting the whole argument would require the acceptance of
all its claims, which is blocked by ¢, =@ F F'. In fact, a nat-
ural requirement for an acceptable argument a would be that
it satisfies

Material consistency: ¥, A, FF.

This means that the factual premises and the material impli-
cations corresponding to the conditional premises are classi-
cally consistent. Note that this condition is strictly stronger
than ¥, U A, [£° F because we typically have {T ~-
©0,—p} K F whereas {T — ¢,—~¢}  F. However, in
practice, without omniscience w.r.t. propositional logic, it
may not be clear whether these global conditions are actu-
ally satisfied. Real arguments may well be inconsistent in
the strong sense.

In structured argumentation, an argument tree has two
functions: first, to describe and offer a prima facie justifica-
tion for a claim, and secondly, to specify target points where
other arguments may attack. It is essentially a computational
tool which is intended to help identifying - or even defining
- inferential relationships within a suitable defeasible con-
ditional logic Ls, and to help specifying attack relations to
determine reasonable argumentative positions.

But what can we say about the semantic content of an
argument represented by such a tree? What is an agent
committed to if he accepts or believes a given argument, or
a whole collection of arguments? Which tree attributes have
to be known to specify this content? What is the meaning of
attacks between arguments?

Conditional instantiations:

Our basic idea is that, whatever the requirements for argu-
mentation trees in the context of L, and whatever the con-
tent of an argument a represented by such a tree 7, it should
only depend on the collection of local claims {7y | s node
of 7.}, and more specifically, on the choice of the main
claim 1), the premise claims >, U A, and the intermediate
claims U,. In fact, because the acceptance of a structured
argument includes the acceptance of all its subarguments,
we have to consider the main claims of the subarguments
as well. So we can assume that the content of 7, is fixed
by the triple (3, U Ag, ¥y, 1,). An agent accepting a ob-
viously has to be committed to all the elements of the base
S UAUT, U{,}

To be fully acceptable w.r.t. Ls, the structured argument
also has to be globally correct in the sense that all its lo-
cal claims are actually defeasibly entailed by >, U A,. In
particular, ¥, U A, |~° 1 for each 1) € ¥, U {1, }. This
requirement should also hold for each subarguments b of a.
But note that, because of defeasibility, this does not exclude
that the premises Y, U A} of a subargument b could implic-
itly infer the negation of a local claim 1, external to b, as
long as this conflicting inference is eventually overridden by
the full premise set X, U A,. It follows that the strength-
ening of a subargument by choosing a stronger claim could



undermine global correctness. But if the intermediate claims
are always inferred and therefore implicitly present, we may
actually drop ¥, and just consider for each globally correct
argument a the finite inference pair (X, U Ag, 1)g).

Given a pure Dung framework A = (A, >) and the de-
feasible conditional logic Ls, a structured instantiation [,
of A maps each a € A to a globally correct argument tree
7, over L. On the most general level, we do not want to
impose a priori further restrictions beyond inferential cor-
rectness. In practice one may however well decide to focus
on specific argument trees, e.g. those using specific justifi-
cation steps. Each I, (a) specifies a correct inference pair
Ijog(a) = (X4 U Ay, 1)), which we call a conditional log-
ical instantiation of a over Ls. Ij4 specifies the intended
logical content of an argument on the syntactic level. Note
that it depends on the tree concept whether we can obtain all
the correct inference pairs.

In monotonic argumentation, the consistency and mini-
mality of the premise sets are standard assumptions. But
within defeasible argumentation, a more liberal perspective
may be preferable. For instance, on the structured level, we
want to allow arguments claiming F. The reductio ad absur-
dum principle then offers a possibility to attack arguments
from within. Consequently, we also have to accept instan-
tiating inference pairs whose conclusion is F. On the other
hand, material consistency, the existence of models of X,
which do not violate any conditional in A, is a natural re-
quirement in the context of argumentation theory. But we
can replace it by a qualified version, restricted to those in-
stances where ¥, U A, is actually consistent.

What about minimality? First, it may obviously fail for
inference pairs obtained by flattening argument trees. Of
course, we could consider an additional minimization step
where we replace each (X, U Ag, 1, ) by all those (®, 1),,)
with ® C ¥, U A, and which are minimal s.t. ® |~5 Pa.
Although this may be computationally costly, it could be
theoretically appealing. However, minimality could also
be questioned because by adding premises, a conclusion
may successively get accepted, rejected, and accepted
again, letting the character of the inferential support change
between different levels of specifity, which calls for a
discrimination between the corresponding inference pairs.
Proponents of minimality object that these types of support
could, perhaps, also be reproduced by suitable minimal
(®,1,). However, this assumption is not sustainable for
ranking-based semantics for argumentation, because here
the results may change if we restrict ourselves to minimal
premise sets. In fact, shrinking ¥, U A, to & may actually
increase the set of possible attacks. In particular, we could
have attacks on all the minimal ® P\‘é 14, but none on
Y, U A, ° 9,. Hence premise minimality may fail.

Shallow instantiations:

Let us recall our task: exploiting a ranking semantics for
default reasoning to provide a plausibilistic semantics for
abstract argumentation. But inference pairs, which pop-
ulate the conditional logical instantiation level, are still
rather complex and opaque objects. To model argumentation
frameworks and their semantics, we would here have to deal

33

with sets of sets of conditionals, whose inferential interac-
tions may furthermore be hard to assess. We therefore prefer
to start with simpler entities and to seek more abstraction.

Consider the main goal of an agent: to extract from ar-
gument configurations suitable beliefs, expressed in the do-
main language L, whose plausibility is semantically mod-
eled by ranking measures over By. Given an inference
pair (X, U Ag,,) representing the full conditional log-
ical content of an argument a, in addition to the main
claim ¢),, there are three relevant collections of formulas:
Ya, O (AU, X4 ), O\ (Aq U X,) which represent resp. the
premises, the strict, and the defeasible consequences. If the
language is finitary, this gives us four L-formulas represent-
ing the relevant propositional L-content.

o ¢, = A\Y, (premise content).

e 0, = NC(A, UX,) (strict content).

¢ 0q = NC (Aq U X,) (defeasible content).
e 1), (main claim).

We have §, F 0, b ¢, and d, F 1), by inferential correct-
ness. d, specifies the strongest possible claim based on the
information made available by the argument. For our seman-
tic modeling purposes, we will assume that i, = d,. If we
abstract away from the representational details, we arrive at
our central concept: the shallow semantic instantiation of a
extracted from the conditional logical instantiation I;,4(a).

Isem(a) = ([[Sﬁa]], [[ea]]v [[wa]])

In the following, we will sloppily denote Isep,(a) by
(¢a, ba,14). One should emphasize that these propositional
semantic profiles are not intended to grasp the full nature
of arguments, but only to reflect certain characteristics ex-
ploitable by suitable argumentation semantics. We observe
that each proposition triple (p,60,%) with v = 6 F ¢
can become a shallow instantiation. In fact, if Ijo4(a) =
({p,0 — 0,0 ~ 1}, 1), for standard ~°, we obtain
Isem(a) = (¢,0,1). In terms of ranking constraints, this
givesus R(p A —8) =ooand R(p AY) +1 < R(p A —).

5 Concretizing attacks

One argument attacks another argument if accepting the
first interferes with the inferential structure or the goal of
the second one. To avoid a counterattack, the premises of
the attacked argument should also not affect the inferen-
tial success of the attacker, otherwise the presupposition
of the attack could be undermined. In the following we
will investigate attack relations between conditional logical
resp. shallow semantic instantiations of abstract arguments.
We start with the former. Let I;o4(a) = (3, U Aq, 9,) and
Iiog(b) = (X U Ay, 1hp) be two correct inference pairs for
Ls. We distinguish two scenarios: unilateral and mutual at-
tack. The idea is to say that (X, U A, v,) unilaterally at-
tacks (Xp U Ay, 1)p) iff the premises of both arguments to-
gether with 1, enforce the strict rejection of vy, i.e.

Ty UAL U, UAL U {We} o =y,

whereas the defeasible inference of v, from the premises is
preserved, i.e.



Yo UAL UXyUA .

On the other hand, (3, U A, 1,) and (X, U Ay, ¢yp) attack
each other iff they strictly reject each other’s claims, i.e.

Yo UAyUX, UAL U {tby} FO =y, and

Y,UAL U, UAU {wb} o —Q/)a.

This holds for instance if their premise sets, resp. their
claims, are classically inconsistent. This definition provides
one of the strongest possible natural attack relations for in-
ference pairs. Note that we have a self-attack iff the premise
set is inconsistent, i.e. ¥, U A, F° F. To exploit the pow-
erful semantics of ranking-based default reasoning, in what
follows we will assume that p°= ~Z, where 7 is a ranking
choice function.

How can we exploit the above approach to define attacks
between shallow instantiations, e.g. Isem (@) = (@, 0a, Vo)
and Igem (D) = (@b, 0p,%p)? The corresponding inference
pairs are [jo4(a) = ({¢@a, Pa = b, Pa ~ Ya},Pa) and
T1og(b) = ({0, Y6 — Op, 06 ~> Up}, y). For an unilateral
attack from I;o4(a) on I;o4(b), we must have

I(Aa U Ab) ':rk Pa N @p N\ ¢a —» —|’l/)b, and

I(Aa U Ab) ':rk Yo N Py~ 1;[}(1-

This is, for instance, automatically realized if ¢, = -,
wq F p, and we have logical independence elsewhere. For
a bilateral attack, we may just drop the condition ¢, = .
However, we do not have to presuppose that all the attacks
result from the logical structure induced by the instantiation.
In fact, in addition to the instantiation-intrinsic attack rela-
tionships, there could be further attack links derived from a
separate conditional knowledge base reflecting other known
attacks.

From a given Dung framework A = (A, i>) and a shallow
instantiation I = Ig.,,, if we adopt the ranking semantic
perspective and the above attack philosophy, we can induce
a collection of conditionals specifying ranking constraints.
For any a € A, the shallow inference pair supplies ¢, — 0,
(alternatively, o, A =6, ~ F) and ¢, ~ 1),. For every
attack a > b, we get at least ¥, A ¢, ~ F. Note that this is a
consequence of choosing maximal claims at the instantiation
level. For each unilateral attack a>b we must add ¢, Ay ~>
1), to preserve the inferential impact of a in the context of b.
The resulting default base is

AAT = {®a~> Yo, 00 > ba | a € A}

U{tbg Aoy~ F |a>borbr>al

U{%/\%V% ‘ at>b,b lﬁa}
We observe that for each 1-loop, we get ¥, ~ F and
©0a ~ g, hence AT =T =, . The doxastic impossibility
of ¢, illustrates the paradoxical character of self-attacking
arguments. The belief states compatible with an instantiated
framework A, I are here represented by the ranking models
of A4,

Conversely, we can identify for each instantiation I of A
and each collection of ranking measures R |=, AST =
{Ya ~ Yo, pa — 0, | a € A} the attacks supported by all
the R € R. Let >F be the resulting attack relation, that is,
foreach a,b € A

34

a>Rbiff forall R € R, R =k g A by ~ F and

(R E=rk a N\ @b~ g of R Frp a0 A @~ ).

The second disjunct is the result of an easy simplification.
If a or b are self-reflective, we have a > b because con-
ditionals always hold if the premises are doxastically im-
possible. Because in this paper we will mainly consider
canonical ranking choice functions, we are going to focus
on R = {R}, setting > = >T.

Definition 5.1 (Ranking instantiation models)

Let the notation be as usual and At = {a € A | a ¢ a}.
(R, I) is called a ranking instantiation model (more slop-
pily, a ranking model) of A iff

R ':7’k AA’I = {99(1 > waa Pa — 9& | ac A}’

and for all a,b € A*, a > b iff a >F b. Let RA be the
collection of all the ranking instantiation models of A.

That is, over the non-loopy arguments, the semantic-based
attack relation >t specified by R, I has to correspond ex-
actly to the abstract attack relation t>. The collection of rank-
ing instantiation models is not meant to change if we add or
drop attack links between self-reflective and other arguments
because the details are absorbed by the impossible joint con-
texts. If A and A’ share the same 1-loops and the same attack
structure over the other arguments, R = RA

It also important to observe, and we will come back to
this, that each A = (A, >>) admits many ranking instantia-
tion models (R, I), obtained by varying the ranking values
or the proposition triples associated with the abstract argu-
ments.

What can we say about classical types of attack? If we fo-
cus on the actual semantic content, rebuttal is characterized
by incompatible defeasible consequents, and undermining
by a defeasible consequent conflicting with an antecedent. In
the ranking context, these two types of attacks can be mod-
eled by constraints expressing necessities. The ranking char-
acterizations are as follows. Recall that v, - ¢q, ¥y - 5.

a rebuts b: R(¢, N hy) = 00, e.g. if g - .
a undermines b: R(v, A ¢p) = 00, e.g. if ¥, F —py,.

In our simple semantic reading, undermining entails rebut-
tal because ¢, - ¢p. There are four qualitative attack con-
figurations involving two arguments: @, A ¢p being com-
patible with neither, one, or both of ¥,,vp. If a asym-
metrically undermines b, we have R(¢, A ¢p) = oo and
R(¢p A wa) # 00, hence R(p, A ) # oo. This implies
R ':rk (Pa/\@b/\'(/)b - ﬁ’(/}a and R l#rk Ya N b~ Q/Ja,
i.e. b > a and a #£ b according to our attack semantics. It
follows that undermining has no obvious ranking semantic
justification if we stipulate that the defeasible claim entails
the antecedent. Also note that rebuttal is entailed by sym-
metric and asymmetric attacks.

6 Ranking extensions

Ranking instantiation models offer new possibilities to iden-
tify reasonable argumentative positions. Let (R,I) be a
model of the framework A = (A, ). In the context of
(R, I), a minimal requirement for aceptable argument sets



S C A are coherent premises, i.e. the doxastic possibility
of the joint strict contents s = Ages(pa A 0,) Wt R,
which means R(pg) # oo. This excludes self-attacks, but
not conflicts within S. S = () is by definition coherent be-
cause py = T. Given that evidence ¢, should not be re-
jected without good reasons, the maximally coherent S C A
are of particular interest and constitute suitable background
contexts when looking for extensions. Each £ C S then
specifies a proposition

wS,E = ps A /\aEEzpa A /\aEA—E_'¢a-

g, r characterizes those worlds verifying the strict content
of the a € S and exactly the defeasible content of the
a € E. Because a >% b implies R(v, A 1) = oo, any
conflict @ > b in I/ makes s g impossible. Note however
that R(1g ) = oo may also result from non-binary con-
flicts involving multiple arguments, or a specific choice of
logically dependent ¢,,1,. What are the most reasonable
extension candidates £ C .S C A according to (R, I)? One
idea is to focus on those E which induce the most plausi-
ble 1g g relative to g among all their maximal coherent
supersets S.

Definition 6.1 (Ranking extensions) Let (R, I) be a rank-
ing instantiation model of A = (A,1>). E C A is called
a ranking-extension of A w.rt. (R, I) iff there is a maximal
coherent S C A with E C S and R(¢g g|es) = 0.

Observe that if S = () is the maximally coherent subset of
A, then R(p,) = oo for each a € A and E = 0 is the only
ranking extension. While the above definition looks rather
decent, a cause of concern may be the great diversity of rank-
ing models (R, I) available for any given .A. Consider for
instance A = ({p,q,7},{(p,q), (¢,7)}),ie.p>qg>r. A
together with a shallow instantiation I then induces ranking
constraints described by the conditionals in

AAT = {%A%MF,wq/\%vF,%Aqu%,
g N Pr ~> Yy, Pp ~> U, g ~> Vg, Or ~ Py}
If we assume that each set {¢,, ¥, } is logically independent
from all the other {¢,, ), }, then AT admits a unique jus-
tifiably constructible model, which therefore automatically

must be the JZ- and JJR-model: RAZ’I. In this example it
is obtained by minimally shifting the violation areas of the
conditionals.

R;'A;J = Ro+00[thy Ahg] +00[hg Ar] +1[op Apg A=tbp +
1[‘Pq/\ﬁpr/\ﬁwq] + 1[‘Pp/\ﬁ¢p] + 1[‘Pq/\ﬁwq] + 1[‘Pr/\ﬁ¢r}-

Given that S = A is coherent, there are eight ex-
tension candidates. For the doxastically possible alterna-

tives, Riy (Unpry) = 2 < 3 = RV (Vagpy) =
Rﬁ)I(z/JA,{q}) <4 = Rﬁ)l(z/]A,{r}) <5 = Rﬁ’I(lﬁA,w) <
0. Because Rﬁ’l(cpg) = 2, we get Rﬁ’l(?m,{p,r} lps) = 0.
The unique ranking extension is therefore {p, r}, which is
also the standard Dung solution.

However, without any further constraints on the exten-
sion generating ranking instantiation model (R, T), we could
pick up as an alternative R = R;-t’l + ooty A Y A @)
such that R(y, A ¥, A ¢q) = oo, resp. an I enforcing

35

Vp A Y N\ g F F. In both scenarios, the minima would
then become R(¢a py) = R(¥a,{q3) = 3, imposing the
ranking extensions {p}, {¢}. Because of R(1 (p,}) = 00,
the standard extension {p, r} would necessarily be rejected.
But this violates a hallmark of argumentation, namely the
unconditional support of unattacked arguments, like p. This
shows that we have to control the choice of ranking instan-
tiation models to implement a reasonable ranking extension
semantics.

The idea is now to choose on one hand, as our doxas-
tic background, a well-justified canonical ranking measure

model of the default base A4, e.g. the JZ-model Rﬁ’l,
and on the other hand, implementing Ockham’s razor, the
simplest instantiations of the given framework .A. In partic-
ular, we stipulate that the instantiations of individual argu-
ments should by default be logically independent. We em-
phasize that the goal here is just to interpret abstract argu-
mentation frameworks with a minimal amount of additional
assumptions, not to adequately model specific real-world ar-
guments.

We can satisfy these desiderata by using disjoint vocabu-
laries for instantiating different abstract arguments, and by
relying on elementary instances of the defeasible modus po-
nens for the corresponding inference pairs. That is, we in-
troduce for each a € A independent propositional atoms
X,,Y,, and set Ijpg(a) = ({Xo} U {X, ~ Y,},Ya).
The corresponding shallow semantic instantiation is then
I(a) = ]sem(a) = ((paﬂpanwa) = (XayXayXa A Ya)~
We call I a generic instantiation. Up to boolean isomorphy,
it is completely characterized by the cardinality of A.

If we fix a generic instantiation I, then the unique justifi-
ably constructible ranking model of A+ is (a <1/t>b: a > b
orbr> a)

Rﬁ = Ry + Zapal[a A a] + Lapaoo[pa A —tbg] +
Eabbl[@a Ay N _‘d}a] + z:a</|>boo[{ll)a A 1/Jb]
= Ry + Zapal[Xa A Y] + Eapq00[Xo A Y] +
Zanl[Xa ANXp A ﬁYa] + an/DbOO[Xa ANY, AN Xp A Yb}.

Because the {X,, Y, } are logically independent for distinct
a, and the defaults expressing an attack a > b just concern
Xa N Xp, only those X, with a > a become impossible.
In fact, {v, ~ Ya,Vq A Vg ~ F} Frp @q ~ F. Hence,
in line with intuition, the ranking instantiation model
(R;-t, I) will trivialize exactly the self-defeating arguments.
Assuming genericity, AT = {a € A | a 4 a} is then the
unique maximal coherent subset of A. We are now ready to
specify our ranking-based evaluation semantics. Note that
all the generic I are essentially equivalent.

JZ-evaluation semantics (JZ-extensions):
&;z(A) = {E C A | FE ranking extension w.r.t. (sz’l,l)
for any/all generic I}.

There is actually a simple algorithm to identify the JZ-
extensions using extension weights.

Definition 6.2 (Extension weight) For each argumenta-
tion framework A = (A,1>), the extension weight function
74 : 2% — [0,00] is defined as follows: If E is conflict-free,



ra(E)=|AT —E|+|{ac At —E|3becAt(a>bAb /

>a)}

,if not, T A (E) = oc.

It is not too difficult to see that r4(E) = Rﬁ’l(wM,E).
Hence, E € &;,(A) iff r4(F) = min{r4(X) | X C A}.
That is, the JZ-extensions are those where the sum of the
number of non-reflective non-extension arguments and the
number of one-sided attacks starting from them is minimal.

7 Examples and properties

To get a better understanding of the ranking extension
semantics and its relation with other extension concepts,
let us first take a look at how it handles some basic ex-
amples. Because of its uncommon semantic perspective
and its partly quantitative character, we will observe some
unorthodox behaviour. Under instantiation genericity, it is
enough to compare RA’I(wm,E) for E C AT, or to focus
on 1-loop-free frameworks. For each instance, we specify
the domain A and the full attack relation >. Yo+ (4,..2,} 18
abbreviated by 1, .. 5, resp. ¥y.

Simple reinstatement: {a,b,c} witha > b c.

The grounded extension {a,c} is the canonical result
put forward by any standard acceptability semantics. The
unique JJ-model, i.e. the JZ-model R of AL satisfies
R(Ya) = R(¥y) = 3,R(tb) = 4,R(tac) = 2, and
R(vy) = 5. The other candidates all get rank co. Because
R(1q ) is minimal, {a, c} is the only JZ-ranking extension,
ie. &.(A) = {{a,c}}.

3-loop: {a,b,c} witha>brc>a.

Semantics under the admissibility dogm reject
{a},{b},{c}, only 0 is admissible. But the JZ-model
R verifies R(1,) = R(¢s) = R(¥.) = 4 < 5 = R(y).
Because all the alternatives are set to oo, our ranking
extensions are the maximal conflict-free sets {a}, {0}, {c},
i.e., &, clearly violates admissibility.

Attack on 2-loop: {a,b,c} witha>br>cr>b.

We have R(djﬂ) = 473(%) = 2»R(1/}b) = R(d}c)
3,R(tq,c) = 1, but oo for the others. Here &;.(A)
{{a, c}} picks up the canonical stable extension.

Attack from 2-loop: {a,b,c} withb>ar>br> c.

We get R(vp) = 4, R(Ya) = 3, R(Yp) = 2, R() = 3,
R(U)a,b) = b,c = 00, and R(ww) = 2.
Ei-(A) = {{b},{a,c}} thus collects the stable exten-
sions.

3,1-loop: {a,b,c} withar>ar>br>c> a.

E = ( is here the only admissible extension. The
maximal coherent set is AT = {b,c}, and we get
R(vp) = 1,R(tp.) = 2, as well as R(zy) = 3. It follows
that £;,(A) = {{b}}, rejecting the stage extension {c}.

3,2-loop: {a,b,c} withbr>a>br>ct>a.

We have R(¢p) = 5,R(s) = 4,R(yp) = 3, and

36

R(¢.) = 3,1ie. E.(A) = {{b},{c}}. But the stable
extension {b} is the only admissible ranking extension.

The previous examples show that the ranking extension
semantics &;, can diverge considerably from all the other
major proposals found in the literature. It may look as if the
main difference is its more liberal attitude towards some
non-admissible, but still justifiable extensions. However,
the semantics has an even more exotic flavour. Consider
the following scenarios, where we indicate the minimal
extension weights r 4 (F).

2-loop chain: {a,b,c},b>a>b>c>b:
r({a,c}) =1 <2 =r({b}).
Splitted 3-chain: {a,b,c,d},a>b>c,a>d>c:

r({a,c}) =r{{b,d}) = 4.
Spoon: {a,b,c,d},a>br>c>d>c:

r({a,d}) = r({a,¢}) = r({b,d}) = 3.

The first example documents the rejection of a stable
extension, namely {b}. The second one illustrates the
impact of quantitative considerations when dealing with a
splitted variant of simple reinstatement. The third instance
shows the coexistence of two stable extension with a
non-admissible one. That is, even attack-free a can be
questioned under certain circumstances. It follows that the
above ranking semantic interpretation of argumentation
frameworks deviates considerably from standard accounts
and expectations. Let us now investigate how &£;, handles
some common principles for extension semantics.

Isomorphy: f : A= A’ implies f”: E(A") = E(A).
Conflict-freedom: If a,b € E € £(A), then a }4 b.

CF-maximality: If £ € E&(A), then E is a maximal
conflict-free subset of A.

Inclusion-maximality: If £, ' € £(A) and E C E’, then
E=F.

Reinstatement: If £ € £(A), a € A, and for each b > a
thereis an a’ € F witha’' > b, thena € E.

Directionality: Let A; = (Aq,>1),4s = (Ag,>9)
be such that A N Ay = 0, o C A; x A,
A = (A; U Ay,>>1 U o U >3). Then we have
E(A)={ENA; | Ec&(A)}.

Theorem 7.1 (Basic properties)

&;. verifies isomorphy, conflict-freedom, inclusion maximal-
ity, and CF-maximality. It falsifies reinstatement and direc-
tionality.

The first four features are easy consequences of the &;,-
specification. The violation of reinstatement directly fol-
lows from how the semantics handles 3-loops. The spoon
example documents the failure of directionality if we set
Ay, = {a,b}. But directionality also fails for other promi-
nent approaches, like the semi-stable semantics. Note how-
ever that it can be indirectly enforced by using &;, as the
base function for an SCC-recursive semantics [BGG 05].



The following properties are inspired by the cumulativ-
ity principle for nonmonotonic reasoning. They state that if
we drop an argument rejected by every extension, then this
shouldn’t add or erase skeptically supported arguments.

Rejection cumulativity: (A|B: A restricted to B)
Rej-Cut: If a ¢ UE(A), then NE(A|A — {a}) C NE(A).
Rej-CM: If a ¢ UE(A), then NE(A) C NE(A|A — {a}).

Although our semantics relies on default inference notions
verifying cumulativity at the level of |~%, it nevertheless
fails to validate the previous postulates.

Theorem 7.2 (No rejection cumulativity)
&;. violates Rej-Cut and Rej-CM.

The counterexample for Rej-CUT is provided by br>cr>a >
b > a, because {b} Z {b} N {c}. The one for Rej-CM is
obtained by adding ¢ > b. Here {c} Z {b} N {c}.

Another idea for combining plausibilistic default reason-
ing and argumentation theory has been presented in [KIS
11]. It combines defeasible logic programming with a prior-
itization criterion based on System Z. While it handles some
benchmarks better than the individual systems do, its hetero-
geneous character makes it hard to assess. It doesn’t share
our goal to seek a plausibilistic semantics for abstract argu-
mentation and seems to produce different results even in the
generic context.

8 Conclusions

We have shown how the ranking construction paradigm for
default reasoning can be exploited to interpret abstract ar-
gumentation frameworks and to specify corresponding ex-
tension semantics by using generic argument instantiations
and distinguished canonical ranking models. We have con-
sidered structured and conditional logical instantiations, de-
fined attack between inference pairs, and after a further
abstraction step, introduced simple semantic instantiations,
which interpret arguments by triples of premise, strict, and
defeasible content. While our basic ranking extension se-
mantics &;, is intuitively appealing and has some interest-
ing properties, it also exhibits a surprisingly unorthodox be-
haviour. This needs further exploration to see whether there
are approaches which share the same semantic spirit but can
avoid abnormalities conflicting with the standard argumen-
tation philosophy. Actually, we have been able to develop an
alternative semantics which seems to meet these demands,
but it will have to be discussed elsewhere.

9 Bibliography

BGG 05 P. Baroni, M. Giacomin, G. Guida. SCC-
recursiveness: a general schema for argumentation se-
mantics. AlJ 168:163-210, 2005.

BSS 00 S. Benferhat, A. Saffiotti, P. Smets. Belief functions
and default reasoning. Artificial Intelligence 122(1-2): 1-
69, 2000.

GMP 93 M. Goldszmidt, P. Morris, J. Pearl. A maxi-
mum entropy approach to nonmonotonic reasoning. IEEE
Transact. Patt. Anal. and Mach. Int, 15:220-232, 1993.

37

KI 01 G. Kern-Isberner. Conditionals in nonmonotonoic
reasoning and belief revision, LNAI 2087. Springer, 2001.

KIS 11 G. Kern-Isberner G.R. Simari. A Default Logi-
cal Semantics for Defeasible Argumentation. Proc. of
FLAIRS 2011, AAAI Press, 2011.

KLM 90 S. Kraus, D. Lehmann, M. Magidor. Nonmono-
tonic reasoning, preferential models and cumulative log-
ics. In Artificial Intelligence, 44:167-207, 1990.

Mak 94 D. Makinson. General patterns of nonmonotonic
reasoning. Handbook of Logic in Al and LP, vol. 3 (eds.
Gabbay et al.): 35-110. Oxford University Press, 1994.

Pea 90 J. Pearl. System Z: a natural ordering of defaults
with tractable applications to nonmonotonic reasoning.
TARK 3: 121-135. Morgan Kaufmann, 1990.

Spo 88 W. Spohn. Ordinal conditional functions: a dynamic
theory of epistemic states. Causation in Decision, Belief
Change, and Statistics (eds. W.L. Harper, B. Skyrms):
105-134. Kluwer, 1988.

Spo 12 W. Spohn. The Laws of Belief. Ranking Theory and
Its Philosophical Applications. Oxford University Press,
Oxford 2012.

Wey 94 E. Weydert. General belief measures. UAI'94,
Morgan Kaufmann.

Wey 95 E. Weydert. Defaults and infinitesimals. Defeasible
inference by non-archimdean entropy maximization. UAI
95: 540-547. Morgan Kaufmann, 1995.

Wey 96 E. Weydert. System J - rev. entailment. FAPR
96:637-649. Springer, 1996.

Wey 98 E. Weydert. System JZ - How to build a canonical
ranking model of a default knowledge base. KR 98: 190-
201. Morgan Kaufmann, 1998.

Wey 03 E. Weydert. System JLZ - Rational default reason-
ing by minimal ranking constructions. Journal of Applied
Logic 1(3-4): 273-308. Elsevier, 2003.

Wey 11 E. Weydert. Semi-stable extensions for infinite
frameworks. In Proc. BNAIC 2012: 336343.

Wey 13 E. Weydert. On the Plausibility of Abstract Ar-
guments. ECSQARU 2013, LNAI 7958 (ed. L. van der
Gaag): 522-533 Springer, 2013.



An Approach to Forgetting in Disjunctive Logic Programs that
Preserves Strong Equivalence

James P. Delgrande
School of Computing Science
Simon Fraser University
Burnaby, B.C. V5A 156
Canada
jim@cs.sfu.ca

Abstract

In this paper we investigate forgetting in disjunctive logic pro-
grams, where forgetting an atom from a program amounts to
a reduction in the signature of that program. The goal is to
provide an approach that is syntax-independent, in that if two
programs are strongly equivalent, then the results of forget-
ting an atom in each program should also be strongly equiva-
lent. Our central definition of forgetting is impractical but sat-
isfies this goal: Forgetting an atom is characterised by the set
of SE consequences of the program that do not mention the
atom to be forgotten. We then provide an equivalent, practi-
cal definition, wherein forgetting an atom p is given by those
rules in the program that don’t mention p, together with rules
obtained by a single inference step from rules that do men-
tion p. Forgetting is shown to have appropriate properties; as
well, the finite characterisation results in a modest (at worst
quadratic) blowup. Finally we have also obtained a prototype
implementation of this approach to forgetting.

Introduction

Forgetting is an operation for eliminating variables from a
knowledge base (Lin and Reiter 1994; Lang et al. 2003).
It constitutes a reduction in an agent’s language or, more
accurately, signature, and has been studied under different
names, such as variable elimination, uniform interpolation
and relevance (Subramanian et al. 1997). Forgetting has
various potential uses in a reasoning system. For example,
in query answering, if one can determine what is relevant to
a query, then forgetting the irrelevant part of a knowledge
base may yield a more efficient operation. Forgetting may
also provide a formal account and justification of predicate
hiding, for example for privacy issues. As well, forgetting
may be useful in summarising a knowledge base or reusing
part of a knowledge base or in clarifying relations between
predicates.

The best-known definition of forgetting is with respect to
classical propositional logic, and is due to George Boole
(Boole 1854). To forget an atom p from a formula ¢ in
propositional logic, one disjoins the result of uniformly sub-
stituting T for p in ¢ with the result of substituting | ; that
is, forgetting is given by ¢[p/T] V ¢[p/L]. (Lin and Re-
iter 1994) investigated the theory of forgetting for first order
logic and its application in reasoning about action. Forget-
ting has been applied in resolving conflicts (Eiter and Wang

Kewen Wang

School of Information and Communication Technology

38

Griffith University,
Brisbane, QLD 4111
Australia
k.wang @griffith.edu.au

2008; Zhang and Foo 1997), and ontology comparison and
reuse (Kontchakov et al. 2008; Konev et al. 2013).

The knowledge base of an agent may be represented in a
non-classical logic, in particular a nonmonotonic approach
such as answer set programming (ASP) (Gelfond and Lifs-
chitz 1988; Baral 2003; Gebser et al. 2012). However, the
Boole definition clearly does not extend readily to logic pro-
grams. In the past few years, several approaches have been
proposed for forgetting in ASP (Eiter and Wang 2006; 2008;
Wang et al. 2005; Zhang et al. 2005; Zhang and Foo 2006).
The approach to forgetting in (Zhang et al. 2005; Zhang
and Foo 2006) is syntactic, in the sense that their definition
of forgetting is given in terms of program transformations,
but is not based on answer set semantics or SE models'
(for normal logic programs). A semantic theory of forget-
ting for normal logic programs under answer set semantics
is introduced in (Wang et al. 2005), in which a sound and
complete algorithm is developed based a series of program
transformations. This theory is further developed and ex-
tended to disjunctive logic programs (Eiter and Wang 2006;
2008). However, this theory of forgetting is defined in terms
of standard answer set semantics instead of SE models.

In order to use forgetting in its full generality, for deal-
ing with relevance or predicate hiding, or in composing,
decomposing, and reusing answer set programs, it is de-
sirable for a definition to be given in terms of the logical
content of a program, that is in terms of SE models. For
example, the reuse of knowledge bases requires that when
a sub-program () in a large program P is substituted with
another program ()’, the resulting program should be equiv-
alent to P. This is not the case for answer set semantics due
to its nonmonotonicity. As a result, two definitions of for-
getting have been introduced in HT-logic (Wang ef al. 2012;
2013). These approaches indirectly establish theories of for-
getting under SE models as HT-logic provides a natural ex-
tension of SE models. The approach to interpolation for
equilibrium logic introduced in (Gabbay et al. 2011) is more
general than forgetting. However, the issue of directly estab-
lishing a theory of forgetting for disjunctive logic programs
under SE models is still not fully resolved yet. In addition, it
is even more challenging to develop efficient algorithm for
computing a result of forgetting under SE models.

!See the next section for definitions.



A key intuition behind forgetting is that the logical con-
sequences of a set of formulas that don’t mention forgotten
symbols should still be believed after forgetting. This leads
to a very simple (abstract) knowledge-level definition, pro-
vided that a consequence operator is provided in the under-
lying logic. In particular, the semantics of a logic usually as-
sociates a set of models Mod (K) with each knowledge base
K. This makes it straightforward to formulate a definition
of forgetting based on the above intuition. However, such
a definition of forgetting suffers from the problem of inex-
pressibility, i.e., the result of forgetting may not be express-
ible in the logic. In this paper, we establish such a theory
of forgetting for disjunctive logic programs under SE mod-
els. Besides several important properties, we show that the
result of forgetting for a given disjunctive program is still a
disjunctive program. This result confirms the existence and
expressibility of forgetting for DLP under SE models and
in fact provides an algorithm for computing forgetting under
SE models. We investigate some optimisation techniques for
the algorithm and report a prototype implementation of the
algorithm.

Answer Set Programming

Here we briefly review pertinent concepts in answer set
programming; for details see (Gelfond and Lifschitz 1988;
Baral 2003; Gebser et al. 2012).

Let A be an alphabet, consisting of a set of atoms. A
(disjunctive) logic program over A is a finite set of rules of
the form

a15...3Gm < b1, ... by, ~er, - ~vep. (1)

where a;, bj,c, € A, and m,n,p > 0and m +n+p > 0.
Binary operators ‘;” and , express disjunction and conjunc-
tion respectively. For atom a, ~a is (default) negation. We
will use £ 4 to denote the language (viz. set of rules) gener-
ated by A.

Without loss of generality, we assume that there are no
repeated literals in a rule. The head and body of a rule r,
H(r) and B(r), are defined by:

H(r) = {a1,...,an} and
B(r) = {b1,...,bn,~c1,...,~cp}
Given a set X of literals, we define
Xt = {a€A|ac X},
X~ = {a€eA|~ae X}, and
~X = {~alaeXnNA}

For simplicity, we sometimes use a set-based notation, ex-
pressing a rule as in (1) as

H(r)« B(r)*,~B(r)~ .

The reduct of a program P with respect to a set of atoms Y,
denoted PY, is the set of rules:

{H(r)« B(r)" |re P, B(r)" NY = 0}.

Note that the reduct consists of negation-free rules only. An
answer set Y of a program P is a subset-minimal model of

PY. A program induces 0, 1, or more answer sets. The
set of all answer sets of a program P is denoted by AS(P).
For example, the program P = {a « . ¢ d <« a,~b}
has answer sets AS(P) = {{a,c}, {a,d}}. Notably, a pro-
gram is nonmonotonic with respect to its answer sets. For
example, the program {q < ~p} has answer set {q} while
{q < ~p. p <} has answer set {p}.

SE Models

As defined by (Turner 2003), an SE interpretation on a
signature A is a pair (X,Y) of interpretations such that
X CY C A. An SE interpretation is an SE model of a pro-
gram Pif Y = P and X |= PY, where |= is the relation of
logical entailment in classical logic. The set of all SE mod-
els of a program P is denoted by SE(P). Then, Y is an an-
swer set of P iff (Y,Y) € SE(P) andno (X,Y) € SE(P)
with X C Y exists. Also, we have (Y,Y) € SE(P) iff
Y € Mod(P).

A program P is satisfiable just if SE(P) # (. Thus,
for example, we consider P = {p <« ~p} to be satisfiable,
since SE(P) # () even though AS(P) = (). Two programs
P and Q) are strongly equivalent, symbolically P = @, iff
SE(P) = SE(Q). Alternatively, P =; @ holds iff AS(P U
R) = AS(Q U R), for every program R (Lifschitz et al.
2001). We also write P =, Q iff SE(P) C SE(Q).

SE Consequence

While the notion of SE models puts ASP on a monotonic
footing with respect to model theory, (Wong 2008) has sub-
sequently provided an inferential system for rules that pre-
serves strong equivalence, where his notion of SE conse-
quence is shown to be sound and complete with respect to
the semantic notion of SE models. His inference system is
given as follows, where lower case letters are atoms, up-
per case are sets of atoms, and for a set of atoms C =
{c1,...,¢n}, ~C stands for {~cy,...,~cp}.

Inference Rules for SE Consequence:
Taut z «—
Contra «— z,~x
Nonmin From A «— B,~C' infer
A; X — B)Y, ~C,~Z
WGPPE From A« By,z,~C7 and
As;x+ Bg,~Csy infer
Ay; Ay « By, By, ~Cy,~Cy
S-HYP From A, « By, ~zq1,~C1,

ey

An — Bna ~Tn, Ncna

A—uzy,...,xy,~C infer
Ay A, —
Bi,...,B,,~C1q,...,~Cp,,~A,~C

Note that many authors in the literature define satisfiability in
terms of answer sets, in that for them a program is satisfiable if it
has an answer set, i.e., AS(P) # 0.



Several of these rules are analogous to or similar to well-
known rules in the literature. For example, Nonmin is weak-
ening; WGPPE is analogous to cut; and S-HYP is a version
of hyper-resolution. Let |5 denote the consequence relation
generated by these rules, for convenience allowing sets of
rules on the right hand side of 5. Then P <4 P’ abbrevi-
ates P -, P’ and P’ -, P. As well, define

CTL_A(P) Z{T‘EEA | PF; 7‘}.

Then the above set of inference rules is sound and complete
with respect to the entailment |=;.

Theorem 1 ((Wong 2008)) P =, r iff P 5 r.

The Approach
Formal Preliminaries

Since forgetting in our approach amounts to decreasing the
alphabet, or signature, of a logic program, we need addi-
tional notation for relating signatures. Let A and A’ be two
signatures where A’ C A. Then A’ is a reduction® of A, and
A is an expansion of A’. Furthermore, if w is an SE inter-
pretation on A and w’ is an SE interpretation on A’ where
w and w’ agree on the interpretation of symbols in A’ then
w' is the A-reduction of w, and w is an A’-expansion of w’'.
For fixed A" C A, reductions are clearly unique whereas
expansions are not.

For a logic program P, o(P) denotes the signature of
P, that is, the set of atoms mentioned in P. SE models
are defined with respect to an understood alphabet; for SE
model w we also use o(w) to refer to this alphabet. Thus
for example if A = {a,b,c} then, with respect to A, the

SE model w = ({a}, {a,b}) is more perspicuously writ-
ten as ({a, —b, —c}, {a, b, =c}), and so in this case o(w) =
{a,b,c}.

If A" C A and for SE models w, w’ we have o(w) = A
and o(w’) = A’ then we use w4 to denote the reduction
of w with respect to A" and we use w} 4 to denote the set of
expansions of w’ with respect to .A. This notation extends
to sets of models in the obvious way. As well, we use the
notion of a reduction for logic programs; that is, for A" C A,

Py ={reP|o(r)c A'}.

An Abstract Characterisation of Forgetting

As described, our goal is to define forgetting with respect to
the logical content of a logic program. For example, if we
were to forget b from the program {a «— b., b — c.}, we
would expect the rule a < c to be in the result, since it is
implicit in the original program. Consequently, our primary
definition is the following.

Definition 1 Let P be a disjunctive logic program over
signature A. The result of forgetting A’ in P, denoted
Forget(P, A’), is given by:

Forget(P, A") = Cna(P) N Laa-
3The standard term in model theory is reduct (Chang and

Keisler 2012; Doets 1996; Hodges 1997). However reduct has its
own meaning in ASP, and so we adopt this variation.

40

That is, the result of forgetting a set of atoms A4’ in program
P is simply the set of SE consequences that of P over the
original alphabet, but excluding atoms from A’.

This definition is very simple. This characterization is
abstract, at the knowledge level. As a consequence, many
formal results are very easy to show. On the other hand, the
definition is not immediately practically useful since forget-
ting results in an infinite set of rules. Consequently a key
question is to determine a finite characterisation (that is to
say, a uniform interpolant) of Forget. We explore these is-
sues next.

The following results are elementary, but show that the
definition of forgetting has the “right” properties.

Proposition 1 Ler P and P’ be disjunctive logic program
and let A (possibly primed or subscripted) be alphabets.

1. Pk, Forget(P,A)
2. If P <4 P’ then Forget(P, A) <4 Forget(P', A)
3. Forget(P, A) = Cny (Forget(P, A))
where A" = o(P) \ A
4. Forget(P, A) =
Forget(Forget(P, A\ {a}), {a})
5. Forget(P, A1 U Ap) =
Forget(Forget(P, A1), As))

6. P is a conservative extension of Forget(P, A).

Thus, forgetting results in no consequences not in the origi-
nal theory. As well, the result of forgetting is independent of
syntax and yields a deductively-closed theory (Parts 2 and
3). Part 4 gives an iterative means of determining forgetting
on an element-by-element basis. The next part, which gen-
eralises the previous, shows that forgetting is decomposable
with respect to a signature, which in turn implies that for-
getting is a commutative operation with respect to its second
argument. Last, P is a conservative extension of the result
of forgetting, which is to say, trivially o(P) \ A’ C o(P),
and the consequences of P and Forget(P,.A) coincide over
the language L, (py\ 4’-

With regards to SE models, we obtain the following re-
sults giving an alternative characterisation of forgetting.
Here only we use the notation SE 4(P) to indicate the SE
models of program P over alphabet A.

Proposition 2 Let A’ C A andlet o(P) C A.
1. SE.A\.A’ (Forget(P, A/)) = SE-A(P)KA\A’)
2. SEa(Forget(P,A')) = (SEA(P)ja\a))14

The first part provides a semantic characterisation of for-
getting: the SE models of Forget(P, A’) are exactly the
SE models of P restricted to the signature A \ A’. Very
informally, what this means is that the SE models of
Forget(P, A") can be determined by simply dropping the
symbols in A’ from the SE models of P. The second part,
which is a simple corollary of the first, expresses forgetting
with respect to the original signature.

Of course, one may wish to re-express the effect of for-
getting in the original language of P; in fact, many ap-
proaches to forgetting assume that the underlying language



is unchanged. To this end, we can consider a variant of Def-
inition 1 as follows, where A’ C A.

Forget (P, A') = Cna(Forget(P,A")) )

That is, Forget(P, A’) is re-expressed in the original lan-
guage with signature A. The result is a theory over the orig-
inal language, but where the resulting theory carries no con-
tingent information about the domain of application regard-
ing elements of A’.

The following definition is useful in stating results con-
cerning forgetting.

Definition 2 Signature A is irrelevant to P, IR(P,A), iff
there is P’ such that P <4 P’ and o(P') N A = ().

Zhang and Zhou (2009) give four postulates characteris-
ing their approach to forgetting in the modal logic S5. An
analogous result follows here with respect to forgetting re-
expressed in the original signature:

Proposition 3 Let A’ C A and let o(P),
Then P’ = Forget o(P, A') iff

Pk, P

IfIR(r,A")and P\ r then P' b4 r
IfIR(r, A’) and P t/s r then P' t/s r
IR(P', A")

For the last three parts we have that, if a rule r is independent
of a signature A’, then forgetting A" has no effect on whether
that formula is a consequence of the original knowledge base
or not (Parts 2 and 3). The last part is a “success” postulate:

the result of forgetting .4’ yields a theory expressible without
A

o(P') C A

AL b~

A Finite Characterisation of Forgetting

Aside: Forgetting in Propositional Logic We first take
a quick detour to forgetting in propositional logic to illus-
trate the general approach to finitely characterising forget-
ting. Let ¢ be a formula in propositional logic and let p be
an atom; the standard definition for forgetting p from ¢ in
propositional logic is defined to be ¢[p/ T]V¢[p/L]. Itis not
difficult to show that this is equivalent to Definition 1, but
suitably re-expressed in terms of propositional logic. This
definition however is not particularly convenient. It is appli-
cable only to finite sets of formulas. As well, it results in a
formula whose main connective is a disjunction.

An alternative is given as follows. Assume that a for-
mula (or formulas) for forgetting is expressed in clause form,
where a (disjunctive) clause is expressed as a set of literals.
For forgetting an atom p, consider the set of all clauses ob-
tained by resolving on p:

Definition 3 Let S be a set of propositional clauses and p €
‘P. Define

Res(S,p) = {¢ | I¢1, p2 € S such that
pE ¢1and —p € ¢pa, and

¢ = (o1 \ {p}) U(e2\{-p}H}

We obtain the following, where Forgetpo refers to forget-
ting in propositional logic:

41

Theorem 2 Let S be a set of propositional clauses over sig-
nature P and p € P.

FO’I"getpc(P,p) > S\(ﬂp\{p})URBS(S,p).

This provides an arguably more convenient means of
computing forgetting, in that it is easily implementable, and
one remains with a set of clauses.

Back to Forgetting in Logic Programming: We can use
the same overall strategy for computing forgetting in a dis-
junctive logic program. In particular, for forgetting an atom
a, we can use the inference rules from (Wong 2008) to com-
pute “resolvents” of rules that don’t mention a. It proves to
be the case that the corresponding definition is a bit more
intricate, since it involves various combinations of WGPPE
and S-HYP, but overall the strategy is the same as for propo-
sitional logic.

In the definition below, ResLP corresponds to Res for
forgetting in propositional logic. In propositional logic, Res
was used to compute all resolvents on an atom a. Here the
same thing is done: we consider instances of WGPPE and
S-HYP in place of propositional resolution; these instances
are given by the two parts of the union, respectively, below.

Definition 4 Let P be a disjunctive logic program and a €
A
Define:

ResLP(P,a) =
{r | 3r1,r2 € P such that
Ty = Ay By,a,~C1,
T2 = Agja« By, ~Cs,
r = A1; Ay « By, By, ~Cy,~Cs }
@]
{r|3r1,...,rn, 7" € P suchthata = a;
ri = A;j«— Bj,~a;,~C;, 1<i<n
=A< aq,...a,,~C and
r=A;...; A, —

Bi,...,Bp,~Ci,...,~Chn,~A ~C}

We obtain the following:

Theorem 3 Let P be a disjunctive logic program over A
and a € A. Assume that any rule r € P is satisfiable, non-
tautologous, and contains no redundant occurrences of any
atom.

Then:

Forget(P,a) < P|(.A\{a}) U ResLP(P, a).

Proof Outline: From Definition 1, Forget(P,a) is de-
fined to be the set of those SE consequences of program
P that do not mention a. Thus for disjunctive rule 7,
r € Forget(P,a) means that P 5 r and a ¢ o(r). Thus
the left-to-right direction is immediate: Any 7 € Pj(4\{a})
orr € ResLP(P,a) is a SE consequence of P that does not
mention a.

For the other direction, assume that we have a proof of
r from P, represented as a sequence of rules. If no rule in
the proof mentions a, then we are done. Otherwise, since r



does not mention a, there is a last rule in the proof, call it r,,
that does not mention a, but is obtained from rules that do
mention a. The case where r,, is obtained via Taut, Contra,
or Nonmin is easily handled. If r, is obtained via WGPPE
or S-HYP then there are rules r and r; that mention a (and
perhaps other rules in the case of S-HYP). If 1,1, € P then
rn € ResLP(P,a). If one of 7y, r; is not in P (say, 7%)
then there are several cases, but in each case it can be shown
that the proof can be transformed to another proof where
the index of r in the proof sequence is decreased and the
index of no rule mentioning a is increased. This process
must terminate (since a proof is a finite sequence), where
the premisses of the proof are either rules of P that do not
mention a, elements of ResLP (P, a), or tautologies.
Consider the following case, where 1,, = Ay; Ag; Ag «—
B, By, B3, and we use the notation that each A; is a
set of implicitly-disjoined atoms while each B; is a set of
implicitly-conjoined literals. Assume that r,, is obtained by
an application of WGPPE from r;, = a; Ay; Ay «— By, By
and r; = A3 < a, B3. Assume further that 7, is obtained
fromr; = a;b; Ay < By andr; = Ay < b, By by an appli-
cation of WGPPE. This situation is illustrated in Figure 1a.

a; b;A, < B, A,< b,B, A;< a,B;

N

a;AA, < B, B,

Aj;;AjA; < BB, B,
Figure 1a
Then essentially the steps involving the two applications
of WGPPE can be “swapped”, as illustrated in Figure 1b,
where ry, is replaced by 7}, = a; A1; As «— B, Ba.

a;b;A < B,

N

b;A;;A; < B, B,

N\

Aj;;AA; < B,B,B;

A, < b,B, A,< a,B,

Figure 1b

Thus the step involving a is informally “moved up” in the
proof. There are 12 other cases, involving various combina-
tions of the inference rules, but all proceed the same as in
the above. [J

The theorem is expressed in terms of forgetting a single
atom. Via Proposition 1.4 this readily extends to forgetting a
set of atoms. Moreover, since we inherit the results of Propo-
sitions 1 and 3, we get that the results of forgetting are inde-
pendent of syntax, even though the expression on the right
hand side of Theorem 3 is a set of rules obtained by trans-
forming and selecting rules in P. It can also be observed that
forgetting an atom results in at worst a quadratic blowup in
the size of the program. While this may seem comparatively

42

modest, it implies that forgetting a set of atoms may result
in an exponential blowup.

Example 1 Let P = {p «— ~q. r < p}. Forgetting p
yields {r «— ~q} (where r — ~q is obtained by an appli-
cation of WGPPE), while forgetting q and r yield programs
{r — p} and {p — ~q} respectively.

Computation of Forgetting

By Theorem 3, we have the following algorithm for comput-
ing the result of forgetting. A rule r is a tautology if it is of
the form r = A;b «— b, B,~C; arule r is a contradictory
if it is of the form r = A;c «— B, ~c¢,~C a rule r is min-
imal if there is no rule 7’ in P such that B(r') C B(r),
H(r") C H(r) and one of these two subset relations is
proper; otherwise, r is non-minimal.

Algorithm 1 (Computing a result of forgetting)
Input: Disjunctive program P and literal a in P.
Output: Forget(P, a).

Procedure:

Step 1. Remove tautology rules, contradiction rules and
non-minimal rules from P. The resulting disjunctive pro-
gram is still denoted P.

Step 2. Collect all rules in P that do not contain the atom
a, denoted P’.

Step 3. For each pair of rules ;1 = A; «— Bi,a,~C}
and ro = As;a < Bg,~C5, add the rule 7 = Aq; Ay «—
Blv BQ; NCl; NCQ to P’

Step 4. For eachrule v’ = A < aq,...a,,~C where
for some i, a; = a, and for each set of n rules {r; = A; —
B;,~a;,~C; |1 <i<n},addtheruler = Ay;...; A, «—
Bh...,Bn,Ncl,...,NCn,NA7NCtOP/.

Step 5. Return P’ as Forget(P,a).

Some remarks for the algorithm are in order. Obviously,
Step 1 is to preprocesss the input program by eliminating
tautology rules, contradiction rules and non-minimal rules
from P. Initially, all rules that do not contain a, which are
trivial SE-consequences of P, are included in the result of
forgetting. In many practical applications, such a part of
input program is usually not very large and thus forgetting
can be efficiently done although the input program can be
very large. Step 3 and Step 4 implement two resolution rules
WGPPE and S-HYP, respectively.

Conflict Resolving by Forgetting: Revisited

(Eiter and Wang 2006; 2008) explore how their semantic for-
getting for logic programs can be used to resolve conflicts in
multi-agent systems. However, their notion of forgetting is
based on answer sets and thus does not preserve the syn-
tactic structure of original logic programs, as pointed out in
(Cheng et al. 2006). In this subsection, we demonstrate how
this shortcoming of Eiter and Wang’s forgetting can be over-
come in our SE-forgetting for disjunctive programs.

The basic idea of conflict resolving (Eiter and Wang 2006;
2008) consists of two observations:

1. each answer set corresponds to an agreement among some
agents;



2. conflicts are resolved by forgetting some literals/concepts
for some agents/ontologies.

Definition 5 Let S = (Py, Ps,..., P,), where each logic
program P; represents the preferences/constraints of Agent
i. A compromise of S is a sequence C = (Fy, Fy, ..., F,)
where each F; is a set of atoms to be forgotten from P;. An

agreement of S on C is an answer set of forget(S,C) =
forget( Py, Fy) U forget(Pa, F3) U - - - U forget( Py, F,).

For specific applications, we may need to impose certain
conditions on each F;. However, the two algorithms (Al-
gorithms 1 and 2) in (Cheng et al. 2006) may not produce
intuitive results if directly used in a practical application.
Consider a simple scenario with two agents.

Example 2 (Cheng et al. 2006) Suppose that two agents Al
and A2 try to reach an agreement on submitting a paper to a
conference, as a regular paper or as a system description. If
a paper is prepared as a system description, then the system
may be implemented either in Java or Prolog. The prefer-
ences and constraints are as follows.

1. The same paper cannot be submitted as both a regular
paper and system description.

2. Al would like to submit the paper as a regular one and,
in case the paper is submitted as a system description and
there is no conflict, he would prefer to use Java.

3. A2 would like to submit the paper as a system description
but not prefer regular paper.

Obviously, the preferences of these two agents are jointly in-
consistent and thus it is impossible to satisfy both at the same
time. The scenario can be encoded as a collection of three
disjunctive programs (Py stands for general constraints):
S = (Py, P, P») where R, S, J, P mean “regular paper,”
“system description,” “Java” and “Prolog,” respectively:
PO = {<— R,S},P1 = {R — . J « S,NP},PQ =
{<R. S}

Intuitively, if A1 can make a compromise by forgetting R,
then there will be an agreement {S,J}, that is, a system
description is prepared and Java is used for implementing
the system. However, if we directly use forgetting in conflict
resolution, by forgetting R, we can only obtain an agreement
{S} which does not contain J. In fact, this is caused by the
removal of J < S, ~P in the process of forgetting. This rule
is abundant in P; but becomes relevant when we consider
the interaction of Al with other agents (here A2).

As pointed out in (Cheng et al. 2006), it is necessary
to develop a theory of forgetting for disjunctive programs
such that locally abundant (or locally irrelevant) rules in the
process of forgetting can be preserved. Our SE forgetting
provides an ideal solution to the above problem. This can
be seen from the definition of SE-forgetting and Algorithm
1 (if needed, we don’t have to eliminate non-minimal rules
in Step 1). In fact, Forget(Py, R) = {J «— S,~P}, which
preserves the locally redundant rule J « S, ~P.

Conclusion

In this paper we have addressed forgetting under SE models
in disjunctive logic programs, wherein forgetting amounts

43

to a reduction in the signature of a program. Essentially, the
result of forgetting an atom (or set of atoms) from a pro-
gram is the set of SE consequences of the program that do
not mention that atom or set of atoms. This definition then is
at the knowledge level, that is, it is abstract and is indepen-
dent of how a program is represented. Hence this theory of
forgetting is useful for tasks such as knowledge base com-
parison and reuse. A result of the proposed forgetting under
SE models is also a result of forgetting under answer sets
but not vice versa. Moreover, we have developed an effi-
cient algorithm for computing forgetting in disjunctive logic
programs, which is complete and sound with respect to the
original knowledge-level definition.

A prototype implementation, of forgetting has been
implemented in Java and is available publicly at
http://www.ict.griffith.edu.au/~kewen/
SE-Forget/. While our experiments on the efficiency
of the system are still underway, preliminary results show
that the algorithm is very efficient. Currently we are still
working on improving efficiency of the implementation
and are experimenting on applying it to large practical
logic programs and randomly generated programs. We
plan to apply this notion of forgetting to knowledge base
comparison and reuse. For future work we also plan to
investigate a similar approach to forgetting for other classes
of logic programs.

References

Chitta Baral. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press,
2003.

George Boole. An Investigation of the Laws of Thought.
Walton, London, 1854. (Reprinted by Dover Books, New
York, 1954).

Chen C. Chang and H. Jerome Keisler. Model Theory. Dover
Publications, third edition, 2012.

Fu-Leung Cheng, Thomas Eiter, Nathan Robinson, Abdul
Sattar, and Kewen Wang. LPForget: A system of forget-
ting in answer set programming. In Proceedings of the 19th
Joint Australian Conference on Artificial Intelligence, pages
1101-1105, 2006.

Kees Doets. Basic Model Theory. CSLI Publications, 1996.

Thomas Eiter and Kewen Wang. Forgetting and conflict re-
solving in disjunctive logic programming. In Proceedings
of the Twenty-First National Conference on Artificial Intel-
ligence, pages 238-243. AAAI Press, 2006.

Thomas Eiter and Kewen Wang. Forgetting in answer set
programming. Artificial Intelligence, 172(14):1644-1672,
2008.

Dov M. Gabbay, David Pearce, and Agustin Valverde. In-
terpolable formulas in equilibrium logic and answer set pro-
gramming. J. Artif. Intell. Res. (JAIR), 42:917-943, 2011.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and
Torsten Schaub. Answer Set Solving in Practice. Synthesis
Lectures on Atrtificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2012.



Michael Gelfond and Vladimir Lifschitz. The stable model
semantics for logic programming. In Proceedings of the
Fifth International Conference and Symposium of Logic
Programming (ICLP’88), pages 1070—1080. The MIT Press,
1988.

Wilfrid Hodges. A Shorter Model Theory. Cambridge Uni-
versity Press, Cambridge, UK, 1997.

Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter.
Model-theoretic inseparability and modularity of descrip-
tion logic ontologies. Artificial Intelligence, 203:66—103,
2013.

Roman Kontchakov, Frank Wolter, and Michael Za-
kharyaschev. Can you tell the difference between DL-
Lite ontologies? In Proceedings of the 11th International
Conference on Principles of Knowledge Representation and
Reasoning (KR-08), pages 285-295, 2008.

J. Lang, P. Liberatore, and P. Marquis. Propositional in-
dependence : Formula-variable independence and forget-
ting. Journal of Artificial Intelligence Research, 18:391—
443, 2003.

V. Lifschitz, D. Pearce, and A. Valverde. Strongly equiva-
lent logic programs. ACM Transactions on Computational
Logic, 2(4):526-541, 2001.

F. Lin and R. Reiter. Forget it! In AAAI Fall Symposium on
Relevance, New Orleans, November 1994.

D. Subramanian, R. Greiner, and J. Pearl. Special issue on
relevance. Artificial Intelligence, 97(1-2), 1997.

Hudson Turner. Strong equivalence made easy: Nested ex-
pressions and weight constraints. Theory and Practice of
Logic Programming, 3(4):609-622, 2003.

Kewen Wang, Abdul Sattar, and Kaile Su. A theory of for-
getting in logic programming. In Proceedings of the Tven-
tieth National Conference on Artificial Intelligence (AAAI),
pages 682—-688. AAAI Press, 2005.

Yisong Wang, Yan Zhang, Yi Zhou, and Mingyi Zhang.
Forgetting in logic programs under strong equivalence. In
Proceedings of the Thirteenth International Conference on
the Principles of Knowledge Representation and Reasoning,
2012.

Yisong Wang, Kewen Wang, and Mingyi Zhang. Forget-
ting for answer set programming revisited. In Proceedings,
The 23rd International Joint Conference on Artificial Intel-
ligence (IJCAI), pages 1162—-1168, 2013.

Ka-Shu Wong. Sound and complete inference rules for SE-
consequence. Journal of Artificial Intelligence Research,
31(1):205-216, January 2008.

Y. Zhang and N. Foo. Answer sets for prioritized logic
programs. In Proceedings of the International Symposium
on Logic Programming (ILPS-97), pages 69—-84. MIT Press,
1997.

Yan Zhang and Norman Foo. Solving logic program conflict
through strong and weak forgetting. Artificial Intelligence,
170:739-778, 2006.

Yan Zhang and Yi Zhou. Knowledge forgetting: Properties
and applications. Artificial Intelligence, 173(16-17):1525-
1537, November 2009.

44

Yan Zhang, Norman Y. Foo, and Kewen Wang. Solving
logic program conflict through strong and weak forgettings.
In Proceedings of the International Joint Conference on Ar-

tificial Intelligence, pages 627-634, 2005.



Three Semantics for Modular Systems

Shahab Tasharrofi and Eugenia Ternovska
Simon Fraser University, email: {ter, sta44} @cs.sfu.ca

Abstract

In this paper, we further develop the framework of Modular
Systems that lays model-theoretic foundations for combining
different declarative languages, agents and solvers. We intro-
duce a multi-language logic of modular systems. We define
two novel semantics, a structural operational semantics, and
an inference-based semantics. We prove the new semantics
are equivalent to the original model-theoretic semantics and
describe future research directions.

Introduction

Modular Systems (MS) (Tasharrofi and Ternovska 2011) is
a language-independent formalism representing and solving
complex problems specified declaratively. There are several
motivations for introducing the MS formalism:
o the need to be able to split a large problem into subprob-
lems, and to use the most suitable formalism for each part,
e the need to model distributed combinations of programs,
knowledge bases, languages, agents, etc.,
o the need to model collaborative solving of complex tasks,
such as in satisfiability-based solvers.
The MS formalism gave a unifying view, through a seman-
tic approach, to formal and declarative modelling of modular
systems. In that initial work, individual modules were con-
sidered from both model-theoretic and operational view. Un-
der the model-theoretic view, a module is a set (or class) of
structures, and under the operational view it is an operator,
mapping a subset of the vocabulary to another subset. An ab-
stract algebra on modules was given. It is similar to Codd’s
relational algebra and allows one to combine modules on
abstract model-theoretic level, independently from what lan-
guages are used for describing them. An important operation
in the algebra is the loop (or feedback) operation, since iter-
ation underlies many solving methods. We showed that the
power of the loop operator is such that the combined mod-
ular system can capture all of the complexity class NP even
when each module is deterministic and polytime. Moreover,
in general, adding loops gives a jump in the polynomial time
hierarchy, one step from the highest complexity of the com-
ponents. It is also shown that each module can be viewed as
an operator, and when each module is (anti-) monotone, the
number of the potential solutions can be reduced by using
ideas from the logic programming community.

45

Inspired by practical combined solvers, the authors of
(Tasharrofi, Wu, and Ternovska 2011; 2012) introduced
an algorithm to solve model expansion tasks for modular
systems. The evolution processes of different modules are
jointly considered. The algorithm incrementally constructs
structures for the expanded vocabulary by communicating
with oracles associated with each module, who provide ad-
ditional information in the form of reasons and advice to
navigate the search. It was shown that the algorithm closely
corresponds to what is done in practice in different areas
such as Satisfiability Modulo Theories (SMT), Integer Lin-
ear Programming (ILP), Answer Set Programming (ASP).

Background: Model Expansion In (Mitchell and Ter-
novska 2005), the authors formalize combinatorial search
problems as the task of model expansion (MX), the logi-
cal task of expanding a given (mathematical) structure with
new relations. Formally, the user axiomatizes the problem
in some logic £. This axiomatization relates an instance of
the problem (a finite structure, i.e., a universe together with
some relations and functions), and its solutions (certain ex-
pansions of that structure with new relations or functions).
Logic £ corresponds to a specification/modelling language.
It could be an extension of first-order logic such as FO(ID),
or an ASP language, or a modelling language from the CP
community such as ESSENCE (Frisch et al. 2008). The MX
framework was later extended to infinite structures to for-
malise built-in arithmetic in specification languages (Ter-
novska and Mitchell 2009; Tasharrofi and Ternovska 2010a).

Recall that a vocabulary is a set of non-logical (predicate
and function) symbols. An interpretation for a vocabulary is
provided by a structure, which consists of a set, called the
domain or universe and denoted by dom(.), together with
a collection of relations and (total) functions over the uni-
verse. A structure can be viewed as an assignment to the
elements of the vocabulary. An expansion of a structure A is
a structure B with the same universe, and which has all the
relations and functions of 4, plus some additional relations
or functions.

Formally, the task of model expansion for an arbitrary
logic L is: Given an L-formula ¢ with vocabulary o U ¢
and a structure A for o find an expansion of A, to o U ¢,
that satisfies ¢. Thus, we expand the structure A with rela-
tions and functions to interpret €, obtaining a model B of ¢.



We call o, the vocabulary of A, the instance vocabulary, and
€ := vocab(¢) \ o the expansion vocabulary!. If o = 0,
we talk about model generation, a particular type of model
expansion that is often studied.

Given a specification, we can talk about a set of o U e-
structures which satisfy the specification. Alternatively, we
can simply talk about a given set of o U e-structures as
an MX-task, without mentioning a particular specification
the structures satisfy. These sets of structures will be called
modules later in the paper. This abstract view makes our
study of modularity language-independent.

Example 1 The following logic program ¢ constitutes an
MX specification for Graph 3-colouring:

H{R(z), B(z), G(z)}1 — V(z)
L — R(z), R(y), E(z,y).
L« B(z),B(y), E(z,y)
L= G),Gy), E(z,y)

An instance is a structure for vocabulary o = {E}, i.e., a
graph A = G = (V; E). The task is to find an interpretation
Sor the symbols of the expansion vocabulary e = {R, B, G}
such that the expansion of A with these is a model of ¢:

A
—
(V;E*, R®,B%,G®) = ¢.

B

The interpretations of €, for structures B that satisfy ¢, are
exactly the proper 3-colourings of G.

The model expansion task is very common in declarative
programming, — given an input, we want to generate a so-
lution to a problem specified declaratively. This is usually
done through grounding, i.e., combining instance structure
A to a problem description ¢ thus obtaining a reduction to
a low-level solver language such as SAT, ASP, SMT, etc.
Model Expansion framework was introduced for systematic
study of declarative languages. In particular, it connects KR
with descriptive complexity (Immerman 1982). It focuses on
problems, not on problem instances, it separates instances
from problem descriptions. Using the MX framework, one
can produce expressiveness and capturing results for speci-
fication languages to guarantee:

e universality of a language for a class of problems,
o feasibility of a language by bounding resources needed to
solve problems in that language.

In terms of complexity, MX lies in-between model check-
ing (MC) (a full structure is given) and satisfiability (SAT)
(we are looking for a structure). Model generation (o = ()
has the same complexity as MX. The authors of (Kolokolova
et al. 2010) studied the complexity of the three tasks, MC,
MX and SAT, for several logics. Despite the importance of
MX task in several research areas, the task has not yet been
studied sufficiently, unlike the two related tasks of MC and
SAT.

'By “=” we mean “is by definition” or “denotes”. By
vocab(¢) we understand the vocabulary of ¢.

46

: Office S
Orders ‘ Plan |
0 R ‘
R
————————>|  Workshop
Raw Materials

Figure 1: Modular representation of a factory

General Research Goal: Adding Modularity Given the
importance of combining different languages and solvers to
achieve ease of axiomatization and the best performance,
our goal is to extend the MX framework to combine modules
specified in different languages. The following example il-
lustrates what we are aiming for.

Example 2 (Factory as Model Expansion) In Figure 1, a
part of a simple factory is represented as a modular system.
Both the office and the workshop modules can be viewed as
model expansion tasks. The instance vocabulary of the work-
shop is 0 = {RawMaterials} and expansion vocabulary
e = {R}. The bigger box with dashed borders is an MX task
with instance vocabulary ¢’ = {Orders, RawMaterials}
and expansion vocabulary €' = {Plan} (the “internal” ex-
pansion symbols O and R are hidden from the outside). This
task is a compound MX task whose result depends on the
internal work of the office and the workshop, both of which
can also have an internal structure and be represented as
modular systems themselves.

Contributions of this paper In this paper, we further de-
velop the framework of Modular Systems. In this frame-
work, primitive modules represent individual knowledge
bases, agents, companies, etc. They can be axiomatized in a
logic, be legacy systems, or be represented by a human who
makes decisions. Unlike the previous work, we precisely de-
fine the notion of a well-formed modular system, and clearly
separate the syntax of the algebraic language and the seman-
tics of the algebra of modular systems. The syntax of the al-
gebra uses a few operations, each of them (except feedback)
is a counterpart of an operation in Codd’s relational algebra,
but over sets of structures rather than tables, and with direc-
tionality taken into account. The semantics of both primitive
and compound modules is simply a set (class) of structures
(an MX task). By relying on the semantics of the algebra,
we then introduce its natural counterpart in logic. The logic
for modular systems allows for multiple logics axiomatiz-
ing individual modules in the same formula. We expect that
multi-language formalisms such as ID-logic (Denecker and
Ternovska 2008) will be shown to be particular instances of
this logic, and other combinations of languages will be sim-
ilarly developed.

After giving the model-theoretic semantics of the algebra
of modular systems, we define what it means, for a primitive
module, to act as a non-deterministic operator on states of



the world represented by structures over a large vocabulary.
For each expansion, there is a transition to a new structure
where the interpretation of the expansion changes, and ev-
erything else moves to a new state by inertia. This definition
is new and is more general than the one we introduced in
the previous work. We then define the semantics of the al-
gebraic operators by Plotkin-style structural operational se-
mantics (Plotkin 1981). This definition also new. We then
prove the equivalence of the two semantics, operational and
model-theoretic. To illustrate the power of the projection op-
eration, we show how a deterministic polytime program can
be “converted” to a non-deterministic one that solves an NP-
complete problem. In general, adding projection produces
a jump in the computational complexity of the framework,
similarly to feedback and union.

The authors of (Lierler and Truszczynski 2014) recently
introduced an abstract modular inference systems formal-
ism, and shown how propagations in solvers can be analyzed
using abstract inference rules they introduced. We believe it
is an important work. In this paper, we show how inference
system can be lifted and integrated with our Modular Sys-
tems framework. The advantage of this integrations is that,
with the help of the inference semantics, we can now go into
much greater level of details of propagation processes in our
abstract algorithm for solving modular systems. The infer-
ence semantics is the third semantics of modular systems
mentioned in the title.

The importance of abstract study of modularity We
now would like to discuss the potential implications of ab-
stract study of modularity for KR and declarative program-
ming.

A family of multi-language KR formalisms The Modu-
lar Systems framework gives rise to a whole new family of
KR formalisms by giving the semantics to the combination
of modules. This is can be viewed, for example, as a sig-
nificant extension of answer set programming (ASP). In the
past, combining ASP programs that were created separately
from each other was only possible, under some conditions,
in sequence. Now, we can combine them in a loop, use pro-
jections to hide parts of the vocabularies, etc. The previous
results remain applicable. We expect, for example, that split-
table programs under stable model semantics and stratifiable
programs satisfy our conditions for sequential compositions
of modules. Previously, in ASP, all modules had to be in-
terpreted under one semantics (e.g. stable model semantics).
Now, any model-theoretic semantics of individual modules
is allowed. For example, some of the modules can be ax-
iomatized, say, in first-order logic. That is, in particular, our
proposal amounts to a “modular multi-language ASP”.

Foundations in model theory We believe that classic
model theory is the right abstraction tool and a good com-
mon ground for combining formalisms developed in differ-
ent communities. It is sufficiently general and provides a
rich machinery developed by generations of researchers. The
machinery includes, for example, deep connections between
expressiveness and computational complexity. In addition,
the notion of a structure is important in KR as it abstractly

47

represents our understanding of the world.

We believe that, despite common goals, the interaction be-
tween the CP community and various solver communities
on one hand and the KR community is insufficient, and that
foundations in model theory can make the interaction much
more easy and fruitful.

Analyzing other KR systems Just as in the case of
single-module system where we can use the purely semanti-
cal framework of model expansion, we can use the frame-
work of Modular Systems to analyze multi-language KR
formalisms and to study the expressive power of modular
systems.

The modular framework generalizes naturally to the case
where we need to study languages (logics) with “built-in”
operations. In that case, embedded model expansion has to
be considered, where the embedding is into an infinite struc-
ture interpreting, e.g., built-in arithmetical operations (Ter-
novska and Mitchell 2009; Tasharrofi and Ternovska 2010a).

Operational View Due to structural operational seman-
tics, a new type of behaviour equivalence (bisimulation) can
be defined on complex modules (e.g. represented by ASP
programs). The operational view enables us to obtain re-
sults about our modular systems such as approximability
of a sub-class of modular systems. While this operational
view is novel and we have not developed it very much, we
believe that this view allows one to apply the extensive re-
search on proving properties of transition systems and the
techniques developed in the situation calculus to prove use-
ful facts about transition systems. We can do e.g. verifica-
tion of correct behaviour, static or dynamic, particularly in
the presence of arithmetic. The mathematical abstraction we
proposed allows one to approach solving the problem of syn-
thesis of modular systems abstractly, similarly to (Giacomo,
Patrizi, and Sardifia 2013) Just as a Golog program can be
synthesized from a library of available programs, a modular
system can be synthesized from a library of available solu-
tions to MX tasks.

Related Work Our work on modularity was initially in-
spired by (Jarvisalo et al. 2009) who developed a constraint-
based modularity formalism, where modules were repre-
sented by constraints and combined through operations of
sequential composition and projection. A detailed compar-
ison with that work is given in (Tasharrofi and Ternovska
2011).

The connections with the related formalism of Multi-
Context Systems (MCSs), see (Brewka and Eiter 2007) and
consequent papers, has been formally studied in (Tasharrofi
2013) and (Tasharrofi and Ternovska 2014). We only men-
tion here that while the contexts are very general, and may
have any semantics, not necessarily model-theoretic, the
communication between knowledge bases happens through
rules of a specific kind, that are essentially rules of logic pro-
grams with negation as failure. We, on the other hand, have
chosen to represent communication simply through equal-
ity of vocabulary symbols, and to develop a model-theoretic
algebra of modular systems.

Splitting results in logic programming (ASP) give condi-
tions for separating a program into modules (Turner 1996;



1996). The results rely on a specific semantics, but can be
used for separating programs into modules to represent in
our formalism. The same applies to modularity of induc-
tive definitions (Denecker and Ternovska 2008; Vennekens,
Gilis, and Denecker 2006; Denecker and Ternovska 2004).

The Generate-Define-Test parts of Answer Set Programs,
as discussed in (Denecker et al. 2012), are naturally repre-
sentable as a sequential composition of the corresponding
modules.

A recent work is (Lierler and Truszczynski 2014), where
the authors introduce an abstract approach to modular infer-
ence systems and solvers was already mentioned, and is used
in this paper.

The Algebra of Modular Systems

Each modular system abstractly represents an MX task, i.e.,
a set (or class) of structures over some instance (input) and
expansion (output) vocabulary. Intuitively, a modular system
is described as a set of primitive modules (individual MX
tasks) combined using the operations of:

1. Projection(r, (M)) which restricts the vocabulary of a
module. Intuitively, the projection operator on M defines
a modular system that acts as M internally but where
some vocabulary symbols are hidden from the outside.

2. Composition(M; >> Ms) which connects outputs of M; to
inputs of M. As its name suggests, the composition oper-
ator is intended to take two modular systems and defines
a multi-step operation by serially composing M; and Ms.

3. Union(M; U Ms) which, intuitively, models the case
when we have two alternatives to do a task (that we can
choose from).

4. Feedback(M[R = S]) which connects output S of M
to its inputs R. As the name suggests, the feedback oper-
ator models systems with feedbacks or loops. Intuitively,
feedbacks represent fixpoints (not necessarily minimal) of
modules viewed as operators, since they state that some
outputs must be equal to some inputs.

5. Complementation(M') which does “the opposite” of what
M does.

These operations are similar to the operations of Codd’s re-

lational algebra, but they work on sets of structures instead

of relational tables. Thus, our algebra can be viewed as a

higher-order counterpart of Codd’s algebra, with loops. One

can introduce other operations, e.g. as combinations of the
ones above. The algebra of modular systems is formally de-
fined recursively starting from primitive modules.

Definition 1 (Primitive Module) A primitive module M is
a model expansion task (or, equivalently, a class of struc-
tures) with distinct instance (input) vocabulary o and ex-
pansion (output) vocabulary €.

A primitive module M can be given, for example, by a
decision procedure D, that decides membership in M. It
can also be given by a first- or second-order formula ¢. In
this case, M is all the models of ¢, M = Mod(¢). It could
also be given by an ASP program. In this case, M would be
the stable models of the program, M = Stable M od(¢).

Remark 1 A module M can be given through axiomatizing
it by a formula ¢ in some logic L such that vocab(¢) = o U

48

€q Ue. That is, ¢ may contain auxiliary expansion symbols
that are different from the output symbols € of M. (It may not
even be possible to axiomatize M in that particular logic L
without using any auxiliary symbols). In this case, we take
M = Mod(®)|(sue), the models of ¢ restricted to o U e.

Example 3 For example, formula ¢ of Example 1 describes
the model expansion task for the problem of Graph 3-
colouring. Thus, ¢ can be the representation of a module
M., with instance vocabulary { E} and expansion vocabu-
lary{R,G, B}.

Before recursively defining our algebraic language, we
have to define composable and independent modules
(Jarvisalo et al. 2009):

Definition 2 (Composable, Independent) Modules M,
and My are composable if ey, N ey, = O (no output
interference). Module M, is independent from My if
oum, Nen, = 0 (no cyclic module dependencies).

Independence is needed for the definition of union, both
properties, comparability and independence are needed for
sequential composition, non-empty o is needed for feed-
back.

Definition 3 (Well-Formed Modular Systems (MS(o, ¢)))
The set of all well-formed modular systems MS(c, &) for
a given input, o, and output, €, vocabularies is defined as
follows.

Base Case, Primitive Modules: If M is a primitive module
with instance (input) vocabulary o and expansion (out-
put) vocabulary e, then M € MS(o,¢).

Projection If M € MS(o,¢) and T C o Ueg, then (M) €
MS(ec N7, enT).

Sequential Composition: If M € MS(o,e), M’ €
MS(o’,e’), M is composable (no output interference)
with M', and M is independent from M’ (no cyclic de-
pendencies) then (M > M') € MS(c U (o’ \ g),e U&").

Union: If M € MS(o,¢), M’ € MS(¢’,¢’), M is indepen-
dent from M', and M’ is also independent from M then
(MUM')e MS(cUd’,eUe).

Feedback: If M € MS(o,¢), R€ 0, S € ¢, and Rand S
are symbols of the same type and arity, then MR = S] €
MS(o \ {R}.c U {R})

Complementation: If M € MS(o,¢), then M € MS(o, ¢).
Nothing else is in the set MS(o, €).

Note that the feedback (loop) operator is not defined for the
case o = (). However, composition with a module that se-
lects structures where interpretations of two expansion pred-
icates are equal is always possible. The feedback opera-
tor was introduced because loops are important in informa-
tion propagation, e.g. in all software systems and in solvers
(e.g. ILP, ASP-CP, DPLL(T)-based) (Tasharrofi, Wu, and
Ternovska 2011; 2012). Feedback operation converts an in-
stance predicate to an expansion predicate, and equates it to
another expansion predicate. Feedbacks are, in a sense, fix-
points, not necessarily minimal®. They add expressive power

“Modular systems under supported semantics (Tasharrofi 2013)
allow one to focus on minimal models.



Figure 2: A simple modular system where modules are ax-
iomatized in different languages.

to the algebra of modular systems through introducing addi-
tional non-determinism, which is not achieved by equating
two expansion predicates. We discuss this issue again after
the multi-language logic of modular systems is introduced.
The input-output vocabulary of module M is denoted
vocab(M ). Modules can have “hidden” vocabulary sym-
bols, see Remark 1.

The description of a modular system (as in Definition 3)
gives an algebraic formula representing a system. Subsys-
tems of a modular system M are sub-formulas of the for-
mula that represents M. Clearly, each subsystem of a mod-
ular system is a modular system itself.

Example 4 (Simple Modular System) Consider the fol-
lowing axiomatizations of modules®, each in the correspond-
ing logic L;.

P]\/[1 = {ACWF La<— b}7

Py, :={Lwr : a — c},
]D]u3 = {»CSM . d <+ not a}7
P]\/[4 = {,Cp: b/\/C,E—\d}.

Lwr is the logic of logic programs under the well-founded
semantics, Lgyy is the logic of logic programs under the sta-
ble model semantics, Lp is propositional logic.

The modular system in Figure 2 is represented by the fol-
lowing algebraic specification.

M = m(qpc,ay (M1UM2) > M3)>My)[e = ¢'][b = b')).

Module M’ := ((My U Ma) > Ms) > My) has opp =
{b,c}, eprr = {a, V', ¢, d}. After adding feedbacks, we have

M" = M'[c = |[b = V'], which turns instance symbols
b and c into expansion symbols, so we have oy = () and
emr ={a,b,¢,b', ¢, d}, andin addition, the interpretations

of cand ¢, and b and V' must coincide. Finally, projection

hides ¢’ and V.

3In realistic examples, module axiomatizations are much more
complex and contain multiple rules or axioms.

49

Module M corresponds to the whole modular system de-
noted by the box with dotted borders. Its input-output vocab-
ularies are as follows: oy =0, epr = {a,b,¢,d}, b and ¢
are “hidden” from the outside. They are auxiliary expansion
symbols, see Remark 1.

Modules (My U M) and Ms in this example are com-
posable (no output interference) and independent (no cyclic
dependencies), My and My are independent.

The paper (Tasharrofi and Ternovska 2011) contains a
more applied example, of a business process planner, where
each module represents a business partner.

Multi-Language Logic of Modular Systems It is possi-
ble to introduce a multi-language logic of modular systems,
where formulas of different languages are combined using
conjunctions* (standing for 1), disjunctions (U), existential
second-order quantification (7, ), etc. For example, model
expansion for the following formula

G =W ({Lwr: a—=b}V{Lwr: a—c})
MNMLsy = d—nota} N{Lp: d— nota})
Ab=b Ac={].

with o)y = () and € = {a, b, c,d} and “hidden” (auxilliary,
see Remark 1) vocabulary ¢, = {b’, ¢} corresponds to the
modular system in Figure 2 from Example 4.

Feedback is a meta-logic operation that does not have a
counterpart among logic connectives. Feedback does not ex-
ist for model generation (¢ = ()) and increases the number
of symbols in the expansion vocabulary. In our example, for-
mer instance symbols (b and c in this case) become expan-
sion symbols, and become equal to the outputs &’ and ¢’ thus
forming loops.

Note also that projections (thus quantifiers) over variables
ranging over domain objects can be achieved if such vari-
ables are considered to be a part of the vocabularies of mod-
ules. In this logic, the full version of ID-logic, for exam-
ple, would correspond to the case without feedbacks and
all modules limited to either those axiomatized in first-order
logic or definitions under well-founded semantics. A formal
study of such a multi-language logic in connection with ex-
isting KR formalisms (such as, e.g. ID-logic, combinations
such as ASP and Description logic. etc.) is left as a future
research direction.

Note that if all modules are axiomatized in second-order
logic, our task is just model expansion for classic second-
order logic that is naturally expressible by adding existential
second-order quantifiers at the front. If there are multiple
languages, we can talk about the complexity of model ex-
pansion for the combined formula (or modular system) as a
function of the expressiveness of the individual languages,
which is a study of practical importance.

Model-Theoretic Semantics
So far, we introduced the syntax of the algebraic language
using the notion of a well-formed modular system. Those

*It will be clear from the semantics that the operation > is com-
mutative.



are primitive modules (that are sets of structures) or are con-
structed inductively by the algebraic operations of composi-
tion, union, projection, loop. Model-theoretic semantics as-
sociates, with each modular system, a set of structures. Each
such structure is called a model of that modular system. Let
us assume that the domains of all modules are included in a
(potentially infinite) universal domain U'.

Definition 4 (Models of a Modular System) Let M €
MS(o, €) be a modular system and B be a (o U €)-structure.
We construct the set M™' = Mod(M) of models of module
M under model-theoretic semantics recursively, by struc-
tural induction on the structure of a module.

Base Case, Primitive Module: B is a model of M if B €
M.

Projection: B is a model of M := m(,.)(M') (with M' €
MS(o’,€")) if a (¢/ U €')-structure B’ exists such that B’
is a model of M' and B' expands B.

Composition: B is a model of M := My > My (with
M, € MS(O’l,El) and M> € MS(02,52)) ifB|(UlU51)
is a model of My and B\(02U62) is a model of M.

Union: B is a model of M := My U My (with M, €
MS(c1,e1) and My € MS(02,¢€2)) if either B|(y,ue,) is
a model of M1, or B|(02uE2) is a model of Mo.

Feedback: B is a model of M := M'|R = S] (with M’ €
MS(o’,€")) if RB = S® and B is model of M.

Complementation: B is a model of M := M’ (with
M, M’ € MS(o,¢)) if and B is not a model of M'. That
is, M' denotes the complement of M in the set of all pos-
sible o U e-structures over the universal domain U.

Nothing else is a model of M.

Note that, by this semantics, sequential composition is
a commutative operation (we could have used X nota-
tion), however the direction of information propagation is
uniquely given by the separations of the input and output
vocabularies. Notice that it’s not possible to compose two
modules in two different ways. If it was possible, then in
the compound module we would had that the intersection of
the input and the output vocabularies would not be empty,
and this is not allowed. So, we prefer to use > instead of
x for both historic and mnemonic reasons, and encourage
the reader to write algebraic formulas in a way that corre-
sponds to their visualizations of the corresponding modular
systems.

An example illustrating the semantics of the feedback op-
erator, as well as non-determinism introduced by this opera-
tor is given in the appendix.

The task of model expansion for modular system M takes
a o-structure .4 and finds (or reports that none exists) a (o U
¢)-structure B that expands A and is a model of M. Such a
structure 15 is a solution of M for input A.

Remark 2 The semantics does not put any finiteness re-
striction on the domains of structures. Thus, the framework
works for modules with infinite structures.

Structural Operational Semantics

In this section, we introduce a novel Structural Operational
Semantics of modular systems.

50

We now focus on potentially infinite all-inclusive vocab-
ulary 7 that subsumes the vocabularies of all modules con-
sidered. Thus, we always have vocab(M) C 7.

Definition S (State of a Modular Systems) A 7-state of a
modular system M € MS(o,¢) is a T-structure such that
(cUe) C .

The semantics we give is structural because, for example,
the meaning of the sequential composition, M; > My, is
defined through the meaning of M; and the meaning of M.

Definition 6 (Modules as Operators) We say that a well-
formed modular system M (non-deterministically) maps 7-
state By to T-state Ba, notation (M, B,) — Ba, if we can
apply the rules of the structural operational semantics (be-
low) starting from this expression and arriving to true. In
that case, we say that transition (M,B,) — Bs is deriv-
able. Primitive modules )/ :

(Ma 51) — By .
T e lfBQ|(aUE) € M and Bg|(7.\a) = Bl|(7—\e)-
We proceed by induction on the structure of modular system
M. Projection 7, (M):
(TI-IJ(M)7 Bl) — BQ
(M, By) — Bj
Composition M > Ms:
(My > My, By) — Bo
(My,B1) — B and (M3, B') — By’
Union M; U Ms:

(My UMy, By) — Bs

lfB/1|V = Bl|,, and BIQ|V = Bgly.

(My UMy, By) — B

(My,B1) — Bz’ (M, B1) — B>
Feedback M[R = S]:
(M[R=S],B1) — By 5, _ o
, if Rt = 572,
arB) —B !
Complementation ) :
M
UL.B) — B, if (M, B1) — Bs is not derivable.
true

Nothing else is derivable.

Let us clarify the projection operation 7, (M). Let
vocab(M) = o' Ue',letv = o Ue, 0 C o', e C &'. Mod-
ule 7, (M), viewed as an operator, is applied to 7-structure
B1. It (a) expands o-part of By to ¢’ by an arbitrary inter-
pretation over the same domain, and then (b) applies M to
the modified input, (c) projects the result of application of
M onto €, ignoring everything else, (d) the interpretations
of 7\ € are moved from B; by inertia.

Definition 7 (Operational Semantics) Let M be a well-
Sformed modular system in MS(o,€). The semantics of M
is given by the following set.

MP°P = {B‘ (Bl,M) I BQ ai’ldBlg = Bllg, B‘E = BQ|5}.

Figure 3 illustrates this definition.



B,

Figure 3: An illustration of Definition 7. Module M €
MS(o,€) maps a 7T-structure B; (with (c Ue) C 7) to a
T-structure Bo by changing the interpretation ¢ according to
M (so that the o part and the new ¢ part, together, form a
model of M). Interpretation of all other symbols, including
those in o, stays the same. This is similar to how frame ax-
ioms keep fluents that are not affected by actions unchanged
in the situation calculus.

Corollary 1 Every result of application of M is its fixpoint.
That is, for any T-states BBy, Ba, if (M,B1) — B, then
(M, BQ) — BQ.

Proof: By Definition 7, because of inertia, the interpretation
of o is transferred from 3; to B5. Since the interpretation of
¢ is already changed by M, nothing is to be changed, and
(M s BQ) — Bs. 1

Theorem 1 (Operational = Model-theoretic Semantics)
Let M be a well-formed modular system in MS(o, ). Then,
its model-theoretic and operational semantics coincide,

M™ = MOP.

The most important consequence of this theorem is that all
the results obtained when modules are viewed as operators,
still hold when modules are viewed as sets of structures (and
vice versa). Thus, we may use either of these semantics.
From now on, by M we mean either one of these sets M™*
or M°P.
Proof: We prove the statement inductively.
Base case, primitive module By definition, model-
theoretically, B is a model of M if B € M. On the other
hand, operationaly,
MP°P .= {B| (Bl,M) — Bg and B|U = Bl|g7 B|€ = 82‘5},
where
(M ) B 1) — BQ
true

Thus, B € M, and the two semantics coincide for primitive
modules.
Our inductive hypothesis is that the statement of the theorem
holds for My, My and M'. We proceed inductively.
Projection M := 7,(M’). By the hypothesis, (M')™ =
(M")°P, where (M')°P is constructed “from pieces”,
(M")or = {B'| (B}, M') — By and Bly = B} ,, Bl =
B4 }. We apply the rule

(WV(MIL Bl) — 62 .

(M/’Bi)_>Bé lfBHy:Bl|VandB/2|V:BQ|V

if BQ|(0UE) € M and 62|(7—\E) = Bl|(‘r\e)~

51

and obtain that (r, (M), By) — By where B and B, are
just like B} and B} on the vocabulary v. Now, M := 7, (M)
is constructed “from ¢ and ¢ pieces” of By and Bs, respec-
tively (where v = o U ¢):

M°P = {B‘ (Bl,M) — BQ andB|[, = Bl‘oa B|€ = BQ|€},

On the other hand, model-theoretically, B is a model of
M := mouey(M') (with M" € MS(o’,¢)) if a (o' U g’)-
structure B’ exists such that B’ is a model of M’ and B’
expands 3, which makes the two semantics equal for pro-
jection, (M)™ = (M)°P.

We omit the proofs for the other inductive cases. B

Applications of Operational View We now discuss how
the operational semantics can be used. For example, we can
consider modular systems at various levels of granularity.
We might be interested in the following question: if M gives
a transition from a structure B to structures ', then what
are the transitions given by the subsystems of M ? While an-
swering this question in its full generality is algorithmically
impossible, we may study the question of whether a partic-
ular transition by a subsystem exists. To answer it, one has
to start from the system and build down to the subsystem
using the rules of the structural operation semantics. Rea-
soning about subsystems of a modular system can be useful
in business process modelling. Suppose a particular transi-
tion should hold for the entire process. This might be the
global task of an organization. In order to make that transi-
tion, the subsystems have to perform their own transitions.
Those transitions are derivable using the rules of structural
operational semantics.

Complexity In the following proposition, we assume a
standard encoding of structures as binary strings ) as is com-
mon in Descriptive complexity (Immerman 1982). Note that
if M is deterministic, it is polytime in the size of the en-
coding of the input structure. This is because the domain
remains the same, the arities of the relations in ¢ are fixed,
so we need (n*) steps to construct new interpretations of ¢,
and move the remaining relations.

Proposition 1 Let M be a module that performs a (de-
terministic) polytime computation. Projection m,(M) in-
creases the complexity of M from P to NP. More generally,
for an operator M on the k-th level of the Polynomial Time
hierarchy (PH), projection can increase the complexity of M
from A to 3.

Proof: We will show the property for the jump from P to NP,
for illustration. The proof generalizes to all levels of PH. Let
M takes an instance of an NP-complete problem, such as a
graph in 3-Colourability, encoded in o, and what it means
to be 3-Colourable, as a formula encoded in the interpreta-
tion of o4, and returns an instance of SAT encoded in €, a
CNF formula that is satisfiable if and only if the graph is 3-
Colourable, and a yes/no answer bit represented by € g swer-
Thus, M performs a deterministic (thus, polytime) reduc-
tion. Consider 7, (M), where v = 0 U €answer- This mod-
ule takes a graph and returns a yes or no answer depending
on whether the graph is 3-colourable. Thus, 7, (M) solves
an NP-complete problem. B

Union and feedback change the complexity as well.



Inference Semantics of Modular Systems

In modular systems, each agent or a knowledge base can
have its own way of reasoning, that can be formulated
through inferences or propagations. To define inferential se-
mantics for modular systems, we closely follow (Lierler and
Truszczynski 2014). Since input/output is not considered by
the authors, their case corresponds to the instance vocabu-
lary being empty, o = (), i.e., model generation, and can
be viewed as an analysis of the after-grounding faze. Since
we want to separate problem descriptions and their instances
(and reuse problem descriptions), as well as to define ad-
ditional algebraic operations (the authors consider conjunc-
tions only), we need to allow o # (}, and present inferences
on partial structures. This is not hard however.

We start by assuming that there is a constant for every el-
ement of the domains. We view structures as sets of ground
atoms. We now closely follow and generalize the definitions
of (Lierler and Truszczynski 2014) from sets of proposi-
tional atoms to first-order structures, to establish a connec-
tion to the Modular Systems framework presented above.
The propositional case then corresponds to structures over
the domain {( )} containing the empty tuple that interprets
propositional symbols that are true.

Let a fixed countably infinite set of ground atoms 7 be
given. We use Lit(7) to denote the set of all literals over 7.
For S C Lit(7):

St:=7rnS

ST :={a€T]|-acS} -

[ € Lit(7) is unassigned in Sif | ¢ M and [ & S

S is consistent if ST NS~ # 0

Let C'(7) be all consistent subsets of Lit(7).

Definition 8 (Abstract Inference Representation of 1/)
An abstract inference representation M* of module M over
a vocabulary T is a finite set of pairs of the form (S,1),
where S € C(7), 1 € Lit(r), and | ¢ Lit(T). Such pairs
are called inferences of the module M.

In the exposition below, we view structures as sets of
propositional atoms, B C 7.

S is consistent with B C 7if ST C Band S— N B = (.
Literal [ is consistent with B C 7 if {l} is consistent with B.

Definition 9 (Primitive Module, Inferential Semantics)
A primitive module M € MS(o,¢) is a set of (o U ¢g)-
structures B such that for every inference (S,1) € M* such
as S is consistent with B, | is consistent with B, too.

Thus, primitive modules, even when they are represented
through abstract inferences, are sets of structures as before,
and the definitions of the algebraic operations do not need to
be changed.

The inference framework can be viewed as yet another
(very useful) way of representing modules. Since the infer-
ence framework is abstract, we cannot prove a correspon-
dence between a given individual module presented as a set
of structures or as an operator on one hand and as an inferen-
tial representation on the other in general, without specifying
what inference mechanism is used. However, we can do it
for particular cases such as Ent(T) (Lierler and Truszczyn-
ski 2014), which is left for a future paper.

52

With the inference semantics as described, we can now
model problems (sets of instances) rather than single in-
stances as a combination of other problems. This semantics
allows one to study the details of propagation of information
in the process of constructing solutions to modular systems,
through incremental construction of partial structures as in
(Tasharrofi, Wu, and Ternovska 2011; 2012), but in more
detail. This direction is left for future research.

Conclusion and Future Directions

We described a modular system framework, where primitive
and compound modules are sets (classes) of structures, and
combinations of modules are achieved by applying algebraic
operations that are a higher-order counterpart of Codd’s re-
lational algebra operations. An additional operation is the
feedback operator that connects output symbols with the in-
put ones and is used to model information propagation such
as loops of software systems and solvers.

We defined two novel semantics of modular systems, op-
erational and inferential, that are equivalent to the original
model-theoretic semantics (Tasharrofi and Ternovska 2011).
We presented a multi-language logic, a syntactic counterpart
of the algebra of modular systems. Minimal models of mod-
ular systems are introduced in a separate paper on supported
modular systems, see also (Tasharrofi 2013).

The framework of modular systems gives us, through its
semantic-based approach, a unifying perspective on multi-
language formalisms and solvers. More importantly, it gives
rise to a whole new family of multi-language KR for-
malisms, where new formalisms can be obtained by instan-
tiating specific logics defining individual modules.

The framework can be used for analysis of existing KR
languages. In particular, expressiveness and complexity re-
sults for combined formalisms can be obtained in a way
similar to the previous work (Mitchell and Ternovska 2008;
Tasharrofi and Ternovska 2010b; 2010a) where single-
module embedded model expansion was used.

References

Brewka, G., and Eiter, T. 2007. Equilibria in heteroge-
neous nonmonotonic multi-context systems. In Proceedings
of the 22nd National Conference on Artificial Intelligence
(AAAI’07) - Volume 1, 385-390. AAAI Press.

Denecker, M., and Ternovska, E. 2004. Inductive situation
calculus. In Proc., KR-04.

Denecker, M., and Ternovska, E. 2008. A logic of non-
monotone inductive definitions. ACM transactions on com-
putational logic (TOCL) 9(2):1-51.

Denecker, M.; Lierler, Y.; Truszczynski, M.; and Vennekens,
J. 2012. A tarskian informal semantics for answer set
programming. In Dovier, A., and Costa, V. S., eds., ICLP
(Technical Communications), volume 17 of LIPIcs, 277-
289. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.
Frisch, A. M.; Harvey, W.; Jefferson, C.; Martinez-
Hernandez, B.; and Miguel, I. 2008. Essence: A constraint

language for specifying combinatorial problems. Con-
straints 13:268-306.



Giacomo, G. D.; Patrizi, F.; and Sardifia, S. 2013. Automatic
behavior composition synthesis. Artif. Intell. 196:106—142.

Immerman, N. 1982. Relational queries computable in poly-
nomial time. In STOC ’82: Proceedings of the 14th Annual
ACM Symposium on Theory of Computing, 147-152.

Jarvisalo, M.; Oikarinen, E.; Janhunen, T.; and Niemeli, 1.
2009. A module-based framework for multi-language con-
straint modeling. In Proceedings of the 10th International
Conference on Logic Programming and Non-monotonic
Reasoning (LPNMR’09), volume 5753 of Lecture Notes in
Computer Science (LNCS), 155-168. Springer-Verlag.

Kolokolova, A.; Liu, Y.; Mitchell, D.; and Ternovska, E.
2010. On the complexity of model expansion. In Proc.,
17th Int’l Conf. on Logic for Programming, Artificial Intelli-
gence and Reasoning (LPAR-17), 447-458. Springer. LNCS
6397.

Lierler, Y., and Truszczynski, M. 2014. Abstract modular
inference systems and solvers. In Proceedings of the 16th
International Symposium on Practical Aspects of Declara-
tive Languages (PADL’14).

Mitchell, D. G., and Ternovska, E. 2005. A framework
for representing and solving NP search problems. In Proc.
AAAI, 430-435.

Mitchell, D. G., and Ternovska, E. 2008. Expressiveness
and abstraction in ESSENCE. Constraints 13(2):343-384.

Plotkin, G. 1981. A structural approach to operational se-
mantics. Technical Report DAIMI FN-19, Computer Sci-
ence Department, Aarhus University. Also published in:
Journal of Logic and Algebraic Programming, 60-61:17-
140, 2004.

Tasharrofi, S., and Ternovska, E. 2010a. PBINT, a logic
for modelling search problems involving arithmetic. In Pro-
ceedings of the 17th Conference on Logic for Programming,
Artificial Intelligence and Reasoning (LPAR’17). Springer.
LNCS 6397.

Tasharrofi, S., and Ternovska, E. 2010b. Built-in arithmetic
in knowledge representation languages. In NonMon at 30
(Thirty Years of Nonmonotonic Reasoning).

Tasharrofi, S., and Ternovska, E. 2011. A semantic account
for modularity in multi-language modelling of search prob-
lems. In Proceedings of the 8th International Symposium on
Frontiers of Combining Systems (FroCoS), 259-274.

Tasharrofi, S., and Ternovska, E. 2014. Generalized multi-
context systems. In Proceedings of the 14th International
Conference on Principles of Knowledge Representation and
Reasoning (KR2014).

Tasharrofi, S.; Wu, X. N.; and Ternovska, E. 2011. Solving
modular model expansion tasks. In Proceedings of the 25th
International Workshop on Logic Programming (WLP’11),
volume abs/1109.0583. Computing Research Repository
(CoRR).

Tasharrofi, S.; Wu, X. N.; and Ternovska, E. 2012. Solving
modular model expansion: Case studies. In Postproceed-

ings of the 19th International Conference on Applications
of Declarative Programming and Knowledge Management

53

and 25th Workshop on Logic Programming, 175-187. Lec-
ture Notes in Artificial Intelligence (LNAI).

Tasharrofi, S. 2013. Solving Model Expansion Tasks: System
Design and Modularity. Ph.D. Dissertation, Simon Fraser
University, Burnaby, BC, Canada.

Ternovska, E., and Mitchell, D. G. 2009. Declarative pro-
gramming of search problems with built-in arithmetic. In
Proc. of IJCAI, 942-947.

Turner, H. 1996. Splitting a default theory. In Proceed-
ings of the 13th National Conference on Artificial intelli-
gence (AAAI’'96) - Volume 1, 645-651. AAAI Press.

Vennekens, J.; Gilis, D.; and Denecker, M. 2006. Splitting
an operator: Algebraic modularity results for logics with fix-
point semantics. ACM Transactions on Computational Logic
7(4):765-797.

Appendix

Example 5 We illustrate models of a simple modular system
with feedback operator. Consider the following axiomatiza-
tion Py, of a primitive module My, where oy, = {i} and
EMy = {a, b}

Pas, = {£SM3 a «— i,not b, }

b« i,not a.

We will demonstrate how the set of models of this program
changes when we use the feedback operator. When the in-
put i is true (given by the corresponding instance structure),
then

StableMod(Pyy,, i = true) = {{a}, {b}}.
When i is false, there is one model, where everything is false,
StableMod(Pyy,, t = false) = {0}.

Module M, is the set of structures for the entire o p, U €,
vocabulary. Since we are dealing with a propositional case,
each structure is represented by a set of atoms that are true
in that structure.

My = {{Zv a}7 {i7 b}7 @}

Now consider a different module, My, with oy, = {i,a,b}
and ey, = {d’,b'}, axiomatized by

Puty = {ESM "W — i, nota.

This modular system is deterministic, — for each input
(each of the eight possible interpretations of i, a and b), there
is at most one model.

a' «— i,not b, }

Models of M1
{0}
{0}
{0}
{0}

iV}
Miad))
{{i.5.57})
{{i,a,b}}

| = = = = H -
=~ H A H =
A= | = = A H | =




a' «—i,not b,
b —i,not a.

Figure 5: Module M.

Thus, we have:
My ={0,{i,d’,b'}, {i,a,a'}, {i,b, 0}, {i,a,b}}.

If we add feedback, we obtain the following system Moy =
Mi[a = o'][b = V). Its input is i, all other symbols are in
the expansion vocabulary. The models are:

Models of M,
{0}
{0}

{{i,a,d’}}
{{i.b.0'}}

|~

My = Mifa =d|[b="0b]={0,{i,a,a'},{i,b,0'}}.

As we see here, after adding feedback, for the same input
i, we obtain two different models. Thus, by means of feed-
back, a deterministic system M, was turned into a non-
deterministic system Ms.

This modular system is deterministic, — for each input
(each of the eight possible interpretations of i, a and b), there
is at most one model. Notice also that

W{i,a,b}(Ml [a = a’][b = b/]) = M.

54



Generalizing Modular Logic Programs *

Joao Moura and Carlos Viegas Damasio
CENTRIA - Centre for Artificial Intelligence
Universidade Nova de Lisboa, Portugal

Abstract

Even though modularity has been studied extensively in
conventional logic programming, there are few approaches
on how to incorporate modularity into Answer Set Pro-
gramming, a prominent rule-based declarative program-
ming paradigm. A major approach is Oikarinnen and Jan-
hunen’s Gaifman-Shapiro-style architecture of program mod-
ules, which provides the composition of program modules.
Their module theorem properly strengthens Lifschitz and
Turner’s splitting set theorem for normal logic programs.
However, this approach is limited by module conditions that
are imposed in order to ensure the compatibility of their mod-
ule system with the stable model semantics, namely forcing
output signatures of composing modules to be disjoint and
disallowing positive cyclic dependencies between different
modules. These conditions turn out to be too restrictive in
practice and in this paper we discuss alternative ways of lift
both restrictions independently, effectively solving the first,
widening the applicability of this framework and the scope of
the module theorem.

1 Introduction

Over the last few years, answer set programming (ASP)
(Eiter et al. 2001; Baral 2003; Lifschitz 2002; Marek and
Truszczynski 1999; Niemeld 1998) emerged as one of the
most important methods for declarative knowledge repre-
sentation and reasoning. Despite its declarative nature, de-
veloping ASP programs resembles conventional program-
ming: one often writes a series of gradually improving pro-
grams for solving a particular problem, e.g., optimizing
execution time and space. Until recently, ASP programs
were considered as integral entities, which becomes prob-
lematic as programs become more complex, and their in-
stances grow. Even though modularity is extensively stud-
ied in logic programming, there are only a few approaches
on how to incorporate it into ASP (Gaifman and Shapiro
1989; Oikarinen and Janhunen 2008; Dao-Tran et al. 2009;
Babb and Lee 2012) or other module-based constraint mod-

*The work of Jodo Moura was supported by grant
SFRH/BD/69006/2010 from Fundacdo para a Ciéncia e Tec-
nologia (FCT) from the Portuguese Ministério do Ensino e da
Ciéncia. Research also supported by FCT funded project ERRO:
Efficient reasoning with rules and ontologies (ref. PTDC/EIA-
CCO/121823/2010).

55

eling frameworks (Jarvisalo et al. 2009; Tasharrofi and Ter-
novska 2011). The research on modular systems of logic
program has followed two main-streams (Bugliesi, Lamma,
and Mello 1994). One is programming in-the-large where
compositional operators are defined in order to combine
different modules, e.g., (Mancarella and Pedreschi 1988;
Gaifman and Shapiro 1989; O’Keefe 1985). These operators
allow combining programs algebraically, which does not re-
quire an extension of the theory of logic programs. The other
direction is programming-in-the-small, e.g., (Giordano and
Martelli 1994; Miller 1986), aiming at enhancing logic pro-
gramming with scoping and abstraction mechanisms avail-
able in other programming paradigms. This approach re-
quires the introduction of new logical connectives in an ex-
tended logical language. The two mainstreams are thus quite
divergent.

The approach of (Oikarinen and Janhunen 2008) defines
modules as structures specified by a program (knowledge
rules) and by an interface defined by input and output atoms
which for a single module are, naturally, disjoint. The au-
thors also provide a module theorem capturing the compo-
sitionality of their module composition operator. However,
two conditions are imposed: there cannot be positive cyclic
dependencies between modules and there cannot be com-
mon output atoms in the modules being combined. Both in-
troduce serious limitations, particularly in applications re-
quiring integration of knowledge from different sources. The
techniques used in (Dao-Tran et al. 2009) for handling pos-
itive cycles among modules are shown not to be adaptable
for the setting of (Oikarinen and Janhunen 2008).

In this paper we discuss two alternative solutions to the
common outputs problem, generalizing the module theorem
by allowing common output atoms in the interfaces of the
modules being composed. A use case for this requirement
can be found in the following example.

Example 1 Alice wants to buy a car, wanting it to be safe
and not expensive; she preselected 3 cars, namely c1, co and
cs. Her friend Bob says that car c is expensive, while Char-
lie says that car c3 is expensive. Meanwhile, she consulted
two car magazines reviewing all three cars. The first consid-
ered c; safe and the second considered c; to be safe while
saying that cs may be safe. Alice is very picky regarding
safety, and so she seeks some kind of agreement between the
reviews.



The described situation can be captured with five mod-
ules, one for Alice, other three for her friends, and another
for each magazine. Alice should conclude that cy is safe
since both magazines agree on this. Therefore, one would
expect Alice to opt for car c; since it is not expensive, and it
is reviewed as being safe. However, the current state-of-the-
art does not provide any way of combining these modules
since they share common output atoms. |

In summary, the fundamental results of (Oikarinen and
Janhunen 2008) require a syntactic operation to combine
modules — basically corresponding to the union of programs
—, and a compositional semantic operation joining the mod-
els of the modules. The module theorem states that the mod-
els of the combined modules can be obtained by applying
the semantics of the natural join operation to the original
models of the modules — which is compositional.

The authors show however that allowing common outputs
destroys this property. There are two alternatives to pursue:

(1) Keep the syntactic operation: use the union of pro-
grams to syntactically combine modules, plus some book-
keeping of the interface, and thus the semantic operation on
models has to be changed;

(2) Keep the semantic operation: the semantic operation
is the natural join of models, and thus a new syntactic oper-
ation is required to guarantee compositionality.

Both will be explored in this paper as they correspond to
different and sensible ways of combining two sources of in-
formation, already identified in Example 1: the first alterna-
tive is necessary for Alice to determine if a car is expensive;
the second alternative captures the way Alice determines
whether a car is safe or not. Keeping the syntactic opera-
tion is shown to be impossible since models do not convey
enough information to obtain compositionality. We present a
solution to this problem based on a transformation that intro-
duces the required extra information. The second solution is
possible, and builds on the previous module transformation.

This paper proceeds in Section 2 with an overview of the
modular logic programming paradigm, identifying some of
its shortcomings. In Section 3 we discuss alternative meth-
ods for lifting the restriction that disallows positive cyclic
dependencies, and in Section 4 introduce two new forms of
composing modules allowing common outputs, one keeping
the original syntactic union operator and the other keeping
the original semantic model join operator. We finish with
conclusions and a general discussion.

2 Modularity in Answer Set Programming

Modular aspects of Answer Set Programming have been
clarified in recent years, with authors describing how
and when two program parts (modules) can be com-
posed (Oikarinen and Janhunen 2008; Dao-Tran et al. 2009;
Jarvisalo et al. 2009) under the stable model semantics. In
this paper, we will make use of Oikarinen and Janhunen’s
logic program modules defined in analogy to (Gaifman and
Shapiro 1989) which we review after presenting the syntax
of answer set programs.

56

2.1 Answer set programming paradigm

Logic programs in the answer set programming paradigm
are formed by finite sets of rules r having the following syn-
tax:

Ll — L27 <. 'aLm,7n0t L7n+1a <.

(1)
(n > m > 0) where each L; is a logical atom without the
occurrence of function symbols — arguments are either vari-
ables or constants of the logical alphabet.

Considering a rule of the form (1), let Headp(r) = L,
be the literal in the head, Body}(r) = {La,..., Ly} be
the set with all positive literals in the body, Bodyp(r) =
{Lm+1,--.,Ln} be the set containing all negative literals
in the body, and Bodyp(r) = {La, ..., L, } be the set con-
taining all literals in the body. If a program is positive we
will omit the superscript in Body};(r). Also, if the context
is clear we will omit the subscript mentioning the program
and write simply Head(r) and Body(r) as well as the argu-
ment mentioning the rule.

The semantics of stable models is defined via the reduct
operation (Gelfond and Lifschitz 1988). Given an interpreta-
tion M (a set of ground atoms), the reduct P of a program
P with respect to M is the program

{Head(r) « Body™(r) | r € P,Body™ (r)N M = (}.

The interpretation M is a stable model of P iff M =
L]\jg (PM), where LM (PM) is the least model of program
P

The syntax of logic programs has been extended
with other constructs, namely weighted and choice
rules (Niemeld 1998). In particular, choice rules have the
following form, for (n > 1):

{Al,...,An}<—Bl,...Bk7n0tCl,...7n0tCm. (2)

As observed by (Oikarinen and Janhunen 2008), the
heads of choice rules possessing multiple atoms can
be freely split without affecting their semantics. When
splitting such rules into n different rules {a;}
Bi,...Bg,not Cq,...,not C,, where 1 < i < n, the
only concern is the creation of n copies of the rule body
By,...Byg,not Cq,...,not C,,. However, new atoms can
be introduced to circumvent this. There is a translation of
these choice rules to normal logic programs (Ferraris and
Lifschitz 2005), which we assume is performed throughout
this paper but that is omitted for readability. We deal only
with ground programs and use variables as syntactic place-
holders.

.,not L.

«—

2.2 Modular Logic Programming

Modules, in the sense of (Oikarinen and Janhunen 2008), are
essentially sets of rules with an input and output interface:
Definition 1 (Program Module) A logic program module
Pisatuple (R, 1,0, H) where:

1. R is a finite set of rules;

2. 1, O, and H are pairwise disjoint sets of input, output,
and hidden atoms;

3. At(R) C At(P) defined by At(P) =I1UOU H; and



4. Head(R)NI = 1.

The set of atoms in At,(P) = I U O are considered to
be visible and hence accessible to other modules composed
with P either to produce input for P or to make use of the
output of P. We use At;(P) = I and At,(P) = O to repre-
sent the input and output signatures of P, respectively. The
hidden atoms in Aty (P) = At(P)\At,(P) = H are used
to formalize some auxiliary concepts of P which may not
be sensible for other modules but may save space substan-
tially. The condition head(R) ¢ I ensures that a module
may not interfere with its own input by defining input atoms
of I in terms of its rules. Thus, input atoms are only allowed
to appear as conditions in rule bodies.

Example 2 The use case in Example 1 is encoded into the
five modules shown here:

Pa= < A{buy(X) <« car(X), safe(X),not exp(X).
car(cy). car(ce). car(cs).},
{safe(cr), safe(cr), safe(cs)
exp(cy), exp(ca), exp(cs)},

buy(cZ) buy(cs)},

a }(>02) ,ear(cg)} >

{exp(cz), exp(cs)}, {} >

w—/w—/q

exp(cz), exp(cs)}, {} >
1)'}) {}7
1), safe(cz), safe(cs)}, {} >
< {safe(X) « car(X),azrbag_(X).
cqr(cl). car(ca). car(cs). airbag(cy).
{airbag(cs)}. }.
{}7.{80‘](6(01)7 jsafe(CQ% sqfe(c;g)},
{airbag(cy1), airbag(ca), airbag(cs),
car(cy), car(cz), car(cs)} >

In Example 2, module P4 encodes the rule used by Alice
to decide if a car should be bought. The safe and expensive
atoms are its inputs, and the buy atoms its outputs; it uses
hidden atoms car/1 to represent the domain of variables.
Modules P, Pc and Pp,q, capture the factual information
in Example 1. They have no input and no hidden atoms,
but Bob has only analyzed the price of cars ¢, and c3. The
ASP program module for the second magazine is more
interesting', and expresses the rule used to determine if a
car is safe, namely that a car is safe if it has an airbag; it is
known that car ¢y has an airbag, ¢, does not, and the choice
rule states that car c3 may or may not have an airbag.

Next, the stable model semantics is generalized to cover
modules by introducing a generalization of the Gelfond-
Lifschitz’s fixpoint definition. In addition to weekly default
literals (i.e., not ), also literals involving input atoms are
used in the stability condition. In (Oikarinen and Janhunen
2008), the stable models of a module are defined as follows:

Definition 2 (Stable Models of Modules) An inter-
pretation M C  At(P) is a stable model of an ASP

Year belongs to both hidden signatures of P4 and P4, Which
is not allowed when composing these modules, but for clarity we
omit a renaming of the car/1 predicate.

57

program module P = (R,I,0,H), if and only if
M = LM (RM™ U{a.la € M N I}). The stable models of
P are denoted by AS(P).

Intuitively, the stable models of a module are obtained
from the stable models of the rules part, for each possible
combination of the input atoms.

Example 3 Program modules Pp, Pc, and P4, have
each a single answer set AS(Pp) = {{exp(c2)}}, AS(P¢)
= {{exp(cs)}}, and AS(Pmg,) = {{safe(c1)}}. Module
Pings has two stable models, namely: {safe(c1), car(ci),
car(ca), car(cs), airbag(cy)}, and {safe(cy), safe(cs),
car(cy), car(ca), car(cs), airbag(cy), airbag(cs)}.

Alice’s ASP program module has 2° = 64 models corre-
sponding each to an input combination of safe and expensive
atoms. Some of these models are:

{ buy(c1),car(c1),car(ca),car(cs), safe(cr) }

{ buy(er),buy(cs), car(cy), car(cs), car(cs),
safe(cy), safe(cs

{ buy(cr), car(cl) car(ca), car(cs), exp(cs),
safe(cr), safe(cs 1

2.3

The composition of models is obtained from the union of
program rules and by constructing the composed output set
as the union of modules’ output sets, thus removing from
the input all the specified output atoms. (Oikarinen and Jan-
hunen 2008) define their first composition operator as fol-
lows: Given two modules P, = (Ry, I1,01, Hy) and Py =
(Ra, I2, 02, Hy), their composition P; &P is defined when
their output signatures are disjoint, that is, O; NOy = (), and
they respect each others hidden atoms, i.e., H1NAt(Py) =
and Ho N At(P1) = 0. Then their composition is

Pl @PQ = <R1 URQ, (Il\OQ)U(IQ\Ol), OlUOQ, H1 UH2>

Composing programs from models

However, the conditions given for & are not enough to
guarantee compositionality in the case of answer sets and as
such they define a restricted form:

Definition 3 (Module Union Operator L) Given modules
P1, Po, their union is Py U Py = Py & Py whenever (i)
P1 & Ps is defined and (ii) Py and Po are mutually indepen-
dent®.

Natural join () on visible atoms is used in (Oikarinen
and Janhunen 2008) to combine stable models of modules
as follows:

Definition 4 (Join) Given modules P, and Po and sets of

interpretations Ay C 24" PV) and Ay C 24%P2) | the natural
join of A1 and As is:

A1D<1A2:{ M1UM2|M1€A1,M2€A2and
Mi N Atv(PQ) =MsN Atv(P1)}

This leads to their main result, stating that:
There are no positive cyclic dependencies among rules in dif-

ferent modules, defined as loops through input and output signa-
tures.



Theorem 1 (Module Theorem) If P1, P> are modules
such that Py U Py is defined, then

AS(PyUP;) = AS(P1) b1 AS(P2)

Still according to (Oikarinen and Janhunen 2008), their
module theorem also straightforwardly generalizes for a col-
lection of modules because the module union operator LI
is commutative, associative, and has the identity element

<0,0,0,0 >.

Example 4 Consider the composition Q = (P4 U Pppg, ) U
‘Ppg. First, we have

{buy(X) « car(X), safe(X),
not exp(X).
car(cy). car(cz). car(cs). safe(cr).},
{ea:p(cl),exp(CQ),e:cp(c;;)},
{buy(cr), buy(cz), buy(cs),
safe(c), safe(ca), safe(cs)},
{car(c1), car(ca),car(cs)}

PAUngl e <

It is immediate to see that the module theorem holds
in this case. The visible atoms of Pa are safe/l,
exp/l and buy/l, and the visible atoms for Png,
are {safe(c1),safe(ca)}. The only model for Ppg, =
{safe(c1)} when naturally joined with the models of
Pa, results in eight possible models where safe(cy),
not safe(cz), and not safe(cs) hold, and exp/1 vary. The
final ASP program module Q is

{buy(X) « car(X), safe(X),not exp(X).
car(cy). car(ca). car(cs). exp(ce). safe(cr).},
{exp(c)},
{buy(cr), buy(ca), buy(cs), exp(c),
safe(ci), safe(cz), safe(cs)},
{car(c1), car(ca), car(cs)}

The stable models of Q are thus:

{safe(cy),exp(c1), exp(ca), car(cy),car(ce), car(cs)}
{buy(c1), safe(cr), exp(ce), car(cr), car(ca), car(cs)}l

2.4 Visible and Modular Equivalence

The notion of visible equivalence has been introduced in or-
der to neglect hidden atoms when logic programs are com-
pared on the basis of their models. The compositionality
property from the module theorem enabled the authors to
port this idea to the level of program modules—giving rise to
modular equivalence of logic programs.

Definition 5 Given two logic program modules P and Q,
they are:

Visibly equivalent: P =, Q iff At,(P) = At,(Q) and
there is a bijection f : AS(P) — AS(Q) such that for all
M € AS(P), M N At,(P) = f(M) N At,(Q).
Modularly equivalent: P =,, Q iff At;(P) = At;(Q) and
P =, Q.

So, two modules are visibly equivalent if there is a bijec-
tion among their stable models, and they coincide in their
visible parts. If additionally, the two program modules have
the same input and output atoms, then they are modularly
equivalent.

58

2.5 Shortcomings

The conditions imposed in these definitions bring about
some shortcomings such as the fact that the output signatures
of two modules must be disjoint which disallows many prac-
tical applications e.g., we are not able to combine the results
of program module Q with any of Pc or P,,g,, and thus
it is impossible to obtain the combination of the five mod-
ules. Also because of this, the module union operator L is
not reflexive. By trivially waiving this condition, we imme-
diately get problems with conflicting modules. The compati-
bility criterion for the operator < also rules out the composi-
tionality of mutually dependent modules, but allows positive
loops inside modules or negative loops in general.

Example 5 (Common Outputs) Given Pp and Pc, which
respectively have:

AS(Pg)={{exp(cs)}} and AS(Pc)={{exp(cs)}},
the single stable model of their union AS(Pp U Pc) is:

{exp(ca), exp(cs)}

However, the join of their stable models is AS(Pg) 1
AS(P¢) = 0, invalidating the module theorem. |

We illustrate next the issue with positive loops between
modules.

Example 6 (Cyclic Dependencies) Take the following two
program modules:

Py = {{airbag < safe.}, {safe}, {airbag}, D)
Py = ({safe «— airbag.}, {airbag},{safe}, D)

Their stable models are:
AS(Py) = AS(P2) = {{}, {airbag, safe}}

while the single stable model of the union AS(P; U Ps) is
the empty model {}. Therefore AS(Py U Pa) # AS(P1) <
AS(P2) = {{},{airbag, safe}}, thus also invalidating the
module theorem. ]

3 Positive Cyclic Dependencies Between
Modules

To attain a generalized form of compositionality we need to
be able to deal with the two restrictions identified previously,
namely cyclic dependencies between modules. In the litera-
ture, (Dao-Tran et al. 2009) presents a solution based on a
model minimality property. It forces one to check for mini-
mality on every comparable models of all program modules
being composed. It is not applicable to our setting though,
which can be seen in Example 7 where logical constant |
represents value false.

Example 7 (Problem with minimization) Given modules
Py = {a < b. L — not b.},{b},{a},{}) with one an-
swer set {a,b}, and Py = ({b «— a.},{a},{b},{}) with
stable models {} and {a,b}, their composition has no in-
puts and no intended stable models while their minimal join
contains {a,b}. [ |

Another possible solution requires the introduction of ex-
tra information in the models to be able to detect mutual
positive dependencies. This need has been identified be-
fore (Slota and Leite 2012) and is left for future work.



4 Generalizing Modularity in ASP by
Allowing Common Outputs

After having identified the shortcomings in the literature,
we proceed now to seeing how compositionality can be
maintained while allowing modules to have common out-
put atoms. In this section we present two versions of com-
positions: (1) A relaxed composition operator (&), aiming
at maximizing information in the stable models of modules.
Unfortunately, we show that this operation is not composi-
tional. (2) A conservative composition operator (®), aiming
at maximizing compatibility of atoms in the stable models
of modules. This version implies redefining the composition
operator by resorting to a program transformation but uses
the original join operator.

4.1 Extra module operations

First, one requires fundamental operations for renaming
atoms in the output signatures of modules with fresh ones:

Definition 6 (Output renaming) Let P be the program
module P = (R,I,0,H), o € O and o' ¢ At(P). The
renamed output program module py ., (P) is the program
module (R'U{ L «— o, not 0.}, IU{o}, {0’ }U(O\{o}), H).
The program part R’ is constructed by substituting the head
of each rule o «— Body in R by o’ «— Body. The heads of
other rules remain unchanged, as well as the bodies of all
rules.

Mark that, by making o an input atom, the renaming oper-
ation can introduce extra stable models. However, the origi-
nal stable models can be recovered by selecting the models
where o’ has exactly the same truth-value of o. The con-
straint throws away models where o’ holds but not 0. We will
abuse notation and denote p,; o, (... (po; —o, (P)) ...) by

p{o’l,... S On } (P)

Example 8 (Renaming) Recall the module representing
Alice’s conditions in Example 2. Its renamed output program
module por—o (Pa) is the program module:

X) « car(X), safe(X),
not exp(X).

car(cy). car(ca). car(cs).
1 — buy(X)', not buy(X).},
{buy(X)v safe(cl)7 SCLfE(CQ), Safe(c?))v
exp(cy), exp(ca), exp(cs)},
{buy’(c1), buy'(c2), buy'(c3) },
{car(c1), car(ca), car(cs)} >

0 }—{or,..

Por—o (Pa) =< {buy/(

Still before we dwell any deeper in this subject, we de-
fine operations useful to project or hide sets of atoms from a
module.

Definition 7 (Hiding and Projecting Atoms) Ler P
(R,I,0,H) be a module and S an arbitrary set of atoms.
If we want to Hide (denoted as \) S from program module
P, weuse P\S = (RU{{i}. |t € INS} I\S,O\S, HU
((I U0O) N S)). Dually, we can Project (denoted as |) over
S in the following way: P |s= (RU{{i}. |i € I\ S},IN
S,ONS,HU((IUO)\ S)).

59

Both operators Hide and Project do not change the sta-
ble models of the original program, ie. AS(P)
AS(P\S) = AS(Pg) but do change the set of visi-
ble atoms At,(P\S) = At,(P)\S and At,(P | S) =
At,(P)NS

4.2 Relaxed Output Composition

For the reasons presented before, we start by defining a gen-
eralized version of the composition operator, by removing
the condition enforcing disjointness of the output signatures
of the two modules being combined.

Definition 8 (Relaxed Composition) Given two modules
P = <R1,Il,Ol,H1> and Py = <R27]2,02,H2>, their
composition P1 W Py is defined when they respect each
others hidden atoms, i.e., Hy N At(P2) = (0 and Hy N
At(P1) = 0. Then their composition is Py W Py = (Ry U
R27 (I1 U 12)\(01 U 02), 01 U 02, H1 U H2>.

Obviously, the following important properties hold for W:

Lemma 1 The relaxed composition operator is reflexive,
associative, commutative and has the identity element <

0,0,0,0 >.

Having defined the way to deal with common outputs in the
composition of modules, we would like to redefine the op-
erator > for combining the stable models of these modules.
However, this is shown here to be impossible.

Lemma 2 The operation W is not compositional, i.e. for any
Join operation <!, it is not always the case that AS(P; &
Pa) = AS(P1) ' AS(Ps).

As we have motivated in the introduction, it is important
to applications to be able to use & to combine program mod-
ules, and retain some form of compositionality. The follow-
ing definition presents a construction that adds the required
information in order to be able to combine program modules
using the original natural join.

Definition 9 (Transformed Relaxed Composition)
Consider the program modules Py = (Ry,11,01, Hy) and
P = <R2,IQ,OQ,H2>. Let O = O1 N Oy, and deﬁne
the sets of newly introduced atoms O'={0" | o € O} and
0"={0" | 0 € O}. Construct program module:

Punion = < Runion, 0’ UO",0,0 > where:
Runion ={0—0.]0 € O0'}U{o—0".]0" €0"}.
The transformed relaxed composition is defined as the pro-
gram module

(7)1 LﬂRT PQ) = [pO'<—O(7)1) (i PO"<—O(P2) U Punion] \

[0'U0"

Intuitively, we rename the common output atoms in the
original modules, and introduce an extra program module
that unites the contributions of each module by a pair of rules
for each common atom o « o’ and 0 < o”. We then hide all
the auxiliary atoms to obtain the original visible signature.
If O = () then Pypion is empty, and all the other modules
are not altered, falling back to the original definition.



Theorem 2 Let Py and Py be arbitrary program modules
without positive dependencies among them. Then, modules
joined with operators & and WFT are modularly equivalent:

PPy = P1 whT Po.

The important remark is that according to the original
module theorem we have: AS(por—o(P1) U por—o(P2)
U Punion) = AS(por—o(P1)) > AS(por—o(P2)) b
AS(Punion)- Therefore, from a semantical point of view,
users can always substitute module P; & P, by Py Wi Py,
which has an extra cost since the models of the renamed
program modules may increase. This is, however, essential
to regain compositionality.

Example 9 Considering program modules @, =< {a.
L —a,b},0,{a,b}, 0 > and Q3 = ({b.},0,{b},0), we

have:

Parp—ap(P1) = < a'. L« ad, nota.

1L — b, notb.},
SR A I R
b'. L« a" nota.

L —b",notb.},
SR PN AN
a—a. a—ada
b—b.b—0"},

a,a’ b, b}, {a,b}ﬂ) >
a'. L «—a,b.

1« a’,not a.

LV, notb.},
a,b},{a'7b’},[2) >
pa”,b"<—a,b(fp2)

Par b —ap(P2) = <

Punion = <

e TS e e e T e

pa’,b’Ha,b(Ql) = <

pa”,b”«—a,b(Q2) =
Q3 =

union

The stable models of the first two modules are
{{a,a’},{a,b,a’}} and {{b,b"},{a,b,b"}}, respectively.
Their join is {{a,b,a’,b"}} and the returned model belongs
10 Punion (and thus it is compatible), and corresponds to the
only intended model {a,b} of P1 & Pa. Note that the stable
models of Punion are 16, corresponding to the models of
propositional formula (a = o' Va”") AN (b =V V). Re-
garding, the transformed module py/ p —qp(Q1) it discards
the model {a,b,a’}, having stable models {{a,a’}}. But
now the join is empty, as intended. |

4.3 Conservative Output Composition

In order to preserve the original outer join operator, which
is widely used in databases, for the form of composition we
introduce next one must redefine the original composition
operator (@). We do that resorting to a program transfor-
mation s.t. the composition operator remains compositional
with respect to the join operator (><i). The transformation
we present next consists of taking Definition 9 and adding
an extra module to guarantee that only compatible models
(models that coincide on the visible part) are retained.

Definition 10 (Conservative Composition) Let

731 = <R17 Il, 017 H1> and 7)2 = <R2, 127 02, H2> be mod-
ules such that their outputs are disjoint O = O1 N O # (.
Let O' = {0’ | 0 € O} and O" = {0 | 0 € O} be sets of

newly introduced atoms.

60

Construct program modules:

Punion =< Runiona O/ U ON, O, @ > where:

Runion — {0(7 0/‘ | O/ 6 O/} U {0 — 0/,. ‘ O// E O//}'

Pritter = < {L «—0',not o". L —not o’,0". |0 € O},
o'uo”,0,p >

The conservative composition is defined as the program
module: P1 @ Py = [(pOU—O (Pl) Upor—o (Pg) UPunion U
Pritter] \ (0" U O").

Note here that each clause not containing atoms that be-
long to O1 N O2 in Py U Py is included in P; ® Ps. So, if
there are no common output atoms the original union based
composition is obtained. Therefore, it is easy to see that this
transformational semantics (®) is a conservative extension
to the existing one (P).

Theorem 3 (Conservative Module Theorem) If P, Po
are modules such that P, ® Py is defined, then a model M
€ AS(P1 ® Po) iff M N (At(P1) U At(P2)) € AS(P1)

The above theorem is very similar to the original Module
Theorem of Oikarinnen and Janhunen apart from the extra
renamed atoms required in P; ® P2 to obtain composition-
ality.

Example 10 Returning to the introductory example, we can
conclude that Ppg, @ Ppg, has only one answer set:

{safe(c1),airbag(cy),car(cr), car(cz), car(cs)}

since this is the only compatible model between Py,q, and
Png,- The stable models of p(Pug, ) and p(Pug, ), are col-
lected in the table below where compatible models appear in
the same row and car(cy), car(ca), car(cs) has been omit-
ted from AS(p(Pumg,)). Atom s (respectively a) stands for
safe (respectively airbag).

Answer sets of p(Prg, ) g
{s(c1), s'(c1)} {s(c1),s"(c1), alc1)}
{s(c1), s(ca), s (c1)} [ {s(c1),s(ca), 8" (c1),alc
{s(c1),s(cs), s"(c1)} {8(21)78(03)78"(01)

{3(01)7 5(62)7 8(63)5

),
s'(c1)} s"(c1)

S

The only compatible model retained after composing with
Punion and Pyiiier is the combination of the stable models
in the first row:

{s(c1),8'(c1), 8" (1), a(cr), cer), e(ea), e(e3) }.

Naturaly, this corresponds to the intended result if we ignore
the s' and s" atoms. |

We underline that models of composition P; ® Ps will either
contain all atoms o, o', and o” or none of them, and will only
join compatible models from P; having {0, o'} with models
in P having {o, 0"’ }, or models without atoms in {o, o', 0"}



Shortcomings Revisited The resulting models of com-
posing modules using the transformation and renaming
methods described so far in this Section 4 can be minimised
a posteriori following the minimization method described in
Section 3.

4.4 Complexity

Regarding complexity, checking the existence of M € P; &
Py and M € P; BT P, is an NP-complete problem. It is
immediate to define a decision algorithm belonging to %5
that checks existence of a stable model of the module com-
position operators. This is strictly less than the results in
the approach of (Dao-Tran et al. 2009) where the existence
decision problem for propositional theories is NEXPNP-
complete — however their approach allows disjunctive rules.

5 Conclusions and Future Work

We redefined the necessary operators in order to relax the
conditions for combining modules with common atoms in
their output signatures. Two alternative solutions are pre-
sented, both allowing us to retain compositionality while
dealing with a more general setting than before. (Dao-Tran
et al. 2009) provide an embedding of the original composi-
tion operator of Oikarinen and Janhunen into their approach.
Since our constructions rely on a transformational approach
using operator LI of Oikarinen and Janhunen, by composing
both translations, an embedding into (Dao-Tran et al. 2009)
is immediately obtained. It remains to be checked whether
the same translation can be used in the presence of posi-
tive cycles. (Tasharrofi and Ternovska 2011) take (Janhunen
et al. 2009) and extend it with an algebra which includes a
new operation of feedback (loop) over modules. They have
shown that the loop operation adds significant expressive
power — modules can can express all (and only) problems
in NP. The other issues remain unsolved though.

The module theorem has been extended to the general the-
ory of stable models (Babb and Lee 2012), being applied
to non-ground logic programs containing choice rules, the
count aggregate, and nested expressions. It is based on the
new findings about the relationship between the module the-
orem and the splitting theorem. It retains the composition
condition of disjoint outputs and still forbids positive depen-
dencies between modules. As for disjunctive versions, (Jan-
hunen et al. 2009) introduced a formal framework for modu-
lar programming in the context of DLPs under stable-model
semantics. This is based on the notion of DLP-functions,
which resort to appropriate input/output interfacing. Simi-
lar module concepts have already been studied for the cases
of normal logic programs and ASPs and even propositional
theories, but the special characteristics of disjunctive rules
are properly taken into account in the syntactic and semantic
definitions of DLP functions presented therein. In (Gebser et
al. 2011), MLP is used as a basis for Reactive Answer Set
Programming, aiming at reasoning about real-time dynamic
systems running online in changing environments.

As future work we can straightforwardly extend these re-
sults to probabilistic reasoning with stable models by apply-
ing the new module theorem to (Damésio and Moura 2011),

61

as well as to DLP functions and general stable models. An
implementation of the framework is also foreseen in order to
assess the overhead when compared with the original bench-
marks in (Oikarinen and Janhunen 2008). Based on our own
preliminary work and results in the literature, we believe that
a fully compositional semantics can be attained by resorting
to partial interpretations e.g., SE-models (Turner 2003) for
defining program models at the semantic level. It is known
that one must include extra information about the support of
each atom in the models in order to attain generalized com-
positionality and SE-models appear to be enough.

References

Babb, J., and Lee, J. 2012. Module theorem for the general
theory of stable models. TPLP 12(4-5):719-735.

Baral, C. 2003. Knowledge Representation, Reasoning, and
Declarative Problem Solving. Cambridge University Press.

Bugliesi, M.; Lamma, E.; and Mello, P. 1994. Modularity
in logic programming. J. Log. Program. 19/20:443-502.

Damaisio, C. V., and Moura, J. 2011. Modularity of p-log
programs. In Proceedings of the 11th international confer-
ence on Logic programming and nonmonotonic reasoning,
LPNMR’11, 13-25. Berlin, Heidelberg: Springer-Verlag.
Dao-Tran, M.; Eiter, T.; Fink, M.; and Krennwallner, T.
2009. Modular nonmonotonic logic programming revisited.
In Hill, P. M., and Warren, D. S., eds., ICLP 2009, Pasadena,
USA, 2009, volume 5649.

Eiter, T.; Faber, W.; Leone, N.; and Pfeifer, G. 2001. Com-
puting preferred and weakly preferred answer sets by meta-
interpretation in answer set programming. In Proceedings
AAAI 2001 Spring Symposium on Answer Set Programming,
45-52. AAAI Press.

Ferraris, P., and Lifschitz, V. 2005. Weight constraints as
nested expressions. TPLP 5(1-2):45-74.

Gaifman, H., and Shapiro, E. 1989. Fully abstract composi-
tional semantics for logic programs. In symposium on Prin-
ciples of programming languages, POPL, 134-142. New
York, NY, USA: ACM.

Gebser, M.; Grote, T.; Kaminski, R.; and Schaub, T. 2011.
Reactive answer set programming. In Proceedings of the
11th international conference on Logic programming and
nonmonotonic reasoning, LPNMR’11, 54-66. Berlin, Hei-
delberg: Springer-Verlag.

Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Proceedings of the 5th
International Conference on Logic Program. MIT Press.

Giordano, L., and Martelli, A. 1994. Structuring logic pro-
grams: a modal approach. The Journal of Logic Program-
ming 21(2):59 — 94.

Janhunen, T.; Oikarinen, E.; Tompits, H.; and Woltran, S.
2009. Modularity aspects of disjunctive stable models. J.
Artif. Int. Res. 35(1):813-857.

Jarvisalo, M.; Oikarinen, E.; Janhunen, T.; and Niemeli,
I. 2009. A module-based framework for multi-language
constraint modeling. In Erdem, E.; Lin, F.; and Schaub,
T., eds., Proceedings of the 10th International Conference



on Logic Programming and Nonmonotonic Reasoning (LP-
NMR 2009), volume 5753 of Lecture Notes in Artificial In-
telligence, 155-169. Springer.

Lifschitz, V. 2002. Answer set programming and plan gen-
eration. Artificial Intelligence 138(1-2):39-54.

Mancarella, P., and Pedreschi, D. 1988. An algebra of logic
programs. In ICLP/SLP, 1006-1023.

Marek, V. W,, and Truszczynski, M. 1999. Stable mod-
els and an alternative logic programming paradigm. In The
Logic Programming Paradigm: a 25-Year Perspective.

Miller, D. 1986. A theory of modules for logic program-
ming. In In Symp. Logic Programming, 106-114.

Niemeld, I. 1998. Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25:72-79.

Oikarinen, E., and Janhunen, T. 2008. Achieving compo-
sitionality of the stable model semantics for smodels pro-
gramsl. Theory Pract. Log. Program. 8(5-6):717-761.

O’Keefe, R. A. 1985. Towards an algebra for constructing
logic programs. In SLP, 152-160.

Slota, M., and Leite, J. 2012. Robust equivalence models
for semantic updates of answer-set programs. In Brewka,
G.; Eiter, T.; and Mcllraith, S. A., eds., Proc. of KR 2012.
AAAI Press.

Tasharrofi, S., and Ternovska, E. 2011. A semantic account
for modularity in multi-language modelling of search prob-
lems. In Proceedings of the Sth international conference
on Frontiers of combining systems, FroCoS’11, 259-274.
Berlin, Heidelberg: Springer-Verlag.

Turner, H. 2003. Strong equivalence made easy: nested
expressions and weight constraints. Theory and Practice of
Logic Programming 3(4):609-622.

62

A Proofs

Proof 1 (Lemma 2) A join operation is a function mapping
a pair of sets of interpretations into a set of interpretations.
Consider the following program modules:

Py =<{a.},0,{a,b},0 > Qy=<{a. L a,b.},

0,{a,b},0 >
Py = <{b}a®7{b}v®> Qy = <{b}a®7{b}a®>
PPy =< {a. b.},@,

{0 b0 Q1 W Qs =<{a. L«a,b.
a,byr, ) >

b.},0,{a,b},0 >
One sees that AS(Py) = AS(Q1) = {{a}}, and
AS(Ps) = AS(Qa) = {{b}} but AS(P1 & Ps) = {{a,b}}
while AS(Q1WQs) = {}. Therefore, it cannot exist <’ since
this would require AS(Py W Py) = AS(Py1) <’ AS(Ps) =
{{a}} o< {{0}} = AS(Q1) >’ AS(Q2) = AS(Q1 W Q).

a contradiction. O

Proof 2 (Theorem 2) By reduction of the conditions of the
theorem to the conditions necessary for applying the orig-
inal Module Theorem. If Py W Py is defined then let their
transformed relaxed composition be T = (P W1 Py). It
is clear that the output atoms of T are O1 U Os, the input
atoms are (I; U I) \ (O1 U Oy), and the hidden atoms are
Hy U Hy, UO'UQ". Note that before the application of the
hiding operator the output atoms are O, U O3 U O U O”.
The original composition operator U can be applied since
the outputs of por—o(P1), por—o(P2) and Pynion are re-
spectively O' U (01 \ O), 0" U (0O2\ O) and O = O1 N Os,
which are pairwise disjoint. Because of this, we are in the
conditions of the original Module Theorem and thus it is ap-
plicable to the result of the modified composition W iff the
transformation did not introduce positive loops between the
program parts of the three auxiliary models. If P1 & Py had
no loops between the common output atoms than its trans-
formation Py WET Py also does not because it results from
a renaming into new atoms.

Consider now the rules part of T; if we ignore the ex-
tra introduced atoms in O’ and O" the program obtained
has exactly the same stable models of the union of pro-
gram parts of P1 and Ps. Basically, we are substituting
the union of o « Body;i.,...,0 < Body., . in P, and

0+ Body3.,...,0 < Body?. in Py by:
0 0. 0« 0o
o'« Body;. 0" «— Body3.
o' « Body}.. 0" «— Body?.

1L« 0o, noto. 1L« 0", not o.

This guarantees visible equivalence of Py W Py and Py W’
Po, since the models of each combined modules are in
one-to-one correspondence, and they coincide in the visible
atoms. The contribution of the common output atoms is re-
covered by the joins involving atoms in O', O" and O, that
are all pairwise disjoint, and ensuring that stable models
obey to o = o' V 0" via program module P ;on. The con-
straints introduced in the transformed models por—o(P1)
(resp. por—o(Pa2)) simply prune models that have o false
and o' (resp. 0" ) true, reducing the number of models neces-
sary to consider. Since the input and output atoms of P1 &Pa



and P1 WL Py are the same, then P18 Py =,,, P WET Ps.
O

Proof 3 (Theorem 3) The theorem states that if we ignore
the renamed literals in ® the models are exactly the same,
as expected. The transformed program module Py ® Ps cor-
responds basically to the union of programs, as seen before.
Consider a common output atom o. The constraints in the
module part Pygiieer combined with the rules in Pypion re-
strict the models to the cases for which o = o' = 0. The
equivalence o = o' restricts the stable models of po—o(P1)
to the original stable models (except for the extra atom o')
of P1, and similarly the equivalence o = 0" filters the stable
models of porr—o(P2) obtaining the original stable models
of Pa. Now it is immediate to see that compositionality is re-
tained by making the original common atoms o compatible.
O

63



The Multi-engine ASP Solver ME-ASP: Progress Report

Marco Maratea
DIBRIS,
Univ. degli Studi di Genova,

Luca Pulina
POLCOMING,
Univ. degli Studi di Sassari,

Francesco Ricca
Dip. di Matematica ed Informatica,
Univ. della Calabria,

Viale F. Causa 15, 16145 Genova, Italyiale Mancini 5, 07100 Sassari, Italy ~ Via P. Bucci, 87030 Rende, Italy

marco@dist.unige.it

Abstract

ME-ASPis a multi-engine solver for ground ASP programs.
It exploits algorithm selection techniques based on diassi
cation to select one among a set of out-of-the-box heteroge-
neous ASP solvers used as black-box engines. In this paper
we report on(z) a new optimized implementation ofe-

AspP; and (i7) an attempt of applying algorithm selection to
non-ground programs. An experimental analysis reported in
the paper shows th&t) the new implementation ofie-AsP

is substantially faster than the previous version; &fgthe
multi-engine recipe can be applied to the evaluation of non-
ground programs with some benefits.

Introduction

Answer Set Programming (Baral 2003; Eiter, Gottlob, and
Mannila 1997; Gelfond and Lifschitz 1988; 1991; Marek
and Truszczyhski 1998; Niemela 1998) (ASP) is a declar-
ative language based on logic programming and non-
monotonic reasoning. The applications of ASP belong to
several areas, e.g., ASP was used for solving a variety of
hard combinatorial problems (see e.g., (Calimeri et al1201
and (Potsdam since 2002)).

Nowadays, several efficient ASP systems are avail-

able (Gebser et al. 2007; Janhunen, Niemela, and Sevalnev

2009; Leone et al. 2006; Lierler 2005; Marién et al. 2008;
Simons, Niemela, and Soininen 2002). It is well-estalgiish
that, for solving empirically hard problems, there is rgra|
best algorithm/heuristic, while it is often the case th#edi

ent algorithms perform well on different problems/instasic

It can be easily verified (e.g., by analyzing the results ef th
ASP competition series) that this is the case also for ASP
implementations. In order to take advantage of this faat, on
should be able to select automatically the “best” solver on
the basis of the characteristics (call&ghture$ of the in-
stance in input, i.e., one has to consider to solvalgorithm
selection problenfRice 1976).

Ipulina@uniss.it

ricca@mat.unical.it

on regressionto choose the “best” configuration/heuristic
of the solvercLAsP. The complete picture of inductive ap-
proaches applied to ASP solving includes also techniques
for learning heuristics orders (Balduccini 2011), soloso

to combine portfolio and automatic algorithm configuration
approaches (Silverthorn, Lierler, and Schneider 2012), au
tomatic selection of a scheduling of ASP solvers (Hoos et
al. 2012) (in this caseLAsP configurations), and the multi-
engine approach. The aim of a multi-engine solver (Pulina
and Tacchella 2009) is to select the “best” solver among a
set of efficient ones used &$ack-box enginesThe multi-
engine ASP solveME-ASP was proposed in (Maratea,
Pulina, and Ricca 2012b), and ports to ASP an approach ap-
plied before to QBF (Pulina and Tacchella 2009).

ME-ASP exploits inductive techniques based dassifi-
cationto choose, on a per instance basis, an engine among a
selection of black-box heterogeneous ASP solvers. The first
implementation ofME-ASP, despite not being highly opti-
mized, already reached good performance. Indeedasp
can combine the strengths of its component engines, and
thus it performs well on a broad set of benchmarks including
14 domains and 1462 ground instances (detailed results are
reported in (Maratea, Pulina, and Ricca 2014a)).

In this paper we report ofi) a new optimized implemen-
tation of ME-ASP; and on(i:) a first attempt of applying al-
gorithm selection to the entire process of computing answer
sets of non-ground programs.

As a matter of fact, the ASP solutions available at the state
of the art employing machine-learning techniques are de-
vised to solve ground (or propositional) programs, and — to
the best of our knowledge — no solution has been proposed
thatis able to cope directly with non-ground programs. Note
that ASP programmers almost always write non-ground pro-
grams, which have to be first instantiated by a grounder. It is
well-known that such instantiation phase can influence sig-
nificantly the performance of the entire solving process. At

Inspired by the successful attempts (Gomes and Selman the time of this writing, there are two prominent alternativ

2001; O'Mahony et al. 2008; Pulina and Tacchella 2009;
Xu et al. 2008) done in the neighbor fields of SAT, QSAT
and CSP, the application of algorithm selection techniques
to ASP solving was ignited by the release of the portfolio
solver cLASPFOLIO (Gebser et al. 2011). This solver im-
ports into ASP thesatziLLA (Xu et al. 2008) approach.
Indeed,cLASPFOLIO employs inductive techniques based

64

implementations that are able to instantiate ASP programs:
DLV (Leone et al. 2006) and GNGO (Gebser, Schaub,
and Thiele 2007). Once the peculiarities of the instaratati
process are properly taken into account, both implementa-
tions can be combined in a multi-engine grounder by apply-
ing also to this phase an algorithm selection recipe, buildi
on (Maratea, Pulina, and Ricca 2013). The entire process



of evaluation of a non-ground ASP program can be, thus, lected the k-nearest neighbor (kNN) classifier for our new

obtained by applying algorithm selection to the instaidiat implementation: it was already used ME-ASP (Maratea,
phase, selecting either DLV orf&NGO; and, then, in a sub- Pulina, and Ricca 2012b), with good performance, and it
sequent step, evaluating the propositional program ofilin ~ was easy to integrate its implementation in the new version
in the first step with a multi-engine solver. of the system.

An experimental analysis reported in the paper shows that Multi-engineinstantiator. Concerning the automatic selec-
(4) the new implementation ofE-AsPis substantially faster  tion of the grounder, we selected: number of disjunctive
than the previous version; ar{d) the straight application  rules, presence of queries, the total amount of functiods an
of the multi-engine recipe to the instantiation phase is al- predicates, number of strongly connected and Head-Cycle
ready beneficial. At the same time, it remains space for fu- Free(Ben-Eliyahu and Dechter 1994) components, and strat-
ture work, and in particular for devising more specialized ification property, for a total amount of 11 features. These

techniques to exploit the full potential of the approach. features are able to discriminate the class of the problem,
and are also pragmatically cheap-to-compute. Indeedngive
A Multi-Engine ASP system the high expressivity of the language, non-ground ASP pro-

grams (which are usually written by programmers) con-
tain only a few rules. Concerning the grounders, given that
there are only two alternative solutions, namely DLV and
GRINGO, we considered both for our implementation.

We next overview the components of the multi-engine ap-
proach, and we report on the way we have instantiated it to
cope with instantiation and solving, thus obtaining a com-

plete multi-engine system for computing answer sets of non- Concerning the classification method, we used an imple-

ground ASP programs. ] ) ) mentation of the PART decision list generator (Frank and
General Approach. The design of a multi-engine solver  jitten 1998), a classifier that returns a human readable
based on classification is composed of three main ingredi- model based on if-then-else rules. We used PART because,
ents:(i) a set of features that are significant for classifying gjven the relatively small total amount of features related

the instances(ii) a selection of solvers that are representa-  the non-ground instances, it allows us to compare the gener-
tive of the state of the art and complementary; &iid) a ated model with respect to the knowledge of a human expert.
choice of effective classification algorithms. Each instan Multi-Engine System ME-ASF". Given a (non-ground)

In a fawly-de&gnedrammg setof instances is analyzed by ASP program, the evaluation workflow of the multi-engine
considering both the features and the performance of each ASP solution ,Ca||ed\/IE—ASP9T is the following: (i) non-
solvers. An inductive model is computed by the classifi- ground features extractior(ji) grounder selection(ii)

cattlo? alg;]_orlthm dunr:jg;m?_ p?ascte. T?en,_tea;:h l[nstance ('jn grounding phasdjv) ground features extractiofy) solver
a test sells processed by Nrst extracting [ts teatures, and - g qctign, andvi) solving phase on ground program.
the solver is selected starting from these features usimg th

learned model. Note that, this schema does not make any as- . .
sumption (other than the basic one of supporting a common Implementation and Experiments

input) on the engines. In this section we report the results of two experiments con-
The ME-ASP solver. In (Maratea, Pulina, and Ricca 2012b; ~ ceived to assess the performance of the new versions of the

2014a) we described the choices we have made to developME-ASP system. The first experiment has the goal of mea-
the ME-ASP solver. In particular, we have singled out a set suring the performance improvements obtained by the new
of syntactic features that are both significant for classify Optimized implementation of thee-AspPsolver. The second
ing the instances and cheap-to-compute (so that the classi-€xperiment assesses-ASP?” and reports on the perfor-
fier can be fast and accurate). In detail, we considered: the mance improvements that can be obtained by selecting the
number of rules and number of atoms, the ratio of horn, grounder first and then calling thee-Asp solver.ME-ASP
unary, binary and ternary rules, as well as some ASP pe- and ME-ASP?" are available for download atww.mat.
culiar features, such as the number of true and disjunctive unical.it/ricca/me-asp . Concerning the hardware
facts, and the fraction of normal rules and constraints. The employed and the execution settings, all the experiments ru
number of resulting features, together with some of their ©Ona cluster of Intel Xeon E31245 PCs at 3.30 GHz equipped
combinations, amounts to 52. In order to select the engines With 64 bit Ubuntu 12.04, granting 600 seconds of CPU time
we ran preliminary experiments (Maratea, Pulina, and Ricca and 2GB of memory to each solver. The benchmarks used
2014a) to collect a pool of solvers that is representative of in this paper belong to the suite of benchmarks, encoded in
the state-of-the-art solves(Ta), i.e., considering a prob-  the ASP-Core 1.0 language, of the 3rd ASP Competition.
lem instance, the oracle that always fares the best among theNote that in the 4th ASP Competition (Alviano et al. 2013)
solvers that entered the system track of the 3rd ASP Com- the new language ASP-Core 2.0 has been introduced. We
petition (Calimeri et al. 2011), plus DLV. The pool of en-  still rely on the language of the 3rd ASP Competition given
gines collected imE-ASPis composed of 5 solvers, namely  that the total amount of solvers and grounders supporting
CLASP, CLASPD, CMODELS, DLV, and IDP, as submitted the new standard language is very limited with respect to the
to the 3rd ASP Competition. We experimented with sev- number of tools supporting ASP-Core 1.0.

eral classification algorithms (Maratea, Pulina, and Ricca Assessment of the new implementation of ME-ASP. The
2014a), and proved empirically thate-AspP can perform original implementation ofME-ASP was obtained by com-
better than its engines with any choice. Nonetheless, we se-bining a general purpose feature extractor (that we have

65



initially developed for experimenting with a variety of ad-
ditional features) developed in Java, with a collection of
Perl scripts linking the other components of the system,
which are based on thepidminerlibrary. This is a gen-
eral purpose implementation supporting also severalielass
fication algorithms. Since the CPU time spent for the extrac-
tion of features and solver selection has to be made negli-
gible, we developed an optimized versionné-Asp. The
goal was to optimize the interaction among system compo-
nents and further improve their efficiency. To this end, we
have re-engineered the feature extractor, enabling itad re
ground instances expressed in the numeric format used by
GRINGO. Furthermore, we have integrated it with an imple-
mentation of the kNN algorithm built on top of the ANN
library (www.cs.umd.edu/ ~mount/ANN) in the same
binary developed in C++. This way the new implementation
minimizes the overhead introduced by solver selection.

We now present the results of an experiment in which we
compare the old implementation ®fe-AsP, labelledME-
AsPPld with the new one, labellesiE-ASP™® . In this ex-
periment, assessing solving performance, we useGo
as grounder for both implementations, and we considered
problems belonging to theP andBeyond NRclasses of the
competition (i.e., the grounder and domains considered by
ME-ASP!? (Maratea, Pulina, and Ricca 2014a)). The induc-
tive model used irME-ASP**" was the same used ME-
AsP’!? (details are reported in (Maratea, Pulina, and Ricca
2014a)). The plot in Figure 1 (top) depicts the performance
of both ME-ASP’'® and ME-ASP™" (dotted red and solid
blue lines in the plot, respectively). Considering the ltota
amount ofNP andBeyond NHnstances evaluated at the 3rd
ASP Competition (140)ME-ASP™*" solved 92 instances
(77 NP and 15Beyond NP in about 4120 seconds, while
ME-ASP’'? solved 77 instances (82P and 15Beyond NP
in about 6498 seconds. We report an improvement both in
the total amount of solved instancesH-AsP**" is able to
solve 66% of the whole set of instances, while-Asp*®
stops at 51%) and in the average CPU time of solved in-
stances (about 45 seconds against 84).

The improvements afiE-ASP** are due to its optimized
implementation. Once feature extraction and solver selec-
tion are made very efficient, it is possible to extract feagur

600

--------- ME-ASP~new (dIv)
ME-ASP”~new (gringo)
ME-ASP~gr
=« == SOTA

500 -

400 +

300

200

100

Figure 1:Performance of1e-ASP’'? andME-ASP™*® on NP and
Beyond NHFnstances evaluated at the 3rd ASP Competition (top);
performance ofuE-ASP?", its engines andOTA on the complete
set of instances evaluated at the 3rd ASP Competition (indttim

the z-axis it is shown the total amount of solved instances, while
y-axis reports the CPU time in seconds.

grounders’ performance, which is crucial in thelass.

The plot in Figure 1 (bottom) shows the performance of
the aforementioned solvers. In the plot, we depict the per-
formance ofMe-AsP*" (dlv) with a red dotted lineme-
ASP* (gringo) with a solid blue lineme-AsPI” with a
double dotted dashed yellow line, and, finally, with a dotted
dashed black line we denote the performance ofgbga
solver. Looking at the plot, we can see that-Asp*c®
(gringo) solves more instances that-AspP** (dlv) — 126
and 111, respectively — while both are outperformeaigy
AsSPY”, that is able to solve 134 instances. The average CPU
time of solved instances fane-AspP™<? (dlv), ME-ASP*¢?
(gringo) andvE-ASPY" is 86.86, 67.93 and 107.82 seconds,
respectively. Looking at the bottom plot in Figure 1, con-
cerning the performance of theoTA solver, we report that
itis able to solve 173 instances out of a total of 200 instance
(evaluated at the 3rd ASP Competition), highlighting room

for more instances and the engines are called in advance for further improving this preliminary version afe-Asp9".

w.r.t. what happens iME-ASP°'¢. This results in more in-
stances that are processed and solvedByasP*** within
the timeout.

Assessment of the complete system. We developed a pre-
liminary implementation of a grounder selector, which com-
bines a feature extractor for non-ground programs written i
Java, and an implementation of the PART decision list gen-
erator, as mentioned in the previous section. The grounder
selector is then combined withe-AsP¢®.

We now present the results of an experiment in which
we compareMe-ASPY" with ME-ASP™", and thesoTA
solver. ME-ASP*" coupled with DLV (resp. ®INGO) is
denoted byme-AsP* (dlv) (resp.ME-ASP**" (gringo)).

In this case we considered all the benchmark problems of
the 3rd ASP Competition, including the ones belonging to
the P class. Indeed, in this case we are interested also in

66

Indeed, the current classification model predictIG50

for most of theNP instances, but having a more detailed look
at the results, we notice that Asp andiDpP with GRINGO
solve both 72 instances, while using DLV they solve 93 and
92 instances, respectively. A detailed analysis of thegperf
mance of the various ASP solvers with both grounders can
be found in (Maratea, Pulina, and Ricca 2013).

It is also worth mentioning that the output formats of
GRINGO and DLV differ, thus there are combinations
grounder/solver that require additional conversion siaps
our implementation. Since the new feature extractor is de-
signed to be compliant with the numeric format produced
by GRINGO, if DLV is selected as grounder then the non-
ground program is instantiated twice. Moreover, if DLV is
selected as grounder, and it is not selected also as solver,
the produced propositional program is fed in gringo to be



converted in numeric format. These additional steps, due to
technical issues, result in a suboptimal implementation of
the execution pipeline that could be further optimized iseca
both grounders would agree on a common output format.

Conclusion. In this paper we presented improvements to the
multi-engine ASP solveme-ASP. Experiments show that
(i) the new implementation offe-AsP is more efficient,
and (i7) the straight application of the multi-engine recipe
to the instantiation phase is already beneficial. Diregtion
for future research include exploiting the full potentidl o
the approach by predicting the pair grounder+solver, and im
porting policy adaptation techniques employed in (Maratea
Pulina, and Ricca 2014b).

Acknowledgments. This research has been partly supported
by Regione Calabria under project PIA KnowRex POR
FESR 2007- 2013 BURC n. 49 s.s. n. 1 16/12/2010, the
Italian Ministry of University and Research under PON
project “Ba2Know S.1.-LAB” n. PONO3PBO001, the Au-
tonomous Region of Sardinia (Italy) and the Port Authority
of Cagliari (Italy) under L.R. 7/2007, Tender 16 2011 projec
“DESCTOP, CRP-49656.

References

Rice, J. R. 1976. The algorithm selection probled-
vances in Computerk5:65-118.

Gelfond, M., and Lifschitz, V. 1988. The Stable Model
Semantics for Logic Programming. Logic Programming
1070-1080. Cambridge, Mass.: MIT Press.

Gelfond, M., and Lifschitz, V. 1991. Classical Negation in

Logic Programs and Disjunctive Databasd$GC 9:365—
385.

Eiter, T.; Gottlob, G.; and Mannila, H. 1997. Disjunctive
Datalog.ACM TODS22(3):364—-418.

Frank, E., and Witten, I. H. 1998. Generating accurate rule
sets without global optimization. CML’98, 144.

Marek, V. W., and Truszczyhski, M. 1998. Stable mod-
els and an alternative logic programming paradigdoRR
€s.LO/9809032.

Niemeld, . 1998. Logic Programs with Stable Model Se-

mantics as a Constraint Programming ParadigmCANR

98 Workshop72—-79.

Gomes, C. P.,, and Selman, B. 2001. Algorithm portfolios.
Artificial Intelligencel26(1-2):43—-62.

Potsdam, U. since 2002. asparagus homepatgtp
/lasparagus.cs.uni-potsdam.de/

Simons, P.; Niemela, I.; and Soininen, T. 2002. Extending
and Implementing the Stable Model Semantidsttificial
Intelligence138:181-234.

Baral, C. 2003Knowledge Representation, Reasoning and
Declarative Problem Solvingrlempe, Arizona: CUP.

Lierler, Y. 2005. Disjunctive Answer Set Programming via
Satisfiability. INLPNMR 05 LNCS 3662, 447-451.

Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.rie

S.; and Scarcello, F. 2006. The DLV System for Knowledge
Representation and Reasonid®gM TOCL7(3):499-562.

67

Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. Conflict-driven answer set solving.|ICAI-07, 386—
392.

Gebser, M.; Schaub, T.; and Thiele, S. 2007. GrinGo : A
New Grounder for Answer Set Programming. URNMR
2007, LNCS 4483, 266-271.

Marién, M.; Wittocx, J.; Denecker, M.; and Bruynooghe, M.
2008. Sat(id): Satisfiability of propositional logic exted
with inductive definitions. I'BAT 08 LNCS, 211-224.
O’Mahony, E.; Hebrard, E.; Holland, A.; Nugent, C.; and
O’Sullivan, B. 2008. Using case-based reasoning in an al-
gorithm portfolio for constraint solving. ICAICS 08

Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
SATzilla: Portfolio-based algorithm selection for SAJAIR
32:565-606.

Janhunen, T.; Niemela, I.; and Sevalnev, M. 2009. Com-
puting stable models via reductions to difference logic. In
LPNMR 09 LNCS, 142-154.

Pulina, L., and Tacchella, A. 2009. A self-adaptive multi-
engine solver for quantified boolean formula@onstraints
14(1):80-116.

Gebser, M.; Kaminski, R.; Kaufmann, B.; Schaub, T
Schneider, M. T.; and Ziller, S. 2011. A portfolio solver
for answer set programming: Preliminary reportLPNMR
11, LNCS 6645, 352—-357.

Balduccini, M. 2011. Learning and using domain-specific
heuristics in ASP solverAICOM 24(2):147-164.

Ben-Eliyahu R.; Dechter R. 1994. Propositional Semantics
for Disjunctive Logic Program#nnals of Mathematics and
Artificial Intelligence 12:53—-87, Science Publishers.

Calimeri, F.; lanni, G.; Ricca, F.; et al. 2011. The Third
Answer Set Programming Competition: Preliminary Report
of the System Competition Track. Proc. of LPNMR11.
388-403 LNCS.

Hoos, H.; Kaminski, R.; Schaub, T.; and Schneider, M. T.
2012. ASPeed: Asp-based solver scheduling. Téch.
Comm. of ICLP 2012s0lume 17 ofLIPIcs, 176-187.
Maratea, M.; Pulina, L.; and Ricca, F. 2012b. The multi-
engine asp solver me-asp. JELIA 2012, LNCS 7519,
484-487.

Silverthorn, B.; Lierler, Y.; and Schneider, M. 2012. Swrvi
ing solver sensitivity: An asp practitioner’s guide. Tach.
Comm. of ICLP 2012s0lume 17 ofLIPIcs, 164—-175.
Alviano, M.; Calimeri, F.; Charwat, G.; et al. 2013. The
fourth answer set programming competition: Preliminary re
port. INLPNMR LNCS 8148, 42-53.

Maratea, M.; Pulina, L.; and Ricca, F. 2013. Automated se-
lection of grounding algorithm in answer set programming.
In Al* 1A 2013. International Publishing. 73—84.

Maratea, M.; Pulina, L.; and Ricca, F. 2014a. A multi-
engine approach to answer-set programmifg.eory and
Practice of Logic ProgrammingDOl: http://dx.doi.
0rg/10.1017/S1471068413000094

Maratea, M.; Pulina, L.; and Ricca, F. 2014b. Multi-engine
asp solving with policy adaptatiodLC. In Press.



Preliminary Report on WASP 2.0*

Mario Alviano, Carmine Dodaro and Francesco Ricca
Department of Mathematics and Computer Science, University of Calabria, Italy
{alviano, dodaro, ricca}@mat.unical.it

Abstract

Answer Set Programming (ASP) is a declarative pro-
gramming paradigm. The intrinsic complexity of the
evaluation of ASP programs makes the development of
more effective and faster systems a challenging research
topic. This paper reports on the recent improvements of
the ASP solver WASP. WASP is undergoing a refactor-
ing process which will end up in the release of a new and
more performant version of the software. In particular
the paper focus on the improvements to the core evalu-
ation algorithms working on normal programs. A pre-
liminary experiment on benchmarks from the 3rd ASP
competition belonging to the NP class is reported. The
previous version of WASP was often not competitive
with alternative solutions on this class. The new version
of WASP shows a substantial increase in performance.

Introduction

Answer Set Programming (ASP) (Gelfond and Lifschitz
1991) is a declarative programming paradigm which has
been proposed in the area of non-monotonic reasoning and
logic programming. The idea of ASP is to represent a given
computational problem by a logic program whose answer
sets correspond to solutions, and then use a solver to find
them.

Despite the intrinsic complexity of the evaluation of ASP,
after twenty years of research many efficient ASP sys-
tems have been developed. (e.g. (Alviano et al. 2011;
Gebser et al. 2007; Lierler and Maratea 2004)). The avail-
ability of robust implementations made ASP a powerful tool
for developing advanced applications in the areas of Arti-
ficial Intelligence, Information Integration, and Knowledge
Management. These applications of ASP have confirmed the
viability of the use of ASP. Nonetheless, the interest in de-
veloping more effective and faster systems is still a crucial
and challenging research topic, as witnessed by the results
of the ASP Competition series (see e.g. (Calimeri, lanni, and
Ricca 2014)).

*This research has been partly supported by the European Com-
mission, European Social Fund of Regione Calabria, the Regione
Calabria under project PIA KnowRex POR FESR 2007- 2013
BURC n. 49 s.s. n. 1 16/12/2010, and the Italian Ministry of
University and Research under PON project “Ba2Know S.I.-LAB”
n. PONO3PE_0001.

68

This paper reports on the recent improvements of the
ASP solver for propositional programs WASP (Alviano et
al. 2013). The new version of WASP is inspired by several
techniques that were originally introduced for SAT solving,
like the Davis-Putnam-Logemann-Loveland (DPLL) back-
tracking search algorithm (Davis, Logemann, and Love-
land 1962), clause learning (Zhang et al. 2001), back-
Jjumping (Gaschnig 1979), restarts (Gomes, Selman, and
Kautz 1998), and conflict-driven heuristics (Moskewicz et
al. 2001). The mentioned SAT-solving methods have been
adapted and combined with state-of-the-art pruning tech-
niques adopted by modern native ASP solvers (Alviano et al.
2011; Gebser et al. 2007). In particular, the role of Boolean
Constraint Propagation in SAT-solvers is taken by a proce-
dure combining the unit propagation inference rule with in-
ference techniques based on ASP program properties. In
particular, support inferences are implemented via Clark’s
completion, and the implementation of the well-founded op-
erator is based on source pointers (Simons, Niemeld, and
Soininen 2002).

In the following, we overview the techniques imple-
mented by the 2.0 version of WASP, focusing on the im-
provements to the core evaluation algorithms working on
normal programs. Then we compare the new implementa-
tion with the previous one.

We also report on a preliminary experiment in which we
compare the old and new versions of WASP with the lat-
est version of clasp, which is the solver that won the 3rd
and 4th edition of the ASP competition. Benchmarks were
taken from the 3rd ASP competition and belong to the NP
class, i.e., the class of problems where the previous version
of WASP was often not competitive with alternative solu-
tions. The result show that WASP 2.0 is substantially faster
than WASP 1.0 and is often competitive with clasp.

ASP Language

Let A be a countable set of propositional atoms. A literal
is either an atom (a positive literal), or an atom preceded by
the negation as failure symbol ~ (a negative literal). The
complement of a literal ¢ is denoted {,ie.,a = ~a and
~a = a for an atom a. This notation extends to sets of
literals, i.e., L := {¢ | ¢ € L} for a set of literals L.



A program is a finite set of rules of the following form:
(1)

where n > m > 0 and each a; ¢ = 0,...,n) is
an atom. The atom a is called head, and the conjunc-
tion ap,...,Qm,~Am+1,---,~ay is referred to as body.
Rule r is said to be regular if H(r) # L, where L
is a fixed atom in A, and a constraint otherwise. For
a rule r of the form (1), the following notation is also
used: H (r) denotes the head atom ag; B(r) denotes the set
{a1, .y Qm,~Ami1, ..., ~ap} of body literals; BT (r) and
B~ (r) denote the set of atoms appearing in positive and neg-
ative body literals, respectively; C(r) := H(r)UB(r) is the
clause representation of . o

An interpretation I is a set of literals, ie., I C AU A.
Intuitively, literals in [ are true, literals whose complements
are in I are false, and all other literals are undefined. I is
total if there are no undefined literals, and I is inconsistent
if L € I or there is a € A such that {a,~a} C I. An
interpretation I satisfies a rule r if C'(r) NI # (), while
I violates r if C(r) C I. A model of a program P is a
consistent, total interpretation satisfying all rules of P. The
semantics of a program P is given by the set of its answer
sets (or stable models) (Gelfond and Lifschitz 1991), where
an interpretation I is an answer set for P if I is a subset-
minimal model of the reduct P! obtained by deleting from
P each rule r such that B~ (r)NI # (), and then by removing
all the negative literals from the remaining rules.

ag = a1y Ay ~YAm41, - - -, ~0p

Answer Set Computation in WASP 2.0

In this section we review the algorithms implemented in
WASP 2.0. The presentation is properly simplified to focus
on the main principles.

Completion and Program Simplification

The first step of the evaluation in WASP 2.0 is a program
transformation step. The input program first undergoes a
Clark’s completion transformation step, and then is simpli-
fied applying techniques in the style of satelite (Eén and
Biere 2005). Given a rule » € P, let auz, denote a fresh
atom, i.e., an atom not appearing elsewhere. The completion
of P, denoted Comp(P), consists of the following clauses:

o {~a,auz,,,...,auz,, } for each atom a occurring in P,
where 71, ..., r, are the rules of P whose head is a;

e {H(r),~aux,} and {auz,} U B(r) for each rule r € P;
o {~aux,,l} foreachr € P and ¢ € B(r).

After the computation of Clark’s completion, simplification
techniques are applied (Eén and Biere 2005). These consist
of polynomial algorithms for strengthening and for remov-
ing redundant clauses, and also include atoms elimination
by means of clause rewriting.

Main Algorithm

An answer set of a given propositional program Comp(P) is
computed in WASP 2.0 by using Algorithm 1, which is simi-
lar to the DPLL procedure in SAT solvers. Initially, interpre-
tation I is set to {~_L }. Function Propagate (line 2) extends

69

Algorithm 1: Compute Answer Set

Input : An interpretation I for a program Comp(P)
Output: An answer set for Comp(P) or Incoherent
begin
while Propagate(/) do
if I is total then

L return [;

£ := ChooseUndefinedLiteral();
I' := ComputeAnswerSet(I U {¢});
if I’ # Incoherent then

L return [’;

if there are violated (learned) clauses then
10 L return Incoherent;

=B IS Y] AW N -

L=

11 A;alyzeConﬂictAndLearnClauses(I );
12 return Incoherent,

Function Propagate([)

1 while UnitPropagation(/) do
2 L if not WellFoundedPropagation(/) then
3

L return true;
4 return false;

I with those literals that can be deterministically inferred.
This function returns false if an inconsistency (or conflict) is
detected, true otherwise. When no inconsistency is detected,
interpretation [ is returned if total (lines 2—3). Otherwise, an
undefined literal, say /, is chosen according to some heuris-
tic criterion (line 5). Then computation then proceeds with
a recursive call to ComputeAnswerSet on I U {¢} (line 6).
In case the recursive call returns an answer set, the compu-
tation ends returning it (lines 7-8). Otherwise, the algorithm
unrolls choices until consistency of I is restored (backjump-
ing; lines 9-10), and the computation resumes by propagat-
ing the consequences of the clause learned by the conflict
analysis. Conflicts detected during propagation are analyzed
by procedure AnalyzeConflictAndLearnClauses (line 11).

The main algorithm is usually complemented with some
heuristic techniques that control the number of learned
clauses (which may be exponential in number), and possi-
bly restart the computation to explore different branches of
the search tree. Moreover, a crucial role is played by the
heuristic criteria used for selecting branching literals. WASP
2.0 adopts the same branching and deletion heuristics of the
SAT solver MiniSAT (Eén and Sorensson 2003). The restart
policy is based on the sequence of thresholds introduced in
(Luby, Sinclair, and Zuckerman 1993).

Propagation and clause learning are described in more de-
tail in the following.

Propagation. WASP 2.0 implements two deterministic in-
ference rules for pruning the search space during answer
set computation. These propagation rules are named unit
and well-founded. Unit propagation is applied first (line 1



of function Propagate). It returns false if an inconsis-
tency arises. Otherwise, well-founded propagation is ap-
plied (line 2). Function WellFoundedPropagation may learn
an implicit clause in P, in which case true is returned and
unit propagation is applied on the new clause. When no new
clause can be learned by WellFoundedPropagation, function
Propagate returns true to report that no inconsistency has
been detected. More in details, unit propagation is as in SAT
solvers: An undefined literal ¢ is inferred by unit propaga-
tion if there is a rule r that can be satisfied only by /, i.e.,
r is such that £ € C(r) and C(r) \ {¢} C I. Concerning
well-founded propagation, we must first introduce the no-
tion of unfounded set. A set X of atoms is unfounded if
for each rule 7 such that H(r) N X # 0, at least one of
the following conditions is satisfied: (1) B(r) N1 # 0; (ii)
Bt(r)ynX #0; Gii) I N H(r) \ X # (. Intuitively, atoms
in X can have support only by themselves. When an un-
founded set X is found, function WellFoundedPropagation
learns a clause forcing falsity of an atom in X. Clauses for
other atoms in X will be learned on subsequent calls to the
function, unless an inconsistency arises during unit propa-
gation. In case of inconsistencies, indeed, the unfounded set
X is recomputed.

Conflict Analysis and Learning. Clause learning ac-
quires information from conflicts in order to avoid exploring
the same search branch several times. WASP 2.0 adopts a
learning schema based on the concept of the first Unique
Implication Point (UIP) (Moskewicz et al. 2001), which
is computed by analyzing the so-called implication graph.
Roughly, the implication graph contains a node for each
literal in I, and arcs from ¢; to 4o (¢ = 1,...,n; n >
1) if literal ¢y is inferred by unit propagation on clause
{lo,...,¢,}. Each literal £ € I is associated with a deci-
sion level, corresponding to the depth nesting level of the
recursive call to ComputeAnswerSet on which £ is added to
I. A node n in the implication graph is a UIP for a decision
level d if all paths from the choice of level d to the conflict
literals pass through n. The first UIP is the UIP for the de-
cision level of the conflict that is closest to the conflict. The
learning schema is as follows: Let w be the first UIP. Let
L be the set of literals different form u occurring in a path
from w to the conflict literals. The learned clause comprises
u and each literal £ such that the decision level of / is lower
than the one of u and there is an arc (¢, £’) in the implication
graph for some ¢’ € L.

Comparing WASP 1.0 and WASP 2.0

In this section we compare WASP 2.0 to WASP 1.0. First of
all we observe that WASP 1.0 does not implement any pro-
gram transformation phase, whereas WASP 2.0 applies both
Clark’s completion and program simplification in the style
of (Eén and Biere 2005). The addition of this preprocess-
ing step brings advantages in both terms of simplifying the
implementation of the propagation procedure and in terms
performance. The Clark’s completion introduces a number
of clauses that represent support propagation, which is im-
plemented natively in WASP 1.0 instead. The subsequent

70

program simplification step optimizes the program by elimi-
nating redundant atoms (also introduced by the completion)
and shrinking definitions. This results in a program that is
usually easier to evaluate. Concerning the well-founded op-
erator both WASP 2.0 and WASP 1.0 compute unfounded
sets according to the source pointers (Simons, Niemeld, and
Soininen 2002) technique. WASP 1.0, which implements a
native inference rule, immediately infers unfounded atoms
as false, and updates a special implementation of the im-
plication graph. In contrast, WASP 2.0 learns a clause
representing the inference (also called loop formula) and
propagates it with unit propagation. This choice combined
with Clark’s completion allows to simplify conflict analy-
sis, learning and backjumping. Indeed, WASP 1.0 imple-
ments specialized variants of these procedures that require
the usage of complex data structures that are difficult to op-
timize. Since in WASP 2.0 literals are always inferred by the
UnitPropagation procedure, we could adopt an implementa-
tion of these strategies optimized as in modern SAT solvers.
Finally both WASP 2.0 and WASP 1.0 implement conflict-
driven branching heuristics. WASP 2.0 uses a branching
heuristic inspired to the one of MiniSAT, while WASP 1.0
uses an extension of the BerkMin (Goldberg and Novikov
2002) heuristics extended by adding a look-ahead technique
and an additional ASP-specific criterion.

Experiment

In this section we report the results of an experiment assess-
ing the performance of WASP 2.0. In particular, we com-
pare WASP 2.0 with WASP 1.0 and clasp. All the solvers
used gringo 3.0.5 (Gebser et al. 2011) as grounder. clasp
and WASP 1.0 has been executed with the same heuristic
setting used in (Alviano et al. 2013). Concerning clasp we
used the version 3.0.1. The experiment was run on a Mac
Pro equipped with two 3 GHz Intel Xeon X5365 (quad core)
processors, with 4 MB of L2 cache and 16 GB of RAM,
running Debian Linux 7.3 (kernel ver. 3.2.0-4-amd64). Bi-
naries were generated with the GNU C++ compiler 4.7.3-4
shipped by Debian. Time limit was set to 600 seconds. Per-
formance was measured using the tools pyrunlim and pyrun-
ner (https://github.com/alviano/python).

Tested instances are among those in the System Track of
the 3rd ASP Competition (Calimeri, Ianni, and Ricca 2014),
in particular all instances in the NP category. This category
includes planning domains, temporal and spatial schedul-
ing problems, combinatorial puzzles, graph problems, and
a number of real-world domains in which ASP has been ap-
plied. (See (Calimeri, Ianni, and Ricca 2014) for an exhaus-
tive description of the benchmarks.)

Table 1 summarizes the number of solved instances and
the average running times in seconds for each solver. In
particular, the first two columns report the total number of
instances (#) and the number of instances that are solved by
all solvers (#,;), respectively; the remaining columns report
the number of solved instances within the time-out (sol.),
and the running times averaged both over solved instances
(t) and over instances solved by all variants (;;).

We observe that WASP 2.0 outperforms WASP 1.0. In
fact, WASP 2.0 solved 17 instances more than WASP 1.0,



Table 1: Average running time and number of solved instances

clasp WASP 1.0 WASP 2.0

Problem # #,; | sol t ta sol. t ta sol. t ta

DisjunctiveScheduling 10 5 5 168 16.8 5 290 290 5 1884 1884
GraphColouring 10 3 4 88.0 206 3 505 505 3 33 33
HanoiTower 10 2 7 1260 498 2 2140 2140 7 525 183
KnightTour 10 6| 10 143 0.3 6 935 935| 10 16.0 0.6
Labyrinth 10 8 9 744 747 8 118.7 1187 | 10 858 847
MazeGeneration 10 10| 10 0.3 03| 10 19.9 199 | 10 2.7 2.7
MultiContextSystemQuerying 10 10| 10 5.1 5.1 10 1224 1224 | 10 9.4 9.4
Numberlink 10 6 8 211 0.6 6 243 243 7 8.7 5.5
PackingProblem 10 0 0 - - 0 - - 0 - -
SokobanDecision 10 51 10 1015 2.8 5 2128 2128 7 978 14.4
Solitaire 10 2 2 1249 1249 3 183.1 198.0 4 8.7 6.0
WeightAssignmentTree 10 1 5 1192 224 1 2973 2973 3 2823 979
Total 120 58 80 629 205 59 1241 956 | 76 68.7 34.6

and also the improvement on the average execution time is
sensible, with a percentage gain of around 64% on instances
solved by all systems. On the other hand, clasp is faster than
WASP 2.0, with a percentage gain of around 41 % on the
same instances. Moreover, clasp solved 4 instances more
than WASP 2.0.

Analyzing the results in more detail, there are some spe-
cific benchmarks where WASP 2.0 and clasp exhibit signif-
icantly performances. Two of these problems are Sokoban-
Decision and WeightAssignmentTree, where clasp solved 3
and 2 instances more than WASP 2.0, respectively, while
WASP 2.0 solved 2 instances more than clasp in Solitaire.
We also note that the performance of WASP deteriored in
DisjunctiveScheduling. This is due to the initial steps of the
computation, and in particular to the simplification proce-
dure, which in this case removes 80% of clauses and 99%
of atoms. However, there are cases in which simplifications
play a crucial role to improve performance of the answer
set search procedure. For example, in HanoiTower, where
WASP 2.0 performs better than other systems, more than
half of the variables are removed in a few seconds.

Related Work

WASP 1.0 is inspired by several techniques used in SAT
solving that were first introduced for Constraint Satisfaction
and QBF solving.

Some of these techniques were already adapted in
non-disjunctive ASP solvers like Smodels.. (Ward and
Schlipf 2004), clasp (Gebser et al. 2007), Smodels (Si-
mons, Niemeld, and Soininen 2002), Cmodels3 (Lierler and
Maratea 2004), and DLV (Ricca, Faber, and Leone 2006).
More in detail, WASP 2.0 differs from Cmodels3 (Lier-
ler and Maratea 2004) that are based on a rewriting into a
propositional formula and an external SAT solver. WASP
2.0 differs from DLV (Alviano et al. 2011) and the Smod-
els variants, which features a native implementation of all
inference rules. Our new solver is more similar to clasp,
but there are differences concerning the restart policy, con-
straint deletion and branching heuristics. WASP 2.0 adopts
as default a policy based on the sequence of thresholds in-

71

troduced in (Luby, Sinclair, and Zuckerman 1993), whereas
clasp employs by default a different policy based on geomet-
ric series. Concerning deletion of learned constraints, WASP
2.0 adopts a criterion inspired by MiniSAT, while clasp im-
plements a technique introduced in Glucose (Audemard and
Simon 2009). Moreover, clasp adopts a branching heuris-
tic based on BerkMin (Goldberg and Novikov 2002) with a
variant of the MOMS criterion which estimates the effect of
the candidate literals in short clauses.

Conclusion

In this paper we reported on the recent improvement of the
ASP solver WASP 1.0. We described the main improve-
ments on the evaluation procedure focusing on the improve-
ments to the core evaluation algorithms working on normal
programs. The new solver was compared with both its pre-
decessor and the latest version of clasp on on benchmarks
belonging to the NP class, where WASP 1.0 was not com-
petitive. The result is very encouraging, since WASP 2.0
improves substantially w.r.t. WASP 1.0 and is often compet-
itive with clasp.

Future work concerns the reengineering of disjunctive
rules, aggregates, and weak constraints, as well as the in-
troduction of a native implementation of choice rules.

References

Alviano, M.; Faber, W.; Leone, N.; Perri, S.; Pfeifer, G.; and
Terracina, G. 2011. The disjunctive datalog system DLV.
In Gottlob, G., ed., Datalog 2.0, volume 6702. Springer
Berlin/Heidelberg. 282-301.

Alviano, M.; Dodaro, C.; Faber, W.; Leone, N.; and Ricca, F.
2013. Wasp: A native asp solver based on constraint learn-
ing. In Cabalar, P,, and Son, T. C., eds., LPNMR, volume
8148 of LNCS, 54-66. Springer.

Audemard, G., and Simon, L. 2009. Predicting learnt
clauses quality in modern sat solvers. In Boutilier, C., ed.,
1JCAI, 399-404.

Calimeri, F.; Tanni, G.; and Ricca, F. 2014. The third open



answer set programming competition. Theory and Practice
of Logic Programming 14(1):117-135.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A Ma-
chine Program for Theorem Proving. Communications of
the ACM 5:394-397.

Eén, N., and Biere, A. 2005. Effective preprocessing in
sat through variable and clause elimination. In SAT, volume
3569 of LNCS, 61-75. Springer.

Eén, N., and Sorensson, N. 2003. An extensible sat-solver.
In Giunchiglia, E., and Tacchella, A., eds., SAT, volume
2919 of LNCS, 502-518. Springer.

Gaschnig, J. 1979. Performance measurement and analysis
of certain search algorithms. Ph.D. Dissertation, Carnegie
Mellon University, Pittsburgh, PA, USA. Technical Report
CMU-CS-79-124.

Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. Conflict-driven answer set solving. In IJCAI, 386—
392. Morgan Kaufmann Publishers.

Gebser, M.; Kaminski, R.; Konig, A.; and Schaub, T. 2011.
Advances in gringo series 3. In Delgrande, J. P, and
Faber, W., eds., LPNMR, volume 6645 of LNCS, 345-351.
Springer.

Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Genera-
tion Computing 9:365-385.

Goldberg, E., and Novikov, Y. 2002. BerkMin: A Fast
and Robust Sat-Solver. In Design, Automation and Test in
Europe Conference and Exposition (DATE 2002), 142—-149.
Paris, France: IEEE Computer Society.

Gomes, C. P;; Selman, B.; and Kautz, H. A. 1998. Boosting
Combinatorial Search Through Randomization. In Proceed-
ings of AAAI/IAAI 1998, 431-437. AAAI Press.

Lierler, Y., and Maratea, M. 2004. Cmodels-2: SAT-based
Answer Set Solver Enhanced to Non-tight Programs. In Lif-
schitz, V., and Niemeld, 1., eds., Proceedings of LPNMR,
volume 2923 of LNAI, 346-350. Springer.

Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal
speedup of las vegas algorithms. Inf. Process. Lett. 47:173—
180.

Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an Efficient SAT Solver.
In Proceedings of the 38th DAC, 530-535. Las Vegas, NV,
USA: ACM.

Ricca, F.; Faber, W.; and Leone, N. 2006. A Backjumping
Technique for Disjunctive Logic Programming. 19(2):155—
172.

Simons, P.; Niemeld, I.; and Soininen, T. 2002. Extending
and Implementing the Stable Model Semantics. Artificial
Intelligence 138:181-234.

Ward, J., and Schlipf, J. S. 2004. Answer Set Programming
with Clause Learning. In Lifschitz, V., and Niemeli, L., eds.,
Proceedings of the 7th International Conference on Logic
Programming and Non-Monotonic Reasoning (LPNMR-7),
volume 2923 of LNAI, 302-313. Springer.

72

Zhang, L.; Madigan, C. F.; Moskewicz, M. W.; and Malik,
S. 2001. Efficient Conflict Driven Learning in Boolean Sat-
isfiability Solver. In Proceedings of the ICCAD, 279-285.



On Strong and Default Negation in Logic Program Updates

Martin Slota
CENTRIA
New University of Lisbon

Abstract

Existing semantics for answer-set program updates fall into
two categories: either they consider only strong negation in
heads of rules, or they primarily rely on default negation in
heads of rules and optionally provide support for strong nega-
tion by means of a syntactic transformation.

In this paper we pinpoint the limitations of both these ap-
proaches and argue that both types of negation should be first-
class citizens in the context of updates. We identify principles
that plausibly constrain their interaction but are not simulta-
neously satisfied by any existing rule update semantics. Then
we extend one of the most advanced semantics with direct
support for strong negation and show that it satisfies the out-
lined principles as well as a variety of other desirable proper-
ties.

1 Introduction

The increasingly common use of rule-based knowledge rep-
resentation languages in highly dynamic and information-
rich contexts, such as the Semantic Web (Berners-Lee,
Hendler, and Lassila 2001), requires standardised support
for updates of knowledge represented by rules. Answer-set
programming (Gelfond and Lifschitz 1988; 1991) forms the
natural basis for investigation of rule updates, and various
approaches to answer-set program updates have been ex-
plored throughout the last 15 years (Leite and Pereira 1998;
Alferes et al. 1998; 2000; Eiter et al. 2002; Leite 2003;
Sakama and Inoue V2003; Alferes et al. 2005; Banti et al.
2005; Zhang 2006; Sefranek 2006; Delgrande, Schaub, and
Tompits 2007; Osorio and Cuevas 2007; Sefranek 2011;
Kriimpelmann 2012).

The most straightforward kind of conflict arising be-
tween an original rule and its update occurs when the origi-
nal conclusion logically contradicts the newer one. Though
the technical realisation and final result may differ signif-
icantly, depending on the particular rule update semantics,
this kind of conflict is resolved by letting the newer rule
prevail over the older one. Actually, under most semantics,
this is also the only type of conflict that is subject to auto-
matic resolution (Leite and Pereira 1998; Alferes et al. 2000;
Eiter et al. 2002; Alferes et al. 2005; Banti et al. 2005;
Delgrande, Schaub, and Tompits 2007; Osorio and Cuevas
2007).

Martin Balaz
Faculty of Mathematics, Physics and Informatics
Comenius University

73

Joao Leite
CENTRIA
New University of Lisbon

From this perspective, allowing for both strong and de-
fault negation to appear in heads of rules is essential for
an expressive and universal rule update framework (Leite
2003). While strong negation is the natural candidate here,
used to express that an atom becomes explicitly false, default
negation allows for more fine-grained control: the atom only
ceases to be true, but its truth value may not be known after
the update. The latter also makes it possible to move be-
tween any pair of epistemic states by means of updates, as
illustrated in the following example:

Example 1.1 (Railway crossing (Leite 2003)). Suppose that
we use the following logic program to choose an action at a
railway crossing:

cross «— —train. wait < train. listen < ~train, ~—train.

The intuitive meaning of these rules is as follows: one should
cross if there is evidence that no train is approaching; wait
if there is evidence that a train is approaching; listen if there
is no such evidence.

Consider a situation where a train is approaching, repre-
sented by the fact (train.). After this train has passed by, we
want to update our knowledge to an epistemic state where
we lack evidence with regard to the approach of a train. If
this was accomplished by updating with the fact (—train.),
we would cross the tracks at the subsequent state, risking be-
ing killed by another train that was approaching. Therefore,
we need to express an update stating that all past evidence
for an atom is to be removed, which can be accomplished by
allowing default negation in heads of rules. In this scenario,
the intended update can be expressed by the fact (~train.).

With regard to the support of negation in rule heads, exist-
ing rule update semantics fall into two categories: those that
only allow for strong negation, and those that primarily con-
sider default negation. As illustrated above, the former are
unsatisfactory as they render many belief states unreachable
by updates. As for the latter, they optionally provide support
for strong negation by means of a syntactic transformation.

Two such transformations are known from the literature,
both of them based on the principle of coherence: if an atom
p is true, its strong negation —p cannot be true simultane-
ously, so ~—p must be true, and also vice versa, if —p is
true, then so is ~p. The first transformation, introduced in
(Alferes and Pereira 1996), encodes this principle directly



by adding, to both the original program and its update, the
following two rules for every atom p:

This way, every conflict between an atom p and its strong
negation —p directly translates into two conflicts between the
objective literals p, —p and their default negations. However,
the added rules lead to undesired side effects that stand in
direct opposition with basic principles underlying updates.
Specifically, despite the fact that the empty program does not
encode any change in the modelled world, the stable models
assigned to a program may change after an update by the
empty program.

This undesired behaviour is addressed in an alternative
transformation from (Leite 2003) that encodes the coherence
principle more carefully. Nevertheless, this transformation
also leads to undesired consequences, as demonstrated in the
following example:

Example 1.2 (Faulty sensor). Suppose that we collect data
from sensors and, for security reasons, multiple sensors are
used to supply information about the critical fluent p. In case
of a malfunction of one of the sensors, we may end up with an
inconsistent logic program consisting of the following two
facts:

b. -p-

At this point, no stable model of the program exists and ac-
tion needs to be taken to find out what is wrong. If a problem
is found in the sensor that supplied the first fact (p.), after
the sensor is repaired, this information needs to be reset by
updating the program with the fact (~p.). Following the uni-
versal pattern in rule updates, where recovery from conflict-
ing states is always possible, we expect that this update is
sufficient to assign a stable model to the updated program.
However, the transformational semantics for strong nega-
tion defined in (Leite 2003) still does not provide any stable
model — we remain without a valid epistemic state when one
should in fact exist.

In this paper we address the issues with combining strong
and default negation in the context of rule updates. Based on
the above considerations, we formulate a generic desirable
principle that is violated by the existing approaches. Then
we show how two distinct definitions of one of the most
well-behaved rule update semantics (Alferes et al. 2005;
Banti et al. 2005) can be equivalently extended with sup-
port for strong negation. The resulting semantics not only
satisfies the formulated principle, but also retains the for-
mal and computational properties of the original semantics.
More specifically, our main contributions are as follows:

e based on Example 1.2, we introduce the early recovery
principle that captures circumstances under which a stable
model after a rule update should exist;

o we extend the well-supported semantics for rule updates
(Banti et al. 2005) with direct support for strong negation;

e we define a fixpoint characterisation of the new semantics,
based on the refined dynamic stable model semantics for
rule updates (Alferes et al. 2005);

74

e we show that the defined semantics enjoy the early recov-
ery principle as well as a range of desirable properties for
rule updates known from the literature.

This paper is organised as follows: In Sect. 2 we present
the syntax and semantics of logic programs, generalise the
well-supported semantics from the class of normal programs
to extended ones and define the rule update semantics from
(Alferes et al. 2005; Banti et al. 2005). Then, in Sect. 3, we
formally establish the early recovery principle, define the
new rule update semantics for strong negation and show that
it satisfies the principle. In Sect. 4 we introduce other es-
tablished rule update principles and show that the proposed
semantics satisfies them. We discuss our findings and con-
clude in Sect. 5.!

2 Background

In this section we introduce the necessary technical back-
ground and generalise the well-supported semantics (Fages
1991) to the class of extended programs.

2.1 Logic Programs

In the following we present the syntax of non-disjunctive
logic programs with both strong and default negation in
heads and bodies of rules, along with the definition of stable
models of such programs from (Leite 2003) that is equiv-
alent to the original definitions based on reducts (Gelfond
and Lifschitz 1988; 1991; Inoue and Sakama 1998). Further-
more, we define an alternative characterisation of the stable
model semantics: the well-supported models of normal logic
programs (Fages 1991).

We assume that a countable set of propositional atoms A
is given and fixed. An objective literal is an atom p € A or
its strong negation —p. We denote the set of all objective lit-
erals by L. A default literal is an objective literal preceded
by ~ denoting default negation. A literal is either an objec-
tive or a default literal. We denote the set of all literals by £*.
As a convention, double negation is absorbed, so that =—p
denotes the atom p and ~~I denotes the objective literal [.
Given a set of literals S, we introduce the following nota-
tion: ST = {lel|leS}HL S ={lel|~leS}
~S={~L|LeS}

An extended rule is a pair 1 = (H,,B,) where H, is a
literal, referred to as the head of 7, and B, is a finite set of
literals, referred to as the body of w. Usually we write 7 as
(Hy < Bt ,~B_.). A generalised rule is an extended rule
that contains no occurrence of —, i.e., its head and body con-
sist only of atoms and their default negations. A normal rule
is a generalised rule that has an atom in the head. A fact is
an extended rule whose body is empty and a tautrology is
any extended rule 7 such that H, € B,. An extended (gen-
eralised, normal) program is a set of extended (generalised,
normal) rules.

An interpretation is a consistent subset of the set of ob-
jective literals, i.e., a subset of £ does not contain both p an
—p for any atom p. The satisfaction of an objective literal

'An extended version of this paper with all the proofs is avail-
able as (Slota, Balaz, and Leite 2014).



[, default literal ~I, set of literals S, extended rule 7 and
extended program P in an interpretation J is defined in the
usual way: J = liffl € J; J = ~Liffl ¢ J; J |= Siff
JE Lforall L € S;J = wiff J = B, implies J = Hg;
J = Piff J =7 forall m € P. Also, J is a model of P if
J | P, and P is consistent if it has a model.

Definition 2.1 (Stable model). Let P be an extended pro-
gram. The set [ P]., of stable models of P consists of all
interpretations J such that

J* = least(P U def(J))

wheredef(J) ={~Il. |l e L\ J}, J* = JU~L\J) and
least(+) denotes the least model of the argument program in
which all literals are treated as propositional atoms.

A level mapping is a function that maps every atom to
a natural number. Also, for any default literal ~p, where
p € A, and finite set of atoms and their default nega-
tions S, £(~p) = £(p), £*(S) = min{¢(L) | L € S} and
1(S) =max{/(L) | L€ S}.

Definition 2.2 (Well-supported model of a normal program).
Let P be a normal program and { a level mapping. An inter-
pretation J C A is a well-supported model of P w.r.t. £ if
the following conditions are satisfied:

1. J is a model of P;
2. For every atom p € J there exists a rule m € P such that

Hr =pAJEB Al(Hy) > (1(By) .

The set [ P], of well-supported models of P consists of all
interpretations J C A such that J is a well-supported model
of P w.r.t. some level mapping.

As shown in (Fages 1991), well-supported models coin-
cide with stable models:

Proposition 2.3 ((Fages 1991)). Let P be a normal pro-
gram. Then, [ P],s = [PJlon-

2.2 Well-supported Models for Extended
Programs

The well-supported models defined in the previous section
for normal logic programs can be generalised in a straight-
forward manner to deal with strong negation while maintain-
ing their tight relationship with stable models (c.f. Proposi-
tion 2.3). This will come useful in Subsect. 2.3 and Sect. 3
when we discuss adding support for strong negation to se-
mantics for rule updates.

We extend level mappings from atoms and their de-

fault negations to all literals: An (extended) level map-
ping ¢ maps every objective literal to a natural number.
Also, for any default literal ~[ and finite set of literals .S,
{(~1) = L(p), £(S) = min{¢(L) | L€ S} and £1(S) =
max{¢(L) | L€ S}
Definition 2.4 (Well-supported model of an extended pro-
gram). Let P be an extended program and ¢ a level map-
ping. An interpretation J is a well-supported model of P
w.r.t. £ if the following conditions are satisfied:

1. J is a model of P;

75

2. For every objective literal | € J there exists a rulem € P
such that

Hr =IAJEBr A(Hg) > 01(B,) .

The set [ P], of well-supported models of P consists of all
interpretations J such that J is a well-supported model of P
w.r.t. some level mapping.

We obtain a generalisation of Prop. 2.3 to the class of ex-
tended programs:

Proposition 2.5. Let P be an extended program. Then,
IIPHWS = [[PHSM‘

2.3 Rule Updates

We turn our attention to rule updates, starting with one of
the most advanced rule update semantics, the refined dy-
namic stable models for sequences of generalised programs
(Alferes et al. 2005), as well as the equivalent definition of
well-supported models (Banti et al. 2005). Then we define
the transformations for adding support for strong negation
to such semantics (Alferes and Pereira 1996; Leite 2003).

A rule update semantics provides a way to assign stable
models to a pair or sequence of programs where each com-
ponent represents an update of the preceding ones. Formally,
a dynamic logic program (DLP) is a finite sequence of ex-
tended programs and by all(P) we denote the multiset of all
rules in the components of P. A rule update semantics S as-
signs a set of S-models, denoted by [P], to P.

We focus on semantics based on the causal rejection prin-
ciple (Leite and Pereira 1998; Alferes et al. 2000; Eiter et
al. 2002; Leite 2003; Alferes et al. 2005; Banti et al. 2005;
Osorio and Cuevas 2007) which states that a rule is rejected
if it is in a direct conflict with a more recent rule. The ba-
sic type of conflict between rules 7 and o occurs when their
heads contain complementary literals, i.e. when H, = ~H,.
Based on such conflicts and on a stable model candidate, a
set of rejected rules can be determined and it can be verified
that the candidate is indeed stable w.r.t. the remaining rules.

We define the most mature of these semantics, providing
two equivalent definitions: the refined dynamic stable mod-
els (Alferes et al. 2005), or RD-semantics, defined using a
fixpoint equation, and the well-supported models (Banti et
al. 2005), or WS-semantics, based on level mappings.

Definition 2.6 (RD-semantics (Alferes et al. 2005)). Let
P = (P));<y, be a DLP without strong negation. Given an
interpretation J, the multisets of rejected rules rejs (P, J)
and of default assumptions def (P, J) are defined as follows:
rej>(P,J) ={mr € Pili<nA3j>i3do € Pj:H=~H,
ANJ E By},
def(P,J) = {(~l)|l € L

A=(3r € all(P) :Hy =1AJ EBg)}.

The set [P], of RD-models of P consists of all interpreta-
tions J such that

J* = least ([all(P) \ rej> (P, J)] Udef(P, J))

where J* and least(-) are defined as before.



Definition 2.7 (WS-semantics (Banti et al. 2005)). Let P =
(P;Yi<n be a DLP without strong negation. Given an inter-
pretation J and a level mapping {, the multiset of rejected
rules rej, (P, J) is defined as follows:

rejy(P,J)={mr € Pli<nA3dj>iJoePj:H, =~H,
AJ =By A(Hy) > £1(B,)}.

The set [P],, of WS-models of P consists of all interpre-
tations J such that for some level mapping {, the following
conditions are satisfied:

1. Jis amodel of all(P) \ rej, (P, J);

2. For every | € J there exists some rule m € all(P) \
rej, (P, J) such that

Hy =IAJEB; AM(Hy) > 01(B,) .

Unlike most other rule update semantics, these semantics
can properly deal with tautological and other irrelevant up-
dates, as illustrated in the following example:

Example 2.8 (Irrelevant updates). Consider the DLP P =
(P,U) where programs P, U are as follows:

P: day « ~night. stars < night, ~cloudy.

night < ~day. ~stars.

U : stars < stars.

Note that program P has the single stable model J, =
{day } and U contains a single tautological rule, i.e. it does
not encode any change in the modelled domain. Thus, we
expect that P also has the single stable model J;. Nev-
ertheless, many rule update semantics, such as those in-
troduced in (Leite and Pereira 1998; Alferes et al. 2000;
Eiter et al. 2002, Leite 2003; Sakama and Inoue 2003;
Zhang 2006; Osorio and Cuevas 2007; Delgrande, Schaub,
and Tompits 2007; Kriimpelmann 2012), are sensitive to this
or other tautological updates, introducing or eliminating
models of the original program.

In this case, the unwanted model candidate is Jo =
{ night, stars } and it is neither an RD- nor a WS-model of
P, though the reasons for this are technically different under
these two semantics. It is not difficult to verify that, given
an arbitrary level mapping !, the respective sets of rejected
rules and the set of default assumptions are as follows:

rej> (P, J2) = { (stars « night, ~cloudy.), (~stars.) },
rejZ(Pa JQ) = ®7
def(P, J2) = { (~cloudy.), (~day.) } .

Note that rej, (P, J2) is empty because, independently of ¢,
no rule m in U satisfies the condition {(H,) > (1(B,), so
there is no rule that could reject another rule. Thus, the atom
stars belongs to J5 but does not belong to least([all(P) \
rej~ (P, J2)] U def (P, J3)), so Jo is not an RD-model of P.
Furthermore, no model of all(P) \ rej, (P, J2) contains stars,
so Jo cannot be a WS-model of P.

Furthermore, the resilience of RD- and WS-semantics is
not limited to empty and tautological updates, but extends
to other irrelevant updates as well (Alferes et al. 2005;

76

Banti et al. 2005). For example, consider the DLP P’ =
(P,U") where U’' = { (stars < venus.), (venus « stars.) }.
Though the updating program contains non-tautological
rules, it does not provide a bottom-up justification of any
model other than Ji and, indeed, J; is the only RD- and
WS-model of P'.

We also note that the two presented semantics for DLPs
without strong negation provide the same result regardless
of the particular DLP to which they are applied.

Proposition 2.9 ((Banti et al. 2005)). Let P be a DLP with-
out strong negation. Then, [P],s = [P]xo-

In case of the stable model semantics for a single program,
strong negation can be reduced away by treating all objective
literals as atoms and adding, for each atom p, the integrity
constraint («— p,—p.) to the program (Gelfond and Lifs-
chitz 1991). However, this transformation does not serve its
purpose when adding support for strong negation to causal
rejection semantics for DLPs because integrity constraints
have empty heads, so according to these rule update seman-
tics, they cannot be used to reject any other rule. For exam-
ple, a DLP such as ({ p.,—p. },{p. }) would remain with-
out a stable model even though the DLP ({ p.,~p. } ,{p. })
does have a stable model.

To capture the conflict between opposite objective literals
[ and —! in a way that is compatible with causal rejection se-
mantics, a slightly modified syntactic transformation can be
performed, translating such conflicts into conflicts between
objective literals and their default negations. Two such trans-
formations have been suggested in the literature (Alferes and
Pereira 1996; Leite 2003), both based on the principle of co-
herence. For any extended program P and DLPP = (P;);<,,
they are defined as follows:

Pl =PU{~-l—L|l€eL},

P (e,
“/i<n

Pt =PU{~-H, —B,.[t € PAH, € L},

P¢:<Pi> .
v <n

These transformations lead to four possibilities for defining
the semantics of an arbitrary DLP P: [P1] ., [P*]wo» [P e
and [P*],. We discuss these in the following section.

3 Direct Support for Strong Negation in Rule
Updates

The problem with existing semantics for strong negation in
rule updates is that semantics based on the first transforma-
tion (PT) assign too many models to some DLPs, while se-
mantics based on the second transformation (Pi) sometimes
do not assign any model to a DLP that should have one. The
former is illustrated in the following example:

Example 3.1 (Undesired side effects of the first transforma-
tion). Consider the DLP Py = (P,U) where P = { p., —p. }
and U = (). Since P has no stable model and U does not
encode any change in the represented domain, it should fol-
low that Py has no stable model either. However, [P1], =



[Pi]e = {{p},{-p}} ie. two models are assigned to
P when using the first transformation to add support for

strong negation. To verify this, observe that PJ{ = (PT,UT)
where

PT. p. —p. ~p — .

Consider the interpretation J, = {p }. It is not difficult to
verify that

Ut

rejZ(PLJl) ={-p,~p<p} ,
def(P1,J) =0 ,

so it follows that
least ([aII(PI) \ rejZ(PI, Jl)} U def (P, J1)> =
={p,~p}=Ji.

In other words, Jy belongs to [[PI]]RD and in an analogous
fashion it can be verified that Jo = {-p} also belongs

there. A similar situation occurs with [[PJ{ s since the rules
that were added to the more recent program can be used to
reject facts in the older one.

Thus, the problem with the first transformation is that
an update by an empty program, which does not express
any change in the represented domain, may affect the orig-
inal semantics. This behaviour goes against basic and intu-
itive principles underlying updates, grounded already in the
classical belief update postulates (Keller and Winslett 1985;
Katsuno and Mendelzon 1991) and satisfied by virtually all
belief update operations (Herzig and Rifi 1999) as well as by
the vast majority of existing rule update semantics, including
the original RD- and WS-semantics.

This undesired behaviour can be corrected by using the
second transformation instead. The more technical reason is
that it does not add any rules to a program in the sequence
unless that program already contains some original rules.
However, its use leads to another problem: sometimes no
model is assigned when in fact a model should exist.

Example 3.2 (Undesired side effects of the second trans-
formation). Consider again Example 1.2, formalised as the
DLP Py = (P,V) where P = {p.,—p.} and V = { ~p. }.
It is reasonable to expect that since V resolves the conflict
present in P, a stable model should be assigned to Ps. How-

ever, [Py = [PE]ws = 0. To verify this, observe that
P, = (P V1) where
Pt p.
Np_ N—\p.
Given an interpretation J and level mapping ¢, we conclude
that rej,(P5, J) = { p. }, so the facts (—p.) and (~—p.) both
belong to the program
all(P}) \ rej, (P}, J) -
Consequently, this program has no model and it follows that

J cannot belong 1o [P}],. Similarly it can be shown that
[[Pg]]RD = 0.

Vi: ~p.

77

Based on this example, in the following we formulate a
generic early recovery principle that formally identifies con-
ditions under which some stable model should be assigned
to a DLP. For the sake of simplicity, we concentrate on DLPs
of length 2 which are composed of facts. We discuss a gen-
eralisation of the principle to DLPs of arbitrary length and
containing other rules than just facts in Sect. 5. After intro-
ducing the principle, we define a semantics for rule updates
which directly supports both strong and default negation and
satisfies the principle.

We begin by defining, for every objective literal /, the sets
of literals [ and ~I[ as follows:

I={~l,-l} ~l={l} .
Intuitively, for every literal L, L denotes the set of literals
that are in conflict with L. Furthermore, given two sets of
facts P and U, we say that U solves all conflicts in P if for
each pair of rules 7, ¢ € P such that H, € H; there is a fact
p € U such that either H, € H; orH, € H,.

Considering a rule update semantics S, the new principle
simply requires that when U solves all conflicts in P, S will
assign some model to (P, U). Formally:

and

Early recovery principle: If P is a set of facts and U is a
consistent set of facts that solves all conflicts in P, then

[P, U)s # 0.

We conjecture that rule update semantics should gener-
ally satisfy the above principle. In contrast with the usual
behaviour of belief update operators, the nature of existing
rule update semantics ensures that recovery from conflict
is always possible, and this principle simply formalises and
sharpens the sufficient conditions for such recovery.

Our next goal is to define a semantics for rule updates that
not only satisfies the outlined principle, but also enjoys other
established properties of rule updates that have been identi-
fied over the years. Similarly as for the original semantics
for rule updates, we provide two equivalent definitions, one
based on a fixed point equation and the other one on level
mappings.

To directly accommodate strong negation in the RD-se-
mantics, we first need to look more closely at the set of
rejected rules rej~ (P, J), particularly at the fact that it al-
lows conflicting rules within the same component of P to re-
ject one another. This behaviour, along with the constrained
set of defaults def(P, J), is used to prevent tautological and
other irrelevant cyclic updates from affecting the semantics.
However, in the presence of strong negation, rejecting con-
flicting rules within the same program has undesired side
effects. For example, the early recovery principle requires
that some model be assigned to the DLP ({ p.,—p. } ,{~p })
from Example 3.2, but if the rules in the initial program re-
ject each other, then the only possible stable model to assign
is (). However, such a stable model would violate the causal
rejection principle since it does not satisfy the initial rule
(—p.) and there is no rule in the updating program that over-
rides it.

To overcome the limitations of this approach to the pre-
vention of tautological updates, we disentangle rule rejec-
tion per se from ensuring that rejection is done without



cyclic justifications. We introduce the set of rejected rules
rej< (P, S) which directly supports strong negation and does
not allow for rejection within the same program. Preven-
tion of cyclic rejections is done separately by using a cus-
tomised immediate consequence operator Tp ;. Given a sta-
ble model candidate .J, instead of verifying that J* is the
least fixed point of the usual consequence operator, as done
in the RD-semantics using least(-), we verify that J* is the
least fixed point of Tp ;.

Definition 3.3 (Extended RD-semantics). Let P = (P;);<,
be a DLP. Given an interpretation J and a set of literals
S, the multiset of rejected rules rejS (P, S), the remainder
rem (P, S) and the consequence operator Tp ; are defined
as follows:
rej2(P,S)={r e Pli<nA3j>ido € Pj:H, €H,
ABs C S},
rem(P,S) = all(P) \ rej2 (P, S) ,
Tp,s(S) = {H | m € (rem(P,J*) Udef(J)) ABr C S
A= (EIJ €rem(P,S) :H, € H; AB, C J*) }

Furthermore, T;,{ 5(9) S and for every k > 0,
Tp3'(S) Tp.;(T§ ;(S)). The set [P] of extended
RD-models of P consists of all interpretations J such that

= T ,0) .

k>0

Adding support for strong negation to the WS-semantics
is done by modifying the set of rejected rules rej, (P, J) to
account for the new type of conflict. Additionally, in order
to ensure that rejection of a literal L cannot be based on the
assumption that some conflicting literal L' € L is true, a
rejecting rule o must satisfy the stronger condition ¢ (L) >
¢1(B,). Finally, to prevent defeated rules from affecting the
resulting models, we require that all supporting rules belong
to rem (P, J*).

Definition 3.4 (Extended WS-semantics). Let P = (P;);<,
be a DLP. Given an interpretation J and a level mapping ¢,
the multiset of rejected rules rej, (P, J) is defined by:

rej, (P, J)={r € Pli<nA3j>i3Jo € Pj:H, €H,
AJ By A (Hy) > €1(B,)}
The set [P], of extended WS-models of P consists of all

interpretations J such that for some level mapping {, the
following conditions are satisfied:

1. J is a model of all(P) \ rej, (P, J);
2. For every | € J there exists some rule m € rem(P, J*)
such that

Hy =IAJEB; AM(H:) > 01(B,) .

The following theorem establishes that the two defined
semantics are equivalent:
Theorem 3.5. Let P be a DLP. Then, [P] .= [P]..

Also, on DLPs without strong negation they coincide with
the original semantics.

78

Theorem 3.6. Let P be a DLP without strong negation.
Then, [[Pﬂvﬁvs = [[P]];D = [[Pﬂvvs = [[PHRD'

Furthermore, unlike the transformational semantics for
strong negation, the new semantics satisfy the early recovery
principle.

Theorem 3.7. The extended RD-semantics and extended
WS-semantics satisfy the early recovery principle.

4 Properties

In this section we take a closer look at the formal and com-
putational properties of the proposed rule update semantics.

The various approaches to rule updates (Leite and Pereira
1998; Alferes et al. 2000; Eiter et al. 2002; Leite 2003;
Sakama and Inoue 2003; Alferes et al. 2005; Banti et al.
2005; Zhang 2006; Sefranek 2006; Osorio and Cuevas 2007;
Delgrande, Schaub, and Tompits 2007; Sefranek 201 1;
Kriimpelmann 2012) share a number of basic characteris-
tics. For example, all of them generalise stable models, i.e.,
the models they assign to a sequence (P) (of length 1) are
exactly the stable models of P. Similarly, they adhere to the
principle of primacy of new information (Dalal 1988), so
models assigned to (P;); <, satisfy the latest program P,,_1.
However, they also differ significantly in their technical re-
alisation and classes of supported inputs, and desirable prop-
erties such as immunity to tautologies are violated by many
of them.

Table 1 lists many of the generic properties proposed
for rule updates that have been identified and formalised
throughout the years (Leite and Pereira 1998; Eiter et al.
2002; Leite 2003; Alferes et al. 2005). The rule update se-
mantics we defined in the previous section enjoys all of
them.

Theorem 4.1. The extended RD-semantics and extended
WS-semantics satisfy all properties listed in Table 1.

Our semantics also retains the same computational com-
plexity as the stable models.

Theorem 4.2. Let P be a DLP. The problem of deciding
whether some J € [P] . exists is NP-complete. Given a
literal L, the problem of deciding whether for all J € [P]
it holds that J |= L is cONP-complete.

5 Concluding Remarks

In this paper we have identified shortcomings in the exist-
ing semantics for rule updates that fully support both strong
and default negation, and proposed a generic early recovery
principle that captures them formally. Subsequently, we pro-
vided two equivalent definitions of a new semantics for rule
updates.

We have shown that the newly introduced rule update se-
mantics constitutes a strict improvement upon the state of
the art in rule updates as it enjoys the following combina-
tion of characteristics, unmatched by any previously existing
semantics:

e It allows for both strong and default negation in heads
of rules, making it possible to move between any pair of
epistemic states by means of updates;



Table 1: Desirable properties of rule update semantics

Generalisation of stable models

[(P)]s = [Psw-

Primacy of new information

If J € [(Pi)i<n]s then J = P, ;.

Fact update A

sequence of consistent

sets of facts (P;);«, has the single model

{lel|Fi<n:(l)ePAVj>i:{-l,~.}NnP;=0)}.

Support If J € [P]; and [ € J, then there is some rule = € all(P) such that H, = [ and
J = Bx.

Idempotence [{(P,P)]s = [(P)]s.

Absorption [(P,U,UY]s =[{(P,U)]-

Augmentation IfU CV,then [(P,U, V)], = [(P,V)]..

Non-interference

If U and V are over disjoint alphabets, then [(P,U, V)], = [(P,V,U)].

Immunity to empty updates

If Pj = @, then [[<R>7<7L]]s

= [[<Pi>i<nm75j]]

S

Immunity to tautologies

If (Q:)i<n is a sequence of sets of tautologies, then [ (P, U Q;)i<n]s = [(Pi)i<n ]s-

Causal rejection principle

Forevery i < n,m € P, and J € [(Pi)i<n]s, if J [~ m, then there exists some

o € Pj with j > i such thatH, € H, and J = B,,.

o It satisfies the early recovery principle which guarantees
the existence of a model whenever all conflicts in the orig-
inal program are satisfied;

e It enjoys all rule update principles and desirable proper-
ties reported in Table 1;

o It does not increase the computational complexity of the
stable model semantics upon which it is based.

However, the early recovery principle, as it is formulated
in Sect. 3, only covers a single update of a set of facts by
another set of facts. Can it be generalised further without
rendering it too strong? Certain caution is appropriate here,
since in general the absence of a stable model can be caused
by odd cycles or simply by the fundamental differences be-
tween different approaches to rule update, and the purpose
of this principle is not to choose which approach to take.

Nevertheless, one generalisation that should cause no
harm is the generalisation to iterated updates, i.e. to se-
quences of sets of facts. Another generalisation that appears
very reasonable is the generalisation to acyclic DLPs, i.e.
DLPs such that all(P) is an acyclic program. An acyclic pro-
gram has at most one stable model, and if we guarantee that
all potential conflicts within it certainly get resolved, we can
safely conclude that the rule update semantics should assign
some model to it. We formalise these ideas in what follows.

We say that a program P is acyclic (Apt and Bezem 1991)
if for some level mapping ¢, such that forevery [ € L, {(1) =
¢(—1), and every rule 7 € P it holds that £(H,) > ¢T(B,).
Given a DLP P = (P;);<,, we say that all conflicts in P are
solved if for every ¢ < n and each pair of rules 7,0 € P;
such that H, € H, there is some j > 7 and a fact p € P;
such that either H, € H; orH, € H,.

Generalised early recovery principle: If all(P) is acyclic
and all conflicts in P are solved, then [P], # 0.

Note that this generalisation of the early recovery princi-

79

ple applies to a much broader class of DLPs than the original
one. We illustrate this in the following example:

Example 5.1 (Recovery in a stratified program). Consider
the following programs programs P, U and V' :

P: pegq,n~r ~p—Ss.  q. §—q.
U: —p. r<—q. —Tr<gq,Ss.
V: ~r,

Looking more closely at program P, we see that atoms q and
s are derived by the latter two rules inside it while atom r
is false by default since there is no rule that could be used
to derive its truth. Consequently, the bodies of the first two
rules are both satisfied and as their heads are conflicting, P
has no stable model. The single conflict in P is solved after
it is updated by U, but then another conflict is introduced
due to the latter two rules in the updating program. This
second conflict can be solved after another update by V.
Consequently, we expect that some stable model be assigned
to the DLP (P,U, V).

The original early recovery principle does not impose this
because the DLP in question has more than two components
and the rules within it are not only facts. However, the DLP
is acyclic, as shown by any level mapping ¢ with {(p) = 3,
l(q) = 0, {(r) = 2 and {(s) = 1, so the generalised early
recovery principle does apply. Furthermore, we also find the
single extended RD-model of (P, U,V ) is { —p,q,—r, s }, i.e.
the semantics respects the stronger principle in this case.

Moreover, as established in the following theorem, it is
no coincidence that the extended RD-semantics respects the
stronger principle in the above example — the principle is
generally satisfied by the semantics introduced in this paper.

Theorem 5.2. The extended RD-semantics and extended
WS-semantics satisfy the generalised early recovery prin-
ciple.



Both the original and the generalised early recovery prin-
ciple can guide the future addition of full support for both
kinds of negations in other approaches to rule updates,
such as those proposed in (Sakama and Inoue 2003; Zhang
2006; Delgrande, Schaub, and Tompits 2007; Kriimpelmann
2012), making it possible to reach any belief state by up-
dating the current program. Furthermore, adding support for
strong negation is also interesting in the context of recent
results on program revision and updates that are performed
on the semantic level, ensuring syntax-independence of the
respective methods (Delgrande et al. 2013; Slota and Leite
2014; 2012a; 2010), in the context of finding suitable con-
densing operators (Slota and Leite 2013), and unifying with
updates in classical logic (Slota and Leite 2012b).

Acknowledgments

Jodo Leite was partially supported by Fundacdo para a
Ciéncia e a Tecnologia under project “ERRO - Effi-
cient Reasoning with Rules and Ontologies” (PTDC/EIA-
CCO/121823/2010). Martin Slota was partially supported by
Fundagdo para a Ciéncia e a Tecnologia under project “AS-
PEN — Answer Set Programming with BoolEaN Satisfiabil-
ity” (PTDC/EIA-CCO/110921/2009). The collaboration be-
tween the co-authors resulted from the Slovak—Portuguese
bilateral project “ReDIK — Reasoning with Dynamic Incon-
sistent Knowledge”, supported by APVV agency under SK-
PT-0028-10 and by Fundagao para a Ciéncia e a Tecnologia
(FCT/2487/3/6/2011/S).

References

Alferes, J. J., and Pereira, L. M. 1996. Update-programs
can update programs. In Dix, J.; Pereira, L. M.; and Przy-
musinski, T. C., eds., Non-Monotonic Extensions of Logic
Programming (NMELP ’96), Selected Papers, volume 1216
of Lecture Notes in Computer Science, 110—131. Bad Hon-
nef, Germany: Springer.

Alferes, J. J.; Leite, J. A.; Pereira, L. M.; Przymusinska,
H.; and Przymusinski, T. C. 1998. Dynamic logic pro-
gramming. In Cohn, A. G.; Schubert, L. K.; and Shapiro,
S. C,, eds., Proceedings of the Sixth International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR’98), Trento, Italy, June 2-5, 1998, 98-111. Mor-
gan Kaufmann.

Alferes, J. J.; Leite, J. A.; Pereira, L. M.; Przymusinska, H.;
and Przymusinski, T. C. 2000. Dynamic updates of non-
monotonic knowledge bases. The Journal of Logic Program-
ming 45(1-3):43-70.

Alferes, J. J.; Banti, F.; Brogi, A.; and Leite, J. A. 2005. The
refined extension principle for semantics of dynamic logic
programming. Studia Logica 79(1):7-32.

Apt, K. R., and Bezem, M. 1991. Acyclic programs. New
Generation Computing 9(3/4):335-364.

Banti, F.; Alferes, J. J.; Brogi, A.; and Hitzler, P. 2005.
The well supported semantics for multidimensional dynamic
logic programs. In Baral, C.; Greco, G.; Leone, N.; and Ter-
racina, G., eds., Proceedings of the Sth International Confer-
ence on Logic Programming and Nonmonotonic Reasoning

80

(LPNMR 2005), volume 3662 of Lecture Notes in Computer
Science, 356-368. Diamante, Italy: Springer.

Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001.
semantic web. Scientific American 284(5):28-37.

Dalal, M. 1988. Investigations into a theory of knowledge
base revision. In Proceedings of the 7th National Conference
on Artificial Intelligence (AAAI 1988), 475-479. St. Paul,
MN, USA: AAAI Press / The MIT Press.

Delgrande, J.; Schaub, T.; Tompits, H.; and Woltran, S.
2013. A model-theoretic approach to belief change in an-
swer set programming. ACM Transactions on Computa-
tional Logic (TOCL) 14(2):14:1-14:46.

Delgrande, J. P.; Schaub, T.; and Tompits, H. 2007. A
preference-based framework for updating logic programs. In
Baral, C.; Brewka, G.; and Schlipf, J. S., eds., Proceedings
of the 9th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR 2007), volume 4483
of Lecture Notes in Computer Science, 71-83. Tempe, AZ,
USA: Springer.

Eiter, T.; Fink, M.; Sabbatini, G.; and Tompits, H. 2002.
On properties of update sequences based on causal rejec-
tion. Theory and Practice of Logic Programming (TPLP)
2(6):721-7717.

Fages, F. 1991. A new fixpoint semantics for general logic
programs compared with the well-founded and the stable
model semantics. New Generation Computing 9(3/4):425—
444.

Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Kowalski, R. A.,
and Bowen, K. A., eds., Proceedings of the 5th Interna-
tional Conference and Symposium on Logic Programming
(ICLP/SLP 1988), 1070-1080. Seattle, Washington: MIT
Press.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9(3-4):365-385.

Herzig, A., and Rifi, O. 1999. Propositional belief base up-
date and minimal change. Artificial Intelligence 115(1):107—
138.

Inoue, K., and Sakama, C. 1998. Negation as failure in the
head. Journal of Logic Programming 35(1):39-78.

Katsuno, H., and Mendelzon, A. O. 1991. On the difference
between updating a knowledge base and revising it. In Allen,
J. F,; Fikes, R.; and Sandewall, E., eds., Proceedings of the
2nd International Conference on Principles of Knowledge
Representation and Reasoning (KR’91), 387-394. Cam-
bridge, MA, USA: Morgan Kaufmann Publishers.

Keller, A. M., and Winslett, M. 1985. On the use of an
extended relational model to handle changing incomplete
information. [EEE Transactions on Software Engineering
11(7):620-633.

Kriimpelmann, P. 2012. Dependency semantics for se-
quences of extended logic programs. Logic Journal of the
IGPL 20(5):943-966.

Leite, J. A., and Pereira, L. M. 1998. Generalizing up-
dates: From models to programs. In Dix, J.; Pereira, L. M.;

The



and Przymusinski, T. C., eds., Proceedings of the 3rd Inter-
national Workshop on Logic Programming and Knowledge
Representation (LPKR ’97), October 17, 1997, Port Jeffer-
son, New York, USA, volume 1471 of Lecture Notes in Com-
puter Science, 224-246. Springer.

Leite, J. A. 2003. Evolving Knowledge Bases, volume 81 of
Frontiers of Artificial Intelligence and Applications, xviii +
307 p. Hardcover. 10S Press.

Osorio, M., and Cuevas, V. 2007. Updates in answer set pro-
gramming: An approach based on basic structural proper-
ties. Theory and Practice of Logic Programming 7(4):451—
479.

Sakama, C., and Inoue, K. 2003. An abductive framework
for computing knowledge base updates. Theory and Prac-
tice of Logic Programming (TPLP) 3(6):671-713.

gefrének, J. 2006. Irrelevant updates and nonmonotonic as-
sumptions. In Fisher, M.; van der Hoek, W.; Konev, B.; and
Lisitsa, A., eds., Proceedings of the 10th European Confer-
ence on Logics in Artificial Intelligence (JELIA 2006), vol-
ume 4160 of Lecture Notes in Computer Science, 426—438.
Liverpool, UK: Springer.

gefrének, J. 2011. Static and dynamic semantics: Prelimi-

nary report. Mexican International Conference on Artificial
Intelligence 36-42.

Slota, M., and Leite, J. 2010. On semantic update opera-
tors for answer-set programs. In Coelho, H.; Studer, R.; and
Wooldridge, M., eds., ECAI 2010 - 19th European Confer-
ence on Artificial Intelligence, Lisbon, Portugal, August 16-

81

20, 2010, Proceedings, volume 215 of Frontiers in Artificial
Intelligence and Applications, 957-962. 10S Press.

Slota, M., and Leite, J. 2012a. Robust equivalence models
for semantic updates of answer-set programs. In Brewka,
G.; Eiter, T.; and Mcllraith, S. A., eds., Proceedings of the
13th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2012), 158—-168. Rome,
Italy: AAAI Press.

Slota, M., and Leite, J. 2012b. A unifying perspective on
knowledge updates. In del Cerro, L. F.; Herzig, A.; and
Mengin, J., eds., Logics in Artificial Intelligence - 13th Euro-
pean Conference, JELIA 2012, Toulouse, France, September
26-28, 2012. Proceedings, volume 7519 of Lecture Notes in
Computer Science, 372-384. Springer.

Slota, M., and Leite, J. 2013. On condensing a sequence of
updates in answer-set programming. In Rossi, F., ed., IJCAI
2013, Proceedings of the 23rd International Joint Confer-
ence on Artificial Intelligence, Beijing, China, August 3-9,
2013. IICAI/AAAL

Slota, M., and Leite, J. 2014. The rise and fall of semantic
rule updates based on se-models. Theory and Practice of
Logic Programming FirstView:1-39.

Slota, M.; Balaz, M.; and Leite, J. 2014. On strong and de-
fault negation in logic program updates (extended version).
CoRR abs/1404.6784.

Zhang, Y. 2006. Logic program-based updates. ACM Trans-
actions on Computational Logic 7(3):421-472.



Inference in the FO(C) Modelling Language

Bart Bogaerts and Joost Vennekens and Marc Denecker
Department of Computer Science, KU Leuven
{bart.bogaerts, joost.vennekens, marc.denecker} @cs.kuleuven.be

Jan Van den Bussche
Hasselt University & transnational University of Limburg
jan.vandenbussche @uhasselt.be

Abstract

Recently, FO(C), the integration of C-LOG with classical
logic, was introduced as a knowledge representation lan-
guage. Up to this point, no systems exist that perform in-
ference on FO(C), and very little is known about properties
of inference in FO(C). In this paper, we study both of the
above problems. We define normal forms for FO(C), one
of which corresponds to FO(I D). We define transformations
between these normal forms, and show that, using these trans-
formations, several inference tasks for FO(C) can be reduced
to inference tasks for FO(I D), for which solvers exist. We
implemented this transformation and hence, created the first
system that performs inference in FO(C). We also provide
results about the complexity of reasoning in FO(C).

1 Introduction

Knowledge Representation and Reasoning is a subfield of
Artificial Intelligence concerned with two tasks: defining
modelling languages that allow intuitive, clear, representa-
tion of knowledge and developing inference tools to reason
with this knowledge. Recently, C-LOG was introduced with
a strong focus on the first of these two goals (Bogaerts et
al. in press 2014). C-LOG has an expressive recursive syn-
tax suitable for expressing various forms of non-monotonic
reasoning: disjunctive information in the context of closed
world assumptions, non-deterministic inductive construc-
tions, causal processes, and ramifications. C-LOG allows
for example nested occurrences of causal rules.

Itis straightforward to integrate first-order logic (FO) with
C-Log, offering an expressive modelling language in which
causal processes as well as assertional knowledge in the
form of axioms and constraints can be naturally expressed.
We call this integration FO(C).! FO(C) fits in the FO(-)
research project (Denecker 2012), which aims at integrat-
ing expressive language constructs with a Tarskian model
semantics in a unified language.

An example of a C-LOG expression is the following

All p[Apply(p) A PassedTest(p)] : PermRes(p).
(Select p[Participate(p)] : PermRes(p)) < Lott.

This describes that all persons who pass a naturalisation test
obtain permanent residence in the U.S., and that one per-
son who participates in the green card lottery also obtains

"Previously, this language was called FO(C-LOG)

82

residence. The person that is selected for the lottery can ei-
ther be one of the persons that also passed the naturalisation
test, or someone else. There are local closed world assump-
tions: in the example, the endogenous predicate PermRes
only holds for the people passing the test and at most one
extra person. We could add an FO constraint to this theory,
for example Vp : Participate(p) = Apply(p). This results
in a FO(C) theory; a structure is a model of this theory if it
is a model of the C-LOG expression and no-one participates
in the lottery without applying the normal way.

So far, very little is known about inference in FO(C). No
systems exist to reason with FO(C), and complexity of in-
ference in FO(C) has not been studied. This paper studies
both of the above problems.

The rest of this paper is structured as follows: in Sec-
tion 2, we repeat some preliminaries, including a very brief
overview of the semantics of FO(C). In Section 3 we de-
fine normal forms on FO(C) and transformations between
these normal forms. We also argue that one of these normal
forms corresponds to FO(/D) (Denecker and Ternovska
2008) and hence, that IDP (De Cat et al. 2014) can be seen
as the first FO(C)-solver. In Section 4 we give an example
that illustrates both the semantics of FO(C) and the trans-
formations. Afterwards, in Section 5, we define inference
tasks for FO(C) and study their complexity. We conclude in
Section 6.

2 Preliminaries

We assume familiarity with basic concepts of FO. Vocab-
ularies, formulas, and terms are defined as usual. A >-
structure [ interprets all symbols (including variable sym-
bols) in ¥; D! denotes the domain of I and ¢, with o a
symbol in X, the interpretation of o in I. We use I[o : v]
for the structure .J that equals I, except on o: 0/ = v. Do-
main atoms are atoms of the form P(d) where the d; are
domain elements. We use restricted quantifications, see e.g.
(Preyer and Peter 2002). In FO, these are formulas of the
form Vx[¢] : ¢ or Jz[¢)] : ¢, meaning that ¢ holds for all
(resp. for some) x such that ) holds. The above expressions
are syntactic sugar for Vx : 1) = ¢ and dz : ¥ A ¢, but such
a reduction is not possible for other restricted quantifiers in
C-LoG. We call ¥ the qualification and ¢ the assertion of
the restricted quantifications. From now on, let 3 be a rela-
tional vocabulary, i.e., 2 consists only of predicate, constant



and variable symbols.

Our logic has a standard, two-valued Tarskian semantics,
which means that models represent possible states of af-
fairs. Three-valued logic with partial domains is used as
a technical device to express intermediate stages of causal
processes. A truth-value is one of the following: {t,f, u},
where f~! = t,t 7' = fand u=! = u. Two partial orders
are defined on truth values: the precision order <,,, given
by u<, t and u <, f and the truth order f < u < t. Let D
be a set, a partial set S in D is a function from D to truth
values. We identify a partial set with a tuple (Sc;, Spi) of
two sets, where the certainly true set S¢; is {x | S(z) = t}
and the possibly true set Spy is {z | S(z) # f}. The union,
intersection, and subset-relation of partial sets are defined
pointwise. For a truth value v, we define the restriction
of a partial set S to this truth-value, denoted (S, v), as the
partial set mapping every € D to min<(S(z), v). Every
set S is also a partial set, namely the tuple (.5, S).

A partial S-structure I consists of 1) a domain D': a
partial set of elements, and 2) a mapping associating a value
to each symbol in X; for constants and variables, this value
isin DL, for predicate symbols of arity n, this is a partial set
Plin (D])™. We often abuse notation and use the domain
D as if it were a predicate. A partial structure I is two-
valued if for all predicates P (including D), P = Pl.
There is a one-to-one correspondence between two-valued
partial structures and structures. If I and J are two partial
structures with the same interpretation for constants, we call
I more precise than J (I >, J) if for all its predicates P
(including D), PL O P and Plft C P;SIt~

Definition 2.1. We define the value of an FO formula ¢ in
a partial structure I inductively based on the Kleene truth
tables (Kleene 1938).

P@)! = PI(T))
o) =)
) = min< (<p wl)
¥)! = maxc (¢, 07)
Va <p)I = minc {max(D!(d)~*, "=y | d € DI }
¢)! = max<{min(D!(d), ¢ I[“’ 4| de DL}

In what follows we briefly repeat the syntax and for-
mal semantics of C-LOG. For more details, an extensive
overview of the informal semantics of CEEs, and examples
of CEEs, we refer to (Bogaerts et al. in press 2014).

(=
(o A
o (pV
(
(3

2.1 Syntax of C-L0G

Definition 2.2. Causal effect expressions (CEE) are defined
inductively as follows:

o if P(t) is an atom, then P(t) is a CEE,

e if v is an FO formula and C' is a CEE, then C' +— @ is a
CEE,

e ifCy and C5 are CEEs, then Cy And Cs is a CEE,
e if C and Cs are CEEs, then C, Or Cy is a CEE,

e if x is a variable, ¢ is a first-order formula and C' is a
CEE, then All x[p] : C' is a CEE,

83

e if x is a variable, ¢ is a first-order formula and C' is a
CEE, then Select z[p] : C’ is a CEE,

e if x is a variable and C' is a CEE, then New x : C' is a
CEE.

We call a CEE an atom- (respectively rule-, And-, Or-,
All-, Select- or New-expression) if it is of the correspond-
ing form. We call a predicate symbol P endogenous in
C if P occurs as the symbol of a (possibly nested) atom-
expression in C. All other symbols are called exogenous
in C. An occurrence of a variable z is bound in a CEE if
it occurs in the scope of a quantification over that variable
(Vx, dz, Allx, Select x, or New x) and free otherwise.
A variable is free in a CEE if it has free occurrences. A
causal theory, or C-LOG theory is a CEE without free vari-
ables. By abuse of notation, we often represent a causal the-
ory as a finite set of CEEs; the intended causal theory is
the And-conjunction of these CEEs. We often use A for a
causal theory and C, C’, C; and Cj for its subexpressions.
We stress that the connectives in CEEs differ from their FO
counterparts. E.g., in the example in the introduction, the
CEE expresses that there is a cause for several persons to
become American (those who pass the test and maybe one
extra lucky person). This implicitly also says that every per-
son without cause for becoming American is not American.
As such C-Lo0G-expressions are highly non-monotonic.

2.2 Semantics of C-L0OG

Definition 2.3. Let A be a causal theory; we associate a
parse-tree with A. An occurrence of a CEE C' in A is a
node in the parse tree of A labelled with C. The variable
context of an occurrence of a CEE C' in A is the sequence
of quantified variables as they occur on the path from A to
C in the parse-tree of A. If T is the variable context of C' in
A, we denote C as C(T) and the length of T as nc.

For example, the variable context of P(z) in
Select y[Q(y)] All z[Q(z)] P(z) is [y,z]. In-
stances of an occurrence C'(T) correspond to assignments d
of domain elements to 7.

Definition 2.4. Let A be a causal theory and D a set. A
A-selection ( in D consists of

e for every occurrence C of a Select-expression in A, a
total function C“l D¢ — D,

e for every occurrence C of a Or-expression in A, a total
function (&7 - D"¢ — {1,2},

e for every occurrence C' of a New-expression in A, an
injective partial function (3 : D¢ — D.

such that furthermore the images of all functions (3% are
disjoint (i.e., such that every domain element can be created
only once).

The initial elements of ( are those that do not oc-
cur as image of one of the (2°“~functions: (" = D\
Ucimage((Re), where the union ranges over all occur-
rences of New-expressions.

The effect set of a CEE in a partial structure is a partial
set: it contains information on everything that is caused and
everything that might be caused. For defining the semantics
a new, unary predicate U/ is used.



Definition 2.5. Let A be a CEE and J a partial structure.
Suppose C is a A-selection in a set D O DI{t. Let C be an
occurrence of a CEE in A. The effect set of C with respect to
J and ( is a partial set of domain atoms, defined recursively:

o IfCis P(T), then eff ;(C) = {P(T")},
o lf C is C; And Cy, then eff(]’c(C) = eﬁJ7¢(Cl) U
eff ;¢ (C2),
o ifCisC' — ¢, theneff ;- (C) = r(eff ;1 (C'),p”),
o if Cis Allz[p] : C’, then
eff1¢(C) = U{r(effyr ¢(C"),ming (D7 (d), 7)) |
de Dl andJ = Jlx: d]}
e if C(y) is C1 Or Cy, then
= eff5¢(C) = eff 5.(C1) if ¢ (F7) = 1,
— and eff ;. (C) = eff ;- (C2) otherwise
e if C(y) is Selectx[p] : C', let e = (&l (y’), J =
Jlz : €] and v = min< (D’ (), p”"). Then eff ;(C) =
r(eff ;o (C"),v),
o ifC(y) is Newx : C', then
- eff 1 c(C) = 0if (& (y”) does not denote,
- and eff ;. (C) = {Zx[((”e“’( N} Uetfr (C"), where
J = Jlx : (g (y”)] otherwise,
An instance of an occurrence of a CEE in A is relevant if it
is encountered in the evaluation of eff; - (A). We say that
C succeeds® with ¢ in J if for all relevant occurrences C(7)
of Select-expressions, ( SEZ( 7Y satisfies the qualification of

C and for all relevant instances C(y) of New-expressions,
¢2ev (y”) denotes.

Given a structure  (and a A-selection (), two lattices
are defined: LE denotes the set of all X-structures J with
¢(mc D’ C DI such that for all exogenous symbols o of
arity n: o/ = o! N (D”)". This set is equipped with the
truth order. And L¥ denotes the sublattice of L% ¢ consist-
ing of all structures in L7 . with domain equal to D",

A partial structure corresponds to an element of the bi-
lattice (L% C)2; the bilattice is equipped with the precision
order.

Definition 2.6. Let I be a structure and ( a A-selection in

D!, The partial immediate causality operator A¢ is the op-

erator on (L%C)2 that sends partial structure J to a partial

structure J' such that

e D/(d) = tifd € ¢" and D’ (d) = eff ; o(A)(U(d))
otherwise

7 = off 1o (A)(P(d).

Such operators have been studied intensively in the field
of Approximation Fixpoint Theory (Denecker, Bruynooghe,

and Vennekens 2012); and for such operators, the
well-founded fixpoint has been defined in (Denecker,

e for endogenous symbols P, P(d)

?Previously, we did not say that C' “succeeds”, but that the ef-
fect set “is a possible effect set”. We believe this new terminology
is more clear.

84

Bruynooghe, and Vennekens 2012). The semantics of
C-LoG is defined in terms of this well-founded fixpoint in
(Bogaerts et al. in press 2014):

Definition 2.7. Let A be a causal theory. We say that struc-
ture I is a model of A (notation I |= A) if there exists a
A-selection ¢ such that (1,1) is the well-founded fixpoint of
Ac¢, and A succeeds with ( in .

FO(C) is the integration of FO and C-LoG. An FO(C)
theory consists of a set of causal theories and FO sentences.
A structure I is a model of an FO(C) theory if it is a model
of all its causal theories and FO sentences. In this paper, we
assume, without loss of generality, that an FO(C) theory 7°
has exactly one causal theory.

3 A Transformation to DefF

In this section we present normal forms for FO(C) and
transformations between these normal forms. The transfor-
mations we propose preserve equivalence modulo newly in-
troduced predicates:

Definition 3.1. Suppose ¥ C X/ are vocabularies, T is an
FO(C) theory over ¥ and T’ is an FO(C) theory over ¥'.
We call T and T' Y-equivalent if each model of T, can be
extended to a model of T' and the restriction of each model

of T' to X is a model of T.

From now on, we use AllZ[y] C’', where T is
a tuple of variables as syntactic sugar for Allx[t]
All zo[t] . Allz,[p] : C’, and similar for Select-
expressions. If Z is a tuple of length 0, AllZ[p] : C’
is an abbreviation for ¢/ «— . It follows directly
from the definitions that And and Or are associative,
hence we use C7 And Cy And C5 as an abbreviation for
(C1 And C2) And C3 and for C; And (C2 And C3), and
similar for Or-expressions.

3.1 Normal Forms

Definition 3.2. Let C be an occurrence of a CEE in C'. The
nesting depth of C'in C' is the depth of C in the parse-tree of
C'. In particular, the nesting depth of C" in C' is always 0.
The height of C’ is the maximal nesting depth of occurrences
of CEEs in C'. In particular; the height of atom-expressions
is always 0.

Example 3.3. Let A be AAnd((Allz[P(x)]
Q(z))Or B). The nesting depth of B in A is 2 and
the height of A is 3.

Definition 3.4. A C-LOG theory is creation-free if it does
not contain any New-expressions, it is deterministic if it
is creation-free and it does not contain any Select or Or-
expressions. An FO(C) is creation-free (resp. deterministic)
if its (unique) C-LOG theory is.

Definition 3.5. A C-LOG theory is in Nesting Normal Form
(NestNF) if it is of the form C1 And Cy And C3 And ...
where each of the C; is of the form Al T[p;] : C! and each
of the C! has height at most one. A C-LOG theory A is in
Definition Form (DefF) if it is in NestNF and each of the C!
have height zero, i.e., they are atom-expressions. An FO(C)
theory is NestNF (respectively DefF) if its corresponding
C-LoG theory is.



Theorem 3.6. Every FO(C) theory over X is Y-equivalent
with an FO(C) theory in DefF.

We will prove this result in 3 parts: in Section 3.4,
we show that every FO(C) theory can be transformed to
NestNF, in Section 3.3, we show that every theory in NestNF
can be transformed into a deterministic theory and in Section
3.2, we show that every deterministic theory can be trans-
formed to DefF. The FO sentences in an FO(C) theory do
not matter for the normal forms, hence most results focus on
the C-LOG part of FO(C) theories.

3.2 From Deterministic FO(C) to DefF

Lemma 3.7. Let A be a C-LOG theory. Suppose C' is an
occurrence of an expression ANl T[] : C; And Cy. Let A’
be the causal theory obtained from A by replacing C with
(ANlZ[p] : C1) And (AllZ[y] : Co). Then A and A’ are

equivalent.

Proof. 1t is clear that A and A’ have the same selection
functions. Furthermore, it follows directly from the defi-
nitions that given such a selection, the defined operators are
equal. O

Repeated applications of the above lemma yield:

Lemma 3.8. Every deterministic FO(C) theory is equiva-
lent with an FO(C) theory in DefF.

3.3 From NestNF to Deterministic FO(C)

Lemma 3.9. If 7 is an FO(C) theory in NestNF over ¥,
then T is Y-equivalent with a deterministic FO(C) theory.

We will prove Lemma 3.9 using a strategy that replaces a
A-selection by an interpretation of new predicates (one per
occurrence of a non-deterministic CEE). The most impor-
tant obstacle for this transformation are New-expressions.
In deterministic C-LOG, no constructs influence the domain.
This has as a consequence that the immediate causality oper-
ator for a deterministic C-LOG theory is defined in a lattice
of structures with fixed domain, while in general, the oper-
ator is defined in a lattice with variable domains. In order
to bridge this gap, we use two predicates to describe the do-
main, S are the initial elements and U/ are the created, the
union of the two is the domain. Suppose a C-LOG theory A
over vocabulary ¥ is given.

Definition 3.10. We define the A-selection vocabulary ¥4

as the vocabulary consisting of:

e a unary predicate S,

e for every occurrence C of a Or-expression in A, a new
ng-ary predicate Choosel ¢,

e for every occurrence C of a Select-expression in A, a
new (nc¢ + 1)-ary predicate Selc,

e for every occurrence C of a New-expression in A, a new
(n¢ + 1)-ary predicate Createc,
Intuitively, a 3} -structure corresponds to a A-selection:

S correspond to (", Chooselc to (&', Selo to (&' and
Createc to (.

85

Lemma 3.11. There exists an FO theory San over X3
such that there is a one-to-one correspondence between A-
selections in D and models of S with domain D.

Proof. This theory contains sentences that express that Selx
is functional, and that Createc is a partial function. It is
straightforward to do this in FO (with among others, con-
straints such as VZ : 3y : Sel¢(Z, y)). Furthermore, it is also
easy to express that the Createc functions are injective, and
that different New-expressions create different elements.
Finally, this theory relates S to the Createc expressions:
Vy : S(y) & =V (3T : Createc (T, y)) where the disjunc-
tion ranges over all occurrences C' of New-expressions. [

The condition that a causal theory succeeds can also be

expressed as an FO theory. For that, we need one more defi-
nition.
Definition 3.12. Let A be a causal theory in NestNF and let
C be one of the C! in definition 3.5, then we call @; (again,
from definition 3.5) the relevance condition of C' and denote
it Relc.

In what follows, we define one more extended vocabulary.
First, we use it to express the constraints that A succeeds and
afterwards, for the actual transformation.

Definition 3.13. The A-transformed vocabulary XY is the
disjoint union of ¥ and ¥} extended with the unary predi-
cate symbol U.

Lemma 3.14. Suppose A is a causal theory in NestNF,
and ¢ is a A-selection with corresponding ¥ -structure M.
There exists an FO theory Succa such that for every (two-
valued) structure I with 1 Dy = M, A succeeds with re-

spect to I and C iff I |= Succa.

Proof. A is in NestNF; for every of the C/ (as in Defini-
tion 3.5), Rele: is true in 7 if and only if C/ is relevant.
Hence, for Succa we can take the FO theory consisting of
the following sentences:

o VT Rele = Jy
expressions C(T) in A,

e VZ : Rele = Jy : (Sele(T,y) A ¢), for all Select-
expressions C(T) of the form Select y[¢)] : C'in A. O

Createc(Z,y), for all New-

Now we describe the actual transformation: we translate
every quantification into a relativised version, make explicit
that a New-expression causes an atom U(d), and eliminate
all non-determinism using the predicates in 4.

Definition 3.15. Let A be a C-LOG theory over ¥ in
NestNF. The transformed theory Al is the theory obtained
Sfrom A by applying the following transformation:

e first replacing all quantifications ax[)] : x, where a €
{V, 3, Select, All} by az[(U(z) V S(x)) A] : x

o subsequently replacing each occurrence C(T) of an
expression New y C' by Ally[Createc(T,y)]
U(y) And ',

e replacing every occurrence C{T) of an expression
C10rCy by (C; «— Choosele(Z))And(Cy
—Choosel (7)),

«—



e and replacing every occurrence C(T) of an expression
Select y[p] : C" by Ally[p A Sel¢ (T, y)] : C'.

Given a structure I and a A-selection (, there is an obvi-
t
ous lattice morphism m : L? ¢ L?A mapping a structure

J to the structure .J’ with domain D7" = D interpreting all
symbols in 3% according to ¢ (as in Lemma 3.11), all sym-
bols in X (except for the domain) the same as [ and interpret-
ing U as D7\ 87", m can straightforwardly be extended to
a bilattice morphism.

Lemma 3.16. Let ¢ be a A-selection for A and A and A
be the partial immediate causality operators of A and A!
respectively. Let J be any partial structure in (L% C)2. Then

me(Ac(J)) = A(me(J)).

Idea of the proof. New-expressions New y : C’ in A have
been replaced by All expressions causing two subexpres-
sions: U(y) and the C’ for exactly the y’s that are cre-
ated according to (. Furthermore, the relativisation of all
other quantifications guarantees that we correctly evaluate
all quantifications with respect to the domain of J, encoded
inSUU.

Furthermore, all non-deterministic expressions have been
changed into All-expressions that are conditionalised by the
A-selection; this does not change the effect set; thus, the
operators correspond. O

Lemma 3.17. Let (, A¢ and A be as in lemma 3.16. If 1
is the well-founded model of A¢, m¢(I) is the well-founded
model of A.

Proof. Follows directly from lemma 3.16: the mapping
J +— m¢(J) is an isomorphism between LE ¢ and the sub-

t
lattice of LIZE, consisting of those structures such that the
interpretations of S and U/ have an empty intersection. As
this isomorphism maps A to A, their well-founded models
must agree. O

Lemma 3.18. Let A be a causal theory in NestNF, ¢ a A-
selection for A and I a X-structure. Then I |= A if and only
ifme(I) = At and m¢(I) |= Sa and m¢(I) = Succa.

Proof. Follows directly from Lemmas 3.17, 3.11 and 3.14.
O

Proof of Lemma 3.9. Let A be the C-LOG theory in 7. We
can now take as deterministic theory the theory consisting of
A?, all FO sentences in 7, and the sentence Sa A Succa A
Vo : S(z) & —U(z), where the last formula excludes all
structures not of the form m¢(I) for some I (the created
elements U/ and the initial elements S should form a partition
of the domain). O

3.4 From General FO(C) to NestNF

In the following definition we use A[C’/C] for the causal
theory obtained from A by replacing the occurrence of a
CEE C by C".

86

Definition 3.19. Suppose C(T) is an occurrence of a CEE
in A. With Unnest(A,C) we denote the causal theory
A[P(z)/C| And AL1Z[P(T)] : C where P is a new predi-
cate symbol.

Lemma 3.20. Every FO(C) theory is Y-equivalent with an
FO(C) theory in NestNF.

Proof. First, we claim that for every C-LOG theory over X,
A and Unnest(A, C) are ¥-equivalent. It is easy to see
that the two theories have the same A-selections. Further-
more, the operator for Unnest (A, C) is a part-to-whole
monotone fixpoint extension® (as defined in (Vennekens et
al. 2007)) of the operator for A. In (Vennekens et al. 2007)
itis shown that in this case, their well-founded models agree,
which proves our claim. The lemma now follows by re-
peated applications of the claim. O

Proof of Theorem 3.6. Follows directly by combining lem-
mas 3.20, 3.9 and 3.8. For transformations only defined on
C-LoG theories, the extra FO part remains unchanged. [J

3.5 FO(C) and FO(ID)

An inductive definition (ID) (Denecker and Ternovska 2008)
is a set of rules of the form VT : P(¢) < ¢, an FO(I D) the-
ory is a set of FO sentences and IDs, and an 3SO(I D) the-
ory is a theory of the form 3P : 7, where 7 is an FO(/D)
theory. A causal theory in DefF corresponds exactly to an
ID: the CEE AllZ[y] : P(t) corresponds to the above rule
and the And-conjunction of such CEE:s to the set of corre-
sponding rules. The partial immediate consequence operator
for IDs defined in (Denecker and Ternovska 2008) is exactly
the partial immediate causality operator for the correspond-
ing C-LOG theory. Combining this with Theorem 3.6, we
find (with P the introduced symbols):

Theorem 3.21. Every FO(C) theory is equivalent with an
ISO(ID) formula of the form AP : {A, T}, where A is an
ID and T is an FO sentence.

Theorem 3.21 implies that we can use reasoning engines
for FO(ID) in order to reason with FO(C), as long as we
are careful with the newly introduced predicates. We imple-
mented a prototype of this transformation in the IDP system
(De Cat et al. 2014), it can be found at (Bogaerts 2014).

4 Example: Natural Numbers

Example 4.1. Let X be a vocabulary consisting of predi-
cates Nat/1, Succ/2 and Zero/1 and suppose 7T is the fol-
lowing theory:

New z : Nat(z) And Zero(x)
Allz[Nat(x)] : New y : Nat(y) And Succ(z, y)

3Intuitively, a part-to-whole fixpoint extension means that all
predicates only depend positively on the newly introduced predi-
cates



This theory defines a process creating the natural numbers.
Transforming it to NestNF yields:

New z : T1(z)

Allz[Ti(z)] : Nat(z)

Al z[Ty(x)] : Zero(x)
Allz[Nat(x)] : Newy : To(z,y)
Al z, y[To(z,y)] : Nat(y)

[T (x
Allz, y[Ty(z, y)] : Suce(z, y),

where T and T3 are auxiliary symbols. Transforming the
resulting theory into deterministic C-LOG requires the ad-
dition of more auxiliary symbols §/1,4//1, Create; /1 and
Creates /2 and results in the following C-LOG theory (to-
gether with a set of FO-constraints):

All z[Create; (x)] : U(z) And Ty ()

Allz[(U(z) vV S(x)) ATi(x)] : Nat(z)
ANL[U(x) v S(a)) AT (2)] - Zero(z)
Allz,y[(U(z) V S(x)) A Nat(z) A Createa(z,y)] :

U(y) And Ty (z, y)
Allz, y[(U(z) V S(x)) A
Nat(y)
Allz,y[(U(z) Vv S(x)) A
Suce(x, y)

U(y) vV S(y)) N Ta(z,y)] -

U(y) v S(y) NTa(z, )] -

This example shows that the proposed transformation is in
fact too complex. E.g., here, almost all occurrences of
U(z) V S(x) are not needed. This kind of redundancies can
be eliminated by executing the three transformations (from
Sections 3.2, 3.3 and 3.4) simultaneously. In that case, we
would get the simpler deterministic theory:

All z[Create; (z)] : Nat(z) And Zero(z) And U (x)
Allz,y[(U(z) V S(x)) A Nat(z) A Creates(z,y)] :
Nat(y) And Succ(z, y) And U (y)

with several FO sentences:

Ve :U(z) < -S(x)

Yy : S(y) < —(Create (y) V 3z : Creates(x,y)).
Jz : Createy ().

Va,y : Create; (z) A Create; (y) = x = y.

Vx,y, z : Creates(x,y) A Createy (z,2) = y = 2.
Va,y, z : Create; (y) A Createi(z,2) = y = z.
Vz[Nat(z)] : y : Creates(z, y).

These sentences express the well-known constraints on N:
there is at least one natural number (identified by Create;),
and every number has a successor. Furthermore the initial
element and the successor elements are unique, and all are
different. Natural numbers are defined as zero and all ele-
ments reachable from zero by the successor relation. The
theory we started from is much more compact and much
more readable than any FO(/D) theory defining natural
numbers. This shows the Knowledge Representation power
of C-LoG.

87

S Complexity Results

In this section, we provide complexity results. We focus on
the C-L0OG fragment of FO(C) here, since complexity for
FO is well-studied. First, we formally define the inference
methods of interest.

5.1 Inference Tasks

Definition 5.1. The model checking inference takes as input
a C-LOG theory A and a finite (two-valued) structure 1. It
returns true if I = A and false otherwise.

Definition 5.2. The model expansion inference takes as in-
put a C-LOG theory A and a partial structure I with finite
two-valued domain. It returns a model of A more precise
than I if one exists and “unsat” otherwise.

Definition 5.3. The endogenous model expansion inference
is a special case of model expansion where I is two-valued
on exogenous symbols of A and completely unknown on en-
dogenous symbols.

The next inference is related to database applications. In
the database world, languages with object creation have also
been defined (Abiteboul, Hull, and Vianu 1995). A query in
such a language can create extra objects, but the interpreta-
tion of exogenous symbols (tables in the database) is fixed,
i.e., exogenous symbols are always false on newly created
elements.

Definition 5.4. The unbounded query inference takes as in-
put a C-LOG theory A, a partial structure I with finite two-
valued domain such that I is two-valued on exogenous sym-
bols of A and completely unknown on endogenous symbols
of A, and a propositional atom P. This inference returns
true if there exist i) a structure J, with D/ D> DI g7 =41
for exogenous symbols o, and P’ = t and ii) a A-selection
¢ in D7 with ('™ = DI, such that J is a model of A with
A-selection (. It returns false otherwise.

5.2 Complexity of Inference Tasks

In this section, we study the datacomplexity of the above
inference tasks, i.e., the complexity for fixed A.

Lemma 5.5. For a finite structure I, computing A¢(I) is
polynomial in the size of I and (.

Proof. In order to compute A.(I), we need to evaluate a
fixed number of FO-formulas a polynomial number of times
(with exponent in the nesting depth of A). As evaluating
a fixed FO formula in the context of a partial structure is
polynomial, the result follows. O

Theorem 5.6. For a finite structure I, the task of comput-
ing the Ac-well-founded model of A in the lattice L%C is
polynomial in the size of I and (.

Proof. Calculating the well-founded model of an approxi-
mator can be done with a polynomial number of applications
of the approximator. Furthermore, Lemma 5.5 guarantees
that each of these applications is polynomial as well. O

Theorem 5.7. Model expansion for C-LOG is NP-complete.



Proof. After guessing a model and a A-selection, Theorem
5.6 guarantees that checking that this is the well-founded
model is polynomial. Lemma 3.14 shows that checking
whether A succeeds is polynomial as well. Thus, model
expansion is in NP.

NP-hardness follows from the fact that model expansion
for inductive definitions is NP-hard and inductive definitions
are shown to be a subclass of C-LOG theories, as argued in
Section 3.5. O

Example 5.8. We show how the SAT-problem can be en-
coded as model checking for C-LOG. Consider a vocabu-
lary X747 with unary predicates C1 and PS and with bi-
nary predicates Pos and Neg. Every SAT-problem can be
encoded as a X757 -structure: Cl and PS are interpreted as
the sets of clauses and propositional symbols respectively,
Pos(e, p) (respectively Neg(c, p)) holds if clause ¢ contains
the literal p (respectively —p).

We now extend S947 to a vocabulary 547 with unary
predicates Tr and Fa and a propositional symbol Sol. Tr and
Fa encode an assignment of values (true or false) to propo-
sitional symbols, Sol means that the encoded assignment is
a solution to the SAT problem. Let Ag a1 be the following
causal theory:

Allp[PS(p)] : Tr(p) Or Fa(p)
Sol « Ve[Cl(¢)] : Ip :
(Pos(c, p) ATr(p) V (Neg(c, p) A Fa(p))

The first rules guesses an assignment. The second rule says
that Sol holds if every clause has at least one true literal.
Model expansion of that theory with a structure interpret-
ing 2947 according to a SAT problem and interpreting Sol
as true, is equivalent with solving that SAT problem, hence
model expansion is NP-hard (which we already knew). In
order to show that model checking is NP-hard, we add the
following CEE to the theory Aga7t.

(Allp[PS(p)] : Tr(p) And Fa(p)) < Sol

Basically, this rules tells us to forget the assignment once
we have derived that it is a model (i.e., we hide the witness
of the NP problem). Now, the original SAT problem has a
solution if and only if the structure interpreting symbols in
Y747 according to a SAT problem and interpreting all other
symbols as constant true is a model of the extended theory.
Hence:

Theorem 5.9. Model checking for C-LOG is NP-complete.

Model checking might be a hard task but in certain cases
(including for Ag47) endogenous model expansion is not.
The results in Theorem 5.6 can sometimes be used to gener-
ate models, if we have guarantees to end in a state where A
succeeds.

Theorem 5.10. If A is a total* causal theory without New

and Select-expressions, endogenous model expansion is in
P

*A causal theory is roral if for every A-selection ¢, w(A¢) is
two-valued, i.e., roughly, if it does not contain relevant loops over
negation.

88

Note that Theorem 5.10 does not contradict Example 5.8
since in that example, Sol is interpreted as true in the input
structure, i.e., the performed inference is not endogenous
model expansion. It is future work to generalise Theorem
5.10, i.e., to research which are sufficient restrictions on A
such that model expansion is in P.

It is a well-known result in database theory that query lan-
guages combining recursion and object-creation are com-
putationally complete (Abiteboul, Hull, and Vianu 1995);
C-Lo0G can be seen as such a language.

Theorem 5.11. Unbounded querying can simulate the lan-
guage whileyey, from (Abiteboul, Hull, and Vianu 1995).

Proof. We already showed that we can create the natural
numbers in C-LOG. Once we have natural numbers and the
successor function Succ, we add one extra argument to ev-
ery symbol (this argument represents time). Now, we en-
code the looping construct from while, ., as follows. An
expression of the form while P do s corresponds to the
CEE: Allt[P(t)] : C, where C is the translation of the ex-
pression s. An expression P = new Q corresponds to a
CEE (where the variable ¢ should be bound by a surround-
ing while).

AllZ, t'[Succ(t, t')] : Newy : P(z,y,t') — Q(z,t). O

Now, it follows immediately from (Abiteboul, Hull, and
Vianu 1995) that

Corollary 5.12. For every decidable class S of finite struc-
tures closed under isomorphism, there exists a A such that
unbounded exogenous model generation returns true with
input I iff I € S.

6 Conclusion

In this paper we presented several normal forms for FO(C).
We showed that every FO(C) theory can be transformed
to a X-equivalent deterministic FO(C) theory and to a X-
equivalent FO(C) theory in NestNF or in DefF. Further-
more, as FO(C) theories in DefF correspond exactly to
FO(ID), these transformations reduce inference for FO(C)
to FO(ID). We implemented a prototype of this above
transformation, resulting in the first FO(C) solver. We also
gave several complexity results for inference in C-L0OG. All
of these results are valuable from a theoretical point of view,
as they help to characterise FO(C), but also from a practical
point of view, as they provide more insight in FO(C).

References

Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.

Bogaerts, B.; Vennekens, J.; Denecker, M.; and Van den
Bussche, J. (in press) 2014. FO(C): A knowledge represen-
tation language of causality. Theory and Practice of Logic
Programming (TPLP) (Online-Supplement, Technical Com-
munication ICLP14).

Bogaerts, B. 2014. IDP-CLog. http://dtai.cs.
kuleuven.be/krr/files/software/various/
idp-clog.tar.gz.



De Cat, B.; Bogaerts, B.; Bruynooghe, M.; and Denecker,
M. 2014. Predicate logic as a modelling language: The IDP
system. CoRR abs/1401.6312.

Denecker, M., and Ternovska, E. 2008. A logic of nonmono-
tone inductive definitions. ACM Transactions on Computa-
tional Logic (TOCL) 9(2):14:1-14:52.

Denecker, M.; Bruynooghe, M.; and Vennekens, J. 2012.
Approximation fixpoint theory and the semantics of logic
and answers set programs. In Erdem, E.; Lee, J.; Lierler,
Y.; and Pearce, D., eds., Correct Reasoning, volume 7265 of
Lecture Notes in Computer Science. Springer.

Denecker, M. 2012. The FO(-) knowledge base system
project: An integration project (invited talk). In ASPOCP.
Kleene, S. C. 1938. On notation for ordinal numbers. The
Journal of Symbolic Logic 3(4):pp. 150-155.

Preyer, G., and Peter, G. 2002. Logical Form and Language.
Clarendon Press.

Vennekens, J.; Marién, M.; Wittocx, J.; and Denecker, M.
2007. Predicate introduction for logics with a fixpoint se-

mantics. Part I: Logic programming. Fundamenta Informat-
icae 79(1-2):187-208.

89



FO(C) and Related Modelling Paradigms

Bart Bogaerts and Joost Vennekens and Marc Denecker
Department of Computer Science, KU Leuven
{bart.bogaerts, joost.vennekens, marc.denecker} @cs.kuleuven.be

Jan Van den Bussche
Hasselt University & transnational University of Limburg
jan.vandenbussche @uhasselt.be

Abstract

Recently, C-LOG was introduced as a language for modelling
causal processes. Its formal semantics has been defined, but
the study of this language is far from finished. In this pa-
per, we compare C-LOG to other declarative modelling lan-
guages. More specifically, we compare to first-order logic
(FO), and argue that C-LOG and FO are orthogonal and that
their integration, FO(C), is a knowledge representation lan-
guage that allows for clear and succinct models. We compare
FO(C) to E-disjunctive logic programming with the stable
semantics, and define a fragment on which both semantics
coincide. Furthermore, we discuss object-creation in FO(C),
relating it to mathematics, business rules systems, and data
base systems.

1 Introduction

Previous work introduced C-LOG (Bogaerts et al. in press
2014a), an expressive language construct to describe causal
processes, and FO(C), its integration with classical logic.
In that work, it is indicated that C-LOG shows similarities to
many other languages and it is suggested that C-LOG could
serve as a tool to study the semantical relationship between
these languages. In this paper, we take the first steps for such
a study: we discuss the relationship of FO(C) with other
paradigms and through this discussion, provide a compre-
hensive overview of the informal semantics of FO(C).

C-Lo0G and FO are syntactically very similar, but seman-
tically very different languages. In this paper we formalise
the semantical relationship between C-LOG and FO, and
argue how their integration, FO(C), is a rich language in
which knowledge can be represented succinctly and clearly.

We explain how modelling in FO(C) relates to the “gen-
erate, define, and test” methodology used in answer set pro-
gramming. We discuss how FO(C) relates to disjunctive
logic programs with existential quantification in rule heads
(You, Zhang, and Zhang 2013), both informally and for-
mally, and we identify a subset of E-disjunctive logic pro-
grams on which stable semantics corresponds to the FO(C)
semantics. We also discuss four important knowledge rep-
resentation constructs that FO(C) adds with respect to E-
disjunctive logic programs: nested rules (in fact, arbitrary
nesting of expressions), dynamic choice, object creation,
and a more modular semantics.

90

Furthermore, we discuss object-creation in related
paradigms. One of those discussed paradigms is the field of
deductive databases, where extensions of Datalog have been
defined. In (Abiteboul and Vianu 1991), rules with existen-
tially quantified head variables are used for object creation.
It is remarkable to see how the same extension of logic pro-
grams is used sometimes (e.g., in (You, Zhang, and Zhang
2013)) for selection, and sometimes (e.g., in (Abiteboul and
Vianu 1991)) for object-creation. Consider for example a
rule

VX :3Y : P(X,Y):-q(X).

Viewing this rule as a rule in an E-disjunctive logic program,
it corresponds to the C-LOG expression

All X[¢(X)] : Select Y[t] : P(X,Y),

where for every X satisfying ¢, one existing value Y is se-
lected, and P(X,Y) is caused. The selected Y can be dif-
ferent or equal for different X’s. On the other hand, in case
this same rule occurs in a LogicBlox (Green, Aref, and Kar-
vounarakis 2012) specification, it corresponds to the C-LOG
expression

All X[¢(X)] : NewY : P(X,Y),

where for every X satisfying ¢ a new value Y is invented.
Thus implying among others that all of these values are
different. The explicit distinction C-LOG makes between
object-creation and selection is necessary for studying the
relationship between these languages.

The rest of this paper is structured as follows. In Section
2 we give preliminaries, including the syntax and informal
semantics of C-LOG. In Sections 3 and 4, we focus on the
creation-free fragment of C-LOG, i.e., on expressions with-
out the New-operator: first, we compare C-LOG to FO and
discuss the integration of these two; afterwards, we compare
C-LoG to E-disjunctive logic programs. In Section 5, we
discuss object-creation in C-LOG by providing simple intu-
itive examples and relating the New-operator to other lan-
guages with similar forms of object-creation. We conclude
in Section 6.

2 C-Loc

We assume familiarity with the basics of first-order logic.
Vocabularies, formulas, and terms are defined as usual. We



use t for truth and f for falsity. o denotes the interpretation
of symbol o in structure Z. Domain atoms are atoms of
the form P(d) where the d; are domain elements. We use
restricted quantifications (Preyer and Peter 2002), e.g., in
FO, these are formulas of the form Vz[¢] : ¢ or Jx[¢)] : ¢,
meaning that ¢ holds for all (resp. for a) z such that i) holds.
The above expressions are syntactic sugar for Vz : ¢ = ¢
and 3z : 1 A, but such a reduction is not possible for other
restricted quantifiers in C-L0OG. We call 1 the qualification
and ¢ the assertion of the restricted quantifications. From
now on, let 3 be a relational vocabulary, i.e., 3 consists only
of predicate, constant and variable symbols.

In what follows we briefly repeat the syntax and infor-
mal semantics of C-LOG. For more details and an exten-
sive overview of the formal semantics of C-LOG, we refer
to (Bogaerts et al. in press 2014a).

2.1 Syntax of C-LOG

Definition 2.1. Causal effect expressions (CEE) are defined
inductively as follows:

e if P(t) is an atom, then P(t) is a CEE,

o if pis an FO formula and C' is a CEE, then C' — @ isa
CEE,

e ifCy and C5 are CEEs, then Cy And Cs is a CEE,
e if C and Cs are CEEs, then C, Or Cy is a CEE,

e if x is a variable, o is a first-order formula and C' is a
CEE, then All x[p] : C' is a CEE,

e if x is a variable, ¢ is a first-order formula and C' is a
CEE, then Select z[p] : C' is a CEE,

e if x is a variable and C' is a CEE, then New z : C' is a
CEE.

We call a CEE an atom-expression (respectively rule-,
And-, Or-, All-, Select- or New-expression) if it is of
the corresponding form. We use AllZ[¢] : C as an ab-
breviation for Allzq[t] : ... Allz,[p] : C and similar for
Select-expressions. We call a predicate symbol P endoge-
nous in C'if P occurs as the symbol of a (possibly nested)
atom-expression in C, i.e., if P occurs in C' but not only in
first-order formulas. All other symbols are called exogenous
in C. An occurrence of a variable z is bound in a CEE if
it occurs in the scope of a quantification over that variable
(Va, dx, Allz, Select x, or New x) and free otherwise. A
variable is free in a CEE if it has free occurrences. A causal
theory, or C-LOG theory is a CEE without free variables.
We often represent a causal theory as a set of CEEs; the in-
tended causal theory is the And-conjunction of these CEEs.

2.2 Informal Semantics of C-LOG

In this section, we discuss the informal semantics of CEEs.
We repeat the driving principles on a simple example—one
without non-determinism—and discuss more complex ex-
pressions afterwards.

Driving Principles Following the philosophy of (Ven-
nekens, Denecker, and Bruynooghe 2009), the semantics of
C-Lo0G is based on two principles that are common in causal
modelling. The first is the distinction between endogenous

91

and exogenous properties, i.e., those whose value is deter-
mined by the causal laws in the model and those whose
value is not, respectively (Pearl 2000). The second is the
default-deviant assumption, used also by, e.g., (Hall 2004;
Hitchcock 2007). The idea here is to assume that each en-
dogenous property of the domain has some “natural” state,
that it will be in whenever nothing is acting upon it. For
ease of notation, C-LOG identifies the default state with fal-
sity, and the deviant state with truth. For example, consider
the following simplified model of a bicycle, in which a pair
of gear wheels can be put in motion by pedalling:

Turn(BigGear) « Pedal. (1)
Turn(BigGear) « Turn(SmallGear).  (2)
Turn(SmallGear) — Turn(BigGear). 3)

Here, Pedal is exogenous, while Turn(BigGear) and
Turn(SmallGear) are endogenous. The semantics of this
causal model is given by a straightforward “execution” of
the rules. The domain starts out in an initial state, in which
all endogenous atoms have their default value false and the
exogenous atom Pedal has some fixed value. If Pedal
is true, then the first rule is applicable and may be fired
(“Pedal causes Turn(BigGear)”) to produce a new state
of the domain in which Turn(BigGear) now has its de-
viant value frue. In this way, we construct the following
sequence of states (we abbreviate symbols by their first let-
ter):

{P} = {P,T(B)} = {P,T(B),T(S)} C)

In general, given a causal theory A, a causal process is a
(possibly transfinite) sequence of intermediate states, start-
ing from the default state such that, at each state, the effects
described by A take place. This notion of causal process is
based on the following principles:

e The principle of sufficient causation states that if the pre-
condition to a causal law is satisfied, then the event that it
triggers must eventually happen. For example, the process
described in (4) cannot stop after the first step: there is a
cause for Turn(SmallGear), hence this should eventu-
ally happen.

e The principle of universal causation states that all
changes to the state of the domain must be triggered by
a causal law whose precondition is satisfied. For exam-
ple, the small gear can only turn if the big gear turns.

e The principle of no self-causation states that nothing can
happen based on itself. E.g., if rule (1) would be excluded
from the causal theory, the gears cannot start rotating by
themselves.

Complex Expressions A (possibly infinite) structure is a
model of a causal theory A if it is the final state of a (non-
deterministic) causal processes described by A. In order to
define these processes correctly, one should know the events
that take place in every state. We call the set of those events
the effect set of the causal theory. There are two kinds of
effects that can be described by a causal theory: 1) flipping
an atom from its default to its deviant state and 2) creating
a new domain element. We now explain in a compositional



way what the effect set of a causal theory is in a given state
of affairs, which we represent as usual by a structure.

The effect of an atom-expression A is that A is flipped
to its deviant state. A conditional effect, i.e., a rule expres-
sion, causes the effect set of its head if its body is satisfied in
the current state, and nothing otherwise. The effect set de-
scribed by an And-expression is the union of the effect sets
of its two subexpressions; an All-expression Allz[p] : C’
causes the union of all effect sets of C’(x) for those s that
satisfy . An expression C; Or Cy non-deterministically
causes either the effect set of C; or the effect set of Cy; a
Select-expression Select z[p] : C’ causes the effect set of
C’ for a non-deterministically chosen x that satisfies . An
object-creating CEE New x : C’ causes the creation of a
new domain element n and the effect set of C’(n).

Informally, CEEs only cause changes to the state once
(for each of its instantiations), e.g., a Select-expression
Select z[¢] : C’ causes the effect set of C’ for a non-
deterministically chosen x once, and cannot cause C’ for
another x afterwards.

Example 2.2. Permanent residence in the United States can
be obtained in several ways. One way is passing the natural-
isation test. Another way is by playing the “Green Card Lot-
tery”, where each year a number of lucky winners are ran-
domly selected and granted permanent residence. We model
this as follows:

All p[Apply(p) A PassedTest(p)] : PermRes(p)
(Select p[Play(p)] : PermRes(p)) < Lottery.

The first CEE describes the “normal” way to obtain per-
manent residence; the second rule expresses that one win-
ner is selected among everyone who plays the lottery. If
T is a structure in which Lottery holds, due to the non-
determinism, there are many possible effect sets of the above
CEE, namely the sets { PermRes(p) | p € Apply® Ap €
PassedTest’} U {PermRes(d)} for some d € Play?.

Models of this causal theory are structures such that ev-
eryone who applies and passes the test has permanent resi-
dence, and in case the lottery happens, one random person
who played the lottery as well, and such that furthermore
no-one else obtains permanent residence. The principle of
sufficient causation guarantees a form of closed world as-
sumption: you can only obtain residence if there is a rule
that causes you to obtain this nationality. The two CEEs are
considered independent: the winner could be one of the peo-
ple that obtained it through standard application, as well as
someone else, i.e., the semantics allows both minimal and
non-minimal models.

Note that in the above, there is a great asymmetry be-
tween Play(p), which occurs as a qualification of Select-
expression, and PermRes(p), which occurs as a caused
atom. This means that the effect will never cause atoms of
the form Play(p), but only atoms of the form PermRes(p).
This is one of the cases where the qualification of an expres-
sion cannot simply be eliminated.

Example 2.3. Hitting the “send” button in your mail ap-
plication causes the creation of a new package containing a
specific mail. That package is put on a channel and will be

92

received some (unknown) time later. As long as the package
is not received, it stays on the channel. In C-L0OG, we model
this as follows:
Allm,t[Mail(m) A HitSend(m,t)] : Newp :
Pack(p) And Cont(p, m) And
OnCh(p,t+1) And
Select d[d > 0] : Received(p,t + d)
Allp,t[Pack(p) AN OnCh(p,t) A ~Received(p,t)] :
OnCh(p,t+1)

Suppose an interpretation HitSend? = {(MyMail,0)} is
given. A causal process then unfolds as follows: it starts in
the initial state, where all endogenous predicates are false.
The effect set of the above causal effect in that state con-
sists of 1) the creation of one new domain element, say
_p, and 2) the caused atoms Pack(_p), Cont(_p, MyM ail),
OnCh(p,1) and Received(_p,7), where instead of 7, we
could have chosen any number greater than zero. Next, it
continues, and in every step ¢, before receiving the pack-
age, an extra atom OnCh(p,t + 1) is caused. Finally, in the
seventh step, no more atoms are caused; the causal process
ends. The final state is a model of the causal theory.

2.3 FO(O)

First-order logic and C-LOG have a straightforward integra-
tion, FO(C). Theories in this logic are sets of FO sentences
and causal theories. A model of such a theory is a structure
that is a model of each of its expressions (of each of its CEEs
and sentences). An illustration is the mail protocol from Ex-
ample 2.3, which we can extend with the “observation” that
at some time, two packages are on the channel:

3t,p1, p2[p1 # p2| : OnCh(p1,t) A OnCh(pz,t).

Models of this theory represent states of affairs where at
least once two packages are on the channel simultaneously.
This entirely differs from And-conjoining our CEE with

Select t, p1,p2[p1 # p2] : OnCh(p1,t) And OnCh(pa,t).

The resulting CEE would have unintended models in which
two packages suddenly appear on the channel for no reason.
Note that in the definitions of C-LOG, we restricted atten-
tion to relational vocabularies. All the theory can straight-
forwardly be generalised as long as function symbols do not
occur as endogenous symbols in CEEs, i.e., if they only oc-
cur in FO sentences or as exogenous symbols in causal the-
ories.

3 C-LoG,FO,and FO(C)

There is an obvious syntactical correspondence between
FO and creation-free C-LOG (C-LOG without New-
expressions): And corresponds to A, Or to V, « to <,
All to V, and Select to 3. As already mentioned above,
expressions in C-LOG have an entirely different meaning
than the corresponding FO expression. A C-LOG expres-
sion describes a process in which more and more facts are
caused, while an FO expression describes a truth. For exam-
ple POr @ describes a process that picks either P or )



and makes one of them true, hence its models are structures
in which exactly one of the two holds. On the other hand,
the FO sentence P V ( has more models, namely also one
in which both hold. We generalise this observation:

Theorem 3.1. Let A be a creation-free causal theory over
Y and Tx the corresponding FO theory (the theory obtained
from A by replacing A1l by V, Select by 3, Or by V, And
by A\, and — by <). Then for every S-structure T, if T = A,
then also T = Th.

The reverse often does not hold: there is no obvious way
to translate any FO formula to a C-LOG expression. In some
cases, it is possible to find an inverse transformation, for ex-
ample for positive (negation-free) FO theories. This would
yield a constructive way to create models for a positive FO
theory, which is not a surprising, nor a very interesting re-
sult; another constructive way to get a model of such a the-
ory would be to make everything true. But it is interesting
to view C-LOG theories as a constructive way to create a
certain structure. This shows that modelling in C-LOG
is orthogonal to modelling in FO. In FO, by default every-
thing is open, every atom can be true or false arbitrarily.
Every constraint removes worlds from the set of possible
worlds. In C-LOG on the other hand, all endogenous sym-
bols are by default false. Adding extra rules to a C-LOG
theory can result in more models (when introducing extra
non-determinism), or modify worlds. In some cases, one of
the approaches is more natural than the other.

Consider for example a steel oven scheduling problem.
For every block of steel, we should find a time ¢ to put that
block in the oven and at time ¢t + D, where D is some fixed
delay, we take the block out. In C-LOG this is modelled as

Al b[Block(b)] : Select t]t] : In(b,t) And Out(b,t+ D),

but to model this in FO we would get one similar constraint
together with several constraints guaranteeing uniqueness:

Vb[Block(b)] : 3t : In(b,t) A Out(b,t + D)

Vb, t,t'[Block(b)] : In(b,t) A In(b,t') =t =1t

Vb, t,t' [Block(b)] : Out(b,t) A Out(b,t') =t =+t

Vo : (3t : In(x,t) V Out(z,t)) = Block(z)
Here, the approach in C-LOG is much more natural, as in
this example it is clear how to construct a model, whereas
to model it in FO, we should analyse all properties of mod-
els. On the other hand, if we extend this example with a

constraint that no two blocks can enter the oven at the same
time, this is easily expressible in FO:

~3t,b,6[b £ V] : In(b, t) A In(V, 1),

while this is not naturally expressible in C-LOG. This shows
the power of FO(C), the integration of FO and C-LOG.
For example, the entire above scheduling problem would be
modelled in FO(C) as follows (where we use “{” and “}” to
separate the C-LOG theory from the FO sentences).

Allb[Block(b)] : Select t]t] :
In(b,t) And Out(b,t + D)
=3¢, b,0'[b # V] - In(b,t) A In(b,t)

93

This is much more readable and much more concise than
any pure C-LOG or FO expression that expresses the same
knowledge. As can be seen, the integration of the orthogo-
nal languages FO and C-L0oG, FO(C) provides a great mod-
elling flexibility.

4 FO(C) and ASP

The methodology from the previous section is very similar
to the “generate, define, and test” (GDT) methodology used
in Answer Set Programming (ASP). In that methodology,
“generate” and “define” are constructive modules of ASP
programs that describe which atoms can be true, while the
“test” module corresponds to first-order sentences that con-
strain solutions. In (Denecker et al. 2012), it has been argued
that GDT programs correspond to FO(ID) theories. Fur-
thermore, in (Bogaerts et al. in press 2014a), we showed that
FO(ID) is syntactically and semantically a sublanguage of
FO(C). Here, we argue that a more general class of ASP
programs can be seen as FO(C) theories.

E-disjunctive programs (You, Zhang, and Zhang 2013)
are finite sets of rules of the form:

VZ:3g:aq;...5Qm:-F1,..., 0k n0ty1,...,n0ty,. (5)

where the «;, 3; and ~y; are atoms and variables in § only
occur in the «;. Given a structure M, we define M~ as the
literal set

{=a | v is a domain atom on dom(M) and M [~ a}.

A structure M is a stable model of E-disjunctive program P
(denoted M = P) if M is a minimal set X satisfying the
condition: for any rule » € P and any variable assignment
n, if the literal set X U M~ logically entails body(r)n, then
for some assignment 6, and for some « in the head of r,
(an|z)8 € X. A rule of the form (5) is called a constraint if
m = 0.

Definition 4.1. Let P be an E-disjunctive program. The cor-
responding FO(C)-theory is the theory Tp with as C-LOG
expression the And-conjunction of all expressions

ANZ[B A -

such that there is a rule of the form (5) withm > 0inP. Tp
has as FO part:

e all sentences VT : =(B1 A - AP A—y1 Ao A=)
such that there is a rule of the form (5) with m = 0 (i.e.,
a constraint) in P and

e the sentences VT : ~P(XT) for symbols P that do not occur
in the head of any rule in P.

A =] : Selectg[t] : a1 Or ... Or ay,

The last type of constraint is a technical detail: in ASP, all
symbols are endogenous, while in C-LOG, this is only the
case for predicates occurring in “the head of rules”.

The above syntactical correspondence does not always
correspond to a semantical correspondence. Intuitively, an
E-disjunctive rule r (roughly) means the following: if the
body of r holds for an instantiation of 7, then we select one
instantiation of the ¥ and one disjunct; that disjunct is caused
to be true for that instantiation. But, globally the selection
should happen in such a way that the final model is minimal.



For example the program {p. p;q.} only has one stable
model, namely {p}. The intuition behind it is that the first
rule causes p to be true, and hence compromises the choice
in the second rule. As p already holds, the global minimality
condition ensures that the second rule is obliged to choose
p as well, if possible. When we slightly modify the above
program, by adding a constraint: {p. p;q. :-notgq.} sud-
denly, g can (and should) be chosen by the second rule, as
{p} no longer is a model of this theory. The above illustrates
that there is a great interdependency between different rules
and between rules and constraints: adding an extra rule or
constraint changes the meaning of other rules. Below, we
identify a fragment of E-disjunctive ASP in which this de-
pendency is not too strong, and we show that for this frag-
ment, the stable model semantics equals the FO(C) seman-
tics. In order to do so, we introduce the following concepts:

Definition 4.2. Let § be a domain atom and r a rule in the
form of (5). Suppose 1 is a variable assignment of the vari-
ables T and y. We say that § occurs in r at i for n if a;m = 6.
We say that 6 occurs in r if there exist and i and an 7 such
that r occurs at i for .

Definition 4.3. We call a rule disjunctive if § is not the
empty tuple or if m > 1.

Definition 4.4. An E-disjunctive program P is called non-
overlapping if for every domain atom & one of the following
holds

e 0 occurs only in non-disjunctive rules, or

e there are at most one rule r, one i, and one 1 such that §
occurs in r at i for n.

The above condition states that domain atoms occurring
in heads of disjunctive rules, cannot occur multiple times in
rule heads. Intuitively, this guarantees that different choices
do not interfere.

Theorem 4.5. Let P be a non-overlapping E-disjunctive
program without recursion over negation and Ip the cor-
responding FO(C) theory. For every structure T, T |= P if
and only if T = Tp.

In Theorem 4.5, there is one extra condition on non-
overlapping ASP programs to be equivalent to the corre-
sponding FO(C) theory, namely that it does not contain re-
cursion over negation, i.e., there are no rules of the form

p:-notp'. P’ :-notp.

It has already been argued in (Denecker et al. 2012) that in
practical applications recursion over negation is mostly for
two purposes: 1) expressing constraints and 2) to “open” the
predicate p, i.e., to encode that it can have arbitrary truth
value. In this case, the predicate p’ would not be used in
the rest of the theory. This can as well be done with a rule
p;p’. This last rule is equivalent to the above two in non-
overlapping programs (or, if p and p’ do not occur in other
rule heads). In FO(C), we could either add the disjunctive
rule, or simply omit this rule, since exogenous predicates are
open anyway.

As already stated above, in case an ASP program is not
non-overlapping, semantics might differ. However, we do
have

94

Theorem 4.6. Let P be any E-disjunctive program with-
out recursion over negation and Tp be the corresponding
FO(C) theory. For every structure T, if T |= P then also
TE7p.

The reverse does not hold, since C-LOG does not impose
a global minimality condition. The difference in semantics
is illustrated in the American Lottery example, which we
resume below.

In the above, we argued that for many practical applica-
tions of E-disjunctive programs, semantics of FO(C) corre-
sponds to the stable model semantics. This raises the ques-
tion of relevance of FO(C). From a knowledge repre-
sentation perspective, FO(C) adds several useful constructs
with respect to E-disjunctive logic programs. Among these
are nested rules (in fact, arbitrary nesting of expressions),
dynamic choice, object creation, and a more modular seman-
tics.

Nested causal rules occur in many places, for example,
one could state that the electrician causes a causal link be-
tween a button and a light, e.g.,

(light < button) «— electrician.

We found similar nested rules in (Kowalski and Sadri
2013). Of course, for simple examples this can also be ex-
pressed compactly in ASP, e.g. by

light :- electrician, button.

but when causes and effects are more complex, translating
them requires the introduction of auxiliary predicates, di-
minishing the readability of the resulting program.

Dynamic choices occur in many practical applications.
Consider the following situation: a robot enters a room,
opens some of the doors in this room, and then leaves by
one of the doors that are open. The robot’s leaving corre-
sponds to a non-deterministic choice between a dynamic set
of alternatives, which is determined by the robot’s own ac-
tions, and therefore cannot be hard-coded into the head of a
rule. In C-LOG, we would model this last choice as

Select z[open(x)] : leave(x).
To model this in an E-disjunctive logic program, we need
an extra auxiliary predicate, thus reducing readability:
3X : chosen(X).
VX :leave(X):- chosen(X).
VX :- chosen(X);notopen(X).

Modularity of the semantics has already been discussed
above:  The non-overlapping condition on ASP programs
guarantees similar modularity. However, when the non-
overlapping condition is violated, semantics of ASP pro-
grams are often less clear. Let us reconsider Example 2.2.
The E-disjunctive program

X : permres(X) :- lottery.
VX : permres(X) :- passtest(X).
is similar to
(Select z[t] : permres(z)) < lottery
All z[passtest(x)] : permres(x)



Semantically, the first imposes a minimality condition: the
lottery is always won by a person succeeding the test, if there
exists one. On the other hand, in C-LOG the two rules are in-
dependent, and models might not be minimal. In this exam-
ple, it is the latter that is intended. This illustrates modularity
of C-LOG. The rule (Select x[t] : permres(z)) « lottery
means that one person is selected randomly to obtain resi-
dence. Adding other rules does not change the meaning of
this rule; causal effects do not interfere.

Object-creation in C-LOG is discussed in the next section.

5 Object-creation in C-LOG

Object creation is available in C-LOG through the New-
operator. Like every language construct in C-LOG, the in-
formal interpretation of an expression

Newz: P(z) «— ¢

is defined in terms of causal processes. The above expres-
sion states that ¢ causes the creation of a new element and
that for that new element, P is caused. Object-creation is
also subject to the principles of sufficient causation, uni-
versal causation and no self-causation. In order to apply
these principles, the domain of a structure is partitioned into
two parts: the initial elements are those whose existence is
not governed by the causal theory, they are exogenous and
the created elements are those created by expressions in the
causal theory, i.e., they are endogenous. For created ele-
ments, their default value is not existing and their deviant
value is existing. Thus, at the start of a causal process, only
the initial elements exist, as soon as the preconditions of a
New-expressions are satisfied, an element is added to the
domain. The principle of no self-causation takes these de-
fault and deviant values into account: an object cannot be
created based on its own existence. Consider for example
the following causal theory:

Select z[t] : P(z)
(Newy: Q(y)) — o : P(a)
Select z[t] : R(x)

The first and last expressions select one object randomly and
cause P (respectively R) to hold for that object. The sec-
ond expression creates a new element conditionally, only if
there is at least one element satisfying P. In this example,
the element selected for the first expression cannot be the
one created in the second. Select-operators can only select
existing elements and the object created in the second ex-
pression can only be created after the selection in the first
rule, after there is some object satisfying P. For the last ex-
pression, any element can be selected. Hence, this causal
theory has no models with only one domain element. A
structure Z with domain {4, B} and with P = {A} and
Qf = RT = {B} is a model of the above causal theory.
In this case, B is the unique created element, and A is ini-
tial, i.e., A is assumed to exist before the described causal
process takes place. This illustrates that the New-operator
is more than simply a Select together with unique name
axioms: its semantics is really integrated in the underly-
ing causal process. The behaviour of New-expressions can

95

be simulated using Select-expressions if we make the two
parts of the domain (initial and created elements) explicit
and conditionalise all quantifications. A detailed discussion
of this transformation is out of the scope of this paper.

Object creation occurs in many fields, of which we dis-
cuss some below.

5.1 Object-Creation in Database Systems

Object-creation has been studied intensively in the field of
deductive databases. In (Abiteboul and Vianu 1991), vari-
ous extensions of Datalog, are considered, resulting in non-
deterministic semantics for queries and updates. One of
the studied extensions is object creation (throught existential
quantifications in rule heads). These and similar related ex-
tension have been implemented in several systems, includ-
ing LogicBlox (Green, Aref, and Karvounarakis 2012). An
example from the latter paper is the rule:

President(p), presidentO f[c] = p — Country(c).

which means that for every country ¢, a new (anonymous)
“derived entity” of type Prestdent is created. Of course,
the president of a country is not a new person, but the presi-
dent is new with respect to the database, which does not con-
tain any persons yet. Such rules with (implicit) existentially
quantified head variables correspond to New-expressions.
Here, it would translate to

All ¢[Country(c)] : New p : Pres(p) And presO f(c, p).

This shows that in some rule-based paradigms, an ex-
istentially quantified head-variable corresponds to object-
creation (New), while in other rule-based paradigms, such
as ASP, we saw that an existentially quantified head vari-
able corresponds to a selection. The relation between these
paradigms has, to the best of our knowledge, not yet been
studied thoroughly. We believe that FO(C), which makes an
explicit distinction between selection and object-creation, is
an interesting tool to study this relationship. This is future
work.

Many other Datalog extensions with forms of object cre-
ation exist. For example (Van den Bussche and Paredaens
1995) discusses a version with creation of sets and compares
its expressivity with simple object creation.

Object-creation also occurs in other database languages,
such as for example the query language while,e,, in (Abite-
boul, Hull, and Vianu 1995). An expression

while R do (P = new Q)

in that language corresponds to a CEE.
Allt[R(t)] : AllZ]t] : Newy : P(ZT,y,t + 1) «— Q(T, ).
In fact in (Bogaerts et al. in press 2014b), it has been shown

that C-LOG can “simulate” the entire language while ey, .

5.2 Object-Creation in Mathematics

Object-creation also occurs in mathematics. The set of all
natural numbers can be thought of as the set obtained by a
process that first creates one element (zero) and for every
element in this set, adds another element (its successor). In



C-Lo0gG, the above natural language sentences can be mod-
elled as follows

New z : (Nat(x) And Zero(x))
Allz[Nat(x)] : Newy : (Nat(y) And Succ(z,y)).

Models of the above theory are exactly those structures in-
terpreting Nat, Zero, Succ as the natural numbers, zero and
the successor function (modulo isomorphism).

5.3 Object-Creation in Business Rules Systems

Business Rules (Business Rules Group 2000) engines are
widely used in the industry. One big drawback of these sys-
tems is their inability to perform multiple forms of reason-
ing. For example, banks might use a Business Rules engine
to decide whether someone is eligible for a loan. This ap-
proach can be very efficient, but as soon as one is not only
interested in the above question, but also in explanations, or
suggestions about what to change in order to become eligi-
ble, the application should be redesigned. Previous attempts
to translate Business Rules applications into a logic with a
Tarskian model semantics have been made in (Hertum et al.
2013). The conclusion of this study was that for such a trans-
formation, we need object creation . We believe that C-LOG
provides a suitable form of object-creation for this purpose.
As an illustration, the JBoss manual (Browne 2009) contains
the following rule:

when Order ( customer null )
then insertLogical (new
ValidationResult (

validation.customer.missing

)) i

This rule means that if an order is created without customer,
a new ValidationResult is created with the message that the
customer is missing. This can be translated to C-LOG as
follows:

Ally[Order(y) AN NoCustumer(y)] :
New z : ValidationR(x) And Message(z,“..."”).

A more thorough study of the relationship between the oper-
ational semantics of Business Rules systems and the seman-
tics of C-LOG is a topic for future work.

6 Conclusion

In this paper we compared FO(C) to other modelling
paradigms. We discussed the semantical relationship be-
tween C-LOG and FO. We identified a fragment of E-
disjunctive logic programs for which the stable model se-
mantics corresponds to the semantics of FO(C), and ar-
gued how FO(C) enriches such programs with several use-
ful modelling constructs. Furthermore, we argued that the
object-creation in FO(C) corresponds to the object creation
in many related language. Besides technical relationship be-
tween these languages, we believe that this discussion also
provides insights in the semantics of FO(C).

96

References

Abiteboul, S., and Vianu, V. 1991. Datalog extensions
for database queries and updates. J. Comput. Syst. Sci.
43(1):62-124.

Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.

Bogaerts, B.; Vennekens, J.; Denecker, M.; and Van den
Bussche, J. (in press) 2014a. FO(C): A knowledge rep-
resentation language of causality. Theory and Practice of
Logic Programming (TPLP) (Online-Supplement, Technical
Communication ICLP14).

Bogaerts, B.; Vennekens, J.; Denecker, M.; and Van den
Bussche, J. (in press) 2014b. Inference in the FO(C) mod-
elling language. In ECAI 2014 - 21th European Conference
on Artificial Intelligence, Prague, Czech Republic, August
18-22, 2014, Proceedings.

Browne, P. 2009. JBoss Drools Business Rules. From tech-
nologies to solutions. Packt Publishing, Limited.

Business Rules Group. 2000. Defining Business Rules ~
What Are They Really? Technical report.

Denecker, M.; Lierler, Y.; Truszczynsky, M.; and Ven-
nekens, J. 2012. A Tarskian informal semantics for answer
set programming. In Dovier, A., and Santos Costa, V., eds.,
Technical Communications of the 28th International Con-
ference on Logic Programming, 277-289. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik.

Green, T. J.; Aref, M.; and Karvounarakis, G. 2012. Log-
icblox, platform and language: A tutorial. In Barceld, P.,
and Pichler, R., eds., Datalog, volume 7494 of LNCS, 1-8.
Springer.

Hall, N. 2004. Two concepts of causation. In Causation and
Counterfactuals.

Hertum, P. V.; Vennekens, J.; Bogaerts, B.; Devriendt, J.;
and Denecker, M. 2013. The effects of buying a new car: an
extension of the IDP knowledge base system. TPLP 13(4-5-
Online-Supplement).

Hitchcock, C. 2007. Prevention, preemption, and the prin-
ciple of sufficient reason. Philosophical review 116(4).
Kowalski, R. A., and Sadri, F. 2013. Towards a logic-based
unifying framework for computing. CoRR abs/1301.6905.
Pearl, J. 2000. Causality: Models, Reasoning, and Infer-
ence. Cambridge University Press.

Preyer, G., and Peter, G. 2002. Logical Form and Language.
Clarendon Press.

Van den Bussche, J., and Paredaens, J. 1995. The expres-
sive power of complex values in object-based data models.
Information and Computation 120:220-236.

Vennekens, J.; Denecker, M.; and Bruynooghe, M. 2009.
CP-logic: A language of causal probabilistic events and its
relation to logic programming. Theory and Practice of Logic
Programming 9(3):245-308.

You, J.-H.; Zhang, H.; and Zhang, Y. 2013. Disjunctive
logic programs with existential quantification in rule heads.
Theory and Practice of Logic Programming 13:563-578.



Belief Merging within Fragments of Propositional Logic

Nadia Creignou and Odile Papini
Aix Marseille Université, CNRS

Abstract

Recently, belief change within the framework of fragments of
propositional logic has gained increasing attention. Previous
works focused on belief contraction and belief revision on
the Horn fragment. However, the problem of belief merging
within fragments of propositional logic has been neglected
so far. This paper presents a general approach to define new
merging operators derived from existing ones such that the re-
sult of merging remains in the fragment under consideration.
Our approach is not limited to the case of Horn fragment but
applicable to any fragment of propositional logic character-
ized by a closure property on the sets of models of its for-
mulz. We study the logical properties of the proposed oper-
ators in terms of satisfaction of merging postulates, consider-
ing in particular distance-based merging operators for Horn
and Krom fragments.

Introduction

Belief merging consists in achieving a synthesis between
pieces of information provided by different sources. Al-
though these sources are individually consistent, they may
mutually conflict. The aim of merging is to provide a con-
sistent set of information, making maximum use of the in-
formation provided by the sources while not favoring any of
them. Belief merging is an important issue in many fields
of Artificial Intelligence (AI) (Bloch and (Eds) 2001) and
symbolic approaches to multi-source fusion gave rise to in-
creasing interest within the AI community since the 1990s
(Baral, Kraus, and Minker 1991; Cholvy 1998; Lin 1996;
Revesz 1993; 1997). One of today’s major approaches is
the problem of merging under (integrity) constraints in or-
der to generalize both merging (without constraints) and
revision (of old information by a new piece of informa-
tion). For the latter the constraints then play the role of
the new piece of information. Postulates characterizing the
rational behavior of such merging operators, known as IC
postulates, have been proposed by Konieczny and Pino
Pérez (Konieczny and Pino Pérez 2002) in the same spirit as
the seminal AGM (Alchourrén, Girdenfors, and Makinson
1985) postulates for revision. Concrete merging operators
have been proposed according to either semantic (model-
based) or syntactic (formula-based) points of view in a clas-
sical logic setting (Chacén and Pino Pérez 2012). We fo-
cus here on the model-based approach of distance-based

97

Stefan Riimmele and Stefan Woltran
Vienna University of Technology

merging operators (Konieczny, Lang, and Marquis 2004;
Konieczny and Pino Pérez 2002; Revesz 1997). These op-
erators are parametrized by a distance which represents the
closeness between interpretations and an aggregation func-
tion which captures the merging strategy and takes the origin
of beliefs into account.

Belief change operations within the framework of frag-
ments of classical logic constitute a vivid research branch.
In particular, contraction (Booth et al. 2011; Delgrande and
Wassermann 2013; Zhuang and Pagnucco 2012) and revi-
sion (Delgrande and Peppas 2011; Putte 2013; Zhuang, Pag-
nucco, and Zhang 2013) have been thoroughly analyzed in
the literature. The study of belief change within language
fragments is motivated by two central observations:

e In many applications, the language is restricted a pri-
ori. For instance, a rule-based formalization of expert’s
knowledge is much easier to handle for standard users. In
case users want to revise or merge some sets of rules, they
indeed expect that the outcome is still in the easy-to-read
format they are used to.

e Many fragments of propositional logic allow for efficient
reasoning methods. Suppose an agent has to make a deci-
sion according to a group of experts’ beliefs. This should
be done efficiently, therefore the expert’s beliefs are stored
as formule known to be in a tractable class. For making a
decision, it is desired that the result of the change opera-
tion yields a set of formula in the same fragment. Hence,
the agent still can use the dedicated solving method she is
equipped with for this fragment.

Most of previous work has focused on the Horn fragment
except (Creignou et al. 2014) that studied revision in any
fragment of propositional logic. However, as far as we know,
the problem of belief merging within fragments of proposi-
tional logic has been neglected so far.

The main obstacle hereby is that for a language fragment
L', given n belief bases K1,..., K, € 2£" and a constraint
w € L', there is no guarantee that the outcome of the merg-
ing, A, ({K1,...,K,}), remains in £ as well. Let for ex-
ample, K7 = {a}, K3 = {b} and px = —a V —b be two sets
of formule and a formula expressed in the Horn fragment.
Merging with typical distance-based operator proposed in
(Konieczny and Pino Pérez 2002) does not remain in the
Horn language fragment since the result of merging is equiv-



alent to (a VV b) A (—a V —b), which is not equivalent to any
Horn formula (see (Schaefer 1978)).

We propose the concept of refinement to overcome these
problems. Refinements have been proposed for revision in
(Creignou et al. 2014) and capture the intuition of adapting
a given operator (defined for full classical logic) in order to
become applicable within a fragment. The basic properties
of a refinement aim to (i) guarantee the result of the change
operation to be in the same fragment as the belief change
scenario given and (ii) keep the behavior of the original op-
erator unchanged in case it delivers a result which already
fits in the fragment.

Refinements are interesting from different points of view.
Several fragments can be treated in a uniform way and a gen-
eral characterization of refinements is provided for any frag-
ment. Defining and studying refinements of merging opera-
tors is not a straightforward extension of the revision case.
It is more complex due to the nature of the merging opera-
tors. Even if the constraints play the role of the new piece
of information in revision, model-based merging deals with
multi-sets of models. Moreover applying this approach to
different distance-based merging operators, each parameter-
ized by a distance and an aggregation function, reveals that
all the different parameters matter, thus showing a rich vari-
ety of behaviors for refined merging operators.

The main contributions of this paper are the following:

e We propose to adapt known belief merging operators
to make them applicable in fragments of propositional
logic. We provide natural criteria, which refined opera-
tors should satisfy. We characterize refined operators in a
constructive way.

e This characterization allows us to study their properties
in terms of the IC postulates (Konieczny and Pino Pérez
2002). On one hand we prove that the basic postulates
(ICO-IC3) are preserved for any refinement for any frag-
ment. On the other hand we show that the situation is
more complex for the remaining postulates. We provide
detailed results for the Horn and the Krom fragment in
terms of two kinds of distance-based merging operators
and three approaches for refinements.

Preliminaries

Propositional Logic. We consider £ as the language of
propositional logic over some fixed alphabet U of proposi-
tional atoms. A literal is an atom or its negation. A clause is a
disjunction of literals. A clause is called Horn if at most one
of its literals is positive; and Krom if it consists of at most
two literals. We identify the following subsets of L: Lrorn
is the set of all formule in £ being conjunctions of Horn
clauses, and L g, is the set of all formule in £ being con-
junctions of Krom clauses. In what follows we sometimes
just talk about arbitrary fragments £ C L. Hereby, we tac-
itly assume that any such fragment £’ C £ contains at least
the formula T.

An interpretation is represented either by a set w C U
of atoms (corresponding to the variables set to true) or by
its corresponding characteristic bit-vector of length |U/|. For
instance if we consider U = {z1, ..., zg}, the interpretation

98

Ty = 23 = x¢ = 1l and x9 = x4 = x5 = 0 will be
represented either by {z1, z3, 26} or by (1,0,1,0,0,1). As
usual, if an interpretation w satisfies a formula ¢, we call w
a model of ¢. By Mod(¢) we denote the set of all models
(over U) of ¢. Moreover, ¢ = ¢ if Mod(v)) C Mod(¢) and
1) = ¢ (¢ and ¢ are equivalent) if Mod(¢) = Mod(¢).

A base K is a finite set of propositional formulz
{©1,...,¢n}. We shall often identify K via A K, the con-
junction of formule of K, i.e., A K = ¢1 A---Ap,. Thus, a
base K is said to be consistent if /\ K is consistent, Mod (K)
is a shortcut for Mod(A K), K = ¢ stands for A K = ¢,
etc. Given £ C L we denote by K,/ the set of bases re-
stricted to formulee from £’. For fragments £’ C £, we also
use T (K) = {6 € L' | K = 6}.

A profile E is a non-empty finite multiset of consistent
bases £ = {Ki,...,K,} and represents a group of n
agents having different beliefs. Given £’ C L, we denote by
& the set of profiles restricted to the use of formule from
L'.Wedenote \ K1A... AN\ K, by A E. The profile is said
to be consistent if / F is consistent. By abuse of notation
we write K LU E to denote the multi-set union { K'} LI E. The
multi-set consisting of the sets of models of the bases in a
profile is denoted M od(E) = {Mod(K}),...,Mod(K,)}.
Two profiles E'; and Fs are equivalent, denoted by E'; = Fo
if Mod(E,) = Mod(E>). Finally, for a set of interpre-
tations M and a profile E we define #(M, E) = |{i :
MNMod(K;) # 0}

Characterizable Fragments of Propositional Logic. Let
B denote the set of all Boolean functions 3: {0,1}* —
{0,1} that have the following two properties':

e symmetry, i.e., for all permutations o, 3(z1,...,25) =
ﬁ(xg(l), . ,x,,(k)) and

e 0- and 1-reproduction, ie., for all € {0,1},
Blx,...,x) =x.

Examples are the binary AND function denoted by A
or the ternary MAJORITY function, majs(z,y,2z) = 1
if at least two of the variables x,y, and z are set to
1. We extend Boolean functions to interpretations by ap-
plying coordinate-wise the original function (recall that
we consider interpretations also as bit-vectors). So, if
M,..., My € {0,1}", then B(Mj, ..., My) is defined by
(BOLI, ..., My[]), ... B[], ..., My[n])), where
MTi] is the i-th coordinate of the interpretation M.

Definition 1. Given a set M C 2" of interpretations and
B € B, we define Clg(M), the closure of M under (3, as
the smallest set of interpretations that contains M and that
is closed under (3, i.e., if M1, ..., My € Clg(M), then also

Let us mention some easy properties of such a closure: (i)
monotonicity; (ii) if |[M| = 1, then Clg(M) = M; (iii)
Cls(0) = 0.

Definition 2. Let B € B. A set L' C L of propositional
Sformulce is a f-fragment (or characterizable fragment) if:

'these properties are also known as anonimity and unanimity.



1. forally € L', Mod(¢) = Clg(Mod()))

2. forall M C 24 with M = Clg(M) there existsap € L'
with Mod (1) = M

3. ifg, e L thenp Ny e L.

It is well-known that £ g, is an A-fragment and L grom,
is a maj,-fragment (see e.g. (Schaefer 1978)).

Logical Merging Operators. Belief merging aims at
combining several pieces of information coming from dif-
ferent sources. Merging operators we consider are functions
from the set of profiles and the set of propositional formulza
to the set of bases, i.e., A: €, x L — K. For E € £, and
w € L we will write A, (F) instead of A(E, p); the formula
1 is referred to as the integrity constraint (IC) and restricts
the result of the merging.

As for belief revision some logical properties that one
could expect from any reasonable merging operator have
been stated. See (Konieczny and Pino Pérez 2002) for a de-
tailed discussion. Intuitively A, (E) is the “closest” belief
base to the profile E satisfying the integrity constraint .
This is what the following postulates try to capture.

(IC0) A, (E) = p
(IC1) If pis consistent, then A, (E) is consistent
(IC2) If A\ E is consistent with p,
then A, (E) = ANE A p
If E1 = EQ and M1 = U2,
then A, (E1) = A, (Eo)
If Ky = pand Ky = p, then
A, ({K1,K2}) A K is consistent if and only if
A, ({K1, Ka}) A Ky is consistent

(1C3)

(1C5) Ap(Er) A A, (Es) = A, (Er U E)
(IC6) If A,(E1) A AL(E,) is consistent,

then AM(EI [ EQ) ': AH(EI) A AM(EQ)
(1CT) Ay, (B) A iz = Apuns (B)
(IC8) If A, (E) A o is consistent,

then Aﬂl Ap2 (E) ): Aﬂl (E)

Similarly to belief revision, a representation theorem
(Konieczny and Pino Pérez 2002) shows that a merging op-
erator corresponds to a family of total preorders over inter-
pretations. More formally, for £ € €., 1 € L and < atotal
preorder over interpretations, a model-based operator is de-
fined by Mod(A,(E)) = min(Mod(u), <g). The model-
based merging operators select interpretations that are the
“closest” to the original belief bases.

Distance-based operators where the notion of close-
ness stems from the definition of a distance (or a
pseudo-distance?) between interpretations and from an
aggregation function have been proposed in (Konieczny
and Pino Pérez 2002; 2011). An aggregation func-
tion f is a function mapping for any positive integer
n each n-tuple of positive reals into a positive real

such that for any zi,...,z,,z,y € RT, if 2 <
Y, then f(xla"'axa"'axn) < f(xl7---7y7---7xn)a
flz1,...,2,) =0ifandonly if z; = ... = z,, = 0 and

’Let w,w’ € W, a pseudo-distance is such that d(w,w’) =
d(w',w) and d(w,w’) = 0 if and only if w = '

99

fl@)=z.Let E={Ky,...,K,} €&, n € L, dbe adis-
tance and f be an aggregation function, we consider the fam-
ily of Az’f merging operators defined by Mod(Ai’f (E)) =
min(Mod(u), <g) where <g is a total preorder over the
set 24 of interpretations defined as follows:

o d(w, K;) = ming g, dw,w'),
o dw,FE) = f(dw,Ky),...,dw,K,)),and
o w<puwifdw,F)<dW,FE).

Definition 3. A counting distance between interpretations is
a function d : 24 x 24 — RY defined for every pair of inter-
pretations (w,w’) by d(w,w’) = g(|(w\ ') U (W \w)|),
where g : N — R7T is a nondecreasing function such that
g(n) = 0ifand only if n = 0. If g(n) = g(1) for every
n # 0, we call d a drastic distance and denote it via dp.
If g(n) = n for all n, we call d the Hamming distance and
denote it via dy. If for every interpretations w, w' and w'"
we have d(w,w’) < d(w,w")+d(w"”,w"), then we say that
the distance d satisfies the triangular inequality.

Observe that a counting distance is indeed a pseudo-
distance, and both, the Hamming distance and drastic dis-
tance satisfy the triangular inequality.

As aggregation functions, we consider here 3, the sum
aggregation function, and the aggregation function GMax
defined as follows. Let £ = {K3,...,K,} € & and w,
w’ be two interpretations. Let (df,...,d;), where d¥ =
dp(w, K;), be the vector of distances between w and the
n belief bases in E. Let LE be the vector obtained from

(d¥,...,d¥) by ranking it in decreasing order. The aggre-
gation function GMax is defined by GMax(dy,...,dY) =
LE, with GMax( L,d?) < GMax(dy',...,d¥") if

LU_; Slez L
dering.

In this paper we focus on the A%* and A%GMax gperators
where d is an arbitrary counting distance. These operators
are known to satisfy the postulates (IC0)—(IC8), as shown
in (Konieczny, Lang, and Marquis 2004) generalizing more
specific results from (Konieczny and Pino Pérez 2002; Lin
and Mendelzon 1998). Finally, we define certain concepts
for merging operators and fragments.

o’ where <jez denotes the lex1cographlcal or-

Definition 4. A basic (merging) operator for L' C L
is any function A Ep x L' — Kgo osatisfying
Mod(A,({{T}})) = Mod(u) for each jn € L'. We say that
A satisfies an (IC) postulate (IC;) (i € {0,...,8}) in L’
if the respective postulate holds when restricted to formulce
Sfrom L'

Refined Operators

Let us consider a simple example to illustrate the problem of
standard operators when applied within a fragment of propo-
sitional logic.

Example 1. Let U = {a,b}, E = {K1, K>} € Ery,.,
and 1 € Lgom such that Mod(K,) = {{a},{a,b}},
Mod(K3) = {{b},{a,b}}, and Mod(p) = {0, {a} éb}}
Consider the distance-based merging operators, A% > and
AdrGMax The following table gives the distances between



the interpretations of p and the belief bases, and the result
of the aggregation functions Y. and GMax.

21/{ Kl KQ % GMax
0 1 T [2] (1,71
{a}y | 0 | 1 | 1| (1,0
| 1] 0 | 1| (1,0)

Hence, we have Mod(AﬁH *(E))
Mod(Adm-SMax(E)) = {{a},{b}}. Thus, for instance, we
can give ¢ = (a V b) A (—a V —b) as a result of the merging
for both operators. However, there is no v € Lyor, with
Mod(v) = {{a},{b}} (each vy € Lpom satisfies the
following closure property in terms of its set of models:
Sor every I,J € Mod(v), also I N'J € Mod(%)))). Thus,
the result of the operator has to be “refined”, such that
it fits into the Horn fragment. On the other hand, it holds
that it € Lgrom, £ € Ery,,,. and also the result ¢ is in
Krom. This shows that different fragments behave differently
on certain instances. Nonetheless, we aim for a uniform
approach for refining merging operators.

We are interested in the following: Given a known merg-
ing operator A and a fragment £’ of propositional logic, how
can we adapt A to a new merging operator A* such that, for
each B € & and p € L', Ay (E) € Kgr? Let us define a
few natural desiderata for A* inspired by the work on belief
revision. See (Creignou et al. 2014) for a discussion.

Definition 5. Let L' be a fragment of classical logic and A a

merging operator. We call an operator A*: Epr X L — K

a A-refinement for £’ if it satisfies the following properties,

foreach E,FE1,Es € Er and i, py, o € L.

1. consistency: A, (E) is consistent if and only if A}, (E) is
consistent

2. equivalence: if Ey = Eg and A, (Eq1) = A, (E2) then
Ar (Ey) = A%, (E2)

3. containment: T (A, (E)) C T (AF(E))

4. invariance: If Ay (E) € Koy, then Tp(A}(E)) C
Tr(AL(E)), where (L') denotes the set of formulce in
L for which there exists an equivalent formula in L’.

Next we introduce examples of refinements that fit Defi-
nition 5.

Definition 6. Let A be a merging operator and 3 € B. We
define the Clz-based refined operator A as:
Mod(AS"? (E)) = Clg(M).

where M = Mod(A,(E)).

We define the Min-based refined operator AM™ as:
M ifClg(M) = M,
{Min(M)} otherwise,
where Min is a function that selects the minimum from a set
of interpretations with respect to a given and fixed order.

We define the Min/Cl 3-based refined operator AM»/Cls
as:

Mod(A)™(E)) = {

_ JANE) i #M,E) =0

AMin/Clg E) =
. (E) AS"(E)  otherwise.

100

The intuition behind the last refinement is to ensure a cer-
tain form of fairness, i.e. if no model is selected from the
profile, this carries over to the refinement.

Proposition 1. For any merging operator A : Ep X L —
Kz, B € Band L' C L a B-fragment, the operators A€,
AMI gnd Aﬁ/ﬁn/aﬁ
Proof. Letu € L', E € £ and B € B. We show that each
operator yields a base from s/ and moreover satisfies con-
sistency, equivalence, containment and invariance, cf. Defi-
nition 5.

ACl: ASY(E) e L' since by assumption £’ is
a [-fragment and thus closed under (3. Consistency
holds since Mod(AS" (E)) Clz(Mod(AL(E)))
and Clg(M) = 0 iff M . Equivalence
holds since Mod(A,, (E1)) = Mod(A,,(F2)) implies
Cls(Mod(A,, (B1))) = Cls(Mod(A,,(E,))). Con-
tainment: let ¢ € Tp(AL(E)), ie. ¢ € L' and
Mod(A,(E)) < Mod(¢). By monotonicity of Clg,
then Clg(Mod(A,(E))) C Clg(Mod(¢)). Since ¢ €
L' then Clg(Mod(AL(E))) € Mod(¢) therefore ¢ €
TL/(ASIB(E)). Invariance: let ¢ € T (ASZB (E)), ie.
¢ € L' and Clg(Mod(A,(E))) € Mod(¢). By hypoth-
esis Clg(Mod(A,(FE))) 2 Mod(A,(E)), therefore ¢ €
T (Au(E)) .

AMP:if Mod(AY™(E))) = Clg(Mod(A,L(E))) (ie.
AL(E) € Kzy) then AM™ satisfies all the required
properties as shown above; otherwise consistency, equiv-
alence and containment hold since Mod(ANM™(E))) =
{Min(Mod(A,(E)))}. Moreover, by definition each frag-
ment contains a formula ¢ with Mod(¢) = {w} where w is
an arbitrary interpretation. A,(E) € L’ thus also holds in
this case.

AMin/Cls: gatisfies the required properties since A
and AMI™ satisfy them. O

are A-refinements for L'.

Example 2. Consider the profile E, the integrity con-
straint p given in Example 1, the distance-based merg-
ing operator A= and let 3 be the binary AND func-
tion. Let us have the following order over the set of in-
terpretations on {a,b}: 0 < {a} < {b} < {a,b}.
The result of merging is Mod(A%#>(E)) = {{a}, {b}}.
The Min-based A% > refined operator, denoted by AM™,
is such that Mod(AY™(E)) = {{a}}. The Clg-based
AME refined operator, denoted by A%, is such that
Mod(Aglﬁ(E)) {{a},{b},0}. The same result is
achieved by the Min/Clg-based A= refined operator
since #(Mod(A%"*(E)), E) = 2.

In what follows we show how to capture not only a partic-
ular refined operator but characterize the class of all refined
operators.

Definition 7. Given 3 € B, we define a -mapping, fg,
as an application which to every set of models M and ev-
ery multi-set of sets of models X associates a set of models
fa3(M, X) such that:

1. Clg(fs(M, X)) = fg(M,X) (fg(M,X) is closed un-

der (3)



2. fs(M, X) C Clg(M)
3. if M = Cly(M), then f3(M,X) = M
4. If M # 0, then fg(M,X) # 0.

The concept of mappings allows us to define a family of
refined operators for fragments of classical logic that cap-
tures the examples given before.

Definition 8. Let A : £, x L — K, be a merging oper-
ator and L' C L be a B-fragment of classical logic with
B € B. For a B-mapping fg we denote with Als : Ep %
L' — K/ the operator for L' defined as Mod(A{f (E)) =
fs(Mod(AL(E)), Mod(E)). The class A, L'] contains all
operators AT8 where fs is a B-mapping and 3 € B such
that L' is a B-fragment.

The next proposition is central in reflecting that the above
class captures all refined operators we had in mind, cf. Def-
inition 5.

Proposition 2. Let A : £, x L — K be a basic merging

operator and L' C L a characterizable fragment of classical
logic. Then, [A, L'] is the set of all A-refinements for L'.

Proof. Let L' be a [-fragment for some 5 € B. Let
A* € [A,L]. We show that A* is a A-refinement for
L. Lety € £ and E € &g Since A* € [A, L]
there exists a 3-mapping fg, such that Mod(Aj (E)) =
fs(Mod(AL(E)), Mod(E)). By Property 1 in Definition 7
Aj(E) is indeed in K. Consistency: If Mod(A,(F)) #
(0 then Mod(A%(E)) # 0 by Property 4 in Defini-
tion 7. Otherwise, by Property 2 in Definition 7, we
get Mod(A}(E)) C Cls(Mod(A,(E))) = Cla(h) =
(). Equivalence for A* is clear by definition and since
fa is defined on sets of models. Containment: let ¢ €
T (AL(E)), ie, ¢ € L' and Mod(A,(E)) C
Mod(¢). We have Clg(Mod(A,(E))) C Clg(Mod(¢))
by monotonicity of Clg. By Property 2 of Definition 7,
Mod(A%(E)) € Clg(Mod(A,(E))). Since ¢ € L' we
have Clz(Mod(¢)) = Mod(¢). Thus, Mod(Aj}(E)) C
Mod(¢), ie., ¢ € Tr/(A}(E)). Invariance: In case
A (E) € Ky, we have Clg(Mod(AL(E))) =
Mod(A,(E)) since L' is a (-fragment. By Prop-
erty 3 in Definition 7, we have Mod(Aj(E)) =
fs(Mod(A,(E)), Mod(E)) = Mod(A,(E)). Thus
T (Af(E)) CTr(AL(E)) as required.

Let A* be a A-refinement for £'. We show that A* €
[A, L]. Let f be defined as follows for any set M of in-
terpretations and X a multi-set of sets of interpretations:
f(0,x%) = 0. For M # 0, if Clg(M) = M then
f(M,X) = M, otherwise if there exists a pair (E,u) €
(Ecr, L") such that Mod(E) = X and Mod (A, (E)) = M,
then we define f(M,X) = Mod(Aj(E)). If there is no
such (E, i) then we arbitrarily define f(M, X)) as the set
consisting of a single model, say the minimal model of
M in the lexicographic order. Note that since A* is a A-
refinement for £’, it satisfies the property of equivalence,
thus the actual choice of the pair (F, 1) is not relevant, and
hence f is well-defined. Thus the refined operator A* be-
haves like the operator A/,

101

We show that such a mapping f is a f-mapping. We show
that the four properties in Definition 7 hold for f. Property 1
is ensured since for every pair (M, X), f(M, X) is closed
under (3. Indeed, either f(M, X) = M if M is closed un-
der 3, or f(M,X) = Mod(A},(E)) and since A}(E) €
K its set of models is closed under 3, or f(M, X) con-
sists of a single interpretation, and thus is also closed un-
der (3. Let us show Property 2, i.e., f(M,X) C Clg(M)
for any pair (M, X). It is obvious when M = () (then
FM,X) = 0), as well as when f(M, X) is a singleton
and when M is closed and thus f(M,X) = M. Other-
wise f(M, X) = Mod(Aj,(E)) and since A* satisfies con-
tainment Mod (A% (E)) C Clg(Mod(A,(E)). Therefore in
any case we have f(M, X)) C Clg(M). Property 3 follows
trivially from the definition of f (M, X’) when M is closed
under /3. Property 4 is ensured by consistency of A*. O

Note that the S-mapping which is used in the characteriza-
tion of refined merging operators differs from the one used in
the context of revision (see (Creignou et al. 2014)). Indeed,
our mapping has two arguments (and not only one as in the
case of revision). The additional multi-set of sets of mod-
els representing the profile is required to capture approaches
like the Min/C3-based refined operator, which are profile
dependent.

IC Postulates

The aim of this section is to study whether refinements of
merging operators preserve the IC postulates. We first show
that in case the initial operator satisfies the most basic pos-
tulates ((IC0)—(IC3)), then so does any of its refinements.
It turns out that this result can not be extended to the re-
maining postulates. For (IC4) we characterize a subclass
of refinements for which this postulate is preserved. For the
four remaining postulates we study two representative kinds
of distance-based merging operators. We show that postu-
lates (IC5) and (IC7) are violated for all of our proposed
examples of refined operators with the exception of the Min-
based refinement. For (IC6) and (IC8) the situation is even
worse in the sense that no refinement of our proposed exam-
ples of merging operators can satisfy them neither for £ g5,
nor for Ly,om. Table 1 gives an overview of the results
of this section. However, note that some of the forthcom-
ing results are more general and hold for arbitrary fragments
and/or operators.

Proposition 3. Let A be a merging operator satisfying pos-
tulates (IC0)-(IC3), and L' C L a characterizable frag-
ment. Then each A-refinement for L' satisfies (1C0)—(IC3)
in L' as well.

Proof. Since L' is characterizable there exists a 3 € B,
such that £’ is a (B-fragment. Let A* be a A-refinement
for £'. According to Proposition 2 we can assume that
A* € [A, L] is an operator of form A% where f3 is a suit-
able 5-mapping. In what follows, note that we can restrict
ourselves to £ € £, and to u € L' since we have to show
that A5 satisfies (IC0)—(IC3) in L'

(IC0): Since A satisfies (IC0), Mod(AL(E)) C
Mod (). Thus, Clg(Mod(A,(E))) € Clg(Mod(u)) by



(AdH,Z)Cl/, (AdHA,GMax)Clﬁ (AdD,z)Cl,e (Ad,x)Min (Ad,x)Min/Cl[,
1C4 + - + - +
IC5, IC7 - 5 - m -
1C6, IC8 - - - - -

Table 1: Overview of results for (IC4)—(IC8) for refinements in the Horn and Krom fragment (z € {X,GMax}, d €

{du,dp}.

monotonicity of the closure. Hence, Clg(Mod(A,(E))) C
Mod(u), since € L' and L' is a [-fragment.
According to Property 2 in Definition 7 we have
J5(Mod(A,(E)), Mod(E)) € Cly(Mod(A,,(E))), and
therefore by definition of Ay, Mod(A%(E)) € Mod(u),
which proves that A% (E) = p.

(IC1): Suppose v satisfiable. Since A satisfies (IC1),
A, (E) is satisfiable. Since A/# is a A-refinement (Proposi-

tion 2), Aiﬁ (E) is also satisfiable by the property of consis-
tency (see Definition 5).

(IC2): Suppose A E is consistent with pu. Since
A satisfies (IC2), AL (E) = AE A p. We have
Mod(AL(E)) = fs(Mod(Au(E)), Mod(E)) =

fs(Mod(AE A u), Mod(E)). Since NAE AN p € L
(observe that it is here necessary that the profiles are
in the fragment) by Property 3 of Definition 7 we have
Mod(A}(E)) = ANE A p.

(IC3): Let Ey,Ey € & and g, pe € L' with Fy
E5 and 1y pe. Since A satisfies (IC3), Ay, (Eh)
A, (E2). By the property of equivalence in Definition 5 we
have A% (E1) = A} (Es).

A natural question is whether refined operators for char-
acterizable fragments in their full generality preserve other
postulates, and if not whether one can nevertheless find some
refined operators that satisfy some of the remaining postu-
lates.

First we show that one can not expect to extend Propo-
sition 3 to (IC4). Indeed, in the two following propositions
we exhibit merging operators which satisfy all postulates,
whereas some of their refinements violate (IC4) in some
fragments.

O3

Proposition 4. Let A be a merging operator with A €
{A%E AGGMaxY phere d is an arbitrary counting dis-
tance. Then the Min-based refined operator AM™ violates
postulate (1C4) in L gorn, and L grom. In case d is a drastic
distance, AM™ violates postulate (1C4) in every character-
izable fragment L' C L.

Proof. First consider d is a drastic distance. We show that
AMin yiolates postulate (IC4) in every characterizable frag-
ment £ C L. Since £’ is a characterizable fragment there
exists 5 € B such that £’ is a (-fragment. Consider a
set of models M that is not closed under 5 and that is
cardinality-minimum with this property. Such a set exists
since £’ is a proper subset of L. Observe that necessar-
ily IM| > 1. Let m € M, consider the knowledge bases
K, and K3 such that Mod(K7) = {m} and Mod(K3) =
M\ {m}. By the choice of M both K; and K5 are in

102

Krr, whereas K1 U Ko is not. Let ¢ = T. Since the
merging operator uses a drastic distance it is easy to see
that A, ({K1, K2}) = Mod(K;) U Mod(K3). Therefore,
MOd(A%in({Kl,KQ})) = Min(Mod(K;) U Mod(K3)),
and this single element is either a model of K7 or a model
of K5 (but not of both since they do not share any model).
This shows that AM" violates (IC4).

Otherwise, d is defined such that there exists an x > 0,
such that g(x) < g(z + 1). We first show that then AMI® vi-
olates postulate (IC4) in Lpomn. Let A be a set of atoms
such that [A] = = — 1 and A N {a,b} = (. Moreover,
consider £ = {K7, Ko} with Mod(K;) = {0,{a},{b}},
Mod(K3) = {A U {a,b}}, and let u such that Mod(u) =
{0,{a}, {b}, AU {a,b}}. Since g(z) < g(x + 1), we have
M = Mod(AL(E)) = {{a},{b}, AU{a,b}}, which is not
closed under intersection. Hence, Mod(A)™(E)) contains
exactly one of the three models depending on the ordering.
Therefore, #(Mod(A)™(E)), E) = 1, and thus violating
postulate (IC4).

For Lgrom, let x > 0 be the smallest index such that
g(x) < g(x + 1) in the definition of distance d. Note
that for any y with 0 < y < z, g(y) g(z) thus
holds. Let A, A’ be two disjoint set of atoms with cardi-
nality z — 1 and A N {a,b,c,d} = A" n{a,b,e,d} =
(. Let us consider F = {Kj, Ky} with Mod(K})
{0,{a}, {b},{c}, {d} {a,b},{c,d}} (in case z > 1) resp.

Mod(K1) = {0,{a},{b},{c},{d}} (in case z = 1),
Mod(K3) = {A U {a,b},A" U {c,d}}, and p such
that Mod(p) = {0, {a}, {b},{c}, {d}, {a, b}, {c, d} AU
{a,b}, A" U {e, d}}. The following table represents the case
x> 1.
K, Ky E
0 0 gz +1) | (g(x +1),0)
{a} 0 9(x) (9(x),0)
{b} 0 g(x) (9(x),0)
{c} 0 g(x) (9(x),0)
{d} 0 9() (9(x),0)
{a,b} 0 gz —1) | (9(x —1),0)
{Cv d} 0 g(.’E — 1) (g(l’ — 1)a0)
A/U{Cvd} g(il'—].) 0 (g(l'—l),())
For the case * > 1, observe g(z — 1) = g(x) <
gz + 1), and we have M = Mod(A,(E)) =

{{a}, {b}. {e}. {d}, {a. b}, {e.d}, AU {a.b}, A" U{c, d} .
For the case x 1, note that A and A’ are empty,
thus the two last rows of the table coincide with the two
rows before. Recall that K is defined differently for this
case. Hence, the distances of {a,b} and {c,d} to K; are
g(z) = g(1). Thus, we have M = Mod(A,(E)) =



{{a},{b},{c},{d},{a,b},{c,d}}. Neither of the M is
closed under ternary majority. Hence, Mod(Affh“(E)) con-
tains exactly one of the six resp. eight models depending on
the ordering. Therefore, #(Mod(A)™(E)), E) = 1, thus
violating postulate (IC4). O

Proposition 5. Let A = ACM3X be g merging operator
where d is an arbitrary non-drastic counting distance. Then
the closure-based refined operator A°'? violates (IC4) in
Lorn and Lirom.

Proof. Since d is not drastic, there exists an z > 0 such
that g(z) < g(xz + 1). In what follows, we select the
smallest such x. We start with the case Ly,,. Let A be a
set of atoms of cardinality z — 1 not containing a,b. Let
us consider £ = {K;, Ky} with Mod(K;) = {0} and
Mod(K2) = {A U {a,b}}, and p such that Mod(p) =
{0, {a}, {b}, AU {a, b}}.

K, Ks E
] 0 g9z +1) | (g9(z +1),0)
{a} 9(1) g(x) (9(x), 9(1))
{b} 9(1) g(x) (9(x), 9(1))
AU{a,b} | glz+1) | O (g(z +1),0)

Since g(z) < g(z + 1), we have M = Mod(A,(E)) =
{{a},{b}}, which is not closed either under intersec-
tion. Hence, Mod(AS (E)) = {{a},{b},0}. Therefore,
#(Mod(AS™ (E)), E) = 1, thus violating (IC4).

For the case Lgrom, let us consider two disjoint sets
A, A’ of atoms not containing a, b, ¢, d of cardinality x — 1,
the profile £ = {Ki, K>} with Mod(K;) = {0} and
Mod(K32) = {AU{a, b}, A'U{c,d}}, and constraing x such
that Mod(p) = {0,{a}, {b},{c},{d}.{a,b},{c,d}, AU

{a,b}, A"U{c,d}}.
Ky Ky E
0 0 9(z+1) | (9(z +1),9(0))
{a} 9(1) g(x) (9(x), 9(1))
{b} g(1) 9(x) (9(z),9(1))
{c} g(1) g(x) (9(x),9(1))
{d} 9(1) 9(x) (9(), (1))
{a,b} 9(2) g(x—1) | (9(z —1),9(2))
{c,d} 9(2) g(z —1) | (g(z —1),9(2))
AU{a, b} | g(z+1) | 9(0) (9(z+1),9(0))
A"U{c,d} | g(z+1) | 9(0) (g9(z +1),9(0))
In case x = 1 note that A and A’ are empty and
g(2) > g(xr) > g(x — 1) = g(0) (thus the last

four lines collapse into two lines). We have M =
Mod(A,(E)) = {{a},{b},{c},{d}}, which is not closed

under ternary majority. Hence, Mod(AClm"’” (E)) =
{{a},{b},{c},{d},0}. In case © > 1, we have g(z +
1) > g(z) = gl&a — 1) = ¢g(2) = ¢(1). Thus, M =
Mod(A,(E)) = {{a}, {b},{c}, {d}, {a, b}, {¢, d}}, which
is not closed under ternary majority either and one has to add
(). Therefore, in both cases #(Mod(AClm” (E)),E) =1,
thus violating (IC4). O

In order to identify a class of refinements which sat-
isfy (IC4), we now introduce the notion of fairness for A-
refinements.

103

Definition 9. Ler L' be a fragment of classical logic. A A-
refinement for L', A*, is fair if it satisfies the following prop-
erty foreach B € Epr, p € L' If #(AL(E), E) # 1 then
#(AL(E), E) # 1.

Proposition 6. Let L' be a characterizable fragment. (1)
The Clz-based refinement of both AP+ and A4 CMax for
L’ is fair. (2) The Min/Clg-based refinement of any merging
operator for L' is fair.

Proof. Let L' be a B-fragment. Let E € £,/ such that F =

{K1,...K,}, i € £ and let A be A4D:E or Adp,GMax for
case (1), resp. let A be an arbitray merging operator in case
u(E), E) > 1then, #(Clg(Ay(E

of (2).
ACL T #(A ), E)
#(A,(E),E) > 1. Since the drastic d1stance is used o
serve that for any model m of u we have d(m, E)
n—|{i | m € K;}. Thus, if #(Au(E),E)
0, then Mod(A,(E)) N U, Mod(K;) = (7] and thus
Mod(A,,(E)) = Mod(u). In this case Mod(AL" (E)) =

Mod(A,,(E)) and therefore #(A% * (E), E) = 0 as well.

>
b-

AMin/Clg. If #(A,,,(E),E) = 0 then
Mod(A,(E)) N U,Mod(K;) = . By Defi-
nition 6 AE/HH/CIB(E) = AM(E), therefore
#(ANT(BY E) = 0 as well. If #(A,(E),E) > 1
then by Definition 6, Mod(AMm/CZﬁ) Mo d(ACZﬁ (E)),
thus # (A (E), B) > #(AL(E), E) > 1. O

Fairness turns out to be a sufficient property to preserve
the postulate (IC4) as stated in the following proposition.

Proposition 7. Let A be a merging operator satisfying pos-
tulate (1C4), and L' C L a characterizable fragment. Then
every fair A-refinement for L' satisfies (IC4) as well.

Proof. Consider A a merging operator satisfying postulate
(IC4). Let A* be a fair A-refinement for £'. If A* does
not satisfy (IC4), then there exist F = {Kj, Ky} with
Ki,Ky € L and u € L', with K7 &= pand Ky | u such
that Mod(Af,(E)) N Mod(K;) # 0 and Mod(A%(E)) N
Mod(K3) = 0, i.e., such that #(A% (E), E) = 1. Since A
satisfies postulate (IC4) we have #(A,(E), E) # 1, thus
contradicting the fairness property in Definition 9. O

With the above result at hand, we can conclude that the
Clg-based refinement of both A?2:® and Adp-GMax for £/
as well as the Min/Clg-based refinement of any merging
operator satisfies (IC4).

Remark 1. Observe that the distance which is used in
distance-based operators matters with respect to the preser-
vation of (IC4), as well as for fairness. Indeed, while the
Clg-refinement of A0>SMax g fair. and therefore satisfies
(IC4), the Clg-refinement of A“SMaX \where d is an arbi-
trary non-drastic counting distance violates postulate (1C4)
in Lyorn and L grom, and therefore is not fair.

For all refinements considered so far we know whether
(IC4) is preserved or not, with one single exception: the
Clg-refinement of A%* where d is an arbitrary non-drastic



counting distance. In this case we get a partial positive re-
sult.

Proposition 8. Let A be a merging operator with A =
A2 where d is an arbitrary counting distance that satisfies
the triangular inequality. Then the closure-based refined op-
erator A satisfies postulate (1C4) in any characterizable
fragment.

Proof. Let L' be a (-fragment. Let E = {K;, K>} with
Ki,Ky € L and p € L', with K7 = pand Ky = p. The
merging operator A satisfies (IC4) therefore A, (E) A K,
is consistent if and only if A, (E) A K».

If both A,(E) A Ky and A, (E) A Ky are consistent,

then so are a fortiori ASZB (E) AN K; and ASZB(E) A Ko.
Therefore a violation of (IC4) can only occur when both
AL(E) AN Ky and A, (E) A Ky are inconsistent. We prove
that this never occurs. Suppose that A,(E) A K; is in-
consistent, this means that there exists m ¢ K; such that
min(Mod(u),<g) = d(m,E) and that for all m; €
Ky, d(m,E) < d(my, E), ie., d(m, K1) + d(m, K3) <
d(my, K1)4d(mq, K3) since X is the aggregation function.
Choose now m; € K such that d(m, K;) = d(m,mq)
and my € Ky such that d(m, K3) = d(m,mga). We
have d(m, K1) + d(m, K3) = d(m,m1) + d(m,ms) <
dimy, K1) + d(mq1,K3) = d(mq, Ks) since my € K;
and hence d(mq, K1) = 0. Since d satisfies the triangular
inequality we have d(mq,mg) < d(mi,m) + d(m,ma).
But this contradicts d(m, m1) + d(m, mg) < d(mq, K3) <
d(mq, mg), thus A, (E) A K can not be inconsistent. [

Remark 2. The above proposition together with Proposi-
tion 5 shows that the aggregation function that is used in
distance-based operators matters with respect to the preser-
vation of the postulate (IC4).

Interestingly Proposition 8 (recall that the Hamming dis-
tance satisfies the triangular inequality) together with the
following proposition show that fairness, which is a suffi-
cient condition for preserving (IC4) is not a necessary one.

Proposition 9. The Clg-refinement of A% > is not fair in
»CHorn and in EKrom-

Proof. We give the proof for L p,,,. One can verify that the
same example works for £ g, as well.

Let us consider E {K1,K>} and p in Ly
with MOd(Kl) {{a}7{a7b}7{aad}v{avf}}’
Mod(K>) {{a,b,c,d,e, f,g}} and Mod(u)
{{a},{a,b,c},{a,d,e},{a, f,g}}. We have
Mod(Aj#-*(E)) {{a,b,c}. {a,d, e}, {a, f,g}},
and Mod(Ag“ (E)) = {{a},{a,b,c},{a,d,e},{a, f,g}}.
Therefore, #(Mod(Al"*(E)), E) 0, whereas
#(Mod(AflA(E)),E) = 1, thus proving that fairness is
not satisfied. O

It turns out that our refined operators have a similar be-
havior with respect to postulates (IC5) & (IC7) as well as
(IC6) & (IC8). Therefore we will deal with the remaining
postulates in pairs. In fact the Min-based refinement satis-
fies (IC5) and (IC7), whereas the refined operators A“!s

and AMn/Cls yiolate these two postulates.

104

Proposition 10. Let A be a merging operator satisfying
postulates (1C5) and (I1C6) (resp. (IC7) and (I1C8)), and
L' C L a characterizable fragment. Then the refined opera-
tor AMIM for £ satisfies (1C5) (resp. (ICT)) in L' as well.

Proof. Since L' is characterizable there exists a 3 € B, such
that £’ is a 8-fragment.

(IC5): If ANIn(Ey) A AMI®(Es) is inconsistent, then
(IC5) is satisfied. Assume that AN™(Ey) A AMP(E;)
is consistent. Then, by definition of AM™ we know that
AL(Eqr) N AL(Es) is consistent as well. From (IC5) and
(IC6) it follows that Mod(A,(E1)) N Mod(AL(E2)) =
Mod(A,(E1UE,)). We distinguish two cases. First assume
that both Mod (A, (E1)) and Mod(A,(E»)) are closed un-
der 3. By Definition 2 we know that Mod(A,(E1)) N
Mod(A,(E2)) = Mod(A,(E1 U E»)) is closed under
B as well. Hence, (IC5) is satisfied. For the second case
assume that not both Mod(A,(E;)) and Mod(A,(E>))
are closed under (. From the definition of AM™ it fol-
lows that Mod(AN™(Ey)) N Mod(AM™(E;)) consists of
a single interpretation, say I with I € Mod(A,(E1)) N
Mod(A,(E2)). If Mod(A,(E1 U Ey)) is closed under
B we have I € Mod(A)M™(E; U E)) and (IC5) is
satisfied. If Mod(A,(E1 U E3)) is not closed under £,
then Mod(AN™(Ey L Ey)) consists of a single interpre-
tation, say J € Mod(A,(E1)) N Mod(A,(E3)). From
Mod(AM® (Ey))N\Mod™™ (A, (E2)) = {I} it follows that
Min({I,J}) = I and from Mod(A)"™(E; U Ey)) = {J}
it follows that Min({I,J}) = J. Hence, I = J and (IC5)
is satisfied.

(ICT7): If AM™(E) A po is inconsistent, then (IC7)
is satisfied. Assume that AM™(E) A py is consistent.
Then, by definition of AM™ we know that A, (E) A 2
is consistent as well. From (IC7) and (IC8) it follows
that Mod (A, (E)) N Mod(p2) = Mod(Apu ap, (E)). We
distinguish two cases. First assume that Mod(A,, (E))
is closed under (3. By Definition 2 we know that
Mod(A,, (E)) N Mod(p2) = Mod (A, au, (E)) is closed
under 3 as well. Hence, (IC7) is satisfied. For the second
case assume that Mod (A, (E)) is not closed under 3. From
the definition of AM™ it follows that Mod(ANM™(E)) N
Mod(u2) consists of a single interpretation, say I with
I € Mod(A,, (E)) N Mod(uz2). If Mod(A,, au, (E)) is
closed under 3 we have I € Mod(AM:  (E)) and (ICT7)
is satisfied. If Mod (A, A, (E)) is not closed under /3, then
Mod(AMR (E)) consists of a single interpretation, say
J € Mod(A,, (E)) N Mod(uz). From Mod(AM™(E)) N
Mod(us2) = {I} it follows that Min({I, J}) = I and from
Mod(AMin (F)) = {J} it follows that Min({I, J}) = J.

P A B2
Hence, I = J and (IC7) is satisfied. O

Proposition 11. Let A be a merging operator with A €
{ALE AGGMaXY yohere d is an arbitrary counting dis-
tance. Then the refined operators A and AM»/Cls y;.
olate postulates (1C5) and (IC7) in Lo and in L grom.



Proof. We give the proof for A®!s with A = A%> where
d is associated with a function g. The given examples also
apply to GMax and for the refinement AMin/Cls

(IC5): Let B8 € {A,majs}. Consider E; =
{Kl,KQ,Kg}, FEs {K4} and g with MOd(Kl) =
{{a},{a,b},{a, c}}, Mod(Ks) = {{b},{a,b},{bc}},
Mod(K3) = {{c}, {a.c}, {b,c}}, Mod(Ky) = {0, {b}}.
and Mod(u) = {0, {a}, {b}, {c}}.

K

K1 KQ 3 K4 E1 E1|_|E2
019 | g(0) [ g(1) [0 [ 3g(1) [ 3g(1)
{a} | 0 1g(1) | g(1) | g(1) | 29(1) | 39(1)
{6y g |0 1 g(1) |0 | 2g(1) | 29(1)
{eb [9) [9() 10 | g(1) | 29(1) | 39(1)

Since ¢g(1) > 0 by definition of a counting dis-

tance, we have Mod(AS"?(Ey)) = {0, {a} {0} {c}}.
Mod (A5 (Ey)) = {0, {b}}, and Mod(AS" (B U Ey)) =
{{b}}, violating (IC5).

(ICT): For Lporm, consider £ =
Mod(K1) = {{a}}, Mod(K,) =
{{a,b}}, and assume Mod(u;) =
Mod (p2) ZK{V), {a}}.

{Kl,Kg,Kg} with
{{b}}. Mod(K3) =
{0,{a},{b}} and

L Ky, | Ks | E
0 19 [ g(1) ] 9(2) | 29(1) +9(2)
{a} | 0 9(2) | 9(1) | g(1) +g(2 )
{6} [9(2 [0 | g(1) | g(1)+9(2)
We have Mod(A,, (E)) = {{a},{b}}, thus
Mod(A§(E)) = {0,{a},{b}}.  Therefore,
Mod(ASIN(E) A p) = {0,{a}}, whereas

Mod(AffM( )) = {{a}}, violating (ICT).

‘CKTom let £ = {Kl,KQ,K37K4,K5}, M1 and M2
with Mod(Kl) = {{a}}, Mod(K3) = {{b}}, Mod(K3) =
{{c}}, Mod(Ky) = {{a,b},{a,c}}, Mod(K5) =
{{CL, b}7 {b7 C}}’ MOd(Ml) - {®7 {a}7 {b}a {C}}7 and
Mod(uz); {0, {a}}

1 | Ky | K3 | Ky |Ks |E

0 T9()[g(1)[g(1)]a(2)]a(2)]29(2) +39(1)

{at |0 1 9(2) | 9(2) [ g(1)|g(1)]29(2) +29(1)

{6} 19(2) |0 9(2) g9(1) | 9(1) | 29(2) +29(1)

{c} 19(2)[9(2) [0 [g(1)|g(1)]|29(2) +29(1)
We have Mod(AClm’S(E)) = {0,{a},{b},{c}},
thus Mod(A fll‘“"”(E) AN p2) = {0,{a}}, and
Mod(ASll'/’\’Lf(E)) = {{a}}. This violates postulate
(ICT). O

Actually in the Horn fragment the negative results of the
above proposition can be extended to any fair refinement.

Proposition 12. Let A be a merging operator with A €
{ADLE ALCGMaXYyohere d is an arbitrary counting dis-
tance. Then any fair refined operator A* violates postulates
(IC5) and (IC7) in L porn-

Proof. The same, or simpler examples as in the proof of the
previous proposition will work here. We give the proof in the
case of A%* where d is a counting distance associated with
the function g. It is easy to see that the given examples work
as well when using the aggregation function GMax. It can
be observed in the following that any involved set of models

105

is closed under intersection and hence it can be represented
by a Horn formula.

(IC5): Let us consider £y = {K1, K>}, B2 = {K3}
and p with Mod(K;) = {{a},{a,b}},Mod(K>3) =
{{b},{a,b}}, Mod(K3) = {0,{b}} and Mod(n) =
{0,{a},{b}}. Since g(1) > 0 by definition of a count-
ing distance, we have Mod(A,(E1)) = {{a},{b}}, and
thus Mod(Aj,(E1)) € {0,{a},{b}}. We can exclude
Mod(Aj (E1)) = {{a},{b}} since it is not closed un-
der A. By Definition 9 we can exclude Mod(A7 (E1)) =
{{a}} and Mod(A}(E1)) = {{b}}. Therefore either
Mod(A%(Ey)) = {0} or Mod (A% (E1)) = {0, {a}, {b}}.
On the one hand, since Mod (A7 (Ez)) = {0, {b}}, in any
case Mod(A%, (E1) AAY (Fy)) contains (). On the other hand
Mod(Aj,(E1UE;y)) = {{b}}. This violates postulate (IC5).

(ICT7): There we have Mod(A,,au, (E)) {{a}}.
By properties 3 and 4 of Definition 5 it holds
Mod(Aj, A, (E)) = {{a}}. Since Mod(A,, (E))

{{a},{b}}, it follows that Mod (A%, (E)) € {0, {a} {b}}

We can exclude Mod(Ay (E)) = {{a},{b}}
since it is not closed under A. By Definition 9
we can exclude Mod(A% (F)) = {{a}} and

Mod(A}, (E)) = {{b}}. Hence, § € Mod(A}, (E)).
Therefore () €  Mod(A% (E)) N Mod(uz) but
0 ¢ Mod(A¥, ., (E)) which violates (IC7). O

We leave it as an open question whether this proposition
can be extended to Krom. For the two remaining postulates,
(IC6) and (ICB), the situation is even worse, since any re-
finement of the two kinds of distance-based merging opera-
tors we considered violates them in £ g, and in £ grom.

Proposition 13. Let A be a merging operator with A €
{ADE AGCGMaxY vhere d is an arbitrary counting dis-
tance. Then any refined operator A* violates postulates
(I1C6) and (IC8) in L porn and in L grom.

Proof. As an example we give the proof for (IC6) in £ g
for A®GMax Since £, is an A-fragment, there is an A-
mapping f such that A* = Af and we have f(M,Xx) C
Cla(M) with ClIA(f(M, X)) = f(M,X). Let us con-
sider £y = {Kl,Kz,Kg,} and 7 with MOd(Kl) =
{{a} . {a,b}}, Mod(K2) = {{b},{a,b}}, Mod(K3) =
{0.{a},{b}} and Mod( ) = {0.{a},{b},{a,b}}.

K Ky | by

K 2
g(1) [ g(1) |0 (9(1),9(1),0)
{a} 0 g(1) | 0 (9(1),0,0)
{o} g |0 0 (9(1),0,0)
{a,0} | 0 0 g(1) | (9(1),0,0)
We have M = Mod(A,(E1)) = {{a},{b},{a,b}}.

Let us consider the possibilities for Mod(Af(E1)) =
FIM, Mod(Ey)). If O € f(M, Mod(Ey)), then let
By = {K4} with Ky in Lom, be such that Mod(K,) =
{0}. Thus, Mod(A%(Ez)) = {0} and Mod(A}(Ey)
A% (FEs)) = {0}. Moreover, Mod(A,(E; U Es))

{0,{a},{b}} or {0, {a}, {b},{a,b}} depending on whether
g(1) < g(2) or g(1) = g¢g(2). Since both sets are
closed under intersection, we have Mod (A (E; U E)) =

> 1



Mod(A,,(Ey U E3)). Thus Mod (A% (Ey U E)) € {0} and
(IC6) does not hold.

Otherwise, f(M, Mod(E1)) <€ {{a},{b},{a,b}}.
By symmetry assume w.lo.g. that f(M, Mod(F1)) C
{{a,b},{a}} (note that {{a} {b}} € f(M, Mod(Ey))
would imply fM,Mod(Ey))). If
fM, Mod(E)) {{a}} or {{a,b}}, then let
E, = {Ki}. Then, Mod(A,(E>)) = {{a},{a,b}} =
Mod(Aj (Es)), and Mod(A;(El) N AY(E2) = {{a}}
or {{a,b}}. Furthermore, Mod(AH(El U Es))
{{a},{a,b}} = Mod(A};(E1 U E2)), thus violating (1C6).
If f(M, Mod(E1)) = {{a,b},{a}}, then let B> = {K>}.

Then, Mod(A,(E2)) = {{b},{a,b}} = Mod(AJ(E2)),
and Mod(A}(E1) A AX(E2)) = {{a,b}}. Fur-
thermore, Mod(A,(E; U Es)) = {{b},{a,b}} =

Mod (A}, (E1 U E2)), and thus (IC6) does not hold. O

Conclusion

We have investigated to which extent known merging oper-
ators can be refined to work within propositional fragments.
Compared to revision, this task is more involved since merg-
ing operators have many parameters that have to be taken
into account, and the field of investigation is very broad.

We have first defined desired properties any refined merg-
ing operator should satisfy and provided a characterization
of all refined merging operators. We have shown that the
refined merging operators preserve the basic merging postu-
lates, namely (IC0)—(IC3). The situation is more complex
for the other postulates. For the postulate (IC4) we have
provided a sufficient condition for its preservation by a re-
finement (fairness). We have shown that this condition is not
necessary and it would be interesting to study how to weaken
it in order to get a necessary and sufficient condition. For
the other postulates, we have focused on two representative
families of distance-based merging operators that satisfy the
postulates (IC0)—(IC8). For these two families the preserva-
tion of the postulates (IC5) and (IC7) depends on the used
refinement and it would be interesting to obtain a necessary
and sufficient condition for this. In contrast, there is no hope
for such a condition for (IC6) and (IC8), since we have
shown that any refinement of merging operators belonging
to these families violates these postulates.

As future work we are interested in solving the open ques-
tion of whether Proposition 12 can be extended to the Krom
fragment or whether there exists a fair refinement for Krom
which satisfies (IC5) or (IC7). We also plan a thorough in-
vestigation of the complexity of refined merging operators.

Acknowledgments
This work has been supported by PHC Amadeus project
No 29144UC (OeAD FR 12/2013), by the Austrian Science
Fund (FWF): P25521, and by the Agence Nationale de la
Recherche, ASPIQ project ANR-12-BS02-0003.

References

Alchourrén, C.; Giardenfors, P.; and Makinson, D. 1985. On
the logic of theory change: Partial meet contraction and re-
vision functions. J. Symb. Log. 50(2):510-530.

106

Baral, C.; Kraus, S.; and Minker, J. 1991. Combining
multiple knowledge bases. IEEE Trans. Knowl. Data Eng.
3(2):208-220.

Bloch, I, and (Eds), A. H. 2001. Fusion: General concepts
and characteristics. Int. J. Intell. Syst. 16(10):1107-1134.

Booth, R.; Meyer, T.; Varzinczak, I.; and Wassermann, R.
2011. On the link between partial meet, kernel, and infra
contraction and its application to Horn logic. J. Artif. Intell.
Res. 42:31-53.

Chacon, J., and Pino Pérez, R. 2012. Exploring the ratio-
nality of some syntactic merging operators. In Proc. IB-
ERAMIA, volume 7637 of Lecture Notes in Computer Sci-
ence, 21-30. Springer.

Cholvy, L. 1998. Reasoning about merging information.
Handbook of DRUMS 3:233-263.

Creignou, N.; Papini, O.; Pichler, R.; and Woltran, S. 2014.
Belief revision within fragments of propositional logic. J.
Comput. Syst. Sci. 80(2):427—449. (Preliminary version in
Proc. KR, 2012).

Delgrande, J., and Peppas, P. 2011. Revising Horn theories.
In Proc. IJCAI, 839-844.

Delgrande, J., and Wassermann, R. 2013. Horn clause con-
traction functions. J. Artif. Intell. Res. 48:475-511.
Konieczny, S., and Pino Pérez, R. 2002. Merging informa-
tion under constraints: A logical framework. J. Log. Comput.
12(5):773-808.

Konieczny, S., and Pino Pérez, R. 2011. Logic based merg-
ing. J. Philosophical Logic 40(2):239-270.

Konieczny, S.; Lang, J.; and Marquis, P. 2004. DA? merging
operators. Artif. Intell. 157(1-2):49-79.

Lin, J., and Mendelzon, A. 1998. Merging databases under
constraints. Int. J. Cooperative Inf. Syst. 7(1):55-76.

Lin, J. 1996. Integration of weighted knowledge bases. Artif.
Intell. 83(2):363-378.

Putte, F. V. D. 2013. Prime implicates and relevant belief
revision. J. Log. Comput. 23(1):109-119.

Revesz, P. 1993. On the semantics of theory change: Arbi-
tration between old and new information. In Proc. PODS,
71-82.

Revesz, P. 1997. On the semantics of arbitration. IJAC
7(2):133-160.

Schaefer, T. 1978. The complexity of satisfiability problems.
In Proc. STOC, 216-226.

Zhuang, Z., and Pagnucco, M. 2012. Model based Horn
contraction. In Proc. KR, 169-178.

Zhuang, Z.; Pagnucco, M.; and Zhang, Y. 2013. Definability
of Horn revision from Horn contraction. In Proc. IJCAI.



Belief Revision and Trust

Aaron Hunter
British Columbia Institute of Technology
Burnaby, Canada
aaron_hunter@bcit.ca

Abstract

Belief revision is the process in which an agent incorporates
a new piece of information together with a pre-existing set
of beliefs. When the new information comes in the form of a
report from another agent, then it is clear that we must first
determine whether or not that agent should be trusted. In this
paper, we provide a formal approach to modeling trust as a
pre-processing step before belief revision. We emphasize that
trust is not simply a relation between agents; the trust that one
agent has in another is often restricted to a particular domain
of expertise. We demonstrate that this form of trust can be
captured by associating a state-partition with each agent, then
relativizing all reports to this state partition before performing
belief revision. In this manner, we incorporate only the part
of a report that falls under the perceived domain of expertise
of the reporting agent. Unfortunately, state partitions based
on expertise do not allow us to compare the relative strength
of trust held with respect to different agents. To address this
problem, we introduce pseudometrics over states to represent
differing degrees of trust. This allows us to incorporate simul-
taneous reports from multiple agents in a way that ensures the
most trusted reports will be believed.

Introduction

The notion of trust must be addressed in many agent com-
munication systems. In this paper, we consider one isoloated
aspect of trust: the manner in which trust impacts the process
of belief revision. Some of the most influential approaches
to belief revision have used the simplifying assumption that
all new information must be incorporated; however, this is
clearly untrue in cases where information comes from an
untrusted source. In this paper, we are concerned with the
manner in which an agent uses an external notion of trust
in order to determine how new information should be inte-
grated with some pre-existing set of beliefs.

Our basic approach is the following. We introduce a sim-
ple model of trust that allows an agent to determine if a
source can be trusted to distinguish between different pairs
of states. We use this notion of trust as a precursor to belief
revision. Hence, before revising by a new formula, an agent
first determines to what extent the source of the information
can be trusted. In many cases, the agent will only incorpo-
rate “part” of the formula into their beliefs. We then extend
our model of trust to a more general setting, by introducing
quantitative measures of trust that allow us to compare the

107

degree to which different agents are trusted. Fundamental
properties are introduced and established, and applications
are considered.

Preliminaries
Intuition

It is important to note that an agent typically does not trust
another agent universally. As such, we will not apply the la-
bel “trusted” to another agent; instead, we will say that an
agent is trusted with respect to a certain domain of knowl-
edge. This is further complicated by the fact that there are
different reasons that an agent may not be trusted. For ex-
ample, an agent might not be trusted due to their perceived
knowledge of a domain. In other cases, an agent might not
be trusted due to their perceived dishonesty, or bias. In this
paper, our primary focus is on trust as a function of the per-
ceived expertise of other agents. Towards the end, we briefly
address the different formal mechanisms that would be re-
quired to deal with deceit.

Motivating Example

We introduce a motivating example in commonsense reason-
ing where an agent must rely on an informal notion of trust
in order to inform rational belief change; we will return to
this example periodically as we introduce our formal model.

Consider an agent that visits a doctor, having difficulty
breathing. Incidentally, the agent is wearing a necklace that
prominently features a jewel on a pendant. During the exam-
ination, the doctor checks the patient’s throat for swelling or
obstruction; at the same time, the doctor happens to look at
the necklace. Following the examination, the doctor tells the
patient “you have a viral infection in your throat - and by the
way, you should know that the jewel in your necklace is not
a diamond.”

The important part about this example is the fact that the
doctor provides information about two distinct domains: hu-
man health and jewelry. In practice, a patient is very likely to
trust the doctor’s diagnosis about the viral infection. On the
other hand, the patient really has very little reason to trust the
doctor’s evaluation of the necklace. We suggest that a ratio-
nal agent should actually incorporate the doctor’s statement
about the infection into their own beliefs, while essentially



ignoring the comment on the necklace. This approach is dic-
tated by the kind of trust that the patient has in the doctor.
Our aim in this paper is to formalize this kind of “localized”
domain-specific trust, and then demonstrate how this form
of trust is used in practice to inform belief revision.

Trust

Trust consists of two related components. First, we can think
of trust in terms of how likely an agent is to believe what an-
other agent says. Alternatively, we can think of trust in terms
of the degree to which an agent is likely to allow another to
perform actions on their behalf. In this paper, we will be
concerned only with the former.

A great deal of existing work on trust focuses on the man-
ner in which an agent develops a reputation based on past
behaviour. A brief survey of reputation systems is given in
(Huynh, Jennings, and Shadbolt 2006). Reputation systems
can be used to inform the allocation of tasks (Ramchurn
et al. 2009), or to avoid deception (Salehi-Abari and White
2009). The model of trust presented in this paper is not in-
tended to be an alternative to existing reputation systems; we
are not concerned with the manner in which an agent learns
to trust another. Instead, our focus is simply on developing
a suitable model of trust that is expressive enough to in-
form the process of belief revision. The manner in which this
model of trust is developed over time is beyond the scope of
this paper.

Belief Revision

Belief revision refers to the process in which an agent must
integrate new information with some pre-existing beliefs
about the state of the world. One of the most influential ap-
proaches to belief revision is the AGM approach, in which
an agent incorporates the new information while keeping as
much of the intial belief state as consistently possible (Al-
chourrén, Girdenfors, and Makinson 1985).

This approach was originally defined with respect to a fi-
nite set P of propositional variables representing properties
of the world. A state is a propositional interpretation over
P, representing a possible state of the world. A belief set is
a deductively closed set of formulas, representing the beliefs
of an agent. Since P is finite, it follows that every belief set
defines a corresponding belief state, which is the set of states
that an agent considers to be possible. A revision operator is
a function that takes a belief set and a formula as input, and
returns a new belief set. An AGM revision operator is a revi-
sion operator that satisfies the AGM postulates, as specified
in (Alchourrén, Giardenfors, and Makinson 1985).

It turns out that every AGM revision operator is charac-
terized by a total pre-order over possible worlds. To be more
precise, a faithful assignment is a function that maps each
belief set to a total pre-order over states in which the mod-
els of the belief set are the minimal states. When an agent
is presented with a new formula ¢ for revision, the revised
belief state is the set of all minimal models of ¢ in the to-
tal pre-order given by the faithful assignment. We refer the
reader to (Katsuno and Mendelzon 1992) for a proof of this
result, as well as a complete description of the implications.

108

For our purposes, we simply need to know that each AGM
revision operator necessarily defines a faithful assignment.

A Model of Trust
Domain-Specific Trust

Assume we have a fixed propositional signature F as well
as a set of agents A. For each A € A, let Bely denote a
deductively closed set of formulas over F called the belief
set of A. For each A, let x4 denote an AGM revision opera-
tor that intuitively captures the way that the agent A revises
their beliefs when presented with new information. This re-
vision operator represents sort of an “ideal” revision situa-
tion, in which A has complete trust in the new information.
We want to modify the way this operator is used, by adding
a representation of the extent to which A trusts each other
agent B € A over F.

We assume that all new information is reported by an
agent, so each formula for revision can be labelled with the
name of the reporting agent.! At this point, we are not con-
cerned with degrees of trust or with resolving conflicts be-
tween different sources of information. Instead, we start with
a binary notion of trust, where A either trusts B or does not
trust B with respect to a particular domain of expertise.

We encode trust by allowing each agent A to associate a
partition IIZ§ over possible states with each agent B.

Definition 1 A state partition II is a collection of subsets
of 2F that is collectively exhaustive and mutually exclusive.
For any state s € 2F, let T1(s) denote the element of 11 that
contains s.

If IT = {2F} then we call II the trivial partition with respect
to F. If IT = {{s} | s € 2F}, then we call II the unit
partition.

Definition 2 For each A € A the trust function T4 is a
function that maps each B € A to a state partition T15.

The partition II5 represents the trust that A has in B over
different aspects of knowledge. Informally, the partition en-
codes states that A will trust B to distinguish. If I15 (s1) #
15 (s2), then A will trust that B can distinguish between
states s and so. Conversely, if 115 (s1) = 115 (s3), then A
does not see B as an authority capable of distinguishing be-
tween s; and so. We clarify by returning to our motivating
example.

Example Let A = {4, D, J} and letF = {sick, diam}.
Informally, the fluent sick is true if A has an illness and
the fluent diam is true if a certain piece of jewelry that A
is wearing contains a real diamond. If we imagine that D
represents a doctor and J represents a jeweler, then we can
use state partitions to represent the trust that A has in D
and J with respect to different domains. Following standard
shorthand notation, we represent a state s by the set of fluent
symbols that are frue in s. In order to make the descriptions
of a partition more readable, we use a | symbol to visually

"This is not a significant restriction. In domains involving sens-
ing or other forms of discovery, we could simply allow an agent A
to self-report information with complete trust.



separate different cells. The following partitions are then in-
tuitively plausible in this example:

15 {sick, diam}, {sick}|{diam},(
1A {sick,diam}, {diamond}|{sick},

Hence, A trusts the doctor D to distinguish between states
where A is sick as opposed to states where A is not sick.
However, A does not trust D to distinguish between worlds
that are differentiated by the authenticity of a diamond. The
formula sick A ~diamond encodes the doctor’s statement
that the agent is sick, and the necklace they are wearing has
a fake diamond.

Although the preceding example is simple, it illustrates
how a partition can be used to encode the perceived expertise
of agents. In the doctor-jeweler example, we could equiva-
lently have defined trust with respect to the set of fluents.
In other words, we could have simply said that D is trusted
over the fluent sick. However, there are many practical cases
where this is not sufficient; we do not want to rely on the
fluent vocabulary to determine what is a valid feature with
respect to trust. For example, a doctor may have specific ex-
pertise over lung infections for those working in factories,
but not for lung infections for those working in a space shut-
tle. By using state partitions to encode trust, we are able to
capture a very flexible class of distinct areas of trust.

Incorporating Trust in Belief Revision

As indicated previously, we assume each agent A has an
AGM belief revision operator * 4 for incorporating new in-
formation. In this section, we describe how the revision op-
erator * 4 is combined with the trust function T4 to define
a new, trust-incorporating revision operator *4. In many
cases, the operator % will not be an AGM operator because
it will fail to satisfy the AGM postulates. In particular, A will
not necessarily believe a new formula when it is reported by
an untrusted source. This is a desirable feature.

Our approach is to define revision as a two-step process.
First, the agent considers the source and the relevant state
partition to determine how much of the new information to
incorporate. Second, the agent performs standard AGM re-
vision using the faithful assignment corresponding to the be-
lief revision operator.

Definition 3 Let ¢ be a formula and let Ta(B) = 5. De-
fine:
(¢ = | {5 (s) | s | ¢}

Hence 15 [4] is the union of all cells that contain a model of

If A does not trust B to distinguish between states s and
t, then any report from B that provides evidence that s is the
actual state is also evidence that ¢ is the actual state. When
A performs belief revision, it should be with respect to the
distinctions that B can be trusted to make. It follows that A
need not believe ¢ after revision; instead A should interpret
¢ to be evidence of any state s that is B-indistinguishable
from a model of ¢. Formally, this means that the formula ¢
is construed to be evidence for each state in I15[4)].

109

Definition 4 Let A, B € A with T4(B) = TI%, and let
x4 be an AGM revision operator for A. For any belief set
K with corresponding ordering <y given by the underlying
faithful assignment, the trust-sensitive revision K 5 ¢ is the
set of formulas true in

121;1({3 | s € I5[0]}).

So rather than taking the minimal models of ¢, we take all
minimal states that B can not be trusted to distinguish from
the minimal models of ¢.

It is worth remarking that this notion can be formulated
synactically as well. Since F is finite, each state s is defined
by a unique, maximal conjunction over literals in F'; we sim-
ply take the conjunction of all the atomic formulas that are
true in s together with the negation of all the atomic formu-
las that are false in s.

Definition 5 For any state s, let prop(s) denote the unique,
maximal conjunction of literals true in s.

This definition can be extended for a cell in a state partition.

Definition 6 Let I1 be a state partition. For any state s,

prop(Il(s)) = \/{prop(s') | ' € I1(s)}.

Note that prop(Il(s)) is a well-defined formula in disjunc-
tive normal form, due to the finiteness of F'. Intuitively,
prop(Il(s)) is the formula that defines the partition II(s).
In the case of a trust partition I1Z, we can use this idea to
define the trust expansion of a formula.

Definition 7 Let A, B € A with the corresponding state
partition 15, and let ¢ be a formula. The trust expansion of
¢ for A with respect to B is the formula

¢4 = \[{prop(15(s)) | s = ¢}

Note that this is a finite disjunction of disjunctions, which
is again a well defined formula. We refer to ¢% as the trust
expansion of ¢ because it is true in all states that are consis-
tent with ¢ with respect to distinctions that A trusts B to be
able to make. It is an expansion because the set of models of
#% is normally larger than the set of models of ¢. The trust
sensitive revision operator could equivalently be defined as
the normal revision, following translation of ¢ to the corre-
sponding trust expansion.

Example Returning to our example, we consider a few
different formulas for revision:

L. ¢
2. ¢o
3. ¢3

Suppose that the agent initially believes that they are not
sick, and that the diamond they have is real, so K = —sickA
diam. For simplicity, we will assume that the underlying
pre-order < g has only two levels: those states where K is
true are minimal, and those where K is false are not. We
have the following results for revision

1. K +8 ¢1 = sick A diam

= sick
= —diam

sick N\ —~diam.



—sick A diam

sick A diam.

The first result indicates that A believes the doctor when the
doctor reports that they are sick. The second result indicates
that A essentially ignores a report from the doctor on the
subject of jewelry. The third result is perhaps the most inter-
esting. It demonstrates that our approach allows an agent to
just incorporate a part of a formula. Hence, even though ¢3
is given as a single piece of information, the agent A only
incorporates the part of the formula over which the doctor is
trusted.

Formal Properties
Basic Results

We first consider extreme cases for trust-sensitive revision
operators. Intuitively, if T4(B) is the trivial partition, then
A does not trust B to be able to distinguish between any
states. Therefore, A should not incorporate any new infor-
mation obtained from B. The following proposition makes
this observation explicit.

Proposition 1 If T (B) is the trivial partition, then K *E
¢ = K forall K and ¢.

The other extreme situation occurs when T4 (B) is the unit
partition, which consists of all singleton sets. In this case,
A trusts B to be able to distinguish between every possible
pair of states. It follows from this result that trust sensitive
revision operators are not AGM revision operators.

Proposition 2 [f T4 (B) is the unit partition, then x5 = x 4.

Hence, if B is universally trusted, then the corresponding
trust sensitive revision operator is just the a priori revision
operator for A.

Refinements

There is a partial ordering on partitions based on the notion
of refinement. We say that II; is a refinement of Il just in
case, for each S; € IIq, there exists Sy € II5 such that S; C
So. We also say that II; is finer than II,. In terms of trust-
partitions, refinement has a natural interpretation in terms
of “breadth of trust.” If the partition corresponding to B is
finer than that corresponding to C, it means that B is trusted
more broadly than C. To be more precise, it means that B
is trusted to distinguish between all of the states that C' can
distinguish, and possibly more. If B is trusted more broadly
that C, it follows that a report from B should give give A
more information. This idea is formalized in the following
proposition.

Proposition 3 For any formula ¢, if Hﬁ is a refinement of
G, then |K +5 ¢| C |K %G ¢|.

This is a desirable property; if B is trusted over a greater
range of states, then fewer states are possible after a report
from B.

110

Multiple Reports

One natural question that arises is how to deal with multiple
reports of information from different agents, with different
trust partitions. In our example, for instance, we might get
a conflicting report from a jeweler with respect to the sta-
tus of the necklace. In order to facilitate the discussion, we
introduce a precise notion of a report.

Definition 8 A report is a pair (B, ¢), where B € A and ¢
is a formula.
We can now extend the definition of trust senstive revision to

reports in the obvious manner. In fact, if the revising agent A
is clear from the context, we can use the short hand notation:

K+ (¢, B) = K 5 ¢.

The following definition extends the notion of revision to
incorporate multiple reports.

Definition 9 Ler {A} UB C A, and let & = {(¢;, B;) |
i < n} be a finite set of reports. Given K, x and <, the
trust-sensitive revision K x o ® is the set of formulas true in

min({s | s € 0.},

So the trust sensitive revision for a finite set of reports from
different agents is essentially the normal, single-shot revi-
sion by the conjunction of formulas. The only difference is
that we expand each formula with respect to the trust parti-
tion for a particular reporting agent.

Example In the doctor and jeweler domain, we can con-
sider how how an agent might incorporate a set of reports
from D and J. We start with the same initial belief set as
before: K = —sick A diam. Consider the following reports:
1. ®; = {(sick, D), (—~diam, D)}

2. &y = {(sick,J), (~diam, J)}

3. @3 = {(sick, D), (=diam, J)}

4. &4 = {(sick,J), (~diam, D)}

We have the following results following revision:

1. K x4 &

sick A diam

2. K x4 &y = —sick N\ —~diam
3. K x4 ®3 = sick A\ ~diam
4, K x4 &4 = —sick N diam.

These results demonstrate how the agent A essentially in-
corporates information from D and J in domains where
they are trusted, and ignores information when they are not
trusted. Note that, in this case, D and .J are trusted over dis-
joint sets of states. As a result, it is not possible to have con-
tradictory reports that are equally trusted.

The problem with Definition 9 is that the set of states in
the minimization may be empty. This occurs when multiple
agents give conflicting reports, and we trust each agent on
the domain. In order to resolve this kind of conflict, we need
a more expressive form of trust that allows some agents to be
trusted more than others. We introduce such a representation
in the next section.



Trust Pseudometrics
Measuring Trust

In the previous section, we were concerned with a binary no-
tion of trust that did not include any measure of the strength
of trust held in a particular agent or domain. Such an ap-
proach is appropriate in cases where we only receive new
information from a single source, or from a set of sources
that are equally reliable. However, it is not sufficient if we
consider cases where several different sources may provide
conflicting information. In such cases, we need to determine
which information source is the most trust worthy with re-
spect to the domain currently under consideration.

In the binary approach, we associated a partition of the
state space with each agent. In order to capture different lev-
els of trust, we would like to introduce a measure of the dis-
tance between two states from the perspective of a particular
agent. In other words, an agent A would like to associate a
distance function dp over states with each other agent B.
If dp(s,t) = 0, then B can not be trusted to distinguish
between the states s and ¢. On the other hand, if dp(s,t)
is very large, then A has a high level of trust in B’s abil-
ity to distinguish between s and ¢. The notion of distance
that we introduce will be a psuedometric on the state space.
A pseudometric is a function d that satisfies the following
properties for all z, y, z in the domain X:

1. d(z,z) =0

2. d(z,y) = d(y,x)

3. d(z,z) < d(z,y) +d(y, 2)

The difference between a metric and a pseudometric is that
we do not require that d(z,y) = 0 implies z = y (the so-
called law of indiscernables). This would be undesirable in
our setting, because we want to use the distance O to rep-
resent states that are indistinguishable rather than identical.
The first two properties are clearly desirable for a measure
of our trust in another agent’s ability to discern states. The
third property is the triangle inequality, and it is required to
guarantee that our trust in other agents is transititive across
different domains.

Definition 10 For each A € A, a pseudometric trust func-
tion 74 is a function that maps each B € A to a pseudomet-
ric dg over 2F.

The pair (2F,7,) is called a pseudometric trust space. We
would like to model the situation where a sequence of for-
mulas ® = ¢q,...,¢, is received from the agents B =
Bi,..., By, respectively. Note that the order does not mat-
ter, we think of the formulas as arriving at the same instant
with no preference between them other than the preference
induced by the pseudometric trust space.

We associate a sequence of state partitions with each
pseudometric trust space.

Proposition 4 Let (2F,7,) be a pseudometric trust space,
let B € A — A, and let i be a natural number. For each state
s, define the set ®4(i)(s) as follows:

5 (i)(s) = {t | da(s,t) < i}.
The collection of sets {I14(i)(s) | s € 2¥} is a state parti-
tion.

111

We let T14 (i) denote the state partition obtained from this
proposition. The cells of the partition IT5(7) consist of all
states are separated by a distance of no more than ¢. The
following proposition is immediate.

Proposition 5 114 (i) is a refinement of T3 (j), for any i <
J.
Hence, a pseudometric trust space defines a sequence of
partitions for each agent. This sequence of partitions gets
coarser as we increase the index; increasing the index corre-
sponds to requiring a higher level of trust that an agent can
distinguish between states. Since we can use Definition 4 to
define a trust sensitive revision operator from a state parti-
tion, we can now define a trust sensitive revision operator
for any fixed distance ¢ between states. Informally, as ¢ in-
creases, we require B to have a greater degree of certainty in
order to trust them to distinguish between states. However, it
is not clear in advance exactly which ¢ is the right threshold.
Our approach will be to find the lowest possible threshold
that yields a consistent result.

Note that I14 () will be a trivial partition for any i that is
less than the minimum distance assigned by the underlying
pseudometric trust function.

Definition 11 Let (2¥,74) be a pseudometric trust space,
and let m be the least natural number such that TIs(m) is
non-trival. The trust sensitive revision operator for A with
respect to B is the trust sensitive revision operator given by

T3 (m).

This is a simple extension of our approach based on state
partitions. In the next section, we take advantage of the
added expressive power of pseudometrics.

Example We modify the doctor example. In order to con-
sider different levels of trust, it is more interesting to con-
sider a domain involving two doctors: a general practitioner
D and a specialist S. We also assume that the vocabulary in-
cludes two fluents: ear and skin. Informally, ear is under-
stood to be true if the patient has an ear infection, whereas
skin is true if the patient has skin cancer. The important
point is that an ear infection is something that can easily be
diagnosed by any doctor, whereas skin cancer is typically
diagnosed by a specialist. In order to capture these facts, we
define two pseudometrics dp and dg. For simplicity, we la-
bel the possible states as follows:

s1 = {ear,skin}
sa = {ear}

s3 = {skin}

s = 0

We define the pseudometrics as follows: With these pseudo-

51,52 51,53 S1, 54 592,53 52,54 53, 54
dp | 1 2 2 2 2 [
ds | 2 2 2 2 2 2

metrics, it is easy to see that both D and S can distinguish all



of the states. However, S is more trusted to distinguish be-
tween states related to a skin cancer diagnosis. In our frame-
work, we would like to ensure that this implies S will be
trusted in the case of conflicting reports from D and S with
respect to skin cancer.

Multiple Reports

We view the distances in a pseudometric trust space as abso-
lute measurements. As such, if dp(s,t) > dc(s,t), then we
have greater trust in B as opposed to C' as far as the ability to
discern the states s and ¢ is concerned. We would like to use
this intuition to resolve conflicting reports between agents.

Proposition 6 Let {A} UB C A, and let ® = {(¢;, B;) |
i < n} be afinite set of reports. There exists a natural num-
ber m such that

(M5 b:](m)) # 0.

i<n

Hence, for any set of reports, we can get a non-intersecting
intersection if we take a sufficiently coarse state partition.
In many cases this partition will be non-trival. Using this
proposition, we define multiple report revision as follows.

Definition 12 Let (2F,74) be a pseudometric trust space,
let ® = {(¢s,Bi) | © < n} be a finite set of re-
ports, and let m be the least natural number such that
Nicn M5 @5](m)) # 0. Given K, % and <, the trust-

sensitive revision K *E D is the set of formulas true in
min({s | s € T0:](m)}).

Hence, trust-sensitive revision in this context involves find-
ing the finest possible partition that provides a meaningful
combination of the reports, and then revising with the corre-
sponding state partition.

Trust and Deceit

To this point, we have only been concerned with modeling
the trust that one agent holds in another due to perceived
knowledge or expertise. Of course, the issue of trust also
arises in cases where one agent suspects that another may
be dishonest. However, the manner in which trust must be
handled differs greatly in this context. If A does not trust
B, then there is little reason for A to believe any part of a
message sent directly from B.

Discussion
Related Work

We are not aware of any other work on trust that explicitly
deals with the interaction between trust and formal belief
revision operators. There is, however, a great deal of work
on frameworks for modelling trust. As noted previously, the
focus of such work is often on building reputations. One no-
table approach to this problem with an emphasis on knowl-
edge representation is (Wang and Singh 2007), in which trust
is built based on evidence. This kind of approach could be

112

used as a precursor step to build a trust metric, although one
would need to account for domain expertise.

Different levels of trust are treated in (Krukow and
Nielsen 2007), where a lattice structure is used to repre-
sent various levels of trust strength. This is similar to our
notion of a trust pseudometric, but it permits incompara-
ble elements. There are certainly situations where this is a
reasonable advantage. However, the emphasis is still on the
representation of trust in an agent as opposed to trust in an
agent with respect to a domain.

One notable approach that is similar to ours is the seman-
tics of trust presented in (Krukow and Nielsen 2007), which
is a domain-based approach to differential trust in an agent.
The emphasis there is on trust management, however. That
is, the authors are concerned with how agents maintain some
record of trust in the other agents; they are not concerned
with a differential approach to belief revision.

Conclusion

In this paper, we have developed an approach to trust sen-
sitive belief revision in which an agent is trusted only with
respect to a particular domain. This has been formally ac-
complished first by using state partitions to indicate which
states an agent can be trusted to distinguish, and then by us-
ing distance functions to quantify the strength of trust. In
both cases, the model of trust is used as sort of a precursor
to belief revision. Each agent is able to perform belief revi-
sion based on a pre-order over states, but the actual formula
for revision is parametrized and expanded based on the level
of trust held in the reporting agent.

There are many directions for future work, in terms of
both theory and applications. As noted previously, one of the
subtle distinctions that must be addressed is the difference
between trusted expertise and trusted honesty. The present
framework does not explicitly deal with the problem of de-
ception or belief manipulation (Hunter 2013); it would be
useful to explore how models of trust must differ in this con-
text. In terms of applications, our approach could be used in
any domain where agents must make decisions based on be-
liefs formulated from multiple reports. This is the case, for
example, in many networked communication systems.

References

Alchourrén, C.; Gardenfors, P.; and Makinson, D. 1985. On
the logic of theory change: Partial meet functions for con-
traction and revision. Journal of Symbolic Logic 50(2):510—
530.

Hunter, A. 2013. Belief manipulation: A formal model of
deceit in message passing systems. In Proceedings of the
Pacific Asia Workshop on Security Informatics, 1-8.

Huynh, T. D.; Jennings, N. R.; and Shadbolt, N. R. 2006.
An integrated trust and reputation model for open multi-
agent systems. Autonomous Agents and Multi-Agent Sys-
tems 13(2):119-154.

Katsuno, H., and Mendelzon, A. 1992. Propositional knowl-
edge base revision and minimal change. Artificial Intelli-
gence 52(2):263-294.



Krukow, K., and Nielsen, M. 2007. Trust structures. Inter-
national Journal of Information Security 6(2-3):153—-181.
Ramchurn, S.; Mezzetti, C.; Giovannucci, A.; Rodriguez-
Aguilar, J.; Dash, J.; and Jennings, N. 2009. Trust-based
mechanisms for robust and efficient task allocation in the
presence of execution uncertainty. JAIR 35:119-159.
Salehi-Abari, A., and White, T. 2009. Towards con-resistant
trust models for distributed agent systems. In IJCAI, 272—
2717.

Wang, Y., and Singh, M. P. 2007. Formal trust model for
multiagent systems. In IJCAI 1551-1556.

113



On the Non-Monotonic Description Logic ALC+T in

Oliver Fernandez Gil*
University of Leipzig
Department of Computer Science
fernandez @informatik.uni-leipzig.de

Abstract

In the last 20 years many proposals have been made
to incorporate non-monotonic reasoning into descrip-
tion logics, ranging from approaches based on default
logic and circumscription to those based on preferential
semantics. In particular, the non-monotonic description
logic ALC+Tmin uses a combination of the preferential
semantics with minimization of a certain kind of con-
cepts, which represent atypical instances of a class of
elements. One of its drawbacks is that it suffers from the
problem known as the property blocking inheritance,
which can be seen as a weakness from an inferential
point of view. In this paper we propose an extension
of ALC+Tmin, namely ALC+T;. , with the purpose
to solve the mentioned problem. In addition, we show
the close connection that exists between ALC+T;
and concept-circumscribed knowledge bases. Finally,
we study the complexity of deciding the classical rea-
soning tasks in ALC+T"

min-*

Introduction

Description Logics (DLs) (Baader et al. 2003) are a well-
investigated family of logic-based knowledge representation
formalisms. They can be used to represent knowledge of a
problem domain in a structured and formal way. To describe
this kind of knowledge each DL provides constructors that
allow to build concept descriptions. A knowledge base con-
sists of a TBox that states general assertions about the prob-
lem domain and an ABox that asserts properties about ex-
plicit individuals.

Nevertheless, classical description logics do not pro-
vide any means to reason about exceptions. In the past 20
years research has been directed with the purpose to incor-
porate non-monotonic reasoning formalisms into DLs. In
(Baader & Hollunder 1995a), an integration of Reiter’s de-
fault logic (Reiter 1980) within the terminological language
ALCF is proposed and later extended in (Baader & Hol-
lunder 1995b) to allow the use of priorities between default
rules. Taking a different approach, (Bonatti, Lutz, & Wolter
2009) introduces circumscribed DLs and analyses in de-
tail the complexity of reasoning in circumscribed extensions
of expressive description logics. In addition, recent works
(Casini & Straccia 2010; Britz, Meyer, & Varzinczak 2011;

*Supported by DFG Graduiertenkolleg 1763 (QuantLA).

114

Giordano et al. 2013a) attempt to introduce defeasible rea-
soning by extending DLs with preferential and rational se-
mantics based on the KLM approach to propositional non-
monotonic reasoning (Lehmann & Magidor 1992).

In particular, the logic ALC+T,,;, introduced in (Gior-
dano et al. 2013b) combines the use of a preferential seman-
tics and the minimization of a certain kind of concepts. This
logic is built on top of the description logic ALC (Schmidt-
Schaufl & Smolka 1991) and is based on a typicality oper-
ator T whose intended meaning is to single out the typical
instances of a class C' of elements. The underlying semantics
of T is based on a preference relation over the domain. More
precisley, classical ALC interpretations are equipped with a
partial order over the domain elements setting a preference
relation among them. Based on such an order, for instance,
the set of typical birds or T (Bird), comprises those individu-
als from the domain that are birds and minimal in the class of
all birds with respect to the preference order. Using this op-
erator, the subsumption statement T(Bird) = Fly expresses
that typical birds fly. In addition, the use of a minimal model
semantics considers models that minimize the atypical in-
stances of Bird. Then, when no information is given about
whether a bird is able to fly or not, it is possible to assume
that it flies in view of the assertion T(Bird) C Fly.

As already pointed out by the authors, the preferential or-
der over the domain limits the logic ALC+Ty;, in the sense
that if a class P is an exceptional case of a superclass B,
then no default properties from B can be inherited by P dur-
ing the reasoning process, including those that are unrelated
with the exceptionality of P with respect to B. For example:

Penguin C Bird
T(Bird) C Fly M Winged
T(Penguin) C —Fly

It is not possible to infer that typical penguins have wings,
even when the only reason for them to be exceptional with
respect to birds is that they normally do not fly.

In the present paper we extend the non-monotonic logic
ALC+T i from (Giordano et al. 2013b) with the introduc-
tion of several preference relations. We show how this ex-
tension can handle the inheritance of defeasible properties,
resembling the use of abnormality predicates from circum-
scription (McCarthy 1986). In addition, we show the close
relationship between the extended non-monotonic logic



ALC+T!. and concept-circumscribed knowledge bases
(Bonatti, Lutz, & Wolter 2009). Based on such a relation,
we provide a complexity analysis of the different reason-
ing tasks showing NExpNP- completeness for concept satis-
fiability and co-NExpNP-completeness for subsumption and
instance checking.

Missing proofs can be found in the long ver-
sion of the paper at http://www.informatik.uni-
leipzig.de/~fernandez/NMR 14long.pdf.

The logic ALC+T nin

We recall the logic ALC+T proposed in (Giordano et al.
2013b) and its non-monotonic extension ALC+Tmin. Let
Nc, Ng and N, be three countable sets of concept names, role
names and individual names, respectively. The language
defined by ALC+T distinguishes between normal concept
descriptions and extended concept descriptions which are
formed according to the following syntax rules:

C:=A|-C|CnND| 3rC,
Ce::=C | T(A) | -C. | C.M D,

where A € N¢,r € Ng, C and D are classical ALC concept
descriptions, C, and D, are extended concept descriptions,
and T is the newly introduced operator. We use the usual
abbreviations C'U D for =(-C'M—D), ¥r.C for =3r.-C, T
for ALl —=A and L for —T.

A knowledge base is a pair X = (7,.A). The TBox 7
contains subsumption statements C' = D where C'is a clas-
sical ALC concept or an extended concept of the form T(A),
and D is a classical ALC concept. The Abox A contains as-
sertions of the form C,(a) and r(a,b) where C, is an ex-
tended concept, r € Ng and a,b € N,. The assumption
that the operator T is applied to concept names is without
loss of generality. For a complex .ALC concept C, one can
always introduce a fresh concept name Ao which can be
made equivalent to C' by adding the subsumption statements
Ac C Cand C C Ag to the background TBox. Then, T(C)
can be equivalently expressed as T(A¢).

In order to provide a semantics for the operator T, usual
ALC interpretations are equipped with a preference relation
< over the domain elements:

Definition 1 (Interpretation in ALC+T). An ALC+T inter-
pretation Z is a tuple (AZ, .2, <) where:

+ A7 is the domain,

+ T is an interpretation function that maps concept names
to subsets of A7 and role names to binary relations over
AI

+ < isan irreflexive and transitive relation over AZ that sat-
isfies the following condition (Smoothness Condition):
for all S C AZ and for all x € S, either x € Min_(S) or
Jy € Min(S) such that y < z, with Min.(S) = {z €
S|AyeSsty<uz}

z

The operator T is interpreted as follows: [T(A)]* =
Min_ (A?). For arbitrary concept descriptions, .7 is induc-
tively extended in the same way as for ALC taking into ac-
count the introduced semantics for T.

115

As mentioned in (Giordano et al. 2013b; 2009), ALC+T
is still monotonic and has several limitations. In the fol-
lowing we present the logic ALC+T s, proposed in (Gior-
dano et al. 2013b) as a non-monotonic extension of ALC+T,
where a preference relation is defined between ALC+T in-
terpretations and only minimal models are considered.

First, we introduce the modality O as in (Giordano et al.
2013b).

Definition 2. Let Z be an ALC+T interpretation and C' a
concept description. Then, LJC' is interpreted under Z in the
following way:

(00 = {2z € A%|forally € ATify < 2 theny € CT}

We remark that CJC' does not extend the syntax of ALC+T.
The purpose of using it is to characterize elements of the
domain with respect to whether all their predecessors in <
are instances of C or not. For example, [J-Bird defines a
concept such that d € (O-Bird)? if all the predecessors
of d, with respect to < under the interpretation Z, are not
instances of Bird. Hence, it is not difficult to see that:

[T(Bird)]* = (Bird M 0-Bird)*

Then, the idea is to prefer models that minimize the in-
stances of —[J—Bird in order to minimize the number of
atypical birds.

Now, let Lt be a finite set of concept names occurring in
the knowledge base. These are the concepts whose atypical
instances are meant to be minimized. For each interpretation
7, the set IET_ represents all the instance of concepts of the
form —[J—-A for all A € Lr. Formally,

IL‘,Ti —
{(x, ~0-A) |z € (-O0-A)%, withz € AT A € Ly}

Based on this, the notion of minimal models is defined in
the following way.
Definition 3 (Minimal models). Let K (T,A) be a
knowledge base and Z = (A%, .1, <7), J = (A7,.7 ., <)
be two interpretations. We say that 7 is preferred to J with
respect to the set Lt (denoted as Z <, J), iff:

o AT =AY,
o o =¢a7 foralla € Nj,
0o~ 0-
* Iz, CIg -
An interpretation Z is a minimal model of /C with respect to
Lt (denoted as 7 |:£T K) iff T = K and there is no model

min

J of K such that 7 <., 7.

Based on the notion of minimal models, the standard rea-
soning tasks are defined for ALC+T nin.

* Knowledge base consistency (or satisfiability): A knowl-
edge base /C is consistent w.r.t. Lr, if there exists an inter-

pretation Z such that Z =57 .

» Concept satisfiability: An extended concept C. is satisfi-
able with respect to /C if there exists a minimal model 7
of K w.r.t. Ly such that CZ # ().



» Subsumption: Let C, and D, be two extended concepts.
C. is subsumed by D, wrt. K and Ly, denoted as

K EE €, C D, if CT C D? for all minimal mod-

els Z of K.

e Instance checking: An individual name «a is an instance
of an extended concept C, w.r.t. KC, denoted as K ):nffn
Ce(a), if aZ € C7 in all the minimal models Z of K.

Regarding the computational complexity, the case of
knowledge base consistency is not interesting in itself since
the logic ALC+T enjoys the finite model property (Gior-
dano et al. 2013b). Note that if there exists a finite model 7
of C, then the sets that are being minimized are finite. There-
fore, every descending chain starting from Z with respect to
<, must be finite and a minimal model of /C always exists.
Thus, the decision problem only requires to decide knowl-
edge base consistency of the underlying monotonic logic
ALC+T which has been shown to be EXPTIME-complete
(Giordano et al. 2009). For the other reasoning tasks, a
NExpNP upper bound is provided for concept satisfiability
and a co-NExpNP upper bound for subsumption and instance
checking (Giordano et al. 2013b).

Extending ALC+T,,;, with more typicality
operators

As already mentioned in (Giordano et al. 2013b; 2009), the
use of a global relation to represent that one individual is
more typical than another one, limits the expressive power
of the logic. It is not possible to express that an individual
x is more typical than an individual y with respect to some
aspect As; and at the same time ¥ is more typical than x (or
not comparable to x) with respect to a different aspect Ass.
This, for example, implies that a subclass cannot inherit any
property from a superclass, if the subclass is already excep-
tional with respect to one property of the superclass. This
effect is also known as property inheritance blocking (Pearl
1990; Geffner & Pearl 1992), and is a known problem in
preferential extensions of DLs based on the KLM approach.

We revisit the example from the introduction to illustrate
this problem.

Example 4. Consider the following knowledge base:
Penguin C Bird
T(Bird) C Fly M Winged
T(Penguin) C —Fly

Here, penguins represent an exceptional subclass of birds
in the sense that they usually are unable to fly. However, it
might be intuitive to conclude that they normally have wings
(T(Penguin) C Winged) since although birds fly because
they have wings, having wings does not imply the ability to
fly. In fact, as said before, it is not possible to sanction this
kind of conclusion in ALC+Ti,. The problem is that due
to the global character of the order < among individuals of
the domain, once an element d is assumed to be a typical
penguin, then automatically a more preferred individual e
must exist that is a typical bird. This rules out the possibility
to apply the non-monotonic assumption represented by the
second assertion to d.

116

In relation with circumscription, this situation can be
modelled using abnormality predicates to represent excep-
tionality with respect to different aspects (McCarthy 1980;
1986). The following example shows a knowledge base
which is defined using abnormality concepts similar as the
examples in (Bonatti, Lutz, & Wolter 2009).

Example 5.
Penguin C Bird
Bird C Fly LI Aby
Bird C Winged L Aby
Penguin T —Fly U Abpenguin

The semantics of circumscription allows to consider only
models that minimize the instances of the abnormality con-
cepts. In this example, concepts Ab; and Aby are used to
represent birds that are atypical with respect to two inde-
pendent aspects (i.e.: Fly and Winged). If the minimization
forces an individual d to be a not abnormal penguin (i.e.: d
is not an instance of Abpenguin), then it must be an instance of
Ab, but at the same time nothing forces it to be an instance
of Abs. Therefore, it is possible to assume that d has wings
because of the minimization of Ab,.

In this paper, we follow a suggestion given in (Giordano et
al. 2013Db) that asks for the extension of the logic ALC+T min
with more preferential relations in order to express typical-
ity of a class with respect to different aspects. We define
the logic ALC+T™ and its extension ALC+T, in a similar
way as for ALC+T and ALC+T,;,, but taking into account
the possibility to use more than one typicality operator.

We start by fixing a finite number of typicality operators
Tq,..., Tg. Classical concept descriptions and extended
concept descriptions are defined by the following syntax:

Cu:=A|-C|CnD| 3rC,

C.:=C | T;i(4) | =C, | CeM Dy,
where all the symbols have the same meaning as in ALC+T
and T; ranges over the set of typicality operators. The se-
mantics is defined as an extension of the semantics for

ALC+T that takes into account the use of more than one
T operator.

Definition 6 (Interpretations in ALC+TT). An interpreta-

tion Z in ALC+T™ is a tuple (AZ, .7, <y, ..., <) where:

o AT ig the domain,

* <; (1 <4 < k) is an irreflexive and transitive relation
over A7 satisfying the Smoothness Condition.

Typicality operators are interpreted in the expected way
with respect to the different preference relations over the do-
main: [T;(A)]F = Min_, (AT).

Similar as for ALC+T, we introduce for each preference
relation <; an indexed box modality [J; such that:

(0,0)F ={z e AT | vy e AT

Then, the set of typical instances of a concept A with respect
to the i* typical operator can be expressed in terms of the
indexed [] modalities:

[Ti(A))F = {z € A" |z € (AND;=A)7}

if y <; x theny € C7}



Now, we define the extension of ALC+T7 that results in
the non-monotonic logic ALC+TT. . Let Lr,,....Lr, bek

min*

finite sets of concept names. Given an ALC+T™ interpreta-
tion Z, the sets IE’; are defined as:

Ty, = {(@,~0-A) [z € (-0:~A) A A € Lr,}

Based on these sets, we define the preference relation <ZT

on ALC+TT interpretations that characterizes the non-
monotonic semantics of ALC+T+

Definition 7 (Preference relation). Let X = (7,.A) be
a knowledge base and Z = (AT, 7 <, ,...,<;,), J =

(A7, <jy,---,<j,) be two interpretations. We say that

7 is preferred to J (denoted as <ZT) with respect to the sets
Lr,, ift:

o AT = AT,
s af = a7 foralla € Ny,
* Ip,, € Jg, foralll <i<k,
< WstIp CIp -
An ALC+TT interpretation 7 is a minimal model of K

(denoted as 7 ):ﬁfn* K) iff T |= K and there exists no inter-

pretation 7 such that: J = K and J <J£T T. The different
reasoning tasks are defined in the usual way, but with respect

to the new entailment relation f”T: .

We revise Example 4 to show how to distinguish between
a bird being typical with respect fo being able to fly or to
having wings, in ACC+T;". . The example shows the use of
two typicality operators T; and Ts, where <1 and <o are
the underlying preference relations.

Example 8.

Penguin C Bird

T:(Bird) C Fly

T (Bird) C Winged
T, (Penguin) C —Fly

In the example, we use two preference relations to express
typicality of birds with respect to two different aspects inde-
pendently. The use of a second preference relation permits
that typical penguins can also be typical birds with respect to
<9. Therefore, it is possible to infer that typical penguins do
have wings. Looking from the side of individual elements:
having the assertion Penguin(e), the minimal model seman-
tics allows to assume that e is a typical penguin and also
a typical bird with respect to <5, even when a bird d must
exist such that d is preferred to e with respect to <.

It is interesting to observe that the defeasible property not
being able to fly, for penguins, is stated with respect to T;.
If instead, we use To(Penguin) T —Fly, there will be min-
imal models where e is an instance of T (Bird) and others
where it is an instance of Ty (Penguin). This implies that it
will not be possible to infer for e, the defeasible properties
corresponding to the most specific concept it belongs to.

The same problem is realized, with respect to circum-
scription in Example 5, where some minimal models prefer e

117

to be a normal bird (e € - Aby), while others consider e as a
normal penguin (¢ € —Abpenguin)- To address this problem-
atic about specificity, one needs to use priorities between the
minimized concepts (or abnormality predicates) (McCarthy
1986; Bonatti, Lutz, & Wolter 2009).

In contrast, for the formulation in the example, the seman-
tics induced by the preferential order <; does not allow to
have interpretations where e € Penguin, e € T;(Bird) and
e ¢ Ty (Penguin), i.e., the treatment of specificity comes for
free in the semantics of the logic.

+.

min

In the following, we show that reasoning in ALC+T}, is
NExpNP-complete for concept satisfiability and co-NExpNP-
complete for subsumption and instance checking. As a main
tool we use the close correspondence that exists between
concept-circumscribed knowledge bases in the DL ALC
(Bonatti, Lutz, & Wolter 2009) and AEC+T$in knowledge
bases. In fact, this relation has been pointed out in (Giordano
et al. 2013b) with respect to the logic ALC+T . However,
on the one hand, the provided mapping from ALC+Tmin
into concept-circumscribed knowledge bases is not polyno-
mial, and instead a tableaux calculus is used to show the up-
per bounds for the main reasoning tasks in ALC+T . On
the other hand, the relation in the opposite direction is only
given with respect to the logic ALCO+T,,;,, which extends
ALC+T in by allowing the use of nominals.

First, we improve the mapping proposed in (Giordano
et al. 2013b) by giving a simpler polynomial reduction,
that translates ALC+T:;in knowledge bases into concept-
circumscribed knowledge bases while preserving the en-
tailment relation under the translation. Second, we show
that using more than one typicality operator, it is possible
to reduce the problem of concept satisfiability for concept-
circumscribed knowledge bases in ALC, into the concept
satisfiability problem for ALC+T. .

We start by introducing circumscribed knowledge bases
in the DL ALC, as defined in (Bonatti, Lutz, & Wolter
2009). We obviate the use of priorities between minimized
predicates.

Complexity of reasoning in ALC+T

Definition 9. A circumscribed knowledge base is an expres-
sion of the form Circcp(7,.A) where CP = (M, F,V)isa
circumscription pattern such that M, F, V' partition the pred-
icates (i.e.: concept and role names) used in 7 and A. The
set M identifies those concept names whose extension is
minimized, F' those whose extension must remain fixed and
V' those that are free to vary. A circumscribed knowledge
base where M U F' C Nc is called a concept-circumscribed
knowledge base.

To formalize a semantics for circumscribed knowledge
bases, a preference relation <cp is defined on interpretations
by setting Z <cp J iff:

« AT = AT,

e o =a7 foralla € Nj,

e AT = A7 forall A€ F,

o AT C A7 forall A € M and there exists an A’ € M
such that A”F ¢ A"7.



An interpretation Z is a model of Circcp(7,.A) if Z is a
model of (7,.A) and there is no model Z' of (7,.A) with
I’ <cp Z. The different reasoning tasks can be defined in
the same way as above.

Similar as for circumscribed knowledge bases in (Bonatti,
Lutz, & Wolter 2009), one can show that concept satisfiabil-
ity, subsumption and instance checkmg can be polynomially
reduced to one another in .A£C+Tmln However, to reduce
instance checking into concept satisfiability slightly differ-
ent technical details have to be considered.

Lemma 10. Ler K = (7,A) be an ALC+T knowl-
edge base, C, an extended concept, Lr,,...,Lr, be fi-
nite sets of concept names and A a fresh concept name
not occurring in K and C.. Then, K }:mf: Ce(a) iff
—Ti1(A) N -C, is unsatisfiable w.rt. K! = (Tu{T C
A}, AUL(=Tr41(A))(@)}), where L, = {A}.

Note that this reduction requires the introduction of an ad-
ditional typicality operator Ty ;. Nevertheless, this does not
represent a problem in terms of complexity since, as it will
be shown in the following, the complexity does not depend
on the number of typicality operators k£ whenever k > 2.

Upper Bound

Before going into the details of the reduction we need to
define the notion of a signature.

Definition 11. Let Nt be the set of all the concepts of the
form T;(A) where A € N¢. A signature ¥ for ALC+T™ is
a finite subset of N¢ UNg UN+. We denote by X| 4.¢ the set
3\ Nt.

The signature sig(C.) of an extended concept C. is the
set of all concept names, role names and concepts from
N+ that occur in C.. Similarly, the signature sig(KC) of an
ALC+T* knowledge base K is the union of the signatures
of all concept descriptions occurring in K. Finally, we de-
note by sig(E1, ..., Ey,) the set sig(E1) U ... U sig(En),
where each F; is either an extended concept or a knowledge
base.

Let K (7,A) be an ALC+TT knowledge base,
Lr,,...,Lr, finite sets of concept names and ¥ be any
signature with sig(KC) C 3. A corresponding circumscribed
knowledge base Circcp (77, A"), with ' = (77, A’), is built
in the following way:

* For every concept A such that it belongs to some set Lr,
or T;(A) € %, a fresh concept name A7 is introduced.
These concepts are meant to represent the atypical ele-
ments with respect to A and <; in K, i.e., -[J;—A.

* Every concept description C' defined over ¥ is trans-
formed into a concept C' by replacing every occurrence
of T;(A) by (AN —AY).

e The TBox 7" is built as follows:

-CCDeT foralCCDeT,
— For each new concept A the following assertions are
included in 7"

Af =3ri. (AN A
Ir; AT C A}

ey
@)

118

where r; is a fresh role symbol, not occurring in X,
introduced to represent the relation <;.

* A’ results from replacing every assertion of the form C'(a)
in 7 by the assertion C'(a).

e Let Lt be the set:

U4

j=1 AEETj

then, the concept circumscription pattern CP is defined
as CP = (M,F,V) = (L1,0,X)acc U {AF | A &

One can easily see that the provided encoding is poly-
nomial in the size of /. The use of the signature ¥ is just a
technical detail and since it is chosen arbitrarily, one can also
select it properly for the encoding of the different reasoning
tasks.

The idea of the translation is to simulate each order <;
with a relation r; and at the same time fulfill the seman-
tics underlying the T; operators. The first assertion, A} =
Jr;.(AM A7), intends to express that the atypical elements
with respect to A and <; are those, and only those, that have
an r;-successor e that is an instance of A and at the same
time a not atypical A, i.e., e € T;(A). Indeed, this is a con-
sequence from the logic AEC+T:m because the order <; is
transitive. However, since it is not possible to enforce tran-
sitivity of r; when translated into ALC, we need to use the
second assertion Jr;.A¥ T AY. This prevents to have the
following situation:

de A7 de Bn-By (d,e)ery ee AN-A] ee€ By

In the absence of assertion (2), this would be consistent with
respect to 7", but it would not satisfy the aim of the transla-
tion since the typical B-element d would have a predecessor
(r;-successor) e which is atypical with respect to B. In fact,
the translation provided in (Giordano et al. 2013b) also deals
with this situation, but all the possible cases are asserted ex-
plicitly yielding an exponential encoding.

The following auxiliary lemma shows that a model of
(T', A’) can always be transformed into a model, that only
differs in the interpretation of 7;, and (r;)~! is irreflexive,
transitive and well-founded.

Lemma 12. Let T be an ALC interpretation such that
(7', A). Then, there exists J such that J = (T', A"),
Xjfor all X € X acc U AL, and for each r; we

have: (sz )7

Since well-foundedness implies the Smoothness Condi-
tion, the previous lemma allows us to assume (without loss

1
is irreflexive, transitive and well-founded.

of generality) that (r;%) ~ s irreflexive, transitive and sat-
isfies the Smoothness Condition for every model Z of X'.

Now, we denote by M the set of models of K and by
My the set of models of K'. With the help of the previous
lemma, we show that there exists a one-to-one correspon-
dence between M and M. We start by defining a map-
ping ¢ that transforms ALC+T™ interpretations into ALC
interpretations.



Definition 13. We define a mapping ¢ from ALC+T in-
terpretations into ALC interpretations such that ¢(Z7) = J
iff:

o« AT = AT,

¢ X7 = X7 foreach X € %] 4cc,

s (Ar)7 = (=0;~A)? for each fresh concept name A},

o (r)? = (<) tforalli,1 <i<Fk,

e a7 =aZ, foralla € N,.

Remark. We stress that interpretations are considered only
with respect to concept and role names occurring in X for
ALC+TT, and | azc U{AF} U{r;} for ALC. All the other
concept and role names from N¢ and Ng are not relevant to
distinguish one interpretation from another one. This is, if
7 and J are two ALC+T™ interpretations, then 7 = 7 iff
X% = X7 forall X € ¥N (Nc UNR) and (<;)* = (<;)7
for all 4,1 < i < k. The same applies for ALC interpreta-
tions, but with respect to X| 42c U {A;} U {r;}.

Next, we show that ¢ is indeed a bijection from Mc to

M.

Lemma 14. The mapping ¢ is a bijection from My to
Micr, such that for every T € My and each extended con-
cepts C., defined over ¥: CT = (C,)*™),

Proof. First, we show that for each Z € M it holds that:
©(I) € Mgr. Let T = (AT, T <4,..., <) be a model
of K and assume that ¢(Z) = J. We observe that since
[T;(A)]% = (AN;—A)Z, then by definition of ¢ it follows

that;
[Ti(A)]F = (An-47)7 ?3)

Consequently, one can also see that for every extended con-
cept C,, defined over ¥ and every element d € AZ:

deCtitfd e (C.)7

“

This can be shown by a straightforward induction on the
structure of C, where the base cases are A and T,;(A).
Hence, it follows that CZ = (C..)7 for every extended con-
cept C, defined over X.

Now, we show that 7 = (7', A’). From (4), it is clear
that 7 = C C D forall C C D € 7. In addition, since
a7 = aF forall a € N,, J satisfies each assertion in A’. It
is left to show that each GCI in 7" containing an occurrence
of a fresh role r; is also satisfied by 7. For each d € AT and
concept name A7, it holds:

d e (A)7iff d € (-0;-A)"
iff e € AT st.e <; dand e € [T;(A)]*
iff (d,e) € (r;)7 ande € (A1-A)7 by (3)
iffd € (3r;.(AN-A7))7

The case for the second GCI (dr;. A7 T A}) can be shown
in a very similar way. Thus, J = (77, A’) and consequently
 is a function from M into M.

Second, we show that for any model J of X' (i.e. J €
M), there exists T € My with p(Z) = J. Let J be an
arbitrary model of K’, we build an ALC+T™ interpretation
T = (A%, %, <y,...,<})in the following way:

119

. AI:AJ,

e XT = X7 foreach X € | 4.c,
e <= (r,7) " foralli,1 <i<k,
o o =qa7, foralla € N,.

Next, we show that (=(J;=A4)% = (A?)7. Assume that
d € (-0,~A)? for some d € A7, then there exists e <; d
such that e € AT and e € [T;(A)]Z. This means that for
all f <; e(or (e,f) € rJ): f ¢ AT. Hence, e € A7
and e ¢ (Ar)7. All in all, we have (d,e) € ry and
e € (AN—A?)7, therefore d € (AF)7 . Conversely, assume
that d € (A7)7. Assertion (1) in 7’ implies that there exists
e such that (d,e) € (r;)7 and e € A7. By construction of
7 we have e <; d and e € AZ. Thus, d € (-0;,—~A)% and
we can conclude that (=[J;=A)% = (A})7. Having this, it
follows that ¢(Z) = 7. In addition, similar as for equation
(3), we have:

[Ti(A))F = (An-47)7 (5)

A similar reasoning, as above yields that Z = K. This im-
plies that ¢ is surjective. It is not difficult to see, from the
definition of ¢, that it is also injective. Thus, ¢ is a bijection
from M to M.

The previous lemma establishes a one fo one correspon-
dence between My and M. Then, since K is an arbi-
trary ALC+T™T knowledge base, Lemma 14 also implies that
knowledge base consistency in ALC+T™ can be polynomi-
ally reduced to knowledge base consistency in ALC, which
is EXPTIME-complete (Baader et al. 2003).

Theorem 15. In ALC+T™, deciding knowledge base con-
sistency is EXPTIME-complete.

In addition, since ALC enjoys the finite model property,
this is also the case for ALC+T. Using the same argument
given before for ALC+T and ALC+T i, deciding knowl-
edge base consistency in A£C+T:in reduces to the same
problem with respect to the underlying monotonic logic
ALC+TT. Therefore, we obtain the following theorem.

Theorem 16. In ALC+T. | deciding knowledge base con-
sistency is EXPTIME-complete.

Now, we show that  is not only a bijection from M to
M, but it is also order-preserving with respect to <J,ET and
<cp.

Lemma 17. Let 7 and J be two models of KC. Then, T <J£T

T iff p(T) <cp p(J).

Proof. Assume that 7 <ZT J. Then, for all A € L, we

have that (—=[J;—A)? C (=J;-A)7 and in particular, for

some j and A’ € L, we have (-00;-A")* C (-0;-4")7.

By definition of ¢, we know that (-(J;=A4)7 = (A})¥D),

Hence, for all A¥ € M we have that (A})¢2) C (Az)#(J)
*Ye () Yo (T)

2?I?er( I:ilirje)ction (iln(li ]szlown .irrf {llllles 7sa(1pn(1?\x/;fp AT ng

The following lemma is an easy consequence from the
previous one and the fact that ¢ is bijection (which implies
that ¢ is invertible).



Lemma 18. Let T and J be ALC+T and ALC interpre-
tations, respectively. Then,
Lrt g

T i K iff o(I) = Circep(T', A') - (a)
J E Cireep(T, A) iff ¢ (J) Entt K (b)

Thus, we have a correspondence between minimal mod-
els of XC and models of Circcp(7,.A’). Based on this, it is
easy to reduce each reasoning task from ALC+T/. into
the equivalent task with respect to concept-circumscribed
knowledge bases. The following lemma states the existence
of such a reduction for concept satisfiability, the cases for
subsumption and instance checking can be proved in a very

similar way.

Lemma 19. An extended concept Cy is satisfiable w.r.t. to
K and Lr,, ..., Lr, iff Cy is satisfiable in Circcp(T', A).

Proof. Let us define X as sig(K, Cp).

(=) Assume that Z is a minimal model of K with CF #
(). The application of Lemma 18 tells us that ¢(Z)
Circcp(77, A’). In addition, from Lemma 14 we have that
CT = (Cy)?@). Thus, Cj is satisfiable in Circcp (77, A’).
(<) The argument is similar, but using ¢~ O

Finally, from the complexity results proved in (Bonatti,
Lutz, & Wolter 2009) for the different reasoning tasks with
respect to concept-circumscribed knowledge bases in ALC,
we obtain the following upper bounds.

Theorem 20. In ACC+T/, . it is in NExp" to decide con-

cept satisfiability and in co-NExpN® to decide subsumption
and instance checking.

Lower Bound

To show the lower bound, we reduce the problem of concept
satisfiability with respect to concept-circumscribed knowl-
edge bases in ALC, into the concept satisfiability problem in
ALC+T], . It is enough to consider concept-circumscribed
knowledge bases of the form Circcp(7,.A) with CP
(M, F,V) where A = () and F = (. The problem of de-
ciding concept satisfiability for this class of circumscribed
knowledge bases has been shown to be NExpNP-hard for
ALC (Bonatti, Lutz, & Wolter 2009). In order to do that, we
modify the reduction provided in (Giordano et al. 2013b)
which shows NExpNP-hardness for concept satisfiability in
ALCO+T .

Before going into the details, we assume without loss of
generality that each minimized concept occurs in the knowl-
edge base:

Remark. Let Circcp(7,.A) be a circumscribed knowledge
base. If A € M and A does not occur in (7,.4), then for
each model Z of Circcp(7, A): AT = 0.

Given a circumscribed knowledge base K
Circcp(7,.A) (where CP is of the previous form) and
a concept description Cjy, we define a corresponding
ALC+T* knowledge base K’ (7', A") using two
typicality operators in the following way.

Let M be the set {Mj, ..., M,}. Similarly as in (Gior-
dano et al. 2013b), individual names c and ¢,,,, (one for each

120

M; € M) and a fresh concept name D are introduced. Each
ALC concept description C' is transformed into C* induc-
tively by introducing D into concept descriptions of the form
Ir.Cy, ie.: (Fr.Cy)* = Ir.(D N CY) (see (Giordano et al.
2013b) for precise details).

Similar as in (Giordano ef al. 2013b), we start by adding
the following GClIs to the TBox 7":

DM, T T, (M,) forall M; € M 7)

The purpose of using these subsumption statements is to
establish a correspondence between the minimized concept
names M;, from the circumscription side, with the under-
lying concepts =0J;—M; on the ALC+T}", side, such that
the minimization of the M; concepts can be simulated by the
minimization of —=[J; =M. The individual names c,,, are in-
troduced to guarantee the existence of typical M;’s in view
of assertion (7). The concept D plays the role to distinguish
the elements of the domain that are not mapped to those in-
dividual names by an interpretation.

Note that if under an interpretation Z an element d is an
instance of D and M, at the same time, then it has to be an
instance of =Ty (M;) and therefore an instance of =(J; - M;
as well. Hence, it is important that whenever d becomes an
instance of [J; —~M; in a preferred interpretation to Z, it hap-
pens because d becomes an instance of =M, while it is still
an instance of D. In order to force this effect during the min-
imization, the interpretation of the concept D should remain
fixed in some way. As pointed out in (Giordano et al. 2013b),
this seems not to be possible in ALC+T i, and that is why
the reduction is realized for ALCO+T,;, where nominals
are used with that purpose.

In contrast, for .A£C+Tjn'in this effect on D can be simu-
lated by introducing a second typicality operator To, setting
Ly, = M, Ly, = {A} and adding the following two asser-
tions to 7

TCA ®)
—-D C —Ty(A) €))
where A is a fresh concept name. Note that if an element
d becomes a (—D)-element, it automatically becomes a
(-02—A)-element.
The ABox A’ contains the following assertions:
* D(o),
e foreach M; € M:
- (=D)(em,),
= (12 (M)) (em,):
- (=M;)(cm,) forall j # i.
Finally, a concept description C{, is defined as D M Cf.
Lemma 21. Cy is satisfiable in Circcp(T, A) iff C|, is sat-
isfiable w.rt. K' = (T', A') in ACC+T,

Proof. Details of the proof are deferred to the long version
of the paper. O

Since the size of K’ is polynomial with respect to the size
of IC, the application of the previous lemma yields the fol-
lowing result.



Theorem 22. In ALC+T..
NExpNP-hard.

Since concept satisfiability, subsumption and instance
checking are polynomially interreducible (see Lemma 10),
Theorem 22 yields co-NExpNP lower bounds for the sub-
sumption and the instance checking problem.

Corollary 23. In ACC+T;, , it is NExpNP-complete to de-
cide concept satisfiability and co-NExpN®-complete to de-
cide subsumption and instance checking.

concept satisfiability is

Finally, we remark that the translations provided between
A£C+T$in and concept-circumscribed knowledge bases do
not depend on the classical constructors of the description
logic ALC. Therefore, the same translations can be used
for the more expressive description logics ALCZO and
ALCQQO. From the complexity results obtained in (Bonatti,
Lutz, & Wolter 2009) for circumscription in ALCZO and

ALCQO , we also obtain the following corollary.
Corollary 24. In ALCIO+T! and ALCQO+T! | it

min min’
is NExpNP-complete to decide concept satisfiability and
co-NExpNP-complete to decide subsumption and instance

checking.

Moreover, from the lower bound obtained in (Giordano et
al. 2013b) for ALCO+T s, the results also apply for the
logics ALCZO+T min and ALC QO+T in.

Corollary 25. In ALCIO+T i, and ALCQO+T ., it
is NExpNP-complete to decide concept satisfiability and
co-NExpNP-complete to decide subsumption and instance
checking.

Conclusions

In this paper, we have provided an extension of the non-
monotonic description logic ALC+T min, by adding the pos-
sibility to use more than one preference relation over the
domain elements. This extension, called ALC+T, , allows
to express typicality of a class of elements with respect to
different aspects in an “independent” way. Based on this, a
class of elements P that is exceptional with respect to a su-
perclass B regarding a specific aspect, could still be not ex-
ceptional with respect to different unrelated aspects. The lat-
ter permits that defeasible properties from B not conflicting
with the exceptionality of P, can be inherited by elements in
P. As already observed in the paper, this is not possible in
the logic ALC+T p.

In addition, we have introduced translations that show
the close relationship between ALC+T!. and concept-
circumscribed knowledge bases in ALC. First, the provided
translation from A£C+T$in into concept-circumscribed
knowledge bases is polynomial, in contrast with the ex-
ponential translation given in (Giordano et al. 2013b) for
ALC+T yin. Second, the translation presented for the oppo-
site direction shows how to encode circumscribed knowl-
edge base, by using two typicality operators and no nomi-
nals.

Using these translations, we were able to determine the
complexity of deciding the different reasoning tasks in
ALC+T}. . We have shown that it is NExpNP-complete

min*

121

to decide concept satisfiability and co-NExpNP-complete to
decide subsumption and instance checking. Moreover, the
same translations can be used for the corresponding exten-
sions of ALC+T;, into more expressive description logics
like ALCZO and ALCQQO. The results also apply for ex-
tensions of ALC+Tmin With respect to the underlying de-
scription logics, in view of the hardness result shown for
ALCO+T i in (Giordano et al. 2013b).

As possible future work, the exact complexity for reason-
ing in ALC+T i, still remains open. It would be interesting
to see if it is actually possible to improve the NExpNP (co-
NExpNP) upper bounds. If that were the case, there is a pos-
sibility to identify a corresponding fragment from concept-
circumscribed knowledge bases with a better complexity
than NExpNP (co-NExpNP).

As a different aspect, it can be seen that the logic ALC+T
and our proposed extension ALC+T™ impose syntactic re-
strictions on the use of the typicality operator. First, it is not
possible to use a typicality operator under a role operator.
Second, only subsumption statements of the form T(A) C
(' are allowed in the TBox. The latter, seems to come from
the fact that ALC+T is based on the approach to proposi-
tional non-monotonic reasoning proposed in (Lehmann &
Magidor 1992), where a conditional assertion of the form
ApC'is used to express that A’s normally have property C.

As an example, by lifting these syntactic restrictions, one
will be able to express things like:

T(Senior_Teacher) C Excellent_Teacher

T(Student) C Vattend.(Class 1
Jimparted.T(Senior_Teacher))

This allows to relate the typical instances from different
classes in a way which is not possible with the current syn-
tax. From a complexity point of view, it is not difficult to
observe that the given translations in the paper will also be
applicable in this case, without increasing the overall com-
plexity. The reason is that after lifting the mentioned syn-
tactic restrictions, the occurrences of T;(A) in an extended
concept can still be seen as basic concepts.

Therefore, it would be interesting to study what are the
effects of removing these restrictions, with respect to the
kind of conclusions that would be obtained from a knowl-
edge base expressed in the resulting non-monotonic logic.

Acknowledgements

I thank my supervisors Gerhard Brewka and Franz Baader
for helpful discussions.

References

Baader, F., and Hollunder, B. 1995a. Embedding defaults
into terminological knowledge representation formalisms. J.
Autom. Reasoning 14(1):149-180.

Baader, F., and Hollunder, B. 1995b. Priorities on defaults
with prerequisites, and their application in treating speci-
ficity in terminological default logic. J. Autom. Reasoning
15(1):41-68.



Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press.

Bonatti, P. A.; Lutz, C.; and Wolter, F. 2009. The complexity
of circumscription in dls. J. Artif. Intell. Res. (JAIR) 35:717—
773.

Britz, K.; Meyer, T.; and Varzinczak, 1. J. 2011. Semantic
foundation for preferential description logics. In Wang, D.,
and Reynolds, M., eds., Australasian Conference on Artifi-
cial Intelligence, volume 7106 of Lecture Notes in Computer
Science, 491-500. Springer.

Casini, G., and Straccia, U. 2010. Rational closure for de-
feasible description logics. In Janhunen, T., and Niemeli,
I, eds., JELIA, volume 6341 of Lecture Notes in Computer
Science, 77-90. Springer.

Geffner, H., and Pearl, J. 1992. Conditional entailment:
Bridging two approaches to default reasoning. Artif. Intell.
53(2-3):209-244.

Giordano, L.; Olivetti, N.; Gliozzi, V.; and Pozzato, G. L.
2009. Alc + t: A preferential extension of description logics.
Fundam. Inform. 96(3):341-372.

Giordano, L.; Gliozzi, V.; Olivetti, N.; and Pozzato, G. L.
2013a. Minimal model semantics and rational closure in
description logics. In Eiter, T.; Glimm, B.; Kazakov, Y.;
and Krotzsch, M., eds., Description Logics, volume 1014 of
CEUR Workshop Proceedings, 168—180. CEUR-WS.org.

Giordano, L.; Gliozzi, V.; Olivetti, N.; and Pozzato, G. L.
2013b. A non-monotonic description logic for reasoning
about typicality. Artif. Intell. 195:165-202.

Lehmann, D. J., and Magidor, M. 1992. What does a condi-
tional knowledge base entail? Artif. Intell. 55(1):1-60.

McCarthy, J. 1980. Circumscription - a form of non-
monotonic reasoning. Artif. Intell. 13(1-2):27-39.

McCarthy, J. 1986. Applications of circumscription to for-
malizing common-sense knowledge. Artif. Intell. 28(1):89—
116.

Pearl, J. 1990. System z: A natural ordering of defaults with
tractable applications to nonmonotonic reasoning. In Parikh,
R., ed., TARK, 121-135. Morgan Kaufmann.

Reiter, R. 1980. A logic for default reasoning. Artif. Intell.
13(1-2):81-132.

Schmidt-Schauf3, M., and Smolka, G. 1991. Attributive con-

cept descriptions with complements. Artif. Intell. 48(1):1—
26.

122



An Argumentation System for Reasoning with
Conflict-minimal Paraconsistent ALC

Wenzhao Qiao and Nico Roos
Department of Knowledge Engineering, Maastricht University
Bouillonstraat 8-10, 6211 LH Maastricht, The Netherlands
{wenzhao.qiao,roos } @maastrichtuniversity.nl

Abstract

The semantic web is an open and distributed environment in
which it is hard to guarantee consistency of knowledge and
information. Under the standard two-valued semantics every-
thing is entailed if knowledge and information is inconsistent.
The semantics of the paraconsistent logic LP offers a solution.
However, if the available knowledge and information is con-
sistent, the set of conclusions entailed under the three-valued
semantics of the paraconsistent logic LP is smaller than the
set of conclusions entailed under the two-valued semantics.
Preferring conflict-minimal three-valued interpretations elim-
inates this difference.

Preferring conflict-minimal interpretations introduces non-
monotonicity. To handle the non-monotonicity, this paper
proposes an assumption-based argumentation system. As-
sumptions needed to close branches of a semantic tableaux
form the arguments. Stable extensions of the set of derived
arguments correspond to conflict minimal interpretations and
conclusions entailed by all conflict-minimal interpretations
are supported by arguments in all stable extensions.

Introduction

In the semantic web, the description logics SHOZN (D)
and SROZQ(D) are the standard for describing ontolo-
gies using the TBox, and information using the Abox.
Since the semantic web is an open and distributed environ-
ment, knowledge and information originating from different
sources need not be consistent. In case of inconsistencies,
no useful conclusion can be derived when using a standard
two-valued semantics. Everything is entailed because the
set of two-valued interpretations is empty. Resolving the
inconsistencies is often not an option in an open and dis-
tributed environment. Therefore, methods that allow us to
derive useful conclusions in the presence of inconsistencies
are preferred.

One possibility to draw useful conclusions from inconsis-
tent knowledge and information is by focussing on conclu-
sions supported by all maximally consistent subsets. This
approach was first proposed by Rescher (1964) and was
subsequence worked out further by others (Brewka 1989;
Roos 1988; 1992). A simple implementation of this ap-
proach focusses on conclusions entailed by the intersection
of all maximally consistent subsets. Instead of focussing on
the intersection of all maximally consistent subsets, one may

123

also consider a single consistent subset for each conclusion
(Poole 1988; Huang, van Harmelen, & ten Teije 2005). For
conclusions entailed by all (preferred) maximally consistent
subsets of the knowledge and information, a more sophis-
ticated approach is needed. An argumentation system for
this more general case has been described by Roos (1992).
Since these approaches need to identify consistent subsets of
knowledge and information, they are non-monotonic.

A second possibility for handling inconsistent knowledge
and information is by replacing the standard two-valued se-
mantics by a three-valued semantics such as the semantics
of the paraconsistent logic LP (Priest 1989). An important
advantage of this paraconsistent logic over the maximally
consistent subset approach is that the entailment relation is
monotonic. A disadvantage is that consistent knowledge and
information entail less conclusions when using the three-
valued semantics than when using the two-valued seman-
tics. Conflict-minimal interpretations reduce the gap be-
tween the sets of conclusions entailed by the two seman-
tics (Priest 1989; 1991). Priest (1991) calls resulting logic:
LPm. The conflict-minimal interpretations also makes LPm
non-monotonic (Priest 1991).

In this paper we present an argumentation system for con-
clusions entailed by conflict-minimal interpretations of the
description logic ALC (Schmidt-Schaul & Smolka 1991)
when using the semantics of the paraconsistent logic LP.
We focus on ALC instead of the more expressive logics
SHOIN (D) and SROIQ(D) to keep the explanation
simple. The described approach can also be applied to more
expressive description logics.

The proposed approach starts from a semantic tableaux
method for the paraconsistent logic LP described by Bloesch
(1993), which has been adapted to ALC. The semantic
tableaux is used for deriving the entailed conclusions when
using the LP-semantics. If a tableaux cannot be closed, the
desired conclusion may still hold in all conflict-minimal in-
terpretations. The open tableaux enables us to identify as-
sumptions about conflict-minimality. These assumptions are
used to construct an assumption-based argumentation sys-
tem, which supports conclusions entailed by all conflict min-
imal interpretations.

The remainder of the paper is organized as follows. First,
we describe ALC, a three-valued semantics for ALC based
on the semantics of the paraconsistent logic LP, and a corre-



sponding semantic tableaux method. Second, we describe
how a semantic tableaux can be used to determine argu-
ments for conclusions supported by conflict-minimal inter-
pretations. Subsequently, we present the correctness and
completeness proof of the described approach. Next we de-
scribe some related work. The last section summarizes the
results and points out directions of future work.

Paraconsistent ALC

The language of ALC We first give the standard defini-
tions of the language of ALC. We start with defining the
set of concepts C given the atomic concepts C, the role re-
lations R, the operators for constructing new concepts —, I
and L, and the quantifiers 3 and V. Moreover, we introduce
to special concepts, T and L, which denote everything and
nothing, respectively.

Definition 1 Let C be a set of atomic concepts and let R be
a set of atomic roles.
The set of concepts C is recursively defined as follows:

C C C, i.e. atomic concepts are concepts.
TeCand L €C.

IfC € Cand D € C, then -C € C, CT1 D € C and
cubDecC.

e [fCeCand R € R, then AR.C € Cand VR.C € C.
o Nothing else belongs to C.

In the description logic ALC, we have two operators: T
and =, for describing a relation between two concepts:

Definition 2 If {C, D} C C, then we can formulate the fol-
lowing relations (terminological definitions):

e CC D;ie., C issubsumed by D,
e C=D;ie,CisequaltoD.

A finite set 7 of terminological definitions is called a TBox.

In the description logic ALC, we also have an operator
“.”, for describing that an individual from the set of individ-
ual names N is an instance of a concept, and that a pair of
individuals is an instance of a role.

Definition 3 Let {a,b} C N be two individuals, let C € C
be a concept and let R € R be a role. Then assertions are
defined as:

e a:C
e (a,b): R

A finite set A of assertions is called an ABox.

A knowledge base K = (T,.A) is a tuple consisting of
a TBox 7 and an ABox A. In this paper we will denote
elements of the TBox and ABox 7 U A as propositions.

We define a three-valued semantics for ALC which is
based on the semantics of the paraconsistent logic LP. We
do not use the notation I = (A, -7) that is often used for the
semantics of description logics. Instead we will use a nota-
tion that is often used for predicate logic because it is more
convenient to describe projections and truth-values.

Definition 4 A three-valued interpretation I = (O, ) is a
couple where O is a non-empty set of objects and m is an
interpretation function such that:

124

e for each atomic concept C' € C, w(C) = (P, N) where
P, N C O are the positive and negative instances of the
concept C, respectively, and where P U N = O,

e for each individual i € N it holds that w(i) € O, and

e for each atomic role R € R it holds that m1(R) C O x O.

We will use the projections w(C)*T = P and n(C)~ = N to
denote the positive and negative instances of a concept C,
respectively.

We do not consider inconsistencies in roles since we can-
not formulate inconsistent roles in ALC. In a more expres-
sive logic, such as SROZ Q, roles may become inconsistent,
for instance because we can specify disjoint roles.

Using the three-valued interpretations I = (O, 7), we de-
fine the interpretations of concepts in C.

Definition 5 The interpretation of a concept C € C is de-
fined by the extended interpretation function m*.

o m(C) =n(C)iffCeC

o 7(T)=(0,X), where X C O
o (L) =(X,0), where X C O
o m(=C) = (r*(C)7, 7" (C)")
o T(CN D)= (r*(C)" Nm*(D)*,n*(C)~ Ur*(D)")
o T(C'UD)=(r*(C)T Ur*(D)",n*(C)~ N7*(D)")
e 7(3R.C) =
({zr€0|3Jye0,(z,y) €n(R)andy € w(C)*T},

{r €O |VyeO,(x,y) € n(R) impliesy € w(C)"})

o T (VR.C) =

({z €0 |VyeO,(z,y) € n(R) impliesy € m(C) T},
{re€eO|IyeO,(z,y) em(R)andy € n(C)"})
Note that we allow inconsistencies in the concepts T and
L. There may not exist a tree-valued interpretation for a
knowledge-base K = (7,.A) if we require that X = @.
Consider for instance: ¢ : C,a: Dand CN D C 1.

We also use the extended interpretation function 7* to de-
fine the truth values of the propositions: C' C D, a : C
and (a, b) : R. The truth values of the three-valued seman-
tics are defined using sets of the “classical” truth values: ¢
and f. We use three sets in the LP-semantics: {t}, {f} and
{t, f}, which correspond to TRUE, FALSE and CONFLICT.

Definition 6 Let {a,b} C N be two individuals, let C' € C
be a concept and let R € R be a role. Then an interpretation
I = (O, ) of propositions is defined as:
o tcn*(a:C)ifft*(a) € 7*(C)*F
o fen™(a:C)iffn*(a) € 7*(C)~
e tcm(CCD)iffm*(C)T Cn*(D)*, and
T (D)” €7 (C)~
o fem(CCD)ifft¢n*(CCD)
o tem*(C=D)iffn*(C)" =x*(D)" and
(D))" =7*(C)~
o fen*(C=D)ifft n*(C=D)
o t € m*((a,b) : R) iff (7" (a), 7" (b)) € w(R)
o fen*((a,b): R) iff (m*(a), 7" (b)) & w(R)



The interpretation of the subsumption relation given
above was proposed by Patel-Schneider (1989) for their
four-valued semantics. Patel-Schneider’s interpretation of
the subsumption relation does not correspond to the mate-
rial implication Vz[C(x) — D(z)] in first-order logic. The
latter is equivalent to Vz[-~C(x) V D(z)] under the two-
valued semantics, which corresponds to: “for every o € O,
o € m(C)~ oro € ©*(D)™” under the three-valued seman-
tics. No conclusion can be drawn from a : C and C C D
under the three-valued semantics since there always exists
an interpretation such that 7(a : C) = {t, f}.

The entailment relation can be defined using the interpre-
tations of propositions.

Definition 7 Letr I = (O, 7) be an interpretation, let p be
a proposition, and let 3 be a set of propositions. The the
entailment relation is defined as:

« TEiften(y)
o I EXifft € (o) foreveryoc € X..
o X oiff I |E X implies I = ¢ for each interpretation I

Semantic tableaux We use a semantic tableaux method
that is based on the semantic tableaux method for LP de-
scribed by Bloesch (1993). This tableaux method will en-
able us to identify the assumptions underlying relevant con-
flict minimal interpretations.

Bloesch proposes to label every proposition in the
tableaux with either the labels T (at least true), [ (at least
false), or their complements T and F, respectively. So, Ty
corresponds to t € (), Te corresponds to t & (i), Fop
corresponds to f € m(p), and Fo corresponds to f & ().

Although we do not need it in the semantic tableaux, we
also make use of Cy and Cyp, which corresponds semanti-
cally with {¢, f} = w(¢) and {¢, f} # 7w (p), respectively.
So, Cy is equivalent to: ‘T and Fy’, and Cyp is equivalent
to: ‘T or Fp’.

To prove that ¥ |= ¢ using Bloesch’s tableaux method
(Bloesch 1993), we have to show that a tableaux with root
I' ={To | o € £}UTy closes. The tableaux closes if every
branch has a node in which for some proposition « the node
contains: “Ta and Ta”, or “Fo and Fo”, or “Ta and Fo”.

Based on Bloesch’s semantic tableaux method for LP, the
following tableaux rules have been formulated. The sound-
ness and completeness of the set of rules are easy to prove.

Ta:-C Ta:-C Fa:-C TFa:-C

Fa:C Fa:C Ta:C Fa:C
Ta:CN1D Ta:CN1D
Ta:C,Ta:D T&:O|Ta:D
Fa:CnND Fa:CND
Fa:C|Fa:D Fa:C,Fa:D
Ta:CUD Ta:CUD
Ta:C|Ta:D Ta:C,Ta:D
Fa:CuUD Fa:CUD
Fa:C,Fa:D _Fa:C|Fa:D
Ta:Ir.C Ta:3Ir.C,T(a,b):r

T (a,z):r,Tx:C Tb:C

125

Fa:3r.C,T (a,b):r Fa:3rC
Fb:C T(a,ﬁx):r,Fm:C
Ta:vr.C,T (a,b):r Ta:vrC
Tb:C T (a,z):7r,Tax:C
Fa:VrC Fa:Vr.C,T (a,b): r
T (a,b): r,Fb:C Fb:C

The individual a in the following tableaux rules for the
subsumption relation must be an existing individual name,
while the individual  must be a new individual name.
TCCD TCCD
Ta:C|Ta:D Fa:D|Fa:C
TCCD
Tz:C,Tz:D|Fx:D,Fx:C
TC=D TC=D
TCED,TDCEC TCCD|TDCC
An important issue is guaranteeing that the constructed
semantic tableaux is always finite. The blocking method
described by (Buchheit, Donini, & Schaerf 1993; Baader,
Buchheit, & Hollander 1996) is used to guarantee the con-
struction of a finite tableaux. A rule that is blocked, may not
be not be used in the construction of the tableaux.

Definition 8 Let " be a node of the tableau, and let x and y

be two individual names. Moreover, let T'(x) = {Lz : C'|
Lz:CeT}.

o z <, yif(z,y): ReT forsome R € R.

e y is blocked if there is an individual name x such that:
x <} yandT(y) C (), or x <, y and x is blocked.

Conflict Minimal Interpretations A price that we pay for
changing to the three-valued LP-semantics in order to handle
inconsistencies is a reduction in the set of entailed conclu-
sions, even if the knowledge and information is consistent.

Example 1 The set of propositions ¥ = {a : -C,a :
C U DY} does not entail a : D because there exists an in-
terpretation I = (O, ) for ¥ such that w(a : C) = {t, f}
andm(a: D) ={f}.

Priest (1989; 1991) points out that more useful conclusions
can be derived from the paraconsistent logic LP if we would
prefer conflict-minimal interpretations. The resulting logic
is LPm. Here we follow the same approach. First, we define
a conflict ordering on interpretations.

Definition 9 Let C be a set of atomic concepts, let N be
a set of individual names, and let Iy and Is be two three-
valued interpretations.

The interpretation I, contains less conflicts than the in-
terpretation Io, denoted by I1 <. I, iff:

{a:ClaeN,CeCm(a:C)={t f}} C
{a:ClaeN,CeC,m(a:C)={t, f}}
The following example gives an illustration of a conflict or-
dering for the set of propositions of Example 1.

Example 2 Let ¥ = {a: ~C,a : CUD} be a set of propo-
sitions and let I, I, I3, Iy and I5 be five interpretations
such that:



—
S

3

o mi(a: C)={f} ni(a: D) ={t},

e m3(a:C)={f} m3(a: D) ={t f}
o mi(a:C)={t,f}, mi(a: D)=t}
e mi(a:C)={t, f} mi(a: D) ={f}
* 5

:C)={t, f}, m5(a: D)= {t, f}.
Then Iy <. Iy, I <. I3, Iy <c 14, Iy <. Is, Iz <. I5,
I3 <. Isand Iy <. Is.

Using the conflict ordering, we define the conflict mini-
mal interpretations.

Definition 10 Let I be a three-valued interpretation and
let X2 be a set of propositions.

I, is a conflict minimal interpretation of ¥, denoted by
I =<, % iff I, E X and for no interpretation I such that
I, <. I, I ': Y holds.

In Example 2, I; is the only conflict-minimal interpretation.
The conflict-minimal entailment of a proposition by a set
of propositions can now be defined.

Definition 11 Ler 3 = (7 U.A) be a set of propositions and
let p be a proposition.

Y. entails conflict-minimally the proposition o, denoted by
Y <. o, iff for every interpretation I, if I =-_ X, then
Ik
The conflict-minimal interpretations in Example 2 entail the
conclusion a : D.

The subsumption relation The conflict-minimal interpre-
tations enables us to use an interpretation of the subsumption
relation based on the material implication.

e Foreveryo€ O,0€ n*(C)~ oro € n*(D)"

This semantics of the subsumption relation resolves a prob-
lem with the semantics of Patel-Schneider (1989). Under
Patel-Schneider’s semantics, {a : C,a : -C,C C D} en-
tails @ : D. This entailment is undesirable if information
about a : C'is contradictory.

The tableaux rules of the new interpretation are:

TCC D TCCD
Fa:C|Ta:D Ta:CFa:D

Arguments for conclusions supported by
conflict minimal interpretations

The conflict-minimal interpretations of a knowledge base
entail more useful conclusions. Unfortunately, focusing
on conclusions supported by conflict-minimal interpreta-
tions makes the reasoning process non-monotonic. Adding
the assertion a : —D to the set of propositions in Exam-
ple 2 eliminates interpretations I; and I3, which includes
the only conflict-minimal interpretation /;. The interpreta-
tions I5 and I, are the new conflict-minimal interpretations.
Unlike the original conflict-minimal interpretation /7, the
new conflict-minimal interpretations /> and I do not entail
a:D.

Deriving conclusions supported by the conflict-
minimal interpretations is problematic because of the

126

non-monotonicity. The modern way to deal with non-
monotonicity is by giving an argument supporting a
conclusion, and subsequently verifying whether there are
no counter-arguments (Dung 1995). Here we will follow
this argumentation-based approach.

We propose an approach for deriving arguments that uses
the semantic tableaux method for our paraconsistent logic
as a starting point. The approach is based on the observa-
tion that an interpretation satisfying the root of a semantic
tableaux will also satisfy one of the leafs. Now suppose
that the only leafs of a tableaux that are not closed; i.e., leaf
in which we do not have “Ta and Ta” or “Fa and Fa”
or “Ta and Fa”, are leafs in which “Ta and Fa” holds
for some proposition «.. So, in every open branch of the
tableaux, Ca holds for some proposition «. If we can as-
sume that there are no conflicts w.r.t. each proposition « in
the conflict-minimal interpretations, then we can also close
the open branches. The set of assumptions Cav, equivalent
to “To or Fa”, that we need to close the open branches, will
be used as the argument for the conclusion supported by the
semantic tableaux.

An advantage of the proposed approach is that there is
no need to consider arguments if a conclusion already holds
without considering conflict-minimal interpretations.

A branch that can be closed assuming that the conflict-
minimal interpretations contain no conflicts with respect to
the proposition «; i.e., assuming Cc, will be called a weakly
closed branch. We will call a tableaux weakly closed if
some branches are weakly closed and all other branches are
closed. If we can (weakly) close a tableaux for I' = {To |
o € (T UA)} U Ty, we consider the set of assumptions
Ca needed to weakly close the tableaux, to be the argument
supporting ¥ =<_ . Example 3 gives an illustration.

Example 3 Let Y = {a : =C,a : CUD} be a set of propo-
sitions. To verify whether a : D holds, we may construct the
following tableaux:
Ta:-C
Ta:CUD

IFa‘:C

raTe Ta:p
| |
®[a:C] X
Only the left branch is weakly closed in this tableau. We
assume that the assertion a : C will not be assigned CON-
FLICT in any conflict-minimal interpretation. That is, we
assume that C a : C holds.

In the following definition of an argument, we consider
arguments for Ty and Fep.

Definition 12 Let ¥ be set of propositions and let ¢ a

proposition. Moreover, let 7 be a (weakly) closed semantic

tableaux with rootT' = {To | 0 € L}ULp andL € {T,F}.

Finally, let {Cay,...,Cay} be the set of assumptions on

which the closures of weakly closed branches are based.
Then A = ({Coy,...,Cayr}, L) is an argument.



The next step is to verify whether the assumptions: Coy;
are valid. If one of the assumptions does not hold, we have
a counter-argument for our argument supporting ¥ =< .
To verify the correctness of an assumption, we add the as-
sumption to . Since an assumption Cc is equivalent to:
“Ta or Fa”, we can consider Taw and For separately. Exam-
ple 4 gives an illustration for the assumption C @ : C used
in Example 3.

Example4 Let ¥ = {a : =C,a : C U D} be a set of
propositions. To verify whether the assumption C a : C
holds in every conflict minimal interpretation, we may con-

struct a tableaux assuming T a : C' and a tableaux assuming
Fa:C:

Ta:-C Ta:-C
Ta:CUD Ta:CUD
Fa‘:C ]Fa‘:C

/\ ‘

Ta:C Ta:D X

|

X
The right branch of the first tableaux cannot be closed.
Therefore, the assumption T a : C' is valid, implying that
the assumption C a : C is also valid. Hence, there exists no
counter-argument.

Since the validity of assumptions must be verified with
respect to conflict-minimal interpretations, assumptions may
also be used in the counter-arguments. This implies that we
may have to verify whether there exists a counter-argument
for a counter-argument. Example 5 gives an illustration.

Example 5 Let ¥ = {a: ~C,a: CUD,a: -DUE,a:
—E} be a set of propositions. To verify whether a : D holds,
we may construct the following tableaux:
Ta:-C
Ta:CUD
Ta:-DUFE
Ta:-FE

1470 1D
F a‘: c >‘<

|
®[a:C]

This weakly closed tableaux implies the argument Ay =
({Ca : C}HTa : D). Next, we have to verify whether
there exists a counter-argument for Ag. To verify the ex-
istence of a counter-argument, we construct two tableaux,
one for T a : C and one for F a : C. As we can see below,
both tableaux are (weakly)-closed, and therefore form the
counter-argument Ay = ({Ca:D,Ca: E},Ca:C). We
say that the argument A attacks the argument Ay because
the former is a counter-argument of the latter.

127

Ta:-C Ta:-C
Ta:CUD Ta:CUD
Ta:-DUE Ta:-DUE

Ta:—-FE Ta:—-FE

/\ ]Fa‘:C

Ta:-D Ta:FE |
|
T G{T\a: D F a‘: E
>‘< F a‘: D Qla:E]
|
®[a:D]

The two tableaux forming the counter-argument Ay are
closed under the assumptions: Ca : D and C a : E. So, Aq
is a valid argument if there exists no valid counter-argument
for C a : D, and no counter-argument for C a : F.

Argument Ay is_equivalent to two other arguments,
namely: As = {Ca : C,Ca : E},Ca : D) and
A3 = {Ca: C,Ca: D},Ca : E). A proof of the
equivalence will be given in the next section, Proposition 1.

The arguments Ao and Asz implied by A, are both
counter-arguments of Ai. Moreover, Ay is a counter-
argument of As and As, and As and Az are counter-
arguments of each other. No other counter-arguments can be
identified in this example. Figure I show all the arguments
and the attack relation, denoted by the arrows, between the
arguments.

Figure 1: The attack relations between the arguments of Ex-
ample 5.

We will now formally define the arguments and the attack
relations that we can derive from the constructed semantic
tableaux.

Definition 13 Let ¥ be set of propositions and let
Ca =“Ta or Fa” be an assumption in the argument A.
Moreover, let J1 be a (weakly) closed semantic tableaux
with root Ty = {To | 0 € £} U Ta and let T be a
(weakly) closed semantic tableaux with root Ty = {To |
o € X} UFa. Finally, let {Cay,...,Cay} be the set of
assumptions on which the weakly closed branches in the
tableaux 91 or the tableaux 5 are based.

Then A’ = ({Cay,...,Cay}, Ca) is a counter-argument
of the argument A. We say that the argument A’ attacks the
argument A, denoted by: A’ — A.

The form of argumentation that we have here is called
assumption-based argumentation (ABA), which has been
developed since the end of the 1980’s (Bondarenko et al.



1997; Bondarenko, Toni, & Kowalski 1993; Dung, Kowal-
ski, & Toni 2009; Gaertner & Toni 2007; Roos 1988;
1992).

Example 5 shows that an argument can be counter-
argument of an argument and vice versa; e.g., arguments
Ay and As. This raises the question which arguments are
valid. Argumentation theory and especially the argumenta-
tion framework (AF) introduced by Dung (1995) provides
an answer.

Arguments are viewed in an argumentation framework as
atoms over which an attack relation is defined. Figure 1
shows the arguments and the attack relations between the ar-
guments forming the argumentation framework of Example
5. The formal specification of an argumentation framework
is given by the next definition.

Definition 14 An argumentation framework is a couple
AF = (o ,—) where & is a finite set of arguments and
—C o/ x & is an attack relation over the arguments.

For convenience, we extend the attack relation — to sets
of arguments.

Definition 15 Let A € of be an argument and let ', & C
o be two sets of arguments. We define:

o . — Aliffforsome B € .Y, B— A.
o A — iffforsome B € ¥, A— B.
o S — Piffforsome Be S andC € &, B — C.

Dung (1995) describes different argumentation semantics
for an argumentation framework in terms of sets of accept-
able arguments. These semantics are based on the idea of
selecting a coherent subset & of the set of arguments .2/ of
the argumentation framework AF = (&7, —). Such a set
of arguments & is called an argument extension. The ar-
guments of an argument extension support propositions that
give a coherent description of what might hold in the world.
Clearly, a basic requirement of an argument extension is be-
ing conflict-free; i.e., no argument in an argument extension
attacks another argument in the argument extension. Besides
being conflict-free, an argument extension should defend it-
self against attacking arguments by attacking the attacker.

Definition 16 Let AF = (of,—) be an argumentation
framework and let . C o be a set of arguments.

o 7 is conflict-free iff & -~ .7.

o ¥ defends an argument A € < iff for every argument
B € o such that B — A, . — B.

Not every conflict-free set of arguments that defends it-
self, is considered to be an argument extension. Several ad-
ditional requirements have been formulated by Dung (1995),
resulting in three different semantics: the stable, the pre-
ferred and the grounded semantics.

Definition 17 Let AF = (&/,—) be an argumentation
framework and let & C o .

e & is a stable extension iff & is conflict-free,and for every
argument A € (o \ &), & — A; i.e, & defends itself
against every possible attack by arguments in /\&.

e & is a preferred extension iff & is maximal (w.r.t. C) set of
arguments that (1) is conflict-free,and (2) & defends every
argument A € &.

e & is a grounded extension iff & is the minimal (w.r.t. C)
set of arguments that (1) is conflict-free, (2) defends every
argument A € &, and (3) contains all arguments in <f it
defends.

We are interested in stable semantics. We will show in the
next section that stable extensions correspond to conflict-
minimal interpretations. More specifically, we will prove
that a conclusion supported by an argument in every stable
extension, is entailed by every conflict-minimal interpreta-
tion, and vice versa.

Is it possible that a conclusion is supported by a different
argument in every stable extension? The answer is Yes, as is
illustrated by Example 6. In this example we have two argu-
ments supporting the conclusion a : F, namely Ay and A;.
As can be seen in Figure 2, there are two stable extensions
of the argumentation framework. One extension contains
the argument Ay and the other contains the argument A;.
So, in every extension there is an argument supporting the
conclusion a : E. Hence, ¥ =<, a: E.

Example 6 Let ¥ = {a : -C,a : C U D,a : =D,a :
CUE, a : DUE} be a set of propositions. The following two
tableaux imply the two arguments Ay = ({Ca : C},T a :
E)and Ay = ({Ca : D},T a : E), both supporting the
conclusion a : E:

Ta:-C Ta:-C
Ta:CUD Ta:CUD
Ta:—-D Ta:—-D
Ta:CUFE Ta:CUFE
Ta:DUFE Ta:DUEFE
\ \
Fa:C Fa:D

>..

/\
Ta:C Ta:F Ta:D Ta:FE
\ \ | |
®[a:C] X ®[a:D] X

The assumption C a : C'in argument A makes it possible
to determine a counter-argument Az = ({Ca : D},Ca :
C) using of the following two tableaux:

Ta:-C Ta:-C
Ta:CUD Ta:CUD
Ta:—-D Ta:-D
Ta:CUFE Ta:CUEFE
Ta:DUE Ta:DUE
\ \
Fa:D Fa:C

/\
Ta:C Ta:D X
\ \

X Ola:D]

According to Proposition 1, Ag implies the counter-
argument A3 = ({Ca: C},Ca: D) of Ay and As. Ay



is also a counter-argument of As. Figure 2 shows the attack
relations between the arguments Ag, A1, As and As.

A< A

I

A< A

Figure 2: The attack relations between the arguments of Ex-
ample 6.

Example 7 gives an illustration of the semantic interpre-
tations of Example 6. The example shows two conflict-
minimal interpretations. These conflict-minimal interpreta-
tions correspond with the two stable extensions. Interpreta-
tion I; entails a : E because I; must entail ¢ : C' LI E and
I does not entail @ : C, and interpretation /5 entails a : F
because I» must entail ¢ : D U E and I> does not entail
a:D.

Example7 Let ¥ = {a : -C,a : C U D,a : =D,a :
C U FE,a: DU E} be a set of propositions. There are two
conflict-minimal interpretations containing the following in-
terpretation functions:

e mi(a:C)={f}, m(a:D)={t, f}, m(a: E)={t}.
o mo(a:C)={t, f}, ma:D)={f}, mla: E)={t}.

In both interpretations a : E is entailed.

Correctness and completeness proofs

In this section we investigate whether the proposed ap-
proach is correct. That is whether a proposition supported
by an argument in every stable extension is entailed by ev-
ery conflict-minimal interpretation. Moreover, we investi-
gate whether the approach is complete. That is, whether a
proposition entailed by every conflict-minimal interpretation
is supported by an argument in every stable extension.

In the following theorem we will use the notion of “a
complete set of arguments relevant to ¢”. This set of argu-
ments 7 consists of all argument A supporting ¢, all possi-
ble counter-arguments, all possible counter arguments of the
counter-arguments, etc.

Definition 18 A complete set of arguments <f relevant to ¢
satisfies the following requirements:

o {A| Asupports p} C .
o If A € of and B is a counter-argument of A that we can
derive, then B € <«f and (B, A) € —.

Theorem 1 (correctness and completeness) Let X be a set
of propositions and let @ be a proposition. Moreover,
let o/ be a complete set of arguments relevant to o, let
—C o x & be the attack relation determined by <,
and let (/' ,—) be the argumentation framework. Finally,
let &, ...,&% be all stable extensions of the argumentation
Sframework (o, —).

Y. entails the proposition @ using the conflict-minimal
three-valued semantics; i.e., ¥ =< ¢, iff ¢ is supported

by an argument in every stable extension &; of (<, —).

129

To prove Theorem 1, we need the following lemmas. In
these lemmas we will use the following notations: We will
use I = Ta to denote thatt € I(a) (I =« ), and I = Fo
to denote that f € I(a). Moreover, we will use ¥ = Ta
and ¥ = Fa to denote that Ta and Fey, respectively, hold in
all three-valued interpretations of X.

The first lemma proves the correctness of the arguments
in .

Lemma 1 (correctness of arguments) Let Y be a set of
propositions and let ¢ be a proposition. Moreover, let 1L
be either the label T or F.

If a semantic tableaux with root T' = {To | 0 € ¥} U
{L} is weakly closed, and if {Cay, . ..,Cay} is the set of
weak closure assumptions implied by all the weakly closed
leafs of the tableaux, then

{Ca,...,Car}U{To |oc e X} E Ly

Proof  Suppose that {Cay,...,Cay}U{To |0 € ¥} £
L. Then there must be an interpretation I satisfying
{Cay,...,Cay} U{To | ¢ € X} but not Ly. So,
I E {Cay,...,Ca,} U{To | 0 € B} U {Lp}. We
can create a tableaux for {Cay,...,Car} U{To | o €
¥} U {LLy} by adding the assumptions {Ca, ..., Cay}
to every node in the original tableaux with root I'. Let
I'* = {Cay,...,Cat} U{To | 0 € B} U {Ly} be the
root of the resulting tableaux. Since I |= I'*, there must
be a leaf A* of the new tableaux and I = A*. The cor-
responding leaf A in the original tableaux with root I is
either strongly or weakly closed.

— If A is strongly closed, then so is A* and we have a
contradiction.

— If A is weakly closed, then the weak closure implies
one of the assumptions Co; because {Ta;, Foy;} C A.
Therefore, {Ta;,Fa;} € A*. Since {Ta;,Fa;} im-
plies Cay; and since Ca; € A*, I [~ A* The latter
contradicts with I = A*.

Hence, the lemma holds. O

The above lemma implies that the assumptions of an argu-
ment A = ({Cay,...,Cay}, L) together with ¥ entail the
conclusion of A.

The next lemma proves the completeness of the set of ar-
guments o7 .

Lemma 2 (completeness of arguments) Ler X be a set of
propositions and let @ be a proposition. Moreover, let L be
either the label T or F.

If {Cay,...,Cay} is a set of atomic assumptions with
a; = a; : Cy, a; € Nand C; € Cy, and if

{Cay,...,Car}U{To |c €T} ELp

then there is a semantic tableaux with root I' = {To | 0 €
Y} U {LLy}, and the tableaux is weakly closed.

Proof LetT' = {To | ¢ € ¥} U {L¢p} be the root of a
semantic tableaux.



Suppose that the tableaux is nor weakly closed. Then
there is an open leaf A. We can create a tableaux for
{Cay,...,Cay} U{To | 0 € £} U {Ly} by adding the
assumptions {Cay, ..., Cay} to every node in the origi-
nal tableaux with root I'. Let I'* = {Cay,...,Cay} U
{To | ¢ € X} U {Lp} be the root of the resulting
tableaux. Since {Cay,...,Car}U{To | 0 € I} = Ly,
there exists no interpretation I such that I |= I'*. There-
fore, there exists no interpretation I such that I |= A*.
Since we considered only atomic assumptions Ca;, we
cannot extend the tableaux by rewriting a proposition in
A*. Therefore, A* must be strongly closed and for some
a;i, {Ta;,Fa; } € A*. This implies that {Tay;, Fa; } C A.
Hence, A is weakly closed under the assumption Coy;.
Contradiction.

Hence, the lemma holds. O

The above lemma implies that we can find an argument
A= ({Cay,...,Ca;},Ly) for any set of assumption that,
together with X, entails a conclusion L.

The following lemma proves that for every conflict Cy
entailed by a conflict-minimal interpretation, we can find an
argument supporting Cy of which the assumptions are en-
tailed by the conflict-minimal interpretation.

Lemma 3 Let X be a set of propositions and let I = (O, )
be a conflict-minimal interpretation of ¥. Moreover, let p be
a proposition.

If I &= Cyp holds, then there is an argument A
({Cay,...,Car},Cy) supporting Cyp and for every as-
sumption Coy;, I |= Cay; holds.

Proof Let I be a conflict-minimal interpretation of 3.

Suppose that I = Cy holds. We can construct a tableaux
for:

I' = {To|oceX}u{Cp}uU

{Ta:C|CeCna:C)+£{t f}}

Suppose that this tableaux is not strongly closed. Then
there is an interpretation I’ = (O, n’) satisfying the
root I'. Clearly, I’ <. I because for every a : C' with
CeC,ifm(a:C)#A{t, [}, thenw'(a:C) #{t, f}.
Since [ is a conflict-minimal interpretation and since
I' = Cy, we have a contradiction.
Hence, the tableaux is closed.
Since the tableaux with root I' is closed, we can identify
all assertions in {Ca : C | C € C,w(a : C) # {t, f}}
that are not used to close a leaf of the tableaux. These
assertions C a : C play no role in the construction of the
tableaux and can therefore be removed from every node of
the tableaux. The result is still a valid and closed semantic
tableaux with a new root I, The assertions in {C a : C' |
C € Cym(a : C) # {t,f}} N TV must all be used to
strongly close leafs of the tableaux I, and also of T'. A
leaf that is strongly closed because of C a : C can be
closed weakly under the assumption C a : C. So, we
may remove the remaining assertions C a : C from the

130

root I''. The result is still a valid semantic tableaux with
root IV = {To | o0 € ¥} U {C¢p}. This tableaux with
root I'”" is weakly closed, and by the construction of the
tableaux, I |= C a : C holds for every assumption C a :
C implied by a weak closure. Hence, we have constructed
an argument A = ({Ca,...,Cay}, Cy) supporting Ce
and for every assumption Cay;, I = Ca; holds.

Hence, the lemma holds. O

For the next lemma we need the following definition of a
set of assumptions that is allowed by an extension.

Definition 19 Lez ) be the set of all assumptions Ca in the
arguments <f. For any extension & C <,

Q&) = {Ca € Q| no argument A € & supports Ca}

is the set of assumptions allowed by the extension &.

The last lemma proves that for every conflict-minimal in-
terpretation there is a corresponding stable extension.

Lemma 4 Let ¥ be a set of propositions and let ¢ be a
proposition. Moreover, let </ be the complete set of argu-
ments relevant to o, let —C o/ X < be the attack relation
determined by </, and let (&/,—) be the argumentation
framework.

For every conflict-minimal interpretation I of X, there is
a stable extension & of (&, —) such that I = Q(&).

Proof Let I be a conflict-minimal interpretation and let
&= {({@alv v 760[]6}780) S:4 | I ): {@ala v 7@ak}}

be the set of arguments A = ({Cay, ..., Cay}, ) of which
the assumptions are entailed by 1.

Suppose & is not conflict-free. Then there is an argument
B € & such that B — A with A € &. So, B sup-
ports Ctp and Cv) is an assumption of A. Since I entails
the assumptions of A, I (£ C. Since I is a conflict-
minimal interpretation of X entailing the assumptions of
B, according to Lemma 1, I = C¢. Contradiction.

Hence, & is a conflict-free set of argument.

Suppose that there exists an argument A € & such that
A ¢ &. Then, for some assumption Cax of A, I [~ Ca.
So, I = Ca, and according to Lemma 3, there is an argu-
ment B € & supporting Ca.. Therefore, B — A.

Hence, & attacks every argument A € «/\&. Since & is
also conflict-free, & is a stable extension of (&7, —).

Suppose that I [~ Q(&). Then there is a Ca € Q(&) and
I = Ca. According to Lemma 3, there is an argument

A = ({Cay,...,Cay}, Ca)and I = {Cay,...,Cay}.
So, A € & and therefore, Ca & Q(&). Contradiction.

Hence, I = Q(&). O

Using the results of the above lemmas, we can now prove
the theorem.



Proof of Theorem 1
(=) LetX ):Sc ©.

Suppose that there is stable extension &; that does not
contain an argument for ¢. Then according to Lemma
2, {To | 0 € Z}UQ(&) ¥~ Te. So, there exists an
interpretation I such that I |= {To | 0 € X} U Q(&)
but I £ T¢. There must also exists a conflict-minimal
interpretation I’ of ¥ and I’ <. I. Since the assumptions
Ca: C € Q&) all state that there is no conflict concern-
ing the assertion a : C, I’ = Q(&;) must hold. So, I’ is a
conflict-minimal interpretation of X and I’ = Q(&;) but
according to Lemma 2, I’ & T. This implies ¥ =<, .
Contradiction.

Hence, every stable extension &; contains an argument for
®.

(<) Let ¢ be supported by an argument in every stable ex-
tension &.

Suppose that X F~<_ . Then there is a conflict-minimal
interpretation I of X and I [~ ¢. Since I is a conflict-
minimal interpretation of ¥, according to Lemma 4, there
is a stable extension &; and I = Q(&;). Since &; con-
tains an argument A supporting , the assumptions of A
must be a subset of (&;), and therefore I satisfies these
assumptions. Then, according to Lemma 1, I |= . Con-
tradiction.

Hence, ¥ =<, ¢. O

In Example 5 in the previous section, we saw that one
counter-argument implies multiple counter-arguments. The
following proposition formalizes this observation.

Proposition 1 Let Ag = ({@al, . Cay}, Cay).
Then Az = ({(CO[(), ey (COéi_l, (COéi_;,_l, ey (COék}, CO&Z)
is an argument for every 1 < i < k.

Proof The argument Ay is the result of two tableaux, one
for Ty and one for Fag. Then, according to Lemma 1,

{Cay,...,Cay} U{To |0 € X} | Cay
where X the set of available propositions. This implies that
{Cay,...,Ca;_1,Ca;s1,Cat} U{To | 0 € B} = Cay

So, {Cap,...,Ca;_1,Ca;s1,Cay;}U{To | o € X} entails
both Tay; and Fey;. Then, according to Lemma 2,

Ai = ({an,.. .7@ak},(Cai)

is an argument for Cay;. |

. ,(Cai,l, (Calqu, ..

Related Works

Reasoning in the presences of inconsistent information has
been addressed using different approaches. Rescher (1964)
proposed to focus on maximal consistent subsets of an in-
consistent knowledge-base. This proposal was further de-
veloped by (Brewka 1989; Huang, van Harmelen, & ten
Teije 2005; Poole 1988; Roos 1988; 1992). Brewka and

131

Roos focus on preferred maximal consistent subsets of the
knowledge-base while Poole and Huang et al. consider a
single consistent subset of the knowledge-base supporting
a conclusion. Roos (1992) defines a preferential seman-
tics (Kraus, Lehmann, & Magidor 1990; Makinson 1994;
Shoham 1987) entailing the conclusions that are entailed by
every preferred maximal consistent subsets, and provides an
assumption-based argumentation system capable of identi-
fying the entailed conclusions.

Paraconsistent logics form another approach to handle in-
consistent knowledge bases. Paraconsistent logics have a
long history starting with Aristotle. From the beginning of
the twentieth century, paraconsistent logics were developed
by Orlov (1929), Asenjo (1966), da Costa (1974), Belnap
(1977), Priest (1989) and others. For a survey of several
paraconsistent logics, see for instance (Middelburg 2011).

This paper uses the semantics of the paraconsistent logic
LP (Priest 1989; 1991) as starting point. Belnap’s four-
values semantics (1977) differs from the LP semantics in
allowing the empty set of truth-values. Belnap’s semantics
was adapted to description logics by Patel-Schneider (1989).
Ma et al. (2006; 2007; 2008; 2009) extend Patel-Schneider’s
work to more expressive description logics, and propose two
new interpretations for the subsumption relation. Qiao and
Roos (2011) propose another interpretation.

A proof theory based on the semantic tableaux method
was first introduced by Beth (1955). The semantic tableaux
methods have subsequently been developed for many log-
ics. For an overview of several semantic tableaux methods,
see (Héhnle 2001). Bloesch (1993) developed a semantic
tableaux method for the paraconsistent logics LP and Bel-
nap’s 4-valued logic. This semantic tableaux method has
been used as a starting point in this paper.

Argumentation theory has its roots in logic and rhetoric.
It dates back to Greek philosophers such as Aristotle. Mod-
ern argumentation theory started with the work of Toulmin
(1958). In Artificial Intelligence, the use of argumentation
was promoted by authors such as Pollock (1987), Simari
and Loui (1992), and others. Dung (1995) introduced the
argumentation framework (AF) in which he abstracts from
the structure of the argument and the way the argument is
derived. In Dung’s argumentation framework, arguments
are represented by atoms over which an attack relation is
defined. The argumentation framework is used to define
an argumentation semantics in terms of sets of conflict-
free arguments that defend themselves against attacking ar-
guments. Dung defines three semantics for argumentation
frameworks: the grounded, the stable and the preferred se-
mantics. Other authors have proposed additional semantics
to overcome some limitations of these three semantics. For
an overview, see (Bench-Capon & Dunne 2007).

This paper uses a special type argumentation sys-
tem called assumption-based argumentation (ABA).
Assumption-based argumentation has been developed
since the end of the 1980’s (Bondarenko et al. 1997,
Bondarenko, Toni, & Kowalski 1993; Gaertner & Toni 2007,
Roos 1988; 1992). Dung et al. (2009) formalized
assumption-based argumentation in terms of an argumenta-
tion framework.



Conclusions

This paper presented a three-valued semantics for ALC,
which is based on semantics of the paraconsistent logic
LP. An assumption-based argumentation system for identi-
fying conclusions supported by conflict-minimal interpreta-
tions was subsequently described. The assumption-based
arguments are derived from open branches of a semantic
tableaux. The assumptions close open branches by assuming
that some proposition will not be assigned the truth-value
CONFLICT. No assumptions are needed if conclusions hold
is all three-valued interpretations. The described approach
has also been implemented.

In future work we intend to extend the approach to the de-
scription logic SROZ Q. Moreover, we wish to investigate
the computational efficiency of our approach in handling in-
consistencies.

References

Asenjo, F. 1966. A calculus of antinomies. Notre Dame Journal of
Formal Logic 7:103-105.

Baader, F.; Buchheit, M.; and Hollander, B. 1996. Cardinality
restrictions on concepts. Artificial Intelligence 88(1-2):195-213.

Belnap, N. D. 1977. A useful four-valued logic. In Dunn, J. M., and
Epstein, G., eds., Modern Uses of Multiple-Valued Logic. Reidel,
Dordrecht. 8-37.

Bench-Capon, T., and Dunne, P. E. 2007. Argumentation in artifi-
cial intelligence. Artificial Intelligence 171:619-641.

Beth, E. W. 1955. Semantic entailment and formal derivability.
Noord-Hollandsche Uitg. Mij.

Bloesch, A. 1993. A tableau style proof system for two paraconsis-
tent logics. Notre Dame Journal of Formal Logic 34(2):295-301.

Bondarenko, A.; Dung, P.; Kowalski, R.; and Toni, F. 1997. An ab-
stract, argumentation-theoretic approach to default reasoning. Ar-
tificial Intelligence 93(1-2):63-101.

Bondarenko, A.; Toni, F.; and Kowalski, R. 1993. An assumption-
based framework for nonmonotonic reasoning. In Proc. 2nd In-
ternational Workshop on Logic Programming and Non-monotonic
Reasoning. MIT Press.

Brewka, G. 1989. Preferred subtheories: an extended logical
framework for default reasoning. In International Joined Confer-
ence on Artificial Intelligence, 1043-1048.

Buchheit, M.; Donini, F. M.; and Schaerf, A. 1993. Decidable rea-
soning in terminological knowledge representation systems. Jour-
nal of Artificial Intelligence Research 1:109-138.

da Costa, N. 1974. On the theory of inconsistent formal systems.
Notre Dame Journal of Formal Logic 15:497-510.

Dung, P. M.; Kowalski, R.; and Toni, F. 2009. Assumption-based
argumentation. In Rahwan, 1., and Simari, G., eds., Argumentation
in Artificial Intelligence. Springer. 1-20.

Dung, P. M. 1995. On the acceptability of arguments and its fun-
damental role in nonmonotonic reasoning, logic programming and
n-person games. Artificial Intelligence 77:321-357.

Gaertner, D., and Toni, F. 2007. Computing arguments and at-

tacks in assumption-based argumentation. [EEE Intelligent Sys-
tems 22(6):24-33.

Hahnle, R. 2001. Tableaux and Related Methods, volume 1. Else-
vier and MIT Press. chapter 3, 100-178.

Huang, Z.; van Harmelen, F.; and ten Teije, A. 2005. Reasoning
with inconsistent ontologies. In IJCAI, 454-459.

132

Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Nonmonotonic
reasoning, preferential models and cumulative logics. Artificial In-
telligence 44:167-207.

Ma, Y., and Hitzler, P. 2009. Paraconsistent reasoning for OWL 2.
In Polleres, A., and Swift, T., eds., Web Reasoning and Rule Sys-
tems, volume 5837 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg. 197-211.

Ma, Y.; Hitzler, P.; and Lin, Z. 2007. Algorithms for paraconsistent
reasoning with OWL. In Franconi, E.; Kifer, M.; and May, W., eds.,
The Semantic Web: Research and Applications, volume 4519 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg.
399-413.

Ma, Y.; Hitzler, P.; and Lin, Z. 2008. Paraconsistent reasoning for
expressive and tractable description logics. In Baader, F.; Lutz, C.;
and Motik, B., eds., Proceedings of the 21st International Work-
shop on Description Logics, Dresden, Germany, May 13-16, 2008,
volume 353 of CEUR Workshop Proceedings. CEUR-WS.org.

Ma, Y.; Lin, Z.; and Lin, Z. 2006. Inferring with inconsistent
OWL DL ontology: A multi-valued logic approach. In Grust, T.;
Hopfner, H.; Illarramendi, A.; Jablonski, S.; Mesiti, M.; Miiller,
S.; Patranjan, P.-L.; Sattler, K.-U.; Spiliopoulou, M.; and Wijsen,
J., eds., Current Trends in Database Technology - EDBT 2006, vol-
ume 4254 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg. 535-553.

Makinson, D. 1994. Nonmonotonic reasoning and uncertain rea-
soning. In Gabbay, D., ed., Handbook of Logic in Artificial In-
telligence and Logic Programming, volume 3. Oxford University
Press. 35-110.

Middelburg, C. A. 2011. A survey of paraconsistent logics. CoRR
abs/1103.4324.

Patel-Schneider, P. F. 1989. A four-valued semantics for termino-
logical logics. Artificial Intelligence 38(3):319-351.

Pollock, J. L.
11:481-518.

Poole, D. 1988. A logical framework for default reasoning. Artifi-
cial Intelligence 36:27-47.

Priest, G. 1989. Reasoning about truth. Artificial Intelligence
39(2):231-244.

Priest, G. 1991. Minimally inconsistent LP. Studia Logica 50:321—
331.

Qiao, W, and Roos, N. 2011. Four-valued description logic for
paraconsistent reasoning. In BeNelux Conference on Artificial In-
telligence (BNAIC).

Rescher, N. 1964. Hypothetical Reasoning. Studies in Logic.
Amsterdam: North-Holland Publishing Co.

Roos, N. 1988. A preference logic for non-monotonic reasoning.
Technical Report 88-94, Delft University of Technology, Faculty
of Technical Mathematics and Informatics. ISSN 0922-5641.
Roos, N. 1992. A logic for reasoning with inconsistent knowledge.
Artificial Intelligence 57:69-103.

Schmidt-Schauf3, M., and Smolka, G. 1991. Attributive concept
descriptions with complements. Artificial Intelligence 48(1):1-26.
Shoham, Y. 1987. A semantical approach to non-monotonic log-
ics. In Proceedings of the Tenth International Joint Conference on
Artificial Intelligence, 388—392.

Simari, G. R., and Loui, R. P. 1992. A mathematical treatment of
defeasible reasoning and its implementation. Artificial Intelligence
53:125-157.

Toulmin, S. 1958. The uses of argument. Cambridge University
Press.

1987. Defeasible reasoning. Cognitive Science



Some Thoughts about Benchmarks for NMR*

Daniel Le Berre
CNRS - Université d’ Artois - France

Abstract

The NMR community would like to build a repository
of benchmarks to push forward the design of systems
implementing NMR as it has been the case for many
other areas in Al There are a number of lessons which
can be learned from the experience of other communi-
ties. Here are a few thoughts about the requirements and
choices to make before building such a repository.

What to expect

Over the last two decades, a huge number of communities
have built repositories of benchmarks, mainly with the idea
to evaluate running systems on a common set of problems.
The oldest common input format for Al benchmarks is prob-
ably STRIPS (Fikes and Nilsson 1971), for planning sys-
tems. One of the oldest and most compelling one for rea-
soning engines is TPTP (“Thousands of Problems for The-
orem Provers”) (Sutcliffe 2009), the benchmarks library for
First Order and Higher Order theorem provers. Such reposi-
tory was built in 1993 and evolved since then as a compan-
ion to the CADE ATP System Competition (CASC) (Sut-
cliffe and Suttner 2006). There is an interplay between TPTP
and CASC: TPTP is used to select benchmarks for CASC,
benchmarks submitted to CASC are added eventually to
TPTP and the solvers submitted to CASC are run on all
TPTP benchmarks, and used to evaluate the practical com-
plexity of those benchmarks. As such, over the years, bench-
marks are ranked from hard to medium to easy with the im-
provements of the solvers. This is exactly the kind of virtu-
ous circle one would like to see in each community. In the
NMR community, a similar library exists with Asparagus',
which feeds the ASP competition (Gebser et al. 2007).
There are however reasons which prevent it. Take for
instance the SAT community. Its common input format is
based on the Second Dimacs Challenge input format (John-
son and Trick 1996), one of the first SAT competitions.
The benchmarks used for that competitive event has been
a de facto standard for evaluating SAT solvers in practice.
A system similar to TPTP was built by Laurent Simon in
2000: SatEx (Simon and Chatalic 2001). However, the num-
ber of SAT solvers available in the SAT community became

*This work has been supported in part by ANR Tuples.
1http: //asparagus.cs.uni-potsdam.de

133

quickly much larger than the number of ATP systems, be-
cause of its increasing practical interest in hardware verifi-
cation, and because it is much easier to develop a SAT solver
than a First Order theorem solver. As such, it became quickly
impossible to run all SAT solvers on all available bench-
marks. A tradeoff was to organize a yearly SAT competi-
tive event since 2002 (Simon, Le Berre, and Hirsch 2005),
to give a snapshot of the performances of recent solvers on
a selection of benchmarks.

Modeling versus Benchmarking

One of the first question which arises when creating a bench-
mark format is to be clear about the target of the format.
There are mainly two choices: one is to please the end user,
by providing a format which simplifies modeling problems
in that format, the other one is to please the solver designers,
to make sure that they integrate a way to read that format.
High level input format such as PDDL, TPTP, ASP, SMT
and Minizinc (CSP) are clearly modeling oriented. Formats
designed by the SAT community (SAT, MAXSAT, PBO,
QBF, MUS ...) are clearly solver oriented.

There are advantages and inconveniences for both ap-
proaches. The user oriented format favors the submissions
of problems by the community, because the input format is
human understandable and easy to modify. However, such
format may require a huge effort from the solver designer to
adapt his solver to such format. This happened for instance
for the SMT LIB 2 format, which was quite different from
the original SMT LIB format, so it took time to be adopted
by the SMT solver designers. Another issue with user ori-
ented formats are the potential high learning curve to under-
stand all its subtleties. For instance, it took several rounds
in the Mancoosi International Solver Competition (MiSC)
(Abate and Treinen 2011) to see all solvers answering cor-
rectly to the requests because the input format was assuming
some domain knowledge not obvious for a solver designer.

The main advantage of the solver oriented format is to
be easy to integrate into any exiting system. It is the way
to go if the community wants to evaluate existing systems
on a common basis. It was the idea behind the XCSP for-
mat for CSP solvers for instance (Lecoutre, Roussel, and
van Dongen 2010). The major drawback of such approach
is to force the end user to rely on an intermediate represen-
tation to generate those benchmarks, and to perform some



tasks by hand which may be automated using a higher level
input format. For instance, in the case of SAT, it is required
to translate the original problem into propositional variables
and clauses. Many users are not aware of basic principles
and advanced techniques to perform those tasks efficiently.

One way to please both part is to provide a end-user input
format, to favor the contribution of problems, and a solver
input format to please the solver designers, with a default
translator from the first one to the second one. This is the
spirit of the Minizinc and Flatzinc formats in the CSP com-
munity (Stuckey, Becket, and Fischer 2010).

Data versus Protocol

Another question raised when designing an input format is
whether the benchmark represents data or whether it rep-
resents a full protocol. The problem is orthogonal to the ab-
straction level of the input format: it is directed by the nature
of the problems to be solved.

In many cases, benchmarks represent data, in one or mul-
tiple files (e.g. rules and facts, domain and instance), and
the system answers to a single query. There are other cases
in which some interaction with the system is required: the
SMT LIB 2 format (Barrett, Stump, and Tinelli 2010) for in-
stance defines a protocol to communicate with the system to
solve problems incrementally, which means that the system
in that case is stateful. The Aiger format used in the hard-
ware model checking competition (Biere and Jussila 2007)
also provides some incremental capabilities, which corre-
sponds to the unrolling of the Bounded Model Checking ap-
proach.

The protocol point of view is great for playing with toy
examples, thus good for education. It also allows to interface
with the solver without worrying about the details. From a
system designer, it requires generally more effort to main-
tain the state of the system between queries. From an effi-
ciency point of view, an API is usually preferred in practice
for interacting with a system.

Checkable queries

Once a common benchmark format is setup, it is important
to make sure that the benchmarks are correctly read by the
systems, and that the queries to the systems provide answers
checkable by a third party tool. In the case of SAT for in-
stance, while the decision problem answer is yes or no, in
practice, the SAT solvers have always been asked to pro-
vide a certificate (a model) in case of satisfiability. Such
certificate can be checked by an independent tool: if it sat-
isfies all clauses, then the answer is checked, else the an-
swer is invalid. If two solvers disagreed on the satisfiability
of a benchmark, checking the certificate of the yes answer
allowed to spot incorrect solvers when that certificate was
correct: the no answer is clearly incorrect in that case. Noth-
ing could be decided if the certificate was invalid: there are
many reasons why a SAT solvers could answer SAT and pro-
vide an incorrect certificate (complex pre-processing and in-
processing being the most probable case). There has been
since 2005 an effort to also provide checkable no answers to
SAT solvers (Van Gelder 2012), but very few solver design-

134

ers implemented it until a simpler proof certificate requiring
to add only a few lines of code in the solver was designed in
2013 (Heule, Jr., and Wetzler 2013). As such, SAT solvers
answers can now be checked both in case of satisfiability and
unsatisfiability.

Note that it is not always possible to check the system
answer. It happens for instance for QBF solvers, for which
a certificate would be a winning strategy for the existential
player. During the QBF evaluations, many QBF solvers dis-
agreed on the status of the benchmarks. As such, several ap-
proaches were taken to sort out the situation: majority vot-
ing, let the solvers play against each other (Narizzano et al.
2009), fuzz testing and delta debugging (Brummayer, Lons-
ing, and Biere 2010). It also happens when computing an op-
timal solutions in Pseudo-Boolean Optimization or MaxSat
competitions: in that case, one just check the value of the
certificate returned by the solver, and that no other solver
found a better solution. A better but resource consuming ap-
proach would be to create a new benchmark to check that
there is no better solution. In the same spirit, when tools for
computing Minimal Unsatisfiable Subformula are used, it is
very demanding to check for each answer that both the set
of constraints is unsatisfiable and that removing any clause
makes the set of constraints satisfiable. In the MUS track of
the SAT competition 2011, only the first test was performed,
offline.

It is important in the first place to provide both to the
end users and the solver designers some sample benchmarks
with their expected answer, or a basic solver able to solve
small benchmarks. This is especially true if the input format
is user oriented. For instance, the MISC competition intro-
duced new features in the input format without providing
sample benchmarks with those new features. Those features
were not correctly implemented by all systems, thus the sys-
tems answered differently on some of the benchmarks, mak-
ing comparisons between the systems hardly possible.

Chicken and egg problem

It is unlikely that people start providing benchmarks in one
input format without having a system to test some reduced
scale benchmarks. It is also unlikely that solver designers
start supporting an input format without having some sam-
ple benchmarks to play with. That’s the reason why a com-
mon input format is a community effort and it relies gener-
ally on a small group of people who are concerned by the
subject. One can take as example the attempt during the
SAT 2005 competition to push forward a non CNF input
format for SAT?: a common input format was defined, al-
lowing to define arbitrary gates, and a few sample instances
were provided as part of a specific track of the competition.
No submission of benchmarks nor systems were received
for such track. Another attempt, using a more specific non
clausal format (And Inverter Graph, AIG), but well suited
for model checking, received more interest in 2007, and be-
came a competition on its own for hardware model checking
(Biere and Jussila 2007). The main difference between the
two attempts was that a small community agreed to support

ttp://www.satcompetition.org/2005/



AIG, some translators and checkers were available (AIGER
tool suite*) and many model checking benchmarks were pro-
vided in such format.

The input format of a given system may become a de
facto common input format. In the case of argumentation
frameworks for instance, several systems based on different
technologies have been designed by the same group, using a
common input format*. Such input format could be a good
starting point for creating a common argumentation system
input framework.

If it is not possible to provide both some sample bench-
marks and a basic solver, it is important to provide a way to
check the answers. The minimum requirement here would
be to provide the expected answer for each sample bench-
mark in a text file. A better approach would be to provide
a way to check the answer thanks to a certificate using an
independent checker software. Note that in such a case, a
common output (certificate) format must also be defined.

Reusing benchmarks from other communities

Reusing benchmarks from other communities is certainly an
easy way to start collecting benchmarks. Most benchmarks
libraries contain well-known academic benchmarks (includ-
ing randomly generated ones), benchmarks based on other
community benchmarks (SAT has many benchmarks mod-
eling properties to check on circuit benchmarks from IS-
CAS for instance), and finally dedicated benchmarks. The
latter are the harder to find at the beginning. As such, reusing
benchmarks from other communities is often the only way
to retrieve non-academic benchmarks.

Note that there are some side effects in reusing bench-
marks from other communities. The first one is to pay atten-
tion when evaluating systems on the origin of those systems.
For instance, there are two optimization extensions to SAT
for which benchmarks are available: MAXSAT and Pseudo
Boolean Optimization. The PBO benchmarks appeared be-
fore the MAXSAT ones, and some benchmarks from PBO
have been expressed as MAXSAT problems (optimization
problems with one linear objective function and a set of
clauses can be equally expressed in both frameworks). Some
solvers designed to solve PBO problems have been extended
to solve MAXSAT problems (e.g. Sat4j). Those solvers usu-
ally perform very well on the benchmarks originating from
PBO. In the same spirit, some of the Pseudo Boolean bench-
marks are coming from MIPLIB?, a repository of Mixed In-
teger Linear Programming benchmarks used by MILP op-
timizers developers since 1992 to evaluate their systems. It
is no surprise if tools such as CPLEX performs very well
on those benchmarks when compared to “classical” Pseudo-
Boolean solvers.

In the case of NMR, it is often the case that the systems
have to deal with inconsistency. As such, it is tempting for
instance to use unsatisfiable SAT benchmarks to evaluate
NMR systems. But those systems usually require additional

http://fmv. jku.at/aiger/

*nttp://www.dbai.tuwien.ac.at/research/
project/argumentation/

‘http://miplib.zib.de

135

informations (e.g. a stratification of the clauses, a confidence
for each clause, etc) and some arbitrary choices would have
to be done to fit in the context (i.e. creating individual sat-
isfiable sub-CNF for each agent in a multi-agent context).
The additional information may be generated using a spe-
cific distribution of values (e.g. randomly and uniformly as-
signing the clauses to a given number of strata), or arbitrarily
(e.g. make strata from sets of consecutive clauses, of identi-
cal or random sizes). Those benchmarks, despite not being
related at all with a real NMR problem, do have the benefit
to allow different systems to be compared on the same basis.

It is also interesting to note that there exists a format in the
SAT community which is very close to stratified knowledge
bases: Group oriented CNF, introduced in the MUS special
track in the SAT 2011 competition ®. The benchmarks in
that format are coming from circuit designs (Nadel 2010;
Ryvchin and Strichman 2011), where each group (stratum)
of clauses correspond to a subcircuit, a specific group con-
tains hard clauses which correspond to integrity constraints
(i.e. knowledge) while the remaining groups are soft clauses
which can be enabled or disabled altogether (i.e. beliefs).
The benchmarks are not satisfiable if all groups of clauses
are enabled. There exists 197 group oriented CNF bench-
marks available from the SAT 2011 competition web site,
all corresponding to “real” designs. They could be a good
starting point to test systems requiring stratified knowledge
bases.

The bias of benchmarking systems

It should also be clear that the benchmarks used to evaluate
the systems drive in some sense which systems are going to
be developed or improved by the community.

Anyone looking at the winners of the various SAT com-
petitions” can check that solvers behave differently on ran-
domly generated benchmarks and benchmarks coming from
real applications or hard combinatorial problems. This is
true for any community. Randomly generated benchmarks
are interesting for two reasons: they are easy to generate and
can generally be formally defined. Combinatorial bench-
marks are important because they usually force the system to
exhibit worst case behavior. Application benchmarks are in-
teresting because they provide some hints about the practical
complexity of the problem. Note that if application bench-
marks in SAT tend to be “easier” in practice than say com-
binatorial benchmarks, it is only the case because people
worked hard to find the right heuristics, data structures, etc.
to manage those problems.

For that reason, one should always be very careful when
looking at any competitive event results, or when evalu-
ating his system on a given set of benchmarks. It took
some time for the MAXSAT competition® to obtain bench-
marks coming from real applications. Before 2008, SAT-
based MAXSAT solvers performed relatively poorly on the
problems available for the competition (mainly randomly

*http://www.satcompetition.org/2011/rules.
pdf

"http://www.satcompetition.org/

$http://maxsat.ia.udl.cat/



generated, based on academic problems). Once application
benchmarks became available, SAT-based MAXSAT solvers
performed much better on those problems, especially core-
guided MAXSAT solvers. So the benchmarks used to eval-
uate the systems eventually influence the development of
those systems.

There are also subtle differences between benchmarks
coming from real applications. The SAT community has
been driven by Bounded Model Checking benchmarks from
the end of the 90’s to mid 2000’s. As such, the solvers de-
signed during that period were especially relevant to that
application: the winners of the SAT competition could be
directly integrated into model checkers. With an increase of
the diversity of its applications, the available benchmarks for
SAT are now quite different in structure from those BMC
benchmarks. Which means that the best performing SAT
solver during the SAT competition may not be the best solver
for the particular case of BMC.

Benchmarks libraries

Benchmarks are usually made available to the community
through a library: CSPLIB, SATLIB, PBLIB, SMTLIB, etc.
However, it is an issue to manage those libraries in the long
term. A good example is SATLIB (Hoos and Sttzle 2000). It
was designed in 1999 to host the benchmarks made available
to the SAT community. It did a good job at collecting the
benchmarks generated during the 90’s. However, the huge
increase in number of benchmarks (and their size!) in early
2000 made it hard to catch up after 2001, so the SAT com-
petition web sites have been providing the benchmarks used
in the competitions since then. The situation is not ideal be-
cause there is no longer now in the SAT community a cen-
tral place where the benchmarks can be accessed. Some of
the benchmarks, which were made available to the research
community by IBM (Zarpas 2006), can no longer be dis-
tributed. It is thus very difficult to reproduce some exper-
iments, to evaluate the efficiency of new solvers on those
benchmarks. Having a community driven central repository
may help to avoid such situation.

The CSP library ° succeeded in maintaining a library of
problems for 15 years. Note that those problems are not in
a uniform format, but rather described in their own format.
The library is much about problems than benchmarks.

The library of benchmarks one community would like to
mimic today are probably TPTP!® or MIPLIB. Those li-
braries have been available for two decades now and are the
central sources of benchmarks for their respective commu-
nity. The benchmarks are ranked by difficulty, and updated
regularly at the light of the performances of new systems.

Conclusion

Many communities built central repositories of benchmarks
to be able to compare the performance of their systems. The
success of those repositories relies first on the adoption of it
format by the community, and second on the availability of

‘http://www.csplib.org/
Yhttp://www.tptp.org/

136

benchmarks for which some information is provided: diffi-
culty, expected answer, runtime of existing systems, etc.

For a community such as NMR, which addresses a wide
range of different problems, the first step is to decide on
which problems a first effort of standardization is required.
The heuristics can be either the maturity of existing systems
in the community or the importance of the problem for the
community. In either case, the choice of the format for the
benchmarks will be important: should it be user oriented or
system oriented? data or protocol oriented?

Defining a format and providing benchmarks is not suffi-
cient to reach adoption: sample results and answers check-
ers are essential components to allow system designers to
adopt such format. In order to receive application bench-
marks, some systems supporting that format should be pro-
vided as well, even if they are not very efficient: they are
sufficient to discover the meaning of the benchmark format,
or to check the answers of a system under development.

Both benchmarks providers and system developers can
make mistakes. As such, tools which check the syntax of the
input and the correctness of the system answers will help
providing meaningful benchmarks and systems results.

In order to reuse benchmarks from other communities,
tools which allow to translate to and from different formats
are also welcome.

Organizing competitive events has been a great source of
new benchmarks for many communities. I am looking for-
ward the first NMR competition.

References

Abate, P, and Treinen, R. 2011. Mancoosi Deliverable
D5.4: Report on the international competition. Rapport de
recherche.

Barrett, C.; Stump, A.; and Tinelli, C. 2010. The SMT-LIB
Standard: Version 2.0. In Gupta, A., and Kroening, D., eds.,
Proceedings of the 8th International Workshop on Satisfia-
bility Modulo Theories (Edinburgh, UK).

Biere, A., and Jussila, T. 2007. Hardware model checking
competition. http://fmv.jku.at/hwmcc07/.

Brummayer, R.; Lonsing, F.; and Biere, A. 2010. Automated
testing and debugging of sat and gbf solvers. In Strichman,
0., and Szeider, S., eds., SAT, volume 6175 of Lecture Notes
in Computer Science, 44-57. Springer.

Fikes, R., and Nilsson, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artif. Intell. 2(3/4):189-208.

Gebser, M.; Liu, L.; Namasivayam, G.; Neumann, A.;
Schaub, T.; and Truszczynski, M. 2007. The first answer
set programming system competition. In Baral, C.; Brewka,
G.; and Schlipf, J. S., eds., LPNMR, volume 4483 of Lecture
Notes in Computer Science, 3—17. Springer.

Heule, M.; Jr., W. A. H.; and Wetzler, N. 2013. Verifying
refutations with extended resolution. In Bonacina, M. P, ed.,
CADE, volume 7898 of Lecture Notes in Computer Science,
345-359. Springer.

Hoos, H. H., and Sttzle, T. 2000. Satlib: An online resource



for research on sat. In Gent, 1. P.; van Maaren, H.; and Walsh,
T., eds., SAT 2000, 283-292. 10S Press.

Johnson, D., and Trick, M., eds. 1996. Second DIMACS
implementation challenge : cliques, coloring and satisfiabil-
ity, volume 26 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science. American Mathematical
Society.

Lecoutre, C.; Roussel, O.; and van Dongen, M. R. C. 2010.
Promoting robust black-box solvers through competitions.
Constraints 15(3):317-326.

Nadel, A. 2010. Boosting minimal unsatisfiable core ex-
traction. In Bloem, R., and Sharygina, N., eds., FMCAD,
221-229. 1IEEE.

Narizzano, M.; Peschiera, C.; Pulina, L.; and Tacchella, A.
2009. Evaluating and certifying qbfs: A comparison of state-
of-the-art tools. AI Commun. 22(4):191-210.

Ryvchin, V., and Strichman, O. 2011. Faster extraction of
high-level minimal unsatisfiable cores. In Sakallah, K. A.,
and Simon, L., eds., SAT, volume 6695 of Lecture Notes in
Computer Science, 174—187. Springer.

Simon, L., and Chatalic, P. 2001. Satex: A web-based frame-
work for sat experimentation. Electronic Notes in Discrete
Mathematics 9:129-149.

Simon, L.; Le Berre, D.; and Hirsch, E. A. 2005. The
SAT2002 competition. Ann. Math. Artif. Intell. 43(1):307—
342.

Stuckey, P. J.; Becket, R.; and Fischer, J. 2010. Philosophy
of the minizinc challenge. Constraints 15(3):307-316.

Sutcliffe, G., and Suttner, C. 2006. The State of CASC. Al
Communications 19(1):35-48.

Sutcliffe, G. 2009. The TPTP Problem Library and Associ-
ated Infrastructure: The FOF and CNF Parts, v3.5.0. Journal
of Automated Reasoning 43(4):337-362.

Van Gelder, A. 2012. Producing and verifying extremely
large propositional refutations - have your cake and eat it
too. Ann. Math. Artif. Intell. 65(4):329-372.

Zarpas, E. 2006. Back to the SAT05 Competition: an a Pos-

teriori Analysis of Solver Performance on Industrial Bench-
marks. JSAT 2(1-4):229-237.

137



Towards a Benchmark of Natural Language Arguments

Elena Cabrio and Serena Villata
INRIA Sophia Antipolis
France

Abstract

The connections among natural language processing
and argumentation theory are becoming stronger in the
latest years, with a growing amount of works going in
this direction, in different scenarios and applying het-
erogeneous techniques. In this paper, we present two
datasets we built to cope with the combination of the
Textual Entailment framework and bipolar abstract ar-
gumentation. In our approach, such datasets are used
to automatically identify through a Textual Entailment
system the relations among the arguments (i.e., attack,
support), and then the resulting bipolar argumentation
graphs are analyzed to compute the accepted arguments.

Introduction

Until recent years, the idea of “argumentation” as the pro-
cess of creating arguments for and against competing claims
was a subject of interest to philosophers and lawyers. In re-
cent years, however, there has been a growth of interest in
the subject from formal and technical perspectives in Ar-
tificial Intelligence, and a wide use of argumentation tech-
nologies in practical applications. However, such applica-
tions are always constrained by the fact that natural language
arguments cannot be automatically processed by such argu-
mentation technologies. Arguments are usually presented ei-
ther as the abstract nodes of a directed graph where the edges
represent the relations of attack and support (e.g., in abstract
argumentation theory (Dung 1995) and in bipolar argumen-
tation (Cayrol and Lagasquie-Schiex 2005), respectively).
Natural language arguments are usually used in the ar-
gumentation literature to provide ad-hoc examples to help
the reader in the understanding of the rationale behind the
formal approach which is then introduced, but the need to
find automatic ways to process natural language arguments
is becoming more and more important. On the one side,
when dealing with natural language processing techniques,
the first step consists in finding the data on which the system
is trained and evaluated. On the other side, in argumentation
theory there is a growing need to define benchmarks for ar-
gumentation to test implemented systems and proposed the-
ories. In this paper, we address the following research ques-
tion: how to build a dataset of natural language arguments?
The definition of a dataset of natural language arguments
is not a straightforward task: first, there is the need to iden-

138

tify the kind of natural language arguments to be collected
(e.g., online debates, newspaper articles, blogs and forums,
etc.), and second, there is the need to annotate the data ac-
cording to the addressed task from the natural language pro-
cessing point of view (e.g., classification, textual entailment
(Dagan et al. 2009), etc.).

Our goal (Cabrio and Villata 2013) is to analyze natural
language debates in order to understand, given a huge de-
bate, what are the winning arguments (through acceptability
semantics) and who proposed them. In order to achieve such
goal, we have identified two different scenarios to extract
our data: (i) online debate platforms like Debatepedia' and
ProCon? present a set of topics to be discussed, and partic-
ipants argue about the issue the platform proposes on a se-
lected topic, highlighting whether their “arguments” are in
favor or against the central issue, or with respect to the other
participants’ arguments, and (ii) the screenplay of a movie
titled “Twelve Angry Men” where the jurors of a trial dis-
cuss in order to decide whether a young boy is guilty or not,
and before the end of each act they vote to verify whether
they all agree about his guiltiness. These two scenarios lead
to two different resources: the online debates resource col-
lects the arguments in favor or against the main issue or the
other arguments into small bipolar argumentation graphs,
while the “Twelve Angry Men” resource collects again pro
and con arguments but they compose three bipolar argu-
mentation graphs whose complexity is higher than debates
graphs. Note that the first resource consists of an integration
of the dataset of natural language arguments we presented
in (Cabrio and Villata 2013) with new data extracted from
the ProCon debate platform.

These two resources represent a first step towards the
construction of a benchmark of natural language argu-
ments, to be exploited by existing argumentation systems as
data-driven examples of argumentation frameworks. In our
datasets, arguments are cast into pairs where the two argu-
ments composing the pair are linked by a positive relation
(a support relation in argumentation) or a negative relation
(an attack relation in argumentation). From these pairs, the
argumentation graphs are constructed.

The remainder of the paper is organized as follows:

'"http://idebate.org/debatabase
Mttp://www.procon.org/



the next section presents the two datasets from Debatepe-
dia/ProCon and Twelve Angry Men and how they have been
extracted and annotated, then some conclusions are drawn.

Natural Language Arguments: datasets

As introduced before, the rationale underlying the datasets
of natural language arguments we created was to support the
task of understanding, given a huge debate, what are the win-
ning arguments, and who proposed them. In an application
framework, we can divide such task into two consecutive
subtasks, namely i) the recognition of the semantic relations
between couples of arguments in a debate (i.e. if one state-
ment is supporting or attacking another claim), ii) and given
all the arguments that are part of a debate and the acceptabil-
ity semantics, to reason over the graph of arguments with the
aim of deciding which are the accepted ones.

To reflect this separation into two subtasks, each dataset
that we will describe in detail in the following subsections is
therefore composed of two layers. Given a set of arguments
linked among them (e.g in a debate):

1. we couple each argument with the argument to which it is
related (i.e. that it attacks or supports). The first layer of
the dataset is therefore composed of couples of arguments
(each one labeled with a univocal ID), annotated with the
semantic relations linking them (i.e. attack or support);

2. starting from the pairs of arguments in the first layer of
the dataset, we then build a bipolar entailment graph for
each of the topics in the dataset. In the second layer of
the dataset, we find therefore graphs of arguments, where
the arguments are the nodes of the graph, and the rela-
tions among the arguments correspond to the edges of the
graphs.

To create the data set of arguments pairs, we follow the
criteria defined and used by the organizers of the Recogniz-
ing Textual Entailment challenge.® To test the progress of
TE systems in a comparable setting, the participants to RTE
challenge are provided with data sets composed of T-H pairs
involving various levels of entailment reasoning (e.g. lexical,
syntactic), and TE systems are required to produce a correct
judgment on the given pairs (i.e. to say if the meaning of one
text snippet can be inferred from the other). Two kinds of
judgments are allowed: two-way (yes or no entailment) or
three-way judgment (entailment, contradiction, unknown).
To perform the latter, in case there is no entailment between
T and H systems must be able to distinguish whether the
truth of H is contradicted by T, or remains unknown on the
basis of the information contained in T. To correctly judge
each single pair inside the RTE data sets, systems are ex-
pected to cope both with the different linguistic phenomena
involved in TE, and with the complex ways in which they
interact. The data available for the RTE challenges are not
suitable for our goal, since the pairs are extracted from news
and are not linked among each others (i.e. they do not report

3Since its inception in 2004, the PASCAL RTE Challenges
have promoted research in RTE http://www.nist.gov/
tac/2010/RTE/

139

opinions on a certain topic). However, the task of recogniz-
ing semantic relations among pairs of textual fragments is
very close to ours, and therefore we follow the guidelines
provided by the organizers of RTE for the creation of their
datasets. For instance, in (Cabrio and Villata 2013) we ex-
periment with the application of a TE (Dagan et al. 2009) to
automatically identify the arguments in the text and to spec-
ify which kind of relation links each couple of arguments.

Debatepedia dataset

To build our first benchmark of natural language arguments,
we selected Debatepedia and ProCon, two encyclopedias of
pro and con arguments on critical issues. To fill in the first
layer of the dataset, we manually selected a set of topics (Ta-
ble 2 column Topics) of Debatepedia/ProCon debates, and
for each topic we apply the following procedure:

1. the main issue (i.e., the title of the debate in its affirmative
form) is considered as the starting argument;

2. each user opinion is extracted and considered as an argu-
ment;

3. since attack and support are binary relations, the argu-
ments are coupled with:

(a) the starting argument, or

(b) other arguments in the same discussion to which the
most recent argument refers (i.e., when a user opinion
supports or attacks an argument previously expressed
by another user, we couple the former with the latter),
following the chronological order to maintain the dia-
logue structure;

4. the resulting pairs of arguments are then tagged with the
appropriate relation, i.e., attack or support*.

Using Debatepedia/ProCon as case study provides us with
already annotated arguments (pro = entailment’, and con
= contradiction), and casts our task as a yes/no entailment
task. To show a step-by-step application of the procedure,
let us consider the debated issue Can coca be classified as
a narcotic?. At step 1, we transform its title into the affir-
mative form, and we consider it as the starting argument (a).
Then, at step 2, we extract all the users opinions concerning
this issue (both pro and con), e.g., (b), (c) and (d):

Example 1.
(a) Coca can be classified as a narcotic.

(b) In 1992 the World Health Organization’s Expert
Committee on Drug Dependence (ECDD) undertook a
“prereview” of coca leaf at its 28th meeting. The 28th
ECDD report concluded that, “the coca leaf is appropri-
ately scheduled as a narcotic under the Single Convention
on Narcotic Drugs, 1961, since cocaine is readily ex-
tractable from the leaf.” This ease of extraction makes coca

“The data set is freely available at http://www-sop.
inria.fr/NoDE/.

SHere we consider only arguments implying another argument.
Arguments “supporting” another argument, but not inferring it will
be discussed in the next subsection.



and cocaine inextricably linked. Therefore, because cocaine
is defined as a narcotic, coca must also be defined in this
way.

(c¢) Coca in its natural state is not a narcotic. What is
absurd about the 1961 convention is that it considers the
coca leaf in its natural, unaltered state to be a narcotic. The
paste or the concentrate that is extracted from the coca leaf,
commonly known as cocaine, is indeed a narcotic, but the
plant itself is not.

(d) Coca is not cocaine. Coca is distinct from cocaine. Coca
is a natural leaf with very mild effects when chewed. Cocaine
is a highly processed and concentrated drug using deriva-
tives from coca, and therefore should not be considered as a
narcotic.

At step 3a we couple the arguments (b) and (d) with the start-
ing issue since they are directly linked with it, and at step 3b
we couple argument (c) with argument (b), and argument (d)
with argument (c) since they follow one another in the dis-
cussion (i.e. user expressing argument (c) answers back to
user expressing argument (b), so the arguments are concate-
nated - the same for arguments (d) and (c)).

At step 4, the resulting pairs of arguments are then tagged
with the appropriate relation: (b) supports (a), (d) attacks
(a), (¢) attacks (b) and (d) supports (c).

We have collected 260 T-H pairs (Table 2), 160 to train
and 100 to test the TE system. The training set is composed
by 85 entailment and 75 contradiction pairs, while the test
set by 55 entailment and 45 contradiction pairs. The pairs
considered for the test set concern completely new topics.

Basing on the TE definition, an annotator with skills in
linguistics has carried out a first phase of manual annotation
of the Debatepedia data set. Then, to assess the validity of
the annotation task and the reliability of the obtained data
set, the same annotation task has been independently car-
ried out also by a second annotator, so as to compute inter-
annotator agreement. It has been calculated on a sample of
100 argument pairs (randomly extracted).

The statistical measure usually used in NLP to calculate
the inter-rater agreement for categorical items is Cohen’s
kappa coefficient (Carletta 1996), that is generally thought
to be a more robust measure than simple percent agreement
calculation since ~ takes into account the agreement oc-
curring by chance. More specifically, Cohen’s kappa mea-
sures the agreement between two raters who each classifies
N items into C mutually exclusive categories. The equation
for k is:

_ Pr(a) — Pr(e)
1 —Pr(e)

where Pr(a) is the relative observed agreement among raters,
and Pr(e) is the hypothetical probability of chance agree-
ment, using the observed data to calculate the probabilities
of each observer randomly saying each category. If the raters
are in complete agreement then x = 1. If there is no agree-
ment among the raters other than what would be expected
by chance (as defined by Pr(e)), x = 0. For NLP tasks, the

ey

140

[ Training set ]

Topic #argum #pairs
TOT. | yes | no
Violent games/aggressiveness 16 15 8 7
China one-child policy 11 10 6 4
Consider coca as a narcotic 15 14 7 7
Child beauty contests 12 11 7 4
Arming Libyan rebels 10 9 4 5
Random alcohol breath tests 8 7 4 3
Osama death photo 11 10 5 5
Privatizing social security 11 10 5 5
Internet access as a right 15 14 9 5
Tablets vs. Textbooks 22 21 11 | 10
Obesity 16 15 7 8
Abortion 25 24 12 | 12
TOTAL 109 100 55 | 45
Test set
Topic #argum #pairs
TOT. | yes | no
Ground zero mosque 9 8 3 5
Mandatory military service 11 10 3 7
No fly zone over Libya 11 10 6 4
Airport security profiling 9 8 4 4
Solar energy 16 15 11 4
Natural gas vehicles 12 11 5 6
Use of cell phones/driving 11 10 5 5
Marijuana legalization 17 16 10 | 6
Gay marriage as a right 7 6 4 2
Vegetarianism 7 6 4 2
TOTAL 110 160 85 | 75

Table 1: The Debatepedia/ProCon data set

inter-annotator agreement is considered as significant when
k >0.6. Applying the formula (1) to our data, the inter-
annotator agreement results in £ = 0.7. As a rule of thumb,
this is a satisfactory agreement, therefore we consider these
annotated data sets as the goldstandard. The goldstandard
is the reference data set to which the performances of auto-
mated systems can be compared.

To build the bipolar argumentation graphs associated to
the Debatepedia dataset, we have considered the pairs anno-
tated in the first layer and we have built a bipolar entailment
graph for each of the topic in the dataset (12 topics in the
training set and 10 topics in the test set, listed in Table 2).

Figure 1 shows the average dimension of a bipolar argu-
mentation graph in the Debatepedia/ProCon dataset. Note
that no cycle is present, as well as in all the other graphs of
such dataset. All graphs are available online, together with
the XML data set.

Debatepedia extended dataset The dataset described in
the previous section was created respecting the assumption
that the TE relation and the support relation are equivalent,
i.e. in all the previously collected pairs both TE and support
relations (or contradiction and attack relations) hold.

For the second study described in (Cabrio and Villata
2013) we wanted to move a step further, to understand
whether it is always the case that support is equivalent to TE



@i@
OIGIOIOIOID,
)

Figure 1: The bipolar argumentation framework resulting
from the topic “Obesity” of Pro/Con (red edges represent
attack and green ones represent support).

(and contradiction to attack). We therefore apply again the
extraction methodology described in the previous section to
extend our data set. In total, our new data set contains 310
different arguments and 320 argument pairs (179 express-
ing the support relation among the involved arguments, and
141 expressing the attack relation, see Table 2). We consider
the obtained data set as representative of human debates in a
non-controlled setting (Debatepedia users position their ar-
guments with respect to the others as PRO or CON, the data
are not biased).

Debatepedia extended data set
Topic #argum | #pairs
Violent games/aggressiveness 17 23
China one-child policy 11 14
Consider coca as a narcotic 17 22
Child beauty contests 13 17
Arming Libyan rebels 13 15
Random alcohol breath tests 11 14
Osama death photo 22 24
Privatizing social security 12 13
Internet access as a right 15 17
Ground zero mosque 11 12
Mandatory military service 15 17
No fly zone over Libya 18 19
Airport security profiling 12 13
Solar energy 18 19
Natural gas vehicles 16 17
Use of cell phones/driving 16 16
Marijuana legalization 23 25
Gay marriage as a right 10 10
Vegetarianism 14 13
TOTAL 310 320

Table 2: Debatepedia extended data set

Again, an annotator with skills in linguistics has carried
out a first phase of annotation of the extended Debatepe-
dia data set. The goal of such annotation was to individually
consider each pair of support and attack among arguments,

141

and to additionally tag them as entailment, contradiction or
null. The null judgment can be assigned in case an argument
is supporting another argument without inferring it, or the
argument is attacking another argument without contradict-
ing it. As exemplified in Example 1, a correct entailment
pair is (b) = (a), while a contradiction is (d) # (a). A null
judgment is assigned to (d) - (¢), since the former argument
supports the latter without inferring it. Our data set is an ex-
tended version of (Cabrio and Villata 2012)’s one allowing
for a deeper investigation.

Again, to assess the validity of the annotation task, we
have calculated the inter-annotator agreement. Another an-
notator with skills in linguistics has therefore independently
annotated a sample of 100 pairs of the data set. We cal-
culated the inter-annotator agreement considering the argu-
ment pairs tagged as support and attacks by both annotators,
and we verify the agreement between the pairs tagged as en-
tailment and as null (i.e. no entailment), and as contradiction
and as null (i.e. no contradiction), respectively. Applying x
to our data, the agreement for our task is k = 0.74. As a
rule of thumb, this is a satisfactory agreement. Table 3 re-
ports the results of the annotation on our Debatepedia data
set, as resulting after a reconciliation phase carried out by
the annotators®.

Relations % arg. (# arg.)
support + entailment 61.6 (111)
- entailment (null) 38.4 (69)
attack + contradiction 71.4 (100)
- contradiction (null) 28.6 (40)

Table 3: Support and TE relations on Debatepedia data set.

On the 320 pairs of the data set, 180 represent a support
relation, while 140 are attacks. Considering only the
supports, 111 argument pairs (i.e., 61.6%) are an actual
entailment, while in 38.4% of the cases the first argument
of the pair supports the second one without inferring it (e.g.
(d) - (¢) in Example 1). With respect to the attacks, 100
argument pairs (i.e., 71.4%) are both attack and contradic-
tion, while only the 28.6% of the argument pairs does not
contradict the arguments they are attacking, as in Example 2.

Example 2.

(e) Coca chewing is bad for human health. The decision
to ban coca chewing fifty years ago was based on a 1950
report elaborated by the UN Commission of Inquiry on the
Coca Leaf with a mandate from ECOSOC: “We believe
that the daily, inveterate use of coca leaves by chewing is
thoroughly noxious and therefore detrimental”.

(f) Chewing coca offers an energy boost. Coca provides an
energy boost for working or for combating fatigue and cold.

Differently from the relation between support-entailment,
the difference between attack and contradiction is more sub-

%1n this phase, the annotators discuss the results to find an agree-
ment on the annotation to be released.



tle, and it is not always straightforward to say whether an
argument attacks another argument without contradicting it.
In Example 2, we consider that (e) does not contradict (f)
even if it attacks (f), since chewing coca can offer an energy
boost, and still be bad for human health. This kind of attacks
is less frequent than the attacks-contradictions (see Table 3).

Debatepedia additional attacks dataset Starting from
the comparative study addressed by (Cayrol and Lagasquie-
Schiex 2011), in the third study of (Cabrio and Villata 2013)
we have considered four additional attacks proposed in the
literature: supported (if argument a supports argument b and
b attacks argument c, then a attacks c¢) and secondary (if a
supports b and c attacks a, then c attacks b) attacks (Cay-
rol and Lagasquie-Schiex 2010), mediated attacks (Boella
et al. 2010) (if a supports b and c attacks b, then c at-
tacks a), and extended attacks (Nouioua and Risch 2010;
2011) (if a supports b and a attacks c, then b attacks c).

In order to investigate the presence and the distribution
of these attacks in NL debates, we extended again the data
set extracted from Debatepedia to consider all these addi-
tional attacks, and we showed that all these models are ver-
ified in human debates, even if with a different frequency.
More specifically, we took the original argumentation frame-
work of each topic in our data set (Table 2), the following
procedure is applied: the supported (secondary, mediated,
and extended, respectively) attacks are added, and the argu-
ment pairs resulting from coupling the arguments linked by
this relation are collected in the data set “supported (sec-
ondary, mediated, and extended, respectively) attack”. Col-
lecting the argument pairs generated from the different types
of complex attacks in separate data sets allows us to indepen-
dently analyze each type, and to perform a more accurate
evaluation.” Figures 2a-d show the four AFs resulting from
the addition of the complex attacks in the example Can coca
be classified as a narcotic?. Note that the AF in Figure 2a,
where the supported attack is introduced, is the same of Fig-
ure 2b where the mediated attack is introduced. Notice that,
even if the additional attack which is introduced coincide,
i.e., d attacks b, this is due indeed to different interactions
among supports and attacks (as highlighted in the figure),
i.e., in the case of supported attacks this is due to the sup-
port from d to ¢ and the attack from c to b, while in the case
of mediated attacks this is due to the support from b to a and
the attack from d to a.

A second annotation phase is then carried out on the data
set, to verify if the generated argument pairs of the four data
sets are actually attacks (i.e., if the models of complex at-
tacks proposed in the literature are represented in real data).
More specifically, an argument pair resulting from the ap-
plication of a complex attack can be annotated as: attack (if
it is a correct attack) or as unrelated (in case the meanings
of the two arguments are not in conflict). For instance, the
argument pair (g)-(h) (Example 3) resulting from the inser-
tion of a supported attack, cannot be considered as an attack
since the arguments are considering two different aspects of

"Data sets freely available for research purposes at
http://www-sop.inria.fr/NoDE/NoDE-xml.html#
debatepedia

142

the issue.

Example 3.
(g) Chewing coca offers an energy boost. Coca provides an
energy boost for working or for combating fatigue and cold.

(h) Coca can be classified as a narcotic.

In the annotation, attacks are then annotated also as con-
tradiction (if the first argument contradicts the other) or null
(in case the first argument does not contradict the argument
it is attacking, as in Example 2). Due to the complexity of
the annotation, the same annotation task has been indepen-
dently carried out also by a second annotator, so as to com-
pute inter-annotator agreement. It has been calculated on a
sample of 80 argument pairs (20 pairs randomly extracted
from each of the “complex attacks” data set), and it has the
goal to assess the validity of the annotation task (counting
when the judges agree on the same annotation). We calcu-
lated the inter-annotator agreement for our annotation task
in two steps. We (i) verify the agreement of the two judges
on the argument pairs classification attacks/unrelated, and
(ii) consider only the argument pairs tagged as attacks by
both annotators, and we verify the agreement between the
pairs tagged as contradiction and as null (i.e. no contradic-
tion). Applying & to our data, the agreement for the first step
is & = 0.77, while for the second step k = 0.71. As a rule
of thumb, both agreements are satisfactory, although they
reflect the higher complexity of the second annotation (con-
tradiction/null).

The distribution of complex attacks in the Debatepedia
data set, as resulting after a reconciliation phase carried out
by the annotators, is shown in Table 4. As can be noticed,
the mediated attack is the most frequent type of attack, gen-
erating 335 new argument pairs in the NL sample we con-
sidered (i.e. the conditions that allow the application of this
kind of complex attacks appear more frequently in real de-
bates). Together with secondary attacks, they appear in the
AFs of all the debated topics. On the contrary, extended at-
tacks are added in 11 out of 19 topics, and supported attacks
in 17 out of 19 topics. Considering all the topics, on aver-
age only 6 pairs generated from the additional attacks were
already present in the original data set, meaning that consid-
ering also these attacks is a way to hugely enrich our data
set of NL debates.

Proposed models | # occ. attacks unrelated
+ contr | - contr
(null) (null)
Supported attacks 47 23 17 7
Secondary attacks 53 29 18 6
Mediated attacks 335 84 148 103
Extended attacks 28 15 10 3

Table 4: Complex attacks distribution in our data set.

Twelve Angry Men

As a second scenario to extract natural language arguments
we chose the scripts of “Twelve Angry Men”. The play con-



OGS
(b)

Figure 2: The bipolar argumentation framework with the introduction of complex attacks. The top figures show which combi-
nation of support and attack generates the new additional attack.

cerns the deliberations of the jury of a homicide trial. As in
most American criminal cases, the twelve men must unani-
mously decide on a verdict of “guilty” or “not guilty”. At the
beginning, they have a nearly unanimous decision of guilty,
with a single dissenter of not guilty, who throughout the play
sows a seed of reasonable doubt.

The play is divided into three acts: the end of each act
corresponds to a fixed point in time (i.e. the halfway votes
of the jury, before the official one), according to which we
want to be able to extract a set of consistent arguments. For
each act, we manually selected the arguments (excluding
sentences which cannot be considered as self-contained
arguments), and we coupled each argument with the
argument it is supporting or attacking in the dialogue
flow (as shown in Examples 4 to 7). More specifically, in
discussions, one character’s argument comes after the other
(entailing or contradicting one of the arguments previously
expressed by another character): therefore, we create our
pairs in the graph connecting the former to the latter (more
recent arguments are placed as T and the argument w.r.t.
whom we want to detect the relation is placed as H). For
instance, in Example 6, juror 1 claims argument (0), and he
is attacked by juror 2, claiming argument (I). Juror 3 claims
then argument (i) to support juror’s 2 opinion. In the dataset
we have therefore annotated the following couples: (o) is
contradicted by (1); (1) is entailed by (i).

In Example 7, juror 1 claims argument (1) supported by ju-
ror 2 (argument (i)); juror 3 attacks juror’s 2 opinion with
argument (p). More specifically, (I) is entailed by (i); (i) is
contradicted by (p).

Example 4.

(i) Maybe the old man didn’t hear the boy yelling “I'm going
to kill you”. I mean with the el noise.

(1) I don’t think the old man could have heard the boy yelling.

Example 5.

(m) I never saw a guiltier man in my life. You sat right in
court and heard the same thing I did. The man’s a dangerous
killer.

(n) I don’t know if he is guilty.

Example 6.
(i) Maybe the old man didn’t hear the boy yelling ”I'm going
to kill you”. I mean with the el noise.

143

() I don’t think the old man could have heard the boy yelling.
(0) The old man said the boy yelled ”I’'m going to kill you”
out. That’s enough for me.

Example 7.

(p) The old man cannot be a liar, he must have heard the boy
yelling.

(i) Maybe the old man didn’t hear the boy yelling ”I'm going
to kill you”. I mean with the el noise.

() I don’t think the old man could have heard the boy yelling.

Given the complexity of the play, and the fact that in human
linguistic interactions a lot is left implicit, we simplified the
arguments: i) adding the required context in T to make the
pairs self-contained (in the TE framework entailment is de-
tected based on the evidences provided in T); and ii) solv-
ing intra document coreferences, as in: Nobody has to prove
that!, transformed into Nobody has to prove [that he is not
guilty].

We collected 80 T-H pairs®, composed by 25 entailment
pairs, 41 contradiction and 14 unknown pairs (contradiction
and unknown pairs are then collapsed in the judgment non
entailment for the two-way classification task).” To calculate
the inter annotator agreement, the same annotation task has
been independently carried out on half of argument pairs (40
T-H pairs) also by a second annotator. Cohen’s kappa (Car-
letta 1996) is 0.74. Again, this is a satisfactory agreement,
confirming the reliability of the obtained resource.

Also in this scenario, we consider the pairs annotated in
the first layer and we then build a bipolar entailment graph
for each of the topic in the dataset (the three acts of the
play). Again, the arguments are the nodes of the graph, and
the relations among the arguments correspond to the edges
of the graphs. The complexity of the graphs obtained for
the Twelve Angry Men scenario is higher than the debates
graphs (on average, 27 links per graph with respect to 9 links
per graph in the Debatepedia dataset).

8The dataset is available at ht tp: / /www—-sop. inria. fr/
NoDE/NoDE-xml.html#12AngryMen. It is built in standard
RTE format.

The unknown pairs in the dataset are arguments attacking each
others, without contradicting. Collapsing both judgments into one
category for our experiments does not impact on our framework
evaluation.



Figure 3: The bipolar argumentation framework resulting
from Act 1 of Twelve Angry Men (red edges represent at-
tack and green ones represent support).

Figure 3 shows the average dimension of a bipolar argu-
mentation graph in the Twelve Angry Men dataset. Note that
no cycle is present, as well as in all the other graphs of such
dataset.

Conclusions

In this paper, we describe two datasets of natural language
arguments used in the context of debates. The only existing
dataset composed of natural language arguments proposed
and exploited in the argumentation community is Arau-
caria.!” Araucaria (Reed and Rowe 2004) is based on ar-
gumentation schemes (Walton, Reed, and Macagno 2008),
and it is an online repository of arguments from heteroge-
nous sources like newspapers (e.g., Wall Street Journal), par-
liamentary records (e.g., UK House of Parliament debates)
and discussion fora (e.g., BBC talking point). Arguments are
classified by argumentation schemes. Also in the context of
argumentation schemes, (Cabrio, Tonelli, and Villata 2013)
propose a new resource based on the Penn Discourse Tree-
bank (PDTB), where a part of the corpus has been annotated
with a selection of five argumentation schemes. This effort
goes in the direction of trying to export a well known ex-
isting benchmark in the field of natural language processing
(i.e., PDTB) into the argumentation field, through the iden-
tification and annotation of the argumentation schemes.
The benchmark of natural language arguments we pre-
sented in this paper has several potential uses. As all the
data we presented is available on the Web in a machine-
readable format, researchers interested in testing their own
argumentation-based tool (both for arguments visualization
and for reasoning) are allowed to download the data sets
and verify on real data the performances of the tool. More-

10http ://araucaria.computing.dundee.ac.uk

144

over, also from the theoretical point of view, the data set can
be used by argumentation researchers to find real world ex-
ample supporting the introduction of new theoretical frame-
works. One of the aims of such benchmark is actually to
move from artificial natural language examples of argumen-
tation towards more realistic ones where other problems,
maybe far from the ones addressed at the present stage in
current argumentation research, emerge.

It is interesting to note that the abstract (bipolar) argumen-
tation graphs resulting from our datasets result to be rather
simple structures, where usually arguments are inserted in
reinstatement chains, rather than complex structures with the
presence of several odd and even cycles, as usually chal-
lenged in the argumentation literature. In this perspective,
we plan to consider other sources of arguments, like cos-
tumer’s opinions about a service or a product, to see whether
more complex structures are identified, with the final goal to
built a complete resource where also such complex patterns
are present.

A further point which deserves investigation concerns the
use of abstract argumentation. Some of the examples we pro-
vided may suggest that in some cases adopting abstract argu-
mentation might not be fully appropriate since such natural
language arguments have (possibly complex) internal struc-
tures and may include sub-arguments (for example argument
(d) of the “Coca as narcotic” example). We will investigate
how to build a dataset of structured arguments, taking into
account the discourse relations.

Finally, in this paper, we have presented a benchmark of
natural language arguments manually annotated by humans
with skills in linguistics. Given the complexity of the anno-
tation task, a manual annotation was the best choice ensuring
an high quality of the data sets. However, in other tasks like
discourse relations extraction, it is possible to adopt auto-
mated extraction techniques then further verified by human
annotators to ensure an high resource’s confidence.

References

Boella, G.; Gabbay, D. M.; van der Torre, L.; and Villata,
S. 2010. Support in abstract argumentation. In Procs of
COMMA, Frontiers in Artificial Intelligence and Applica-
tions 216, 111-122.

Cabrio, E., and Villata, S. 2012. Natural language argu-
ments: A combined approach. In Procs of ECAI Frontiers
in Artificial Intelligence and Applications 242, 205-210.

Cabrio, E., and Villata, S. 2013. A natural language bipolar
argumentation approach to support users in online debate
interactions;. Argument & Computation 4(3):209-230.
Cabrio, E.; Tonelli, S.; and Villata, S. 2013. A natural lan-
guage account for argumentation schemes. In Baldoni, M.;
Baroglio, C.; Boella, G.; and Micalizio, R., eds., AI*IA, vol-
ume 8249 of Lecture Notes in Computer Science, 181-192.
Springer.

Carletta, J. 1996. Assessing agreement on classification
tasks: the kappa statistic. Comput. Linguist. 22(2):249-254.

Cayrol, C., and Lagasquie-Schiex, M.-C. 2005. On the
acceptability of arguments in bipolar argumentation frame-
works. In Procs of ECSQARU, LNCS 3571, 378-389.



Cayrol, C., and Lagasquie-Schiex, M.-C. 2010. Coalitions
of arguments: A tool for handling bipolar argumentation
frameworks. Int. J. Intell. Syst. 25(1):83-109.

Cayrol, C., and Lagasquie-Schiex, M.-C. 2011. Bipolarity
in argumentation graphs: Towards a better understanding. In
Procs of SUM, LNCS 6929, 137-148.

Dagan, I.; Dolan, B.; Magnini, B.; and Roth, D. 2009.
Recognizing textual entailment: Rational, evaluation and ap-
proaches. Natural Language Engineering (JNLE) 15(04):i—
XVil.

Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artif. Intell. 77(2):321-358.

Nouioua, F., and Risch, V. 2010. Bipolar argumentation

frameworks with specialized supports. In Procs of ICTAI,
215-218. IEEE Computer Society.

Nouioua, F., and Risch, V. 2011. Argumentation frameworks
with necessities. In Procs of SUM, LNCS 6929, 163-176.
Reed, C., and Rowe, G. 2004. Araucaria: Software for
argument analysis, diagramming and representation. Inter-
national Journal on Artificial Intelligence Tools 13(4):961—
980.

Walton, D.; Reed, C.; and Macagno, F. 2008. Argumentation
Schemes. Cambridge University Press.

145



Analysis of Dialogical Argumentation
via Finite State Machines

Anthony Hunter
Department of Computer Science,
University College London,
Gower Street, London WCI1E 6BT, UK

Abstract

Dialogical argumentation is an important cognitive activity
by which agents exchange arguments and counterarguments
as part of some process such as discussion, debate, persuasion
and negotiation. Whilst numerous formal systems have been
proposed, there is a lack of frameworks for implementing
and evaluating these proposals. First-order executable logic
has been proposed as a general framework for specifying and
analysing dialogical argumentation. In this paper’, we inves-
tigate how we can implement systems for dialogical argumen-
tation using propositional executable logic. Our approach is
to present and evaluate an algorithm that generates a finite
state machine that reflects a propositional executable logic
specification for a dialogical argumentation together with an
initial state. We also consider how the finite state machines
can be analysed, with the minimax strategy being used as an
illustration of the kinds of empirical analysis that can be un-
dertaken.

Introduction

Dialogical argumentation involves agents exchanging ar-
guments in activities such as discussion, debate, persua-
sion, and negotiation (Besnard and Hunter 2008). Dia-
logue games are now a common approach to charac-
terizing argumentation-based agent dialogues (e.g. (Am-
goud, Maudet, and Parsons 2000; Black and Hunter 2009;
Dignum, Dunin-Keplicz, and Verbrugge 2000; Fan and Toni
2011; Hamblin 1971; Mackenzie 1979; McBurney and Par-
sons 2002; McBurney et al. 2003; Parsons, Wooldridge, and
Amgoud 2003; Prakken 2005; Walton and Krabbe 1995)).
Dialogue games are normally made up of a set of commu-
nicative acts called moves, and a protocol specifying which
moves can be made at each step of the dialogue. In order to
compare and evaluate dialogical argumentation systems, we
proposed in a previous paper that first-order executable logic
could be used as common theoretical framework to spec-
ify and analyse dialogical argumentation systems (Black and
Hunter 2012).

In this paper, we explore the implementation of dialogical
argumentation systems in executable logic. For this, we fo-
cus on propositional executable logic as a special case, and

!This paper has already been published in the Proceedings of
the International Conference on Scalable Uncertainty Management
(SUM’13), LNCS 8078, Pages 1-14, Springer, 2013.

146

investigate how a finite state machine (FSM) can be gener-
ated as a representation of the possible dialogues that can
emanate from an initial state. The FSM is a useful structure
for investigating various properties of the dialogue, includ-
ing conformance to protocols, and application of strategies.
We provide empirical results on generating FSMs for dia-
logical argumentation, and how they can be analysed using
the minimax strategy. We demonstrate through preliminary
implementation that it is computationally viable to generate
the FSMs and to analyse them. This has wider implications
in using executable logic for applying dialogical argumenta-
tion in practical uncertainty management applications, since
we can now empirically investigate the performance of the
systems in handling inconsistency in data and knowledge.

Propositional executable logic

In this section, we present a propositional version of the ex-
ecutable logic which we will show is amenable to imple-
mentation. This is a simplified version of the framework for
first-order executable logic in (Black and Hunter 2012).

We assume a set of atoms which we use to form propo-
sitional formulae in the usual way using disjunction, con-
junction, and negation connectives. We construct modal for-
mulae using the H, H, ¢, and © modal operators. We only
allow literals to be in the scope of a modal operator. If «
is a literal, then each of ®a, Sa, Ha, and Ha is an action
unit. Informally, we describe the meaning of action units as
follows: @« means that the action by an agent is to add the
literal « to its next private state; ©a means that the action by
an agent is to delete the literal o from its next private state;
Ha means that the action by an agent is to add the literal «
to the next public state; and Ha means that the action by an
agent is to delete the literal o from the next public state.

We use the action units to form action formulae as fol-
lows using the disjunction and conjunction connectives: (1)
If ¢ is an action unit, then ¢ is an action formula; And (2) If
« and [ are action formulae, then oV 3 and o A 3 are action
formulae. Then, we define the action rules as follows: If ¢ is
a classical formula and v is an action formula then ¢ = 1) is
an action rule. For instance, b(a) = Hc(a) is an action rule
(which we might use in an example where b denotes belief,
and c denotes claim, and a is some information).

Implicit in the definitions for the language is the fact that
we can use it as a meta-language (Wooldridge, McBurney,



and Parsons 2005). For this, the object-language will be
represented by terms in this meta-language. For instance,
the object-level formula p(a,b) — q(a,b) can be repre-
sented by a term where the object-level literals p(a,b) and
q(a,b) are represented by constant symbols, and — is rep-
resented by a function symbol. Then we can form the atom
belief(p(a,b) — q(a,b)) where belief is a predicate
symbol. Note, in general, no special meaning is ascribed the
predicate symbols or terms. They are used as in classical
logic. Also, the terms and predicates are all ground, and so
it is essentially a propositional language.

We use a state-based model of dialogical argumentation
with the following definition of an execution state. To sim-
plify the presentation, we restrict consideration in this paper
to two agents. An execution represents a finite or infinite se-
quence of execution states. If the sequence is finite, then ¢
denotes the terminal state, otherwise t = co.

Definition 1 An execution e is a ftuple e =
(s1,a1,D,as, s2,t), where for eachn € Nwhere 0 < n <,
s1(n) is a set of ground literals, a1(n) is a set of ground
action units, p(n) is a set of ground literals, az(n) is a set
of ground action units, s3(n) is a set of ground literals, and
t € NU{oo}. Foreachn € N, if 0 < n < t, then an ex-
ecution state is e(n) = (s1(n),a1(n),p(n), az(n), s2(n))
where ¢(0) is the initial state. We assume a1(0) = a3(0) =
(). We call s1(n) the private state of agent 1 at time n, a1(n)
the action state of agent 1 at time n, p(n) the public state
at time n, as(n) the action state of agent 2 at time n, sa(n)
the private state of agent 2 at time n.

In general, there is no restriction on the literals that can
appear in the private and public state. The choice depends
on the specific dialogical argumentation we want to spec-
ify. This flexibility means we can capture diverse kinds of
information in the private state about agents by assuming
predicate symbols for their own beliefs, objectives, prefer-
ences, arguments, etc, and for what they know about other
agents. The flexibility also means we can capture diverse
information in the public state about moves made, commit-
ments made, etc.

Example 1 The first 5 steps of an infinite execution where
each row in the table is an execution state where b denotes
belief, and c denotes claim.

[n]si(n) [ai(n) [p(n) [as(n) [ sa(n) |
0 | v(a) b(—a)
I | v(a) | Hc(a) b(—a)

Hc(—a)
2 | v(a) c(a) | Hc(—a) | b(—a)
Hc(a) | b(—a)
3 [ bla) | Bcl(a) | c(-a) b(—a)
Hc(—a)
4 | b(a) c(a) | Hc(—a) | b(—a)
. Hc(a)

We define a system in terms of the action rules for each
agent, which specify what moves the agent can potentially
make based on the current state of the dialogue. In this pa-
per, we assume agents take turns, and at each time point the

147

actions are from the head of just one rule (as defined in the
rest of this section).

Definition 2 A system is a ruple (Rules,, Initials) where
Rules,; is the set of action rules for agent x € {1,2}, and
Initials is the set of initial states.

Given the current state of an execution, the following def-
inition captures which rules are fired. For agent x, these are
the rules that have the condition literals satisfied by the cur-
rent private state s,,(n) and public state p(n). We use clas-
sical entailment, denoted =, for satisfaction, but other re-
lations could be used (e.g. Belnap’s four valued logic). In
order to relate an action state in an execution with an action
formula, we require the following definition.

Definition 3 For an action state a,(n), and an action for-
mula ¢, a,(n) satisfies ¢, denoted a,(n) |~ ¢, as follows.

1. az(n) v aiff o € ay(n) when « is an action unit

2. az(n) v aABiffaz(n) v aand ay(n) |~ 0

3. az(n) P aV Biffa,(n) ~ aoray(n) B

For an action state a,(n), and an action formula ¢, a,(n)

minimally satisfies ¢, denoted a,(n) & ¢, iff a,(n) |~ ¢
and for all X C az(n), X ¢ ¢.

Example 2 Consider the execution in Example 1. For agent
1 atn =1, we have a1 (1) IF Hc(a) AHc(—a).

We give two constraints on an execution to ensure that
they are well-behaved. The first (propagated) ensures that
each subsequent private state (respectively each subsequent
public state) is the current private state (respectively current
public state) for the agent updated by the actions given in
the action state. The second (engaged) ensures that an exe-
cution does not have one state with no actions followed im-
mediately by another state with no actions (otherwise the
dialogue can lapse) except at the end of the dialogue where
neither agent has further actions.

Definition 4 An execution (si,a1,p,as,s2,t) is propa-
gated iff for all x € {1,2}, foralln € {0,...,t — 1},
where a(n) = a1 (n) U az(n)

1osz(n+1) = (s2(n) \ {¢ | ¢ € as(n)}) U{o | B €

az(n)}
2. p(n+1) = (p(n)\{¢ | Bo € a(n)}) U{¢ | B¢ € a(n)}

Definition 5 Let e = (s1,a1,p, as, s2,t) be an execution
and a(n) = ai1(n) U as(n). e is finitely engaged iff (1)
t # o0o; (2) foralln € {1,...,t =2}, if a(n) = 0, then
aln+1) # 0(3)alt —1) = 0; and (4) a(t) = 0. e is
infinitely engaged iff (1) t = oo, and (2) for all n € N, if
a(n) =0, then a(n + 1) # (.

The next definition shows how a system provides the ini-
tial state of an execution and the actions that can appear in
an execution. It also ensures turn taking by the two agents.

Definition 6 Ler S = (Rules,, Initials) be a system and e
= (81,01, D, a2, S2, t) be an execution. S generates e iff (1) e
is propogated; (2) e is finitely engaged or infinitely engaged;
(3) e(0) € Initials; and (4) forallm € {1,...,t — 1}



1. If m is odd, then as(m) = 0 and either a;(m) = @ or
there is an ¢ = ¢ € Rules; s.t. s1(m) Up(m) = ¢ and
ai(m) -9

2. If m is even, then a1(m) = 0 and either az(m) = 0 or
there is an ¢ = i € Ruless s.t. s1(m) Up(m) = ¢ and
ag(m) Ik

Example 3 We can obtain the execution in Example 1 with

the following rules: (1) b(a) = Hc(a) A Be(—a), And (2)

b(—a) = Hc(—a) A Hce(a).

Generation of finite state machines

In (Black and Hunter 2012), we showed that for any exe-
cutable logic system with a finite set of ground action rules,
and an initial state, there is an FSM that consumes exactly
the finite execution sequences of the system for that initial
state. That result assumes that each agent makes all its pos-
sible actions at each step of the execution. Also that result
only showed that there exist these FSMs, and did not give
any way of obtaining them.

In this paper, we focus on propositional executable logic
where the agents take it in turn, and only one head of one
action rule is used, and show how we can construct an FSM
that represents the set of executions for an initial state for a
system. For this, each state is a tuple (r, s1(n), p(n), sa(n)),
and each letter in the alphabet is a tuple (ai(n),as(n)),
where n is an execution step and r is the agent holding the
turn when n < t and r is 0 when n = ¢.

Definition 7 A finite state machine (FSM) M
(States, Trans, Start, Term, Alphabet) represents
a system S (Rulesy, Initials) for an initial state
I € Initials iff

(1)States = {(y, s1(n), p(n), s2(n)) |
there is an execution e = (s1,a1,p, as, $2,1)
s.t. S generates e
and I = (51(0),a1(0),p(0), a2(0), s2(0))
and thereisann < t
st.y=0whenn =t
andy = 1 whenn < t and n is odd
andy = 2 whenn < t and n is even }

(2)Term = {(y,s1(n),p(n), s2(n)) € States | y =0}

(3)Alphabet = {(a1(n),az(n)) | thereisann <t
and there is an execution e
s.t. S generates e
and e(0) =1
and e = (Sla ai, p,az, s2, t)}

(4)Start = (1,51(0),p(0), 52(0))
where I = (51(0),a1(0),p(0),a2(0), 52(0))

(5)Trans is the smallest subset of States x Alphabet X
States s.t. for all executions e and for all n < t there is
a transition (01, T,02) € Trans such that

01 = (m,sl(n),p(n),SQ(n))
7 = (a1(n), az(n))
o2 = (y,81(n+1),p(n+1),52(n + 1))

148

where x is 1 when n is odd, x is 2 when n is even, y is 1
whenn + 1 < tandnisodd, yis2whenn+1<tandn
is even, and y is O whenn + 1 = t.

Example4 Let M be the following FSM where o1
(1, {b(@)} {}.{p(-a)}); 02 = (2,{b(a)}, {cla)},
b(-a)});i o5 = (L{b(a)}h{c(-a)}, {b(-a)}). T
({Hc(a), Elc(ﬁa)},@),' and 15 = (0, {Hc(—-a),Bc(a)}). M
represents the system in Ex 1.

T1

T1
start

T2
Proposition 1 For each S = (Rules,,Initials), then
there is an FSM M such that M represents S for an initial
state I € Initials.

Definition 8 A string p reflects an execution e
(s1,a1,p,az, s2,t) iff p is the string 1 . .. 74—1 and for each
1 <n <t 7, is the tuple (a1 (n), az(n)).

Proposition 2 Let S = (Rules,, Initials) be a system.
and let M be an FSM that represents S for I € Initials.

1. forall p s.t. M accepts p, there is an e s.t. S generates e
and e(0) = I and p reflects e,

2. for all finite e s.t. S generates e and e(0) = I, then there
is a p such that M accepts p and p reflects e.

So for each initial state for a system, we can obtain an
FSM that is a concise representation of the executions of
the system for that initial state. In Figure 3, we provide an
algorithm for generating these FSMs. We show correctness
for the algorithm as follows.

Proposition 3 Let S = (Rules,, Initials) be a system
and let I € Initials. If M represents S w.r.t. I and
BuildMachine(Rules,, I) = M’, then M = M’

An FSM provides a more efficient representation of all the
possible executions than the set of executions for an initial
state. For instance, if there is a set of states that appear in
some permutation of each of the executions then this can be
more compactly represented by an FSM. And if there are
infinite sequences, then again this can be more compactly
represented by an FSM.

Once we have an FSM of a system with an initial state, we
can ask obvious simple questions such as is termination pos-
sible, is termination guaranteed, and is one system subsumed
by another? So by translating a system into an FSM, we can
harness substantial theory and tools for analysing FSMs.

Next we give a couple of very simple examples of FSMs
obtained from executable logic. In these examples, we as-
sume that agent 1 is trying to win an argument with agent
2. We assume that agent 1 has a goal. This is represented by
the predicate g(c) in the private state of agent 1 for some ar-
gument c. In its private state, each agent has zero or more
arguments represented by the predicate n(c), and zero or
more attacks e(d, c) from d to c. In the public state, each
argument c is represented by the predicate a(c). Each agent
can add attacks e(d, c) to the public state, if the attacked ar-
gument is already in the public state (i.e. a(c) is in the public



state), and the agent also has the attacker in its private state
(i.e. n(d) is in the private state). We have encoded the rules
so that after an argument has been used as an attacker, it is
removed from the private state of the agent so that it does not
keep firing the action rule (this is one of a number of ways
that we can avoid repetition of moves).

Example 5 For the following action rules, with the
initial state where the private state of agent 1 is
{g(a),n(a),n(c), e(c,b)}, the public state is empty, and the
private state of agent 2 is {n(b),e(b,a)}), we get the FSM
in Figure 1.

g(a) An(a) = Ha(a) A ©n(a)
a(a) An(b) A e(b,a) = Ba(b,a) A &n(b)
a(b) An(c) Ae(c,b) = Ha(c,b) A On(c)

The terminal state therefore contains the following argument

graph.

Hence the goal argument a is in the grounded extension of
the graph (as defined in (Dung 1995)).

Example 6 For the following action rules, with the initial
state where the private state of agent 1 is {g(a),n(a)}, the
public state is empty, and the private state of agent 2 is
{n(b),n(c),e(b,a),e(c,a)}), we get the FSM in Figure 2

g(a) An(a) = Ha(a) A Sn(a)
a(a) An(b) A e(b,a) = Ba(b,a) A ©n(b)
a(a) An(c) Ae(c,a) = Ba(c,a) A on(c)

The terminal state therefore contains the following argument

graph.
] (0]

Hence the goal argument a is in the grounded extension of
the graph.

> a |«
> a|«

In the above examples, we have considered a formali-
sation of dialogical argumentation where agents exchange
abstract arguments and attacks. It is straightforward to for-
malize other kinds of example to exchange a wider range
of moves, richer content (e.g. logical arguments composed
of premises and conclusion (Parsons, Wooldridge, and Am-
goud 2003)), and richer notions (e.g. value-based argumen-
tation (Bench-Capon 2003)).

Minimax analysis of finite state machines

Minimax analysis is applied to two-person games for decid-
ing which moves to make. We assume two players called
MIN and MAX. MAX moves first, and they take turns un-
til the game is over. An end function determines when the
game is over. Each state where the game has ended is an end
state. A utility function (i.e. a payoff function) gives the
outcome of the game (eg chess has win, draw, and loose).
The minimax strategy is that MAX aims to get to an end
state that maximizes its utility regardless of what MIN does

We can apply the minimax strategy to the FSM machines
generated for dialogical argumentation as follows: (1) Un-
dertake breadth-first search of the FSM; (2) Stop searching

149

at a node on a branch if the node is an end state accord-
ing to the end function (note, this is not necessarily a ter-
minal state in the FSM); (3) Apply the utility function to
each leaf node n (i.e. to each end state) in the search tree to
give the value value(n) of the node; (4) Traverse the tree
in post-order, and calculate the value of each non-leaf node
as follows where the non-leaf node n is at depth d and with
children {nq,..,nx}:

e If d is odd, then walue(n) is the maximum of
value(ny),.., value(ny).

e If d is even, then walue(n) is the minimum of
value(ny),.., value(ny).

There are numerous types of dialogical argumentation
that can be modelled using propositional executable logic
and analysed using the minimax strategy. Before we discuss
some of these options, we consider some simple examples
where we assume that the search tree is exhaustive, (so each
branch only terminates when it reaches a terminal state in
the FSM), and the utility function returns 1 if the goal argu-
ment is in the grounded extension of the graph in the termi-
nal state, and returns O otherwise.

Example 7 From the FSM in Example 5, we get the mini-
max search tree in Figure 5a, and from the FSM in Example
6, we get the minimax search tree in Figure 5b. In each case,
the terminal states contains an argument graph in which the
goal argument is in the grounded extension of the graph. So
each leaf of the minimax tree has a utility of 1, and each
non-node has the value 1. Hence, agent 1 is guaranteed to
win each dialogue whatever agent 2 does.

The next example is more interesting from the point of
view of using the minimax strategy since agent 1 has a
choice of what moves it can make and this can affect whether
or not it wins.

Example 8 In this example, we assume agent 1 has two
goals a and b, but it can only present arguments for one of
them. So if it makes the wrong choice it can loose the game.
The executable logic rules are given below and the result-
ing FSM is given in Figure 4. For the minimax tree (given
in Figure 5c) the left branch results in an argument graph in
which the goal is not in the grounded extension, whereas the
right branch terminates in an argument graph in which the
goal is in the grounded extension. By a minimax analysis,
agent I wins.

g(a) An(a) = Ha(a) A ©n(a) A ©g(b)
g(b) An(b) = Ha(b) A &n(b) A Og(a)
a(a) An(c) Ae(c,a) = Ha(c,a) A n(c)

We can use any criterion for identifying the end state. In
the above, we have used the exhaustive end function giving
an end state (i.e. the leaf node in the search tree) which is a
terminal state in the FSM followed by two empty transitions.
If the branch does not come to a terminal state in the FSM,
then it is an infinite branch. We could use a non-repetitive
end function where the search tree stops when there are no
new nodes to visit. For instance, for example 4, we could
use the non-repetitive end function to give a search tree that
contains one branch o1, 05, 03 where o7 is the root and o3 is



T1 T2 T3 T4 T4
start —

< 0 O

bbb

Figure 1: The FSM for Example 5

e S S o S o T s b ot
TeL 888

gy
00 O

P — N —

OoRLLAT T T
—

Faodw @

=

NSNS —_

PR GGG
~— ltn ate late latn)

Y D ©®
{8{7 BICICIC aatastast
TN B0 BO BO BA—
- 88%8&/\&(&/
s NN %5

o8

i
SO T T RS
M < a0 o
SRR (I
N~ 00 O
bbb

Figure 2: The FSM for Example 6
150



01 BuildMachine(Rulesz, I)

02 Start = (1,51,P,SQ) whereI:(S1,A1,P,A2,Sg)
03 Statesy = NewStates, = {Start}

04 Statess = Transy = Transs = ()

05 r=1y=2

06  While NewStates; # 0

07 NextStates = NextTrans = ()

08 For (2,51, P, S2) € NewStatesy

09 Fired ={v | ¢ = ¢ € Rules, and S; U P |= ¢}

10 If Fired == ()

11 Then NextTrans = NextTrans U {((z, S1, P, S2), (0,0), (y, S1, P, S2))}
12 Else forA € Disjuncts(F'ired)

13 NewS = S \{a|6aec A}U{a|®a c A}

14 NewP = P\ {a|Ba € A}U{a|Ba € A}

15 Ifx == 1, NextState = (2, NewS, P, S2) and Label = (A, D)

16 Else NextState = (1,51, P, NewS) and Label = (0, A)

17 NextStates = NextStates U { NextState}

18 NexztTrans = NextTrans U {((z, S1, P, S2), Label, NextState)}
19 If t ==1,thenx =2andy =1,elsex =1andy = 2

20 NewStates, = NextStates \ States,

21 States, = States, U NextStates

22 Trans, = Trans, U NextTrans

23 Close ={d" | (o,7,0"),(c',7,0") € Trans; UTransz}
24 Trans = MarkTrans(T'rans1 U Transz, Close)

25 States = MarkStates(States: U Statesz, Close)

26 Term = MarkTerm(Close)

27 Alphabet = {7 | (0,7,0") € States}

28 Return (States, Trans, Start, Term, Alphabet)

Figure 3: An algorithm for generating an FSM from a system S = (Rules,, Initials) and an initial state I. The subsidiary
function Disjuncts(Fired) is {{u1, .., g, }, - {01, g, } | (W1 A AL )V LV (] A Ady)) € Fired)}. For turn-
taking, for agent z, State, is the set of expanded states and NewStates,, is the set of unexpanded states. Lines 02-03 set up the
construction with agent 1 being the agent to expand the initial state. At lines 06-18, when it is turn of x, each unexpanded state
in NewStates, is expanded by identifying the fired rules. At lines 10-11, if there are no fired rules, then the empty transition
(i.e. (0,0)) is obtained, otherwise at lines 12-17, each disjunct for each fired rule gives a next state and transition that is added
to NextStates and NextTrans accordingly. At lines 19-22, the turn is passed to the other agent, and NewStates,, States,,
and Trans, updated. At line 23, the terminal states are identified from the transitions. At line 24, the MarkTrans function
returns the union of the transitions for each agent but for each 0 = (x, S1, P, S2) € Term, o is changed to (0, S1, P, S2) in
order to mark it as a terminal state in the FSM. At line 25, the MarkStates function returns the union of the states for each agent
but for each o = (z, S1, P, S2) € Term, o is changed to (0, S1, P, S2), and similarly at line 26, MarkTerm function returns
the set Cllose but with each state being of the form (0, S1, P, S2).

151



T4 T4
T1
start T2
e = . . @ .

);&(b),n(a),n(b)},{} {n(c), e(c,a)})

2

o
S
“l—‘
—~
(0}
—
[V
W]
Z

)
wt
allaggqg
PN
—~
LAY
O
A~~~
p» OwP
S N

Q Q9
0
1l
AAQ
\'Ov[\)
————
BB o
—
[0):]
N o
P,

[N
RaNal

0g 09
NN

o o
NN
e B~
i

Figure 4: The FSM for Example 8

o1[1]
1
o2(1]

[—Iﬁ
o1[1] o3[1] o4[1]
1 1 1

0’2[1} 0'5[1] 0'6[1] 0'3[0]

o2(1]
l l l l

0’3[1} 0’7[1]

o7[1] o5[0]

b) (©)

Figure 5: Minimax trees for Examples 7 and 8. Since each terminal state in an FSM is a copy of the previous two states, we

save space by not giving these copies in the search tree. The minimax value for a node is given in the square brackets within the
node. (a) is for Example 5, (b) is for Example 6 and (c) is for Example 8

152



the leaf. Another simple option is a fixed-depth end func-
tion which has a specified maximum depth for any branch of
the search tree. More advanced options for end functions in-
clude concession end function when an agent has a loosing
position, and it knows that it cannot add anything to change
the position, then it concedes.

There is also a range of options for the utility function.
In the examples, we have used grounded semantics to de-
termine whether a goal argument is in the grounded exten-
sion of the argument graph specified in the terminal public
state. A refinement is the weighted utility function which
weights the utility assigned by the grounded utility function
by 1/d where d is the depth of the leaf. The aim of this is to
favour shorter dialogues. Further definitions for utility func-
tions arise from using other semantics such as preferred or
stable semantics and richer formalisms such as valued-based
argumentation (Bench-Capon 2003).

Implementation study

In this study, we have implemented three algorithms: The
generator algorithm for taking an initial state and a set of ac-
tion rules for each agent, and outputting the fabricated FSM;
A breadth-first search algorithm for taking an FSM and a
choice of termination function, and outputting a search tree;
And a minimax assignment algorithm for taking a search
tree and a choice of utility function, and outputting a mini-
max tree. These implemented algorithms were used together
so that given an initial state and rules for each agent, the
overall output was a minimax tree. This could then be used
to determine whether or not agent 1 had a winning strategy
(given the initial state). The implementation incorporates the
exhaustive termination function, and two choices of utility
function (grounded and weighted grounded).

The implementation is in Python 2.6 and was run on a
Windows XP PC with Intel Core 2 Duo CPU E8500 at 3.16
GHz and 3.25 GB RAM. For the evaluation, we also imple-
mented an algorithm for generating tests inputs. Each test
input comprised an initial state, and a set of action rules
for each agent. Each initial state involved 20 arguments ran-
domly assigned to the two agents and up to 20 attacks per
agent. For each attack in an agent’s private state, the attacker
is an argument in the agent’s private state, and the attacked
argument is an argument in the other agent’s private state.
The results are presented in Table 1.

As can be seen from these results, up to about 15 at-
tacks per agent, the implementation runs in negligible time.
However, above 15 attacks per agent, the time did increase
markedly, and a substantially minority of these timed out. To
indicate the size of the larger FSMs, consider the last line of
the table where the runs had an average of 18.02 attacks per
agent: For this set, 8 out of 100 runs had 80+ nodes in the
FSM. Of these 8 runs, the number of states was between 80
and 163, and the number of transitions was between 223 and
514.

The algorithm is somewhat naive in a number of respects.
For instance, the algorithm for finding the grounded exten-
sion considers every subset of the set of arguments (i.e. 22°
sets). Clearly more efficient algorithms can be developed or
calculation subcontracted to a system such as ASPARTIX

153

(Egly, Gaggl, and Woltran 2008). Nonetheless, there are in-
teresting applications where 20 arguments would be a rea-
sonable, and so we have shown that we can analyse such sit-
uations successfully using the Minimax strategy, and with
some refinement of the algorithms, it is likely that larger
FSMs can be constructed and analysed.

Since the main aim was to show that FSMs can be gener-
ated and analysed, we only used a simple kind of argumenta-
tion dialogue. It is straightforward to develop alternative and
more complex scenarios, using the language of propositional
executable logic e.g. for capturing beliefs, goals, uncertainty
etc, for specifying richer behaviour.

Discussion

In this paper, we have investigated a uniform way of present-
ing and executing dialogical argumentation systems based
on a propositional executable logic. As a result different di-
alogical argumentation systems can be compared and im-
plemented more easily than before. The implementation is
generic in that any action rules and initial states can be used
to generate the FSM and properties of them can be identified
empirically.

In the examples in this paper, we have assumed that when
an agent presents an argument, the only reaction the other
agent can have is to present a counterargument (if it has one)
from a set that is fixed in advance of the dialogue. Yet when
agents argue, one agent can reveal information that can be
used by the other agent to create new arguments. We illus-
trate this in the context of logical arguments. Here, we as-
sume that each argument is a tuple (®, 1)) where ® is a set
of formulae that entails a formula 4. In Figure 6a, we see
an argument graph instantiated with logical arguments. Sup-
pose arguments A1, Az and A, are presented by agent 1, and
arguments Ao, A and Ag are presented by agent 2. Since
agent 1 is being exhaustive in the arguments it presents,
agent 2 can get a formula that it can use to create a coun-
terargument. In Figure 6b, agent 1 is selective in the argu-
ments it presents, and as a result, agent 2 lacks a formula
in order to construct the counterarguments it needs. We can
model this argumentation in propositional executable logic,
generate the corresponding FSM, and provide an analysis in
terms of minimax strategy that would ensure that agent 1
would provide A, and not As, thereby ensuring that it be-
haves more intelligently. We can capture each of these argu-
ments as a proposition and use the minimax strategy in our
implementation to obtain the tree in Figure 6b.

General frameworks for dialogue games have been pro-
posed (Maudet and Evrard 1998; McBurney and Parsons
2002). They offer insights on dialogical argumentation sys-
tems, but they do not provide sufficient detail to formally
analyse or implement specific systems. A more detailed
framework, that is based on situation calculus, has been pro-
posed by Brewka (Brewka 2001), though the emphasis is
on modelling the protocols for the moves made in dialogi-
cal argumentation based on the public state rather than on
strategies based on the private states of the agents.

The minimax strategy has been considered elsewhere in
models of argumentation (such as for determining argument
strength (Matt and Toni 2008) and for marking strategies for



Average no. | Average no. Average no. | Average no. | Average | Median | No. of runs
attacks | FSM nodes | FSM transitions tree nodes | runtime | runtime timed out

9.64 6.29 9.59 31.43 0.27 0.18 0

11.47 16.01 39.48 1049.14 6.75 0.18 1

13.29 12.03 27.74 973.84 9.09 0.18 2

14.96 12.50 27.77 668.65 6.41 0.19 13

16.98 19.81 49.96 2229.64 25.09 0.20 19

18.02 19.01 47.81 2992.24 4343 0.23 30

Table 1: The results from the implementation study. Each row is produced from 100 runs. Each run (i.e. a single initial state and
action rules for each agent) was timed. If the time exceeded 100 seconds for the generator algorithm, the run was terminated

Ay = {b,b— a},a)

|42 = ({e.c— -0}, 0) |
.

Ay = ({b,b—a},a)
1

[

As = ({d,e,d N e — —c}, —c)

1
As = ({g,9 — —c},—0)

Az = ({¢,¢ — —b}, —b) ‘

T T
45 = ({d.d = e} ) [40=(dd= g} -0} [Ai=Ug9—~c}. 9
(@ (b)

Figure 6: Consider the following knowledgebases for each agent Ay = {b,d,e,g,b — a,d Ne — —¢,g — —c} and Ay =
{¢,¢c — —b,d — —e,d — —g}. (a) Agent 1 is exhaustive in the arguments posited, thereby allowing agent 2 to construct
arguments that cause the root to be defeated. (b)Agent is selective in the arguments posited, thereby ensuring that the root is

undefeated.

dialectical trees (Rotstein, Moguillansky, and Simari 2009),
for deciding on utterances in a specific dialogical argumen-
tation (Oren and Norman 2009)). However, this paper ap-
pears to be the first empirical study of using the minimax
strategy in dialogical argumentation.

In future work, we will extend the analytical techniques
for imperfect games where only a partial search tree is con-
structed before the utility function is applied, and extend
the representation with weights on transitions (e.g. weights
based on tropical semirings to capture probabilistic transi-
tions) to explore the choices of transition based on prefer-
ence or uncertainty.

References

Amgoud, L.; Maudet, N.; and Parsons, S. 2000. Arguments,
dialogue and negotiation. In European Conf. on Artificial
Intelligence (ECAI 2000), 338-342. 10S Press.
Bench-Capon, T. 2003. Persuasion in practical argument
using value based argumentation frameworks. Journal of
Logic and Computation 13(3):429-448.

Besnard, P., and Hunter, A. 2008. Elements of Argumenta-
tion. MIT Press.

Black, E., and Hunter, A. 2009. An inquiry dialogue system.
Autonomous Agents and Multi-Agent Systems 19(2):173—
209.

Black, E., and Hunter, A. 2012. Executable logic for dialog-
ical argumentation. In European Conf. on Artificial Intelli-
gence (ECAI’'12), 15-20. 10S Press.

Brewka, G. 2001. Dynamic argument systems: A formal

model of argumentation processes based on situation calcu-
lus. J. Logic & Comp. 11(2):257-282.

Dignum, F.; Dunin-Keplicz, B.; and Verbrugge, R. 2000.
Dialogue in team formation. In Issues in Agent Communi-
cation. Springer. 264-280.

Dung, P. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artificial Intelligence
77(2):321-357.

Egly, U.; Gaggl, S.; and Woltran, S. 2008. Aspartix: Imple-
menting argumentation frameworks using answer-set pro-
gramming. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Logic Programming (ICLP’08),, vol-
ume 5366 of LNCS, 734—738. Springer.

Fan, X., and Toni, F. 2011. Assumption-based argumenta-
tion dialogues. In Proceedings of International Joint Con-
ference on Artificial Intelligence (IJCAI'11), 198-203.

Hamblin, C. 1971. Mathematical models of dialogue. Theo-
ria 37:567-583.

Mackenzie, J. 1979. Question begging in non-cumulative
systems. Journal of Philosophical Logic 8:117-133.

Matt, P., and Toni, F. 2008. A game-theoretic measure of
argument strength for abstract argumentation. In Logics in
A.L, volume 5293 of LNCS, 285-297.

Maudet, N., and Evrard, F. 1998. A generic framework
for dialogue game implementation. In Proc. 2nd Workshop
on Formal Semantics & Pragmatics of Dialogue, 185198.
University of Twente.

McBurney, P., and Parsons, S. 2002. Games that agents play:

154



A formal framework for dialogues between autonomous
agents.  Journal of Logic, Language and Information
11:315-334.

McBurney, P.; van Eijk, R.; Parsons, S.; and Amgoud, L.
2003. A dialogue-game protocol for agent purchase negoti-
ations. Journal of Autonomous Agents and Multi-Agent Sys-
tems 7:235-273.

Oren, N., and Norman, T. 2009. Arguing using opponent
models. In Argumentation in Multi-agent Systems, volume
6057 of LNCS, 160-174.

Parsons, S.; Wooldridge, M.; and Amgoud, L. 2003. Prop-
erties and complexity of some formal inter-agent dialogues.
J. of Logic and Comp. 13(3):347-376.

Prakken, H. 2005. Coherence and flexibility in dia-
logue games for argumentation. J. of Logic and Comp.
15(6):1009-1040.

Rotstein, N.; Moguillansky, M.; and Simari, G. 2009. Di-
alectical abstract argumentation. In Proceedings of 1J-
CAI’09, 898-903.

Walton, D., and Krabbe, E. 1995. Commitment in Dialogue:
Basic Concepts of Interpersonal Reasoning. SUNY Press.
Wooldridge, M.; McBurney, P.; and Parsons, S. 2005. On the

meta-logic of arguments. In Argumentatoin in Multi-agent
Systems, volume 4049 of LNCS, 42-56. Springer.

155



Abduction in Argumentation: Dialogical Proof Procedures and Instantiation
Richard Booth! and Dov Gabbay? and Souhila Kaci?

Tjitze Rienstra’® and Leendert van der Torre!

!University of Luxembourg
Computer Science and Communication
6 rue Richard Coudenhove-Kalergi, Luxembourg

richard.booth/tjitze.rienstra/leon.vandertorre @uni.lu

Abstract

We develop a model of abduction in abstract argu-
mentation, where changes to an argumentation frame-
work act as hypotheses to explain the support of an ob-
servation. We present dialogical proof theories for the
main decision problems (i.e., finding hypotheses that
explain skeptical/credulous support) and we show that
our model can be instantiated on the basis of abductive
logic programs.

Introduction

In the context of abstract argumentation (Dung 1995), ab-
duction can be seen as the problem of finding changes to an
argumentation framework (or AF for short) with the goal of
explaining observations that can be justified by making argu-
ments accepted. The general problem of whether and how an
AF can be changed with the goal of changing the status of ar-
guments has been studied by Baumann and Brewka (2010),
who called it the enforcing problem, as well as Bisquert et
al. (2013), Perotti et al. (2011) and Kontarinis et al. (2013).
None of these works, however, made any explicit link with
abduction. Sakama (2013), on the other hand, explicitly fo-
cused on abduction, and presented a model in which addi-
tions as well as removals of arguments from an abstract AF
act as explanations for the observation that an argument is
accepted or rejected.

While Sakama did address computation in his framework,
his method was based on translating abstract AFs into logic
programs. Proof theories in argumentation are, however, of-
ten formulated as dialogical proof theories, which aim at re-
lating the problem they address with stereotypical patterns
found in real world dialogue. For example, proof theories
for skeptical/credulous acceptance have been modelled as
dialogues in which a proponent persuades an opponent to
accept the necessity/possibility of an argument (Modgil and
Caminada 2009), while credulous acceptance has also been
related to Socratic style dialogue (Caminada 2010). Thus,
the question of how decision problems in abduction in argu-
mentation can similarly be modelled as dialogues remains
open.

Furthermore, argumentation is often used as an abstract
model for non-monotonic reasoning formalisms. For ex-
ample, an instantiated AF can be generated on the basis
of a logic program. Consequences can then be computed

2King’s College London

Deptartment of Computer Science

Strand, London WC2R 2LS, UK
dov.gabbay @kcl.ac.uk

156

3University of Montpellier 2
LIRMM
161 rue Ada, Montpellier, France

souhila.kaci@lirmm.fr

by looking at the extensions of the instantiated AF (Dung
1995). In the context of abduction, one may ask whether a
model of abduction in argumentation can similarly be seen
as an abstraction of abductive logic programming. Sakama,
however, did not explore the instantiation of his model,
meaning that this question too remains open.

This brings us to the contribution of this paper. We first
present a model of abduction in abstract argumentation,
based on the notion of an AAF (abductive argumentation
framework) that encodes different possible changes to an
AF, each of which may act as a hypothesis to explain an
observation that can be justified by making an argument ac-
cepted. We then do two things:

1. We present sound and complete dialogical proof proce-
dures for the main decision problems, i.e., finding hy-
potheses that explain skeptical/credulous acceptance of
arguments in support of an observation. These proof pro-
cedures show that the problem of abduction is related to
an extended form of persuasion, where the proponent uses
hypothetical moves to persuade the opponent.

2. We show that AAFs can be instantiated by ALPs (abduc-

tive logic programs) in such a way that the hypotheses
generated for an observation by the ALP can be computed
by translating the ALP into an AAF. The type of ALPs we
focus on are based on Sakama and Inoue’s model of ex-
tended abduction (1995; 1999), in which hypotheses have
a positive as well as a negative element (i.e., facts added
to the logic program as well as facts removed from it).

In sum, our contribution is a model of abduction in argu-
mentation with dialogical proof theories for the main deci-
sion problems, which can be seen as an abstraction of ab-
duction in logic programming.

The overview of this paper is as follows. After introduc-
ing the necessary preliminaries we present in section Abduc-
tive AFs our model of abduction in argumentation. In sec-
tion Explanation dialogues we present dialogical proof pro-
cedures for the main decision problems (explaining skepti-
cal/credulous acceptance). In section Abduction in logic pro-
gramming we show that our model of abduction can be used
to instantiate abduction in logic programming. We conclude
with the two sections Related work and Conclusions and fu-
ture work.



Preliminaries

An argumentation framework consists of a set A of argu-
ments and a binary attack relation ~» over A (Dung 1995).
We assume in this paper that A is a finite subset of a fixed
set U called the universe of arguments.

Definition 1. Given a countably infinite setU called the uni-
verse of arguments, an argumentation framework (AF, for
short) is a pair F = (A, ~) where A is a finite subset of
U and ~~ a binary relation over A. If a ~ b we say that a
attacks b. F denotes the set of all AFs.

Extensions are sets of arguments that represent different
viewpoints on the acceptance of the arguments of an AF.
A semantics is a method to select extensions that qualify
as somehow justifiable. We focus on one of the most basic
ones, namely the complete semantics (Dung 1995).

Definition 2. Let F' = (A, ~~). An extension of F is a set
E C A. An extension E is conflict-free iff for no a,b €
E it holds that a ~ b. An argument a € A is defended
in F' by E iff for all b such that b ~ a there isa c € E
such that ¢ ~> b. Given an extension E, we define Def(E)
by Defr(E) = {a € A | E defends ain F}. An extension
E is admissible iff E is conflict-free and E C Defp(E),
and complete iff E is conflict-free and E = Defr(E). The
set of complete extension of F will be denoted by Co(F).
Furthermore, the grounded extension (denoted by Gr(F'))
is the unique minimal (w.r.t. C) complete extension of F.

An argument is said to be skeptically (resp. credulously)
accepted w.r.t. the complete semantics iff it is a member of
all (resp. some) complete extensions. Note that the set of
skeptically accepted arguments coincides with the grounded
extension. Furthermore, an argument is a member of a com-
plete extension iff it is a member of a preferred extension,
which is a maximal (w.r.t. C) complete extension. Conse-
quently, credulous acceptance under the preferred semantics
(as studied e.g. in (Modgil and Caminada 2009)) coincides
with credulous acceptance under the complete semantics.

Abductive AFs

Abduction is a form of reasoning that goes from an obser-
vation to a hypothesis. We assume that an observation trans-
lates into a set X C A. Intuitively, X is a set of arguments
that each individually support the observation. If at least one
argument x € X 1is skeptically (resp. credulously) accepted
w.r.t. the complete semantics, we say that the observation X
is skeptically (resp. credulously) supported.

Definition 3. Given an AF F = (A,~>), an observation
X C A is skeptically (resp. credulously) supported iff for
all (resp. some) E € Co(F) it holds that x € E for some
z e X.

The following proposition implies that checking whether
an observation X is skeptically supported can be done by
checking whether an individual argument x € X is in the
grounded extension.

Proposition 1. Let F' = (A,~») and X C A. It holds that
F skeptically supports X iff v € Gr(F) for some x € X.

157

@ @
ORORONOROS0,

©
Gy

OO,

©

F Go G3

Figure 1: The AFs of the AAF (F, {F, Gy, G2, Gs}).

Proof of proposition 1. The if direction is immediate. For
the only if direction, assume F' = (A, ~») explains skep-
tical support for X. Then for every complete extension
of F, there is an x € X s.t. x € F. Define G by G =
(AU {a,b},~ U{(z,a) | z € X} U {(a,b)}), where
a,b ¢ A. Then for every complete extension E of G it holds
that b € FE, hence b € Gr(G). Thus z € Gr(G) for some
x € X.But Gr(F) = Gr(G) N A, hence z € Gr(F) for
some r € X. O

It may be that an AF F' does not skeptically or credu-
lously support an observation X. Abduction then amounts
to finding a change to F" so that X is supported. We use the
following definition of an AAF (Abductive AF) to capture
the changes w.r.t. ' (each change represented by an AF G
called an abducible AF) that an agent considers. We assume
that F itself is also an abducible AF, namely one that cap-
tures the case where no change is necessary. Other abducible
AFs may be formed by addition of arguments and attacks to
F, removal of arguments and attacks from F', or a combina-
tion of both.

Definition 4. An abductive AF is a pair M = (F, I) where
Fisan AF and I C F a set of AFs called abducible such
that F € I.

Given an AAF (F,I) and observation X, skepti-
cal/credulous support for X can be explained by the change
from F to some G € I that skeptically/credulously supports
X. In this case we say that G explains skeptical/credulous
support for X. The arguments/attacks added to and absent
from G can be seen as the actual explanation.

Definition 5. Let M = (F, I) be an AAF. An abducible AF
G € I explains skeptical (resp. credulous) support for an

observation X iff G skeptically (resp. credulously) supports
X.

One can focus on explanations satisfying additional cri-
teria, such as minimality w.r.t. the added or removed argu-
ments/attacks. We leave the formal treatment of such criteria
for future work.

Example 1. Ler M (F,{F,G1,G2,G3}), where
F,G1, Gy and G5 are as defined in figure 1. Let X = {b} be
an observation. It holds that G, and G3 both explain skepti-

cal support for X, while G5 only explains credulous support
for X.

Remark 1. The main difference between Sakama’s (2013)
model of abduction in abstract argumentation and the one
presented here, is that he takes an explanation to be a set
of independently selectable abducible arguments, while we



take it to be a change to the AF that is applied as a whole.
In section we show that this is necessary when applying the
abstract model in an instantiated setting.

Explanation dialogues

In this section we present methods to determine, given an
AAF M = (F,I) (for F = (A,~>)) whether an abducible
AF G € I explains credulous or skeptical support for an
observation X C A. We build on ideas behind the grounded
and preferred games, which are dialogical procedures that
determine skeptical or credulous acceptance of an argu-
ment (Modgil and Caminada 2009). To sketch the idea be-
hind these games (for a detailed discussion cf. (Modgil and
Caminada 2009)): two imaginary players (PRO and OPP)
take alternating turns in putting forward arguments accord-
ing to a set of rules, PRO either as an initial claim or in
defence against OPP’s attacks, while OPP initiates different
disputes by attacking the arguments put forward by PRO.
Skeptical or credulous acceptance is proven if PRO can win
the game by ending every dispute in its favour according to
a “last-word” principle.

Our method adapts this idea so that the moves made by
PRO are essentially hypothetical moves. That is, to defend
the initial claim (i.e., to explain an observation) PRO can put
forward, by way of hypothesis, any attack x ~» y present in
some G € I. This marks a choice of PRO to focus only on
those abducible AFs in which the attack = ~» y is present.
Similarly, PRO can reply to an attack = ~~ y, put forward
by OPP, with the claim that this attack is invalid, marking
the choice of PRO to focus only on the abducible AFs in
which the attack x ~~ y is not present. Thus, each move by
PRO narrows down the set of abducible AFs in which all of
PRO’s moves are valid. The objective is to end the dialogue
with a non-empty set of abducible AFs. Such a dialogue rep-
resents a proof that these abducible AFs explain skeptical or
credulous support for the observation.

Alternatively, such dialogues can be seen as games that
determine skeptical/credulous support of an observation by
an AF that are played simultaneously over all abducible AFs
in the AAF. In this view, the objective is to end the dialogue
in such a way that it represents a proof for at least one ab-
ducible AF. Indeed, in the case where M = (F,{F'}), our
method reduces simply to a proof theory for skeptical or
credulous support of an observation by F'.

Before we move on we need to introduce some notation.

Definition 6. Given a set I of AFs we define:

Ar=U{A| (A,~) e I},

1= U{w| (4, ~) € I},

If"*’y = {(A,W) € I | z,y € A,Cﬂ ~ y}:
Ix={(A,~)el| X C A}

We model dialogues as sequences of moves, each move
being of a certain type, and made either by PRO or OPP.

Definition 7. Let M = (F,I) be an AAF. A dialogue based
on M is a sequence S = (myq,...,my,), where each m; is
either:

e an OPP attack “OPP: x ~~ y”, where x ~> v,

e a hypothetical PRO defence “PRO:y ~~* z”, where
Yy~17z,

5

e a hypothetical PRO negation “PRO:y ~»— x”, where
Yy~17z,
e g conceding move “OPP: ok”,

e ¢ success claim move “PRO: win”.
We denote by S - S’ the concatenation of S and S'.

Intuitively, a move OPP:y ~- x represents an attack
by OPP on the argument = by putting forward the attacker
y. A hypothetical PRO defence PRO: y ~»T x represents
a defence by PRO who puts forward y to attack the ar-
gument z put forward by OPP. A hypothetical PRO nega-
tion PRO: y ~~~ z, on the other hand, represents a claim
by PRO that the attack y ~~ x is not a valid attack. The
conceding move OPP: ok is made whenever OPP runs out
of possibilities to attack a given argument, while the move
PRO: win is made when PRO is able to claim success.

In the following sections we specify how dialogues are
structured. Before doing so, we introduce some notation that
we use to keep track of the abducible AFs on which PRO
chooses to focus in a dialogue D. We call this set the in-
formation state of D after a given move. While it initially
contains all abducible AFs in M, it is restricted when PRO
makes a move PRO: 2 ~T y or PRO: z ~~~ .

Definition 8. Let M = (F,I) be an AAF. Let D =
(mq,...,my) be a dialogue based on M. We denote the in-
formation state in D after move ¢ by J(D, 1), which is de-
fined recursively by:

I ifi =0,
J(D,i—1)N1Iyy ifm; =PRO: x ~T y,
J(D,i— 1)\ Iywy ifm; =PRO:x ~~" y,
J(D,i—1) otherwise.

We denote by J(D) the information state J(D,n).

J(D,i) =

Skeptical explanation dialogues

We define the rules of a dialogue using a set of production
rules that recursively define the set of sequences constitut-
ing dialogues. (The same methodology was used by Booth
et al. (2013) in defining a dialogical proof theory related to
preference-based argumentation.) In a skeptical explanation
dialogue for an observation X, an initial argument z € X is
challenged by the opponent, who puts forward all possible
attacks OPP: y ~» z present in any of the abducible AFs
present in the AAF, followed by OPP: ok. We call this a
skeptical OPP reply to x. For each move OPP: y ~» x, PRO
responds with a skeptical PRO reply to y ~~» x, which is ei-
ther a hypothetical defence PRO: z ~»T y (in turn followed
by a skeptical OPP reply to z) or a hypothetical negation
PRO: y ~»~ z. Formally:

Definition 9 (Skeptical explanation dialogue). Let F' =

(A,~), M= (F,I)and x € A.

o A skeptical OPP reply to = is a finite sequence
(OPP: y; ~> z)-S1-...-(OPP: y, ~» x)-S,, - (OPP: ok)
where {y1,...,yn} = {y | y ~1 =} and each S; is a
skeptical PRO reply to y; ~ x.



o A skeptical PRO reply to y ~» x is either: (1) A sequence
(PRO: z ~7 y)-S where z ~1 y and where S is a skepti-
cal OPP reply to z, or (2) The sequence (PRO: y ~~ x).

Given an observation X C A we say that M generates
the skeptical explanation dialogue D for X iff D = S -
(PRO: win), where S is a skeptical OPP reply to some
reX.

The following theorem establishes soundness and com-
pleteness.

Theorem 1. Let M = (F, I) be an AAF where F = (A, ~).
Let X C Aand G € I. It holds that G explains skeptical
support for X iff M generates a skeptical explanation dia-
logue D for X such that G € J(D).

The proof requires the following definitions and results.

Definition 10. (Dung 1995) Given an AF F = (A,~>)
the characteristic function Cr : 24 — 24 is defined by
Cp(S) ={x € A| S defends x}.

Lemma 1. (Dung 1995) Given an AF F', Gr(F) coincides
with the least fixed point of Cp.

Definition 11. Given an AF F = (A, ~) we define the de-
gree Degp(x) of an argument x € Gr(F) to be the smallest
positive integer n s.t. € C(0).

Lemma 2. Given an AF F = (A,~) and x € Gr(F'). For
everyy € A sty ~ x there is a z € Gr(F) such that
z ~> yand Degp(z) < Degp(z).

Proof of lemma 2. Let F = (A,~),z € Gr(F)andy € A
an argument s.t. y ~» x. Definition 2 implies that there is a
z € Gr(F) s.t. z ~» y. Definition 10 furthermore implies
that for every X C A, if z € Cp(X) then z € X. Defini-
tion 11 now implies that Degp(z) > Degr(z). O

Proof of theorem 1. Let M = (F, I) be an AAF where F' =
(A,~).Let X C Aand G € I.

Only if: Assume that G explains skeptical support for X.
Proposition 1 implies that there is an x € X such that x €
Gr(F'). We prove that M generates a skeptical OPP reply D
to x such that G € J(D). We prove this by strong induction
on Degg(x).

Let the induction hypothesis H (i) stand for: If © €
Gr(Q) and Degg(x) = i then there is a skeptical OPP
reply D to x s.t. G € J(D).

Assume H (7) holds for all 0 < ¢ < k. We prove H (k).
Assume = € Gr(G) and Degg(x) = k. We construct an
OPP reply D to z such that G € J(D). Given an argu-
ment y € Ag sit. y ~¢ x we denote by Z(y) the set
{z | z ~¢ v,z € Gr(G)}. Definition 2 implies that for
every y € Ag s.t.y ~ x, Z(y) # (. Furthermore lemma 2
implies that for every y € Ag s.t. y ~» x and for every
z € Z(y) it holds that Degg(z) < k. We can now define D
by D = Dy - Dy - (OPP: ok) where: D; = (OPP: y; ~~ x)-
(PRO:y; ~>~ z)-...- (OPP: y,, ~» x) - (PRO: ), ~~ )
where {y1,...,yn} = {y € A; | y ~1 2,y ¢ z}
and Dy = (OPP:y] ~~ z) - (PRO:2; ~T 91) - D,, -
... (OPP:yl, ~> z)- (PRO: 2, ~T 4yl ) - D, where
Wi umt = {v € A1 | y ~¢ =}, for each j €

159

{1,...,m}, z; € Z(y;) and D, is a skeptical OPP re-
ply to z; (because Degg(z;) < k and H (i) holds for all
0 < @ < k, this skeptical OPP reply exists). It holds that
D is a skeptical OPP reply to x. Furthermore it holds that
G € J(D;) and G € J(D3) and hence G € J(D).

By the principle of strong induction it follows that there
exists a skeptical OPP reply D to x such that G € J(D).
Hence M generates a skeptical explanation dialogue D -
(PRO: win) for X such that G € J(D - (PRO: win)).

If: We prove that if D is a skeptical OPP reply to some
x € X such that G € J(D) then x € Gr(G). We prove this
by induction on the structure of D.

Assume that for every proper subsequence D’ of D that
is a skeptical OPP reply to an argument z it holds that z €
Gr(G) and G € J(D). (The base case is the special case
where no proper subsequence of D is a skeptical OPP reply.)
We prove that x € Gr(G). We write D as (OPP:y; ~
z)-Dq-...-(OPP: y,, ~» x)-D,,-(OPP: ok). Then every D;
(for 1 < i < n)iseither of the form PRO: y; ~~— x or of the
form PRO: z ~* y; - D', where D’ is a proper subsequence
of D that is a skeptical OPP reply to some argument z and
G € J(D'). Thus, forevery y € Ay s.t. y ~>1 @ it holds that
either y ¥»¢ z, or y is attacked by some z s.t. z € Gr(G).
It follows that « € Gr(G).

By the principle of induction it follows that if D is a
skeptical OPP reply to some x € X such that G € J(D)
then z € Gr(G). Thus, if M generates a skeptical ex-
planation dialogue D - (PRO: win) for X such that G €
J(D - (PRO: win)) then D is a skeptical OPP reply to some
2z € X and therefore it holds that z € Gr(G) and finally
that G explains skeptical support for X. O

Example 2. The listing below shows a skeptical explanation
dialogue D = {m, ..., mg} for the observation {b} that is
generated by the AAF defined in example 1.

1 OPP: c ~ b {F,Gl,GQ,Gg}
2 PRO: e st c {Gl, Gg}

3 OPP: ok {Gl,Gg}

4 OPP: a ~~ b {Gl,Gd}

5 PRO: e ~T a | {G1}

6 OPP: ok {G1}

7 | OPP:ok {G1}

8 | PRO: win {G1}

The sequence (my, . .., mz) is a skeptical OPP reply to b,
in which OPP puts forward the two attacks ¢ ~> b and a ~
b. PRO defends b from both c and a by putting forward the
attacker e (move 2 and 5). This leads to the focus first on the
abducible AFs G, G3 (in which the attack e ~~ c exists) and
then on G (in which the attack e ~~ a exists). This proves
that G explains skeptical support for the observation {b}.
Another dialogue is shown below.



1 OPP:c~ b {F,Gl,GQ,Gg}
2 PRO: e st C {Gl, G3}

3 OPP: ok {Gl,Gg}

4 OPP:a ~ b {Gl,Gg}

5| PRO:a~"b| {Gs}

6 | OPP:ok {G3}

7 | PRO: win {G3}

Here, PRO defends b from c by using the argument e, but
defends b from a by claiming that the attack a ~> b is invalid.
This leads to the focus first on the abducible AFs G1,G3 (in
which the attack e ~ c exists) and then on G3 (in which the
attack a ~~ b does not exist). This dialogue proves that G3
explains skeptical support for {b}.

Credulous explanation dialogues

The definition of a credulous explanation dialogue is similar
to that of a skeptical one. The difference lies in what consti-
tutes an acceptable defence. To show that an argument x is
skeptically accepted,  must be defended from its attackers
by arguments other than z itself. For credulous acceptance,
however, it suffices to show that x is a member of an admis-
sible set, and hence x may be defended from its attackers by
any argument, including z itself. To achieve this we need to
keep track of the arguments that are, according to the moves
made by PRO, accepted. Once an argument x is accepted,
PRO does not need to defend x again, if this argument is put
forward a second time.

Formally a credulous OPP reply to (z, Z) (for some x €
Ag and set Z C Aj used to keep track of accepted argu-
ments) consists of all possible attacks OPP:y ~~» x on z,
followed by OPP: ok when all attacks have been put for-
ward. For each move OPP: y ~» z, PRO responds either by
putting forward a hypothetical defence PRO: 2z ~7 y which
(this time only if z ¢ Z) is followed by a credulous OPP re-
ply to (z,Z U {z}), or by putting forward a hypothetical
negation PRO: y ~~~ x. We call this response a credulous
PRO reply to (y ~ 2, Z). A credulous explanation dialogue
for a set X consists of a credulous OPP reply to (x, {z}) for
some xz € X, followed by a success claim PRO: win.

In addition, arguments put forward by PRO in defence
of the observation may not conflict. Such a conflict occurs
when OPP puts forward OPP: z ~» y and OPP: y ~~ z (in-
dicating that both y and z are accepted) while PRO does not
put forward PRO: y ~~~ 2. If this situation does not occur
we say that the dialogue is conflict-free.

Definition 12 (Credulous explanation dialogue). Let F' =
(A, ~), M= (F,I),z€ Aand Z C A.

e A credulous OPP reply to (x,Z) is a finite sequence
(OPP: y; ~ x)-Sy-...-(OPP: y,, ~ x)-S,, - (OPP: ok)
where {y1,...,yn} = {y | v ~»1 =} and each S; is a
credulous PRO reply to (y; ~ x, 7).

e A credulous PRO reply to (y ~ x,Z) is either: (1) a
sequence (PRO: z ~v1 y) - S suchthat z ~1 vy, 2 € Z
and S is a credulous OPP reply to (z,Z U {z}), (2) a
sequence (PRO: z ~7T y) such that z ~; y and z € Z,
or (3) the sequence (PRO: y ~~ ).

Given a set X C A we say that M generates the credulous
explanation dialogue D for X iff D = S-(PRO: win), where
S is a credulous OPP reply to (v, {z}) for some x € X. We
say that D is conflict-free iff for all x,vy, z € Aj it holds that
if D contains the moves OPP: x ~ y and OPP: y ~~ z then
it contains the move PRO: y ~~~ z.

The following theorem establishes soundness and com-
pleteness.

Theorem 2. Let M = (F, I) be an AAF where F' = (A, ~>).
Let X C Aand G € I. It holds that G explains credulous
support for X iff M generates a conflict-free credulous ex-
planation dialogue D for X such that G € J(D).

Proof of theorem 2. Let M = (F, I) be an AAF where F' =
(A,~).Let X C Aand G € I.

Only if: Assume that G explains credulous support for X.
Then there is an admissible set £ of G such that a € E for
some ¢ € X. Based on F and a we construct a conflict-
free credulous explanation dialogue D for X such that G €
J(D). Given an argument x € E we define the credulous
OPP reply D(x, Z) recursively by D(z, Z) = (OPP: y; ~~
z)-S1-...- (OPP:y, ~> z) - S, - (OPP: 0k)

where {y1,...,yn} = {y | y ~1 z} and each S; is a
credulous PRO reply defined by the following cases:

e Case 1: y; ~»¢ x. Let z be an argument such that z € F
and z ~»¢g y;. (Admissibility of E guarantees the exis-
tence of z.)

— Case 1.1: 2 ¢ Z: Then S; = PRO: z ~~T y;- D(2, ZU
{z}).
— Case 1.2: z € Z: Then S; = PRO: z ~T y;.
e Case 2: y; /¢ =: Then S; = PRO: y; ~~~ .

Let D = (my,...,my,) = D(a,{a}) - (PRO: win). It can
be checked that D is a credulous explanation dialogue for
{a}. We need to prove that:

e G € J(D). This follows from the fact that for all i €
{1,...,n}, m; = PRO:x ~~ yonly if z ¢ y and
m; = PRO:z ~T yonlyifx ~¢g v.

e D is finite. This follows from the fact that for every credu-
lous OPP reply D(z, Z) that is a subsequence of a credu-
lous OPP reply D(y, Z') it holds that Z is a strict superset
of Z', together with the fact that Z C A and Ay is finite.

e D is conflict-free. We prove this by contradiction.
Thus we assume that for some x,y, 2z there are moves
OPP: z ~» y and OPP: y ~~ z and no move PRO: y ~~~
z. By the construction of D it follows that y,z € F.
Furthermore if y ¢ z then by the construction of D,
the move OPP:y ~~ z is followed by PRO:y ~»~ z,
which is a contradiction. Hence y ~»¢ z. Thus F is not
a conflict-free set of (7, contradicting our assumption that
E is an admissible set of G. Hence D is conflict-free.

Hence there is a conflict-free credulous explanation dia-
logue D for X such that G € J(D).

If: Let D be a conflict-free credulous explanation dialogue
for an observation X such that G € J(D). We prove that
there is an admissible set ' of G s.t. a € E for some a € X.



We define E by E = {a} U{z | PRO: 2z ~T z € D}. To
prove that F is an admissible set of G we show that (1) for
every x € E and every y € A such that y ~»¢ z, there is a
z € F such that y ~~¢ z and (2) that E is a conflict-free set
of G.

1. Let z € E. Then either x = a or there is a move
m; = PRO:z ~7 gy in D. It follows either that m;.1
is a credulous OPP reply to (z, Z) or not, in which case
there is a move m; (for j < 1) that is a credulous OPP
reply to Hence for some Z C Aj there is an OPP reply to
(z,Z) in D. For m; 1 there are two cases:

e m;y1 = PRO:z ~7 y. Then z € E and, because
G e J(D), z~qy.

e m;1; = PRO:y ~»~ z. Buty ~»¢ =z, hence G ¢
J(D), which is a contradiction. Thus, this case is not
possible.

Thus for every x € E and every y € As.t. y ~¢ x, there
isaz € F suchthat z ~g y.

2. Assume the contrary, i.e., E is not conflict-free. Then for
some y, z € F it holds that y ~»¢ 2. From (1) it follows
that there is also an « € E such that z ~»¢ y. By the con-
struction of F it follows that either y = a or for some z’
there is a move PRO: y ~T 2’ in D, and similarly either
z = a or for some x’ there is a move PRO: z ~T 2’ in
D. Hence there are moves OPP: z ~» y and OPP: y ~~ z
in D. From the fact that G € J(D) and y ~»¢ z it follows
that there is no move PRO: y ~~~ z in D. Hence D is not
conflict-free, which is a contradiction. It follows that E is
a conflict-free set of G.

It finally follows that E is an admissible set of G and a €
E and hence G explains credulous support for X.
O

Example 3. The listing below shows a conflict-free credu-
lous explanation dialogue D = (my, ..., mg) for the obser-
vation {b} generated by the AAF defined in example 1.

i | m, J(D,1)

1 OPP:c~ b {F,Gl,GQ,G3}
2 PRO.‘b«MJr Cc {F, Gl,GQ,G:;}
3 OPP:a ~ b {F,Gl,GQ,Gg}
4 PRO:a ~~ b {GQ, Gg}

5 OPP: ok {GQ,G3}

6 PRO: win {GQ,Gg}

Here, the sequence (myq, ..., ms) is a credulous OPP re-
ply to (b,{b}). PRO defends b from OPP’s attack ¢ ~~ b
by putting forward the attack b ~~ c. Since b was already
assumed to be accepted, this suffices. At move my, PRO de-
fends itself from the attack a ~~ b by negating it. This re-
stricts the focus on the abducible AFs G5 and G3. The dia-
logue proves that these two abducible AF's explain credulous
support for the observation {b}. Finally, the skeptical expla-
nation dialogues from example 2 are also credulous expla-
nation dialogues.

161

Abduction in logic programming

In this section we show that AAFs can be instantiated
with abductive logic programs, in the same way that reg-
ular AFs can be instantiated with regular logic programs.
In sections and we recall the necessary basics of logic
programming and the relevant results regarding logic pro-
gramming as instantiated argumentation. In section we
present a model of abductive logic programming based on
Sakama and Inoue’s model of extended abduction (1995;
1999), and in section we show how this model can be in-
stantiated using AAFs.

Logic programs and partial stable semantics

A logic program P is a finite set of rules,
ing of the form C' «— Ay,..., A,,~B,...
C Ay,...,An, By,..., By, are atoms. If m = 0 then the
rule is called definite. If both n = 0 and m = 0 then the
rule is called a fact and we identify it with the atom C. We
assume that logic programs are ground. Alternatively, P can
be regarded as the set of ground instances of a set of non-
ground rules. We denote by At p the set of all (ground) atoms
occurring in P. The logic programming semantics we fo-
cus on can be defined using 3-valued interpretations (Przy-
musinski 1990):

Definition 13. A 3-valued interpretation I of a logic pro-
gram P is a pair I = (T,F) where T,F C Atp and
TNEF = 0. Anatom A € At(P) is true (resp. false, un-
decided) in [ iff A€ T (resp. Ac F, Ac Atp \ (TUF)).

The following definition of a partial stable model is due
to Przymusinski (1990). Given a logic program P and 3-
valued interpretation I of P, the GL-transformation ? isa
logic program obtained by replacing in every rule in P every
premise ~ B such that B is true (resp. undecided, false) in [
by the atoms 0 (resp. %, 1), where 0 (resp. % 1) are defined
to be false (resp. undecided, true) in every interpretation. It
holds that for all 3-valued interpretations I of P, ? is defi-
nite (i.e., consists only of definite rules). This means that ?
has a unique least 3-valued interpretation (7', F') with mini-
mal 7" and maximal F’ that satisfies all rules. That is, for all
rules C «— Aq,...,A,, in ?, C is true (resp. not false) in
(T, F)ifforalli € {1,...,n}, A; is true (resp. not false) in
(T, F). Given a 3-valued interpretation I, the least 3-valued
interpretation of £ is denoted by I'(I). This leads to the fol-
lowing definition of a partial stable model of a logic pro-
gram, along with the associated notions of consequence.

Definition 14. (Przymusinski 1990) Let P be a logic pro-
gram. A 3-valued interpretation I is a partial stable model
of Piff I = T'(I). We say that an atom C'is a skeptical (resp.
credulous) consequence of P iff C' is true in all (resp. some)
partial stable models of P.

each rule be-
,~B,, where

It has been shown that the above defined notion of skep-
tical consequence coincides with the well-founded seman-
tics (Przymusinski 1990).

Logic programming as argumentation

Wu et al. (2009) have shown that a logic program P can
be transformed into an AF F' in such a way that the conse-



quences of P under the partial stable semantics can be com-
puted by looking at the complete extensions of F'. The idea
is that an argument consists of a conclusion C' € Atp, a
set of rules R C P used to derive C' and a set N C Atp
of atoms that must be underivable in order for the argument
to be acceptable. The argument is attacked by another ar-
gument with a conclusion C’ iff C/ € N. The following
definition, apart from notation, is due to Wu et al. (2009).

Definition 15. Let P be a logic program. An instantiated
argument is a triple (C, R, N), where C € Atp, R C P and
N C Atp. We say that P generates (C, R, N) iff either:

e r=C« ~By,...,~Bpisarulein P, R = {r} and

N ={Bi,...,Bn)}.
o (I)r =C «— Ay,...,A,,~Bq,...,~B,, is a rule in
P, (2) P generates, for each i € {1,...,n} an argument

(A;, R;, N;) such thatr ¢ R;, and (3) R = {r} UR; U
...URy,and N ={By,...,Bp}UN; U...UN,.

We denote the set of arguments generated by P by Ap.
Furthermore, the attack relation generated by P is denoted
by ~»p and is defined by (C,R,N) ~p (C',R',N’) iff
CeN.

The following theorem states that skeptical (resp. credu-
lous) acceptance in (Ap,~>p) corresponds with skeptical
(resp. credulous) consequences in P as defined in defini-
tion 14. It follows from theorems 15 and 16 due to Wu et
al. (2009).

Theorem 3. Let P be a logic program. An atom C € Atp
is a skeptical (resp. credulous) consequence of P iff some
(C,R,N) € Ap is skeptically (resp. credulously) accepted
in (AP, N‘->p).

Abduction in logic programming

The model of abduction in logic programming that we use is
based on the model of extended abduction studied by Inoue
and Sakama (1995; 1999). They define an abductive logic
program (ALP) to consist of a logic program and a set of
atoms called abducibles.

Definition 16. An abductive logic program is a pair (P,U)
where P is a logic program and U C Atp a set of facts
called abducibles.

Note that, as before, the set U consists of ground facts of
the form C' « (identified with the atom C') and can alter-
natively be regarded as the set of ground instances of a set
of non-ground facts. A hypothesis, according to Inoue and
Sakama’s model, consists of both a positive element (i.e., ab-
ducibles added to P) and a negative element (i.e., abducibles
removed from P).

Definition 17. Let ALP = (P, U) be an abductive logic pro-
gram. A hypothesis is a pair (AT, A7) such that AT, A~ C
U and AT N A~ = (. A hypothesis (AT, A™) skepti-
cally (resp. credulously) explains a query Q € Atp if and
only if Q is a skeptical (resp. credulous) consequence of
(PUAT)\ A~

Note that Sakama and Inoue focus on computation of ex-
planations under the stable model semantics of P, and re-
quire P to be acyclic to ensure that a stable model of P

162

exists and is unique (1999). We, however, define explana-
tion in terms of the consequences according to the partial
stable models of P, which always exist even if P is not
acyclic (Przymusinski 1990), so that we do not need this
requirement.

The following example demonstrates the previous two
definitions.

Example 4. Let ALP (P,U) where P = {(p <
~s,1), (p — ~s,~q),(q — ~p),r} and U = {r,s}. The
hypothesis ({s},0) skeptically explains q, witnessed by the
unique model I = ({r, s, q},{p}) satisfying I = T'(I). Sim-
ilarly, ({s},{r})) skeptically explains q and (0, {r})) cred-
ulously explains q.

Instantiated abduction in argumentation

In this section we show that an AAF (F, I) can be instanti-
ated on the basis of an abductive logic program (P, U). The
idea is that every possible hypothesis (A*, A™) maps to an
abducible AF generated by the logic program (P U A7) \
A~ . The hypotheses for a query () then correspond to the
abducible AFs that explain the observation X consisting of
all arguments with conclusion (). The construction of (F, I)
on the basis of (P, U) is defined as follows.

Definition 18. Ler ALP = (P,U) be an abductive logic
program. Given a hypothesis (AY, A7), we denote by
F(A‘*'}A—) the AF (A(PUA‘*')\A_aW(PUA‘*')\A_)' The AAF
generated by ALP is denoted by Muarp and defined by
Myrp = (Fp, Iarp), where Inip = {Fia+ a-) | AT, A7 C
U ATNA™ =0}

The following theorem states the correspondence between
the explanations of a query () in an abductive logic program
ALP and the explanations of an observation X in the AAF
Mypp.

Theorem 4. Let ALP (P,U) be an abductive logic
program, Q € Atp a query and (AT, A7) a hypothe-
sis. Let Marp = (Farp, Iarp). We denote by Xq the set
{(C,R,N) € Ap | C = Q}. It holds that (A", A™) skepti-
cally (resp. credulously) explains Q iff F(a+ - skeptically
(resp. credulously) explains X q.

Proof of theorem 4. Follows directly from theorem 3 and
definitions 17 and 18. O

This theorem shows that our model of abduction in argu-
mentation can indeed be seen as an abstraction of abductive
logic programming.

Example 5. Let ALP (P,U) be the ALP as de-
fined in example 4. All arguments generated by ALP are:
a = (pa{(p(_ NS,?“),’I"},{S}) d (7”7 {T},@)
b= (¢,{(¢g —~p)}{pr}) e (s,{s},0)
¢ = (Al —r~s~0} {s4})
Given these definitions, the AAF in example 1 is equivalent
to Myrp. In example 4 we saw that the query q is skepti-
cally explained by the hypotheses ({s},0) and ({s},{r}),
while (0,{r}) only credulously explains it. Indeed, look-
ing again at example 1, we see that G1 = F((s 0 and



G3 = F({s),{r}) explain skeptical support for the observa-
tion {b} = X, while Go = Fg () only explains credulous
SUppOTL.

Remark 2. This method of instantiation shows that, on the
abstract level, hypotheses cannot be represented by indepen-
dently selectable abducible arguments. The running exam-
ple shows e.g. that a and d cannot be added or removed
independently. (Cf. remark 1.)

Related work

We already referred a number of times to Sakama’s (2013)
model of abduction in argumentation and discussed the dif-
ferences. On the one hand, we are more general in that we
consider a hypothesis to be a change to the AF that is ap-
plied as a whole, instead of a set of independently selectable
abducible arguments. On the other hand, Sakama’s method
of computation supports a larger range semantics, includ-
ing the semi-stable, stable and skeptical preferred semantics.
Furthermore, Sakama also considers the possibility that ob-
servations force arguments to be rejected, which we do not.

Some of the ideas we applied also appear in work by
Wakaki et al. (2009). In their model, an ALP generates an in-
stantiated AF and each hypothesis yields a different division
into active/inactive arguments. Unlike our model, as well as
Sakama’s (2013), Wakaki et al. do not consider removal of
arguments as explanation.

Kontarinis et al. (2013) use term rewriting logic to com-
pute changes to an abstract AF with the goal of changing the
status of an argument. There are two similarities between
their approach and ours. Firstly, we use production rules to
generate dialogues and these rules can be seen as a kind of
term rewriting rules. Secondly, their approach amounts to
rewriting goals into statements to the effect that certain at-
tacks in the AF are enabled or disabled. These statements
resemble the moves PRO: 2 ~»T y and PRO: x ~~ y in
our system. However, they treat attacks as entities that can
be enabled or disabled independently. As discussed, differ-
ent arguments (or in this case attacks associated with argu-
ments) cannot be regarded as independent entities, if the ab-
stract model is instantiated.

Other work dealing with the change of an AF with the
goal of changing the status of arguments include Bau-
mann (2012), Baumann and Brewka (2010), Bisquert et
al. (2013) and Perotti et al. (2011). Furthermore, Booth
et al. (Booth et al. 2013) and Coste-Marquis et al. (2013)
frame it as a problem of belief revision. Other studies
in which changes to AFs are considered include (Boella,
Kaci, and van der Torre 2009; Cayrol, Dupin de Saint-Cyr,
and Lagasquie-Schiex 2010; Liao, Jin, and Koons 2011;
Oikarinen and Woltran 2011).

Conclusions and future work

We developed a model of abduction in abstract argumen-
tation, in which changes to an AF act as explanations for
skeptical/credulous support for observations. We presented
sound and complete dialogical proof procedures for the
main decision problems, i.e., finding explanations for skep-
tical/credulous support. In addition, we showed that our

163

model of abduction in abstract argumentation can be seen
as an abstract form of abduction in logic programming.

As a possible direction for future work, we consider the
incorporation of additional criteria for the selection of good
explanations, such as minimality with respect to the added
and removed arguments/attacks, as well as the use of arbi-
trary preferences over different abducible AFs. An interest-
ing question is whether the proof theory can be adapted so
as to yield only the preferred explanations.

References

Baumann, R., and Brewka, G. 2010. Expanding argumen-
tation frameworks: Enforcing and monotonicity results. In
Proc. COMMA, 75-86.

Baumann, R. 2012. Normal and strong expansion equiva-
lence for argumentation frameworks. Artif. Intell. 193:18—
44.

Bisquert, P.; Cayrol, C.; de Saint-Cyr, F. D.; and Lagasquie-
Schiex, M.-C. 2013. Enforcement in argumentation is a kind
of update. In SUM (2013), 30-43.

Boella, G.; Gabbay, D. M.; Perotti, A.; van der Torre, L.; and
Villata, S. 2011. Conditional labelling for abstract argumen-
tation. In TAFA, 232-248.

Boella, G.; Kaci, S.; and van der Torre, L. 2009. Dynamics
in argumentation with single extensions: Attack refinement
and the grounded extension (extended version). In ArgMAS,
150-159.

Booth, R.; Kaci, S.; Rienstra, T.; and van der Torre, L. 2013.
A logical theory about dynamics in abstract argumentation.
In SUM (2013), 148-161.

Booth, R.; Kaci, S.; and Rienstra, T. 2013. Property-based
preferences in abstract argumentation. In ADT, 86—100.

Caminada, M. 2010. Preferred semantics as socratic dis-
cussion. In Proceedings of the 11th AI* IA Symposium on
Artificial Intelligence, 209-216.

Cayrol, C.; Dupin de Saint-Cyr, F.; and Lagasquie-Schiex,
M.-C. 2010. Change in abstract argumentation frameworks:
Adding an argument. Journal of Artificial Intelligence Re-
search 38(1):49-84.

Coste-Marquis, S.; Konieczny, S.; Mailly, J.-G.; and Mar-
quis, P. 2013. On the revision of argumentation systems:
Minimal change of arguments status. Proc. TAFA.

2013. Scalable Uncertainty Management - 7th International
Conference, SUM 2013, Washington, DC, USA, September
16-18, 2013. Proceedings.

Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artif. Intell. 77(2):321-358.

Inoue, K., and Sakama, C. 1995. Abductive framework for
nonmonotonic theory change. In IJCAI, 204-210. Morgan
Kaufmann.

Inoue, K., and Sakama, C. 1999. Computing extended ab-
duction through transaction programs. Ann. Math. Artif. In-
tell. 25(3-4):339-367.



Kontarinis, D.; Bonzon, E.; Maudet, N.; Perotti, A.; van der
Torre, L.; and Villata, S. 2013. Rewriting rules for the
computation of goal-oriented changes in an argumentation
system. In Computational Logic in Multi-Agent Systems.
Springer. 51-68.

Liao, B.; Jin, L.; and Koons, R. C. 2011. Dynamics of argu-
mentation systems: A division-based method. Artif. Intell.
175(11):1790-1814.

Modgil, S., and Caminada, M. 2009. Proof theories and
algorithms for abstract argumentation frameworks. In Argu-
mentation in Artificial Intelligence. 105-129.

Oikarinen, E., and Woltran, S. 2011. Characterizing strong
equivalence for argumentation frameworks. Artificial intel-
ligence 175(14-15):1985-2009.

Przymusinski, T. C. 1990. The well-founded semantics co-
incides with the three-valued stable semantics. Fundam. In-
form. 13(4):445-463.

Sakama, C. 2013. Abduction in argumentation frameworks
and its use in debate games. In Proceedings of the 1st Inter-
national Workshop on Argument for Agreement and Assur-
ance (AAA).

Wakaki, T.; Nitta, K.; and Sawamura, H. 2009. Comput-
ing abductive argumentation in answer set programming. In
Proc. ArgMAS, 195-215.

Wu, Y.; Caminada, M.; and Gabbay, D. M. 2009. Complete
extensions in argumentation coincide with 3-valued stable
models in logic programming. Studia Logica 93(2-3):383—
403.

164



Non-Monotonic Reasoning and Story Comprehension

Antonis Kakas
University of Cyprus
antonis @cs.ucy.ac.cy

Irene-Anna Diakidoy
University of Cyprus
eddiak@ucy.ac.cy

Abstract

This paper develops a Reasoning about Actions and Change
framework integrated with Default Reasoning, suitable as
a Knowledge Representation and Reasoning framework for
Story Comprehension. The proposed framework, which is
guided strongly by existing knowhow from the Psychology
of Reading and Comprehension, is based on the theory of
argumentation from Al It uses argumentation to capture ap-
propriate solutions to the frame, ramification and qualifica-
tion problems and generalizations of these problems required
for text comprehension. In this first part of the study the work
concentrates on the central problem of integration (or elabo-
ration) of the explicit information from the narrative in the
text with the implicit (in the reader’s mind) common sense
world knowledge pertaining to the topic(s) of the story given
in the text. We also report on our empirical efforts to gather
background common sense world knowledge used by humans
when reading a story and to evaluate, through a prototype sys-
tem, the ability of our approach to capture both the majority
and the variability of understanding of a story by the human
readers in the experiments.

Introduction

Text comprehension has long been identified as a key test
for Artificial Intelligence (AI). Aside from its central posi-
tion in many forms of the Turing Test, it is clear that human
computer interaction could benefit enormously from this and
other forms of natural language processing. The rise of com-
puting over the Internet, where so much data is in the form
of textual information, has given even greater importance to
this topic. This paper reports on a research program aim-
ing to learn from the (extensive) study of text comprehen-
sion in Psychology in order to draw guidelines for develop-
ing frameworks for automating narrative text comprehension
and in particular, story comprehension (SC).

Our research program brings together knowhow from
Psychology and Al, in particular, our understanding of Rea-
soning about Actions and Change and Argumentation in Al,
to provide a formal framework of representation and a com-
putational framework for SC, that can be empirically evalu-
ated and iteratively developed given the results of the eval-
uation. This empirical evaluation, which forms an impor-
tant part of the program, is based on the following method-
ology: (i) set up a set of stories and a set of questions to
test different aspects of story comprehension; (ii) harness the

165

Loizos Michael

Open University of Cyprus
loizos@ouc.ac.cy

Rob Miller

University College London
rsm@ucl.ac.uk

world knowledge on which human readers base their com-
prehension; (iii) use this world knowledge in our framework
and automated system and compare its comprehension be-
haviour with that of the source of the world knowledge.

In this paper we will concentrate on the development of
an appropriate Reasoning about Actions and Change and
Default Reasoning framework for representing narratives
extracted from stories together with the background world
knowledge needed for the underlying central process for
story comprehension of synthesizing and elaborating the ex-
plicit text information with new inferences through the im-
plicit world knowledge of the reader. In order to place this
specific consideration in the overall process of story compre-
hension we present here a brief summary of the problem of
story comprehension from the psychological point of view.

A Psychological Account of Story Comprehension

Comprehending text entails the construction of a mental rep-
resentation of the information contained in the text. How-
ever, no text specifies clearly and completely all the impli-
cations of text ideas or the relations between them. There-
fore, comprehension depends on the ability to mentally rep-
resent the text-given information and to generate bridging
and elaborative inferences that connect and elaborate text
ideas resulting in a mental or comprehension model of the
story. Inference generation is necessary in order to compre-
hend any text as a whole, i.e., as a single network of in-
terconnected propositions instead of as a series of isolated
sentences, and to appreciate the suspense and surprise that
characterize narrative texts or stories, in particular (Brewer
and Lichtenstein 1982; McNamara and Magliano 2009).
Although inference generation is based on the activation
of background world knowledge, the process is constrained
by text information. Concepts encountered in the text acti-
vate related conceptual knowledge in the readers’ long-term
memory (Kintsch 1988). In the case of stories, knowledge
about mental states, emotions, and motivations is also rel-
evant as the events depicted tend to revolve around them.
Nevertheless, at any given point in the process, only a small
subset of all the possible knowledge-based inferences re-
main activated and become part of the mental representa-
tion: those that connect and elaborate text information in a
way that contributes to the coherence of the mental model
(McNamara and Magliano 2009; Rapp and den Broek 2005).



Inference generation is a task-oriented process that follows
the principle of cognitive economy enforced by a limited-
resource cognitive system.

However, the results of this coherence-driven selection
mechanism can easily exceed the limited working memory
capacity of the human cognitive system. Therefore, coher-
ence on a more global level is achieved through higher-
level integration processes that operate to create macro-
propositions that generalize or subsume a number of text-
encountered concepts and the inferences that connected
them. In the process, previously selected information that
maintains few connections to other information is dropped
from the mental model. This results in a more consolidated
network of propositions that serves as the new anchor for
processing subsequent text information (Kintsch 1998).

Comprehension also requires an iterative general revision
mechanism of the mental model that readers construct. The
feelings of suspense and surprise that stories aim to cre-
ate are achieved through discontinuities or changes (in set-
tings, motivations, actions, or consequences) that are not
predictable or are wrongly predictable solely on the basis
of the mental model created so far. Knowledge about the
structure and the function of stories leads readers to expect
discontinuities and to use them as triggers to revise their
mental model (Zwaan 1994). Therefore, a change in time
or setting in the text may serve as a clue for revising parts
of the mental model while other parts remain and integrated
with subsequent text information.

The interaction of bottom-up and top-down processes for
the purposes of coherence carries the possibility of different
but equally legitimate or successful comprehension out-
comes. Qualitative and quantitative differences in concep-
tual and mental state knowledge can give rise to differences
between the mental models constructed by different read-
ers. Nevertheless, comprehension is successful if these are
primarily differences in elaboration but not in the level of
coherence of the final mental model.

In this paper we will focus on the underlying lower-level
task of constructing the possibly additional elements of the
comprehension model and the process of revising these ele-
ments as the story unfolds with only a limited concern on the
global requirements of coherence and cognitive economy.
Our working hypothesis is that these higher level features
of comprehension can be tackled on top of the underlying
framework that we are developing in this paper, either at the
level of the representational structures and language or with
additional computational processes on top of the underlying
computational framework defined in this paper. We are also
assuming as solved the orthogonal issue of correctly pars-
ing the natural language of the text into some information-
equivalent structured (e.g., logical) form that gives us the
explicit narrative of the story. This is not to say that this is-
sue is not an important element of narrative text comprehen-
sion. Indeed, it may need to be tackled in conjunction with
the problems on which we are focusing (since, for example,
the problem of de-referencing pronoun and article anaphora
could depend on background world knowledge and hence
possibly on the higher-level whole comprehension of the
text (Levesque, Davis, and Morgenstern 2012).

166

In the next two sections we will develop an appropriate
representation framework using preference based argumen-
tation that enables us to address well all the three major
problems of frame, ramification and qualification and pro-
vide an associated revision process. The implementation of
a system discussed after this shows how psychologically-
inspired story comprehension can proceed as a sequence of
elaboration and revision. The paper then presents, using the
empirical methodology suggested by research in psychol-
ogy, our initial efforts to evaluate how closely the inferences
drawn by our framework and system match those given by
humans engaged in a story comprehension task.

The following story will be used as a running example.
Story: It was the night of Christmas Eve. After feeding the
animals and cleaning the barn, Papa Joe took his shotgun
from above the fireplace and sat out on the porch cleaning
it. He had had this shotgun since he was young, and it had
never failed him, always making a loud noise when it fired.

Papa Joe woke up early at dawn, picked up his shotgun
and went off to forest. He walked for hours, until the sight of
two turkeys in the distance made him stop suddenly. A bird
on a tree nearby was cheerfully chirping away, building its
nest. He aimed at the first turkey, and pulled the trigger.

After a moment’s thought, he opened his shotgun and saw
there were no bullets in the shotgun’s chamber. He loaded
his shotgun, aimed at the turkey and pulled the trigger again.
Undisturbed, the bird nearby continued to chirp and build
its nest. Papa Joe was very confused. Would this be the first
time that his shotgun had let him down?

The story above along with other stories and material
used for the evaluation of our approach can be found at
http://cognition.ouc.ac.cy/narrative/.

KRR for Story Comprehension

We will use methods and results from Argumentation The-
ory in Al (e.g., (Dung 1995; Modgil and Prakken 2012)) and
its links to the area of Reasoning about Action and Change
(RAC) with Default Reasoning on the static properties of do-
mains (see (van Harmelen, Lifschitz, and Porter 2008) for an
overview) to develop a Knowledge Representation and Rea-
soning (KRR) framework suitable for Story Comprehension
(SC). Our central premise is that SC can be formalized in
terms of argumentation accounting for the qualification and
the revision of the inferences drawn as we read a story.

The psychological research and understanding of SC will
guide us in the way we exploit the know how from Al. The
close link between human common sense reasoning, such as
that for SC, and argumentation has been recently re-enforced
by new psychological evidence (Mercier and Sperber 2011)
suggesting that human reasoning is in its general form in-
herently argumentative. In our proposed approach of KRR
for SC the reasoning to construct a comprehension model
and its qualification at all levels as the story unfolds will be
captured through a uniform acceptability requirement on the
arguments that support the conclusions in the model.

The significance of this form of representation for SC is
that it makes easy the elaboration of new inferences from the
explicit information in the narrative, that, as we discussed



in the introduction, is crucially necessary for the successful
comprehension of stories. On the other hand, this easy form
of elaboration and the extreme form of qualification that
it needs can be mitigated by the requirement, again given
from the psychological perspective, that elaborative infer-
ences need to be grounded on the narrative and sceptical in
nature. In other words, the psychological perspective of SC,
that also suggests that story comprehension is a process of
“fast thinking”, leads us to depart from a standard logical
view of drawing conclusions based on the truth in all (pre-
ferred) models. Instead, the emphasis is turned on building
one grounded and well-founded model from a collection of
solid or sceptical properties that are grounded on the text and
follow as unqualified conclusions.

We use a typical RAC language of Fluents, Actions,
Times, with an extra sort of Actors. An actor-action pair
is an event, and a fluent/event or its negation is a literal. For
this paper it suffices to represent times as natural numbers'
and to assume that time-points are dense between story el-
ements to allow for the realization of indirect effects. Ar-
guments will be build from premises in the knowledge con-
nected to any given story. We will have three types of such
knowledge units as premises or basic units of arguments.

Definition 1. Let L be a fluent literal, X a fluent/event lit-
eral and S a set of fluent/event literals. A unit argument or
premise has one of following forms:

o a unit property argument pro(X,S) or prec(X, 5);
e a unit causal argument cau(X, S);

e a unit persistence argument per(L,{L}) (which we
sometimes write as per (L, -)).

These three forms are called fypes of unit arguments. A unit
argument of any type is denoted by arg;(H;, B;). The two
forms of unit property arguments differ in that pro (X, S) re-
lates properties to each other at the same time-point, whereas
prec(X,S) aims to capture preconditions that hold at the
time-point of an event, under which the event is blocked
from bringing about its effects at the subsequent time-point.

With abuse of terminology we will sometimes call these
units of arguments, simply as arguments.

The knowledge required for the comprehension of a story
comprises of two parts: the explicit knowledge of the nar-
rative extracted from the text of the story and the implicit
background knowledge that the reader uses along with the
narrative for elaborative inferences about the story.

Definition 2. A world knowledge theory )V is a set of unit
property and causal arguments together with a (partial) ir-
reflexive priority relation on them. A narrative N is: a set
of observations OBS (X, T') for a fluent/event literal X, and a
time-point 7'; together with a (possibly empty) set of (story
specific) property or causal unit arguments.

The priority relation in V¥V would typically reflect the pri-
ority of specificity for properties, expressed by unit property
arguments pro(X,.S), or the priority of precondition prop-
erties, expressed by unit property arguments prec(X,.S),
over causal effects, expressed by unit causal arguments. This

'In general, abstract time points called scenes are useful.

167

priority amongst these basic units of knowledge gives a form
of non-monotonic reasoning (NMR) for deriving new prop-
erties that hold in the story.

To formalize this NMR we use a form of preference-based
argumentation uniformly to capture the static (default) infer-
ence of properties at a single time point as well as inferences
between different type points, by extending the domain spe-
cific priority relation to address the frame problem.

Definition 3. A story representation SR = (W, N, >-)
comprises a world knowledge theory W, a narrative N,
and a (partial) irreflexive priority relation > extending the
one in W so that: (i) cau(H, B1) = per(—H, Bs); (ii)
per(H, By) > pro(—H, Bs). The extended relation > may
also prioritize between arguments in A/ and those in W (typ-
ically the former over the latter).

The first priority condition, namely that causal arguments
have priority over persistence arguments, encompasses a so-
Iution to the frame problem. When we need to reason with
defeasible property information, such as default rules about
the normal state of the world in which a story takes place,
we are also faced with a generalized frame problem, where
“a state of the world persists irrespective of the existence
of general state laws”. Hence, if we are told that the world
is in fact in some exceptional state that violates a general
(default) property this will continue to be the case in the fu-
ture, until we learn of (or derive) some causal information
that returns the world into its normal state. The solution to
this generalized frame problem is captured succinctly by the
second general condition on the priority relation of a story
representation and its combination with the first condition.

A representation SR of our example story (focusing on
its ending) may include the following unit arguments in W
and A (where pj is short for “Papa Joe”):

cl : cau(fired_at(pj, X),{aim(pj, X), pulltrigger(pj)})

2 : cau(—alive(X),{fired-at(pj, X), alive(X)})

c3: cau(noise, { fired_at(pj, X)})

cd : cau(—chirp(bird), {noise, nearby(bird)})

¢5 : cau(gun_loaded, {load_-gun})

pl : prec(—fired_at(pj, X),{—gun_loaded})

p2: pro(—fired-at(pj, X ), {—noise}) (story specific)

with pl = cl, p2 = cl; and the following in \:

OBS
OBS
OBS
OBS

alive(turkey), 1),

pull trigger(pj), 1),
load_gun, 5), oBS(pull_trigger(pj), 6
chirp(bird), 10), OBS(nearby(bird), 10

with the exact time-point choices being inconsequential.

As we can see in this example the representation of com-
mon sense world knowledge has the form of simple associ-
ations between concepts in the language. This stems from
a key observation in psychology that typically all world
knowledge and irrespective of type is inherently default. It
is not in the form of an elaborate formal theory of detailed
definitions of concepts, but rather is better regarded as a
collection of relatively loose semantic associations between
concepts, reflecting typical rather than absolute information.
Thus knowledge need not be fully qualified at the represen-

OBS(aim(pj, turkey), 1),
OBS(—gun_loaded, 4),

)

)

il

NN

bl



tation level, since it can be qualified via the reasoning pro-
cess by the relative strength of other (conflicting) associa-
tions in the knowledge. In particular, as we will see below,
endogenous qualification will be tackled by the priority re-
lation in the theory and exogenous qualification by this pri-
ority coupled with the requirement that explicit narrative in-
formation forms, in effect, non-defeasible arguments.

Argumentation Semantics for Stories

To give the semantics of any given story represen-
tation SR we will formulate a corresponding pref-
erence based argumentation framework of the form
(Arguments, Disputes, De fences). Arguments will be
based on sets of timed unit arguments. Since we are required
to reason about properties over time, it is necessary that ar-
guments populate some connected subset of the time line.

Definition 4. Let SR (W,N,>) be a story rep-
resentation. A (unit) argument tuple has the form
(arg(H,B),T",d;(X,T)), where, arg(H, B), is a unit
argument in SR, X is a fluent/event literal, d € {F,B} is
an inference type of either forwards derivation or backwards
derivation by contradiction, and 7", T are time points. T"
refers to the time-point at which the head of the unit argu-
ment applies, while X and T refer to the conclusion drawn
using the unit argument in the tuple. An interpretation A
of SR is then defined as a a set of argument tuples. We
say A supports a fluent/event literal, X, at T, if either
(arg(H,B),T",d;(X,T)) € A oroBS(X,T) € N. The
notion of support is extended to hold on sets of timed literals.

The inference process of how an argument tuple supports
a timed literal, and thus is allowed to belong to an interpre-
tation, is made precise by the following definition.

Definition 5. Let A be an interpretation and
(arg(H,B),T",d;(X,T)) in A with d = F. Then
arg(H, B) applied at T" forward derives X at T under
Aiff X = H, T = T" and A supports B at T’. The
set {{Y,T') | Y € B} is called the activation condition
for the derivation; 7’ = T" if arg(H, B) is of the form
pro(H, B). T' = T" — 1 for the other argument types.

When d = B, arg(H,B) applied at T" backward
derives X at T under A iff - X € B and A sup-
ports {—H} at T" and B \ {-X} at T. The set
{{(=H,T")} U {{Y,T)|Y € B\ {-X}} is the acti-
vation condition; T = T" if arg(H, B) is of the form
pro(H, B). T = T" — 1 for the other argument types.

The framework thus includes reasoning by contradiction
with the defeasible world knowledge. Although the psy-
chological debate on the question to what extent humans
reason by contradiction, e.g., by contraposition, (see, e.g.,
(Johnson-Laird and Yang 2008; Rips 1994)) is still ongoing
it is natural for a formal argumentation framework to cap-
ture this mode of indirect reasoning (see, e.g., (Kakas, Toni,
and Mancarella 2013; Kakas and Mancarella 2013)). One of
the main consequences of this is that it gives a form of back-
wards persistence, e.g., from an observation to support (but
not necessarily conclude) that the observed property holds
also at previous time points. An argument tuple of the form

168

(per(L,-),T + 1,B;(—L,T)) captures the backwards per-
sistence of —L from time 7"+ 1 to 7" using by contraposition
the unit argument of persistence of L from 7" to 1"+ 1. We
also note that the separation of the inference type (e.g., for-
wards and backwards) is known to be significant in prefer-
ence based argumentation (Modgil and Prakken 2012). This
will be exploited when we consider the attacking between
arguments: their disputes and defences.

To reflect the suggestion by psychology that inferences
drawn by readers are strongly tied to the story we require
that the activation conditions of argument tuples must be
eventually traced on the explicit information in the narrative
of the story representation.

Definition 6. An interpretation A is grounded on SR iff
there is a total ordering of A such that the activation condi-
tion of any tuple o € A is supported by the set of tuples that
precede « in the ordering or by the narrative in SR.

Hence in a grounded interpretation there can be no cycles
in the tuples that support their activation conditions and so
these will always end with tuples whose activation condi-
tions will be supported directly by the observations in the
narrative of the story.

We can now define the argumentation framework corre-
sponding to any given story representation. The central task
is to capture through the argumentation semantics the non-
monotonic reasoning of linking the narrative to the defeasi-
ble information in the world knowledge. In particular, the
argumentation will need to capture the qualification prob-
lem, encompassed in this synthesis of the narrative with the
world knowledge, both at the level of static reasoning at one
time point with default property arguments and at the level
of temporal projection from one time point to another.

Definition 7. Let SR be a story representation.
Then the corresponding argumentation framework,
(ARGS®, DISS®, DEFSR) is defined as follows:

e Anargument, A, in ARGS®

tion of SR.

e Given an argument A then A is in conflict with SR iff
there exists a tuple o = <arg(H, B),T" d; (X, T)> in A
such that 0BS(=X,T) € N of SR.

e Given two arguments A;, Ay then these are in (direct)
conflict with each other iff there exists a tuple as =
<arg2(H2, 32)7 T2h7 do; (XQ, T2)> in Ag and atuple o] =
<arg1(H1, Bl)7T1h7d1; (Xl,T1)> in A1 such that X1 =
—Xg, Ty = T5. Given two arguments A;, A, then these
are in indirect conflict with each other iff there exists a tu-
ple Qg = <arg2(H2, Bg),Tzh, dg; (X27T2)> in A2 and a
tuple oy = <arg1(Hl,Bl),T1h7 dy; (Xl,T1)> in A7 such
that (d; = B or dy = B) and Hy = —~Ho, T} = T}

e Given two arguments Ay, As then Ay disputes A, and
hence (A, A1) € DISS® iff A; is in direct or indirect
conflict with A1, and in the case of indirect conflict d
B holds in the definition of indirect conflict above.

is any grounded interpreta-

e Argument A, undercuts A, iff

— A1, A, are in direct or indirect conflict via vy and aea,



— when in direct conflict, there exists a tuple af =
<arg’1(H{,B{)7T1', 1 ( {,Tl’)> in A; and a tuple
oy = (axgy(Hy, By), TS di (X3,T3) ) in Ay such
that arg (H}, B}) > arg)(Hj, B}) and T, = T, or
T =15

— when in indirect conflict, then arg,(H;,B;) >

arg,(Ho, B2) where arg, (H1, B1) and arg,(H2, B2)
are the unit arguments in a;; and ao respectively.

e Argument A; defends against A5 and hence (A, As) €
DEFSR_iff there exists a subset A/2 C A, which is in
minimal conflict with A; (i.e., no proper subset of A/2 is
in conflict with A7) and A; undercuts A;.

Several clarifying comments are in order. Arguments
that are in dispute are arguments that support some contrary
conclusion at the same time point and hence form counter-
arguments for each other. The use of contrapositive rea-
soning for backwards inference also means that it is pos-
sible to have arguments that support conclusions that are not
contrary to each other but whose unit arguments have con-
flicting conclusions. For example, in our running example
we can use the causal unit argument, cl, to forward derive
fired_at(pj, X) and the property argument p1 to backwards
derive gun_loaded from —fired_at(pj, X) and despite the
fact that the derived facts are not in conflict the unit argu-
ments used concern conflicting conclusions. Hence such ar-
guments are also considered to be in conflict but instead of
a direct conflict we say we have an indirect conflict. Not all
such indirect conflicts are important. A dispute that results
from an indirect conflict of a unit argument used backwards
on a unit argument that is used forwards does not have any
effect. Such cases are excluded from giving rise to disputes.

This complication in the definitions of conflicts and dis-
putes results from the defeasible nature of the world knowl-
edge and the fact we are allowing reasoning by contradiction
on such defeasible information. These complications in fact
stem from the fact that we are only approximating the proof
by contradiction reasoning, capturing this indirectly through
contraposition. The study of this is beyond the scope of this
paper and the reader is referred to the newly formulated Ar-
gumentation Logic (Kakas, Toni, and Mancarella 2013).

Undercuts between arguments require that the undercut-
ting argument does so through a stronger unit or premise
argument than some unit argument in the argument that is
undercut. The defence relation is build out of undercuts by
applying an undercut on minimally conflicting subsets of the
argument which we are defending against. Hence these two
relations between arguments are asymmetric. Note also that
the stronger premise from the undercutting argument does
not necessarily need to come from the subset of the unit ar-
guments that supports the conflicting conclusion. Instead, it
can come from any part of the undercutting argument to un-
dercut at any point of the chain supporting the activation of
the conflicting conclusion. This, as we shall illustrate below,
is linked to how the framework addresses the ramification
problem of reasoning with actions and change.

169

The semantics of a story representation is defined using
the corresponding argumentation framework as follows.

Definition 8. Let SR be a story representation and
(ARGS® DISS®R, DEFSR) its corresponding argumen-
tation framework. An argument A is acceptable in SR iff

e A is not in conflict with SR nor in direct conflict with A.
e No argument A undercuts A.

e For any argument A that minimally disputes A, A de-
fends against A.

Acceptable arguments are called comprehension models
of SR. Given a comprehension model A, a timed fluent
literal (X, T') is entailed by SR iff this is supported by A.

The above definition of comprehension model and story
entailment is of a sceptical form where, apart from the fact
that all conclusions must be ground on the narrative, they
must also not be non-deterministic in the sense that there
can not exist another comprehension model where the neg-
ative conclusion is entailed. Separating disputes and un-
dercuts and identifying defences with undercuts facilitates
this sceptical form of entailment. Undercuts (see, e.g.,
(Modgil and Prakken 2012) for some recent discussion) are
strong counter-claims whose existence means that the at-
tacked set is inappropriate for sceptical conclusions whereas
disputes are weak counter-claims that could be defended
or invalidated by extending the argument to undercut them
back. Also the explicit condition that an acceptable argu-
ment should not be undercut even if it can undercut back
means that this definition does not allow non-deterministic
choices for arguments that can defend themselves.

To illustrate the formal framework, how arguments
are constructed and how a comprehension of a story
is formed through acceptable arguments let us consider
our example story starting from the end of the sec-
ond paragraph, corresponding to time-points 1-3 in the
example narrative.  Note that the empty A supports
aim(pj, turkey) and pull_trigger(pj) at 1. Hence, cl
on 2 forward activates fired_at(pj,turkey) at 2 under
the empty argument, A. We can thus populate A with
(c1,2,F; (fired_at(pj, turkey),2)). Similarly, we can in-
clude (per(alive(turkey),-),2, F; (alive(turkey),2)) in
the new A. Under this latter A, ¢2 on 3 forward acti-
vates —alive(turkey) at 3, allowing us to further extend
A with {¢2,3,F; (malive(turkey), 3)). The resulting A is
a grounded interpretation that supports —alive(turkey) at
3. It is based on this inference, that we expect readers to
respond that the first turkey is dead, when asked about its
status at this point, since no other argument grounded on the
narrative (thus far) can support a qualification argument to
this inference. Note also that we can include in A the tu-
ple (pl,2,B; (gun_loaded, 1)) to support, using backwards
(contrapositive) reasoning with p1, the conclusion that the
gun was loaded when it was fired at time 1.

Reading the first sentence of the third paragraph, we learn
that OBS(—gun_loaded,4). We now expect that this new
piece of evidence will lead readers to revise their infer-
ences as now we have an argument to support the conclusion
—fired_at(pj, turkey) based on the stronger (qualifying)



unit argument of pl. For this we need to support the activa-
tion condition of p1 at time 1, i.e., to support ~gun_loaded
at 1. To do this we can use the argument tuples:

(per(gun_loaded, -), 4, B; (—gun_loaded, 3))

(per(gun_loaded, ), 3, B; (mgun_loaded, 2))

(per(gun_loaded, -), 2, B; (—gun_loaded, 1))
which support the conclusion that the gun was also un-
loaded before it was observed to be so. This uses
per (gun_loaded, -) contrapositively to backward activate
the unit argument of persistence, e.g., had the gun been
loaded at 3, it would have been so at 4 which would con-
tradict the story. Note that this backwards inference of
—gun_loaded would be qualified by a causal argument for
—gun_loaded at any time earlier than 4, e.g., if the world
knowledge contained the unit argument

c¢: cau(—gun_loaded, {pull trigger(pj)})

This then supports an indirect conflict at time 2 with the
forwards persistence of gun_loaded from 1 to 2 and due to
the stronger nature of unit causal over persistence arguments
the backwards inference of ~gun_loaded is undercut and so
cannot belong to an acceptable argument.

Assuming that ¢ is absent, the argument, A;, consist-
ing of these three “persistence” tuples is in conflict on
gun_loaded on 1 with the argument A above. Each ar-
gument disputes the other and in fact neither can form
an acceptable argument. If we extend A; with the tuple
(pl, 2, F; (—fired_at(pj, turkey), 2)) then this can now un-
dercut and thus defend against A using the priority of pl
over cl. Therefore the extended A; is acceptable and the
conclusion = fired_at(pj, turkey) at 2 is drawn revising the
previous conclusions drawn from A. The process of under-
standing our story may then proceed by extending Aj, with
(per (alive(turkey), ), T, F; (alive(turkey),T)) for T =
2,3, 4, resulting in a model that supports alive(turkey) at
4. Tt is based on this inference that we expect readers to
respond that the first turkey is alive at 4.

Continuing with the story, after Papa Joe loads the gun
and fires again, we can support by forward inferences that
the gun fired, that noise was caused, and that the bird stopped
chirping, through a chaining of the unit arguments c1, ¢3, c4.
But 0BS(chirp(bird),10) supports disputes on all these
through the repeated backwards use of the same unit argu-
ments grounded on this observation. We thus have an exoge-
nous qualification effect where these conclusions can not be
sceptical and so will not be supported by any comprehension
model. But if we also consider the stronger (story specific)
information in p2, that this gun does not fire without a noise,
together with the backwards inference of —noise an argu-
ment that contains these can undercut the firing of the gun at
time 2 and thus defend against disputes that are grounded on
pull_triger at 1 and the gun firing. As a result, we have the
effect of blocking the ramification of the causation of noise
and so —noise (as well as — fired_at(pj, turkey)) are scep-
tically concluded. Readers, indeed respond in this way.

With this latter part of the example story we see how our
framework addresses the ramification problem and its non-
trivial interaction with the qualification problem (Thielscher
2001). In fact, a generalized form of this problem is ad-
dressed where the ramifications are not chained only through

170

Algorithm 1 Computing a Comprehension Model

input: story SR, partitioned in a list of k£ blocks, and a
set of questions @ [b] associated with each SR block b.
Set G[0] to be the empty graph.
foreveryb=1,2,...,kdo
Let SR[b] be the restriction of SR up to its b-th block.
Let G[b] := graph(G[b— 1], SR[b]) be the new graph.
Let IT[b] := retract(Alb — 1], G[b], SR[b]).
Let A[b] := elaborate(II[b], G[b], SR[b]).
Answer Q[b] with the comprehension model A[b].
end for

causal laws but through any of the forms of inference we
have in the framework — causal, property or persistence
— and through any of the type of inference — forwards or
backwards by contradiction.

A comprehension model can be tested, as is often done in
psychology, through a series of multiple-choice questions.

Definition 9. Let M be a comprehension model of a story
representation SR. A possible answer,“X at 1™, to a ques-
tion is accepted, respectively rejected, iff “X at T” (respec-
tively “—=X at T") is supported by M. Otherwise, we say
that the question is allowed or possible by M.

In some cases, we may want to extend the notion of a
comprehension model to allow some non-sceptical entail-
ments. This is needed to reflect the situation when a reader
cannot find a sceptical answer to a question and chooses be-
tween two or more allowed answers. This can be captured
by allowing each such answer to be supported by a more
general notion of acceptability such as the admissibility cri-
terion of argumentation semantics. For this, we can drop the
condition that A is not undercut by any argument and al-
low weaker defences, through disputes, to defend back on a
dispute that is not at the same time an undercut.

Finally, we note that a comprehension model need not be
complete as it does not need to contain all possible sceptical
conclusions that can be drawn from the narrative and the
entire world knowledge. It is a subset of this, given by the
subset of the available world knowledge that readers choose
to use. This incompleteness of the comprehension model
is required for important cognitive economy and coherence
properties of comprehension, as trivially a “full model” is
contrary to the notion of coherence.

Computing Comprehension Models

The computational procedure below constructs a compre-
hension model, by iteratively reading a new part of the story
SR, retracting existing inferences that are no longer appro-
priate, and including new inferences that are triggered as a
result of the new story part. Each part of the story may in-
clude more than one observation, much in the same way that
human readers may be asked to read multiple sentences in
the story before being asked to answer a question. We shall
call each story part of interest a block, and shall assume that
it is provided as input to the computational procedure.

At a high level the procedure proceeds as in Algorithm 1.
The story is read one block at a time. After each block



Algorithm 2 Elaborating a Comprehension Model

input: provisional comprehension model II, graph G,
story SR; all inputs possibly restricted up to some block.
repeat
Let G := retract(Il, G, SR).
Let F include all tuples <arg(H, B), T d; (X, T)>
such that arg(H, B) activates X at T  under II.
LetIT := A.
Let IT := expand(A, E, G).
until A =11
output: elaborated comprehension model A.

of SR is read, a directed acyclic graph G[b] is maintained
which succinctly encodes all interpretations that are relevant
for SR up to its b-th block. Starting from G[b — 1], a new
tuple is added as a vertex if it is possible to add a directed
edge to each (X, T) in the tuple’s condition from either an
observation OBS(X, T') in the narrative of SR[b], or from a
tuple (arg(H, B),T",d; (X, T)) already in G[b]. In effect,
then, edges correspond to the notion of support from the pre-
ceding section, and the graph is the maximal grounded inter-
pretation given the part of the story read.

Once graph GJ[b] is computed, it is used to revise the com-
prehension model A[b — 1] so that it takes into account the
observations in SR [b]. The revision proceeds in two steps.

In the first step, the tuples in A[b— 1] are considered in the
order in which they were added, and each one is checked to
see whether it should remain in the comprehension model.
Any tuple in A[b—1] that is undercut by the tuples in G[b], or
disputed and cannot be defended, is retracted, and is not in-
cluded in the provisional set IT[b]. As a result of a retraction,
any tuple (arg(H, B),T",d; (X,T)) € A[b— 1] such that
arg(H, B) no longer activates X at T under II[?] is also re-
tracted and is not included in TI[b]. This step guarantees that
the argument TI[b] is trivially acceptable.

In the second step, the provisional set II[b], which is itself
a comprehension model (but likely a highly incomplete one),
is elaborated with new inferences that follow. The elabo-
ration process proceeds as in Algorithm 2. Since the pro-
visional comprehension model II effectively includes only
unit arguments that are “strong” against the attacks from G,
it is used to remove (only as part of the local computation of
this procedure) any weak arguments from G itself (i.e., ar-
guments that are undercut), and any arguments that depend
on the former to activate their inferences. This step, then,
ensures that all arguments (subsets of () that are defended
are no longer part of the revised G, in effect accommodating
the minimality condition for attacking sets. It then consid-
ers all arguments that activate their inferences in the pro-
visional comprehension model. The comprehension model
is expanded with a new tuple from F if the tuple is not in
conflict with the story nor in direct conflict with the current
model A, and if “attacked” by arguments in G then these
arguments do not undercut A, and A undercuts back. Only
arguments coming from the revised graph G are considered,
as per the minimality criterion on considered attacks.

The elaboration process adds only “strong” arguments in

171

the comprehension model, retaining its property as a com-
prehension model. The discussion above forms the basis for
the proof of the following theorem:

Theorem 1. Algorithm 1 runs in time that is polynomial in
the size of SR and the number of time-points of interest,
and returns a comprehension model of the story.

Proof sketch. Correctness follows from our earlier discus-
sion. Regarding running time: The number of iterations of
the top-level algorithm is at most linear in the relevant pa-
rameters. In constructing the graph G[b], each pair of ele-
ments (unit arguments or observations at some time-point)
in SR[b] is considered once, for a constant number of op-
erations. The same is the case for the retraction process in
the subsequent step of the algorithm. Finally, the loop of the
elaboration process repeats at most a linear in the relevant
parameters number of times, since at least one new tuple is
included in II in every loop. Within each loop, each step
considers each pair of elements (unit arguments or obser-
vations at some time-point) in SR[b] once, for a constant
number of operations. The claim follows. QED

The computational processes presented above have been
implemented using Prolog, along with an accompanying
high-level language for representing narratives, background
knowledge, and multiple-choice questions. Without going
into details, the language allows the user to specify a se-
quence of sessions of the form session (s (B),Qs,Vs),
where B is the next story block to read, Qs is the set of ques-
tions to be answered afterwards, and Vs is the set of fluents
made visible in a comprehension model returned to the user.

The narrative itself is represented by a sequence of state-
ments of the form s (B) X at T, where B is the
block in which the statement belongs (with possibly mul-
tiple statements belonging in the same block), X is a fluent
or action, and T is the time-point at which it is observed.

The background knowledge is represented by clauses of
the form p (N) A, B, ..., C implies X or
c (N) A, B, ..., C causes X, whereporc
shows a property or causal clause, N is the name of the rule,
A, B, ..., Cistherule’sbody, and X is the rule’s head.
Negations are represented by prefixing a fluent or action in
the body or head with the minus symbol. Variables can be
used in the fluents or actions to represent relational rules.
Preferences between clauses are represented by statements
of the form p (N1) >> ¢ (N2) with the natural reading.

Questions are represented by clauses of the form g (N)
?2? (X1 at T1, ..., X2 at T2) ; ..., where
N is the name of the question, (X1 at T1, ..., X2
at T2) is the first possible answer as a conjunction of flu-
ents or actions that need to hold at their respective time-
points, and ; separates the answers. The question is always
the same: “Which of the following choices is the case?”.

The implemented system demonstrates real modularity
and elaboration tolerance, allowing as input any story nar-
rative or background knowledge in the given syntax, al-
ways appropriately qualifying the given information to com-
pute a comprehension model. The system is available at
http://cognition.ouc.ac.cy/narrative/.



Evaluation through Empirical Studies

In the first part of the evaluation of our approach we car-
ried a psychological study to ascertain the world knowledge
that is activated to successfully comprehend example stories
such as our example story on the basis of data obtained from
human readers. We were interested both in the outcomes
of successful comprehension and the world knowledge that
contributed to the human comprehension. We developed
a set of inferential questions to follow the reading of pre-
specified story segments. These assessed the extent to which
readers connected, explained, and elaborated key story ele-
ments. Readers were instructed to answer each question and
to justify their answers using a “think-aloud” method of an-
swering questions while reading in order to reveal the world
knowledge that they had used.

The qualitative data from the readers was pooled together
and analysed as to the frequencies of the types of responses
in conjunction with the information given in justifications
and think-aloud protocols. For example, the data indicated
that all readers considered Papa Joe to be living on a farm
or in a village (q.01, “Where does Papa Joe live?”) and
that all readers attributed an intention of Papa Joe to hunt
(q.06, “What was Papa Joe doing in the forest?”). An in-
teresting example of variability occurred in the answers for
the group of questions 07,08,10,11, asking about the status
of the turkeys at various stages in the story. The major-
ity of participants followed a comprehension model which
was revised between the first turkey being dead and alive.
However, a minority of participants consistently answered
that both turkeys were alive. These readers had defeated the
causal arguments that supported the inference that the first
turkey was dead, perhaps based on an expectation that the
desire of the protagonist for turkey would be met with com-
plications. We believe that such expectations can be gener-
ated from standard story knowledge in the same way as we
draw other elaborative inferences from WK.

Evaluation of the system

Using the empirical data discussed above, we tested our
framework’s ability to capture the majority answers and ac-
count for their variability. The parts of our example story
representation relevant to questions 01 and 06 are as follows:

s(1) :: night at 0. s(2) :: animal(turkey?2) at 2.
s(1) :: xmasEve at 0. s(2) :: alive(turkeyl) at 2.

s(1) :: clean(pj,barn) at 0. s(2) :: alive(turkey?2) at 2.

$(2) :: xmasDay at 1. s(2) :: chirp(bird) at 2.

s(2) :: gun(pjGun) at 1. s(2) :: nearby(bird) at 2.

s(2) :: longWalk(pj) at 1. $(2) :: aim(pjGun,turkey1) at 2.
$(2) :: animal(turkeyl) at 2.  s(2) :: pulltrigger(pjGun) at 2.

The two questions are answered after reading, respec-
tively, the first and second blocks of the story above:

session(s(1),[q(01)],-).  session(s(2),[q(06)],-).
with their corresponding multiple-choice answers being:

q(01) 7?
lives(pj,city) at 0;
lives(pj,farm) at O;

lives(pj,hotel) at 0;
lives(pj,village) at 0.

172

q(06) 7?

motive(in(pj,forest),practiceShoot) at 3;

motive(in(pj,forest),huntFor(food)) at 3;

(motive(in(pj,forest),catch(turkey1)) at 3,
motive(in(pj,forest),catch(turkey?2)) at 3);

motive(in(pj,forest),hearBirdsChirp) at 3.

To answer the first question, the system uses the following
background knowledge:

p(11) :: has(home(pj),barn) implies lives(pj,countrySide).
p(12) :: true implies -lives(pj,hotel).

p(13) :: true implies lives(pj,city).

p(14) :: has(home(pj),barn) implies -lives(pj,city).

p(15) :: clean(pj,barn) implies at(pj,barn).

p(16) :: at(pj,home), at(pj,barn) implies has(home(pj),barn).
p(17) :: xmasEve, night implies at(pj,home).

p(18) :: working(pj) implies -at(pj,home).

p(111) :: lives(pj,countrySide) implies lives(pj,village).
p(112) :: lives(pj,countrySide) implies lives(pj,farm).
p(113) :: lives(pj,village) implies -lives(pj,farm).
p(114) :: lives(pj,farm) implies -lives(pj,village).

p(14) >> p(13). p(18) >> p(17).

By the story information, p(17) implies at(pj,home), with-
out being attacked by p(18), since nothing is said in the story
about Papa Joe working. Also by the story information,
p(15) implies at(pj,barn). Combining the inferences from
above, p(16) implies has(home(pj),barn), and p(11) implies
lives(pj,countrySide). p(12) immediately dismisses the case
of living in a hotel (as people usually do not), whereas p(14)
overrides p(13) and dismisses the case of living in the city.
Yet, the background knowledge cannot unambiguously de-
rive one of the remaining two answers. In fact, p(111),
p(112), p(113), p(114) give arguments for either of the two
choices. This is in line with the variability in the empirical
data in terms of human answers to the first question.

To answer the second question, the system uses the fol-
lowing background knowledge:

p(21) :: want(pj,foodFor(dinner)) implies
motive(in(pj,forest),huntFor(food)).

p(22) :: hunter(pj) implies
motive(in(pj,forest),huntFor(food)).

p(23) :: firedat(pjGun,X), animal(X) implies
-motive(in(pj,forest),catch(X)).

p(24) :: firedat(pjGun,X), animal(X) implies
-motive(in(pj,forest),hearBirdsChirp).

p(25) :: xmasDay implies
want(pj,foodFor(dinner)).

p(26) :: longWalk(pj) implies
-motive(in(pj,forest),practiceShooting).

p(27) :: xmasDay implies

-motive(in(pj,forest),practiceShooting).

By the story information and parts of the background
knowledge not shown above, we can derive that Papa Joe is a
hunter, and that he has fired at a turkey. From the first infer-
ence, p(22) already implies that the motivation is to hunt for
food. The same inference can be derived by p(25) and p(21),
although for a different reason. At the same time, p(23) and
p(24) dismiss the possibility of the motivation being to catch
the two turkeys or to hear birds chirp, whereas story infor-
mation along with either p(26) or p(27) dismiss also the pos-
sibility of the motivation being to practice shooting.



The background knowledge above follows evidence from
the participant responses in our psychological study that the
motives in the answers of the second question can be “de-
rived” from higher-level desires or goals of the actor. Such
high-level desires and intentions are examples of generaliza-
tions that contribute to the coherence of comprehension, and
to the creation of expectations in readers about the course
of action that the story might follow in relation to fulfilling
desires and achieving intentions of the protagonists.

Related Work

Automated story understanding has been an ongoing field of
Al research for the last forty years, starting with the planning
and goal-oriented approaches of Schank, Abelson, Dyer
and others (Schank and Abelson 1977; Dyer 1983); for a
good overview see (Mueller 2002) and the website (Mueller
2013). Logic-related approaches have largely been con-
cerned with the development of appropriate representations,
translations or annotations of narratives, with the implicit
or explicit assumption that standard deduction or logical
reasoning techniques can subsequently be applied to these.
For example, the work of Mueller (Mueller 2003), which
in terms of story representation is most closely related to
our approach, equates various modes of story understand-
ing with the solving of satisfiability problems. (Niehaus and
Young 2009) models understanding as partial order plan-
ning, and is also of interest here because of a methodology
that includes a controlled comparison with human readers.

To our knowledge there has been very little work relating
story comprehension with computational argumentation, an
exception being (Bex and Verheij 2013), in which a case is
made for combining narrative and argumentation techniques
in the context of legal reasoning, and with which our argu-
mentation framework shares important similarities. Argu-
mentation for reasoning about actions and change, on which
our formal framework builds, has been studied in (Vo and
Foo 2005; Michael and Kakas 2009).

Many other authors have emphasized the importance of
commonsense knowledge and reasoning in story compre-
hension (Silva and Montgomery 1977; Dahlgren, McDow-
ell, and Stabler 1989; Riloff 1999; Mueller 2004; 2009;
Verheij 2009; Elson and McKeown 2009; Michael 2010),
and indeed how it can offer a basis for story comprehension
tasks beyond question answering (Michael 2013b).

Conclusions and Future Work

We have set up a conceptual framework for story compre-
hension by fusing together knowhow from the psychology
of text comprehension with established Al techniques and
theory in the areas of Reasoning about Actions and Change
and Argumentation. We have developed a proof of concept
automated system to evaluate the applicability of our frame-
work through a similar empirical process of evaluating hu-
man readers. We are currently, carrying out psychological
experiments with other stories to harness world knowledge
and test our system against the human readers.

There are still several problems that we need to address to
complete a fully automated approach to SC, over and above

173

the problem of extracting through Natural Language Pro-
cessing techniques the narrative from the free format text.
Two major such problems for our immediate future work
are (a) to address further the computational aspects of the
challenges of cognitive economy and coherence and (b) the
systematic extraction or acquisition of common sense world
knowledge. For the first of these we will investigate how this
can be addressed by applying “computational heuristics” on
top of (and without the need to reexamine) the solid semantic
framework that we have developed thus far, drawing again
from psychology to formulate such heuristics. In particu-
lar, we expect that the psychological studies will guide us in
modularly introducing computational operators such as se-
lection, dropping and generalization operators so that we
can improve the coherence of the computed models.

For the problem of the systematic acquisition of world
knowledge we aim to source this (semi)-automatically from
the Web. For this we could build on lexical databases
such as WordNet (Miller 1995), FrameNet (Baker, Fill-
more, and Lowe 1998), and PropBank (Palmer, Gildea, and
Kingsbury 2005), exploring the possibility of populating the
world knowledge theories using archives for common sense
knowledge (e.g., Cyc (Lenat 1995)) or through the auto-
mated extraction of commonsense knowledge from text us-
ing natural language processing (Michael and Valiant 2008),
and appealing to textual entailment for the semantics of the
extracted knowledge (Michael 2009; 2013a).

We envisage that the strong inter-disciplinary nature of
our work can provide a concrete and important test bed for
evaluating the development of NMR frameworks in AI while
at the same time offering valuable feedback for Psychology.

References

Baker, C. F.; Fillmore, C. J.; and Lowe, J. B. 1998. The
Berkeley FrameNet Project. In Proc. of 36th Annual Meet-
ing of the Association for Computational Linguistics and

17th International Conference on Computational Linguis-
tics, 86-90.

Bex, F., and Verheij, B. 2013. Legal Stories and the Process
of Proof. Artif. Intell. Law 21(3):253-278.

Brewer, W., and Lichtenstein, E. 1982. Stories are to En-
tertain: A Structural-Affect Theory of Stories. Journal of
Pragmatics 6:473-486.

Dahlgren, K.; McDowell, J.; and Stabler, E. 1989. Knowl-
edge Representation for Commonsense Reasoning with
Text. Computational Linguistics 15(3):149-170.

Dung, P. M. 1995. On the Acceptability of Arguments and
its Fundamental Role in Nonmonotonic Reasoning, Logic
Programming and n-Person Games. Artif. Intell. 77(2):321—
358.

Dyer, M. G. 1983. In-Depth Understanding: A Computer
Model of Integrated Processing for Narrative Comprehen-
sion. MIT Press, Cambridge, MA.

Elson, D., and McKeown, K. 2009. Extending and Evalu-
ating a Platform for Story Understanding. In Proc. of AAAI
Symposium on Intelligent Narrative Technologies II.



Johnson-Laird, P. N, and Yang, Y. 2008. Mental Logic,
Mental Models, and Simulations of Human Deductive Rea-
soning. In Sun, R., ed., The Cambridge Handbook of Com-
putational Psychology, 339-358.

Kakas, A., and Mancarella, P. 2013. On the Semantics of
Abstract Argumentation. Logic Computation 23:991-1015.

Kakas, A.; Toni, F.; and Mancarella, P. 2013. Argumenta-
tion for Propositional Logic and Nonmonotonic Reasoning.
In Proc. of 11th International Symposium on Logical For-
malizations of Commonsense Reasoning.

Kintsch, W. 1988. The Role of Knowledge in Discourse
Comprehension: A Construction-Integration Model. Psy-
chological Review 95:163—182.

Kintsch, W. 1998. Comprehension: A Paradigm of Cogni-
tion. NY: Cambridge University Press.

Lenat, D. B. 1995. CYC: A Large-Scale Investment in
Knowledge Infrastructure. Commun. ACM 38(11):32-38.
Levesque, H. J.; Davis, E.; and Morgenstern, L. 2012. The
Winograd Schema Challenge. In Proc. of 13th International
Conference on Principles of Knowledge Representation and
Reasoning, 552-561.

McNamara, D. S., and Magliano, J. 2009. Toward a Com-
prehensive Model of Comprehension. The Psychology of
Learning and Motivation 51:297-384.

Mercier, H., and Sperber, D. 2011. Why Do Humans Rea-
son? Arguments for an Argumentative Theory. Behavioral
and Brain Sciences 34(2):57-74.

Michael, L., and Kakas, A. C. 2009. Knowledge Qualifica-
tion through Argumentation. In Proc. of 10th International
Conference on Logic Programming and Nonmonotonic Rea-
soning, 209-222.

Michael, L., and Valiant, L. G. 2008. A First Experimental
Demonstration of Massive Knowledge Infusion. In Proc. of
1 1th International Conference on Principles of Knowledge
Representation and Reasoning, 378-389.

Michael, L. 2009. Reading Between the Lines. In Proc.
of 21st International Joint Conference on Artificial Intelli-
gence, 1525-1530.

Michael, L. 2010. Computability of Narrative. In Proc. of
AAAI Symposium on Computational Models of Narrative.
Michael, L. 2013a. Machines with Websense. In Proc. of
11th International Symposium on Logical Formalizations of
Commonsense Reasoning.

Michael, L. 2013b. Story Understanding... Calculemus! In
Proc. of 11th International Symposium on Logical Formal-
izations of Commonsense Reasoning.

Miller, G. A. 1995. WordNet: A Lexical Database for En-
glish. Commun. ACM 38(11):39-41.

Modgil, S., and Prakken, H. 2012. A General Account of
Argumentation with Preferences. Artif. Intell. 195:361-397.
Mueller, E. T. 2002. Story Understanding. In Nadel, L.,
ed., Encyclopedia of Cognitive Science, volume 4, 238-246.
London: Macmillan Reference.

Mueller, E. 2003. Story Understanding through Multi-
Representation Model Construction. In Hirst, G., and Niren-

174

burg, S., eds., Proc. of the HLT-NAACL 2003 Workshop on
Text Meaning, 46-53.

Mueller, E. 2004. Understanding Script-Based Stories Us-
ing Commonsense Reasoning. Cognitive Systems Research
5(4):307-340.

Mueller, E. 2009. Story Understanding through Model Find-

ing. In Proc. of Workshop on Advancing Computational
Models of Narrative.

Mueller, E. 2013.  Story Understanding Resources.
http://xenia.media.mit.edu/ mueller/storyund/storyres.html.
Accessed February 28, 2013.

Niehaus, J., and Young, R. M. 2009. A Computational
Model of Inferencing in Narrative. In Proc. of AAAI Sympo-
sium on Intelligent Narrative Technologies II.

Palmer, M.; Gildea, D.; and Kingsbury, P. 2005. The Propo-
sition Bank: An Annotated Corpus of Semantic Roles. Com-
putational Linguistics 31(1):71-106.

Rapp, D., and den Broek, P. V. 2005. Dynamic Text Com-
prehension: An Integrative View of Reading. Current Di-
rections in Psychological Science 14:297-384.

Riloff, E. 1999. Information Extraction as a Stepping Stone
Toward Story Understanding. In Ram, A., and Moorman,
K., eds., Understanding Language Understanding: Compu-
tational Models of Reading, 435-460. The MIT Press.

Rips, L. 1994. The Psychology of Proof. MIT Press.

Schank, R. C., and Abelson, R. P. 1977. Scripts, Plans,
Goals, and Understanding: An Inquiry into Human Knowl-
edge Structures. Lawrence Erlbaum, Hillsdale, NJ.

Silva, G., and Montgomery, C. A. 1977. Knowl-
edge Representation for Automated Understanding of Nat-
ural Language Discourse. Computers and the Humanities
11(4):223-234.

Thielscher, M. 2001. The Qualification Problem: A Solution
to the Problem of Anomalous Models. Artif. Intell. 131(1—
2):1-37.

van Harmelen, F.; Lifschitz, V.; and Porter, B. 2008. Hand-
book of Knowledge Representation. Elsevier Science.

Verheij, B. 2009. Argumentation Schemes, Stories and Le-
gal Evidence. In Proc. of Workshop on Advancing Compu-
tational Models of Narrative.

Vo, Q. B., and Foo, N. Y. 2005. Reasoning about Action:
An Argumentation-Theoretic Approach. J. Artif. Intell. Res.
24:465-518.

Zwaan, R. A. 1994. Effect of Genre Expectations on
Text Comprehension. Journal of Experimental Psychology:
Learning, Memory, and Cognition 20:920-933.



Tableau vs. Sequent Calculi for Minimal Entailment

Olaf Beyersdorff* and Leroy Chew'
School of Computing, University of Leeds, UK

Abstract

In this paper we compare two proof systems for mini-
mal entailment: a tableau system OTAB and a sequent
calculus MLK, both developed by Olivetti (1992).
Our main result shows that OTAB-proofs can be
efficiently translated into MLK-proofs, i.e., MLK p-
simulates OTAB. The simulation is technically very in-
volved and answers an open question posed by Olivetti
(1992) on the relation between the two calculi. We
also show that the two systems are exponentially sep-
arated, i.e., there are formulas which have polynomial-
size MLK-proofs, but require exponential-size OTAB-
proofs.

Introduction

Minimal entailment is the most important special case
of circumscription, which in turn is one of the main for-
malisms for non-monotonic reasoning (McCarthy 1980).
The key intuition behind minimal entailment is the
notion of minimal models, providing as few excep-
tions as possible. Apart from its foundational rela-
tion to human reasoning, minimal entailment has wide-
spread applications, e.g. in Al, description logics (Bon-
atti, Lutz, and Wolter 2009; Grimm and Hitzler 2009;
Giordano et al. 2013) and SAT solving (Janota and
Marques-Silva 2011).

While the complexity of non-monotonic logics has
been thoroughly studied — cf. e.g. the recent papers
(Durand, Hermann, and Nordh 2012; Thomas 2012;
Bonatti, Lutz, and Wolter 2009) or the survey (Thomas
and Vollmer 2010) — considerably less is known about
the complexity of theorem proving in these logics. This
is despite the fact that a number of quite different
formalisms have been introduced for circumscription
and minimal entailment (Olivetti 1992; Niemeld 1996;
Bonatti and Olivetti 2002; Grimm and Hitzler 2009;
Giordano et al. 2013). While proof complexity has tra-
ditionally focused on proof systems for classical propo-
sitional logic, there has been remarkable interest in
proof complexity of non-classical logics during the last

*Supported by a grant from the John Templeton Foun-
dation.
TSupported by a Doctoral Training Grant from EPSRC.

175

decade. A number of exciting results have been ob-
tained — in particular for modal and intuitionistic log-
ics (Hrubes 2009; Jefdabek 2009) — and interesting phe-
nomena have been observed that show a quite different
picture from classical proof complexity, cf. (Beyersdorff
and Kutz 2012) for a survey.

In this paper we focus our attention at two very dif-
ferent formalisms for minimal entailment: a sequent cal-
culus MLK and a tableau system OTAB, both devel-
oped by Olivetti (1992).! These systems are very nat-
ural and elegant, and in fact they were both inspired
by their classical propositional counterparts: Gentzen’s
LK (1935) and Smullyan’s analytic tableau (1968).

Our main contribution is to show a p-simulation of
OTAB by MLK , i.e.,proofs in OTAB can be efficiently
transformed into MLK-derivations. This answers an
open question by Olivetti (1992) on the relationship be-
tween these two calculi. At first sight, our result might
not appear unexpected as sequent calculi are usually
stronger than tableau systems, cf. e.g. (Urquhart 1995).
However, the situation is more complicated here, and
even Olivetti himself did not seem to have a clear con-
jecture as to whether such a simulation should be ex-
pected, cf. the remark after Theorem 8 in (Olivetti
1992).

The reason for the complication lies in the nature of
the tableau: while rules in MLK are ‘local’, i.e.,they
refer to only two previous sequents in the proof, the
conditions to close branches in OTAB are ‘global’ as
they refer to other branches in the tableau, and this ref-
erence is even recursive. The trick we use to overcome
this difficulty is to annotate nodes in the tableau with
additional information that ‘localises’ the global infor-
mation. This annotation is possible in polynomial time.
The annotated nodes are then translated into minimal
entailment sequents that form the skeleton of the MLK
derivation for the p-simulation.

In addition to the p-simulation of OTAB by MLK,
we obtain an exponential separation between the two

!"While the name MLK is Olivetti’s original notation
(Olivetti 1992), we introduce the name OTAB here as
shorthand for Olivetti’s tableau. By NTAB we denote an-
other tableau for minimal entailment suggested by Niemela
(1996), cf. the conclusion of this paper.



systems, i.e., there are formulas which have polynomial-
size proofs in MLK , but require exponential-size OTAB
tableaux. In proof complexity, lower bounds and sepa-
rations are usually much harder to show than simu-
lations, and indeed there are famous examples where
simulations have been known for a long time, but sepa-
rations are currently out of reach, cf. (Krajicek 1995). In
contrast, the situation is opposite here: while the sep-
aration carries over rather straightforwardly from the
comparison between classical tableau and LK , the proof
of the simulation result is technically very involved.

This paper is organised as follows. We start by recall-
ing basic definitions from minimal entailment and proof
complexity, and explaining Olivetti’s systems MLK and
OTAB for minimal entailment (Olivetti 1992). This is
followed by two sections containing the p-simulation
and the separation of OTAB and MLK . In the last sec-
tion, we conclude by placing our results into the global
picture of proof complexity research on circumscription
and non-monotonic logics.

Preliminaries

Our propositional language contains the logical symbols
L, T,—,V, A, —. For a set of formulae 3, VAR(X) is the
set of all atoms that occur in X. For a set P of atoms
we set =P = {-p | p € P}. Disjoint union of two sets
A and B is denoted by A U B.

Minimal Entailment. Minimal entailment is a form
of non-monotonic reasoning developed as a special case
of McCarthy’s circumscription (McCarthy 1980). Min-
imal entailment comes both in a propositional and a
first-order variant. Here we consider only the version of
minimal entailment for propositional logic. We identify
models with sets of positive atoms and use the partial
ordering C based on inclusion. This gives rise to a nat-
ural notion of minimal model for a set of formulae, in
which the number of positive atoms is minimised with
respect to inclusion. For a set of propositional formu-
lae T we say that I' minimally entails a formula ¢ if
all minimal models of I also satisfies ¢. We denote this
entailment by I' Fp; ¢.

Proof Complexity. A proof system (Cook and Reck-
how 1979) for a language L over alphabet T' is a
polynomial-time computable partial function f : I'* —
I'* with rng(f) = L. An f-proof of string y is a string
z such that f(x) =y.

Proof systems are compared by simulations. We say
that a proof system f simulates g (g < f) if there exists
a polynomial p such that for every g-proof m, there is
an f-proof my with f(mw¢) = g(mg) and |m¢| < p(|mg)).
If ¢ can even be constructed from m,; in polynomial
time, then we say that f p-simulates g (g <, f). Two
proof systems f and g are (p-)equivalent (g =) f) if
they mutually (p-)simulate each other.

The sequent calculus of Gentzen’s system LK is one
of the historically first and best studied proof systems
(Gentzen 1935). In LK a sequent is usually written in

176

the form I' F A. Formally, a sequent is a pair (I',A)
with ' and A finite sets of formulae. In classical logic
'+ A is true if every model for AT is also a model of
\ A, where the disjunction of the empty set is taken as
L and the conjunction as T. The system can be used
both for propositional and first-order logic; the proposi-
tional rules are displayed in Fig. 1. Notice that the rules
here do not contain structural rules for contraction or
exchange. These come for free as we chose to operate
with sets of formulae rather than sequences. Note the
soundness of rule (e |), which gives us monotonicity of
classical propositional logic.

ara W TE D = e
IFy IFy
ATry P rrsa 9
T3, A ATFY
“ATFY (=F) FkﬂﬁA(Fﬂ
ATFY ATFY
BraTEy NP arprry Meh)
I'FY,A TFYB
TFS,AANB (=)
ATFY  BTFY
AVB,TFS (V)
TFY, A TFY, A
Trepva Y Tryavp V)
AT+, B
rrsa-p )
IFY,A  BAFA
(—F)
ASBT,AFSA
PERA  ATER
TFy ot
Figure 1: Rules of the sequent calculus LK (Gentzen
1935)

Olivetti’s sequent calculus and tableau
system for minimal entailment

In this section we review two proof systems for minimal
entailment, which were developed by Olivetti (1992).
We start with the sequent calculus MLK . Semantically,
a minimal entailment sequent I' F,; A is true if and
only if in all minimals models of AT the formula \/ A
is satisfied. In addition to all axioms and rules from
LK, the calculus MLK comprises the axioms and rules
detailed in Figure 2. In the MLK axiom, the notion of a
positive atom p in a formula ¢ is defined inductively by
counting the number of negations and implications in ¢



on top of p (cf. (Olivetti 1992) for the precise definition).

Truw (Fum)

where p is an atom that does not occur positively in
any formula in I’

% (FFar)
Tk E,FAW Zﬁr Far A (Mecut)
Tty Y ThyA (o Far)
[,SFy A
= T\/EB,F F]i’FzFM = (V' Far)
T B CaeY)
R P
AT+Hy S, B (Fa)

TFy 2 A— B

Figure 2: Rules of the sequent calculus MLK for min-
imal entailment (Olivetti 1992)

Theorem 1 (Theorem 8 in (Olivetti 1992)) A se-
quent T' Far A is true iff it is derivable in MLK .

In addition to the sequent calculus MLK, Olivetti
developed a tableau calculus for minimal entailment
(Olivetti 1992). Here we will refer to this calculus as
OTAB. A tableau is a rooted tree where nodes are la-
belled with formulae. In OTAB, the nodes are labelled
with formulae that are signed with the symbol T or F.
The combination of the sign and the top-most connec-
tive allows us to classify signed formulas into a or (-
type formulae as detailed in Figure 3. Intuitively, for an
a-type formula, a branch in the tableau is augmented
by a1, s, whereas for a -type formula it splits accord-
ing to 01, B2. Nodes in the tableau can be either marked
or unmarked. For a sequent I" -, A, an OTAB tableau
is constructed by the following process. We start from
an initial tableau consisting of a single branch of un-
marked formulae, which are exactly all formulae v € T,
signed as Ty, and all formulae § € A, signed as F'§. For
a tableau and a branch B in this tableau we can extend
the tableau by two rules:

« a1 ()

T(A A B) TA |TB Jé] 01 B2
F~(AAB) |F~A|F-B| [T(AVB) |TA |TB
T-(AV B) |T-A|T-B| |F~(AV B) |F-A|F-B
F(AVB) |FA |FB | |T-(AAB) |T-A|T-B
T—(A— B)|TA |T-B| |F(AAB) |FA |FB
F(A— B) |F-A|FB | |T(A— B) |T-A|TB
T——A TA |TA | |F~(A— B)|FA |F-B
F——A FA |FA

Figure 3: Classification of signed formulae into a and
[B-type by sign and top-most connective

(A) If formula ¢ is an unmarked node in B of type a, then
mark ¢ and add the two unmarked nodes a1 and as
to the branch.

(B) If formula ¢ is an unmarked node in B of type [,
then mark ¢ and split B into two branches Bi, B
with unmarked 3; € B; and unmarked (5 € Bs.

A branch B is completed if and only if all unmarked
formulae on the branch are literals. A branch B is closed
if and only if it satisfies at least one of the following
conditions:

1. For some formula A, TA and T—A are nodes of B
(T-closed).

2. For some formula A, FA and F-A are nodes of B
(F-closed).

3. For some formula A, TA and F A are nodes of B (T'F-
closed).

For branch B let At(B) = {p : p is an atom and Tp is
anode in B}. We define two types of ignorable branches:

1. Bis an ignorable type-1 branch if B is completed and
there is an atom a such that F—a is a node in B, but
Ta does not appear in B.

2. B is an ignorable type-2 branch if there is another
branch B’ in the tableau that is completed but not
T-closed, such that At(B’) C At(B).

Theorem 2 (Theorem 2 in (Olivetti 1992)) The
sequent T' Fpr A is true if and only if there is an OTAB
tableau in which every branch is closed or ignorable.

Simulating OTAB by MLK

We will work towards a simulation of the tableau system
OTAB by the sequent system MLK . In preparation for
this a few lemmas are needed. We also add more infor-
mation to the nodes (this can all be done in polynomial
time). We start with a fact about LK (for a proof see
(Beyersdorff and Chew 2014)).

Lemma 3 For sets of formulae I'; A and disjoints sets
of atoms L1, X~ with VAR(T' U A) = St US™ we
can efficiently construct polynomial-size LK -proofs of
YT, =37, T+ A when the sequent is true.

We also need to derive a way of weakening in MLK,
and we show this in the next lemma.

177



Lemma 4 From a sequent Ty A with non-empty A
we can derive I' Fpr AJY in a polynomial-size MLK -
proof for any set of formulae X.

Proof. We take 6 € A, and from the LK-axiom we get
0 F §. From weakening in LK we obtain I',6 + A,X.
Using rule (FFas) we obtain I', 6 Fpr A, X. We then
derive T Fp; A, Y using the (M-cut) rule. O

The proof makes essential use of the (M-cut) rule. As
aresult MLK is not complete without (M-cut); e.g. the
sequent () Fp; —a,—=b cannot be derived. A discussion
on cut elimination in MLK is given in (Olivetti 1992).

Lemma 5 Let Tt be an a-type formula with ay = Ty,
as = T, and let F1p be an a-type formula with oy =
Fi1, as = Fipe. Similarly, let T¢ be a (-type formula
with 01 = T¢1, Po = T, and let Fx be an (-type
formula with 61 = Fx1, B2 = Fxo.

The following sequents all can be proved with
polynomial-size LK -proofs: 7 = 11 N 1o, M ANTo F T,
YY1V, Y1 Ve B, dF d1 Ve, 1V P2 &,
X Fx1 A xe, and x1 A x2 F x.

The straightforward proof of this involves checking
all cases, which we omit here.

We now annotate the nodes w in an OTAB tableau
with three sets of formulae A,, B,, C, and a set of
branches D,. This information will later be used to
construct sequents A, bk By, Cy,, which will form
the skeleton of the eventual MLK proof that simulates
the OTAB tableau. Intuitively, if we imagine follow-
ing a branch when constructing the tableau, A, cor-
responds to the current unmarked T-formulae on the
branch, while B, corresponds to the current unmarked
F-formulae. C, contains global information on all the
branches that minimise the ignorable type-2 branches in
the subtree with root u. The formal definition follows.
We start with the definition of the formulae A, and B,,
which proceeds by induction on the construction of the
tableau.

Definition 6 Nodes u in the OTAB tableau from the
wnatial tableau are annotated with A, =T and B, = A.

For the inductive step, consider the case that the ex-
tension rule (A) was used on node u for the a-type
signed formula ¢. If ¢ = Tx has ax = Tx1, as = Tx2
then for the mode v labelled oy and the node w la-
belled g, Ay = Ay = {xa1, x2t U AL) \ {x} and B, =
B, = By. If = Fx has a1 = Fx1, as = Fxo then
for the node v labelled oy and the node w labelled au,
Ay =A, = Ay and B, = B, = ({XlaXZ} U Bu) \ {X}

Consider now the case that the branching rule (B)
was used on node u for the B-type signed formula ¢. If
¢ =Tx has B1 = Tx1, P2 = Tx2 then for the node v
labelled 1 and the node w labelled B, A, = ({x1} U
A)\{x} Aw = ({x2} UAL) \ {x} and B, = B, = Bu.
If ¢ = Fx has 1 = Fx1, B2 = Fx2 then for the node
v labelled By and the node w labelled B2, B, = ({x1} U
Bu)\{x}, Buw = ({x2} UBu) \{x} and A, = A, = A.

For each ignorable type-2 branch B we can find an-
other branch B’, which is not ignorable type-2 and such

178

that At(B’) C At(B). The definition of ignorable type-2
might just refer to another ignorable type-2 branch, but
eventually — since the tableau is finite — we reach a
branch B’, which is not ignorable type-2. There could be
several such branches, and we will denote the left-most
such branch B’ as 6(B).

We are now going to construct sets C,, and D,,. The
set D, contains some information on type-2 ignorable
branches. Let u be a node, which is the root of a sub-
tableau T', and consider the set I of all type-2 ignor-
able branches that go through 7. Now intuitively, D,
is defined as the set of all branches from 6(I) that are
outside of T. The set C, is then defined from D, as
Cu = {Apearo)) P | B € Du}. The formal construc-
tions of C,, and D,, are below. Unlike A, and B,,, which
are constructed inductively from the root of the tableau,
the sets C,, and D,, are constructed inductively from the
leaves to the root, by reversing the branching procedure.

Definition 7 For an ignorable type-2 branch B the
end node u is annotated by the singleton sets C, =

{Apeasoy pt and Dy = {06(B)}; for other leaves
w = w = Y.
Inductively, we define:

e For a node u with only one child v, we set D,, = D,

and C, = C,,.
e For a node u with two children v and w, we set D, =
(Dy\{B|weBHUD,\{B|veB}) and C, =
peas(os) P | B € Dy}

For each binary node u with children v, w we spec-
ify two extra sets. We set E, = (D, U Dy) \ D,
and from this we can construct the set of formulae
Fu={N,eaumyp| BE E,}. Weletw =\ F,.

We now prepare the simulation result with a couple
of lemmas.

Lemma 8 Let B be a branch in an OTAB tableau end-
ing i leaf u. Then A, is the set of all unmarked T-
formulae on B (with the sign T removed). Likewise B,
is the set of all unmarked F-formulae on B (with the
sign F' removed).

Proof. We will verify this for T-formulae, the argument
is the same for F-formulae. If T'¢ at node v is an un-
marked formula on branch B then ¢ has been added to
A,, regardless of which extension rule is used and can-
not be removed at any node unless it is marked. There-
fore, if u is the leaf of the branch, we have ¢ € A,. If
T'¢ is marked then it is removed (in the inductive step
in the construction in Definition 6) and is not present
in A,. F-formulae do not appear in A,,. ad

Lemma 9 Let B be a branch in an OTAB tableau.

1. Assume that T¢ appears on the branch B, and let
A(B) be the set of unmarked T-formulae on B (with
the sign T removed). Then A(B) b ¢ can be derived
in a polynomial-size LK -proof.



2. Assume that F(¢) appears on the branch B, and let
B(B) be the set of unmarked F-formulae on B (with
the sign F' removed). Then ¢ = B(B) can be derived
in a polynomial-size LK -proof.

Proof. We prove the two claims by induction on the
number of branching rules (A) and extension rules (B)
that have been applied on the path to the node. We
start with the proof of the first item.

Induction Hypothesis (on the number of applica-
tions of rules (A) and (B) on the node labelled T'¢):
For a node labelled T'¢ on branch B, we can derive
A(B) F ¢ in a polynomial-size LK-proof (in the size of
the tableau).

Base Case (T¢ is unmarked): The LK axiom ¢ F ¢
can be used and then weakening to obtain A(B) F ¢.

Inductive Step: If T'¢ is a marked a-type formula,
then both oy = T¢; and as = T'¢y appear on the
branch. By the induction hypothesis we derive A(B) +
o1, A(B) F ¢2 in polynomial-size proofs, hence we can
derive A(B) F ¢1 A ¢2 in a polynomial-size proof (we
are bounded in total number of proof subtrees by the
numbers of nodes in our branch). We then have ¢ A¢s
¢ using Lemma 5. Using the cut rule we can derive
A(B) F ¢.

If T¢ is a p-type formula and is marked, then the
branch must contain 8; = T'¢; or B2 = T¢po. Without
loss of generality we can assume that 8; = T'¢; appears
on the branch. By the induction hypothesis A(B) F ¢4,
therefore we can derive A(B) F ¢1 V ¢ since it is a
[B-type formula and derive ¢1 V ¢2 F ¢ with Lemma 5.
Then using the cut rule we derive A(B) F ¢.

The second item is again shown by induction.

Induction Hypothesis (on the number of applica-
tions of rules (A) and (B) on the node labelled F¢):
For a node labelled F'¢ on branch B, we can derive
¢ F B(B) in a polynomial-size LK-proof (in the size of
the tableau).

Base Case (F¢ is unmarked): The LK axiom ¢ F ¢
can be used and then weakened to ¢ - B(B).

Inductive Step: If F¢ is a marked a-type formula,
then both oy = F¢; and as = F¢o appear on the
branch. Since by the inductive hypothesis ¢; + B(B)
and ¢2 F B(B), we can derive ¢1 V ¢ F B(B) in a
polynomial-size proof. We then have ¢ - ¢1 V ¢ using
Lemma 5. Using the cut rule we can derive ¢ - B(B).

If F¢ is a (-type formula and is marked, then the
branch must contain 5, = F¢; or B2 = F¢o. Without
loss of generality we can assume (1 = F'¢ appears on
the branch. By the induction hypothesis ¢; - B(B),
therefore we can derive ¢ A ¢o F B(B) since it is a
B-type formula and derive ¢ - ¢1 A ¢2 with Lemma 5.
Using the cut rule we derive ¢ - B(B). O

Lemma 10 Let B be a branch, which is completed but
not T-closed. For any node u on B, the model At(B)
satisfies A, .

Proof. We prove the lemma by induction on the height
of the subtree with root u.

179

Base Case (u is a leaf): By Lemma 8, A, is the
set of all unmarked T-formulae on B. But these are
all literals as B is completed, and hence the subset of
positive atoms is equal to At(B).

Inductive step: If u is of extension type (A) with
child node v then the models of A, are exactly the same
as the models of A,. This is true for all a-type formulae.
For example, if the extension process (A) was used on
formula T'(1) A x) and the node v was labelled T then
Ay = {9, x}UA N\ {¢Ax} and this has the same models
as A,. By the induction hypothesis, At(B) = A, and
hence At(B) = A,.

If w is of branch type (B) with children v and w then
At(B) = A, and At(B) = A,. The argument works
similarly for all G-type formulae; for example, if the
extension process was using formula T'(¢) V x) and v is
labelled T and w is labelled T'x, then A, = ({¢V x}U
Ay) \ {¢}. Hence At(B) = A, implies At(B) E 4,. O

We now approach the simulation result (Theorem 13)
and start to construct MLK proofs. For the next two
lemmas, we fix an OTAB tableau of size k and use the
notation from Definitions 6 and 7 (recall in particular
the definition of w at the end of Definition 7).

Lemma 11 There is a polynomial g such that for every
binary node u, every proper subset A’ C A, and every
v € A \A" we can construct an MLK -proof of A’,w s
v of size at most q(k).

Proof. Induction Hypothesis (on the number of for-
mulae of A, used in the antecedent: |A’|): We can find a
q(k)-size MLK proof containing all sequents A’ w ks v
for every y € A, \ A’ .

Base Case (when A’ is empty): For the base case
we aim to prove w s 7, and repeat this for every 7.
We use two ingredients. Firstly, we need the sequent
w Far Fy,~ which is easy to prove using weakening and
(V ), since w is a disjunction of the elements in F,.
Our second ingredient is a scheme of w, /\peMp Fuvoy
for all the A\ cpp in Fy, ie, M = At(B) for some
B € E,. With these we can repeatedly use (M-cut)
on the first sequent for every element in Fj,. We now
show how to efficiently prove the sequents of the form
w, /\peMp }_1\/[ -

For branch B € E,, as At(B) is a model M for A,
by Lemma 10, M = . Since no atom a in VAR(y) \ M
appears positive in the set M we can infer M
—a directly via (Fas). With rule (Far A) we can de-
rive /\peMp Far /\peVAR(w)\M —p in a polynomial-size
proof. Using (F), (- Ve), and (F eV) we can derive
/\peMp F w. We then use these sequents in the proof
below, denoting A, cyag (a7 as n(M):

pkw
/\I)L(H—M)
NperrP b w Npere P Ea n(M)
w, /\peMp Fa n(M)

(o Far)



From Lemma 3, M,-VAR(y) \ M F 7 can be de-
rived in a polynomial-size proof. We use simple syn-
tactic manipulation to change the antecedent into
an equivalent conjunction and then weaken to derive
w, Apens Ps /\peVAR(y)\M —p Far v in a polynomial-size
proof. Then we use:

w, Aperr P(M) Far vy w, Apens P Far n(M)
w, Nperr P M Y

Inductive Step: We look at proving A’,v',w ks 7,
for every other v € A, \ A’. For each v we use two
instances of the inductive hypothesis: A’,w 5 v and
AL wha v

Al why o Al whary

o
AI, 7’; w }_M v ( M)
Since we repeat this for every v we only add [(A4,, \
A\ {~}| many lines in each inductive step and retain
a polynomial bound. ]

The previous lemma was an essential preparation for
our next Lemma 12, which in turn will be the crucial
ingredient for the p-simulation in Theorem 13.

Lemma 12 There is a polynomial q such for every bi-
nary node u there is an MLK -proof of A,,w = B, of
size at most q(k).

Proof. Induction Hypothesis (on the number of for-
mulae of A, used in the antecedent: |A’|): Let A’ C A,,.
There is a fixed polynomial g such that A’,w B, has
an MLK-proof of size at most q(|w|).

Base Case (when A’ is empty): We approach this
very similarly as in the previous lemma. Using weak-
ening and (V F), the sequent w ks Fy, B, can be de-
rived in a polynomial-size proof. By repeated use of the
cut rule on sequents of the form w, /\peAt(B)p Fyv By
for B € FE, the sequent w tj,; B, is derived. Now
we only need to show that we can efficiently obtain
w,/\peMp |_M Bu

Consider branch B € E,. As At(B) is a minimal
model M for I by Lemma 10, this model M must satisfy
A and given the limitations of the branching processes
of F-labelled formulae, B, as well.

Similarly as in the base case of Lemma 11 we can de-
rive Apens P Fnr Apevares,ym P and