
I N F S Y S

R E S E A R C H

R E P O R T

Institut für Informationssysteme

Arbeitsbereich

Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

15TH INTERNATIONAL WORKSHOP ON

NON-MONOTONIC REASONING

(NMR 2014)

V IENNA , AUSTRIA, JULY 17-19, 2014

PROCEEDINGS

Sébastien Konieczny and Hans Tompits (eds.)

INFSYS RESEARCHREPORT1843-14-01

JULY 2014

INFSYS RESEARCH REPORT

INFSYS RESEARCHREPORT1843-14-01, JULY 2014

PROCEEDINGS OF THE15TH INTERNATIONAL WORKSHOP ON

NON-MONOTONIC REASONING (NMR 2014)

V IENNA , AUSTRIA, JULY 17-19, 2014

Sébastien Konieczny and Hans Tompits1

(Volume Editors)

1 Editors’ address: Sébastien Konieczny, CRIL-CNRS, Faculté des Sciences, Université d’Artois, 62300 Lens, France, e-mail:
konieczny@cril.fr.
Hans Tompits, Institut für Informationssysteme, Arbeitsbereich Wissensbasierte Systeme, Technische Universität Wien, Fa-
voritenstraße 9-11, 1040 Vienna, Austria, e-mail: tompits@kr.tuwien.ac.at.

Copyright c© 2014 by the authors

Preface

This volume consists of the contributions presented at the 15th International Workshop on Non-Monotonic Reasoning
(NMR 2014), which was held at the Vienna University of Technology, Austria, from July 17 to 19, 2014.

The NMR workshop series is the premier specialized forum forresearchers in non-monotonic reasoning and related
areas. Its aim is to bring together active researchers in thebroad area of non-monotonic reasoning, including belief
revision, reasoning about actions, argumentation, declarative programming, preferences, non-monotonic reasoningfor
ontologies, uncertainty, and other related topics.

Previous NMR workshops were held in New Paltz (New York, USA)in 1984, Grassau (Germany) in 1988, South
Lake Tahoe (California, USA) in 1990, Plymouth (Vermont, USA) in 1992, Schoss Dagstuhl (Germany) in 1994,
Timberline (Oregon, USA) in 1996, Trento (Italy) in 1998, Breckenridge (Colorado, USA) in 2000, Toulouse (France)
in 2002, Whistler (Canada) in 2004, Lake District (UK) in 2006, Sydney (Australia) in 2008, Toronto (Canada) in
2010, and Rome (Italy) in 2012.

It is a tradition for many years that NMR is collocated with the International Conference on Principles of Knowl-
edge Representation and Reasoning (KR) as well as with the International Workshop on Description Logics (DL)—and
this year is no exception. Additionally, like for the last event in 2012, NMR and DL share an invited speaker as well
as common technical sessions. A particular noteworthy factis that all of these events are organized as part of the
Vienna Summer of Logic, that also hosts FLoC 2014, the Federated Logic Conference. As that, our event is part of the
probably largest gathering of logic-related events in the history of science.

We would like to thank our three invited speakers, Philippe Besnard (IRIT at Université Toulouse III Paul Sabatier),
Patrick Blackburn (University of Roskilde; joint speaker with DL 2014), and Hans Rott (Universität Regensburg), as
well as all the Track Chairs and Program Committee Members that helped us to organize such a great event!

For the workshop, 33 technical papers have been accepted. These technical contributions cover the full spectrum
of NMR, from declarative programming, uncertainty, causality, inference, and non-monotonic logics, to description
logics, belief change, and argumentation. There are also contributions dedicated to system descriptions and a special
track on benchmarks for NMR.

We would like to thank all authors, reviewers, and participants for their involvement in our event, as well as all the
people who helped in organizing the workshop. Particularly, we would like to thank Thomas Schmidleithner who did
an exceptional job for taking care of the web-presence of NMR2014. As well, we would also like to acknowledge the
valuable asset of having the EasyChair conference management system at our disposal. Last, but not least, we thank
our sponsors, KR Inc. and the Artificial Intelligence Journal, and the Kurt Gödel Society as the principal organizer of
the Vienna Summer of Logic.

July 2014

Sébastien Konieczny and Hans Tompits,
NMR 2014 Workshop Chairs

Organization

Workshop Chairs

Sébastien Konieczny (CRIL-CNRS, Université d’Artois)
Hans Tompits (Vienna University of Technology)

Track Chairs

Actions, Causality, and Belief Change Track

Renata Wasserman (Universidade de S̃ao Paulo)

Declarative Programming Track

Tomi Janhunen (Aalto University)

Argumentation and Dialog Track

Paul E. Dunne (University of Liverpool)

Preferences, Norms, and Trust Track

Mehdi Dastani (Utrecht University)

NMR and Uncertainty Track

Lluis Godo (Universitat Autonoma de Barcelona)

Commonsense and NMR for Ontologies Track

Guilin Qi (Southeast University China)

Systems and Applications Track

Esra Erdem (Sabanci University)

Benchmarks for NMR Track

Sébastien Konieczny (CRIL-CNRS, Université d’Artois)

VI INFSYS RR 1843-14-01

Program Committee

Marcello Balduccini (Drexel University)
Christoph Beierle (FernUniversiẗat in Hagen)
Richard Booth (University of Luxembourg)
Gerhard Brewka (University of Leipzig)
Jan Broersen (Utrecht University)
Nadia Creignou (Aix-Marseille Universit́e)
Mehdi Dastani (Utrecht University)
Marina De Vos (University of Bath)
James P. Delgrande (Simon Fraser University)
Marc Denecker (K.U. Leuven)
Jürgen Dix (Clausthal University of Technology)
Paul E. Dunne (University of Liverpool)
Ulle Endriss (University of Amsterdam)
Esra Erdem (Sabanci University)
Patricia Everaere (Universit́e de Lille 1)
Wolfgang Faber (University of Huddersfield)
Michael Fink (Vienna University of Technology)
Martin Gebser (Aalto University)
Michael Gelfond (Texas Tech University)
Lluis Godo (Universitat Autonoma de Barcelona)
Guido Governatori (NICTA)
Sven Ove Hansson (KTH Royal Institute of Technology)
Andreas Herzig (Universit́e Toulouse III Paul Sabatier)
Zhisheng Huang (Vrije University Amsterdam)
Anthony Hunter (University College London)
Katsumi Inoue (National Institute of Informatics, Japan)
Tomi Janhunen (Aalto University)
Gabriele Kern-Isberner (Technische Universität Dortmund)
Sébastien Konieczny (Universit́e d’Artois)
Joohyung Lee (Arizona State University)
Thomas Meyer (University of Kwazulu-Natal and CSIR Meraka Institute)
Alessandra Mileo (Digital Enterprise Research Institute, Galway)
Marie-Laure Mugnier (Universit́e Montpellier 2)
Nir Oren (University of Aberdeen)
Maurice Pagnucco (The University of New South Wales)
Ramon Pino Perez (Universidad de Los Andes)
Henri Prade (Universit́e Toulouse III Paul Sabatier)
Guilin Qi (Southeast University China)
Francesco Ricca (University of Calabria)
Ken Satoh (National Institute of Informatics and The Graduate

University of Advanced Studies, Japan)
Steven Schockaert (Cardiff University)
Guillermo Ricardo Simari (Universidad Nacional del Sur)
Terrance Swift (CENTRIA, Universidade Nova de Lisboa)
Eugenia Ternovska (Simon Fraser University)
Hans Tompits (Vienna University of Technology)
Francesca Toni (Imperial College London)
Mirek Truszczynski (University of Kentucky)
Serena Villata (INRIA Sophia Antipolis)

PROCEEDINGS OFNMR 2014 VII

Kewen Wang (Griffith University)
Renata Wasserman (Universidade de S̃ao Paulo)
Emil Weydert (University of Luxembourg)
Stefan Woltran (Vienna University of Technology)

Local Organization

Hans Tompits

Thomas Schmidleithner (Webpage)
Eva Nedoma (Secretary)

Additional Referees

Jean-Franois Baget
Gerald Berger
Bart Bogaerts
Giovanni Casini
Kristijonas Cyras
Jo Devriendt
Jianfeng Du
Sarah Alice Gaggl
Antonis Kakas
Hiroyuki Kido
Ho-Pun Lam
Marius Lindauer
Marco Manna
Max Ostrowski
Chiaki Sakama
Daria Stepanova
Kazuko Takahashi
Shahab Tasharrofi
Zhe Wang
Zhiqiang Zhuang

Table of Contents

Invited Talks

Four Floors for the Theory of Theory Change 1
Hans Rott

Fragments of Logic, Language, and Computation 2
Patrick Blackburn

Revisiting Postulates for Inconsistency Measures 3
Philippe Besnard

Uncertainty

Nonmonotonic Reasoning as a Temporal Activity 10
Daniel Schwartz

Probabilistic Inductive Logic Programming based on AnswerSet Programming 20
Matthias Nickles and Alessandra Mileo

A Plausibility Semantics for Abstract Argumentation Frameworks 29
Emil Weydert

Declarative Programming 1

An Approach to Forgetting in Disjunctive Logic Programs that Preserves Strong Equivalence 38
James P. Delgrande and Kewen Wang

Three Semantics for Modular Systems 45
Shahab Tasharrofi and Eugenia Ternovska

Generalising Modular Logic Programs 55
Joao Moura and Carlos Viegas Damásio

Systems 1

The Multi-engine ASP Solver ME-ASP: Progress Report 64
Marco Maratea, Luca Pulina, and Francesco Ricca

Preliminary Report on WASP 2 68
Mario Alviano, Carmine Dodaro, and Francesco Ricca

X INFSYS RR 1843-14-01

Declarative Programming 2

On Strong and Default Negation in Logic Program Updates 73
Martin Slota, Martin Baĺaž, and Joao Leite

Belief Change

Inference in the FO(C) Modelling Language 82
Bart Bogaerts, Joost Vennekens, Marc Denecker, and Jan Van den Bussche

FO(C) and Related Modelling Paradigms 90
Bart Bogaerts, Joost Vennekens, Marc Denecker, and Jan Van den Bussche

Belief Merging within Fragments of Propositional Logic 97
Nadia Creignou, Odile Papini, Stefan Rmmele, and Stefan Woltran

Belief Revision and Trust 107
Aaron Hunter

Joint NMR/DL Contributed Papers

On the Non-Monotonic Description LogicALC+Tmin 114
Oliver Fernandez Gil

An Argumentation System for Reasoning with Conflict-minimal ParaconsistentALC 123
Wenzhao Qiao and Nico Roos

Benchmarks

Some Thoughts about Benchmarks for NMR 133
Daniel Le Berre

Towards a Benchmark of Natural Language Arguments 138
Elena Cabrio and Serena Villata

Argumentation 1

Analysis of Dialogical Argumentation via Finite State Machines 146
Anthony Hunter

Abduction in Argumentation: Dialogical Proof Procedures and Instantiation 156
Richard Booth, Dov Gabbay, Souhila Kaci, Tjitze Rienstra, and Leendert Van Der Torre

Non-Monotonic Reasoning and Story Comprehension 165
Irene-Anna Diakidoy, Antonis Kakas, Loizos Michael, and Rob Miller

PROCEEDINGS OFNMR 2014 XI

Causality and Inference

Tableau vs. Sequent Calculi for Minimal Entailment 175
Olaf Beyersdorff and Leroy Chew

Revisiting Chase Termination for Existential Rules and their Extension to Nonmonotonic Negation 184
Jean-Franois Baget, Fabien Garreau, Marie-Laure Mugnier,and Swan Rocher

Causality in Databases: The Diagnosis and Repair Connections 194
Babak Salimi and Leopoldo Bertossi

Declarative Programming 3

Interactive Debugging of ASP Programs 203
Kostyantyn Shchekotykhin

Semantics and Compilation of Answer Set Programming with Generalized Atoms 214
Mario Alviano and Wolfgang Faber

A Family of Descriptive Approaches To Preferred Answer Sets 223
AlexanderŠimko

Systems 2

KR3: An Architecture for Knowledge Representation and Reasoning in Robotics
Representation and Reasoning in Robotics 233
Shiqi Zhang, Mohan Sridharan, Michael Gelfond, and Jeremy Wyatt

An ASP-Based Architecture for Autonomous UAVs in Dynamic Environments: Progress Report 242
Marcello Balduccini, William Regli, and Duc Nguyen

Nonmonotonic Logics

Implementing Default and Autoepistemic Logics via the Logic of GK 252
Jianmin Ji and Hannes Strass

Argumentation 2

Compact Argumentation Frameworks 263
Ringo Baumann, Wolfgang Dvorak, Thomas Linsbichler, Hannes Strass, and Stefan Woltran

Extension-based Semantics of Abstract Dialectical Frameworks 273
Sylwia Polberg

XII INFSYS RR 1843-14-01

Credulous and Skeptical Argument Games for Complete Semantics in
Conflict Resolution based Argumentation 283
Jozef Frt́us

On the Relative Expressiveness of Argumentation Frameworks, Normal Logic Programs and
Abstract Dialectical Frameworks 292
Hannes Strass

Four Floors for the Theory of Theory Change

Hans Rott
Universität Regensburg

Department of Philosophy
93040 Regensburg, Germany

hans.rott@ur.de

Abstract

The theory of theory change due to Alchourrn, Grdenfors, and
Makinson (“AGM”) has been widely known as being charac-
terised by two packages of postulates. The basic package con-
sists of six postulates and is very weak, the full package adds
two further postulates and is very strong. Revisiting the three
classic constructions of partial meet contraction, safe con-
traction, and entrenchment-based construction, and tracing
the idea of limited discriminative powers in agents, I argue
that four intermediate levels can be distinguished that play
important roles within the AGM theory.

1

Fragments of Logic, Language, and Computation

Patrick Blackburn
University of Roskilde

Department of Philosophy and Science Studies
Centre for Culture and Identity

Universitetsvej 1, 4000 Roskilde, Denmark
patrickb@ruc.dk

Abstract

Amsterdam-style logicians view modal logic as a fragment
of classical logic, and description logicians view their own
formalisms in much the same way. Moreover, first-order logic
itself can be viewed as a modest fragment of the higher-order
logics of Frege and Russell, a fragment with useful model-
theoretic properties. All in all, the fine structure of logic is a
key topic in contemporary research, as the intensive study of
(say) the 2-variable and various guarded fragments attest.
In this talk I want to consider the role of logical fragments
in applications. I will focus on applications in natural lan-
guage, as this is an area rich in non-monotonic and defeasible
inference. Moreover, as my perspective is that of computa-
tional (rather than theoretical) linguistics, I am interested in
efficient solutions to computational tasks - that is, in frag-
ments of computation. Drawing on a running example in-
volving applications of description logic and classical plan-
ning to a dialogue system, I will discuss the role of com-
putation to provide “pragmatic glue” that lets us work with
small well-explored logical fragments, while simultaneously
providing the dynamics required to model various forms of
non-monotonicity.

2

Revisiting Postulates for Inconsistency Measures

Philippe Besnard
CNRS

IRIT – Université Paul Sabatier
118 rte de Narbonne, 31062 Toulouse cedex 9, France

besnard@irit.fr

Abstract
We discuss postulates for inconsistency measures as
proposed in the literature.We examine them both indi-
vidually and as a collection. Although we criticize two
of the original postulates, we mostly focus on the mean-
ing of the postulates as a whole. Also and accordingly,
we discuss a number of new postulates as substitutes
and/or as alternative families.

Introduction
In (Hunter and Konieczny 2008; Hunter and Konieczny
2010), Hunter and Konieczny have introduced postulates
for inconsistency measures over knowledge bases. Let us
first make it clear that the phrase “inconsistency measure”
refers to the informal meaning of a measure, not to the
usual formal definition whose countable additivity require-
ment would leave no choice for an inconsistency measure,
making all minimal inconsistent knowledge bases in each
cardinality to count as equally inconsistent (unless making
some consistent formulas to count as more inconsistent than
others!). However, we stick with the usual range R+ ∪ {∞}
(so, the range is totally ordered and 0 is the least element).
The intuition is: The higher the amount of inconsistency in
the knowledge base, the greater the number returned by the
inconsistency measure.

Let us emphasize that we deal with postulates for incon-
sistency measures that account for a raw amount of incon-
sistency: E.g., it will clearly appear below that an inconsis-
tency measure I satisfying the (Monotony) postulate due to
Hunter-Konieczny precludes I to be a ratio (except for quite
special cases, see (Hunter and Konieczny 2010)).

HK Postulates
Hunter and Konieczny refer to a propositional language1 L
for classical logic `. Belief bases are finite sequences over
L.KL is comprised of all belief bases overL, in set-theoretic
form (i.e., a member of KL is an ordinary set2).

According to Hunter and Konieczny, a function I over be-
lief bases is an inconsistency measure if it satisfies the fol-
lowing properties, ∀K,K ′ ∈ KL, ∀α, β ∈ L

1For simplicity, we use a language based on the complete set of
connectives {¬,∧,∨}.

2In the conclusion, we mention the case of multisets.

- I(K) = 0 iff K 6` ⊥ (Consistency Null)
- I(K ∪K ′) ≥ I(K) (Monotony)
- If α is free3 for K then I(K ∪ {α}) = I(K)

(Free Formula Independence)
- If α ` β and α 6` ⊥ then I(K ∪ {α}) ≥ I(K ∪ {β})

(Dominance)
We start by arguing against (Free Formula Independence)

and (Dominance) in the next section. We browse in the
subsequent section several consequences of HK postulates,
stressing the need for more general principles in each case.
We then introduce various postulates supplementing the
original ones, ending with a new axiomatization. We also
devote a full section to a major principle, replacement of
equivalent subsets. The section preceding the conclusion can
be viewed as a kind of rejoinder backing (Monotony) and
(Free Formula Independence) via the main new postulate.

Objections to HK Postulates
Objection to (Dominance)
In contrapositive form, (Dominance) says:

For α ` β, if I(K ∪ {α}) < I(K ∪ {β}) then α ` ⊥ (1)

but it makes sense that the lefthand side holds while α 6` ⊥.
An example is as follows. Let K = {a ∧ b ∧ c ∧ · · · ∧ z}.
Take β = ¬a∨ (¬b∧¬c∧· · ·∧¬z) while α = ¬a. We may
hold I(K ∪ {α}) < I(K ∪ {β}) on the following grounds:
- The inconsistency in I(K ∪ {α}) is ¬a vs a.
- The inconsistency in I(K ∪ {β}) is either as above (i.e.,
¬a vs a) or it is ¬b ∧ ¬c ∧ · · · ∧ ¬z vs b ∧ c ∧ · · · ∧ z that
may be viewed as more inconsistent than the case ¬a vs a,
hence, {a∧ b∧ c∧ · · · ∧ z}∪{¬a∨ (¬b∧¬c∧ · · · ∧¬z)}
can be taken as more inconsistent overall than {a∧ b∧ c∧
· · ·∧ z}∪{¬a} thereby violating (1) because α 6` ⊥ here.

Objection to (Free Formula Independence)
Unfolding the definition, (Free Formula Independence) is:

If K ′ ∪ {α} ` ⊥ for no consistent subset K ′ of K (2)
then I(K ∪ {α}) = I(K)

3A formula ϕ is free for X iff Y ∪ {α} ` ⊥ for no consistent
subset Y of X .

3

(Hunter and Konieczny 2010) has an example of a consistent
free formula whose rightmost conjunct contradicts a consis-
tent part of a formula ofK and so does its leftmost conjunct.
A different case (where no minimal inconsistent subset is a
singleton set) is K = {a ∧ c, b ∧ ¬c} and α = ¬a ∨ ¬b.
Atoms a and b are compatible but a∧ b is contradicted by α,
and K ∪ {α} may be regarded as more inconsistent than K:
(2) is failed.

Consequences of HK Postulates
Proposition 1 (Monotony) entails
- if I(K∪{α∧β}) = I(K∪{α, β}) then I(K∪{α∧β}) ≥
I(K ∪ {β})

Proof Assume I(K ∪{α∧β}) = I(K ∪{α, β}). However,
(Monotony) ensures I(K ∪ {α, β}) ≥ I(K ∪ {β}. Hence
the result.

That is, if I conforms with adjunction (roughly speaking,
it means identifying {α, β} with {α ∧ β}) then I respects
the idea that adding a conjunct cannot make the amount of
inconsistency to decrease.

Notation. α ≡ β denotes that both α ` β and β ` α hold.
Also, α ≡ β ` γ is an abbreviation for α ≡ β and β ` γ
(so, α ≡ β 6` γ means that α ≡ β and β 6` γ).

Proposition 2 (Free Formula Independence) entails
- if α ≡ > then I(K ∪ {α}) = I(K)

(Tautology Independence)

Proof A tautology is trivially a free formula for any K.

Unless β 6` ⊥, there is however no guarantee that the fol-
lowing holds:
- if α ≡ > then I(K ∪ {α ∧ β}) = I(K ∪ {β})

(>-conjunct Independence)

Proposition 3 (Dominance) entails
- I(K ∪ {α1, . . . , αn}) = I(K ∪ {β1, . . . , βn})

whenever αi ≡ βi 6` ⊥ for i = 1..n (Swap)

Proof For i = 1..n, αi ≡ βi so that (Dominance) can be
applied in both directions. As a consequence, for i = 1..n,
it clearly holds that I(K ∪ {β1, . . . , βi−1, αi, . . . , αn}) =
I(K ∪ {β1, . . . , βi, αi+1, . . . , αn}).

Proposition 3 fails to guarantee that I be independent of any
consistent subset of the knowledge base being replaced by
an equivalent (consistent) set of formulas:
- if K ′ 6` ⊥ and K ′ ≡ K ′′ then I(K ∪K ′) = I(K ∪K ′′)

(Exchange)
Proposition 3 guarantees that any consistent formula of the
knowledge base can be replaced by an equivalent formula
without altering the result of the inconsistency measure.
Clearly, postulates for inconsistency measures are expected
not to entail I(K ∪ {α}) = I(K ∪ {β}) for α ≡ β ` ⊥.
However, some subcases are desirable: I(K ∪ {α ∨ α}) =
I(K ∪ {α}), I(K ∪ {α ∧ β}) = I(K ∪ {β ∧ α}), and so
on, in full generality (i.e., even for α ` ⊥) but Proposition 3
fails to ensure any of these.

Proposition 4 (Dominance) entails
- if α ∧ β 6` ⊥ then I(K ∪ {α ∧ β}) ≥ I(K ∪ {β})
Proof Apply (Dominance) to the valid inference α ∧ β ` β
and the result ensues.

Proposition 4 means that I respects the idea that adding a
conjunct cannot make amount of inconsistency to decrease,
in the case of a consistent conjunction (however, one really
wonders why this not guaranteed to hold in more cases?).

Proposition 5 Due to (Dominance) and (Monotony)
- For α ∈ K, if α 6` ⊥ and α ` β then I(K∪{β}) = I(K)

Proof I(K ∪ {α}) = I(K) as α ∈ K. By (Dominance),
I(K∪{α}) ≥ I(K∪{β}). Therefore, I(K) ≥ I(K∪{β}).
The converse holds due to (Monotony).

Proposition 5 guarantees that a consequence of a consistent
formula of the knowledge base can be added without alter-
ing the result of the inconsistency measure. What about a
consequence of a consistent subset of the knowledge base?
Indeed, Proposition 5 is a special case of
(An) For {α1, . . . , αn} ⊆ K, if {α1, . . . , αn} 6` ⊥ and

{α1, . . . , αn} ` β then I(K ∪ {β}) = I(K)
That is, Proposition 5 guarantees (An) only for n = 1 but
what is the rationale for stopping there?

Example 1 LetK = {¬b, a∧b, b∧c}. Proposition 5 ensures
that I(K ∪ {a, c}) = I(K ∪ {a}) = I(K ∪ {c}) = I(K).
Although a∧ c behaves as a and c with respect to all contra-
dictions inK (i.e., a∧b vs ¬b and b∧c vs ¬b), HK postulates
fail to ensure I(K ∪ {a ∧ c}) = I(K).

Replacement of Equivalent Subsets
The value of (Exchange)
Firstly, (Exchange) is not a consequence of (Dominance)
and (Monotony). An example isK1 = {a∧c∧e, b∧d∧¬e}
and K2 = {a ∧ e, c ∧ e, b ∧ d ∧ ¬e}. Due to (Exchange),
I(K1) = I(K2) but HK postulates do not impose equality.
Next are a few results showing properties of (Exchange).

Proposition 6 (Exchange) is equivalent to each of these:
- The family (An)n≥1

- IfK ′ ≡ K ′′,K ′ 6` ⊥ then I(K∪K ′) = I((K\K ′)∪K ′′)
- If K ′ ≡ K ′′ and K ′ 6` ⊥ and K ∩K ′ = ∅

then I(K ∪K ′) = I(K ∪K ′′)
- If {K1, . . . ,Kn} is a partition of K \ K0 where K0 is

defined as K0 = {α ∈ K | α ` ⊥} such that Ki 6` ⊥ and
K ′i ≡ Ki for i = 1..n then I(K) = I(K0∪K ′1∪· · ·∪K ′n)

Proof Assume (An) for all n ≥ 1 andK ′ ≡ K ′′ 6` ⊥. (i) Let
K ′ = {α1, . . . , αm}. Define 〈K ′j〉j≥0 where K ′0 = K ∪K ′′
and K ′j+1 = K ′j ∪ {αj+1}. It is clear that K ′′ 6` ⊥ and
K ′′ ` αj+1 and K ′′ ⊆ K ′j . Hence, (An) can be ap-
plied to K ′j and this gives I(K ′j) = I(K ′j ∪ {αj+1}) =
I(K ′j+1). Overall, I(K ′0) = I(K ′m). I.e., I(K ∪ K ′′) =
I(K ∪ K ′ ∪ K ′′). (ii) Let K ′′ = {β1, . . . , βp}. Con-
sider the sequence 〈K ′′j 〉j≥0 where K ′′0 = K ∪ K ′ and
K ′′j+1 = K ′′j ∪ {βj+1}. Clearly, K ′ 6` ⊥ and K ′ ` βj+1

4

and K ′ ⊆ K ′′j . Hence, (An) can be applied to K ′′j and
this gives I(K ′′j) = I(K ′′j ∪ {βj+1}) = I(K ′′j+1). Over-
all, I(K ′′0) = I(K ′′p). I.e., I(K ∪K ′) = I(K ∪K ′ ∪K ′′).
Combining the equalities, I(K ∪K ′) = I(K ∪K ′′). That
is, the family (An)n≥1 entails (Exchange).
We now show that the family (An)n≥1 is entailed by the
second item in the statement of Proposition 6, denoted
(Exchange′), which is:

If K ′ 6` ⊥ and K ′ ≡ K ′′}
then I(K ∪K ′) = I((K \K ′) ∪K ′′)

Let {α1, . . . , αn} ⊆ K such that {α1, . . . , αn} 6` ⊥ and
{α1, . . . , αn} ` β. So, {α1, . . . , αn} ≡ {α1, . . . , αn, β}.
For K ′ = {α1, . . . , αn}, K ′′ = {α1, . . . , αn, β}
(Exchange) gives I(K) = I((K \ {α1, . . . , αn}) ∪
{α1, . . . , αn, β} = I(K ∪ {β}).
By transitivity, we have thus shown that (Exchange) is en-
tailed by (Exchange′). Since the converse is obvious, the
equivalence between (Exchange), (Exchange′) and the fam-
ily (An)n≥1 holds.

It is clear that the third item in the statement of Proposi-
tion 6 is equivalent with (Exchange).

Consider now (Exchange′′), the last item in the statement
of Proposition 6:

If {K1, . . . ,Kn} is a partition of K \K0 where
K0 = {α ∈ K | α ` ⊥} such that

Ki 6` ⊥ and K ′i ≡ Ki for i = 1..n then
I(K) = I(K0 ∪K ′1 ∪ · · · ∪K ′n).

(i) Assume (Exchange′). We now prove (Exchange′′). Let
{K1, . . . ,Kn} be a partition ofK \K0 satisfying the condi-
tions of (Exchange′′). Trivially, I(K) = I(K0 ∪K \K0) =
I(K0∪K1∪· · ·∪Kn). Then,Ki\Kn = Ki for i = 1..n−1.
Applying (Exchange′) yields I(K0 ∪ K1 ∪ · · · ∪ Kn) =
I(K0∪K1∪· · ·∪K ′n) hence I(K) = I(K0∪K1∪· · ·∪K ′n).
Applying (Exchange′) iteratively upon Kn−1, Kn−2, . . . ,
K1 gives I(K) = I(K0 ∪K ′1 ∪ · · · ∪K ′n).
(ii) Assume (Exchange′′). We now prove (Exchange′). Let
K ′ 6` ⊥ and K ′′ ≡ K ′. Clearly, (K ∪ K ′)0 = K0 and
(K ∪ K ′) \ (K ∪ K ′)0 = (K \ K0) ∪ K ′. As each for-
mula in K \K0 is consistent, K \K0 can be partitioned into
{K1, . . . ,Kn} such that Ki 6` ⊥ for i = 1..n (take n = 0 in
the case that K = K0). Then, {K1 \K ′, . . . ,Kn \K ′,K ′}
is a partition of (K \ K0) ∪ K ′ satisfying the conditions
in (Exchange′′). Now, I(K ∪ K ′) = I(K0 ∪ (K1 \ K ′) ∪
· · · ∪ (Kn \ K ′) ∪ K ′). Applying (Exchange′′) with each
Ki substituting itself and K ′′ substituting K ′, we obtain
I(K ∪K ′) = I(K0 ∪ (K1 \K ′)∪ · · · ∪ (Kn \K ′)∪K ′′).
That is, I(K ∪K ′) = I((K \K ′) ∪K ′′).

Proposition 7 (Exchange) entails (Swap).

Proof Taking advantage of transitivity of equality, it will be
sufficient to prove I(K ∪ {β1, . . . , βi−1, αi, . . . , αn}) =
I(K ∪ {β1, . . . , βi, αi+1, . . . , αn}) for i = 1..n. Due to
αi ≡ βi and βi 6` ⊥, it holds that {αi} 6` ⊥
and {αi} ≡ {αi, βi}. As a consequence, (Exchange)
can be applied to K ∪ {β1, . . . , βi−1, αi+1, . . . , αn} for
K ′ = {αi} and K ′′ = {αi, βi}. Accordingly, I(K ∪
{β1, . . . , βi−1, αi, . . . , αn}) is then equal to I(((K ∪

{β1, . . . , βi−1, αi+1, . . . , αn}) \ {αi}) ∪ {αi, βi}) and the
latter is I(K ∪ {β1, . . . , βi, αi+1, . . . , αn}).
That (Exchange) entails (Swap) is natural. Surprisingly,
(Exchange) also entails (Tautology Independence).
Proposition 8 (Exchange) gives (Tautology Independence).

Proof The non-trivial case is α 6∈ K. Apply (Exchange′) for
K ′ = {α} andK ′′ = ∅, so, I(K∪{α}) = I((K \{α})∪∅)
ensues. I.e., I(K ∪ {α}) = I(K).

The value of an adjunction postulate
In keeping with the meaning of the conjunction connective
in classical logic, consider a dedicated postulate in the form
- I(K ∪ {α, β}) = I(K ∪ {α ∧ β})

(Adjunction Invariancy)
Proposition 9 (Adjunction Invariancy) entails
- I(K ∪ {α, β}) = I((K \ {α, β}) ∪ {α ∧ β})

(Disjoint Adjunction Invariancy)
- I(K) = I({

∧
K}) (Full Adjunction Invariancy)

where
∧
K denotes α1 ∧ . . . ∧ αn for any enumeration

α1, . . . , αn of K.

Proof Let K = {α1, . . . , αn}. Apply iteratively (Adjunc-
tion Invariancy) as I({α1 ∧ . . . ∧ αi−1, αi, . . . , αn}) =
I({α1 ∧ . . . ∧ αi, αi+1, . . . , αn}) for i = 2..n.
Proposition 10 Assuming I({α∧(β∧γ)}) = I({(α∧β)∧
γ}) and I({α∧β}) = I({β ∧α}), (Disjoint Adjunction In-
variancy) and (Full Adjunction Invariancy) are equivalent.

Proof Assume (Full Adjunction Invariancy). K ∪ {α, β} =
(K \ {α, β}) ∪ {α, β} yields I(K ∪ {α, β}) = I((K \
{α, β})∪ {α, β}). By (Full Adjunction Invariancy), I((K \
{α, β}) ∪ {α, β}) = I({

∧
((K \ {α, β}) ∪ {α, β})}) and

the latter can be written I({γ1 ∧ . . . ∧ γn ∧ α ∧ β})
for some enumeration γ1, . . . , γn of K \ {α, β}. I.e.,
I(K ∪ {α, β}) = I({γ1 ∧ . . . ∧ γn ∧ α ∧ β}). By
(Full Adjunction Invariancy), I((K \ {α, β}) ∪ {α ∧
β}) = I({

∧
((K \ {α, β}) ∪ {α ∧ β})}) that can be writ-

ten I({γ1 ∧ . . . ∧ γn ∧ α ∧ β}) for the same enumeration
γ1, . . . , γn of K \ {α, β}. So, I(K ∪ {α, β}) = I((K \
{α, β}) ∪ {α ∧ β}). As to the converse, it is trivial to use
(Disjoint Adjunction Invariancy) iteratively to get (Full Ad-
junction Invariancy).
A counter-example to the purported equivalence of (Ad-
junction Invariancy) and (Full Adjunction Invariancy) is
as follows. Let K = {a, b,¬b ∧ ¬a}. Obviously, I(K ∪
{a, b}) = I(K) since {a, b} ⊆ K. (Full Adjunction In-
variancy) gives I(K) = I({

∧
γ∈K γ}) i.e. I(K ∪ {a, b}) =

I({
∧
γ∈K γ}) = I({a∧b∧¬b∧¬a}). A different case of ap-

plying (Full Adjunction Invariancy) gives I(K ∪{a∧ b}) =
I({

∧
γ∈K∪{a∧b} γ}) = I({a ∧ b ∧ ¬b ∧ ¬a ∧ a ∧ b}).

However, HK postulates do not provide grounds to infer
I({a ∧ b ∧ ¬b ∧ ¬a}) = I({a ∧ b ∧ ¬b ∧ ¬a ∧ a ∧ b})
hence (Adjunction Invariancy) may fail here.

(Adjunction Invariancy) provides a natural equivalence
between (Monotony) and a principle which expresses that
adding a conjunct cannot make the amount of inconsistency
to decrease:

5

Proposition 11 Assuming (Consistency Null), (Adjunction
Invariancy) yields that (Monotony) is equivalent with
- I(K ∪ {α ∧ β}) ≥ I(K ∪ {α})

(Conjunction Dominance)
Proof Assume (Monotony), a simple instance of which is
I(K ∪ {α}) ≤ I(K ∪ {α, β}). (Adjunction Invariancy)
gives I(K ∪{α, β}) = I(K ∪{α∧ β}). As a consequence,
I(K ∪ {α}) ≤ I(K ∪ {α ∧ β}). This inequality shows that
(Conjunction Dominance) holds.
Assume (Conjunction Dominance). First, consider K 6= ∅.
Let α ∈ K. Thus, I(K ∪ {α}) ≤ I(K ∪ {α ∧ β} by
(Conjunction Dominance). (Adjunction Invariancy) gives
I(K ∪ {α, β}) = I(K ∪ {α ∧ β}). Hence, I(K ∪ {α}) ≤
I(K ∪ {α, β}). I.e., I(K) ≤ I(K ∪ {β}) because α ∈ K.
For K ′ ∈ KL, it is enough to iterate this finitely many times
(one for every β in K ′ \K) to obtain I(K) ≤ I(K ∪K ′).
Now, consider K = ∅. By (Consistency Null), I(K) = 0
hence I(K) ≤ I(K ∪K ′).
(Free Formula Independence) yields (Tautology Indepen-
dence) by Proposition 2 although a more general principle
(e.g., (>-conjunct Independence) or the like) ensuring that
I be independent of tautologies is to be expected. The next
result shows that (Adjunction Invariancy) is the way to get
both postulates at once.
Proposition 12 Assuming (Consistency Null), (Adjunction
Invariancy) yields that (>-conjunct Independence) and
(Tautology Independence) are equivalent.

Proof For α ≡ >, (Adjunction Invariancy) and (Tautology
Independence) give I(K ∪ {α ∧ β}) = I(K ∪ {α, β}) =
I(K ∪ {β}). As to the converse, let β ∈ K. Therefore,
I(K) = I(K∪{β}) = I(K∪{α∧β}) = I(K∪{α, β}) =
I(K ∪ {α}). At to the case K = ∅, it is settled by means of
(Consistency Null).
(Adjunction Invariancy) provides for free various principles
related to (idempotence, commutativity, and associativity of)
conjunction as follows.
Proposition 13 (Adjunction Invariancy) entails
- I(K ∪ {α ∧ α}) = I(K ∪ {α})
- I(K ∪ {α ∧ β}) = I(K ∪ {β ∧ α})
- I(K ∪ {α ∧ (β ∧ γ)}) = I(K ∪ {(α ∧ β) ∧ γ})
Proof (i) I(K ∪{α∧α}) = I(K ∪{α, α}) = I(K ∪{α}).
(ii) I(K ∪ {α ∧ β}) = I(K ∪ {α, β}) = I(K ∪ {β, α}) =
I(K ∪ {β ∧ α}). (iii) I(K ∪ {α ∧ (β ∧ γ)}) = I(K ∪
{α, β ∧ γ}) = I(K ∪ {α, β, γ}) = I(K ∪ {α ∧ β, γ}) =
I(K ∪ {(α ∧ β) ∧ γ}).
(Adjunction Invariancy) and (Exchange) are two principles
devoted to ensuring that replacing a subset of the knowledge
base with an equivalent subset does not change the value
given by the inconsistency measure. The contexts that these
two principles require for the replacement to be safe differ:

1. ForK ′ 6` ⊥, (Exchange) is more general than (Adjunction
Invariancy) since (Exchange) guarantees I(K ∪ K ′) =
I(K ∪ K ′′) for every K ′′ ≡ K ′ but (Adjunction In-
variancy) ensures it only for K ′′ = {

∧
K ′i | K =

{K ′1, ..,K ′n}} where K ranges over the partitions of K ′.

2. For α ` ⊥, (Adjunction Invariancy) is more general than
(Exchange) because (Adjunction Invariancy) guarantees
I(K ∪ {α, β}) = I(K ∪ {α ∧ β}) but (Exchange) does
not guarantee it.

Revisiting HK Postulates
Sticking with (Consistency Null) and (Monotony)
First, (Consistency Null) or a like postulate is indispensable
because there seems to be no way to have a sensible incon-
sistency measure that would not be able to always discrimi-
nate between consistency and inconsistency.

(Monotony) is to be kept since contradictions in classical
logic (and basically all logics) are monotone (Besnard 2010)
wrt information: That is, extra information cannot make a
contradiction to vanish.

We will not retain (Monotony) as an explicit postulate,
because it ensues from our schematic postulate (see later).

Intended postulates
(Tautology Independence) and (>-conjunct Independence)
are due postulates. More generally, it would make no sense,
when determining how inconsistent a theory is, to take into
account any inessential difference in which a formula can
be written (e.g., α ∨ β instead of β ∨ α). Define α′ to be
a prenormal form of α if α′ is obtained from α by applying
(posibly repeatedly) one or more of the following principles:
commutativity, associativity and distribution for ∧ and ∨,
De Morgan laws, double negation equivalence. Henceforth
the next4 postulate:

- If β is a prenormal form of α, I(K ∪ {α})=I(K ∪ {β})
(Rewriting)

As (Monotony) essentially means that extra information
cannot make amount of inconsistency to decrease, the same
idea must apply to conjunction because α∧β cannot involve
less information than α. Thus, another due postulate is:

- I(K ∪ {α ∧ β}) ≥ I(K ∪ {α})
(Conjunction Dominance)

Indeed, it does not matter whether α or β or both be incon-
sistent: It definitely cannot be rational to hold that there is
a case (even a single one) where extending K with a con-
junction would result in less inconsistency than extending
K with one of the conjuncts.

Taking care of disjunction
It is very difficult to assess how inconsistent a disjunction is,
but bounds can be set. Indeed, a disjunction expresses two
alternative possibilities; so, accrual across these would make
little sense. That is, amount of inconsistency in α∨β cannot
exceed amount of inconsistency in either α or β, depend-
ing on which one involves a higher amount of inconsistency.
Hence the following postulate.

4Insharp contrast to (Irrelevance of Syntax) that allows for de-
structive transformation from α to β when both are inconsistent,
(Rewriting) takes care of inhibiting purely deductive transforma-
tions (the most important one is presumably from α ∧ ⊥ to ⊥).

6

- I(K ∪ {α ∨ β}) ≤ max(I(K ∪ {α}), I(K ∪ {β}))
(Disjunct Maximality)

Two alternative formulations for (Disjunct Maximality) are
as follows.
Proposition 14 Assume I(K∪{α∨β}) = I(K∪{β∨α}).
(Disjunct Maximality) is equivalent with each of
- if I(K ∪ {α}) ≥ I(K ∪ {β})

then I(K ∪ {α}) ≥ I(K ∪ {α ∨ β})
- either I(K ∪ {α ∨ β}) ≤ I(K ∪ {α})

or I(K ∪ {α ∨ β}) ≤ I(K ∪ {β})
Proof Let us prove that (Disjunct Maximality) entails the
first item. Assume I(K ∪ {α}) ≥ I(K ∪ {β}). I.e., I(K ∪
{α}) = max(I(K ∪ {α}), I(K ∪ {β})). Using (Disjunct
Maximality), I(K ∪ {α ∨ β}) ≤ max(I(K ∪ {α}), I(K ∪
{β})), i.e. I(K ∪ {α})) ≥ I(K ∪ {α ∨ β}). As to the con-
verse direction, assume that if I(K ∪ {α}) ≥ I(K ∪ {β})
then I(K ∪ {α}) ≥ I(K ∪ {α ∨ β}). Consider the case
max(I(K ∪ {α}), I(K ∪ {β})) = I(K ∪ {α}). Hence,
I(K ∪ {α}) ≥ I(K ∪ {β}). According to the assumption,
it follows that I(K ∪ {α}) ≥ I(K ∪ {α ∨ β}). That is,
max(I(K ∪ {α}), I(K ∪ {β})) ≥ I(K ∪ {α ∨ β}). Simi-
larly, the case max(I(K∪{α}), I(K∪{β})) = I(K∪{β})
gives I(K ∪{β}) ≥ I(K ∪{β ∨α}). Then, I(K ∪{β}) ≥
I(K∪{α∨β}) in view of the hypothesis in the statement of
Proposition 14. That is, max(I(K ∪ {α}), I(K ∪ {β})) ≥
I(K∪{α∨β}). Combining both cases, (Disjunct Maximal-
ity) holds.
The equivalence of (Disjunct Maximality) with the last item
is due to the fact that the codomain of I is totally ordered.
Although it is quite unclear how to weigh inconsistencies out
of a disjunction, they must weigh no more than out of both
disjuncts (whether tied together by a conjunction or not),
which is the reason for holding
- I(K ∪ {α ∧ β}) ≥ I(K ∪ {α ∨ β})

(∧-over-∨ Dominance)
and its conjunction-free counterpart
- I(K ∪ {α, β}) ≥ I(K ∪ {α ∨ β})
Proposition 15 Assume I(K∪{α∧β}) = I(K∪{β∧α}).
(Conjunction Dominance) and (Disjunct Maximality) entail
(∧-over-∨ Dominance).
Proof Given I(K∪{α∧β}) = I(K∪{β∧α}), (Conjunction
Dominance) gives I(K∪{α∧β}) ≥ I(K∪{α}) and I(K∪
{α∧β}) ≥ I(K∪{β}). Therefore, max(I(K∪{α}), I(K∪
{β})) ≤ I(K∪{α∧β}). In view of (Disjunct Maximality),
I(K ∪ {α ∨ β}) ≤ max(I(K ∪ {α}), I(K ∪ {β})), and it
accordingly follows that I(K ∪{α∨β}) ≤ I(K ∪{α∧β})
holds.
Proposition 16 (Monotony) and (Disjunct Maximality) en-
tail
- I(K ∪ {α, β}) ≥ I(K ∪ {α ∨ β})
Proof Due to (Monotony), I(K ∪ {α}) ≤ I(K ∪ {α, β})
and I(K ∪ {β}) ≤ I(K ∪ {α, β}). As a consequence,
max(I(K ∪ {α}), I(K ∪ {β})) ≤ I(K ∪ {α, β}). Then,
I(K ∪ {α ∨ β}) ≤ max(I(K ∪ {α}), I(K ∪ {β})) due to
(Disjunct Maximality). I(K ∪ {α, β}) ≥ I(K ∪ {α ∨ β})
easily ensues.

A schematic postulate
This is to be presented in two steps.

1. (Monotony) expresses that adding information cannot re-
sult in a decrease of the amount of inconsistency in the
knowledge base. Considering a notion of primitive con-
flicts that underlies amount of inconsistency, (Monotony)
is a special case of a postulate stating that amount of in-
consistency is monotone with respect to the set of primi-
tive conflicts C(K) of the knowledge base K: If C(K) ⊆
C(K ′) then I(K) ≤ I(K ′).
Clearly, I is to admit different postulates depending on
what features are required for primitive conflicts (see Ta-
ble 1).

2. Keep in mind that an inconsistency measure refers to
logical content of the knowledge base, not other aspects
whether subject matter of contradiction, source of infor-
mation,. . . This is because an inconsistency measure is
only concerned with quantity, i.e. amount of inconsis-
tency (of course, it is possible for example that a contra-
diction be more worrying than another -and so, making
more pressing to act (Gabbay and Hunter 1993) about it-
but this has nothing to do with amount of inconsistency).
Now, what characterizes logical content is uniform sub-
stitutivity. Hence a postulate called (Substitutivity Domi-
nance) stating that renaming cannot make the amount of
inconsistency to decrease: If σK = K ′ for some substi-
tution σ then I(K) ≤ I(K ′).

Combining these two ideas, we obtain the next postulate

- If C(σK)⊆C(K ′) for some substitution σ, I(K)≤I(K ′)
(Subsumption Orientation)

Fact 1 Every postulate of the form

- I(X) ≤ I(Y) for all X ∈ KL and Y ∈ KL such that
condition CX,Y holds

or of the form

- I(X) = I(Y) for all X ∈ KL and Y ∈ KL such that
condition CX,Y holds

is derived from (Subsumption Orientation) and from any
property of C ensuring that condition C holds.

Individual properties of C ensuring condition C for a
number of postulates, including all those previously men-
tioned in the paper, can be found in Table 1.

(Variant Equality) in Table 1 is named after the notion of
a variant (Church 1956):

- If σ and σ′ are substitutions s.t. σK = K ′ and σ′K ′ = K
then I(K) = I(K ′)

(Variant Equality)

New system of postulates (basic and strong versions)
All the above actually suggests a new system of postulates,
which consists simply of (Consistency Null) and (Sub-
sumption Orientation). The system is parameterized by the
properties imposed upon C in the latter. In the range induced
by C, a basic system emerges, which amounts to the next list:

7

Specific property for C Specific postulate entailed by
(Subsumption Orientation)

No property needed (Variant Equality)
No property needed (Substitutivity Dominance)
C(K ∪ {α}) = C(K) for α ≡ > (Tautology Independence)
C(K ∪ {α ∧ β}) = C(K ∪ {β}) for α ≡ > (>-conjunct Independence)
C(K ∪ {α}) = C(K ∪ {α′}) for α′ prenormal form of α (Rewriting)
C(K) ⊆ C(K ∪ {α}) (Instance Low)
C(K) ⊆ C(K ∪ {α}) (Monotony)
C(K ∪ {α ∨ β}) ⊆ C(K ∪ {α ∧ β}) (∧-over-∨ Dominance)
C(K ∪ {α}) ⊆ C(K ∪ {α ∧ β}) (Conjunction Dominance)
C(K ∪ {α, β}) = C(K ∪ {α ∧ β}) (Adjunction Invariancy)
C(K ∪ {α ∨ β}) ⊆ C(K ∪ {α}) or C(K ∪ {β}) (Disjunct Maximality)
C(K ∪ {α ∨ β}) ⊇ C(K ∪ {α}) or C(K ∪ {β}) (Disjunct Minimality)
C(K ∪K ′) = C(K ∪K ′′) for K ′′ ≡ K ′ 6` ⊥ (Exchange)
C(K ∪ {α1, ..., αn}) = C(K ∪ {β1, .., βn}) if αi ≡ βi 6` ⊥ (Swap)
C(K ∪ {β}) ⊆ C(K ∪ {α}) for α ` β and α 6` ⊥ (Dominance)
C(K ∪ {α}) = C(K) for α free for K (Free Formula Independence)

Table 1: Conditions for postulates derived from (Subsumption Orientation).

Basic System
I(K) = 0 iff K 6` ⊥ (Consistency Null)
If α′ is a prenormal form of α

then I(K ∪ {α}) = I(K ∪ {α′}) (Rewriting)
If σK ⊆ K ′ for some substitution σ

then I(K) ≤ I(K ′) (Instance Low)
I(K ∪ {α ∨ β}) ≤ max(I(K ∪ {α}), I(K ∪ {β}))

(Disjunct Maximality)
If α ≡ > then I(K) = I(K ∪ {α})

(Tautology Independence)
If α ≡ > then I(K ∪ {α ∧ β}) = I(K ∪ {β})

(>-conjunct Independence)
I(K ∪ {α}) ≤ I(K ∪ {α ∧ β}) (Conjunction Dominance)

At the other end of the range is the strong system below
(except for (Dominance) and (Free Formula Independence),
it captures all postulates listed in Table 1).

Strong System
I(K) = 0 iff K 6` ⊥ (Consistency Null)
If α′ is a prenormal form of α

then I(K ∪ {α}) = I(K ∪ {α′}) (Rewriting)
If σK ⊆ K ′ for some substitution σ

then I(K) ≤ I(K ′) (Instance Low)
I(K ∪ {α ∨ β}) ≤ max(I(K ∪ {α}), I(K ∪ {β}))

(Disjunct Maximality)
I(K ∪ {α ∨ β}) ≥ min(I(K ∪ {α}), I(K ∪ {β}))

(Disjunct Minimality)
IfK ′′ ≡ K ′ 6` ⊥ then I(K∪K ′) = I(K∪K ′′) (Exchange)
I(K ∪ {α, β}) = I(K ∪ {α ∧ β}) (Adjunction Invariancy)

HK Postulates as (Subsumption Orientation)
Time has come to make sense5 of the HK choice of
(Free Formula Independence) together with (Monotony), by
means of Theorem 1 and Theorem 2.

5Still not defending the choice of (Free Formula Independence).

Theorem 1 Let C be such that for every K ∈ KL and for
every X ⊆ L which is minimal inconsistent, X ∈ C(K)
iff X ⊆ K. If I satisfies both (Monotony) and (Free For-
mula Independence) then I satisfies (Subsumption Orienta-
tion) restricted to its non-substitution part, namely

if C(K) ⊆ C(K ′) then I(K) ≤ I(K ′).

Proof Let C(K) ⊆ C(K ′). Should K be a subset of K ′,
(Monotony) yields I(K) ≤ I(K ′) as desired. So, let us turn
to K 6⊆ K ′. Consider ϕ ∈ K \ K ′. If ϕ were not free for
K, there would exist a minimal inconsistent subset X of K
such that ϕ ∈ X . Clearly, X 6⊆ K ′. The constraint imposed
on C in the statement of the theorem would then yield both
X ∈ C(K) and X 6∈ C(K ′), contradicting the assumption
C(K) ⊆ C(K ′). Hence, ϕ is free for K. In view of (Free
Formula Independence), I(K) = I(K \ {ϕ}). The same
reasoning applied to all the (finitely many) formulas in K \
K ′ gives I(K) = I(K ∩K ′). However, K ∩K ′ is a subset
of K ′ so that using (Monotony) yields I(K ∩K ′) ≤ I(K ′)
hence I(K) ≤ I(K ′).

Define Ξ = {X ∈ KL | ∀X ′ ⊆ X,X ′ ` ⊥ ⇔ X = X ′}.
Then, C is said to be governed by minimal inconsistency iff
C satisfies the following property

if C(K) ∩ Ξ ⊆ C(K ′) ∩ Ξ then C(K) ⊆ C(K ′).

It means that those Z in C(K) which are not minimal incon-
sistent cannot override set-inclusion induced by minimal in-
consistent subsets —i.e., no such Z can, individually or col-
lectively, turn C(K) ∩ Ξ ⊆ C(K ′) ∩ Ξ into C(K) 6⊆ C(K ′).
Theorem 2 Let C be governed by minimal inconsistency
and be such that for all K ∈ KL and all X ⊆ L which
is minimal inconsistent, X ∈ C(K) iff X ⊆ K. I satis-
fies (Monotony) and (Free Formula Independence) whenever
I satisfies (Subsumption Orientation) restricted to its non-
substitution part, namely

if C(K) ⊆ C(K ′) then I(K) ≤ I(K ′).

8

Proof Trivially, if X ⊆ K then X ⊆ K ∪ {α}. By the
constraint imposed on C in the statement of the theorem, it
follows that if X ∈ C(K) then X ∈ C(K ∪ {α}). Since C
is governed by minimal inconsistency, C(K) ⊆ C(K ∪{α})
ensues and (Subsumption Orientation) yields (Monotony).
Let α be a free formula for K. By definition, α is in no
minimal inconsistent subset ofK∪{α}. So,X ⊆ K iffX ⊆
K ∪ {α} for all minimal inconsistent X . By the constraint
imposed on C in the statement of the theorem, X ∈ C(K)
iff X ∈ C(K ∪ {α}) ensues for all minimal inconsistent
X . In symbols, C(K) ∩ Ξ = C(K ∪ {α}) ∩ Ξ. Since C is
governed by minimal inconsistency, it follows that C(K) =
C(K ∪{α}). Thus, (Free Formula Independence) holds, due
to (Subsumption Orientation).

These theorems mean that, if substitutivity is left aside,
(Subsumption Orientation) is equivalent with (Free Formula
Independence) and (Monotony) when primitive conflicts are
essentially minimal inconsistent subsets. These postulates
form a natural pair if it is assumed that minimal inconsis-
tent subsets must be the basis for inconsistency measuring.

Conclusion
We have proposed a new system of postulates for inconsis-
tency measures, i.e.

I(K) = 0 iff K is consistent (Consistency Null)
If C(σK) ⊆ C(K ′) for a substitution σ then I(K) ≤ I(K ′)

(Subsumption Orientation)
parameterized by the requirements imposed on C.

Even in its strong version, the new system omits both (Dom-
inance) and (Free Formula Independence), which we have
argued against. We have investigated various postulates, ab-
sent from the HK set, giving grounds to include them in the
new system. We have shown that (Subsumption Orientation)
accounts for the other postulates and provides a justification
for (Free Formula Independence) together with (Monotony),
through focussing on minimal inconsistent subsets.

We do not hold that the new system, in basic or strong ver-
sion, captures all desirable cases, we more modestly claim
for improving over the original HK set. In particular, we be-
lieve that the HK postulates suffer from over-commitment
to minimal inconsistent subsets. Crucially, such a comment
applies to postulates (they would exclude all approaches that
are not based upon minimal inconsistent subsets) but it does
not apply to measures themselves: There are excellent rea-
sons to develop a specific measure (Knight 2002) (Mu, Liu
and Jin 2012) (Jabbour and Raddaoui 2013) . . .

As to future work, we must mention taking seriously be-
lief bases as multisets –giving a counterpart to the idea that
e.g. {a ∧ b ∧ ¬a ∧ ¬b ∧ a ∧ b ∧ ¬a ∧ ¬b} might be viewed
as more inconsistent than {a ∧ b ∧ ¬a ∧ ¬b}.

Acknowledgments
Many thanks to Hitoshi Omori for insightful discussions.

References
Philippe Besnard. Absurdity, Contradictions, and Logical
Formalisms. Proc. of the 22nd IEEE International Confer-

ence on Tools with Artificial Intelligence (ICTAI-10), Arras,
France, October 27-29, volume 1, pp. 369-374. IEEE Com-
puter Society, 2010.
Alonzo Church. Introduction to Mathematical Logic.
Princeton University Press, 1956.
Dov Gabbay and Anthony Hunter. Making Inconsistency
Respectable 2: Meta-Level Handling of Inconsistent Data.
Proc. of the 2nd European Conference on Symbolic and
Qualitative Approaches to Reasoning and Uncertainty (EC-
SQARU’93), M. Clarke, R. Kruse, and S. Moral (eds.),
Grenada, Spain, November 8-10, Lecture Notes in Com-
puter Science, volume 747, pp. 129-136. Springer, 1993.
John Grant. Classifications for Inconsistent Theories. Notre
Dame Journal of Formal Logic 19(3): 435-444, 1978.
John Grant and Anthony Hunter. Measuring Inconsistency
in Knowledgebases. Journal of Intelligent Information Sys-
tems 27(2): 159-184, 2006.
John Grant and Anthony Hunter. Analysing Inconsistent
First-Order Knowledgebases, Artificial Intelligence 172(8-
9): 1064-1093, 2008.
John Grant and Anthony Hunter. Measuring the Good and
the Bad in Inconsistent Information. Proc. of the 22nd In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI’11), T. Walsh (ed.), Barcelona, Catalonia, Spain, July
16-22, pp. 2632-2637. AAAI Press, 2011.
Anthony Hunter and Sébastien Konieczny. On the Measure
of Conflicts: Shapley Inconsistency Values. Artificial Intel-
ligence 174(14): 1007-1026, 2010.
Anthony Hunter and Sébastien Konieczny. Measuring In-
consistency through Minimal Inconsistent Sets. Proc. of the
11th Conference on Principles of Knowledge Representation
Reasoning (KR’08), Sydney, Australia, September 16-19, G.
Brewka and J. Lang (eds.), pp. 358-366. AAAI Press, 2008.
Saı̈d Jabbour and Badran Raddaoui. Measuring Inconsis-
tency through Minimal Proofs. Proc. of the 12th Euro-
pean Conference on Symbolic and Qualitative Approaches
to Reasoning and Uncertainty (ECSQARU’13), L. C. van
der Gaag (ed.), Utrecht, The Netherlands, July 8-10, Lec-
ture Notes in Computer Science, volume 7958, pp. 290-301.
Springer, 2013.
Kevin Knight. Measuring Inconsistency. Journal of Philo-
sophical Logic 31(1): 77-98, 2002.
Kedian Mu, Weiru Liu and Zhi Jin. A General Framework
for Measuring Inconsistency through Minimal Inconsistent
Sets. Knowledge Information Systems 27(1): 85-114, 2011.
Kedian Mu, Weiru Liu and Zhi Jin. Measuring the Blame of
each Formula for Inconsistent Prioritized Knowledge Bases.
Journal of Logic and Computation 22(3): 481-516, 2012.
Matthias Thimm. Inconsistency Measures for Probabilistic
Logics. Artificial Intelligence 197: 1-24, 2013.

9

Nonmonotonic Reasoning as a Temporal Activity

Daniel G. Schwartz
Department of Computer Science

Florida State University
Tallahassee, FL 32303

Abstract

A dynamic reasoning system (DRS) is an adaptation
of a conventional formal logical system that explicitly
portrays reasoning as a temporal activity, with each ex-
tralogical input to the system and each inference rule
application being viewed as occurring at a distinct time
step. Every DRS incorporates some well-defined logic
together with a controller that serves to guide the rea-
soning process in response to user inputs. Logics are
generic, whereas controllers are application-specific.
Every controller does, nonetheless, provide an algo-
rithm for nonmonotonic belief revision. The general no-
tion of a DRS comprises a framework within which one
can formulate the logic and algorithms for a given ap-
plication and prove that the algorithms are correct, i.e.,
that they serve to (i) derive all salient information and
(ii) preserve the consistency of the belief set. This pa-
per illustrates the idea with ordinary first-order predi-
cate calculus, suitably modified for the present purpose,
and an example. The example revisits some classic non-
monotonic reasoning puzzles (Opus the Penguin, Nixon
Diamond) and shows how these can be resolved in the
context of a DRS, using an expanded version of first-
order logic that incorporates typed predicate symbols.
All concepts are rigorously defined and effectively com-
putable, thereby providing the foundation for a future
software implementation.

1. Introduction
This paper provide a brief overview of a longer paper
that has been accepted for publication, subject to revi-
sion, as (Schwartz 2013). The full text of that paper (64
pages) may be viewed in the arXiv CoRR repository at
http://arxiv.org/abs/1308.5374.

The notion of a dynamic reasoning system (DRS) was in-
troduced in (Schwartz 1997) for purposes of formulating
reasoning involving a logic of ‘qualified syllogisms’. The
idea arose in an effort to devise rules for evidence combina-
tion. The logic under study included a multivalent semantics
where propositions P were assigned a probabilistic ‘likeli-
hood value’ l(P) in the interval [0, 1], so that the likelihood
value plays the role of a surrogate truth value. The situa-
tion being modeled is where, based on some evidence, P
is assigned a likelihood value l1, and then later, based on
other evidence, is assigned a value l2, and it subsequently

is desired to combine these values based on some rule into
a resulting value l3. This type of reasoning cannot be rep-
resented in a conventional formal logical system with the
usual Tarski semantics, since such systems do not allow that
a proposition may have more than one truth value; otherwise
the semantics would not be mathematically well-defined.
Thus the idea arose to speak more explicitly about different
occurrences of the propositions P where the occurrences are
separated in time. In this manner one can construct a well-
defined semantics by mapping the different time-stamped
occurrences of P to different likelihood/truth values.

In turn, this led to viewing a ‘derivation path’ as it evolves
over time as representing the knowledge base, or belief
set, of a reasoning agent that is progressively building and
modifying its knowledge/beliefs through ongoing interac-
tion with its environment (including inputs from human
users or other agents). It also presented a framework within
which one can formulate a Doyle-like procedure for non-
monotonic ‘reason maintenance’ (Doyle 1979; Smith and
Kelleher 1988). Briefly, if the knowledge base harbors in-
consistencies due to contradictory inputs from the environ-
ment, then in time a contradiction may appear in the rea-
soning path (knowledge base, belief set), triggering a back-
tracking procedure aimed at uncovering the ‘culprit’ propo-
sitions that gave rise to the contradiction and disabling (dis-
believing) one or more of them so as to remove the incon-
sistency. Accordingly the overall reasoning process may be
characterized as being ‘nonmonotonic’.

Reasoning is nonmonotonic when the discovery and intro-
duction of new information causes one to retract previously
held assumptions or conclusions. This is to be contrasted
with classical formal logical systems, which are monotonic
in that the introduction of new information (nonlogical ax-
ioms) always increases the collection of conclusions (theo-
rems). (Schwartz 1997) contains an extensive bibliography
and survey of the works related to nonmonotonic reason-
ing as of 1997. In particular, this includes a discussion of
(i) the classic paper by McCarthy and Hayes (McCarthy and
Hayes 1969) defining the ‘frame problem’ and describing
the ‘situation calculus’, (ii) Doyle’s ‘truth maintenance sys-
tem’ (Doyle1979) and subsequent ‘reason maintenance sys-
tem’ (Smith and Kelleher 1988), (iii) McCarthy’s ‘circum-
scription’ (McCarthy 1980), (iv) Reiter’s ‘default logic’ (Re-
iter 1980), and (v) McDermott and Doyle’s ‘nonmonotonic

10

logic’ (McDermott and Doyle 1980). With regard to tempo-
ral aspects, there also are discussed works by Shoham and
Perlis. (Shoham 1986; 1988) explores the idea of making
time an explicit feature of the logical formalism for reason-
ing ‘about’ change, and (Shoham 1993) describes a vision
of ‘agent-oriented programming’ that is along the same lines
of the present DRS, portraying reasoning itself as a temporal
activity. In (Elgot-Drapkin 1988; Elgot-Drapkin et al. 1987;
1991; Elgot-Drapkin and Perlis 1990; Miller 1993; Perlis et
al. 1991) Perlis and his students introduce and study the no-
tion of ‘step logic’, which represents reasoning as ‘situated’
in time, and in this respect also has elements in common
with the notion of a DRS. Additionally mentioned but not
elaborated upon in (Schwartz 1997) is the so-called AGM
framework (Alchourón et al. 1985; Gardenfors 1988; 1992),
named after its originators. Nonmonotonic reasoning and
belief revision are related in that the former may be viewed
as a variety of the latter.

These cited works are nowadays regarded as the classic
approaches to nonmonotonic reasoning and belief revision.
Since 1997 the AGM approach has risen in prominence, due
in large part to the publication (Hansson 1999), which builds
upon and substantially advances the AGM framework. AGM
defines a belief set as a collection of propositions that is
closed with respect to the classical consequence operator,
and operations of ‘contraction’, ‘expansion’ and ‘revision’
are defined on belief sets. (Hansson 1999) made the impor-
tant observation that a belief set can conveniently be repre-
sented as the consequential closure of a finite ‘belief base’,
and these same AGM operations can be defined in terms
of operations performed on belief bases. Since that publi-
cation, AGM has enjoyed a steadily growing population of
adherents. A recent publication (Fermé and Hansson 2011)
overviews the first 25 years of research in this area.

The DRS framework has elements in common with AGM,
but also differs in several respects. Most importantly, the
present focus is on the creation of computational algorithms
that are sufficiently articulated that they can effectively be
implemented in software and thereby lead to concrete appli-
cations. This element is still lacking in AGM, despite Hans-
son’s contribution regarding finite belief bases. The AGM
operations continue to be given only as set-theoretic abstrac-
tions and have not yet been translated into computable algo-
rithms.

Another research thread that has risen to prominence is
the logic-programming approach to nonmonotonic reason-
ing known as Answer Set Programming (or Answer Set Pro-
log, aka AnsProlog). A major work is the treatise (Baral
2003), and a more recent treatment is (Gelfond and Kahl
2014). This line of research develops an effective approach
to nonmonotonic reasoning via an adaptation of the well-
known Prolog programming language. As such, this may
be characterized as a ‘declarative’ formulation of nonmono-
toniticy, whereas the DRS approach is ‘procedural’. The ex-
tent to which the two systems address the same problems
has yet to be explored.

A way in which the present approach varies from the orig-
inal AGM approach, but happens to agree with the views ex-
pressed by (Hansson 1999, cf. pp. 15-16), is that it dispenses

with two of the original ‘rationality postulates’, namely, the
requirements that the underlying belief set be at all times
(i) consistent, and (ii) closed with respect to logical entail-
ment. The latter is sometimes called the ‘omniscience’ pos-
tulate, inasmuch as the modeled agent is thus characterized
as knowing all possible logical consequences of its beliefs.

These postulates are intuitively appealing, but they have
the drawback that they lead to infinitary systems and thus
cannot be directly implemented on a finite computer. To
wit, the logical consequences of even a fairly simple set
of beliefs will be infinite in number. Dropping these pos-
tulates does have anthropomorphic rationale, however, since
humans themselves cannot be omniscient in the sense de-
scribed, and, because of this, often harbor inconsistent be-
liefs without being aware of this. Thus it is not unreasonable
that our agent-oriented reasoning models should have these
same characteristics. Similar remarks may be found in the
cited pages of (Hansson 1999).

Other ways in which the present work differs from the
AGM approach may be noted. First, what is here taken as a
‘belief set’ is neither a belief set in the sense of AGM and
Hansson nor a Hansson-style belief base. Rather it consists
of the set of statements that have been input by an external
agent as of some time t, together with the consequences of
those statements that have been derived in accordance with
the algorithms provided in a given ‘controller’. Second, by
labeling the statements with the time step when they are en-
tered into the belief set (either by an external agent or de-
rived by means of an inference rule), one can use the la-
bels as a basis for defining the associated algorithms. Third,
whereas Gärdenfors, Hansson, and virtually all others that
have worked with the AGM framework, have confined their
language to be only propositional, the present work takes the
next step to full first-order predicate logic. This is significant
inasmuch as the consistency of a finite set of propositions
with respect to the classical consequence operation can be
determined by truth-table methods, whereas the consistency
of a finite set of statements in first-order predicate logic is
undecidable (the famous result due to Gödel). For this rea-
son the present work develops a well-defined semantics for
the chosen logic and establishes a soundness theorem, which
in turn can be used to establish consistency. Last, the present
use of a controller is itself new, and leads to a new efficacy
for applications.

The notion of a controller was not present in the previous
work (Schwartz 1997). Its introduction here thus fills an im-
portant gap in that treatment. The original conception of a
DRS provided a framework for modeling the reasoning pro-
cesses of an artificial agent to the extent that those processes
follow a well-defined logic, but it offered no mechanism for
deciding what inference rules to apply at any given time.
What was missing was a means to provide the agent with a
sense of purpose, i.e., mechanisms for pursuing goals. This
deficiency is remedied in the present treatment. The con-
troller responds to inputs from the agent’s environment, ex-
pressed as propositions in the agent’s language. Inputs are
classified as being of various ‘types’, and, depending on the
input type, a reasoning algorithm is applied. Some of these
algorithms may cause new propositions to be entered into

11

the belief set, which in turn may invoke other algorithms.
These algorithms thus embody the agent’s purpose and are
domain-specific, tailored to a particular application. But in
general their role is to ensure that (i) all salient propositions
are derived and entered into to the belief set, and (ii) the be-
lief set remains consistent. The latter is achieved by invoking
a Doyle-like reason maintenance algorithm whenever a con-
tradiction, i.e., a proposition of the form P ∧ ¬P , is entered
into the belief set.

This recent work accordingly represents a rethinking, re-
finement, and extension of the earlier work, aimed at (1) pro-
viding mathematical clarity to some relevant concepts that
previously were not explicitly defined, (ii) introducing the
notion of a controller and spelling out its properties, and
(iii) illustrating these ideas with a small collection of ex-
ample applications. As such the work lays the groundwork
for a software implementation of the DRS framework, this
being a domain-independent software framework into which
can be plugged domain-specific modules as required for any
given application. Note that the mathematical work delin-
eated in (Schwartz 2013) is a necessary prerequisite for the
software implementation inasmuch as this provides the for-
mal basis for an unambiguous set of requirements specifica-
tions. While the present work employs classical first-order
predicate calculus, the DRS framework can accommodate
any logic for which there exists a well-defined syntax and
semantics.

The following Section 2 provides a fully detailed defi-
nition of the notion of a DRS. Section 3 briefly describes
the version of first-order predicate logic introduced for the
present purpose and mentions a few items needed for the
ensuing discussion. Section 4 illustrates the core ideas in an
application to multiple-inheritance systems, showing a new
approach to resolving two classic puzzles of nonmontonic
reasoning, namely Opus the Penguin and Nixon Diamond.

2. Dynamic Reasoning Systems
A dynamic reasoning system (DRS) comprises a model of an
artificial agent’s reasoning processes to the extent that those
processes adhere to the principles of some well-defined
logic. Formally it is comprised of a ‘path logic’, which pro-
vides all the elements necessary for reasoning, and a ‘con-
troller’, which guides the reasoning process.

Propositions

Axioms Theorems Inference

Rules

Figure 1: Classical formal logical system.

Propositions

Axiom Schemas

Derivation Path

Schema

Instantiation Rules
Inference

Rules

Figure 2: Dynamic reasoning system.

For contrast, and by way of introductory overview, the
basic structure of a classical formal logical system is por-
trayed in Figure 1 and that of a DRS in Figure 2. A classical
system is defined by providing a language consisting of a
set of propositions, selecting certain propositions to serve as
axioms, and specifying a set of inference rules saying how,
from certain premises one can derive certain conclusions.
The theorems then amount to all the propositions that can
be derived from the axioms by means of the rules. Such sys-
tems are monotonic in that adding new axioms always serves
to increase the set of theorems. Axioms are of two kinds:
logical and extralogical (or ‘proper’, or ‘nonlogical’). The
logical axioms together with the inference rules comprise
the ‘logic’. The extralogical axioms comprise information
about the application domain. A DRS begins similarly with
specifying a language consisting of a set of propositions. But
here the ‘logic’ is given in terms of a set of axioms schemas,
some inference rules as above, and some rules for instantiat-
ing the schemas. The indicated derivation path serves as the
belief set. Logical axioms may be entered into the derivation
path by applying instantiation rules. Extralogical axioms are
entered from an external source (human user, another agent,
a mechanical sensor, etc.). Thus the derivation path evolves
over time, with propositions being entered into the path ei-
ther as extralogical axioms or derived by means of infer-
ence rules in accordance with the algorithms provided in the
controller. Whenever a new proposition is entered into the
path it is marked as ‘believed’. In the event that a contra-
diction arises in the derivation path, a nonmonotonic belief
revision process is invoked which leads to certain previously
believed propositions becoming disbelieved, thereby remov-
ing the contradiction. A brief overview of these two compo-
nents of a DRS is given in Sections 2.1 and 2.2.

2.1. Path Logic
A path logic consists of a language, axiom schemas, infer-
ence rules, and a derivation path, as follows.

Language: Here denoted L, this consists of all expres-
sions (or formulas) that can be generated from a given set
σ of symbols in accordance with a collection of production
rules (or an inductive definition, or some similar manner of

12

definition). As symbols typically are of different types (e.g.,
individual variables, constants, predicate symbols, etc.) it
is assumed that there is an unlimited supply (uncountably
many if necessary) of each type. Moreover, as is customary,
some symbols will be logical symbols (e.g., logical connec-
tives, quantifiers, and individual variables), and some will
be extralogical symbols (e.g., individual constants and pred-
icate symbols). It is assumed that L contains at least the
logical connectives for expressing negation and conjunction,
herein denoted ¬ and ∧, or a means for defining these con-
nectives in terms of the given connectives. For example, in
the following we take ¬ and→ as given and use the standard
definition of ∧ in terms of these.

Axiom Schemas: Expressed in some meta notation, these
describe the expressions of L that are to serve as logical ax-
ioms.

Inference Rules: These must include one or more rules
that enable instantiation of the axiom schemas. All other in-
ference rules will be of the usual kind, i.e., stating that, from
expressions having certain forms (premise expressions), one
may infer an expression of some other form (a conclusion
expression). Of the latter, two kinds are allowed: logical
rules, which are considered to be part of the underlying
logic, and extralogical rules, which are associated with the
intended application. Note that logical axioms are expres-
sions that are derived by applying the axiom schema in-
stantiation rules. Inference rules may be viewed formally as
mappings from L into itself.

The rule set may include derived rules that simplify de-
ductions by encapsulating frequently used argument pat-
terns. Rules derived using only logical axioms and logical
rules will also be logical rules, and derived rules whose
derivations employ extralogical rules will be additional ex-
tralogical rules.

Derivation Paths: These consist of a sequences of pairs
(L0, B0), (L1, B1), . . ., where Lt is the sublanguage of L
that is in use at time t, and Bt is the belief set in effect at
time t. Such a sequence is generated as follows. Since lan-
guages are determined by the symbols they employ, it is use-
ful to speak more directly in terms of the set σt comprising
the symbols that are in use at time t and then let Lt be the
sublanguage of L that is based on the symbols in σt. With
this in mind, let σ0 be the logical symbols of L, so that L0 is
the minimal language employing only logical symbols, and
let B0 = ∅. Then, given (Lt, Bt), the pair (Lt+1, Bt+1) is
formed in one of the following ways:

1. σt+1 = σt (so that Lt+1 = Lt) andBt+1 is obtained from
Bt by adding an expression that is derived by application
of an inference rule that instantiates an axiom schema,

2. σt+1 = σt andBt+1 is obtained fromBt by adding an ex-
pression that is derived from expressions appearing earlier
in the path by application of an inference rule of the kind
that infers a conclusion from some premises,

3. σt+1 = σt and an expression employing these symbols is
added to Bt to form Bt+1,

4. some new extralogical symbols are added to σt to form
σt+1, and an expression employing the new symbols is
added to Bt to form Bt+1,

5. σt+1 = σt and Bt+1 is obtained from Bt by applying a
belief revision algorithm as described in the following.

Expressions entered into the belief set in accordance with
either (3) or (4) will be extralogical axioms. A DRS can gen-
erate any number of different derivation paths, depending on
the extralogical axioms that are input and the inference rules
that are applied.

Whenever an expression is entered into the belief set it is
assigned a label comprised of:

1. A time stamp, this being the value of the subscript t+1 on
the set Bt+1 formed by entering the expression into the
belief set in accordance with any of the above items (1)
through (4). The time stamp serves as an index indicating
the expression’s position in the belief set.

2. A from-list, indicating how the expression came to be en-
tered into the belief set. In case the expression is entered
in accordance with the above item (1), i.e., using a schema
instantiation rule, this list consists of the name (or other
identifier) of the schema and the name (or other identi-
fier) of the inference rule if the system has more than one
such rule. In case the expression is entered in accordance
with above item (2), the list consists of the indexes (time
stamps) of the premise expressions and the name (or other
identifier) of the inference rule. In case the expression is
entered in accordance with either of items (3) or (4), i.e.,
is a extralogical axiom, the list will consist of some code
indicating this (e.g., es standing for ‘external source’) pos-
sibly together with some identifier or other information
regarding the source.

3. A to-list, being a list of indexes of all expressions that
have been entered into the belief set as a result of rule
applications involving the given expression as a premise.
Thus to-lists may be updated at any future time.

4. A status indicator having the value bel or disbel according
as the proposition asserted by the expression currently is
believed or disbelieved. The primary significance of this
status is that only expressions that are believed can serve
as premises in inference rule applications. Whenever an
expression is first entered into the belief set, it is assigned
status bel. This value may then be changed during be-
lief revision at a later time. When an expression’s status
is changed from bel to disbel it is said to have been re-
tracted.

5. An epistemic entrenchment factor, this being a numeri-
cal value indicating the strength with which the propo-
sition asserted by the expression is held. This terminol-
ogy is adopted in recognition of the work by Gärdenfors,
who initiated this concept (Gardenfors 1988; 1992), and
is used here for essentially the same purpose, namely, to
assist when making decisions regarding belief retractions.
Depending on the application, however, this value might
alternatively be interpreted as a degree of belief, as a cer-
tainty factor, as a degree of importance, or some other
type of value to be used for this purpose. Logical axioms
always receive the highest possible epistemic entrench-
ment value, whatever scale or range may be employed.

13

6. A knowledge category specification, having one of the
values a priori, a posteriori, analytic, and synthetic. These
terms are employed in recognition of the philosophical
tradition initiated by Immanuel Kant (Kant 1935). Logi-
cal axioms are designated as a priori; extralogical axioms
are designated as a posteriori; expressions whose deriva-
tions employ only logical axioms and logical inference
rules are designated as analytic; and expressions whose
derivations employ any extralogical axioms or extralogi-
cal rules are designated as synthetic.

Thus when an expression P is entered into the belief set,
it is more exactly entered as an expression-label pair (P, λ),
where λ is the label. A DRS’s language, axiom schemas,
and inference rules comprise a logic in the usual sense. It is
required that this logic be consistent, i.e., for no expression
P is it possible to derive both P and ¬P . The belief set may
become inconsistent, nonetheless, through the introduction
of contradictory extralogical axioms.

In what follows, only expressions representing a posteri-
ori and synthetic knowledge may be retracted; expressions
of a priori knowledge are taken as being held unequivocally.
Thus the term ‘a priori knowledge’ is taken as synonymous
with ‘belief held unequivocally’, and ‘a posteriori knowl-
edge’ is interpreted as ‘belief possibly held only tentatively’
(some a posteriori beliefs may be held unequivocally). Ac-
cordingly the distinction between knowledge and belief is
somewhat blurred, and what is referred to as a ‘belief set’
might alternatively be called a ‘knowledge base’, as is often
the practice in AI systems.

2.2. Controller
A controller effectively determines the modeled agent’s pur-
pose or goals by managing the DRS’s interaction with its
environment and guiding the reasoning process. With re-
gard to the latter, the objectives typically include (i) deriving
all expressions salient to the given application and entering
these into the belief set, and (ii) ensuring that the belief set
remains consistent. To these ends, the business of the con-
troller amounts to performing the following operations.

1. Receiving input from its environment, e.g., human users,
sensors, or other artificial agents, expressing this input as
expressions in the given language L, and entering these
expressions into the belief set in the manner described
above (derivation path items (3) and (4)). During this op-
eration, new symbols are appropriated as needed to ex-
press concepts not already represented in the current Lt.

2. Applying inference rules in accordance with some ex-
tralogical objective (some plan, purpose, or goal) and en-
tering the derived conclusions into the belief set in the
manner described above (derivation path items (1) and
(2)).

3. Performing any actions that may be prescribed as a re-
sult of the above reasoning process, e.g., moving a robotic
arm, returning a response to a human user, or sending a
message to another artificial agent.

4. Whenever necessary, applying a ‘dialectical belief revi-
sion’ algorithm for contradiction resolution in the manner

described below.

A contradiction is an expression of the form P ∧ ¬P .
Sometimes it is convenient to represent the general notion of
contradiction by the falsum symbol, ⊥. Contradiction reso-
lution is triggered whenever a contradiction or a designated
equivalent expression is entered into the belief set. We may
assume that this only occurs as the result of an inference
rule application, since it obviously would make no sense to
enter a contradiction directly as an extralogical axiom. The
contradiction resolution algorithm entails three steps:

1. Starting with the from-list in the label on the contradic-
tory expression, backtrack through the belief set following
from-lists until one identifies all extralogical axioms that
were involved in the contradiction’s derivation. Note that
such extralogical axioms must exist, since, by the con-
sistency of the logic, the contradiction cannot constitute
analytical knowledge, and hence must be synthetic.

2. Change the belief status of one or more of these extralogi-
cal axioms, as many as necessary to invalidate the deriva-
tion of the given contradiction. The decision as to which
axioms to retract may be dictated, or at least guided by,
the epistemic entrenchment values. In effect, those ex-
pressions with the lower values would be preferred for
retraction. In some systems, this retraction process may
be automated, and in others it may be human assisted.

3. Forward chain through to-lists starting with the extralog-
ical axiom(s) just retracted, and retract all expressions
whose derivations were dependent on those axioms.
These retracted expressions should include the contradic-
tion that triggered this round of belief revision (otherwise
the correct extralogical axioms were not retracted).

This belief revision algorithm is reminiscent of G. W. F.
Hegel’s ‘dialectic’, described as a process of ‘negation of
the negation’ (Hegel 1931). In that treatment, the latter (first
occurring) negation is a perceived internal conflict (here a
contradiction), and the former (second occurring) one is an
act of transcendence aimed at resolving the conflict (here re-
moving the contradiction). In recognition of Hegel, the be-
lief revision/retraction process formalized in the above algo-
rithm will be called Dialectical Belief Revision.

3. First-Order Logic
The paper (Schwartz 2013) defines a notion of first-order
theory suitable for use in a DRS, provides this with a well-
defined semantics (a notion of model), and establishes a
Soundness Theorem: a theory is consistent if it has a model.
The notions of theory and semantics are designed to accom-
modate the notion of a belief set evolving over time, as well
as inference rules that act by instantiating axiom schemas.
A first-order language L is defined following the notations
of (Hamilton 1988). This includes notations Am

n as pred-
icate symbols (here the n-th m-ary predicate symbol) and
an for individual variables. Then, in the path logic, the lan-
guages at each successive time step are sublanguages of L.
The semantics follows the style of (Shoenfield 1967). The
axiom schemas of (Hamilton 1988) are adopted. The infer-
ence rules are those of (Hamilton 1988) together with some

14

rules for axiom schema instantiation. The formalism is suf-
ficiently different from the classical version that new proofs
of all relevant propositions must be restated in this context
and proven correct. The treatment also establishes the valid-
ity of several derived inference rules that become useful in
later examples, including:

Hypothetical Syllogism From P → Q and Q → R
infer P → R, where P,Q,R are any formulas.

Aristotelian Syllogism From (∀x)(P → Q) and
P (a/x), infer Q(a/x), where P,Q are any formulas, x is
any individual variable, and a is any individual constant.

Subsumption From (∀x)(α(x) → β(x)) and
(∀x)(β(x) → γ(x)), infer (∀x)(α(x) → γ(x)), where
α, β, γ are any unary predicate symbols, and x is any in-
dividual variable.

Contradiction Detection From P and ¬P infer ⊥,
where P is any formula.

Conflict Detection From (∀x)¬(P ∧Q), P (a/x), and
Q(a/x) infer ⊥, where P,Q are any formulas, x is any
individual variable, and a is any individual constant.

4. Example: Multiple Inheritance with
Exceptions

The main objective of (Schwartz 1997) was to show how a
DRS framework could be used to formulate reasoning about
property inheritance with exceptions, where the underlying
logic was a probabilistic ‘logic of qualified syllogisms’. This
work was inspired in part by the frame-based systems due to
(Minsky 1975) and constitutes an alternative formulation of
the underlying logic (e.g., as discussed by (Hayes 1980)).

What was missing in (Schwartz 1997) was the notion of
a controller. There a reasoning system was presented and
shown to provide intuitively plausible solutions to numerous
‘puzzles’ that had previously appeared in the literature on
nonmonotonic reasoning, e.g., Opus the Penguin (Touretsky
1984), Nixon Diamond (Touretsky et al. 1987), and Clyde
the Elephant (Touretsky et al. 1987). But there was noth-
ing to guide the reasoning processes—no means for provid-
ing a sense of purpose for the reasoning agent. The present
work fills this gap by adding a controller. Moreover, it deals
with a simpler system based on first-order logic and remands
further exploitation of the logic of qualified syllogisms to a
later work. The kind of DRS developed in this section will
be termed a multiple inheritance system (MIS).

For this application the language L discussed in Sec-
tion 3 is expanded by including some typed predicate sym-
bols, namely, some unary predicate symbols A(k)

1 ,A(k)
2 , . . .

representing kinds of things (any objects), and some unary
predicate symbols A(p)

1 ,A(p)
2 , . . . representing properties

of things. The superscripts k and p are applied also
to generic denotations. Thus an expression of the form
(∀x)(α(k)(x)→ β(p)(x)) represents the proposition that all
αs have property β. These new predicate symbols are used
here purely as syntactical items for purposes of defining an
extralogical ‘specificity principle’ and some associated ex-

tralogical graphical structures and algorithms. Semantically
they are treated exactly the same as other predicate symbols.

A multiple-inheritance hierarchy H will be a directed
graph consisting of a set of nodes together with a set of links
represented as ordered pairs of nodes. Nodes may be either
object nodes, kind nodes, or property nodes. A link of the
form (object node, kind node) will be an object-kind link,
one of the form (kind node, kind node) will be a subkind-
kind link, and one of the form (kind node, property node)
will be a has-property link. There will be no other types
of links. Object nodes will be labeled with (represent) in-
dividual constant symbols, kind nodes will be labeled with
(represent) kind-type unary predicate symbols, and property
nodes will be labeled with (represent) property-type unary
predicate symbols or negations of such symbols. In addi-
tion, each property type predicate symbol with bear a nu-
merical subscript, called an occurrence index, indicating an
occurrence of that symbol in a given hierarchy H . These
indexes are used to distinguish different occurrences of the
same property-type symbol in H . An object-kind link be-
tween an individual constant symbol a and a predicate sym-
bol α(k) will represent the formula α(k)(a), a subkind-kind
link between a predicate symbol α(k) and a predicate symbol
β(k) will represent the formula (∀x)(α(k)(x) → β(k)(x)),
and a has-property link between a predicate symbol α(k)

and a predicate symbol β(p)
1 will represent the formula

(∀x)(α(k)(x)→ β
(p)
1 (x)).

Given such an H , there is defined on the object nodes
and the kind nodes a specificity relation >s (read ‘more spe-
cific than’) according to: (i) if (node1,node2) is either an
object-kind link or a kind-kind link, then node1 >s node2,
and (ii) if node1 >s node2 and node2 >s node3, then
node1 >s node3. We shall also have a dual generality rela-
tion >g (read ‘more general than’) defined by node1 >g

node2 iff node2 >s node1. It follows that object nodes
are maximally specific and minimally general. It also fol-
lows that H may have any number of maximally general
nodes, and in fact that it need not be connected. A maxi-
mally general node is a root node. A path in a hierarchy H
(not to be confused with the path in a path logic) will be a
sequence node1, . . . ,noden wherein, node1 is a root node
and, for each i = 1, . . . , n − 2, the pair (nodei+1,nodei)
is a subkind-kind link, and, the pair (noden,noden−1) is
either a subkind-kind link or an object-kind link. Note that
property nodes do not participate in paths as here defined.

It is desired to organize a multiple inheritance hierarchy as
a directed acyclic graph (DAG) without redundant links with
respect to the object-kind and subkind-kind links (i.e., here
ignoring has-property links), where, as before, by a redun-
dant link is meant a direct link from some node to an ances-
tor of that node other than the node’s immediate ancestors
(i.e., other than its parents). More exactly, two distinct paths
will form a redundant pair if they have some node in com-
mon beyond the first place where they differ. This means that
they comprise two distinct paths to the common node(s). A
path will be simply redundant (or redundant in H) if it is a
member of a redundant pair. A path contains a loop if it has
more than one occurrence of the same node. Provisions are

15

made in the following algorithms to ensure that hierarchies
with loops or redundant paths are not allowed. As is custom-
ary, the hierarchies will be drawn with the upward direction
being from more specific to less (less general to more), so
that roots appear at the top and objects appear at the bot-
tom. Kind-property links will extend horizontally from their
associated kind nodes.

In terms of the above specificity relation on H , we can
assign an address to each object and kind node in the fol-
lowing manner. Let the addresses of the root nodes, in
any order, be (1), (2), (3), Then for the node with ad-
dress (1), say, let the next most specific nodes in any or-
der have the addresses (1, 1), (1, 2), (1, 3), . . .; let the nodes
next most specific to the one with address (1, 1) have ad-
dresses (1, 1, 1), (1, 1, 2), (1, 1, 3), . . .; and so on. Thus an
address indicates the node’s position in the hierarchy relative
to some root node. Inasmuch as an object or kind node may
be more specific than several different root nodes, the same
node may have more than one such address. Note that the
successive initial segments of an address are the addresses
of the nodes appearing in the path from the related root node
to the node having that initial segment as its address. Let >
denote the usual lexicographic order on addresses. We shall
apply > also to the nodes having those addresses. It is easily
verified that, if node1 > node2 and the node2 address is an
initial segment of the node1 address, then node1 >s node2,
and conversely. For object and kind nodes, we shall use the
term specificity rank (or just rank) synonymously with ‘ad-
dress’.

Since, as mentioned, it is possible for any given object or
kind node to have more than one address, it thus can have
more than one rank. Two nodes are comparable with respect
to the specificity relation >s, however, only if they appear
on the same path, i.e., only if one node is an ancestor of
the other, in which case only the rank each has acquired due
to its being on that path will apply. Thus, if two nodes are
comparable with respect to their ranks by the relation >s,
there is no ambiguity regarding the ranks being compared.

Having thus defined specificity ranks for object and kind
nodes, let us agree that each property node inherits the rank
of the kind node to which it is linked. Thus for property
nodes the rank is not an address.

OpusTweety

Bird(k)
CanFly

(p)
1

¬CanFly
(p)
2

Penguin(k)

Figure 3: Tweety the Bird and Opus the Penguin as an MIS.

An example of such a hierarchy is shown in Figure 3.
Here ‘Tweety’ and ‘Opus’ may be taken as names for the in-

dividual constants a1 and a2, and ‘Bird(k)’, ‘Penguin(k)’,
and ‘CanFly(p)’ can be taken as names, respectively, for the
unary predicate symbols A(k)

1 , A(k)
2 , and A(p)

1 . [Note: The
superscripts are retained on the names only to visually iden-
tify the types of the predicate symbols, and could be dropped
without altering the meanings.] The links represent the for-
mulas

(∀x)(Penguin(k)(x)→ Bird(k)(x))
(∀x)(Bird(k)(x)→ CanFly(p)

1 (x))
(∀x)(Penguin(k)(x)→ ¬CanFly(p)

2 (x))
Bird(k)(Tweety)
Penquin(k)(Opus)

The subscripts 1 and 2 on the predicate symbol CanFly(p) in
the graph distinguish the different occurrences of this sym-
bol in the graph, and the same subcripts on the symbol oc-
currences in the formulas serve to correlate these with their
occurrences in the graph. Note that these are just separate oc-
currences of the same symbol, however, and therefore have
identical semantic interpretations. Formally, CanFly(p)

1 and
CanFly(p)

2 can be taken as standing for A(p)
11

and A(p)
12

with
the lower subscripts being regarded as extralogical notations
indicating different occurrences of A(p)

1 .
This figure reveals the rationale for the present notion of

multiple-inheritance hierarchy. The intended interpretation
of the graph is that element nodes and kind nodes inherit
the properties of their parents, with the exception that more
specific property nodes take priority and block inheritances
from those that are less specific. Let us refer to this as the
specificity principle. In accordance with this principle, in
Figure 3 Tweety inherits the property CanFly from Bird, but
Opus does not inherit this property because the inheritance
is blocked by the more specific information that Opus is a
Penguin and Penguins cannot fly.

Bird

Penguin

Flier

Tweety Opus

Is−a

Is−a

Is−a

Is−a

Is−not−a

Figure 4: Tweety the Bird and Opus the Penguin, original
version.

Figure 3 constitutes a rethinking of the well-known ex-
ample of Opus the penguin depicted in Figure 4 (adapted
from (Touretsky1984)). The latter is problematic in that, by
one reasoning path one can conclude that Opus is a flier,
and by another reasoning path that he is not. This same
contradiction is implicit in the formulas introduced above,

16

since if one were to apply the axioms and rules of first-
order logic discussed in Section 3, one could derive both
CanFly(p)(Opus) and ¬CanFly(p)(Opus), in which case
the system would be inconsistent.

Formal Specification of an Arbitrary MIS
We are now in a position to define the desired kind of DRS.
For the path logic, let the language be the one described
above, obtained from the L of Section 3 by adjoining the
additional unary kind-type and property-type predicate sym-
bols, let the axiom schemas and inference rules be those dis-
cussed in Section 3 together with Aristotelian Syllogism and
Contradiction Detection. In this case, derivation paths will
consist of triples (Lt, Bt, Ht), where these components re-
spectively are the (sub)language (of L), belief set, and mul-
tiple inheritance hierarchy at time t. In accordance with Sec-
tion 2, let L0 be the minimal sublanguage of L consisting of
all formulas that can be built up from the atomic formula ⊥,
and let B0 = ∅. In addition, let H0 = ∅.

The MIS controller is designed to enforce the above speci-
ficity principle. Contradictions can arise in an MIS that has
inherently contradictory root nodes in its multiple inheri-
tance hierarchy. An example of this, the famous Nixon Di-
amond (Touretsky 1987), will be discussed. The purpose
of the MIS controller will be (i) to derive and enter into
the belief set all object classifications implicit in the mul-
tiple inheritance hierarchy, i.e., all formulas of the form
α(k)(a) that can be derived from formulas describing the
hierarchy (while observing the specificity principle), and
(ii) to ensure that the belief set remains consistent. Item
(i) thus defines what will be considered the salient infor-
mation for an MIS. Also, the MIS controller is intended to
maintain the multiple inheritance hierarchy as a DAG with-
out redundant paths with respect to just the object and kind
nodes. Formulas that can be input by the users may have
one of the forms (i) α(k)(a), (ii) (∀x)(α(k)(x) → β(k)(x)),
(iii) (∀x)(α(k)(x) → β(p)(x)), and (iv) (∀x)(α(k)(x) →
¬β(p)(x)). It will be agreed that the epistemic entrenchment
value for all input formulas is 0.5.

We may now define some algorithms that are to be exe-
cuted in response to each type of user input. There will be
eight types of events. Event Types 1, 6, 7 and 8 correspond
to user inputs, and the others occur as the result of rule appli-
cations. In all such events it is assumed that, if the formula
provided to the controller already exists and is active in the
current belief set, its input is immediately rejected. In each
event, assume that the most recent entry into the derivation
path is (Lt, Bt, Ht). For the details of the algorithms, please
see (Schwartz 2013).

Event Type 1: A formula of the form α(k)(a) is provided
to the controller by a human user.

Event Type 2: A formula of the form α(k)(a) is provided
to the controller as a result of an inference rule application
(Aristotelian Syllogism).

Event Type 3: A formula of the form α(p)(a) is provided
to the controller as a result of an inference rule application
(Aristotelian Syllogism).

Event Type 4: A formula of the form ¬α(p)(a) is pro-
vided to the controller as a result of an inference rule appli-
cation (Aristotelian Syllogism).

Event Type 5: The formula⊥ is provided to the controller
as the result of an application of Contradiction Detection.

Event Type 6: A formula of the form (∀x)(α(k)(x) →
β(k)(x)) is provided to the controller by a human user.

Event Type 7: A formula of the form (∀x)(α(k)(x) →
β(p)(x)) is provided to the controller by a human user.

Event Type 8: A formula of the form (∀x)(α(k)(x) →
¬β(p)(x)) is provided to the controller by a human user.

Main Results
That an MIS controller produces all relevant salient infor-
mation as prescribed above can be summarized as a pair of
theorems.

Theorem 5.1. The foregoing algorithms serve to maintain
the hierarchy with respect to the object and kind nodes as a
directed acyclic graph without redundant links.

Theorem 5.2. After any process initiated by a user input
terminates, the resulting belief set will contain a formula of
the form α(k)(a) or α(p)(a) or ¬α(p)(a) iff the formula is
derivable from the formulas corresponding to links in the
inheritance hierarchy, observing the specificity principle.

That the algorithms serve to preserve the consistency of
the belief set is established as:

Theorem 5.3. For any derivation path in an MIS, the be-
lief set that results at the conclusion of a process initiated by
a user input will be consistent with respect to the formulas of
the forms α(k)(a), (∀x)(α(k)(x)→ β(p)(x)), and α(p)(a).

Illustration 1
Some of the algorithms associated with the foregoing events
can be illustrated by considering the inputs needed to create
the inheritance hierarchy shown in Figure 3. This focuses
on the process of property inheritance with exceptions. Let
us abbreviate ‘Bird’, ‘Penguin’, and ‘CanFly’, respectively,
by ‘B’, ‘P’, and ‘CF’. In accordance with the definition of
derivation path in Section 2.1, the language L0 will con-
sist only of the formula ⊥, and the belief set B0 = ∅. In
accordance with the definition of an MIS, H0 = ∅. We con-
sider inputs of the afoermentioned formulas, with each input
comprising a type of event initiating a particular reasoning
algorithm. These inputs and event types are:

(∀x)(P(k)(x)→ B(k)(x)), Type 6
(∀x)(B(k)(x)→ CF(p)

1 (x)), Type 7
(∀x)(P(k)(x)→ ¬CF(p)

2 (x)), Type 8
B(k)(Tweety), Type 1
P(k)(Opus), Type 1

17

The specificity principle is invoked during the last event.
This results in the following belief set (omitting formula la-
bels):

(∀x)(P(k)(x)→ B(k)(x))
(∀x)(B(k)(x)→ CF(p)

1 (x))
(∀x)(P(k)(x)→ ¬CF(p)

2 (x))
B(k)(Tweety)
CF(p)

1 (Tweety)
P(k)(Opus)
B(k)(Opus)
¬CF(p)

2 (Opus)

Thus is is seen that, in this example, the algorithms serve
to derive all salient information, i.e., all formulas of the
forms α(k)(a), α(p)(a), and α(p)(a) that are implicit in the
graph, while at the same time correctly enforcing the speci-
ficity principle. It may also be observed that the belief set is
consistent.

Illustration 2
This considers an application of Contradiction Detection.
The classic Nixon Diamond puzzle (cf. Touretsky et al.
1987) is shown in Figure 5. Here a contradiction arises be-
cause, by the reasoning portrayed on the left side, Nixon is
a pacifist, whereas, by the reasoning portrayed on the right,
he is not. The resolution of this puzzle in the context of an
MIS can be described in terms of the multiple inheritance
hierarchy shown in Figure 6.

Nixon

Pacifist

Quaker Republican

Is−a Is−a

Is−a Is−not−a

Figure 5: Nixon Diamond, original version.

Nixon

Quaker(k) Republican(k) ¬Pacifist
(p)
2Pacifist

(p)
1

Figure 6: Nixon Diamond as an MIS.

The links in Figure 6 represent the formulas

(∀x)(Quaker(k)(x)→ Pacifist(p)
1 (x))

(∀x)(Republican(k)(x)→ ¬Pacifist(p)
2 (x))

Quaker(k)(Nixon)
Republican(k)(Nixon)

The action of the algorithms may be traced similarly as
in Illustration 1. Let ‘Quaker’, ‘Republican’ and ‘Pacifist’
denote the predicate symbols A(k)

1 , A(k)
2 and A(p)

1 , and ab-
breviate these by ‘Q’, ‘R’ and ‘P’. Let ‘Nixon’ denote the
individual constant a1. L0, B0, and H0 will be as before.
The inputs and their event types are:

(∀x)(Q(k)(x)→ P(p)
1 (x)), Type 7.

(∀x)(R(k)(x)→ ¬P(p)
1 (x)), Type 8.

Q(k)(Nixon), Type 1.
R(k)(Nixon), Type 1.

These lead to the following belief set (again omitting for-
mual labels):

(∀x)(Q(k)(x)→ P(p)
1 (x))

(∀x)(R(k)(x)→ ¬P(p)
2 (x))

Q(k)(Nixon).
P(p)

1 (Nixon)
R(k)(Nixon
¬P(p)

2 (Nixon)
⊥
At this point Dialectical Belief Revision is invoked. All

the formulas that were input by the user are candidates for
belief change. Suppose that the formula (∀x)(R(k)(x) →
¬P(p)

2 (x)), is chosen. Then the procedure forward chains
through to lists, starting with this formula, and changes to
disbel the status first of ¬P(p)

2 (Nixon), and then of ⊥. This
results in a belief set with these three formulas removed (dis-
believed) leaving only the left side of the hierarchy in Fig-
ure 6. Thus again all salient information is derived and the
resulting belief set is consistent.

Further well-known puzzles that can be resolved similarly
within an MIS are the others discussed in (Schwartz 1997),
namely, Bosco the Blue Whale (Stein 1992), Suzie the Platy-
pus (Stein 1992), Clyde the Royal Elephant (Touretsky et
al. 1987), and Expanded Nixon Diamond (Touretsky et al.
1987).

References
Alchourón, C. E.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: partial meet contraction and
revision functions. Journal of Symbolic Logic 50(2):510–
530.
Baral, C. 2003. Knowledge Representation, Reasoning, and
Declarative Problem Solving. Cambridge University Press.
Delgrande, J. P., and Farber, W., eds. 2011. Logic Program-
ming and Nonmonotonic Reasoning 11th International Con-
ference, LPNMR 2011. Lecture notes in Computer Science,
Volume 66452011, Springer Verlag.

18

Doyle, J. 1979. A truth maintenance system. Artificial Intel-
ligence 12:231–272.
Elgot-Drapkin, J. J. 1988. Step Logic: Reasoning Situated
in Time. PhD thesis, University of Maryland, College Park.
Technical Report CS-TR-2156 and UMIACS-TR-88-94.
Elgot-Drapkin, J. J.; Miller, M.; and Perlis, D. 1987. Life
on a desert island: ongoing work on real-time reasoning. In
F.M. Brown, ed., The Frame Problem in Artificial Intelli-
gence: Proceedings of the 1987 Workshop, pp. 349–357, Los
Altos, CA: Morgan Kaufmann.
Elgot-Drapkin, J. J.; Miller, M.; and Perlis, D. 1991. Mem-
ory, reason, and time: the step-logic approach. In R. Cum-
mins and J. Pollock, eds, Philosophy and AI: Essays at the
Interface, pp. 79–103. MIT Press.
Elgot-Drapkin, J. J., and Perlis, D. 1990. Reasoning situated
in time I: basic concept. Journal of Experimental and Theo-
retical Artificial Intelligence 2(1):75–98.
Gelfond, M. and Kahl, Y., Knowledge Representation, Rea-
soning, and the Design of Intelligent Agents: The Anwer Set
Programming Approach, Cambridge University Press, 2014.
Hayes, P. J. 1980. The logic of frames. In D. Metzing, ed.,
Frame Conceptions and Text Understanding, Berlin: Walter
de Gruyter, pp. 46–61.
Fermé, E., and Hansson, S. O. 2011. AGM 25 years: twenty-
five years of research in belief change. J. Philos Logic,
40:295–331.
Gärdenfors, P. 1988. Knowledge in Flux: Modeling the
Dynamics of Epistemic States. Cambridge, MA: MIT
Press/Bradford Books.
Gärdenfors, P., ed. 1992. Belief Revision. Cambridge Uni-
versity Press.
Ginsberg, M. L., ed. 1987. Readings in Nonmonotonic Rea-
soning. Los Altos, CA: Morgan Kaufmann.
Hamilton, A. G. 1988. Logic for Mathematicians, Revised
Edition, Cambridge University Press.
Hansson, S.O. 1999. A Textbook of Belief Dynamics: Theory
Change and Database Updating. Dordercht, Kluwer Aca-
demic Publishers.
Hegel, G.W.F. 1931. Phenomenology of Mind. J.B. Baillie,
trans, 2nd edition. Oxford: Clarendon Press.
Kant, I. 1935 Critique of Pure Reason. N.K. Smith, trans.
London, England: Macmillan.
McCarthy, J. 1980. Circumscription—a form of nonmono-
tonic reasoning. Artificial Intelligence, 13:27–39, 171–172.
Reprinted in (Ginsberg 1987), pp. 145–152.
McCarthy, J., and Hayes, P. 1969. Some philosophical prob-
lems from the standpoint of artificial intelligence. Stanford
University. Reprinted in (Ginsberg 1987), pp. 26–45, and
in V. Lifschitz, ed., Formalizing Common Sense: Papers by
John McCarthy, Norwood, NJ: Ablex, 1990, pp. 21–63.
McDermott, D., and Doyle, J. 1980. Non-monotonic logic–
I. Artificial Intelligence 13:41–72. Reprinted in (Ginsberg
1987), pp. 111–126.
Miller, M. J. 1993. A View of One’s Past and Other Aspects
of Reasoned Change in Belief. PhD thesis, University of

Maryland, College Park, Department of Computer Science,
July. Technical Report CS-TR-3107 and UMIACS-TR-93-
66.
Minsky, M. 1975. A framework for representing knowledge.
In P. Winston, ed., The Psychology of Computer Vision, New
York: McGraw-Hill, pp. 211–277. A condensed version has
appeared in D. Metzing, ed., Frame Conceptions and Text
Understanding, Berlin: Walter de Gruyter, Berlin, 1980, pp.
1–25.
Perlis, D.; Elgot-Drapkin, J. J.; and Miller, M. 1991. Stop
the world—I want to think. In K. Ford and F. Anger, eds.,
International Journal of Intelligent Systems: Special Issue
on Temporal Reasoning, Vol. 6, pp. 443–456. Also Technical
Report CS-TR-2415 and UMIACS-TR-90-26, Department
of Computer Science, University of Maryland, College Park,
1990.
Reiter, R. 1980. A logic for default reasoning. Artificial In-
telligence 13(1-2):81–132. Reprinted in (Ginsberg 1987),
pp. 68–93.
Schwartz, D. G. 1997. Dynamic reasoning with qualified
syllogisms. Artificial Intelligenc 93:103–167.
Schwartz, D .G. 2013. Dynamic reasoning systems. ACM
Transactions on Computational Intelligence, accepted sub-
ject to revision February 7, 2014.
Shoenfield, J. R. 1967. Mathematical Logic, Association for
Symbolic Logic.
Shoham, Y. 1986. Chronological ignorance: time, nonmono-
tonicity, necessity, and causal theories. Proceedings of the
American Association for Artificial Intelligence, AAAI’86,
Philadelphia, PA, pp. 389–393.
Shoham, Y. 1988. Reasoning about Change: Time and Cau-
sation from the Standpoint of Artificial Intelligence. Cam-
bridge, MA: MIT Press.
Shoham, Y. 1993. Agent-oriented programming. Artificial
Intelligence 60:51–92.
Smith, B., and Kelleher, G., eds. 1988. Reason Maintenance
Systems and Their Applications. Chichester, England:Ellis
Horwood.
Stein, L. A. 1992. Resolving ambiguity in nonmonotonic in-
heritance hierarchies. Artificial Intelligence 55(2-3).
Touretzky, D. 1984. Implicit ordering of defaults in inheri-
tance systems. Proceedings of the Fifth National Conference
on Artificial Intelligence, AAAI’84, Austin, TX, Los Altos,
CA: Morgan Kaufmann, pp. 322–325. Reprinted in (Gins-
berg 1987), pp. 106–109, and in G. Shafer and J. Pearl, eds.,
Readings in Uncertain Reasoning, San Mateo, CA: Morgan
Kaufmann, 1990, pp. 668–671.
Touretzky, D. S.; Horty, J .E.; and Thomason, R.H. 1987. A
clash of intuitions: the current state of nonmonotonic mul-
tiple inheritance systems. Proceedings of the International
Joint Conference on Artificial Intelligence, IJCAI’87, Milan,
Italy. pp. 476–482.

19

Probabilistic Inductive Logic Programming Based on Answer Set Programming∗

Matthias Nickles][and Alessandra Mileo]

{matthias.nickles,alessandra.mileo}@deri.org
] INSIGHT/DERI Galway

National University of Ireland, Galway
[Department of Information Technology
National University of Ireland, Galway

Abstract

We propose a new formal language for the expressive
representation of probabilistic knowledge based on Answer
Set Programming (ASP). It allows for the annotation of
first-order formulas as well as ASP rules and facts with
probabilities and for learning of such weights from data
(parameter estimation). Weighted formulas are given a
semantics in terms of soft and hard constraints which
determine a probability distribution over answer sets. In
contrast to related approaches, we approach inference by
optionally utilizing so-called streamlining XOR constraints,
in order to reduce the number of computed answer sets. Our
approach is prototypically implemented. Examples illustrate
the introduced concepts and point at issues and topics for
future research.

Keywords: Uncertainty Reasoning, Answer Set Program-
ming, Probabilistic Inductive Logic Programming, Statistical
Relational Learning, SAT

1 Introduction
Reasoning in the presence of uncertainty and relational
structures (such as social networks and Linked Data) is an
important aspect of knowledge discovery and representa-
tion for the Web, the Internet Of Things, and other po-
tentially heterogeneous and complex domains. Probabilis-
tic logic programing, and the ability to learn probabilistic
logic programs from data, can provide an attractive approach
to uncertainty reasoning and statistical relational learning,
since it combines the deduction power and declarative na-
ture of logic programming with probabilistic inference abili-
ties traditionally known from less expressive graphical mod-
els such as Bayesian and Markov networks. A very suc-
cessful type of logic programming for nonmonotonic do-
mains is Answer Set Programming (ASP) (Lifschitz 2002;
Gelfond and Lifschitz 1988). Since statistical-relational ap-
proaches to probabilistic reasoning often rely heavily on the

∗This work is an extended and revised version of A. Mileo,
M. Nickles: Probabilistic Inductive Answer Set Programming by
Model Sampling and Counting. First International Workshop on
Learning and Nonmonotonic Reasoning (LNMR 2013), Corunna,
Spain, 2013.

propositionalization of first-order or other relational infor-
mation, ASP appears to be an ideal basis for probabilistic
logic programming, given its expressiveness and the exis-
tence of highly optimized grounders and solvers. However,
despite the successful employment of conceptually related
approaches in the area of SAT for probabilistic inference
tasks, only a small number of approaches to probabilis-
tic knowledge representation or probabilistic inductive logic
programming under the stable model semantics exist so far,
of which some are rather restrictive wrt. expressiveness and
parameter estimation techniques. We build upon these and
other existing approaches in the area of probabilistic (in-
ductive) logic programming in order to provide a new ASP-
based probabilistic logic programming language (with first-
order as well as ASP basic syntax) for the representation
of probabilistic knowledge. Weights which directly repre-
sent probabilities can be attached to arbitrary formulas, and
we show how this can be used to perform probabilistic in-
ference and how weights of hypotheses can be inductively
learned from given relational examples. To the best of our
knowledge, this is the first ASP-based approach to proba-
bilistic (inductive) logic programming which does not im-
pose restrictions on the annotation of ASP-rules and facts as
well as FOL-style formulas with probabilities.

The remainder of this paper is organized as follows: the
next section presents relevant related approaches. Section
3 introduces syntax and semantics of our new language.
Section 4 presents our approach to probabilistic inference
(including examples), and Section 5 shows how formula
weights can be learned from data. Section 6 concludes.

2 Related Work
Being one of the early approaches to the logic-based rep-
resentation of uncertainty sparked by Nilsson’s seminal
work (Nilsson 1986), (Halpern 1990) presents three differ-
ent probabilistic first-order languages, and compares them
with a related approach by Bacchus (Bacchus 1990). One
language has a domain-frequency (or statistical) semantics,
one has a possible worlds semantics (like our approach), and
one bridges both types of semantics. While those languages
as such are mainly of theoretical relevance, their types of se-
mantics still form the backbone of most practically relevant
contemporary approaches.
Many newer approaches, including Markov Logic Networks

20

(see below), require a possibly expensive grounding (propo-
sitionalization) of first-order theories over finite domains.
A recent approach which does not fall into this category
but employs the principle of maximum entropy in favor
of performing extensive groundings is (Thimm and Kern-
Isberner 2012). However, since ASP is predestined for effi-
cient grounding, we do not see grounding necessarily as a
shortcoming. Stochastic Logic Programs (SLPs) (Muggle-
ton 2000) are an influential approach where sets of rules
in form of range-restricted clauses can be labeled with
probabilities. Parameter learning for SLPs is approached in
(Cussens 2000) using the EM-algorithm. Approaches which
combine concepts from Bayesian network theory with rela-
tional modeling and learning are, e.g., (Friedman et al. 1999;
Kersting and Raedt 2000; Laskey and Costa 2005). Prob-
abilistic Relational Models (PRM) (Friedman et al. 1999)
can be seen as relational counterparts to Bayesian networks
In contrast to these, our approach does not directly relate
to graphical models such as Bayesian or Markov Networks
but works on arbitrary possible worlds which are gener-
ated by ASP solvers. ProbLog (Raedt, Kimmig, and Toivo-
nen 2007) allows for probabilistic facts and definite clauses,
and approaches to probabilistic rule and parameter learn-
ing (from interpretations) also exist for ProbLog. Inference
is based on weighted model counting, which is similarly
to our approach, but uses Boolean satisfiability instead of
stable model search. ProbLog builds upon the very influen-
tial Distribution Semantics introduced for PRISM (Sato and
Kameya 1997), which is also used by other approaches, such
as Independent Choice Logic (ICL) (Poole 1997). Another
important approach outside the area of ASP are Markov
Logic Networks (MLN) (Richardson and Domingos 2006),
which are related to ours. A MLN consists of first-order for-
mulas annotated with weights (which are not probabilities).
MLNs are used as “templates” from which Markov networks
are constructed, i.e., graphical models for the joint distri-
bution of a set of random variables. The (ground) Markov
network generated from the MLN then determines a prob-
ability distribution over possible worlds. MLNs are syntac-
tically similar to the logic programs in our framework (in
our framework, weighted formulas can also be seen as soft
or hard constraints for possible worlds), however, in con-
trast to MLN, we allow for probabilities as formula weights.
Our initial approach to weight learning is closely related to
certain approaches to MLN parameter learning (e.g., (Lowd
and Domingos 2007)), as described in Section 5.
Located in the field of nonmonotonic logic programming,
our approach is also influenced by P-log (Baral, Gelfond,
and Rushton 2009) and abduction-based rule learning in
probabilistic nonmonotonic domains (Corapi et al. 2011).
With P-log, our approaches shares the view that answer
sets can be seen as possible worlds in the sense of (Nils-
son 1986). However, the syntax of P-log is quite different
from our language, by restricting probabilistic annotations to
certain syntactical forms and by the concept of independent
experiments, which simplifies the implementation of their
framework. In distinction from P-log, there is no particular
coverage for causality modeling in our framework. (Corapi
et al. 2011) allows to associate probabilities with abducibles

and to learn both rules and probabilistic weights from given
data (in form of literals). In contrast, our present approach
does not comprise rule learning. However, our weight learn-
ing algorithm allows for learning from any kind of formulas
and for the specification of virtually any sort of hypothesis
as learning target, not only sets of abducibles. Both (Corapi
et al. 2011) and our approach employ gradient descent for
weight learning. Other approaches to probabilistic logic pro-
gramming based on the stable model semantics for the logic
aspects include (Saad and Pontelli 2005) and (Ng and Sub-
rahmanian 1994). (Saad and Pontelli 2005) appears to be a
powerful approach, but restricts probabilistic weighting to
certain types of formulas, in order to achieve a low com-
putational reasoning complexity. Its probabilistic annotation
scheme is similar to that proposed in (Ng and Subrahmanian
1994). (Ng and Subrahmanian 1994) provides both a lan-
guage and an in-depth investigation of the stable model se-
mantics (in particular the semantics of non-monotonic nega-
tion) of probabilistic deductive databases.
Our approach (and ASP in general) is closely related to
SAT solving, #SAT and constraint solving. ASP formulas
in our language are constraints for possible worlds (legiti-
mate models). As (Sang, Beame, and Kautz 2005) shows,
Bayesian networks can be “translated” into a weighted
model counting problem over propositional formulas, which
is related to our approach to probabilistic inference, although
details are quite different. Also, the XOR constraining ap-
proach (Gomes, Sabharwal, and Selman 2006) employed for
sampling of answer sets (Section 4) has originally been in-
vented for the sampling of propositional truth assignments.

3 Probabilistic Answer Set Programming
with PrASP

Before we turn to probabilistic inference and parameter es-
timation, we introduce our new language for probabilistic
non-monotonic logic programming, called Probabilistic An-
swer Set Programming (PrASP).

Syntax: Just add probabilities
To remove unnecessary syntax restrictions and because we
will later require certain syntactic modifications of given
programs which are easier to express in First-Order Logic
(FOL) notation, we allow for FOL statements in our logic
programs, using the F2LP conversion tool (Lee and Palla
2009). More precisely, a PrASP program consists of ground
or non-ground formulas in unrestricted first-order syntax
annotated with numerical weights (provided by some do-
main expert or learned from data). Weights directly repre-
sent probabilities. If the weights are removed, and provided
finite variable domains, any such program can be converted
into an equivalent answer set program by means of the trans-
formation described in (Lee and Palla 2009).

Let Φ be a set of function, predicate and object symbols
andL(Φ) a first-order language overΦ and the usual connec-
tives (including both strong negation “-” and default nega-
tion “not”) and first-order quantifiers.
Formally, a PrASP program is a non-empty finite set
{([p], fi)} of PrASP formulas where each formula fi ∈

21

L(Φ) is annotated with a weight [p]. A weight directly rep-
resents a probability (provided it is probabilistically sound).
If the weight is omitted for some formula of the program,
weight [1] is assumed. The weight p of [p] f is denoted as
w(f). Weighted formulas can intuitively seen as constraints
which specify which possible worlds are indeed possible,
and with which probability.
Let Λ− denote PrASP program Λ stripped of all weights.
Weights need to be probabilistically sound, in the sense that
the system of inequalities (1) - (4) in Section 3 must have at
least one solution (however, in practice this does not need to
be strictly the case, since the constraint solver employed for
finding a probability distribution over possible worlds can
find approximate solutions often even if the given weights
are inconsistent).

In order to translate conjunctions of unweighted formu-
las in first-order syntax into disjunctive programs with a
stable model semantics, we further define transformation
lp : L(Φ) ∪ dLp(Φ) → dLp(Φ), where dLp(Φ) is the set
of all disjunctive programs over Φ. The details of this trans-
formation can be found in (Lee and Palla 2009)1. Applied to
rules and facts in ASP syntax, lp simply returns these. This
allows to make use of the wide range of advanced possi-
bilities offered by contemporary ASP grounders in addition
to FOL syntax (such as aggregates), although when defin-
ing the semantics of programs, we consider only formulas
in FOL syntax.

Semantics
The probabilities attached to formulas in a PrASP program
induce a probability distribution over answer sets of an or-
dinary answer set program which we call the spanning pro-
gram associated with that PrASP program. Informally, the
idea is to transform a PrASP program into an answer set
program whose answer sets reflect the nondeterminism in-
troduced by the probabilistic weights: each annotated for-
mula might hold as well as not hold (unless its weight is
[0] or [1]). Of course, this transformation is lossy, so we
need to memorize the weights for the later computation of a
probability distribution over possible worlds. The important
aspect of the spanning program is that it programmatically
generates a set of possible worlds in form of answer sets.
Technically, the spanning program ρ(Λ) of PrASP pro-
gram Λ is a disjunctive program obtained by transforma-
tion lp(Λ′). We generate Λ′ from Λ by removing all weights
and transforming each formerly weighted formula f into
a disjunction f |not f , where not stands for default nega-
tion and | stands for the disjunction in ASP (so probabili-
ties are “default probabilities” in our framework). Note that
f |not f doesn’t guarantee that answer sets are generated for
weighted formula f . By using ASP choice constructs such as
aggregates and disjunctions, the user can basically generate
as many answer sets (possible worlds) as desired.

1The use of the translation into ASP syntax requires either an
ASP solver which can deal directly with disjunctive logic programs
(such as claspD) or a grounder which is able to shift disjunctions
from the head of the respective rules into the bodies, such as gringo
(Gebser, Kaufmann, and Schaub 2012).

Formulas do not need to be ground - as defined in Sec-
tion 3, they can contain existentially as well as universally
quantified variables in the FOL sense (although restricted to
finite domains).
As an example, consider the following simple ground PrASP
program (examples for PrASP programs with variables and
first-order style quantifiers are presented in the next sec-
tions):

[0 . 7] q <− p .
[0 . 3] p .
[0 . 2] −p & r .

The set of answer sets (which we take as possible
worlds) of the spanning program of this PrASP program is
{{p, q}, {−p, r}, {}, {p}}.

The semantics of a PrASP program Λ and single PrASP
formulas is defined in terms of a probability distribution over
a set of possible worlds (in form of answer sets of ρ(Λ)) in
connection with the stable model semantics. This is analo-
gously to the use of Type 2 probability structures (Halpern
1990) for first-order probabilistic logics with probabilities,
but restricted to finite domains of discourse.

Let M = (D,Θ, π, µ) be a probability structure where D
is a finite discrete domain of objects, Θ is a non-empty set
of possible worlds, π a function which assigns to the sym-
bols in Φ (see Section 3) predicates, functions and objects
over/from D, and µ a discrete probability function over Θ.
Each possible world is a Herbrand interpretation over Φ.
Since we will use answer sets as possible worlds, defining
Γ(a) to be the set of all answer sets of answer set program a
will become handy. For example, given ρ(Λ) as (uncertain)
knowledge, the set of worlds deemed possible according to
existing belief ρ(Λ) is Γ(ρ(Λ)) in our framework.

We define a (non-probabilistic) satisfaction relation of
possible worlds and unannotated programs as follows: let
Λ− be is an unannotated program. Then (M, θ) �Θ Λ− iff
θ ∈ Γ(lp(Λ−)) and θ ∈ Θ (from this it follows that Θ
induces its own closed world assumption - any answer set
which is not in Θ is not satisfiable wrt. �Θ). The probability
µ({θ}) of a possible world θ is denoted as Pr(θ) and some-
times called “weight” of θ. For a disjunctive program ψ, we
analogously define (M, θ) �Θ ψ iff θ ∈ Γ(ψ) and θ ∈ Θ.

To do groundwork for the computation of a probability
distribution over possible worlds Θ which are “generated”
and weighted by some given background knowledge in form
of a PrASP program, we define a (non-probabilistic) sat-
isfaction relation of possible worlds and unannotated for-
mulas: let φ be a PrASP formula (without weight) and θ
be a possible world. Then (M, θ) �Λ φ iff (M, θ) �Θ

ρ(Λ)∪ lp(φ) and Θ = Γ(ρ(Λ)) (we say formula φ is true in
possible world θ). Sometimes we will just write θ |=Λ φ if
M is given by the context. A notable property of this defini-
tion is that it does not restrict us to single ground formulas.
Essentially, an unannotated formula φ can be any answer
set program specified in FOL syntax, even if its grounding
consists of multiple sentences. Observe that Θ restricts �Λ

to answer sets of ρ(Λ). For convenience, we will abbreviate
(M, θ) �Λ φ as θ �Λ φ.
Pr(φ) denotes the probability of a formula φ, with

22

Pr(φ) = µ({θ ∈ Θ : (M, θ) �Λ φ}). Note that this holds
both for annotated and unannotated formulas: even if it has
a weight attached, the probability of a PrASP formula is
defined by means of µ and only indirectly by its manually
assigned weight (weights are used below as constraints for
the computation of a probabilistically consistent µ). Further
observe that there is no particular treatment for conditional
probabilities in our framework; Pr(a|b) is simply calculated
as Pr(a ∧ b)/Pr(b).
While our framework so far is general enough to account
for probabilistic inference using unrestricted programs and
query formulas (provided we are given a probability distri-
bution over the possible answer sets), this generality also
means a relatively high complexity in terms of computabil-
ity for inference-heavy tasks which rely on the repeated ap-
plication of operator �Λ, even if we would avoid the trans-
formation lp and restrict ourselves to the use of ASP syntax.

The obvious question now, addressed before for other
probabilistic logics, is how to compute µ, i.e., how to ob-
tain a probability distribution over possible worlds (which
tells us for each possible world the probability with which
this possible world is the actual world) from a given anno-
tated program Λ in a sound and computationally inexpensive
way.
Generally, we can express the search for probability distri-
butions in form of a number of constraints which constitute a
system of linear inequalities (which reduce to linear equali-
ties for point probabilities as weights). This system typically
has multiple or even infinitely many solutions (even though
we do not allow for probability intervals) and computation
can be costly, depending on the number of possible worlds
according to ρ(Λ).
We define the parameterized probability distribution
µ(Λ,Θ) over a set Θ of answer sets as the solution (for all
Pr(θi)) of the following system of linear equations and an
inequality (if precisely one solution exists) or as the solution
with maximum entropy (Thimm and Kern-Isberner 2012),
in case multiple solutions exist 2. We require that the given
weights in a PrASP program are chosen such that the fol-
lowing constraint system has at least one solution.X

θi∈Θ:θi�Λf1

Pr(θi) = w(f1) (1)

· · ·X
θi∈Θ:θi�Λfn

Pr(θi) = w(fn) (2)

X
θi∈Θ

θi = 1 (3)

∀θi ∈ Θ : 0 ≤ Pr(θi) ≤ 1 (4)

At this, Λ = {f1, ..., fn} is a PrASP program.
The canonical probability distribution µ(Λ) of Λ is de-

fined as µ(Λ,Γ(ρ(Λ))). In the rest of the paper, we refer to
2Since in this case the number of solutions of the system of lin-

ear equations is infinite, de facto we need to choose the maximum
entropy solution of some finite subset. In the current prototype im-
plementation, we generate a user-defined number of random solu-
tions derived from a solution computed using a constrained variant
of Singular Value Decomposition and the null space of the coeffi-
cient matrix of the system of linear equations (1)-(3).

µ(Λ) when we refer to the probability distribution over the
answer sets of the spanning program of a given PrASP pro-
gram Λ.

4 Inference
Given possible world weights (µ(Λ)), probabilistic infer-
ence becomes a model counting task where each model has
a weight: we can compute the probability of any query for-
mula φ by summing up the probabilities (weights) of those
possible worlds (models) where φ is true. To make this vi-
able even for larger sets of possible worlds, we optionally
restrict the calculation of µ(Λ) to a number of answer sets
sampled near-uniformly at random from the total set of an-
swer sets of the spanning program, as described in Section
4.

Adding a sampling step and computing
probabilities
All tasks described so far (solving the system of
(in)equalities, counting of weighted answer sets) become in-
tractable for very large sets of possible worlds. To tackle
this issue, we want to restrict the application of these tasks
to a sampled subset of all possible worlds. Concretely, we
want to find a way to sample (near-)uniformly from the total
set of answer sets without computing a very large number
of answer sets. While this way the set of answer sets can-
not be computed using only a single call of the ASP solver
but requires a number of separate calls (each with different
sampling constraints), the required solver calls can be per-
formed in parallel. However, a shortcoming of the sampling
approach is that there is currently no way to pre-compute the
size of the minimally required set of samples.

Guaranteeing near-uniformity in answer set sampling
looks like a highly non-trivial task, since any set of answers
obtained from ASP solvers as a subset of the total set of an-
swer sets is typically not uniformly distributed but strongly
biased in hardly foreseeable ways (due to various interplay-
ing heuristics applied by modern solvers), so we could not
simply request any single answer set from the solver.

However, we can make use of so-called XOR constraints
(a form of streamlining constraints in the area of SAT solv-
ing) for near-uniform sampling (Gomes, Sabharwal, and
Selman 2006) to obtain samples from the space of all an-
swer sets, within arbitrarily narrow probabilistic bounds, us-
ing any off-the-shelf ASP solver. Compared to approaches
which use Markov Chain Monte Carlo (MCMC) methods to
sample from some given distribution, this method has the ad-
vantage that the sampling process is typically faster and that
it requires only an off-the-shelf ASP solver (which is in the
ideal case employed only once per sample, in order to obtain
a single answer set). However, a shortcoming is that we are
not doing Importance Sampling this way - the probability of
a possible world is not taken into account but computed later
from the samples.
Counting answer sets could also be achieved using XOR
constraints, however, this is not covered in this paper, since
it does not comprise weighted counting, and we could nor-
mally not use an unweighted counting approach directly.

23

XOR constraints were originally defined over a set of
propositional variables, which we identify with a set of
ground atoms V = {a1, ..., an}. Each XOR constraint is
represented by a subset D of V ∪ {true}. D is satisfied by
some model if an odd number of elements of D are satisfied
by this model (i.e., the constraint acts like a parity of D).
In ASP syntax, an XOR constraint can be represented for
example as :- #even{ a1, ..., an } (Gebser et al.
2011).
In our approach, XOR constraints are independently at
random drawn from a probability distribution X(|V |, 0.5)
over the set V of all possible XOR constraints over all
ground atoms of the ground answer set program resulting
from ρ(Λ). X(|V |, 0.5) is defined such that each XOR
constraint is drawn from this distribution independently at
random with probability 0.5 and includes true with prob-
ability 0.5. In effect, any given XOR constraint is drawn
with probability 2−(|V |+1|) (see (Gomes, Sabharwal, and
Selman 2006) for details). Since adding an XOR constraint
to an answer set program eliminates any given answer set
with probability 0.5, it cuts the set of answer sets in half
in expectation. Iteratively adding a small number of XOR
constraints to an answer set program therefore reduces
the number of answer sets to a small number also. If this
process results in a single answer set, the remaining answer
set is drawn near-uniformly from the original set of answer
sets, as shown in (Gomes, Sabharwal, and Selman 2006).
Since for answer set programs the costs of repeating the
addition of constraints until precisely a single answer set
remains appears to be higher than the costs of computing
somewhat too many models, we just estimate the number
of required constraints and choose randomly from the
resulting set of answer sets. The following way of answer
set sampling using XOR constraints has been used before in
Xorro (a tool which is part of the Potassco set of ASP tools
(Gebser et al. 2011)) in a very similar way.

Function sample: ψ 7→ γ

Given any disjunctive programψ, the following procedure
computes a random sample γ from the set of all answer
sets of ψ:
ψg ← ground(ψ)
ga← atoms(ψg)
xors ← XOR constraints {xor1, ..., xorn} over ga,
drawn from X(|V |, 0.5)
ψ′ ← ψ ∪ xors
γ ← an answer set selected randomly from Γ(ψ′)

At this, the number of constraints n is set to a value large
enough to produce one or a very low number of answer sets
(log2(|ga|) in our experiments).

We can now compute µ(Λ,Θ′) (i.e., Pr(θ) for each θ ∈
Θ′) for a set of samples Θ′ obtained by multiple (ideally
parallel) calls of sample from the spanning program ρ(Λ) of
PrASP program Λ, and subsequently sum up the weights of
those samples (possible worlds) where the respective query
formula (whose marginal probability we want to compute)
is true. Precisely, we approximate Pr(φ) for a (ground or

non-ground) query formula φ using:

Pr(φ) ≈
X

{θ′∈Θ′:θ′|=Λφ}

Pr(θ′) (5)

for a sufficiently large set Θ′ of samples.
Conditional probabilities Pr(a|b) can simply be computed
as Pr(a ∧ b)/Pr(b).

If sampling is not useful (i.e., if the total number of
answer sets Θ is moderate), inference is done in the same
way, we just set Θ′ = Θ. Sampling using XOR constraints
costs time too (mainly because of repeated calls of the
ASP solver), and making this approach more efficient is an
important aspect of future work (see Section 6).

As an example for inference using our current implementa-
tion, consider the following PrASP formalization of a simple
coin game:

coin(1..3).
[0.6] coin_out(1,heads).
[[0.5]] coin_out(N,heads) :- coin(N), N != 1.
1{coin_out(N,heads), coin_out(N,tails)}1

:- coin(N).
n_win :- coin_out(N,tails), coin(N).
win :- not n_win.

At this, the line starting with [[0.5]]... is syntactic
sugar for a set of weighted rules where variable N is
instantiated with all its possible values (i.e.,
[0.5] coin_out(2,heads) :- coin(2), 2 != 1
and
[0.5] coin_out(3,heads) :- coin(3), 3 != 1).
It would also be possible to use [0.5] as annotation of
this rule, in which case the weight 0.5 would specify the
probability of the whole non-ground formula instead.
Our prototypical implementation accepts query formulas
in format [?] a (computes the marginal probability of
a) and [?|b] a (computes the conditional probability
Pr(a|b)). E.g.,

[?] coin_out(1,tails).
[?] coin_out(1,heads) | coin_out(1,tails).
[?] coin_out(1,heads) & coin_out(2,heads)

& coin_out(3,heads).
[?] win.
[?|coin_out(1,heads) & coin_out(2,heads)

coin_out(3,heads)] win.

...yields the following result

[0.3999999999999999] coin_out(1,tails).
[1] coin_out(1,heads) | coin_out(1,tails).
[0.15] coin_out(1,heads) & coin_out(2,heads)

& coin_out(3,heads).
[0.15] win.
[1|coin_out(1,heads) & coin_out(2,heads)

& coin_out(3,heads)] win.

In this example, use of sampling does not make any dif-
ference due to its small size. An example where a difference
can be observed is presented in Section 5. This example also
demonstrates that FOL and logic programming / ASP syntax
can be freely mixed in background knowledge and queries.
Another simple example shows the use of FOL-style vari-
ables and quantifiers mixed with ASP-style variables:

24

p(1). p(2). p(3).
#domain p(X).
[0.5] v(1).
[0.5] v(2).
[0.5] v(3).
[0.1] v(X).

With this, the following query:

[?] v(X).
#domain p(Z).
[?] ![Z]: v(Z).
[?] ?[Z]: v(Z).

...results in:

[0.1] ![Z]: v(Z).
[0.8499999999999989] ?[Z]: v(Z).

The result of query [?] ![Z]: v(Z) with
universal quantifier ![Z] is Pr(∀z.v(z)) = 0.1,
which is also the result of the equivalent queries
[?] v(1) & v(2) & v(3) and [?] v(X). In
our example, this marginal probability was directly given
as weight in the background knowledge. In contrast to X,
variable Z is a variable in the sense of first-order logic (over
a finite domain).
The result of ?[Z]: v(Z) is Pr(∃z.v(z)) (i.e., ?[Z]:
represents the existential quantifier) and could likewise be
calculated manually using the inclusion-exclusion principle
as Pr(v(1) ∨ v(2) ∨ v(3)) = Pr(v(1)) + Pr(v(2)) +
Pr(v(3))−Pr(v(1)∧v(2))−Pr(v(1)∧v(3))−Pr(v(2)∧
v(3)) + Pr(v(1) ∧ v(2) ∧ v(3)) = 0.85.
Of course, existential or universal quantifiers can also be
used as sub-formulas and in PrASP programs.

An alternative approach: conversion into an
equivalent non-probabilistic answer set program
An alternative approach to probabilistic inference without
computing µ and without counting of weighted possible
worlds, would be to find an unannotated first-order program
Λ′ which reflects the desired probabilistic nondeterminism
(choice) of a given PrASP program Λ. Instead of defining
probabilities of possible worlds, Λ′ has answers sets whose
frequency (number of occurrences within the total set of an-
swer sets) reflects the given probabilities in the original (an-
notated) program. To make this idea more intuitive, imagine
that each possible world corresponds to a room. Instead of
encountering a certain room with a certain frequency, we
create further rooms which have all, from the viewpoint of
the observer, the same look, size and furniture. The number
of these rooms reflects the probability of this type of room.
E.g., to ensure probability 1

3 of some literal p, Λ′ is created
in a way such that p holds in one third of all answer sets of
Λ′. This task can be considered as an elaborate variant of the
generation of the (much simpler) spanning program ρ(Λ).

Finding Λ′ could be formulated as an (intractable) rule
search problem (plus subsequently the conversion into ASP
syntax and a simple unweighted model counting task): find
a non-probabilistic program Λ′ such that for each annotated
formula [p]f in the original program the following holds

(under the provision that the given weights are probabilis-
tically sound):

|{m : m ∈ Γ(Λ′),m |= f}|
|Γ(Λ′)| = p. (6)

Unfortunately, the direct search approach to this would be
obviously intractable.

However, in the special case of mutually independent
formulas we can omit the rule learning task by conditioning
each formula in Λ by a nondeterministic choice amongst the
truth conditions of a number of “helper atoms” hi (which
will later be ignored when we count the resulting answer
sets), in order to “emulate” the respective probability
specified by the weight. If (and only if) the formulas are
mutually independent, the obtained Λ′ is isomorphic to the
original probabilistic program. In detail, conditioning means
to replace each formula [w] f by formulas 1{h1, ..., hn}1,
f ← h1|...|hm and not f ← not (h1|...|hm), where the
hi are new names (the aforementioned “helper atoms”),
m
n = w and m < n (remember that we allow for weight
constraints as well as FOL syntax).

In case the transformation accurately reflects the original
uncertain program, we could now calculate marginal prob-
abilities simply by determining the percentage of those an-
swer sets in which the respective query formula is true (ig-
noring any helper atoms introduced in the conversion step),
with no need for computing µ(Λ).
As an example, consider the following program:
coin(1..10).
[0.6] coin_out(1,heads).
[[0.5]] coin_out(N,heads) :- coin(N), N != 1.

1{coin_out(N,heads), coin_out(N,tails)}1
:- coin(N).

n_win :- coin_out(N,tails), coin(N).
win :- not n_win.

Since coin tosses are mutually independent, we can trans-
form it into the following equivalent un-annotated form (the
hpatomn are the “helper atoms”. Rules are written as dis-
junctions):
coin(1..10).
1{hpatom1,hpatom2,hpatom3,hpatom4,hpatom5}1.
(coin_out(1,heads))
| -(hpatom1|hpatom2|hpatom3).

not (coin_out(1,heads))
| (hpatom1|hpatom2|hpatom3).

1{hpatom6,hpatom7}1.
(coin_out(10,heads)) | -(hpatom6).
not (coin_out(10,heads)) | (hpatom6).
1{hpatom8,hpatom9}1.
(coin_out(9,heads)) | -(hpatom8).
not (coin_out(9,heads)) | (hpatom8).
1{hpatom10,hpatom11}1.
(coin_out(8,heads)) | -(hpatom10).
not (coin_out(8,heads)) | (hpatom10).
1{hpatom12,hpatom13}1.
(coin_out(7,heads)) | -(hpatom12).
not (coin_out(7,heads)) | (hpatom12).
1{hpatom14,hpatom15}1.
(coin_out(6,heads)) | -(hpatom14).

25

not (coin_out(6,heads)) | (hpatom14).
1{hpatom16,hpatom17}1.
(coin_out(5,heads)) | -(hpatom16).
not (coin_out(5,heads)) | (hpatom16).
1{hpatom18,hpatom19}1.
(coin_out(4,heads)) | -(hpatom18).
not (coin_out(4,heads)) | (hpatom18).
1{hpatom20,hpatom21}1.
(coin_out(3,heads)) | -(hpatom20).
not (coin_out(3,heads)) | (hpatom20).
1{hpatom22,hpatom23}1.
(coin_out(2,heads)) | -(hpatom22).
not (coin_out(2,heads)) | (hpatom22).
1{coin_out(N,heads), coin_out(N,tails)}1

:- coin(N).
n_win :- coin_out(N,tails), coin(N).
win :- not n_win.

Exemplary query results:
[0.001171875] win.
[0.998828125] not win.
[0.6] coin_out(1,heads).
[0.5] coin_out(2,heads).

What is remarkable here is that no equation solving task
(computation of µ(Λ)) is required to compute these results.
However, this does not normally lead to improved inference
speed, due to the larger amount of time required for the com-
putation of models.

5 Weight Learning
Generally, the task of parameter learning in probabilistic in-
ductive logic programming is to find probabilistic parame-
ters (weights) of logical formulas which maximize the like-
lihood given some data (learning examples) (Raedt and Ker-
sting 2008). In our case, the hypothesis H (a set of formu-
las without weights) is provided by an expert, optionally to-
gether with some PrASP program as background knowledge
B. The goal is then to discover weights w of the formulas H
such that Pr(E|Hw ∪ B) is maximized given example for-
mulas E = e1, e2, Formally, we want to compute

argmaxw(Pr(E|Hw ∪B)) = argmaxw(
Y
ei∈E

Pr(ei|Hw ∪B))

(7)

(Making the usual i.i.d. assumption regarding the individual
examples in E. Hw denotes the hypothesis weighted with
weight vector w.)

This results in an optimization task which is related but
not identical to weight learning for, e.g., MLNs and (Corapi
et al. 2011). In MLNs, typically a database (possible world)
is given whose likelihood should be maximized, e.g. using a
generative approach (Lowd and Domingos 2007) by gradi-
ent descent. Another related approach distinguishes a priori
between evidence atoms X and query atoms Y and seeks
to maximize the likelihood Pr(Y |X), again using gradient
descent (Huynh and Mooney 2008). At this, cost-heavy in-
ference is avoided as far as possible, e.g., by optimization of
the pseudo-(log-)likelihood instead ot the (log-)likelihood or
by approximations of costly counts of true formula ground-
ings in a certain possible world (the basic computation in
MLN inference). In contrast, the current implementation of

PrASP learns weights from any formulas and not just liter-
als (or, more precisely as for MLNs: atoms, where negation
is implicit using a closed-world assumption). Furthermore,
the maximization targets are different (Pr(possible world)
or Pr(Y |X)) vs. Pr(E|Hw ∪B)).

Regarding the need to reduce inference when learning,
PrASP parameter estimation should in principle make no ex-
ception, since inference can still be costly even when proba-
bilities are inferred only approximately by use of sampling.
However, in our preliminary experiments we found that at
least in relatively simple scenarios, there is no need to re-
sort to inference-free approximations such as pseudo-(log-
)likelihood. The pseudo-(log-)likelihood approach presented
in early works on MLNs (Richardson and Domingos 2006)
would also require a probabilistic ground formula indepen-
dence analysis in our case, since in PrASP there is no obvi-
ous equivalent to Markov blankets.
Note that we assume that the example data is non-
probabilistic and fully observable.

Let H = {f1, ..., fn} be a given set of formulas and a
vector w = (w1, ..., wn) of (unknown) weights of these
formulas. Using the Barzilai and Borwein method (Barzi-
lai and Borwein 1988) (a variant of the gradient descent
approach with possibly superlinear convergence), we seek
to find w such that Pr(E|Hw ∪ B) is maximized (Hw de-
notes the formulas in H with the weights w such that each
fi is weighted with wi). Any existing weights of formulas
in the background knowledge ar not touched, which can sig-
nificantly reduce learning complexity if H is comparatively
small. Probabilistic or unobservable examples are not con-
sidered.
The learning algorithm (Barzilai and Borwein 1988) is as
follows:

Repeat for k = 0, 1, ... until convergence:
Set sk = 1

αk
O(Pr(E|Hwk

∪B))
Set wk+1 = wk + sk
Set yk = O(Pr(E|Hwk+1 ∪B))− O(Pr(E|Hwk

∪B))

Set αk+1 = sT
k yk

sT
k sk

At this, the initial gradient ascent step size α0 and the
initial weight vectorw0 can be chosen freely.Pr(E|Hw∪B)
denotes

∏
ei∈E Pr(ei|Hw ∪ B) inferred using vector w as

weights for the hypothesis formulas, and

5(Pr(E|Hw ∪B)) = (8)

(
∂

∂w1
Pr(E|Hw ∪B), ...,

∂

∂wn
Pr(E|Hw ∪B)) (9)

Since we usually cannot practically express Pr(E|Hw ∪
B) in dependency of w in closed form, at a first glance, the
above formalization appears to be not very helpful. How-
ever, we can still resort to numerical differentiation and ap-
proximate

5(Pr(E|Hw ∪B)) = (10)

(lim
h→0

Pr(E|H(w1+h,...,wn) ∪B)− Pr(E|H(w1,...,wn) ∪B)

h
,

(11)

26

...,

lim
h→0

Pr(E|H(w1,...,wn+h) ∪B)− Pr(E|H(w1,...,wn) ∪B)

h
)

(12)

by computing the above vector (dropping the limit operator)
for a sufficiently small h (in our prototypical implemen-
tation, h =

√
εwi is used, where ε is an upper bound to

the rounding error using the machine’s double-precision
floating point arithmetic).
This approach has the benefit of allowing in principle for
any maximization target (not just E). In particular, any
unweighted formulas (unnegated and negated facts as well
as rules) can be used as (positive) examples.

As a small example both for inference and weight learn-
ing using our preliminary implementation, consider the fol-
lowing fragment of a an nonmonotonic indoor localization
scenario, which consists of estimating the position of a per-
son, and determining how this person moves a certain num-
ber of steps around the environment until a safe position is
reached:
[0.6] moved(1).
[0.2] moved(2).
point(1..100).
1{atpoint(X):point(X)}1.
distance(1) :- moved(1).
distance(2) :- moved(2).
atpoint(29) | atpoint(30) | atpoint(31)

| atpoint(32) | atpoint(33)
| atpoint(34) | atpoint(35) | atpoint(36)
| atpoint(37) -> selected.

safe :- selected, not exception.
exception :- distance(1).

The spanning program of this example has 400 answer
sets. Inference of
Pr(safe|distance(2)) and Pr(safe|distance(1)) without
sampling requires ca. 2250 ms using our current unopti-
mized prototype implementation. If we increase the number
of points to 1000, inference is tractable only by use of sam-
pling (see Section 4).
To demonstrate how the probability of a certain hypoth-
esis can be learned in this simple scenario, we remove
[0.6] moved(1) from the program above (with 100
points) and turn this formula (without the weight annotation)
into a hypothesis. Given example data safe, parameter es-
timation results in Pr(moved(1)) ≈ 0, learned in ca. 3170
ms using our current prototype implementation.

6 Conclusions
With this introductory paper, we have presented a novel
framework for uncertainty reasoning and parameter esti-
mation based on Answer Set Programming, with support
for probabilistically weighted formulas in background
knowledge, hypotheses and queries. While our current
framework certainly leaves room for future improvements,
we believe that we have already pointed out a new venue
towards more practicable probabilistic inductive answer
set programming with a high degree of expressiveness.

Ongoing work is focusing on performance improvements,
theoretical analysis (in particular regarding minimum
number of samples wrt. inference accuracy), empirical
evaluation and on the investigation of viable approaches to
PrASP structure learning.

Acknowledgments
This work is supported by the EU FP7 CityPulse Project un-
der grant No. 603095. http://www.ict-citypulse.eu

References
Bacchus, F. 1990. lp, a logic for representing and reason-
ing with statistical knowledge. Computational Intelligence
6:209–231.
Baral, C.; Gelfond, M.; and Rushton, N. 2009. Probabilistic
reasoning with answer sets. Theory Pract. Log. Program.
9(1):57–144.
Barzilai, J., and Borwein, J. M. 1988. Two point step size
gradient methods. IMA J. Numer. Anal.
Corapi, D.; Sykes, D.; Inoue, K.; and Russo, A. 2011. Proba-
bilistic rule learning in nonmonotonic domains. In Proceed-
ings of the 12th international conference on Computational
logic in multi-agent systems, CLIMA’11, 243–258. Berlin,
Heidelberg: Springer-Verlag.
Cussens, J. 2000. Parameter estimation in stochastic logic
programs. In Machine Learning, 2001.
Friedman, N.; Getoor, L.; Koller, D.; and Pfeffer, A. 1999.
Learning probabilistic relational models. In In IJCAI, 1300–
1309. Springer-Verlag.
Gebser, M.; Kaufmann, B.; Kaminski, R.; Ostrowski, M.;
Schaub, T.; and Schneider, M. 2011. Potassco: The potsdam
answer set solving collection. AI Commun. 24(2):107–124.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Conflict-
driven answer set solving: From theory to practice. Artificial
Intelligence.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Proc. of the 5th Int’l
Conference on Logic Programming, volume 161.
Gomes, C. P.; Sabharwal, A.; and Selman, B. 2006. Near-
uniform sampling of combinatorial spaces using xor con-
straints. In NIPS, 481–488.
Halpern, J. Y. 1990. An analysis of first-order logics of
probability. Artificial Intelligence 46:311–350.
Huynh, T. N., and Mooney, R. J. 2008. Discriminative struc-
ture and parameter learning for markov logic networks. In
25th Int. Conf. on, 416–423.
Kersting, K., and Raedt, L. D. 2000. Bayesian logic pro-
grams. In Proceedings of the 10th International Conference
on Inductive Logic Programming.
Laskey, K. B., and Costa, P. C. 2005. Of klingons and star-
ships: Bayesian logic for the 23rd century. In Proceedings
of the Twenty-first Conference on Uncertainty in Artificial
Intelligence.
Lee, J., and Palla, R. 2009. System f2lp - computing an-
swer sets of first-order formulas. In Erdem, E.; Lin, F.; and

27

Schaub, T., eds., LPNMR, volume 5753 of Lecture Notes in
Computer Science, 515–521. Springer.
Lifschitz, V. 2002. Answer set programming and plan gen-
eration. AI 138(1):39–54.
Lowd, D., and Domingos, P. 2007. Efficient weight learn-
ing for markov logic networks. In In Proceedings of the
Eleventh European Conference on Principles and Practice
of Knowledge Discovery in Databases, 200–211.
Muggleton, S. 2000. Learning stochastic logic programs.
Electron. Trans. Artif. Intell. 4(B):141–153.
Ng, R. T., and Subrahmanian, V. S. 1994. Stable se-
mantics for probabilistic deductive databases. Inf. Comput.
110(1):42–83.
Nilsson, N. J. 1986. Probabilistic logic. Artificial Intelli-
gence 28(1):71–87.
Poole, D. 1997. The independent choice logic for mod-
elling multiple agents under uncertainty. Artificial Intelli-
gence 94:7–56.
Raedt, L. D., and Kersting, K. 2008. Probabilistic inductive
logic programming. In Probabilistic Inductive Logic Pro-
gramming, 1–27.
Raedt, L. D.; Kimmig, A.; and Toivonen, H. 2007. Problog:
A probabilistic prolog and its application in link discovery.
In IJCAI, 2462–2467.
Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine Learning 62(1-2):107–136.
Saad, E., and Pontelli, E. 2005. Hybrid probabilistic
logic programming with non-monotoic negation. In In
Twenty First International Conference on Logic Program-
ming. Springer Verlag.
Sang, T.; Beame, P.; and Kautz, H. A. 2005. Performing
bayesian inference by weighted model counting. In AAAI,
475–482.
Sato, T., and Kameya, Y. 1997. Prism: a language for
symbolic-statistical modeling. In In Proceedings of the 15th
International Joint Conference on Artificial Intelligence (IJ-
CAI97, 1330–1335.
Thimm, M., and Kern-Isberner, G. 2012. On probabilistic
inference in relational conditional logics. Logic Journal of
the IGPL 20(5):872–908.

28

A Plausibility Semantics for Abstract Argumentation Frameworks

Emil Weydert

Individual and Collective Reasoning Group
ILIAS-CSC, University of Luxembourg

Abstract

We propose and investigate a simple plausibility-based
extension semantics for abstract argumentation frame-
works based on generic instantiations by default knowl-
edge bases and the ranking construction paradigm for
default reasoning.1

1 Prologue
The past decade has seen a flourishing of abstract argumen-
tation theory, a coarse-grained high-level form of defeasible
reasoning introduced by Dung [Dung 95]. It is characterized
by a top-down perspective which ignores the logical fine
structure of arguments and focuses instead on logical (con-
flict, support, ...) or extra-logical (preferences, ...) relations
between given black box arguments so as to identify reason-
able argumentative positions. One way to address the com-
plexity of enriched argument structures carrying interacting
relations, and to identify the best approaches for evaluating
Dung’s basic attack frameworks as well as more sophisti-
cated argumentation systems, is to look for deeper unifying
semantic foundations allowing us to improve, compare, and
judge existing proposals, or to develop new ones.

A major issue is to what extent an abstract account can
adequately model concrete argumentative reasoning in the
context of a sufficiently expressive, preferably defeasible
logic. The instantiation of abstract frameworks by more fine-
grained logic-based argument constructions and configura-
tions is therefore an important tool for justifying or criti-
cising abstract argumentation theories. Most of this work is
however based on the first generation of nonmonotonic for-
malisms, like Reiter’s default logic or logic programming.
While these are closer to classical logic and the original
spirit of Dung’s approach, it is well known that they fail
to model plausible implication. In fact, they are haunted by
counterintuitive behaviour and violate major desiderata for
default reasoning encoded in benchmark examples and ra-
tionality postulates [Mak 94]. For instance, the only way to
deal even with simple instances of specificity reasoning are
opaque ad hoc prioritization mechanisms.

1This is an improved - polished and partly revised - version of
my ECSQARU 2013 paper. It adds a link to structured argumen-
tation, refines the semantic instantiation concept, and discusses at-
tacks between inference pairs.

The goal of the present work is therefore to supple-
ment existing instantiation efforts with a simple ranking-
based semantic model which interprets arguments and at-
tacks by conditional knowledge bases. The well-behaved
ranking construction semantics for default reasoning [Wey
96, 98, 03] can then be exploited to specify a new exten-
sion semantics for Dung frameworks which allows us to di-
rectly evaluate the plausibility of argument collections. Its
occasionally unorthodox behaviour may shed a new light on
basic argumentation-theoretic assumptions and concepts.

We start with an introduction to default reasoning based
on the ranking construction paradigm. After a short look
at abstract argumentation theory, we show how to interpret
abstract argumentation frameworks by instantiating the ar-
guments and characterizing the attacks with suitable sets
of conditionals describing constraints over ranking mod-
els. Based on the concept of generic instantiations, i.e. us-
ing minimal assumptions, and plausibility maximization, we
then specify a natural ranking-based extension semantics.
We conclude with a simple algorithm, some instructive ex-
amples, and the discussion of several important properties.

2 Ranking-based default reasoning
We assume a basic language L closed under the usual propo-
sitional connectives, together with a classical satisfaction
relation |= inducing a monotonic entailment relation ` ⊆
2L × L. The model sets of (L, |=) are denoted by [[ϕ]] =
{m | m |= ϕ}, resp. [[Σ]] = ∩ϕ∈Σ[[ϕ]] for Σ ⊆ L. BL is the
boolean proposition algebra over BL = {[[ϕ]] | ϕ ∈ L}. Let
Cn(Σ) = {ψ | Σ ` ψ}.

Default inference is an important instance of nonmono-
tonic reasoning concerned with drawing reasonable but po-
tentially defeasible conclusions from knowledge bases of the
form Σ ∪∆, where Σ ⊆ L is a set of assumptions or facts,
e.g. encoding knowledge about a specific state of affairs in
the domain languageL, and ∆ ⊆ L(�,;) is a collection of
conditionals expressing strict or exception-tolerant implica-
tional information over L, which is used to guide defeasible
inference. L(�,;) = {ϕ � ψ | ϕ,ψ ∈ L} ∪ {ϕ ; ψ |
ϕ,ψ ∈ L} is the corresponding flat conditional language on
top of L. In the following we will focus on finite Σ and ∆.
∆→ = {ϕ → ψ | ϕ � ψ,ϕ ; ψ} collects the material
implications corresponding to the conditionals in ∆.

The strict implication ϕ � ψ states that ϕ necessarily

29

implies ψ, forcing us to accept ψ given ϕ. The default im-
plication ϕ ; ψ tells us that ϕ plausibly/normally implies
ψ, and only recommends the acceptance of ψ given ϕ. The
actual impact of a default depends of course on the context
Σ ∪ ∆ and the chosen nonmonotonic inference concept |∼,
which will be discussed later.

We can distinguish two perspectives in default rea-
soning: the autoepistemic/context-based one, and the
plausibilistic/quasi-probabilistic one. The former is exem-
plified by Reiter’s default logic, where defaults are usually
modeled by normal default rules of the form ϕ : ψ/ψ (if ϕ,
and it is consistent that ψ, then ψ). A characteristic feature
is that the conclusions are obtained by intersecting suitable
equilibrium sets, known as extensions.

The alternative is to use default conditionals interpreted
by some preferential or valuational semantics, e.g. System Z
[Pea 90, Leh 92], or probabilistic ME-based accounts [GMP
93] (ME = maximum-entropy). For historical reasons and
technical convenience (closeness to classical logic), the first
approach has received most attention, especially in the con-
text of argumentation. However, this ignores the fact that
the conditional semantic paradigm has a much better record
when it comes to the natural handling of benchmark exam-
ples and the satisfaction of rationality postulates [Mak 94].
It therefore seems promising to investigate whether such
semantic-based accounts can also help to instantiate and
evaluate abstract argumentation frameworks.

Our default conditional semantics for interpreting argu-
mentation frameworks is based on the simplest plausibility
measure concept able to reasonably handle independence
and conditionalization, namely Spohn’s ranking functions
[Spo 88, 12], or more generally, ranking measures [Wey
94]. These are quasi-probabilistic belief valuations express-
ing the degree of surprise or implausibility of propositions.
Integer-valued ranking functions were originally introduced
by Spohn to model the iterated revision of graded plain be-
lief. We will consider [0,∞]real-valued ranking measures2,
where∞ expresses doxastic impossibility.

Definition 2.1 (Ranking measures)
A map R : BL → ([0,∞], 0,∞,+,≥) is called a real-
valued ranking measure iff R([[T]]) = 0, R([[F]]) =
R(∅) = ∞, and for all A,B ∈ BL, R(A ∪ B) =
min≤{R(A), R(B)}. R(.|.) is the associated conditional
ranking measure defined byR(B|A) = R(A∩B)−R(A) if
R(A) 6= ∞, else R(B|A) = ∞. R0 is the uniform ranking
measure, i.e. R0(A) = 0 for A 6= ∅. If B = BL, we will use
the abbreviation R(ϕ) := R([[ϕ]]).

For instance, the order of magnitude reading interprets rank-
ing measure valuesR(A) as exponents of infinitesimal prob-
abilities P (A) = pAε

R(A), which explains the parallels with
probability theory. The monotonic semantics of our condi-
tionals �,; is based on the satisfaction relation |=rk. The
corresponding truth conditions are

• R |=rk ϕ � ψ iff R(ϕ ∧ ¬ψ) =∞.

• R |=rk ϕ ; ψ iff R(ϕ ∧ ψ) + 1 ≤ R(ϕ ∧ ¬ψ).

2Although for us, rational values would actually be sufficient.

That is, we assume that a strict implication ϕ � ψ states
that ϕ ∧ ¬ψ is doxastically impossible.

Note that we may replace ϕ � ψ by ϕ ∧ ¬ψ ; F, i.e. it
would be actually enough to consider L(;). We use≤ with
a threshold because this provides more discriminatory power
and also guarantees the existence of minima for relevant
ranking construction procedures. The exchangeability of ar-
bitrary r, r′ 6= 0,∞ by automorphisms allows us to focus,
by convention, on the threshold 1. For ∆∪{δ} ⊆ L(�,;),
we set

[[∆]]rk = {R | R |=rk ∆}, ∆ `rk δ iff [[∆]]rk ⊆ [[δ]]rk.
`rk is monotonic and verifies the axioms and rules of prefer-
ential conditional logic and disjunctive rationality (threshold
semantics: no rational monotony) for ; [KLM 90].

But it is important to understand that the central con-
cept in default reasoning is not some monotonic condi-
tional logic for L(�,;), but a nonmonotonic meta-level
inference relation |∼ over L ∪ L(�,;) specifying which
conclusions ψ ∈ L can be plausibly inferred from finite
Σ ∪ ∆ ⊆ L ∪ L(�,;). We write Σ ∪ ∆ |∼ ψ, or alter-
natively Σ |∼∆ ψ, and set C |∼∆ (Σ) = {ψ | Σ |∼∆ ψ}.

The ranking semantics for plausibilistic default reasoning
is based on nonmonotonic ranking choice operators I which
map each finite ∆ ⊆ L(�,;) to a collection I(∆) ⊆
[[∆]]rk of preferred ranking models of ∆. A corresponding
ranking-based default inference notion |∼I can then be spec-
ified by

Σ |∼I∆ ψ iff for all R ∈ I(∆), R |=rk ∧Σ ; ψ.
Similarly, we can also define a monotonic inference concept
characterizing the strict consequences.

Σ `I∆ ψ iff for all R ∈ I(∆), R |=rk ∧Σ � ψ.

If I(∆) = [[∆]]rk, |∼I∆ is, modulo cosmetic details, equiv-
alent to preferential entailment (System P) [KLM 90]. If
≤pt describes the pointwise comparison of ranking mea-
sures, i.e. R ≤pt R′ iff for all A ∈ BL R(A) ≤ R′(A),
then I(∆) = {Min≤pt

[[∆]]rk} essentially characterizes
System Z [Pea 90]. Because these approaches fail to ade-
quately deal with inheritance to exceptional subclasses, we
introduced and developed the construction paradigm for de-
fault reasoning [Wey 96, 98, 03], which is a powerful strat-
egy for specifying reasonable I based on Spohn’s Jeffrey-
conditionalization for ranking measures. The resulting de-
fault inference notions are well-behaved and show nice in-
heritance features. The essential idea is that defaults do not
only specify ranking constraints, but also admissible con-
struction steps to generate them. In particular, for each de-
fault ϕ ; ψ, we are allowed to uniformly shift upwards
(make less plausible/increase the ranks of) the ϕ ∧ ¬ψ-
worlds, which amounts to strengthen belief in the corre-
sponding material implication ϕ → ψ. If W is finite, this
is analogous to specifying the rank of a world by adding a
weight ≥ 0 for each default it violates. More formally, we
define a shifting transformation R→ R+ r[ρ] such that for
each ranking measure R, χ, ρ ∈ L, and r ∈ [0,∞], we set

(R+ r[ρ])(χ) = min{R(χ ∧ ρ) + r,R(χ ∧ ¬ρ)}.
This corresponds to uniformly shifting ρ by r.

30

Definition 2.2 (Constructibility)
Let ∆ = {ϕi ; / � ψi | i ≤ n} ⊆ L(�,;). A
ranking measure R′ is said to be constructible from R over
∆, written R′ ∈ Constr(∆, R), iff there are ri ∈ [0,∞]
s.t. R′ = R+ Σi≤nri[ϕi ∧ ¬ψi].3

For instance, we obtain a well-behaved robust default infer-
ence relation, System J [Wey 96], just by setting IJ(∆) =
Constr(∆, R0) ∩ [[∆]]rk. To implement shifting minimiza-
tion, we may strengthen System J by allowing proper shift-
ing (ri > 0) only if the targeted ranking constraint interpret-
ing a default ϕi ; ψi is realized as an equality constraint
R(ϕi ∧ ψi) + 1 = R(ϕi ∧ ¬ψi). Otherwise, the shifting
wouldn’t seem to be justified in the first place.

Definition 2.3 (Justifiable constructibility)
R is called a justifiably constructible model of ∆, written
R ∈ Ijj(∆) iff R |=rk ∆, R = R0 + Σi≤nri[ϕi ∧ ¬ψi],
and for each rj > 0, R(ϕj ∧ ψj) + 1 = R(ϕj ∧ ¬ψj).

It follows from a standard property of entropy maximiza-
tion (ME) that the order-of-magnitude translation of ME,
in the context of a nonstandard model of the reals with in-
finitesimals [GMP 93, Wey 95], to the ranking level always
produces a canonical justifiably constructible ranking model
Rme. We set Ime(∆) = {R∆

me}. Hence, if ∆ 6 `rk F,
R∆
me ∈ Ijj(∆) 6= ∅. If Ijj(∆) is a singleton, we have

therefore |∼jj= |∼me. This holds for instance for minimal
core default sets ∆ [GMP 93], where no doxastically pos-
sible ϕi ∧ ¬ψi, i.e. ∆ 6 `rk ϕi ∧ ¬ψi ; F, is covered by
other ϕj ∧ ¬ψj . However, because of its fine-grained quan-
titative character, |∼me is actually representation-dependent,
i.e. the solution depends on how we describe a problem
in L, it is not invariant under boolean automorphisms of
BL. Fortunately, there are two other natural representation-
independent ways to pick up a canonical justifiably con-
structible model.

• System JZ is based on on a natural canonical hierarchi-
cal ranking construction in the tradition of System Z and
ensures justifiable constructibility [Wey 98, 03]. It consti-
tutes a uniform way to implement the minimal informa-
tion philosophy at the ranking level.

• System JJR is based on the fusion of the justifiably con-
structible ranking models of ∆, i.e. Ijjr(∆) = {R∆

jjr},
where for all A ∈ BL, R∆

jjr(A) = Min≤pt
Ijj(∆). |∼jjr

may be of particular interest because its canonical rank-
ing model is at least as plausible as every justifiably con-
structible one.

Note that for non-canonical Ijj(∆), it is possible that
R∆
jjr 6∈ Ijj(∆). We have |∼jj ⊂ |∼me, |∼jz, |∼jjr. Fortu-

nately, for the generic default sets we will use to interpret
abstract argumentation frameworks, all four turn out to be
equivalent. To conclude this section, let us consider a simple
example with a single JJ-model.

Big birds example:
Non-flying birds are not inferred to be small.

3Similar ideas can be found in [BSS 00, KI 01].

{B,¬F} ∪ {B ; S,B ; F,¬S ; ¬F} 6|∼ S
The canonical JJ/ME/JZ/JJR-model is then
R = R0 + 1[¬F] + 2[¬S ∧ F]. But R 6|=rk B ∧ ¬F ; S
because R(B ∧ ¬F ∧ S) = R(B ∧ ¬F ∧ ¬S) = 1

3 Abstract argumentation
The idea of abstract argumentation theory, launched by
Dung [Dun 95], has been to replace the traditional bottom-
up strategy, which models and exploits the logical fine struc-
ture of arguments, by a top-down perspective, where argu-
ments become black boxes evaluated only based on knowl-
edge about specific logical or extra-logical relationships
connecting them. It is interesting to see that such a coarse-
grained relational analysis often seems sufficient to deter-
mine which collections of instantiated arguments are reason-
able. In addition to possible conceptual and computational
gains, the abstract viewpoint offers furthermore a powerful
methodological tool for general argumentation-theoretic in-
vestigations.

An abstract argumentation framework in the original
sense of Dung is a structure of the form A = (A,�),
where A is a collection of abstract entities representing ar-
guments, and � is a possibly asymmetric binary attack re-
lation modeling conflicts between arguments. To grasp the
expressive complexity of real-world argumentation, several
authors have extended this basic account to include further
inferential or cognitive relations, like support links, prefer-
ences, valuations, or collective attacks. Our general defini-
tion4 [Wey 11] for the first-order context is as follows.

Definition 3.1 (Hyperframeworks) A general abstract ar-
gumentation framework, or hyperframework (HF), is just a
structure of the form A = (A, (Ri)i∈I , (Pj)j∈J), where A
is the domain of arguments, the Ri are conflictual, and the
Pi non-conflictual relations over A. B ⊆ A is said to be
conflict-free iff it does not instantiate a conflictual relation.

For instance, standard Dung frameworks (A,�) carry one
conflictual and no non-conflictual relations. The general in-
ferential task in abstract argumentation is to identify reason-
able evaluations of the arguments described byA, e.g. to find
out which sets of arguments describe acceptable argumen-
tative positions. These are called extensions. In Dung’s sce-
nario, the extensions areE ⊆ A obeying suitable acceptabil-
ity conditions in the context of A, the minimal requirement
being the absence of internal conflicts. For instance,E is ad-
missible iff it is conflict-free and each attacker of an a ∈ E
is attacked by some b ∈ E. E is grounded/preferred iff it
is minimally/maximally admissible, it is stage iff E ∪ �′′E
is maximal, semi-stable if it is also admissible, and stable
iff A − E = �′′E. Here �′′E is the relational image of
E, i.e. the set of a ∈ A attacked by some b ∈ E. In con-
crete decision contexts, we may however also want to ex-
ploit finer-grained assessments of arguments, like prioritiza-
tions or classifications. This suggests a more general seman-
tic perspective [Wey 11].

Definition 3.2 (Hyperextensions) A hyperframework se-
mantics is a map E associating with each hyperframework

4A bit of an overkill for this paper, but we couldn’t resist.

31

A = (A, (Ri)i∈I , (Pj)j∈J) of a given signature a collec-
tion E(A) of distinguished evaluation structures expanding
A, of the form (A, InA, (Fh)h∈H). InA is here a conflict-
free subset of A. The elements of E(A) are called hyperex-
tensions of A.

InA plays here the role of a classical extension, whereas the
Fh (h ∈ H) express more sophisticated structures over ar-
guments, e.g. a posteriori plausibility orderings, value predi-
cates, or completions of framework relations considered par-
tial. If H = ∅, we are back to Dung.

4 Concretizing arguments
Ideally, abstract argumentation frameworks should be
reconstructible as actual abstractions of logic-based argu-
mentation scenarios. Such an anchoring seems required
to develop, evaluate, and apply the abstract models in a
suitable way. In a first step, this amounts to instantiate the
abstract arguments from the framework domain by logical
entities representing concrete arguments, and to interpret
the abstract framework structure by specific inferential or
evaluational relationships fitting the conceptual intentions
the abstract level tries to capture. In what follows we will
sketch a natural hierarchy of instantiation layers, passing
from more concrete, deep instantiations, to more abstract,
shallow ones, with a focus on the intermediate level.

Structured instantiations:
We start with logic-based structured argumentation over a
defeasible conditional logic Lδ = (L ∪ L(�,;),`δ, |∼δ),
with (L,`) as a classical Tarskian background logic. For the
moment, we do not impose any further a priori conditions
on Lδ . But eventually we will turn to specific ranking-based
default formalisms. In the context of Lδ , a concrete defeasi-
ble argument a for a claim ψa ∈ L, exploiting some given
general knowledge base Σ∪∆, is modeled by a finite rooted
defeasible inference tree Ta whose nodes s are tagged by
local claims ηs ∈ L ∪ L(�,;) such that

• the root node is tagged by ψa,

• the leaf nodes are tagged by ηs ∈ Σa ∪ ∆a ∪ Λ, where
Λ = {T}∪{ϕ � ϕ,ϕ ; ϕ | ϕ ∈ L} (basic tautologies),

• the non-leaf nodes are tagged by ηs ∈ L s.t. Γs |∼δ ηs
where Γs is the set of claims from the children of s.

Σa ∪∆a is the contingent premise set of a, the premises be-
ing the claims of the leaf nodes. Within concrete arguments,
the local justification steps, e.g. from Γs to ηs, are typically
assumed to be elementary, like instances of modus ponens.
To handle reasoning by cases, which holds for plausible im-
plication, we may also apply the disjunctive modus ponens
for � and ;, e.g.

Γs = {ϕ1 ∨ . . . ∨ ϕn, ϕ1 ; ψ1, . . . , ϕn � ψn}

|∼δ ψ1 ∨ . . . ∨ ψn(= ηs).

If Γs ⊆ L(�), we can replace |∼δ by `δ and obtain a strict
inference step. For our purposes we may ignore the exact
nature of the justification steps. Note that the correctness of
local inference steps does not entail the global correctness

of the argument a. Consider for instance Σa ∪∆a = {ϕ} ∪
{ϕ ; ψ,ψ ; ¬ϕ}, which is consistent w.r.t. |∼δ= |∼I .
{ϕ} ∪ {ϕ ; ψ} |∼δ ψ and {ψ} ∪ {ψ ; ¬ϕ} |∼δ ¬ϕ,

but Σa ∪ ∆a 6|∼δ ¬ϕ. This example looks odd because ac-
cepting the whole argument would require the acceptance of
all its claims, which is blocked by ϕ,¬ϕ ` F. In fact, a nat-
ural requirement for an acceptable argument a would be that
it satisfies

Material consistency: Σa ∪∆→a 6 ` F.
This means that the factual premises and the material impli-
cations corresponding to the conditional premises are classi-
cally consistent. Note that this condition is strictly stronger
than Σa ∪ ∆a 6|∼δ F because we typically have {T ;

ϕ,¬ϕ} 6|∼δ F whereas {T → ϕ,¬ϕ} ` F. However, in
practice, without omniscience w.r.t. propositional logic, it
may not be clear whether these global conditions are actu-
ally satisfied. Real arguments may well be inconsistent in
the strong sense.

In structured argumentation, an argument tree has two
functions: first, to describe and offer a prima facie justifica-
tion for a claim, and secondly, to specify target points where
other arguments may attack. It is essentially a computational
tool which is intended to help identifying - or even defining
- inferential relationships within a suitable defeasible con-
ditional logic Lδ , and to help specifying attack relations to
determine reasonable argumentative positions.

But what can we say about the semantic content of an
argument represented by such a tree? What is an agent
committed to if he accepts or believes a given argument, or
a whole collection of arguments? Which tree attributes have
to be known to specify this content? What is the meaning of
attacks between arguments?

Conditional instantiations:
Our basic idea is that, whatever the requirements for argu-
mentation trees in the context of Lδ , and whatever the con-
tent of an argument a represented by such a tree Ta, it should
only depend on the collection of local claims {ηs | s node
of Ta}, and more specifically, on the choice of the main
claim ψa, the premise claims Σa ∪∆a, and the intermediate
claims Ψa. In fact, because the acceptance of a structured
argument includes the acceptance of all its subarguments,
we have to consider the main claims of the subarguments
as well. So we can assume that the content of Ta is fixed
by the triple (Σa ∪ ∆a,Ψa, ψa). An agent accepting a ob-
viously has to be committed to all the elements of the base
Σa ∪∆a ∪Ψa ∪ {ψa}.

To be fully acceptable w.r.t. Lδ , the structured argument
also has to be globally correct in the sense that all its lo-
cal claims are actually defeasibly entailed by Σa ∪ ∆a. In
particular, Σa ∪ ∆a |∼δ ψ for each ψ ∈ Ψa ∪ {ψa}. This
requirement should also hold for each subarguments b of a.
But note that, because of defeasibility, this does not exclude
that the premises Σb ∪∆b of a subargument b could implic-
itly infer the negation of a local claim ψx external to b, as
long as this conflicting inference is eventually overridden by
the full premise set Σa ∪ ∆a. It follows that the strength-
ening of a subargument by choosing a stronger claim could

32

undermine global correctness. But if the intermediate claims
are always inferred and therefore implicitly present, we may
actually drop Ψa and just consider for each globally correct
argument a the finite inference pair (Σa ∪∆a, ψa).

Given a pure Dung framework A = (A,�) and the de-
feasible conditional logic Lδ , a structured instantiation Istr
of A maps each a ∈ A to a globally correct argument tree
Ta over Lδ . On the most general level, we do not want to
impose a priori further restrictions beyond inferential cor-
rectness. In practice one may however well decide to focus
on specific argument trees, e.g. those using specific justifi-
cation steps. Each Istr(a) specifies a correct inference pair
Ilog(a) = (Σa ∪∆a, ψa), which we call a conditional log-
ical instantiation of a over Lδ . Ilog specifies the intended
logical content of an argument on the syntactic level. Note
that it depends on the tree concept whether we can obtain all
the correct inference pairs.

In monotonic argumentation, the consistency and mini-
mality of the premise sets are standard assumptions. But
within defeasible argumentation, a more liberal perspective
may be preferable. For instance, on the structured level, we
want to allow arguments claiming F. The reductio ad absur-
dum principle then offers a possibility to attack arguments
from within. Consequently, we also have to accept instan-
tiating inference pairs whose conclusion is F. On the other
hand, material consistency, the existence of models of Σa
which do not violate any conditional in ∆a, is a natural re-
quirement in the context of argumentation theory. But we
can replace it by a qualified version, restricted to those in-
stances where Σa ∪∆a is actually consistent.

What about minimality? First, it may obviously fail for
inference pairs obtained by flattening argument trees. Of
course, we could consider an additional minimization step
where we replace each (Σa ∪ ∆a, ψa) by all those (Φ, ψa)
with Φ ⊆ Σa ∪ ∆a and which are minimal s.t. Φ |∼δ ψa.
Although this may be computationally costly, it could be
theoretically appealing. However, minimality could also
be questioned because by adding premises, a conclusion
may successively get accepted, rejected, and accepted
again, letting the character of the inferential support change
between different levels of specifity, which calls for a
discrimination between the corresponding inference pairs.
Proponents of minimality object that these types of support
could, perhaps, also be reproduced by suitable minimal
(Φ, ψa). However, this assumption is not sustainable for
ranking-based semantics for argumentation, because here
the results may change if we restrict ourselves to minimal
premise sets. In fact, shrinking Σa ∪ ∆a to Φ may actually
increase the set of possible attacks. In particular, we could
have attacks on all the minimal Φ |∼δ ψa, but none on
Σa ∪∆a |∼δ ψa. Hence premise minimality may fail.

Shallow instantiations:
Let us recall our task: exploiting a ranking semantics for
default reasoning to provide a plausibilistic semantics for
abstract argumentation. But inference pairs, which pop-
ulate the conditional logical instantiation level, are still
rather complex and opaque objects. To model argumentation
frameworks and their semantics, we would here have to deal

with sets of sets of conditionals, whose inferential interac-
tions may furthermore be hard to assess. We therefore prefer
to start with simpler entities and to seek more abstraction.

Consider the main goal of an agent: to extract from ar-
gument configurations suitable beliefs, expressed in the do-
main language L, whose plausibility is semantically mod-
eled by ranking measures over BL. Given an inference
pair (Σa ∪ ∆a, ψa) representing the full conditional log-
ical content of an argument a, in addition to the main
claim ψa, there are three relevant collections of formulas:
Σa, C`(∆a∪,Σa), C|∼(∆a ∪ Σa) which represent resp. the
premises, the strict, and the defeasible consequences. If the
language is finitary, this gives us four L-formulas represent-
ing the relevant propositional L-content.

• ϕa = ∧Σa (premise content).

• θa = ∧C`(∆a ∪ Σa) (strict content).

• δa = ∧C|∼(∆a ∪ Σa) (defeasible content).

• ψa (main claim).

We have δa ` θa ` ϕa, and δa ` ψa by inferential correct-
ness. δa specifies the strongest possible claim based on the
information made available by the argument. For our seman-
tic modeling purposes, we will assume that ψa = δa. If we
abstract away from the representational details, we arrive at
our central concept: the shallow semantic instantiation of a
extracted from the conditional logical instantiation Ilog(a).

Isem(a) = ([[ϕa]], [[θa]], [[ψa]]).

In the following, we will sloppily denote Isem(a) by
(ϕa, θa, ψa). One should emphasize that these propositional
semantic profiles are not intended to grasp the full nature
of arguments, but only to reflect certain characteristics ex-
ploitable by suitable argumentation semantics. We observe
that each proposition triple (ϕ, θ, ψ) with ψ ` θ ` ϕ
can become a shallow instantiation. In fact, if Ilog(a) =
({ϕ,ϕ � θ, ϕ ; ψ}, ψ), for standard |∼δ , we obtain
Isem(a) = (ϕ, θ, ψ). In terms of ranking constraints, this
gives us R(ϕ∧¬θ) =∞ and R(ϕ∧ ψ) + 1 ≤ R(ϕ∧¬ψ).

5 Concretizing attacks
One argument attacks another argument if accepting the
first interferes with the inferential structure or the goal of
the second one. To avoid a counterattack, the premises of
the attacked argument should also not affect the inferen-
tial success of the attacker, otherwise the presupposition
of the attack could be undermined. In the following we
will investigate attack relations between conditional logical
resp. shallow semantic instantiations of abstract arguments.
We start with the former. Let Ilog(a) = (Σa ∪∆a, ψa) and
Ilog(b) = (Σb ∪ ∆b, ψb) be two correct inference pairs for
Lδ . We distinguish two scenarios: unilateral and mutual at-
tack. The idea is to say that (Σa ∪ ∆a, ψa) unilaterally at-
tacks (Σb ∪ ∆b, ψb) iff the premises of both arguments to-
gether with ψa enforce the strict rejection of ψb, i.e.

Σb ∪∆b ∪ Σa ∪∆a ∪ {ψa} `δ ¬ψb,
whereas the defeasible inference of ψa from the premises is
preserved, i.e.

33

Σa ∪∆a ∪ Σb ∪∆b |∼δ ψa.
On the other hand, (Σa ∪∆a, ψa) and (Σb ∪∆b, ψb) attack
each other iff they strictly reject each other’s claims, i.e.

Σb ∪∆b ∪ Σa ∪∆a ∪ {ψa} `δ ¬ψb, and

Σa ∪∆a ∪ Σb ∪∆b ∪ {ψb} `δ ¬ψa.
This holds for instance if their premise sets, resp. their
claims, are classically inconsistent. This definition provides
one of the strongest possible natural attack relations for in-
ference pairs. Note that we have a self-attack iff the premise
set is inconsistent, i.e. Σa ∪ ∆a `δ F. To exploit the pow-
erful semantics of ranking-based default reasoning, in what
follows we will assume that |∼δ= |∼I , where I is a ranking
choice function.

How can we exploit the above approach to define attacks
between shallow instantiations, e.g. Isem(a) = (ϕa, θa, ψa)
and Isem(b) = (ϕb, θb, ψb)? The corresponding inference
pairs are Ilog(a) = ({ϕa, ϕa � θa, ϕa ; ψa}, ψa) and
Ilog(b) = ({ϕb, ϕb � θb, ϕb ; ψb}, ψb). For an unilateral
attack from Ilog(a) on Ilog(b), we must have

I(∆a ∪∆b) |=rk ϕa ∧ ϕb ∧ ψa � ¬ψb, and

I(∆a ∪∆b) |=rk ϕa ∧ ϕb ; ψa.
This is, for instance, automatically realized if ψa ` ¬ψb,
ϕa ` ϕb, and we have logical independence elsewhere. For
a bilateral attack, we may just drop the condition ϕa ` ϕb.
However, we do not have to presuppose that all the attacks
result from the logical structure induced by the instantiation.
In fact, in addition to the instantiation-intrinsic attack rela-
tionships, there could be further attack links derived from a
separate conditional knowledge base reflecting other known
attacks.

From a given Dung frameworkA = (A,�) and a shallow
instantiation I = Isem, if we adopt the ranking semantic
perspective and the above attack philosophy, we can induce
a collection of conditionals specifying ranking constraints.
For any a ∈ A, the shallow inference pair supplies ϕa � θa
(alternatively, ϕa ∧ ¬θa ; F) and ϕa ; ψa. For every
attack a� b, we get at least ψa ∧ψb ; F. Note that this is a
consequence of choosing maximal claims at the instantiation
level. For each unilateral attack a�bwe must add ϕa∧ϕb ;

ψa to preserve the inferential impact of a in the context of b.
The resulting default base is

∆A,I = {ϕa ; ψa, ϕa � θa | a ∈ A}
∪ {ψa ∧ ψb ; F | a� b or b� a}
∪ {ϕa ∧ ϕb ; ψa | a� b, b 6� a}.

We observe that for each 1-loop, we get ψa ; F and
ϕa ; ψa, hence ∆A,I `I ¬ϕa. The doxastic impossibility
of ϕa illustrates the paradoxical character of self-attacking
arguments. The belief states compatible with an instantiated
framework A, I are here represented by the ranking models
of ∆A,I .

Conversely, we can identify for each instantiation I of A
and each collection of ranking measures R |=rk ∆A,I =
{ϕa ; ψa, ϕa � θa | a ∈ A} the attacks supported by all
the R ∈ R. Let �RI be the resulting attack relation, that is,
for each a, b ∈ A

a�RI b iff for all R ∈ R, R |=rk ψa ∧ ψb ; F and

(R |=rk ϕa ∧ ϕb ; ψa or R 6|=rk ϕa ∧ ϕb ; ψb).
The second disjunct is the result of an easy simplification.
If a or b are self-reflective, we have a �RI b because con-
ditionals always hold if the premises are doxastically im-
possible. Because in this paper we will mainly consider
canonical ranking choice functions, we are going to focus
onR = {R}, setting �R

I = �RI .

Definition 5.1 (Ranking instantiation models)
Let the notation be as usual and A+ = {a ∈ A | a 6� a}.
(R, I) is called a ranking instantiation model (more slop-
pily, a ranking model) of A iff

R |=rk ∆A,I = {ϕa ; ψa, ϕa � θa | a ∈ A},
and for all a, b ∈ A+, a � b iff a �R

I b. Let RA be the
collection of all the ranking instantiation models of A.

That is, over the non-loopy arguments, the semantic-based
attack relation �R

I specified by R, I has to correspond ex-
actly to the abstract attack relation �. The collection of rank-
ing instantiation models is not meant to change if we add or
drop attack links between self-reflective and other arguments
because the details are absorbed by the impossible joint con-
texts. IfA andA′ share the same 1-loops and the same attack
structure over the other arguments,RA = RA′

.
It also important to observe, and we will come back to

this, that each A = (A,�) admits many ranking instantia-
tion models (R, I), obtained by varying the ranking values
or the proposition triples associated with the abstract argu-
ments.

What can we say about classical types of attack? If we fo-
cus on the actual semantic content, rebuttal is characterized
by incompatible defeasible consequents, and undermining
by a defeasible consequent conflicting with an antecedent. In
the ranking context, these two types of attacks can be mod-
eled by constraints expressing necessities. The ranking char-
acterizations are as follows. Recall that ψa ` ϕa, ψb ` ϕb.
a rebuts b: R(ψa ∧ ψb) =∞, e.g. if ψa ` ¬ψb.
a undermines b: R(ψa ∧ ϕb) =∞, e.g. if ψa ` ¬ϕb.
In our simple semantic reading, undermining entails rebut-
tal because ψb ` ϕb. There are four qualitative attack con-
figurations involving two arguments: ϕa ∧ ϕb being com-
patible with neither, one, or both of ψa, ψb. If a asym-
metrically undermines b, we have R(ψa ∧ ϕb) = ∞ and
R(ψb ∧ ϕa) 6= ∞, hence R(ϕa ∧ ϕb) 6= ∞. This implies
R |=rk ϕa ∧ ϕb ∧ ψb � ¬ψa and R 6|=rk ϕa ∧ ϕb ; ψa,
i.e. b�R

I a and a 6�R
I b according to our attack semantics. It

follows that undermining has no obvious ranking semantic
justification if we stipulate that the defeasible claim entails
the antecedent. Also note that rebuttal is entailed by sym-
metric and asymmetric attacks.

6 Ranking extensions
Ranking instantiation models offer new possibilities to iden-
tify reasonable argumentative positions. Let (R, I) be a
model of the framework A = (A,�). In the context of
(R, I), a minimal requirement for aceptable argument sets

34

S ⊆ A are coherent premises, i.e. the doxastic possibility
of the joint strict contents ϕS = ∧a∈S(ϕa ∧ θa) w.r.t. R,
which means R(ϕS) 6= ∞. This excludes self-attacks, but
not conflicts within S. S = ∅ is by definition coherent be-
cause ϕ∅ = T. Given that evidence ϕa should not be re-
jected without good reasons, the maximally coherent S ⊆ A
are of particular interest and constitute suitable background
contexts when looking for extensions. Each E ⊆ S then
specifies a proposition

ψS,E := ϕS ∧ ∧a∈Eψa ∧ ∧a∈A−E¬ψa.

ψS,E characterizes those worlds verifying the strict content
of the a ∈ S and exactly the defeasible content of the
a ∈ E. Because a �R

I b implies R(ψa ∧ ψb) = ∞, any
conflict a � b in E makes ψS,E impossible. Note however
that R(ψS,E) = ∞ may also result from non-binary con-
flicts involving multiple arguments, or a specific choice of
logically dependent ϕa, ψa. What are the most reasonable
extension candidates E ⊆ S ⊆ A according to (R, I)? One
idea is to focus on those E which induce the most plausi-
ble ψS,E relative to ϕS among all their maximal coherent
supersets S.

Definition 6.1 (Ranking extensions) Let (R, I) be a rank-
ing instantiation model of A = (A,�). E ⊆ A is called
a ranking-extension of A w.r.t. (R, I) iff there is a maximal
coherent S ⊆ A with E ⊆ S and R(ψS,E |ϕS) = 0.

Observe that if S = ∅ is the maximally coherent subset of
A, then R(ϕa) = ∞ for each a ∈ A and E = ∅ is the only
ranking extension. While the above definition looks rather
decent, a cause of concern may be the great diversity of rank-
ing models (R, I) available for any given A. Consider for
instance A = ({p, q, r}, {(p, q), (q, r)}), i.e. p � q � r. A
together with a shallow instantiation I then induces ranking
constraints described by the conditionals in

∆A,I = {ψp ∧ ψq ; F, ψq ∧ ψr ; F, ϕp ∧ ϕq ; ψp,
ϕq ∧ ϕr ; ψq, ϕp ; ψp, ϕq ; ψq, ϕr ; ψr}.

If we assume that each set {ϕx, ψx} is logically independent
from all the other {ϕy, ψy}, then ∆A,I admits a unique jus-
tifiably constructible model, which therefore automatically
must be the JZ- and JJR-model: RA,Ijz . In this example it
is obtained by minimally shifting the violation areas of the
conditionals.

RA,Ijz = R0+∞[ψp∧ψq]+∞[ψq∧ψr]+1[ϕp∧ϕq∧¬ψp]+
1[ϕq∧ϕr∧¬ψq]+1[ϕp∧¬ψp]+1[ϕq∧¬ψq]+1[ϕr∧¬ψr].
Given that S = A is coherent, there are eight ex-
tension candidates. For the doxastically possible alterna-
tives, RA,Ijz (ψA,{p,r}) = 2 < 3 = RA,Ijz (ψA,{p}) =
RA,Ijz (ψA,{q}) < 4 = RA,Ijz (ψA,{r}) < 5 = RA,Ijz (ψA,∅) <
∞. BecauseRA,Ijz (ϕS) = 2, we getRA,Ijz (ψA,{p,r}|ϕS) = 0.
The unique ranking extension is therefore {p, r}, which is
also the standard Dung solution.

However, without any further constraints on the exten-
sion generating ranking instantiation model (R, I), we could
pick up as an alternative R = RA,Ijz + ∞[ψp ∧ ψr ∧ ϕq]
such that R(ψp ∧ ψr ∧ ϕq) = ∞, resp. an I enforcing

ψp ∧ ψr ∧ ϕq ` F . In both scenarios, the minima would
then become R(ψA,{p}) = R(ψA,{q}) = 3, imposing the
ranking extensions {p}, {q}. Because of R(ψA,{p,r}) = ∞,
the standard extension {p, r} would necessarily be rejected.
But this violates a hallmark of argumentation, namely the
unconditional support of unattacked arguments, like p. This
shows that we have to control the choice of ranking instan-
tiation models to implement a reasonable ranking extension
semantics.

The idea is now to choose on one hand, as our doxas-
tic background, a well-justified canonical ranking measure
model of the default base ∆A,I , e.g. the JZ-model RA,Ijz ,
and on the other hand, implementing Ockham’s razor, the
simplest instantiations of the given framework A. In partic-
ular, we stipulate that the instantiations of individual argu-
ments should by default be logically independent. We em-
phasize that the goal here is just to interpret abstract argu-
mentation frameworks with a minimal amount of additional
assumptions, not to adequately model specific real-world ar-
guments.

We can satisfy these desiderata by using disjoint vocabu-
laries for instantiating different abstract arguments, and by
relying on elementary instances of the defeasible modus po-
nens for the corresponding inference pairs. That is, we in-
troduce for each a ∈ A independent propositional atoms
Xa, Ya, and set Ilog(a) = ({Xa} ∪ {Xa ; Ya}, Ya).
The corresponding shallow semantic instantiation is then
I(a) = Isem(a) = (ϕa, ϕa, ψa) = (Xa, Xa, Xa ∧ Ya).
We call I a generic instantiation. Up to boolean isomorphy,
it is completely characterized by the cardinality of A.

If we fix a generic instantiation I , then the unique justifi-
ably constructible ranking model of ∆A,I is (a�/� b: a� b
or b� a)
RAjz = R0 + Σa6�a1[ϕa ∧ ¬ψa] + Σa�a∞[ϕa ∧ ¬ψa] +

Σa�b1[ϕa ∧ ϕb ∧ ¬ψa] + Σa�/�b∞[ψa ∧ ψb]
= R0 + Σa 6�a1[Xa ∧ ¬Ya] + Σa�a∞[Xa ∧ ¬Ya] +

Σa�b1[Xa ∧Xb ∧ ¬Ya] + Σa�/�b∞[Xa ∧ Ya ∧Xb ∧ Yb].
Because the {Xa, Ya} are logically independent for distinct
a, and the defaults expressing an attack a � b just concern
Xa ∧ Xb, only those Xa with a � a become impossible.
In fact, {ϕa ; ψa, ψa ∧ ψa ; F} `rk ϕa ; F. Hence,
in line with intuition, the ranking instantiation model
(RAjz, I) will trivialize exactly the self-defeating arguments.
Assuming genericity, A+ = {a ∈ A | a 6� a} is then the
unique maximal coherent subset of A. We are now ready to
specify our ranking-based evaluation semantics. Note that
all the generic I are essentially equivalent.

JZ-evaluation semantics (JZ-extensions):
Ejz(A) = {E ⊆ A | E ranking extension w.r.t. (RA,Ijz , I)
for any/all generic I}.

There is actually a simple algorithm to identify the JZ-
extensions using extension weights.

Definition 6.2 (Extension weight) For each argumenta-
tion framework A = (A,�), the extension weight function
rA : 2A → [0,∞] is defined as follows: If E is conflict-free,

35

rA(E) = |A+ −E|+ |{a ∈ A+ −E | ∃b ∈ A+(a� b ∧ b 6
�a)}|, if not, rA(E) =∞.

It is not too difficult to see that rA(E) = RA,Ijz (ψA+,E).
Hence, E ∈ Ejz(A) iff rA(E) = min{rA(X) | X ⊆ A}.
That is, the JZ-extensions are those where the sum of the
number of non-reflective non-extension arguments and the
number of one-sided attacks starting from them is minimal.

7 Examples and properties
To get a better understanding of the ranking extension
semantics and its relation with other extension concepts,
let us first take a look at how it handles some basic ex-
amples. Because of its uncommon semantic perspective
and its partly quantitative character, we will observe some
unorthodox behaviour. Under instantiation genericity, it is
enough to compare RA,I(ψA+,E) for E ⊆ A+, or to focus
on 1-loop-free frameworks. For each instance, we specify
the domain A and the full attack relation �. ψA+,{x1...xn} is
abbreviated by ψx1,...,xn

resp. ψ∅.

Simple reinstatement: {a, b, c} with a� b� c.

The grounded extension {a, c} is the canonical result
put forward by any standard acceptability semantics. The
unique JJ-model, i.e. the JZ-model R of ∆A,I , satisfies
R(ψa) = R(ψb) = 3, R(ψc) = 4, R(ψa,c) = 2, and
R(ψ∅) = 5. The other candidates all get rank ∞. Because
R(ψa,c) is minimal, {a, c} is the only JZ-ranking extension,
i.e. Ejz(A) = {{a, c}}.

3-loop: {a, b, c} with a� b� c� a.

Semantics under the admissibility dogm reject
{a}, {b}, {c}, only ∅ is admissible. But the JZ-model
R verifies R(ψa) = R(ψb) = R(ψc) = 4 < 5 = R(ψ∅).
Because all the alternatives are set to ∞, our ranking
extensions are the maximal conflict-free sets {a}, {b}, {c},
i.e., Ejz clearly violates admissibility.

Attack on 2-loop: {a, b, c} with a� b� c� b.

We have R(ψ∅) = 4, R(ψa) = 2, R(ψb) = R(ψc) =
3, R(ψa,c) = 1, but ∞ for the others. Here Ejz(A) =
{{a, c}} picks up the canonical stable extension.

Attack from 2-loop: {a, b, c} with b� a� b� c.

We get R(ψ∅) = 4, R(ψa) = 3, R(ψb) = 2, R(ψc) = 3,
R(ψa,b) = R(ψb,c) = ∞, and R(ψa,c) = 2.
Ejz(A) = {{b}, {a, c}} thus collects the stable exten-
sions.

3,1-loop: {a, b, c} with a� a� b� c� a.

E = ∅ is here the only admissible extension. The
maximal coherent set is A+ = {b, c}, and we get
R(ψb) = 1, R(ψc) = 2, as well as R(ψ∅) = 3. It follows
that Ejz(A) = {{b}}, rejecting the stage extension {c}.

3,2-loop: {a, b, c} with b� a� b� c� a.

We have R(ψ∅) = 5, R(ψa) = 4, R(ψb) = 3, and

R(ψc) = 3, i.e. Ejz(A) = {{b}, {c}}. But the stable
extension {b} is the only admissible ranking extension.

The previous examples show that the ranking extension
semantics Ejz can diverge considerably from all the other
major proposals found in the literature. It may look as if the
main difference is its more liberal attitude towards some
non-admissible, but still justifiable extensions. However,
the semantics has an even more exotic flavour. Consider
the following scenarios, where we indicate the minimal
extension weights rA(E).

2-loop chain: {a, b, c}, b� a� b� c� b :
r({a, c}) = 1 < 2 = r({b}).

Splitted 3-chain: {a, b, c, d}, a� b� c, a� d� c :
r({a, c}) = r({b, d}) = 4.

Spoon: {a, b, c, d}, a� b� c� d� c :
r({a, d}) = r({a, c}) = r({b, d}) = 3.

The first example documents the rejection of a stable
extension, namely {b}. The second one illustrates the
impact of quantitative considerations when dealing with a
splitted variant of simple reinstatement. The third instance
shows the coexistence of two stable extension with a
non-admissible one. That is, even attack-free a can be
questioned under certain circumstances. It follows that the
above ranking semantic interpretation of argumentation
frameworks deviates considerably from standard accounts
and expectations. Let us now investigate how Ejz handles
some common principles for extension semantics.

Isomorphy: f : A ∼= A′ implies f ′′ : E(A′) ∼= E(A).

Conflict-freedom: If a, b ∈ E ∈ E(A), then a 6� b.

CF-maximality: If E ∈ E(A), then E is a maximal
conflict-free subset of A.

Inclusion-maximality: If E,E′ ∈ E(A) and E ⊆ E′, then
E = E′.

Reinstatement: If E ∈ E(A), a ∈ A, and for each b � a
there is an a′ ∈ E with a′ � b, then a ∈ E.

Directionality: Let A1 = (A1,�1),A2 = (A2,�2)
be such that A1 ∩ A2 = ∅, �0 ⊆ A1 × A2,
A = (A1 ∪ A2,�1 ∪ �0 ∪ �2). Then we have
E(A1) = {E ∩ A1 | E ∈ E(A)}.
Theorem 7.1 (Basic properties)
Ejz verifies isomorphy, conflict-freedom, inclusion maximal-
ity, and CF-maximality. It falsifies reinstatement and direc-
tionality.

The first four features are easy consequences of the Ejz-
specification. The violation of reinstatement directly fol-
lows from how the semantics handles 3-loops. The spoon
example documents the failure of directionality if we set
A1 = {a, b}. But directionality also fails for other promi-
nent approaches, like the semi-stable semantics. Note how-
ever that it can be indirectly enforced by using Ejz as the
base function for an SCC-recursive semantics [BGG 05].

36

The following properties are inspired by the cumulativ-
ity principle for nonmonotonic reasoning. They state that if
we drop an argument rejected by every extension, then this
shouldn’t add or erase skeptically supported arguments.

Rejection cumulativity: (A|B: A restricted to B)
Rej-Cut: If a 6∈ ∪E(A), then ∩E(A|A− {a}) ⊆ ∩E(A).
Rej-CM: If a 6∈ ∪E(A), then ∩E(A) ⊆ ∩E(A|A− {a}).

Although our semantics relies on default inference notions
verifying cumulativity at the level of |∼I∆, it nevertheless
fails to validate the previous postulates.

Theorem 7.2 (No rejection cumulativity)
Ejz violates Rej-Cut and Rej-CM.

The counterexample for Rej-CUT is provided by b�c�a�

b � a, because {b} 6⊆ {b} ∩ {c}. The one for Rej-CM is
obtained by adding c� b. Here {c} 6⊆ {b} ∩ {c}.

Another idea for combining plausibilistic default reason-
ing and argumentation theory has been presented in [KIS
11]. It combines defeasible logic programming with a prior-
itization criterion based on System Z. While it handles some
benchmarks better than the individual systems do, its hetero-
geneous character makes it hard to assess. It doesn’t share
our goal to seek a plausibilistic semantics for abstract argu-
mentation and seems to produce different results even in the
generic context.

8 Conclusions
We have shown how the ranking construction paradigm for
default reasoning can be exploited to interpret abstract ar-
gumentation frameworks and to specify corresponding ex-
tension semantics by using generic argument instantiations
and distinguished canonical ranking models. We have con-
sidered structured and conditional logical instantiations, de-
fined attack between inference pairs, and after a further
abstraction step, introduced simple semantic instantiations,
which interpret arguments by triples of premise, strict, and
defeasible content. While our basic ranking extension se-
mantics Ejz is intuitively appealing and has some interest-
ing properties, it also exhibits a surprisingly unorthodox be-
haviour. This needs further exploration to see whether there
are approaches which share the same semantic spirit but can
avoid abnormalities conflicting with the standard argumen-
tation philosophy. Actually, we have been able to develop an
alternative semantics which seems to meet these demands,
but it will have to be discussed elsewhere.

9 Bibliography
BGG 05 P. Baroni, M. Giacomin, G. Guida. SCC-

recursiveness: a general schema for argumentation se-
mantics. AIJ 168:163-210, 2005.

BSS 00 S. Benferhat, A. Saffiotti, P. Smets. Belief functions
and default reasoning. Artificial Intelligence 122(1-2): 1-
69, 2000.

GMP 93 M. Goldszmidt, P. Morris, J. Pearl. A maxi-
mum entropy approach to nonmonotonic reasoning. IEEE
Transact. Patt. Anal. and Mach. Int, 15:220-232, 1993.

KI 01 G. Kern-Isberner. Conditionals in nonmonotonoic
reasoning and belief revision, LNAI 2087. Springer, 2001.

KIS 11 G. Kern-Isberner G.R. Simari. A Default Logi-
cal Semantics for Defeasible Argumentation. Proc. of
FLAIRS 2011, AAAI Press, 2011.

KLM 90 S. Kraus, D. Lehmann, M. Magidor. Nonmono-
tonic reasoning, preferential models and cumulative log-
ics. In Artificial Intelligence, 44:167-207, 1990.

Mak 94 D. Makinson. General patterns of nonmonotonic
reasoning. Handbook of Logic in AI and LP, vol. 3 (eds.
Gabbay et al.): 35-110. Oxford University Press, 1994.

Pea 90 J. Pearl. System Z: a natural ordering of defaults
with tractable applications to nonmonotonic reasoning.
TARK 3: 121-135. Morgan Kaufmann, 1990.

Spo 88 W. Spohn. Ordinal conditional functions: a dynamic
theory of epistemic states. Causation in Decision, Belief
Change, and Statistics (eds. W.L. Harper, B. Skyrms):
105-134. Kluwer, 1988.

Spo 12 W. Spohn. The Laws of Belief. Ranking Theory and
Its Philosophical Applications. Oxford University Press,
Oxford 2012.

Wey 94 E. Weydert. General belief measures. UAI’94,
Morgan Kaufmann.

Wey 95 E. Weydert. Defaults and infinitesimals. Defeasible
inference by non-archimdean entropy maximization. UAI
95: 540-547. Morgan Kaufmann, 1995.

Wey 96 E. Weydert. System J - rev. entailment. FAPR
96:637-649. Springer, 1996.

Wey 98 E. Weydert. System JZ - How to build a canonical
ranking model of a default knowledge base. KR 98: 190-
201. Morgan Kaufmann, 1998.

Wey 03 E. Weydert. System JLZ - Rational default reason-
ing by minimal ranking constructions. Journal of Applied
Logic 1(3-4): 273-308. Elsevier, 2003.

Wey 11 E. Weydert. Semi-stable extensions for infinite
frameworks. In Proc. BNAIC 2012: 336343.

Wey 13 E. Weydert. On the Plausibility of Abstract Ar-
guments. ECSQARU 2013, LNAI 7958 (ed. L. van der
Gaag): 522-533 Springer, 2013.

37

An Approach to Forgetting in Disjunctive Logic Programs that
Preserves Strong Equivalence

James P. Delgrande
School of Computing Science

Simon Fraser University
Burnaby, B.C. V5A 1S6

Canada
jim@cs.sfu.ca

Kewen Wang
School of Information and Communication Technology

Griffith University,
Brisbane, QLD 4111

Australia
k.wang@griffith.edu.au

Abstract

In this paper we investigate forgetting in disjunctive logic pro-
grams, where forgetting an atom from a program amounts to
a reduction in the signature of that program. The goal is to
provide an approach that is syntax-independent, in that if two
programs are strongly equivalent, then the results of forget-
ting an atom in each program should also be strongly equiva-
lent. Our central definition of forgetting is impractical but sat-
isfies this goal: Forgetting an atom is characterised by the set
of SE consequences of the program that do not mention the
atom to be forgotten. We then provide an equivalent, practi-
cal definition, wherein forgetting an atom p is given by those
rules in the program that don’t mention p, together with rules
obtained by a single inference step from rules that do men-
tion p. Forgetting is shown to have appropriate properties; as
well, the finite characterisation results in a modest (at worst
quadratic) blowup. Finally we have also obtained a prototype
implementation of this approach to forgetting.

Introduction
Forgetting is an operation for eliminating variables from a
knowledge base (Lin and Reiter 1994; Lang et al. 2003).
It constitutes a reduction in an agent’s language or, more
accurately, signature, and has been studied under different
names, such as variable elimination, uniform interpolation
and relevance (Subramanian et al. 1997). Forgetting has
various potential uses in a reasoning system. For example,
in query answering, if one can determine what is relevant to
a query, then forgetting the irrelevant part of a knowledge
base may yield a more efficient operation. Forgetting may
also provide a formal account and justification of predicate
hiding, for example for privacy issues. As well, forgetting
may be useful in summarising a knowledge base or reusing
part of a knowledge base or in clarifying relations between
predicates.

The best-known definition of forgetting is with respect to
classical propositional logic, and is due to George Boole
(Boole 1854). To forget an atom p from a formula φ in
propositional logic, one disjoins the result of uniformly sub-
stituting > for p in φ with the result of substituting ⊥; that
is, forgetting is given by φ[p/>] ∨ φ[p/⊥]. (Lin and Re-
iter 1994) investigated the theory of forgetting for first order
logic and its application in reasoning about action. Forget-
ting has been applied in resolving conflicts (Eiter and Wang

2008; Zhang and Foo 1997), and ontology comparison and
reuse (Kontchakov et al. 2008; Konev et al. 2013).

The knowledge base of an agent may be represented in a
non-classical logic, in particular a nonmonotonic approach
such as answer set programming (ASP) (Gelfond and Lifs-
chitz 1988; Baral 2003; Gebser et al. 2012). However, the
Boole definition clearly does not extend readily to logic pro-
grams. In the past few years, several approaches have been
proposed for forgetting in ASP (Eiter and Wang 2006; 2008;
Wang et al. 2005; Zhang et al. 2005; Zhang and Foo 2006).
The approach to forgetting in (Zhang et al. 2005; Zhang
and Foo 2006) is syntactic, in the sense that their definition
of forgetting is given in terms of program transformations,
but is not based on answer set semantics or SE models1

(for normal logic programs). A semantic theory of forget-
ting for normal logic programs under answer set semantics
is introduced in (Wang et al. 2005), in which a sound and
complete algorithm is developed based a series of program
transformations. This theory is further developed and ex-
tended to disjunctive logic programs (Eiter and Wang 2006;
2008). However, this theory of forgetting is defined in terms
of standard answer set semantics instead of SE models.

In order to use forgetting in its full generality, for deal-
ing with relevance or predicate hiding, or in composing,
decomposing, and reusing answer set programs, it is de-
sirable for a definition to be given in terms of the logical
content of a program, that is in terms of SE models. For
example, the reuse of knowledge bases requires that when
a sub-program Q in a large program P is substituted with
another program Q′, the resulting program should be equiv-
alent to P . This is not the case for answer set semantics due
to its nonmonotonicity. As a result, two definitions of for-
getting have been introduced in HT-logic (Wang et al. 2012;
2013). These approaches indirectly establish theories of for-
getting under SE models as HT-logic provides a natural ex-
tension of SE models. The approach to interpolation for
equilibrium logic introduced in (Gabbay et al. 2011) is more
general than forgetting. However, the issue of directly estab-
lishing a theory of forgetting for disjunctive logic programs
under SE models is still not fully resolved yet. In addition, it
is even more challenging to develop efficient algorithm for
computing a result of forgetting under SE models.

1See the next section for definitions.

38

A key intuition behind forgetting is that the logical con-
sequences of a set of formulas that don’t mention forgotten
symbols should still be believed after forgetting. This leads
to a very simple (abstract) knowledge-level definition, pro-
vided that a consequence operator is provided in the under-
lying logic. In particular, the semantics of a logic usually as-
sociates a set of models Mod(K) with each knowledge base
K. This makes it straightforward to formulate a definition
of forgetting based on the above intuition. However, such
a definition of forgetting suffers from the problem of inex-
pressibility, i.e., the result of forgetting may not be express-
ible in the logic. In this paper, we establish such a theory
of forgetting for disjunctive logic programs under SE mod-
els. Besides several important properties, we show that the
result of forgetting for a given disjunctive program is still a
disjunctive program. This result confirms the existence and
expressibility of forgetting for DLP under SE models and
in fact provides an algorithm for computing forgetting under
SE models. We investigate some optimisation techniques for
the algorithm and report a prototype implementation of the
algorithm.

Answer Set Programming
Here we briefly review pertinent concepts in answer set
programming; for details see (Gelfond and Lifschitz 1988;
Baral 2003; Gebser et al. 2012).

Let A be an alphabet, consisting of a set of atoms. A
(disjunctive) logic program over A is a finite set of rules of
the form

a1; . . . ; am ← b1, . . . , bn,∼c1, · · · ,∼cp. (1)

where ai, bj , ck ∈ A, and m,n, p ≥ 0 and m + n + p > 0.
Binary operators ‘;’ and ‘,’ express disjunction and conjunc-
tion respectively. For atom a, ∼a is (default) negation. We
will use LA to denote the language (viz. set of rules) gener-
ated by A.

Without loss of generality, we assume that there are no
repeated literals in a rule. The head and body of a rule r,
H(r) and B(r), are defined by:

H(r) = {a1, . . . , am} and
B(r) = {b1, . . . , bn,∼c1, . . . ,∼cp}.

Given a set X of literals, we define

X+ = {a ∈ A | a ∈ X},
X− = {a ∈ A | ∼a ∈ X}, and
∼X = {∼a | a ∈ X ∩ A}.

For simplicity, we sometimes use a set-based notation, ex-
pressing a rule as in (1) as

H(r)← B(r)+,∼B(r)− .

The reduct of a program P with respect to a set of atoms Y ,
denoted PY , is the set of rules:

{H(r)← B(r)+ | r ∈ P, B(r)− ∩ Y = ∅}.

Note that the reduct consists of negation-free rules only. An
answer set Y of a program P is a subset-minimal model of

PY . A program induces 0, 1, or more answer sets. The
set of all answer sets of a program P is denoted by AS (P).
For example, the program P = {a ← . c; d ← a,∼b}
has answer sets AS (P) = {{a, c}, {a, d}}. Notably, a pro-
gram is nonmonotonic with respect to its answer sets. For
example, the program {q ← ∼p} has answer set {q} while
{q ← ∼p. p←} has answer set {p}.

SE Models
As defined by (Turner 2003), an SE interpretation on a
signature A is a pair (X,Y) of interpretations such that
X ⊆ Y ⊆ A. An SE interpretation is an SE model of a pro-
gram P if Y |= P and X |= PY , where |= is the relation of
logical entailment in classical logic. The set of all SE mod-
els of a program P is denoted by SE (P). Then, Y is an an-
swer set of P iff (Y, Y) ∈ SE (P) and no (X,Y) ∈ SE (P)
with X ⊂ Y exists. Also, we have (Y, Y) ∈ SE (P) iff
Y ∈ Mod(P).

A program P is satisfiable just if SE (P) 6= ∅.2 Thus,
for example, we consider P = {p ← ∼p} to be satisfiable,
since SE (P) 6= ∅ even though AS (P) = ∅. Two programs
P and Q are strongly equivalent, symbolically P ≡s Q, iff
SE (P) = SE (Q). Alternatively, P ≡s Q holds iff AS (P ∪
R) = AS (Q ∪ R), for every program R (Lifschitz et al.
2001). We also write P |=s Q iff SE (P) ⊆ SE (Q).

SE Consequence
While the notion of SE models puts ASP on a monotonic
footing with respect to model theory, (Wong 2008) has sub-
sequently provided an inferential system for rules that pre-
serves strong equivalence, where his notion of SE conse-
quence is shown to be sound and complete with respect to
the semantic notion of SE models. His inference system is
given as follows, where lower case letters are atoms, up-
per case are sets of atoms, and for a set of atoms C =
{c1, . . . , cn}, ∼C stands for {∼c1, . . . ,∼cn}.

Inference Rules for SE Consequence:

Taut x← x

Contra ← x,∼x
Nonmin From A← B,∼C infer

A;X ← B, Y,∼C,∼Z
WGPPE From A1←B1, x,∼C1 and

A2;x←B2,∼C2 infer
A1;A2 ← B1, B2,∼C1,∼C2

S-HYP From A1 ← B1,∼x1,∼C1,
. . . ,

An ← Bn,∼xn,∼Cn,
A← x1, . . . , xn,∼C infer

A1; . . . ;An ←
B1, . . . , Bn,∼C1, . . . ,∼Cn,∼A,∼C

2Note that many authors in the literature define satisfiability in
terms of answer sets, in that for them a program is satisfiable if it
has an answer set, i.e., AS(P) 6= ∅.

39

Several of these rules are analogous to or similar to well-
known rules in the literature. For example, Nonmin is weak-
ening; WGPPE is analogous to cut; and S-HYP is a version
of hyper-resolution. Let `s denote the consequence relation
generated by these rules, for convenience allowing sets of
rules on the right hand side of `s. Then P ↔s P

′ abbrevi-
ates P `s P ′ and P ′ `s P . As well, define

CnA(P) = {r ∈ LA | P `s r}.

Then the above set of inference rules is sound and complete
with respect to the entailment |=s.

Theorem 1 ((Wong 2008)) P |=s r iff P `s r.

The Approach
Formal Preliminaries
Since forgetting in our approach amounts to decreasing the
alphabet, or signature, of a logic program, we need addi-
tional notation for relating signatures. Let A and A′ be two
signatures whereA′ ⊂ A. ThenA′ is a reduction3 ofA, and
A is an expansion of A′. Furthermore, if w is an SE inter-
pretation on A and w′ is an SE interpretation on A′ where
w and w′ agree on the interpretation of symbols in A′ then
w′ is the A-reduction of w, and w is an A′-expansion of w′.
For fixed A′ ⊂ A, reductions are clearly unique whereas
expansions are not.

For a logic program P , σ(P) denotes the signature of
P , that is, the set of atoms mentioned in P . SE models
are defined with respect to an understood alphabet; for SE
model w we also use σ(w) to refer to this alphabet. Thus
for example if A = {a, b, c} then, with respect to A, the
SE model w = ({a}, {a, b}) is more perspicuously writ-
ten as ({a,¬b,¬c}, {a, b,¬c}), and so in this case σ(w) =
{a, b, c}.

If A′ ⊂ A and for SE models w, w′ we have σ(w) = A
and σ(w′) = A′ then we use w|A′ to denote the reduction
of w with respect to A′ and we use w′↑A to denote the set of
expansions of w′ with respect to A. This notation extends
to sets of models in the obvious way. As well, we use the
notion of a reduction for logic programs; that is, forA′ ⊆ A,

P|A′ = {r ∈ P | σ(r) ⊆ A′}.

An Abstract Characterisation of Forgetting
As described, our goal is to define forgetting with respect to
the logical content of a logic program. For example, if we
were to forget b from the program {a ← b., b ← c.}, we
would expect the rule a ← c to be in the result, since it is
implicit in the original program. Consequently, our primary
definition is the following.

Definition 1 Let P be a disjunctive logic program over
signature A. The result of forgetting A′ in P , denoted
Forget(P,A′), is given by:

Forget(P,A′) = CnA(P) ∩ LA\A′ .

3The standard term in model theory is reduct (Chang and
Keisler 2012; Doets 1996; Hodges 1997). However reduct has its
own meaning in ASP, and so we adopt this variation.

That is, the result of forgetting a set of atoms A′ in program
P is simply the set of SE consequences that of P over the
original alphabet, but excluding atoms from A′.

This definition is very simple. This characterization is
abstract, at the knowledge level. As a consequence, many
formal results are very easy to show. On the other hand, the
definition is not immediately practically useful since forget-
ting results in an infinite set of rules. Consequently a key
question is to determine a finite characterisation (that is to
say, a uniform interpolant) of Forget. We explore these is-
sues next.

The following results are elementary, but show that the
definition of forgetting has the “right” properties.

Proposition 1 Let P and P ′ be disjunctive logic program
and let A (possibly primed or subscripted) be alphabets.

1. P `s Forget(P,A)
2. If P ↔s P

′ then Forget(P,A)↔s Forget(P ′,A)
3. Forget(P,A) = CnA′(Forget(P,A))

where A′ = σ(P) \ A.
4. Forget(P,A) =

Forget(Forget(P,A \ {a}), {a}))
5. Forget(P,A1 ∪ A2) =

Forget(Forget(P,A1),A2))
6. P is a conservative extension of Forget(P,A).

Thus, forgetting results in no consequences not in the origi-
nal theory. As well, the result of forgetting is independent of
syntax and yields a deductively-closed theory (Parts 2 and
3). Part 4 gives an iterative means of determining forgetting
on an element-by-element basis. The next part, which gen-
eralises the previous, shows that forgetting is decomposable
with respect to a signature, which in turn implies that for-
getting is a commutative operation with respect to its second
argument. Last, P is a conservative extension of the result
of forgetting, which is to say, trivially σ(P) \ A′ ⊆ σ(P),
and the consequences of P and Forget(P,A) coincide over
the language Lσ(P)\A′ .

With regards to SE models, we obtain the following re-
sults giving an alternative characterisation of forgetting.
Here only we use the notation SEA(P) to indicate the SE
models of program P over alphabet A.

Proposition 2 Let A′ ⊆ A, and let σ(P) ⊆ A.

1. SEA\A′(Forget(P,A′)) = SEA(P)|(A\A′)

2. SEA(Forget(P,A′)) = (SEA(P)|(A\A′))↑A
The first part provides a semantic characterisation of for-
getting: the SE models of Forget(P,A′) are exactly the
SE models of P restricted to the signature A \ A′. Very
informally, what this means is that the SE models of
Forget(P,A′) can be determined by simply dropping the
symbols in A′ from the SE models of P . The second part,
which is a simple corollary of the first, expresses forgetting
with respect to the original signature.

Of course, one may wish to re-express the effect of for-
getting in the original language of P ; in fact, many ap-
proaches to forgetting assume that the underlying language

40

is unchanged. To this end, we can consider a variant of Def-
inition 1 as follows, where A′ ⊆ A.

ForgetA(P,A′) ≡ CnA(Forget(P,A′)) (2)

That is, Forget(P,A′) is re-expressed in the original lan-
guage with signature A. The result is a theory over the orig-
inal language, but where the resulting theory carries no con-
tingent information about the domain of application regard-
ing elements of A′.

The following definition is useful in stating results con-
cerning forgetting.

Definition 2 Signature A is irrelevant to P , IR(P,A), iff
there is P ′ such that P ↔s P

′ and σ(P ′) ∩ A = ∅.
Zhang and Zhou (2009) give four postulates characteris-

ing their approach to forgetting in the modal logic S5. An
analogous result follows here with respect to forgetting re-
expressed in the original signature:

Proposition 3 Let A′ ⊆ A and let σ(P), σ(P ′) ⊆ A.
Then P ′ = ForgetA(P,A′) iff

1. P `s P ′
2. If IR(r,A′) and P `s r then P ′ `s r
3. If IR(r,A′) and P 6`s r then P ′ 6`s r
4. IR(P ′,A′)
For the last three parts we have that, if a rule r is independent
of a signatureA′, then forgettingA′ has no effect on whether
that formula is a consequence of the original knowledge base
or not (Parts 2 and 3). The last part is a “success” postulate:
the result of forgettingA′ yields a theory expressible without
A′.

A Finite Characterisation of Forgetting
Aside: Forgetting in Propositional Logic We first take
a quick detour to forgetting in propositional logic to illus-
trate the general approach to finitely characterising forget-
ting. Let φ be a formula in propositional logic and let p be
an atom; the standard definition for forgetting p from φ in
propositional logic is defined to be φ[p/>]∨φ[p/⊥]. It is not
difficult to show that this is equivalent to Definition 1, but
suitably re-expressed in terms of propositional logic. This
definition however is not particularly convenient. It is appli-
cable only to finite sets of formulas. As well, it results in a
formula whose main connective is a disjunction.

An alternative is given as follows. Assume that a for-
mula (or formulas) for forgetting is expressed in clause form,
where a (disjunctive) clause is expressed as a set of literals.
For forgetting an atom p, consider the set of all clauses ob-
tained by resolving on p:

Definition 3 Let S be a set of propositional clauses and p ∈
P . Define

Res(S, p) = {φ | ∃φ1, φ2 ∈ S such that
p ∈ φ1 and ¬p ∈ φ2, and
φ = (φ1 \ {p}) ∪ (φ2 \ {¬p})}

We obtain the following, where ForgetPC refers to forget-
ting in propositional logic:

Theorem 2 Let S be a set of propositional clauses over sig-
nature P and p ∈ P .

ForgetPC(P, p) ↔ S|(P\{p}) ∪Res(S, p).

This provides an arguably more convenient means of
computing forgetting, in that it is easily implementable, and
one remains with a set of clauses.

Back to Forgetting in Logic Programming: We can use
the same overall strategy for computing forgetting in a dis-
junctive logic program. In particular, for forgetting an atom
a, we can use the inference rules from (Wong 2008) to com-
pute “resolvents” of rules that don’t mention a. It proves to
be the case that the corresponding definition is a bit more
intricate, since it involves various combinations of WGPPE
and S-HYP, but overall the strategy is the same as for propo-
sitional logic.

In the definition below, ResLP corresponds to Res for
forgetting in propositional logic. In propositional logic, Res
was used to compute all resolvents on an atom a. Here the
same thing is done: we consider instances of WGPPE and
S-HYP in place of propositional resolution; these instances
are given by the two parts of the union, respectively, below.

Definition 4 Let P be a disjunctive logic program and a ∈
A.

Define:

ResLP (P, a) =
{r | ∃r1, r2 ∈ P such that
r1 = A1←B1, a,∼C1,

r2 = A2; a←B2,∼C2,

r = A1;A2 ← B1, B2,∼C1,∼C2 }
∪
{r | ∃r1, . . . , rn, r′ ∈ P such that a = a1

ri = Ai←Bi,∼ai,∼Ci, 1 ≤ i ≤ n
r′ = A← a1, . . . an,∼C and
r = A1; . . . ;An ←

B1, . . . , Bn,∼C1, . . . ,∼Cn,∼A,∼C }

We obtain the following:
Theorem 3 Let P be a disjunctive logic program over A
and a ∈ A. Assume that any rule r ∈ P is satisfiable, non-
tautologous, and contains no redundant occurrences of any
atom.

Then:
Forget(P, a)↔s P|(A\{a}) ∪ ResLP (P, a).

Proof Outline: From Definition 1, Forget(P, a) is de-
fined to be the set of those SE consequences of program
P that do not mention a. Thus for disjunctive rule r,
r ∈ Forget(P, a) means that P `s r and a 6∈ σ(r). Thus
the left-to-right direction is immediate: Any r ∈ P|(A\{a})
or r ∈ ResLP (P, a) is a SE consequence of P that does not
mention a.

For the other direction, assume that we have a proof of
r from P , represented as a sequence of rules. If no rule in
the proof mentions a, then we are done. Otherwise, since r

41

does not mention a, there is a last rule in the proof, call it rn
that does not mention a, but is obtained from rules that do
mention a. The case where rn is obtained via Taut, Contra,
or Nonmin is easily handled. If rn is obtained via WGPPE
or S-HYP then there are rules rk and rl that mention a (and
perhaps other rules in the case of S-HYP). If rk,rl ∈ P then
rn ∈ ResLP (P, a). If one of rk, rl is not in P (say, rk)
then there are several cases, but in each case it can be shown
that the proof can be transformed to another proof where
the index of rk in the proof sequence is decreased and the
index of no rule mentioning a is increased. This process
must terminate (since a proof is a finite sequence), where
the premisses of the proof are either rules of P that do not
mention a, elements of ResLP (P, a), or tautologies.

Consider the following case, where rn = A1;A2;A3 ←
B1, B2, B3, and we use the notation that each Ai is a
set of implicitly-disjoined atoms while each Bi is a set of
implicitly-conjoined literals. Assume that rn is obtained by
an application of WGPPE from rk = a;A1;A2 ← B1, B2

and rl = A3 ← a,B3. Assume further that rk is obtained
from ri = a; b;A1 ← B1 and rj = A2 ← b, B2 by an appli-
cation of WGPPE. This situation is illustrated in Figure 1a.

a; b;

3 <− B ,1

A1 A2 <− A3 <−

B2A2 <−

B1 B2 B3<−

B ,1A ;1

A ;1 A ;2 B3B ,2

b, a,

a;

A

Figure 1a

Then essentially the steps involving the two applications
of WGPPE can be “swapped”, as illustrated in Figure 1b,
where rk is replaced by r′k = a;A1;A2 ← B1, B2.

a; b;

3 <− B ,1

A1 A2 <− A3 <−

B3A3 <−

B1 B2 B3<−

B ,1A ;1

A ;1 A ;2 B3B ,2

b, a,

b;

A

Figure 1b

Thus the step involving a is informally “moved up” in the
proof. There are 12 other cases, involving various combina-
tions of the inference rules, but all proceed the same as in
the above. �

The theorem is expressed in terms of forgetting a single
atom. Via Proposition 1.4 this readily extends to forgetting a
set of atoms. Moreover, since we inherit the results of Propo-
sitions 1 and 3, we get that the results of forgetting are inde-
pendent of syntax, even though the expression on the right
hand side of Theorem 3 is a set of rules obtained by trans-
forming and selecting rules in P . It can also be observed that
forgetting an atom results in at worst a quadratic blowup in
the size of the program. While this may seem comparatively

modest, it implies that forgetting a set of atoms may result
in an exponential blowup.

Example 1 Let P = {p ← ∼q. r ← p}. Forgetting p
yields {r ← ∼q} (where r ← ∼q is obtained by an appli-
cation of WGPPE), while forgetting q and r yield programs
{r ← p} and {p← ∼q} respectively.

Computation of Forgetting
By Theorem 3, we have the following algorithm for comput-
ing the result of forgetting. A rule r is a tautology if it is of
the form r = A; b ← b, B,∼C; a rule r is a contradictory
if it is of the form r = A; c ← B,∼c,∼C; a rule r is min-
imal if there is no rule r′ in P such that B(r′) ⊆ B(r),
H(r′) ⊆ H(r) and one of these two subset relations is
proper; otherwise, r is non-minimal.
Algorithm 1 (Computing a result of forgetting)
Input: Disjunctive program P and literal a in P .
Output: Forget(P, a).
Procedure:

Step 1. Remove tautology rules, contradiction rules and
non-minimal rules from P . The resulting disjunctive pro-
gram is still denoted P .

Step 2. Collect all rules in P that do not contain the atom
a, denoted P ′.

Step 3. For each pair of rules r1 = A1 ← B1, a,∼C1

and r2 = A2; a← B2,∼C2, add the rule r = A1;A2 ←
B1, B2,∼C1,∼C2 to P ′

Step 4. For each rule r′ = A ← a1, . . . an,∼C where
for some i, ai = a, and for each set of n rules {ri = Ai←
Bi,∼ai,∼Ci | 1 ≤ i ≤ n}, add the rule r = A1; . . . ;An ←
B1, . . . , Bn,∼C1, . . . ,∼Cn,∼A,∼C to P ′.

Step 5. Return P ′ as Forget(P, a).
Some remarks for the algorithm are in order. Obviously,

Step 1 is to preprocesss the input program by eliminating
tautology rules, contradiction rules and non-minimal rules
from P . Initially, all rules that do not contain a, which are
trivial SE-consequences of P , are included in the result of
forgetting. In many practical applications, such a part of
input program is usually not very large and thus forgetting
can be efficiently done although the input program can be
very large. Step 3 and Step 4 implement two resolution rules
WGPPE and S-HYP, respectively.

Conflict Resolving by Forgetting: Revisited
(Eiter and Wang 2006; 2008) explore how their semantic for-
getting for logic programs can be used to resolve conflicts in
multi-agent systems. However, their notion of forgetting is
based on answer sets and thus does not preserve the syn-
tactic structure of original logic programs, as pointed out in
(Cheng et al. 2006). In this subsection, we demonstrate how
this shortcoming of Eiter and Wang’s forgetting can be over-
come in our SE-forgetting for disjunctive programs.

The basic idea of conflict resolving (Eiter and Wang 2006;
2008) consists of two observations:

1. each answer set corresponds to an agreement among some
agents;

42

2. conflicts are resolved by forgetting some literals/concepts
for some agents/ontologies.

Definition 5 Let S = (P1, P2, . . . , Pn), where each logic
program Pi represents the preferences/constraints of Agent
i. A compromise of S is a sequence C = (F1, F2, . . . , Fn)
where each Fi is a set of atoms to be forgotten from Pi. An
agreement of S on C is an answer set of forget(S, C) =
forget(P1, F1) ∪ forget(P2, F2) ∪ · · · ∪ forget(Pn, Fn).

For specific applications, we may need to impose certain
conditions on each Fi. However, the two algorithms (Al-
gorithms 1 and 2) in (Cheng et al. 2006) may not produce
intuitive results if directly used in a practical application.
Consider a simple scenario with two agents.

Example 2 (Cheng et al. 2006) Suppose that two agents A1
and A2 try to reach an agreement on submitting a paper to a
conference, as a regular paper or as a system description. If
a paper is prepared as a system description, then the system
may be implemented either in Java or Prolog. The prefer-
ences and constraints are as follows.

1. The same paper cannot be submitted as both a regular
paper and system description.

2. A1 would like to submit the paper as a regular one and,
in case the paper is submitted as a system description and
there is no conflict, he would prefer to use Java.

3. A2 would like to submit the paper as a system description
but not prefer regular paper.

Obviously, the preferences of these two agents are jointly in-
consistent and thus it is impossible to satisfy both at the same
time. The scenario can be encoded as a collection of three
disjunctive programs (P0 stands for general constraints):
S = (P0, P1, P2) where R,S, J, P mean “regular paper,”
“system description,” “Java” and “Prolog,” respectively:
P0 = {← R,S}, P1 = {R ← . J ← S,∼P}, P2 =
{← R. S ←}.

Intuitively, if A1 can make a compromise by forgetting R,
then there will be an agreement {S, J}, that is, a system
description is prepared and Java is used for implementing
the system. However, if we directly use forgetting in conflict
resolution, by forgettingR, we can only obtain an agreement
{S} which does not contain J . In fact, this is caused by the
removal of J ← S,∼P in the process of forgetting. This rule
is abundant in P1 but becomes relevant when we consider
the interaction of A1 with other agents (here A2).

As pointed out in (Cheng et al. 2006), it is necessary
to develop a theory of forgetting for disjunctive programs
such that locally abundant (or locally irrelevant) rules in the
process of forgetting can be preserved. Our SE forgetting
provides an ideal solution to the above problem. This can
be seen from the definition of SE-forgetting and Algorithm
1 (if needed, we don’t have to eliminate non-minimal rules
in Step 1). In fact, Forget(P1, R) = {J ← S,∼P}, which
preserves the locally redundant rule J ← S,∼P .

Conclusion
In this paper we have addressed forgetting under SE models
in disjunctive logic programs, wherein forgetting amounts

to a reduction in the signature of a program. Essentially, the
result of forgetting an atom (or set of atoms) from a pro-
gram is the set of SE consequences of the program that do
not mention that atom or set of atoms. This definition then is
at the knowledge level, that is, it is abstract and is indepen-
dent of how a program is represented. Hence this theory of
forgetting is useful for tasks such as knowledge base com-
parison and reuse. A result of the proposed forgetting under
SE models is also a result of forgetting under answer sets
but not vice versa. Moreover, we have developed an effi-
cient algorithm for computing forgetting in disjunctive logic
programs, which is complete and sound with respect to the
original knowledge-level definition.

A prototype implementation, of forgetting has been
implemented in Java and is available publicly at
http://www.ict.griffith.edu.au/˜kewen/
SE-Forget/. While our experiments on the efficiency
of the system are still underway, preliminary results show
that the algorithm is very efficient. Currently we are still
working on improving efficiency of the implementation
and are experimenting on applying it to large practical
logic programs and randomly generated programs. We
plan to apply this notion of forgetting to knowledge base
comparison and reuse. For future work we also plan to
investigate a similar approach to forgetting for other classes
of logic programs.

References
Chitta Baral. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press,
2003.
George Boole. An Investigation of the Laws of Thought.
Walton, London, 1854. (Reprinted by Dover Books, New
York, 1954).
Chen C. Chang and H. Jerome Keisler. Model Theory. Dover
Publications, third edition, 2012.
Fu-Leung Cheng, Thomas Eiter, Nathan Robinson, Abdul
Sattar, and Kewen Wang. LPForget: A system of forget-
ting in answer set programming. In Proceedings of the 19th
Joint Australian Conference on Artificial Intelligence, pages
1101–1105, 2006.
Kees Doets. Basic Model Theory. CSLI Publications, 1996.
Thomas Eiter and Kewen Wang. Forgetting and conflict re-
solving in disjunctive logic programming. In Proceedings
of the Twenty-First National Conference on Artificial Intel-
ligence, pages 238–243. AAAI Press, 2006.
Thomas Eiter and Kewen Wang. Forgetting in answer set
programming. Artificial Intelligence, 172(14):1644–1672,
2008.
Dov M. Gabbay, David Pearce, and Agustı́n Valverde. In-
terpolable formulas in equilibrium logic and answer set pro-
gramming. J. Artif. Intell. Res. (JAIR), 42:917–943, 2011.
Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and
Torsten Schaub. Answer Set Solving in Practice. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2012.

43

Michael Gelfond and Vladimir Lifschitz. The stable model
semantics for logic programming. In Proceedings of the
Fifth International Conference and Symposium of Logic
Programming (ICLP’88), pages 1070–1080. The MIT Press,
1988.
Wilfrid Hodges. A Shorter Model Theory. Cambridge Uni-
versity Press, Cambridge, UK, 1997.
Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter.
Model-theoretic inseparability and modularity of descrip-
tion logic ontologies. Artificial Intelligence, 203:66–103,
2013.
Roman Kontchakov, Frank Wolter, and Michael Za-
kharyaschev. Can you tell the difference between DL-
Lite ontologies? In Proceedings of the 11th International
Conference on Principles of Knowledge Representation and
Reasoning (KR-08), pages 285–295, 2008.
J. Lang, P. Liberatore, and P. Marquis. Propositional in-
dependence : Formula-variable independence and forget-
ting. Journal of Artificial Intelligence Research, 18:391–
443, 2003.
V. Lifschitz, D. Pearce, and A. Valverde. Strongly equiva-
lent logic programs. ACM Transactions on Computational
Logic, 2(4):526–541, 2001.
F. Lin and R. Reiter. Forget it! In AAAI Fall Symposium on
Relevance, New Orleans, November 1994.
D. Subramanian, R. Greiner, and J. Pearl. Special issue on
relevance. Artificial Intelligence, 97(1-2), 1997.
Hudson Turner. Strong equivalence made easy: Nested ex-
pressions and weight constraints. Theory and Practice of
Logic Programming, 3(4):609–622, 2003.
Kewen Wang, Abdul Sattar, and Kaile Su. A theory of for-
getting in logic programming. In Proceedings of the Twen-
tieth National Conference on Artificial Intelligence (AAAI),
pages 682–688. AAAI Press, 2005.
Yisong Wang, Yan Zhang, Yi Zhou, and Mingyi Zhang.
Forgetting in logic programs under strong equivalence. In
Proceedings of the Thirteenth International Conference on
the Principles of Knowledge Representation and Reasoning,
2012.
Yisong Wang, Kewen Wang, and Mingyi Zhang. Forget-
ting for answer set programming revisited. In Proceedings,
The 23rd International Joint Conference on Artificial Intel-
ligence (IJCAI), pages 1162–1168, 2013.
Ka-Shu Wong. Sound and complete inference rules for SE-
consequence. Journal of Artificial Intelligence Research,
31(1):205–216, January 2008.
Y. Zhang and N. Foo. Answer sets for prioritized logic
programs. In Proceedings of the International Symposium
on Logic Programming (ILPS-97), pages 69–84. MIT Press,
1997.
Yan Zhang and Norman Foo. Solving logic program conflict
through strong and weak forgetting. Artificial Intelligence,
170:739–778, 2006.
Yan Zhang and Yi Zhou. Knowledge forgetting: Properties
and applications. Artificial Intelligence, 173(16-17):1525–
1537, November 2009.

Yan Zhang, Norman Y. Foo, and Kewen Wang. Solving
logic program conflict through strong and weak forgettings.
In Proceedings of the International Joint Conference on Ar-
tificial Intelligence, pages 627–634, 2005.

44

Three Semantics for Modular Systems

Shahab Tasharrofi and Eugenia Ternovska
Simon Fraser University, email: {ter, sta44}@cs.sfu.ca

Abstract

In this paper, we further develop the framework of Modular
Systems that lays model-theoretic foundations for combining
different declarative languages, agents and solvers. We intro-
duce a multi-language logic of modular systems. We define
two novel semantics, a structural operational semantics, and
an inference-based semantics. We prove the new semantics
are equivalent to the original model-theoretic semantics and
describe future research directions.

Introduction
Modular Systems (MS) (Tasharrofi and Ternovska 2011) is
a language-independent formalism representing and solving
complex problems specified declaratively. There are several
motivations for introducing the MS formalism:
• the need to be able to split a large problem into subprob-

lems, and to use the most suitable formalism for each part,
• the need to model distributed combinations of programs,

knowledge bases, languages, agents, etc.,
• the need to model collaborative solving of complex tasks,

such as in satisfiability-based solvers.
The MS formalism gave a unifying view, through a seman-
tic approach, to formal and declarative modelling of modular
systems. In that initial work, individual modules were con-
sidered from both model-theoretic and operational view. Un-
der the model-theoretic view, a module is a set (or class) of
structures, and under the operational view it is an operator,
mapping a subset of the vocabulary to another subset. An ab-
stract algebra on modules was given. It is similar to Codd’s
relational algebra and allows one to combine modules on
abstract model-theoretic level, independently from what lan-
guages are used for describing them. An important operation
in the algebra is the loop (or feedback) operation, since iter-
ation underlies many solving methods. We showed that the
power of the loop operator is such that the combined mod-
ular system can capture all of the complexity class NP even
when each module is deterministic and polytime. Moreover,
in general, adding loops gives a jump in the polynomial time
hierarchy, one step from the highest complexity of the com-
ponents. It is also shown that each module can be viewed as
an operator, and when each module is (anti-) monotone, the
number of the potential solutions can be reduced by using
ideas from the logic programming community.

Inspired by practical combined solvers, the authors of
(Tasharrofi, Wu, and Ternovska 2011; 2012) introduced
an algorithm to solve model expansion tasks for modular
systems. The evolution processes of different modules are
jointly considered. The algorithm incrementally constructs
structures for the expanded vocabulary by communicating
with oracles associated with each module, who provide ad-
ditional information in the form of reasons and advice to
navigate the search. It was shown that the algorithm closely
corresponds to what is done in practice in different areas
such as Satisfiability Modulo Theories (SMT), Integer Lin-
ear Programming (ILP), Answer Set Programming (ASP).

Background: Model Expansion In (Mitchell and Ter-
novska 2005), the authors formalize combinatorial search
problems as the task of model expansion (MX), the logi-
cal task of expanding a given (mathematical) structure with
new relations. Formally, the user axiomatizes the problem
in some logic L. This axiomatization relates an instance of
the problem (a finite structure, i.e., a universe together with
some relations and functions), and its solutions (certain ex-
pansions of that structure with new relations or functions).
Logic L corresponds to a specification/modelling language.
It could be an extension of first-order logic such as FO(ID),
or an ASP language, or a modelling language from the CP
community such as ESSENCE (Frisch et al. 2008). The MX
framework was later extended to infinite structures to for-
malise built-in arithmetic in specification languages (Ter-
novska and Mitchell 2009; Tasharrofi and Ternovska 2010a).

Recall that a vocabulary is a set of non-logical (predicate
and function) symbols. An interpretation for a vocabulary is
provided by a structure, which consists of a set, called the
domain or universe and denoted by dom(.), together with
a collection of relations and (total) functions over the uni-
verse. A structure can be viewed as an assignment to the
elements of the vocabulary. An expansion of a structureA is
a structure B with the same universe, and which has all the
relations and functions of A, plus some additional relations
or functions.

Formally, the task of model expansion for an arbitrary
logic L is: Given an L-formula φ with vocabulary σ ∪ ε
and a structure A for σ find an expansion of A, to σ ∪ ε,
that satisfies φ. Thus, we expand the structure A with rela-
tions and functions to interpret ε, obtaining a model B of φ.

45

We call σ, the vocabulary ofA, the instance vocabulary, and
ε := vocab(φ) \ σ the expansion vocabulary1. If σ = ∅,
we talk about model generation, a particular type of model
expansion that is often studied.

Given a specification, we can talk about a set of σ ∪ ε-
structures which satisfy the specification. Alternatively, we
can simply talk about a given set of σ ∪ ε-structures as
an MX-task, without mentioning a particular specification
the structures satisfy. These sets of structures will be called
modules later in the paper. This abstract view makes our
study of modularity language-independent.

Example 1 The following logic program φ constitutes an
MX specification for Graph 3-colouring:

1{R(x), B(x), G(x)}1← V (x).
⊥ ← R(x), R(y), E(x, y).
⊥ ← B(x), B(y), E(x, y).
⊥ ← G(x), G(y), E(x, y).

An instance is a structure for vocabulary σ = {E}, i.e., a
graphA = G = (V ;E). The task is to find an interpretation
for the symbols of the expansion vocabulary ε = {R,B,G}
such that the expansion of A with these is a model of φ:

Az }| {
(V ;EA, RB, BB, GB)| {z }

B

|= φ.

The interpretations of ε, for structures B that satisfy φ, are
exactly the proper 3-colourings of G.

The model expansion task is very common in declarative
programming, – given an input, we want to generate a so-
lution to a problem specified declaratively. This is usually
done through grounding, i.e., combining instance structure
A to a problem description φ thus obtaining a reduction to
a low-level solver language such as SAT, ASP, SMT, etc.
Model Expansion framework was introduced for systematic
study of declarative languages. In particular, it connects KR
with descriptive complexity (Immerman 1982). It focuses on
problems, not on problem instances, it separates instances
from problem descriptions. Using the MX framework, one
can produce expressiveness and capturing results for speci-
fication languages to guarantee:
• universality of a language for a class of problems,
• feasibility of a language by bounding resources needed to

solve problems in that language.
In terms of complexity, MX lies in-between model check-

ing (MC) (a full structure is given) and satisfiability (SAT)
(we are looking for a structure). Model generation (σ = ∅)
has the same complexity as MX. The authors of (Kolokolova
et al. 2010) studied the complexity of the three tasks, MC,
MX and SAT, for several logics. Despite the importance of
MX task in several research areas, the task has not yet been
studied sufficiently, unlike the two related tasks of MC and
SAT.

1By “:=” we mean “is by definition” or “denotes”. By
vocab(φ) we understand the vocabulary of φ.

Orders

Raw Materials

Plan

Workshop

Office

Factory

O R’

R

Figure 1: Modular representation of a factory

General Research Goal: Adding Modularity Given the
importance of combining different languages and solvers to
achieve ease of axiomatization and the best performance,
our goal is to extend the MX framework to combine modules
specified in different languages. The following example il-
lustrates what we are aiming for.

Example 2 (Factory as Model Expansion) In Figure 1, a
part of a simple factory is represented as a modular system.
Both the office and the workshop modules can be viewed as
model expansion tasks. The instance vocabulary of the work-
shop is σ = {RawMaterials} and expansion vocabulary
ε = {R}. The bigger box with dashed borders is an MX task
with instance vocabulary σ′ = {Orders,RawMaterials}
and expansion vocabulary ε′ = {Plan} (the “internal” ex-
pansion symbolsO andR are hidden from the outside). This
task is a compound MX task whose result depends on the
internal work of the office and the workshop, both of which
can also have an internal structure and be represented as
modular systems themselves.

Contributions of this paper In this paper, we further de-
velop the framework of Modular Systems. In this frame-
work, primitive modules represent individual knowledge
bases, agents, companies, etc. They can be axiomatized in a
logic, be legacy systems, or be represented by a human who
makes decisions. Unlike the previous work, we precisely de-
fine the notion of a well-formed modular system, and clearly
separate the syntax of the algebraic language and the seman-
tics of the algebra of modular systems. The syntax of the al-
gebra uses a few operations, each of them (except feedback)
is a counterpart of an operation in Codd’s relational algebra,
but over sets of structures rather than tables, and with direc-
tionality taken into account. The semantics of both primitive
and compound modules is simply a set (class) of structures
(an MX task). By relying on the semantics of the algebra,
we then introduce its natural counterpart in logic. The logic
for modular systems allows for multiple logics axiomatiz-
ing individual modules in the same formula. We expect that
multi-language formalisms such as ID-logic (Denecker and
Ternovska 2008) will be shown to be particular instances of
this logic, and other combinations of languages will be sim-
ilarly developed.

After giving the model-theoretic semantics of the algebra
of modular systems, we define what it means, for a primitive
module, to act as a non-deterministic operator on states of

46

the world represented by structures over a large vocabulary.
For each expansion, there is a transition to a new structure
where the interpretation of the expansion changes, and ev-
erything else moves to a new state by inertia. This definition
is new and is more general than the one we introduced in
the previous work. We then define the semantics of the al-
gebraic operators by Plotkin-style structural operational se-
mantics (Plotkin 1981). This definition also new. We then
prove the equivalence of the two semantics, operational and
model-theoretic. To illustrate the power of the projection op-
eration, we show how a deterministic polytime program can
be “converted” to a non-deterministic one that solves an NP-
complete problem. In general, adding projection produces
a jump in the computational complexity of the framework,
similarly to feedback and union.

The authors of (Lierler and Truszczynski 2014) recently
introduced an abstract modular inference systems formal-
ism, and shown how propagations in solvers can be analyzed
using abstract inference rules they introduced. We believe it
is an important work. In this paper, we show how inference
system can be lifted and integrated with our Modular Sys-
tems framework. The advantage of this integrations is that,
with the help of the inference semantics, we can now go into
much greater level of details of propagation processes in our
abstract algorithm for solving modular systems. The infer-
ence semantics is the third semantics of modular systems
mentioned in the title.

The importance of abstract study of modularity We
now would like to discuss the potential implications of ab-
stract study of modularity for KR and declarative program-
ming.

A family of multi-language KR formalisms The Modu-
lar Systems framework gives rise to a whole new family of
KR formalisms by giving the semantics to the combination
of modules. This is can be viewed, for example, as a sig-
nificant extension of answer set programming (ASP). In the
past, combining ASP programs that were created separately
from each other was only possible, under some conditions,
in sequence. Now, we can combine them in a loop, use pro-
jections to hide parts of the vocabularies, etc. The previous
results remain applicable. We expect, for example, that split-
table programs under stable model semantics and stratifiable
programs satisfy our conditions for sequential compositions
of modules. Previously, in ASP, all modules had to be in-
terpreted under one semantics (e.g. stable model semantics).
Now, any model-theoretic semantics of individual modules
is allowed. For example, some of the modules can be ax-
iomatized, say, in first-order logic. That is, in particular, our
proposal amounts to a “modular multi-language ASP”.

Foundations in model theory We believe that classic
model theory is the right abstraction tool and a good com-
mon ground for combining formalisms developed in differ-
ent communities. It is sufficiently general and provides a
rich machinery developed by generations of researchers. The
machinery includes, for example, deep connections between
expressiveness and computational complexity. In addition,
the notion of a structure is important in KR as it abstractly

represents our understanding of the world.
We believe that, despite common goals, the interaction be-

tween the CP community and various solver communities
on one hand and the KR community is insufficient, and that
foundations in model theory can make the interaction much
more easy and fruitful.

Analyzing other KR systems Just as in the case of
single-module system where we can use the purely semanti-
cal framework of model expansion, we can use the frame-
work of Modular Systems to analyze multi-language KR
formalisms and to study the expressive power of modular
systems.

The modular framework generalizes naturally to the case
where we need to study languages (logics) with “built-in”
operations. In that case, embedded model expansion has to
be considered, where the embedding is into an infinite struc-
ture interpreting, e.g., built-in arithmetical operations (Ter-
novska and Mitchell 2009; Tasharrofi and Ternovska 2010a).

Operational View Due to structural operational seman-
tics, a new type of behaviour equivalence (bisimulation) can
be defined on complex modules (e.g. represented by ASP
programs). The operational view enables us to obtain re-
sults about our modular systems such as approximability
of a sub-class of modular systems. While this operational
view is novel and we have not developed it very much, we
believe that this view allows one to apply the extensive re-
search on proving properties of transition systems and the
techniques developed in the situation calculus to prove use-
ful facts about transition systems. We can do e.g. verifica-
tion of correct behaviour, static or dynamic, particularly in
the presence of arithmetic. The mathematical abstraction we
proposed allows one to approach solving the problem of syn-
thesis of modular systems abstractly, similarly to (Giacomo,
Patrizi, and Sardiña 2013) Just as a Golog program can be
synthesized from a library of available programs, a modular
system can be synthesized from a library of available solu-
tions to MX tasks.

Related Work Our work on modularity was initially in-
spired by (Järvisalo et al. 2009) who developed a constraint-
based modularity formalism, where modules were repre-
sented by constraints and combined through operations of
sequential composition and projection. A detailed compar-
ison with that work is given in (Tasharrofi and Ternovska
2011).

The connections with the related formalism of Multi-
Context Systems (MCSs), see (Brewka and Eiter 2007) and
consequent papers, has been formally studied in (Tasharrofi
2013) and (Tasharrofi and Ternovska 2014). We only men-
tion here that while the contexts are very general, and may
have any semantics, not necessarily model-theoretic, the
communication between knowledge bases happens through
rules of a specific kind, that are essentially rules of logic pro-
grams with negation as failure. We, on the other hand, have
chosen to represent communication simply through equal-
ity of vocabulary symbols, and to develop a model-theoretic
algebra of modular systems.

Splitting results in logic programming (ASP) give condi-
tions for separating a program into modules (Turner 1996;

47

1996). The results rely on a specific semantics, but can be
used for separating programs into modules to represent in
our formalism. The same applies to modularity of induc-
tive definitions (Denecker and Ternovska 2008; Vennekens,
Gilis, and Denecker 2006; Denecker and Ternovska 2004).

The Generate-Define-Test parts of Answer Set Programs,
as discussed in (Denecker et al. 2012), are naturally repre-
sentable as a sequential composition of the corresponding
modules.

A recent work is (Lierler and Truszczynski 2014), where
the authors introduce an abstract approach to modular infer-
ence systems and solvers was already mentioned, and is used
in this paper.

The Algebra of Modular Systems
Each modular system abstractly represents an MX task, i.e.,
a set (or class) of structures over some instance (input) and
expansion (output) vocabulary. Intuitively, a modular system
is described as a set of primitive modules (individual MX
tasks) combined using the operations of:
1. Projection(πν(M)) which restricts the vocabulary of a

module. Intuitively, the projection operator on M defines
a modular system that acts as M internally but where
some vocabulary symbols are hidden from the outside.

2. Composition(M1BM2) which connects outputs ofM1 to
inputs ofM2. As its name suggests, the composition oper-
ator is intended to take two modular systems and defines
a multi-step operation by serially composingM1 andM2.

3. Union(M1 ∪ M2) which, intuitively, models the case
when we have two alternatives to do a task (that we can
choose from).

4. Feedback(M [R = S]) which connects output S of M
to its inputs R. As the name suggests, the feedback oper-
ator models systems with feedbacks or loops. Intuitively,
feedbacks represent fixpoints (not necessarily minimal) of
modules viewed as operators, since they state that some
outputs must be equal to some inputs.

5. Complementation(M) which does “the opposite” of what
M does.

These operations are similar to the operations of Codd’s re-
lational algebra, but they work on sets of structures instead
of relational tables. Thus, our algebra can be viewed as a
higher-order counterpart of Codd’s algebra, with loops. One
can introduce other operations, e.g. as combinations of the
ones above. The algebra of modular systems is formally de-
fined recursively starting from primitive modules.
Definition 1 (Primitive Module) A primitive module M is
a model expansion task (or, equivalently, a class of struc-
tures) with distinct instance (input) vocabulary σ and ex-
pansion (output) vocabulary ε.

A primitive module M can be given, for example, by a
decision procedure DM that decides membership in M . It
can also be given by a first- or second-order formula φ. In
this case, M is all the models of φ, M = Mod(φ). It could
also be given by an ASP program. In this case, M would be
the stable models of the program, M = StableMod(φ).
Remark 1 A module M can be given through axiomatizing
it by a formula φ in some logic L such that vocab(φ) = σ ∪

εa ∪ ε. That is, φ may contain auxiliary expansion symbols
that are different from the output symbols ε ofM . (It may not
even be possible to axiomatize M in that particular logic L
without using any auxiliary symbols). In this case, we take
M = Mod(φ)|(σ∪ε), the models of φ restricted to σ ∪ ε.
Example 3 For example, formula φ of Example 1 describes
the model expansion task for the problem of Graph 3-
colouring. Thus, φ can be the representation of a module
Mcol with instance vocabulary {E} and expansion vocabu-
lary {R,G,B}.

Before recursively defining our algebraic language, we
have to define composable and independent modules
(Järvisalo et al. 2009):
Definition 2 (Composable, Independent) Modules M1

and M2 are composable if εM1 ∩ εM2 = ∅ (no output
interference). Module M2 is independent from M1 if
σM2 ∩ εM1 = ∅ (no cyclic module dependencies).
Independence is needed for the definition of union, both
properties, comparability and independence are needed for
sequential composition, non-empty σ is needed for feed-
back.
Definition 3 (Well-Formed Modular Systems (MS(σ, ε)))
The set of all well-formed modular systems MS(σ, ε) for
a given input, σ, and output, ε, vocabularies is defined as
follows.

Base Case, Primitive Modules: IfM is a primitive module
with instance (input) vocabulary σ and expansion (out-
put) vocabulary ε, then M ∈ MS(σ, ε).

Projection If M ∈ MS(σ, ε) and τ ⊆ σ∪ ε, then πτ (M) ∈
MS(σ ∩ τ, ε ∩ τ).

Sequential Composition: If M ∈ MS(σ, ε), M ′ ∈
MS(σ′, ε′), M is composable (no output interference)
with M ′, and M is independent from M ′ (no cyclic de-
pendencies) then (M BM ′) ∈ MS(σ ∪ (σ′ \ ε), ε ∪ ε′).

Union: If M ∈ MS(σ, ε), M ′ ∈ MS(σ′, ε′), M is indepen-
dent from M ′, and M ′ is also independent from M then
(M ∪M ′) ∈ MS(σ ∪ σ′, ε ∪ ε′).

Feedback: If M ∈ MS(σ, ε), R ∈ σ, S ∈ ε, and R and S
are symbols of the same type and arity, then M [R = S] ∈
MS(σ \ {R}, ε ∪ {R}).

Complementation: IfM ∈ MS(σ, ε), thenM ∈ MS(σ, ε).

Nothing else is in the set MS(σ, ε).

Note that the feedback (loop) operator is not defined for the
case σ = ∅. However, composition with a module that se-
lects structures where interpretations of two expansion pred-
icates are equal is always possible. The feedback opera-
tor was introduced because loops are important in informa-
tion propagation, e.g. in all software systems and in solvers
(e.g. ILP, ASP-CP, DPLL(T)-based) (Tasharrofi, Wu, and
Ternovska 2011; 2012). Feedback operation converts an in-
stance predicate to an expansion predicate, and equates it to
another expansion predicate. Feedbacks are, in a sense, fix-
points, not necessarily minimal2. They add expressive power

2Modular systems under supported semantics (Tasharrofi 2013)
allow one to focus on minimal models.

48

LP :
(b′ ∨ c′) ≡ ¬ d

LSM : d ← not a

LWF : a ← cLWF : a ← b

b′ c′

Figure 2: A simple modular system where modules are ax-
iomatized in different languages.

to the algebra of modular systems through introducing addi-
tional non-determinism, which is not achieved by equating
two expansion predicates. We discuss this issue again after
the multi-language logic of modular systems is introduced.
The input-output vocabulary of module M is denoted
vocab(M). Modules can have “hidden” vocabulary sym-
bols, see Remark 1.

The description of a modular system (as in Definition 3)
gives an algebraic formula representing a system. Subsys-
tems of a modular system M are sub-formulas of the for-
mula that represents M . Clearly, each subsystem of a mod-
ular system is a modular system itself.

Example 4 (Simple Modular System) Consider the fol-
lowing axiomatizations of modules3, each in the correspond-
ing logic Li.

PM1 := {LWF : a← b},

PM2 := {LWF : a← c},
PM3 := {LSM : d← not a},
PM4 := {LP : b′ ∨ c′ ≡ ¬ d}.

LWF is the logic of logic programs under the well-founded
semantics, LSM is the logic of logic programs under the sta-
ble model semantics, LP is propositional logic.

The modular system in Figure 2 is represented by the fol-
lowing algebraic specification.

M := π{a,b,c,d}((((M1∪M2)BM3)BM4)[c = c′][b = b′]).

Module M ′ := (((M1 ∪M2) B M3) B M4) has σM ′ =
{b, c}, εM ′ = {a, b′, c′, d}. After adding feedbacks, we have
M ′′ := M ′[c = c′][b = b′], which turns instance symbols
b and c into expansion symbols, so we have σM ′′ = ∅ and
εM ′′ = {a, b, c, b′, c′, d}, and in addition, the interpretations
of c and c′, and b and b′ must coincide. Finally, projection
hides c′ and b′.

3In realistic examples, module axiomatizations are much more
complex and contain multiple rules or axioms.

Module M corresponds to the whole modular system de-
noted by the box with dotted borders. Its input-output vocab-
ularies are as follows: σM = ∅, εM = {a, b, c, d}, b′ and c′
are “hidden” from the outside. They are auxiliary expansion
symbols, see Remark 1.

Modules (M1 ∪ M2) and M3 in this example are com-
posable (no output interference) and independent (no cyclic
dependencies), M1 and M2 are independent.

The paper (Tasharrofi and Ternovska 2011) contains a
more applied example, of a business process planner, where
each module represents a business partner.

Multi-Language Logic of Modular Systems It is possi-
ble to introduce a multi-language logic of modular systems,
where formulas of different languages are combined using
conjunctions4 (standing for B), disjunctions (∪), existential
second-order quantification (πν), etc. For example, model
expansion for the following formula

φM := ∃b′∃c′((({LWF : a← b} ∨ {LWF : a← c})
∧{LSM : d← not a} ∧ {LP : d← not a})
∧[b = b′ ∧ c = c′].

with σM = ∅ and ε = {a, b, c, d} and “hidden” (auxilliary,
see Remark 1) vocabulary εa = {b′, c′} corresponds to the
modular system in Figure 2 from Example 4.

Feedback is a meta-logic operation that does not have a
counterpart among logic connectives. Feedback does not ex-
ist for model generation (σ = ∅) and increases the number
of symbols in the expansion vocabulary. In our example, for-
mer instance symbols (b and c in this case) become expan-
sion symbols, and become equal to the outputs b′ and c′ thus
forming loops.

Note also that projections (thus quantifiers) over variables
ranging over domain objects can be achieved if such vari-
ables are considered to be a part of the vocabularies of mod-
ules. In this logic, the full version of ID-logic, for exam-
ple, would correspond to the case without feedbacks and
all modules limited to either those axiomatized in first-order
logic or definitions under well-founded semantics. A formal
study of such a multi-language logic in connection with ex-
isting KR formalisms (such as, e.g. ID-logic, combinations
such as ASP and Description logic. etc.) is left as a future
research direction.

Note that if all modules are axiomatized in second-order
logic, our task is just model expansion for classic second-
order logic that is naturally expressible by adding existential
second-order quantifiers at the front. If there are multiple
languages, we can talk about the complexity of model ex-
pansion for the combined formula (or modular system) as a
function of the expressiveness of the individual languages,
which is a study of practical importance.

Model-Theoretic Semantics
So far, we introduced the syntax of the algebraic language
using the notion of a well-formed modular system. Those

4It will be clear from the semantics that the operation B is com-
mutative.

49

are primitive modules (that are sets of structures) or are con-
structed inductively by the algebraic operations of composi-
tion, union, projection, loop. Model-theoretic semantics as-
sociates, with each modular system, a set of structures. Each
such structure is called a model of that modular system. Let
us assume that the domains of all modules are included in a
(potentially infinite) universal domain U .

Definition 4 (Models of a Modular System) Let M ∈
MS(σ, ε) be a modular system and B be a (σ∪ ε)-structure.
We construct the set Mmt = Mod(M) of models of module
M under model-theoretic semantics recursively, by struc-
tural induction on the structure of a module.
Base Case, Primitive Module: B is a model of M if B ∈
M .

Projection: B is a model of M := π(σ∪ε)(M ′) (with M ′ ∈
MS(σ′, ε′)) if a (σ′ ∪ ε′)-structure B′ exists such that B′
is a model of M ′ and B′ expands B.

Composition: B is a model of M := M1 B M2 (with
M1 ∈ MS(σ1, ε1) and M2 ∈ MS(σ2, ε2)) if B|(σ1∪ε1)
is a model of M1 and B|(σ2∪ε2) is a model of M2.

Union: B is a model of M := M1 ∪ M2 (with M1 ∈
MS(σ1, ε1) and M2 ∈ MS(σ2, ε2)) if either B|(σ1∪ε1) is
a model of M1, or B|(σ2∪ε2) is a model of M2.

Feedback: B is a model of M := M ′[R = S] (with M ′ ∈
MS(σ′, ε′)) if RB = SB and B is model of M ′.

Complementation: B is a model of M := M ′ (with
M,M ′ ∈ MS(σ, ε)) if and B is not a model of M ′. That
is, M ′ denotes the complement of M in the set of all pos-
sible σ ∪ ε-structures over the universal domain U .

Nothing else is a model of M .

Note that, by this semantics, sequential composition is
a commutative operation (we could have used on nota-
tion), however the direction of information propagation is
uniquely given by the separations of the input and output
vocabularies. Notice that it’s not possible to compose two
modules in two different ways. If it was possible, then in
the compound module we would had that the intersection of
the input and the output vocabularies would not be empty,
and this is not allowed. So, we prefer to use B instead of
on for both historic and mnemonic reasons, and encourage
the reader to write algebraic formulas in a way that corre-
sponds to their visualizations of the corresponding modular
systems.

An example illustrating the semantics of the feedback op-
erator, as well as non-determinism introduced by this opera-
tor is given in the appendix.

The task of model expansion for modular systemM takes
a σ-structureA and finds (or reports that none exists) a (σ ∪
ε)-structure B that expands A and is a model of M . Such a
structure B is a solution of M for input A.

Remark 2 The semantics does not put any finiteness re-
striction on the domains of structures. Thus, the framework
works for modules with infinite structures.

Structural Operational Semantics
In this section, we introduce a novel Structural Operational
Semantics of modular systems.

We now focus on potentially infinite all-inclusive vocab-
ulary τ that subsumes the vocabularies of all modules con-
sidered. Thus, we always have vocab(M) ⊆ τ .
Definition 5 (State of a Modular Systems) A τ -state of a
modular system M ∈ MS(σ, ε) is a τ -structure such that
(σ ∪ ε) ⊆ τ .

The semantics we give is structural because, for example,
the meaning of the sequential composition, M1 B M2, is
defined through the meaning of M1 and the meaning of M2.

Definition 6 (Modules as Operators) We say that a well-
formed modular system M (non-deterministically) maps τ -
state B1 to τ -state B2, notation (M,B1) −→ B2, if we can
apply the rules of the structural operational semantics (be-
low) starting from this expression and arriving to true. In
that case, we say that transition (M,B1) −→ B2 is deriv-
able. Primitive modules M :

(M,B1) −→ B2

true
if B2|(σ∪ε) ∈M and B2|(τ\ε) = B1|(τ\ε).

We proceed by induction on the structure of modular system
M . Projection πν(M):

(πν(M),B1) −→ B2

(M,B′1) −→ B′2
if B′1|ν = B1|ν and B′2|ν = B2|ν .

Composition M1 BM2:

(M1 BM2,B1) −→ B2

(M1,B1) −→ B′ and (M2,B′) −→ B2
.

Union M1 ∪M2:

(M1 ∪M2,B1) −→ B2

(M1,B1) −→ B2
,

(M1 ∪M2,B1) −→ B2

(M2,B1) −→ B2
.

Feedback M [R = S]:

(M [R = S],B1) −→ B2

(M,B1) −→ B2
, if RB1 = SB2 .

Complementation M :

(M,B1) −→ B2

true
if (M,B1) −→ B2 is not derivable.

Nothing else is derivable.

Let us clarify the projection operation πν(M). Let
vocab(M) = σ′ ∪ ε′, let ν = σ ∪ ε, σ ⊆ σ′, ε ⊆ ε′. Mod-
ule πν(M), viewed as an operator, is applied to τ -structure
B1. It (a) expands σ-part of B1 to σ′ by an arbitrary inter-
pretation over the same domain, and then (b) applies M to
the modified input, (c) projects the result of application of
M onto ε, ignoring everything else, (d) the interpretations
of τ \ ε are moved from B1 by inertia.

Definition 7 (Operational Semantics) Let M be a well-
formed modular system in MS(σ, ε). The semantics of M
is given by the following set.

Mop := {B | (B1,M) −→ B2 and B|σ = B1|σ, B|ε = B2|ε}.

Figure 3 illustrates this definition.

50

M
σ

ε
τ τ

B1 B2

Figure 3: An illustration of Definition 7. Module M ∈
MS(σ, ε) maps a τ -structure B1 (with (σ ∪ ε) ⊆ τ) to a
τ -structure B2 by changing the interpretation ε according to
M (so that the σ part and the new ε part, together, form a
model of M). Interpretation of all other symbols, including
those in σ, stays the same. This is similar to how frame ax-
ioms keep fluents that are not affected by actions unchanged
in the situation calculus.

Corollary 1 Every result of application of M is its fixpoint.
That is, for any τ -states B1, B2, if (M,B1) −→ B2, then
(M,B2) −→ B2.

Proof: By Definition 7, because of inertia, the interpretation
of σ is transferred from B1 to B2. Since the interpretation of
ε is already changed by M , nothing is to be changed, and
(M,B2) −→ B2.
Theorem 1 (Operational = Model-theoretic Semantics)
Let M be a well-formed modular system in MS(σ, ε). Then,
its model-theoretic and operational semantics coincide,

Mmt = Mop.

The most important consequence of this theorem is that all
the results obtained when modules are viewed as operators,
still hold when modules are viewed as sets of structures (and
vice versa). Thus, we may use either of these semantics.
From now on, by M we mean either one of these sets Mmt

or Mop.
Proof: We prove the statement inductively.
Base case, primitive module By definition, model-
theoretically, B is a model of M if B ∈ M . On the other
hand, operationaly,

Mop := {B | (B1,M) −→ B2 and B|σ = B1|σ, B|ε = B2|ε},
where
(M,B1) −→ B2

true
if B2|(σ∪ε) ∈M and B2|(τ\ε) = B1|(τ\ε).

Thus, B ∈ M , and the two semantics coincide for primitive
modules.
Our inductive hypothesis is that the statement of the theorem
holds for M1, M2 and M ′. We proceed inductively.
Projection M := πν(M ′). By the hypothesis, (M ′)mt =
(M ′)op, where (M ′)op is constructed “from pieces”,
(M ′)op := {B′ | (B′1,M ′) −→ B′2 and B|σ = B′1|σ, B|ε =
B′2|ε}. We apply the rule

(πν(M ′),B1) −→ B2

(M ′,B′1) −→ B′2
if B′1|ν = B1|ν and B′2|ν = B2|ν

and obtain that (πν(M ′),B1) −→ B2 where B1 and B2 are
just likeB′1 andB′2 on the vocabulary ν. Now,M := πν(M ′)
is constructed “from σ and ε pieces” of B1 and B2, respec-
tively (where ν = σ ∪ ε):
Mop := {B | (B1,M) −→ B2 and B|σ = B1|σ, B|ε = B2|ε},
On the other hand, model-theoretically, B is a model of
M := π(σ∪ε)(M ′) (with M ′ ∈ MS(σ′, ε′)) if a (σ′ ∪ ε′)-
structure B′ exists such that B′ is a model of M ′ and B′
expands B, which makes the two semantics equal for pro-
jection, (M)mt = (M)op.
We omit the proofs for the other inductive cases.

Applications of Operational View We now discuss how
the operational semantics can be used. For example, we can
consider modular systems at various levels of granularity.
We might be interested in the following question: ifM gives
a transition from a structure B to structures B′, then what
are the transitions given by the subsystems of M? While an-
swering this question in its full generality is algorithmically
impossible, we may study the question of whether a partic-
ular transition by a subsystem exists. To answer it, one has
to start from the system and build down to the subsystem
using the rules of the structural operation semantics. Rea-
soning about subsystems of a modular system can be useful
in business process modelling. Suppose a particular transi-
tion should hold for the entire process. This might be the
global task of an organization. In order to make that transi-
tion, the subsystems have to perform their own transitions.
Those transitions are derivable using the rules of structural
operational semantics.

Complexity In the following proposition, we assume a
standard encoding of structures as binary strings) as is com-
mon in Descriptive complexity (Immerman 1982). Note that
if M is deterministic, it is polytime in the size of the en-
coding of the input structure. This is because the domain
remains the same, the arities of the relations in ε are fixed,
so we need (nk) steps to construct new interpretations of ε,
and move the remaining relations.
Proposition 1 Let M be a module that performs a (de-
terministic) polytime computation. Projection πν(M) in-
creases the complexity of M from P to NP. More generally,
for an operator M on the k-th level of the Polynomial Time
hierarchy (PH), projection can increase the complexity ofM
from ∆P

k to ΣPk+1.
Proof: We will show the property for the jump from P to NP,
for illustration. The proof generalizes to all levels of PH. Let
M takes an instance of an NP-complete problem, such as a
graph in 3-Colourability, encoded in σG, and what it means
to be 3-Colourable, as a formula encoded in the interpreta-
tion of σφ, and returns an instance of SAT encoded in ε, a
CNF formula that is satisfiable if and only if the graph is 3-
Colourable, and a yes/no answer bit represented by εanswer .
Thus, M performs a deterministic (thus, polytime) reduc-
tion. Consider πν(M), where ν = σG ∪ εanswer. This mod-
ule takes a graph and returns a yes or no answer depending
on whether the graph is 3-colourable. Thus, πν(M) solves
an NP-complete problem.

Union and feedback change the complexity as well.

51

Inference Semantics of Modular Systems
In modular systems, each agent or a knowledge base can
have its own way of reasoning, that can be formulated
through inferences or propagations. To define inferential se-
mantics for modular systems, we closely follow (Lierler and
Truszczynski 2014). Since input/output is not considered by
the authors, their case corresponds to the instance vocabu-
lary being empty, σ = ∅, i.e., model generation, and can
be viewed as an analysis of the after-grounding faze. Since
we want to separate problem descriptions and their instances
(and reuse problem descriptions), as well as to define ad-
ditional algebraic operations (the authors consider conjunc-
tions only), we need to allow σ 6= ∅, and present inferences
on partial structures. This is not hard however.

We start by assuming that there is a constant for every el-
ement of the domains. We view structures as sets of ground
atoms. We now closely follow and generalize the definitions
of (Lierler and Truszczynski 2014) from sets of proposi-
tional atoms to first-order structures, to establish a connec-
tion to the Modular Systems framework presented above.
The propositional case then corresponds to structures over
the domain {〈 〉} containing the empty tuple that interprets
propositional symbols that are true.

Let a fixed countably infinite set of ground atoms τ be
given. We use Lit(τ) to denote the set of all literals over τ .
For S ⊆ Lit(τ):
S+ := τ ∩ S
S− := {a ∈ τ | ¬a ∈ S}
l ∈ Lit(τ) is unassigned in S if l 6∈M and l̄ 6∈ S
S is consistent if S+ ∩ S− 6= ∅
Let C(τ) be all consistent subsets of Lit(τ).

Definition 8 (Abstract Inference Representation of M)
An abstract inference representation M i of module M over
a vocabulary τ is a finite set of pairs of the form (S, l),
where S ∈ C(τ), l ∈ Lit(τ), and l 6∈ Lit(τ). Such pairs
are called inferences of the module M .

In the exposition below, we view structures as sets of
propositional atoms, B ⊆ τ .
S is consistent with B ⊆ τ if S+ ⊆ B and S− ∩ B = ∅.

Literal l is consistent with B ⊆ τ if {l} is consistent with B.

Definition 9 (Primitive Module, Inferential Semantics)
A primitive module M ∈ MS(σ, ε) is a set of (σ ∪ ε)-
structures B such that for every inference (S, l) ∈ M i such
as S is consistent with B, l is consistent with B, too.

Thus, primitive modules, even when they are represented
through abstract inferences, are sets of structures as before,
and the definitions of the algebraic operations do not need to
be changed.

The inference framework can be viewed as yet another
(very useful) way of representing modules. Since the infer-
ence framework is abstract, we cannot prove a correspon-
dence between a given individual module presented as a set
of structures or as an operator on one hand and as an inferen-
tial representation on the other in general, without specifying
what inference mechanism is used. However, we can do it
for particular cases such as Ent(T) (Lierler and Truszczyn-
ski 2014), which is left for a future paper.

With the inference semantics as described, we can now
model problems (sets of instances) rather than single in-
stances as a combination of other problems. This semantics
allows one to study the details of propagation of information
in the process of constructing solutions to modular systems,
through incremental construction of partial structures as in
(Tasharrofi, Wu, and Ternovska 2011; 2012), but in more
detail. This direction is left for future research.

Conclusion and Future Directions
We described a modular system framework, where primitive
and compound modules are sets (classes) of structures, and
combinations of modules are achieved by applying algebraic
operations that are a higher-order counterpart of Codd’s re-
lational algebra operations. An additional operation is the
feedback operator that connects output symbols with the in-
put ones and is used to model information propagation such
as loops of software systems and solvers.

We defined two novel semantics of modular systems, op-
erational and inferential, that are equivalent to the original
model-theoretic semantics (Tasharrofi and Ternovska 2011).
We presented a multi-language logic, a syntactic counterpart
of the algebra of modular systems. Minimal models of mod-
ular systems are introduced in a separate paper on supported
modular systems, see also (Tasharrofi 2013).

The framework of modular systems gives us, through its
semantic-based approach, a unifying perspective on multi-
language formalisms and solvers. More importantly, it gives
rise to a whole new family of multi-language KR for-
malisms, where new formalisms can be obtained by instan-
tiating specific logics defining individual modules.

The framework can be used for analysis of existing KR
languages. In particular, expressiveness and complexity re-
sults for combined formalisms can be obtained in a way
similar to the previous work (Mitchell and Ternovska 2008;
Tasharrofi and Ternovska 2010b; 2010a) where single-
module embedded model expansion was used.

References
Brewka, G., and Eiter, T. 2007. Equilibria in heteroge-
neous nonmonotonic multi-context systems. In Proceedings
of the 22nd National Conference on Artificial Intelligence
(AAAI’07) - Volume 1, 385–390. AAAI Press.
Denecker, M., and Ternovska, E. 2004. Inductive situation
calculus. In Proc., KR-04.
Denecker, M., and Ternovska, E. 2008. A logic of non-
monotone inductive definitions. ACM transactions on com-
putational logic (TOCL) 9(2):1–51.
Denecker, M.; Lierler, Y.; Truszczynski, M.; and Vennekens,
J. 2012. A tarskian informal semantics for answer set
programming. In Dovier, A., and Costa, V. S., eds., ICLP
(Technical Communications), volume 17 of LIPIcs, 277–
289. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.
Frisch, A. M.; Harvey, W.; Jefferson, C.; Martı́nez-
Hernández, B.; and Miguel, I. 2008. Essence: A constraint
language for specifying combinatorial problems. Con-
straints 13:268–306.

52

Giacomo, G. D.; Patrizi, F.; and Sardiña, S. 2013. Automatic
behavior composition synthesis. Artif. Intell. 196:106–142.
Immerman, N. 1982. Relational queries computable in poly-
nomial time. In STOC ’82: Proceedings of the 14th Annual
ACM Symposium on Theory of Computing, 147–152.
Järvisalo, M.; Oikarinen, E.; Janhunen, T.; and Niemelä, I.
2009. A module-based framework for multi-language con-
straint modeling. In Proceedings of the 10th International
Conference on Logic Programming and Non-monotonic
Reasoning (LPNMR’09), volume 5753 of Lecture Notes in
Computer Science (LNCS), 155–168. Springer-Verlag.
Kolokolova, A.; Liu, Y.; Mitchell, D.; and Ternovska, E.
2010. On the complexity of model expansion. In Proc.,
17th Int’l Conf. on Logic for Programming, Artificial Intelli-
gence and Reasoning (LPAR-17), 447–458. Springer. LNCS
6397.
Lierler, Y., and Truszczynski, M. 2014. Abstract modular
inference systems and solvers. In Proceedings of the 16th
International Symposium on Practical Aspects of Declara-
tive Languages (PADL’14).
Mitchell, D. G., and Ternovska, E. 2005. A framework
for representing and solving NP search problems. In Proc.
AAAI, 430–435.
Mitchell, D. G., and Ternovska, E. 2008. Expressiveness
and abstraction in ESSENCE. Constraints 13(2):343–384.
Plotkin, G. 1981. A structural approach to operational se-
mantics. Technical Report DAIMI FN-19, Computer Sci-
ence Department, Aarhus University. Also published in:
Journal of Logic and Algebraic Programming, 60-61:17-
140, 2004.
Tasharrofi, S., and Ternovska, E. 2010a. PBINT, a logic
for modelling search problems involving arithmetic. In Pro-
ceedings of the 17th Conference on Logic for Programming,
Artificial Intelligence and Reasoning (LPAR’17). Springer.
LNCS 6397.
Tasharrofi, S., and Ternovska, E. 2010b. Built-in arithmetic
in knowledge representation languages. In NonMon at 30
(Thirty Years of Nonmonotonic Reasoning).
Tasharrofi, S., and Ternovska, E. 2011. A semantic account
for modularity in multi-language modelling of search prob-
lems. In Proceedings of the 8th International Symposium on
Frontiers of Combining Systems (FroCoS), 259–274.
Tasharrofi, S., and Ternovska, E. 2014. Generalized multi-
context systems. In Proceedings of the 14th International
Conference on Principles of Knowledge Representation and
Reasoning (KR2014).
Tasharrofi, S.; Wu, X. N.; and Ternovska, E. 2011. Solving
modular model expansion tasks. In Proceedings of the 25th
International Workshop on Logic Programming (WLP’11),
volume abs/1109.0583. Computing Research Repository
(CoRR).
Tasharrofi, S.; Wu, X. N.; and Ternovska, E. 2012. Solving
modular model expansion: Case studies. In Postproceed-
ings of the 19th International Conference on Applications
of Declarative Programming and Knowledge Management

and 25th Workshop on Logic Programming, 175–187. Lec-
ture Notes in Artificial Intelligence (LNAI).
Tasharrofi, S. 2013. Solving Model Expansion Tasks: System
Design and Modularity. Ph.D. Dissertation, Simon Fraser
University, Burnaby, BC, Canada.
Ternovska, E., and Mitchell, D. G. 2009. Declarative pro-
gramming of search problems with built-in arithmetic. In
Proc. of IJCAI, 942–947.
Turner, H. 1996. Splitting a default theory. In Proceed-
ings of the 13th National Conference on Artificial intelli-
gence (AAAI’96) - Volume 1, 645–651. AAAI Press.
Vennekens, J.; Gilis, D.; and Denecker, M. 2006. Splitting
an operator: Algebraic modularity results for logics with fix-
point semantics. ACM Transactions on Computational Logic
7(4):765–797.

Appendix
Example 5 We illustrate models of a simple modular system
with feedback operator. Consider the following axiomatiza-
tion PM0 of a primitive module M0, where σM0 = {i} and
εM0 = {a, b}.

PM0 :=
{
LSM : a← i, not b,

b← i, not a.

}
We will demonstrate how the set of models of this program
changes when we use the feedback operator. When the in-
put i is true (given by the corresponding instance structure),
then

StableMod(PM0 , i = true) = {{a}, {b}}.

When i is false, there is one model, where everything is false,

StableMod(PM0 , i = false) = {∅}.

Module M0 is the set of structures for the entire σM0 ∪ εM0

vocabulary. Since we are dealing with a propositional case,
each structure is represented by a set of atoms that are true
in that structure.

M0 = {{i, a}, {i, b}, ∅}.

Now consider a different module, M1, with σM1 = {i, a, b}
and εM1 = {a′, b′}, axiomatized by

PM1 :=
{
LSM : a′ ← i, not b,

b′ ← i, not a.

}
This modular system is deterministic, – for each input

(each of the eight possible interpretations of i, a and b), there
is at most one model.

i a b Models of M1

⊥ ⊥ ⊥ {∅}
⊥ > ⊥ {∅}
⊥ ⊥ > {∅}
⊥ > > {∅}
> ⊥ ⊥ {{i, a′, b′}}
> > ⊥ {{i, a, a′}}
> ⊥ > {{i, b, b′}}
> > > {{i, a, b}}

53

a′ ← i, not b,
b′ ← i, not a.

a’ b’

a i b

Figure 4: Module M1.

a′ ← i, not b,
b′ ← i, not a.

a’

a

b’

bi

Figure 5: Module M2.

Thus, we have:

M1 = {∅, {i, a′, b′}, {i, a, a′}, {i, b, b′}, {i, a, b}}.

If we add feedback, we obtain the following system M2 =
M1[a = a′][b = b′]. Its input is i, all other symbols are in
the expansion vocabulary. The models are:

i Models of M2

⊥ {∅}
⊥ {∅}
> {{i, a, a′}}
> {{i, b, b′}}

M2 = M1[a = a′][b = b′] = {∅, {i, a, a′}, {i, b, b′}}.

As we see here, after adding feedback, for the same input
i, we obtain two different models. Thus, by means of feed-
back, a deterministic system M1 was turned into a non-
deterministic system M2.

This modular system is deterministic, – for each input
(each of the eight possible interpretations of i, a and b), there
is at most one model. Notice also that

π{i,a,b}(M1[a = a′][b = b′]) = M0.

54

Generalizing Modular Logic Programs ∗

João Moura and Carlos Viegas Damásio
CENTRIA - Centre for Artificial Intelligence

Universidade Nova de Lisboa, Portugal

Abstract

Even though modularity has been studied extensively in
conventional logic programming, there are few approaches
on how to incorporate modularity into Answer Set Pro-
gramming, a prominent rule-based declarative program-
ming paradigm. A major approach is Oikarinnen and Jan-
hunen’s Gaifman-Shapiro-style architecture of program mod-
ules, which provides the composition of program modules.
Their module theorem properly strengthens Lifschitz and
Turner’s splitting set theorem for normal logic programs.
However, this approach is limited by module conditions that
are imposed in order to ensure the compatibility of their mod-
ule system with the stable model semantics, namely forcing
output signatures of composing modules to be disjoint and
disallowing positive cyclic dependencies between different
modules. These conditions turn out to be too restrictive in
practice and in this paper we discuss alternative ways of lift
both restrictions independently, effectively solving the first,
widening the applicability of this framework and the scope of
the module theorem.

1 Introduction
Over the last few years, answer set programming (ASP)
(Eiter et al. 2001; Baral 2003; Lifschitz 2002; Marek and
Truszczynski 1999; Niemelä 1998) emerged as one of the
most important methods for declarative knowledge repre-
sentation and reasoning. Despite its declarative nature, de-
veloping ASP programs resembles conventional program-
ming: one often writes a series of gradually improving pro-
grams for solving a particular problem, e.g., optimizing
execution time and space. Until recently, ASP programs
were considered as integral entities, which becomes prob-
lematic as programs become more complex, and their in-
stances grow. Even though modularity is extensively stud-
ied in logic programming, there are only a few approaches
on how to incorporate it into ASP (Gaifman and Shapiro
1989; Oikarinen and Janhunen 2008; Dao-Tran et al. 2009;
Babb and Lee 2012) or other module-based constraint mod-

∗The work of João Moura was supported by grant
SFRH/BD/69006/2010 from Fundação para a Ciência e Tec-
nologia (FCT) from the Portuguese Ministério do Ensino e da
Ciência. Research also supported by FCT funded project ERRO:
Efficient reasoning with rules and ontologies (ref. PTDC/EIA-
CCO/121823/2010).

eling frameworks (Järvisalo et al. 2009; Tasharrofi and Ter-
novska 2011). The research on modular systems of logic
program has followed two main-streams (Bugliesi, Lamma,
and Mello 1994). One is programming in-the-large where
compositional operators are defined in order to combine
different modules, e.g., (Mancarella and Pedreschi 1988;
Gaifman and Shapiro 1989; O’Keefe 1985). These operators
allow combining programs algebraically, which does not re-
quire an extension of the theory of logic programs. The other
direction is programming-in-the-small, e.g., (Giordano and
Martelli 1994; Miller 1986), aiming at enhancing logic pro-
gramming with scoping and abstraction mechanisms avail-
able in other programming paradigms. This approach re-
quires the introduction of new logical connectives in an ex-
tended logical language. The two mainstreams are thus quite
divergent.

The approach of (Oikarinen and Janhunen 2008) defines
modules as structures specified by a program (knowledge
rules) and by an interface defined by input and output atoms
which for a single module are, naturally, disjoint. The au-
thors also provide a module theorem capturing the compo-
sitionality of their module composition operator. However,
two conditions are imposed: there cannot be positive cyclic
dependencies between modules and there cannot be com-
mon output atoms in the modules being combined. Both in-
troduce serious limitations, particularly in applications re-
quiring integration of knowledge from different sources. The
techniques used in (Dao-Tran et al. 2009) for handling pos-
itive cycles among modules are shown not to be adaptable
for the setting of (Oikarinen and Janhunen 2008).

In this paper we discuss two alternative solutions to the
common outputs problem, generalizing the module theorem
by allowing common output atoms in the interfaces of the
modules being composed. A use case for this requirement
can be found in the following example.

Example 1 Alice wants to buy a car, wanting it to be safe
and not expensive; she preselected 3 cars, namely c1, c2 and
c3. Her friend Bob says that car c2 is expensive, while Char-
lie says that car c3 is expensive. Meanwhile, she consulted
two car magazines reviewing all three cars. The first consid-
ered c1 safe and the second considered c1 to be safe while
saying that c3 may be safe. Alice is very picky regarding
safety, and so she seeks some kind of agreement between the
reviews.

55

The described situation can be captured with five mod-
ules, one for Alice, other three for her friends, and another
for each magazine. Alice should conclude that c1 is safe
since both magazines agree on this. Therefore, one would
expect Alice to opt for car c1 since it is not expensive, and it
is reviewed as being safe. However, the current state-of-the-
art does not provide any way of combining these modules
since they share common output atoms. �

In summary, the fundamental results of (Oikarinen and
Janhunen 2008) require a syntactic operation to combine
modules – basically corresponding to the union of programs
–, and a compositional semantic operation joining the mod-
els of the modules. The module theorem states that the mod-
els of the combined modules can be obtained by applying
the semantics of the natural join operation to the original
models of the modules – which is compositional.

The authors show however that allowing common outputs
destroys this property. There are two alternatives to pursue:

(1) Keep the syntactic operation: use the union of pro-
grams to syntactically combine modules, plus some book-
keeping of the interface, and thus the semantic operation on
models has to be changed;

(2) Keep the semantic operation: the semantic operation
is the natural join of models, and thus a new syntactic oper-
ation is required to guarantee compositionality.

Both will be explored in this paper as they correspond to
different and sensible ways of combining two sources of in-
formation, already identified in Example 1: the first alterna-
tive is necessary for Alice to determine if a car is expensive;
the second alternative captures the way Alice determines
whether a car is safe or not. Keeping the syntactic opera-
tion is shown to be impossible since models do not convey
enough information to obtain compositionality. We present a
solution to this problem based on a transformation that intro-
duces the required extra information. The second solution is
possible, and builds on the previous module transformation.

This paper proceeds in Section 2 with an overview of the
modular logic programming paradigm, identifying some of
its shortcomings. In Section 3 we discuss alternative meth-
ods for lifting the restriction that disallows positive cyclic
dependencies, and in Section 4 introduce two new forms of
composing modules allowing common outputs, one keeping
the original syntactic union operator and the other keeping
the original semantic model join operator. We finish with
conclusions and a general discussion.

2 Modularity in Answer Set Programming

Modular aspects of Answer Set Programming have been
clarified in recent years, with authors describing how
and when two program parts (modules) can be com-
posed (Oikarinen and Janhunen 2008; Dao-Tran et al. 2009;
Järvisalo et al. 2009) under the stable model semantics. In
this paper, we will make use of Oikarinen and Janhunen’s
logic program modules defined in analogy to (Gaifman and
Shapiro 1989) which we review after presenting the syntax
of answer set programs.

2.1 Answer set programming paradigm
Logic programs in the answer set programming paradigm
are formed by finite sets of rules r having the following syn-
tax:

L1 ← L2, . . . , Lm, not Lm+1, . . . , not Ln. (1)

(n ≥ m ≥ 0) where each Li is a logical atom without the
occurrence of function symbols – arguments are either vari-
ables or constants of the logical alphabet.

Considering a rule of the form (1), let HeadP (r) = L1

be the literal in the head, Body+
P (r) = {L2, . . . , Lm} be

the set with all positive literals in the body, Body−P (r) =
{Lm+1, . . . , Ln} be the set containing all negative literals
in the body, and BodyP (r) = {L2, . . . , Ln} be the set con-
taining all literals in the body. If a program is positive we
will omit the superscript in Body+

P (r). Also, if the context
is clear we will omit the subscript mentioning the program
and write simply Head(r) and Body(r) as well as the argu-
ment mentioning the rule.

The semantics of stable models is defined via the reduct
operation (Gelfond and Lifschitz 1988). Given an interpreta-
tion M (a set of ground atoms), the reduct PM of a program
P with respect to M is the program

{Head(r)← Body+(r) | r ∈ P,Body−(r) ∩M = ∅}.

The interpretation M is a stable model of P iff M =
LM(PM), where LM(PM) is the least model of program
PM .

The syntax of logic programs has been extended
with other constructs, namely weighted and choice
rules (Niemelä 1998). In particular, choice rules have the
following form, for (n ≥ 1):

{A1, . . . , An} ← B1, . . . Bk, not C1, . . . , not Cm. (2)

As observed by (Oikarinen and Janhunen 2008), the
heads of choice rules possessing multiple atoms can
be freely split without affecting their semantics. When
splitting such rules into n different rules {ai} ←
B1, . . . Bk, not C1, . . . , not Cm where 1 ≤ i ≤ n, the
only concern is the creation of n copies of the rule body
B1, . . . Bk, not C1, . . . , not Cm. However, new atoms can
be introduced to circumvent this. There is a translation of
these choice rules to normal logic programs (Ferraris and
Lifschitz 2005), which we assume is performed throughout
this paper but that is omitted for readability. We deal only
with ground programs and use variables as syntactic place-
holders.

2.2 Modular Logic Programming
Modules, in the sense of (Oikarinen and Janhunen 2008), are
essentially sets of rules with an input and output interface:

Definition 1 (Program Module) A logic program module
P is a tuple 〈R, I,O,H〉 where:
1. R is a finite set of rules;
2. I , O, and H are pairwise disjoint sets of input, output,

and hidden atoms;
3. At(R) ⊆ At(P) defined by At(P) = I ∪O ∪H; and

56

4. Head(R) ∩ I = ∅.
The set of atoms in Atv(P) = I ∪ O are considered to

be visible and hence accessible to other modules composed
with P either to produce input for P or to make use of the
output of P . We use Ati(P) = I and Ato(P) = O to repre-
sent the input and output signatures of P , respectively. The
hidden atoms in Ath(P) = At(P)\Atv(P) = H are used
to formalize some auxiliary concepts of P which may not
be sensible for other modules but may save space substan-
tially. The condition head(R) 6∈ I ensures that a module
may not interfere with its own input by defining input atoms
of I in terms of its rules. Thus, input atoms are only allowed
to appear as conditions in rule bodies.

Example 2 The use case in Example 1 is encoded into the
five modules shown here:

PA = < {buy(X)← car(X), safe(X), not exp(X).
car(c1). car(c2). car(c3).},
{safe(c1), safe(c2), safe(c3),
exp(c1), exp(c2), exp(c3)},
{buy(c1), buy(c2), buy(c3)},
{car(c1), car(c2), car(c3)} >

PB = < {exp(c2).}, {}, {exp(c2), exp(c3)}, {} >
PC = < {exp(c3).}, {},

{exp(c1), exp(c2), exp(c3)}, {} >
Pmg1 = < {safe(c1).}, {},

{safe(c1), safe(c2), safe(c3)}, {} >
Pmg2 = < {safe(X)← car(X), airbag(X).

car(c1). car(c2). car(c3). airbag(c1).
{airbag(c3)}. },
{}, {safe(c1), safe(c2), safe(c3)},
{airbag(c1), airbag(c2), airbag(c3),
car(c1), car(c2), car(c3)} > �

In Example 2, module PA encodes the rule used by Alice
to decide if a car should be bought. The safe and expensive
atoms are its inputs, and the buy atoms its outputs; it uses
hidden atoms car/1 to represent the domain of variables.
Modules PB , PC and Pmg1 capture the factual information
in Example 1. They have no input and no hidden atoms,
but Bob has only analyzed the price of cars c2 and c3. The
ASP program module for the second magazine is more
interesting1, and expresses the rule used to determine if a
car is safe, namely that a car is safe if it has an airbag; it is
known that car c1 has an airbag, c2 does not, and the choice
rule states that car c3 may or may not have an airbag.

Next, the stable model semantics is generalized to cover
modules by introducing a generalization of the Gelfond-
Lifschitz’s fixpoint definition. In addition to weekly default
literals (i.e., not), also literals involving input atoms are
used in the stability condition. In (Oikarinen and Janhunen
2008), the stable models of a module are defined as follows:

Definition 2 (Stable Models of Modules) An inter-
pretation M ⊆ At(P) is a stable model of an ASP

1car belongs to both hidden signatures of PA and Pmg2 which
is not allowed when composing these modules, but for clarity we
omit a renaming of the car/1 predicate.

program module P = 〈R, I,O,H〉, if and only if
M = LM

(
RM ∪ {a.|a ∈M ∩ I}

)
. The stable models of

P are denoted by AS(P).

Intuitively, the stable models of a module are obtained
from the stable models of the rules part, for each possible
combination of the input atoms.

Example 3 Program modules PB , PC , and Pmg1 have
each a single answer set AS(PB) = {{exp(c2)}}, AS(PC)
= {{exp(c3)}}, and AS(Pmg1) = {{safe(c1)}}. Module
Pmg2 has two stable models, namely: {safe(c1), car(c1),
car(c2), car(c3), airbag(c1)}, and {safe(c1), safe(c3),
car(c1), car(c2), car(c3), airbag(c1), airbag(c3)}.

Alice’s ASP program module has 26 = 64 models corre-
sponding each to an input combination of safe and expensive
atoms. Some of these models are:

{ buy(c1), car(c1), car(c2), car(c3), safe(c1) }
{ buy(c1), buy(c3), car(c1), car(c2), car(c3),

safe(c1), safe(c3) }
{ buy(c1), car(c1), car(c2), car(c3), exp(c3),

safe(c1), safe(c3) }�

2.3 Composing programs from models
The composition of models is obtained from the union of
program rules and by constructing the composed output set
as the union of modules’ output sets, thus removing from
the input all the specified output atoms. (Oikarinen and Jan-
hunen 2008) define their first composition operator as fol-
lows: Given two modules P1 = 〈R1, I1, O1, H1〉 and P2 =
〈R2, I2, O2, H2〉, their compositionP1⊕P2 is defined when
their output signatures are disjoint, that is,O1∩O2 = ∅, and
they respect each others hidden atoms, i.e.,H1∩At(P2) = ∅
and H2 ∩At(P1) = ∅. Then their composition is

P1⊕P2 = 〈R1∪R2, (I1\O2)∪(I2\O1), O1∪O2, H1∪H2〉

However, the conditions given for ⊕ are not enough to
guarantee compositionality in the case of answer sets and as
such they define a restricted form:

Definition 3 (Module Union Operator t) Given modules
P1,P2, their union is P1 t P2 = P1 ⊕ P2 whenever (i)
P1⊕P2 is defined and (ii) P1 and P2 are mutually indepen-
dent2.

Natural join (./) on visible atoms is used in (Oikarinen
and Janhunen 2008) to combine stable models of modules
as follows:

Definition 4 (Join) Given modules P1 and P2 and sets of
interpretationsA1 ⊆ 2At(P1) andA2 ⊆ 2At(P2), the natural
join of A1 and A2 is:

A1 ./ A2 = { M1 ∪M2 |M1 ∈ A1,M2 ∈ A2 and
M1 ∩Atv(P2) = M2 ∩Atv(P1)}

This leads to their main result, stating that:

2There are no positive cyclic dependencies among rules in dif-
ferent modules, defined as loops through input and output signa-
tures.

57

Theorem 1 (Module Theorem) If P1,P2 are modules
such that P1 t P2 is defined, then

AS(P1 t P2) = AS(P1) ./ AS(P2)

Still according to (Oikarinen and Janhunen 2008), their
module theorem also straightforwardly generalizes for a col-
lection of modules because the module union operator t
is commutative, associative, and has the identity element
< ∅, ∅, ∅, ∅ >.

Example 4 Consider the compositionQ = (PA t Pmg1)t
PB . First, we have

PAtPmg1 =

〈 {buy(X)← car(X), safe(X),
not exp(X).

car(c1). car(c2). car(c3). safe(c1).},
{exp(c1), exp(c2), exp(c3)},
{buy(c1), buy(c2), buy(c3),
safe(c1), safe(c2), safe(c3)},
{car(c1), car(c2), car(c3)}

〉

It is immediate to see that the module theorem holds
in this case. The visible atoms of PA are safe/1,
exp/1 and buy/1, and the visible atoms for Pmg1

are {safe(c1), safe(c2)}. The only model for Pmg1 =
{safe(c1)} when naturally joined with the models of
PA, results in eight possible models where safe(c1),
not safe(c2), and not safe(c3) hold, and exp/1 vary. The
final ASP program module Q is

〈 {buy(X)← car(X), safe(X), not exp(X).
car(c1). car(c2). car(c3). exp(c2). safe(c1).},
{exp(c1)},
{buy(c1), buy(c2), buy(c3), exp(c2),
safe(c1), safe(c2), safe(c3)},
{car(c1), car(c2), car(c3)}

〉

The stable models of Q are thus:

{safe(c1), exp(c1), exp(c2), car(c1), car(c2), car(c3)}
{buy(c1), safe(c1), exp(c2), car(c1), car(c2), car(c3)}�

2.4 Visible and Modular Equivalence
The notion of visible equivalence has been introduced in or-
der to neglect hidden atoms when logic programs are com-
pared on the basis of their models. The compositionality
property from the module theorem enabled the authors to
port this idea to the level of program modules–giving rise to
modular equivalence of logic programs.

Definition 5 Given two logic program modules P and Q,
they are:
Visibly equivalent: P ≡v Q iff Atv(P) = Atv(Q) and
there is a bijection f : AS(P) → AS(Q) such that for all
M ∈ AS(P), M ∩Atv(P) = f(M) ∩Atv(Q).
Modularly equivalent: P ≡m Q iff Ati(P) = Ati(Q) and
P ≡v Q.

So, two modules are visibly equivalent if there is a bijec-
tion among their stable models, and they coincide in their
visible parts. If additionally, the two program modules have
the same input and output atoms, then they are modularly
equivalent.

2.5 Shortcomings
The conditions imposed in these definitions bring about
some shortcomings such as the fact that the output signatures
of two modules must be disjoint which disallows many prac-
tical applications e.g., we are not able to combine the results
of program module Q with any of PC or Pmg2 , and thus
it is impossible to obtain the combination of the five mod-
ules. Also because of this, the module union operator t is
not reflexive. By trivially waiving this condition, we imme-
diately get problems with conflicting modules. The compati-
bility criterion for the operator ./ also rules out the composi-
tionality of mutually dependent modules, but allows positive
loops inside modules or negative loops in general.
Example 5 (Common Outputs) Given PB and PC , which
respectively have:
AS(PB)={{exp(c2)}} and AS(PC)={{exp(c3)}},

the single stable model of their union AS(PB t PC) is:

{exp(c2), exp(c3)}
However, the join of their stable models is AS(PB) ./
AS(PC) = ∅, invalidating the module theorem. �

We illustrate next the issue with positive loops between
modules.
Example 6 (Cyclic Dependencies) Take the following two
program modules:

P1 = 〈{airbag ← safe.}, {safe}, {airbag}, ∅〉
P2 = 〈{safe← airbag.}, {airbag}, {safe}, ∅〉

Their stable models are:

AS(P1) = AS(P2) = {{}, {airbag, safe}}
while the single stable model of the union AS(P1 t P2) is
the empty model {}. Therefore AS(P1 t P2) 6= AS(P1) ./
AS(P2) = {{}, {airbag, safe}}, thus also invalidating the
module theorem. �

3 Positive Cyclic Dependencies Between
Modules

To attain a generalized form of compositionality we need to
be able to deal with the two restrictions identified previously,
namely cyclic dependencies between modules. In the litera-
ture, (Dao-Tran et al. 2009) presents a solution based on a
model minimality property. It forces one to check for mini-
mality on every comparable models of all program modules
being composed. It is not applicable to our setting though,
which can be seen in Example 7 where logical constant ⊥
represents value false.
Example 7 (Problem with minimization) Given modules
P1 = 〈{a ← b. ⊥ ← not b.}, {b}, {a}, {}〉 with one an-
swer set {a, b}, and P2 = 〈{b ← a.}, {a}, {b}, {}〉 with
stable models {} and {a, b}, their composition has no in-
puts and no intended stable models while their minimal join
contains {a, b}. �

Another possible solution requires the introduction of ex-
tra information in the models to be able to detect mutual
positive dependencies. This need has been identified be-
fore (Slota and Leite 2012) and is left for future work.

58

4 Generalizing Modularity in ASP by
Allowing Common Outputs

After having identified the shortcomings in the literature,
we proceed now to seeing how compositionality can be
maintained while allowing modules to have common out-
put atoms. In this section we present two versions of com-
positions: (1) A relaxed composition operator (]), aiming
at maximizing information in the stable models of modules.
Unfortunately, we show that this operation is not composi-
tional. (2) A conservative composition operator (⊗), aiming
at maximizing compatibility of atoms in the stable models
of modules. This version implies redefining the composition
operator by resorting to a program transformation but uses
the original join operator.

4.1 Extra module operations
First, one requires fundamental operations for renaming
atoms in the output signatures of modules with fresh ones:

Definition 6 (Output renaming) Let P be the program
module P = 〈R, I,O,H〉, o ∈ O and o′ 6∈ At(P). The
renamed output program module ρo′←o (P) is the program
module 〈R′∪{⊥ ← o′, not o.}, I∪{o}, {o′}∪(O\{o}), H〉.
The program part R′ is constructed by substituting the head
of each rule o ← Body in R by o′ ← Body. The heads of
other rules remain unchanged, as well as the bodies of all
rules.

Mark that, by making o an input atom, the renaming oper-
ation can introduce extra stable models. However, the origi-
nal stable models can be recovered by selecting the models
where o′ has exactly the same truth-value of o. The con-
straint throws away models where o′ holds but not o. We will
abuse notation and denote ρo′

1←o1

(
. . .
(
ρo′

n←on
(P)
)
. . .
)

by
ρ{o′

1,...,o′
n}←{o1,...,on} (P).

Example 8 (Renaming) Recall the module representing
Alice’s conditions in Example 2. Its renamed output program
module ρo′←o (PA) is the program module:

ρo′←o (PA) =< {buy′(X)← car(X), safe(X),
not exp(X).

car(c1). car(c2). car(c3).
⊥ ← buy(X)′, not buy(X).},
{buy(X), safe(c1), safe(c2), safe(c3),
exp(c1), exp(c2), exp(c3)},
{buy′(c1), buy′(c2), buy′(c3)},
{car(c1), car(c2), car(c3)} > �

Still before we dwell any deeper in this subject, we de-
fine operations useful to project or hide sets of atoms from a
module.

Definition 7 (Hiding and Projecting Atoms) Let P =
〈R, I,O,H〉 be a module and S an arbitrary set of atoms.
If we want to Hide (denoted as \) S from program module
P , we use P\S = 〈R ∪ {{i}. | i ∈ I ∩ S}, I\S,O\S,H ∪
((I ∪ O) ∩ S)〉. Dually, we can Project (denoted as |) over
S in the following way: P |S= 〈R ∪ {{i}. | i ∈ I \ S}, I ∩
S,O ∩ S,H ∪ ((I ∪O) \ S)〉.

Both operators Hide and Project do not change the sta-
ble models of the original program, i.e. AS(P) =
AS(P\S) = AS(P|S) but do change the set of visi-
ble atoms Atv(P\S) = Atv(P)\S and Atv(P | S) =
Atv(P) ∩ S

4.2 Relaxed Output Composition
For the reasons presented before, we start by defining a gen-
eralized version of the composition operator, by removing
the condition enforcing disjointness of the output signatures
of the two modules being combined.

Definition 8 (Relaxed Composition) Given two modules
P1 = 〈R1, I1, O1, H1〉 and P2 = 〈R2, I2, O2, H2〉, their
composition P1] P2 is defined when they respect each
others hidden atoms, i.e., H1 ∩ At(P2) = ∅ and H2 ∩
At(P1) = ∅. Then their composition is P1] P2 = 〈R1 ∪
R2, (I1 ∪ I2)\(O1 ∪O2), O1 ∪O2, H1 ∪H2〉.

Obviously, the following important properties hold for]:

Lemma 1 The relaxed composition operator is reflexive,
associative, commutative and has the identity element <
∅, ∅, ∅, ∅ >.

Having defined the way to deal with common outputs in the
composition of modules, we would like to redefine the op-
erator ./ for combining the stable models of these modules.
However, this is shown here to be impossible.

Lemma 2 The operation] is not compositional, i.e. for any
join operation ./′, it is not always the case that AS(P1]
P2) = AS(P1) ./′ AS(P2).

As we have motivated in the introduction, it is important
to applications to be able to use] to combine program mod-
ules, and retain some form of compositionality. The follow-
ing definition presents a construction that adds the required
information in order to be able to combine program modules
using the original natural join.

Definition 9 (Transformed Relaxed Composition)
Consider the program modules P1 = 〈R1, I1, O1, H1〉 and
P2 = 〈R2, I2, O2, H2〉. Let O = O1 ∩ O2, and define
the sets of newly introduced atoms O′={o′ | o ∈ O} and
O′′={o′′ | o ∈ O}. Construct program module:

Punion = < Runion, O
′ ∪O′′, O, ∅ > where:

Runion = {o← o′. | o′ ∈ O′} ∪ {o← o′′. | o′′ ∈ O′′}.

The transformed relaxed composition is defined as the pro-
gram module

(P1]RT P2) = [ρO′←O(P1) t ρO′′←O(P2) t Punion] \
[O′ ∪O′′]

Intuitively, we rename the common output atoms in the
original modules, and introduce an extra program module
that unites the contributions of each module by a pair of rules
for each common atom o← o′ and o← o′′. We then hide all
the auxiliary atoms to obtain the original visible signature.
If O = ∅ then Punion is empty, and all the other modules
are not altered, falling back to the original definition.

59

Theorem 2 Let P1 and P2 be arbitrary program modules
without positive dependencies among them. Then, modules
joined with operators] and]RT are modularly equivalent:

P1] P2 ≡m P1]RT P2.

The important remark is that according to the original
module theorem we have: AS(ρO′←O(P1) t ρO′′←O(P2)
t Punion) = AS(ρO′←O(P1)) ./ AS(ρO′′←O(P2)) ./
AS(Punion). Therefore, from a semantical point of view,
users can always substitute module P1]P2 by P1]RT P2,
which has an extra cost since the models of the renamed
program modules may increase. This is, however, essential
to regain compositionality.

Example 9 Considering program modules Q1 =< {a.
⊥ ← a, b.}, ∅, {a, b}, ∅ > and Q2 = 〈{b.}, ∅, {b}, ∅〉, we
have:

ρa′,b′←a,b(P1) = < { a′. ⊥ ← a′, not a.
⊥ ← b′, not b.},

{ a, b}, {a′, b′}, ∅ >
ρa′′,b′′←a,b(P2) = < { b′′. ⊥ ← a′′, not a.

⊥ ← b′′, not b.},
{ a, b}, {a′′, b′′}, ∅ >

Punion = < { a← a′. a← a′′.
b← b′. b← b′′.},

{ a′, a′′, b′, b′′}, {a, b}, ∅ >
ρa′,b′←a,b(Q1) = < { a′. ⊥ ← a, b.

⊥ ← a′, not a.
⊥ ← b′, not b.},

{ a, b}, {a′, b′}, ∅ >
ρa′′,b′′←a,b(Q2) = ρa′′,b′′←a,b(P2)
Q3 = Punion

The stable models of the first two modules are
{{a, a′}, {a, b, a′}} and {{b, b′′}, {a, b, b′′}}, respectively.
Their join is {{a, b, a′, b′′}} and the returned model belongs
to Punion (and thus it is compatible), and corresponds to the
only intended model {a, b} of P1] P2. Note that the stable
models of Punion are 16, corresponding to the models of
propositional formula (a ≡ a′ ∨ a′′) ∧ (b ≡ b′ ∨ b′′). Re-
garding, the transformed module ρa′,b′←a,b(Q1) it discards
the model {a, b, a′}, having stable models {{a, a′}}. But
now the join is empty, as intended. �

4.3 Conservative Output Composition
In order to preserve the original outer join operator, which
is widely used in databases, for the form of composition we
introduce next one must redefine the original composition
operator (⊕). We do that resorting to a program transfor-
mation s.t. the composition operator remains compositional
with respect to the join operator (./). The transformation
we present next consists of taking Definition 9 and adding
an extra module to guarantee that only compatible models
(models that coincide on the visible part) are retained.

Definition 10 (Conservative Composition) Let
P1 = 〈R1, I1, O1, H1〉 and P2 = 〈R2, I2, O2, H2〉 be mod-
ules such that their outputs are disjoint O = O1 ∩ O2 6= ∅.
Let O′ = {o′ | o ∈ O} and O′′ = {o′′ | o ∈ O} be sets of
newly introduced atoms.

Construct program modules:

Punion = < Runion, O
′ ∪O′′, O, ∅ > where:

Runion = {o← o′. | o′ ∈ O′} ∪ {o← o′′. | o′′ ∈ O′′}.
Pfilter = < {⊥ ← o′, not o′′. ⊥ ← not o′, o′′. | o ∈ O},

O′ ∪O′′, ∅, ∅ >

The conservative composition is defined as the program
module: P1⊗P2 = [(ρO′←O(P1)tρO′′←O(P2)tPuniont
Pfilter] \ (O′ ∪O′′).

Note here that each clause not containing atoms that be-
long to O1 ∩ O2 in P1 ∪ P2 is included in P1 ⊗ P2. So, if
there are no common output atoms the original union based
composition is obtained. Therefore, it is easy to see that this
transformational semantics (⊗) is a conservative extension
to the existing one (⊕).

Theorem 3 (Conservative Module Theorem) If P1,P2

are modules such that P1 ⊗ P2 is defined, then a model M
∈ AS(P1 ⊗ P2) iff M ∩ (At(P1) ∪ At(P2)) ∈ AS(P1)
./ AS(P2).

The above theorem is very similar to the original Module
Theorem of Oikarinnen and Janhunen apart from the extra
renamed atoms required in P1 ⊗ P2 to obtain composition-
ality.

Example 10 Returning to the introductory example, we can
conclude that Pmg1 ⊗ Pmg2 has only one answer set:

{safe(c1), airbag(c1), car(c1), car(c2), car(c3)}

since this is the only compatible model between Pmg1 and
Pmg2 . The stable models of ρ(Pmg1) and ρ(Pmg2), are col-
lected in the table below where compatible models appear in
the same row and car(c1), car(c2), car(c3) has been omit-
ted from AS(ρ(Pmg2)). Atom s (respectively a) stands for
safe (respectively airbag).

Answer sets of ρ(Pmg1) Answer sets of ρ(Pmg2)
{s(c1), s′(c1)} {s(c1), s′′(c1), a(c1)}

{s(c1), s(c2), s′(c1)} {s(c1), s(c2), s′′(c1), a(c1)}
{s(c1), s(c3), s′(c1)} {s(c1), s(c3), s′′(c1), a(c1)}

{s(c1), s(c3), s′′(c1),
s′′(c3), a(c1), a(c3)}

{s(c1), s(c2), s(c3), {s(c1), s(c2), s(c3),
s′(c1)} s′′(c1), a(c1)}

{s(c1), s(c2), s(c3), s′′(c1),
s′′(c3), a(c1), a(c3), c(c1)}

The only compatible model retained after composing with
Punion and Pfilter is the combination of the stable models
in the first row:

{s(c1), s′(c1), s′′(c1), a(c1), c(c1), c(c2), c(c3)}.

Naturaly, this corresponds to the intended result if we ignore
the s′ and s′′ atoms. �

We underline that models of compositionP1⊗P2 will either
contain all atoms o, o′, and o′′ or none of them, and will only
join compatible models from P1 having {o, o′} with models
inP2 having {o, o′′}, or models without atoms in {o, o′, o′′}.

60

Shortcomings Revisited The resulting models of com-
posing modules using the transformation and renaming
methods described so far in this Section 4 can be minimised
a posteriori following the minimization method described in
Section 3.

4.4 Complexity
Regarding complexity, checking the existence of M ∈ P1⊕
P2 and M ∈ P1]RT P2 is an NP-complete problem. It is
immediate to define a decision algorithm belonging to Σp

2
that checks existence of a stable model of the module com-
position operators. This is strictly less than the results in
the approach of (Dao-Tran et al. 2009) where the existence
decision problem for propositional theories is NEXPNP-
complete – however their approach allows disjunctive rules.

5 Conclusions and Future Work
We redefined the necessary operators in order to relax the
conditions for combining modules with common atoms in
their output signatures. Two alternative solutions are pre-
sented, both allowing us to retain compositionality while
dealing with a more general setting than before. (Dao-Tran
et al. 2009) provide an embedding of the original composi-
tion operator of Oikarinen and Janhunen into their approach.
Since our constructions rely on a transformational approach
using operator t of Oikarinen and Janhunen, by composing
both translations, an embedding into (Dao-Tran et al. 2009)
is immediately obtained. It remains to be checked whether
the same translation can be used in the presence of posi-
tive cycles. (Tasharrofi and Ternovska 2011) take (Janhunen
et al. 2009) and extend it with an algebra which includes a
new operation of feedback (loop) over modules. They have
shown that the loop operation adds significant expressive
power – modules can can express all (and only) problems
in NP. The other issues remain unsolved though.

The module theorem has been extended to the general the-
ory of stable models (Babb and Lee 2012), being applied
to non-ground logic programs containing choice rules, the
count aggregate, and nested expressions. It is based on the
new findings about the relationship between the module the-
orem and the splitting theorem. It retains the composition
condition of disjoint outputs and still forbids positive depen-
dencies between modules. As for disjunctive versions, (Jan-
hunen et al. 2009) introduced a formal framework for modu-
lar programming in the context of DLPs under stable-model
semantics. This is based on the notion of DLP-functions,
which resort to appropriate input/output interfacing. Simi-
lar module concepts have already been studied for the cases
of normal logic programs and ASPs and even propositional
theories, but the special characteristics of disjunctive rules
are properly taken into account in the syntactic and semantic
definitions of DLP functions presented therein. In (Gebser et
al. 2011), MLP is used as a basis for Reactive Answer Set
Programming, aiming at reasoning about real-time dynamic
systems running online in changing environments.

As future work we can straightforwardly extend these re-
sults to probabilistic reasoning with stable models by apply-
ing the new module theorem to (Damásio and Moura 2011),

as well as to DLP functions and general stable models. An
implementation of the framework is also foreseen in order to
assess the overhead when compared with the original bench-
marks in (Oikarinen and Janhunen 2008). Based on our own
preliminary work and results in the literature, we believe that
a fully compositional semantics can be attained by resorting
to partial interpretations e.g., SE-models (Turner 2003) for
defining program models at the semantic level. It is known
that one must include extra information about the support of
each atom in the models in order to attain generalized com-
positionality and SE-models appear to be enough.

References
Babb, J., and Lee, J. 2012. Module theorem for the general
theory of stable models. TPLP 12(4-5):719–735.
Baral, C. 2003. Knowledge Representation, Reasoning, and
Declarative Problem Solving. Cambridge University Press.
Bugliesi, M.; Lamma, E.; and Mello, P. 1994. Modularity
in logic programming. J. Log. Program. 19/20:443–502.
Damásio, C. V., and Moura, J. 2011. Modularity of p-log
programs. In Proceedings of the 11th international confer-
ence on Logic programming and nonmonotonic reasoning,
LPNMR’11, 13–25. Berlin, Heidelberg: Springer-Verlag.
Dao-Tran, M.; Eiter, T.; Fink, M.; and Krennwallner, T.
2009. Modular nonmonotonic logic programming revisited.
In Hill, P. M., and Warren, D. S., eds., ICLP 2009, Pasadena,
USA, 2009, volume 5649.
Eiter, T.; Faber, W.; Leone, N.; and Pfeifer, G. 2001. Com-
puting preferred and weakly preferred answer sets by meta-
interpretation in answer set programming. In Proceedings
AAAI 2001 Spring Symposium on Answer Set Programming,
45–52. AAAI Press.
Ferraris, P., and Lifschitz, V. 2005. Weight constraints as
nested expressions. TPLP 5(1-2):45–74.
Gaifman, H., and Shapiro, E. 1989. Fully abstract composi-
tional semantics for logic programs. In symposium on Prin-
ciples of programming languages, POPL, 134–142. New
York, NY, USA: ACM.
Gebser, M.; Grote, T.; Kaminski, R.; and Schaub, T. 2011.
Reactive answer set programming. In Proceedings of the
11th international conference on Logic programming and
nonmonotonic reasoning, LPNMR’11, 54–66. Berlin, Hei-
delberg: Springer-Verlag.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Proceedings of the 5th
International Conference on Logic Program. MIT Press.
Giordano, L., and Martelli, A. 1994. Structuring logic pro-
grams: a modal approach. The Journal of Logic Program-
ming 21(2):59 – 94.
Janhunen, T.; Oikarinen, E.; Tompits, H.; and Woltran, S.
2009. Modularity aspects of disjunctive stable models. J.
Artif. Int. Res. 35(1):813–857.
Järvisalo, M.; Oikarinen, E.; Janhunen, T.; and Niemelä,
I. 2009. A module-based framework for multi-language
constraint modeling. In Erdem, E.; Lin, F.; and Schaub,
T., eds., Proceedings of the 10th International Conference

61

on Logic Programming and Nonmonotonic Reasoning (LP-
NMR 2009), volume 5753 of Lecture Notes in Artificial In-
telligence, 155–169. Springer.
Lifschitz, V. 2002. Answer set programming and plan gen-
eration. Artificial Intelligence 138(1-2):39–54.
Mancarella, P., and Pedreschi, D. 1988. An algebra of logic
programs. In ICLP/SLP, 1006–1023.
Marek, V. W., and Truszczynski, M. 1999. Stable mod-
els and an alternative logic programming paradigm. In The
Logic Programming Paradigm: a 25-Year Perspective.
Miller, D. 1986. A theory of modules for logic program-
ming. In In Symp. Logic Programming, 106–114.
Niemelä, I. 1998. Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25:72–79.
Oikarinen, E., and Janhunen, T. 2008. Achieving compo-
sitionality of the stable model semantics for smodels pro-
grams1. Theory Pract. Log. Program. 8(5-6):717–761.
O’Keefe, R. A. 1985. Towards an algebra for constructing
logic programs. In SLP, 152–160.
Slota, M., and Leite, J. 2012. Robust equivalence models
for semantic updates of answer-set programs. In Brewka,
G.; Eiter, T.; and McIlraith, S. A., eds., Proc. of KR 2012.
AAAI Press.
Tasharrofi, S., and Ternovska, E. 2011. A semantic account
for modularity in multi-language modelling of search prob-
lems. In Proceedings of the 8th international conference
on Frontiers of combining systems, FroCoS’11, 259–274.
Berlin, Heidelberg: Springer-Verlag.
Turner, H. 2003. Strong equivalence made easy: nested
expressions and weight constraints. Theory and Practice of
Logic Programming 3(4):609–622.

A Proofs
Proof 1 (Lemma 2) A join operation is a function mapping
a pair of sets of interpretations into a set of interpretations.
Consider the following program modules:

P1 =< {a.}, ∅, {a, b}, ∅ > Q1 =< {a. ⊥ ← a, b.},
∅, {a, b}, ∅ >

P2 = 〈{b.}, ∅, {b}, ∅〉 Q2 = 〈{b.}, ∅, {b}, ∅〉
P1] P2 =< {a. b.}, ∅, Q1]Q2 =< {a. ⊥ ← a, b.

{a, b}, ∅ > b.}, ∅, {a, b}, ∅ >

One sees that AS(P1) = AS(Q1) = {{a}}, and
AS(P2) = AS(Q2) = {{b}} but AS(P1]P2) = {{a, b}}
whileAS(Q1]Q2) = {}. Therefore, it cannot exist ./′ since
this would require AS(P1] P2) = AS(P1) ./′ AS(P2) =
{{a}} ./′ {{b}} = AS(Q1) ./′ AS(Q2) = AS(Q1]Q2),
a contradiction. 2

Proof 2 (Theorem 2) By reduction of the conditions of the
theorem to the conditions necessary for applying the orig-
inal Module Theorem. If P1] P2 is defined then let their
transformed relaxed composition be T = (P1]RT P2). It
is clear that the output atoms of T are O1 ∪ O2, the input
atoms are (I1 ∪ I2) \ (O1 ∪ O2), and the hidden atoms are
H1 ∪H2 ∪O′ ∪O′′. Note that before the application of the
hiding operator the output atoms are O1 ∪ O2 ∪ O′ ∪ O′′.
The original composition operator t can be applied since
the outputs of ρO′←O(P1), ρO′′←O(P2) and Punion are re-
spectively O′ ∪ (O1 \O), O′′ ∪ (O2 \O) and O = O1 ∩O2,
which are pairwise disjoint. Because of this, we are in the
conditions of the original Module Theorem and thus it is ap-
plicable to the result of the modified composition] iff the
transformation did not introduce positive loops between the
program parts of the three auxiliary models. If P1] P2 had
no loops between the common output atoms than its trans-
formation P1]RT P2 also does not because it results from
a renaming into new atoms.

Consider now the rules part of T ; if we ignore the ex-
tra introduced atoms in O′ and O′′ the program obtained
has exactly the same stable models of the union of pro-
gram parts of P1 and P2. Basically, we are substituting
the union of o ← Body1

1 ., . . . , o ← Body1
m. in P1, and

o← Body2
1 ., . . . , o← Body2

n. in P2 by:

o← o′. o← o′′.
o′ ← Body1

1 . o′′ ← Body2
1 .

.
o′ ← Body1

m. o′′ ← Body2
n.

⊥ ← o′, not o. ⊥ ← o′′, not o.

This guarantees visible equivalence of P1]P2 and P1]RT

P2, since the models of each combined modules are in
one-to-one correspondence, and they coincide in the visible
atoms. The contribution of the common output atoms is re-
covered by the joins involving atoms in O′, O′′ and O, that
are all pairwise disjoint, and ensuring that stable models
obey to o = o′ ∨ o′′ via program module Punion. The con-
straints introduced in the transformed models ρO′←O(P1)
(resp. ρO′′←O(P2)) simply prune models that have o false
and o′ (resp. o′′) true, reducing the number of models neces-
sary to consider. Since the input and output atoms of P1]P2

62

and P1]RT P2 are the same, then P1]P2 ≡m P1]RT P2.
2

Proof 3 (Theorem 3) The theorem states that if we ignore
the renamed literals in ⊗ the models are exactly the same,
as expected. The transformed program module P1⊗P2 cor-
responds basically to the union of programs, as seen before.
Consider a common output atom o. The constraints in the
module part Pfilter combined with the rules in Punion re-
strict the models to the cases for which o ≡ o′ ≡ o′′. The
equivalence o ≡ o′ restricts the stable models of ρo′←o(P1)
to the original stable models (except for the extra atom o′)
of P1, and similarly the equivalence o ≡ o′′ filters the stable
models of ρo′′←o(P2) obtaining the original stable models
of P2. Now it is immediate to see that compositionality is re-
tained by making the original common atoms o compatible.
2

63

The Multi-engine ASP Solver ME-ASP: Progress Report

Marco Maratea
DIBRIS,

Univ. degli Studi di Genova,
Viale F. Causa 15, 16145 Genova, Italy

marco@dist.unige.it

Luca Pulina
POLCOMING,

Univ. degli Studi di Sassari,
Viale Mancini 5, 07100 Sassari, Italy

lpulina@uniss.it

Francesco Ricca
Dip. di Matematica ed Informatica,

Univ. della Calabria,
Via P. Bucci, 87030 Rende, Italy

ricca@mat.unical.it

Abstract

ME-ASP is a multi-engine solver for ground ASP programs.
It exploits algorithm selection techniques based on classifi-
cation to select one among a set of out-of-the-box heteroge-
neous ASP solvers used as black-box engines. In this paper
we report on(i) a new optimized implementation ofME-
ASP; and(ii) an attempt of applying algorithm selection to
non-ground programs. An experimental analysis reported in
the paper shows that(i) the new implementation ofME-ASP
is substantially faster than the previous version; and(ii) the
multi-engine recipe can be applied to the evaluation of non-
ground programs with some benefits.

Introduction
Answer Set Programming (Baral 2003; Eiter, Gottlob, and
Mannila 1997; Gelfond and Lifschitz 1988; 1991; Marek
and Truszczyński 1998; Niemelä 1998) (ASP) is a declar-
ative language based on logic programming and non-
monotonic reasoning. The applications of ASP belong to
several areas, e.g., ASP was used for solving a variety of
hard combinatorial problems (see e.g., (Calimeri et al. 2011)
and (Potsdam since 2002)).

Nowadays, several efficient ASP systems are avail-
able (Gebser et al. 2007; Janhunen, Niemelä, and Sevalnev
2009; Leone et al. 2006; Lierler 2005; Mariën et al. 2008;
Simons, Niemelä, and Soininen 2002). It is well-established
that, for solving empirically hard problems, there is rarely a
best algorithm/heuristic, while it is often the case that differ-
ent algorithms perform well on different problems/instances.
It can be easily verified (e.g., by analyzing the results of the
ASP competition series) that this is the case also for ASP
implementations. In order to take advantage of this fact, one
should be able to select automatically the “best” solver on
the basis of the characteristics (calledfeatures) of the in-
stance in input, i.e., one has to consider to solve analgorithm
selection problem(Rice 1976).

Inspired by the successful attempts (Gomes and Selman
2001; O’Mahony et al. 2008; Pulina and Tacchella 2009;
Xu et al. 2008) done in the neighbor fields of SAT, QSAT
and CSP, the application of algorithm selection techniques
to ASP solving was ignited by the release of the portfolio
solver CLASPFOLIO (Gebser et al. 2011). This solver im-
ports into ASP theSATZILLA (Xu et al. 2008) approach.
Indeed,CLASPFOLIO employs inductive techniques based

on regressionto choose the “best” configuration/heuristic
of the solverCLASP. The complete picture of inductive ap-
proaches applied to ASP solving includes also techniques
for learning heuristics orders (Balduccini 2011), solutions
to combine portfolio and automatic algorithm configuration
approaches (Silverthorn, Lierler, and Schneider 2012), au-
tomatic selection of a scheduling of ASP solvers (Hoos et
al. 2012) (in this caseCLASP configurations), and the multi-
engine approach. The aim of a multi-engine solver (Pulina
and Tacchella 2009) is to select the “best” solver among a
set of efficient ones used asblack-box engines. The multi-
engine ASP solverME-ASP was proposed in (Maratea,
Pulina, and Ricca 2012b), and ports to ASP an approach ap-
plied before to QBF (Pulina and Tacchella 2009).

ME-ASP exploits inductive techniques based onclassifi-
cationto choose, on a per instance basis, an engine among a
selection of black-box heterogeneous ASP solvers. The first
implementation ofME-ASP, despite not being highly opti-
mized, already reached good performance. Indeed,ME-ASP
can combine the strengths of its component engines, and
thus it performs well on a broad set of benchmarks including
14 domains and 1462 ground instances (detailed results are
reported in (Maratea, Pulina, and Ricca 2014a)).

In this paper we report on(i) a new optimized implemen-
tation ofME-ASP; and on(ii) a first attempt of applying al-
gorithm selection to the entire process of computing answer
sets of non-ground programs.

As a matter of fact, the ASP solutions available at the state
of the art employing machine-learning techniques are de-
vised to solve ground (or propositional) programs, and – to
the best of our knowledge – no solution has been proposed
that is able to cope directly with non-ground programs. Note
that ASP programmers almost always write non-ground pro-
grams, which have to be first instantiated by a grounder. It is
well-known that such instantiation phase can influence sig-
nificantly the performance of the entire solving process. At
the time of this writing, there are two prominent alternative
implementations that are able to instantiate ASP programs:
DLV (Leone et al. 2006) and GRINGO (Gebser, Schaub,
and Thiele 2007). Once the peculiarities of the instantiation
process are properly taken into account, both implementa-
tions can be combined in a multi-engine grounder by apply-
ing also to this phase an algorithm selection recipe, building
on (Maratea, Pulina, and Ricca 2013). The entire process

64

of evaluation of a non-ground ASP program can be, thus,
obtained by applying algorithm selection to the instantiation
phase, selecting either DLV or GRINGO; and, then, in a sub-
sequent step, evaluating the propositional program obtained
in the first step with a multi-engine solver.

An experimental analysis reported in the paper shows that
(i) the new implementation ofME-ASP is substantially faster
than the previous version; and(ii) the straight application
of the multi-engine recipe to the instantiation phase is al-
ready beneficial. At the same time, it remains space for fu-
ture work, and in particular for devising more specialized
techniques to exploit the full potential of the approach.

A Multi-Engine ASP system
We next overview the components of the multi-engine ap-
proach, and we report on the way we have instantiated it to
cope with instantiation and solving, thus obtaining a com-
plete multi-engine system for computing answer sets of non-
ground ASP programs.
General Approach. The design of a multi-engine solver
based on classification is composed of three main ingredi-
ents:(i) a set of features that are significant for classifying
the instances;(ii) a selection of solvers that are representa-
tive of the state of the art and complementary; and(iii) a
choice of effective classification algorithms. Each instance
in a fairly-designedtraining setof instances is analyzed by
considering both the features and the performance of each
solvers. An inductive model is computed by the classifi-
cation algorithm during this phase. Then, each instance in
a test setis processed by first extracting its features, and
the solver is selected starting from these features using the
learned model. Note that, this schema does not make any as-
sumption (other than the basic one of supporting a common
input) on the engines.
The ME-ASP solver. In (Maratea, Pulina, and Ricca 2012b;
2014a) we described the choices we have made to develop
the ME-ASP solver. In particular, we have singled out a set
of syntactic features that are both significant for classify-
ing the instances and cheap-to-compute (so that the classi-
fier can be fast and accurate). In detail, we considered: the
number of rules and number of atoms, the ratio of horn,
unary, binary and ternary rules, as well as some ASP pe-
culiar features, such as the number of true and disjunctive
facts, and the fraction of normal rules and constraints. The
number of resulting features, together with some of their
combinations, amounts to 52. In order to select the engines
we ran preliminary experiments (Maratea, Pulina, and Ricca
2014a) to collect a pool of solvers that is representative of
the state-of-the-art solver (SOTA), i.e., considering a prob-
lem instance, the oracle that always fares the best among the
solvers that entered the system track of the 3rd ASP Com-
petition (Calimeri et al. 2011), plus DLV. The pool of en-
gines collected inME-ASP is composed of 5 solvers, namely
CLASP, CLASPD, CMODELS, DLV, and IDP, as submitted
to the 3rd ASP Competition. We experimented with sev-
eral classification algorithms (Maratea, Pulina, and Ricca
2014a), and proved empirically thatME-ASP can perform
better than its engines with any choice. Nonetheless, we se-

lected the k-nearest neighbor (kNN) classifier for our new
implementation: it was already used inME-ASP (Maratea,
Pulina, and Ricca 2012b), with good performance, and it
was easy to integrate its implementation in the new version
of the system.
Multi-engine instantiator. Concerning the automatic selec-
tion of the grounder, we selected: number of disjunctive
rules, presence of queries, the total amount of functions and
predicates, number of strongly connected and Head-Cycle
Free(Ben-Eliyahu and Dechter 1994) components, and strat-
ification property, for a total amount of 11 features. These
features are able to discriminate the class of the problem,
and are also pragmatically cheap-to-compute. Indeed, given
the high expressivity of the language, non-ground ASP pro-
grams (which are usually written by programmers) con-
tain only a few rules. Concerning the grounders, given that
there are only two alternative solutions, namely DLV and
GRINGO, we considered both for our implementation.

Concerning the classification method, we used an imple-
mentation of the PART decision list generator (Frank and
Witten 1998), a classifier that returns a human readable
model based on if-then-else rules. We used PART because,
given the relatively small total amount of features relatedto
the non-ground instances, it allows us to compare the gener-
ated model with respect to the knowledge of a human expert.
Multi-Engine System ME-ASPgr. Given a (non-ground)
ASP program, the evaluation workflow of the multi-engine
ASP solution calledME-ASPgr is the following: (i) non-
ground features extraction,(ii) grounder selection,(iii)
grounding phase,(iv) ground features extraction,(v) solver
selection, and(vi) solving phase on ground program.

Implementation and Experiments
In this section we report the results of two experiments con-
ceived to assess the performance of the new versions of the
ME-ASP system. The first experiment has the goal of mea-
suring the performance improvements obtained by the new
optimized implementation of theME-ASPsolver. The second
experiment assessesME-ASPgr and reports on the perfor-
mance improvements that can be obtained by selecting the
grounder first and then calling theME-ASP solver.ME-ASP
and ME-ASPgr are available for download atwww.mat.
unical.it/ricca/me-asp . Concerning the hardware
employed and the execution settings, all the experiments run
on a cluster of Intel Xeon E31245 PCs at 3.30 GHz equipped
with 64 bit Ubuntu 12.04, granting 600 seconds of CPU time
and 2GB of memory to each solver. The benchmarks used
in this paper belong to the suite of benchmarks, encoded in
the ASP-Core 1.0 language, of the 3rd ASP Competition.
Note that in the 4th ASP Competition (Alviano et al. 2013)
the new language ASP-Core 2.0 has been introduced. We
still rely on the language of the 3rd ASP Competition given
that the total amount of solvers and grounders supporting
the new standard language is very limited with respect to the
number of tools supporting ASP-Core 1.0.
Assessment of the new implementation of ME-ASP. The
original implementation ofME-ASP was obtained by com-
bining a general purpose feature extractor (that we have

65

initially developed for experimenting with a variety of ad-
ditional features) developed in Java, with a collection of
Perl scripts linking the other components of the system,
which are based on therapidminer library. This is a gen-
eral purpose implementation supporting also several classi-
fication algorithms. Since the CPU time spent for the extrac-
tion of features and solver selection has to be made negli-
gible, we developed an optimized version ofME-ASP. The
goal was to optimize the interaction among system compo-
nents and further improve their efficiency. To this end, we
have re-engineered the feature extractor, enabling it to read
ground instances expressed in the numeric format used by
GRINGO. Furthermore, we have integrated it with an imple-
mentation of the kNN algorithm built on top of the ANN
library (www.cs.umd.edu/ ˜ mount/ANN) in the same
binary developed in C++. This way the new implementation
minimizes the overhead introduced by solver selection.

We now present the results of an experiment in which we
compare the old implementation ofME-ASP, labelledME-
ASPold, with the new one, labelledME-ASPnew. In this ex-
periment, assessing solving performance, we used GRINGO
as grounder for both implementations, and we considered
problems belonging to theNP andBeyond NPclasses of the
competition (i.e., the grounder and domains considered by
ME-ASPold (Maratea, Pulina, and Ricca 2014a)). The induc-
tive model used inME-ASPnew was the same used inME-
ASPold (details are reported in (Maratea, Pulina, and Ricca
2014a)). The plot in Figure 1 (top) depicts the performance
of both ME-ASPold and ME-ASPnew (dotted red and solid
blue lines in the plot, respectively). Considering the total
amount ofNPandBeyond NPinstances evaluated at the 3rd
ASP Competition (140),ME-ASPnew solved 92 instances
(77 NP and 15Beyond NP) in about 4120 seconds, while
ME-ASPold solved 77 instances (62NP and 15Beyond NP)
in about 6498 seconds. We report an improvement both in
the total amount of solved instances (ME-ASPnew is able to
solve 66% of the whole set of instances, whileME-ASPnew

stops at 51%) and in the average CPU time of solved in-
stances (about 45 seconds against 84).

The improvements ofME-ASPnew are due to its optimized
implementation. Once feature extraction and solver selec-
tion are made very efficient, it is possible to extract features
for more instances and the engines are called in advance
w.r.t. what happens inME-ASPold. This results in more in-
stances that are processed and solved byME-ASPnew within
the timeout.
Assessment of the complete system. We developed a pre-
liminary implementation of a grounder selector, which com-
bines a feature extractor for non-ground programs written in
Java, and an implementation of the PART decision list gen-
erator, as mentioned in the previous section. The grounder
selector is then combined withME-ASPnew.

We now present the results of an experiment in which
we compareME-ASPgr with ME-ASPnew, and theSOTA
solver.ME-ASPnew coupled with DLV (resp. GRINGO) is
denoted byME-ASPnew (dlv) (resp.ME-ASPnew (gringo)).
In this case we considered all the benchmark problems of
the 3rd ASP Competition, including the ones belonging to
the P class. Indeed, in this case we are interested also in

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

ME-ASP^old

ME-ASP^new

20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

ME-ASP^new (dlv)

ME-ASP^new (gringo)

ME-ASP^gr

SOTA

Figure 1:Performance ofME-ASPold andME-ASPnew on NP and
Beyond NPinstances evaluated at the 3rd ASP Competition (top);
performance ofME-ASPgr, its engines andSOTA on the complete
set of instances evaluated at the 3rd ASP Competition (bottom). In
thex-axis it is shown the total amount of solved instances, while
y-axis reports the CPU time in seconds.

grounders’ performance, which is crucial in theP class.
The plot in Figure 1 (bottom) shows the performance of

the aforementioned solvers. In the plot, we depict the per-
formance ofME-ASPnew (dlv) with a red dotted line,ME-
ASPnew (gringo) with a solid blue line,ME-ASPgr with a
double dotted dashed yellow line, and, finally, with a dotted
dashed black line we denote the performance of theSOTA
solver. Looking at the plot, we can see thatME-ASPnew

(gringo) solves more instances thatME-ASPnew (dlv) – 126
and 111, respectively – while both are outperformed byME-
ASPgr, that is able to solve 134 instances. The average CPU
time of solved instances forME-ASPnew (dlv), ME-ASPnew

(gringo) andME-ASPgr is 86.86, 67.93 and 107.82 seconds,
respectively. Looking at the bottom plot in Figure 1, con-
cerning the performance of theSOTA solver, we report that
it is able to solve 173 instances out of a total of 200 instances
(evaluated at the 3rd ASP Competition), highlighting room
for further improving this preliminary version ofME-ASPgr.
Indeed, the current classification model predicts GRINGO
for most of theNP instances, but having a more detailed look
at the results, we notice thatCLASP and IDP with GRINGO
solve both 72 instances, while using DLV they solve 93 and
92 instances, respectively. A detailed analysis of the perfor-
mance of the various ASP solvers with both grounders can
be found in (Maratea, Pulina, and Ricca 2013).

It is also worth mentioning that the output formats of
GRINGO and DLV differ, thus there are combinations
grounder/solver that require additional conversion stepsin
our implementation. Since the new feature extractor is de-
signed to be compliant with the numeric format produced
by GRINGO, if DLV is selected as grounder then the non-
ground program is instantiated twice. Moreover, if DLV is
selected as grounder, and it is not selected also as solver,
the produced propositional program is fed in gringo to be

66

converted in numeric format. These additional steps, due to
technical issues, result in a suboptimal implementation of
the execution pipeline that could be further optimized in case
both grounders would agree on a common output format.

Conclusion. In this paper we presented improvements to the
multi-engine ASP solverME-ASP. Experiments show that
(i) the new implementation ofME-ASP is more efficient,
and(ii) the straight application of the multi-engine recipe
to the instantiation phase is already beneficial. Directions
for future research include exploiting the full potential of
the approach by predicting the pair grounder+solver, and im-
porting policy adaptation techniques employed in (Maratea,
Pulina, and Ricca 2014b).

Acknowledgments. This research has been partly supported
by Regione Calabria under project PIA KnowRex POR
FESR 2007- 2013 BURC n. 49 s.s. n. 1 16/12/2010, the
Italian Ministry of University and Research under PON
project “Ba2Know S.I.-LAB” n. PON03PE0001, the Au-
tonomous Region of Sardinia (Italy) and the Port Authority
of Cagliari (Italy) under L.R. 7/2007, Tender 16 2011 project
“ DESCTOP”, CRP-49656.

References
Rice, J. R. 1976. The algorithm selection problem.Ad-
vances in Computers15:65–118.
Gelfond, M., and Lifschitz, V. 1988. The Stable Model
Semantics for Logic Programming. InLogic Programming,
1070–1080. Cambridge, Mass.: MIT Press.
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases.NGC 9:365–
385.
Eiter, T.; Gottlob, G.; and Mannila, H. 1997. Disjunctive
Datalog.ACM TODS22(3):364–418.
Frank, E., and Witten, I. H. 1998. Generating accurate rule
sets without global optimization. InICML’98, 144.
Marek, V. W., and Truszczyński, M. 1998. Stable mod-
els and an alternative logic programming paradigm.CoRR
cs.LO/9809032.
Niemelä, I. 1998. Logic Programs with Stable Model Se-
mantics as a Constraint Programming Paradigm. InCANR
98 Workshop, 72–79.
Gomes, C. P., and Selman, B. 2001. Algorithm portfolios.
Artificial Intelligence126(1-2):43–62.
Potsdam, U. since 2002. asparagus homepage.http:
//asparagus.cs.uni-potsdam.de/ .
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and Implementing the Stable Model Semantics.Artificial
Intelligence138:181–234.
Baral, C. 2003.Knowledge Representation, Reasoning and
Declarative Problem Solving. Tempe, Arizona: CUP.
Lierler, Y. 2005. Disjunctive Answer Set Programming via
Satisfiability. InLPNMR 05, LNCS 3662, 447–451.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri,
S.; and Scarcello, F. 2006. The DLV System for Knowledge
Representation and Reasoning.ACM TOCL7(3):499–562.

Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. Conflict-driven answer set solving. InIJCAI-07, 386–
392.
Gebser, M.; Schaub, T.; and Thiele, S. 2007. GrinGo : A
New Grounder for Answer Set Programming. InLPNMR
2007, LNCS 4483, 266–271.
Mariën, M.; Wittocx, J.; Denecker, M.; and Bruynooghe, M.
2008. Sat(id): Satisfiability of propositional logic extended
with inductive definitions. InSAT 08, LNCS, 211–224.
O’Mahony, E.; Hebrard, E.; Holland, A.; Nugent, C.; and
O’Sullivan, B. 2008. Using case-based reasoning in an al-
gorithm portfolio for constraint solving. InICAICS 08.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
SATzilla: Portfolio-based algorithm selection for SAT.JAIR
32:565–606.
Janhunen, T.; Niemelä, I.; and Sevalnev, M. 2009. Com-
puting stable models via reductions to difference logic. In
LPNMR 09, LNCS, 142–154.
Pulina, L., and Tacchella, A. 2009. A self-adaptive multi-
engine solver for quantified boolean formulas.Constraints
14(1):80–116.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Schaub, T.;
Schneider, M. T.; and Ziller, S. 2011. A portfolio solver
for answer set programming: Preliminary report. InLPNMR
11, LNCS 6645, 352–357.
Balduccini, M. 2011. Learning and using domain-specific
heuristics in ASP solvers.AICOM 24(2):147–164.
Ben-Eliyahu R.; Dechter R. 1994. Propositional Semantics
for Disjunctive Logic ProgramsAnnals of Mathematics and
Artificial Intelligence. 12:53–87, Science Publishers.
Calimeri, F.; Ianni, G.; Ricca, F.; et al. 2011. The Third
Answer Set Programming Competition: Preliminary Report
of the System Competition Track. InProc. of LPNMR11.,
388–403 LNCS.
Hoos, H.; Kaminski, R.; Schaub, T.; and Schneider, M. T.
2012. ASPeed: Asp-based solver scheduling. InTech.
Comm. of ICLP 2012, volume 17 ofLIPIcs, 176–187.
Maratea, M.; Pulina, L.; and Ricca, F. 2012b. The multi-
engine asp solver me-asp. InJELIA 2012., LNCS 7519,
484–487.
Silverthorn, B.; Lierler, Y.; and Schneider, M. 2012. Surviv-
ing solver sensitivity: An asp practitioner’s guide. InTech.
Comm. of ICLP 2012, volume 17 ofLIPIcs, 164–175.
Alviano, M.; Calimeri, F.; Charwat, G.; et al. 2013. The
fourth answer set programming competition: Preliminary re-
port. InLPNMR, LNCS 8148, 42–53.
Maratea, M.; Pulina, L.; and Ricca, F. 2013. Automated se-
lection of grounding algorithm in answer set programming.
In AI* IA 2013. International Publishing. 73–84.
Maratea, M.; Pulina, L.; and Ricca, F. 2014a. A multi-
engine approach to answer-set programming.Theory and
Practice of Logic Programming. DOI: http://dx.doi.
org/10.1017/S1471068413000094

Maratea, M.; Pulina, L.; and Ricca, F. 2014b. Multi-engine
asp solving with policy adaptation.JLC. In Press.

67

Preliminary Report on WASP 2.0∗

Mario Alviano, Carmine Dodaro and Francesco Ricca
Department of Mathematics and Computer Science, University of Calabria, Italy

{alviano,dodaro,ricca}@mat.unical.it

Abstract

Answer Set Programming (ASP) is a declarative pro-
gramming paradigm. The intrinsic complexity of the
evaluation of ASP programs makes the development of
more effective and faster systems a challenging research
topic. This paper reports on the recent improvements of
the ASP solver WASP. WASP is undergoing a refactor-
ing process which will end up in the release of a new and
more performant version of the software. In particular
the paper focus on the improvements to the core evalu-
ation algorithms working on normal programs. A pre-
liminary experiment on benchmarks from the 3rd ASP
competition belonging to the NP class is reported. The
previous version of WASP was often not competitive
with alternative solutions on this class. The new version
of WASP shows a substantial increase in performance.

Introduction
Answer Set Programming (ASP) (Gelfond and Lifschitz
1991) is a declarative programming paradigm which has
been proposed in the area of non-monotonic reasoning and
logic programming. The idea of ASP is to represent a given
computational problem by a logic program whose answer
sets correspond to solutions, and then use a solver to find
them.

Despite the intrinsic complexity of the evaluation of ASP,
after twenty years of research many efficient ASP sys-
tems have been developed. (e.g. (Alviano et al. 2011;
Gebser et al. 2007; Lierler and Maratea 2004)). The avail-
ability of robust implementations made ASP a powerful tool
for developing advanced applications in the areas of Arti-
ficial Intelligence, Information Integration, and Knowledge
Management. These applications of ASP have confirmed the
viability of the use of ASP. Nonetheless, the interest in de-
veloping more effective and faster systems is still a crucial
and challenging research topic, as witnessed by the results
of the ASP Competition series (see e.g. (Calimeri, Ianni, and
Ricca 2014)).

∗This research has been partly supported by the European Com-
mission, European Social Fund of Regione Calabria, the Regione
Calabria under project PIA KnowRex POR FESR 2007- 2013
BURC n. 49 s.s. n. 1 16/12/2010, and the Italian Ministry of
University and Research under PON project “Ba2Know S.I.-LAB”
n. PON03PE 0001.

This paper reports on the recent improvements of the
ASP solver for propositional programs WASP (Alviano et
al. 2013). The new version of WASP is inspired by several
techniques that were originally introduced for SAT solving,
like the Davis-Putnam-Logemann-Loveland (DPLL) back-
tracking search algorithm (Davis, Logemann, and Love-
land 1962), clause learning (Zhang et al. 2001), back-
jumping (Gaschnig 1979), restarts (Gomes, Selman, and
Kautz 1998), and conflict-driven heuristics (Moskewicz et
al. 2001). The mentioned SAT-solving methods have been
adapted and combined with state-of-the-art pruning tech-
niques adopted by modern native ASP solvers (Alviano et al.
2011; Gebser et al. 2007). In particular, the role of Boolean
Constraint Propagation in SAT-solvers is taken by a proce-
dure combining the unit propagation inference rule with in-
ference techniques based on ASP program properties. In
particular, support inferences are implemented via Clark’s
completion, and the implementation of the well-founded op-
erator is based on source pointers (Simons, Niemelä, and
Soininen 2002).

In the following, we overview the techniques imple-
mented by the 2.0 version of WASP, focusing on the im-
provements to the core evaluation algorithms working on
normal programs. Then we compare the new implementa-
tion with the previous one.

We also report on a preliminary experiment in which we
compare the old and new versions of WASP with the lat-
est version of clasp, which is the solver that won the 3rd
and 4th edition of the ASP competition. Benchmarks were
taken from the 3rd ASP competition and belong to the NP
class, i.e., the class of problems where the previous version
of WASP was often not competitive with alternative solu-
tions. The result show that WASP 2.0 is substantially faster
than WASP 1.0 and is often competitive with clasp.

ASP Language

Let A be a countable set of propositional atoms. A literal
is either an atom (a positive literal), or an atom preceded by
the negation as failure symbol ∼ (a negative literal). The
complement of a literal ` is denoted `, i.e., a = ∼a and
∼a = a for an atom a. This notation extends to sets of
literals, i.e., L := {` | ` ∈ L} for a set of literals L.

68

A program is a finite set of rules of the following form:

a0 :- a1, . . . , am,∼am+1, . . . ,∼an (1)

where n ≥ m ≥ 0 and each ai (i = 0, . . . , n) is
an atom. The atom a0 is called head, and the conjunc-
tion a1, . . . , am,∼am+1, . . . ,∼an is referred to as body.
Rule r is said to be regular if H(r) 6= ⊥, where ⊥
is a fixed atom in A, and a constraint otherwise. For
a rule r of the form (1), the following notation is also
used: H(r) denotes the head atom a0; B(r) denotes the set
{a1, . . . , am,∼am+1, . . . ,∼an} of body literals; B+(r) and
B−(r) denote the set of atoms appearing in positive and neg-
ative body literals, respectively; C(r) := H(r)∪B(r) is the
clause representation of r.

An interpretation I is a set of literals, i.e., I ⊆ A ∪ A.
Intuitively, literals in I are true, literals whose complements
are in I are false, and all other literals are undefined. I is
total if there are no undefined literals, and I is inconsistent
if ⊥ ∈ I or there is a ∈ A such that {a,∼a} ⊆ I . An
interpretation I satisfies a rule r if C(r) ∩ I 6= ∅, while
I violates r if C(r) ⊆ I . A model of a program P is a
consistent, total interpretation satisfying all rules of P . The
semantics of a program P is given by the set of its answer
sets (or stable models) (Gelfond and Lifschitz 1991), where
an interpretation I is an answer set for P if I is a subset-
minimal model of the reduct PI obtained by deleting from
P each rule r such that B−(r)∩I 6= ∅, and then by removing
all the negative literals from the remaining rules.

Answer Set Computation in WASP 2.0
In this section we review the algorithms implemented in
WASP 2.0. The presentation is properly simplified to focus
on the main principles.

Completion and Program Simplification
The first step of the evaluation in WASP 2.0 is a program
transformation step. The input program first undergoes a
Clark’s completion transformation step, and then is simpli-
fied applying techniques in the style of satelite (Eén and
Biere 2005). Given a rule r ∈ P , let auxr denote a fresh
atom, i.e., an atom not appearing elsewhere. The completion
of P , denoted Comp(P), consists of the following clauses:
• {∼a, auxr1 , . . . , auxrn

} for each atom a occurring in P ,
where r1, . . . , rn are the rules of P whose head is a;

• {H(r),∼auxr} and {auxr} ∪B(r) for each rule r ∈ P;
• {∼auxr, `} for each r ∈ P and ` ∈ B(r).
After the computation of Clark’s completion, simplification
techniques are applied (Eén and Biere 2005). These consist
of polynomial algorithms for strengthening and for remov-
ing redundant clauses, and also include atoms elimination
by means of clause rewriting.

Main Algorithm
An answer set of a given propositional program Comp(P) is
computed in WASP 2.0 by using Algorithm 1, which is simi-
lar to the DPLL procedure in SAT solvers. Initially, interpre-
tation I is set to {∼⊥}. Function Propagate (line 2) extends

Algorithm 1: Compute Answer Set
Input : An interpretation I for a program Comp(P)
Output: An answer set for Comp(P) or Incoherent

1 begin
2 while Propagate(I) do
3 if I is total then
4 return I;
5 ` := ChooseUndefinedLiteral();
6 I ′ := ComputeAnswerSet(I ∪ {`});
7 if I ′ 6= Incoherent then
8 return I ′;
9 if there are violated (learned) clauses then

10 return Incoherent ;

11 AnalyzeConflictAndLearnClauses(I);
12 return Incoherent ;

Function Propagate(I)
1 while UnitPropagation(I) do
2 if not WellFoundedPropagation(I) then
3 return true;

4 return false;

I with those literals that can be deterministically inferred.
This function returns false if an inconsistency (or conflict) is
detected, true otherwise. When no inconsistency is detected,
interpretation I is returned if total (lines 2–3). Otherwise, an
undefined literal, say `, is chosen according to some heuris-
tic criterion (line 5). Then computation then proceeds with
a recursive call to ComputeAnswerSet on I ∪ {`} (line 6).
In case the recursive call returns an answer set, the compu-
tation ends returning it (lines 7–8). Otherwise, the algorithm
unrolls choices until consistency of I is restored (backjump-
ing; lines 9–10), and the computation resumes by propagat-
ing the consequences of the clause learned by the conflict
analysis. Conflicts detected during propagation are analyzed
by procedure AnalyzeConflictAndLearnClauses (line 11).

The main algorithm is usually complemented with some
heuristic techniques that control the number of learned
clauses (which may be exponential in number), and possi-
bly restart the computation to explore different branches of
the search tree. Moreover, a crucial role is played by the
heuristic criteria used for selecting branching literals. WASP
2.0 adopts the same branching and deletion heuristics of the
SAT solver MiniSAT (Eén and Sörensson 2003). The restart
policy is based on the sequence of thresholds introduced in
(Luby, Sinclair, and Zuckerman 1993).

Propagation and clause learning are described in more de-
tail in the following.

Propagation. WASP 2.0 implements two deterministic in-
ference rules for pruning the search space during answer
set computation. These propagation rules are named unit
and well-founded. Unit propagation is applied first (line 1

69

of function Propagate). It returns false if an inconsis-
tency arises. Otherwise, well-founded propagation is ap-
plied (line 2). Function WellFoundedPropagation may learn
an implicit clause in P , in which case true is returned and
unit propagation is applied on the new clause. When no new
clause can be learned by WellFoundedPropagation, function
Propagate returns true to report that no inconsistency has
been detected. More in details, unit propagation is as in SAT
solvers: An undefined literal ` is inferred by unit propaga-
tion if there is a rule r that can be satisfied only by `, i.e.,
r is such that ` ∈ C(r) and C(r) \ {`} ⊆ I . Concerning
well-founded propagation, we must first introduce the no-
tion of unfounded set. A set X of atoms is unfounded if
for each rule r such that H(r) ∩ X 6= ∅, at least one of
the following conditions is satisfied: (i) B(r) ∩ I 6= ∅; (ii)
B+(r) ∩X 6= ∅; (iii) I ∩H(r) \X 6= ∅. Intuitively, atoms
in X can have support only by themselves. When an un-
founded set X is found, function WellFoundedPropagation
learns a clause forcing falsity of an atom in X . Clauses for
other atoms in X will be learned on subsequent calls to the
function, unless an inconsistency arises during unit propa-
gation. In case of inconsistencies, indeed, the unfounded set
X is recomputed.

Conflict Analysis and Learning. Clause learning ac-
quires information from conflicts in order to avoid exploring
the same search branch several times. WASP 2.0 adopts a
learning schema based on the concept of the first Unique
Implication Point (UIP) (Moskewicz et al. 2001), which
is computed by analyzing the so-called implication graph.
Roughly, the implication graph contains a node for each
literal in I , and arcs from `i to `0 (i = 1, . . . , n; n ≥
1) if literal `0 is inferred by unit propagation on clause
{`0, . . . , `n}. Each literal ` ∈ I is associated with a deci-
sion level, corresponding to the depth nesting level of the
recursive call to ComputeAnswerSet on which ` is added to
I . A node n in the implication graph is a UIP for a decision
level d if all paths from the choice of level d to the conflict
literals pass through n. The first UIP is the UIP for the de-
cision level of the conflict that is closest to the conflict. The
learning schema is as follows: Let u be the first UIP. Let
L be the set of literals different form u occurring in a path
from u to the conflict literals. The learned clause comprises
u and each literal ` such that the decision level of ` is lower
than the one of u and there is an arc (`, `′) in the implication
graph for some `′ ∈ L.

Comparing WASP 1.0 and WASP 2.0
In this section we compare WASP 2.0 to WASP 1.0. First of
all we observe that WASP 1.0 does not implement any pro-
gram transformation phase, whereas WASP 2.0 applies both
Clark’s completion and program simplification in the style
of (Eén and Biere 2005). The addition of this preprocess-
ing step brings advantages in both terms of simplifying the
implementation of the propagation procedure and in terms
performance. The Clark’s completion introduces a number
of clauses that represent support propagation, which is im-
plemented natively in WASP 1.0 instead. The subsequent

program simplification step optimizes the program by elimi-
nating redundant atoms (also introduced by the completion)
and shrinking definitions. This results in a program that is
usually easier to evaluate. Concerning the well-founded op-
erator both WASP 2.0 and WASP 1.0 compute unfounded
sets according to the source pointers (Simons, Niemelä, and
Soininen 2002) technique. WASP 1.0, which implements a
native inference rule, immediately infers unfounded atoms
as false, and updates a special implementation of the im-
plication graph. In contrast, WASP 2.0 learns a clause
representing the inference (also called loop formula) and
propagates it with unit propagation. This choice combined
with Clark’s completion allows to simplify conflict analy-
sis, learning and backjumping. Indeed, WASP 1.0 imple-
ments specialized variants of these procedures that require
the usage of complex data structures that are difficult to op-
timize. Since in WASP 2.0 literals are always inferred by the
UnitPropagation procedure, we could adopt an implementa-
tion of these strategies optimized as in modern SAT solvers.
Finally both WASP 2.0 and WASP 1.0 implement conflict-
driven branching heuristics. WASP 2.0 uses a branching
heuristic inspired to the one of MiniSAT, while WASP 1.0
uses an extension of the BerkMin (Goldberg and Novikov
2002) heuristics extended by adding a look-ahead technique
and an additional ASP-specific criterion.

Experiment
In this section we report the results of an experiment assess-
ing the performance of WASP 2.0. In particular, we com-
pare WASP 2.0 with WASP 1.0 and clasp. All the solvers
used gringo 3.0.5 (Gebser et al. 2011) as grounder. clasp
and WASP 1.0 has been executed with the same heuristic
setting used in (Alviano et al. 2013). Concerning clasp we
used the version 3.0.1. The experiment was run on a Mac
Pro equipped with two 3 GHz Intel Xeon X5365 (quad core)
processors, with 4 MB of L2 cache and 16 GB of RAM,
running Debian Linux 7.3 (kernel ver. 3.2.0-4-amd64). Bi-
naries were generated with the GNU C++ compiler 4.7.3-4
shipped by Debian. Time limit was set to 600 seconds. Per-
formance was measured using the tools pyrunlim and pyrun-
ner (https://github.com/alviano/python).

Tested instances are among those in the System Track of
the 3rd ASP Competition (Calimeri, Ianni, and Ricca 2014),
in particular all instances in the NP category. This category
includes planning domains, temporal and spatial schedul-
ing problems, combinatorial puzzles, graph problems, and
a number of real-world domains in which ASP has been ap-
plied. (See (Calimeri, Ianni, and Ricca 2014) for an exhaus-
tive description of the benchmarks.)

Table 1 summarizes the number of solved instances and
the average running times in seconds for each solver. In
particular, the first two columns report the total number of
instances (#) and the number of instances that are solved by
all solvers (#all), respectively; the remaining columns report
the number of solved instances within the time-out (sol.),
and the running times averaged both over solved instances
(t) and over instances solved by all variants (tall).

We observe that WASP 2.0 outperforms WASP 1.0. In
fact, WASP 2.0 solved 17 instances more than WASP 1.0,

70

Table 1: Average running time and number of solved instances
clasp WASP 1.0 WASP 2.0

Problem # #all sol. t tall sol. t tall sol. t tall

DisjunctiveScheduling 10 5 5 16.8 16.8 5 29.0 29.0 5 188.4 188.4
GraphColouring 10 3 4 88.0 20.6 3 50.5 50.5 3 3.3 3.3
HanoiTower 10 2 7 126.0 49.8 2 214.0 214.0 7 52.5 18.3
KnightTour 10 6 10 14.3 0.3 6 93.5 93.5 10 16.0 0.6
Labyrinth 10 8 9 74.4 74.7 8 118.7 118.7 10 85.8 84.7
MazeGeneration 10 10 10 0.3 0.3 10 19.9 19.9 10 2.7 2.7
MultiContextSystemQuerying 10 10 10 5.1 5.1 10 122.4 122.4 10 9.4 9.4
Numberlink 10 6 8 21.1 0.6 6 24.3 24.3 7 8.7 5.5
PackingProblem 10 0 0 - - 0 - - 0 - -
SokobanDecision 10 5 10 101.5 2.8 5 212.8 212.8 7 97.8 14.4
Solitaire 10 2 2 124.9 124.9 3 183.1 198.0 4 8.7 6.0
WeightAssignmentTree 10 1 5 119.2 22.4 1 297.3 297.3 3 282.3 97.9
Total 120 58 80 62.9 20.5 59 124.1 95.6 76 68.7 34.6

and also the improvement on the average execution time is
sensible, with a percentage gain of around 64% on instances
solved by all systems. On the other hand, clasp is faster than
WASP 2.0, with a percentage gain of around 41 % on the
same instances. Moreover, clasp solved 4 instances more
than WASP 2.0.

Analyzing the results in more detail, there are some spe-
cific benchmarks where WASP 2.0 and clasp exhibit signif-
icantly performances. Two of these problems are Sokoban-
Decision and WeightAssignmentTree, where clasp solved 3
and 2 instances more than WASP 2.0, respectively, while
WASP 2.0 solved 2 instances more than clasp in Solitaire.
We also note that the performance of WASP deteriored in
DisjunctiveScheduling. This is due to the initial steps of the
computation, and in particular to the simplification proce-
dure, which in this case removes 80% of clauses and 99%
of atoms. However, there are cases in which simplifications
play a crucial role to improve performance of the answer
set search procedure. For example, in HanoiTower, where
WASP 2.0 performs better than other systems, more than
half of the variables are removed in a few seconds.

Related Work
WASP 1.0 is inspired by several techniques used in SAT
solving that were first introduced for Constraint Satisfaction
and QBF solving.

Some of these techniques were already adapted in
non-disjunctive ASP solvers like Smodelscc (Ward and
Schlipf 2004), clasp (Gebser et al. 2007), Smodels (Si-
mons, Niemelä, and Soininen 2002), Cmodels3 (Lierler and
Maratea 2004), and DLV (Ricca, Faber, and Leone 2006).
More in detail, WASP 2.0 differs from Cmodels3 (Lier-
ler and Maratea 2004) that are based on a rewriting into a
propositional formula and an external SAT solver. WASP
2.0 differs from DLV (Alviano et al. 2011) and the Smod-
els variants, which features a native implementation of all
inference rules. Our new solver is more similar to clasp,
but there are differences concerning the restart policy, con-
straint deletion and branching heuristics. WASP 2.0 adopts
as default a policy based on the sequence of thresholds in-

troduced in (Luby, Sinclair, and Zuckerman 1993), whereas
clasp employs by default a different policy based on geomet-
ric series. Concerning deletion of learned constraints, WASP
2.0 adopts a criterion inspired by MiniSAT, while clasp im-
plements a technique introduced in Glucose (Audemard and
Simon 2009). Moreover, clasp adopts a branching heuris-
tic based on BerkMin (Goldberg and Novikov 2002) with a
variant of the MOMS criterion which estimates the effect of
the candidate literals in short clauses.

Conclusion
In this paper we reported on the recent improvement of the
ASP solver WASP 1.0. We described the main improve-
ments on the evaluation procedure focusing on the improve-
ments to the core evaluation algorithms working on normal
programs. The new solver was compared with both its pre-
decessor and the latest version of clasp on on benchmarks
belonging to the NP class, where WASP 1.0 was not com-
petitive. The result is very encouraging, since WASP 2.0
improves substantially w.r.t. WASP 1.0 and is often compet-
itive with clasp.

Future work concerns the reengineering of disjunctive
rules, aggregates, and weak constraints, as well as the in-
troduction of a native implementation of choice rules.

References
Alviano, M.; Faber, W.; Leone, N.; Perri, S.; Pfeifer, G.; and
Terracina, G. 2011. The disjunctive datalog system DLV.
In Gottlob, G., ed., Datalog 2.0, volume 6702. Springer
Berlin/Heidelberg. 282–301.
Alviano, M.; Dodaro, C.; Faber, W.; Leone, N.; and Ricca, F.
2013. Wasp: A native asp solver based on constraint learn-
ing. In Cabalar, P., and Son, T. C., eds., LPNMR, volume
8148 of LNCS, 54–66. Springer.
Audemard, G., and Simon, L. 2009. Predicting learnt
clauses quality in modern sat solvers. In Boutilier, C., ed.,
IJCAI, 399–404.
Calimeri, F.; Ianni, G.; and Ricca, F. 2014. The third open

71

answer set programming competition. Theory and Practice
of Logic Programming 14(1):117–135.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A Ma-
chine Program for Theorem Proving. Communications of
the ACM 5:394–397.
Eén, N., and Biere, A. 2005. Effective preprocessing in
sat through variable and clause elimination. In SAT, volume
3569 of LNCS, 61–75. Springer.
Eén, N., and Sörensson, N. 2003. An extensible sat-solver.
In Giunchiglia, E., and Tacchella, A., eds., SAT, volume
2919 of LNCS, 502–518. Springer.
Gaschnig, J. 1979. Performance measurement and analysis
of certain search algorithms. Ph.D. Dissertation, Carnegie
Mellon University, Pittsburgh, PA, USA. Technical Report
CMU-CS-79-124.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. Conflict-driven answer set solving. In IJCAI, 386–
392. Morgan Kaufmann Publishers.
Gebser, M.; Kaminski, R.; König, A.; and Schaub, T. 2011.
Advances in gringo series 3. In Delgrande, J. P., and
Faber, W., eds., LPNMR, volume 6645 of LNCS, 345–351.
Springer.
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Genera-
tion Computing 9:365–385.
Goldberg, E., and Novikov, Y. 2002. BerkMin: A Fast
and Robust Sat-Solver. In Design, Automation and Test in
Europe Conference and Exposition (DATE 2002), 142–149.
Paris, France: IEEE Computer Society.
Gomes, C. P.; Selman, B.; and Kautz, H. A. 1998. Boosting
Combinatorial Search Through Randomization. In Proceed-
ings of AAAI/IAAI 1998, 431–437. AAAI Press.
Lierler, Y., and Maratea, M. 2004. Cmodels-2: SAT-based
Answer Set Solver Enhanced to Non-tight Programs. In Lif-
schitz, V., and Niemelä, I., eds., Proceedings of LPNMR,
volume 2923 of LNAI, 346–350. Springer.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal
speedup of las vegas algorithms. Inf. Process. Lett. 47:173–
180.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an Efficient SAT Solver.
In Proceedings of the 38th DAC, 530–535. Las Vegas, NV,
USA: ACM.
Ricca, F.; Faber, W.; and Leone, N. 2006. A Backjumping
Technique for Disjunctive Logic Programming. 19(2):155–
172.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and Implementing the Stable Model Semantics. Artificial
Intelligence 138:181–234.
Ward, J., and Schlipf, J. S. 2004. Answer Set Programming
with Clause Learning. In Lifschitz, V., and Niemelä, I., eds.,
Proceedings of the 7th International Conference on Logic
Programming and Non-Monotonic Reasoning (LPNMR-7),
volume 2923 of LNAI, 302–313. Springer.

Zhang, L.; Madigan, C. F.; Moskewicz, M. W.; and Malik,
S. 2001. Efficient Conflict Driven Learning in Boolean Sat-
isfiability Solver. In Proceedings of the ICCAD, 279–285.

72

On Strong and Default Negation in Logic Program Updates

Martin Slota
CENTRIA

New University of Lisbon

Martin Baláž
Faculty of Mathematics, Physics and Informatics

Comenius University

João Leite
CENTRIA

New University of Lisbon

Abstract

Existing semantics for answer-set program updates fall into
two categories: either they consider only strong negation in
heads of rules, or they primarily rely on default negation in
heads of rules and optionally provide support for strong nega-
tion by means of a syntactic transformation.
In this paper we pinpoint the limitations of both these ap-
proaches and argue that both types of negation should be first-
class citizens in the context of updates. We identify principles
that plausibly constrain their interaction but are not simulta-
neously satisfied by any existing rule update semantics. Then
we extend one of the most advanced semantics with direct
support for strong negation and show that it satisfies the out-
lined principles as well as a variety of other desirable proper-
ties.

1 Introduction
The increasingly common use of rule-based knowledge rep-
resentation languages in highly dynamic and information-
rich contexts, such as the Semantic Web (Berners-Lee,
Hendler, and Lassila 2001), requires standardised support
for updates of knowledge represented by rules. Answer-set
programming (Gelfond and Lifschitz 1988; 1991) forms the
natural basis for investigation of rule updates, and various
approaches to answer-set program updates have been ex-
plored throughout the last 15 years (Leite and Pereira 1998;
Alferes et al. 1998; 2000; Eiter et al. 2002; Leite 2003;
Sakama and Inoue 2003; Alferes et al. 2005; Banti et al.
2005; Zhang 2006; Šefránek 2006; Delgrande, Schaub, and
Tompits 2007; Osorio and Cuevas 2007; Šefránek 2011;
Krümpelmann 2012).

The most straightforward kind of conflict arising be-
tween an original rule and its update occurs when the origi-
nal conclusion logically contradicts the newer one. Though
the technical realisation and final result may differ signif-
icantly, depending on the particular rule update semantics,
this kind of conflict is resolved by letting the newer rule
prevail over the older one. Actually, under most semantics,
this is also the only type of conflict that is subject to auto-
matic resolution (Leite and Pereira 1998; Alferes et al. 2000;
Eiter et al. 2002; Alferes et al. 2005; Banti et al. 2005;
Delgrande, Schaub, and Tompits 2007; Osorio and Cuevas
2007).

From this perspective, allowing for both strong and de-
fault negation to appear in heads of rules is essential for
an expressive and universal rule update framework (Leite
2003). While strong negation is the natural candidate here,
used to express that an atom becomes explicitly false, default
negation allows for more fine-grained control: the atom only
ceases to be true, but its truth value may not be known after
the update. The latter also makes it possible to move be-
tween any pair of epistemic states by means of updates, as
illustrated in the following example:

Example 1.1 (Railway crossing (Leite 2003)). Suppose that
we use the following logic program to choose an action at a
railway crossing:

cross← ¬train. wait← train. listen← ∼train,∼¬train.

The intuitive meaning of these rules is as follows: one should
cross if there is evidence that no train is approaching; wait
if there is evidence that a train is approaching; listen if there
is no such evidence.

Consider a situation where a train is approaching, repre-
sented by the fact (train.). After this train has passed by, we
want to update our knowledge to an epistemic state where
we lack evidence with regard to the approach of a train. If
this was accomplished by updating with the fact (¬train.),
we would cross the tracks at the subsequent state, risking be-
ing killed by another train that was approaching. Therefore,
we need to express an update stating that all past evidence
for an atom is to be removed, which can be accomplished by
allowing default negation in heads of rules. In this scenario,
the intended update can be expressed by the fact (∼train.).

With regard to the support of negation in rule heads, exist-
ing rule update semantics fall into two categories: those that
only allow for strong negation, and those that primarily con-
sider default negation. As illustrated above, the former are
unsatisfactory as they render many belief states unreachable
by updates. As for the latter, they optionally provide support
for strong negation by means of a syntactic transformation.

Two such transformations are known from the literature,
both of them based on the principle of coherence: if an atom
p is true, its strong negation ¬p cannot be true simultane-
ously, so ∼¬p must be true, and also vice versa, if ¬p is
true, then so is ∼p. The first transformation, introduced in
(Alferes and Pereira 1996), encodes this principle directly

73

by adding, to both the original program and its update, the
following two rules for every atom p:

∼¬p← p. ∼p← ¬p.

This way, every conflict between an atom p and its strong
negation¬p directly translates into two conflicts between the
objective literals p, ¬p and their default negations. However,
the added rules lead to undesired side effects that stand in
direct opposition with basic principles underlying updates.
Specifically, despite the fact that the empty program does not
encode any change in the modelled world, the stable models
assigned to a program may change after an update by the
empty program.

This undesired behaviour is addressed in an alternative
transformation from (Leite 2003) that encodes the coherence
principle more carefully. Nevertheless, this transformation
also leads to undesired consequences, as demonstrated in the
following example:
Example 1.2 (Faulty sensor). Suppose that we collect data
from sensors and, for security reasons, multiple sensors are
used to supply information about the critical fluent p. In case
of a malfunction of one of the sensors, we may end up with an
inconsistent logic program consisting of the following two
facts:

p. ¬p.

At this point, no stable model of the program exists and ac-
tion needs to be taken to find out what is wrong. If a problem
is found in the sensor that supplied the first fact (p.), after
the sensor is repaired, this information needs to be reset by
updating the program with the fact (∼p.). Following the uni-
versal pattern in rule updates, where recovery from conflict-
ing states is always possible, we expect that this update is
sufficient to assign a stable model to the updated program.
However, the transformational semantics for strong nega-
tion defined in (Leite 2003) still does not provide any stable
model – we remain without a valid epistemic state when one
should in fact exist.

In this paper we address the issues with combining strong
and default negation in the context of rule updates. Based on
the above considerations, we formulate a generic desirable
principle that is violated by the existing approaches. Then
we show how two distinct definitions of one of the most
well-behaved rule update semantics (Alferes et al. 2005;
Banti et al. 2005) can be equivalently extended with sup-
port for strong negation. The resulting semantics not only
satisfies the formulated principle, but also retains the for-
mal and computational properties of the original semantics.
More specifically, our main contributions are as follows:
• based on Example 1.2, we introduce the early recovery

principle that captures circumstances under which a stable
model after a rule update should exist;

• we extend the well-supported semantics for rule updates
(Banti et al. 2005) with direct support for strong negation;

• we define a fixpoint characterisation of the new semantics,
based on the refined dynamic stable model semantics for
rule updates (Alferes et al. 2005);

• we show that the defined semantics enjoy the early recov-
ery principle as well as a range of desirable properties for
rule updates known from the literature.

This paper is organised as follows: In Sect. 2 we present
the syntax and semantics of logic programs, generalise the
well-supported semantics from the class of normal programs
to extended ones and define the rule update semantics from
(Alferes et al. 2005; Banti et al. 2005). Then, in Sect. 3, we
formally establish the early recovery principle, define the
new rule update semantics for strong negation and show that
it satisfies the principle. In Sect. 4 we introduce other es-
tablished rule update principles and show that the proposed
semantics satisfies them. We discuss our findings and con-
clude in Sect. 5.1

2 Background
In this section we introduce the necessary technical back-
ground and generalise the well-supported semantics (Fages
1991) to the class of extended programs.

2.1 Logic Programs
In the following we present the syntax of non-disjunctive
logic programs with both strong and default negation in
heads and bodies of rules, along with the definition of stable
models of such programs from (Leite 2003) that is equiv-
alent to the original definitions based on reducts (Gelfond
and Lifschitz 1988; 1991; Inoue and Sakama 1998). Further-
more, we define an alternative characterisation of the stable
model semantics: the well-supported models of normal logic
programs (Fages 1991).

We assume that a countable set of propositional atoms A
is given and fixed. An objective literal is an atom p ∈ A or
its strong negation ¬p. We denote the set of all objective lit-
erals by L. A default literal is an objective literal preceded
by ∼ denoting default negation. A literal is either an objec-
tive or a default literal. We denote the set of all literals by L∗.
As a convention, double negation is absorbed, so that ¬¬p
denotes the atom p and ∼∼l denotes the objective literal l.
Given a set of literals S, we introduce the following nota-
tion: S+ = { l ∈ L | l ∈ S }, S− = { l ∈ L | ∼l ∈ S },
∼S = { ∼L | L ∈ S }.

An extended rule is a pair π = (Hπ,Bπ) where Hπ is a
literal, referred to as the head of π, and Bπ is a finite set of
literals, referred to as the body of π. Usually we write π as
(Hπ ← B+

π ,∼B−π .). A generalised rule is an extended rule
that contains no occurrence of ¬, i.e., its head and body con-
sist only of atoms and their default negations. A normal rule
is a generalised rule that has an atom in the head. A fact is
an extended rule whose body is empty and a tautology is
any extended rule π such that Hπ ∈ Bπ . An extended (gen-
eralised, normal) program is a set of extended (generalised,
normal) rules.

An interpretation is a consistent subset of the set of ob-
jective literals, i.e., a subset of L does not contain both p an
¬p for any atom p. The satisfaction of an objective literal

1An extended version of this paper with all the proofs is avail-
able as (Slota, Baláž, and Leite 2014).

74

l, default literal ∼l, set of literals S, extended rule π and
extended program P in an interpretation J is defined in the
usual way: J |= l iff l ∈ J ; J |= ∼l iff l /∈ J ; J |= S iff
J |= L for all L ∈ S; J |= π iff J |= Bπ implies J |= Hπ;
J |= P iff J |= π for all π ∈ P . Also, J is a model of P if
J |= P , and P is consistent if it has a model.

Definition 2.1 (Stable model). Let P be an extended pro-
gram. The set JP KSM of stable models of P consists of all
interpretations J such that

J∗ = least(P ∪ def(J))

where def(J) = { ∼l. | l ∈ L \ J }, J∗ = J ∪∼(L\J) and
least(·) denotes the least model of the argument program in
which all literals are treated as propositional atoms.

A level mapping is a function that maps every atom to
a natural number. Also, for any default literal ∼p, where
p ∈ A, and finite set of atoms and their default nega-
tions S, `(∼p) = `(p), `↓(S) = min { `(L) | L ∈ S } and
`↑(S) = max { `(L) | L ∈ S }.
Definition 2.2 (Well-supported model of a normal program).
Let P be a normal program and ` a level mapping. An inter-
pretation J ⊆ A is a well-supported model of P w.r.t. ` if
the following conditions are satisfied:

1. J is a model of P ;
2. For every atom p ∈ J there exists a rule π ∈ P such that

Hπ = p ∧ J |= Bπ ∧ `(Hπ) > `↑(Bπ) .

The set JP KWS of well-supported models of P consists of all
interpretations J ⊆ A such that J is a well-supported model
of P w.r.t. some level mapping.

As shown in (Fages 1991), well-supported models coin-
cide with stable models:

Proposition 2.3 ((Fages 1991)). Let P be a normal pro-
gram. Then, JP KWS = JP KSM.

2.2 Well-supported Models for Extended
Programs

The well-supported models defined in the previous section
for normal logic programs can be generalised in a straight-
forward manner to deal with strong negation while maintain-
ing their tight relationship with stable models (c.f. Proposi-
tion 2.3). This will come useful in Subsect. 2.3 and Sect. 3
when we discuss adding support for strong negation to se-
mantics for rule updates.

We extend level mappings from atoms and their de-
fault negations to all literals: An (extended) level map-
ping ` maps every objective literal to a natural number.
Also, for any default literal ∼l and finite set of literals S,
`(∼l) = `(p), `↓(S) = min { `(L) | L ∈ S } and `↑(S) =
max { `(L) | L ∈ S }.
Definition 2.4 (Well-supported model of an extended pro-
gram). Let P be an extended program and ` a level map-
ping. An interpretation J is a well-supported model of P
w.r.t. ` if the following conditions are satisfied:

1. J is a model of P ;

2. For every objective literal l ∈ J there exists a rule π ∈ P
such that

Hπ = l ∧ J |= Bπ ∧ `(Hπ) > `↑(Bπ) .

The set JP KWS of well-supported models of P consists of all
interpretations J such that J is a well-supported model of P
w.r.t. some level mapping.

We obtain a generalisation of Prop. 2.3 to the class of ex-
tended programs:
Proposition 2.5. Let P be an extended program. Then,
JP KWS = JP KSM.

2.3 Rule Updates
We turn our attention to rule updates, starting with one of
the most advanced rule update semantics, the refined dy-
namic stable models for sequences of generalised programs
(Alferes et al. 2005), as well as the equivalent definition of
well-supported models (Banti et al. 2005). Then we define
the transformations for adding support for strong negation
to such semantics (Alferes and Pereira 1996; Leite 2003).

A rule update semantics provides a way to assign stable
models to a pair or sequence of programs where each com-
ponent represents an update of the preceding ones. Formally,
a dynamic logic program (DLP) is a finite sequence of ex-
tended programs and by all(P) we denote the multiset of all
rules in the components of P. A rule update semantics S as-
signs a set of S-models, denoted by JPKS, to P.

We focus on semantics based on the causal rejection prin-
ciple (Leite and Pereira 1998; Alferes et al. 2000; Eiter et
al. 2002; Leite 2003; Alferes et al. 2005; Banti et al. 2005;
Osorio and Cuevas 2007) which states that a rule is rejected
if it is in a direct conflict with a more recent rule. The ba-
sic type of conflict between rules π and σ occurs when their
heads contain complementary literals, i.e. when Hπ = ∼Hσ .
Based on such conflicts and on a stable model candidate, a
set of rejected rules can be determined and it can be verified
that the candidate is indeed stable w.r.t. the remaining rules.

We define the most mature of these semantics, providing
two equivalent definitions: the refined dynamic stable mod-
els (Alferes et al. 2005), or RD-semantics, defined using a
fixpoint equation, and the well-supported models (Banti et
al. 2005), or WS-semantics, based on level mappings.
Definition 2.6 (RD-semantics (Alferes et al. 2005)). Let
P = 〈Pi〉i<n be a DLP without strong negation. Given an
interpretation J , the multisets of rejected rules rej≥(P, J)
and of default assumptions def(P, J) are defined as follows:

rej≥(P, J) = {π ∈ Pi|i < n ∧ ∃j ≥ i ∃σ ∈ Pj : Hπ = ∼Hσ

∧ J |= Bσ},
def(P, J) = {(∼l.)|l ∈ L

∧ ¬(∃π ∈ all(P) : Hπ = l ∧ J |= Bπ)}.

The set JPKRD of RD-models of P consists of all interpreta-
tions J such that

J∗ = least
(
[all(P) \ rej≥(P, J)] ∪ def(P, J)

)
where J∗ and least(·) are defined as before.

75

Definition 2.7 (WS-semantics (Banti et al. 2005)). Let P =
〈Pi〉i<n be a DLP without strong negation. Given an inter-
pretation J and a level mapping `, the multiset of rejected
rules rej`(P, J) is defined as follows:

rej`(P, J) = {π ∈ Pi|i < n ∧ ∃j > i ∃σ ∈ Pj : Hπ = ∼Hσ

∧ J |= Bσ ∧ `(Hσ) > `↑(Bσ)}.

The set JPKWS of WS-models of P consists of all interpre-
tations J such that for some level mapping `, the following
conditions are satisfied:

1. J is a model of all(P) \ rej`(P, J);
2. For every l ∈ J there exists some rule π ∈ all(P) \

rej`(P, J) such that

Hπ = l ∧ J |= Bπ ∧ `(Hπ) > `↑(Bπ) .

Unlike most other rule update semantics, these semantics
can properly deal with tautological and other irrelevant up-
dates, as illustrated in the following example:

Example 2.8 (Irrelevant updates). Consider the DLP P =
〈P,U〉 where programs P , U are as follows:

P : day← ∼night. stars← night,∼cloudy.

night← ∼day. ∼stars.

U : stars← stars.

Note that program P has the single stable model J1 =
{ day } and U contains a single tautological rule, i.e. it does
not encode any change in the modelled domain. Thus, we
expect that P also has the single stable model J1. Nev-
ertheless, many rule update semantics, such as those in-
troduced in (Leite and Pereira 1998; Alferes et al. 2000;
Eiter et al. 2002; Leite 2003; Sakama and Inoue 2003;
Zhang 2006; Osorio and Cuevas 2007; Delgrande, Schaub,
and Tompits 2007; Krümpelmann 2012), are sensitive to this
or other tautological updates, introducing or eliminating
models of the original program.

In this case, the unwanted model candidate is J2 =
{ night, stars } and it is neither an RD- nor a WS-model of
P, though the reasons for this are technically different under
these two semantics. It is not difficult to verify that, given
an arbitrary level mapping `, the respective sets of rejected
rules and the set of default assumptions are as follows:

rej≥(P, J2) = { (stars← night,∼cloudy.), (∼stars.) } ,
rej`(P, J2) = ∅,
def(P, J2) = { (∼cloudy.), (∼day.) } .

Note that rej`(P, J2) is empty because, independently of `,
no rule π in U satisfies the condition `(Hπ) > `↑(Bπ), so
there is no rule that could reject another rule. Thus, the atom
stars belongs to J∗2 but does not belong to least([all(P) \
rej≥(P, J2)] ∪ def(P, J2)), so J2 is not an RD-model of P.
Furthermore, no model of all(P)\ rej`(P, J2) contains stars,
so J2 cannot be a WS-model of P.

Furthermore, the resilience of RD- and WS-semantics is
not limited to empty and tautological updates, but extends
to other irrelevant updates as well (Alferes et al. 2005;

Banti et al. 2005). For example, consider the DLP P′ =
〈P,U ′〉 where U ′ = { (stars← venus.), (venus← stars.) }.
Though the updating program contains non-tautological
rules, it does not provide a bottom-up justification of any
model other than J1 and, indeed, J1 is the only RD- and
WS-model of P′.

We also note that the two presented semantics for DLPs
without strong negation provide the same result regardless
of the particular DLP to which they are applied.
Proposition 2.9 ((Banti et al. 2005)). Let P be a DLP with-
out strong negation. Then, JPKWS = JPKRD.

In case of the stable model semantics for a single program,
strong negation can be reduced away by treating all objective
literals as atoms and adding, for each atom p, the integrity
constraint (← p,¬p.) to the program (Gelfond and Lifs-
chitz 1991). However, this transformation does not serve its
purpose when adding support for strong negation to causal
rejection semantics for DLPs because integrity constraints
have empty heads, so according to these rule update seman-
tics, they cannot be used to reject any other rule. For exam-
ple, a DLP such as 〈{ p.,¬p. } , { p. }〉 would remain with-
out a stable model even though the DLP 〈{ p.,∼p. } , { p. }〉
does have a stable model.

To capture the conflict between opposite objective literals
l and ¬l in a way that is compatible with causal rejection se-
mantics, a slightly modified syntactic transformation can be
performed, translating such conflicts into conflicts between
objective literals and their default negations. Two such trans-
formations have been suggested in the literature (Alferes and
Pereira 1996; Leite 2003), both based on the principle of co-
herence. For any extended programP and DLP P = 〈Pi〉i<n
they are defined as follows:

P † = P ∪ {∼¬l← l.|l ∈ L},

P† =
〈
P †i

〉
i<n

,

P ‡ = P ∪ {∼¬Hπ ← Bπ.|π ∈ P ∧ Hπ ∈ L},

P‡ =
〈
P ‡i

〉
i<n

.

These transformations lead to four possibilities for defining
the semantics of an arbitrary DLP P: JP† KRD, JP‡ KRD, JP† KWS

and JP‡ KWS. We discuss these in the following section.

3 Direct Support for Strong Negation in Rule
Updates

The problem with existing semantics for strong negation in
rule updates is that semantics based on the first transforma-
tion (P†) assign too many models to some DLPs, while se-
mantics based on the second transformation (P‡) sometimes
do not assign any model to a DLP that should have one. The
former is illustrated in the following example:
Example 3.1 (Undesired side effects of the first transforma-
tion). Consider the DLP P1 = 〈P,U〉 where P = { p.,¬p. }
and U = ∅. Since P has no stable model and U does not
encode any change in the represented domain, it should fol-
low that P1 has no stable model either. However, JP†1 KRD =

76

JP†1 KWS = { { p } , {¬p } }, i.e. two models are assigned to
P1 when using the first transformation to add support for
strong negation. To verify this, observe that P†1 = 〈P †, U†〉
where

P † : p. ¬p. U† : ∼p← ¬p.
∼p← ¬p. ∼¬p← p. ∼¬p← p.

Consider the interpretation J1 = { p }. It is not difficult to
verify that

rej≥(P†1, J1) = {¬p.,∼¬p← p. } ,

def(P†1, J1) = ∅ ,
so it follows that

least
([

all(P†1) \ rej≥(P†1, J1)
]
∪ def(P†1, J1)

)
=

= { p,∼¬p } = J∗1 .

In other words, J1 belongs to JP†1 KRD and in an analogous
fashion it can be verified that J2 = {¬p } also belongs
there. A similar situation occurs with JP†1 KWS since the rules
that were added to the more recent program can be used to
reject facts in the older one.

Thus, the problem with the first transformation is that
an update by an empty program, which does not express
any change in the represented domain, may affect the orig-
inal semantics. This behaviour goes against basic and intu-
itive principles underlying updates, grounded already in the
classical belief update postulates (Keller and Winslett 1985;
Katsuno and Mendelzon 1991) and satisfied by virtually all
belief update operations (Herzig and Rifi 1999) as well as by
the vast majority of existing rule update semantics, including
the original RD- and WS-semantics.

This undesired behaviour can be corrected by using the
second transformation instead. The more technical reason is
that it does not add any rules to a program in the sequence
unless that program already contains some original rules.
However, its use leads to another problem: sometimes no
model is assigned when in fact a model should exist.
Example 3.2 (Undesired side effects of the second trans-
formation). Consider again Example 1.2, formalised as the
DLP P2 = 〈P, V 〉 where P = { p.,¬p. } and V = {∼p. }.
It is reasonable to expect that since V resolves the conflict
present in P , a stable model should be assigned to P2. How-
ever, JP‡2 KRD = JP‡2 KWS = ∅. To verify this, observe that
P‡2 = 〈P ‡, V ‡〉 where

P ‡ : p. ¬p. V ‡ : ∼p.
∼p. ∼¬p.

Given an interpretation J and level mapping `, we conclude
that rej`(P

‡
2, J) = { p. }, so the facts (¬p.) and (∼¬p.) both

belong to the program

all(P‡2) \ rej`(P
‡
2, J) .

Consequently, this program has no model and it follows that
J cannot belong to JP‡2 KWS. Similarly it can be shown that
JP‡2 KRD = ∅.

Based on this example, in the following we formulate a
generic early recovery principle that formally identifies con-
ditions under which some stable model should be assigned
to a DLP. For the sake of simplicity, we concentrate on DLPs
of length 2 which are composed of facts. We discuss a gen-
eralisation of the principle to DLPs of arbitrary length and
containing other rules than just facts in Sect. 5. After intro-
ducing the principle, we define a semantics for rule updates
which directly supports both strong and default negation and
satisfies the principle.

We begin by defining, for every objective literal l, the sets
of literals l and ∼l as follows:

l = {∼l,¬l } and ∼l = { l } .

Intuitively, for every literal L, L denotes the set of literals
that are in conflict with L. Furthermore, given two sets of
facts P and U , we say that U solves all conflicts in P if for
each pair of rules π, σ ∈ P such that Hσ ∈ Hπ there is a fact
ρ ∈ U such that either Hρ ∈ Hπ or Hρ ∈ Hσ .

Considering a rule update semantics S, the new principle
simply requires that when U solves all conflicts in P , S will
assign some model to 〈P,U〉. Formally:
Early recovery principle: If P is a set of facts and U is a

consistent set of facts that solves all conflicts in P , then
J〈P,U〉KS 6= ∅.
We conjecture that rule update semantics should gener-

ally satisfy the above principle. In contrast with the usual
behaviour of belief update operators, the nature of existing
rule update semantics ensures that recovery from conflict
is always possible, and this principle simply formalises and
sharpens the sufficient conditions for such recovery.

Our next goal is to define a semantics for rule updates that
not only satisfies the outlined principle, but also enjoys other
established properties of rule updates that have been identi-
fied over the years. Similarly as for the original semantics
for rule updates, we provide two equivalent definitions, one
based on a fixed point equation and the other one on level
mappings.

To directly accommodate strong negation in the RD-se-
mantics, we first need to look more closely at the set of
rejected rules rej≥(P, J), particularly at the fact that it al-
lows conflicting rules within the same component of P to re-
ject one another. This behaviour, along with the constrained
set of defaults def(P, J), is used to prevent tautological and
other irrelevant cyclic updates from affecting the semantics.
However, in the presence of strong negation, rejecting con-
flicting rules within the same program has undesired side
effects. For example, the early recovery principle requires
that some model be assigned to the DLP 〈{ p.,¬p. } , {∼p }〉
from Example 3.2, but if the rules in the initial program re-
ject each other, then the only possible stable model to assign
is ∅. However, such a stable model would violate the causal
rejection principle since it does not satisfy the initial rule
(¬p.) and there is no rule in the updating program that over-
rides it.

To overcome the limitations of this approach to the pre-
vention of tautological updates, we disentangle rule rejec-
tion per se from ensuring that rejection is done without

77

cyclic justifications. We introduce the set of rejected rules
rej¬>(P, S) which directly supports strong negation and does
not allow for rejection within the same program. Preven-
tion of cyclic rejections is done separately by using a cus-
tomised immediate consequence operator TP,J . Given a sta-
ble model candidate J , instead of verifying that J∗ is the
least fixed point of the usual consequence operator, as done
in the RD-semantics using least(·), we verify that J∗ is the
least fixed point of TP,J .
Definition 3.3 (Extended RD-semantics). Let P = 〈Pi〉i<n
be a DLP. Given an interpretation J and a set of literals
S, the multiset of rejected rules rej¬>(P, S), the remainder
rem(P, S) and the consequence operator TP,J are defined
as follows:

rej¬>(P, S) = {π ∈ Pi|i < n ∧ ∃j > i ∃σ ∈ Pj : Hσ ∈ Hπ
∧ Bσ ⊆ S},

rem(P, S) = all(P) \ rej¬>(P, S) ,

TP,J(S) =
{

Hπ | π ∈ (rem(P, J∗) ∪ def(J)) ∧ Bπ ⊆ S
∧ ¬

(
∃σ ∈ rem(P, S) : Hσ ∈ Hπ ∧ Bσ ⊆ J∗

) }
.

Furthermore, T 0
P,J(S) = S and for every k ≥ 0,

T k+1
P,J (S) = TP,J(T kP,J(S)). The set JPK¬

RD
of extended

RD-models of P consists of all interpretations J such that

J∗ =
⋃
k≥0

T kP,J(∅) .

Adding support for strong negation to the WS-semantics
is done by modifying the set of rejected rules rej`(P, J) to
account for the new type of conflict. Additionally, in order
to ensure that rejection of a literal L cannot be based on the
assumption that some conflicting literal L′ ∈ L is true, a
rejecting rule σ must satisfy the stronger condition `↓(L) >
`↑(Bσ). Finally, to prevent defeated rules from affecting the
resulting models, we require that all supporting rules belong
to rem(P, J∗).
Definition 3.4 (Extended WS-semantics). Let P = 〈Pi〉i<n
be a DLP. Given an interpretation J and a level mapping `,
the multiset of rejected rules rej¬` (P, J) is defined by:

rej¬` (P, J) = {π ∈ Pi|i < n ∧ ∃j > i ∃σ ∈ Pj : Hσ ∈ Hπ

∧ J |= Bσ ∧ `↓
(
Hπ
)
> `↑(Bσ)}.

The set JPK¬
WS

of extended WS-models of P consists of all
interpretations J such that for some level mapping `, the
following conditions are satisfied:
1. J is a model of all(P) \ rej¬` (P, J);
2. For every l ∈ J there exists some rule π ∈ rem(P, J∗)

such that

Hπ = l ∧ J |= Bπ ∧ `(Hπ) > `↑(Bπ) .

The following theorem establishes that the two defined
semantics are equivalent:
Theorem 3.5. Let P be a DLP. Then, JPK¬

WS
= JPK¬

RD
.

Also, on DLPs without strong negation they coincide with
the original semantics.

Theorem 3.6. Let P be a DLP without strong negation.
Then, JPK¬

WS
= JPK¬

RD
= JPKWS = JPKRD.

Furthermore, unlike the transformational semantics for
strong negation, the new semantics satisfy the early recovery
principle.

Theorem 3.7. The extended RD-semantics and extended
WS-semantics satisfy the early recovery principle.

4 Properties
In this section we take a closer look at the formal and com-
putational properties of the proposed rule update semantics.

The various approaches to rule updates (Leite and Pereira
1998; Alferes et al. 2000; Eiter et al. 2002; Leite 2003;
Sakama and Inoue 2003; Alferes et al. 2005; Banti et al.
2005; Zhang 2006; Šefránek 2006; Osorio and Cuevas 2007;
Delgrande, Schaub, and Tompits 2007; Šefránek 2011;
Krümpelmann 2012) share a number of basic characteris-
tics. For example, all of them generalise stable models, i.e.,
the models they assign to a sequence 〈P 〉 (of length 1) are
exactly the stable models of P . Similarly, they adhere to the
principle of primacy of new information (Dalal 1988), so
models assigned to 〈Pi〉i<n satisfy the latest program Pn−1.
However, they also differ significantly in their technical re-
alisation and classes of supported inputs, and desirable prop-
erties such as immunity to tautologies are violated by many
of them.

Table 1 lists many of the generic properties proposed
for rule updates that have been identified and formalised
throughout the years (Leite and Pereira 1998; Eiter et al.
2002; Leite 2003; Alferes et al. 2005). The rule update se-
mantics we defined in the previous section enjoys all of
them.

Theorem 4.1. The extended RD-semantics and extended
WS-semantics satisfy all properties listed in Table 1.

Our semantics also retains the same computational com-
plexity as the stable models.

Theorem 4.2. Let P be a DLP. The problem of deciding
whether some J ∈ JPK¬

WS
exists is NP-complete. Given a

literal L, the problem of deciding whether for all J ∈ JPK¬
WS

it holds that J |= L is coNP-complete.

5 Concluding Remarks
In this paper we have identified shortcomings in the exist-
ing semantics for rule updates that fully support both strong
and default negation, and proposed a generic early recovery
principle that captures them formally. Subsequently, we pro-
vided two equivalent definitions of a new semantics for rule
updates.

We have shown that the newly introduced rule update se-
mantics constitutes a strict improvement upon the state of
the art in rule updates as it enjoys the following combina-
tion of characteristics, unmatched by any previously existing
semantics:
• It allows for both strong and default negation in heads

of rules, making it possible to move between any pair of
epistemic states by means of updates;

78

Table 1: Desirable properties of rule update semantics
Generalisation of stable models J〈P 〉KS = JP KSM.

Primacy of new information If J ∈ J〈Pi〉i<n KS, then J |= Pn−1.

Fact update A sequence of consistent sets of facts 〈Pi〉i<n has the single model
{ l ∈ L | ∃i < n : (l.) ∈ Pi ∧ (∀j > i : { ¬l.,∼l. } ∩ Pj = ∅) }.

Support If J ∈ JPKS and l ∈ J , then there is some rule π ∈ all(P) such that Hπ = l and
J |= Bπ .

Idempotence J〈P, P 〉KS = J〈P 〉KS.

Absorption J〈P,U, U〉KS = J〈P,U〉KS.

Augmentation If U ⊆ V , then J〈P,U, V 〉KS = J〈P, V 〉KS.

Non-interference If U and V are over disjoint alphabets, then J〈P,U, V 〉KS = J〈P, V, U〉KS.

Immunity to empty updates If Pj = ∅, then J〈Pi〉i<n KS =
r
〈Pi〉i<n∧i 6=j

z

S

.

Immunity to tautologies If 〈Qi〉i<n is a sequence of sets of tautologies, then J〈Pi ∪Qi〉i<n KS = J〈Pi〉i<n KS.

Causal rejection principle For every i < n, π ∈ Pi and J ∈ J〈Pi〉i<n KS, if J 6|= π, then there exists some
σ ∈ Pj with j > i such that Hσ ∈ Hπ and J |= Bσ .

• It satisfies the early recovery principle which guarantees
the existence of a model whenever all conflicts in the orig-
inal program are satisfied;

• It enjoys all rule update principles and desirable proper-
ties reported in Table 1;

• It does not increase the computational complexity of the
stable model semantics upon which it is based.
However, the early recovery principle, as it is formulated

in Sect. 3, only covers a single update of a set of facts by
another set of facts. Can it be generalised further without
rendering it too strong? Certain caution is appropriate here,
since in general the absence of a stable model can be caused
by odd cycles or simply by the fundamental differences be-
tween different approaches to rule update, and the purpose
of this principle is not to choose which approach to take.

Nevertheless, one generalisation that should cause no
harm is the generalisation to iterated updates, i.e. to se-
quences of sets of facts. Another generalisation that appears
very reasonable is the generalisation to acyclic DLPs, i.e.
DLPs such that all(P) is an acyclic program. An acyclic pro-
gram has at most one stable model, and if we guarantee that
all potential conflicts within it certainly get resolved, we can
safely conclude that the rule update semantics should assign
some model to it. We formalise these ideas in what follows.

We say that a program P is acyclic (Apt and Bezem 1991)
if for some level mapping `, such that for every l ∈ L, `(l) =
`(¬l), and every rule π ∈ P it holds that `(Hπ) > `↑(Bπ).
Given a DLP P = 〈Pi〉i<n, we say that all conflicts in P are
solved if for every i < n and each pair of rules π, σ ∈ Pi
such that Hσ ∈ Hπ there is some j > i and a fact ρ ∈ Pj
such that either Hρ ∈ Hπ or Hρ ∈ Hσ .
Generalised early recovery principle: If all(P) is acyclic

and all conflicts in P are solved, then JPKS 6= ∅.
Note that this generalisation of the early recovery princi-

ple applies to a much broader class of DLPs than the original
one. We illustrate this in the following example:
Example 5.1 (Recovery in a stratified program). Consider
the following programs programs P , U and V :

P : p← q,∼r. ∼p← s. q. s← q.

U : ¬p. r ← q. ¬r ← q, s.

V : ∼r.
Looking more closely at program P , we see that atoms q and
s are derived by the latter two rules inside it while atom r
is false by default since there is no rule that could be used
to derive its truth. Consequently, the bodies of the first two
rules are both satisfied and as their heads are conflicting, P
has no stable model. The single conflict in P is solved after
it is updated by U , but then another conflict is introduced
due to the latter two rules in the updating program. This
second conflict can be solved after another update by V .
Consequently, we expect that some stable model be assigned
to the DLP 〈P,U, V 〉.

The original early recovery principle does not impose this
because the DLP in question has more than two components
and the rules within it are not only facts. However, the DLP
is acyclic, as shown by any level mapping ` with `(p) = 3,
`(q) = 0, `(r) = 2 and `(s) = 1, so the generalised early
recovery principle does apply. Furthermore, we also find the
single extended RD-model of 〈P,U, V 〉 is {¬p, q,¬r, s }, i.e.
the semantics respects the stronger principle in this case.

Moreover, as established in the following theorem, it is
no coincidence that the extended RD-semantics respects the
stronger principle in the above example – the principle is
generally satisfied by the semantics introduced in this paper.
Theorem 5.2. The extended RD-semantics and extended
WS-semantics satisfy the generalised early recovery prin-
ciple.

79

Both the original and the generalised early recovery prin-
ciple can guide the future addition of full support for both
kinds of negations in other approaches to rule updates,
such as those proposed in (Sakama and Inoue 2003; Zhang
2006; Delgrande, Schaub, and Tompits 2007; Krümpelmann
2012), making it possible to reach any belief state by up-
dating the current program. Furthermore, adding support for
strong negation is also interesting in the context of recent
results on program revision and updates that are performed
on the semantic level, ensuring syntax-independence of the
respective methods (Delgrande et al. 2013; Slota and Leite
2014; 2012a; 2010), in the context of finding suitable con-
densing operators (Slota and Leite 2013), and unifying with
updates in classical logic (Slota and Leite 2012b).

Acknowledgments
João Leite was partially supported by Fundação para a
Ciência e a Tecnologia under project “ERRO – Effi-
cient Reasoning with Rules and Ontologies” (PTDC/EIA-
CCO/121823/2010). Martin Slota was partially supported by
Fundação para a Ciência e a Tecnologia under project “AS-
PEN – Answer Set Programming with BoolEaN Satisfiabil-
ity” (PTDC/EIA-CCO/110921/2009). The collaboration be-
tween the co-authors resulted from the Slovak–Portuguese
bilateral project “ReDIK – Reasoning with Dynamic Incon-
sistent Knowledge”, supported by APVV agency under SK-
PT-0028-10 and by Fundação para a Ciência e a Tecnologia
(FCT/2487/3/6/2011/S).

References
Alferes, J. J., and Pereira, L. M. 1996. Update-programs
can update programs. In Dix, J.; Pereira, L. M.; and Przy-
musinski, T. C., eds., Non-Monotonic Extensions of Logic
Programming (NMELP ’96), Selected Papers, volume 1216
of Lecture Notes in Computer Science, 110–131. Bad Hon-
nef, Germany: Springer.
Alferes, J. J.; Leite, J. A.; Pereira, L. M.; Przymusinska,
H.; and Przymusinski, T. C. 1998. Dynamic logic pro-
gramming. In Cohn, A. G.; Schubert, L. K.; and Shapiro,
S. C., eds., Proceedings of the Sixth International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR’98), Trento, Italy, June 2-5, 1998, 98–111. Mor-
gan Kaufmann.
Alferes, J. J.; Leite, J. A.; Pereira, L. M.; Przymusinska, H.;
and Przymusinski, T. C. 2000. Dynamic updates of non-
monotonic knowledge bases. The Journal of Logic Program-
ming 45(1-3):43–70.
Alferes, J. J.; Banti, F.; Brogi, A.; and Leite, J. A. 2005. The
refined extension principle for semantics of dynamic logic
programming. Studia Logica 79(1):7–32.
Apt, K. R., and Bezem, M. 1991. Acyclic programs. New
Generation Computing 9(3/4):335–364.
Banti, F.; Alferes, J. J.; Brogi, A.; and Hitzler, P. 2005.
The well supported semantics for multidimensional dynamic
logic programs. In Baral, C.; Greco, G.; Leone, N.; and Ter-
racina, G., eds., Proceedings of the 8th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning

(LPNMR 2005), volume 3662 of Lecture Notes in Computer
Science, 356–368. Diamante, Italy: Springer.
Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The
semantic web. Scientific American 284(5):28–37.
Dalal, M. 1988. Investigations into a theory of knowledge
base revision. In Proceedings of the 7th National Conference
on Artificial Intelligence (AAAI 1988), 475–479. St. Paul,
MN, USA: AAAI Press / The MIT Press.
Delgrande, J.; Schaub, T.; Tompits, H.; and Woltran, S.
2013. A model-theoretic approach to belief change in an-
swer set programming. ACM Transactions on Computa-
tional Logic (TOCL) 14(2):14:1–14:46.
Delgrande, J. P.; Schaub, T.; and Tompits, H. 2007. A
preference-based framework for updating logic programs. In
Baral, C.; Brewka, G.; and Schlipf, J. S., eds., Proceedings
of the 9th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR 2007), volume 4483
of Lecture Notes in Computer Science, 71–83. Tempe, AZ,
USA: Springer.
Eiter, T.; Fink, M.; Sabbatini, G.; and Tompits, H. 2002.
On properties of update sequences based on causal rejec-
tion. Theory and Practice of Logic Programming (TPLP)
2(6):721–777.
Fages, F. 1991. A new fixpoint semantics for general logic
programs compared with the well-founded and the stable
model semantics. New Generation Computing 9(3/4):425–
444.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Kowalski, R. A.,
and Bowen, K. A., eds., Proceedings of the 5th Interna-
tional Conference and Symposium on Logic Programming
(ICLP/SLP 1988), 1070–1080. Seattle, Washington: MIT
Press.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9(3-4):365–385.
Herzig, A., and Rifi, O. 1999. Propositional belief base up-
date and minimal change. Artificial Intelligence 115(1):107–
138.
Inoue, K., and Sakama, C. 1998. Negation as failure in the
head. Journal of Logic Programming 35(1):39–78.
Katsuno, H., and Mendelzon, A. O. 1991. On the difference
between updating a knowledge base and revising it. In Allen,
J. F.; Fikes, R.; and Sandewall, E., eds., Proceedings of the
2nd International Conference on Principles of Knowledge
Representation and Reasoning (KR’91), 387–394. Cam-
bridge, MA, USA: Morgan Kaufmann Publishers.
Keller, A. M., and Winslett, M. 1985. On the use of an
extended relational model to handle changing incomplete
information. IEEE Transactions on Software Engineering
11(7):620–633.
Krümpelmann, P. 2012. Dependency semantics for se-
quences of extended logic programs. Logic Journal of the
IGPL 20(5):943–966.
Leite, J. A., and Pereira, L. M. 1998. Generalizing up-
dates: From models to programs. In Dix, J.; Pereira, L. M.;

80

and Przymusinski, T. C., eds., Proceedings of the 3rd Inter-
national Workshop on Logic Programming and Knowledge
Representation (LPKR ’97), October 17, 1997, Port Jeffer-
son, New York, USA, volume 1471 of Lecture Notes in Com-
puter Science, 224–246. Springer.
Leite, J. A. 2003. Evolving Knowledge Bases, volume 81 of
Frontiers of Artificial Intelligence and Applications, xviii +
307 p. Hardcover. IOS Press.
Osorio, M., and Cuevas, V. 2007. Updates in answer set pro-
gramming: An approach based on basic structural proper-
ties. Theory and Practice of Logic Programming 7(4):451–
479.
Sakama, C., and Inoue, K. 2003. An abductive framework
for computing knowledge base updates. Theory and Prac-
tice of Logic Programming (TPLP) 3(6):671–713.
Šefránek, J. 2006. Irrelevant updates and nonmonotonic as-
sumptions. In Fisher, M.; van der Hoek, W.; Konev, B.; and
Lisitsa, A., eds., Proceedings of the 10th European Confer-
ence on Logics in Artificial Intelligence (JELIA 2006), vol-
ume 4160 of Lecture Notes in Computer Science, 426–438.
Liverpool, UK: Springer.
Šefránek, J. 2011. Static and dynamic semantics: Prelimi-
nary report. Mexican International Conference on Artificial
Intelligence 36–42.
Slota, M., and Leite, J. 2010. On semantic update opera-
tors for answer-set programs. In Coelho, H.; Studer, R.; and
Wooldridge, M., eds., ECAI 2010 - 19th European Confer-
ence on Artificial Intelligence, Lisbon, Portugal, August 16-

20, 2010, Proceedings, volume 215 of Frontiers in Artificial
Intelligence and Applications, 957–962. IOS Press.
Slota, M., and Leite, J. 2012a. Robust equivalence models
for semantic updates of answer-set programs. In Brewka,
G.; Eiter, T.; and McIlraith, S. A., eds., Proceedings of the
13th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2012), 158–168. Rome,
Italy: AAAI Press.
Slota, M., and Leite, J. 2012b. A unifying perspective on
knowledge updates. In del Cerro, L. F.; Herzig, A.; and
Mengin, J., eds., Logics in Artificial Intelligence - 13th Euro-
pean Conference, JELIA 2012, Toulouse, France, September
26-28, 2012. Proceedings, volume 7519 of Lecture Notes in
Computer Science, 372–384. Springer.
Slota, M., and Leite, J. 2013. On condensing a sequence of
updates in answer-set programming. In Rossi, F., ed., IJCAI
2013, Proceedings of the 23rd International Joint Confer-
ence on Artificial Intelligence, Beijing, China, August 3-9,
2013. IJCAI/AAAI.
Slota, M., and Leite, J. 2014. The rise and fall of semantic
rule updates based on se-models. Theory and Practice of
Logic Programming FirstView:1–39.
Slota, M.; Baláž, M.; and Leite, J. 2014. On strong and de-
fault negation in logic program updates (extended version).
CoRR abs/1404.6784.
Zhang, Y. 2006. Logic program-based updates. ACM Trans-
actions on Computational Logic 7(3):421–472.

81

Inference in the FO(C) Modelling Language
Bart Bogaerts and Joost Vennekens and Marc Denecker

Department of Computer Science, KU Leuven
{bart.bogaerts, joost.vennekens, marc.denecker}@cs.kuleuven.be

Jan Van den Bussche
Hasselt University & transnational University of Limburg

jan.vandenbussche@uhasselt.be

Abstract
Recently, FO(C), the integration of C-LOG with classical
logic, was introduced as a knowledge representation lan-
guage. Up to this point, no systems exist that perform in-
ference on FO(C), and very little is known about properties
of inference in FO(C). In this paper, we study both of the
above problems. We define normal forms for FO(C), one
of which corresponds to FO(ID). We define transformations
between these normal forms, and show that, using these trans-
formations, several inference tasks for FO(C) can be reduced
to inference tasks for FO(ID), for which solvers exist. We
implemented this transformation and hence, created the first
system that performs inference in FO(C). We also provide
results about the complexity of reasoning in FO(C).

1 Introduction
Knowledge Representation and Reasoning is a subfield of
Artificial Intelligence concerned with two tasks: defining
modelling languages that allow intuitive, clear, representa-
tion of knowledge and developing inference tools to reason
with this knowledge. Recently, C-LOG was introduced with
a strong focus on the first of these two goals (Bogaerts et
al. in press 2014). C-LOG has an expressive recursive syn-
tax suitable for expressing various forms of non-monotonic
reasoning: disjunctive information in the context of closed
world assumptions, non-deterministic inductive construc-
tions, causal processes, and ramifications. C-LOG allows
for example nested occurrences of causal rules.

It is straightforward to integrate first-order logic (FO) with
C-LOG, offering an expressive modelling language in which
causal processes as well as assertional knowledge in the
form of axioms and constraints can be naturally expressed.
We call this integration FO(C).1 FO(C) fits in the FO(·)
research project (Denecker 2012), which aims at integrat-
ing expressive language constructs with a Tarskian model
semantics in a unified language.

An example of a C-LOG expression is the following{
All p[Apply(p) ∧ PassedTest(p)] : PermRes(p).
(Select p[Participate(p)] : PermRes(p))← Lott.

}
This describes that all persons who pass a naturalisation test
obtain permanent residence in the U.S., and that one per-
son who participates in the green card lottery also obtains

1Previously, this language was called FO(C-LOG)

residence. The person that is selected for the lottery can ei-
ther be one of the persons that also passed the naturalisation
test, or someone else. There are local closed world assump-
tions: in the example, the endogenous predicate PermRes
only holds for the people passing the test and at most one
extra person. We could add an FO constraint to this theory,
for example ∀p : Participate(p) ⇒ Apply(p). This results
in a FO(C) theory; a structure is a model of this theory if it
is a model of the C-LOG expression and no-one participates
in the lottery without applying the normal way.

So far, very little is known about inference in FO(C). No
systems exist to reason with FO(C), and complexity of in-
ference in FO(C) has not been studied. This paper studies
both of the above problems.

The rest of this paper is structured as follows: in Sec-
tion 2, we repeat some preliminaries, including a very brief
overview of the semantics of FO(C). In Section 3 we de-
fine normal forms on FO(C) and transformations between
these normal forms. We also argue that one of these normal
forms corresponds to FO(ID) (Denecker and Ternovska
2008) and hence, that IDP (De Cat et al. 2014) can be seen
as the first FO(C)-solver. In Section 4 we give an example
that illustrates both the semantics of FO(C) and the trans-
formations. Afterwards, in Section 5, we define inference
tasks for FO(C) and study their complexity. We conclude in
Section 6.

2 Preliminaries
We assume familiarity with basic concepts of FO. Vocab-
ularies, formulas, and terms are defined as usual. A Σ-
structure I interprets all symbols (including variable sym-
bols) in Σ; DI denotes the domain of I and σI , with σ a
symbol in Σ, the interpretation of σ in I . We use I[σ : v]
for the structure J that equals I , except on σ: σJ = v. Do-
main atoms are atoms of the form P (d) where the di are
domain elements. We use restricted quantifications, see e.g.
(Preyer and Peter 2002). In FO, these are formulas of the
form ∀x[ψ] : ϕ or ∃x[ψ] : ϕ, meaning that ϕ holds for all
(resp. for some) x such that ψ holds. The above expressions
are syntactic sugar for ∀x : ψ ⇒ ϕ and ∃x : ψ∧ϕ, but such
a reduction is not possible for other restricted quantifiers in
C-LOG. We call ψ the qualification and ϕ the assertion of
the restricted quantifications. From now on, let Σ be a rela-
tional vocabulary, i.e., Σ consists only of predicate, constant

82

and variable symbols.
Our logic has a standard, two-valued Tarskian semantics,

which means that models represent possible states of af-
fairs. Three-valued logic with partial domains is used as
a technical device to express intermediate stages of causal
processes. A truth-value is one of the following: {t, f,u},
where f−1 = t, t−1 = f and u−1 = u. Two partial orders
are defined on truth values: the precision order ≤p , given
by u≤p t and u≤p f and the truth order f ≤ u ≤ t. Let D
be a set, a partial set S in D is a function from D to truth
values. We identify a partial set with a tuple (Sct,Spt) of
two sets, where the certainly true set Sct is {x | S(x) = t}
and the possibly true set Spt is {x | S(x) 6= f}. The union,
intersection, and subset-relation of partial sets are defined
pointwise. For a truth value v, we define the restriction
of a partial set S to this truth-value, denoted r(S, v), as the
partial set mapping every x ∈ D to min≤(S(x), v). Every
set S is also a partial set, namely the tuple (S, S).

A partial Σ-structure I consists of 1) a domain DI : a
partial set of elements, and 2) a mapping associating a value
to each symbol in Σ; for constants and variables, this value
is inDI

ct, for predicate symbols of arity n, this is a partial set
P I in (DI

pt)
n. We often abuse notation and use the domain

D as if it were a predicate. A partial structure I is two-
valued if for all predicates P (including D), P Ict = P Ipt.
There is a one-to-one correspondence between two-valued
partial structures and structures. If I and J are two partial
structures with the same interpretation for constants, we call
I more precise than J (I ≥p J) if for all its predicates P
(including D), P Ict ⊇ P Jct and P Ipt ⊆ P Jpt.

Definition 2.1. We define the value of an FO formula ϕ in
a partial structure I inductively based on the Kleene truth
tables (Kleene 1938).

• P (t)I = P I(tI),
• (¬ϕ)I = ((ϕ)I)−1

• (ϕ ∧ ψ)I = min≤
(
ϕI , ψI

)
• (ϕ ∨ ψ)I = max≤

(
ϕI , ψI

)
• (∀x : ϕ)I = min≤

{
max(DI(d)−1, ϕI[x:d]) | d ∈ DI

pt

}
• (∃x : ϕ)I = max≤

{
min(DI(d), ϕI[x:d]) | d ∈ DI

pt

}
In what follows we briefly repeat the syntax and for-

mal semantics of C-LOG. For more details, an extensive
overview of the informal semantics of CEEs, and examples
of CEEs, we refer to (Bogaerts et al. in press 2014).

2.1 Syntax of C-LOG

Definition 2.2. Causal effect expressions (CEE) are defined
inductively as follows:

• if P (t) is an atom, then P (t) is a CEE,
• if ϕ is an FO formula and C ′ is a CEE, then C ′ ← ϕ is a

CEE,
• if C1 and C2 are CEEs, then C1 AndC2 is a CEE,
• if C1 and C2 are CEEs, then C1 OrC2 is a CEE,
• if x is a variable, ϕ is a first-order formula and C ′ is a

CEE, then Allx[ϕ] : C ′ is a CEE,

• if x is a variable, ϕ is a first-order formula and C ′ is a
CEE, then Selectx[ϕ] : C ′ is a CEE,

• if x is a variable and C ′ is a CEE, then New x : C ′ is a
CEE.
We call a CEE an atom- (respectively rule-, And-, Or-,

All-, Select- or New-expression) if it is of the correspond-
ing form. We call a predicate symbol P endogenous in
C if P occurs as the symbol of a (possibly nested) atom-
expression in C. All other symbols are called exogenous
in C. An occurrence of a variable x is bound in a CEE if
it occurs in the scope of a quantification over that variable
(∀x, ∃x, Allx, Selectx, or New x) and free otherwise.
A variable is free in a CEE if it has free occurrences. A
causal theory, or C-LOG theory is a CEE without free vari-
ables. By abuse of notation, we often represent a causal the-
ory as a finite set of CEEs; the intended causal theory is
the And-conjunction of these CEEs. We often use ∆ for a
causal theory and C, C ′, C1 and C2 for its subexpressions.
We stress that the connectives in CEEs differ from their FO
counterparts. E.g., in the example in the introduction, the
CEE expresses that there is a cause for several persons to
become American (those who pass the test and maybe one
extra lucky person). This implicitly also says that every per-
son without cause for becoming American is not American.
As such C-LOG-expressions are highly non-monotonic.

2.2 Semantics of C-LOG

Definition 2.3. Let ∆ be a causal theory; we associate a
parse-tree with ∆. An occurrence of a CEE C in ∆ is a
node in the parse tree of ∆ labelled with C. The variable
context of an occurrence of a CEE C in ∆ is the sequence
of quantified variables as they occur on the path from ∆ to
C in the parse-tree of ∆. If x is the variable context of C in
∆, we denote C as C〈x〉 and the length of x as nC .

For example, the variable context of P (x) in
Select y[Q(y)] : Allx[Q(x)] : P (x) is [y, x]. In-
stances of an occurrence C〈x〉 correspond to assignments d
of domain elements to x.
Definition 2.4. Let ∆ be a causal theory and D a set. A
∆-selection ζ in D consists of
• for every occurrence C of a Select-expression in ∆, a

total function ζselC : DnC → D,
• for every occurrence C of a Or-expression in ∆, a total

function ζorC : DnC → {1, 2},
• for every occurrence C of a New-expression in ∆, an

injective partial function ζnewC : DnC → D.
such that furthermore the images of all functions ζnewC are
disjoint (i.e., such that every domain element can be created
only once).

The initial elements of ζ are those that do not oc-
cur as image of one of the ζnewC -functions: ζin = D \
∪C image(ζnewC), where the union ranges over all occur-
rences of New-expressions.

The effect set of a CEE in a partial structure is a partial
set: it contains information on everything that is caused and
everything that might be caused. For defining the semantics
a new, unary predicate U is used.

83

Definition 2.5. Let ∆ be a CEE and J a partial structure.
Suppose ζ is a ∆-selection in a set D ⊇ DJ

pt. Let C be an
occurrence of a CEE in ∆. The effect set ofC with respect to
J and ζ is a partial set of domain atoms, defined recursively:

• If C is P (t), then effJ,ζ(C) = {P (tJ)},
• if C is C1 AndC2, then effJ,ζ(C) = effJ,ζ(C1) ∪

effJ,ζ(C2),
• if C is C ′ ← ϕ, then effJ,ζ(C) = r(effJ,ζ(C ′), ϕJ),
• if C is Allx[ϕ] : C ′, then

effJ,ζ(C) =
⋃{

r
(
effJ′,ζ(C ′),min≤(DJ(d), ϕJ

′
)
)
|

d ∈ DJ
pt and J ′ = J [x : d]

}
• if C〈y〉 is C1 OrC2, then

– effJ,ζ(C) = effJ,ζ(C1) if ζorC (yJ) = 1,
– and effJ,ζ(C) = effJ,ζ(C2) otherwise

• if C〈y〉 is Selectx[ϕ] : C ′, let e = ζselC (yJ), J ′ =
J [x : e] and v = min≤(DJ(e), ϕJ

′
). Then effJ,ζ(C) =

r(effJ,ζ(C ′), v),
• if C〈y〉 is New x : C ′, then

– effJ,ζ(C) = ∅ if ζnewC (yJ) does not denote,
– and effJ,ζ(C) = {U(ζnewC (yJ))} ∪ effJ′,ζ(C ′), where
J ′ = J [x : ζnewC (yJ)] otherwise,

An instance of an occurrence of a CEE in ∆ is relevant if it
is encountered in the evaluation of effI,ζ(∆). We say that
C succeeds2 with ζ in J if for all relevant occurrences C〈y〉
of Select-expressions, ζselC (yJ) satisfies the qualification of
C and for all relevant instances C〈y〉 of New-expressions,
ζnewC (yJ) denotes.

Given a structure I (and a ∆-selection ζ), two lattices
are defined: LΣ

I,ζ denotes the set of all Σ-structures J with
ζin ⊆ DJ ⊆ DI such that for all exogenous symbols σ of
arity n: σJ = σI ∩ (DJ)n. This set is equipped with the
truth order. And LΣ

I denotes the sublattice of LΣ
I,ζ consist-

ing of all structures in LΣ
I,ζ with domain equal to DI .

A partial structure corresponds to an element of the bi-
lattice (LΣ

I,ζ)
2; the bilattice is equipped with the precision

order.

Definition 2.6. Let I be a structure and ζ a ∆-selection in
DI . The partial immediate causality operator Aζ is the op-
erator on (LΣ

I,ζ)
2 that sends partial structure J to a partial

structure J ′ such that

• DJ′
(d) = t if d ∈ ζin and DJ′

(d) = effJ,ζ(∆)(U(d))
otherwise

• for endogenous symbols P , P (d)J
′

= effJ,ζ(∆)(P (d)).

Such operators have been studied intensively in the field
of Approximation Fixpoint Theory (Denecker, Bruynooghe,
and Vennekens 2012); and for such operators, the
well-founded fixpoint has been defined in (Denecker,

2Previously, we did not say that C “succeeds”, but that the ef-
fect set “is a possible effect set”. We believe this new terminology
is more clear.

Bruynooghe, and Vennekens 2012). The semantics of
C-LOG is defined in terms of this well-founded fixpoint in
(Bogaerts et al. in press 2014):
Definition 2.7. Let ∆ be a causal theory. We say that struc-
ture I is a model of ∆ (notation I |= ∆) if there exists a
∆-selection ζ such that (I ,I) is the well-founded fixpoint of
Aζ , and ∆ succeeds with ζ in I .

FO(C) is the integration of FO and C-LOG. An FO(C)
theory consists of a set of causal theories and FO sentences.
A structure I is a model of an FO(C) theory if it is a model
of all its causal theories and FO sentences. In this paper, we
assume, without loss of generality, that an FO(C) theory T
has exactly one causal theory.

3 A Transformation to DefF
In this section we present normal forms for FO(C) and
transformations between these normal forms. The transfor-
mations we propose preserve equivalence modulo newly in-
troduced predicates:
Definition 3.1. Suppose Σ ⊆ Σ′ are vocabularies, T is an
FO(C) theory over Σ and T ′ is an FO(C) theory over Σ′.
We call T and T ′ Σ-equivalent if each model of T , can be
extended to a model of T ′ and the restriction of each model
of T ′ to Σ is a model of T .

From now on, we use Allx[ϕ] : C ′, where x is
a tuple of variables as syntactic sugar for Allx1[t] :
Allx2[t] : . . .Allxn[ϕ] : C ′, and similar for Select-
expressions. If x is a tuple of length 0, Allx[ϕ] : C ′

is an abbreviation for C ′ ← ϕ. It follows directly
from the definitions that And and Or are associative,
hence we use C1 AndC2 AndC3 as an abbreviation for
(C1 AndC2) AndC3 and for C1 And (C2 AndC3), and
similar for Or-expressions.

3.1 Normal Forms
Definition 3.2. Let C be an occurrence of a CEE in C ′. The
nesting depth ofC inC ′ is the depth ofC in the parse-tree of
C ′. In particular, the nesting depth of C ′ in C ′ is always 0.
The height ofC ′ is the maximal nesting depth of occurrences
of CEEs in C ′. In particular, the height of atom-expressions
is always 0.
Example 3.3. Let ∆ be AAnd ((Allx[P (x)] :
Q(x)) OrB). The nesting depth of B in ∆ is 2 and
the height of ∆ is 3.
Definition 3.4. A C-LOG theory is creation-free if it does
not contain any New-expressions, it is deterministic if it
is creation-free and it does not contain any Select or Or-
expressions. An FO(C) is creation-free (resp. deterministic)
if its (unique) C-LOG theory is.
Definition 3.5. A C-LOG theory is in Nesting Normal Form
(NestNF) if it is of the form C1 AndC2 AndC3 And . . .
where each of the Ci is of the form Allx[ϕi] : C ′i and each
of the C ′i has height at most one. A C-LOG theory ∆ is in
Definition Form (DefF) if it is in NestNF and each of the C ′i
have height zero, i.e., they are atom-expressions. An FO(C)
theory is NestNF (respectively DefF) if its corresponding
C-LOG theory is.

84

Theorem 3.6. Every FO(C) theory over Σ is Σ-equivalent
with an FO(C) theory in DefF.

We will prove this result in 3 parts: in Section 3.4,
we show that every FO(C) theory can be transformed to
NestNF, in Section 3.3, we show that every theory in NestNF
can be transformed into a deterministic theory and in Section
3.2, we show that every deterministic theory can be trans-
formed to DefF. The FO sentences in an FO(C) theory do
not matter for the normal forms, hence most results focus on
the C-LOG part of FO(C) theories.

3.2 From Deterministic FO(C) to DefF
Lemma 3.7. Let ∆ be a C-LOG theory. Suppose C is an
occurrence of an expression Allx[ϕ] : C1 AndC2. Let ∆′
be the causal theory obtained from ∆ by replacing C with
(Allx[ϕ] : C1) And (Allx[ϕ] : C2). Then ∆ and ∆′ are
equivalent.

Proof. It is clear that ∆ and ∆′ have the same selection
functions. Furthermore, it follows directly from the defi-
nitions that given such a selection, the defined operators are
equal.

Repeated applications of the above lemma yield:

Lemma 3.8. Every deterministic FO(C) theory is equiva-
lent with an FO(C) theory in DefF.

3.3 From NestNF to Deterministic FO(C)
Lemma 3.9. If T is an FO(C) theory in NestNF over Σ,
then T is Σ-equivalent with a deterministic FO(C) theory.

We will prove Lemma 3.9 using a strategy that replaces a
∆-selection by an interpretation of new predicates (one per
occurrence of a non-deterministic CEE). The most impor-
tant obstacle for this transformation are New-expressions.
In deterministic C-LOG, no constructs influence the domain.
This has as a consequence that the immediate causality oper-
ator for a deterministic C-LOG theory is defined in a lattice
of structures with fixed domain, while in general, the oper-
ator is defined in a lattice with variable domains. In order
to bridge this gap, we use two predicates to describe the do-
main, S are the initial elements and U are the created, the
union of the two is the domain. Suppose a C-LOG theory ∆
over vocabulary Σ is given.

Definition 3.10. We define the ∆-selection vocabulary Σs∆
as the vocabulary consisting of:

• a unary predicate S,
• for every occurrence C of a Or-expression in ∆, a new
nC-ary predicate Choose1C ,

• for every occurrence C of a Select-expression in ∆, a
new (nC + 1)-ary predicate SelC ,

• for every occurrence C of a New-expression in ∆, a new
(nC + 1)-ary predicate CreateC ,

Intuitively, a Σs∆-structure corresponds to a ∆-selection:
S correspond to ζin, Choose1C to ζorC , SelC to ζselC and
CreateC to ζnewC .

Lemma 3.11. There exists an FO theory S∆ over Σs∆
such that there is a one-to-one correspondence between ∆-
selections in D and models of S∆ with domain D.

Proof. This theory contains sentences that express that SelC
is functional, and that CreateC is a partial function. It is
straightforward to do this in FO (with among others, con-
straints such as ∀x : ∃y : SelC(x, y)). Furthermore, it is also
easy to express that the CreateC functions are injective, and
that different New-expressions create different elements.
Finally, this theory relates S to the CreateC expressions:
∀y : S(y)⇔ ¬

∨
C(∃x : CreateC(x, y)) where the disjunc-

tion ranges over all occurrencesC of New-expressions.

The condition that a causal theory succeeds can also be
expressed as an FO theory. For that, we need one more defi-
nition.

Definition 3.12. Let ∆ be a causal theory in NestNF and let
C be one of the C ′i in definition 3.5, then we call ϕi (again,
from definition 3.5) the relevance condition of C and denote
it RelC .

In what follows, we define one more extended vocabulary.
First, we use it to express the constraints that ∆ succeeds and
afterwards, for the actual transformation.

Definition 3.13. The ∆-transformed vocabulary Σt∆ is the
disjoint union of Σ and Σs∆ extended with the unary predi-
cate symbol U .

Lemma 3.14. Suppose ∆ is a causal theory in NestNF,
and ζ is a ∆-selection with corresponding Σs∆-structure M .
There exists an FO theory Succ∆ such that for every (two-
valued) structure I with I|Σs

∆
= M , ∆ succeeds with re-

spect to I and ζ iff I |= Succ∆.

Proof. ∆ is in NestNF; for every of the C ′i (as in Defini-
tion 3.5), RelC′

i
is true in I if and only if C ′i is relevant.

Hence, for Succ∆ we can take the FO theory consisting of
the following sentences:

• ∀x : RelC ⇒ ∃y : CreateC(x, y), for all New-
expressions C〈x〉 in ∆,

• ∀x : RelC ⇒ ∃y : (SelC(x, y) ∧ ψ), for all Select-
expressions C〈x〉 of the form Select y[ψ] : C ′ in ∆.

Now we describe the actual transformation: we translate
every quantification into a relativised version, make explicit
that a New-expression causes an atom U(d), and eliminate
all non-determinism using the predicates in Σs∆.

Definition 3.15. Let ∆ be a C-LOG theory over Σ in
NestNF. The transformed theory ∆t is the theory obtained
from ∆ by applying the following transformation:

• first replacing all quantifications αx[ψ] : χ, where α ∈
{∀,∃,Select,All} by αx[(U(x) ∨ S(x)) ∧ ψ] : χ

• subsequently replacing each occurrence C〈x〉 of an
expression New y : C ′ by All y[CreateC(x, y)] :
U(y) AndC ′,

• replacing every occurrence C〈x〉 of an expression
C1 OrC2 by (C1 ← Choose1C(x))And(C2 ←
¬Choose1C(x)),

85

• and replacing every occurrence C〈x〉 of an expression
Select y[ϕ] : C ′ by All y[ϕ ∧ SelC(x, y)] : C ′.

Given a structure I and a ∆-selection ζ, there is an obvi-
ous lattice morphismmζ : LΣ

I,ζ → L
Σt

∆
I mapping a structure

J to the structure J ′ with domain DJ′
= DI interpreting all

symbols in Σs∆ according to ζ (as in Lemma 3.11), all sym-
bols in Σ (except for the domain) the same as I and interpret-
ing U as DJ \SJ′

. mζ can straightforwardly be extended to
a bilattice morphism.

Lemma 3.16. Let ζ be a ∆-selection for ∆ and Aζ and A
be the partial immediate causality operators of ∆ and ∆t

respectively. Let J be any partial structure in (LΣ
I,ζ)

2. Then
mζ(Aζ(J)) = A(mζ(J)).

Idea of the proof. New-expressions New y : C ′ in ∆ have
been replaced by All expressions causing two subexpres-
sions: U(y) and the C ′ for exactly the y’s that are cre-
ated according to ζ. Furthermore, the relativisation of all
other quantifications guarantees that we correctly evaluate
all quantifications with respect to the domain of J , encoded
in S ∪ U .

Furthermore, all non-deterministic expressions have been
changed into All-expressions that are conditionalised by the
∆-selection; this does not change the effect set; thus, the
operators correspond.

Lemma 3.17. Let ζ, Aζ and A be as in lemma 3.16. If I
is the well-founded model of Aζ , mζ(I) is the well-founded
model of A.

Proof. Follows directly from lemma 3.16: the mapping
J 7→ mζ(J) is an isomorphism between LΣ

I,ζ and the sub-

lattice of LΣt
∆

I,ζ′ consisting of those structures such that the
interpretations of S and U have an empty intersection. As
this isomorphism maps Aζ to A, their well-founded models
must agree.

Lemma 3.18. Let ∆ be a causal theory in NestNF, ζ a ∆-
selection for ∆ and I a Σ-structure. Then I |= ∆ if and only
if mζ(I) |= ∆t and mζ(I) |= S∆ and mζ(I) |= Succ∆.

Proof. Follows directly from Lemmas 3.17, 3.11 and 3.14.

Proof of Lemma 3.9. Let ∆ be the C-LOG theory in T . We
can now take as deterministic theory the theory consisting of
∆t, all FO sentences in T , and the sentence S∆ ∧ Succ∆ ∧
∀x : S(x) ⇔ ¬U(x), where the last formula excludes all
structures not of the form mζ(I) for some I (the created
elements U and the initial elements S should form a partition
of the domain).

3.4 From General FO(C) to NestNF
In the following definition we use ∆[C ′/C] for the causal
theory obtained from ∆ by replacing the occurrence of a
CEE C by C ′.

Definition 3.19. Suppose C〈x〉 is an occurrence of a CEE
in ∆. With Unnest(∆, C) we denote the causal theory
∆[P (x)/C] AndAllx[P (x)] : C where P is a new predi-
cate symbol.

Lemma 3.20. Every FO(C) theory is Σ-equivalent with an
FO(C) theory in NestNF.

Proof. First, we claim that for every C-LOG theory over Σ,
∆ and Unnest(∆, C) are Σ-equivalent. It is easy to see
that the two theories have the same ∆-selections. Further-
more, the operator for Unnest(∆, C) is a part-to-whole
monotone fixpoint extension3 (as defined in (Vennekens et
al. 2007)) of the operator for ∆. In (Vennekens et al. 2007)
it is shown that in this case, their well-founded models agree,
which proves our claim. The lemma now follows by re-
peated applications of the claim.

Proof of Theorem 3.6. Follows directly by combining lem-
mas 3.20, 3.9 and 3.8. For transformations only defined on
C-LOG theories, the extra FO part remains unchanged.

3.5 FO(C) and FO(ID)
An inductive definition (ID) (Denecker and Ternovska 2008)
is a set of rules of the form ∀x : P (t)← ϕ, an FO(ID) the-
ory is a set of FO sentences and IDs, and an ∃SO(ID) the-
ory is a theory of the form ∃P̄ : T , where T is an FO(ID)
theory. A causal theory in DefF corresponds exactly to an
ID: the CEE Allx[ϕ] : P (t) corresponds to the above rule
and the And-conjunction of such CEEs to the set of corre-
sponding rules. The partial immediate consequence operator
for IDs defined in (Denecker and Ternovska 2008) is exactly
the partial immediate causality operator for the correspond-
ing C-LOG theory. Combining this with Theorem 3.6, we
find (with P̄ the introduced symbols):

Theorem 3.21. Every FO(C) theory is equivalent with an
∃SO(ID) formula of the form ∃P̄ : {∆, T }, where ∆ is an
ID and T is an FO sentence.

Theorem 3.21 implies that we can use reasoning engines
for FO(ID) in order to reason with FO(C), as long as we
are careful with the newly introduced predicates. We imple-
mented a prototype of this transformation in the IDP system
(De Cat et al. 2014), it can be found at (Bogaerts 2014).

4 Example: Natural Numbers
Example 4.1. Let Σ be a vocabulary consisting of predi-
cates Nat/1,Succ/2 and Zero/1 and suppose T is the fol-
lowing theory:{

New x : Nat(x) And Zero(x)
Allx[Nat(x)] : New y : Nat(y) And Succ(x, y)

}

3Intuitively, a part-to-whole fixpoint extension means that all
predicates only depend positively on the newly introduced predi-
cates

86

This theory defines a process creating the natural numbers.
Transforming it to NestNF yields:

New x : T1(x)
Allx[T1(x)] : Nat(x)
Allx[T1(x)] : Zero(x)
Allx[Nat(x)] : New y : T2(x, y)
Allx, y[T2(x, y)] : Nat(y)
Allx, y[T2(x, y)] : Succ(x, y),


where T1 and T2 are auxiliary symbols. Transforming the
resulting theory into deterministic C-LOG requires the ad-
dition of more auxiliary symbols S/1,U/1,Create1/1 and
Create2/2 and results in the following C-LOG theory (to-
gether with a set of FO-constraints):



Allx[Create1(x)] : U(x) AndT1(x)
Allx[(U(x) ∨ S(x)) ∧ T1(x)] : Nat(x)
Allx[(U(x) ∨ S(x)) ∧ T1(x)] : Zero(x)
Allx, y[(U(x) ∨ S(x)) ∧Nat(x) ∧ Create2(x, y)] :
U(y) AndT2(x, y)

Allx, y[(U(x) ∨ S(x)) ∧ (U(y) ∨ S(y)) ∧ T2(x, y)] :
Nat(y)

Allx, y[(U(x) ∨ S(x)) ∧ (U(y) ∨ S(y)) ∧ T2(x, y)] :
Succ(x, y)


This example shows that the proposed transformation is in
fact too complex. E.g., here, almost all occurrences of
U(x) ∨ S(x) are not needed. This kind of redundancies can
be eliminated by executing the three transformations (from
Sections 3.2, 3.3 and 3.4) simultaneously. In that case, we
would get the simpler deterministic theory:

Allx[Create1(x)] : Nat(x) And Zero(x) AndU(x)
Allx, y[(U(x) ∨ S(x)) ∧Nat(x) ∧ Create2(x, y)] :

Nat(y) And Succ(x, y) AndU(y)


with several FO sentences:

∀x : U(x)⇔ ¬S(x)
∀y : S(y)⇔ ¬(Create1(y) ∨ ∃x : Create2(x, y)).
∃x : Create1(x).
∀x, y : Create1(x) ∧ Create1(y)⇒ x = y.
∀x, y, z : Create2(x, y) ∧ Create1(x, z)⇒ y = z.
∀x, y, z : Create1(y) ∧ Create1(x, z)⇒ y = z.
∀x[Nat(x)] : ∃y : Create2(x, y).

These sentences express the well-known constraints on N:
there is at least one natural number (identified by Create1),
and every number has a successor. Furthermore the initial
element and the successor elements are unique, and all are
different. Natural numbers are defined as zero and all ele-
ments reachable from zero by the successor relation. The
theory we started from is much more compact and much
more readable than any FO(ID) theory defining natural
numbers. This shows the Knowledge Representation power
of C-LOG.

5 Complexity Results
In this section, we provide complexity results. We focus on
the C-LOG fragment of FO(C) here, since complexity for
FO is well-studied. First, we formally define the inference
methods of interest.

5.1 Inference Tasks
Definition 5.1. The model checking inference takes as input
a C-LOG theory ∆ and a finite (two-valued) structure I . It
returns true if I |= ∆ and false otherwise.

Definition 5.2. The model expansion inference takes as in-
put a C-LOG theory ∆ and a partial structure I with finite
two-valued domain. It returns a model of ∆ more precise
than I if one exists and “unsat” otherwise.

Definition 5.3. The endogenous model expansion inference
is a special case of model expansion where I is two-valued
on exogenous symbols of ∆ and completely unknown on en-
dogenous symbols.

The next inference is related to database applications. In
the database world, languages with object creation have also
been defined (Abiteboul, Hull, and Vianu 1995). A query in
such a language can create extra objects, but the interpreta-
tion of exogenous symbols (tables in the database) is fixed,
i.e., exogenous symbols are always false on newly created
elements.

Definition 5.4. The unbounded query inference takes as in-
put a C-LOG theory ∆, a partial structure I with finite two-
valued domain such that I is two-valued on exogenous sym-
bols of ∆ and completely unknown on endogenous symbols
of ∆, and a propositional atom P . This inference returns
true if there exist i) a structure J , with DJ ⊇ DI , σJ = σI

for exogenous symbols σ, and P J = t and ii) a ∆-selection
ζ in DJ with ζin = DI , such that J is a model of ∆ with
∆-selection ζ. It returns false otherwise.

5.2 Complexity of Inference Tasks
In this section, we study the datacomplexity of the above
inference tasks, i.e., the complexity for fixed ∆.

Lemma 5.5. For a finite structure I , computing Aζ(I) is
polynomial in the size of I and ζ.

Proof. In order to compute Aζ(I), we need to evaluate a
fixed number of FO-formulas a polynomial number of times
(with exponent in the nesting depth of ∆). As evaluating
a fixed FO formula in the context of a partial structure is
polynomial, the result follows.

Theorem 5.6. For a finite structure I , the task of comput-
ing the Aζ-well-founded model of ∆ in the lattice LΣ

I,ζ is
polynomial in the size of I and ζ.

Proof. Calculating the well-founded model of an approxi-
mator can be done with a polynomial number of applications
of the approximator. Furthermore, Lemma 5.5 guarantees
that each of these applications is polynomial as well.

Theorem 5.7. Model expansion for C-LOG is NP-complete.

87

Proof. After guessing a model and a ∆-selection, Theorem
5.6 guarantees that checking that this is the well-founded
model is polynomial. Lemma 3.14 shows that checking
whether ∆ succeeds is polynomial as well. Thus, model
expansion is in NP.

NP-hardness follows from the fact that model expansion
for inductive definitions is NP-hard and inductive definitions
are shown to be a subclass of C-LOG theories, as argued in
Section 3.5.

Example 5.8. We show how the SAT-problem can be en-
coded as model checking for C-LOG. Consider a vocabu-
lary ΣSATIN with unary predicates Cl and PS and with bi-
nary predicates Pos and Neg. Every SAT-problem can be
encoded as a ΣSATIN -structure: Cl and PS are interpreted as
the sets of clauses and propositional symbols respectively,
Pos(c, p) (respectively Neg(c, p)) holds if clause c contains
the literal p (respectively ¬p).

We now extend ΣSATIN to a vocabulary ΣSATALL with unary
predicates Tr and Fa and a propositional symbol Sol. Tr and
Fa encode an assignment of values (true or false) to propo-
sitional symbols, Sol means that the encoded assignment is
a solution to the SAT problem. Let ∆SAT be the following
causal theory:

All p[PS(p)] : Tr(p) Or Fa(p)
Sol← ∀c[Cl(c)] : ∃p :

(Pos(c, p) ∧ Tr(p) ∨ (Neg(c, p) ∧ Fa(p))

The first rules guesses an assignment. The second rule says
that Sol holds if every clause has at least one true literal.
Model expansion of that theory with a structure interpret-
ing ΣSATIN according to a SAT problem and interpreting Sol
as true, is equivalent with solving that SAT problem, hence
model expansion is NP-hard (which we already knew). In
order to show that model checking is NP-hard, we add the
following CEE to the theory ∆SAT .

(All p[PS(p)] : Tr(p) And Fa(p))← Sol

Basically, this rules tells us to forget the assignment once
we have derived that it is a model (i.e., we hide the witness
of the NP problem). Now, the original SAT problem has a
solution if and only if the structure interpreting symbols in
ΣSATIN according to a SAT problem and interpreting all other
symbols as constant true is a model of the extended theory.
Hence:
Theorem 5.9. Model checking for C-LOG is NP-complete.

Model checking might be a hard task but in certain cases
(including for ∆SAT) endogenous model expansion is not.
The results in Theorem 5.6 can sometimes be used to gener-
ate models, if we have guarantees to end in a state where ∆
succeeds.
Theorem 5.10. If ∆ is a total4 causal theory without New
and Select-expressions, endogenous model expansion is in
P.

4A causal theory is total if for every ∆-selection ζ, w(Aζ) is
two-valued, i.e., roughly, if it does not contain relevant loops over
negation.

Note that Theorem 5.10 does not contradict Example 5.8
since in that example, Sol is interpreted as true in the input
structure, i.e., the performed inference is not endogenous
model expansion. It is future work to generalise Theorem
5.10, i.e., to research which are sufficient restrictions on ∆
such that model expansion is in P.

It is a well-known result in database theory that query lan-
guages combining recursion and object-creation are com-
putationally complete (Abiteboul, Hull, and Vianu 1995);
C-LOG can be seen as such a language.

Theorem 5.11. Unbounded querying can simulate the lan-
guage whilenew from (Abiteboul, Hull, and Vianu 1995).

Proof. We already showed that we can create the natural
numbers in C-LOG. Once we have natural numbers and the
successor function Succ, we add one extra argument to ev-
ery symbol (this argument represents time). Now, we en-
code the looping construct from whilenew as follows. An
expression of the form while P do s corresponds to the
CEE: All t[P (t)] : C, where C is the translation of the ex-
pression s. An expression P = new Q corresponds to a
CEE (where the variable t should be bound by a surround-
ing while).

Allx, t′[Succ(t, t′)] : New y : P (x, y, t′)← Q(x, t).

Now, it follows immediately from (Abiteboul, Hull, and
Vianu 1995) that

Corollary 5.12. For every decidable class S of finite struc-
tures closed under isomorphism, there exists a ∆ such that
unbounded exogenous model generation returns true with
input I iff I ∈ S.

6 Conclusion
In this paper we presented several normal forms for FO(C).
We showed that every FO(C) theory can be transformed
to a Σ-equivalent deterministic FO(C) theory and to a Σ-
equivalent FO(C) theory in NestNF or in DefF. Further-
more, as FO(C) theories in DefF correspond exactly to
FO(ID), these transformations reduce inference for FO(C)
to FO(ID). We implemented a prototype of this above
transformation, resulting in the first FO(C) solver. We also
gave several complexity results for inference in C-LOG. All
of these results are valuable from a theoretical point of view,
as they help to characterise FO(C), but also from a practical
point of view, as they provide more insight in FO(C).

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Bogaerts, B.; Vennekens, J.; Denecker, M.; and Van den
Bussche, J. (in press) 2014. FO(C): A knowledge represen-
tation language of causality. Theory and Practice of Logic
Programming (TPLP) (Online-Supplement, Technical Com-
munication ICLP14).
Bogaerts, B. 2014. IDP-CLog. http://dtai.cs.
kuleuven.be/krr/files/software/various/
idp-clog.tar.gz.

88

De Cat, B.; Bogaerts, B.; Bruynooghe, M.; and Denecker,
M. 2014. Predicate logic as a modelling language: The IDP
system. CoRR abs/1401.6312.
Denecker, M., and Ternovska, E. 2008. A logic of nonmono-
tone inductive definitions. ACM Transactions on Computa-
tional Logic (TOCL) 9(2):14:1–14:52.
Denecker, M.; Bruynooghe, M.; and Vennekens, J. 2012.
Approximation fixpoint theory and the semantics of logic
and answers set programs. In Erdem, E.; Lee, J.; Lierler,
Y.; and Pearce, D., eds., Correct Reasoning, volume 7265 of
Lecture Notes in Computer Science. Springer.
Denecker, M. 2012. The FO(·) knowledge base system
project: An integration project (invited talk). In ASPOCP.
Kleene, S. C. 1938. On notation for ordinal numbers. The
Journal of Symbolic Logic 3(4):pp. 150–155.
Preyer, G., and Peter, G. 2002. Logical Form and Language.
Clarendon Press.
Vennekens, J.; Mariën, M.; Wittocx, J.; and Denecker, M.
2007. Predicate introduction for logics with a fixpoint se-
mantics. Part I: Logic programming. Fundamenta Informat-
icae 79(1-2):187–208.

89

FO(C) and Related Modelling Paradigms
Bart Bogaerts and Joost Vennekens and Marc Denecker

Department of Computer Science, KU Leuven
{bart.bogaerts, joost.vennekens, marc.denecker}@cs.kuleuven.be

Jan Van den Bussche
Hasselt University & transnational University of Limburg

jan.vandenbussche@uhasselt.be

Abstract

Recently, C-LOG was introduced as a language for modelling
causal processes. Its formal semantics has been defined, but
the study of this language is far from finished. In this pa-
per, we compare C-LOG to other declarative modelling lan-
guages. More specifically, we compare to first-order logic
(FO), and argue that C-LOG and FO are orthogonal and that
their integration, FO(C), is a knowledge representation lan-
guage that allows for clear and succinct models. We compare
FO(C) to E-disjunctive logic programming with the stable
semantics, and define a fragment on which both semantics
coincide. Furthermore, we discuss object-creation in FO(C),
relating it to mathematics, business rules systems, and data
base systems.

1 Introduction
Previous work introduced C-LOG (Bogaerts et al. in press
2014a), an expressive language construct to describe causal
processes, and FO(C), its integration with classical logic.
In that work, it is indicated that C-LOG shows similarities to
many other languages and it is suggested that C-LOG could
serve as a tool to study the semantical relationship between
these languages. In this paper, we take the first steps for such
a study: we discuss the relationship of FO(C) with other
paradigms and through this discussion, provide a compre-
hensive overview of the informal semantics of FO(C).

C-LOG and FO are syntactically very similar, but seman-
tically very different languages. In this paper we formalise
the semantical relationship between C-LOG and FO, and
argue how their integration, FO(C), is a rich language in
which knowledge can be represented succinctly and clearly.

We explain how modelling in FO(C) relates to the “gen-
erate, define, and test” methodology used in answer set pro-
gramming. We discuss how FO(C) relates to disjunctive
logic programs with existential quantification in rule heads
(You, Zhang, and Zhang 2013), both informally and for-
mally, and we identify a subset of E-disjunctive logic pro-
grams on which stable semantics corresponds to the FO(C)
semantics. We also discuss four important knowledge rep-
resentation constructs that FO(C) adds with respect to E-
disjunctive logic programs: nested rules (in fact, arbitrary
nesting of expressions), dynamic choice, object creation,
and a more modular semantics.

Furthermore, we discuss object-creation in related
paradigms. One of those discussed paradigms is the field of
deductive databases, where extensions of Datalog have been
defined. In (Abiteboul and Vianu 1991), rules with existen-
tially quantified head variables are used for object creation.
It is remarkable to see how the same extension of logic pro-
grams is used sometimes (e.g., in (You, Zhang, and Zhang
2013)) for selection, and sometimes (e.g., in (Abiteboul and
Vianu 1991)) for object-creation. Consider for example a
rule

∀X : ∃Y : P (X,Y) :- q(X).

Viewing this rule as a rule in an E-disjunctive logic program,
it corresponds to the C-LOG expression

AllX[q(X)] : SelectY [t] : P (X,Y),

where for every X satisfying q, one existing value Y is se-
lected, and P (X,Y) is caused. The selected Y can be dif-
ferent or equal for different X’s. On the other hand, in case
this same rule occurs in a LogicBlox (Green, Aref, and Kar-
vounarakis 2012) specification, it corresponds to the C-LOG
expression

AllX[q(X)] : New Y : P (X,Y),

where for every X satisfying q a new value Y is invented.
Thus implying among others that all of these values are
different. The explicit distinction C-LOG makes between
object-creation and selection is necessary for studying the
relationship between these languages.

The rest of this paper is structured as follows. In Section
2 we give preliminaries, including the syntax and informal
semantics of C-LOG. In Sections 3 and 4, we focus on the
creation-free fragment of C-LOG, i.e., on expressions with-
out the New-operator: first, we compare C-LOG to FO and
discuss the integration of these two; afterwards, we compare
C-LOG to E-disjunctive logic programs. In Section 5, we
discuss object-creation in C-LOG by providing simple intu-
itive examples and relating the New-operator to other lan-
guages with similar forms of object-creation. We conclude
in Section 6.

2 C-LOG
We assume familiarity with the basics of first-order logic.
Vocabularies, formulas, and terms are defined as usual. We

90

use t for truth and f for falsity. σI denotes the interpretation
of symbol σ in structure I. Domain atoms are atoms of
the form P (d) where the di are domain elements. We use
restricted quantifications (Preyer and Peter 2002), e.g., in
FO, these are formulas of the form ∀x[ψ] : ϕ or ∃x[ψ] : ϕ,
meaning that ϕ holds for all (resp. for a) x such that ψ holds.
The above expressions are syntactic sugar for ∀x : ψ ⇒ ϕ
and ∃x : ψ∧ϕ, but such a reduction is not possible for other
restricted quantifiers in C-LOG. We call ψ the qualification
and ϕ the assertion of the restricted quantifications. From
now on, let Σ be a relational vocabulary, i.e., Σ consists only
of predicate, constant and variable symbols.

In what follows we briefly repeat the syntax and infor-
mal semantics of C-LOG. For more details and an exten-
sive overview of the formal semantics of C-LOG, we refer
to (Bogaerts et al. in press 2014a).

2.1 Syntax of C-LOG

Definition 2.1. Causal effect expressions (CEE) are defined
inductively as follows:

• if P (t) is an atom, then P (t) is a CEE,
• if ϕ is an FO formula and C ′ is a CEE, then C ′ ← ϕ is a

CEE,
• if C1 and C2 are CEEs, then C1 AndC2 is a CEE,
• if C1 and C2 are CEEs, then C1 OrC2 is a CEE,
• if x is a variable, ϕ is a first-order formula and C ′ is a

CEE, then Allx[ϕ] : C ′ is a CEE,
• if x is a variable, ϕ is a first-order formula and C ′ is a

CEE, then Selectx[ϕ] : C ′ is a CEE,
• if x is a variable and C ′ is a CEE, then New x : C ′ is a

CEE.

We call a CEE an atom-expression (respectively rule-,
And-, Or-, All-, Select- or New-expression) if it is of
the corresponding form. We use Allx[ϕ] : C as an ab-
breviation for Allx1[t] : . . .Allxn[ϕ] : C and similar for
Select-expressions. We call a predicate symbol P endoge-
nous in C if P occurs as the symbol of a (possibly nested)
atom-expression in C, i.e., if P occurs in C but not only in
first-order formulas. All other symbols are called exogenous
in C. An occurrence of a variable x is bound in a CEE if
it occurs in the scope of a quantification over that variable
(∀x, ∃x, Allx, Selectx, or New x) and free otherwise. A
variable is free in a CEE if it has free occurrences. A causal
theory, or C-LOG theory is a CEE without free variables.
We often represent a causal theory as a set of CEEs; the in-
tended causal theory is the And-conjunction of these CEEs.

2.2 Informal Semantics of C-LOG

In this section, we discuss the informal semantics of CEEs.
We repeat the driving principles on a simple example—one
without non-determinism—and discuss more complex ex-
pressions afterwards.

Driving Principles Following the philosophy of (Ven-
nekens, Denecker, and Bruynooghe 2009), the semantics of
C-LOG is based on two principles that are common in causal
modelling. The first is the distinction between endogenous

and exogenous properties, i.e., those whose value is deter-
mined by the causal laws in the model and those whose
value is not, respectively (Pearl 2000). The second is the
default-deviant assumption, used also by, e.g., (Hall 2004;
Hitchcock 2007). The idea here is to assume that each en-
dogenous property of the domain has some “natural” state,
that it will be in whenever nothing is acting upon it. For
ease of notation, C-LOG identifies the default state with fal-
sity, and the deviant state with truth. For example, consider
the following simplified model of a bicycle, in which a pair
of gear wheels can be put in motion by pedalling:

Turn(BigGear)← Pedal. (1)
Turn(BigGear)← Turn(SmallGear). (2)

Turn(SmallGear)← Turn(BigGear). (3)

Here, Pedal is exogenous, while Turn(BigGear) and
Turn(SmallGear) are endogenous. The semantics of this
causal model is given by a straightforward “execution” of
the rules. The domain starts out in an initial state, in which
all endogenous atoms have their default value false and the
exogenous atom Pedal has some fixed value. If Pedal
is true, then the first rule is applicable and may be fired
(“Pedal causes Turn(BigGear)”) to produce a new state
of the domain in which Turn(BigGear) now has its de-
viant value true. In this way, we construct the following
sequence of states (we abbreviate symbols by their first let-
ter):

{P} → {P, T (B)} → {P, T (B), T (S)} (4)

In general, given a causal theory ∆, a causal process is a
(possibly transfinite) sequence of intermediate states, start-
ing from the default state such that, at each state, the effects
described by ∆ take place. This notion of causal process is
based on the following principles:

• The principle of sufficient causation states that if the pre-
condition to a causal law is satisfied, then the event that it
triggers must eventually happen. For example, the process
described in (4) cannot stop after the first step: there is a
cause for Turn(SmallGear), hence this should eventu-
ally happen.

• The principle of universal causation states that all
changes to the state of the domain must be triggered by
a causal law whose precondition is satisfied. For exam-
ple, the small gear can only turn if the big gear turns.

• The principle of no self-causation states that nothing can
happen based on itself. E.g., if rule (1) would be excluded
from the causal theory, the gears cannot start rotating by
themselves.

Complex Expressions A (possibly infinite) structure is a
model of a causal theory ∆ if it is the final state of a (non-
deterministic) causal processes described by ∆. In order to
define these processes correctly, one should know the events
that take place in every state. We call the set of those events
the effect set of the causal theory. There are two kinds of
effects that can be described by a causal theory: 1) flipping
an atom from its default to its deviant state and 2) creating
a new domain element. We now explain in a compositional

91

way what the effect set of a causal theory is in a given state
of affairs, which we represent as usual by a structure.

The effect of an atom-expression A is that A is flipped
to its deviant state. A conditional effect, i.e., a rule expres-
sion, causes the effect set of its head if its body is satisfied in
the current state, and nothing otherwise. The effect set de-
scribed by an And-expression is the union of the effect sets
of its two subexpressions; an All-expression Allx[ϕ] : C ′
causes the union of all effect sets of C ′(x) for those x’s that
satisfy ϕ. An expression C1 OrC2 non-deterministically
causes either the effect set of C1 or the effect set of C2; a
Select-expression Selectx[ϕ] : C ′ causes the effect set of
C ′ for a non-deterministically chosen x that satisfies ϕ. An
object-creating CEE New x : C ′ causes the creation of a
new domain element n and the effect set of C ′(n).

Informally, CEEs only cause changes to the state once
(for each of its instantiations), e.g., a Select-expression
Selectx[ϕ] : C ′ causes the effect set of C ′ for a non-
deterministically chosen x once, and cannot cause C ′ for
another x afterwards.
Example 2.2. Permanent residence in the United States can
be obtained in several ways. One way is passing the natural-
isation test. Another way is by playing the “Green Card Lot-
tery”, where each year a number of lucky winners are ran-
domly selected and granted permanent residence. We model
this as follows:{

All p[Apply(p) ∧ PassedTest(p)] : PermRes(p)
(Select p[Play(p)] : PermRes(p))← Lottery.

}
The first CEE describes the “normal” way to obtain per-
manent residence; the second rule expresses that one win-
ner is selected among everyone who plays the lottery. If
I is a structure in which Lottery holds, due to the non-
determinism, there are many possible effect sets of the above
CEE, namely the sets {PermRes(p) | p ∈ ApplyI ∧ p ∈
PassedTestI} ∪ {PermRes(d)} for some d ∈ PlayI .

Models of this causal theory are structures such that ev-
eryone who applies and passes the test has permanent resi-
dence, and in case the lottery happens, one random person
who played the lottery as well, and such that furthermore
no-one else obtains permanent residence. The principle of
sufficient causation guarantees a form of closed world as-
sumption: you can only obtain residence if there is a rule
that causes you to obtain this nationality. The two CEEs are
considered independent: the winner could be one of the peo-
ple that obtained it through standard application, as well as
someone else, i.e., the semantics allows both minimal and
non-minimal models.

Note that in the above, there is a great asymmetry be-
tween Play(p), which occurs as a qualification of Select-
expression, and PermRes(p), which occurs as a caused
atom. This means that the effect will never cause atoms of
the form Play(p), but only atoms of the form PermRes(p).
This is one of the cases where the qualification of an expres-
sion cannot simply be eliminated.
Example 2.3. Hitting the “send” button in your mail ap-
plication causes the creation of a new package containing a
specific mail. That package is put on a channel and will be

received some (unknown) time later. As long as the package
is not received, it stays on the channel. In C-LOG, we model
this as follows:

Allm, t[Mail(m) ∧HitSend(m, t)] : New p :
Pack(p) AndCont(p,m) And
OnCh(p, t+ 1) And
Select d[d > 0] : Received(p, t+ d)

All p, t[Pack(p) ∧OnCh(p, t) ∧ ¬Received(p, t)] :
OnCh(p, t+ 1)


Suppose an interpretation HitSendI = {(MyMail, 0)} is
given. A causal process then unfolds as follows: it starts in
the initial state, where all endogenous predicates are false.
The effect set of the above causal effect in that state con-
sists of 1) the creation of one new domain element, say
p, and 2) the caused atoms Pack(p), Cont(p,MyMail),
OnCh(p, 1) and Received(p, 7), where instead of 7, we
could have chosen any number greater than zero. Next, it
continues, and in every step t, before receiving the pack-
age, an extra atom OnCh(p, t+ 1) is caused. Finally, in the
seventh step, no more atoms are caused; the causal process
ends. The final state is a model of the causal theory.

2.3 FO(C)
First-order logic and C-LOG have a straightforward integra-
tion, FO(C). Theories in this logic are sets of FO sentences
and causal theories. A model of such a theory is a structure
that is a model of each of its expressions (of each of its CEEs
and sentences). An illustration is the mail protocol from Ex-
ample 2.3, which we can extend with the “observation” that
at some time, two packages are on the channel:

∃t, p1, p2[p1 6= p2] : OnCh(p1, t) ∧OnCh(p2, t).

Models of this theory represent states of affairs where at
least once two packages are on the channel simultaneously.
This entirely differs from And-conjoining our CEE with

Select t, p1, p2[p1 6= p2] : OnCh(p1, t) AndOnCh(p2, t).

The resulting CEE would have unintended models in which
two packages suddenly appear on the channel for no reason.
Note that in the definitions of C-LOG, we restricted atten-
tion to relational vocabularies. All the theory can straight-
forwardly be generalised as long as function symbols do not
occur as endogenous symbols in CEEs, i.e., if they only oc-
cur in FO sentences or as exogenous symbols in causal the-
ories.

3 C-LOG, FO, and FO(C)
There is an obvious syntactical correspondence between
FO and creation-free C-LOG (C-LOG without New-
expressions): And corresponds to ∧, Or to ∨, ← to ⇐,
All to ∀, and Select to ∃. As already mentioned above,
expressions in C-LOG have an entirely different meaning
than the corresponding FO expression. A C-LOG expres-
sion describes a process in which more and more facts are
caused, while an FO expression describes a truth. For exam-
ple P OrQ describes a process that picks either P or Q

92

and makes one of them true, hence its models are structures
in which exactly one of the two holds. On the other hand,
the FO sentence P ∨ Q has more models, namely also one
in which both hold. We generalise this observation:
Theorem 3.1. Let ∆ be a creation-free causal theory over
Σ and T∆ the corresponding FO theory (the theory obtained
from ∆ by replacing All by ∀, Select by ∃, Or by ∨, And
by ∧, and← by⇐). Then for every Σ-structure I, if I |= ∆,
then also I |= T∆.

The reverse often does not hold: there is no obvious way
to translate any FO formula to a C-LOG expression. In some
cases, it is possible to find an inverse transformation, for ex-
ample for positive (negation-free) FO theories. This would
yield a constructive way to create models for a positive FO
theory, which is not a surprising, nor a very interesting re-
sult; another constructive way to get a model of such a the-
ory would be to make everything true. But it is interesting
to view C-LOG theories as a constructive way to create a
certain structure. This shows that modelling in C-LOG
is orthogonal to modelling in FO. In FO, by default every-
thing is open, every atom can be true or false arbitrarily.
Every constraint removes worlds from the set of possible
worlds. In C-LOG on the other hand, all endogenous sym-
bols are by default false. Adding extra rules to a C-LOG
theory can result in more models (when introducing extra
non-determinism), or modify worlds. In some cases, one of
the approaches is more natural than the other.

Consider for example a steel oven scheduling problem.
For every block of steel, we should find a time t to put that
block in the oven and at time t+D, where D is some fixed
delay, we take the block out. In C-LOG this is modelled as

All b[Block(b)] : Select t[t] : In(b, t) AndOut(b, t+D),

but to model this in FO we would get one similar constraint
together with several constraints guaranteeing uniqueness:

∀b[Block(b)] : ∃t : In(b, t) ∧Out(b, t+D)

∀b, t, t′[Block(b)] : In(b, t) ∧ In(b, t′)⇒ t = t′

∀b, t, t′[Block(b)] : Out(b, t) ∧Out(b, t′)⇒ t = t′

∀x : (∃t : In(x, t) ∨Out(x, t))⇒ Block(x)

Here, the approach in C-LOG is much more natural, as in
this example it is clear how to construct a model, whereas
to model it in FO, we should analyse all properties of mod-
els. On the other hand, if we extend this example with a
constraint that no two blocks can enter the oven at the same
time, this is easily expressible in FO:

¬∃t, b, b′[b 6= b′] : In(b, t) ∧ In(b′, t),

while this is not naturally expressible in C-LOG. This shows
the power of FO(C), the integration of FO and C-LOG.
For example, the entire above scheduling problem would be
modelled in FO(C) as follows (where we use “{” and “}” to
separate the C-LOG theory from the FO sentences).{

All b[Block(b)] : Select t[t] :
In(b, t) AndOut(b, t+D)

}
¬∃t, b, b′[b 6= b′] : In(b, t) ∧ In(b′, t)

This is much more readable and much more concise than
any pure C-LOG or FO expression that expresses the same
knowledge. As can be seen, the integration of the orthogo-
nal languages FO and C-LOG, FO(C) provides a great mod-
elling flexibility.

4 FO(C) and ASP
The methodology from the previous section is very similar
to the “generate, define, and test” (GDT) methodology used
in Answer Set Programming (ASP). In that methodology,
“generate” and “define” are constructive modules of ASP
programs that describe which atoms can be true, while the
“test” module corresponds to first-order sentences that con-
strain solutions. In (Denecker et al. 2012), it has been argued
that GDT programs correspond to FO(ID) theories. Fur-
thermore, in (Bogaerts et al. in press 2014a), we showed that
FO(ID) is syntactically and semantically a sublanguage of
FO(C). Here, we argue that a more general class of ASP
programs can be seen as FO(C) theories.

E-disjunctive programs (You, Zhang, and Zhang 2013)
are finite sets of rules of the form:

∀x : ∃y : α1; . . . ;αm :-β1, . . . , βk, not γ1, . . . , not γn. (5)

where the αi, βi and γi are atoms and variables in y only
occur in the αi. Given a structureM, we defineM− as the
literal set

{¬α | α is a domain atom on dom(M) andM 6|= α}.

A structureM is a stable model of E-disjunctive program P
(denotedM |= P) ifM is a minimal set X satisfying the
condition: for any rule r ∈ P and any variable assignment
η, if the literal set X ∪M− logically entails body(r)η, then
for some assignment θ, and for some α in the head of r,
(αη|x)θ ∈ X . A rule of the form (5) is called a constraint if
m = 0.
Definition 4.1. LetP be an E-disjunctive program. The cor-
responding FO(C)-theory is the theory TP with as C-LOG
expression the And-conjunction of all expressions

Allx[β1 ∧ · · · ∧ ¬γn] : Select y[t] : α1 Or . . . Orαm

such that there is a rule of the form (5) with m > 0 in P . TP
has as FO part:
• all sentences ∀x : ¬(β1 ∧ · · · ∧ βk ∧ ¬γ1 ∧ . . . ∧ ¬γn)

such that there is a rule of the form (5) with m = 0 (i.e.,
a constraint) in P and

• the sentences ∀x : ¬P (x) for symbols P that do not occur
in the head of any rule in P .
The last type of constraint is a technical detail: in ASP, all

symbols are endogenous, while in C-LOG, this is only the
case for predicates occurring in “the head of rules”.

The above syntactical correspondence does not always
correspond to a semantical correspondence. Intuitively, an
E-disjunctive rule r (roughly) means the following: if the
body of r holds for an instantiation of x, then we select one
instantiation of the y and one disjunct; that disjunct is caused
to be true for that instantiation. But, globally the selection
should happen in such a way that the final model is minimal.

93

For example the program {p. p; q.} only has one stable
model, namely {p}. The intuition behind it is that the first
rule causes p to be true, and hence compromises the choice
in the second rule. As p already holds, the global minimality
condition ensures that the second rule is obliged to choose
p as well, if possible. When we slightly modify the above
program, by adding a constraint: {p. p; q. :- not q.} sud-
denly, q can (and should) be chosen by the second rule, as
{p} no longer is a model of this theory. The above illustrates
that there is a great interdependency between different rules
and between rules and constraints: adding an extra rule or
constraint changes the meaning of other rules. Below, we
identify a fragment of E-disjunctive ASP in which this de-
pendency is not too strong, and we show that for this frag-
ment, the stable model semantics equals the FO(C) seman-
tics. In order to do so, we introduce the following concepts:
Definition 4.2. Let δ be a domain atom and r a rule in the
form of (5). Suppose η is a variable assignment of the vari-
ables x and y. We say that δ occurs in r at i for η if αiη = δ.
We say that δ occurs in r if there exist and i and an η such
that r occurs at i for η.
Definition 4.3. We call a rule disjunctive if y is not the
empty tuple or if m > 1.
Definition 4.4. An E-disjunctive program P is called non-
overlapping if for every domain atom δ one of the following
holds
• δ occurs only in non-disjunctive rules, or
• there are at most one rule r, one i, and one η such that δ

occurs in r at i for η.
The above condition states that domain atoms occurring

in heads of disjunctive rules, cannot occur multiple times in
rule heads. Intuitively, this guarantees that different choices
do not interfere.
Theorem 4.5. Let P be a non-overlapping E-disjunctive
program without recursion over negation and TP the cor-
responding FO(C) theory. For every structure I, I |= P if
and only if I |= TP .

In Theorem 4.5, there is one extra condition on non-
overlapping ASP programs to be equivalent to the corre-
sponding FO(C) theory, namely that it does not contain re-
cursion over negation, i.e., there are no rules of the form

p :- not p′. p′ :- not p.

It has already been argued in (Denecker et al. 2012) that in
practical applications recursion over negation is mostly for
two purposes: 1) expressing constraints and 2) to “open” the
predicate p, i.e., to encode that it can have arbitrary truth
value. In this case, the predicate p′ would not be used in
the rest of the theory. This can as well be done with a rule
p; p′. This last rule is equivalent to the above two in non-
overlapping programs (or, if p and p′ do not occur in other
rule heads). In FO(C), we could either add the disjunctive
rule, or simply omit this rule, since exogenous predicates are
open anyway.

As already stated above, in case an ASP program is not
non-overlapping, semantics might differ. However, we do
have

Theorem 4.6. Let P be any E-disjunctive program with-
out recursion over negation and TP be the corresponding
FO(C) theory. For every structure I, if I |= P then also
I |= TP .

The reverse does not hold, since C-LOG does not impose
a global minimality condition. The difference in semantics
is illustrated in the American Lottery example, which we
resume below.

In the above, we argued that for many practical applica-
tions of E-disjunctive programs, semantics of FO(C) corre-
sponds to the stable model semantics. This raises the ques-
tion of relevance of FO(C). From a knowledge repre-
sentation perspective, FO(C) adds several useful constructs
with respect to E-disjunctive logic programs. Among these
are nested rules (in fact, arbitrary nesting of expressions),
dynamic choice, object creation, and a more modular seman-
tics.

Nested causal rules occur in many places, for example,
one could state that the electrician causes a causal link be-
tween a button and a light, e.g.,

(light← button)← electrician.

We found similar nested rules in (Kowalski and Sadri
2013). Of course, for simple examples this can also be ex-
pressed compactly in ASP, e.g. by

light :- electrician, button.

but when causes and effects are more complex, translating
them requires the introduction of auxiliary predicates, di-
minishing the readability of the resulting program.

Dynamic choices occur in many practical applications.
Consider the following situation: a robot enters a room,
opens some of the doors in this room, and then leaves by
one of the doors that are open. The robot’s leaving corre-
sponds to a non-deterministic choice between a dynamic set
of alternatives, which is determined by the robot’s own ac-
tions, and therefore cannot be hard-coded into the head of a
rule. In C-LOG, we would model this last choice as

Selectx[open(x)] : leave(x).

To model this in an E-disjunctive logic program, we need
an extra auxiliary predicate, thus reducing readability:

∃X : chosen(X).
∀X : leave(X) :- chosen(X).
∀X :- chosen(X); not open(X).

Modularity of the semantics has already been discussed
above: The non-overlapping condition on ASP programs
guarantees similar modularity. However, when the non-
overlapping condition is violated, semantics of ASP pro-
grams are often less clear. Let us reconsider Example 2.2.
The E-disjunctive program

∃X : permres(X) :- lottery.
∀X : permres(X) :- passtest(X).

is similar to{
(Selectx[t] : permres(x))← lottery

Allx[passtest(x)] : permres(x)

}

94

Semantically, the first imposes a minimality condition: the
lottery is always won by a person succeeding the test, if there
exists one. On the other hand, in C-LOG the two rules are in-
dependent, and models might not be minimal. In this exam-
ple, it is the latter that is intended. This illustrates modularity
of C-LOG. The rule (Selectx[t] : permres(x))← lottery
means that one person is selected randomly to obtain resi-
dence. Adding other rules does not change the meaning of
this rule; causal effects do not interfere.

Object-creation in C-LOG is discussed in the next section.

5 Object-creation in C-LOG
Object creation is available in C-LOG through the New-
operator. Like every language construct in C-LOG, the in-
formal interpretation of an expression

New x : P (x)← ϕ

is defined in terms of causal processes. The above expres-
sion states that ϕ causes the creation of a new element and
that for that new element, P is caused. Object-creation is
also subject to the principles of sufficient causation, uni-
versal causation and no self-causation. In order to apply
these principles, the domain of a structure is partitioned into
two parts: the initial elements are those whose existence is
not governed by the causal theory, they are exogenous and
the created elements are those created by expressions in the
causal theory, i.e., they are endogenous. For created ele-
ments, their default value is not existing and their deviant
value is existing. Thus, at the start of a causal process, only
the initial elements exist, as soon as the preconditions of a
New-expressions are satisfied, an element is added to the
domain. The principle of no self-causation takes these de-
fault and deviant values into account: an object cannot be
created based on its own existence. Consider for example
the following causal theory:

Selectx[t] : P (x)
(New y : Q(y))← ∃x : P (x)
Selectx[t] : R(x)

The first and last expressions select one object randomly and
cause P (respectively R) to hold for that object. The sec-
ond expression creates a new element conditionally, only if
there is at least one element satisfying P . In this example,
the element selected for the first expression cannot be the
one created in the second. Select-operators can only select
existing elements and the object created in the second ex-
pression can only be created after the selection in the first
rule, after there is some object satisfying P . For the last ex-
pression, any element can be selected. Hence, this causal
theory has no models with only one domain element. A
structure I with domain {A,B} and with P I = {A} and
QI = RI = {B} is a model of the above causal theory.
In this case, B is the unique created element, and A is ini-
tial, i.e., A is assumed to exist before the described causal
process takes place. This illustrates that the New-operator
is more than simply a Select together with unique name
axioms: its semantics is really integrated in the underly-
ing causal process. The behaviour of New-expressions can

be simulated using Select-expressions if we make the two
parts of the domain (initial and created elements) explicit
and conditionalise all quantifications. A detailed discussion
of this transformation is out of the scope of this paper.

Object creation occurs in many fields, of which we dis-
cuss some below.

5.1 Object-Creation in Database Systems
Object-creation has been studied intensively in the field of
deductive databases. In (Abiteboul and Vianu 1991), vari-
ous extensions of Datalog, are considered, resulting in non-
deterministic semantics for queries and updates. One of
the studied extensions is object creation (throught existential
quantifications in rule heads). These and similar related ex-
tension have been implemented in several systems, includ-
ing LogicBlox (Green, Aref, and Karvounarakis 2012). An
example from the latter paper is the rule:

President(p), presidentOf [c] = p← Country(c).

which means that for every country c, a new (anonymous)
“derived entity” of type President is created. Of course,
the president of a country is not a new person, but the presi-
dent is new with respect to the database, which does not con-
tain any persons yet. Such rules with (implicit) existentially
quantified head variables correspond to New-expressions.
Here, it would translate to

All c[Country(c)] : New p : Pres(p) And presOf(c, p).

This shows that in some rule-based paradigms, an ex-
istentially quantified head-variable corresponds to object-
creation (New), while in other rule-based paradigms, such
as ASP, we saw that an existentially quantified head vari-
able corresponds to a selection. The relation between these
paradigms has, to the best of our knowledge, not yet been
studied thoroughly. We believe that FO(C), which makes an
explicit distinction between selection and object-creation, is
an interesting tool to study this relationship. This is future
work.

Many other Datalog extensions with forms of object cre-
ation exist. For example (Van den Bussche and Paredaens
1995) discusses a version with creation of sets and compares
its expressivity with simple object creation.

Object-creation also occurs in other database languages,
such as for example the query language whilenew in (Abite-
boul, Hull, and Vianu 1995). An expression

while R do (P = new Q)

in that language corresponds to a CEE.

All t[R(t)] : Allx[t] : New y : P (x, y, t+ 1)← Q(x, t).

In fact in (Bogaerts et al. in press 2014b), it has been shown
that C-LOG can “simulate” the entire language whilenew.

5.2 Object-Creation in Mathematics
Object-creation also occurs in mathematics. The set of all
natural numbers can be thought of as the set obtained by a
process that first creates one element (zero) and for every
element in this set, adds another element (its successor). In

95

C-LOG, the above natural language sentences can be mod-
elled as follows

New x : (Nat(x) AndZero(x))
Allx[Nat(x)] : New y : (Nat(y) AndSucc(x, y)).

Models of the above theory are exactly those structures in-
terpretingNat, Zero, Succ as the natural numbers, zero and
the successor function (modulo isomorphism).

5.3 Object-Creation in Business Rules Systems

Business Rules (Business Rules Group 2000) engines are
widely used in the industry. One big drawback of these sys-
tems is their inability to perform multiple forms of reason-
ing. For example, banks might use a Business Rules engine
to decide whether someone is eligible for a loan. This ap-
proach can be very efficient, but as soon as one is not only
interested in the above question, but also in explanations, or
suggestions about what to change in order to become eligi-
ble, the application should be redesigned. Previous attempts
to translate Business Rules applications into a logic with a
Tarskian model semantics have been made in (Hertum et al.
2013). The conclusion of this study was that for such a trans-
formation, we need object creation . We believe that C-LOG
provides a suitable form of object-creation for this purpose.
As an illustration, the JBoss manual (Browne 2009) contains
the following rule:

when Order(customer == null)
then insertLogical(new

ValidationResult(
validation.customer.missing));

This rule means that if an order is created without customer,
a new ValidationResult is created with the message that the
customer is missing. This can be translated to C-LOG as
follows:

All y[Order(y) ∧NoCustumer(y)] :
New x : V alidationR(x) AndMessage(x, “. . . ”).

A more thorough study of the relationship between the oper-
ational semantics of Business Rules systems and the seman-
tics of C-LOG is a topic for future work.

6 Conclusion
In this paper we compared FO(C) to other modelling
paradigms. We discussed the semantical relationship be-
tween C-LOG and FO. We identified a fragment of E-
disjunctive logic programs for which the stable model se-
mantics corresponds to the semantics of FO(C), and ar-
gued how FO(C) enriches such programs with several use-
ful modelling constructs. Furthermore, we argued that the
object-creation in FO(C) corresponds to the object creation
in many related language. Besides technical relationship be-
tween these languages, we believe that this discussion also
provides insights in the semantics of FO(C).

References
Abiteboul, S., and Vianu, V. 1991. Datalog extensions
for database queries and updates. J. Comput. Syst. Sci.
43(1):62–124.
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Bogaerts, B.; Vennekens, J.; Denecker, M.; and Van den
Bussche, J. (in press) 2014a. FO(C): A knowledge rep-
resentation language of causality. Theory and Practice of
Logic Programming (TPLP) (Online-Supplement, Technical
Communication ICLP14).
Bogaerts, B.; Vennekens, J.; Denecker, M.; and Van den
Bussche, J. (in press) 2014b. Inference in the FO(C) mod-
elling language. In ECAI 2014 - 21th European Conference
on Artificial Intelligence, Prague, Czech Republic, August
18-22, 2014, Proceedings.
Browne, P. 2009. JBoss Drools Business Rules. From tech-
nologies to solutions. Packt Publishing, Limited.
Business Rules Group. 2000. Defining Business Rules ∼
What Are They Really? Technical report.
Denecker, M.; Lierler, Y.; Truszczynsky, M.; and Ven-
nekens, J. 2012. A Tarskian informal semantics for answer
set programming. In Dovier, A., and Santos Costa, V., eds.,
Technical Communications of the 28th International Con-
ference on Logic Programming, 277–289. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik.
Green, T. J.; Aref, M.; and Karvounarakis, G. 2012. Log-
icblox, platform and language: A tutorial. In Barceló, P.,
and Pichler, R., eds., Datalog, volume 7494 of LNCS, 1–8.
Springer.
Hall, N. 2004. Two concepts of causation. In Causation and
Counterfactuals.
Hertum, P. V.; Vennekens, J.; Bogaerts, B.; Devriendt, J.;
and Denecker, M. 2013. The effects of buying a new car: an
extension of the IDP knowledge base system. TPLP 13(4-5-
Online-Supplement).
Hitchcock, C. 2007. Prevention, preemption, and the prin-
ciple of sufficient reason. Philosophical review 116(4).
Kowalski, R. A., and Sadri, F. 2013. Towards a logic-based
unifying framework for computing. CoRR abs/1301.6905.
Pearl, J. 2000. Causality: Models, Reasoning, and Infer-
ence. Cambridge University Press.
Preyer, G., and Peter, G. 2002. Logical Form and Language.
Clarendon Press.
Van den Bussche, J., and Paredaens, J. 1995. The expres-
sive power of complex values in object-based data models.
Information and Computation 120:220–236.
Vennekens, J.; Denecker, M.; and Bruynooghe, M. 2009.
CP-logic: A language of causal probabilistic events and its
relation to logic programming. Theory and Practice of Logic
Programming 9(3):245–308.
You, J.-H.; Zhang, H.; and Zhang, Y. 2013. Disjunctive
logic programs with existential quantification in rule heads.
Theory and Practice of Logic Programming 13:563–578.

96

Belief Merging within Fragments of Propositional Logic

Nadia Creignou and Odile Papini
Aix Marseille Université, CNRS

Stefan Rümmele and Stefan Woltran
Vienna University of Technology

Abstract

Recently, belief change within the framework of fragments of
propositional logic has gained increasing attention. Previous
works focused on belief contraction and belief revision on
the Horn fragment. However, the problem of belief merging
within fragments of propositional logic has been neglected
so far. This paper presents a general approach to define new
merging operators derived from existing ones such that the re-
sult of merging remains in the fragment under consideration.
Our approach is not limited to the case of Horn fragment but
applicable to any fragment of propositional logic character-
ized by a closure property on the sets of models of its for-
mulæ. We study the logical properties of the proposed oper-
ators in terms of satisfaction of merging postulates, consider-
ing in particular distance-based merging operators for Horn
and Krom fragments.

Introduction
Belief merging consists in achieving a synthesis between
pieces of information provided by different sources. Al-
though these sources are individually consistent, they may
mutually conflict. The aim of merging is to provide a con-
sistent set of information, making maximum use of the in-
formation provided by the sources while not favoring any of
them. Belief merging is an important issue in many fields
of Artificial Intelligence (AI) (Bloch and (Eds) 2001) and
symbolic approaches to multi-source fusion gave rise to in-
creasing interest within the AI community since the 1990s
(Baral, Kraus, and Minker 1991; Cholvy 1998; Lin 1996;
Revesz 1993; 1997). One of today’s major approaches is
the problem of merging under (integrity) constraints in or-
der to generalize both merging (without constraints) and
revision (of old information by a new piece of informa-
tion). For the latter the constraints then play the role of
the new piece of information. Postulates characterizing the
rational behavior of such merging operators, known as IC
postulates, have been proposed by Konieczny and Pino
Pérez (Konieczny and Pino Pérez 2002) in the same spirit as
the seminal AGM (Alchourrón, Gärdenfors, and Makinson
1985) postulates for revision. Concrete merging operators
have been proposed according to either semantic (model-
based) or syntactic (formula-based) points of view in a clas-
sical logic setting (Chacón and Pino Pérez 2012). We fo-
cus here on the model-based approach of distance-based

merging operators (Konieczny, Lang, and Marquis 2004;
Konieczny and Pino Pérez 2002; Revesz 1997). These op-
erators are parametrized by a distance which represents the
closeness between interpretations and an aggregation func-
tion which captures the merging strategy and takes the origin
of beliefs into account.

Belief change operations within the framework of frag-
ments of classical logic constitute a vivid research branch.
In particular, contraction (Booth et al. 2011; Delgrande and
Wassermann 2013; Zhuang and Pagnucco 2012) and revi-
sion (Delgrande and Peppas 2011; Putte 2013; Zhuang, Pag-
nucco, and Zhang 2013) have been thoroughly analyzed in
the literature. The study of belief change within language
fragments is motivated by two central observations:

• In many applications, the language is restricted a pri-
ori. For instance, a rule-based formalization of expert’s
knowledge is much easier to handle for standard users. In
case users want to revise or merge some sets of rules, they
indeed expect that the outcome is still in the easy-to-read
format they are used to.

• Many fragments of propositional logic allow for efficient
reasoning methods. Suppose an agent has to make a deci-
sion according to a group of experts’ beliefs. This should
be done efficiently, therefore the expert’s beliefs are stored
as formulæ known to be in a tractable class. For making a
decision, it is desired that the result of the change opera-
tion yields a set of formulæ in the same fragment. Hence,
the agent still can use the dedicated solving method she is
equipped with for this fragment.

Most of previous work has focused on the Horn fragment
except (Creignou et al. 2014) that studied revision in any
fragment of propositional logic. However, as far as we know,
the problem of belief merging within fragments of proposi-
tional logic has been neglected so far.

The main obstacle hereby is that for a language fragment
L′, given n belief bases K1, . . . ,Kn ∈ 2L

′
and a constraint

µ ∈ L′, there is no guarantee that the outcome of the merg-
ing, ∆µ({K1, . . . ,Kn}), remains in L′ as well. Let for ex-
ample, K1 = {a}, K2 = {b} and µ = ¬a ∨ ¬b be two sets
of formulæ and a formula expressed in the Horn fragment.
Merging with typical distance-based operator proposed in
(Konieczny and Pino Pérez 2002) does not remain in the
Horn language fragment since the result of merging is equiv-

97

alent to (a ∨ b) ∧ (¬a ∨ ¬b), which is not equivalent to any
Horn formula (see (Schaefer 1978)).

We propose the concept of refinement to overcome these
problems. Refinements have been proposed for revision in
(Creignou et al. 2014) and capture the intuition of adapting
a given operator (defined for full classical logic) in order to
become applicable within a fragment. The basic properties
of a refinement aim to (i) guarantee the result of the change
operation to be in the same fragment as the belief change
scenario given and (ii) keep the behavior of the original op-
erator unchanged in case it delivers a result which already
fits in the fragment.

Refinements are interesting from different points of view.
Several fragments can be treated in a uniform way and a gen-
eral characterization of refinements is provided for any frag-
ment. Defining and studying refinements of merging opera-
tors is not a straightforward extension of the revision case.
It is more complex due to the nature of the merging opera-
tors. Even if the constraints play the role of the new piece
of information in revision, model-based merging deals with
multi-sets of models. Moreover applying this approach to
different distance-based merging operators, each parameter-
ized by a distance and an aggregation function, reveals that
all the different parameters matter, thus showing a rich vari-
ety of behaviors for refined merging operators.

The main contributions of this paper are the following:

• We propose to adapt known belief merging operators
to make them applicable in fragments of propositional
logic. We provide natural criteria, which refined opera-
tors should satisfy. We characterize refined operators in a
constructive way.

• This characterization allows us to study their properties
in terms of the IC postulates (Konieczny and Pino Pérez
2002). On one hand we prove that the basic postulates
(IC0–IC3) are preserved for any refinement for any frag-
ment. On the other hand we show that the situation is
more complex for the remaining postulates. We provide
detailed results for the Horn and the Krom fragment in
terms of two kinds of distance-based merging operators
and three approaches for refinements.

Preliminaries
Propositional Logic. We consider L as the language of
propositional logic over some fixed alphabet U of proposi-
tional atoms. A literal is an atom or its negation. A clause is a
disjunction of literals. A clause is called Horn if at most one
of its literals is positive; and Krom if it consists of at most
two literals. We identify the following subsets of L: LHorn

is the set of all formulæ in L being conjunctions of Horn
clauses, and LKrom is the set of all formulæ in L being con-
junctions of Krom clauses. In what follows we sometimes
just talk about arbitrary fragments L′ ⊆ L. Hereby, we tac-
itly assume that any such fragment L′ ⊆ L contains at least
the formula >.

An interpretation is represented either by a set ω ⊆ U
of atoms (corresponding to the variables set to true) or by
its corresponding characteristic bit-vector of length |U|. For
instance if we consider U = {x1, . . . , x6}, the interpretation

x1 = x3 = x6 = 1 and x2 = x4 = x5 = 0 will be
represented either by {x1, x3, x6} or by (1, 0, 1, 0, 0, 1). As
usual, if an interpretation ω satisfies a formula φ, we call ω
a model of φ. By Mod(φ) we denote the set of all models
(over U) of φ. Moreover, ψ |= φ if Mod(ψ) ⊆ Mod(φ) and
ψ ≡ φ (φ and ψ are equivalent) if Mod(ψ) = Mod(φ).

A base K is a finite set of propositional formulæ
{ϕ1, . . . , ϕn}. We shall often identify K via

∧
K, the con-

junction of formulæ ofK, i.e.,
∧
K = ϕ1∧· · ·∧ϕn. Thus, a

baseK is said to be consistent if
∧
K is consistent, Mod(K)

is a shortcut for Mod(
∧
K), K |= φ stands for

∧
K |= φ,

etc. Given L′ ⊆ L we denote by KL′ the set of bases re-
stricted to formulæ from L′. For fragments L′ ⊆ L, we also
use TL′(K) = {φ ∈ L′ | K |= φ}.

A profile E is a non-empty finite multiset of consistent
bases E = {K1, . . . ,Kn} and represents a group of n
agents having different beliefs. Given L′ ⊆ L, we denote by
EL′ the set of profiles restricted to the use of formulæ from
L′. We denote

∧
K1∧. . .∧

∧
Kn by

∧
E. The profile is said

to be consistent if
∧
E is consistent. By abuse of notation

we write K tE to denote the multi-set union {K}tE. The
multi-set consisting of the sets of models of the bases in a
profile is denotedMod(E) = {Mod(K1), . . . ,Mod(Kn)}.
Two profilesE1 andE2 are equivalent, denoted byE1 ≡ E2

if Mod(E1) = Mod(E2). Finally, for a set of interpre-
tations M and a profile E we define #(M, E) = |{i :
M∩Mod(Ki) 6= ∅}|.

Characterizable Fragments of Propositional Logic. Let
B denote the set of all Boolean functions β : {0, 1}k →
{0, 1} that have the following two properties1:

• symmetry, i.e., for all permutations σ, β(x1, . . . , xk) =
β(xσ(1), . . . , xσ(k)) and

• 0- and 1-reproduction, i.e., for all x ∈ {0, 1},
β(x, . . . , x) = x.

Examples are the binary AND function denoted by ∧
or the ternary MAJORITY function, maj3(x, y, z) = 1
if at least two of the variables x, y, and z are set to
1. We extend Boolean functions to interpretations by ap-
plying coordinate-wise the original function (recall that
we consider interpretations also as bit-vectors). So, if
M1, . . . ,Mk ∈ {0, 1}n, then β(M1, . . . ,Mk) is defined by
(β(M1[1], . . . ,Mk[1]), . . . , β(M1[n], . . . ,Mk[n])), where
M [i] is the i-th coordinate of the interpretation M .

Definition 1. Given a set M ⊆ 2U of interpretations and
β ∈ B, we define Clβ(M), the closure of M under β, as
the smallest set of interpretations that containsM and that
is closed under β, i.e., if M1, . . . ,Mk ∈ Clβ(M), then also
β(M1, . . . ,Mk) ∈ Clβ(M).

Let us mention some easy properties of such a closure: (i)
monotonicity; (ii) if |M| = 1, then Clβ(M) = M; (iii)
Clβ(∅) = ∅.
Definition 2. Let β ∈ B. A set L′ ⊆ L of propositional
formulæ is a β-fragment (or characterizable fragment) if:

1these properties are also known as anonimity and unanimity.

98

1. for all ψ ∈ L′, Mod(ψ) = Clβ(Mod(ψ))

2. for allM⊆ 2U withM = Clβ(M) there exists a ψ ∈ L′
with Mod(ψ) =M

3. if φ, ψ ∈ L′ then φ ∧ ψ ∈ L′.
It is well-known that LHorn is an ∧-fragment and LKrom

is a maj3-fragment (see e.g. (Schaefer 1978)).

Logical Merging Operators. Belief merging aims at
combining several pieces of information coming from dif-
ferent sources. Merging operators we consider are functions
from the set of profiles and the set of propositional formulæ
to the set of bases, i.e., ∆: EL × L → KL. For E ∈ EL and
µ ∈ Lwe will write ∆µ(E) instead of ∆(E,µ); the formula
µ is referred to as the integrity constraint (IC) and restricts
the result of the merging.

As for belief revision some logical properties that one
could expect from any reasonable merging operator have
been stated. See (Konieczny and Pino Pérez 2002) for a de-
tailed discussion. Intuitively ∆µ(E) is the “closest” belief
base to the profile E satisfying the integrity constraint µ.
This is what the following postulates try to capture.

(IC0) ∆µ(E) |= µ
(IC1) If µ is consistent, then ∆µ(E) is consistent
(IC2) If

∧
E is consistent with µ,

then ∆µ(E) =
∧
E ∧ µ

(IC3) If E1 ≡ E2 and µ1 ≡ µ2,
then ∆µ1(E1) ≡ ∆µ2(E2)

(IC4) If K1 |= µ and K2 |= µ, then
∆µ({K1,K2}) ∧K1 is consistent if and only if
∆µ({K1,K2}) ∧K2 is consistent

(IC5) ∆µ(E1) ∧∆µ(E2) |= ∆µ(E1 t E2)
(IC6) If ∆µ(E1) ∧∆µ(E2) is consistent,

then ∆µ(E1 t E2) |= ∆µ(E1) ∧∆µ(E2)
(IC7) ∆µ1(E) ∧ µ2 |= ∆µ1∧µ2(E)
(IC8) If ∆µ1(E) ∧ µ2 is consistent,

then ∆µ1∧µ2(E) |= ∆µ1(E)

Similarly to belief revision, a representation theorem
(Konieczny and Pino Pérez 2002) shows that a merging op-
erator corresponds to a family of total preorders over inter-
pretations. More formally, forE ∈ EL, µ ∈ L and≤E a total
preorder over interpretations, a model-based operator is de-
fined by Mod(∆µ(E)) = min(Mod(µ),≤E). The model-
based merging operators select interpretations that are the
”closest” to the original belief bases.

Distance-based operators where the notion of close-
ness stems from the definition of a distance (or a
pseudo-distance2) between interpretations and from an
aggregation function have been proposed in (Konieczny
and Pino Pérez 2002; 2011). An aggregation func-
tion f is a function mapping for any positive integer
n each n-tuple of positive reals into a positive real
such that for any x1, . . . , xn, x, y ∈ R+, if x ≤
y, then f(x1, . . . , x, . . . , xn) ≤ f(x1, . . . , y, . . . , xn),
f(x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0 and

2Let ω, ω′ ∈ W , a pseudo-distance is such that d(ω, ω′) =
d(ω′, ω) and d(ω, ω′) = 0 if and only if ω = ω′.

f(x) = x. Let E = {K1, . . . ,Kn} ∈ EL, µ ∈ L, d be a dis-
tance and f be an aggregation function, we consider the fam-
ily of ∆d,f

µ merging operators defined by Mod(∆d,f
µ (E)) =

min(Mod(µ),≤E) where ≤E is a total preorder over the
set 2U of interpretations defined as follows:

• d(ω,Ki) = minω′|=Kid(ω, ω′),

• d(ω,E) = f(d(ω,K1), . . . , d(ω,Kn)), and

• ω ≤E ω′ if d(ω,E) ≤ d(ω′, E).

Definition 3. A counting distance between interpretations is
a function d : 2U ×2U → R+ defined for every pair of inter-
pretations (ω, ω′) by d(ω, ω′) = g(|(ω \ ω′) ∪ (ω′ \ ω)|),
where g : N → R+ is a nondecreasing function such that
g(n) = 0 if and only if n = 0. If g(n) = g(1) for every
n 6= 0, we call d a drastic distance and denote it via dD.
If g(n) = n for all n, we call d the Hamming distance and
denote it via dH . If for every interpretations w, w′ and w′′
we have d(w,w′) ≤ d(w,w′′)+d(w′′, w′), then we say that
the distance d satisfies the triangular inequality.

Observe that a counting distance is indeed a pseudo-
distance, and both, the Hamming distance and drastic dis-
tance satisfy the triangular inequality.

As aggregation functions, we consider here Σ, the sum
aggregation function, and the aggregation function GMax
defined as follows. Let E = {K1, . . . ,Kn} ∈ EL and ω,
ω′ be two interpretations. Let (dω1 , . . . , d

ω
n), where dωj =

dH(ω,Kj), be the vector of distances between ω and the
n belief bases in E. Let LEω be the vector obtained from
(dω1 , . . . , d

ω
n) by ranking it in decreasing order. The aggre-

gation function GMax is defined by GMax(dω1 , . . . , d
ω
n) =

LEω , with GMax(dω1 , . . . , d
ω
n) ≤ GMax(dω

′

1 , . . . , d
ω′

n) if
LEω ≤lex LEω′ , where ≤lex denotes the lexicographical or-
dering.

In this paper we focus on the ∆d,Σ and ∆d,GMax operators
where d is an arbitrary counting distance. These operators
are known to satisfy the postulates (IC0)–(IC8), as shown
in (Konieczny, Lang, and Marquis 2004) generalizing more
specific results from (Konieczny and Pino Pérez 2002; Lin
and Mendelzon 1998). Finally, we define certain concepts
for merging operators and fragments.

Definition 4. A basic (merging) operator for L′ ⊆ L
is any function ∆ : EL′ × L′ → KL′ satisfying
Mod(∆µ({{>}})) = Mod(µ) for each µ ∈ L′. We say that
∆ satisfies an (IC) postulate (ICi) (i ∈ {0, . . . , 8}) in L′
if the respective postulate holds when restricted to formulæ
from L′.

Refined Operators
Let us consider a simple example to illustrate the problem of
standard operators when applied within a fragment of propo-
sitional logic.

Example 1. Let U = {a, b}, E = {K1,K2} ∈ ELHorn

and µ ∈ LHorn such that Mod(K1) = {{a}, {a, b}},
Mod(K2) = {{b}, {a, b}}, and Mod(µ) = {∅, {a}, {b}}.
Consider the distance-based merging operators, ∆dH ,Σ and
∆dH ,GMax. The following table gives the distances between

99

the interpretations of µ and the belief bases, and the result
of the aggregation functions Σ and GMax.

2U K1 K2 Σ GMax
∅ 1 1 2 (1, 1)
{a} 0 1 1 (1, 0)
{b} 1 0 1 (1, 0)

Hence, we have Mod(∆dH ,Σ
µ (E)) =

Mod(∆dH ,GMax
µ (E)) = {{a}, {b}}. Thus, for instance, we

can give φ = (a ∨ b) ∧ (¬a ∨ ¬b) as a result of the merging
for both operators. However, there is no ψ ∈ LHorn with
Mod(ψ) = {{a}, {b}} (each ψ ∈ LHorn satisfies the
following closure property in terms of its set of models:
for every I, J ∈ Mod(ψ), also I ∩ J ∈ Mod(ψ))). Thus,
the result of the operator has to be “refined”, such that
it fits into the Horn fragment. On the other hand, it holds
that µ ∈ LKrom , E ∈ ELKrom

and also the result φ is in
Krom. This shows that different fragments behave differently
on certain instances. Nonetheless, we aim for a uniform
approach for refining merging operators.

We are interested in the following: Given a known merg-
ing operator ∆ and a fragmentL′ of propositional logic, how
can we adapt ∆ to a new merging operator ∆? such that, for
each E ∈ EL′ and µ ∈ L′, ∆?

µ(E) ∈ KL′? Let us define a
few natural desiderata for ∆? inspired by the work on belief
revision. See (Creignou et al. 2014) for a discussion.
Definition 5. LetL′ be a fragment of classical logic and ∆ a
merging operator. We call an operator ∆? : EL′×L′ → KL′
a ∆-refinement for L′ if it satisfies the following properties,
for each E,E1, E2 ∈ EL′ and µ, µ1, µ2 ∈ L′.

1. consistency: ∆µ(E) is consistent if and only if ∆?
µ(E) is

consistent
2. equivalence: if E1 ≡ E2 and ∆µ1(E1) ≡ ∆µ2(E2) then

∆?
µ1

(E1) ≡ ∆?
µ2

(E2)
3. containment: TL′(∆µ(E)) ⊆ TL′(∆?

µ(E))
4. invariance: If ∆µ(E) ∈ K〈L′〉, then TL′(∆?

µ(E)) ⊆
TL′(∆µ(E)), where 〈L′〉 denotes the set of formulæ in
L for which there exists an equivalent formula in L′.
Next we introduce examples of refinements that fit Defi-

nition 5.
Definition 6. Let ∆ be a merging operator and β ∈ B. We
define the Clβ-based refined operator ∆Clβ as:

Mod(∆Clβ
µ (E)) = Clβ(M).

whereM = Mod(∆µ(E)).
We define the Min-based refined operator ∆Min as:

Mod(∆Min
µ (E)) =

{
M if Clβ(M) =M,

{Min(M)} otherwise,
where Min is a function that selects the minimum from a set
of interpretations with respect to a given and fixed order.

We define the Min/Clβ-based refined operator ∆Min/Clβ

as:

∆Min/Clβ
µ (E) =

{
∆Min
µ (E) if #(M, E) = 0

∆Clβ
µ (E) otherwise.

The intuition behind the last refinement is to ensure a cer-
tain form of fairness, i.e. if no model is selected from the
profile, this carries over to the refinement.
Proposition 1. For any merging operator ∆ : EL × L →
KL, β ∈ B and L′ ⊆ L a β-fragment, the operators ∆Clβ ,
∆Min and ∆Min/Clβ

µ are ∆-refinements for L′.

Proof. Let µ ∈ L′, E ∈ EL′ and β ∈ B. We show that each
operator yields a base from KL′ and moreover satisfies con-
sistency, equivalence, containment and invariance, cf. Defi-
nition 5.

∆Clβ : ∆Clβ
µ (E) ∈ L′ since by assumption L′ is

a β-fragment and thus closed under β. Consistency
holds since Mod(∆Clβ

µ (E)) = Clβ(Mod(∆µ(E)))
and Clβ(M) = ∅ iff M = ∅. Equivalence
holds since Mod(∆µ1(E1)) = Mod(∆µ2(E2)) implies
Clβ(Mod(∆µ1(E1))) = Clβ(Mod(∆µ2(E2))). Con-
tainment: let φ ∈ TL′(∆µ(E)), i.e. φ ∈ L′ and
Mod(∆µ(E)) ⊆ Mod(φ). By monotonicity of Clβ ,
then Clβ(Mod(∆µ(E))) ⊆ Clβ(Mod(φ)). Since φ ∈
L′ then Clβ(Mod(∆µ(E))) ⊆ Mod(φ) therefore φ ∈
TL′(∆

Clβ
µ (E)). Invariance: let φ ∈ TL′(∆

Clβ
µ (E)), i.e.

φ ∈ L′ and Clβ(Mod(∆µ(E))) ⊆ Mod(φ). By hypoth-
esis Clβ(Mod(∆µ(E))) ⊇ Mod(∆µ(E)), therefore φ ∈
TL′(∆µ(E)).

∆Min: if Mod(∆Min
µ (E))) = Clβ(Mod(∆µ(E))) (i.e.

∆µ(E) ∈ K〈L′〉) then ∆Min satisfies all the required
properties as shown above; otherwise consistency, equiv-
alence and containment hold since Mod(∆Min

µ (E))) =
{Min(Mod(∆µ(E)))}. Moreover, by definition each frag-
ment contains a formula φ with Mod(φ) = {ω} where ω is
an arbitrary interpretation. ∆µ(E) ∈ L′ thus also holds in
this case.

∆Min/Clβ : satisfies the required properties since ∆Clβ

and ∆Min satisfy them.

Example 2. Consider the profile E, the integrity con-
straint µ given in Example 1, the distance-based merg-
ing operator ∆dH ,Σ, and let β be the binary AND func-
tion. Let us have the following order over the set of in-
terpretations on {a, b}: ∅ < {a} < {b} < {a, b}.
The result of merging is Mod(∆dH ,Σ

µ (E)) = {{a}, {b}}.
The Min-based ∆dH ,Σ-refined operator, denoted by ∆Min,
is such that Mod(∆Min

µ (E)) = {{a}}. The Clβ-based
∆dH ,Σ-refined operator, denoted by ∆Clβ , is such that
Mod(∆Clβ

µ (E)) = {{a}, {b}, ∅}. The same result is
achieved by the Min/Clβ-based ∆dH ,Σ-refined operator
since #(Mod(∆dH ,Σ

µ (E)), E) = 2.
In what follows we show how to capture not only a partic-

ular refined operator but characterize the class of all refined
operators.
Definition 7. Given β ∈ B, we define a β-mapping, fβ ,
as an application which to every set of models M and ev-
ery multi-set of sets of models X associates a set of models
fβ(M,X) such that:

1. Clβ(fβ(M,X)) = fβ(M,X) (fβ(M,X) is closed un-
der β)

100

2. fβ(M,X) ⊆ Clβ(M)
3. ifM = Clβ(M), then fβ(M,X) =M
4. IfM 6= ∅, then fβ(M,X) 6= ∅.

The concept of mappings allows us to define a family of
refined operators for fragments of classical logic that cap-
tures the examples given before.

Definition 8. Let ∆ : EL × L → KL be a merging oper-
ator and L′ ⊆ L be a β-fragment of classical logic with
β ∈ B. For a β-mapping fβ we denote with ∆fβ : EL′ ×
L′ → KL′ the operator for L′ defined as Mod(∆fβ

µ (E)) =
fβ(Mod(∆µ(E)),Mod(E)). The class [∆,L′] contains all
operators ∆fβ where fβ is a β-mapping and β ∈ B such
that L′ is a β-fragment.

The next proposition is central in reflecting that the above
class captures all refined operators we had in mind, cf. Def-
inition 5.

Proposition 2. Let ∆ : EL × L → KL be a basic merging
operator andL′ ⊆ L a characterizable fragment of classical
logic. Then, [∆,L′] is the set of all ∆-refinements for L′.

Proof. Let L′ be a β-fragment for some β ∈ B. Let
∆? ∈ [∆,L′]. We show that ∆? is a ∆-refinement for
L′. Let µ ∈ L′ and E ∈ EL′ . Since ∆? ∈ [∆,L′]
there exists a β-mapping fβ , such that Mod(∆?

µ(E)) =
fβ(Mod(∆µ(E)),Mod(E)). By Property 1 in Definition 7
∆?
µ(E) is indeed in KL′ . Consistency: If Mod(∆µ(E)) 6=
∅ then Mod(∆?

µ(E)) 6= ∅ by Property 4 in Defini-
tion 7. Otherwise, by Property 2 in Definition 7, we
get Mod(∆?

µ(E)) ⊆ Clβ(Mod(∆µ(E))) = Clβ(∅) =
∅. Equivalence for ∆? is clear by definition and since
fβ is defined on sets of models. Containment: let φ ∈
TL′(∆µ(E)), i.e., φ ∈ L′ and Mod(∆µ(E)) ⊆
Mod(φ). We have Clβ(Mod(∆µ(E))) ⊆ Clβ(Mod(φ))
by monotonicity of Clβ . By Property 2 of Definition 7,
Mod(∆?

µ(E)) ⊆ Clβ(Mod(∆µ(E))). Since φ ∈ L′ we
have Clβ(Mod(φ)) = Mod(φ). Thus, Mod(∆?

µ(E)) ⊆
Mod(φ), i.e., φ ∈ TL′(∆?

µ(E)). Invariance: In case
∆µ(E) ∈ K〈L′〉, we have Clβ(Mod(∆µ(E))) =
Mod(∆µ(E)) since L′ is a β-fragment. By Prop-
erty 3 in Definition 7, we have Mod(∆?

µ(E)) =
fβ(Mod(∆µ(E)),Mod(E)) = Mod(∆µ(E)). Thus
TL′(∆?

µ(E)) ⊆ TL′(∆µ(E)) as required.
Let ∆? be a ∆-refinement for L′. We show that ∆? ∈

[∆,L′]. Let f be defined as follows for any set M of in-
terpretations and X a multi-set of sets of interpretations:
f(∅,X) = ∅. For M 6= ∅, if Clβ(M) = M then
f(M,X) = M, otherwise if there exists a pair (E,µ) ∈
(EL′ ,L′) such thatMod(E) = X and Mod(∆µ(E)) =M,
then we define f(M,X) = Mod(∆?

µ(E)). If there is no
such (E,µ) then we arbitrarily define f(M,X) as the set
consisting of a single model, say the minimal model of
M in the lexicographic order. Note that since ∆? is a ∆-
refinement for L′, it satisfies the property of equivalence,
thus the actual choice of the pair (E,µ) is not relevant, and
hence f is well-defined. Thus the refined operator ∆? be-
haves like the operator ∆f .

We show that such a mapping f is a β-mapping. We show
that the four properties in Definition 7 hold for f . Property 1
is ensured since for every pair (M,X), f(M,X) is closed
under β. Indeed, either f(M,X) = M ifM is closed un-
der β, or f(M,X) = Mod(∆?

µ(E)) and since ∆?
µ(E) ∈

KL′ its set of models is closed under β, or f(M,X) con-
sists of a single interpretation, and thus is also closed un-
der β. Let us show Property 2, i.e., f(M,X) ⊆ Clβ(M)
for any pair (M,X). It is obvious when M = ∅ (then
f(M,X) = ∅), as well as when f(M,X) is a singleton
and when M is closed and thus f(M,X) = M. Other-
wise f(M,X) = Mod(∆?

µ(E)) and since ∆? satisfies con-
tainment Mod(∆?

µ(E)) ⊆ Clβ(Mod(∆µ(E)). Therefore in
any case we have f(M,X) ⊆ Clβ(M). Property 3 follows
trivially from the definition of f(M,X) whenM is closed
under β. Property 4 is ensured by consistency of ∆?.

Note that the β-mapping which is used in the characteriza-
tion of refined merging operators differs from the one used in
the context of revision (see (Creignou et al. 2014)). Indeed,
our mapping has two arguments (and not only one as in the
case of revision). The additional multi-set of sets of mod-
els representing the profile is required to capture approaches
like the Min/Clβ-based refined operator, which are profile
dependent.

IC Postulates
The aim of this section is to study whether refinements of
merging operators preserve the IC postulates. We first show
that in case the initial operator satisfies the most basic pos-
tulates ((IC0)–(IC3)), then so does any of its refinements.
It turns out that this result can not be extended to the re-
maining postulates. For (IC4) we characterize a subclass
of refinements for which this postulate is preserved. For the
four remaining postulates we study two representative kinds
of distance-based merging operators. We show that postu-
lates (IC5) and (IC7) are violated for all of our proposed
examples of refined operators with the exception of the Min-
based refinement. For (IC6) and (IC8) the situation is even
worse in the sense that no refinement of our proposed exam-
ples of merging operators can satisfy them neither for LHorn

nor for LKrom . Table 1 gives an overview of the results
of this section. However, note that some of the forthcom-
ing results are more general and hold for arbitrary fragments
and/or operators.
Proposition 3. Let ∆ be a merging operator satisfying pos-
tulates (IC0)–(IC3), and L′ ⊆ L a characterizable frag-
ment. Then each ∆-refinement for L′ satisfies (IC0)–(IC3)
in L′ as well.

Proof. Since L′ is characterizable there exists a β ∈ B,
such that L′ is a β-fragment. Let ∆? be a ∆-refinement
for L′. According to Proposition 2 we can assume that
∆? ∈ [∆,L′] is an operator of form ∆fβ where fβ is a suit-
able β-mapping. In what follows, note that we can restrict
ourselves to E ∈ EL′ and to µ ∈ L′ since we have to show
that ∆fβ satisfies (IC0)–(IC3) in L′.

(IC0): Since ∆ satisfies (IC0), Mod(∆µ(E)) ⊆
Mod(µ). Thus, Clβ(Mod(∆µ(E))) ⊆ Clβ(Mod(µ)) by

101

(∆dH ,Σ)Clβ (∆dH ,GMax)Clβ (∆dD,x)Clβ (∆d,x)Min (∆d,x)Min/Clβ

IC4 + - + - +
IC5, IC7 - - - + -
IC6, IC8 - - - - -

Table 1: Overview of results for (IC4)–(IC8) for refinements in the Horn and Krom fragment (x ∈ {Σ,GMax}, d ∈
{dH , dD}).

monotonicity of the closure. Hence, Clβ(Mod(∆µ(E))) ⊆
Mod(µ), since µ ∈ L′ and L′ is a β-fragment.
According to Property 2 in Definition 7 we have
fβ(Mod(∆µ(E)),Mod(E)) ⊆ Clβ(Mod(∆µ(E))), and
therefore by definition of ∆?

µ, Mod(∆?
µ(E)) ⊆ Mod(µ),

which proves that ∆?
µ(E) |= µ.

(IC1): Suppose µ satisfiable. Since ∆ satisfies (IC1),
∆µ(E) is satisfiable. Since ∆fβ is a ∆-refinement (Proposi-
tion 2), ∆fβ

µ (E) is also satisfiable by the property of consis-
tency (see Definition 5).

(IC2): Suppose
∧
E is consistent with µ. Since

∆ satisfies (IC2), ∆µ(E) =
∧
E ∧ µ. We have

Mod(∆?
µ(E)) = fβ(Mod(∆µ(E)),Mod(E)) =

fβ(Mod(
∧
E ∧ µ),Mod(E)). Since

∧
E ∧ µ ∈ L′

(observe that it is here necessary that the profiles are
in the fragment) by Property 3 of Definition 7 we have
Mod(∆?

µ(E)) =
∧
E ∧ µ.

(IC3): Let E1, E2 ∈ EL′ and µ1, µ2 ∈ L′ with E1 ≡
E2 and µ1 ≡ µ2. Since ∆ satisfies (IC3), ∆µ1(E1) ≡
∆µ2(E2). By the property of equivalence in Definition 5 we
have ∆?

µ1
(E1) ≡ ∆?

µ2
(E2).

A natural question is whether refined operators for char-
acterizable fragments in their full generality preserve other
postulates, and if not whether one can nevertheless find some
refined operators that satisfy some of the remaining postu-
lates.

First we show that one can not expect to extend Propo-
sition 3 to (IC4). Indeed, in the two following propositions
we exhibit merging operators which satisfy all postulates,
whereas some of their refinements violate (IC4) in some
fragments.

Proposition 4. Let ∆ be a merging operator with ∆ ∈
{∆d,Σ,∆d,GMax}, where d is an arbitrary counting dis-
tance. Then the Min-based refined operator ∆Min violates
postulate (IC4) in LHorn and LKrom . In case d is a drastic
distance, ∆Min violates postulate (IC4) in every character-
izable fragment L′ ⊂ L.

Proof. First consider d is a drastic distance. We show that
∆Min violates postulate (IC4) in every characterizable frag-
ment L′ ⊂ L. Since L′ is a characterizable fragment there
exists β ∈ B such that L′ is a β-fragment. Consider a
set of models M that is not closed under β and that is
cardinality-minimum with this property. Such a set exists
since L′ is a proper subset of L. Observe that necessar-
ily |M| > 1. Let m ∈ M, consider the knowledge bases
K1 and K2 such that Mod(K1) = {m} and Mod(K2) =
M \ {m}. By the choice of M both K1 and K2 are in

KL′ , whereas K1 ∪ K2 is not. Let µ = >. Since the
merging operator uses a drastic distance it is easy to see
that ∆µ({K1,K2}) = Mod(K1) ∪ Mod(K2). Therefore,
Mod(∆Min

µ ({K1,K2})) = Min(Mod(K1) ∪ Mod(K2)),
and this single element is either a model of K1 or a model
of K2 (but not of both since they do not share any model).
This shows that ∆Min violates (IC4).

Otherwise, d is defined such that there exists an x > 0,
such that g(x) < g(x+ 1). We first show that then ∆Min vi-
olates postulate (IC4) in LHorn . Let A be a set of atoms
such that |A| = x − 1 and A ∩ {a, b} = ∅. Moreover,
consider E = {K1,K2} with Mod(K1) = {∅, {a}, {b}},
Mod(K2) = {A ∪ {a, b}}, and let µ such that Mod(µ) =
{∅, {a}, {b}, A ∪ {a, b}}. Since g(x) < g(x + 1), we have
M = Mod(∆µ(E)) = {{a}, {b}, A∪{a, b}}, which is not
closed under intersection. Hence, Mod(∆Min

µ (E)) contains
exactly one of the three models depending on the ordering.
Therefore, #(Mod(∆Min

µ (E)), E) = 1, and thus violating
postulate (IC4).

For LKrom , let x > 0 be the smallest index such that
g(x) < g(x + 1) in the definition of distance d. Note
that for any y with 0 < y < x, g(y) = g(x) thus
holds. Let A,A′ be two disjoint set of atoms with cardi-
nality x − 1 and A ∩ {a, b, c, d} = A′ ∩ {a, b, c, d} =
∅. Let us consider E = {K1,K2} with Mod(K1) =
{∅, {a}, {b}, {c}, {d}, {a, b}, {c, d}} (in case x > 1) resp.
Mod(K1) = {∅, {a}, {b}, {c}, {d}} (in case x = 1),
Mod(K2) = {A ∪ {a, b}, A′ ∪ {c, d}}, and µ such
that Mod(µ) = {∅, {a}, {b}, {c}, {d}, {a, b}, {c, d}, A ∪
{a, b}, A′ ∪ {c, d}}. The following table represents the case
x > 1.

K1 K2 E
∅ 0 g(x+ 1) (g(x+ 1), 0)
{a} 0 g(x) (g(x), 0)
{b} 0 g(x) (g(x), 0)
{c} 0 g(x) (g(x), 0)
{d} 0 g(x) (g(x), 0)
{a, b} 0 g(x− 1) (g(x− 1), 0)
{c, d} 0 g(x− 1) (g(x− 1), 0)
A ∪ {a, b} g(x− 1) 0 (g(x− 1), 0)
A′ ∪ {c, d} g(x− 1) 0 (g(x− 1), 0)

For the case x > 1, observe g(x − 1) = g(x) <
g(x + 1), and we have M = Mod(∆µ(E)) =
{{a}, {b}, {c}, {d}, {a, b}, {c, d}, A ∪ {a, b}, A′ ∪ {c, d}}.
For the case x = 1, note that A and A′ are empty,
thus the two last rows of the table coincide with the two
rows before. Recall that K1 is defined differently for this
case. Hence, the distances of {a, b} and {c, d} to K1 are
g(x) = g(1). Thus, we have M = Mod(∆µ(E)) =

102

{{a}, {b}, {c}, {d}, {a, b}, {c, d}}. Neither of the M is
closed under ternary majority. Hence, Mod(∆Min

µ (E)) con-
tains exactly one of the six resp. eight models depending on
the ordering. Therefore, #(Mod(∆Min

µ (E)), E) = 1, thus
violating postulate (IC4).

Proposition 5. Let ∆ = ∆d,GMax be a merging operator
where d is an arbitrary non-drastic counting distance. Then
the closure-based refined operator ∆Clβ violates (IC4) in
LHorn and LKrom .

Proof. Since d is not drastic, there exists an x > 0 such
that g(x) < g(x + 1). In what follows, we select the
smallest such x. We start with the case LHorn . Let A be a
set of atoms of cardinality x − 1 not containing a, b. Let
us consider E = {K1,K2} with Mod(K1) = {∅} and
Mod(K2) = {A ∪ {a, b}}, and µ such that Mod(µ) =
{∅, {a}, {b}, A ∪ {a, b}}.

K1 K2 E
∅ 0 g(x+ 1) (g(x+ 1), 0)
{a} g(1) g(x) (g(x), g(1))
{b} g(1) g(x) (g(x), g(1))
A ∪ {a, b} g(x+ 1) 0 (g(x+ 1), 0)

Since g(x) < g(x + 1), we haveM = Mod(∆µ(E)) =
{{a}, {b}}, which is not closed either under intersec-
tion. Hence, Mod(∆Cl∧

µ (E)) = {{a}, {b}, ∅}. Therefore,
#(Mod(∆Cl∧

µ (E)), E) = 1, thus violating (IC4).
For the case LKrom , let us consider two disjoint sets

A,A′ of atoms not containing a, b, c, d of cardinality x− 1,
the profile E = {K1,K2} with Mod(K1) = {∅} and
Mod(K2) = {A∪{a, b}, A′∪{c, d}}, and constraing µ such
that Mod(µ) = {∅, {a}, {b}, {c}, {d}, {a, b}, {c, d}, A ∪
{a, b}, A′ ∪ {c, d}}.

K1 K2 E
∅ 0 g(x+ 1) (g(x+ 1), g(0))
{a} g(1) g(x) (g(x), g(1))
{b} g(1) g(x) (g(x), g(1))
{c} g(1) g(x) (g(x), g(1))
{d} g(1) g(x) (g(x), g(1))
{a, b} g(2) g(x− 1) (g(x− 1), g(2))
{c, d} g(2) g(x− 1) (g(x− 1), g(2))
A ∪ {a, b} g(x+ 1) g(0) (g(x+ 1), g(0))
A′ ∪ {c, d} g(x+ 1) g(0) (g(x+ 1), g(0))

In case x = 1 note that A and A′ are empty and
g(2) > g(x) > g(x − 1) = g(0) (thus the last
four lines collapse into two lines). We have M =
Mod(∆µ(E)) = {{a}, {b}, {c}, {d}}, which is not closed
under ternary majority. Hence, Mod(∆Clmaj3

µ (E)) =
{{a}, {b}, {c}, {d}, ∅}. In case x > 1, we have g(x +
1) > g(x) = g(x − 1) = g(2) = g(1). Thus, M =
Mod(∆µ(E)) = {{a}, {b}, {c}, {d}, {a, b}, {c, d}}, which
is not closed under ternary majority either and one has to add
∅. Therefore, in both cases #(Mod(∆Clmaj3

µ (E)), E) = 1,
thus violating (IC4).

In order to identify a class of refinements which sat-
isfy (IC4), we now introduce the notion of fairness for ∆-
refinements.

Definition 9. Let L′ be a fragment of classical logic. A ∆-
refinement for L′, ∆?, is fair if it satisfies the following prop-
erty for each E ∈ EL′ , µ ∈ L′: If #(∆µ(E), E) 6= 1 then
#(∆?

µ(E), E) 6= 1.

Proposition 6. Let L′ be a characterizable fragment. (1)
TheClβ-based refinement of both ∆dD,Σ and ∆dD,GMax for
L′ is fair. (2) The Min/Clβ-based refinement of any merging
operator for L′ is fair.

Proof. Let L′ be a β-fragment. Let E ∈ EL′ such that E =
{K1, . . .Kn}, µ ∈ L′ and let ∆ be ∆dD,Σ or ∆dD,GMax for
case (1), resp. let ∆ be an arbitray merging operator in case
of (2).

∆Clβ : If #(∆µ(E), E) > 1 then, #(Clβ(∆µ(E)), E) ≥
#(∆µ(E), E) > 1. Since the drastic distance is used ob-
serve that for any model m of µ we have d(m,E) =
n − |{i | m ∈ Ki}|. Thus, if #(∆µ(E), E) =
0, then Mod(∆µ(E)) ∩

⋃
i Mod(Ki) = ∅, and thus

Mod(∆µ(E)) = Mod(µ). In this case Mod(∆Clβ
µ (E)) =

Mod(∆µ(E)) and therefore #(∆Clβ
µ (E), E) = 0 as well.

∆Min/Clβ : If #(∆µ(E), E) = 0 then
Mod(∆µ(E)) ∩

⋃
i Mod(Ki) = ∅. By Defi-

nition 6 ∆Min/Clβ
µ (E) = ∆Min

µ (E), therefore

#(∆Min/Clβ
µ (E), E) = 0 as well. If #(∆µ(E), E) > 1

then by Definition 6, Mod(∆Min/Clβ
µ) = Mod(∆Clβ

µ (E)),
thus #(∆Min/Clβ

µ (E), E) ≥ #(∆µ(E), E) > 1.

Fairness turns out to be a sufficient property to preserve
the postulate (IC4) as stated in the following proposition.

Proposition 7. Let ∆ be a merging operator satisfying pos-
tulate (IC4), and L′ ⊆ L a characterizable fragment. Then
every fair ∆-refinement for L′ satisfies (IC4) as well.

Proof. Consider ∆ a merging operator satisfying postulate
(IC4). Let ∆? be a fair ∆-refinement for L′. If ∆? does
not satisfy (IC4), then there exist E = {K1,K2} with
K1,K2 ∈ L′ and µ ∈ L′, with K1 |= µ and K2 |= µ such
that Mod(∆?

µ(E)) ∩ Mod(K1) 6= ∅ and Mod(∆?
µ(E)) ∩

Mod(K2) = ∅, i.e., such that #(∆?
µ(E), E) = 1. Since ∆

satisfies postulate (IC4) we have #(∆µ(E), E) 6= 1, thus
contradicting the fairness property in Definition 9.

With the above result at hand, we can conclude that the
Clβ-based refinement of both ∆dD,Σ and ∆dD,GMax for L′
as well as the Min/Clβ-based refinement of any merging
operator satisfies (IC4).

Remark 1. Observe that the distance which is used in
distance-based operators matters with respect to the preser-
vation of (IC4), as well as for fairness. Indeed, while the
Clβ-refinement of ∆dD,GMax is fair, and therefore satisfies
(IC4), the Clβ-refinement of ∆d,GMax where d is an arbi-
trary non-drastic counting distance violates postulate (IC4)
in LHorn and LKrom , and therefore is not fair.

For all refinements considered so far we know whether
(IC4) is preserved or not, with one single exception: the
Clβ-refinement of ∆d,Σ where d is an arbitrary non-drastic

103

counting distance. In this case we get a partial positive re-
sult.
Proposition 8. Let ∆ be a merging operator with ∆ =
∆d,Σ, where d is an arbitrary counting distance that satisfies
the triangular inequality. Then the closure-based refined op-
erator ∆Clβ satisfies postulate (IC4) in any characterizable
fragment.

Proof. Let L′ be a β-fragment. Let E = {K1,K2} with
K1,K2 ∈ L′ and µ ∈ L′, with K1 |= µ and K2 |= µ. The
merging operator ∆ satisfies (IC4) therefore ∆µ(E) ∧ K1

is consistent if and only if ∆µ(E) ∧K2.
If both ∆µ(E) ∧ K1 and ∆µ(E) ∧ K2 are consistent,

then so are a fortiori ∆Clβ
µ (E) ∧ K1 and ∆Clβ

µ (E) ∧ K2.
Therefore a violation of (IC4) can only occur when both
∆µ(E) ∧ K1 and ∆µ(E) ∧ K2 are inconsistent. We prove
that this never occurs. Suppose that ∆µ(E) ∧ K1 is in-
consistent, this means that there exists m 6∈ K1 such that
min(Mod(µ),≤E) = d(m,E) and that for all m1 ∈
K1, d(m,E) < d(m1, E), i.e., d(m,K1) + d(m,K2) <
d(m1,K1)+d(m1,K2) since Σ is the aggregation function.
Choose now m1 ∈ K1 such that d(m,K1) = d(m,m1)
and m2 ∈ K2 such that d(m,K2) = d(m,m2). We
have d(m,K1) + d(m,K2) = d(m,m1) + d(m,m2) <
d(m1,K1) + d(m1,K2) = d(m1,K2) since m1 ∈ K1

and hence d(m1,K1) = 0. Since d satisfies the triangular
inequality we have d(m1,m2) ≤ d(m1,m) + d(m,m2).
But this contradicts d(m,m1) + d(m,m2) < d(m1,K2) ≤
d(m1,m2), thus ∆µ(E) ∧K1 can not be inconsistent.

Remark 2. The above proposition together with Proposi-
tion 5 shows that the aggregation function that is used in
distance-based operators matters with respect to the preser-
vation of the postulate (IC4).

Interestingly Proposition 8 (recall that the Hamming dis-
tance satisfies the triangular inequality) together with the
following proposition show that fairness, which is a suffi-
cient condition for preserving (IC4) is not a necessary one.
Proposition 9. The Clβ-refinement of ∆dH ,Σ is not fair in
LHorn and in LKrom .

Proof. We give the proof for LHorn . One can verify that the
same example works for LKrom as well.

Let us consider E = {K1,K2} and µ in LHorn

with Mod(K1) = {{a}, {a, b}, {a, d}, {a, f}},
Mod(K2) = {{a, b, c, d, e, f, g}} and Mod(µ) =
{{a}, {a, b, c}, {a, d, e}, {a, f, g}}. We have
Mod(∆dH ,Σ

µ (E)) = {{a, b, c}, {a, d, e}, {a, f, g}},
and Mod(∆Cl∧

µ (E)) = {{a}, {a, b, c}, {a, d, e}, {a, f, g}}.
Therefore, #(Mod(∆dH ,Σ

µ (E)), E) = 0, whereas
#(Mod(∆Cl∧

µ (E)), E) = 1, thus proving that fairness is
not satisfied.

It turns out that our refined operators have a similar be-
havior with respect to postulates (IC5) & (IC7) as well as
(IC6) & (IC8). Therefore we will deal with the remaining
postulates in pairs. In fact the Min-based refinement satis-
fies (IC5) and (IC7), whereas the refined operators ∆Clβ

and ∆Min/Clβ violate these two postulates.

Proposition 10. Let ∆ be a merging operator satisfying
postulates (IC5) and (IC6) (resp. (IC7) and (IC8)), and
L′ ⊆ L a characterizable fragment. Then the refined opera-
tor ∆Min for L′ satisfies (IC5) (resp. (IC7)) in L′ as well.

Proof. Since L′ is characterizable there exists a β ∈ B, such
that L′ is a β-fragment.

(IC5): If ∆Min
µ (E1) ∧ ∆Min

µ (E2) is inconsistent, then
(IC5) is satisfied. Assume that ∆Min

µ (E1) ∧ ∆Min
µ (E2)

is consistent. Then, by definition of ∆Min we know that
∆µ(E1) ∧ ∆µ(E2) is consistent as well. From (IC5) and
(IC6) it follows that Mod(∆µ(E1)) ∩ Mod(∆µ(E2)) =
Mod(∆µ(E1tE2)). We distinguish two cases. First assume
that both Mod(∆µ(E1)) and Mod(∆µ(E2)) are closed un-
der β. By Definition 2 we know that Mod(∆µ(E1)) ∩
Mod(∆µ(E2)) = Mod(∆µ(E1 t E2)) is closed under
β as well. Hence, (IC5) is satisfied. For the second case
assume that not both Mod(∆µ(E1)) and Mod(∆µ(E2))
are closed under β. From the definition of ∆Min it fol-
lows that Mod(∆Min

µ (E1)) ∩ Mod(∆Min
µ (E2)) consists of

a single interpretation, say I with I ∈ Mod(∆µ(E1)) ∩
Mod(∆µ(E2)). If Mod(∆µ(E1 t E2)) is closed under
β we have I ∈ Mod(∆Min

µ (E1 t E2)) and (IC5) is
satisfied. If Mod(∆µ(E1 t E2)) is not closed under β,
then Mod(∆Min

µ (E1 t E2)) consists of a single interpre-
tation, say J ∈ Mod(∆µ(E1)) ∩ Mod(∆µ(E2)). From
Mod(∆Min

µ (E1))∩ModMin(∆µ(E2)) = {I} it follows that
Min({I, J}) = I and from Mod(∆Min

µ (E1 t E2)) = {J}
it follows that Min({I, J}) = J . Hence, I = J and (IC5)
is satisfied.

(IC7): If ∆Min
µ1

(E) ∧ µ2 is inconsistent, then (IC7)
is satisfied. Assume that ∆Min

µ1
(E) ∧ µ2 is consistent.

Then, by definition of ∆Min we know that ∆µ1(E) ∧ µ2

is consistent as well. From (IC7) and (IC8) it follows
that Mod(∆µ1(E)) ∩Mod(µ2) = Mod(∆µ1∧µ2(E)). We
distinguish two cases. First assume that Mod(∆µ1(E))
is closed under β. By Definition 2 we know that
Mod(∆µ1(E)) ∩Mod(µ2) = Mod(∆µ1∧µ2(E)) is closed
under β as well. Hence, (IC7) is satisfied. For the second
case assume that Mod(∆µ1(E)) is not closed under β. From
the definition of ∆Min it follows that Mod(∆Min

µ1
(E)) ∩

Mod(µ2) consists of a single interpretation, say I with
I ∈ Mod(∆µ1(E)) ∩ Mod(µ2). If Mod(∆µ1∧µ2(E)) is
closed under β we have I ∈ Mod(∆Min

µ1∧µ2
(E)) and (IC7)

is satisfied. If Mod(∆µ1∧µ2(E)) is not closed under β, then
Mod(∆Min

µ1∧µ2
(E)) consists of a single interpretation, say

J ∈ Mod(∆µ1(E)) ∩ Mod(µ2). From Mod(∆Min
µ1

(E)) ∩
Mod(µ2) = {I} it follows that Min({I, J}) = I and from
Mod(∆Min

µ1∧µ2
(E)) = {J} it follows that Min({I, J}) = J .

Hence, I = J and (IC7) is satisfied.

Proposition 11. Let ∆ be a merging operator with ∆ ∈
{∆d,Σ,∆d,GMax}, where d is an arbitrary counting dis-
tance. Then the refined operators ∆Clβ and ∆Min/Clβ vi-
olate postulates (IC5) and (IC7) in LHorn and in LKrom .

104

Proof. We give the proof for ∆Clβ with ∆ = ∆d,Σ where
d is associated with a function g. The given examples also
apply to GMax and for the refinement ∆Min/Clβ .

(IC5): Let β ∈ {∧,maj3}. Consider E1 =
{K1,K2,K3}, E2 = {K4} and µ with Mod(K1) =
{{a}, {a, b}, {a, c}}, Mod(K2) = {{b}, {a, b}, {b, c}},
Mod(K3) = {{c}, {a, c}, {b, c}}, Mod(K4) = {∅, {b}},
and Mod(µ) = {∅, {a}, {b}, {c}}.

K1 K2 K3 K4 E1 E1 t E2

∅ g(1) g(1) g(1) 0 3g(1) 3g(1)
{a} 0 g(1) g(1) g(1) 2g(1) 3g(1)
{b} g(1) 0 g(1) 0 2g(1) 2g(1)
{c} g(1) g(1) 0 g(1) 2g(1) 3g(1)

Since g(1) > 0 by definition of a counting dis-
tance, we have Mod(∆Clβ

µ (E1)) = {∅, {a}, {b}, {c}},
Mod(∆Clβ

µ (E2)) = {∅, {b}}, and Mod(∆Clβ
µ (E1tE2)) =

{{b}}, violating (IC5).
(IC7): For LHorn , consider E = {K1,K2,K3} with

Mod(K1) = {{a}}, Mod(K2) = {{b}}, Mod(K3) =
{{a, b}}, and assume Mod(µ1) = {∅, {a}, {b}} and
Mod(µ2) = {∅, {a}}.

K1 K2 K3 E
∅ g(1) g(1) g(2) 2g(1) + g(2)
{a} 0 g(2) g(1) g(1) + g(2)
{b} g(2) 0 g(1) g(1) + g(2)

We have Mod(∆µ1(E)) = {{a}, {b}}, thus
Mod(∆Cl∧

µ1
(E)) = {∅, {a}, {b}}. Therefore,

Mod(∆Cl∧
µ1

(E) ∧ µ2) = {∅, {a}}, whereas
Mod(∆Cl∧

µ1∧µ2
(E)) = {{a}}, violating (IC7).

For LKrom let E = {K1,K2,K3,K4,K5}, µ1 and µ2

with Mod(K1) = {{a}}, Mod(K2) = {{b}}, Mod(K3) =
{{c}}, Mod(K4) = {{a, b}, {a, c}}, Mod(K5) =
{{a, b}, {b, c}}, Mod(µ1) = {∅, {a}, {b}, {c}}, and
Mod(µ2) = {∅, {a}}.

K1 K2 K3 K4 K5 E
∅ g(1) g(1) g(1) g(2) g(2) 2g(2) + 3g(1)
{a} 0 g(2) g(2) g(1) g(1) 2g(2) + 2g(1)
{b} g(2) 0 g(2) g(1) g(1) 2g(2) + 2g(1)
{c} g(2) g(2) 0 g(1) g(1) 2g(2) + 2g(1)

We have Mod(∆Clmaj3
µ1 (E)) = {∅, {a}, {b}, {c}},

thus Mod(∆Clmaj3
µ1 (E) ∧ µ2) = {∅, {a}}, and

Mod(∆Clmaj3
µ1∧µ2

(E)) = {{a}}. This violates postulate
(IC7).

Actually in the Horn fragment the negative results of the
above proposition can be extended to any fair refinement.
Proposition 12. Let ∆ be a merging operator with ∆ ∈
{∆d,Σ,∆d,GMax}, where d is an arbitrary counting dis-
tance. Then any fair refined operator ∆∗ violates postulates
(IC5) and (IC7) in LHorn .

Proof. The same, or simpler examples as in the proof of the
previous proposition will work here. We give the proof in the
case of ∆d,Σ where d is a counting distance associated with
the function g. It is easy to see that the given examples work
as well when using the aggregation function GMax. It can
be observed in the following that any involved set of models

is closed under intersection and hence it can be represented
by a Horn formula.

(IC5): Let us consider E1 = {K1,K2}, E2 = {K3}
and µ with Mod(K1) = {{a}, {a, b}},Mod(K2) =
{{b}, {a, b}}, Mod(K3) = {∅, {b}} and Mod(µ) =
{∅, {a}, {b}}. Since g(1) > 0 by definition of a count-
ing distance, we have Mod(∆µ(E1)) = {{a}, {b}}, and
thus Mod(∆∗µ(E1)) ⊆ {∅, {a}, {b}}. We can exclude
Mod(∆∗µ(E1)) = {{a}, {b}} since it is not closed un-
der ∧. By Definition 9 we can exclude Mod(∆∗µ(E1)) =
{{a}} and Mod(∆?

µ(E1)) = {{b}}. Therefore either
Mod(∆∗µ(E1)) = {∅} or Mod(∆∗µ(E1)) = {∅, {a}, {b}}.
On the one hand, since Mod(∆∗µ(E2)) = {∅, {b}}, in any
case Mod(∆∗µ(E1)∧∆∗µ(E2)) contains ∅. On the other hand
Mod(∆∗µ(E1tE2)) = {{b}}. This violates postulate (IC5).

(IC7): There we have Mod(∆µ1∧µ2(E)) = {{a}}.
By properties 3 and 4 of Definition 5 it holds
Mod(∆?

µ1∧µ2
(E)) = {{a}}. Since Mod(∆µ1(E)) =

{{a}, {b}}, it follows that Mod(∆?
µ1

(E)) ⊆ {∅, {a}, {b}}.
We can exclude Mod(∆?

µ1
(E)) = {{a}, {b}}

since it is not closed under ∧. By Definition 9
we can exclude Mod(∆?

µ1
(E)) = {{a}} and

Mod(∆?
µ1

(E)) = {{b}}. Hence, ∅ ∈ Mod(∆?
µ1

(E)).
Therefore ∅ ∈ Mod(∆?

µ1
(E)) ∩ Mod(µ2) but

∅ 6∈ Mod(∆?
µ1∧µ2

(E)) which violates (IC7).

We leave it as an open question whether this proposition
can be extended to Krom. For the two remaining postulates,
(IC6) and (IC8), the situation is even worse, since any re-
finement of the two kinds of distance-based merging opera-
tors we considered violates them in LHorn and in LKrom .

Proposition 13. Let ∆ be a merging operator with ∆ ∈
{∆d,Σ,∆d,GMax}, where d is an arbitrary counting dis-
tance. Then any refined operator ∆? violates postulates
(IC6) and (IC8) in LHorn and in LKrom .

Proof. As an example we give the proof for (IC6) in LHorn

for ∆d,GMax. Since LHorn is an ∧-fragment, there is an ∧-
mapping f such that ∆? = ∆f and we have f(M,X) ⊆
Cl∧(M) with Cl∧(f(M,X)) = f(M,X). Let us con-
sider E1 = {K1,K2,K3} and µ with Mod(K1) =
{{a}, {a, b}}, Mod(K2) = {{b}, {a, b}}, Mod(K3) =
{∅, {a}, {b}} and Mod(µ) = {∅, {a}, {b}, {a, b}}.

K1 K2 K3 E1

∅ g(1) g(1) 0 (g(1), g(1), 0)
{a} 0 g(1) 0 (g(1), 0, 0)
{b} g(1) 0 0 (g(1), 0, 0)
{a, b} 0 0 g(1) (g(1), 0, 0)

We have M = Mod(∆µ(E1)) = {{a}, {b}, {a, b}}.
Let us consider the possibilities for Mod(∆?

µ(E1)) =
f(M,Mod(E1)). If ∅ ∈ f(M,Mod(E1)), then let
E2 = {K4} with K4 in LHorn be such that Mod(K4) =
{∅}. Thus, Mod(∆?

µ(E2)) = {∅} and Mod(∆?
µ(E1) ∧

∆?
µ(E2)) = {∅}. Moreover, Mod(∆µ(E1 t E2)) =
{∅, {a}, {b}} or {∅, {a}, {b}, {a, b}} depending on whether
g(1) < g(2) or g(1) = g(2). Since both sets are
closed under intersection, we have Mod(∆?

µ(E1 t E2)) =

105

Mod(∆µ(E1 tE2)). Thus Mod(∆?
µ(E1 tE2)) 6⊆ {∅} and

(IC6) does not hold.
Otherwise, f(M,Mod(E1)) ⊆ {{a}, {b}, {a, b}}.

By symmetry assume w.l.o.g. that f(M,Mod(E1)) ⊆
{{a, b}, {a}} (note that {{a}, {b}} ⊆ f(M,Mod(E1))
would imply ∅ ∈ f(M,Mod(E1))). If
f(M,Mod(E1)) = {{a}} or {{a, b}}, then let
E2 = {K1}. Then, Mod(∆µ(E2)) = {{a}, {a, b}} =
Mod(∆?

µ(E2)), and Mod(∆?
µ(E1) ∧ ∆?

µ(E2)) = {{a}}
or {{a, b}}. Furthermore, Mod(∆µ(E1 t E2)) =
{{a}, {a, b}} = Mod(∆?

µ(E1 tE2)), thus violating (IC6).
If f(M,Mod(E1)) = {{a, b}, {a}}, then let E2 = {K2}.
Then, Mod(∆µ(E2)) = {{b}, {a, b}} = Mod(∆?

µ(E2)),
and Mod(∆?

µ(E1) ∧ ∆?
µ(E2)) = {{a, b}}. Fur-

thermore, Mod(∆µ(E1 t E2)) = {{b}, {a, b}} =
Mod(∆?

µ(E1 t E2)), and thus (IC6) does not hold.

Conclusion
We have investigated to which extent known merging oper-
ators can be refined to work within propositional fragments.
Compared to revision, this task is more involved since merg-
ing operators have many parameters that have to be taken
into account, and the field of investigation is very broad.

We have first defined desired properties any refined merg-
ing operator should satisfy and provided a characterization
of all refined merging operators. We have shown that the
refined merging operators preserve the basic merging postu-
lates, namely (IC0)–(IC3). The situation is more complex
for the other postulates. For the postulate (IC4) we have
provided a sufficient condition for its preservation by a re-
finement (fairness). We have shown that this condition is not
necessary and it would be interesting to study how to weaken
it in order to get a necessary and sufficient condition. For
the other postulates, we have focused on two representative
families of distance-based merging operators that satisfy the
postulates (IC0)–(IC8). For these two families the preserva-
tion of the postulates (IC5) and (IC7) depends on the used
refinement and it would be interesting to obtain a necessary
and sufficient condition for this. In contrast, there is no hope
for such a condition for (IC6) and (IC8), since we have
shown that any refinement of merging operators belonging
to these families violates these postulates.

As future work we are interested in solving the open ques-
tion of whether Proposition 12 can be extended to the Krom
fragment or whether there exists a fair refinement for Krom
which satisfies (IC5) or (IC7). We also plan a thorough in-
vestigation of the complexity of refined merging operators.

Acknowledgments
This work has been supported by PHC Amadeus project
No 29144UC (OeAD FR 12/2013), by the Austrian Science
Fund (FWF): P25521, and by the Agence Nationale de la
Recherche, ASPIQ project ANR-12-BS02-0003.

References
Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985. On
the logic of theory change: Partial meet contraction and re-
vision functions. J. Symb. Log. 50(2):510–530.

Baral, C.; Kraus, S.; and Minker, J. 1991. Combining
multiple knowledge bases. IEEE Trans. Knowl. Data Eng.
3(2):208–220.
Bloch, I., and (Eds), A. H. 2001. Fusion: General concepts
and characteristics. Int. J. Intell. Syst. 16(10):1107–1134.
Booth, R.; Meyer, T.; Varzinczak, I.; and Wassermann, R.
2011. On the link between partial meet, kernel, and infra
contraction and its application to Horn logic. J. Artif. Intell.
Res. 42:31–53.
Chacón, J., and Pino Pérez, R. 2012. Exploring the ratio-
nality of some syntactic merging operators. In Proc. IB-
ERAMIA, volume 7637 of Lecture Notes in Computer Sci-
ence, 21–30. Springer.
Cholvy, L. 1998. Reasoning about merging information.
Handbook of DRUMS 3:233–263.
Creignou, N.; Papini, O.; Pichler, R.; and Woltran, S. 2014.
Belief revision within fragments of propositional logic. J.
Comput. Syst. Sci. 80(2):427–449. (Preliminary version in
Proc. KR, 2012).
Delgrande, J., and Peppas, P. 2011. Revising Horn theories.
In Proc. IJCAI, 839–844.
Delgrande, J., and Wassermann, R. 2013. Horn clause con-
traction functions. J. Artif. Intell. Res. 48:475–511.
Konieczny, S., and Pino Pérez, R. 2002. Merging informa-
tion under constraints: A logical framework. J. Log. Comput.
12(5):773–808.
Konieczny, S., and Pino Pérez, R. 2011. Logic based merg-
ing. J. Philosophical Logic 40(2):239–270.
Konieczny, S.; Lang, J.; and Marquis, P. 2004. DA2 merging
operators. Artif. Intell. 157(1-2):49–79.
Lin, J., and Mendelzon, A. 1998. Merging databases under
constraints. Int. J. Cooperative Inf. Syst. 7(1):55–76.
Lin, J. 1996. Integration of weighted knowledge bases. Artif.
Intell. 83(2):363–378.
Putte, F. V. D. 2013. Prime implicates and relevant belief
revision. J. Log. Comput. 23(1):109–119.
Revesz, P. 1993. On the semantics of theory change: Arbi-
tration between old and new information. In Proc. PODS,
71–82.
Revesz, P. 1997. On the semantics of arbitration. IJAC
7(2):133–160.
Schaefer, T. 1978. The complexity of satisfiability problems.
In Proc. STOC, 216–226.
Zhuang, Z., and Pagnucco, M. 2012. Model based Horn
contraction. In Proc. KR, 169–178.
Zhuang, Z.; Pagnucco, M.; and Zhang, Y. 2013. Definability
of Horn revision from Horn contraction. In Proc. IJCAI.

106

Belief Revision and Trust

Aaron Hunter
British Columbia Institute of Technology

Burnaby, Canada
aaron hunter@bcit.ca

Abstract

Belief revision is the process in which an agent incorporates
a new piece of information together with a pre-existing set
of beliefs. When the new information comes in the form of a
report from another agent, then it is clear that we must first
determine whether or not that agent should be trusted. In this
paper, we provide a formal approach to modeling trust as a
pre-processing step before belief revision. We emphasize that
trust is not simply a relation between agents; the trust that one
agent has in another is often restricted to a particular domain
of expertise. We demonstrate that this form of trust can be
captured by associating a state-partition with each agent, then
relativizing all reports to this state partition before performing
belief revision. In this manner, we incorporate only the part
of a report that falls under the perceived domain of expertise
of the reporting agent. Unfortunately, state partitions based
on expertise do not allow us to compare the relative strength
of trust held with respect to different agents. To address this
problem, we introduce pseudometrics over states to represent
differing degrees of trust. This allows us to incorporate simul-
taneous reports from multiple agents in a way that ensures the
most trusted reports will be believed.

Introduction
The notion of trust must be addressed in many agent com-
munication systems. In this paper, we consider one isoloated
aspect of trust: the manner in which trust impacts the process
of belief revision. Some of the most influential approaches
to belief revision have used the simplifying assumption that
all new information must be incorporated; however, this is
clearly untrue in cases where information comes from an
untrusted source. In this paper, we are concerned with the
manner in which an agent uses an external notion of trust
in order to determine how new information should be inte-
grated with some pre-existing set of beliefs.

Our basic approach is the following. We introduce a sim-
ple model of trust that allows an agent to determine if a
source can be trusted to distinguish between different pairs
of states. We use this notion of trust as a precursor to belief
revision. Hence, before revising by a new formula, an agent
first determines to what extent the source of the information
can be trusted. In many cases, the agent will only incorpo-
rate “part” of the formula into their beliefs. We then extend
our model of trust to a more general setting, by introducing
quantitative measures of trust that allow us to compare the

degree to which different agents are trusted. Fundamental
properties are introduced and established, and applications
are considered.

Preliminaries
Intuition
It is important to note that an agent typically does not trust
another agent universally. As such, we will not apply the la-
bel “trusted” to another agent; instead, we will say that an
agent is trusted with respect to a certain domain of knowl-
edge. This is further complicated by the fact that there are
different reasons that an agent may not be trusted. For ex-
ample, an agent might not be trusted due to their perceived
knowledge of a domain. In other cases, an agent might not
be trusted due to their perceived dishonesty, or bias. In this
paper, our primary focus is on trust as a function of the per-
ceived expertise of other agents. Towards the end, we briefly
address the different formal mechanisms that would be re-
quired to deal with deceit.

Motivating Example
We introduce a motivating example in commonsense reason-
ing where an agent must rely on an informal notion of trust
in order to inform rational belief change; we will return to
this example periodically as we introduce our formal model.

Consider an agent that visits a doctor, having difficulty
breathing. Incidentally, the agent is wearing a necklace that
prominently features a jewel on a pendant. During the exam-
ination, the doctor checks the patient’s throat for swelling or
obstruction; at the same time, the doctor happens to look at
the necklace. Following the examination, the doctor tells the
patient “you have a viral infection in your throat - and by the
way, you should know that the jewel in your necklace is not
a diamond.”

The important part about this example is the fact that the
doctor provides information about two distinct domains: hu-
man health and jewelry. In practice, a patient is very likely to
trust the doctor’s diagnosis about the viral infection. On the
other hand, the patient really has very little reason to trust the
doctor’s evaluation of the necklace. We suggest that a ratio-
nal agent should actually incorporate the doctor’s statement
about the infection into their own beliefs, while essentially

107

ignoring the comment on the necklace. This approach is dic-
tated by the kind of trust that the patient has in the doctor.
Our aim in this paper is to formalize this kind of “localized”
domain-specific trust, and then demonstrate how this form
of trust is used in practice to inform belief revision.

Trust
Trust consists of two related components. First, we can think
of trust in terms of how likely an agent is to believe what an-
other agent says. Alternatively, we can think of trust in terms
of the degree to which an agent is likely to allow another to
perform actions on their behalf. In this paper, we will be
concerned only with the former.

A great deal of existing work on trust focuses on the man-
ner in which an agent develops a reputation based on past
behaviour. A brief survey of reputation systems is given in
(Huynh, Jennings, and Shadbolt 2006). Reputation systems
can be used to inform the allocation of tasks (Ramchurn
et al. 2009), or to avoid deception (Salehi-Abari and White
2009). The model of trust presented in this paper is not in-
tended to be an alternative to existing reputation systems; we
are not concerned with the manner in which an agent learns
to trust another. Instead, our focus is simply on developing
a suitable model of trust that is expressive enough to in-
form the process of belief revision. The manner in which this
model of trust is developed over time is beyond the scope of
this paper.

Belief Revision
Belief revision refers to the process in which an agent must
integrate new information with some pre-existing beliefs
about the state of the world. One of the most influential ap-
proaches to belief revision is the AGM approach, in which
an agent incorporates the new information while keeping as
much of the intial belief state as consistently possible (Al-
chourrón, Gärdenfors, and Makinson 1985).

This approach was originally defined with respect to a fi-
nite set P of propositional variables representing properties
of the world. A state is a propositional interpretation over
P , representing a possible state of the world. A belief set is
a deductively closed set of formulas, representing the beliefs
of an agent. Since P is finite, it follows that every belief set
defines a corresponding belief state, which is the set of states
that an agent considers to be possible. A revision operator is
a function that takes a belief set and a formula as input, and
returns a new belief set. An AGM revision operator is a revi-
sion operator that satisfies the AGM postulates, as specified
in (Alchourrón, Gärdenfors, and Makinson 1985).

It turns out that every AGM revision operator is charac-
terized by a total pre-order over possible worlds. To be more
precise, a faithful assignment is a function that maps each
belief set to a total pre-order over states in which the mod-
els of the belief set are the minimal states. When an agent
is presented with a new formula φ for revision, the revised
belief state is the set of all minimal models of φ in the to-
tal pre-order given by the faithful assignment. We refer the
reader to (Katsuno and Mendelzon 1992) for a proof of this
result, as well as a complete description of the implications.

For our purposes, we simply need to know that each AGM
revision operator necessarily defines a faithful assignment.

A Model of Trust
Domain-Specific Trust
Assume we have a fixed propositional signature F as well
as a set of agents A. For each A ∈ A, let BelA denote a
deductively closed set of formulas over F called the belief
set of A. For each A, let ∗A denote an AGM revision opera-
tor that intuitively captures the way that the agent A revises
their beliefs when presented with new information. This re-
vision operator represents sort of an “ideal” revision situa-
tion, in which A has complete trust in the new information.
We want to modify the way this operator is used, by adding
a representation of the extent to which A trusts each other
agent B ∈ A over F.

We assume that all new information is reported by an
agent, so each formula for revision can be labelled with the
name of the reporting agent.1 At this point, we are not con-
cerned with degrees of trust or with resolving conflicts be-
tween different sources of information. Instead, we start with
a binary notion of trust, where A either trusts B or does not
trust B with respect to a particular domain of expertise.

We encode trust by allowing each agent A to associate a
partition ΠB

A over possible states with each agent B.
Definition 1 A state partition Π is a collection of subsets
of 2F that is collectively exhaustive and mutually exclusive.
For any state s ∈ 2F, let Π(s) denote the element of Π that
contains s.

If Π = {2F} then we call Π the trivial partition with respect
to F. If Π = {{s} | s ∈ 2F}, then we call Π the unit
partition.
Definition 2 For each A ∈ A the trust function TA is a
function that maps each B ∈ A to a state partition ΠB

A .

The partition ΠB
A represents the trust that A has in B over

different aspects of knowledge. Informally, the partition en-
codes states that A will trust B to distinguish. If ΠB

A(s1) 6=
ΠB

A(s2), then A will trust that B can distinguish between
states s1 and s2. Conversely, if ΠB

A(s1) = ΠB
A(s2), then A

does not see B as an authority capable of distinguishing be-
tween s1 and s2. We clarify by returning to our motivating
example.

Example Let A = {A,D, J} and let F = {sick, diam}.
Informally, the fluent sick is true if A has an illness and
the fluent diam is true if a certain piece of jewelry that A
is wearing contains a real diamond. If we imagine that D
represents a doctor and J represents a jeweler, then we can
use state partitions to represent the trust that A has in D
and J with respect to different domains. Following standard
shorthand notation, we represent a state s by the set of fluent
symbols that are true in s. In order to make the descriptions
of a partition more readable, we use a | symbol to visually

1This is not a significant restriction. In domains involving sens-
ing or other forms of discovery, we could simply allow an agent A
to self-report information with complete trust.

108

separate different cells. The following partitions are then in-
tuitively plausible in this example:

ΠD
A := {sick, diam}, {sick}|{diam}, ∅

ΠJ
A := {sick, diam}, {diamond}|{sick}, ∅

Hence, A trusts the doctor D to distinguish between states
where A is sick as opposed to states where A is not sick.
However, A does not trust D to distinguish between worlds
that are differentiated by the authenticity of a diamond. The
formula sick ∧ ¬diamond encodes the doctor’s statement
that the agent is sick, and the necklace they are wearing has
a fake diamond.

Although the preceding example is simple, it illustrates
how a partition can be used to encode the perceived expertise
of agents. In the doctor-jeweler example, we could equiva-
lently have defined trust with respect to the set of fluents.
In other words, we could have simply said that D is trusted
over the fluent sick. However, there are many practical cases
where this is not sufficient; we do not want to rely on the
fluent vocabulary to determine what is a valid feature with
respect to trust. For example, a doctor may have specific ex-
pertise over lung infections for those working in factories,
but not for lung infections for those working in a space shut-
tle. By using state partitions to encode trust, we are able to
capture a very flexible class of distinct areas of trust.

Incorporating Trust in Belief Revision
As indicated previously, we assume each agent A has an
AGM belief revision operator ∗A for incorporating new in-
formation. In this section, we describe how the revision op-
erator ∗A is combined with the trust function TA to define
a new, trust-incorporating revision operator ∗BA . In many
cases, the operator ∗BA will not be an AGM operator because
it will fail to satisfy the AGM postulates. In particular,Awill
not necessarily believe a new formula when it is reported by
an untrusted source. This is a desirable feature.

Our approach is to define revision as a two-step process.
First, the agent considers the source and the relevant state
partition to determine how much of the new information to
incorporate. Second, the agent performs standard AGM re-
vision using the faithful assignment corresponding to the be-
lief revision operator.
Definition 3 Let φ be a formula and let TA(B) = ΠB

A . De-
fine:

ΠB
A [φ] =

⋃
{ΠB

A(s) | s |= φ}.

Hence ΠB
A [φ] is the union of all cells that contain a model of

φ.
If A does not trust B to distinguish between states s and

t, then any report from B that provides evidence that s is the
actual state is also evidence that t is the actual state. When
A performs belief revision, it should be with respect to the
distinctions that B can be trusted to make. It follows that A
need not believe φ after revision; instead A should interpret
φ to be evidence of any state s that is B-indistinguishable
from a model of φ. Formally, this means that the formula φ
is construed to be evidence for each state in ΠB

A [φ].

Definition 4 Let A,B ∈ A with TA(B) = ΠB
A , and let

∗A be an AGM revision operator for A. For any belief set
K with corresponding ordering≺K given by the underlying
faithful assignment, the trust-sensitive revisionK ∗BA φ is the
set of formulas true in

min
≺K

({s | s ∈ ΠB
A [φ]}).

So rather than taking the minimal models of φ, we take all
minimal states that B can not be trusted to distinguish from
the minimal models of φ.

It is worth remarking that this notion can be formulated
synactically as well. Since F is finite, each state s is defined
by a unique, maximal conjunction over literals in F; we sim-
ply take the conjunction of all the atomic formulas that are
true in s together with the negation of all the atomic formu-
las that are false in s.
Definition 5 For any state s, let prop(s) denote the unique,
maximal conjunction of literals true in s.
This definition can be extended for a cell in a state partition.
Definition 6 Let Π be a state partition. For any state s,

prop(Π(s)) =
∨
{prop(s′) | s′ ∈ Π(s)}.

Note that prop(Π(s)) is a well-defined formula in disjunc-
tive normal form, due to the finiteness of F. Intuitively,
prop(Π(s)) is the formula that defines the partition Π(s).
In the case of a trust partition ΠB

A , we can use this idea to
define the trust expansion of a formula.
Definition 7 Let A,B ∈ A with the corresponding state
partition ΠB

A , and let φ be a formula. The trust expansion of
φ for A with respect to B is the formula

φB
A :=

∨
{prop(ΠB

A(s)) | s |= φ}.

Note that this is a finite disjunction of disjunctions, which
is again a well defined formula. We refer to φB

A as the trust
expansion of φ because it is true in all states that are consis-
tent with φ with respect to distinctions that A trusts B to be
able to make. It is an expansion because the set of models of
φB

A is normally larger than the set of models of φ. The trust
sensitive revision operator could equivalently be defined as
the normal revision, following translation of φ to the corre-
sponding trust expansion.

Example Returning to our example, we consider a few
different formulas for revision:

1. φ1 = sick

2. φ2 = ¬diam
3. φ3 = sick ∧ ¬diam.
Suppose that the agent initially believes that they are not
sick, and that the diamond they have is real, soK = ¬sick∧
diam. For simplicity, we will assume that the underlying
pre-order ≺K has only two levels: those states where K is
true are minimal, and those where K is false are not. We
have the following results for revision

1. K ∗DA φ1 = sick ∧ diam

109

2. K ∗DA φ2 = ¬sick ∧ diam

3. K ∗DA φ3 = sick ∧ diam.

The first result indicates that A believes the doctor when the
doctor reports that they are sick. The second result indicates
that A essentially ignores a report from the doctor on the
subject of jewelry. The third result is perhaps the most inter-
esting. It demonstrates that our approach allows an agent to
just incorporate a part of a formula. Hence, even though φ3

is given as a single piece of information, the agent A only
incorporates the part of the formula over which the doctor is
trusted.

Formal Properties
Basic Results
We first consider extreme cases for trust-sensitive revision
operators. Intuitively, if TA(B) is the trivial partition, then
A does not trust B to be able to distinguish between any
states. Therefore, A should not incorporate any new infor-
mation obtained from B. The following proposition makes
this observation explicit.

Proposition 1 If TA(B) is the trivial partition, then K ∗BA
φ = K for all K and φ.

The other extreme situation occurs when TA(B) is the unit
partition, which consists of all singleton sets. In this case,
A trusts B to be able to distinguish between every possible
pair of states. It follows from this result that trust sensitive
revision operators are not AGM revision operators.

Proposition 2 If TA(B) is the unit partition, then ∗BA = ∗A.

Hence, if B is universally trusted, then the corresponding
trust sensitive revision operator is just the a priori revision
operator for A.

Refinements
There is a partial ordering on partitions based on the notion
of refinement. We say that Π1 is a refinement of Π2 just in
case, for each S1 ∈ Π1, there exists S2 ∈ Π2 such that S1 ⊆
S2. We also say that Π1 is finer than Π2. In terms of trust-
partitions, refinement has a natural interpretation in terms
of “breadth of trust.” If the partition corresponding to B is
finer than that corresponding to C, it means that B is trusted
more broadly than C. To be more precise, it means that B
is trusted to distinguish between all of the states that C can
distinguish, and possibly more. If B is trusted more broadly
that C, it follows that a report from B should give give A
more information. This idea is formalized in the following
proposition.

Proposition 3 For any formula φ, if ΠB
A is a refinement of

ΠC
A, then |K ∗BA φ| ⊆ |K ∗CA φ|.

This is a desirable property; if B is trusted over a greater
range of states, then fewer states are possible after a report
from B.

Multiple Reports
One natural question that arises is how to deal with multiple
reports of information from different agents, with different
trust partitions. In our example, for instance, we might get
a conflicting report from a jeweler with respect to the sta-
tus of the necklace. In order to facilitate the discussion, we
introduce a precise notion of a report.
Definition 8 A report is a pair (B,φ), where B ∈ A and φ
is a formula.
We can now extend the definition of trust senstive revision to
reports in the obvious manner. In fact, if the revising agentA
is clear from the context, we can use the short hand notation:

K ∗ (φ,B) = K ∗BA φ.

The following definition extends the notion of revision to
incorporate multiple reports.
Definition 9 Let {A} ∪ B ⊆ A, and let Φ = {(φi, Bi) |
i < n} be a finite set of reports. Given K, ∗ and ≺K , the
trust-sensitive revision K ∗A Φ is the set of formulas true in

min
≺K

({s | s ∈ ΠBi
A [φi]}).

So the trust sensitive revision for a finite set of reports from
different agents is essentially the normal, single-shot revi-
sion by the conjunction of formulas. The only difference is
that we expand each formula with respect to the trust parti-
tion for a particular reporting agent.

Example In the doctor and jeweler domain, we can con-
sider how how an agent might incorporate a set of reports
from D and J . We start with the same initial belief set as
before: K = ¬sick∧diam. Consider the following reports:

1. Φ1 = {(sick,D), (¬diam,D)}
2. Φ2 = {(sick, J), (¬diam, J)}
3. Φ3 = {(sick,D), (¬diam, J)}
4. Φ4 = {(sick, J), (¬diam,D)}
We have the following results following revision:

1. K ∗A Φ1 = sick ∧ diam
2. K ∗A Φ2 = ¬sick ∧ ¬diam
3. K ∗A Φ3 = sick ∧ ¬diam
4. K ∗A Φ4 = ¬sick ∧ diam.
These results demonstrate how the agent A essentially in-
corporates information from D and J in domains where
they are trusted, and ignores information when they are not
trusted. Note that, in this case, D and J are trusted over dis-
joint sets of states. As a result, it is not possible to have con-
tradictory reports that are equally trusted.

The problem with Definition 9 is that the set of states in
the minimization may be empty. This occurs when multiple
agents give conflicting reports, and we trust each agent on
the domain. In order to resolve this kind of conflict, we need
a more expressive form of trust that allows some agents to be
trusted more than others. We introduce such a representation
in the next section.

110

Trust Pseudometrics
Measuring Trust
In the previous section, we were concerned with a binary no-
tion of trust that did not include any measure of the strength
of trust held in a particular agent or domain. Such an ap-
proach is appropriate in cases where we only receive new
information from a single source, or from a set of sources
that are equally reliable. However, it is not sufficient if we
consider cases where several different sources may provide
conflicting information. In such cases, we need to determine
which information source is the most trust worthy with re-
spect to the domain currently under consideration.

In the binary approach, we associated a partition of the
state space with each agent. In order to capture different lev-
els of trust, we would like to introduce a measure of the dis-
tance between two states from the perspective of a particular
agent. In other words, an agent A would like to associate a
distance function dB over states with each other agent B.
If dB(s, t) = 0, then B can not be trusted to distinguish
between the states s and t. On the other hand, if dB(s, t)
is very large, then A has a high level of trust in B’s abil-
ity to distinguish between s and t. The notion of distance
that we introduce will be a psuedometric on the state space.
A pseudometric is a function d that satisfies the following
properties for all x, y, z in the domain X:

1. d(x, x) = 0
2. d(x, y) = d(y, x)
3. d(x, z) ≤ d(x, y) + d(y, z)
The difference between a metric and a pseudometric is that
we do not require that d(x, y) = 0 implies x = y (the so-
called law of indiscernables). This would be undesirable in
our setting, because we want to use the distance 0 to rep-
resent states that are indistinguishable rather than identical.
The first two properties are clearly desirable for a measure
of our trust in another agent’s ability to discern states. The
third property is the triangle inequality, and it is required to
guarantee that our trust in other agents is transititive across
different domains.
Definition 10 For each A ∈ A, a pseudometric trust func-
tion TA is a function that maps eachB ∈ A to a pseudomet-
ric dB over 2F.
The pair (2F, TA) is called a pseudometric trust space. We
would like to model the situation where a sequence of for-
mulas Φ = φ1, . . . , φn is received from the agents B =
B1, . . . , Bn, respectively. Note that the order does not mat-
ter, we think of the formulas as arriving at the same instant
with no preference between them other than the preference
induced by the pseudometric trust space.

We associate a sequence of state partitions with each
pseudometric trust space.
Proposition 4 Let (2F, TA) be a pseudometric trust space,
letB ∈ A−A, and let i be a natural number. For each state
s, define the set ΦA

B(i)(s) as follows:

ΠA
B(i)(s) = {t | dB(s, t) ≤ i}.

The collection of sets {ΠA
B(i)(s) | s ∈ 2F} is a state parti-

tion.

We let ΠA
B(i) denote the state partition obtained from this

proposition. The cells of the partition ΠA
B(i) consist of all

states are separated by a distance of no more than i. The
following proposition is immediate.

Proposition 5 ΠA
B(i) is a refinement of ΠA

B(j), for any i <
j.

Hence, a pseudometric trust space defines a sequence of
partitions for each agent. This sequence of partitions gets
coarser as we increase the index; increasing the index corre-
sponds to requiring a higher level of trust that an agent can
distinguish between states. Since we can use Definition 4 to
define a trust sensitive revision operator from a state parti-
tion, we can now define a trust sensitive revision operator
for any fixed distance i between states. Informally, as i in-
creases, we requireB to have a greater degree of certainty in
order to trust them to distinguish between states. However, it
is not clear in advance exactly which i is the right threshold.
Our approach will be to find the lowest possible threshold
that yields a consistent result.

Note that ΠA
B(i) will be a trivial partition for any i that is

less than the minimum distance assigned by the underlying
pseudometric trust function.

Definition 11 Let (2F, TA) be a pseudometric trust space,
and let m be the least natural number such that ΠA

B(m) is
non-trival. The trust sensitive revision operator for A with
respect to B is the trust sensitive revision operator given by
ΠA

B(m).

This is a simple extension of our approach based on state
partitions. In the next section, we take advantage of the
added expressive power of pseudometrics.

Example We modify the doctor example. In order to con-
sider different levels of trust, it is more interesting to con-
sider a domain involving two doctors: a general practitioner
D and a specialist S. We also assume that the vocabulary in-
cludes two fluents: ear and skin. Informally, ear is under-
stood to be true if the patient has an ear infection, whereas
skin is true if the patient has skin cancer. The important
point is that an ear infection is something that can easily be
diagnosed by any doctor, whereas skin cancer is typically
diagnosed by a specialist. In order to capture these facts, we
define two pseudometrics dD and dS . For simplicity, we la-
bel the possible states as follows:

s1 = {ear, skin}
s2 = {ear}
s3 = {skin}
s4 = ∅

We define the pseudometrics as follows: With these pseudo-

s1, s2 s1, s3 s1, s4 s2, s3 s2, s4 s3, s4
dD 1 2 2 2 2 1
dS 2 2 2 2 2 2

metrics, it is easy to see that bothD and S can distinguish all

111

of the states. However, S is more trusted to distinguish be-
tween states related to a skin cancer diagnosis. In our frame-
work, we would like to ensure that this implies S will be
trusted in the case of conflicting reports from D and S with
respect to skin cancer.

Multiple Reports
We view the distances in a pseudometric trust space as abso-
lute measurements. As such, if dB(s, t) > dC(s, t), then we
have greater trust inB as opposed toC as far as the ability to
discern the states s and t is concerned. We would like to use
this intuition to resolve conflicting reports between agents.

Proposition 6 Let {A} ∪ B ⊆ A, and let Φ = {(φi, Bi) |
i < n} be a finite set of reports. There exists a natural num-
ber m such that ⋂

i<n

(ΠBi
A [φi](m)) 6= ∅.

Hence, for any set of reports, we can get a non-intersecting
intersection if we take a sufficiently coarse state partition.
In many cases this partition will be non-trival. Using this
proposition, we define multiple report revision as follows.

Definition 12 Let (2F, TA) be a pseudometric trust space,
let Φ = {(φi, Bi) | i < n} be a finite set of re-
ports, and let m be the least natural number such that⋂

i<n(ΠBi
A [φi](m)) 6= ∅. Given K, ∗ and ≺K , the trust-

sensitive revision K ∗BA Φ is the set of formulas true in

min
≺K

({s | s ∈ ΠBi
A [φi](m)}).

Hence, trust-sensitive revision in this context involves find-
ing the finest possible partition that provides a meaningful
combination of the reports, and then revising with the corre-
sponding state partition.

Trust and Deceit
To this point, we have only been concerned with modeling
the trust that one agent holds in another due to perceived
knowledge or expertise. Of course, the issue of trust also
arises in cases where one agent suspects that another may
be dishonest. However, the manner in which trust must be
handled differs greatly in this context. If A does not trust
B, then there is little reason for A to believe any part of a
message sent directly from B.

Discussion
Related Work
We are not aware of any other work on trust that explicitly
deals with the interaction between trust and formal belief
revision operators. There is, however, a great deal of work
on frameworks for modelling trust. As noted previously, the
focus of such work is often on building reputations. One no-
table approach to this problem with an emphasis on knowl-
edge representation is (Wang and Singh 2007), in which trust
is built based on evidence. This kind of approach could be

used as a precursor step to build a trust metric, although one
would need to account for domain expertise.

Different levels of trust are treated in (Krukow and
Nielsen 2007), where a lattice structure is used to repre-
sent various levels of trust strength. This is similar to our
notion of a trust pseudometric, but it permits incompara-
ble elements. There are certainly situations where this is a
reasonable advantage. However, the emphasis is still on the
representation of trust in an agent as opposed to trust in an
agent with respect to a domain.

One notable approach that is similar to ours is the seman-
tics of trust presented in (Krukow and Nielsen 2007), which
is a domain-based approach to differential trust in an agent.
The emphasis there is on trust management, however. That
is, the authors are concerned with how agents maintain some
record of trust in the other agents; they are not concerned
with a differential approach to belief revision.

Conclusion
In this paper, we have developed an approach to trust sen-
sitive belief revision in which an agent is trusted only with
respect to a particular domain. This has been formally ac-
complished first by using state partitions to indicate which
states an agent can be trusted to distinguish, and then by us-
ing distance functions to quantify the strength of trust. In
both cases, the model of trust is used as sort of a precursor
to belief revision. Each agent is able to perform belief revi-
sion based on a pre-order over states, but the actual formula
for revision is parametrized and expanded based on the level
of trust held in the reporting agent.

There are many directions for future work, in terms of
both theory and applications. As noted previously, one of the
subtle distinctions that must be addressed is the difference
between trusted expertise and trusted honesty. The present
framework does not explicitly deal with the problem of de-
ception or belief manipulation (Hunter 2013); it would be
useful to explore how models of trust must differ in this con-
text. In terms of applications, our approach could be used in
any domain where agents must make decisions based on be-
liefs formulated from multiple reports. This is the case, for
example, in many networked communication systems.

References
Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985. On
the logic of theory change: Partial meet functions for con-
traction and revision. Journal of Symbolic Logic 50(2):510–
530.
Hunter, A. 2013. Belief manipulation: A formal model of
deceit in message passing systems. In Proceedings of the
Pacific Asia Workshop on Security Informatics, 1–8.
Huynh, T. D.; Jennings, N. R.; and Shadbolt, N. R. 2006.
An integrated trust and reputation model for open multi-
agent systems. Autonomous Agents and Multi-Agent Sys-
tems 13(2):119–154.
Katsuno, H., and Mendelzon, A. 1992. Propositional knowl-
edge base revision and minimal change. Artificial Intelli-
gence 52(2):263–294.

112

Krukow, K., and Nielsen, M. 2007. Trust structures. Inter-
national Journal of Information Security 6(2-3):153–181.
Ramchurn, S.; Mezzetti, C.; Giovannucci, A.; Rodriguez-
Aguilar, J.; Dash, J.; and Jennings, N. 2009. Trust-based
mechanisms for robust and efficient task allocation in the
presence of execution uncertainty. JAIR 35:119–159.
Salehi-Abari, A., and White, T. 2009. Towards con-resistant
trust models for distributed agent systems. In IJCAI, 272–
277.
Wang, Y., and Singh, M. P. 2007. Formal trust model for
multiagent systems. In IJCAI, 1551–1556.

113

On the Non-Monotonic Description Logic ALC+Tmin

Oliver Fernández Gil∗
University of Leipzig

Department of Computer Science
fernandez@informatik.uni-leipzig.de

Abstract

In the last 20 years many proposals have been made
to incorporate non-monotonic reasoning into descrip-
tion logics, ranging from approaches based on default
logic and circumscription to those based on preferential
semantics. In particular, the non-monotonic description
logic ALC+Tmin uses a combination of the preferential
semantics with minimization of a certain kind of con-
cepts, which represent atypical instances of a class of
elements. One of its drawbacks is that it suffers from the
problem known as the property blocking inheritance,
which can be seen as a weakness from an inferential
point of view. In this paper we propose an extension
of ALC+Tmin, namely ALC+T+

min, with the purpose
to solve the mentioned problem. In addition, we show
the close connection that exists between ALC+T+

min
and concept-circumscribed knowledge bases. Finally,
we study the complexity of deciding the classical rea-
soning tasks in ALC+T+

min.

Introduction
Description Logics (DLs) (Baader et al. 2003) are a well-
investigated family of logic-based knowledge representation
formalisms. They can be used to represent knowledge of a
problem domain in a structured and formal way. To describe
this kind of knowledge each DL provides constructors that
allow to build concept descriptions. A knowledge base con-
sists of a TBox that states general assertions about the prob-
lem domain and an ABox that asserts properties about ex-
plicit individuals.

Nevertheless, classical description logics do not pro-
vide any means to reason about exceptions. In the past 20
years research has been directed with the purpose to incor-
porate non-monotonic reasoning formalisms into DLs. In
(Baader & Hollunder 1995a), an integration of Reiter’s de-
fault logic (Reiter 1980) within the terminological language
ALCF is proposed and later extended in (Baader & Hol-
lunder 1995b) to allow the use of priorities between default
rules. Taking a different approach, (Bonatti, Lutz, & Wolter
2009) introduces circumscribed DLs and analyses in de-
tail the complexity of reasoning in circumscribed extensions
of expressive description logics. In addition, recent works
(Casini & Straccia 2010; Britz, Meyer, & Varzinczak 2011;

∗Supported by DFG Graduiertenkolleg 1763 (QuantLA).

Giordano et al. 2013a) attempt to introduce defeasible rea-
soning by extending DLs with preferential and rational se-
mantics based on the KLM approach to propositional non-
monotonic reasoning (Lehmann & Magidor 1992).

In particular, the logic ALC+Tmin introduced in (Gior-
dano et al. 2013b) combines the use of a preferential seman-
tics and the minimization of a certain kind of concepts. This
logic is built on top of the description logic ALC (Schmidt-
Schauß & Smolka 1991) and is based on a typicality oper-
ator T whose intended meaning is to single out the typical
instances of a class C of elements. The underlying semantics
of T is based on a preference relation over the domain. More
precisley, classical ALC interpretations are equipped with a
partial order over the domain elements setting a preference
relation among them. Based on such an order, for instance,
the set of typical birds or T(Bird), comprises those individu-
als from the domain that are birds and minimal in the class of
all birds with respect to the preference order. Using this op-
erator, the subsumption statement T(Bird) v Fly expresses
that typical birds fly. In addition, the use of a minimal model
semantics considers models that minimize the atypical in-
stances of Bird. Then, when no information is given about
whether a bird is able to fly or not, it is possible to assume
that it flies in view of the assertion T(Bird) v Fly.

As already pointed out by the authors, the preferential or-
der over the domain limits the logic ALC+Tmin in the sense
that if a class P is an exceptional case of a superclass B,
then no default properties from B can be inherited by P dur-
ing the reasoning process, including those that are unrelated
with the exceptionality of P with respect to B. For example:

Penguin v Bird

T(Bird) v Fly uWinged

T(Penguin) v ¬Fly

It is not possible to infer that typical penguins have wings,
even when the only reason for them to be exceptional with
respect to birds is that they normally do not fly.

In the present paper we extend the non-monotonic logic
ALC+Tmin from (Giordano et al. 2013b) with the introduc-
tion of several preference relations. We show how this ex-
tension can handle the inheritance of defeasible properties,
resembling the use of abnormality predicates from circum-
scription (McCarthy 1986). In addition, we show the close
relationship between the extended non-monotonic logic

114

ALC+T+
min and concept-circumscribed knowledge bases

(Bonatti, Lutz, & Wolter 2009). Based on such a relation,
we provide a complexity analysis of the different reason-
ing tasks showing NExpNP- completeness for concept satis-
fiability and co-NExpNP-completeness for subsumption and
instance checking.

Missing proofs can be found in the long ver-
sion of the paper at http://www.informatik.uni-
leipzig.de/~fernandez/NMR14long.pdf.

The logic ALC+Tmin

We recall the logic ALC+T proposed in (Giordano et al.
2013b) and its non-monotonic extension ALC+Tmin. Let
NC, NR and NI be three countable sets of concept names, role
names and individual names, respectively. The language
defined by ALC+T distinguishes between normal concept
descriptions and extended concept descriptions which are
formed according to the following syntax rules:

C ::= A | ¬C | C uD | ∃r.C,

Ce ::= C | T(A) | ¬Ce | Ce uDe

where A ∈ NC, r ∈ NR, C and D are classicalALC concept
descriptions, Ce and De are extended concept descriptions,
and T is the newly introduced operator. We use the usual
abbreviations C tD for ¬(¬C u¬D), ∀r.C for ¬∃r.¬C,>
for A t ¬A and ⊥ for ¬>.

A knowledge base is a pair K = (T ,A). The TBox T
contains subsumption statements C v D where C is a clas-
sicalALC concept or an extended concept of the form T(A),
and D is a classicalALC concept. The AboxA contains as-
sertions of the form Ce(a) and r(a, b) where Ce is an ex-
tended concept, r ∈ NR and a, b ∈ NI. The assumption
that the operator T is applied to concept names is without
loss of generality. For a complex ALC concept C, one can
always introduce a fresh concept name AC which can be
made equivalent to C by adding the subsumption statements
AC v C and C v AC to the background TBox. Then, T(C)
can be equivalently expressed as T(AC).

In order to provide a semantics for the operator T, usual
ALC interpretations are equipped with a preference relation
< over the domain elements:

Definition 1 (Interpretation in ALC+T). An ALC+T inter-
pretation I is a tuple (∆I , .I , <) where:

• ∆I is the domain,
• .I is an interpretation function that maps concept names

to subsets of ∆I and role names to binary relations over
∆I ,

• < is an irreflexive and transitive relation over ∆I that sat-
isfies the following condition (Smoothness Condition):
for all S ⊆ ∆I and for all x ∈ S, either x ∈ Min<(S) or
∃y ∈ Min<(S) such that y < x, with Min<(S) = {x ∈
S |6 ∃y ∈ S s.t. y < x}.
The operator T is interpreted as follows: [T(A)]I =

Min<(AI). For arbitrary concept descriptions, .I is induc-
tively extended in the same way as for ALC taking into ac-
count the introduced semantics for T.

As mentioned in (Giordano et al. 2013b; 2009), ALC+T
is still monotonic and has several limitations. In the fol-
lowing we present the logic ALC+Tmin, proposed in (Gior-
dano et al. 2013b) as a non-monotonic extension ofALC+T,
where a preference relation is defined between ALC+T in-
terpretations and only minimal models are considered.

First, we introduce the modality � as in (Giordano et al.
2013b).

Definition 2. Let I be an ALC+T interpretation and C a
concept description. Then, �C is interpreted under I in the
following way:

(�C)I = {x ∈ ∆I | for all y ∈ ∆I if y < x then y ∈ CI}

We remark that �C does not extend the syntax of ALC+T.
The purpose of using it is to characterize elements of the
domain with respect to whether all their predecessors in <
are instances of C or not. For example, �¬Bird defines a
concept such that d ∈ (�¬Bird)I if all the predecessors
of d, with respect to < under the interpretation I, are not
instances of Bird. Hence, it is not difficult to see that:

[T(Bird)]I = (Bird u�¬Bird)I

Then, the idea is to prefer models that minimize the in-
stances of ¬�¬Bird in order to minimize the number of
atypical birds.

Now, let LT be a finite set of concept names occurring in
the knowledge base. These are the concepts whose atypical
instances are meant to be minimized. For each interpretation
I, the set I�−

LT
represents all the instance of concepts of the

form ¬�¬A for all A ∈ LT. Formally,

I�−
LT

=

{(x,¬�¬A)|x ∈ (¬�¬A)I , with x ∈ ∆I , A ∈ LT}.

Based on this, the notion of minimal models is defined in
the following way.

Definition 3 (Minimal models). Let K = (T ,A) be a
knowledge base and I = (∆I , .I , <I), J = (∆J , .J , <J)
be two interpretations. We say that I is preferred to J with
respect to the set LT (denoted as I <LT J), iff:

• ∆I = ∆J ,
• aI = aJ for all a ∈ NI,
• I�−
LT
⊂ J�−

LT
.

An interpretation I is a minimal model of K with respect to
LT (denoted as I |=LT

min K) iff I |= K and there is no model
J of K such that J <LT I.

Based on the notion of minimal models, the standard rea-
soning tasks are defined for ALC+Tmin.

• Knowledge base consistency (or satisfiability): A knowl-
edge baseK is consistent w.r.t. LT, if there exists an inter-
pretation I such that I |=LT

min K.

• Concept satisfiability: An extended concept Ce is satisfi-
able with respect to K if there exists a minimal model I
of K w.r.t. LT such that CIe 6= ∅.

115

• Subsumption: Let Ce and De be two extended concepts.
Ce is subsumed by De w.r.t. K and LT, denoted as
K |=LT

min Ce v De, if CIe ⊆ DIe for all minimal mod-
els I of K.

• Instance checking: An individual name a is an instance
of an extended concept Ce w.r.t. K, denoted as K |=LT

min

Ce(a), if aI ∈ CIe in all the minimal models I of K.
Regarding the computational complexity, the case of

knowledge base consistency is not interesting in itself since
the logic ALC+T enjoys the finite model property (Gior-
dano et al. 2013b). Note that if there exists a finite model I
ofK, then the sets that are being minimized are finite. There-
fore, every descending chain starting from I with respect to
<LT must be finite and a minimal model of K always exists.
Thus, the decision problem only requires to decide knowl-
edge base consistency of the underlying monotonic logic
ALC+T which has been shown to be EXPTIME-complete
(Giordano et al. 2009). For the other reasoning tasks, a
NExpNP upper bound is provided for concept satisfiability
and a co-NExpNP upper bound for subsumption and instance
checking (Giordano et al. 2013b).

Extending ALC+Tmin with more typicality
operators

As already mentioned in (Giordano et al. 2013b; 2009), the
use of a global relation to represent that one individual is
more typical than another one, limits the expressive power
of the logic. It is not possible to express that an individual
x is more typical than an individual y with respect to some
aspect As1 and at the same time y is more typical than x (or
not comparable to x) with respect to a different aspect As2.
This, for example, implies that a subclass cannot inherit any
property from a superclass, if the subclass is already excep-
tional with respect to one property of the superclass. This
effect is also known as property inheritance blocking (Pearl
1990; Geffner & Pearl 1992), and is a known problem in
preferential extensions of DLs based on the KLM approach.

We revisit the example from the introduction to illustrate
this problem.
Example 4. Consider the following knowledge base:

Penguin v Bird

T(Bird) v Fly uWinged

T(Penguin) v ¬Fly

Here, penguins represent an exceptional subclass of birds
in the sense that they usually are unable to fly. However, it
might be intuitive to conclude that they normally have wings
(T(Penguin) v Winged) since although birds fly because
they have wings, having wings does not imply the ability to
fly. In fact, as said before, it is not possible to sanction this
kind of conclusion in ALC+Tmin. The problem is that due
to the global character of the order < among individuals of
the domain, once an element d is assumed to be a typical
penguin, then automatically a more preferred individual e
must exist that is a typical bird. This rules out the possibility
to apply the non-monotonic assumption represented by the
second assertion to d.

In relation with circumscription, this situation can be
modelled using abnormality predicates to represent excep-
tionality with respect to different aspects (McCarthy 1980;
1986). The following example shows a knowledge base
which is defined using abnormality concepts similar as the
examples in (Bonatti, Lutz, & Wolter 2009).
Example 5.

Penguin v Bird

Bird v Fly tAb1

Bird vWinged tAb2

Penguin v ¬Fly tAbpenguin

The semantics of circumscription allows to consider only
models that minimize the instances of the abnormality con-
cepts. In this example, concepts Ab1 and Ab2 are used to
represent birds that are atypical with respect to two inde-
pendent aspects (i.e.: Fly and Winged). If the minimization
forces an individual d to be a not abnormal penguin (i.e.: d
is not an instance of Abpenguin), then it must be an instance of
Ab1, but at the same time nothing forces it to be an instance
of Ab2. Therefore, it is possible to assume that d has wings
because of the minimization of Ab2.

In this paper, we follow a suggestion given in (Giordano et
al. 2013b) that asks for the extension of the logicALC+Tmin

with more preferential relations in order to express typical-
ity of a class with respect to different aspects. We define
the logicALC+T+ and its extensionALC+T+

min in a similar
way as for ALC+T and ALC+Tmin, but taking into account
the possibility to use more than one typicality operator.

We start by fixing a finite number of typicality operators
T1, . . . , Tk. Classical concept descriptions and extended
concept descriptions are defined by the following syntax:

C ::= A | ¬C | C uD | ∃r.C,

Ce ::= C | Ti(A) | ¬Ce | Ce uDe,

where all the symbols have the same meaning as in ALC+T
and Ti ranges over the set of typicality operators. The se-
mantics is defined as an extension of the semantics for
ALC+T that takes into account the use of more than one
T operator.
Definition 6 (Interpretations in ALC+T+). An interpreta-
tion I in ALC+T+ is a tuple (∆I , .I , <1, . . . , <k) where:
• ∆I is the domain,
• <i (1 ≤ i ≤ k) is an irreflexive and transitive relation

over ∆I satisfying the Smoothness Condition.
Typicality operators are interpreted in the expected way

with respect to the different preference relations over the do-
main: [Ti(A)]I = Min<i

(AI).
Similar as for ALC+T, we introduce for each preference

relation <i an indexed box modality �i such that:

(�iC)I = {x ∈ ∆I | ∀y ∈ ∆I : if y <i x then y ∈ CI}
Then, the set of typical instances of a concept A with respect
to the ith typical operator can be expressed in terms of the
indexed � modalities:

[Ti(A)]I = {x ∈ ∆I | x ∈ (A u�i¬A)I}

116

Now, we define the extension of ALC+T+ that results in
the non-monotonic logicALC+T+

min. Let LT1 , . . . ,LTk
be k

finite sets of concept names. Given an ALC+T+ interpreta-
tion I, the sets I�−

LTi
are defined as:

I�−
LTi

= {(x,¬�i¬A) | x ∈ (¬�i¬A)I ∧A ∈ LTi}

Based on these sets, we define the preference relation <+
LT

on ALC+T+ interpretations that characterizes the non-
monotonic semantics of ALC+T+

min.
Definition 7 (Preference relation). Let K = (T ,A) be
a knowledge base and I = (∆I , .I , <i1 , . . . , <ik

), J =
(∆J , .J , <j1 , . . . , <jk

) be two interpretations. We say that
I is preferred to J (denoted as <+

LT
) with respect to the sets

LTi
, iff:

• ∆I = ∆J ,
• aI = aJ for all a ∈ NI,
• I�−
LTi
⊆ J�−

LTi
for all 1 ≤ i ≤ k,

• ∃` s.t. I�−
LT`
⊂ J�−

LT`
.

An ALC+T+ interpretation I is a minimal model of K
(denoted as I |=LT+

min K) iff I |= K and there exists no inter-
pretation J such that: J |= K and J <+

LT
I. The different

reasoning tasks are defined in the usual way, but with respect
to the new entailment relation |=LT+

min .
We revise Example 4 to show how to distinguish between

a bird being typical with respect to being able to fly or to
having wings, in ALC+T+

min. The example shows the use of
two typicality operators T1 and T2, where <1 and <2 are
the underlying preference relations.
Example 8.

Penguin v Bird

T1(Bird) v Fly

T2(Bird) vWinged

T1(Penguin) v ¬Fly

In the example, we use two preference relations to express
typicality of birds with respect to two different aspects inde-
pendently. The use of a second preference relation permits
that typical penguins can also be typical birds with respect to
<2. Therefore, it is possible to infer that typical penguins do
have wings. Looking from the side of individual elements:
having the assertion Penguin(e), the minimal model seman-
tics allows to assume that e is a typical penguin and also
a typical bird with respect to <2, even when a bird d must
exist such that d is preferred to e with respect to <1.

It is interesting to observe that the defeasible property not
being able to fly, for penguins, is stated with respect to T1.
If instead, we use T2(Penguin) v ¬Fly, there will be min-
imal models where e is an instance of T1(Bird) and others
where it is an instance of T2(Penguin). This implies that it
will not be possible to infer for e, the defeasible properties
corresponding to the most specific concept it belongs to.

The same problem is realized, with respect to circum-
scription in Example 5, where some minimal models prefer e

to be a normal bird (e ∈ ¬Ab1), while others consider e as a
normal penguin (e ∈ ¬Abpenguin). To address this problem-
atic about specificity, one needs to use priorities between the
minimized concepts (or abnormality predicates) (McCarthy
1986; Bonatti, Lutz, & Wolter 2009).

In contrast, for the formulation in the example, the seman-
tics induced by the preferential order <1 does not allow to
have interpretations where e ∈ Penguin, e ∈ T1(Bird) and
e 6∈ T1(Penguin), i.e., the treatment of specificity comes for
free in the semantics of the logic.

Complexity of reasoning in ALC+T+
min

In the following, we show that reasoning in ALC+T+
min is

NExpNP-complete for concept satisfiability and co-NExpNP-
complete for subsumption and instance checking. As a main
tool we use the close correspondence that exists between
concept-circumscribed knowledge bases in the DL ALC
(Bonatti, Lutz, & Wolter 2009) and ALC+T+

min knowledge
bases. In fact, this relation has been pointed out in (Giordano
et al. 2013b) with respect to the logic ALC+Tmin. However,
on the one hand, the provided mapping from ALC+Tmin

into concept-circumscribed knowledge bases is not polyno-
mial, and instead a tableaux calculus is used to show the up-
per bounds for the main reasoning tasks in ALC+Tmin. On
the other hand, the relation in the opposite direction is only
given with respect to the logic ALCO+Tmin, which extends
ALC+Tmin by allowing the use of nominals.

First, we improve the mapping proposed in (Giordano
et al. 2013b) by giving a simpler polynomial reduction,
that translates ALC+T+

min knowledge bases into concept-
circumscribed knowledge bases while preserving the en-
tailment relation under the translation. Second, we show
that using more than one typicality operator, it is possible
to reduce the problem of concept satisfiability for concept-
circumscribed knowledge bases in ALC, into the concept
satisfiability problem for ALC+T+

min.
We start by introducing circumscribed knowledge bases

in the DL ALC, as defined in (Bonatti, Lutz, & Wolter
2009). We obviate the use of priorities between minimized
predicates.

Definition 9. A circumscribed knowledge base is an expres-
sion of the form CircCP(T ,A) where CP = (M,F, V) is a
circumscription pattern such that M,F, V partition the pred-
icates (i.e.: concept and role names) used in T and A. The
set M identifies those concept names whose extension is
minimized, F those whose extension must remain fixed and
V those that are free to vary. A circumscribed knowledge
base where M ∪ F ⊆ NC is called a concept-circumscribed
knowledge base.

To formalize a semantics for circumscribed knowledge
bases, a preference relation <CP is defined on interpretations
by setting I <CP J iff:

• ∆I = ∆J ,
• aI = aJ for all a ∈ NI,
• AI = AJ for all A ∈ F ,
• AI ⊆ AJ for all A ∈ M and there exists an A′ ∈ M

such that A′
I ⊂ A′

J .

117

An interpretation I is a model of CircCP(T ,A) if I is a
model of (T ,A) and there is no model I ′ of (T ,A) with
I ′ <CP I. The different reasoning tasks can be defined in
the same way as above.

Similar as for circumscribed knowledge bases in (Bonatti,
Lutz, & Wolter 2009), one can show that concept satisfiabil-
ity, subsumption and instance checking can be polynomially
reduced to one another in ALC+T+

min. However, to reduce
instance checking into concept satisfiability slightly differ-
ent technical details have to be considered.
Lemma 10. Let K = (T ,A) be an ALC+T+ knowl-
edge base, Ce an extended concept, LT1 , . . . ,LTk

be fi-
nite sets of concept names and A a fresh concept name
not occurring in K and Ce. Then, K |=LT+

min Ce(a) iff
¬Tk+1(A) u ¬Ce is unsatisfiable w.r.t. K′ = (T ∪ {> v
A},A ∪ {(¬Tk+1(A))(a)}), where LTk+1 = {A}.

Note that this reduction requires the introduction of an ad-
ditional typicality operator Tk+1. Nevertheless, this does not
represent a problem in terms of complexity since, as it will
be shown in the following, the complexity does not depend
on the number of typicality operators k whenever k ≥ 2.

Upper Bound
Before going into the details of the reduction we need to
define the notion of a signature.
Definition 11. Let NT be the set of all the concepts of the
form Ti(A) where A ∈ NC. A signature Σ for ALC+T+ is
a finite subset of NC∪NR∪NT. We denote by Σ|ALC the set
Σ \ NT.

The signature sig(Ce) of an extended concept Ce is the
set of all concept names, role names and concepts from
NT that occur in Ce. Similarly, the signature sig(K) of an
ALC+T+ knowledge base K is the union of the signatures
of all concept descriptions occurring in K. Finally, we de-
note by sig(E1, . . . , Em) the set sig(E1) ∪ . . . ∪ sig(Em),
where each Ei is either an extended concept or a knowledge
base.

Let K = (T ,A) be an ALC+T+ knowledge base,
LT1 , . . . ,LTk

finite sets of concept names and Σ be any
signature with sig(K) ⊆ Σ. A corresponding circumscribed
knowledge base CircCP(T ′,A′), withK′ = (T ′,A′), is built
in the following way:
• For every concept A such that it belongs to some set LTi

or Ti(A) ∈ Σ, a fresh concept name A∗i is introduced.
These concepts are meant to represent the atypical ele-
ments with respect to A and <i in K, i.e., ¬�i¬A.

• Every concept description C defined over Σ is trans-
formed into a concept C̄ by replacing every occurrence
of Ti(A) by (A u ¬A∗i).

• The TBox T ′ is built as follows:
– C̄ v D̄ ∈ T ′ for all C v D ∈ T ,
– For each new concept A∗i the following assertions are

included in T ′:
A∗i ≡ ∃ri.(A u ¬A∗i) (1)

∃ri.A
∗
i v A∗i (2)

where ri is a fresh role symbol, not occurring in Σ,
introduced to represent the relation <i.

• A′ results from replacing every assertion of the form C(a)
in T by the assertion C̄(a).

• Let LT be the set:

k⋃
j=1

⋃
A∈LTj

A∗j

then, the concept circumscription pattern CP is defined
as CP = (M,F, V) = (LT, ∅, Σ|ALC ∪ {A∗i | A∗i 6∈
LT} ∪ {ri | 1 ≤ i ≤ k}).

One can easily see that the provided encoding is poly-
nomial in the size of K. The use of the signature Σ is just a
technical detail and since it is chosen arbitrarily, one can also
select it properly for the encoding of the different reasoning
tasks.

The idea of the translation is to simulate each order <i

with a relation ri and at the same time fulfill the seman-
tics underlying the Ti operators. The first assertion, A∗i ≡
∃ri.(Au¬A∗i), intends to express that the atypical elements
with respect to A and <i are those, and only those, that have
an ri-successor e that is an instance of A and at the same
time a not atypical A, i.e. , e ∈ Ti(A). Indeed, this is a con-
sequence from the logic ALC+T+

min because the order <i is
transitive. However, since it is not possible to enforce tran-
sitivity of ri when translated into ALC, we need to use the
second assertion ∃ri.A

∗
i v A∗i . This prevents to have the

following situation:

d ∈ A∗1 d ∈ Bu¬B∗1 (d, e) ∈ r1 e ∈ Au¬A∗1 e ∈ B∗1

In the absence of assertion (2), this would be consistent with
respect to T ′, but it would not satisfy the aim of the transla-
tion since the typical B-element d would have a predecessor
(ri-successor) e which is atypical with respect to B. In fact,
the translation provided in (Giordano et al. 2013b) also deals
with this situation, but all the possible cases are asserted ex-
plicitly yielding an exponential encoding.

The following auxiliary lemma shows that a model of
(T ′,A′) can always be transformed into a model, that only
differs in the interpretation of ri, and (ri)−1 is irreflexive,
transitive and well-founded.
Lemma 12. Let I be an ALC interpretation such that
I |= (T ′,A′). Then, there exists J such that J |= (T ′,A′),
XI = XJ for all X ∈ Σ|ALC ∪

⋃
A∗i , and for each ri we

have:
(
ri
J)−1

is irreflexive, transitive and well-founded.

Since well-foundedness implies the Smoothness Condi-
tion, the previous lemma allows us to assume (without loss
of generality) that

(
ri
I)−1

is irreflexive, transitive and sat-
isfies the Smoothness Condition for every model I of K′.

Now, we denote by MK the set of models of K and by
MK′ the set of models of K′. With the help of the previous
lemma, we show that there exists a one-to-one correspon-
dence betweenMK andMK′ . We start by defining a map-
ping ϕ that transforms ALC+T+ interpretations into ALC
interpretations.

118

Definition 13. We define a mapping ϕ from ALC+T+ in-
terpretations into ALC interpretations such that ϕ(I) = J
iff:
• ∆J = ∆I ,
• XJ = XI for each X ∈ Σ|ALC ,
• (A∗i)J = (¬�i¬A)I for each fresh concept name A∗i ,
• (ri)J = (<i)−1 for all i, 1 ≤ i ≤ k,
• aJ = aI , for all a ∈ NI.
Remark. We stress that interpretations are considered only
with respect to concept and role names occurring in Σ for
ALC+T+, and Σ|ALC ∪{A∗i }∪{ri} forALC. All the other
concept and role names from NC and NR are not relevant to
distinguish one interpretation from another one. This is, if
I and J are two ALC+T+ interpretations, then I ≡ J iff
XI = XJ for all X ∈ Σ ∩ (NC ∪NR) and (<i)I = (<i)J
for all i, 1 ≤ i ≤ k. The same applies for ALC interpreta-
tions, but with respect to Σ|ALC ∪ {A∗i } ∪ {ri}.

Next, we show that ϕ is indeed a bijection from MK to
MK′ .
Lemma 14. The mapping ϕ is a bijection from MK to
MK′ , such that for every I ∈ MK and each extended con-
cepts Ce defined over Σ: CIe = (C̄e)ϕ(I).

Proof. First, we show that for each I ∈ MK it holds that:
ϕ(I) ∈ MK′ . Let I = (∆I , .I , <1, . . . , <k) be a model
of K and assume that ϕ(I) = J . We observe that since
[Ti(A)]I = (Au�i¬A)I , then by definition of ϕ it follows
that:

[Ti(A)]I = (A u ¬A∗i)J (3)
Consequently, one can also see that for every extended con-
cept Ce defined over Σ and every element d ∈ ∆I :

d ∈ CIe iff d ∈ (C̄e)J (4)

This can be shown by a straightforward induction on the
structure of Ce where the base cases are A and Ti(A).
Hence, it follows that CIe = (C̄e)J for every extended con-
cept Ce defined over Σ.

Now, we show that J |= (T ′,A′). From (4), it is clear
that J |= C̄ v D̄ for all C̄ v D̄ ∈ T ′. In addition, since
aJ = aI for all a ∈ NI, J satisfies each assertion in A′. It
is left to show that each GCI in T ′ containing an occurrence
of a fresh role ri is also satisfied by J . For each d ∈ ∆I and
concept name A∗i , it holds:

d ∈ (A∗i)J iff d ∈ (¬�i¬A)I

iff ∃e ∈ ∆I s.t. e <i d and e ∈ [Ti(A)]I

iff (d, e) ∈ (ri)J and e ∈ (A u ¬A∗i)J by (3)

iff d ∈ (∃ri.(A u ¬A∗i))J

The case for the second GCI (∃ri.A
∗
i v A∗i) can be shown

in a very similar way. Thus, J |= (T ′,A′) and consequently
ϕ is a function fromMK intoMK′ .

Second, we show that for any model J of K′ (i.e. J ∈
MK′), there exists I ∈ MK with ϕ(I) = J . Let J be an
arbitrary model of K′, we build an ALC+T+ interpretation
I = (∆I , .I , <1, . . . , <k) in the following way:

• ∆I = ∆J ,
• XI = XJ for each X ∈ Σ|ALC ,

• <i=
(
ri
J)−1

for all i, 1 ≤ i ≤ k,
• aI = aJ , for all a ∈ NI.

Next, we show that (¬�i¬A)I = (A∗i)J . Assume that
d ∈ (¬�i¬A)I for some d ∈ ∆I , then there exists e <i d
such that e ∈ AI and e ∈ [Ti(A)]I . This means that for
all f <i e(or (e, f) ∈ rJi): f 6∈ AI . Hence, e ∈ AJ

and e 6∈ (A∗i)J . All in all, we have (d, e) ∈ rJi and
e ∈ (Au¬A∗i)J , therefore d ∈ (A∗i)J . Conversely, assume
that d ∈ (A∗i)J . Assertion (1) in T ′ implies that there exists
e such that (d, e) ∈ (ri)J and e ∈ AJ . By construction of
I we have e <i d and e ∈ AI . Thus, d ∈ (¬�i¬A)I and
we can conclude that (¬�i¬A)I = (A∗i)J . Having this, it
follows that ϕ(I) = J . In addition, similar as for equation
(3), we have:

[Ti(A)]I = (A u ¬A∗i)J (5)

A similar reasoning, as above yields that I |= K. This im-
plies that ϕ is surjective. It is not difficult to see, from the
definition of ϕ, that it is also injective. Thus, ϕ is a bijection
fromMK toMK′ .

The previous lemma establishes a one to one correspon-
dence between MK and MK′ . Then, since K is an arbi-
traryALC+T+ knowledge base, Lemma 14 also implies that
knowledge base consistency in ALC+T+ can be polynomi-
ally reduced to knowledge base consistency in ALC, which
is EXPTIME-complete (Baader et al. 2003).
Theorem 15. In ALC+T+, deciding knowledge base con-
sistency is EXPTIME-complete.

In addition, since ALC enjoys the finite model property,
this is also the case for ALC+T+. Using the same argument
given before for ALC+T and ALC+Tmin, deciding knowl-
edge base consistency in ALC+T+

min reduces to the same
problem with respect to the underlying monotonic logic
ALC+T+. Therefore, we obtain the following theorem.
Theorem 16. In ALC+T+

min, deciding knowledge base con-
sistency is EXPTIME-complete.

Now, we show that ϕ is not only a bijection fromMK to
MK′ , but it is also order-preserving with respect to <+

LT
and

<CP.
Lemma 17. Let I and J be two models of K. Then, I <+

LT

J iff ϕ(I) <CP ϕ(J).

Proof. Assume that I <+
LT
J . Then, for all A ∈ LTi we

have that (¬�i¬A)I ⊆ (¬�i¬A)J and in particular, for
some j and A′ ∈ LTj we have (¬�j¬A′)I ⊂ (¬�j¬A′)J .
By definition of ϕ, we know that (¬�i¬A)I = (A∗i)ϕ(I).
Hence, for all A∗i ∈ M we have that (A∗i)ϕ(I) ⊆ (A∗i)ϕ(J)

and (A′∗j)ϕ(I) ⊂ (A′∗j)ϕ(J). Thus, ϕ(I) <CP ϕ(J). The
other direction can be shown in the same way.

The following lemma is an easy consequence from the
previous one and the fact that ϕ is bijection (which implies
that ϕ is invertible).

119

Lemma 18. Let I and J be ALC+T+ and ALC interpre-
tations, respectively. Then,

I |=LT+
min K iff ϕ(I) |= CircCP(T ′,A′) (a)

J |= CircCP(T ′,A′) iff ϕ−1(J) |=LT+
min K (b)

Thus, we have a correspondence between minimal mod-
els of K and models of CircCP(T ′,A′). Based on this, it is
easy to reduce each reasoning task from ALC+T+

min into
the equivalent task with respect to concept-circumscribed
knowledge bases. The following lemma states the existence
of such a reduction for concept satisfiability, the cases for
subsumption and instance checking can be proved in a very
similar way.

Lemma 19. An extended concept C0 is satisfiable w.r.t. to
K and LT1 , . . . ,LTk

iff C̄0 is satisfiable in CircCP(T ′,A′).

Proof. Let us define Σ as sig(K, C0).
(⇒) Assume that I is a minimal model of K with CI0 6=

∅. The application of Lemma 18 tells us that ϕ(I) |=
CircCP(T ′,A′). In addition, from Lemma 14 we have that
CI0 = (C̄0)ϕ(I). Thus, C̄0 is satisfiable in CircCP(T ′,A′).
(⇐) The argument is similar, but using ϕ−1.

Finally, from the complexity results proved in (Bonatti,
Lutz, & Wolter 2009) for the different reasoning tasks with
respect to concept-circumscribed knowledge bases in ALC,
we obtain the following upper bounds.

Theorem 20. In ALC+T+
min, it is in NExpNP to decide con-

cept satisfiability and in co-NExpNP to decide subsumption
and instance checking.

Lower Bound
To show the lower bound, we reduce the problem of concept
satisfiability with respect to concept-circumscribed knowl-
edge bases inALC, into the concept satisfiability problem in
ALC+T+

min. It is enough to consider concept-circumscribed
knowledge bases of the form CircCP(T ,A) with CP =
(M,F, V) where A = ∅ and F = ∅. The problem of de-
ciding concept satisfiability for this class of circumscribed
knowledge bases has been shown to be NExpNP-hard for
ALC (Bonatti, Lutz, & Wolter 2009). In order to do that, we
modify the reduction provided in (Giordano et al. 2013b)
which shows NExpNP-hardness for concept satisfiability in
ALCO+Tmin.

Before going into the details, we assume without loss of
generality that each minimized concept occurs in the knowl-
edge base:
Remark. Let CircCP(T ,A) be a circumscribed knowledge
base. If A ∈ M and A does not occur in (T ,A), then for
each model I of CircCP(T ,A): AI = ∅.

Given a circumscribed knowledge base K =
CircCP(T ,A) (where CP is of the previous form) and
a concept description C0, we define a corresponding
ALC+T+ knowledge base K′ = (T ′,A′) using two
typicality operators in the following way.

Let M be the set {M1, . . . ,Mq}. Similarly as in (Gior-
dano et al. 2013b), individual names c and cmi

(one for each

Mi ∈M) and a fresh concept name D are introduced. Each
ALC concept description C is transformed into C∗ induc-
tively by introducing D into concept descriptions of the form
∃r.C1, i.e.: (∃r.C1)∗ = ∃r.(D u C∗1) (see (Giordano et al.
2013b) for precise details).

Similar as in (Giordano et al. 2013b), we start by adding
the following GCIs to the TBox T ′:

D u C∗1 v C∗2 if C1 v C2 ∈ T (6)
D uMi v ¬T1(Mi) for all Mi ∈M (7)

The purpose of using these subsumption statements is to
establish a correspondence between the minimized concept
names Mi, from the circumscription side, with the under-
lying concepts ¬�1¬Mi on the ALC+T+

min side, such that
the minimization of the Mi concepts can be simulated by the
minimization of ¬�1¬Mi. The individual names cmi are in-
troduced to guarantee the existence of typical Mi’s in view
of assertion (7). The concept D plays the role to distinguish
the elements of the domain that are not mapped to those in-
dividual names by an interpretation.

Note that if under an interpretation I an element d is an
instance of D and Mi at the same time, then it has to be an
instance of ¬T1(Mi) and therefore an instance of ¬�1¬Mi

as well. Hence, it is important that whenever d becomes an
instance of �1¬Mi in a preferred interpretation to I, it hap-
pens because d becomes an instance of ¬Mi while it is still
an instance of D. In order to force this effect during the min-
imization, the interpretation of the concept D should remain
fixed in some way. As pointed out in (Giordano et al. 2013b),
this seems not to be possible in ALC+Tmin and that is why
the reduction is realized for ALCO+Tmin where nominals
are used with that purpose.

In contrast, for ALC+T+
min this effect on D can be simu-

lated by introducing a second typicality operator T2, setting
LT1 = M,LT2 = {A} and adding the following two asser-
tions to T ′:

> v A (8)
¬D v ¬T2(A) (9)

where A is a fresh concept name. Note that if an element
d becomes a (¬D)-element, it automatically becomes a
(¬�2¬A)-element.

The ABox A′ contains the following assertions:
• D(c),
• for each Mi ∈M :

– (¬D)(cmi),
– (T1(Mi))(cmi),
– (¬Mj)(cmi

) for all j 6= i.
Finally, a concept description C ′0 is defined as D u C∗0 .

Lemma 21. C0 is satisfiable in CircCP(T ,A) iff C ′0 is sat-
isfiable w.r.t. K′ = (T ′,A′) in ALC+T+

min.

Proof. Details of the proof are deferred to the long version
of the paper.

Since the size of K′ is polynomial with respect to the size
of K, the application of the previous lemma yields the fol-
lowing result.

120

Theorem 22. In ALC+T+
min, concept satisfiability is

NExpNP-hard.

Since concept satisfiability, subsumption and instance
checking are polynomially interreducible (see Lemma 10),
Theorem 22 yields co-NExpNP lower bounds for the sub-
sumption and the instance checking problem.

Corollary 23. In ALC+T+
min, it is NExpNP-complete to de-

cide concept satisfiability and co-NExpNP-complete to de-
cide subsumption and instance checking.

Finally, we remark that the translations provided between
ALC+T+

min and concept-circumscribed knowledge bases do
not depend on the classical constructors of the description
logic ALC. Therefore, the same translations can be used
for the more expressive description logics ALCIO and
ALCQO. From the complexity results obtained in (Bonatti,
Lutz, & Wolter 2009) for circumscription in ALCIO and
ALCQO , we also obtain the following corollary.

Corollary 24. In ALCIO+T+
min and ALCQO+T+

min, it
is NExpNP-complete to decide concept satisfiability and
co-NExpNP-complete to decide subsumption and instance
checking.

Moreover, from the lower bound obtained in (Giordano et
al. 2013b) for ALCO+Tmin, the results also apply for the
logics ALCIO+Tmin and ALCQO+Tmin.

Corollary 25. In ALCIO+Tmin and ALCQO+Tmin, it
is NExpNP-complete to decide concept satisfiability and
co-NExpNP-complete to decide subsumption and instance
checking.

Conclusions
In this paper, we have provided an extension of the non-
monotonic description logic ALC+Tmin, by adding the pos-
sibility to use more than one preference relation over the
domain elements. This extension, called ALC+T+

min, allows
to express typicality of a class of elements with respect to
different aspects in an “independent” way. Based on this, a
class of elements P that is exceptional with respect to a su-
perclass B regarding a specific aspect, could still be not ex-
ceptional with respect to different unrelated aspects. The lat-
ter permits that defeasible properties from B not conflicting
with the exceptionality of P , can be inherited by elements in
P . As already observed in the paper, this is not possible in
the logic ALC+Tmin.

In addition, we have introduced translations that show
the close relationship between ALC+T+

min and concept-
circumscribed knowledge bases in ALC. First, the provided
translation from ALC+T+

min into concept-circumscribed
knowledge bases is polynomial, in contrast with the ex-
ponential translation given in (Giordano et al. 2013b) for
ALC+Tmin. Second, the translation presented for the oppo-
site direction shows how to encode circumscribed knowl-
edge base, by using two typicality operators and no nomi-
nals.

Using these translations, we were able to determine the
complexity of deciding the different reasoning tasks in
ALC+T+

min. We have shown that it is NExpNP-complete

to decide concept satisfiability and co-NExpNP-complete to
decide subsumption and instance checking. Moreover, the
same translations can be used for the corresponding exten-
sions of ALC+T+

min into more expressive description logics
like ALCIO and ALCQO. The results also apply for ex-
tensions of ALC+Tmin with respect to the underlying de-
scription logics, in view of the hardness result shown for
ALCO+Tmin in (Giordano et al. 2013b).

As possible future work, the exact complexity for reason-
ing in ALC+Tmin still remains open. It would be interesting
to see if it is actually possible to improve the NExpNP(co-
NExpNP) upper bounds. If that were the case, there is a pos-
sibility to identify a corresponding fragment from concept-
circumscribed knowledge bases with a better complexity
than NExpNP(co-NExpNP).

As a different aspect, it can be seen that the logicALC+T
and our proposed extension ALC+T+ impose syntactic re-
strictions on the use of the typicality operator. First, it is not
possible to use a typicality operator under a role operator.
Second, only subsumption statements of the form T(A) v
C are allowed in the TBox. The latter, seems to come from
the fact that ALC+T is based on the approach to proposi-
tional non-monotonic reasoning proposed in (Lehmann &
Magidor 1992), where a conditional assertion of the form
A|∼C is used to express that A’s normally have property C.

As an example, by lifting these syntactic restrictions, one
will be able to express things like:

T(Senior Teacher) v Excellent Teacher

T(Student) v ∀attend.(Class u
∃imparted.T(Senior Teacher))

This allows to relate the typical instances from different
classes in a way which is not possible with the current syn-
tax. From a complexity point of view, it is not difficult to
observe that the given translations in the paper will also be
applicable in this case, without increasing the overall com-
plexity. The reason is that after lifting the mentioned syn-
tactic restrictions, the occurrences of Ti(A) in an extended
concept can still be seen as basic concepts.

Therefore, it would be interesting to study what are the
effects of removing these restrictions, with respect to the
kind of conclusions that would be obtained from a knowl-
edge base expressed in the resulting non-monotonic logic.

Acknowledgements
I thank my supervisors Gerhard Brewka and Franz Baader
for helpful discussions.

References
Baader, F., and Hollunder, B. 1995a. Embedding defaults
into terminological knowledge representation formalisms. J.
Autom. Reasoning 14(1):149–180.
Baader, F., and Hollunder, B. 1995b. Priorities on defaults
with prerequisites, and their application in treating speci-
ficity in terminological default logic. J. Autom. Reasoning
15(1):41–68.

121

Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press.
Bonatti, P. A.; Lutz, C.; and Wolter, F. 2009. The complexity
of circumscription in dls. J. Artif. Intell. Res. (JAIR) 35:717–
773.
Britz, K.; Meyer, T.; and Varzinczak, I. J. 2011. Semantic
foundation for preferential description logics. In Wang, D.,
and Reynolds, M., eds., Australasian Conference on Artifi-
cial Intelligence, volume 7106 of Lecture Notes in Computer
Science, 491–500. Springer.
Casini, G., and Straccia, U. 2010. Rational closure for de-
feasible description logics. In Janhunen, T., and Niemelä,
I., eds., JELIA, volume 6341 of Lecture Notes in Computer
Science, 77–90. Springer.
Geffner, H., and Pearl, J. 1992. Conditional entailment:
Bridging two approaches to default reasoning. Artif. Intell.
53(2-3):209–244.
Giordano, L.; Olivetti, N.; Gliozzi, V.; and Pozzato, G. L.
2009. Alc + t: A preferential extension of description logics.
Fundam. Inform. 96(3):341–372.
Giordano, L.; Gliozzi, V.; Olivetti, N.; and Pozzato, G. L.
2013a. Minimal model semantics and rational closure in
description logics. In Eiter, T.; Glimm, B.; Kazakov, Y.;
and Krötzsch, M., eds., Description Logics, volume 1014 of
CEUR Workshop Proceedings, 168–180. CEUR-WS.org.
Giordano, L.; Gliozzi, V.; Olivetti, N.; and Pozzato, G. L.
2013b. A non-monotonic description logic for reasoning
about typicality. Artif. Intell. 195:165–202.
Lehmann, D. J., and Magidor, M. 1992. What does a condi-
tional knowledge base entail? Artif. Intell. 55(1):1–60.
McCarthy, J. 1980. Circumscription - a form of non-
monotonic reasoning. Artif. Intell. 13(1-2):27–39.
McCarthy, J. 1986. Applications of circumscription to for-
malizing common-sense knowledge. Artif. Intell. 28(1):89–
116.
Pearl, J. 1990. System z: A natural ordering of defaults with
tractable applications to nonmonotonic reasoning. In Parikh,
R., ed., TARK, 121–135. Morgan Kaufmann.
Reiter, R. 1980. A logic for default reasoning. Artif. Intell.
13(1-2):81–132.
Schmidt-Schauß, M., and Smolka, G. 1991. Attributive con-
cept descriptions with complements. Artif. Intell. 48(1):1–
26.

122

An Argumentation System for Reasoning with
Conflict-minimal Paraconsistent ALC

Wenzhao Qiao and Nico Roos
Department of Knowledge Engineering, Maastricht University

Bouillonstraat 8-10, 6211 LH Maastricht, The Netherlands
{wenzhao.qiao,roos}@maastrichtuniversity.nl

Abstract

The semantic web is an open and distributed environment in
which it is hard to guarantee consistency of knowledge and
information. Under the standard two-valued semantics every-
thing is entailed if knowledge and information is inconsistent.
The semantics of the paraconsistent logic LP offers a solution.
However, if the available knowledge and information is con-
sistent, the set of conclusions entailed under the three-valued
semantics of the paraconsistent logic LP is smaller than the
set of conclusions entailed under the two-valued semantics.
Preferring conflict-minimal three-valued interpretations elim-
inates this difference.
Preferring conflict-minimal interpretations introduces non-
monotonicity. To handle the non-monotonicity, this paper
proposes an assumption-based argumentation system. As-
sumptions needed to close branches of a semantic tableaux
form the arguments. Stable extensions of the set of derived
arguments correspond to conflict minimal interpretations and
conclusions entailed by all conflict-minimal interpretations
are supported by arguments in all stable extensions.

Introduction
In the semantic web, the description logics SHOIN (D)
and SROIQ(D) are the standard for describing ontolo-
gies using the TBox, and information using the Abox.
Since the semantic web is an open and distributed environ-
ment, knowledge and information originating from different
sources need not be consistent. In case of inconsistencies,
no useful conclusion can be derived when using a standard
two-valued semantics. Everything is entailed because the
set of two-valued interpretations is empty. Resolving the
inconsistencies is often not an option in an open and dis-
tributed environment. Therefore, methods that allow us to
derive useful conclusions in the presence of inconsistencies
are preferred.

One possibility to draw useful conclusions from inconsis-
tent knowledge and information is by focussing on conclu-
sions supported by all maximally consistent subsets. This
approach was first proposed by Rescher (1964) and was
subsequence worked out further by others (Brewka 1989;
Roos 1988; 1992). A simple implementation of this ap-
proach focusses on conclusions entailed by the intersection
of all maximally consistent subsets. Instead of focussing on
the intersection of all maximally consistent subsets, one may

also consider a single consistent subset for each conclusion
(Poole 1988; Huang, van Harmelen, & ten Teije 2005). For
conclusions entailed by all (preferred) maximally consistent
subsets of the knowledge and information, a more sophis-
ticated approach is needed. An argumentation system for
this more general case has been described by Roos (1992).
Since these approaches need to identify consistent subsets of
knowledge and information, they are non-monotonic.

A second possibility for handling inconsistent knowledge
and information is by replacing the standard two-valued se-
mantics by a three-valued semantics such as the semantics
of the paraconsistent logic LP (Priest 1989). An important
advantage of this paraconsistent logic over the maximally
consistent subset approach is that the entailment relation is
monotonic. A disadvantage is that consistent knowledge and
information entail less conclusions when using the three-
valued semantics than when using the two-valued seman-
tics. Conflict-minimal interpretations reduce the gap be-
tween the sets of conclusions entailed by the two seman-
tics (Priest 1989; 1991). Priest (1991) calls resulting logic:
LPm. The conflict-minimal interpretations also makes LPm
non-monotonic (Priest 1991).

In this paper we present an argumentation system for con-
clusions entailed by conflict-minimal interpretations of the
description logic ALC (Schmidt-Schauß & Smolka 1991)
when using the semantics of the paraconsistent logic LP.
We focus on ALC instead of the more expressive logics
SHOIN (D) and SROIQ(D) to keep the explanation
simple. The described approach can also be applied to more
expressive description logics.

The proposed approach starts from a semantic tableaux
method for the paraconsistent logic LP described by Bloesch
(1993), which has been adapted to ALC. The semantic
tableaux is used for deriving the entailed conclusions when
using the LP-semantics. If a tableaux cannot be closed, the
desired conclusion may still hold in all conflict-minimal in-
terpretations. The open tableaux enables us to identify as-
sumptions about conflict-minimality. These assumptions are
used to construct an assumption-based argumentation sys-
tem, which supports conclusions entailed by all conflict min-
imal interpretations.

The remainder of the paper is organized as follows. First,
we describe ALC, a three-valued semantics for ALC based
on the semantics of the paraconsistent logic LP, and a corre-

123

sponding semantic tableaux method. Second, we describe
how a semantic tableaux can be used to determine argu-
ments for conclusions supported by conflict-minimal inter-
pretations. Subsequently, we present the correctness and
completeness proof of the described approach. Next we de-
scribe some related work. The last section summarizes the
results and points out directions of future work.

Paraconsistent ALC
The language of ALC We first give the standard defini-
tions of the language of ALC. We start with defining the
set of concepts C given the atomic concepts C, the role re-
lations R, the operators for constructing new concepts ¬, u
and t, and the quantifiers ∃ and ∀. Moreover, we introduce
to special concepts, > and ⊥, which denote everything and
nothing, respectively.
Definition 1 Let C be a set of atomic concepts and let R be
a set of atomic roles.

The set of concepts C is recursively defined as follows:

• C ⊆ C; i.e. atomic concepts are concepts.
• > ∈ C and ⊥ ∈ C.
• If C ∈ C and D ∈ C, then ¬C ∈ C, C u D ∈ C and
C tD ∈ C.

• If C ∈ C and R ∈ R, then ∃R.C ∈ C and ∀R.C ∈ C.
• Nothing else belongs to C.

In the description logic ALC, we have two operators: v
and =, for describing a relation between two concepts:
Definition 2 If {C,D} ⊆ C, then we can formulate the fol-
lowing relations (terminological definitions):

• C v D; i.e., C is subsumed by D,
• C = D; i.e., C is equal to D.

A finite set T of terminological definitions is called a TBox.
In the description logic ALC, we also have an operator

“:”, for describing that an individual from the set of individ-
ual names N is an instance of a concept, and that a pair of
individuals is an instance of a role.

Definition 3 Let {a, b} ⊆ N be two individuals, let C ∈ C
be a concept and let R ∈ R be a role. Then assertions are
defined as:

• a : C
• (a, b) : R

A finite set A of assertions is called an ABox.
A knowledge base K = (T ,A) is a tuple consisting of

a TBox T and an ABox A. In this paper we will denote
elements of the TBox and ABox T ∪ A as propositions.

We define a three-valued semantics for ALC which is
based on the semantics of the paraconsistent logic LP . We
do not use the notation I = (∆, ·I) that is often used for the
semantics of description logics. Instead we will use a nota-
tion that is often used for predicate logic because it is more
convenient to describe projections and truth-values.
Definition 4 A three-valued interpretation I = 〈O, π〉 is a
couple where O is a non-empty set of objects and π is an
interpretation function such that:

• for each atomic concept C ∈ C, π(C) = 〈P,N〉 where
P,N ⊆ O are the positive and negative instances of the
concept C, respectively, and where P ∪N = O,

• for each individual i ∈ N it holds that π(i) ∈ O, and
• for each atomic role R ∈ R it holds that π(R) ⊆ O ×O.

We will use the projections π(C)+ = P and π(C)− = N to
denote the positive and negative instances of a concept C,
respectively.

We do not consider inconsistencies in roles since we can-
not formulate inconsistent roles in ALC. In a more expres-
sive logic, such as SROIQ, roles may become inconsistent,
for instance because we can specify disjoint roles.

Using the three-valued interpretations I = 〈O, π〉, we de-
fine the interpretations of concepts in C.

Definition 5 The interpretation of a concept C ∈ C is de-
fined by the extended interpretation function π∗.

• π∗(C) = π(C) iff C ∈ C
• π∗(>) = 〈O,X〉, where X ⊆ O
• π∗(⊥) = 〈X,O〉, where X ⊆ O
• π∗(¬C) = 〈π∗(C)−, π∗(C)+〉
• π∗(C uD) = 〈π∗(C)+ ∩ π∗(D)+, π∗(C)− ∪ π∗(D)−〉
• π∗(C tD) = 〈π∗(C)+ ∪ π∗(D)+, π∗(C)− ∩ π∗(D)−〉
• π∗(∃R.C) =
〈 {x ∈ O | ∃y ∈ O, (x, y) ∈ π(R) and y ∈ π(C)+},
{x ∈ O | ∀y ∈ O, (x, y) ∈ π(R) implies y ∈ π(C)−} 〉

• π∗(∀R.C) =
〈 {x ∈ O | ∀y ∈ O, (x, y) ∈ π(R) implies y ∈ π(C)+},
{x ∈ O | ∃y ∈ O, (x, y) ∈ π(R) and y ∈ π(C)−} 〉

Note that we allow inconsistencies in the concepts > and
⊥. There may not exist a tree-valued interpretation for a
knowledge-base K = (T ,A) if we require that X = ∅.
Consider for instance: a : C, a : D and C uD v ⊥.

We also use the extended interpretation function π∗ to de-
fine the truth values of the propositions: C v D, a : C
and (a, b) : R. The truth values of the three-valued seman-
tics are defined using sets of the “classical” truth values: t
and f . We use three sets in the LP-semantics: {t}, {f} and
{t, f}, which correspond to TRUE, FALSE and CONFLICT.

Definition 6 Let {a, b} ⊆ N be two individuals, let C ∈ C
be a concept and letR ∈ R be a role. Then an interpretation
I = 〈O, π〉 of propositions is defined as:

• t ∈ π∗(a : C) iff π∗(a) ∈ π∗(C)+

• f ∈ π∗(a : C) iff π∗(a) ∈ π∗(C)−

• t ∈ π∗(C v D) iff π∗(C)+ ⊆ π∗(D)+, and
π∗(D)− ⊆ π∗(C)−

• f ∈ π∗(C v D) iff t 6∈ π∗(C v D)
• t ∈ π∗(C = D) iff π∗(C)+ = π∗(D)+ and

π∗(D)− = π∗(C)−

• f ∈ π∗(C = D) iff t 6∈ π∗(C = D)
• t ∈ π∗((a, b) : R) iff (π∗(a), π∗(b)) ∈ π(R)
• f ∈ π∗((a, b) : R) iff (π∗(a), π∗(b)) 6∈ π(R)

124

The interpretation of the subsumption relation given
above was proposed by Patel-Schneider (1989) for their
four-valued semantics. Patel-Schneider’s interpretation of
the subsumption relation does not correspond to the mate-
rial implication ∀x[C(x) → D(x)] in first-order logic. The
latter is equivalent to ∀x[¬C(x) ∨ D(x)] under the two-
valued semantics, which corresponds to: “for every o ∈ O,
o ∈ π∗(C)− or o ∈ π∗(D)+” under the three-valued seman-
tics. No conclusion can be drawn from a : C and C v D
under the three-valued semantics since there always exists
an interpretation such that π(a : C) = {t, f}.

The entailment relation can be defined using the interpre-
tations of propositions.

Definition 7 Let I = 〈O, π〉 be an interpretation, let ϕ be
a proposition, and let Σ be a set of propositions. The the
entailment relation is defined as:

• I |= ϕ iff t ∈ π∗(ϕ)
• I |= Σ iff t ∈ π∗(σ) for every σ ∈ Σ.
• Σ |= ϕ iff I |= Σ implies I |= ϕ for each interpretation I

Semantic tableaux We use a semantic tableaux method
that is based on the semantic tableaux method for LP de-
scribed by Bloesch (1993). This tableaux method will en-
able us to identify the assumptions underlying relevant con-
flict minimal interpretations.

Bloesch proposes to label every proposition in the
tableaux with either the labels T (at least true), F (at least
false), or their complements T and F, respectively. So, Tϕ
corresponds to t ∈ π(ϕ), Tϕ corresponds to t 6∈ π(ϕ), Fϕ
corresponds to f ∈ π(ϕ), and Fϕ corresponds to f 6∈ π(ϕ).

Although we do not need it in the semantic tableaux, we
also make use of Cϕ and Cϕ, which corresponds semanti-
cally with {t, f} = π(ϕ) and {t, f} 6= π(ϕ), respectively.
So, Cϕ is equivalent to: ‘Tϕ and Fϕ’, and Cϕ is equivalent
to: ‘Tϕ or Fϕ’.

To prove that Σ |= ϕ using Bloesch’s tableaux method
(Bloesch 1993), we have to show that a tableaux with root
Γ = {Tσ | σ ∈ Σ}∪Tϕ closes. The tableaux closes if every
branch has a node in which for some proposition α the node
contains: “Tα and Tα”, or “Fα and Fα”, or “Tα and Fα”.

Based on Bloesch’s semantic tableaux method for LP, the
following tableaux rules have been formulated. The sound-
ness and completeness of the set of rules are easy to prove.

T a : ¬C
F a : C

T a : ¬C
F a : C

F a : ¬C
T a : C

F a : ¬C
F a : C

T a : C uD
T a : C,T a : D

T a : C uD
T a : C | T a : D

F a : C uD
F a : C | F a : D

F a : C uD
F a : C,F a : D

T a : C tD
T a : C | T a : D

T a : C tD
T a : C,T a : D

F a : C tD
F a : C,F a : D

F a : C tD
F a : C | F a : D

T a : ∃r.C
T (a, x) : r,T x : C

T a : ∃r.C,T (a, b) : r
T b : C

F a : ∃r.C,T (a, b) : r
F b : C

F a : ∃r.C
T (a, x) : r,F x : C

T a : ∀r.C,T (a, b) : r
T b : C

T a : ∀r.C
T (a, x) : r,T x : C

F a : ∀r.C
T (a, b) : r,F b : C

F a : ∀r.C,T (a, b) : r
F b : C

The individual a in the following tableaux rules for the
subsumption relation must be an existing individual name,
while the individual x must be a new individual name.

T C v D
T a : C | T a : D

T C v D
F a : D | F a : C

T C v D
T x : C,T x : D | F x : D,F x : C
T C = D

T C v D,T D v C
T C = D

T C v D | T D v C
An important issue is guaranteeing that the constructed

semantic tableaux is always finite. The blocking method
described by (Buchheit, Donini, & Schaerf 1993; Baader,
Buchheit, & Hollander 1996) is used to guarantee the con-
struction of a finite tableaux. A rule that is blocked, may not
be not be used in the construction of the tableaux.

Definition 8 Let Γ be a node of the tableau, and let x and y
be two individual names. Moreover, let Γ(x) = {Lx : C |
Lx : C ∈ Γ}.
• x <r y if (x, y) : R ∈ Γ for some R ∈ R.
• y is blocked if there is an individual name x such that:
x <+

r y and Γ(y) ⊆ Γ(x), or x <r y and x is blocked.

Conflict Minimal Interpretations A price that we pay for
changing to the three-valued LP-semantics in order to handle
inconsistencies is a reduction in the set of entailed conclu-
sions, even if the knowledge and information is consistent.
Example 1 The set of propositions Σ = {a : ¬C, a :
C t D} does not entail a : D because there exists an in-
terpretation I = 〈O, π〉 for Σ such that π(a : C) = {t, f}
and π(a : D) = {f}.
Priest (1989; 1991) points out that more useful conclusions
can be derived from the paraconsistent logic LP if we would
prefer conflict-minimal interpretations. The resulting logic
is LPm. Here we follow the same approach. First, we define
a conflict ordering on interpretations.

Definition 9 Let C be a set of atomic concepts, let N be
a set of individual names, and let I1 and I2 be two three-
valued interpretations.

The interpretation I1 contains less conflicts than the in-
terpretation I2, denoted by I1 <c I2, iff:

{a : C | a ∈ N, C ∈ C, π1(a : C) = {t, f}} ⊂
{a : C | a ∈ N, C ∈ C, π2(a : C) = {t, f}}

The following example gives an illustration of a conflict or-
dering for the set of propositions of Example 1.
Example 2 Let Σ = {a : ¬C, a : C tD} be a set of propo-
sitions and let I1, I2, I3, I4 and I5 be five interpretations
such that:

125

• π∗1(a : C) = {f}, π∗1(a : D) = {t},
• π∗2(a : C) = {f}, π∗2(a : D) = {t, f}.
• π∗3(a : C) = {t, f}, π∗3(a : D) = {t},
• π∗4(a : C) = {t, f}, π∗4(a : D) = {f},
• π∗5(a : C) = {t, f}, π∗5(a : D) = {t, f}.

Then I1 <c I2, I1 <c I3, I1 <c I4, I1 <c I5, I2 <c I5,
I3 <c I5 and I4 <c I5.

Using the conflict ordering, we define the conflict mini-
mal interpretations.

Definition 10 Let I1 be a three-valued interpretation and
let Σ be a set of propositions.
I1 is a conflict minimal interpretation of Σ, denoted by

I1 |=<c
Σ, iff I1 |= Σ and for no interpretation I2 such that

I2 <c I1, I2 |= Σ holds.

In Example 2, I1 is the only conflict-minimal interpretation.
The conflict-minimal entailment of a proposition by a set

of propositions can now be defined.

Definition 11 Let Σ = (T ∪A) be a set of propositions and
let ϕ be a proposition.

Σ entails conflict-minimally the proposition ϕ, denoted by
Σ |=<c

ϕ, iff for every interpretation I , if I |=<c
Σ, then

I |= ϕ.

The conflict-minimal interpretations in Example 2 entail the
conclusion a : D.

The subsumption relation The conflict-minimal interpre-
tations enables us to use an interpretation of the subsumption
relation based on the material implication.

• For every o ∈ O, o ∈ π∗(C)− or o ∈ π∗(D)+

This semantics of the subsumption relation resolves a prob-
lem with the semantics of Patel-Schneider (1989). Under
Patel-Schneider’s semantics, {a : C, a : ¬C,C v D} en-
tails a : D. This entailment is undesirable if information
about a : C is contradictory.

The tableaux rules of the new interpretation are:

T C v D
F a : C | T a : D

T C v D
T a : C,F a : D

Arguments for conclusions supported by
conflict minimal interpretations

The conflict-minimal interpretations of a knowledge base
entail more useful conclusions. Unfortunately, focusing
on conclusions supported by conflict-minimal interpreta-
tions makes the reasoning process non-monotonic. Adding
the assertion a : ¬D to the set of propositions in Exam-
ple 2 eliminates interpretations I1 and I3, which includes
the only conflict-minimal interpretation I1. The interpreta-
tions I2 and I4 are the new conflict-minimal interpretations.
Unlike the original conflict-minimal interpretation I1, the
new conflict-minimal interpretations I2 and I4 do not entail
a : D.

Deriving conclusions supported by the conflict-
minimal interpretations is problematic because of the

non-monotonicity. The modern way to deal with non-
monotonicity is by giving an argument supporting a
conclusion, and subsequently verifying whether there are
no counter-arguments (Dung 1995). Here we will follow
this argumentation-based approach.

We propose an approach for deriving arguments that uses
the semantic tableaux method for our paraconsistent logic
as a starting point. The approach is based on the observa-
tion that an interpretation satisfying the root of a semantic
tableaux will also satisfy one of the leafs. Now suppose
that the only leafs of a tableaux that are not closed; i.e., leaf
in which we do not have “Tα and Tα” or “Fα and Fα”
or “Tα and Fα”, are leafs in which “Tα and Fα” holds
for some proposition α. So, in every open branch of the
tableaux, Cα holds for some proposition α. If we can as-
sume that there are no conflicts w.r.t. each proposition α in
the conflict-minimal interpretations, then we can also close
the open branches. The set of assumptions Cα, equivalent
to “Tα or Fα”, that we need to close the open branches, will
be used as the argument for the conclusion supported by the
semantic tableaux.

An advantage of the proposed approach is that there is
no need to consider arguments if a conclusion already holds
without considering conflict-minimal interpretations.

A branch that can be closed assuming that the conflict-
minimal interpretations contain no conflicts with respect to
the proposition α; i.e., assuming Cα, will be called a weakly
closed branch. We will call a tableaux weakly closed if
some branches are weakly closed and all other branches are
closed. If we can (weakly) close a tableaux for Γ = {Tσ |
σ ∈ (T ∪ A)} ∪ Tϕ, we consider the set of assumptions
Cα needed to weakly close the tableaux, to be the argument
supporting Σ |=≤c

ϕ. Example 3 gives an illustration.

Example 3 Let Σ = {a : ¬C, a : C tD} be a set of propo-
sitions. To verify whether a : D holds, we may construct the
following tableaux:

T a : ¬C
T a : C tD

T a : D

F a : C

T a : C

⊗[a:C]

T a : D

×
Only the left branch is weakly closed in this tableau. We
assume that the assertion a : C will not be assigned CON-
FLICT in any conflict-minimal interpretation. That is, we
assume that C a : C holds.

In the following definition of an argument, we consider
arguments for Tϕ and Fϕ.
Definition 12 Let Σ be set of propositions and let ϕ a
proposition. Moreover, let T be a (weakly) closed semantic
tableaux with root Γ = {Tσ | σ ∈ Σ}∪Lϕ and L ∈ {T,F}.
Finally, let {Cα1, . . . ,Cαk} be the set of assumptions on
which the closures of weakly closed branches are based.

Then A = ({Cα1, . . . ,Cαk},Lϕ) is an argument.

126

The next step is to verify whether the assumptions: Cαi

are valid. If one of the assumptions does not hold, we have
a counter-argument for our argument supporting Σ |=≤c ϕ.
To verify the correctness of an assumption, we add the as-
sumption to Σ. Since an assumption Cα is equivalent to:
“Tα or Fα”, we can consider Tα and Fα separately. Exam-
ple 4 gives an illustration for the assumption C a : C used
in Example 3.

Example 4 Let Σ = {a : ¬C, a : C t D} be a set of
propositions. To verify whether the assumption C a : C
holds in every conflict minimal interpretation, we may con-
struct a tableaux assuming T a : C and a tableaux assuming
F a : C:

T a : ¬C
T a : C tD

T a : C

F a : C

T a : C

×

T a : D

T a : ¬C
T a : C tD

F a : C

F a : C

×

The right branch of the first tableaux cannot be closed.
Therefore, the assumption T a : C is valid, implying that
the assumption C a : C is also valid. Hence, there exists no
counter-argument.

Since the validity of assumptions must be verified with
respect to conflict-minimal interpretations, assumptions may
also be used in the counter-arguments. This implies that we
may have to verify whether there exists a counter-argument
for a counter-argument. Example 5 gives an illustration.

Example 5 Let Σ = {a : ¬C, a : C t D, a : ¬D t E, a :
¬E} be a set of propositions. To verify whether a : D holds,
we may construct the following tableaux:

T a : ¬C
T a : C tD

T a : ¬D t E
T a : ¬E
T a : D

T a : C

F a : C

⊗[a:C]

T a : D

×

This weakly closed tableaux implies the argument A0 =
({C a : C},T a : D). Next, we have to verify whether
there exists a counter-argument for A0. To verify the ex-
istence of a counter-argument, we construct two tableaux,
one for T a : C and one for F a : C. As we can see below,
both tableaux are (weakly)-closed, and therefore form the
counter-argument A1 = ({C a : D,C a : E},C a : C). We
say that the argument A1 attacks the argument A0 because
the former is a counter-argument of the latter.

T a : ¬C
T a : C tD

T a : ¬D t E
T a : ¬E
T a : C

T a : ¬D

T a : C

×

T a : D

F a : D

⊗[a:D]

T a : E

F a : E

⊗[a:E]

T a : ¬C
T a : C tD

T a : ¬D t E
T a : ¬E
F a : C

F a : C

×

The two tableaux forming the counter-argument A1 are
closed under the assumptions: C a : D and C a : E. So, A1

is a valid argument if there exists no valid counter-argument
for C a : D, and no counter-argument for C a : E.

Argument A1 is equivalent to two other arguments,
namely: A2 = ({C a : C,C a : E},C a : D) and
A3 = ({C a : C,C a : D},C a : E). A proof of the
equivalence will be given in the next section, Proposition 1.

The arguments A2 and A3 implied by A1 are both
counter-arguments of A1. Moreover, A1 is a counter-
argument of A2 and A3, and A2 and A3 are counter-
arguments of each other. No other counter-arguments can be
identified in this example. Figure 1 show all the arguments
and the attack relation, denoted by the arrows, between the
arguments.

0A 1A

2A

3A

Figure 1: The attack relations between the arguments of Ex-
ample 5.

We will now formally define the arguments and the attack
relations that we can derive from the constructed semantic
tableaux.

Definition 13 Let Σ be set of propositions and let
Cα =“Tα or Fα” be an assumption in the argument A.
Moreover, let T1 be a (weakly) closed semantic tableaux
with root Γ1 = {Tσ | σ ∈ Σ} ∪ Tα and let T2 be a
(weakly) closed semantic tableaux with root Γ2 = {Tσ |
σ ∈ Σ} ∪ Fα. Finally, let {Cα1, . . . ,Cαk} be the set of
assumptions on which the weakly closed branches in the
tableaux T1 or the tableaux T2 are based.

ThenA′ = ({Cα1, . . . ,Cαk},Cα) is a counter-argument
of the argument A. We say that the argument A′ attacks the
argument A, denoted by: A′ −→ A.

The form of argumentation that we have here is called
assumption-based argumentation (ABA), which has been
developed since the end of the 1980’s (Bondarenko et al.

127

1997; Bondarenko, Toni, & Kowalski 1993; Dung, Kowal-
ski, & Toni 2009; Gaertner & Toni 2007; Roos 1988;
1992).

Example 5 shows that an argument can be counter-
argument of an argument and vice versa; e.g., arguments
A2 and A3. This raises the question which arguments are
valid. Argumentation theory and especially the argumenta-
tion framework (AF) introduced by Dung (1995) provides
an answer.

Arguments are viewed in an argumentation framework as
atoms over which an attack relation is defined. Figure 1
shows the arguments and the attack relations between the ar-
guments forming the argumentation framework of Example
5. The formal specification of an argumentation framework
is given by the next definition.

Definition 14 An argumentation framework is a couple
AF = (A ,−→) where A is a finite set of arguments and
−→⊆ A ×A is an attack relation over the arguments.

For convenience, we extend the attack relation −→ to sets
of arguments.

Definition 15 Let A ∈ A be an argument and let S ,P ⊆
A be two sets of arguments. We define:

• S −→ A iff for some B ∈ S , B −→ A.
• A −→ S iff for some B ∈ S , A −→ B.
• S −→P iff for some B ∈ S and C ∈P , B −→ C.

Dung (1995) describes different argumentation semantics
for an argumentation framework in terms of sets of accept-
able arguments. These semantics are based on the idea of
selecting a coherent subset E of the set of arguments A of
the argumentation framework AF = (A ,−→). Such a set
of arguments E is called an argument extension. The ar-
guments of an argument extension support propositions that
give a coherent description of what might hold in the world.
Clearly, a basic requirement of an argument extension is be-
ing conflict-free; i.e., no argument in an argument extension
attacks another argument in the argument extension. Besides
being conflict-free, an argument extension should defend it-
self against attacking arguments by attacking the attacker.

Definition 16 Let AF = (A ,−→) be an argumentation
framework and let S ⊆ A be a set of arguments.

• S is conflict-free iff S 6−→ S .
• S defends an argument A ∈ A iff for every argument
B ∈ A such that B −→ A, S −→ B.

Not every conflict-free set of arguments that defends it-
self, is considered to be an argument extension. Several ad-
ditional requirements have been formulated by Dung (1995),
resulting in three different semantics: the stable, the pre-
ferred and the grounded semantics.

Definition 17 Let AF = (A ,−→) be an argumentation
framework and let E ⊆ A .

• E is a stable extension iff E is conflict-free,and for every
argument A ∈ (A \ E), E −→ A; i.e., E defends itself
against every possible attack by arguments in A \E .

• E is a preferred extension iff E is maximal (w.r.t. ⊆) set of
arguments that (1) is conflict-free,and (2) E defends every
argument A ∈ E .

• E is a grounded extension iff E is the minimal (w.r.t. ⊆)
set of arguments that (1) is conflict-free, (2) defends every
argument A ∈ E , and (3) contains all arguments in A it
defends.

We are interested in stable semantics. We will show in the
next section that stable extensions correspond to conflict-
minimal interpretations. More specifically, we will prove
that a conclusion supported by an argument in every stable
extension, is entailed by every conflict-minimal interpreta-
tion, and vice versa.

Is it possible that a conclusion is supported by a different
argument in every stable extension? The answer is Yes, as is
illustrated by Example 6. In this example we have two argu-
ments supporting the conclusion a : E, namely A0 and A1.
As can be seen in Figure 2, there are two stable extensions
of the argumentation framework. One extension contains
the argument A0 and the other contains the argument A1.
So, in every extension there is an argument supporting the
conclusion a : E. Hence, Σ |=≤c a : E.
Example 6 Let Σ = {a : ¬C, a : C t D, a : ¬D, a :
CtE, a : DtE} be a set of propositions. The following two
tableaux imply the two arguments A0 = ({C a : C},T a :
E) and A1 = ({C a : D},T a : E), both supporting the
conclusion a : E:

T a : ¬C
T a : C tD

T a : ¬D
T a : C t E
T a : D t E

T a : E

F a : C

T a : C

⊗[a:C]

T a : E

×

T a : ¬C
T a : C tD

T a : ¬D
T a : C t E
T a : D t E

T a : E

F a : D

T a : D

⊗[a:D]

T a : E

×

The assumption C a : C in argumentA0 makes it possible
to determine a counter-argument A2 = ({C a : D},C a :
C) using of the following two tableaux:

T a : ¬C
T a : C tD

T a : ¬D
T a : C t E
T a : D t E

T a : C

F a : D

T a : C

×

T a : D

⊗[a:D]

T a : ¬C
T a : C tD

T a : ¬D
T a : C t E
T a : D t E

F a : C

F a : C

×

According to Proposition 1, A2 implies the counter-
argument A3 = ({C a : C},C a : D) of A1 and A2. A2

128

is also a counter-argument of A3. Figure 2 shows the attack
relations between the arguments A0, A1, A2 and A3.

1A 3A

0A
2A

Figure 2: The attack relations between the arguments of Ex-
ample 6.

Example 7 gives an illustration of the semantic interpre-
tations of Example 6. The example shows two conflict-
minimal interpretations. These conflict-minimal interpreta-
tions correspond with the two stable extensions. Interpreta-
tion I1 entails a : E because I1 must entail a : C t E and
I1 does not entail a : C, and interpretation I2 entails a : E
because I2 must entail a : D t E and I2 does not entail
a : D.
Example 7 Let Σ = {a : ¬C, a : C t D, a : ¬D, a :
C t E, a : D t E} be a set of propositions. There are two
conflict-minimal interpretations containing the following in-
terpretation functions:
• π1(a : C) = {f}, π1(a : D) = {t, f}, π1(a : E) = {t}.
• π2(a : C) = {t, f}, π2(a : D) = {f}, π2(a : E) = {t}.
In both interpretations a : E is entailed.

Correctness and completeness proofs
In this section we investigate whether the proposed ap-
proach is correct. That is whether a proposition supported
by an argument in every stable extension is entailed by ev-
ery conflict-minimal interpretation. Moreover, we investi-
gate whether the approach is complete. That is, whether a
proposition entailed by every conflict-minimal interpretation
is supported by an argument in every stable extension.

In the following theorem we will use the notion of “a
complete set of arguments relevant to ϕ”. This set of argu-
ments A consists of all argument A supporting ϕ, all possi-
ble counter-arguments, all possible counter arguments of the
counter-arguments, etc.
Definition 18 A complete set of arguments A relevant to ϕ
satisfies the following requirements:
• {A | A supports ϕ} ⊆ A .
• If A ∈ A and B is a counter-argument of A that we can

derive, then B ∈ A and (B,A) ∈ −→.
Theorem 1 (correctness and completeness) Let Σ be a set
of propositions and let ϕ be a proposition. Moreover,
let A be a complete set of arguments relevant to ϕ, let
−→⊆ A × A be the attack relation determined by A ,
and let (A ,−→) be the argumentation framework. Finally,
let E1, . . . ,Ek be all stable extensions of the argumentation
framework (A ,−→).

Σ entails the proposition ϕ using the conflict-minimal
three-valued semantics; i.e., Σ |=≤c

ϕ, iff ϕ is supported
by an argument in every stable extension Ei of (A ,−→).

To prove Theorem 1, we need the following lemmas. In
these lemmas we will use the following notations: We will
use I |= Tα to denote that t ∈ I(α) (I |= α), and I |= Fα
to denote that f ∈ I(α). Moreover, we will use Σ |= Tα
and Σ |= Fα to denote that Tα and Fα, respectively, hold in
all three-valued interpretations of Σ.

The first lemma proves the correctness of the arguments
in A .

Lemma 1 (correctness of arguments) Let Σ be a set of
propositions and let ϕ be a proposition. Moreover, let L
be either the label T or F.

If a semantic tableaux with root Γ = {Tσ | σ ∈ Σ} ∪
{Lϕ} is weakly closed, and if {Cα1, . . . ,Cαk} is the set of
weak closure assumptions implied by all the weakly closed
leafs of the tableaux, then

{Cα1, . . . ,Cαk} ∪ {Tσ | σ ∈ Σ} |= Lϕ

Proof Suppose that {Cα1, . . . ,Cαk}∪{Tσ | σ ∈ Σ} 6|=
Lϕ. Then there must be an interpretation I satisfying
{Cα1, . . . ,Cαk} ∪ {Tσ | σ ∈ Σ} but not Lϕ. So,
I |= {Cα1, . . . ,Cαk} ∪ {Tσ | σ ∈ Σ} ∪ {Lϕ}. We
can create a tableaux for {Cα1, . . . ,Cαk} ∪ {Tσ | σ ∈
Σ} ∪ {Lϕ} by adding the assumptions {Cα1, . . . ,Cαk}
to every node in the original tableaux with root Γ. Let
Γ∗ = {Cα1, . . . ,Cαk} ∪ {Tσ | σ ∈ Σ} ∪ {Lϕ} be the
root of the resulting tableaux. Since I |= Γ∗, there must
be a leaf Λ∗ of the new tableaux and I |= Λ∗. The cor-
responding leaf Λ in the original tableaux with root Γ is
either strongly or weakly closed.
– If Λ is strongly closed, then so is Λ∗ and we have a

contradiction.
– If Λ is weakly closed, then the weak closure implies

one of the assumptions Cαi because {Tαi,Fαi} ⊆ Λ.
Therefore, {Tαi,Fαi} ⊆ Λ∗. Since {Tαi,Fαi} im-
plies Cαi and since Cαi ∈ Λ∗, I 6|= Λ∗ The latter
contradicts with I |= Λ∗.

Hence, the lemma holds. 2

The above lemma implies that the assumptions of an argu-
mentA = ({Cα1, . . . ,Cαk},Lϕ) together with Σ entail the
conclusion of A.

The next lemma proves the completeness of the set of ar-
guments A .

Lemma 2 (completeness of arguments) Let Σ be a set of
propositions and let ϕ be a proposition. Moreover, let L be
either the label T or F.

If {Cα1, . . . ,Cαk} is a set of atomic assumptions with
αi = ai : Ci, ai ∈ N and Ci ∈ Ci, and if

{Cα1, . . . ,Cαk} ∪ {Tσ | σ ∈ Σ} |= Lϕ

then there is a semantic tableaux with root Γ = {Tσ | σ ∈
Σ} ∪ {Lϕ}, and the tableaux is weakly closed.

Proof Let Γ = {Tσ | σ ∈ Σ} ∪ {Lϕ} be the root of a
semantic tableaux.

129

Suppose that the tableaux is not weakly closed. Then
there is an open leaf Λ. We can create a tableaux for
{Cα1, . . . ,Cαk} ∪ {Tσ | σ ∈ Σ} ∪ {Lϕ} by adding the
assumptions {Cα1, . . . ,Cαk} to every node in the origi-
nal tableaux with root Γ. Let Γ∗ = {Cα1, . . . ,Cαk} ∪
{Tσ | σ ∈ Σ} ∪ {Lϕ} be the root of the resulting
tableaux. Since {Cα1, . . . ,Cαk}∪{Tσ | σ ∈ Σ} |= Lϕ,
there exists no interpretation I such that I |= Γ∗. There-
fore, there exists no interpretation I such that I |= Λ∗.
Since we considered only atomic assumptions Cαi, we
cannot extend the tableaux by rewriting a proposition in
Λ∗. Therefore, Λ∗ must be strongly closed and for some
αi, {Tαi,Fαi} ⊆ Λ∗. This implies that {Tαi,Fαi} ⊆ Λ.
Hence, Λ is weakly closed under the assumption Cαi.
Contradiction.

Hence, the lemma holds. 2

The above lemma implies that we can find an argument
A = ({Cα1, . . . ,Cαk},Lϕ) for any set of assumption that,
together with Σ, entails a conclusion Lϕ.

The following lemma proves that for every conflict Cϕ
entailed by a conflict-minimal interpretation, we can find an
argument supporting Cϕ of which the assumptions are en-
tailed by the conflict-minimal interpretation.
Lemma 3 Let Σ be a set of propositions and let I = 〈O, π〉
be a conflict-minimal interpretation of Σ. Moreover, let ϕ be
a proposition.

If I |= Cϕ holds, then there is an argument A =
({Cα1, . . . ,Cαk},Cϕ) supporting Cϕ and for every as-
sumption Cαi, I |= Cαi holds.

Proof Let I be a conflict-minimal interpretation of Σ.

Suppose that I |= Cϕ holds. We can construct a tableaux
for:

Γ = {Tσ | σ ∈ Σ} ∪ {Cϕ} ∪
{C a : C | C ∈ C, π(a : C) 6= {t, f}}

Suppose that this tableaux is not strongly closed. Then
there is an interpretation I ′ = 〈O, π′〉 satisfying the
root Γ. Clearly, I ′ <c I because for every a : C with
C ∈ C, if π(a : C) 6= {t, f}, then π′(a : C) 6= {t, f}.
Since I is a conflict-minimal interpretation and since
I ′ 6|= Cϕ, we have a contradiction.

Hence, the tableaux is closed.
Since the tableaux with root Γ is closed, we can identify
all assertions in {C a : C | C ∈ C, π(a : C) 6= {t, f}}
that are not used to close a leaf of the tableaux. These
assertions C a : C play no role in the construction of the
tableaux and can therefore be removed from every node of
the tableaux. The result is still a valid and closed semantic
tableaux with a new root Γ′. The assertions in {C a : C |
C ∈ C, π(a : C) 6= {t, f}} ∩ Γ′ must all be used to
strongly close leafs of the tableaux Γ′, and also of Γ. A
leaf that is strongly closed because of C a : C can be
closed weakly under the assumption C a : C. So, we
may remove the remaining assertions C a : C from the

root Γ′. The result is still a valid semantic tableaux with
root Γ′′ = {Tσ | σ ∈ Σ} ∪ {Cϕ}. This tableaux with
root Γ′′ is weakly closed, and by the construction of the
tableaux, I |= C a : C holds for every assumption C a :
C implied by a weak closure. Hence, we have constructed
an argument A = ({Cα1, . . . ,Cαk},Cϕ) supporting Cϕ
and for every assumption Cαi, I |= Cαi holds.

Hence, the lemma holds. 2

For the next lemma we need the following definition of a
set of assumptions that is allowed by an extension.

Definition 19 Let Ω be the set of all assumptions Cα in the
arguments A . For any extension E ⊆ A ,

Ω(E) = {Cα ∈ Ω | no argument A ∈ E supports Cα}
is the set of assumptions allowed by the extension E .

The last lemma proves that for every conflict-minimal in-
terpretation there is a corresponding stable extension.

Lemma 4 Let Σ be a set of propositions and let ϕ be a
proposition. Moreover, let A be the complete set of argu-
ments relevant to ϕ, let −→⊆ A ×A be the attack relation
determined by A , and let (A ,−→) be the argumentation
framework.

For every conflict-minimal interpretation I of Σ, there is
a stable extension E of (A ,−→) such that I |= Ω(E).

Proof Let I be a conflict-minimal interpretation and let

E = {({Cα1, . . . ,Cαk}, ϕ) ∈ A | I |= {Cα1, . . . ,Cαk}}

be the set of argumentsA = ({Cα1, . . . ,Cαk}, ϕ) of which
the assumptions are entailed by I .

Suppose E is not conflict-free. Then there is an argument
B ∈ E such that B −→ A with A ∈ E . So, B sup-
ports Cψ and Cψ is an assumption of A. Since I entails
the assumptions of A, I 6|= Cψ. Since I is a conflict-
minimal interpretation of Σ entailing the assumptions of
B, according to Lemma 1, I |= Cψ. Contradiction.

Hence, E is a conflict-free set of argument.

Suppose that there exists an argument A ∈ A such that
A 6∈ E . Then, for some assumption Cα of A, I 6|= Cα.
So, I |= Cα, and according to Lemma 3, there is an argu-
ment B ∈ E supporting Cα. Therefore, B −→ A.

Hence, E attacks every argument A ∈ A \E . Since E is
also conflict-free, E is a stable extension of (A ,−→).

Suppose that I 6|= Ω(E). Then there is a Cα ∈ Ω(E) and
I |= Cα. According to Lemma 3, there is an argument
A = ({Cα1, . . . ,Cαk},Cα) and I |= {Cα1, . . . ,Cαk}.
So, A ∈ E and therefore, Cα 6∈ Ω(E). Contradiction.

Hence, I |= Ω(E). 2

Using the results of the above lemmas, we can now prove
the theorem.

130

Proof of Theorem 1
(⇒) Let Σ |=≤c ϕ.

Suppose that there is stable extension Ei that does not
contain an argument for ϕ. Then according to Lemma
2, {Tσ | σ ∈ Σ} ∪ Ω(Ei) 6|= Tϕ. So, there exists an
interpretation I such that I |= {Tσ | σ ∈ Σ} ∪ Ω(Ei)
but I 6|= Tϕ. There must also exists a conflict-minimal
interpretation I ′ of Σ and I ′ ≤c I . Since the assumptions
C a : C ∈ Ω(Ei) all state that there is no conflict concern-
ing the assertion a : C, I ′ |= Ω(Ei) must hold. So, I ′ is a
conflict-minimal interpretation of Σ and I ′ |= Ω(Ei) but
according to Lemma 2, I ′ 6|= Tϕ. This implies Σ 6|=≤c

ϕ.
Contradiction.

Hence, every stable extension Ei contains an argument for
ϕ.

(⇐) Let ϕ be supported by an argument in every stable ex-
tension Ei.

Suppose that Σ 6|=≤c
ϕ. Then there is a conflict-minimal

interpretation I of Σ and I 6|= ϕ. Since I is a conflict-
minimal interpretation of Σ, according to Lemma 4, there
is a stable extension Ei and I |= Ω(Ei). Since Ei con-
tains an argument A supporting ϕ, the assumptions of A
must be a subset of Ω(Ei), and therefore I satisfies these
assumptions. Then, according to Lemma 1, I |= ϕ. Con-
tradiction.

Hence, Σ |=≤c
ϕ. 2

In Example 5 in the previous section, we saw that one
counter-argument implies multiple counter-arguments. The
following proposition formalizes this observation.

Proposition 1 Let A0 = ({Cα1, . . . ,Cαk},Cα0).
Then Ai = ({Cα0, . . . ,Cαi−1,Cαi+1, . . . ,Cαk},Cαi)

is an argument for every 1 ≤ i ≤ k.

Proof The argument A0 is the result of two tableaux, one
for Tα0 and one for Fα0. Then, according to Lemma 1,

{Cα1, . . . ,Cαk} ∪ {Tσ | σ ∈ Σ} |= Cα0

where Σ the set of available propositions. This implies that

{Cα0, . . . ,Cαi−1,Cαi+1,Cαk} ∪ {Tσ | σ ∈ Σ} |= Cαi

So, {Cα0, . . . ,Cαi−1,Cαi+1,Cαk}∪{Tσ | σ ∈ Σ} entails
both Tαi and Fαi. Then, according to Lemma 2,

Ai = ({Cα0, . . . ,Cαi−1,Cαi+1, . . . ,Cαk},Cαi)

is an argument for Cαi. 2

Related Works
Reasoning in the presences of inconsistent information has
been addressed using different approaches. Rescher (1964)
proposed to focus on maximal consistent subsets of an in-
consistent knowledge-base. This proposal was further de-
veloped by (Brewka 1989; Huang, van Harmelen, & ten
Teije 2005; Poole 1988; Roos 1988; 1992). Brewka and

Roos focus on preferred maximal consistent subsets of the
knowledge-base while Poole and Huang et al. consider a
single consistent subset of the knowledge-base supporting
a conclusion. Roos (1992) defines a preferential seman-
tics (Kraus, Lehmann, & Magidor 1990; Makinson 1994;
Shoham 1987) entailing the conclusions that are entailed by
every preferred maximal consistent subsets, and provides an
assumption-based argumentation system capable of identi-
fying the entailed conclusions.

Paraconsistent logics form another approach to handle in-
consistent knowledge bases. Paraconsistent logics have a
long history starting with Aristotle. From the beginning of
the twentieth century, paraconsistent logics were developed
by Orlov (1929), Asenjo (1966), da Costa (1974), Belnap
(1977), Priest (1989) and others. For a survey of several
paraconsistent logics, see for instance (Middelburg 2011).

This paper uses the semantics of the paraconsistent logic
LP (Priest 1989; 1991) as starting point. Belnap’s four-
values semantics (1977) differs from the LP semantics in
allowing the empty set of truth-values. Belnap’s semantics
was adapted to description logics by Patel-Schneider (1989).
Ma et al. (2006; 2007; 2008; 2009) extend Patel-Schneider’s
work to more expressive description logics, and propose two
new interpretations for the subsumption relation. Qiao and
Roos (2011) propose another interpretation.

A proof theory based on the semantic tableaux method
was first introduced by Beth (1955). The semantic tableaux
methods have subsequently been developed for many log-
ics. For an overview of several semantic tableaux methods,
see (Hähnle 2001). Bloesch (1993) developed a semantic
tableaux method for the paraconsistent logics LP and Bel-
nap’s 4-valued logic. This semantic tableaux method has
been used as a starting point in this paper.

Argumentation theory has its roots in logic and rhetoric.
It dates back to Greek philosophers such as Aristotle. Mod-
ern argumentation theory started with the work of Toulmin
(1958). In Artificial Intelligence, the use of argumentation
was promoted by authors such as Pollock (1987), Simari
and Loui (1992), and others. Dung (1995) introduced the
argumentation framework (AF) in which he abstracts from
the structure of the argument and the way the argument is
derived. In Dung’s argumentation framework, arguments
are represented by atoms over which an attack relation is
defined. The argumentation framework is used to define
an argumentation semantics in terms of sets of conflict-
free arguments that defend themselves against attacking ar-
guments. Dung defines three semantics for argumentation
frameworks: the grounded, the stable and the preferred se-
mantics. Other authors have proposed additional semantics
to overcome some limitations of these three semantics. For
an overview, see (Bench-Capon & Dunne 2007).

This paper uses a special type argumentation sys-
tem called assumption-based argumentation (ABA).
Assumption-based argumentation has been developed
since the end of the 1980’s (Bondarenko et al. 1997;
Bondarenko, Toni, & Kowalski 1993; Gaertner & Toni 2007;
Roos 1988; 1992). Dung et al. (2009) formalized
assumption-based argumentation in terms of an argumenta-
tion framework.

131

Conclusions
This paper presented a three-valued semantics for ALC,
which is based on semantics of the paraconsistent logic
LP. An assumption-based argumentation system for identi-
fying conclusions supported by conflict-minimal interpreta-
tions was subsequently described. The assumption-based
arguments are derived from open branches of a semantic
tableaux. The assumptions close open branches by assuming
that some proposition will not be assigned the truth-value
CONFLICT. No assumptions are needed if conclusions hold
is all three-valued interpretations. The described approach
has also been implemented.

In future work we intend to extend the approach to the de-
scription logic SROIQ. Moreover, we wish to investigate
the computational efficiency of our approach in handling in-
consistencies.

References
Asenjo, F. 1966. A calculus of antinomies. Notre Dame Journal of
Formal Logic 7:103–105.
Baader, F.; Buchheit, M.; and Hollander, B. 1996. Cardinality
restrictions on concepts. Artificial Intelligence 88(1–2):195–213.
Belnap, N. D. 1977. A useful four-valued logic. In Dunn, J. M., and
Epstein, G., eds., Modern Uses of Multiple-Valued Logic. Reidel,
Dordrecht. 8–37.
Bench-Capon, T., and Dunne, P. E. 2007. Argumentation in artifi-
cial intelligence. Artificial Intelligence 171:619–641.
Beth, E. W. 1955. Semantic entailment and formal derivability.
Noord-Hollandsche Uitg. Mij.
Bloesch, A. 1993. A tableau style proof system for two paraconsis-
tent logics. Notre Dame Journal of Formal Logic 34(2):295–301.
Bondarenko, A.; Dung, P.; Kowalski, R.; and Toni, F. 1997. An ab-
stract, argumentation-theoretic approach to default reasoning. Ar-
tificial Intelligence 93(1-2):63–101.
Bondarenko, A.; Toni, F.; and Kowalski, R. 1993. An assumption-
based framework for nonmonotonic reasoning. In Proc. 2nd In-
ternational Workshop on Logic Programming and Non-monotonic
Reasoning. MIT Press.
Brewka, G. 1989. Preferred subtheories: an extended logical
framework for default reasoning. In International Joined Confer-
ence on Artificial Intelligence, 1043–1048.
Buchheit, M.; Donini, F. M.; and Schaerf, A. 1993. Decidable rea-
soning in terminological knowledge representation systems. Jour-
nal of Artificial Intelligence Research 1:109–138.
da Costa, N. 1974. On the theory of inconsistent formal systems.
Notre Dame Journal of Formal Logic 15:497–510.
Dung, P. M.; Kowalski, R.; and Toni, F. 2009. Assumption-based
argumentation. In Rahwan, I., and Simari, G., eds., Argumentation
in Artificial Intelligence. Springer. 1–20.
Dung, P. M. 1995. On the acceptability of arguments and its fun-
damental role in nonmonotonic reasoning, logic programming and
n-person games. Artificial Intelligence 77:321–357.
Gaertner, D., and Toni, F. 2007. Computing arguments and at-
tacks in assumption-based argumentation. IEEE Intelligent Sys-
tems 22(6):24–33.
Hähnle, R. 2001. Tableaux and Related Methods, volume 1. Else-
vier and MIT Press. chapter 3, 100–178.
Huang, Z.; van Harmelen, F.; and ten Teije, A. 2005. Reasoning
with inconsistent ontologies. In IJCAI, 454–459.

Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Nonmonotonic
reasoning, preferential models and cumulative logics. Artificial In-
telligence 44:167–207.
Ma, Y., and Hitzler, P. 2009. Paraconsistent reasoning for OWL 2.
In Polleres, A., and Swift, T., eds., Web Reasoning and Rule Sys-
tems, volume 5837 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg. 197–211.
Ma, Y.; Hitzler, P.; and Lin, Z. 2007. Algorithms for paraconsistent
reasoning with OWL. In Franconi, E.; Kifer, M.; and May, W., eds.,
The Semantic Web: Research and Applications, volume 4519 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg.
399–413.
Ma, Y.; Hitzler, P.; and Lin, Z. 2008. Paraconsistent reasoning for
expressive and tractable description logics. In Baader, F.; Lutz, C.;
and Motik, B., eds., Proceedings of the 21st International Work-
shop on Description Logics, Dresden, Germany, May 13-16, 2008,
volume 353 of CEUR Workshop Proceedings. CEUR-WS.org.
Ma, Y.; Lin, Z.; and Lin, Z. 2006. Inferring with inconsistent
OWL DL ontology: A multi-valued logic approach. In Grust, T.;
Höpfner, H.; Illarramendi, A.; Jablonski, S.; Mesiti, M.; Müller,
S.; Patranjan, P.-L.; Sattler, K.-U.; Spiliopoulou, M.; and Wijsen,
J., eds., Current Trends in Database Technology - EDBT 2006, vol-
ume 4254 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg. 535–553.
Makinson, D. 1994. Nonmonotonic reasoning and uncertain rea-
soning. In Gabbay, D., ed., Handbook of Logic in Artificial In-
telligence and Logic Programming, volume 3. Oxford University
Press. 35–110.
Middelburg, C. A. 2011. A survey of paraconsistent logics. CoRR
abs/1103.4324.
Patel-Schneider, P. F. 1989. A four-valued semantics for termino-
logical logics. Artificial Intelligence 38(3):319–351.
Pollock, J. L. 1987. Defeasible reasoning. Cognitive Science
11:481–518.
Poole, D. 1988. A logical framework for default reasoning. Artifi-
cial Intelligence 36:27–47.
Priest, G. 1989. Reasoning about truth. Artificial Intelligence
39(2):231–244.
Priest, G. 1991. Minimally inconsistent LP. Studia Logica 50:321–
331.
Qiao, W., and Roos, N. 2011. Four-valued description logic for
paraconsistent reasoning. In BeNelux Conference on Artificial In-
telligence (BNAIC).
Rescher, N. 1964. Hypothetical Reasoning. Studies in Logic.
Amsterdam: North-Holland Publishing Co.
Roos, N. 1988. A preference logic for non-monotonic reasoning.
Technical Report 88-94, Delft University of Technology, Faculty
of Technical Mathematics and Informatics. ISSN 0922-5641.
Roos, N. 1992. A logic for reasoning with inconsistent knowledge.
Artificial Intelligence 57:69–103.
Schmidt-Schauß, M., and Smolka, G. 1991. Attributive concept
descriptions with complements. Artificial Intelligence 48(1):1–26.
Shoham, Y. 1987. A semantical approach to non-monotonic log-
ics. In Proceedings of the Tenth International Joint Conference on
Artificial Intelligence, 388–392.
Simari, G. R., and Loui, R. P. 1992. A mathematical treatment of
defeasible reasoning and its implementation. Artificial Intelligence
53:125–157.
Toulmin, S. 1958. The uses of argument. Cambridge University
Press.

132

Some Thoughts about Benchmarks for NMR∗

Daniel Le Berre
CNRS - Université d’Artois - France

Abstract

The NMR community would like to build a repository
of benchmarks to push forward the design of systems
implementing NMR as it has been the case for many
other areas in AI. There are a number of lessons which
can be learned from the experience of other communi-
ties. Here are a few thoughts about the requirements and
choices to make before building such a repository.

What to expect
Over the last two decades, a huge number of communities
have built repositories of benchmarks, mainly with the idea
to evaluate running systems on a common set of problems.
The oldest common input format for AI benchmarks is prob-
ably STRIPS (Fikes and Nilsson 1971), for planning sys-
tems. One of the oldest and most compelling one for rea-
soning engines is TPTP (“Thousands of Problems for The-
orem Provers”) (Sutcliffe 2009), the benchmarks library for
First Order and Higher Order theorem provers. Such reposi-
tory was built in 1993 and evolved since then as a compan-
ion to the CADE ATP System Competition (CASC) (Sut-
cliffe and Suttner 2006). There is an interplay between TPTP
and CASC: TPTP is used to select benchmarks for CASC,
benchmarks submitted to CASC are added eventually to
TPTP and the solvers submitted to CASC are run on all
TPTP benchmarks, and used to evaluate the practical com-
plexity of those benchmarks. As such, over the years, bench-
marks are ranked from hard to medium to easy with the im-
provements of the solvers. This is exactly the kind of virtu-
ous circle one would like to see in each community. In the
NMR community, a similar library exists with Asparagus1,
which feeds the ASP competition (Gebser et al. 2007).

There are however reasons which prevent it. Take for
instance the SAT community. Its common input format is
based on the Second Dimacs Challenge input format (John-
son and Trick 1996), one of the first SAT competitions.
The benchmarks used for that competitive event has been
a de facto standard for evaluating SAT solvers in practice.
A system similar to TPTP was built by Laurent Simon in
2000: SatEx (Simon and Chatalic 2001). However, the num-
ber of SAT solvers available in the SAT community became

∗This work has been supported in part by ANR Tuples.
1http://asparagus.cs.uni-potsdam.de

quickly much larger than the number of ATP systems, be-
cause of its increasing practical interest in hardware verifi-
cation, and because it is much easier to develop a SAT solver
than a First Order theorem solver. As such, it became quickly
impossible to run all SAT solvers on all available bench-
marks. A tradeoff was to organize a yearly SAT competi-
tive event since 2002 (Simon, Le Berre, and Hirsch 2005),
to give a snapshot of the performances of recent solvers on
a selection of benchmarks.

Modeling versus Benchmarking
One of the first question which arises when creating a bench-
mark format is to be clear about the target of the format.
There are mainly two choices: one is to please the end user,
by providing a format which simplifies modeling problems
in that format, the other one is to please the solver designers,
to make sure that they integrate a way to read that format.
High level input format such as PDDL, TPTP, ASP, SMT
and Minizinc (CSP) are clearly modeling oriented. Formats
designed by the SAT community (SAT, MAXSAT, PBO,
QBF, MUS ...) are clearly solver oriented.

There are advantages and inconveniences for both ap-
proaches. The user oriented format favors the submissions
of problems by the community, because the input format is
human understandable and easy to modify. However, such
format may require a huge effort from the solver designer to
adapt his solver to such format. This happened for instance
for the SMT LIB 2 format, which was quite different from
the original SMT LIB format, so it took time to be adopted
by the SMT solver designers. Another issue with user ori-
ented formats are the potential high learning curve to under-
stand all its subtleties. For instance, it took several rounds
in the Mancoosi International Solver Competition (MiSC)
(Abate and Treinen 2011) to see all solvers answering cor-
rectly to the requests because the input format was assuming
some domain knowledge not obvious for a solver designer.

The main advantage of the solver oriented format is to
be easy to integrate into any exiting system. It is the way
to go if the community wants to evaluate existing systems
on a common basis. It was the idea behind the XCSP for-
mat for CSP solvers for instance (Lecoutre, Roussel, and
van Dongen 2010). The major drawback of such approach
is to force the end user to rely on an intermediate represen-
tation to generate those benchmarks, and to perform some

133

tasks by hand which may be automated using a higher level
input format. For instance, in the case of SAT, it is required
to translate the original problem into propositional variables
and clauses. Many users are not aware of basic principles
and advanced techniques to perform those tasks efficiently.

One way to please both part is to provide a end-user input
format, to favor the contribution of problems, and a solver
input format to please the solver designers, with a default
translator from the first one to the second one. This is the
spirit of the Minizinc and Flatzinc formats in the CSP com-
munity (Stuckey, Becket, and Fischer 2010).

Data versus Protocol
Another question raised when designing an input format is
whether the benchmark represents data or whether it rep-
resents a full protocol. The problem is orthogonal to the ab-
straction level of the input format: it is directed by the nature
of the problems to be solved.

In many cases, benchmarks represent data, in one or mul-
tiple files (e.g. rules and facts, domain and instance), and
the system answers to a single query. There are other cases
in which some interaction with the system is required: the
SMT LIB 2 format (Barrett, Stump, and Tinelli 2010) for in-
stance defines a protocol to communicate with the system to
solve problems incrementally, which means that the system
in that case is stateful. The Aiger format used in the hard-
ware model checking competition (Biere and Jussila 2007)
also provides some incremental capabilities, which corre-
sponds to the unrolling of the Bounded Model Checking ap-
proach.

The protocol point of view is great for playing with toy
examples, thus good for education. It also allows to interface
with the solver without worrying about the details. From a
system designer, it requires generally more effort to main-
tain the state of the system between queries. From an effi-
ciency point of view, an API is usually preferred in practice
for interacting with a system.

Checkable queries
Once a common benchmark format is setup, it is important
to make sure that the benchmarks are correctly read by the
systems, and that the queries to the systems provide answers
checkable by a third party tool. In the case of SAT for in-
stance, while the decision problem answer is yes or no, in
practice, the SAT solvers have always been asked to pro-
vide a certificate (a model) in case of satisfiability. Such
certificate can be checked by an independent tool: if it sat-
isfies all clauses, then the answer is checked, else the an-
swer is invalid. If two solvers disagreed on the satisfiability
of a benchmark, checking the certificate of the yes answer
allowed to spot incorrect solvers when that certificate was
correct: the no answer is clearly incorrect in that case. Noth-
ing could be decided if the certificate was invalid: there are
many reasons why a SAT solvers could answer SAT and pro-
vide an incorrect certificate (complex pre-processing and in-
processing being the most probable case). There has been
since 2005 an effort to also provide checkable no answers to
SAT solvers (Van Gelder 2012), but very few solver design-

ers implemented it until a simpler proof certificate requiring
to add only a few lines of code in the solver was designed in
2013 (Heule, Jr., and Wetzler 2013). As such, SAT solvers
answers can now be checked both in case of satisfiability and
unsatisfiability.

Note that it is not always possible to check the system
answer. It happens for instance for QBF solvers, for which
a certificate would be a winning strategy for the existential
player. During the QBF evaluations, many QBF solvers dis-
agreed on the status of the benchmarks. As such, several ap-
proaches were taken to sort out the situation: majority vot-
ing, let the solvers play against each other (Narizzano et al.
2009), fuzz testing and delta debugging (Brummayer, Lons-
ing, and Biere 2010). It also happens when computing an op-
timal solutions in Pseudo-Boolean Optimization or MaxSat
competitions: in that case, one just check the value of the
certificate returned by the solver, and that no other solver
found a better solution. A better but resource consuming ap-
proach would be to create a new benchmark to check that
there is no better solution. In the same spirit, when tools for
computing Minimal Unsatisfiable Subformula are used, it is
very demanding to check for each answer that both the set
of constraints is unsatisfiable and that removing any clause
makes the set of constraints satisfiable. In the MUS track of
the SAT competition 2011, only the first test was performed,
offline.

It is important in the first place to provide both to the
end users and the solver designers some sample benchmarks
with their expected answer, or a basic solver able to solve
small benchmarks. This is especially true if the input format
is user oriented. For instance, the MISC competition intro-
duced new features in the input format without providing
sample benchmarks with those new features. Those features
were not correctly implemented by all systems, thus the sys-
tems answered differently on some of the benchmarks, mak-
ing comparisons between the systems hardly possible.

Chicken and egg problem
It is unlikely that people start providing benchmarks in one
input format without having a system to test some reduced
scale benchmarks. It is also unlikely that solver designers
start supporting an input format without having some sam-
ple benchmarks to play with. That’s the reason why a com-
mon input format is a community effort and it relies gener-
ally on a small group of people who are concerned by the
subject. One can take as example the attempt during the
SAT 2005 competition to push forward a non CNF input
format for SAT2: a common input format was defined, al-
lowing to define arbitrary gates, and a few sample instances
were provided as part of a specific track of the competition.
No submission of benchmarks nor systems were received
for such track. Another attempt, using a more specific non
clausal format (And Inverter Graph, AIG), but well suited
for model checking, received more interest in 2007, and be-
came a competition on its own for hardware model checking
(Biere and Jussila 2007). The main difference between the
two attempts was that a small community agreed to support

2http://www.satcompetition.org/2005/

134

AIG, some translators and checkers were available (AIGER
tool suite3) and many model checking benchmarks were pro-
vided in such format.

The input format of a given system may become a de
facto common input format. In the case of argumentation
frameworks for instance, several systems based on different
technologies have been designed by the same group, using a
common input format4. Such input format could be a good
starting point for creating a common argumentation system
input framework.

If it is not possible to provide both some sample bench-
marks and a basic solver, it is important to provide a way to
check the answers. The minimum requirement here would
be to provide the expected answer for each sample bench-
mark in a text file. A better approach would be to provide
a way to check the answer thanks to a certificate using an
independent checker software. Note that in such a case, a
common output (certificate) format must also be defined.

Reusing benchmarks from other communities
Reusing benchmarks from other communities is certainly an
easy way to start collecting benchmarks. Most benchmarks
libraries contain well-known academic benchmarks (includ-
ing randomly generated ones), benchmarks based on other
community benchmarks (SAT has many benchmarks mod-
eling properties to check on circuit benchmarks from IS-
CAS for instance), and finally dedicated benchmarks. The
latter are the harder to find at the beginning. As such, reusing
benchmarks from other communities is often the only way
to retrieve non-academic benchmarks.

Note that there are some side effects in reusing bench-
marks from other communities. The first one is to pay atten-
tion when evaluating systems on the origin of those systems.
For instance, there are two optimization extensions to SAT
for which benchmarks are available: MAXSAT and Pseudo
Boolean Optimization. The PBO benchmarks appeared be-
fore the MAXSAT ones, and some benchmarks from PBO
have been expressed as MAXSAT problems (optimization
problems with one linear objective function and a set of
clauses can be equally expressed in both frameworks). Some
solvers designed to solve PBO problems have been extended
to solve MAXSAT problems (e.g. Sat4j). Those solvers usu-
ally perform very well on the benchmarks originating from
PBO. In the same spirit, some of the Pseudo Boolean bench-
marks are coming from MIPLIB5, a repository of Mixed In-
teger Linear Programming benchmarks used by MILP op-
timizers developers since 1992 to evaluate their systems. It
is no surprise if tools such as CPLEX performs very well
on those benchmarks when compared to “classical” Pseudo-
Boolean solvers.

In the case of NMR, it is often the case that the systems
have to deal with inconsistency. As such, it is tempting for
instance to use unsatisfiable SAT benchmarks to evaluate
NMR systems. But those systems usually require additional

3http://fmv.jku.at/aiger/
4http://www.dbai.tuwien.ac.at/research/

project/argumentation/
5http://miplib.zib.de

informations (e.g. a stratification of the clauses, a confidence
for each clause, etc) and some arbitrary choices would have
to be done to fit in the context (i.e. creating individual sat-
isfiable sub-CNF for each agent in a multi-agent context).
The additional information may be generated using a spe-
cific distribution of values (e.g. randomly and uniformly as-
signing the clauses to a given number of strata), or arbitrarily
(e.g. make strata from sets of consecutive clauses, of identi-
cal or random sizes). Those benchmarks, despite not being
related at all with a real NMR problem, do have the benefit
to allow different systems to be compared on the same basis.

It is also interesting to note that there exists a format in the
SAT community which is very close to stratified knowledge
bases: Group oriented CNF, introduced in the MUS special
track in the SAT 2011 competition 6. The benchmarks in
that format are coming from circuit designs (Nadel 2010;
Ryvchin and Strichman 2011), where each group (stratum)
of clauses correspond to a subcircuit, a specific group con-
tains hard clauses which correspond to integrity constraints
(i.e. knowledge) while the remaining groups are soft clauses
which can be enabled or disabled altogether (i.e. beliefs).
The benchmarks are not satisfiable if all groups of clauses
are enabled. There exists 197 group oriented CNF bench-
marks available from the SAT 2011 competition web site,
all corresponding to “real” designs. They could be a good
starting point to test systems requiring stratified knowledge
bases.

The bias of benchmarking systems
It should also be clear that the benchmarks used to evaluate
the systems drive in some sense which systems are going to
be developed or improved by the community.

Anyone looking at the winners of the various SAT com-
petitions7 can check that solvers behave differently on ran-
domly generated benchmarks and benchmarks coming from
real applications or hard combinatorial problems. This is
true for any community. Randomly generated benchmarks
are interesting for two reasons: they are easy to generate and
can generally be formally defined. Combinatorial bench-
marks are important because they usually force the system to
exhibit worst case behavior. Application benchmarks are in-
teresting because they provide some hints about the practical
complexity of the problem. Note that if application bench-
marks in SAT tend to be “easier” in practice than say com-
binatorial benchmarks, it is only the case because people
worked hard to find the right heuristics, data structures, etc.
to manage those problems.

For that reason, one should always be very careful when
looking at any competitive event results, or when evalu-
ating his system on a given set of benchmarks. It took
some time for the MAXSAT competition8 to obtain bench-
marks coming from real applications. Before 2008, SAT-
based MAXSAT solvers performed relatively poorly on the
problems available for the competition (mainly randomly

6http://www.satcompetition.org/2011/rules.
pdf

7http://www.satcompetition.org/
8http://maxsat.ia.udl.cat/

135

generated, based on academic problems). Once application
benchmarks became available, SAT-based MAXSAT solvers
performed much better on those problems, especially core-
guided MAXSAT solvers. So the benchmarks used to eval-
uate the systems eventually influence the development of
those systems.

There are also subtle differences between benchmarks
coming from real applications. The SAT community has
been driven by Bounded Model Checking benchmarks from
the end of the 90’s to mid 2000’s. As such, the solvers de-
signed during that period were especially relevant to that
application: the winners of the SAT competition could be
directly integrated into model checkers. With an increase of
the diversity of its applications, the available benchmarks for
SAT are now quite different in structure from those BMC
benchmarks. Which means that the best performing SAT
solver during the SAT competition may not be the best solver
for the particular case of BMC.

Benchmarks libraries
Benchmarks are usually made available to the community
through a library: CSPLIB, SATLIB, PBLIB, SMTLIB, etc.
However, it is an issue to manage those libraries in the long
term. A good example is SATLIB (Hoos and Sttzle 2000). It
was designed in 1999 to host the benchmarks made available
to the SAT community. It did a good job at collecting the
benchmarks generated during the 90’s. However, the huge
increase in number of benchmarks (and their size!) in early
2000 made it hard to catch up after 2001, so the SAT com-
petition web sites have been providing the benchmarks used
in the competitions since then. The situation is not ideal be-
cause there is no longer now in the SAT community a cen-
tral place where the benchmarks can be accessed. Some of
the benchmarks, which were made available to the research
community by IBM (Zarpas 2006), can no longer be dis-
tributed. It is thus very difficult to reproduce some exper-
iments, to evaluate the efficiency of new solvers on those
benchmarks. Having a community driven central repository
may help to avoid such situation.

The CSP library 9 succeeded in maintaining a library of
problems for 15 years. Note that those problems are not in
a uniform format, but rather described in their own format.
The library is much about problems than benchmarks.

The library of benchmarks one community would like to
mimic today are probably TPTP10 or MIPLIB. Those li-
braries have been available for two decades now and are the
central sources of benchmarks for their respective commu-
nity. The benchmarks are ranked by difficulty, and updated
regularly at the light of the performances of new systems.

Conclusion
Many communities built central repositories of benchmarks
to be able to compare the performance of their systems. The
success of those repositories relies first on the adoption of it
format by the community, and second on the availability of

9http://www.csplib.org/
10http://www.tptp.org/

benchmarks for which some information is provided: diffi-
culty, expected answer, runtime of existing systems, etc.

For a community such as NMR, which addresses a wide
range of different problems, the first step is to decide on
which problems a first effort of standardization is required.
The heuristics can be either the maturity of existing systems
in the community or the importance of the problem for the
community. In either case, the choice of the format for the
benchmarks will be important: should it be user oriented or
system oriented? data or protocol oriented?

Defining a format and providing benchmarks is not suffi-
cient to reach adoption: sample results and answers check-
ers are essential components to allow system designers to
adopt such format. In order to receive application bench-
marks, some systems supporting that format should be pro-
vided as well, even if they are not very efficient: they are
sufficient to discover the meaning of the benchmark format,
or to check the answers of a system under development.

Both benchmarks providers and system developers can
make mistakes. As such, tools which check the syntax of the
input and the correctness of the system answers will help
providing meaningful benchmarks and systems results.

In order to reuse benchmarks from other communities,
tools which allow to translate to and from different formats
are also welcome.

Organizing competitive events has been a great source of
new benchmarks for many communities. I am looking for-
ward the first NMR competition.

References
Abate, P., and Treinen, R. 2011. Mancoosi Deliverable
D5.4: Report on the international competition. Rapport de
recherche.
Barrett, C.; Stump, A.; and Tinelli, C. 2010. The SMT-LIB
Standard: Version 2.0. In Gupta, A., and Kroening, D., eds.,
Proceedings of the 8th International Workshop on Satisfia-
bility Modulo Theories (Edinburgh, UK).
Biere, A., and Jussila, T. 2007. Hardware model checking
competition. http://fmv.jku.at/hwmcc07/.
Brummayer, R.; Lonsing, F.; and Biere, A. 2010. Automated
testing and debugging of sat and qbf solvers. In Strichman,
O., and Szeider, S., eds., SAT, volume 6175 of Lecture Notes
in Computer Science, 44–57. Springer.
Fikes, R., and Nilsson, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artif. Intell. 2(3/4):189–208.
Gebser, M.; Liu, L.; Namasivayam, G.; Neumann, A.;
Schaub, T.; and Truszczynski, M. 2007. The first answer
set programming system competition. In Baral, C.; Brewka,
G.; and Schlipf, J. S., eds., LPNMR, volume 4483 of Lecture
Notes in Computer Science, 3–17. Springer.
Heule, M.; Jr., W. A. H.; and Wetzler, N. 2013. Verifying
refutations with extended resolution. In Bonacina, M. P., ed.,
CADE, volume 7898 of Lecture Notes in Computer Science,
345–359. Springer.
Hoos, H. H., and Sttzle, T. 2000. Satlib: An online resource

136

for research on sat. In Gent, I. P.; van Maaren, H.; and Walsh,
T., eds., SAT 2000, 283–292. IOS Press.
Johnson, D., and Trick, M., eds. 1996. Second DIMACS
implementation challenge : cliques, coloring and satisfiabil-
ity, volume 26 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science. American Mathematical
Society.
Lecoutre, C.; Roussel, O.; and van Dongen, M. R. C. 2010.
Promoting robust black-box solvers through competitions.
Constraints 15(3):317–326.
Nadel, A. 2010. Boosting minimal unsatisfiable core ex-
traction. In Bloem, R., and Sharygina, N., eds., FMCAD,
221–229. IEEE.
Narizzano, M.; Peschiera, C.; Pulina, L.; and Tacchella, A.
2009. Evaluating and certifying qbfs: A comparison of state-
of-the-art tools. AI Commun. 22(4):191–210.
Ryvchin, V., and Strichman, O. 2011. Faster extraction of
high-level minimal unsatisfiable cores. In Sakallah, K. A.,
and Simon, L., eds., SAT, volume 6695 of Lecture Notes in
Computer Science, 174–187. Springer.
Simon, L., and Chatalic, P. 2001. Satex: A web-based frame-
work for sat experimentation. Electronic Notes in Discrete
Mathematics 9:129–149.
Simon, L.; Le Berre, D.; and Hirsch, E. A. 2005. The
SAT2002 competition. Ann. Math. Artif. Intell. 43(1):307–
342.
Stuckey, P. J.; Becket, R.; and Fischer, J. 2010. Philosophy
of the minizinc challenge. Constraints 15(3):307–316.
Sutcliffe, G., and Suttner, C. 2006. The State of CASC. AI
Communications 19(1):35–48.
Sutcliffe, G. 2009. The TPTP Problem Library and Associ-
ated Infrastructure: The FOF and CNF Parts, v3.5.0. Journal
of Automated Reasoning 43(4):337–362.
Van Gelder, A. 2012. Producing and verifying extremely
large propositional refutations - have your cake and eat it
too. Ann. Math. Artif. Intell. 65(4):329–372.
Zarpas, E. 2006. Back to the SAT05 Competition: an a Pos-
teriori Analysis of Solver Performance on Industrial Bench-
marks. JSAT 2(1-4):229–237.

137

Towards a Benchmark of Natural Language Arguments

Elena Cabrio and Serena Villata
INRIA Sophia Antipolis

France

Abstract

The connections among natural language processing
and argumentation theory are becoming stronger in the
latest years, with a growing amount of works going in
this direction, in different scenarios and applying het-
erogeneous techniques. In this paper, we present two
datasets we built to cope with the combination of the
Textual Entailment framework and bipolar abstract ar-
gumentation. In our approach, such datasets are used
to automatically identify through a Textual Entailment
system the relations among the arguments (i.e., attack,
support), and then the resulting bipolar argumentation
graphs are analyzed to compute the accepted arguments.

Introduction
Until recent years, the idea of “argumentation” as the pro-
cess of creating arguments for and against competing claims
was a subject of interest to philosophers and lawyers. In re-
cent years, however, there has been a growth of interest in
the subject from formal and technical perspectives in Ar-
tificial Intelligence, and a wide use of argumentation tech-
nologies in practical applications. However, such applica-
tions are always constrained by the fact that natural language
arguments cannot be automatically processed by such argu-
mentation technologies. Arguments are usually presented ei-
ther as the abstract nodes of a directed graph where the edges
represent the relations of attack and support (e.g., in abstract
argumentation theory (Dung 1995) and in bipolar argumen-
tation (Cayrol and Lagasquie-Schiex 2005), respectively).

Natural language arguments are usually used in the ar-
gumentation literature to provide ad-hoc examples to help
the reader in the understanding of the rationale behind the
formal approach which is then introduced, but the need to
find automatic ways to process natural language arguments
is becoming more and more important. On the one side,
when dealing with natural language processing techniques,
the first step consists in finding the data on which the system
is trained and evaluated. On the other side, in argumentation
theory there is a growing need to define benchmarks for ar-
gumentation to test implemented systems and proposed the-
ories. In this paper, we address the following research ques-
tion: how to build a dataset of natural language arguments?

The definition of a dataset of natural language arguments
is not a straightforward task: first, there is the need to iden-

tify the kind of natural language arguments to be collected
(e.g., online debates, newspaper articles, blogs and forums,
etc.), and second, there is the need to annotate the data ac-
cording to the addressed task from the natural language pro-
cessing point of view (e.g., classification, textual entailment
(Dagan et al. 2009), etc.).

Our goal (Cabrio and Villata 2013) is to analyze natural
language debates in order to understand, given a huge de-
bate, what are the winning arguments (through acceptability
semantics) and who proposed them. In order to achieve such
goal, we have identified two different scenarios to extract
our data: (i) online debate platforms like Debatepedia1 and
ProCon2 present a set of topics to be discussed, and partic-
ipants argue about the issue the platform proposes on a se-
lected topic, highlighting whether their “arguments” are in
favor or against the central issue, or with respect to the other
participants’ arguments, and (ii) the screenplay of a movie
titled “Twelve Angry Men” where the jurors of a trial dis-
cuss in order to decide whether a young boy is guilty or not,
and before the end of each act they vote to verify whether
they all agree about his guiltiness. These two scenarios lead
to two different resources: the online debates resource col-
lects the arguments in favor or against the main issue or the
other arguments into small bipolar argumentation graphs,
while the “Twelve Angry Men” resource collects again pro
and con arguments but they compose three bipolar argu-
mentation graphs whose complexity is higher than debates
graphs. Note that the first resource consists of an integration
of the dataset of natural language arguments we presented
in (Cabrio and Villata 2013) with new data extracted from
the ProCon debate platform.

These two resources represent a first step towards the
construction of a benchmark of natural language argu-
ments, to be exploited by existing argumentation systems as
data-driven examples of argumentation frameworks. In our
datasets, arguments are cast into pairs where the two argu-
ments composing the pair are linked by a positive relation
(a support relation in argumentation) or a negative relation
(an attack relation in argumentation). From these pairs, the
argumentation graphs are constructed.

The remainder of the paper is organized as follows:

1http://idebate.org/debatabase
2http://www.procon.org/

138

the next section presents the two datasets from Debatepe-
dia/ProCon and Twelve Angry Men and how they have been
extracted and annotated, then some conclusions are drawn.

Natural Language Arguments: datasets
As introduced before, the rationale underlying the datasets
of natural language arguments we created was to support the
task of understanding, given a huge debate, what are the win-
ning arguments, and who proposed them. In an application
framework, we can divide such task into two consecutive
subtasks, namely i) the recognition of the semantic relations
between couples of arguments in a debate (i.e. if one state-
ment is supporting or attacking another claim), ii) and given
all the arguments that are part of a debate and the acceptabil-
ity semantics, to reason over the graph of arguments with the
aim of deciding which are the accepted ones.

To reflect this separation into two subtasks, each dataset
that we will describe in detail in the following subsections is
therefore composed of two layers. Given a set of arguments
linked among them (e.g in a debate):

1. we couple each argument with the argument to which it is
related (i.e. that it attacks or supports). The first layer of
the dataset is therefore composed of couples of arguments
(each one labeled with a univocal ID), annotated with the
semantic relations linking them (i.e. attack or support);

2. starting from the pairs of arguments in the first layer of
the dataset, we then build a bipolar entailment graph for
each of the topics in the dataset. In the second layer of
the dataset, we find therefore graphs of arguments, where
the arguments are the nodes of the graph, and the rela-
tions among the arguments correspond to the edges of the
graphs.

To create the data set of arguments pairs, we follow the
criteria defined and used by the organizers of the Recogniz-
ing Textual Entailment challenge.3 To test the progress of
TE systems in a comparable setting, the participants to RTE
challenge are provided with data sets composed of T-H pairs
involving various levels of entailment reasoning (e.g. lexical,
syntactic), and TE systems are required to produce a correct
judgment on the given pairs (i.e. to say if the meaning of one
text snippet can be inferred from the other). Two kinds of
judgments are allowed: two-way (yes or no entailment) or
three-way judgment (entailment, contradiction, unknown).
To perform the latter, in case there is no entailment between
T and H systems must be able to distinguish whether the
truth of H is contradicted by T, or remains unknown on the
basis of the information contained in T. To correctly judge
each single pair inside the RTE data sets, systems are ex-
pected to cope both with the different linguistic phenomena
involved in TE, and with the complex ways in which they
interact. The data available for the RTE challenges are not
suitable for our goal, since the pairs are extracted from news
and are not linked among each others (i.e. they do not report

3Since its inception in 2004, the PASCAL RTE Challenges
have promoted research in RTE http://www.nist.gov/
tac/2010/RTE/

opinions on a certain topic). However, the task of recogniz-
ing semantic relations among pairs of textual fragments is
very close to ours, and therefore we follow the guidelines
provided by the organizers of RTE for the creation of their
datasets. For instance, in (Cabrio and Villata 2013) we ex-
periment with the application of a TE (Dagan et al. 2009) to
automatically identify the arguments in the text and to spec-
ify which kind of relation links each couple of arguments.

Debatepedia dataset
To build our first benchmark of natural language arguments,
we selected Debatepedia and ProCon, two encyclopedias of
pro and con arguments on critical issues. To fill in the first
layer of the dataset, we manually selected a set of topics (Ta-
ble 2 column Topics) of Debatepedia/ProCon debates, and
for each topic we apply the following procedure:

1. the main issue (i.e., the title of the debate in its affirmative
form) is considered as the starting argument;

2. each user opinion is extracted and considered as an argu-
ment;

3. since attack and support are binary relations, the argu-
ments are coupled with:

(a) the starting argument, or
(b) other arguments in the same discussion to which the

most recent argument refers (i.e., when a user opinion
supports or attacks an argument previously expressed
by another user, we couple the former with the latter),
following the chronological order to maintain the dia-
logue structure;

4. the resulting pairs of arguments are then tagged with the
appropriate relation, i.e., attack or support4.

Using Debatepedia/ProCon as case study provides us with
already annotated arguments (pro ⇒ entailment5, and con
⇒ contradiction), and casts our task as a yes/no entailment
task. To show a step-by-step application of the procedure,
let us consider the debated issue Can coca be classified as
a narcotic?. At step 1, we transform its title into the affir-
mative form, and we consider it as the starting argument (a).
Then, at step 2, we extract all the users opinions concerning
this issue (both pro and con), e.g., (b), (c) and (d):

Example 1.
(a) Coca can be classified as a narcotic.

(b) In 1992 the World Health Organization’s Expert
Committee on Drug Dependence (ECDD) undertook a
“prereview” of coca leaf at its 28th meeting. The 28th
ECDD report concluded that, “the coca leaf is appropri-
ately scheduled as a narcotic under the Single Convention
on Narcotic Drugs, 1961, since cocaine is readily ex-
tractable from the leaf.” This ease of extraction makes coca

4The data set is freely available at http://www-sop.
inria.fr/NoDE/.

5Here we consider only arguments implying another argument.
Arguments “supporting” another argument, but not inferring it will
be discussed in the next subsection.

139

and cocaine inextricably linked. Therefore, because cocaine
is defined as a narcotic, coca must also be defined in this
way.

(c) Coca in its natural state is not a narcotic. What is
absurd about the 1961 convention is that it considers the
coca leaf in its natural, unaltered state to be a narcotic. The
paste or the concentrate that is extracted from the coca leaf,
commonly known as cocaine, is indeed a narcotic, but the
plant itself is not.

(d) Coca is not cocaine. Coca is distinct from cocaine. Coca
is a natural leaf with very mild effects when chewed. Cocaine
is a highly processed and concentrated drug using deriva-
tives from coca, and therefore should not be considered as a
narcotic.

At step 3a we couple the arguments (b) and (d) with the start-
ing issue since they are directly linked with it, and at step 3b
we couple argument (c) with argument (b), and argument (d)
with argument (c) since they follow one another in the dis-
cussion (i.e. user expressing argument (c) answers back to
user expressing argument (b), so the arguments are concate-
nated - the same for arguments (d) and (c)).
At step 4, the resulting pairs of arguments are then tagged
with the appropriate relation: (b) supports (a), (d) attacks
(a), (c) attacks (b) and (d) supports (c).

We have collected 260 T-H pairs (Table 2), 160 to train
and 100 to test the TE system. The training set is composed
by 85 entailment and 75 contradiction pairs, while the test
set by 55 entailment and 45 contradiction pairs. The pairs
considered for the test set concern completely new topics.

Basing on the TE definition, an annotator with skills in
linguistics has carried out a first phase of manual annotation
of the Debatepedia data set. Then, to assess the validity of
the annotation task and the reliability of the obtained data
set, the same annotation task has been independently car-
ried out also by a second annotator, so as to compute inter-
annotator agreement. It has been calculated on a sample of
100 argument pairs (randomly extracted).

The statistical measure usually used in NLP to calculate
the inter-rater agreement for categorical items is Cohen’s
kappa coefficient (Carletta 1996), that is generally thought
to be a more robust measure than simple percent agreement
calculation since κ takes into account the agreement oc-
curring by chance. More specifically, Cohen’s kappa mea-
sures the agreement between two raters who each classifies
N items into C mutually exclusive categories. The equation
for κ is:

κ =
Pr(a)− Pr(e)

1− Pr(e)
(1)

where Pr(a) is the relative observed agreement among raters,
and Pr(e) is the hypothetical probability of chance agree-
ment, using the observed data to calculate the probabilities
of each observer randomly saying each category. If the raters
are in complete agreement then κ = 1. If there is no agree-
ment among the raters other than what would be expected
by chance (as defined by Pr(e)), κ = 0. For NLP tasks, the

Training set
Topic #argum #pairs

TOT. yes no
Violent games/aggressiveness 16 15 8 7
China one-child policy 11 10 6 4
Consider coca as a narcotic 15 14 7 7
Child beauty contests 12 11 7 4
Arming Libyan rebels 10 9 4 5
Random alcohol breath tests 8 7 4 3
Osama death photo 11 10 5 5
Privatizing social security 11 10 5 5
Internet access as a right 15 14 9 5
Tablets vs. Textbooks 22 21 11 10
Obesity 16 15 7 8
Abortion 25 24 12 12
TOTAL 109 100 55 45

Test set
Topic #argum #pairs

TOT. yes no
Ground zero mosque 9 8 3 5
Mandatory military service 11 10 3 7
No fly zone over Libya 11 10 6 4
Airport security profiling 9 8 4 4
Solar energy 16 15 11 4
Natural gas vehicles 12 11 5 6
Use of cell phones/driving 11 10 5 5
Marijuana legalization 17 16 10 6
Gay marriage as a right 7 6 4 2
Vegetarianism 7 6 4 2
TOTAL 110 160 85 75

Table 1: The Debatepedia/ProCon data set

inter-annotator agreement is considered as significant when
κ >0.6. Applying the formula (1) to our data, the inter-
annotator agreement results in κ = 0.7. As a rule of thumb,
this is a satisfactory agreement, therefore we consider these
annotated data sets as the goldstandard. The goldstandard
is the reference data set to which the performances of auto-
mated systems can be compared.

To build the bipolar argumentation graphs associated to
the Debatepedia dataset, we have considered the pairs anno-
tated in the first layer and we have built a bipolar entailment
graph for each of the topic in the dataset (12 topics in the
training set and 10 topics in the test set, listed in Table 2).

Figure 1 shows the average dimension of a bipolar argu-
mentation graph in the Debatepedia/ProCon dataset. Note
that no cycle is present, as well as in all the other graphs of
such dataset. All graphs are available online, together with
the XML data set.

Debatepedia extended dataset The dataset described in
the previous section was created respecting the assumption
that the TE relation and the support relation are equivalent,
i.e. in all the previously collected pairs both TE and support
relations (or contradiction and attack relations) hold.

For the second study described in (Cabrio and Villata
2013) we wanted to move a step further, to understand
whether it is always the case that support is equivalent to TE

140

Figure 1: The bipolar argumentation framework resulting
from the topic “Obesity” of Pro/Con (red edges represent
attack and green ones represent support).

(and contradiction to attack). We therefore apply again the
extraction methodology described in the previous section to
extend our data set. In total, our new data set contains 310
different arguments and 320 argument pairs (179 express-
ing the support relation among the involved arguments, and
141 expressing the attack relation, see Table 2). We consider
the obtained data set as representative of human debates in a
non-controlled setting (Debatepedia users position their ar-
guments with respect to the others as PRO or CON, the data
are not biased).

Debatepedia extended data set
Topic #argum #pairs
Violent games/aggressiveness 17 23
China one-child policy 11 14
Consider coca as a narcotic 17 22
Child beauty contests 13 17
Arming Libyan rebels 13 15
Random alcohol breath tests 11 14
Osama death photo 22 24
Privatizing social security 12 13
Internet access as a right 15 17
Ground zero mosque 11 12
Mandatory military service 15 17
No fly zone over Libya 18 19
Airport security profiling 12 13
Solar energy 18 19
Natural gas vehicles 16 17
Use of cell phones/driving 16 16
Marijuana legalization 23 25
Gay marriage as a right 10 10
Vegetarianism 14 13
TOTAL 310 320

Table 2: Debatepedia extended data set

Again, an annotator with skills in linguistics has carried
out a first phase of annotation of the extended Debatepe-
dia data set. The goal of such annotation was to individually
consider each pair of support and attack among arguments,

and to additionally tag them as entailment, contradiction or
null. The null judgment can be assigned in case an argument
is supporting another argument without inferring it, or the
argument is attacking another argument without contradict-
ing it. As exemplified in Example 1, a correct entailment
pair is (b)⇒ (a), while a contradiction is (d) ; (a). A null
judgment is assigned to (d) - (c), since the former argument
supports the latter without inferring it. Our data set is an ex-
tended version of (Cabrio and Villata 2012)’s one allowing
for a deeper investigation.

Again, to assess the validity of the annotation task, we
have calculated the inter-annotator agreement. Another an-
notator with skills in linguistics has therefore independently
annotated a sample of 100 pairs of the data set. We cal-
culated the inter-annotator agreement considering the argu-
ment pairs tagged as support and attacks by both annotators,
and we verify the agreement between the pairs tagged as en-
tailment and as null (i.e. no entailment), and as contradiction
and as null (i.e. no contradiction), respectively. Applying κ
to our data, the agreement for our task is κ = 0.74. As a
rule of thumb, this is a satisfactory agreement. Table 3 re-
ports the results of the annotation on our Debatepedia data
set, as resulting after a reconciliation phase carried out by
the annotators6.

Relations % arg. (# arg.)

support + entailment 61.6 (111)
- entailment (null) 38.4 (69)

attack + contradiction 71.4 (100)
- contradiction (null) 28.6 (40)

Table 3: Support and TE relations on Debatepedia data set.

On the 320 pairs of the data set, 180 represent a support
relation, while 140 are attacks. Considering only the
supports, 111 argument pairs (i.e., 61.6%) are an actual
entailment, while in 38.4% of the cases the first argument
of the pair supports the second one without inferring it (e.g.
(d) - (c) in Example 1). With respect to the attacks, 100
argument pairs (i.e., 71.4%) are both attack and contradic-
tion, while only the 28.6% of the argument pairs does not
contradict the arguments they are attacking, as in Example 2.

Example 2.
(e) Coca chewing is bad for human health. The decision
to ban coca chewing fifty years ago was based on a 1950
report elaborated by the UN Commission of Inquiry on the
Coca Leaf with a mandate from ECOSOC: “We believe
that the daily, inveterate use of coca leaves by chewing is
thoroughly noxious and therefore detrimental”.

(f) Chewing coca offers an energy boost. Coca provides an
energy boost for working or for combating fatigue and cold.

Differently from the relation between support-entailment,
the difference between attack and contradiction is more sub-

6In this phase, the annotators discuss the results to find an agree-
ment on the annotation to be released.

141

tle, and it is not always straightforward to say whether an
argument attacks another argument without contradicting it.
In Example 2, we consider that (e) does not contradict (f)
even if it attacks (f), since chewing coca can offer an energy
boost, and still be bad for human health. This kind of attacks
is less frequent than the attacks-contradictions (see Table 3).

Debatepedia additional attacks dataset Starting from
the comparative study addressed by (Cayrol and Lagasquie-
Schiex 2011), in the third study of (Cabrio and Villata 2013)
we have considered four additional attacks proposed in the
literature: supported (if argument a supports argument b and
b attacks argument c, then a attacks c) and secondary (if a
supports b and c attacks a, then c attacks b) attacks (Cay-
rol and Lagasquie-Schiex 2010), mediated attacks (Boella
et al. 2010) (if a supports b and c attacks b, then c at-
tacks a), and extended attacks (Nouioua and Risch 2010;
2011) (if a supports b and a attacks c, then b attacks c).

In order to investigate the presence and the distribution
of these attacks in NL debates, we extended again the data
set extracted from Debatepedia to consider all these addi-
tional attacks, and we showed that all these models are ver-
ified in human debates, even if with a different frequency.
More specifically, we took the original argumentation frame-
work of each topic in our data set (Table 2), the following
procedure is applied: the supported (secondary, mediated,
and extended, respectively) attacks are added, and the argu-
ment pairs resulting from coupling the arguments linked by
this relation are collected in the data set “supported (sec-
ondary, mediated, and extended, respectively) attack”. Col-
lecting the argument pairs generated from the different types
of complex attacks in separate data sets allows us to indepen-
dently analyze each type, and to perform a more accurate
evaluation.7 Figures 2a-d show the four AFs resulting from
the addition of the complex attacks in the example Can coca
be classified as a narcotic?. Note that the AF in Figure 2a,
where the supported attack is introduced, is the same of Fig-
ure 2b where the mediated attack is introduced. Notice that,
even if the additional attack which is introduced coincide,
i.e., d attacks b, this is due indeed to different interactions
among supports and attacks (as highlighted in the figure),
i.e., in the case of supported attacks this is due to the sup-
port from d to c and the attack from c to b, while in the case
of mediated attacks this is due to the support from b to a and
the attack from d to a.

A second annotation phase is then carried out on the data
set, to verify if the generated argument pairs of the four data
sets are actually attacks (i.e., if the models of complex at-
tacks proposed in the literature are represented in real data).
More specifically, an argument pair resulting from the ap-
plication of a complex attack can be annotated as: attack (if
it is a correct attack) or as unrelated (in case the meanings
of the two arguments are not in conflict). For instance, the
argument pair (g)-(h) (Example 3) resulting from the inser-
tion of a supported attack, cannot be considered as an attack
since the arguments are considering two different aspects of

7Data sets freely available for research purposes at
http://www-sop.inria.fr/NoDE/NoDE-xml.html#
debatepedia

the issue.
Example 3.
(g) Chewing coca offers an energy boost. Coca provides an
energy boost for working or for combating fatigue and cold.

(h) Coca can be classified as a narcotic.

In the annotation, attacks are then annotated also as con-
tradiction (if the first argument contradicts the other) or null
(in case the first argument does not contradict the argument
it is attacking, as in Example 2). Due to the complexity of
the annotation, the same annotation task has been indepen-
dently carried out also by a second annotator, so as to com-
pute inter-annotator agreement. It has been calculated on a
sample of 80 argument pairs (20 pairs randomly extracted
from each of the “complex attacks” data set), and it has the
goal to assess the validity of the annotation task (counting
when the judges agree on the same annotation). We calcu-
lated the inter-annotator agreement for our annotation task
in two steps. We (i) verify the agreement of the two judges
on the argument pairs classification attacks/unrelated, and
(ii) consider only the argument pairs tagged as attacks by
both annotators, and we verify the agreement between the
pairs tagged as contradiction and as null (i.e. no contradic-
tion). Applying κ to our data, the agreement for the first step
is κ = 0.77, while for the second step κ = 0.71. As a rule
of thumb, both agreements are satisfactory, although they
reflect the higher complexity of the second annotation (con-
tradiction/null).

The distribution of complex attacks in the Debatepedia
data set, as resulting after a reconciliation phase carried out
by the annotators, is shown in Table 4. As can be noticed,
the mediated attack is the most frequent type of attack, gen-
erating 335 new argument pairs in the NL sample we con-
sidered (i.e. the conditions that allow the application of this
kind of complex attacks appear more frequently in real de-
bates). Together with secondary attacks, they appear in the
AFs of all the debated topics. On the contrary, extended at-
tacks are added in 11 out of 19 topics, and supported attacks
in 17 out of 19 topics. Considering all the topics, on aver-
age only 6 pairs generated from the additional attacks were
already present in the original data set, meaning that consid-
ering also these attacks is a way to hugely enrich our data
set of NL debates.

Proposed models # occ. attacks unrelated
+ contr - contr
(null) (null)

Supported attacks 47 23 17 7
Secondary attacks 53 29 18 6
Mediated attacks 335 84 148 103
Extended attacks 28 15 10 3

Table 4: Complex attacks distribution in our data set.

Twelve Angry Men
As a second scenario to extract natural language arguments
we chose the scripts of “Twelve Angry Men”. The play con-

142

c a

d

b

c bd

Supported attack

c a

d

b

a db

Mediated attack

c a

d

b

b ac

Secondary attack

c a

d

b

d ca

Extended attack

(a) (d)(c)(b)

Figure 2: The bipolar argumentation framework with the introduction of complex attacks. The top figures show which combi-
nation of support and attack generates the new additional attack.

cerns the deliberations of the jury of a homicide trial. As in
most American criminal cases, the twelve men must unani-
mously decide on a verdict of “guilty” or “not guilty”. At the
beginning, they have a nearly unanimous decision of guilty,
with a single dissenter of not guilty, who throughout the play
sows a seed of reasonable doubt.

The play is divided into three acts: the end of each act
corresponds to a fixed point in time (i.e. the halfway votes
of the jury, before the official one), according to which we
want to be able to extract a set of consistent arguments. For
each act, we manually selected the arguments (excluding
sentences which cannot be considered as self-contained
arguments), and we coupled each argument with the
argument it is supporting or attacking in the dialogue
flow (as shown in Examples 4 to 7). More specifically, in
discussions, one character’s argument comes after the other
(entailing or contradicting one of the arguments previously
expressed by another character): therefore, we create our
pairs in the graph connecting the former to the latter (more
recent arguments are placed as T and the argument w.r.t.
whom we want to detect the relation is placed as H). For
instance, in Example 6, juror 1 claims argument (o), and he
is attacked by juror 2, claiming argument (l). Juror 3 claims
then argument (i) to support juror’s 2 opinion. In the dataset
we have therefore annotated the following couples: (o) is
contradicted by (l); (l) is entailed by (i).

In Example 7, juror 1 claims argument (l) supported by ju-
ror 2 (argument (i)); juror 3 attacks juror’s 2 opinion with
argument (p). More specifically, (l) is entailed by (i); (i) is
contradicted by (p).
Example 4.
(i) Maybe the old man didn’t hear the boy yelling “I’m going
to kill you”. I mean with the el noise.
(l) I don’t think the old man could have heard the boy yelling.
Example 5.
(m) I never saw a guiltier man in my life. You sat right in
court and heard the same thing I did. The man’s a dangerous
killer.
(n) I don’t know if he is guilty.
Example 6.
(i) Maybe the old man didn’t hear the boy yelling ”I’m going
to kill you”. I mean with the el noise.

(l) I don’t think the old man could have heard the boy yelling.
(o) The old man said the boy yelled ”I’m going to kill you”
out. That’s enough for me.

Example 7.
(p) The old man cannot be a liar, he must have heard the boy
yelling.
(i) Maybe the old man didn’t hear the boy yelling ”I’m going
to kill you”. I mean with the el noise.
(l) I don’t think the old man could have heard the boy yelling.

Given the complexity of the play, and the fact that in human
linguistic interactions a lot is left implicit, we simplified the
arguments: i) adding the required context in T to make the
pairs self-contained (in the TE framework entailment is de-
tected based on the evidences provided in T); and ii) solv-
ing intra document coreferences, as in: Nobody has to prove
that!, transformed into Nobody has to prove [that he is not
guilty].

We collected 80 T-H pairs8, composed by 25 entailment
pairs, 41 contradiction and 14 unknown pairs (contradiction
and unknown pairs are then collapsed in the judgment non
entailment for the two-way classification task).9 To calculate
the inter annotator agreement, the same annotation task has
been independently carried out on half of argument pairs (40
T-H pairs) also by a second annotator. Cohen’s kappa (Car-
letta 1996) is 0.74. Again, this is a satisfactory agreement,
confirming the reliability of the obtained resource.

Also in this scenario, we consider the pairs annotated in
the first layer and we then build a bipolar entailment graph
for each of the topic in the dataset (the three acts of the
play). Again, the arguments are the nodes of the graph, and
the relations among the arguments correspond to the edges
of the graphs. The complexity of the graphs obtained for
the Twelve Angry Men scenario is higher than the debates
graphs (on average, 27 links per graph with respect to 9 links
per graph in the Debatepedia dataset).

8The dataset is available at http://www-sop.inria.fr/
NoDE/NoDE-xml.html#12AngryMen. It is built in standard
RTE format.

9The unknown pairs in the dataset are arguments attacking each
others, without contradicting. Collapsing both judgments into one
category for our experiments does not impact on our framework
evaluation.

143

Figure 3: The bipolar argumentation framework resulting
from Act 1 of Twelve Angry Men (red edges represent at-
tack and green ones represent support).

Figure 3 shows the average dimension of a bipolar argu-
mentation graph in the Twelve Angry Men dataset. Note that
no cycle is present, as well as in all the other graphs of such
dataset.

Conclusions
In this paper, we describe two datasets of natural language
arguments used in the context of debates. The only existing
dataset composed of natural language arguments proposed
and exploited in the argumentation community is Arau-
caria.10 Araucaria (Reed and Rowe 2004) is based on ar-
gumentation schemes (Walton, Reed, and Macagno 2008),
and it is an online repository of arguments from heteroge-
nous sources like newspapers (e.g., Wall Street Journal), par-
liamentary records (e.g., UK House of Parliament debates)
and discussion fora (e.g., BBC talking point). Arguments are
classified by argumentation schemes. Also in the context of
argumentation schemes, (Cabrio, Tonelli, and Villata 2013)
propose a new resource based on the Penn Discourse Tree-
bank (PDTB), where a part of the corpus has been annotated
with a selection of five argumentation schemes. This effort
goes in the direction of trying to export a well known ex-
isting benchmark in the field of natural language processing
(i.e., PDTB) into the argumentation field, through the iden-
tification and annotation of the argumentation schemes.

The benchmark of natural language arguments we pre-
sented in this paper has several potential uses. As all the
data we presented is available on the Web in a machine-
readable format, researchers interested in testing their own
argumentation-based tool (both for arguments visualization
and for reasoning) are allowed to download the data sets
and verify on real data the performances of the tool. More-

10http://araucaria.computing.dundee.ac.uk

over, also from the theoretical point of view, the data set can
be used by argumentation researchers to find real world ex-
ample supporting the introduction of new theoretical frame-
works. One of the aims of such benchmark is actually to
move from artificial natural language examples of argumen-
tation towards more realistic ones where other problems,
maybe far from the ones addressed at the present stage in
current argumentation research, emerge.

It is interesting to note that the abstract (bipolar) argumen-
tation graphs resulting from our datasets result to be rather
simple structures, where usually arguments are inserted in
reinstatement chains, rather than complex structures with the
presence of several odd and even cycles, as usually chal-
lenged in the argumentation literature. In this perspective,
we plan to consider other sources of arguments, like cos-
tumer’s opinions about a service or a product, to see whether
more complex structures are identified, with the final goal to
built a complete resource where also such complex patterns
are present.

A further point which deserves investigation concerns the
use of abstract argumentation. Some of the examples we pro-
vided may suggest that in some cases adopting abstract argu-
mentation might not be fully appropriate since such natural
language arguments have (possibly complex) internal struc-
tures and may include sub-arguments (for example argument
(d) of the “Coca as narcotic” example). We will investigate
how to build a dataset of structured arguments, taking into
account the discourse relations.

Finally, in this paper, we have presented a benchmark of
natural language arguments manually annotated by humans
with skills in linguistics. Given the complexity of the anno-
tation task, a manual annotation was the best choice ensuring
an high quality of the data sets. However, in other tasks like
discourse relations extraction, it is possible to adopt auto-
mated extraction techniques then further verified by human
annotators to ensure an high resource’s confidence.

References
Boella, G.; Gabbay, D. M.; van der Torre, L.; and Villata,
S. 2010. Support in abstract argumentation. In Procs of
COMMA, Frontiers in Artificial Intelligence and Applica-
tions 216, 111–122.
Cabrio, E., and Villata, S. 2012. Natural language argu-
ments: A combined approach. In Procs of ECAI, Frontiers
in Artificial Intelligence and Applications 242, 205–210.
Cabrio, E., and Villata, S. 2013. A natural language bipolar
argumentation approach to support users in online debate
interactions;. Argument & Computation 4(3):209–230.
Cabrio, E.; Tonelli, S.; and Villata, S. 2013. A natural lan-
guage account for argumentation schemes. In Baldoni, M.;
Baroglio, C.; Boella, G.; and Micalizio, R., eds., AI*IA, vol-
ume 8249 of Lecture Notes in Computer Science, 181–192.
Springer.
Carletta, J. 1996. Assessing agreement on classification
tasks: the kappa statistic. Comput. Linguist. 22(2):249–254.
Cayrol, C., and Lagasquie-Schiex, M.-C. 2005. On the
acceptability of arguments in bipolar argumentation frame-
works. In Procs of ECSQARU, LNCS 3571, 378–389.

144

Cayrol, C., and Lagasquie-Schiex, M.-C. 2010. Coalitions
of arguments: A tool for handling bipolar argumentation
frameworks. Int. J. Intell. Syst. 25(1):83–109.
Cayrol, C., and Lagasquie-Schiex, M.-C. 2011. Bipolarity
in argumentation graphs: Towards a better understanding. In
Procs of SUM, LNCS 6929, 137–148.
Dagan, I.; Dolan, B.; Magnini, B.; and Roth, D. 2009.
Recognizing textual entailment: Rational, evaluation and ap-
proaches. Natural Language Engineering (JNLE) 15(04):i–
xvii.
Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artif. Intell. 77(2):321–358.
Nouioua, F., and Risch, V. 2010. Bipolar argumentation
frameworks with specialized supports. In Procs of ICTAI,
215–218. IEEE Computer Society.
Nouioua, F., and Risch, V. 2011. Argumentation frameworks
with necessities. In Procs of SUM, LNCS 6929, 163–176.
Reed, C., and Rowe, G. 2004. Araucaria: Software for
argument analysis, diagramming and representation. Inter-
national Journal on Artificial Intelligence Tools 13(4):961–
980.
Walton, D.; Reed, C.; and Macagno, F. 2008. Argumentation
Schemes. Cambridge University Press.

145

Analysis of Dialogical Argumentation
via Finite State Machines

Anthony Hunter
Department of Computer Science,

University College London,
Gower Street, London WC1E 6BT, UK

Abstract

Dialogical argumentation is an important cognitive activity
by which agents exchange arguments and counterarguments
as part of some process such as discussion, debate, persuasion
and negotiation. Whilst numerous formal systems have been
proposed, there is a lack of frameworks for implementing
and evaluating these proposals. First-order executable logic
has been proposed as a general framework for specifying and
analysing dialogical argumentation. In this paper1, we inves-
tigate how we can implement systems for dialogical argumen-
tation using propositional executable logic. Our approach is
to present and evaluate an algorithm that generates a finite
state machine that reflects a propositional executable logic
specification for a dialogical argumentation together with an
initial state. We also consider how the finite state machines
can be analysed, with the minimax strategy being used as an
illustration of the kinds of empirical analysis that can be un-
dertaken.

Introduction
Dialogical argumentation involves agents exchanging ar-
guments in activities such as discussion, debate, persua-
sion, and negotiation (Besnard and Hunter 2008). Dia-
logue games are now a common approach to charac-
terizing argumentation-based agent dialogues (e.g. (Am-
goud, Maudet, and Parsons 2000; Black and Hunter 2009;
Dignum, Dunin-Keplicz, and Verbrugge 2000; Fan and Toni
2011; Hamblin 1971; Mackenzie 1979; McBurney and Par-
sons 2002; McBurney et al. 2003; Parsons, Wooldridge, and
Amgoud 2003; Prakken 2005; Walton and Krabbe 1995)).
Dialogue games are normally made up of a set of commu-
nicative acts called moves, and a protocol specifying which
moves can be made at each step of the dialogue. In order to
compare and evaluate dialogical argumentation systems, we
proposed in a previous paper that first-order executable logic
could be used as common theoretical framework to spec-
ify and analyse dialogical argumentation systems (Black and
Hunter 2012).

In this paper, we explore the implementation of dialogical
argumentation systems in executable logic. For this, we fo-
cus on propositional executable logic as a special case, and

1This paper has already been published in the Proceedings of
the International Conference on Scalable Uncertainty Management
(SUM’13), LNCS 8078, Pages 1-14, Springer, 2013.

investigate how a finite state machine (FSM) can be gener-
ated as a representation of the possible dialogues that can
emanate from an initial state. The FSM is a useful structure
for investigating various properties of the dialogue, includ-
ing conformance to protocols, and application of strategies.
We provide empirical results on generating FSMs for dia-
logical argumentation, and how they can be analysed using
the minimax strategy. We demonstrate through preliminary
implementation that it is computationally viable to generate
the FSMs and to analyse them. This has wider implications
in using executable logic for applying dialogical argumenta-
tion in practical uncertainty management applications, since
we can now empirically investigate the performance of the
systems in handling inconsistency in data and knowledge.

Propositional executable logic
In this section, we present a propositional version of the ex-
ecutable logic which we will show is amenable to imple-
mentation. This is a simplified version of the framework for
first-order executable logic in (Black and Hunter 2012).

We assume a set of atoms which we use to form propo-
sitional formulae in the usual way using disjunction, con-
junction, and negation connectives. We construct modal for-
mulae using the �, �, ⊕, and 	 modal operators. We only
allow literals to be in the scope of a modal operator. If α
is a literal, then each of ⊕α, 	α, �α, and �α is an action
unit. Informally, we describe the meaning of action units as
follows: ⊕α means that the action by an agent is to add the
literal α to its next private state;	αmeans that the action by
an agent is to delete the literal α from its next private state;
�α means that the action by an agent is to add the literal α
to the next public state; and �α means that the action by an
agent is to delete the literal α from the next public state.

We use the action units to form action formulae as fol-
lows using the disjunction and conjunction connectives: (1)
If φ is an action unit, then φ is an action formula; And (2) If
α and β are action formulae, then α∨β and α∧β are action
formulae. Then, we define the action rules as follows: If φ is
a classical formula and ψ is an action formula then φ⇒ ψ is
an action rule. For instance, b(a)⇒ �c(a) is an action rule
(which we might use in an example where b denotes belief,
and c denotes claim, and a is some information).

Implicit in the definitions for the language is the fact that
we can use it as a meta-language (Wooldridge, McBurney,

146

and Parsons 2005). For this, the object-language will be
represented by terms in this meta-language. For instance,
the object-level formula p(a, b) → q(a, b) can be repre-
sented by a term where the object-level literals p(a, b) and
q(a, b) are represented by constant symbols, and→ is rep-
resented by a function symbol. Then we can form the atom
belief(p(a, b) → q(a, b)) where belief is a predicate
symbol. Note, in general, no special meaning is ascribed the
predicate symbols or terms. They are used as in classical
logic. Also, the terms and predicates are all ground, and so
it is essentially a propositional language.

We use a state-based model of dialogical argumentation
with the following definition of an execution state. To sim-
plify the presentation, we restrict consideration in this paper
to two agents. An execution represents a finite or infinite se-
quence of execution states. If the sequence is finite, then t
denotes the terminal state, otherwise t =∞.
Definition 1 An execution e is a tuple e =
(s1, a1, p, a2, s2, t), where for each n ∈ N where 0 ≤ n ≤ t,
s1(n) is a set of ground literals, a1(n) is a set of ground
action units, p(n) is a set of ground literals, a2(n) is a set
of ground action units, s2(n) is a set of ground literals, and
t ∈ N ∪ {∞}. For each n ∈ N, if 0 ≤ n ≤ t, then an ex-
ecution state is e(n) = (s1(n), a1(n), p(n), a2(n), s2(n))
where e(0) is the initial state. We assume a1(0) = a2(0) =
∅. We call s1(n) the private state of agent 1 at time n, a1(n)
the action state of agent 1 at time n, p(n) the public state
at time n, a2(n) the action state of agent 2 at time n, s2(n)
the private state of agent 2 at time n.

In general, there is no restriction on the literals that can
appear in the private and public state. The choice depends
on the specific dialogical argumentation we want to spec-
ify. This flexibility means we can capture diverse kinds of
information in the private state about agents by assuming
predicate symbols for their own beliefs, objectives, prefer-
ences, arguments, etc, and for what they know about other
agents. The flexibility also means we can capture diverse
information in the public state about moves made, commit-
ments made, etc.
Example 1 The first 5 steps of an infinite execution where
each row in the table is an execution state where b denotes
belief, and c denotes claim.

n s1(n) a1(n) p(n) a2(n) s2(n)
0 b(a) b(¬a)
1 b(a) �c(a) b(¬a)

�c(¬a)
2 b(a) c(a) �c(¬a) b(¬a)

�c(a) b(¬a)
3 b(a) �c(a) c(¬a) b(¬a)

�c(¬a)
4 b(a) c(a) �c(¬a) b(¬a)

�c(a)
5

We define a system in terms of the action rules for each
agent, which specify what moves the agent can potentially
make based on the current state of the dialogue. In this pa-
per, we assume agents take turns, and at each time point the

actions are from the head of just one rule (as defined in the
rest of this section).

Definition 2 A system is a tuple (Rulesx, Initials) where
Rulesx is the set of action rules for agent x ∈ {1, 2}, and
Initials is the set of initial states.

Given the current state of an execution, the following def-
inition captures which rules are fired. For agent x, these are
the rules that have the condition literals satisfied by the cur-
rent private state sx(n) and public state p(n). We use clas-
sical entailment, denoted |=, for satisfaction, but other re-
lations could be used (e.g. Belnap’s four valued logic). In
order to relate an action state in an execution with an action
formula, we require the following definition.

Definition 3 For an action state ax(n), and an action for-
mula φ, ax(n) satisfies φ, denoted ax(n) |∼ φ, as follows.

1. ax(n) |∼ α iff α ∈ ax(n) when α is an action unit
2. ax(n) |∼ α ∧ β iff ax(n) |∼ α and ax(n) |∼ β
3. ax(n) |∼ α ∨ β iff ax(n) |∼ α or ax(n) |∼ β
For an action state ax(n), and an action formula φ, ax(n)
minimally satisfies φ, denoted ax(n)
 φ, iff ax(n) |∼ φ
and for all X ⊂ ax(n), X |6∼ φ.

Example 2 Consider the execution in Example 1. For agent
1 at n = 1, we have a1(1)
 �c(a) ∧�c(¬a).

We give two constraints on an execution to ensure that
they are well-behaved. The first (propagated) ensures that
each subsequent private state (respectively each subsequent
public state) is the current private state (respectively current
public state) for the agent updated by the actions given in
the action state. The second (engaged) ensures that an exe-
cution does not have one state with no actions followed im-
mediately by another state with no actions (otherwise the
dialogue can lapse) except at the end of the dialogue where
neither agent has further actions.

Definition 4 An execution (s1, a1, p, a2, s2, t) is propa-
gated iff for all x ∈ {1, 2}, for all n ∈ {0, . . . , t − 1},
where a(n) = a1(n) ∪ a2(n)

1. sx(n + 1) = (sx(n) \ {φ | 	φ ∈ ax(n)}) ∪ {φ | ⊕φ ∈
ax(n)}

2. p(n+1) = (p(n)\{φ | �φ ∈ a(n)})∪{φ | �φ ∈ a(n)}
Definition 5 Let e = (s1, a1, p, a2, s2, t) be an execution
and a(n) = a1(n) ∪ a2(n). e is finitely engaged iff (1)
t 6= ∞; (2) for all n ∈ {1, . . . , t − 2}, if a(n) = ∅, then
a(n + 1) 6= ∅ (3) a(t − 1) = ∅; and (4) a(t) = ∅. e is
infinitely engaged iff (1) t = ∞; and (2) for all n ∈ N, if
a(n) = ∅, then a(n+ 1) 6= ∅.

The next definition shows how a system provides the ini-
tial state of an execution and the actions that can appear in
an execution. It also ensures turn taking by the two agents.

Definition 6 Let S = (Rulesx, Initials) be a system and e
= (s1, a1, p, a2, s2, t) be an execution. S generates e iff (1) e
is propogated; (2) e is finitely engaged or infinitely engaged;
(3) e(0) ∈ Initials; and (4) for all m ∈ {1, . . . , t− 1}

147

1. If m is odd, then a2(m) = ∅ and either a1(m) = ∅ or
there is an φ⇒ ψ ∈ Rules1 s.t. s1(m) ∪ p(m) |= φ and
a1(m)
 ψ

2. If m is even, then a1(m) = ∅ and either a2(m) = ∅ or
there is an φ⇒ ψ ∈ Rules2 s.t. s1(m) ∪ p(m) |= φ and
a2(m)
 ψ

Example 3 We can obtain the execution in Example 1 with
the following rules: (1) b(a) ⇒ �c(a) ∧ �c(¬a); And (2)
b(¬a)⇒ �c(¬a) ∧�c(a).

Generation of finite state machines
In (Black and Hunter 2012), we showed that for any exe-
cutable logic system with a finite set of ground action rules,
and an initial state, there is an FSM that consumes exactly
the finite execution sequences of the system for that initial
state. That result assumes that each agent makes all its pos-
sible actions at each step of the execution. Also that result
only showed that there exist these FSMs, and did not give
any way of obtaining them.

In this paper, we focus on propositional executable logic
where the agents take it in turn, and only one head of one
action rule is used, and show how we can construct an FSM
that represents the set of executions for an initial state for a
system. For this, each state is a tuple (r, s1(n), p(n), s2(n)),
and each letter in the alphabet is a tuple (a1(n), a2(n)),
where n is an execution step and r is the agent holding the
turn when n < t and r is 0 when n = t.

Definition 7 A finite state machine (FSM) M =
(States, Trans, Start, Term,Alphabet) represents
a system S = (Rulesx, Initials) for an initial state
I ∈ Initials iff

(1)States = {(y, s1(n), p(n), s2(n)) |
there is an execution e = (s1, a1, p, a2, s2, t)

s.t. S generates e
and I = (s1(0), a1(0), p(0), a2(0), s2(0))

and there is an n ≤ t
s.t. y = 0 when n = t
and y = 1 when n < t and n is odd
and y = 2 when n < t and n is even }

(2)Term = {(y, s1(n), p(n), s2(n)) ∈ States | y = 0}

(3)Alphabet = {(a1(n), a2(n)) | there is an n ≤ t
and there is an execution e

s.t. S generates e
and e(0) = I
and e = (s1, a1, p, a2, s2, t)}

(4)Start = (1, s1(0), p(0), s2(0))
where I = (s1(0), a1(0), p(0), a2(0), s2(0))

(5)Trans is the smallest subset of States × Alphabet ×
States s.t. for all executions e and for all n < t there is
a transition (σ1, τ, σ2) ∈ Trans such that

σ1 = (x, s1(n), p(n), s2(n))
τ = (a1(n), a2(n))
σ2 = (y, s1(n+ 1), p(n+ 1), s2(n+ 1))

where x is 1 when n is odd, x is 2 when n is even, y is 1
when n + 1 < t and n is odd, y is 2 when n + 1 < t and n
is even, and y is 0 when n+ 1 = t.

Example 4 Let M be the following FSM where σ1

= (1, {b(a)}, {}, {b(¬a)}); σ2 = (2, {b(a)}, {c(a)},
{b(¬a)}); σ3 = (1, {b(a)}, {c(¬a)}, {b(¬a)}). τ1 =
({�c(a), �c(¬a)}, ∅); and τ2 = (∅, {�c(¬a),�c(a)}). M
represents the system in Ex 1.

σ1start σ2 σ3
τ1

τ2

τ1

Proposition 1 For each S = (Rulesx, Initials), then
there is an FSM M such that M represents S for an initial
state I ∈ Initials.
Definition 8 A string ρ reflects an execution e =
(s1, a1, p, a2, s2, t) iff ρ is the string τ1 . . . τt−1 and for each
1 ≤ n < t, τn is the tuple (a1(n), a2(n)).

Proposition 2 Let S = (Rulesx, Initials) be a system.
and let M be an FSM that represents S for I ∈ Initials.

1. for all ρ s.t. M accepts ρ, there is an e s.t. S generates e
and e(0) = I and ρ reflects e,

2. for all finite e s.t. S generates e and e(0) = I , then there
is a ρ such that M accepts ρ and ρ reflects e.

So for each initial state for a system, we can obtain an
FSM that is a concise representation of the executions of
the system for that initial state. In Figure 3, we provide an
algorithm for generating these FSMs. We show correctness
for the algorithm as follows.

Proposition 3 Let S = (Rulesx, Initials) be a system
and let I ∈ Initials. If M represents S w.r.t. I and
BuildMachine(Rulesx, I) = M ′, then M = M ′.

An FSM provides a more efficient representation of all the
possible executions than the set of executions for an initial
state. For instance, if there is a set of states that appear in
some permutation of each of the executions then this can be
more compactly represented by an FSM. And if there are
infinite sequences, then again this can be more compactly
represented by an FSM.

Once we have an FSM of a system with an initial state, we
can ask obvious simple questions such as is termination pos-
sible, is termination guaranteed, and is one system subsumed
by another? So by translating a system into an FSM, we can
harness substantial theory and tools for analysing FSMs.

Next we give a couple of very simple examples of FSMs
obtained from executable logic. In these examples, we as-
sume that agent 1 is trying to win an argument with agent
2. We assume that agent 1 has a goal. This is represented by
the predicate g(c) in the private state of agent 1 for some ar-
gument c. In its private state, each agent has zero or more
arguments represented by the predicate n(c), and zero or
more attacks e(d, c) from d to c. In the public state, each
argument c is represented by the predicate a(c). Each agent
can add attacks e(d, c) to the public state, if the attacked ar-
gument is already in the public state (i.e. a(c) is in the public

148

state), and the agent also has the attacker in its private state
(i.e. n(d) is in the private state). We have encoded the rules
so that after an argument has been used as an attacker, it is
removed from the private state of the agent so that it does not
keep firing the action rule (this is one of a number of ways
that we can avoid repetition of moves).

Example 5 For the following action rules, with the
initial state where the private state of agent 1 is
{g(a), n(a), n(c), e(c, b)}, the public state is empty, and the
private state of agent 2 is {n(b), e(b, a)}), we get the FSM
in Figure 1.

g(a) ∧ n(a)⇒ �a(a) ∧ 	n(a)
a(a) ∧ n(b) ∧ e(b, a)⇒ �a(b, a) ∧ 	n(b)
a(b) ∧ n(c) ∧ e(c, b)⇒ �a(c, b) ∧ 	n(c)

The terminal state therefore contains the following argument
graph.

abc

Hence the goal argument a is in the grounded extension of
the graph (as defined in (Dung 1995)).

Example 6 For the following action rules, with the initial
state where the private state of agent 1 is {g(a), n(a)}, the
public state is empty, and the private state of agent 2 is
{n(b), n(c), e(b, a), e(c, a)}), we get the FSM in Figure 2

g(a) ∧ n(a)⇒ �a(a) ∧ 	n(a)
a(a) ∧ n(b) ∧ e(b, a)⇒ �a(b, a) ∧ 	n(b)
a(a) ∧ n(c) ∧ e(c, a)⇒ �a(c, a) ∧ 	n(c)

The terminal state therefore contains the following argument
graph.

bac

Hence the goal argument a is in the grounded extension of
the graph.

In the above examples, we have considered a formali-
sation of dialogical argumentation where agents exchange
abstract arguments and attacks. It is straightforward to for-
malize other kinds of example to exchange a wider range
of moves, richer content (e.g. logical arguments composed
of premises and conclusion (Parsons, Wooldridge, and Am-
goud 2003)), and richer notions (e.g. value-based argumen-
tation (Bench-Capon 2003)).

Minimax analysis of finite state machines
Minimax analysis is applied to two-person games for decid-
ing which moves to make. We assume two players called
MIN and MAX. MAX moves first, and they take turns un-
til the game is over. An end function determines when the
game is over. Each state where the game has ended is an end
state. A utility function (i.e. a payoff function) gives the
outcome of the game (eg chess has win, draw, and loose).
The minimax strategy is that MAX aims to get to an end
state that maximizes its utility regardless of what MIN does

We can apply the minimax strategy to the FSM machines
generated for dialogical argumentation as follows: (1) Un-
dertake breadth-first search of the FSM; (2) Stop searching

at a node on a branch if the node is an end state accord-
ing to the end function (note, this is not necessarily a ter-
minal state in the FSM); (3) Apply the utility function to
each leaf node n (i.e. to each end state) in the search tree to
give the value value(n) of the node; (4) Traverse the tree
in post-order, and calculate the value of each non-leaf node
as follows where the non-leaf node n is at depth d and with
children {n1, .., nk}:
• If d is odd, then value(n) is the maximum of
value(n1),.., value(nk).

• If d is even, then value(n) is the minimum of
value(n1),.., value(nk).
There are numerous types of dialogical argumentation

that can be modelled using propositional executable logic
and analysed using the minimax strategy. Before we discuss
some of these options, we consider some simple examples
where we assume that the search tree is exhaustive, (so each
branch only terminates when it reaches a terminal state in
the FSM), and the utility function returns 1 if the goal argu-
ment is in the grounded extension of the graph in the termi-
nal state, and returns 0 otherwise.

Example 7 From the FSM in Example 5, we get the mini-
max search tree in Figure 5a, and from the FSM in Example
6, we get the minimax search tree in Figure 5b. In each case,
the terminal states contains an argument graph in which the
goal argument is in the grounded extension of the graph. So
each leaf of the minimax tree has a utility of 1, and each
non-node has the value 1. Hence, agent 1 is guaranteed to
win each dialogue whatever agent 2 does.

The next example is more interesting from the point of
view of using the minimax strategy since agent 1 has a
choice of what moves it can make and this can affect whether
or not it wins.

Example 8 In this example, we assume agent 1 has two
goals a and b, but it can only present arguments for one of
them. So if it makes the wrong choice it can loose the game.
The executable logic rules are given below and the result-
ing FSM is given in Figure 4. For the minimax tree (given
in Figure 5c) the left branch results in an argument graph in
which the goal is not in the grounded extension, whereas the
right branch terminates in an argument graph in which the
goal is in the grounded extension. By a minimax analysis,
agent 1 wins.

g(a) ∧ n(a)⇒ �a(a) ∧ 	n(a) ∧ 	g(b)
g(b) ∧ n(b)⇒ �a(b) ∧ 	n(b) ∧ 	g(a)
a(a) ∧ n(c) ∧ e(c, a)⇒ �a(c, a) ∧ 	n(c)

We can use any criterion for identifying the end state. In
the above, we have used the exhaustive end function giving
an end state (i.e. the leaf node in the search tree) which is a
terminal state in the FSM followed by two empty transitions.
If the branch does not come to a terminal state in the FSM,
then it is an infinite branch. We could use a non-repetitive
end function where the search tree stops when there are no
new nodes to visit. For instance, for example 4, we could
use the non-repetitive end function to give a search tree that
contains one branch σ1, σ2, σ3 where σ1 is the root and σ3 is

149

σ1start σ2 σ3 σ4 σ5 σ6
τ1 τ2 τ3 τ4 τ4

σ1 = (1, {g(a), n(a), n(c), e(c, b)}, {}, {n(b), e(b, a)})
σ2 = (2, {g(a), n(c), e(c, b)}, {a(a)}, {n(b), e(b, a)})
σ3 = (1, {g(a), n(c), e(c, b)}, {a(a), a(b, a)}, {e(b, a)})

σ4 = (2, {g(a), e(c, b)}, {a(a), a(b), a(c), a(c, b), a(b, a)}, {e(b, a)})
σ5 = (1, {g(a), e(c, b)}, {a(a), a(b), a(c), a(c, b), a(b, a)}, {e(b, a)})
σ6 = (0, {g(a), e(c, b)}, {a(a), a(b), a(c), a(c, b), a(b, a)}, {e(b, a)})

τ1 = ({�a(a),	n(a)}, ∅)
τ2 = (∅, {�a(b, a),	n(b)})
τ3 = ({�a(c, b),	n(c)}, ∅)

τ4 = (∅, ∅)

Figure 1: The FSM for Example 5

σ1start σ2

σ3

σ4

σ5

σ6

σ7 σ8 σ9
τ1

τ2

τ3

τ4

τ4

τ3

τ2
τ4 τ4

σ1 = (1, {g(a), n(a)}, {}, {n(b), n(c), e(b, a), e(c, a)})
σ2 = (2, {g(a)}, {a(a)}, {n(b), n(c), e(b, a), e(c, a)})

σ3 = (1, {g(a)}, {a(a), a(b), a(b, a)}, {n(c), e(b, a), e(c, a)})
σ4 = (1, {g(a)}, {a(a), a(c), a(c, a)}, {n(b), e(b, a), e(c, a)})
σ5 = (2, {g(a)}, {a(a), a(b), a(b, a)}, {n(c), e(b, a), e(c, a)})
σ6 = (2, {g(a)}, {a(a), a(c), a(c, a)}, {n(b), e(b, a), e(c, a)})

σ7 = (1, {g(a)}, {a(a), a(b), a(c), a(c, a), a(b, a)}, {e(b, a), e(c, a)})
σ8 = (2, {g(a)}, {a(a), a(b), a(c), a(c, a), a(b, a)}, {e(b, a), e(c, a)})
σ9 = (0, {g(a)}, {a(a), a(b), a(c), a(c, a), a(b, a)}, {e(b, a), e(c, a)})

τ1 = ({�a(a),	n(a)}, ∅))
τ2 = (∅, {�a(b, a),	n(b))
τ3 = (∅, {�a(c, a),	n(c))

τ4 = (∅, ∅)

Figure 2: The FSM for Example 6

150

01 BuildMachine(Rulesx, I)
02 Start = (1, S1, P, S2) where I = (S1, A1, P,A2, S2)
03 States1 = NewStates1 = {Start}
04 States2 = Trans1 = Trans2 = ∅
05 x = 1, y = 2
06 While NewStatesx 6= ∅
07 NextStates = NextTrans = ∅
08 For (x, S1, P, S2) ∈ NewStatesx

09 Fired = {ψ | φ⇒ ψ ∈ Rulesx and Sx ∪ P |= φ}
10 IfFired == ∅
11 Then NextTrans = NextTrans ∪ {((x, S1, P, S2), (∅, ∅), (y, S1, P, S2))}
12 Else forA ∈ Disjuncts(Fired)
13 NewS = Sx \ {α | 	α ∈ A} ∪ {α | ⊕α ∈ A}
14 NewP = P \ {α | �α ∈ A} ∪ {α | �α ∈ A}
15 Ifx == 1, NextState = (2, NewS, P, S2) and Label = (A, ∅)
16 Else NextState = (1, S1, P,NewS) and Label = (∅, A)
17 NextStates = NextStates ∪ {NextState}
18 NextTrans = NextTrans ∪ {((x, S1, P, S2), Label,NextState)}
19 If x == 1, then x = 2 and y = 1, else x = 1 and y = 2
20 NewStatesx = NextStates \ Statesx

21 Statesx = Statesx ∪NextStates
22 Transx = Transx ∪NextTrans
23 Close = {σ′′ | (σ, τ, σ′), (σ′, τ, σ′′) ∈ Trans1 ∪ Trans2}
24 Trans = MarkTrans(Trans1 ∪ Trans2, Close)
25 States = MarkStates(States1 ∪ States2, Close)
26 Term = MarkTerm(Close)
27 Alphabet = {τ | (σ, τ, σ′) ∈ States}
28 Return (States, T rans, Start, Term,Alphabet)

Figure 3: An algorithm for generating an FSM from a system S = (Rulesx, Initials) and an initial state I . The subsidiary
function Disjuncts(Fired) is {{ψ1

1 , .., ψ
1
k1
}, .., {ψi

1, .., ψ
1
ki
} | ((ψ1

1 ∧ .. ∧ ψ1
k1

) ∨ .. ∨ (ψi
1 ∧ .. ∧ ψ1

ki
)) ∈ Fired)}. For turn-

taking, for agent x, Statex is the set of expanded states andNewStatesx is the set of unexpanded states. Lines 02-05 set up the
construction with agent 1 being the agent to expand the initial state. At lines 06-18, when it is turn of x, each unexpanded state
in NewStatesx is expanded by identifying the fired rules. At lines 10-11, if there are no fired rules, then the empty transition
(i.e. (∅, ∅)) is obtained, otherwise at lines 12-17, each disjunct for each fired rule gives a next state and transition that is added
to NextStates and NextTrans accordingly. At lines 19-22, the turn is passed to the other agent, and NewStatesx, Statesx,
and Transx updated. At line 23, the terminal states are identified from the transitions. At line 24, the MarkTrans function
returns the union of the transitions for each agent but for each σ = (x, S1, P, S2) ∈ Term, σ is changed to (0, S1, P, S2) in
order to mark it as a terminal state in the FSM. At line 25, the MarkStates function returns the union of the states for each agent
but for each σ = (x, S1, P, S2) ∈ Term, σ is changed to (0, S1, P, S2), and similarly at line 26, MarkTerm function returns
the set Close but with each state being of the form (0, S1, P, S2).

151

σ1start

σ2 σ4 σ6

σ3 σ5 σ7 σ8

τ1

τ2

τ4

τ3

τ4

τ4 τ4

σ1 = (1, {g(a), g(b), n(a), n(b)}, {}, {n(c), e(c, a)})
σ2 = (2, {g(a), g(b), n(a)}, {a(b)}, {n(c), e(c, a)})
σ3 = (2, {g(a), g(b), n(b)}, {a(a)}, {n(c), e(c, a)})
σ4 = (1, {g(a), g(b), n(a)}, {a(b)}, {n(c), e(c, a)})

σ5 = (1, {g(a), g(b), n(b)}, {a(a), a(c), a(c, a)}, {e(c, a)})
σ6 = (0, {g(a), g(b), n(a)}, {a(b)}, {n(c), e(c, a)})

σ7 = (2, {g(a), g(b), n(b)}, {a(a), a(c), a(c, a)}, {e(c, a)})
σ8 = (0, {g(a), g(b), n(b)}, {a(a), a(c), a(c, a)}, {e(c, a)})

τ1 = ({�a(b),	n(b),	g(a)}, ∅)
τ2 = ({�a(a),	n(a),	g(b)}, ∅)
τ3 = (∅, {�a(c, a),	n(c)})

τ4 = (∅, ∅)

Figure 4: The FSM for Example 8

σ1[1]

σ2[1]

σ3[1]

(a)

σ1[1]

σ2[1]

σ3[1]

σ5[1]

σ7[1]

σ4[1]

σ6[1]

σ7[1]

(b)

σ1[1]

σ3[0]

σ5[0]

σ2[1]

(c)

Figure 5: Minimax trees for Examples 7 and 8. Since each terminal state in an FSM is a copy of the previous two states, we
save space by not giving these copies in the search tree. The minimax value for a node is given in the square brackets within the
node. (a) is for Example 5, (b) is for Example 6 and (c) is for Example 8

152

the leaf. Another simple option is a fixed-depth end func-
tion which has a specified maximum depth for any branch of
the search tree. More advanced options for end functions in-
clude concession end function when an agent has a loosing
position, and it knows that it cannot add anything to change
the position, then it concedes.

There is also a range of options for the utility function.
In the examples, we have used grounded semantics to de-
termine whether a goal argument is in the grounded exten-
sion of the argument graph specified in the terminal public
state. A refinement is the weighted utility function which
weights the utility assigned by the grounded utility function
by 1/d where d is the depth of the leaf. The aim of this is to
favour shorter dialogues. Further definitions for utility func-
tions arise from using other semantics such as preferred or
stable semantics and richer formalisms such as valued-based
argumentation (Bench-Capon 2003).

Implementation study
In this study, we have implemented three algorithms: The
generator algorithm for taking an initial state and a set of ac-
tion rules for each agent, and outputting the fabricated FSM;
A breadth-first search algorithm for taking an FSM and a
choice of termination function, and outputting a search tree;
And a minimax assignment algorithm for taking a search
tree and a choice of utility function, and outputting a mini-
max tree. These implemented algorithms were used together
so that given an initial state and rules for each agent, the
overall output was a minimax tree. This could then be used
to determine whether or not agent 1 had a winning strategy
(given the initial state). The implementation incorporates the
exhaustive termination function, and two choices of utility
function (grounded and weighted grounded).

The implementation is in Python 2.6 and was run on a
Windows XP PC with Intel Core 2 Duo CPU E8500 at 3.16
GHz and 3.25 GB RAM. For the evaluation, we also imple-
mented an algorithm for generating tests inputs. Each test
input comprised an initial state, and a set of action rules
for each agent. Each initial state involved 20 arguments ran-
domly assigned to the two agents and up to 20 attacks per
agent. For each attack in an agent’s private state, the attacker
is an argument in the agent’s private state, and the attacked
argument is an argument in the other agent’s private state.
The results are presented in Table 1.

As can be seen from these results, up to about 15 at-
tacks per agent, the implementation runs in negligible time.
However, above 15 attacks per agent, the time did increase
markedly, and a substantially minority of these timed out. To
indicate the size of the larger FSMs, consider the last line of
the table where the runs had an average of 18.02 attacks per
agent: For this set, 8 out of 100 runs had 80+ nodes in the
FSM. Of these 8 runs, the number of states was between 80
and 163, and the number of transitions was between 223 and
514.

The algorithm is somewhat naive in a number of respects.
For instance, the algorithm for finding the grounded exten-
sion considers every subset of the set of arguments (i.e. 220

sets). Clearly more efficient algorithms can be developed or
calculation subcontracted to a system such as ASPARTIX

(Egly, Gaggl, and Woltran 2008). Nonetheless, there are in-
teresting applications where 20 arguments would be a rea-
sonable, and so we have shown that we can analyse such sit-
uations successfully using the Minimax strategy, and with
some refinement of the algorithms, it is likely that larger
FSMs can be constructed and analysed.

Since the main aim was to show that FSMs can be gener-
ated and analysed, we only used a simple kind of argumenta-
tion dialogue. It is straightforward to develop alternative and
more complex scenarios, using the language of propositional
executable logic e.g. for capturing beliefs, goals, uncertainty
etc, for specifying richer behaviour.

Discussion
In this paper, we have investigated a uniform way of present-
ing and executing dialogical argumentation systems based
on a propositional executable logic. As a result different di-
alogical argumentation systems can be compared and im-
plemented more easily than before. The implementation is
generic in that any action rules and initial states can be used
to generate the FSM and properties of them can be identified
empirically.

In the examples in this paper, we have assumed that when
an agent presents an argument, the only reaction the other
agent can have is to present a counterargument (if it has one)
from a set that is fixed in advance of the dialogue. Yet when
agents argue, one agent can reveal information that can be
used by the other agent to create new arguments. We illus-
trate this in the context of logical arguments. Here, we as-
sume that each argument is a tuple 〈Φ, ψ〉 where Φ is a set
of formulae that entails a formula ψ. In Figure 6a, we see
an argument graph instantiated with logical arguments. Sup-
pose argumentsA1,A3 andA4 are presented by agent 1, and
arguments A2, A5 and A6 are presented by agent 2. Since
agent 1 is being exhaustive in the arguments it presents,
agent 2 can get a formula that it can use to create a coun-
terargument. In Figure 6b, agent 1 is selective in the argu-
ments it presents, and as a result, agent 2 lacks a formula
in order to construct the counterarguments it needs. We can
model this argumentation in propositional executable logic,
generate the corresponding FSM, and provide an analysis in
terms of minimax strategy that would ensure that agent 1
would provide A4 and not A3, thereby ensuring that it be-
haves more intelligently. We can capture each of these argu-
ments as a proposition and use the minimax strategy in our
implementation to obtain the tree in Figure 6b.

General frameworks for dialogue games have been pro-
posed (Maudet and Evrard 1998; McBurney and Parsons
2002). They offer insights on dialogical argumentation sys-
tems, but they do not provide sufficient detail to formally
analyse or implement specific systems. A more detailed
framework, that is based on situation calculus, has been pro-
posed by Brewka (Brewka 2001), though the emphasis is
on modelling the protocols for the moves made in dialogi-
cal argumentation based on the public state rather than on
strategies based on the private states of the agents.

The minimax strategy has been considered elsewhere in
models of argumentation (such as for determining argument
strength (Matt and Toni 2008) and for marking strategies for

153

Average no. Average no. Average no. Average no. Average Median No. of runs
attacks FSM nodes FSM transitions tree nodes run time run time timed out

9.64 6.29 9.59 31.43 0.27 0.18 0
11.47 16.01 39.48 1049.14 6.75 0.18 1
13.29 12.03 27.74 973.84 9.09 0.18 2
14.96 12.50 27.77 668.65 6.41 0.19 13
16.98 19.81 49.96 2229.64 25.09 0.20 19
18.02 19.01 47.81 2992.24 43.43 0.23 30

Table 1: The results from the implementation study. Each row is produced from 100 runs. Each run (i.e. a single initial state and
action rules for each agent) was timed. If the time exceeded 100 seconds for the generator algorithm, the run was terminated

A1 = 〈{b, b→ a}, a〉

A2 = 〈{c, c→ ¬b},¬b〉

A3 = 〈{d, e, d ∧ e→ ¬c},¬c〉

A5 = 〈{d, d→ ¬e},¬e〉

A4 = 〈{g, g → ¬c},¬c〉

A6 = 〈{d, d→ ¬g},¬g〉

(a)

A1 = 〈{b, b→ a}, a〉

A2 = 〈{c, c→ ¬b},¬b〉

A4 = 〈{g, g → ¬c},¬c〉

(b)

Figure 6: Consider the following knowledgebases for each agent ∆1 = {b, d, e, g, b → a, d ∧ e → ¬c, g → ¬c} and ∆2 =
{c, c → ¬b, d → ¬e, d → ¬g}. (a) Agent 1 is exhaustive in the arguments posited, thereby allowing agent 2 to construct
arguments that cause the root to be defeated. (b)Agent is selective in the arguments posited, thereby ensuring that the root is
undefeated.

dialectical trees (Rotstein, Moguillansky, and Simari 2009),
for deciding on utterances in a specific dialogical argumen-
tation (Oren and Norman 2009)). However, this paper ap-
pears to be the first empirical study of using the minimax
strategy in dialogical argumentation.

In future work, we will extend the analytical techniques
for imperfect games where only a partial search tree is con-
structed before the utility function is applied, and extend
the representation with weights on transitions (e.g. weights
based on tropical semirings to capture probabilistic transi-
tions) to explore the choices of transition based on prefer-
ence or uncertainty.

References
Amgoud, L.; Maudet, N.; and Parsons, S. 2000. Arguments,
dialogue and negotiation. In European Conf. on Artificial
Intelligence (ECAI 2000), 338–342. IOS Press.
Bench-Capon, T. 2003. Persuasion in practical argument
using value based argumentation frameworks. Journal of
Logic and Computation 13(3):429–448.
Besnard, P., and Hunter, A. 2008. Elements of Argumenta-
tion. MIT Press.
Black, E., and Hunter, A. 2009. An inquiry dialogue system.
Autonomous Agents and Multi-Agent Systems 19(2):173–
209.
Black, E., and Hunter, A. 2012. Executable logic for dialog-
ical argumentation. In European Conf. on Artificial Intelli-
gence (ECAI’12), 15–20. IOS Press.
Brewka, G. 2001. Dynamic argument systems: A formal

model of argumentation processes based on situation calcu-
lus. J. Logic & Comp. 11(2):257–282.
Dignum, F.; Dunin-Keplicz, B.; and Verbrugge, R. 2000.
Dialogue in team formation. In Issues in Agent Communi-
cation. Springer. 264–280.
Dung, P. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artificial Intelligence
77(2):321–357.
Egly, U.; Gaggl, S.; and Woltran, S. 2008. Aspartix: Imple-
menting argumentation frameworks using answer-set pro-
gramming. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Logic Programming (ICLP’08),, vol-
ume 5366 of LNCS, 734–738. Springer.
Fan, X., and Toni, F. 2011. Assumption-based argumenta-
tion dialogues. In Proceedings of International Joint Con-
ference on Artificial Intelligence (IJCAI’11), 198–203.
Hamblin, C. 1971. Mathematical models of dialogue. Theo-
ria 37:567–583.
Mackenzie, J. 1979. Question begging in non-cumulative
systems. Journal of Philosophical Logic 8:117–133.
Matt, P., and Toni, F. 2008. A game-theoretic measure of
argument strength for abstract argumentation. In Logics in
A.I., volume 5293 of LNCS, 285–297.
Maudet, N., and Evrard, F. 1998. A generic framework
for dialogue game implementation. In Proc. 2nd Workshop
on Formal Semantics & Pragmatics of Dialogue, 185198.
University of Twente.
McBurney, P., and Parsons, S. 2002. Games that agents play:

154

A formal framework for dialogues between autonomous
agents. Journal of Logic, Language and Information
11:315–334.
McBurney, P.; van Eijk, R.; Parsons, S.; and Amgoud, L.
2003. A dialogue-game protocol for agent purchase negoti-
ations. Journal of Autonomous Agents and Multi-Agent Sys-
tems 7:235–273.
Oren, N., and Norman, T. 2009. Arguing using opponent
models. In Argumentation in Multi-agent Systems, volume
6057 of LNCS, 160–174.
Parsons, S.; Wooldridge, M.; and Amgoud, L. 2003. Prop-
erties and complexity of some formal inter-agent dialogues.
J. of Logic and Comp. 13(3):347–376.
Prakken, H. 2005. Coherence and flexibility in dia-
logue games for argumentation. J. of Logic and Comp.
15(6):1009–1040.
Rotstein, N.; Moguillansky, M.; and Simari, G. 2009. Di-
alectical abstract argumentation. In Proceedings of IJ-
CAI’09, 898–903.
Walton, D., and Krabbe, E. 1995. Commitment in Dialogue:
Basic Concepts of Interpersonal Reasoning. SUNY Press.
Wooldridge, M.; McBurney, P.; and Parsons, S. 2005. On the
meta-logic of arguments. In Argumentatoin in Multi-agent
Systems, volume 4049 of LNCS, 42–56. Springer.

155

Abduction in Argumentation: Dialogical Proof Procedures and Instantiation
Richard Booth1 and Dov Gabbay2 and Souhila Kaci3

Tjitze Rienstra1,3 and Leendert van der Torre1

1University of Luxembourg
Computer Science and Communication

6 rue Richard Coudenhove-Kalergi, Luxembourg

richard.booth/tjitze.rienstra/leon.vandertorre@uni.lu

2King’s College London
Deptartment of Computer Science

Strand, London WC2R 2LS, UK

dov.gabbay@kcl.ac.uk

3University of Montpellier 2
LIRMM

161 rue Ada, Montpellier, France

souhila.kaci@lirmm.fr

Abstract
We develop a model of abduction in abstract argu-
mentation, where changes to an argumentation frame-
work act as hypotheses to explain the support of an ob-
servation. We present dialogical proof theories for the
main decision problems (i.e., finding hypotheses that
explain skeptical/credulous support) and we show that
our model can be instantiated on the basis of abductive
logic programs.

Introduction
In the context of abstract argumentation (Dung 1995), ab-
duction can be seen as the problem of finding changes to an
argumentation framework (or AF for short) with the goal of
explaining observations that can be justified by making argu-
ments accepted. The general problem of whether and how an
AF can be changed with the goal of changing the status of ar-
guments has been studied by Baumann and Brewka (2010),
who called it the enforcing problem, as well as Bisquert et
al. (2013), Perotti et al. (2011) and Kontarinis et al. (2013).
None of these works, however, made any explicit link with
abduction. Sakama (2013), on the other hand, explicitly fo-
cused on abduction, and presented a model in which addi-
tions as well as removals of arguments from an abstract AF
act as explanations for the observation that an argument is
accepted or rejected.

While Sakama did address computation in his framework,
his method was based on translating abstract AFs into logic
programs. Proof theories in argumentation are, however, of-
ten formulated as dialogical proof theories, which aim at re-
lating the problem they address with stereotypical patterns
found in real world dialogue. For example, proof theories
for skeptical/credulous acceptance have been modelled as
dialogues in which a proponent persuades an opponent to
accept the necessity/possibility of an argument (Modgil and
Caminada 2009), while credulous acceptance has also been
related to Socratic style dialogue (Caminada 2010). Thus,
the question of how decision problems in abduction in argu-
mentation can similarly be modelled as dialogues remains
open.

Furthermore, argumentation is often used as an abstract
model for non-monotonic reasoning formalisms. For ex-
ample, an instantiated AF can be generated on the basis
of a logic program. Consequences can then be computed

by looking at the extensions of the instantiated AF (Dung
1995). In the context of abduction, one may ask whether a
model of abduction in argumentation can similarly be seen
as an abstraction of abductive logic programming. Sakama,
however, did not explore the instantiation of his model,
meaning that this question too remains open.

This brings us to the contribution of this paper. We first
present a model of abduction in abstract argumentation,
based on the notion of an AAF (abductive argumentation
framework) that encodes different possible changes to an
AF, each of which may act as a hypothesis to explain an
observation that can be justified by making an argument ac-
cepted. We then do two things:

1. We present sound and complete dialogical proof proce-
dures for the main decision problems, i.e., finding hy-
potheses that explain skeptical/credulous acceptance of
arguments in support of an observation. These proof pro-
cedures show that the problem of abduction is related to
an extended form of persuasion, where the proponent uses
hypothetical moves to persuade the opponent.

2. We show that AAFs can be instantiated by ALPs (abduc-
tive logic programs) in such a way that the hypotheses
generated for an observation by the ALP can be computed
by translating the ALP into an AAF. The type of ALPs we
focus on are based on Sakama and Inoue’s model of ex-
tended abduction (1995; 1999), in which hypotheses have
a positive as well as a negative element (i.e., facts added
to the logic program as well as facts removed from it).

In sum, our contribution is a model of abduction in argu-
mentation with dialogical proof theories for the main deci-
sion problems, which can be seen as an abstraction of ab-
duction in logic programming.

The overview of this paper is as follows. After introduc-
ing the necessary preliminaries we present in section Abduc-
tive AFs our model of abduction in argumentation. In sec-
tion Explanation dialogues we present dialogical proof pro-
cedures for the main decision problems (explaining skepti-
cal/credulous acceptance). In section Abduction in logic pro-
gramming we show that our model of abduction can be used
to instantiate abduction in logic programming. We conclude
with the two sections Related work and Conclusions and fu-
ture work.

156

Preliminaries
An argumentation framework consists of a set A of argu-
ments and a binary attack relation over A (Dung 1995).
We assume in this paper that A is a finite subset of a fixed
set U called the universe of arguments.

Definition 1. Given a countably infinite set U called the uni-
verse of arguments, an argumentation framework (AF, for
short) is a pair F = (A,) where A is a finite subset of
U and a binary relation over A. If a b we say that a
attacks b. F denotes the set of all AFs.

Extensions are sets of arguments that represent different
viewpoints on the acceptance of the arguments of an AF.
A semantics is a method to select extensions that qualify
as somehow justifiable. We focus on one of the most basic
ones, namely the complete semantics (Dung 1995).

Definition 2. Let F = (A,). An extension of F is a set
E ⊆ A. An extension E is conflict-free iff for no a, b ∈
E it holds that a b. An argument a ∈ A is defended
in F by E iff for all b such that b a there is a c ∈ E
such that c b. Given an extension E, we define DefF (E)
by DefF (E) = {a ∈ A | E defends a in F}. An extension
E is admissible iff E is conflict-free and E ⊆ DefF (E),
and complete iff E is conflict-free and E = DefF (E). The
set of complete extension of F will be denoted by Co(F).
Furthermore, the grounded extension (denoted by Gr(F))
is the unique minimal (w.r.t. ⊆) complete extension of F .

An argument is said to be skeptically (resp. credulously)
accepted w.r.t. the complete semantics iff it is a member of
all (resp. some) complete extensions. Note that the set of
skeptically accepted arguments coincides with the grounded
extension. Furthermore, an argument is a member of a com-
plete extension iff it is a member of a preferred extension,
which is a maximal (w.r.t. ⊆) complete extension. Conse-
quently, credulous acceptance under the preferred semantics
(as studied e.g. in (Modgil and Caminada 2009)) coincides
with credulous acceptance under the complete semantics.

Abductive AFs
Abduction is a form of reasoning that goes from an obser-
vation to a hypothesis. We assume that an observation trans-
lates into a set X ⊆ A. Intuitively, X is a set of arguments
that each individually support the observation. If at least one
argument x ∈ X is skeptically (resp. credulously) accepted
w.r.t. the complete semantics, we say that the observation X
is skeptically (resp. credulously) supported.

Definition 3. Given an AF F = (A,), an observation
X ⊆ A is skeptically (resp. credulously) supported iff for
all (resp. some) E ∈ Co(F) it holds that x ∈ E for some
x ∈ X .

The following proposition implies that checking whether
an observation X is skeptically supported can be done by
checking whether an individual argument x ∈ X is in the
grounded extension.

Proposition 1. Let F = (A,) and X ⊆ A. It holds that
F skeptically supports X iff x ∈ Gr(F) for some x ∈ X .

F

b ca

d

G1

b ca

d

e

G2

b c

G3

b c

e

Figure 1: The AFs of the AAF (F, {F,G1, G2, G3}).

Proof of proposition 1. The if direction is immediate. For
the only if direction, assume F = (A,) explains skep-
tical support for X . Then for every complete extension E
of F , there is an x ∈ X s.t. x ∈ E. Define G by G =
(A ∪ {a, b}, ∪{(x, a) | x ∈ X} ∪ {(a, b)}), where
a, b 6∈ A. Then for every complete extension E of G it holds
that b ∈ E, hence b ∈ Gr(G). Thus x ∈ Gr(G) for some
x ∈ X . But Gr(F) = Gr(G) ∩ A, hence x ∈ Gr(F) for
some x ∈ X .

It may be that an AF F does not skeptically or credu-
lously support an observation X . Abduction then amounts
to finding a change to F so that X is supported. We use the
following definition of an AAF (Abductive AF) to capture
the changes w.r.t. F (each change represented by an AF G
called an abducible AF) that an agent considers. We assume
that F itself is also an abducible AF, namely one that cap-
tures the case where no change is necessary. Other abducible
AFs may be formed by addition of arguments and attacks to
F , removal of arguments and attacks from F , or a combina-
tion of both.
Definition 4. An abductive AF is a pair M = (F, I) where
F is an AF and I ⊆ F a set of AFs called abducible such
that F ∈ I .

Given an AAF (F, I) and observation X , skepti-
cal/credulous support for X can be explained by the change
from F to some G ∈ I that skeptically/credulously supports
X . In this case we say that G explains skeptical/credulous
support for X . The arguments/attacks added to and absent
from G can be seen as the actual explanation.
Definition 5. Let M = (F, I) be an AAF. An abducible AF
G ∈ I explains skeptical (resp. credulous) support for an
observation X iff G skeptically (resp. credulously) supports
X .

One can focus on explanations satisfying additional cri-
teria, such as minimality w.r.t. the added or removed argu-
ments/attacks. We leave the formal treatment of such criteria
for future work.
Example 1. Let M = (F, {F,G1, G2, G3}), where
F,G1, G2 and G3 are as defined in figure 1. Let X = {b} be
an observation. It holds that G1 and G3 both explain skepti-
cal support for X , while G2 only explains credulous support
for X .
Remark 1. The main difference between Sakama’s (2013)
model of abduction in abstract argumentation and the one
presented here, is that he takes an explanation to be a set
of independently selectable abducible arguments, while we

157

take it to be a change to the AF that is applied as a whole.
In section we show that this is necessary when applying the
abstract model in an instantiated setting.

Explanation dialogues
In this section we present methods to determine, given an
AAF M = (F, I) (for F = (A,)) whether an abducible
AF G ∈ I explains credulous or skeptical support for an
observation X ⊆ A. We build on ideas behind the grounded
and preferred games, which are dialogical procedures that
determine skeptical or credulous acceptance of an argu-
ment (Modgil and Caminada 2009). To sketch the idea be-
hind these games (for a detailed discussion cf. (Modgil and
Caminada 2009)): two imaginary players (PRO and OPP)
take alternating turns in putting forward arguments accord-
ing to a set of rules, PRO either as an initial claim or in
defence against OPP’s attacks, while OPP initiates different
disputes by attacking the arguments put forward by PRO.
Skeptical or credulous acceptance is proven if PRO can win
the game by ending every dispute in its favour according to
a “last-word” principle.

Our method adapts this idea so that the moves made by
PRO are essentially hypothetical moves. That is, to defend
the initial claim (i.e., to explain an observation) PRO can put
forward, by way of hypothesis, any attack x y present in
some G ∈ I . This marks a choice of PRO to focus only on
those abducible AFs in which the attack x y is present.
Similarly, PRO can reply to an attack x y, put forward
by OPP, with the claim that this attack is invalid, marking
the choice of PRO to focus only on the abducible AFs in
which the attack x y is not present. Thus, each move by
PRO narrows down the set of abducible AFs in which all of
PRO’s moves are valid. The objective is to end the dialogue
with a non-empty set of abducible AFs. Such a dialogue rep-
resents a proof that these abducible AFs explain skeptical or
credulous support for the observation.

Alternatively, such dialogues can be seen as games that
determine skeptical/credulous support of an observation by
an AF that are played simultaneously over all abducible AFs
in the AAF. In this view, the objective is to end the dialogue
in such a way that it represents a proof for at least one ab-
ducible AF. Indeed, in the case where M = (F, {F}), our
method reduces simply to a proof theory for skeptical or
credulous support of an observation by F .

Before we move on we need to introduce some notation.

Definition 6. Given a set I of AFs we define:

• AI = ∪{A | (A,) ∈ I},
• I= ∪{ | (A,) ∈ I},
• Ix y = {(A,) ∈ I | x, y ∈ A, x y},
• IX = {(A,) ∈ I | X ⊆ A}.

We model dialogues as sequences of moves, each move
being of a certain type, and made either by PRO or OPP.

Definition 7. Let M = (F, I) be an AAF. A dialogue based
on M is a sequence S = (m1, . . . ,mn), where each mi is
either:

• an OPP attack “OPP: x y”, where x I y,

• a hypothetical PRO defence “PRO: y + x”, where
y I x,

• a hypothetical PRO negation “PRO: y − x”, where
y I x,

• a conceding move “OPP: ok”,
• a success claim move “PRO: win”.

We denote by S · S′ the concatenation of S and S′.

Intuitively, a move OPP: y x represents an attack
by OPP on the argument x by putting forward the attacker
y. A hypothetical PRO defence PRO: y + x represents
a defence by PRO who puts forward y to attack the ar-
gument x put forward by OPP. A hypothetical PRO nega-
tion PRO: y − x, on the other hand, represents a claim
by PRO that the attack y x is not a valid attack. The
conceding move OPP: ok is made whenever OPP runs out
of possibilities to attack a given argument, while the move
PRO: win is made when PRO is able to claim success.

In the following sections we specify how dialogues are
structured. Before doing so, we introduce some notation that
we use to keep track of the abducible AFs on which PRO
chooses to focus in a dialogue D. We call this set the in-
formation state of D after a given move. While it initially
contains all abducible AFs in M, it is restricted when PRO
makes a move PRO: x + y or PRO: x − y.

Definition 8. Let M = (F, I) be an AAF. Let D =
(m1, . . . ,mn) be a dialogue based on M. We denote the in-
formation state in D after move i by J(D, i), which is de-
fined recursively by:

J(D, i) =


I if i = 0,

J(D, i− 1) ∩ Ix y if mi = PRO: x + y,

J(D, i− 1) \ Ix y if mi = PRO: x − y,

J(D, i− 1) otherwise.
We denote by J(D) the information state J(D,n).

Skeptical explanation dialogues
We define the rules of a dialogue using a set of production
rules that recursively define the set of sequences constitut-
ing dialogues. (The same methodology was used by Booth
et al. (2013) in defining a dialogical proof theory related to
preference-based argumentation.) In a skeptical explanation
dialogue for an observation X , an initial argument x ∈ X is
challenged by the opponent, who puts forward all possible
attacks OPP: y x present in any of the abducible AFs
present in the AAF, followed by OPP: ok. We call this a
skeptical OPP reply to x. For each move OPP: y x, PRO
responds with a skeptical PRO reply to y x, which is ei-
ther a hypothetical defence PRO: z + y (in turn followed
by a skeptical OPP reply to z) or a hypothetical negation
PRO: y − x. Formally:

Definition 9 (Skeptical explanation dialogue). Let F =
(A,), M = (F, I) and x ∈ A.

• A skeptical OPP reply to x is a finite sequence
(OPP: y1 x) ·S1 · . . . · (OPP: yn x) ·Sn · (OPP: ok)
where {y1, . . . , yn} = {y | y I x} and each Si is a
skeptical PRO reply to yi x.

158

• A skeptical PRO reply to y x is either: (1) A sequence
(PRO: z + y)·S where z I y and where S is a skepti-
cal OPP reply to z, or (2) The sequence (PRO: y − x).

Given an observation X ⊆ A we say that M generates
the skeptical explanation dialogue D for X iff D = S ·
(PRO: win), where S is a skeptical OPP reply to some
x ∈ X .

The following theorem establishes soundness and com-
pleteness.

Theorem 1. Let M = (F, I) be an AAF where F = (A,).
Let X ⊆ A and G ∈ I . It holds that G explains skeptical
support for X iff M generates a skeptical explanation dia-
logue D for X such that G ∈ J(D).

The proof requires the following definitions and results.

Definition 10. (Dung 1995) Given an AF F = (A,)
the characteristic function CF : 2A → 2A is defined by
CF (S) = {x ∈ A | S defends x}.
Lemma 1. (Dung 1995) Given an AF F , Gr(F) coincides
with the least fixed point of CF .

Definition 11. Given an AF F = (A,) we define the de-
gree DegF (x) of an argument x ∈ Gr(F) to be the smallest
positive integer n s.t. x ∈ Cn

F (∅).

Lemma 2. Given an AF F = (A,) and x ∈ Gr(F). For
every y ∈ A s.t. y x there is a z ∈ Gr(F) such that
z y and DegF (z) < DegF (x).

Proof of lemma 2. Let F = (A,), x ∈ Gr(F) and y ∈ A
an argument s.t. y x. Definition 2 implies that there is a
z ∈ Gr(F) s.t. z y. Definition 10 furthermore implies
that for every X ⊆ A, if x ∈ CF (X) then z ∈ X . Defini-
tion 11 now implies that DegF (x) > DegF (z).

Proof of theorem 1. Let M = (F, I) be an AAF where F =
(A,). Let X ⊆ A and G ∈ I .

Only if: Assume that G explains skeptical support for X .
Proposition 1 implies that there is an x ∈ X such that x ∈
Gr(F). We prove that M generates a skeptical OPP reply D
to x such that G ∈ J(D). We prove this by strong induction
on DegG(x).

Let the induction hypothesis H(i) stand for: If x ∈
Gr(G) and DegG(x) = i then there is a skeptical OPP
reply D to x s.t. G ∈ J(D).

Assume H(i) holds for all 0 < i < k. We prove H(k).
Assume x ∈ Gr(G) and DegG(x) = k. We construct an
OPP reply D to x such that G ∈ J(D). Given an argu-
ment y ∈ AG s.t. y G x we denote by Z(y) the set
{z | z G y, z ∈ Gr(G)}. Definition 2 implies that for
every y ∈ AG s.t. y x, Z(y) 6= ∅. Furthermore lemma 2
implies that for every y ∈ AG s.t. y x and for every
z ∈ Z(y) it holds that DegG(z) < k. We can now define D
by D = D1 ·D2 · (OPP: ok) where: D1 = (OPP: y1 x) ·
(PRO: y1 − x) · . . . · (OPP: yn x) · (PRO: yn − x)
where {y1, . . . , yn} = {y ∈ AI | y I x, y 6 G x},
and D2 = (OPP: y′1 x) · (PRO: z1 + y′1) · Dz1 ·
. . . · (OPP: y′m x) · (PRO: zm + y′m) · Dzm

where
{y′1, . . . , y′m} = {y ∈ AI | y G x}, for each j ∈

{1, . . . ,m}, zj ∈ Z(yj) and Dzj is a skeptical OPP re-
ply to zj (because DegG(zj) < k and H(i) holds for all
0 < i < k, this skeptical OPP reply exists). It holds that
D is a skeptical OPP reply to x. Furthermore it holds that
G ∈ J(D1) and G ∈ J(D2) and hence G ∈ J(D).

By the principle of strong induction it follows that there
exists a skeptical OPP reply D to x such that G ∈ J(D).
Hence M generates a skeptical explanation dialogue D ·
(PRO: win) for X such that G ∈ J(D · (PRO: win)).

If: We prove that if D is a skeptical OPP reply to some
x ∈ X such that G ∈ J(D) then x ∈ Gr(G). We prove this
by induction on the structure of D.

Assume that for every proper subsequence D′ of D that
is a skeptical OPP reply to an argument z it holds that z ∈
Gr(G) and G ∈ J(D). (The base case is the special case
where no proper subsequence of D is a skeptical OPP reply.)
We prove that x ∈ Gr(G). We write D as (OPP: y1
x)·D1 ·. . .·(OPP: yn x)·Dn ·(OPP: ok). Then every Di

(for 1 ≤ i ≤ n) is either of the form PRO: yi − x or of the
form PRO: z + yi ·D′, where D′ is a proper subsequence
of D that is a skeptical OPP reply to some argument z and
G ∈ J(D′). Thus, for every y ∈ AI s.t. y I x it holds that
either y 6 G x, or y is attacked by some z s.t. z ∈ Gr(G).
It follows that x ∈ Gr(G).

By the principle of induction it follows that if D is a
skeptical OPP reply to some x ∈ X such that G ∈ J(D)
then x ∈ Gr(G). Thus, if M generates a skeptical ex-
planation dialogue D · (PRO: win) for X such that G ∈
J(D · (PRO: win)) then D is a skeptical OPP reply to some
x ∈ X and therefore it holds that x ∈ Gr(G) and finally
that G explains skeptical support for X .

Example 2. The listing below shows a skeptical explanation
dialogue D = {m1, . . . ,m8} for the observation {b} that is
generated by the AAF defined in example 1.

i mi J(D, i)
1 OPP: c b {F,G1, G2, G3}
2 PRO: e + c {G1, G3}
3 OPP: ok {G1, G3}
4 OPP: a b {G1, G3}
5 PRO: e + a {G1}
6 OPP: ok {G1}
7 OPP: ok {G1}
8 PRO: win {G1}

The sequence (m1, . . . ,m7) is a skeptical OPP reply to b,
in which OPP puts forward the two attacks c b and a
b. PRO defends b from both c and a by putting forward the
attacker e (move 2 and 5). This leads to the focus first on the
abducible AFs G1, G3 (in which the attack e c exists) and
then on G1 (in which the attack e a exists). This proves
that G1 explains skeptical support for the observation {b}.
Another dialogue is shown below.

159

i mi J(D, i)
1 OPP: c b {F,G1, G2, G3}
2 PRO: e + c {G1, G3}
3 OPP: ok {G1, G3}
4 OPP: a b {G1, G3}
5 PRO: a − b {G3}
6 OPP: ok {G3}
7 PRO: win {G3}

Here, PRO defends b from c by using the argument e, but
defends b from a by claiming that the attack a b is invalid.
This leads to the focus first on the abducible AFs G1, G3 (in
which the attack e c exists) and then on G3 (in which the
attack a b does not exist). This dialogue proves that G3

explains skeptical support for {b}.

Credulous explanation dialogues
The definition of a credulous explanation dialogue is similar
to that of a skeptical one. The difference lies in what consti-
tutes an acceptable defence. To show that an argument x is
skeptically accepted, x must be defended from its attackers
by arguments other than x itself. For credulous acceptance,
however, it suffices to show that x is a member of an admis-
sible set, and hence x may be defended from its attackers by
any argument, including x itself. To achieve this we need to
keep track of the arguments that are, according to the moves
made by PRO, accepted. Once an argument x is accepted,
PRO does not need to defend x again, if this argument is put
forward a second time.

Formally a credulous OPP reply to (x, Z) (for some x ∈
AI and set Z ⊆ AI used to keep track of accepted argu-
ments) consists of all possible attacks OPP: y x on x,
followed by OPP: ok when all attacks have been put for-
ward. For each move OPP: y x, PRO responds either by
putting forward a hypothetical defence PRO: z + y which
(this time only if z 6∈ Z) is followed by a credulous OPP re-
ply to (z, Z ∪ {z}), or by putting forward a hypothetical
negation PRO: y − x. We call this response a credulous
PRO reply to (y x, Z). A credulous explanation dialogue
for a set X consists of a credulous OPP reply to (x, {x}) for
some x ∈ X , followed by a success claim PRO: win.

In addition, arguments put forward by PRO in defence
of the observation may not conflict. Such a conflict occurs
when OPP puts forward OPP: x y and OPP: y z (in-
dicating that both y and z are accepted) while PRO does not
put forward PRO: y − z. If this situation does not occur
we say that the dialogue is conflict-free.

Definition 12 (Credulous explanation dialogue). Let F =
(A,), M = (F, I), x ∈ A and Z ⊆ A.

• A credulous OPP reply to (x, Z) is a finite sequence
(OPP: y1 x) ·S1 · . . . · (OPP: yn x) ·Sn · (OPP: ok)
where {y1, . . . , yn} = {y | y I x} and each Si is a
credulous PRO reply to (yi x, Z).

• A credulous PRO reply to (y x, Z) is either: (1) a
sequence (PRO: z + y) · S such that z I y, z 6∈ Z
and S is a credulous OPP reply to (z, Z ∪ {z}), (2) a
sequence (PRO: z + y) such that z I y and z ∈ Z,
or (3) the sequence (PRO: y − x).

Given a set X ⊆ A we say that M generates the credulous
explanation dialogue D for X iff D = S ·(PRO: win), where
S is a credulous OPP reply to (x, {x}) for some x ∈ X . We
say that D is conflict-free iff for all x, y, z ∈ AI it holds that
if D contains the moves OPP: x y and OPP: y z then
it contains the move PRO: y − z.

The following theorem establishes soundness and com-
pleteness.

Theorem 2. Let M = (F, I) be an AAF where F = (A,).
Let X ⊆ A and G ∈ I . It holds that G explains credulous
support for X iff M generates a conflict-free credulous ex-
planation dialogue D for X such that G ∈ J(D).

Proof of theorem 2. Let M = (F, I) be an AAF where F =
(A,). Let X ⊆ A and G ∈ I .

Only if: Assume that G explains credulous support for X .
Then there is an admissible set E of G such that a ∈ E for
some a ∈ X . Based on E and a we construct a conflict-
free credulous explanation dialogue D for X such that G ∈
J(D). Given an argument x ∈ E we define the credulous
OPP reply D(x, Z) recursively by D(x, Z) = (OPP: y1
x) · S1 · . . . · (OPP: yn x) · Sn · (OPP: ok)

where {y1, . . . , yn} = {y | y I x} and each Si is a
credulous PRO reply defined by the following cases:

• Case 1: yi G x. Let z be an argument such that z ∈ E
and z G yi. (Admissibility of E guarantees the exis-
tence of z.)
– Case 1.1: z 6∈ Z: Then Si = PRO: z + yi ·D(z, Z ∪
{z}).

– Case 1.2: z ∈ Z: Then Si = PRO: z + yi.
• Case 2: yi 6 G x: Then Si = PRO: yi − x.

Let D = (m1, . . . ,mn) = D(a, {a}) · (PRO: win). It can
be checked that D is a credulous explanation dialogue for
{a}. We need to prove that:

• G ∈ J(D). This follows from the fact that for all i ∈
{1, . . . , n}, mi = PRO: x − y only if x 6 G y and
mi = PRO: x + y only if x G y.

• D is finite. This follows from the fact that for every credu-
lous OPP reply D(x, Z) that is a subsequence of a credu-
lous OPP reply D(y, Z ′) it holds that Z is a strict superset
of Z ′, together with the fact that Z ⊆ AI and AI is finite.

• D is conflict-free. We prove this by contradiction.
Thus we assume that for some x, y, z there are moves
OPP: x y and OPP: y z and no move PRO: y −

z. By the construction of D it follows that y, z ∈ E.
Furthermore if y 6 G z then by the construction of D,
the move OPP: y z is followed by PRO: y − z,
which is a contradiction. Hence y G z. Thus E is not
a conflict-free set of G, contradicting our assumption that
E is an admissible set of G. Hence D is conflict-free.

Hence there is a conflict-free credulous explanation dia-
logue D for X such that G ∈ J(D).

If: Let D be a conflict-free credulous explanation dialogue
for an observation X such that G ∈ J(D). We prove that
there is an admissible set E of G s.t. a ∈ E for some a ∈ X .

160

We define E by E = {a} ∪ {x | PRO: x + z ∈ D}. To
prove that E is an admissible set of G we show that (1) for
every x ∈ E and every y ∈ A such that y G x, there is a
z ∈ E such that y G z and (2) that E is a conflict-free set
of G.

1. Let x ∈ E. Then either x = a or there is a move
mi = PRO: x + y in D. It follows either that mi+1

is a credulous OPP reply to (x, Z) or not, in which case
there is a move mj (for j < i) that is a credulous OPP
reply to Hence for some Z ⊆ AI there is an OPP reply to
(x, Z) in D. For mi+1 there are two cases:

• mi+1 = PRO: z + y. Then z ∈ E and, because
G ∈ J(D), z G y.
• mi+1 = PRO: y − x. But y G x, hence G 6∈

J(D), which is a contradiction. Thus, this case is not
possible.

Thus for every x ∈ E and every y ∈ A s.t. y G x, there
is a z ∈ E such that z G y.

2. Assume the contrary, i.e., E is not conflict-free. Then for
some y, z ∈ E it holds that y G z. From (1) it follows
that there is also an x ∈ E such that x G y. By the con-
struction of E it follows that either y = a or for some x′

there is a move PRO: y + x′ in D, and similarly either
z = a or for some x′ there is a move PRO: z + x′ in
D. Hence there are moves OPP: x y and OPP: y z
in D. From the fact that G ∈ J(D) and y G z it follows
that there is no move PRO: y − z in D. Hence D is not
conflict-free, which is a contradiction. It follows that E is
a conflict-free set of G.

It finally follows that E is an admissible set of G and a ∈
E and hence G explains credulous support for X .

Example 3. The listing below shows a conflict-free credu-
lous explanation dialogue D = (m1, . . . ,m6) for the obser-
vation {b} generated by the AAF defined in example 1.

i mi J(D, i)
1 OPP: c b {F,G1, G2, G3}
2 PRO: b + c {F,G1, G2, G3}
3 OPP: a b {F,G1, G2, G3}
4 PRO: a − b {G2, G3}
5 OPP: ok {G2, G3}
6 PRO: win {G2, G3}

Here, the sequence (m1, . . . ,m5) is a credulous OPP re-
ply to (b, {b}). PRO defends b from OPP’s attack c b
by putting forward the attack b c. Since b was already
assumed to be accepted, this suffices. At move m4, PRO de-
fends itself from the attack a b by negating it. This re-
stricts the focus on the abducible AFs G2 and G3. The dia-
logue proves that these two abducible AFs explain credulous
support for the observation {b}. Finally, the skeptical expla-
nation dialogues from example 2 are also credulous expla-
nation dialogues.

Abduction in logic programming
In this section we show that AAFs can be instantiated
with abductive logic programs, in the same way that reg-
ular AFs can be instantiated with regular logic programs.
In sections and we recall the necessary basics of logic
programming and the relevant results regarding logic pro-
gramming as instantiated argumentation. In section we
present a model of abductive logic programming based on
Sakama and Inoue’s model of extended abduction (1995;
1999), and in section we show how this model can be in-
stantiated using AAFs.

Logic programs and partial stable semantics
A logic program P is a finite set of rules, each rule be-
ing of the form C ← A1, . . . , An,∼B1, . . . ,∼Bm where
C, A1, . . . , An, B1, . . . , Bm are atoms. If m = 0 then the
rule is called definite. If both n = 0 and m = 0 then the
rule is called a fact and we identify it with the atom C. We
assume that logic programs are ground. Alternatively, P can
be regarded as the set of ground instances of a set of non-
ground rules. We denote by AtP the set of all (ground) atoms
occurring in P . The logic programming semantics we fo-
cus on can be defined using 3-valued interpretations (Przy-
musinski 1990):
Definition 13. A 3-valued interpretation I of a logic pro-
gram P is a pair I = (T, F) where T, F ⊆ AtP and
T ∩ F = ∅. An atom A ∈ At(P) is true (resp. false, un-
decided) in I iff A ∈ T (resp. A ∈ F , A ∈ AtP \ (T ∪ F)).

The following definition of a partial stable model is due
to Przymusinski (1990). Given a logic program P and 3-
valued interpretation I of P , the GL-transformation P

I is a
logic program obtained by replacing in every rule in P every
premise ∼B such that B is true (resp. undecided, false) in I
by the atoms 0 (resp. 1

2 , 1), where 0 (resp. 1
2 , 1) are defined

to be false (resp. undecided, true) in every interpretation. It
holds that for all 3-valued interpretations I of P , P

I is defi-
nite (i.e., consists only of definite rules). This means that P

I
has a unique least 3-valued interpretation (T, F) with mini-
mal T and maximal F that satisfies all rules. That is, for all
rules C ← A1, . . . , An, in P

I , C is true (resp. not false) in
(T, F) if for all i ∈ {1, . . . , n}, Ai is true (resp. not false) in
(T, F). Given a 3-valued interpretation I , the least 3-valued
interpretation of P

I is denoted by Γ(I). This leads to the fol-
lowing definition of a partial stable model of a logic pro-
gram, along with the associated notions of consequence.
Definition 14. (Przymusinski 1990) Let P be a logic pro-
gram. A 3-valued interpretation I is a partial stable model
of P iff I = Γ(I). We say that an atom C is a skeptical (resp.
credulous) consequence of P iff C is true in all (resp. some)
partial stable models of P .

It has been shown that the above defined notion of skep-
tical consequence coincides with the well-founded seman-
tics (Przymusinski 1990).

Logic programming as argumentation
Wu et al. (2009) have shown that a logic program P can
be transformed into an AF F in such a way that the conse-

161

quences of P under the partial stable semantics can be com-
puted by looking at the complete extensions of F . The idea
is that an argument consists of a conclusion C ∈ AtP , a
set of rules R ⊆ P used to derive C and a set N ⊆ AtP
of atoms that must be underivable in order for the argument
to be acceptable. The argument is attacked by another ar-
gument with a conclusion C ′ iff C ′ ∈ N . The following
definition, apart from notation, is due to Wu et al. (2009).
Definition 15. Let P be a logic program. An instantiated
argument is a triple (C, R, N), where C ∈ AtP , R ⊆ P and
N ⊆ AtP . We say that P generates (C, R, N) iff either:
• r = C ← ∼B1, . . . ,∼Bm is a rule in P , R = {r} and

N = {B1, . . . , Bm}.
• (1) r = C ← A1, . . . , An,∼B1, . . . ,∼Bm is a rule in

P , (2) P generates, for each i ∈ {1, . . . , n} an argument
(Ai, Ri, Ni) such that r 6∈ Ri, and (3) R = {r} ∪ R1 ∪
. . . ∪Rn and N = {B1, . . . , Bm} ∪N1 ∪ . . . ∪Nn.

We denote the set of arguments generated by P by AP .
Furthermore, the attack relation generated by P is denoted
by P and is defined by (C, R, N) P (C ′, R′, N ′) iff
C ∈ N ′.

The following theorem states that skeptical (resp. credu-
lous) acceptance in (AP , P) corresponds with skeptical
(resp. credulous) consequences in P as defined in defini-
tion 14. It follows from theorems 15 and 16 due to Wu et
al. (2009).
Theorem 3. Let P be a logic program. An atom C ∈ AtP
is a skeptical (resp. credulous) consequence of P iff some
(C, R, N) ∈ AP is skeptically (resp. credulously) accepted
in (AP , P).

Abduction in logic programming
The model of abduction in logic programming that we use is
based on the model of extended abduction studied by Inoue
and Sakama (1995; 1999). They define an abductive logic
program (ALP) to consist of a logic program and a set of
atoms called abducibles.
Definition 16. An abductive logic program is a pair (P,U)
where P is a logic program and U ⊆ AtP a set of facts
called abducibles.

Note that, as before, the set U consists of ground facts of
the form C ← (identified with the atom C) and can alter-
natively be regarded as the set of ground instances of a set
of non-ground facts. A hypothesis, according to Inoue and
Sakama’s model, consists of both a positive element (i.e., ab-
ducibles added to P) and a negative element (i.e., abducibles
removed from P).
Definition 17. Let ALP = (P,U) be an abductive logic pro-
gram. A hypothesis is a pair (∆+, ∆−) such that ∆+, ∆− ⊆
U and ∆+ ∩ ∆− = ∅. A hypothesis (∆+, ∆−) skepti-
cally (resp. credulously) explains a query Q ∈ AtP if and
only if Q is a skeptical (resp. credulous) consequence of
(P ∪∆+) \∆−.

Note that Sakama and Inoue focus on computation of ex-
planations under the stable model semantics of P , and re-
quire P to be acyclic to ensure that a stable model of P

exists and is unique (1999). We, however, define explana-
tion in terms of the consequences according to the partial
stable models of P , which always exist even if P is not
acyclic (Przymusinski 1990), so that we do not need this
requirement.

The following example demonstrates the previous two
definitions.

Example 4. Let ALP = (P,U) where P = {(p ←
∼s, r), (p ← ∼s,∼q), (q ← ∼p), r} and U = {r, s}. The
hypothesis ({s}, ∅) skeptically explains q, witnessed by the
unique model I = ({r, s, q}, {p}) satisfying I = Γ(I). Sim-
ilarly, ({s}, {r})) skeptically explains q and (∅, {r})) cred-
ulously explains q.

Instantiated abduction in argumentation
In this section we show that an AAF (F, I) can be instanti-
ated on the basis of an abductive logic program (P,U). The
idea is that every possible hypothesis (∆+, ∆−) maps to an
abducible AF generated by the logic program (P ∪ ∆+) \
∆−. The hypotheses for a query Q then correspond to the
abducible AFs that explain the observation X consisting of
all arguments with conclusion Q. The construction of (F, I)
on the basis of (P,U) is defined as follows.

Definition 18. Let ALP = (P,U) be an abductive logic
program. Given a hypothesis (∆+, ∆−), we denote by
F(∆+,∆−) the AF (A(P∪∆+)\∆− , (P∪∆+)\∆−). The AAF
generated by ALP is denoted by MALP and defined by
MALP = (FP , IALP), where IALP = {F(∆+,∆−) | ∆+, ∆− ⊆
U, ∆+ ∩∆− = ∅}.

The following theorem states the correspondence between
the explanations of a query Q in an abductive logic program
ALP and the explanations of an observation X in the AAF
MALP.

Theorem 4. Let ALP = (P,U) be an abductive logic
program, Q ∈ AtP a query and (∆+, ∆−) a hypothe-
sis. Let MALP = (FALP, IALP). We denote by XQ the set
{(C, R, N) ∈ AP | C = Q}. It holds that (∆+, ∆−) skepti-
cally (resp. credulously) explains Q iff F(∆+,∆−) skeptically
(resp. credulously) explains XQ.

Proof of theorem 4. Follows directly from theorem 3 and
definitions 17 and 18.

This theorem shows that our model of abduction in argu-
mentation can indeed be seen as an abstraction of abductive
logic programming.

Example 5. Let ALP = (P,U) be the ALP as de-
fined in example 4. All arguments generated by ALP are:
a = (p, {(p← ∼s, r), r}, {s}) d = (r, {r}, ∅)
b = (q, {(q ← ∼p)}, {p}) e = (s, {s}, ∅)
c = (p, {(p← ∼s,∼q)}, {s, q})

Given these definitions, the AAF in example 1 is equivalent
to MALP. In example 4 we saw that the query q is skepti-
cally explained by the hypotheses ({s}, ∅) and ({s}, {r}),
while (∅, {r}) only credulously explains it. Indeed, look-
ing again at example 1, we see that G1 = F({s},∅) and

162

G3 = F({s},{r}) explain skeptical support for the observa-
tion {b} = Xq , while G2 = F(∅,{r}) only explains credulous
support.

Remark 2. This method of instantiation shows that, on the
abstract level, hypotheses cannot be represented by indepen-
dently selectable abducible arguments. The running exam-
ple shows e.g. that a and d cannot be added or removed
independently. (Cf. remark 1.)

Related work
We already referred a number of times to Sakama’s (2013)
model of abduction in argumentation and discussed the dif-
ferences. On the one hand, we are more general in that we
consider a hypothesis to be a change to the AF that is ap-
plied as a whole, instead of a set of independently selectable
abducible arguments. On the other hand, Sakama’s method
of computation supports a larger range semantics, includ-
ing the semi-stable, stable and skeptical preferred semantics.
Furthermore, Sakama also considers the possibility that ob-
servations force arguments to be rejected, which we do not.

Some of the ideas we applied also appear in work by
Wakaki et al. (2009). In their model, an ALP generates an in-
stantiated AF and each hypothesis yields a different division
into active/inactive arguments. Unlike our model, as well as
Sakama’s (2013), Wakaki et al. do not consider removal of
arguments as explanation.

Kontarinis et al. (2013) use term rewriting logic to com-
pute changes to an abstract AF with the goal of changing the
status of an argument. There are two similarities between
their approach and ours. Firstly, we use production rules to
generate dialogues and these rules can be seen as a kind of
term rewriting rules. Secondly, their approach amounts to
rewriting goals into statements to the effect that certain at-
tacks in the AF are enabled or disabled. These statements
resemble the moves PRO: x + y and PRO: x − y in
our system. However, they treat attacks as entities that can
be enabled or disabled independently. As discussed, differ-
ent arguments (or in this case attacks associated with argu-
ments) cannot be regarded as independent entities, if the ab-
stract model is instantiated.

Other work dealing with the change of an AF with the
goal of changing the status of arguments include Bau-
mann (2012), Baumann and Brewka (2010), Bisquert et
al. (2013) and Perotti et al. (2011). Furthermore, Booth
et al. (Booth et al. 2013) and Coste-Marquis et al. (2013)
frame it as a problem of belief revision. Other studies
in which changes to AFs are considered include (Boella,
Kaci, and van der Torre 2009; Cayrol, Dupin de Saint-Cyr,
and Lagasquie-Schiex 2010; Liao, Jin, and Koons 2011;
Oikarinen and Woltran 2011).

Conclusions and future work
We developed a model of abduction in abstract argumen-
tation, in which changes to an AF act as explanations for
skeptical/credulous support for observations. We presented
sound and complete dialogical proof procedures for the
main decision problems, i.e., finding explanations for skep-
tical/credulous support. In addition, we showed that our

model of abduction in abstract argumentation can be seen
as an abstract form of abduction in logic programming.

As a possible direction for future work, we consider the
incorporation of additional criteria for the selection of good
explanations, such as minimality with respect to the added
and removed arguments/attacks, as well as the use of arbi-
trary preferences over different abducible AFs. An interest-
ing question is whether the proof theory can be adapted so
as to yield only the preferred explanations.

References
Baumann, R., and Brewka, G. 2010. Expanding argumen-
tation frameworks: Enforcing and monotonicity results. In
Proc. COMMA, 75–86.
Baumann, R. 2012. Normal and strong expansion equiva-
lence for argumentation frameworks. Artif. Intell. 193:18–
44.
Bisquert, P.; Cayrol, C.; de Saint-Cyr, F. D.; and Lagasquie-
Schiex, M.-C. 2013. Enforcement in argumentation is a kind
of update. In SUM (2013), 30–43.
Boella, G.; Gabbay, D. M.; Perotti, A.; van der Torre, L.; and
Villata, S. 2011. Conditional labelling for abstract argumen-
tation. In TAFA, 232–248.
Boella, G.; Kaci, S.; and van der Torre, L. 2009. Dynamics
in argumentation with single extensions: Attack refinement
and the grounded extension (extended version). In ArgMAS,
150–159.
Booth, R.; Kaci, S.; Rienstra, T.; and van der Torre, L. 2013.
A logical theory about dynamics in abstract argumentation.
In SUM (2013), 148–161.
Booth, R.; Kaci, S.; and Rienstra, T. 2013. Property-based
preferences in abstract argumentation. In ADT, 86–100.
Caminada, M. 2010. Preferred semantics as socratic dis-
cussion. In Proceedings of the 11th AI* IA Symposium on
Artificial Intelligence, 209–216.
Cayrol, C.; Dupin de Saint-Cyr, F.; and Lagasquie-Schiex,
M.-C. 2010. Change in abstract argumentation frameworks:
Adding an argument. Journal of Artificial Intelligence Re-
search 38(1):49–84.
Coste-Marquis, S.; Konieczny, S.; Mailly, J.-G.; and Mar-
quis, P. 2013. On the revision of argumentation systems:
Minimal change of arguments status. Proc. TAFA.
2013. Scalable Uncertainty Management - 7th International
Conference, SUM 2013, Washington, DC, USA, September
16-18, 2013. Proceedings.
Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artif. Intell. 77(2):321–358.
Inoue, K., and Sakama, C. 1995. Abductive framework for
nonmonotonic theory change. In IJCAI, 204–210. Morgan
Kaufmann.
Inoue, K., and Sakama, C. 1999. Computing extended ab-
duction through transaction programs. Ann. Math. Artif. In-
tell. 25(3-4):339–367.

163

Kontarinis, D.; Bonzon, E.; Maudet, N.; Perotti, A.; van der
Torre, L.; and Villata, S. 2013. Rewriting rules for the
computation of goal-oriented changes in an argumentation
system. In Computational Logic in Multi-Agent Systems.
Springer. 51–68.
Liao, B.; Jin, L.; and Koons, R. C. 2011. Dynamics of argu-
mentation systems: A division-based method. Artif. Intell.
175(11):1790–1814.
Modgil, S., and Caminada, M. 2009. Proof theories and
algorithms for abstract argumentation frameworks. In Argu-
mentation in Artificial Intelligence. 105–129.
Oikarinen, E., and Woltran, S. 2011. Characterizing strong
equivalence for argumentation frameworks. Artificial intel-
ligence 175(14-15):1985–2009.
Przymusinski, T. C. 1990. The well-founded semantics co-
incides with the three-valued stable semantics. Fundam. In-
form. 13(4):445–463.
Sakama, C. 2013. Abduction in argumentation frameworks
and its use in debate games. In Proceedings of the 1st Inter-
national Workshop on Argument for Agreement and Assur-
ance (AAA).
Wakaki, T.; Nitta, K.; and Sawamura, H. 2009. Comput-
ing abductive argumentation in answer set programming. In
Proc. ArgMAS, 195–215.
Wu, Y.; Caminada, M.; and Gabbay, D. M. 2009. Complete
extensions in argumentation coincide with 3-valued stable
models in logic programming. Studia Logica 93(2-3):383–
403.

164

Non-Monotonic Reasoning and Story Comprehension

Irene-Anna Diakidoy
University of Cyprus

eddiak@ucy.ac.cy

Antonis Kakas
University of Cyprus
antonis@cs.ucy.ac.cy

Loizos Michael
Open University of Cyprus

loizos@ouc.ac.cy

Rob Miller
University College London

rsm@ucl.ac.uk

Abstract

This paper develops a Reasoning about Actions and Change
framework integrated with Default Reasoning, suitable as
a Knowledge Representation and Reasoning framework for
Story Comprehension. The proposed framework, which is
guided strongly by existing knowhow from the Psychology
of Reading and Comprehension, is based on the theory of
argumentation from AI. It uses argumentation to capture ap-
propriate solutions to the frame, ramification and qualifica-
tion problems and generalizations of these problems required
for text comprehension. In this first part of the study the work
concentrates on the central problem of integration (or elabo-
ration) of the explicit information from the narrative in the
text with the implicit (in the reader’s mind) common sense
world knowledge pertaining to the topic(s) of the story given
in the text. We also report on our empirical efforts to gather
background common sense world knowledge used by humans
when reading a story and to evaluate, through a prototype sys-
tem, the ability of our approach to capture both the majority
and the variability of understanding of a story by the human
readers in the experiments.

Introduction
Text comprehension has long been identified as a key test
for Artificial Intelligence (AI). Aside from its central posi-
tion in many forms of the Turing Test, it is clear that human
computer interaction could benefit enormously from this and
other forms of natural language processing. The rise of com-
puting over the Internet, where so much data is in the form
of textual information, has given even greater importance to
this topic. This paper reports on a research program aim-
ing to learn from the (extensive) study of text comprehen-
sion in Psychology in order to draw guidelines for develop-
ing frameworks for automating narrative text comprehension
and in particular, story comprehension (SC).

Our research program brings together knowhow from
Psychology and AI, in particular, our understanding of Rea-
soning about Actions and Change and Argumentation in AI,
to provide a formal framework of representation and a com-
putational framework for SC, that can be empirically evalu-
ated and iteratively developed given the results of the eval-
uation. This empirical evaluation, which forms an impor-
tant part of the program, is based on the following method-
ology: (i) set up a set of stories and a set of questions to
test different aspects of story comprehension; (ii) harness the

world knowledge on which human readers base their com-
prehension; (iii) use this world knowledge in our framework
and automated system and compare its comprehension be-
haviour with that of the source of the world knowledge.

In this paper we will concentrate on the development of
an appropriate Reasoning about Actions and Change and
Default Reasoning framework for representing narratives
extracted from stories together with the background world
knowledge needed for the underlying central process for
story comprehension of synthesizing and elaborating the ex-
plicit text information with new inferences through the im-
plicit world knowledge of the reader. In order to place this
specific consideration in the overall process of story compre-
hension we present here a brief summary of the problem of
story comprehension from the psychological point of view.

A Psychological Account of Story Comprehension
Comprehending text entails the construction of a mental rep-
resentation of the information contained in the text. How-
ever, no text specifies clearly and completely all the impli-
cations of text ideas or the relations between them. There-
fore, comprehension depends on the ability to mentally rep-
resent the text-given information and to generate bridging
and elaborative inferences that connect and elaborate text
ideas resulting in a mental or comprehension model of the
story. Inference generation is necessary in order to compre-
hend any text as a whole, i.e., as a single network of in-
terconnected propositions instead of as a series of isolated
sentences, and to appreciate the suspense and surprise that
characterize narrative texts or stories, in particular (Brewer
and Lichtenstein 1982; McNamara and Magliano 2009).

Although inference generation is based on the activation
of background world knowledge, the process is constrained
by text information. Concepts encountered in the text acti-
vate related conceptual knowledge in the readers’ long-term
memory (Kintsch 1988). In the case of stories, knowledge
about mental states, emotions, and motivations is also rel-
evant as the events depicted tend to revolve around them.
Nevertheless, at any given point in the process, only a small
subset of all the possible knowledge-based inferences re-
main activated and become part of the mental representa-
tion: those that connect and elaborate text information in a
way that contributes to the coherence of the mental model
(McNamara and Magliano 2009; Rapp and den Broek 2005).

165

Inference generation is a task-oriented process that follows
the principle of cognitive economy enforced by a limited-
resource cognitive system.

However, the results of this coherence-driven selection
mechanism can easily exceed the limited working memory
capacity of the human cognitive system. Therefore, coher-
ence on a more global level is achieved through higher-
level integration processes that operate to create macro-
propositions that generalize or subsume a number of text-
encountered concepts and the inferences that connected
them. In the process, previously selected information that
maintains few connections to other information is dropped
from the mental model. This results in a more consolidated
network of propositions that serves as the new anchor for
processing subsequent text information (Kintsch 1998).

Comprehension also requires an iterative general revision
mechanism of the mental model that readers construct. The
feelings of suspense and surprise that stories aim to cre-
ate are achieved through discontinuities or changes (in set-
tings, motivations, actions, or consequences) that are not
predictable or are wrongly predictable solely on the basis
of the mental model created so far. Knowledge about the
structure and the function of stories leads readers to expect
discontinuities and to use them as triggers to revise their
mental model (Zwaan 1994). Therefore, a change in time
or setting in the text may serve as a clue for revising parts
of the mental model while other parts remain and integrated
with subsequent text information.

The interaction of bottom-up and top-down processes for
the purposes of coherence carries the possibility of different
but equally legitimate or successful comprehension out-
comes. Qualitative and quantitative differences in concep-
tual and mental state knowledge can give rise to differences
between the mental models constructed by different read-
ers. Nevertheless, comprehension is successful if these are
primarily differences in elaboration but not in the level of
coherence of the final mental model.

In this paper we will focus on the underlying lower-level
task of constructing the possibly additional elements of the
comprehension model and the process of revising these ele-
ments as the story unfolds with only a limited concern on the
global requirements of coherence and cognitive economy.
Our working hypothesis is that these higher level features
of comprehension can be tackled on top of the underlying
framework that we are developing in this paper, either at the
level of the representational structures and language or with
additional computational processes on top of the underlying
computational framework defined in this paper. We are also
assuming as solved the orthogonal issue of correctly pars-
ing the natural language of the text into some information-
equivalent structured (e.g., logical) form that gives us the
explicit narrative of the story. This is not to say that this is-
sue is not an important element of narrative text comprehen-
sion. Indeed, it may need to be tackled in conjunction with
the problems on which we are focusing (since, for example,
the problem of de-referencing pronoun and article anaphora
could depend on background world knowledge and hence
possibly on the higher-level whole comprehension of the
text (Levesque, Davis, and Morgenstern 2012).

In the next two sections we will develop an appropriate
representation framework using preference based argumen-
tation that enables us to address well all the three major
problems of frame, ramification and qualification and pro-
vide an associated revision process. The implementation of
a system discussed after this shows how psychologically-
inspired story comprehension can proceed as a sequence of
elaboration and revision. The paper then presents, using the
empirical methodology suggested by research in psychol-
ogy, our initial efforts to evaluate how closely the inferences
drawn by our framework and system match those given by
humans engaged in a story comprehension task.

The following story will be used as a running example.
Story: It was the night of Christmas Eve. After feeding the
animals and cleaning the barn, Papa Joe took his shotgun
from above the fireplace and sat out on the porch cleaning
it. He had had this shotgun since he was young, and it had
never failed him, always making a loud noise when it fired.

Papa Joe woke up early at dawn, picked up his shotgun
and went off to forest. He walked for hours, until the sight of
two turkeys in the distance made him stop suddenly. A bird
on a tree nearby was cheerfully chirping away, building its
nest. He aimed at the first turkey, and pulled the trigger.

After a moment’s thought, he opened his shotgun and saw
there were no bullets in the shotgun’s chamber. He loaded
his shotgun, aimed at the turkey and pulled the trigger again.
Undisturbed, the bird nearby continued to chirp and build
its nest. Papa Joe was very confused. Would this be the first
time that his shotgun had let him down?

The story above along with other stories and material
used for the evaluation of our approach can be found at
http://cognition.ouc.ac.cy/narrative/.

KRR for Story Comprehension
We will use methods and results from Argumentation The-
ory in AI (e.g., (Dung 1995; Modgil and Prakken 2012)) and
its links to the area of Reasoning about Action and Change
(RAC) with Default Reasoning on the static properties of do-
mains (see (van Harmelen, Lifschitz, and Porter 2008) for an
overview) to develop a Knowledge Representation and Rea-
soning (KRR) framework suitable for Story Comprehension
(SC). Our central premise is that SC can be formalized in
terms of argumentation accounting for the qualification and
the revision of the inferences drawn as we read a story.

The psychological research and understanding of SC will
guide us in the way we exploit the know how from AI. The
close link between human common sense reasoning, such as
that for SC, and argumentation has been recently re-enforced
by new psychological evidence (Mercier and Sperber 2011)
suggesting that human reasoning is in its general form in-
herently argumentative. In our proposed approach of KRR
for SC the reasoning to construct a comprehension model
and its qualification at all levels as the story unfolds will be
captured through a uniform acceptability requirement on the
arguments that support the conclusions in the model.

The significance of this form of representation for SC is
that it makes easy the elaboration of new inferences from the
explicit information in the narrative, that, as we discussed

166

in the introduction, is crucially necessary for the successful
comprehension of stories. On the other hand, this easy form
of elaboration and the extreme form of qualification that
it needs can be mitigated by the requirement, again given
from the psychological perspective, that elaborative infer-
ences need to be grounded on the narrative and sceptical in
nature. In other words, the psychological perspective of SC,
that also suggests that story comprehension is a process of
“fast thinking”, leads us to depart from a standard logical
view of drawing conclusions based on the truth in all (pre-
ferred) models. Instead, the emphasis is turned on building
one grounded and well-founded model from a collection of
solid or sceptical properties that are grounded on the text and
follow as unqualified conclusions.

We use a typical RAC language of Fluents, Actions,
Times, with an extra sort of Actors. An actor-action pair
is an event, and a fluent/event or its negation is a literal. For
this paper it suffices to represent times as natural numbers1

and to assume that time-points are dense between story el-
ements to allow for the realization of indirect effects. Ar-
guments will be build from premises in the knowledge con-
nected to any given story. We will have three types of such
knowledge units as premises or basic units of arguments.
Definition 1. Let L be a fluent literal, X a fluent/event lit-
eral and S a set of fluent/event literals. A unit argument or
premise has one of following forms:
• a unit property argument pro(X,S) or prec(X,S);
• a unit causal argument cau(X,S);
• a unit persistence argument per(L, {L}) (which we

sometimes write as per(L, ·)).
These three forms are called types of unit arguments. A unit
argument of any type is denoted by argi(Hi, Bi). The two
forms of unit property arguments differ in that pro(X,S) re-
lates properties to each other at the same time-point, whereas
prec(X,S) aims to capture preconditions that hold at the
time-point of an event, under which the event is blocked
from bringing about its effects at the subsequent time-point.

With abuse of terminology we will sometimes call these
units of arguments, simply as arguments.

The knowledge required for the comprehension of a story
comprises of two parts: the explicit knowledge of the nar-
rative extracted from the text of the story and the implicit
background knowledge that the reader uses along with the
narrative for elaborative inferences about the story.
Definition 2. A world knowledge theoryW is a set of unit
property and causal arguments together with a (partial) ir-
reflexive priority relation on them. A narrative N is: a set
of observations OBS(X,T) for a fluent/event literalX , and a
time-point T ; together with a (possibly empty) set of (story
specific) property or causal unit arguments.

The priority relation inW would typically reflect the pri-
ority of specificity for properties, expressed by unit property
arguments pro(X,S), or the priority of precondition prop-
erties, expressed by unit property arguments prec(X,S),
over causal effects, expressed by unit causal arguments. This

1In general, abstract time points called scenes are useful.

priority amongst these basic units of knowledge gives a form
of non-monotonic reasoning (NMR) for deriving new prop-
erties that hold in the story.

To formalize this NMR we use a form of preference-based
argumentation uniformly to capture the static (default) infer-
ence of properties at a single time point as well as inferences
between different type points, by extending the domain spe-
cific priority relation to address the frame problem.

Definition 3. A story representation SR = 〈W,N ,�〉
comprises a world knowledge theory W , a narrative N ,
and a (partial) irreflexive priority relation � extending the
one in W so that: (i) cau(H,B1) � per(¬H,B2); (ii)
per(H,B1) � pro(¬H,B2). The extended relation�may
also prioritize between arguments inN and those inW (typ-
ically the former over the latter).

The first priority condition, namely that causal arguments
have priority over persistence arguments, encompasses a so-
lution to the frame problem. When we need to reason with
defeasible property information, such as default rules about
the normal state of the world in which a story takes place,
we are also faced with a generalized frame problem, where
“a state of the world persists irrespective of the existence
of general state laws”. Hence, if we are told that the world
is in fact in some exceptional state that violates a general
(default) property this will continue to be the case in the fu-
ture, until we learn of (or derive) some causal information
that returns the world into its normal state. The solution to
this generalized frame problem is captured succinctly by the
second general condition on the priority relation of a story
representation and its combination with the first condition.

A representation SR of our example story (focusing on
its ending) may include the following unit arguments inW
and N (where pj is short for “Papa Joe”):
c1 : cau(fired at(pj, X), {aim(pj, X), pull trigger(pj)})
c2 : cau(¬alive(X), {fired at(pj, X), alive(X)})
c3 : cau(noise, {fired at(pj, X)})
c4 : cau(¬chirp(bird), {noise, nearby(bird)})
c5 : cau(gun loaded, {load gun})
p1 : prec(¬fired at(pj, X), {¬gun loaded})
p2 : pro(¬fired at(pj, X), {¬noise}) (story specific)

with p1 � c1, p2 � c1; and the following in N :
OBS(alive(turkey), 1), OBS(aim(pj, turkey), 1),
OBS(pull trigger(pj), 1), OBS(¬gun loaded, 4),
OBS(load gun, 5), OBS(pull trigger(pj), 6),
OBS(chirp(bird), 10), OBS(nearby(bird), 10),
with the exact time-point choices being inconsequential.

As we can see in this example the representation of com-
mon sense world knowledge has the form of simple associ-
ations between concepts in the language. This stems from
a key observation in psychology that typically all world
knowledge and irrespective of type is inherently default. It
is not in the form of an elaborate formal theory of detailed
definitions of concepts, but rather is better regarded as a
collection of relatively loose semantic associations between
concepts, reflecting typical rather than absolute information.
Thus knowledge need not be fully qualified at the represen-

167

tation level, since it can be qualified via the reasoning pro-
cess by the relative strength of other (conflicting) associa-
tions in the knowledge. In particular, as we will see below,
endogenous qualification will be tackled by the priority re-
lation in the theory and exogenous qualification by this pri-
ority coupled with the requirement that explicit narrative in-
formation forms, in effect, non-defeasible arguments.

Argumentation Semantics for Stories
To give the semantics of any given story represen-
tation SR we will formulate a corresponding pref-
erence based argumentation framework of the form
〈Arguments,Disputes,Defences〉. Arguments will be
based on sets of timed unit arguments. Since we are required
to reason about properties over time, it is necessary that ar-
guments populate some connected subset of the time line.
Definition 4. Let SR = 〈W,N ,�〉 be a story rep-
resentation. A (unit) argument tuple has the form〈
arg(H,B), Th, d; (X,T)

〉
, where, arg(H,B), is a unit

argument in SR, X is a fluent/event literal, d ∈ {F, B} is
an inference type of either forwards derivation or backwards
derivation by contradiction, and Th, T are time points. Th

refers to the time-point at which the head of the unit argu-
ment applies, while X and T refer to the conclusion drawn
using the unit argument in the tuple. An interpretation ∆
of SR is then defined as a a set of argument tuples. We
say ∆ supports a fluent/event literal, X , at T , if either〈
arg(H,B), Th, d; (X,T)

〉
∈ ∆ or OBS(X,T) ∈ N . The

notion of support is extended to hold on sets of timed literals.
The inference process of how an argument tuple supports

a timed literal, and thus is allowed to belong to an interpre-
tation, is made precise by the following definition.
Definition 5. Let ∆ be an interpretation and〈
arg(H,B), Th, d; (X,T)

〉
in ∆ with d = F . Then

arg(H,B) applied at Th forward derives X at T under
∆ iff X = H , T = Th and ∆ supports B at T ′. The
set {〈Y, T ′〉 | Y ∈ B} is called the activation condition
for the derivation; T ′ = Th if arg(H,B) is of the form
pro(H,B). T ′ = Th − 1 for the other argument types.
When d = B, arg(H,B) applied at Th backward
derives X at T under ∆ iff ¬X ∈ B and ∆ sup-
ports {¬H} at Th and B \ {¬X} at T . The set{〈
¬H,Th

〉}
∪ {〈Y, T 〉 | Y ∈ B \ {¬X}} is the acti-

vation condition; T = Th if arg(H,B) is of the form
pro(H,B). T = Th − 1 for the other argument types.

The framework thus includes reasoning by contradiction
with the defeasible world knowledge. Although the psy-
chological debate on the question to what extent humans
reason by contradiction, e.g., by contraposition, (see, e.g.,
(Johnson-Laird and Yang 2008; Rips 1994)) is still ongoing
it is natural for a formal argumentation framework to cap-
ture this mode of indirect reasoning (see, e.g., (Kakas, Toni,
and Mancarella 2013; Kakas and Mancarella 2013)). One of
the main consequences of this is that it gives a form of back-
wards persistence, e.g., from an observation to support (but
not necessarily conclude) that the observed property holds
also at previous time points. An argument tuple of the form

〈per(L, ·), T + 1, B; (¬L, T)〉 captures the backwards per-
sistence of ¬L from time T +1 to T using by contraposition
the unit argument of persistence of L from T to T + 1. We
also note that the separation of the inference type (e.g., for-
wards and backwards) is known to be significant in prefer-
ence based argumentation (Modgil and Prakken 2012). This
will be exploited when we consider the attacking between
arguments: their disputes and defences.

To reflect the suggestion by psychology that inferences
drawn by readers are strongly tied to the story we require
that the activation conditions of argument tuples must be
eventually traced on the explicit information in the narrative
of the story representation.

Definition 6. An interpretation ∆ is grounded on SR iff
there is a total ordering of ∆ such that the activation condi-
tion of any tuple α ∈ ∆ is supported by the set of tuples that
precede α in the ordering or by the narrative in SR.

Hence in a grounded interpretation there can be no cycles
in the tuples that support their activation conditions and so
these will always end with tuples whose activation condi-
tions will be supported directly by the observations in the
narrative of the story.

We can now define the argumentation framework corre-
sponding to any given story representation. The central task
is to capture through the argumentation semantics the non-
monotonic reasoning of linking the narrative to the defeasi-
ble information in the world knowledge. In particular, the
argumentation will need to capture the qualification prob-
lem, encompassed in this synthesis of the narrative with the
world knowledge, both at the level of static reasoning at one
time point with default property arguments and at the level
of temporal projection from one time point to another.

Definition 7. Let SR be a story representation.
Then the corresponding argumentation framework,〈
ARGSR, DISSR, DEFSR

〉
is defined as follows:

• An argument, A, in ARGSR is any grounded interpreta-
tion of SR.

• Given an argument A then A is in conflict with SR iff
there exists a tuple α =

〈
arg(H,B), Th, d; (X,T)

〉
in A

such that OBS(¬X,T) ∈ N of SR.
• Given two arguments A1, A2 then these are in (direct)

conflict with each other iff there exists a tuple α2 =〈
arg2(H2, B2), Th

2 , d2; (X2, T2)
〉

inA2 and a tuple α1 =〈
arg1(H1, B1), Th

1 , d1; (X1, T1)
〉

in A1 such that X1 =
¬X2, T1 = T2. Given two arguments A1, A2 then these
are in indirect conflict with each other iff there exists a tu-
ple α2 =

〈
arg2(H2, B2), Th

2 , d2; (X2, T2)
〉

in A2 and a
tuple α1 =

〈
arg1(H1, B1), Th

1 , d1; (X1, T1)
〉

in A1 such
that (d1 = B or d2 = B) and H1 = ¬H2, Th

1 = Th
2 .

• Given two arguments A1, A2 then A2 disputes A1 and
hence (A2, A1) ∈ DISSR iff A2 is in direct or indirect
conflict with A1, and in the case of indirect conflict d1 =
B holds in the definition of indirect conflict above.

• Argument A1 undercuts A2 iff

– A1, A2 are in direct or indirect conflict via α1 and α2,

168

– when in direct conflict, there exists a tuple α′1 =〈
arg′1(H ′

1, B
′
1), Th′

1 , d′1; (X ′
1, T

′
1)
〉

in A1 and a tuple

α′2 =
〈
arg′2(H ′

2, B
′
2), Th′

2 , d′2; (X ′
2, T

′
2)
〉

in A2 such

that arg′1(H ′
1, B

′
1) � arg′2(H ′

2, B
′
2) and T

′

1 = T
′

2 or
Th′

1 = Th′

2 .
– when in indirect conflict, then arg1(H1, B1) �
arg2(H2, B2) where arg1(H1, B1) and arg2(H2, B2)
are the unit arguments in α1 and α2 respectively.

• Argument A1 defends against A2 and hence (A1, A2) ∈
DEFSR, iff there exists a subset A

′

2 ⊆ A2 which is in
minimal conflict with A1 (i.e., no proper subset of A

′

2 is
in conflict with A1) and A1 undercuts A

′

2.

Several clarifying comments are in order. Arguments
that are in dispute are arguments that support some contrary
conclusion at the same time point and hence form counter-
arguments for each other. The use of contrapositive rea-
soning for backwards inference also means that it is pos-
sible to have arguments that support conclusions that are not
contrary to each other but whose unit arguments have con-
flicting conclusions. For example, in our running example
we can use the causal unit argument, c1, to forward derive
fired at(pj,X) and the property argument p1 to backwards
derive gun loaded from ¬fired at(pj,X) and despite the
fact that the derived facts are not in conflict the unit argu-
ments used concern conflicting conclusions. Hence such ar-
guments are also considered to be in conflict but instead of
a direct conflict we say we have an indirect conflict. Not all
such indirect conflicts are important. A dispute that results
from an indirect conflict of a unit argument used backwards
on a unit argument that is used forwards does not have any
effect. Such cases are excluded from giving rise to disputes.

This complication in the definitions of conflicts and dis-
putes results from the defeasible nature of the world knowl-
edge and the fact we are allowing reasoning by contradiction
on such defeasible information. These complications in fact
stem from the fact that we are only approximating the proof
by contradiction reasoning, capturing this indirectly through
contraposition. The study of this is beyond the scope of this
paper and the reader is referred to the newly formulated Ar-
gumentation Logic (Kakas, Toni, and Mancarella 2013).

Undercuts between arguments require that the undercut-
ting argument does so through a stronger unit or premise
argument than some unit argument in the argument that is
undercut. The defence relation is build out of undercuts by
applying an undercut on minimally conflicting subsets of the
argument which we are defending against. Hence these two
relations between arguments are asymmetric. Note also that
the stronger premise from the undercutting argument does
not necessarily need to come from the subset of the unit ar-
guments that supports the conflicting conclusion. Instead, it
can come from any part of the undercutting argument to un-
dercut at any point of the chain supporting the activation of
the conflicting conclusion. This, as we shall illustrate below,
is linked to how the framework addresses the ramification
problem of reasoning with actions and change.

The semantics of a story representation is defined using
the corresponding argumentation framework as follows.

Definition 8. Let SR be a story representation and〈
ARGSR, DISSR, DEFSR

〉
its corresponding argumen-

tation framework. An argument ∆ is acceptable in SR iff

• ∆ is not in conflict with SR nor in direct conflict with ∆.
• No argument A undercuts ∆.
• For any argument A that minimally disputes ∆, ∆ de-

fends against A.

Acceptable arguments are called comprehension models
of SR. Given a comprehension model ∆, a timed fluent
literal (X,T) is entailed by SR iff this is supported by ∆.

The above definition of comprehension model and story
entailment is of a sceptical form where, apart from the fact
that all conclusions must be ground on the narrative, they
must also not be non-deterministic in the sense that there
can not exist another comprehension model where the neg-
ative conclusion is entailed. Separating disputes and un-
dercuts and identifying defences with undercuts facilitates
this sceptical form of entailment. Undercuts (see, e.g.,
(Modgil and Prakken 2012) for some recent discussion) are
strong counter-claims whose existence means that the at-
tacked set is inappropriate for sceptical conclusions whereas
disputes are weak counter-claims that could be defended
or invalidated by extending the argument to undercut them
back. Also the explicit condition that an acceptable argu-
ment should not be undercut even if it can undercut back
means that this definition does not allow non-deterministic
choices for arguments that can defend themselves.

To illustrate the formal framework, how arguments
are constructed and how a comprehension of a story
is formed through acceptable arguments let us consider
our example story starting from the end of the sec-
ond paragraph, corresponding to time-points 1-3 in the
example narrative. Note that the empty ∆ supports
aim(pj, turkey) and pull trigger(pj) at 1. Hence, c1
on 2 forward activates fired at(pj, turkey) at 2 under
the empty argument, ∆. We can thus populate ∆ with
〈c1, 2, F; (fired at(pj, turkey), 2)〉. Similarly, we can in-
clude 〈per(alive(turkey), ·), 2, F; (alive(turkey), 2)〉 in
the new ∆. Under this latter ∆, c2 on 3 forward acti-
vates ¬alive(turkey) at 3, allowing us to further extend
∆ with 〈c2, 3, F; (¬alive(turkey), 3)〉. The resulting ∆ is
a grounded interpretation that supports ¬alive(turkey) at
3. It is based on this inference, that we expect readers to
respond that the first turkey is dead, when asked about its
status at this point, since no other argument grounded on the
narrative (thus far) can support a qualification argument to
this inference. Note also that we can include in ∆ the tu-
ple 〈p1, 2, B; (gun loaded, 1)〉 to support, using backwards
(contrapositive) reasoning with p1, the conclusion that the
gun was loaded when it was fired at time 1.

Reading the first sentence of the third paragraph, we learn
that OBS(¬gun loaded, 4). We now expect that this new
piece of evidence will lead readers to revise their infer-
ences as now we have an argument to support the conclusion
¬fired at(pj, turkey) based on the stronger (qualifying)

169

unit argument of p1. For this we need to support the activa-
tion condition of p1 at time 1, i.e., to support ¬gun loaded
at 1. To do this we can use the argument tuples:
〈per(gun loaded, ·), 4, B; (¬gun loaded, 3)〉
〈per(gun loaded, ·), 3, B; (¬gun loaded, 2)〉
〈per(gun loaded, ·), 2, B; (¬gun loaded, 1)〉

which support the conclusion that the gun was also un-
loaded before it was observed to be so. This uses
per(gun loaded, ·) contrapositively to backward activate
the unit argument of persistence, e.g., had the gun been
loaded at 3, it would have been so at 4 which would con-
tradict the story. Note that this backwards inference of
¬gun loaded would be qualified by a causal argument for
¬gun loaded at any time earlier than 4, e.g., if the world
knowledge contained the unit argument
c : cau(¬gun loaded, {pull trigger(pj)})

This then supports an indirect conflict at time 2 with the
forwards persistence of gun loaded from 1 to 2 and due to
the stronger nature of unit causal over persistence arguments
the backwards inference of ¬gun loaded is undercut and so
cannot belong to an acceptable argument.

Assuming that c is absent, the argument, ∆1, consist-
ing of these three “persistence” tuples is in conflict on
gun loaded on 1 with the argument ∆ above. Each ar-
gument disputes the other and in fact neither can form
an acceptable argument. If we extend ∆1 with the tuple
〈p1, 2, F; (¬fired at(pj, turkey), 2)〉 then this can now un-
dercut and thus defend against ∆ using the priority of p1
over c1. Therefore the extended ∆1 is acceptable and the
conclusion¬fired at(pj, turkey) at 2 is drawn revising the
previous conclusions drawn from ∆. The process of under-
standing our story may then proceed by extending ∆1, with
〈per(alive(turkey), ·), T, F; (alive(turkey), T)〉 for T =
2, 3, 4, resulting in a model that supports alive(turkey) at
4. It is based on this inference that we expect readers to
respond that the first turkey is alive at 4.

Continuing with the story, after Papa Joe loads the gun
and fires again, we can support by forward inferences that
the gun fired, that noise was caused, and that the bird stopped
chirping, through a chaining of the unit arguments c1, c3, c4.
But OBS(chirp(bird), 10) supports disputes on all these
through the repeated backwards use of the same unit argu-
ments grounded on this observation. We thus have an exoge-
nous qualification effect where these conclusions can not be
sceptical and so will not be supported by any comprehension
model. But if we also consider the stronger (story specific)
information in p2, that this gun does not fire without a noise,
together with the backwards inference of ¬noise an argu-
ment that contains these can undercut the firing of the gun at
time 2 and thus defend against disputes that are grounded on
pull triger at 1 and the gun firing. As a result, we have the
effect of blocking the ramification of the causation of noise
and so ¬noise (as well as ¬fired at(pj, turkey)) are scep-
tically concluded. Readers, indeed respond in this way.

With this latter part of the example story we see how our
framework addresses the ramification problem and its non-
trivial interaction with the qualification problem (Thielscher
2001). In fact, a generalized form of this problem is ad-
dressed where the ramifications are not chained only through

Algorithm 1 Computing a Comprehension Model
input: story SR, partitioned in a list of k blocks, and a
set of questions Q[b] associated with each SR block b.
Set G[0] to be the empty graph.
for every b = 1, 2, . . . , k do

Let SR[b] be the restriction of SR up to its b-th block.
Let G[b] := graph(G[b− 1],SR[b]) be the new graph.
Let Π[b] := retract(∆[b− 1],G[b],SR[b]).
Let ∆[b] := elaborate(Π[b],G[b],SR[b]).
Answer Q[b] with the comprehension model ∆[b].

end for

causal laws but through any of the forms of inference we
have in the framework — causal, property or persistence
— and through any of the type of inference — forwards or
backwards by contradiction.

A comprehension model can be tested, as is often done in
psychology, through a series of multiple-choice questions.
Definition 9. Let M be a comprehension model of a story
representation SR. A possible answer,“X at T ”, to a ques-
tion is accepted, respectively rejected, iff “X at T ” (respec-
tively “¬X at T ”) is supported by M . Otherwise, we say
that the question is allowed or possible by M .

In some cases, we may want to extend the notion of a
comprehension model to allow some non-sceptical entail-
ments. This is needed to reflect the situation when a reader
cannot find a sceptical answer to a question and chooses be-
tween two or more allowed answers. This can be captured
by allowing each such answer to be supported by a more
general notion of acceptability such as the admissibility cri-
terion of argumentation semantics. For this, we can drop the
condition that ∆ is not undercut by any argument and al-
low weaker defences, through disputes, to defend back on a
dispute that is not at the same time an undercut.

Finally, we note that a comprehension model need not be
complete as it does not need to contain all possible sceptical
conclusions that can be drawn from the narrative and the
entire world knowledge. It is a subset of this, given by the
subset of the available world knowledge that readers choose
to use. This incompleteness of the comprehension model
is required for important cognitive economy and coherence
properties of comprehension, as trivially a “full model” is
contrary to the notion of coherence.

Computing Comprehension Models
The computational procedure below constructs a compre-
hension model, by iteratively reading a new part of the story
SR, retracting existing inferences that are no longer appro-
priate, and including new inferences that are triggered as a
result of the new story part. Each part of the story may in-
clude more than one observation, much in the same way that
human readers may be asked to read multiple sentences in
the story before being asked to answer a question. We shall
call each story part of interest a block, and shall assume that
it is provided as input to the computational procedure.

At a high level the procedure proceeds as in Algorithm 1.
The story is read one block at a time. After each block

170

Algorithm 2 Elaborating a Comprehension Model
input: provisional comprehension model Π, graph G,
story SR; all inputs possibly restricted up to some block.
repeat

Let G := retract(Π,G,SR).
Let E include all tuples

〈
arg(H,B), Th, d; (X,T)

〉
such that arg(H,B) activates X at T under Π.

Let Π := ∆.
Let Π := expand(∆, E,G).

until ∆ = Π
output: elaborated comprehension model ∆.

of SR is read, a directed acyclic graph G[b] is maintained
which succinctly encodes all interpretations that are relevant
for SR up to its b-th block. Starting from G[b − 1], a new
tuple is added as a vertex if it is possible to add a directed
edge to each 〈X,T 〉 in the tuple’s condition from either an
observation OBS(X,T) in the narrative of SR[b], or from a
tuple

〈
arg(H,B), Th, d; (X,T)

〉
already in G[b]. In effect,

then, edges correspond to the notion of support from the pre-
ceding section, and the graph is the maximal grounded inter-
pretation given the part of the story read.

Once graph G[b] is computed, it is used to revise the com-
prehension model ∆[b − 1] so that it takes into account the
observations in SR[b]. The revision proceeds in two steps.

In the first step, the tuples in ∆[b−1] are considered in the
order in which they were added, and each one is checked to
see whether it should remain in the comprehension model.
Any tuple in ∆[b−1] that is undercut by the tuples in G[b], or
disputed and cannot be defended, is retracted, and is not in-
cluded in the provisional set Π[b]. As a result of a retraction,
any tuple

〈
arg(H,B), Th, d; (X,T)

〉
∈ ∆[b− 1] such that

arg(H,B) no longer activates X at T under Π[b] is also re-
tracted and is not included in Π[b]. This step guarantees that
the argument Π[b] is trivially acceptable.

In the second step, the provisional set Π[b], which is itself
a comprehension model (but likely a highly incomplete one),
is elaborated with new inferences that follow. The elabo-
ration process proceeds as in Algorithm 2. Since the pro-
visional comprehension model Π effectively includes only
unit arguments that are “strong” against the attacks from G,
it is used to remove (only as part of the local computation of
this procedure) any weak arguments from G itself (i.e., ar-
guments that are undercut), and any arguments that depend
on the former to activate their inferences. This step, then,
ensures that all arguments (subsets of G) that are defended
are no longer part of the revisedG, in effect accommodating
the minimality condition for attacking sets. It then consid-
ers all arguments that activate their inferences in the pro-
visional comprehension model. The comprehension model
is expanded with a new tuple from E if the tuple is not in
conflict with the story nor in direct conflict with the current
model ∆, and if “attacked” by arguments in G then these
arguments do not undercut ∆, and ∆ undercuts back. Only
arguments coming from the revised graph G are considered,
as per the minimality criterion on considered attacks.

The elaboration process adds only “strong” arguments in

the comprehension model, retaining its property as a com-
prehension model. The discussion above forms the basis for
the proof of the following theorem:

Theorem 1. Algorithm 1 runs in time that is polynomial in
the size of SR and the number of time-points of interest,
and returns a comprehension model of the story.

Proof sketch. Correctness follows from our earlier discus-
sion. Regarding running time: The number of iterations of
the top-level algorithm is at most linear in the relevant pa-
rameters. In constructing the graph G[b], each pair of ele-
ments (unit arguments or observations at some time-point)
in SR[b] is considered once, for a constant number of op-
erations. The same is the case for the retraction process in
the subsequent step of the algorithm. Finally, the loop of the
elaboration process repeats at most a linear in the relevant
parameters number of times, since at least one new tuple is
included in Π in every loop. Within each loop, each step
considers each pair of elements (unit arguments or obser-
vations at some time-point) in SR[b] once, for a constant
number of operations. The claim follows. QED

The computational processes presented above have been
implemented using Prolog, along with an accompanying
high-level language for representing narratives, background
knowledge, and multiple-choice questions. Without going
into details, the language allows the user to specify a se-
quence of sessions of the form session(s(B),Qs,Vs),
where B is the next story block to read, Qs is the set of ques-
tions to be answered afterwards, and Vs is the set of fluents
made visible in a comprehension model returned to the user.

The narrative itself is represented by a sequence of state-
ments of the form s(B) :: X at T, where B is the
block in which the statement belongs (with possibly mul-
tiple statements belonging in the same block), X is a fluent
or action, and T is the time-point at which it is observed.

The background knowledge is represented by clauses of
the form p(N) :: A, B, ..., C implies X or
c(N) :: A, B, ..., C causes X, where p or c
shows a property or causal clause, N is the name of the rule,
A, B, ..., C is the rule’s body, and X is the rule’s head.
Negations are represented by prefixing a fluent or action in
the body or head with the minus symbol. Variables can be
used in the fluents or actions to represent relational rules.
Preferences between clauses are represented by statements
of the form p(N1) >> c(N2) with the natural reading.

Questions are represented by clauses of the form q(N)
?? (X1 at T1, ..., X2 at T2) ; ..., where
N is the name of the question, (X1 at T1, ..., X2
at T2) is the first possible answer as a conjunction of flu-
ents or actions that need to hold at their respective time-
points, and ; separates the answers. The question is always
the same: “Which of the following choices is the case?”.

The implemented system demonstrates real modularity
and elaboration tolerance, allowing as input any story nar-
rative or background knowledge in the given syntax, al-
ways appropriately qualifying the given information to com-
pute a comprehension model. The system is available at
http://cognition.ouc.ac.cy/narrative/.

171

Evaluation through Empirical Studies
In the first part of the evaluation of our approach we car-
ried a psychological study to ascertain the world knowledge
that is activated to successfully comprehend example stories
such as our example story on the basis of data obtained from
human readers. We were interested both in the outcomes
of successful comprehension and the world knowledge that
contributed to the human comprehension. We developed
a set of inferential questions to follow the reading of pre-
specified story segments. These assessed the extent to which
readers connected, explained, and elaborated key story ele-
ments. Readers were instructed to answer each question and
to justify their answers using a “think-aloud” method of an-
swering questions while reading in order to reveal the world
knowledge that they had used.

The qualitative data from the readers was pooled together
and analysed as to the frequencies of the types of responses
in conjunction with the information given in justifications
and think-aloud protocols. For example, the data indicated
that all readers considered Papa Joe to be living on a farm
or in a village (q.01, “Where does Papa Joe live?”) and
that all readers attributed an intention of Papa Joe to hunt
(q.06, “What was Papa Joe doing in the forest?”). An in-
teresting example of variability occurred in the answers for
the group of questions 07,08,10,11, asking about the status
of the turkeys at various stages in the story. The major-
ity of participants followed a comprehension model which
was revised between the first turkey being dead and alive.
However, a minority of participants consistently answered
that both turkeys were alive. These readers had defeated the
causal arguments that supported the inference that the first
turkey was dead, perhaps based on an expectation that the
desire of the protagonist for turkey would be met with com-
plications. We believe that such expectations can be gener-
ated from standard story knowledge in the same way as we
draw other elaborative inferences from WK.

Evaluation of the system
Using the empirical data discussed above, we tested our
framework’s ability to capture the majority answers and ac-
count for their variability. The parts of our example story
representation relevant to questions 01 and 06 are as follows:

s(1) :: night at 0. s(2) :: animal(turkey2) at 2.
s(1) :: xmasEve at 0. s(2) :: alive(turkey1) at 2.
s(1) :: clean(pj,barn) at 0. s(2) :: alive(turkey2) at 2.
s(2) :: xmasDay at 1. s(2) :: chirp(bird) at 2.
s(2) :: gun(pjGun) at 1. s(2) :: nearby(bird) at 2.
s(2) :: longWalk(pj) at 1. s(2) :: aim(pjGun,turkey1) at 2.
s(2) :: animal(turkey1) at 2. s(2) :: pulltrigger(pjGun) at 2.

The two questions are answered after reading, respec-
tively, the first and second blocks of the story above:

session(s(1),[q(01)],). session(s(2),[q(06)],).

with their corresponding multiple-choice answers being:

q(01) ??
lives(pj,city) at 0; lives(pj,hotel) at 0;
lives(pj,farm) at 0; lives(pj,village) at 0.

q(06) ??
motive(in(pj,forest),practiceShoot) at 3;
motive(in(pj,forest),huntFor(food)) at 3;
(motive(in(pj,forest),catch(turkey1)) at 3,

motive(in(pj,forest),catch(turkey2)) at 3);
motive(in(pj,forest),hearBirdsChirp) at 3.

To answer the first question, the system uses the following
background knowledge:

p(11) :: has(home(pj),barn) implies lives(pj,countrySide).
p(12) :: true implies -lives(pj,hotel).
p(13) :: true implies lives(pj,city).
p(14) :: has(home(pj),barn) implies -lives(pj,city).
p(15) :: clean(pj,barn) implies at(pj,barn).
p(16) :: at(pj,home), at(pj,barn) implies has(home(pj),barn).
p(17) :: xmasEve, night implies at(pj,home).
p(18) :: working(pj) implies -at(pj,home).
p(111) :: lives(pj,countrySide) implies lives(pj,village).
p(112) :: lives(pj,countrySide) implies lives(pj,farm).
p(113) :: lives(pj,village) implies -lives(pj,farm).
p(114) :: lives(pj,farm) implies -lives(pj,village).
p(14) >> p(13). p(18) >> p(17).

By the story information, p(17) implies at(pj,home), with-
out being attacked by p(18), since nothing is said in the story
about Papa Joe working. Also by the story information,
p(15) implies at(pj,barn). Combining the inferences from
above, p(16) implies has(home(pj),barn), and p(11) implies
lives(pj,countrySide). p(12) immediately dismisses the case
of living in a hotel (as people usually do not), whereas p(14)
overrides p(13) and dismisses the case of living in the city.
Yet, the background knowledge cannot unambiguously de-
rive one of the remaining two answers. In fact, p(111),
p(112), p(113), p(114) give arguments for either of the two
choices. This is in line with the variability in the empirical
data in terms of human answers to the first question.

To answer the second question, the system uses the fol-
lowing background knowledge:

p(21) :: want(pj,foodFor(dinner)) implies
motive(in(pj,forest),huntFor(food)).

p(22) :: hunter(pj) implies
motive(in(pj,forest),huntFor(food)).

p(23) :: firedat(pjGun,X), animal(X) implies
-motive(in(pj,forest),catch(X)).

p(24) :: firedat(pjGun,X), animal(X) implies
-motive(in(pj,forest),hearBirdsChirp).

p(25) :: xmasDay implies
want(pj,foodFor(dinner)).

p(26) :: longWalk(pj) implies
-motive(in(pj,forest),practiceShooting).

p(27) :: xmasDay implies
-motive(in(pj,forest),practiceShooting).

By the story information and parts of the background
knowledge not shown above, we can derive that Papa Joe is a
hunter, and that he has fired at a turkey. From the first infer-
ence, p(22) already implies that the motivation is to hunt for
food. The same inference can be derived by p(25) and p(21),
although for a different reason. At the same time, p(23) and
p(24) dismiss the possibility of the motivation being to catch
the two turkeys or to hear birds chirp, whereas story infor-
mation along with either p(26) or p(27) dismiss also the pos-
sibility of the motivation being to practice shooting.

172

The background knowledge above follows evidence from
the participant responses in our psychological study that the
motives in the answers of the second question can be “de-
rived” from higher-level desires or goals of the actor. Such
high-level desires and intentions are examples of generaliza-
tions that contribute to the coherence of comprehension, and
to the creation of expectations in readers about the course
of action that the story might follow in relation to fulfilling
desires and achieving intentions of the protagonists.

Related Work
Automated story understanding has been an ongoing field of
AI research for the last forty years, starting with the planning
and goal-oriented approaches of Schank, Abelson, Dyer
and others (Schank and Abelson 1977; Dyer 1983); for a
good overview see (Mueller 2002) and the website (Mueller
2013). Logic-related approaches have largely been con-
cerned with the development of appropriate representations,
translations or annotations of narratives, with the implicit
or explicit assumption that standard deduction or logical
reasoning techniques can subsequently be applied to these.
For example, the work of Mueller (Mueller 2003), which
in terms of story representation is most closely related to
our approach, equates various modes of story understand-
ing with the solving of satisfiability problems. (Niehaus and
Young 2009) models understanding as partial order plan-
ning, and is also of interest here because of a methodology
that includes a controlled comparison with human readers.

To our knowledge there has been very little work relating
story comprehension with computational argumentation, an
exception being (Bex and Verheij 2013), in which a case is
made for combining narrative and argumentation techniques
in the context of legal reasoning, and with which our argu-
mentation framework shares important similarities. Argu-
mentation for reasoning about actions and change, on which
our formal framework builds, has been studied in (Vo and
Foo 2005; Michael and Kakas 2009).

Many other authors have emphasized the importance of
commonsense knowledge and reasoning in story compre-
hension (Silva and Montgomery 1977; Dahlgren, McDow-
ell, and Stabler 1989; Riloff 1999; Mueller 2004; 2009;
Verheij 2009; Elson and McKeown 2009; Michael 2010),
and indeed how it can offer a basis for story comprehension
tasks beyond question answering (Michael 2013b).

Conclusions and Future Work
We have set up a conceptual framework for story compre-
hension by fusing together knowhow from the psychology
of text comprehension with established AI techniques and
theory in the areas of Reasoning about Actions and Change
and Argumentation. We have developed a proof of concept
automated system to evaluate the applicability of our frame-
work through a similar empirical process of evaluating hu-
man readers. We are currently, carrying out psychological
experiments with other stories to harness world knowledge
and test our system against the human readers.

There are still several problems that we need to address to
complete a fully automated approach to SC, over and above

the problem of extracting through Natural Language Pro-
cessing techniques the narrative from the free format text.
Two major such problems for our immediate future work
are (a) to address further the computational aspects of the
challenges of cognitive economy and coherence and (b) the
systematic extraction or acquisition of common sense world
knowledge. For the first of these we will investigate how this
can be addressed by applying “computational heuristics” on
top of (and without the need to reexamine) the solid semantic
framework that we have developed thus far, drawing again
from psychology to formulate such heuristics. In particu-
lar, we expect that the psychological studies will guide us in
modularly introducing computational operators such as se-
lection, dropping and generalization operators so that we
can improve the coherence of the computed models.

For the problem of the systematic acquisition of world
knowledge we aim to source this (semi)-automatically from
the Web. For this we could build on lexical databases
such as WordNet (Miller 1995), FrameNet (Baker, Fill-
more, and Lowe 1998), and PropBank (Palmer, Gildea, and
Kingsbury 2005), exploring the possibility of populating the
world knowledge theories using archives for common sense
knowledge (e.g., Cyc (Lenat 1995)) or through the auto-
mated extraction of commonsense knowledge from text us-
ing natural language processing (Michael and Valiant 2008),
and appealing to textual entailment for the semantics of the
extracted knowledge (Michael 2009; 2013a).

We envisage that the strong inter-disciplinary nature of
our work can provide a concrete and important test bed for
evaluating the development of NMR frameworks in AI while
at the same time offering valuable feedback for Psychology.

References
Baker, C. F.; Fillmore, C. J.; and Lowe, J. B. 1998. The
Berkeley FrameNet Project. In Proc. of 36th Annual Meet-
ing of the Association for Computational Linguistics and
17th International Conference on Computational Linguis-
tics, 86–90.
Bex, F., and Verheij, B. 2013. Legal Stories and the Process
of Proof. Artif. Intell. Law 21(3):253–278.
Brewer, W., and Lichtenstein, E. 1982. Stories are to En-
tertain: A Structural-Affect Theory of Stories. Journal of
Pragmatics 6:473–486.
Dahlgren, K.; McDowell, J.; and Stabler, E. 1989. Knowl-
edge Representation for Commonsense Reasoning with
Text. Computational Linguistics 15(3):149–170.
Dung, P. M. 1995. On the Acceptability of Arguments and
its Fundamental Role in Nonmonotonic Reasoning, Logic
Programming and n-Person Games. Artif. Intell. 77(2):321–
358.
Dyer, M. G. 1983. In-Depth Understanding: A Computer
Model of Integrated Processing for Narrative Comprehen-
sion. MIT Press, Cambridge, MA.
Elson, D., and McKeown, K. 2009. Extending and Evalu-
ating a Platform for Story Understanding. In Proc. of AAAI
Symposium on Intelligent Narrative Technologies II.

173

Johnson-Laird, P. N., and Yang, Y. 2008. Mental Logic,
Mental Models, and Simulations of Human Deductive Rea-
soning. In Sun, R., ed., The Cambridge Handbook of Com-
putational Psychology, 339–358.
Kakas, A., and Mancarella, P. 2013. On the Semantics of
Abstract Argumentation. Logic Computation 23:991–1015.
Kakas, A.; Toni, F.; and Mancarella, P. 2013. Argumenta-
tion for Propositional Logic and Nonmonotonic Reasoning.
In Proc. of 11th International Symposium on Logical For-
malizations of Commonsense Reasoning.
Kintsch, W. 1988. The Role of Knowledge in Discourse
Comprehension: A Construction-Integration Model. Psy-
chological Review 95:163–182.
Kintsch, W. 1998. Comprehension: A Paradigm of Cogni-
tion. NY: Cambridge University Press.
Lenat, D. B. 1995. CYC: A Large-Scale Investment in
Knowledge Infrastructure. Commun. ACM 38(11):32–38.
Levesque, H. J.; Davis, E.; and Morgenstern, L. 2012. The
Winograd Schema Challenge. In Proc. of 13th International
Conference on Principles of Knowledge Representation and
Reasoning, 552–561.
McNamara, D. S., and Magliano, J. 2009. Toward a Com-
prehensive Model of Comprehension. The Psychology of
Learning and Motivation 51:297–384.
Mercier, H., and Sperber, D. 2011. Why Do Humans Rea-
son? Arguments for an Argumentative Theory. Behavioral
and Brain Sciences 34(2):57–74.
Michael, L., and Kakas, A. C. 2009. Knowledge Qualifica-
tion through Argumentation. In Proc. of 10th International
Conference on Logic Programming and Nonmonotonic Rea-
soning, 209–222.
Michael, L., and Valiant, L. G. 2008. A First Experimental
Demonstration of Massive Knowledge Infusion. In Proc. of
11th International Conference on Principles of Knowledge
Representation and Reasoning, 378–389.
Michael, L. 2009. Reading Between the Lines. In Proc.
of 21st International Joint Conference on Artificial Intelli-
gence, 1525–1530.
Michael, L. 2010. Computability of Narrative. In Proc. of
AAAI Symposium on Computational Models of Narrative.
Michael, L. 2013a. Machines with Websense. In Proc. of
11th International Symposium on Logical Formalizations of
Commonsense Reasoning.
Michael, L. 2013b. Story Understanding... Calculemus! In
Proc. of 11th International Symposium on Logical Formal-
izations of Commonsense Reasoning.
Miller, G. A. 1995. WordNet: A Lexical Database for En-
glish. Commun. ACM 38(11):39–41.
Modgil, S., and Prakken, H. 2012. A General Account of
Argumentation with Preferences. Artif. Intell. 195:361–397.
Mueller, E. T. 2002. Story Understanding. In Nadel, L.,
ed., Encyclopedia of Cognitive Science, volume 4, 238–246.
London: Macmillan Reference.
Mueller, E. 2003. Story Understanding through Multi-
Representation Model Construction. In Hirst, G., and Niren-

burg, S., eds., Proc. of the HLT-NAACL 2003 Workshop on
Text Meaning, 46–53.
Mueller, E. 2004. Understanding Script-Based Stories Us-
ing Commonsense Reasoning. Cognitive Systems Research
5(4):307–340.
Mueller, E. 2009. Story Understanding through Model Find-
ing. In Proc. of Workshop on Advancing Computational
Models of Narrative.
Mueller, E. 2013. Story Understanding Resources.
http://xenia.media.mit.edu/ mueller/storyund/storyres.html.
Accessed February 28, 2013.
Niehaus, J., and Young, R. M. 2009. A Computational
Model of Inferencing in Narrative. In Proc. of AAAI Sympo-
sium on Intelligent Narrative Technologies II.
Palmer, M.; Gildea, D.; and Kingsbury, P. 2005. The Propo-
sition Bank: An Annotated Corpus of Semantic Roles. Com-
putational Linguistics 31(1):71–106.
Rapp, D., and den Broek, P. V. 2005. Dynamic Text Com-
prehension: An Integrative View of Reading. Current Di-
rections in Psychological Science 14:297–384.
Riloff, E. 1999. Information Extraction as a Stepping Stone
Toward Story Understanding. In Ram, A., and Moorman,
K., eds., Understanding Language Understanding: Compu-
tational Models of Reading, 435–460. The MIT Press.
Rips, L. 1994. The Psychology of Proof. MIT Press.
Schank, R. C., and Abelson, R. P. 1977. Scripts, Plans,
Goals, and Understanding: An Inquiry into Human Knowl-
edge Structures. Lawrence Erlbaum, Hillsdale, NJ.
Silva, G., and Montgomery, C. A. 1977. Knowl-
edge Representation for Automated Understanding of Nat-
ural Language Discourse. Computers and the Humanities
11(4):223–234.
Thielscher, M. 2001. The Qualification Problem: A Solution
to the Problem of Anomalous Models. Artif. Intell. 131(1–
2):1–37.
van Harmelen, F.; Lifschitz, V.; and Porter, B. 2008. Hand-
book of Knowledge Representation. Elsevier Science.
Verheij, B. 2009. Argumentation Schemes, Stories and Le-
gal Evidence. In Proc. of Workshop on Advancing Compu-
tational Models of Narrative.
Vo, Q. B., and Foo, N. Y. 2005. Reasoning about Action:
An Argumentation-Theoretic Approach. J. Artif. Intell. Res.
24:465–518.
Zwaan, R. A. 1994. Effect of Genre Expectations on
Text Comprehension. Journal of Experimental Psychology:
Learning, Memory, and Cognition 20:920–933.

174

Tableau vs. Sequent Calculi for Minimal Entailment

Olaf Beyersdorff∗ and Leroy Chew†

School of Computing, University of Leeds, UK

Abstract

In this paper we compare two proof systems for mini-
mal entailment: a tableau system OTAB and a sequent
calculus MLK , both developed by Olivetti (1992).
Our main result shows that OTAB-proofs can be
efficiently translated into MLK -proofs, i.e.,MLK p-
simulates OTAB . The simulation is technically very in-
volved and answers an open question posed by Olivetti
(1992) on the relation between the two calculi. We
also show that the two systems are exponentially sep-
arated, i.e., there are formulas which have polynomial-
size MLK -proofs, but require exponential-size OTAB-
proofs.

Introduction

Minimal entailment is the most important special case
of circumscription, which in turn is one of the main for-
malisms for non-monotonic reasoning (McCarthy 1980).
The key intuition behind minimal entailment is the
notion of minimal models, providing as few excep-
tions as possible. Apart from its foundational rela-
tion to human reasoning, minimal entailment has wide-
spread applications, e.g. in AI, description logics (Bon-
atti, Lutz, and Wolter 2009; Grimm and Hitzler 2009;
Giordano et al. 2013) and SAT solving (Janota and
Marques-Silva 2011).

While the complexity of non-monotonic logics has
been thoroughly studied — cf. e.g. the recent papers
(Durand, Hermann, and Nordh 2012; Thomas 2012;
Bonatti, Lutz, and Wolter 2009) or the survey (Thomas
and Vollmer 2010) — considerably less is known about
the complexity of theorem proving in these logics. This
is despite the fact that a number of quite different
formalisms have been introduced for circumscription
and minimal entailment (Olivetti 1992; Niemelä 1996;
Bonatti and Olivetti 2002; Grimm and Hitzler 2009;
Giordano et al. 2013). While proof complexity has tra-
ditionally focused on proof systems for classical propo-
sitional logic, there has been remarkable interest in
proof complexity of non-classical logics during the last

∗Supported by a grant from the John Templeton Foun-
dation.
†Supported by a Doctoral Training Grant from EPSRC.

decade. A number of exciting results have been ob-
tained — in particular for modal and intuitionistic log-
ics (Hrubeš 2009; Jeřábek 2009) — and interesting phe-
nomena have been observed that show a quite different
picture from classical proof complexity, cf. (Beyersdorff
and Kutz 2012) for a survey.

In this paper we focus our attention at two very dif-
ferent formalisms for minimal entailment: a sequent cal-
culus MLK and a tableau system OTAB , both devel-
oped by Olivetti (1992).1 These systems are very nat-
ural and elegant, and in fact they were both inspired
by their classical propositional counterparts: Gentzen’s
LK (1935) and Smullyan’s analytic tableau (1968).

Our main contribution is to show a p-simulation of
OTAB by MLK , i.e.,proofs in OTAB can be efficiently
transformed into MLK -derivations. This answers an
open question by Olivetti (1992) on the relationship be-
tween these two calculi. At first sight, our result might
not appear unexpected as sequent calculi are usually
stronger than tableau systems, cf. e.g. (Urquhart 1995).
However, the situation is more complicated here, and
even Olivetti himself did not seem to have a clear con-
jecture as to whether such a simulation should be ex-
pected, cf. the remark after Theorem 8 in (Olivetti
1992).

The reason for the complication lies in the nature of
the tableau: while rules in MLK are ‘local’, i.e., they
refer to only two previous sequents in the proof, the
conditions to close branches in OTAB are ‘global’ as
they refer to other branches in the tableau, and this ref-
erence is even recursive. The trick we use to overcome
this difficulty is to annotate nodes in the tableau with
additional information that ‘localises’ the global infor-
mation. This annotation is possible in polynomial time.
The annotated nodes are then translated into minimal
entailment sequents that form the skeleton of the MLK
derivation for the p-simulation.

In addition to the p-simulation of OTAB by MLK ,
we obtain an exponential separation between the two

1While the name MLK is Olivetti’s original notation
(Olivetti 1992), we introduce the name OTAB here as
shorthand for Olivetti’s tableau. By NTAB we denote an-
other tableau for minimal entailment suggested by Niemelä
(1996), cf. the conclusion of this paper.

175

systems, i.e., there are formulas which have polynomial-
size proofs in MLK , but require exponential-size OTAB
tableaux. In proof complexity, lower bounds and sepa-
rations are usually much harder to show than simu-
lations, and indeed there are famous examples where
simulations have been known for a long time, but sepa-
rations are currently out of reach, cf. (Kraj́ıček 1995). In
contrast, the situation is opposite here: while the sep-
aration carries over rather straightforwardly from the
comparison between classical tableau and LK , the proof
of the simulation result is technically very involved.

This paper is organised as follows. We start by recall-
ing basic definitions from minimal entailment and proof
complexity, and explaining Olivetti’s systems MLK and
OTAB for minimal entailment (Olivetti 1992). This is
followed by two sections containing the p-simulation
and the separation of OTAB and MLK . In the last sec-
tion, we conclude by placing our results into the global
picture of proof complexity research on circumscription
and non-monotonic logics.

Preliminaries

Our propositional language contains the logical symbols
⊥,>,¬,∨,∧,→. For a set of formulae Σ, VAR(Σ) is the
set of all atoms that occur in Σ. For a set P of atoms
we set ¬P = {¬p | p ∈ P}. Disjoint union of two sets
A and B is denoted by A tB.

Minimal Entailment. Minimal entailment is a form
of non-monotonic reasoning developed as a special case
of McCarthy’s circumscription (McCarthy 1980). Min-
imal entailment comes both in a propositional and a
first-order variant. Here we consider only the version of
minimal entailment for propositional logic. We identify
models with sets of positive atoms and use the partial
ordering ⊆ based on inclusion. This gives rise to a nat-
ural notion of minimal model for a set of formulae, in
which the number of positive atoms is minimised with
respect to inclusion. For a set of propositional formu-
lae Γ we say that Γ minimally entails a formula φ if
all minimal models of Γ also satisfies φ. We denote this
entailment by Γ �M φ.

Proof Complexity. A proof system (Cook and Reck-
how 1979) for a language L over alphabet Γ is a
polynomial-time computable partial function f : Γ? ⇁
Γ? with rng(f) = L. An f -proof of string y is a string
x such that f(x) = y.

Proof systems are compared by simulations. We say
that a proof system f simulates g (g ≤ f) if there exists
a polynomial p such that for every g-proof πg there is
an f -proof πf with f(πf) = g(πg) and |πf | ≤ p(|πg|).
If πf can even be constructed from πg in polynomial
time, then we say that f p-simulates g (g ≤p f). Two
proof systems f and g are (p-)equivalent (g ≡(p) f) if
they mutually (p-)simulate each other.

The sequent calculus of Gentzen’s system LK is one
of the historically first and best studied proof systems
(Gentzen 1935). In LK a sequent is usually written in

the form Γ ` ∆. Formally, a sequent is a pair (Γ,∆)
with Γ and ∆ finite sets of formulae. In classical logic
Γ ` ∆ is true if every model for

∧
Γ is also a model of∨

∆, where the disjunction of the empty set is taken as
⊥ and the conjunction as >. The system can be used
both for propositional and first-order logic; the proposi-
tional rules are displayed in Fig. 1. Notice that the rules
here do not contain structural rules for contraction or
exchange. These come for free as we chose to operate
with sets of formulae rather than sequences. Note the
soundness of rule (• `), which gives us monotonicity of
classical propositional logic.

(`)
A ` A (⊥ `)⊥ ` (` >)` >

Γ ` Σ (• `)
∆,Γ ` Σ

Γ ` Σ (` •)
Γ ` Σ,∆

Γ ` Σ, A
(¬ `)¬A,Γ ` Σ

A,Γ ` Σ
(` ¬)

Γ ` Σ,¬A

A,Γ ` Σ
(•∧ `)

B ∧A,Γ ` Σ
A,Γ ` Σ

(∧• `)
A ∧B,Γ ` Σ

Γ ` Σ, A Γ ` Σ, B
(` ∧)

Γ ` Σ, A ∧B

A,Γ ` Σ B,Γ ` Σ
(∨ `)

A ∨B,Γ ` Σ

Γ ` Σ, A
(` •∨)

Γ ` Σ, B ∨A
Γ ` Σ, A

(` ∨•)
Γ ` Σ, A ∨B

A,Γ ` Σ, B
(`→)

Γ ` Σ, A→ B

Γ ` Σ, A B,∆ ` Λ
(→`)

A→ B,Γ,∆ ` Σ,Λ

Γ ` Σ, A A,Γ ` Σ
(cut)

Γ ` Σ

Figure 1: Rules of the sequent calculus LK (Gentzen
1935)

Olivetti’s sequent calculus and tableau
system for minimal entailment

In this section we review two proof systems for minimal
entailment, which were developed by Olivetti (1992).
We start with the sequent calculus MLK . Semantically,
a minimal entailment sequent Γ `M ∆ is true if and
only if in all minimals models of

∧
Γ the formula

∨
∆

is satisfied. In addition to all axioms and rules from
LK , the calculus MLK comprises the axioms and rules
detailed in Figure 2. In the MLK axiom, the notion of a
positive atom p in a formula φ is defined inductively by
counting the number of negations and implications in φ

176

on top of p (cf. (Olivetti 1992) for the precise definition).

(`M)
Γ `M ¬p

where p is an atom that does not occur positively in
any formula in Γ

Γ ` ∆ (``M)
Γ `M ∆

Γ `M Σ, A A,Γ `M Λ
(M-cut)

Γ `M Σ,Λ

Γ `M Σ Γ `M ∆
(• `M)

Γ,Σ `M ∆

Γ `M Σ, A Γ `M Σ, B
(`M ∧)

Γ `M Σ, A ∧B

A,Γ `M Σ B,Γ `M Σ
(∨ `M)

A ∨B,Γ `M Σ

Γ `M Σ, A
(`M •∨)

Γ `M Σ, B ∨A

Γ `M Σ, A
(`M ∨•)Γ `M Σ, A ∨B

A,Γ `M Σ
(`M ¬)

Γ `M Σ,¬A

A,Γ `M Σ, B
(`M→)

Γ `M Σ, A→ B

Figure 2: Rules of the sequent calculus MLK for min-
imal entailment (Olivetti 1992)

Theorem 1 (Theorem 8 in (Olivetti 1992)) A se-
quent Γ `M ∆ is true iff it is derivable in MLK .

In addition to the sequent calculus MLK , Olivetti
developed a tableau calculus for minimal entailment
(Olivetti 1992). Here we will refer to this calculus as
OTAB . A tableau is a rooted tree where nodes are la-
belled with formulae. In OTAB , the nodes are labelled
with formulae that are signed with the symbol T or F .
The combination of the sign and the top-most connec-
tive allows us to classify signed formulas into α or β-
type formulae as detailed in Figure 3. Intuitively, for an
α-type formula, a branch in the tableau is augmented
by α1, α2, whereas for a β-type formula it splits accord-
ing to β1, β2. Nodes in the tableau can be either marked
or unmarked. For a sequent Γ `M ∆, an OTAB tableau
is constructed by the following process. We start from
an initial tableau consisting of a single branch of un-
marked formulae, which are exactly all formulae γ ∈ Γ,
signed as Tγ, and all formulae δ ∈ ∆, signed as Fδ. For
a tableau and a branch B in this tableau we can extend
the tableau by two rules:

α α1 α2

T (A ∧B) TA TB
F¬(A ∧B) F¬A F¬B
T¬(A ∨B) T¬A T¬B
F (A ∨B) FA FB
T¬(A→ B) TA T¬B
F (A→ B) F¬A FB
T¬¬A TA TA
F¬¬A FA FA

β β1 β2

T (A ∨B) TA TB
F¬(A ∨B) F¬A F¬B
T¬(A ∧B) T¬A T¬B
F (A ∧B) FA FB
T (A→ B) T¬A TB
F¬(A→ B) FA F¬B

Figure 3: Classification of signed formulae into α and
β-type by sign and top-most connective

(A) If formula φ is an unmarked node in B of type α, then
mark φ and add the two unmarked nodes α1 and α2

to the branch.
(B) If formula φ is an unmarked node in B of type β,

then mark φ and split B into two branches B1,B2

with unmarked β1 ∈ B1 and unmarked β2 ∈ B2.

A branch B is completed if and only if all unmarked
formulae on the branch are literals. A branch B is closed
if and only if it satisfies at least one of the following
conditions:

1. For some formula A, TA and T¬A are nodes of B
(T -closed).

2. For some formula A, FA and F¬A are nodes of B
(F -closed).

3. For some formula A, TA and FA are nodes of B (TF -
closed).

For branch B let At(B) = {p : p is an atom and Tp is
a node in B}. We define two types of ignorable branches:
1. B is an ignorable type-1 branch if B is completed and

there is an atom a such that F¬a is a node in B, but
Ta does not appear in B.

2. B is an ignorable type-2 branch if there is another
branch B′ in the tableau that is completed but not
T -closed, such that At(B′) ⊂ At(B).

Theorem 2 (Theorem 2 in (Olivetti 1992)) The
sequent Γ `M ∆ is true if and only if there is an OTAB
tableau in which every branch is closed or ignorable.

Simulating OTAB by MLK
We will work towards a simulation of the tableau system
OTAB by the sequent system MLK . In preparation for
this a few lemmas are needed. We also add more infor-
mation to the nodes (this can all be done in polynomial
time). We start with a fact about LK (for a proof see
(Beyersdorff and Chew 2014)).

Lemma 3 For sets of formulae Γ,∆ and disjoints sets
of atoms Σ+,Σ− with VAR(Γ ∪ ∆) = Σ+ t Σ− we
can efficiently construct polynomial-size LK -proofs of
Σ+,¬Σ−,Γ ` ∆ when the sequent is true.

We also need to derive a way of weakening in MLK ,
and we show this in the next lemma.

177

Lemma 4 From a sequent Γ `M ∆ with non-empty ∆
we can derive Γ `M ∆,Σ in a polynomial-size MLK -
proof for any set of formulae Σ.

Proof. We take δ ∈ ∆, and from the LK -axiom we get
δ ` δ. From weakening in LK we obtain Γ, δ ` ∆,Σ.
Using rule (``M) we obtain Γ, δ `M ∆,Σ. We then
derive Γ `M ∆,Σ using the (M -cut) rule. ut

The proof makes essential use of the (M-cut) rule. As
a result MLK is not complete without (M-cut); e.g. the
sequent ∅ `M ¬a,¬b cannot be derived. A discussion
on cut elimination in MLK is given in (Olivetti 1992).

Lemma 5 Let Tτ be an α-type formula with α1 = Tτ1,
α2 = Tτ2, and let Fψ be an α-type formula with α1 =
Fψ1, α2 = Fψ2. Similarly, let Tφ be a β-type formula
with β1 = Tφ1, β2 = Tφ2, and let Fχ be an β-type
formula with β1 = Fχ1, β2 = Fχ2.

The following sequents all can be proved with
polynomial-size LK -proofs: τ ` τ1 ∧ τ2, τ1 ∧ τ2 ` τ ,
ψ ` ψ1 ∨ ψ2, ψ1 ∨ ψ2 ` ψ, φ ` φ1 ∨ φ2, φ1 ∨ φ2 ` φ,
χ ` χ1 ∧ χ2, and χ1 ∧ χ2 ` χ.

The straightforward proof of this involves checking
all cases, which we omit here.

We now annotate the nodes u in an OTAB tableau
with three sets of formulae Au, Bu, Cu and a set of
branches Du. This information will later be used to
construct sequents Au `M Bu, Cu, which will form
the skeleton of the eventual MLK proof that simulates
the OTAB tableau. Intuitively, if we imagine follow-
ing a branch when constructing the tableau, Au cor-
responds to the current unmarked T -formulae on the
branch, while Bu corresponds to the current unmarked
F -formulae. Cu contains global information on all the
branches that minimise the ignorable type-2 branches in
the subtree with root u. The formal definition follows.
We start with the definition of the formulae Au and Bu,
which proceeds by induction on the construction of the
tableau.

Definition 6 Nodes u in the OTAB tableau from the
initial tableau are annotated with Au = Γ and Bu = ∆.

For the inductive step, consider the case that the ex-
tension rule (A) was used on node u for the α-type
signed formula φ. If φ = Tχ has α1 = Tχ1, α2 = Tχ2

then for the node v labelled α1 and the node w la-
belled α2, Av = Aw = ({χ1, χ2} ∪ Au) \ {χ} and Bu =
Bv = Bw. If φ = Fχ has α1 = Fχ1, α2 = Fχ2 then
for the node v labelled α1 and the node w labelled α2,
Au = Av = Aw and Bv = Bw = ({χ1, χ2} ∪Bu) \ {χ}.

Consider now the case that the branching rule (B)
was used on node u for the β-type signed formula φ. If
φ = Tχ has β1 = Tχ1, β2 = Tχ2 then for the node v
labelled β1 and the node w labelled β2, Av = ({χ1} ∪
Au) \ {χ}, Aw = ({χ2}∪Au) \ {χ} and Bv = Bw = Bu.
If φ = Fχ has β1 = Fχ1, β2 = Fχ2 then for the node
v labelled β1 and the node w labelled β2, Bv = ({χ1} ∪
Bu) \ {χ}, Bw = ({χ2}∪Bu) \ {χ} and Av = Aw = Au.

For each ignorable type-2 branch B we can find an-
other branch B′, which is not ignorable type-2 and such

that At(B′) ⊂ At(B). The definition of ignorable type-2
might just refer to another ignorable type-2 branch, but
eventually — since the tableau is finite — we reach a
branch B′, which is not ignorable type-2. There could be
several such branches, and we will denote the left-most
such branch B′ as θ(B).

We are now going to construct sets Cu and Du. The
set Du contains some information on type-2 ignorable
branches. Let u be a node, which is the root of a sub-
tableau T , and consider the set I of all type-2 ignor-
able branches that go through T . Now intuitively, Du

is defined as the set of all branches from θ(I) that are
outside of T . The set Cu is then defined from Du as
Cu = {

∧
p∈At(θ(B)) p | B ∈ Du}. The formal construc-

tions of Cu and Du are below. Unlike Au and Bu, which
are constructed inductively from the root of the tableau,
the sets Cu and Du are constructed inductively from the
leaves to the root, by reversing the branching procedure.

Definition 7 For an ignorable type-2 branch B the
end node u is annotated by the singleton sets Cu =
{
∧
p∈At(θ(B)) p} and Du = {θ(B)}; for other leaves

Cu = Du = ∅.
Inductively, we define:

• For a node u with only one child v, we set Du = Dv

and Cu = Cv.
• For a node u with two children v and w, we set Du =

(Dv \ {B | w ∈ B}) ∪ (Dw \ {B | v ∈ B}) and Cu =
{
∧
p∈At(θ(B)) p | B ∈ Du}.

For each binary node u with children v, w we spec-
ify two extra sets. We set Eu = (Dv ∪ Dw) \ Du,
and from this we can construct the set of formulae
Fu = {

∧
p∈At(B) p | B ∈ Eu}. We let ω =

∨
Fu.

We now prepare the simulation result with a couple
of lemmas.

Lemma 8 Let B be a branch in an OTAB tableau end-
ing in leaf u. Then Au is the set of all unmarked T -
formulae on B (with the sign T removed). Likewise Bu
is the set of all unmarked F -formulae on B (with the
sign F removed).

Proof. We will verify this for T -formulae, the argument
is the same for F -formulae. If Tφ at node v is an un-
marked formula on branch B then φ has been added to
Av, regardless of which extension rule is used and can-
not be removed at any node unless it is marked. There-
fore, if u is the leaf of the branch, we have φ ∈ Au. If
Tφ is marked then it is removed (in the inductive step
in the construction in Definition 6) and is not present
in Au. F -formulae do not appear in Au. ut

Lemma 9 Let B be a branch in an OTAB tableau.

1. Assume that Tφ appears on the branch B, and let
A(B) be the set of unmarked T -formulae on B (with
the sign T removed). Then A(B) ` φ can be derived
in a polynomial-size LK -proof.

178

2. Assume that F (φ) appears on the branch B, and let
B(B) be the set of unmarked F -formulae on B (with
the sign F removed). Then φ ` B(B) can be derived
in a polynomial-size LK -proof.

Proof. We prove the two claims by induction on the
number of branching rules (A) and extension rules (B)
that have been applied on the path to the node. We
start with the proof of the first item.

Induction Hypothesis (on the number of applica-
tions of rules (A) and (B) on the node labelled Tφ):
For a node labelled Tφ on branch B, we can derive
A(B) ` φ in a polynomial-size LK -proof (in the size of
the tableau).

Base Case (Tφ is unmarked): The LK axiom φ ` φ
can be used and then weakening to obtain A(B) ` φ.

Inductive Step: If Tφ is a marked α-type formula,
then both α1 = Tφ1 and α2 = Tφ2 appear on the
branch. By the induction hypothesis we derive A(B) `
φ1, A(B) ` φ2 in polynomial-size proofs, hence we can
derive A(B) ` φ1 ∧ φ2 in a polynomial-size proof (we
are bounded in total number of proof subtrees by the
numbers of nodes in our branch). We then have φ1∧φ2 `
φ using Lemma 5. Using the cut rule we can derive
A(B) ` φ.

If Tφ is a β-type formula and is marked, then the
branch must contain β1 = Tφ1 or β2 = Tφ2. Without
loss of generality we can assume that β1 = Tφ1 appears
on the branch. By the induction hypothesis A(B) ` φ1,
therefore we can derive A(B) ` φ1 ∨ φ2 since it is a
β-type formula and derive φ1 ∨ φ2 ` φ with Lemma 5.
Then using the cut rule we derive A(B) ` φ.

The second item is again shown by induction.
Induction Hypothesis (on the number of applica-

tions of rules (A) and (B) on the node labelled Fφ):
For a node labelled Fφ on branch B, we can derive
φ ` B(B) in a polynomial-size LK -proof (in the size of
the tableau).

Base Case (Fφ is unmarked): The LK axiom φ ` φ
can be used and then weakened to φ ` B(B).

Inductive Step: If Fφ is a marked α-type formula,
then both α1 = Fφ1 and α2 = Fφ2 appear on the
branch. Since by the inductive hypothesis φ1 ` B(B)
and φ2 ` B(B), we can derive φ1 ∨ φ2 ` B(B) in a
polynomial-size proof. We then have φ ` φ1 ∨ φ2 using
Lemma 5. Using the cut rule we can derive φ ` B(B).

If Fφ is a β-type formula and is marked, then the
branch must contain β1 = Fφ1 or β2 = Fφ2. Without
loss of generality we can assume β1 = Fφ1 appears on
the branch. By the induction hypothesis φ1 ` B(B),
therefore we can derive φ1 ∧ φ2 ` B(B) since it is a
β-type formula and derive φ ` φ1 ∧ φ2 with Lemma 5.
Using the cut rule we derive φ ` B(B). ut

Lemma 10 Let B be a branch, which is completed but
not T -closed. For any node u on B, the model At(B)
satisfies Au.

Proof. We prove the lemma by induction on the height
of the subtree with root u.

Base Case (u is a leaf): By Lemma 8, Au is the
set of all unmarked T -formulae on B. But these are
all literals as B is completed, and hence the subset of
positive atoms is equal to At(B).

Inductive step: If u is of extension type (A) with
child node v then the models of Au are exactly the same
as the models of Av. This is true for all α-type formulae.
For example, if the extension process (A) was used on
formula T (ψ ∧χ) and the node v was labelled Tψ then
Av = {ψ, χ}∪Au\{ψ∧χ} and this has the same models
as Au. By the induction hypothesis, At(B) |= Av and
hence At(B) |= Au.

If u is of branch type (B) with children v and w then
At(B) |= Av and At(B) |= Aw. The argument works
similarly for all β-type formulae; for example, if the
extension process was using formula T (ψ ∨ χ) and v is
labelled Tψ and w is labelled Tχ, then Au = ({ψ∨χ}∪
Av) \ {ψ}. Hence At(B) |= Av implies At(B) |= Au. ut

We now approach the simulation result (Theorem 13)
and start to construct MLK proofs. For the next two
lemmas, we fix an OTAB tableau of size k and use the
notation from Definitions 6 and 7 (recall in particular
the definition of ω at the end of Definition 7).

Lemma 11 There is a polynomial q such that for every
binary node u, every proper subset A′ ⊂ Au and every
γ ∈ Au\A′ we can construct an MLK -proof of A′, ω `M
γ of size at most q(k).

Proof. Induction Hypothesis (on the number of for-
mulae of Au used in the antecedent: |A′|): We can find a
q(k)-size MLK proof containing all sequents A′, ω `M γ
for every γ ∈ Au \A′ .

Base Case (when A′ is empty): For the base case
we aim to prove ω `M γ, and repeat this for every γ.
We use two ingredients. Firstly, we need the sequent
ω `M Fu, γ which is easy to prove using weakening and
(∨ `), since ω is a disjunction of the elements in Fu.
Our second ingredient is a scheme of ω,

∧
p∈M p `M γ

for all the
∧
p∈M p in Fu, i.e.,M = At(B) for some

B ∈ Eu. With these we can repeatedly use (M-cut)
on the first sequent for every element in Fu. We now
show how to efficiently prove the sequents of the form
ω,

∧
p∈M p `M γ.

For branch B ∈ Eu, as At(B) is a model M for Au
by Lemma 10, M |= γ. Since no atom a in VAR(γ) \M
appears positive in the set M we can infer M `M
¬a directly via (`M). With rule (`M ∧) we can de-
rive

∧
p∈M p `M

∧
p∈VAR(γ)\M ¬p in a polynomial-size

proof. Using (`), (` ∨•), and (` •∨) we can derive∧
p∈M p ` ω. We then use these sequents in the proof

below, denoting
∧
p∈VAR(γ)\M ¬p as n(M):

∧
p∈M p ` ω

(``M)∧
p∈M p `M ω

∧
p∈M p `M n(M)

(• `M)
ω,

∧
p∈M p `M n(M)

179

From Lemma 3, M,¬VAR(γ) \ M ` γ can be de-
rived in a polynomial-size proof. We use simple syn-
tactic manipulation to change the antecedent into
an equivalent conjunction and then weaken to derive
ω,

∧
p∈M p,

∧
p∈VAR(γ)\M ¬p `M γ in a polynomial-size

proof. Then we use:

ω,
∧
p∈M p, n(M) `M γ ω,

∧
p∈M p `M n(M)

(M-cut)
ω,

∧
p∈M p `M γ

Inductive Step: We look at proving A′, γ′, ω `M γ,
for every other γ ∈ Au \ A′. For each γ we use two
instances of the inductive hypothesis: A′, ω `M γ and
A′, ω `M γ′.

A′, ω `M γ′ A′, ω `M γ
(• `M)

A′, γ′, ω `M γ

Since we repeat this for every γ we only add |(Au \
A′) \ {γ}| many lines in each inductive step and retain
a polynomial bound. ut

The previous lemma was an essential preparation for
our next Lemma 12, which in turn will be the crucial
ingredient for the p-simulation in Theorem 13.

Lemma 12 There is a polynomial q such for every bi-
nary node u there is an MLK -proof of Au, ω ` Bu of
size at most q(k).

Proof. Induction Hypothesis (on the number of for-
mulae of Au used in the antecedent: |A′|): Let A′ ⊆ Au.
There is a fixed polynomial q such that A′, ω ` Bu has
an MLK -proof of size at most q(|ω|).

Base Case (when A′ is empty): We approach this
very similarly as in the previous lemma. Using weak-
ening and (∨ `), the sequent ω `M Fu, Bu can be de-
rived in a polynomial-size proof. By repeated use of the
cut rule on sequents of the form ω,

∧
p∈At(B) p `M Bu

for B ∈ Eu the sequent ω `M Bu is derived. Now
we only need to show that we can efficiently obtain
ω,

∧
p∈M p `M Bu.

Consider branch B ∈ Eu. As At(B) is a minimal
model M for Γ by Lemma 10, this model M must satisfy
∆ and given the limitations of the branching processes
of F -labelled formulae, Bu as well.

Similarly as in the base case of Lemma 11 we can de-
rive

∧
p∈M p `M

∧
p∈VAR(Bu)\M ¬p and

∧
p∈M p ` ω in

a polynomial-size proof. We then use these sequents in
the proof below once again, denoting

∧
p∈VAR(γ)\M ¬p

as n(M).∧
p∈M p ` ω

(``M)∧
p∈M p `M ω

∧
p∈M p `M n(M)

(• `M)
ω,

∧
p∈M p `M n(M)

We can use M satisfying Bu to derive
ω,

∧
p∈M p, n(M) ` Bu in the same way as we

derive ω,
∧
p∈M p,

∧
p∈VAR(γ)\M ¬p ` γ in Lemma 11.

ω,
V

p∈M p, n(M) `M Bu ω,
V

p∈M p `M n(M)
(M-cut)

ω,
V

p∈M p `M Bu

Inductive Step: Assume that A′, ω `M Bu has al-
ready been derived. Let γ ∈ Au \A′. We use Lemma 11
to get a short proof of A′, ω `M γ. One application of
rule (• `M)

A′, ω `M Bu A′, ω `M γ
(• `M)

A′, γ, ω `M Bu
finishes the proof. ut

Theorem 13 MLK p-simulates OTAB.
Proof. Induction Hypothesis (on the height of the
subtree with root u): For node u, we can derive Au `M
Bu, Cu in MLK in polynomial size (in the full tableau).

Base Case (u is a leaf): If the branch is T -closed,
then by Lemma 9, for some formula φ we can derive
Au ` φ and Au ` ¬φ. Hence Au ` φ∧¬φ can be derived
and with φ∧¬φ ` and the cut rule we can derive Au ` in
a polynomial-size proof. By weakening and using (``M)
we can derive Au `M Bu in polynomial size as required.

If the branch is F -closed, then by Lemma 9, for some
formula φ we can derive φ ` Bu and ¬φ ` Bu. Hence
φ ∨ ¬φ ` Bu can be derived and with ` φ ∨ ¬φ and
the cut rule we can derive ` Bu in a polynomial-size
proof. By weakening and using (``M) we can derive
Au `M Bu in polynomial size.

If the branch is TF -closed, then by Lemma 9, for
some formula φ we can derive Au ` φ and φ ` Bu.
Hence via the cut rule and using (``M) we can derive
Au `M Bu in polynomial size as required.

If the branch is ignorable type-1 then the branch is
completed. Therefore Au is a set of atoms and there
is some atom a /∈ Au such that ¬a ∈ Bu. It therefore
follows that Au `M ¬a can be derived as an axiom
using the (`M) rule. We then use Lemma 4 to derive
Au `M Bu in polynomial size.

If the branch is ignorable type-2 then p ∈ At(θ(B))
implies p ∈ Au. Since Cu = {

∧
p∈At(θ(B)) p} we can find

a short proof of Au ` Cu using (` ∧).
Inductive Step: The inductive step splits into four

cases according to which extension or branching rule is
used on node u.

Case 1. Extension rule (A) is used on node u for
formula Tφ with resulting nodes v and w labelled Tφ1,
Tφ2, respectively.

φ1 ` φ1 (• `)
φ1, φ2 ` φ1

φ2 ` φ2 (• `)
φ1, φ2 ` φ2 (` ∧)

φ1, φ2 ` φ1 ∧ φ2

Since we are extending the branch on an α-type formula
signed with T , we can find a short proof of φ1 ∧ φ2 ` φ
using Lemma 5. Together with φ1, φ2 ` φ1 ∧ φ2 shown
above we derive:

φ1, φ2 ` φ1 ∧ φ2 φ1 ∧ φ2 ` φ (cut)
φ1, φ2 ` φ

180

By definition we have φ1, φ2 ∈ Av, and then by weak-
ening φ1, φ2 ` φ we obtain Av ` φ. By Definitions 6 and
7, Bv = Bu and likewise Cu = Cv. Hence Av `M Bu, Cu
is available by the induction hypothesis. From this we
get:

Av ` φ (``M)
Av `M φ Av `M Bu, Cu (• `M)

Av, φ `M Bu, Cu
Au ` φ1 and Au ` φ2 also have short proofs from

weakening axioms. These can be used to cut out φ1, φ2

from the antecedent of Av, φ `M Bu, Cu resulting in
Au `M Bu, Cu as required.

Case 2. Extension rule (A) is used on node u for
formula Fφ with resulting nodes v and w labelled Fφ1,
Fφ2, respectively. We can find short proofs of Au, φ1 `
φ1 ∨ φ2, Au, φ2 ` φ1 ∨ φ2 using axioms, weakening and
the rules (` •∨), (` ∨•). Similarly as in the last case,
we have Av = Au and likewise Cu = Cv. Therefore, by
induction hypothesis Au `M Bv, Cu is available with a
short proof.

Au `M Bv, Cu

Au, φ1 ` φ1 ∨ φ2 (``M)
Au, φ1 `M φ1 ∨ φ2 (M-cut)

Au `M Bv \ {φ1}, φ1 ∨ φ2, Cu
We can do the same trick with φ2:

Au `M Bv \ {φ1}, φ1 ∨ φ2, Cu

Au, φ2 ` φ1 ∨ φ2
(``M)

Au, φ2 `M φ1 ∨ φ2
(M-cut)

Au `M Bu \ {φ}, φ1 ∨ φ2, Cu

Since Fφ is an α-type formula, then φ1 ∨ φ2 ` φ
by Lemma 5, and by weakening Au, φ1 ∨ φ2 ` φ. The
derivation is the finished by:

Au `M Bu \ {φ}, φ1 ∨ φ2, Cu

Au, φ1 ∨ φ2 ` φ
(``M)

Au, φ1 ∨ φ2 `M φ
(M-cut)

Au `M Bu, Cu

Case 3. Branching rule (B) is used on node u for
formula Tφ with children v and w labelled Tφ1, Tφ2,
respectively. The sequents Av `M Bu, Cv and Aw `M
Bu, Cw are available from the induction hypothesis.
Av `M Bu, Cu, Fu and Aw `M Bu, Cu, Fu can be de-

rived via weakening by Lemma 4. From these sequents,
simple manipulation through classical logic and the cut
rule gives us Av `M Bu, Cu, ω and Aw `M Bu, Cu, ω.
Using the rule (∨ `M) we obtain Au \ {φ}, φ1 ∨ φ2 `M
Bu, Cu, ω. Since φ ∈ Au, from Lemma 5 we derive
φ ` φ1 ∨ φ2 and φ1 ∨ φ2 ` φ in polynomial size. Weak-
ening derives Au ` φ1 ∨ φ2 and Au \ {φ}, φ1 ∨ φ2 ` φ.
From these we derive:

Au \ {φ}, φ1 ∨ φ2 `M Bu, Cu, ω

Au \ {φ}, φ1 ∨ φ2 ` φ
(``M)

Au \ {φ}, φ1 ∨ φ2 `M φ
(• `M)

Au, φ1 ∨ φ2 `M Bu, Cu, ω

Au, φ1 ∨ φ2 `M Bu, Cu, ω

Au ` φ1 ∨ φ2 (``M)
Au `M φ1 ∨ φ2 (M-cut)

Au `M Bu, Cu, ω

From Lemma 12, Au, ω `M Bu, Cu has a polynomial
size proof. We can then finish the derivation with a cut:

Au, ω `M Bu Au `M Bu, Cu, ω (M-cut)
Au `M Bu, Cu

Case 4. Branching rule (B) is used on node u for
formula Fφ with children v and w labelled Fφ1, Fφ2,
respectively. The sequents Au `M Bv, Cv and Au `M
Bw, Cw are available from the induction hypothesis.

From these two sequents we obtain via weakening
Au `M Bv, Cu, Fu and Au `M Bw, Cu, Fu. We can turn
Fu into the disjunction of its elements by simple manip-
ulation through classical logic and the cut rule and de-
rive Au `M Bv, Cu, ω and Au `M Bw, Cu, ω. Using the
rule (`M ∧) we obtain Au `M Bu \ {φ}, φ1 ∧ φ2, Cu, ω.
Since φ1 ∧φ2 ` φ by Lemma 5, we derive by weakening
Au, φ1 ∧ φ2 ` φ. We then continue:

Au `M Bu \ {φ}, φ1 ∧ φ2, Cu, ω

Au, φ1 ∧ φ2 ` φ
(``M)

Au, φ1 ∧ φ2 `M φ
(M-cut)

Au `M Bu, Cu, ω

From Lemma 12, Au, ω `M Bu, Cu has a polynomial-
size proof.

Au, ω `M Bu Au `M Bu, Cu, ω (M-cut)
Au `M Bu, Cu

This completes the proof of the induction.
From this induction, the theorem can be derived as

follows. The induction hypothesis applied to the root
u of the tableau gives polynomial-size MLK proofs of
Au `M Bu, Cu. By definition Au = Γ and Bu = ∆.
Finally, Cu = Du = ∅, because for every ignorable type-
2 branch B, the branch θ(B) is inside the tableau.

Since all our steps are constructive we prove a p-
simulation. ut

Separating OTAB and MLK
In the previous section we showed that MLK p-
simulates OTAB . Here we prove that the two systems
are in fact exponentially separated.

Lemma 14 In every OTAB tableau for Γ `M ∆ with
inconsistent Γ, any completed branch is T -closed.

Proof. If a branch B is completed but not T -closed,
then via Lemma 10, At(B) is a model for all initial T -
formulae. But these form an inconsistent set. ut

Theorem 15 OTAB does not simulate MLK .

Proof. We consider Smullyan’s analytic tableaux
(Smullyan 1968), and use the hard sets of inconsistent
formulae in (D’Agostino 1992).

For each natural number n > 0 we use variables
p1, . . . , pn. Let Hn be the set of all 2n clauses of length
n over these variables (we exclude tautological clauses)
and define φn =

∧
Hn. Since every model must con-

tradict one of these clauses, φn is inconsistent. We now
consider the sequents φn `M .

181

Since classical entailment is included in minimal en-
tailment there must also be an OTAB tableau for these
formulae. Every type-1 ignorable branch in the OTAB
tableau is completed and therefore also T -closed by
Lemma 14. The tableau cannot contain any type-2 ig-
norable branches as every completed branch is T -closed.
Hence the OTAB tableaux for φn `M are in fact ana-
lytic tableaux and have n! many branches by Proposi-
tion 1 from (D’Agostino 1992).

Since the examples are easy for truth tables
(D’Agostino 1992), they are also easy for LK and the
rule (``M) completes a polynomial-size proof for them
in MLK . ut

Conclusion

In this paper we have clarified the relationship between
the proof systems OTAB and MLK for minimal entail-
ment. While cut-free sequent calculi typically have the
same proof complexity as tableau systems, MLK is not
complete without M-cut (Olivetti 1992), and also our
translation uses M-cut in an essential way (however, we
can eliminate LK -cut).

We conclude by mentioning that there are further
proof systems for minimal entailment and circumscrip-
tion, which have been recently analysed from a proof-
complexity perspective (Beyersdorff and Chew 2014). In
particular, Niemelä (1996) introduced a tableau system
NTAB for minimal entailment for clausal formulas, and
Bonatti and Olivetti (2002) defined an analytic sequent
calculus CIRC for circumscription. Building on initial
results from (Bonatti and Olivetti 2002) we prove in
(Beyersdorff and Chew 2014) that NTAB ≤p CIRC ≤p
MLK is a chain of proof systems of strictly increasing
strength, i.e., in addition to the p-simulations we obtain
separations between the proof systems.

Combining the results of (Beyersdorff and Chew
2014) and the present paper, the full picture of the sim-
ulation order of proof systems for minimal entailment
emerges. In terms of proof size, MLK is the best proof
system as it p-simulates all other known proof systems.
However, for a complete understanding of the simula-
tion order some problems are still open. While the sep-
aration between OTAB and MLK from Theorem 15
can be straightforwardly adapted to show that OTAB
also does not simulate CIRC , we leave open whether
the reverse simulation holds. Likewise, the relationship
between the two tableau systems OTAB and NTAB is
not clear.

It is also interesting to compare our results to the
complexity of theorem proving procedures in other
non-monotonic logics as default logic (Beyersdorff et
al. 2011) and autoepistemic logic (Beyersdorff 2013);
cf. also (Egly and Tompits 2001) for results on proof
complexity in the first-order versions of some of these
systems. In particular, (Beyersdorff et al. 2011) and
(Beyersdorff 2013) show very close connections between
proof lengths in some sequent systems for default and
autoepistemic logic and proof lengths of classical LK ,

for which any non-trivial lower bounds are a major out-
standing problem. It would be interesting to know if a
similar relation also holds between MLK and LK .

References
Beyersdorff, O., and Chew, L. 2014. The complexity
of theorem proving in circumscription and minimal en-
tailment. To appear in Proc. IJCAR’14. Available as
Technical Report TR14-014, Electronic Colloquium on
Computational Complexity.
Beyersdorff, O., and Kutz, O. 2012. Proof complexity of
non-classical logics. In Bezhanishvili, N., and Goranko,
V., eds., Lectures on Logic and Computation - ESSLLI
2010/11, Selected Lecture Notes. Springer, Berlin Hei-
delberg. 1–54.
Beyersdorff, O.; Meier, A.; Müller, S.; Thomas, M.; and
Vollmer, H. 2011. Proof complexity of propositional de-
fault logic. Archive for Mathematical Logic 50(7):727–
742.
Beyersdorff, O. 2013. The complexity of theorem prov-
ing in autoepistemic logic. In SAT, 365–376.
Bonatti, P. A., and Olivetti, N. 2002. Sequent calculi for
propositional nonmonotonic logics. ACM Transactions
on Computational Logic 3(2):226–278.
Bonatti, P. A.; Lutz, C.; and Wolter, F. 2009. The
complexity of circumscription in DLs. J. Artif. Intell.
Res. (JAIR) 35:717–773.
Cook, S. A., and Reckhow, R. A. 1979. The relative
efficiency of propositional proof systems. The Journal
of Symbolic Logic 44(1):36–50.
D’Agostino, M. 1992. Are tableaux an improvement on
truth-tables? Journal of Logic, Language and Informa-
tion 1(3):235–252.
Durand, A.; Hermann, M.; and Nordh, G. 2012. Tri-
chotomies in the complexity of minimal inference. The-
ory Comput. Syst. 50(3):446–491.
Egly, U., and Tompits, H. 2001. Proof-complexity re-
sults for nonmonotonic reasoning. ACM Transactions
on Computational Logic 2(3):340–387.
Gentzen, G. 1935. Untersuchungen über das logische
Schließen. Mathematische Zeitschrift 39:68–131.
Giordano, L.; Gliozzi, V.; Olivetti, N.; and Pozzato,
G. L. 2013. A non-monotonic description logic for rea-
soning about typicality. Artif. Intell. 195:165–202.
Grimm, S., and Hitzler, P. 2009. A preferential tableaux
calculus for circumscriptive ALCO. In Polleres, A., and
Swift, T., eds., Proc. Web Reasoning and Rule Systems,
volume 5837 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg. 40–54.
Hrubeš, P. 2009. On lengths of proofs in non-classical
logics. Annals of Pure and Applied Logic 157(2–3):194–
205.
Janota, M., and Marques-Silva, J. 2011. cmMUS: A tool
for circumscription-based MUS membership testing. In
LPNMR, 266–271.

182

Jeřábek, E. 2009. Substitution Frege and extended
Frege proof systems in non-classical logics. Annals of
Pure and Applied Logic 159(1–2):1–48.
Kraj́ıček, J. 1995. Bounded Arithmetic, Propositional
Logic, and Complexity Theory, volume 60 of Encyclo-
pedia of Mathematics and Its Applications. Cambridge:
Cambridge University Press.
McCarthy, J. 1980. Circumscription – a form of non-
monotonic reasoning. Artificial Intelligence 13:27–39.
Niemelä, I. 1996. A tableau calculus for minimal model
reasoning. In TABLEAUX, 278–294.
Olivetti, N. 1992. Tableaux and sequent calculus for
minimal entailment. J. Autom. Reasoning 9(1):99–139.
Smullyan, R. 1968. First Order Logic. Berlin: Springer-
Verlag.
Thomas, M., and Vollmer, H. 2010. Complexity of non-
monotonic logics. Bulletin of the EATCS 102:53–82.
Thomas, M. 2012. The complexity of circumscriptive
inference in Post’s lattice. Theory of Computing Sys-
tems 50(3):401–419.
Urquhart, A. 1995. The complexity of propositional
proofs. Bulletin of Symbolic Logic 1:425–467.

183

Revisiting Chase Termination for Existential Rules
and their Extension to Nonmonotonic Negation

Jean-François Baget
INRIA

Fabien Garreau
University of Angers

Marie-Laure Mugnier
University of Montpellier

Swan Rocher
University of Montpellier

Abstract

Existential rules have been proposed for representing onto-
logical knowledge, specifically in the context of Ontology-
Based Data Access. Entailment with existential rules is un-
decidable. We focus in this paper on conditions that ensure
the termination of a breadth-first forward chaining algorithm
known as the chase. Several variants of the chase have been
proposed. In the first part of this paper, we propose a new tool
that allows to extend existing acyclicity conditions ensuring
chase termination, while keeping good complexity properties.
In the second part, we study the extension to existential rules
with nonmonotonic negation under stable model semantics,
discuss the relevancy of the chase variants for these rules and
further extend acyclicity results obtained in the positive case.

Introduction
Existential rules (also called Datalog+/-) have been pro-

posed for representing ontological knowledge, specifically
in the context of Ontology-Based Data Access, a new para-
digm in data management that aims to exploit ontological
knowledge when accessing data (Calı̀, Gottlob, and Luka-
siewicz 2009a; Baget et al. 2009). These rules allow to as-
sert the existence of unknown individuals, a feature recogni-
zed as crucial for representing knowledge in an open domain
perspective. Existential rules generalize lightweight descrip-
tion logics, such as DL-Lite and EL (Calvanese et al. 2007;
Baader, Brandt, and Lutz 2005) and overcome some of their
limitations by allowing any predicate arity as well as cyclic
structures.

Entailment with existential rules is known to be undeci-
dable ((Beeri and Vardi 1981) (Chandra, Lewis, and Ma-
kowsky 1981) on tuple-generating dependencies). Many suf-
ficient conditions for decidability, obtained by syntactic res-
trictions on sets of rules, have been exhibited in knowledge
representation and database theory (see e.g., the overview
in (Mugnier 2011)). We focus in this paper on conditions
that ensure the termination of a breadth-first forward chai-
ning algorithm, known as the chase in the database litera-
ture. Given a knowledge base composed of data and exis-
tential rules, the chase saturates the data by application of
the rules. When it is ensured to terminate, inferences en-
abled by the rules can be materialized in the data, which can
then be queried like a classical database, thus allowing to

benefit from database optimizations techniques implemen-
ted in current data management systems. Several variants
of the chase have been proposed, which differ in the way
they deal with redundant information (Fagin et al. 2005;
Deutsch, Nash, and Remmel 2008; Marnette 2009). It fol-
lows that they do not behave in the same way with respect to
termination. In the following, when we write the chase, we
mean one of these variants. Various acyclicity notions have
been proposed to ensure the halting of some chase variants.

Nonmonotonic extensions to existential rules were re-
cently considered in (Calı, Gottlob, and Lukasiewicz 2009b)
with stratified negation, (Gottlob et al. 2012) with well-
founded semantics and (Magka, Krötzsch, and Horrocks
2013) with stable model semantics. This latter work stu-
dies skolemized existential rules (which can then be seen as
specific logic programs) and focuses on cases where a finite
unique model exists.

In this paper, we tackle the following issues : Can we still
extend known acyclicity notions ? Would any chase variant
be applicable to existential rules provided with nonmonoto-
nic negation, a useful feature for ontological modeling ?

1. Extending acyclicity notions. Acyclicity conditions can
be classified into two main families : the first one constrains
the way existential variables are propagated during the chase
(e.g. (Fagin et al. 2003; 2005; Marnette 2009; Krötzsch and
Rudolph 2011)) and the second one encodes dependencies
between rules, i.e., the fact that a rule may lead to trigger
another rule (e.g. (Baget 2004; Deutsch, Nash, and Remmel
2008; Baget et al. 2011)). These conditions are based on dif-
ferent graphs, but all of them can be seen as can as forbid-
ding “dangerous” cycles in the considered graph. We define
a new family of graphs that allows to extend these acyclicity
notions, while keeping good complexity properties.

2. Processing rules with nonmonotonic negation. We de-
fine a notion of stable models directly on nonmonotonic
existential rules and provide a derivation algorithm inspired
by Answer Set Programming solvers that instantiate rules
“on the fly” (Lefèvre and Nicolas 2009; Dao-Tran et al.
2012). This algorithm is parametrized by a chase variant.
We point out that, differently to the positive case, not all va-
riants of the chase lead to sound procedures in presence of
nonmonotonic negation ; furthermore, skolemizing existen-
tial variables or not makes a semantic difference, even when
both computations terminate. Finally, we further extend acy-

184

clicity results obtained on positive rules by exploiting nega-
tive information as well.

A technical report with the proofs omitted for space
restriction reasons is available http://www2.lirmm.fr/
˜baget/publications/nmr2014-long.pdf.

Preliminaries
Atomsets We consider first-order vocabularies with
constants but no other function symbols. An atom is of the
form p(t1, . . . , tk) where p is a predicate of arity k and the
ti are terms, i.e., variables or constants (in the paper we de-
note constants by a, b, c, ... and variables by x, y, z, ...). An
atomset is a set of atoms. Unless indicated otherwise, we
will always consider finite atomsets. If F is an atom or an
atomset, we write terms(F) (resp. vars(F), resp. csts(F)) the
set of terms (resp. variables, resp. constants) that occur in F.
If F is an atomset, we write φ(F) the formula obtained by
the conjunction of all atoms in F, and Φ(F) the existential
closure of φ(F). We say that an atomset F entails an atomset
Q (notation F |= Q) if Φ(F) |= Φ(Q). It is well-known that
F |= Q iff there exists a homomorphism from Q to F, i.e., a
substitution σ : vars(F) → terms(Q) such that σ(Q) ⊆ F.
Two atomsets F and F′ are said to be equivalent if F |= F′
and F′ |= F. If there is a homomorphism σ from an atomset
F to itself (i.e., an endomorphism of F) then F and σ(F) are
equivalent. An atomset F is a core if there is no homomor-
phism from F to one of its strict subsets. Among all atomsets
equivalent to an atomset F, there exists a unique core (up to
isomorphism). We call this atomset the core of F.

Existential Rules An existential rule (and simply a rule
hereafter) is of the form B → H, where B and H are atom-
sets, respectively called the body and the head of the rule.
To an existential rule R : B → H we assign a formula
Φ(R) = ∀~x∀~y(φ(B) → ∃~zφ(H)), where vars(B) = ~x ∪ ~y,
and vars(H) = ~x ∪ ~z. Variables ~x, which appear in both
B and H, are called frontier variables, while variables ~z,
which appear only in H are called existential variables. E.g.,
Φ(b(x, y) → h(x, z)) = ∀x∀y(b(x, y) → ∃zh(x, z)). The pre-
sence of existential variables in rule heads is the distingui-
shing feature of existential rules.

A knowledge base is a pair K = (F,R) where F is an
atomset (the set of facts) and R is a finite set of existential
rules. We say that K = (F, {R1, . . . ,Rk}) entails an atomset
Q (notation K |= Q) if Φ(F),Φ(R1), . . . ,Φ(Rk) |= Φ(Q). The
fundamental problem we consider, denoted by entailment,
is the following : given a knowledge base K and an atomset
Q, is it true that K |= Q ? When Φ(Q) is seen as a Boolean
conjunctive query, this problem is exactly the problem of
determining if K yields a positive answer to this query.

A rule R : B → H is applicable to an atomset F if
there is a homomorphism π from B to F. Then the ap-
plication of R to F according to π produces an atomset
α(F,R, π) = F ∪ π(safe(H)), where safe(H) is obtained
from H by replacing existential variables with fresh ones.
An R-derivation from F is a (possibly infinite) sequence
F0 = σ0(F), . . . , σk(Fk), . . . of atomsets such that ∀0 ≤ i,
σi is an endomorphism of Fi (that will be used to remove re-
dundancy in Fi) and ∀0 < i, there is a rule (R : B→ H) ∈ R

and a homomorphism πi from B to σi(Fi−1) such that Fi =
α(σi(Fi−1),R, πi).

Example 1 Consider the existential rule

R = human(x)→ hasParent(x, y), human(y) ;

and the atomset F = {human(a)}. The application of R to F
produces an atomset F′ = F∪{hasParent(x, y0), human(y0)}
where y0 is a fresh variable denoting an unknown individual.
Note that R could be applied again to F′ (mapping x to y0),
which would create another existential variable and so on.

A finite R-derivation F0, . . . , Fk from F is said to be from
F to Fk. Given a knowledge base K = (F,R), K |= Q iff there
exists a finite R-derivation from F to F′ such that F′ |= Q
(Baget et al. 2011).

Let Ri and R j be rules, and F be an atomset such that Ri is
applicable to F by a homomorphism π ; a homomorphism π′

from B j to F′ = α(F,Ri, π) is said to be new if π′(B j) * F.
Given a rule R = B→ H, a homomorphism π from B to F is
said to be useful if it cannot be extended to a homomorphism
from B∪ H to F ; if π is not useful then α(F,R, π) is equiva-
lent to F, but this is not a necessary condition for α(F,R, π)
to be equivalent to F.

Chase Termination
An algorithm that computes an R-derivation by exploring

all possible rule applications in a breadth-first manner is cal-
led a chase. In the following, we will also call chase the
derivation it computes. Different kinds of chase can be defi-
ned by using different properties to compute F′i = σi(Fi) in
the derivation (hereafter we write F′i for σi(Fi) when there is
no ambiguity). All these algorithms are sound and complete
w.r.t. the entailment problem in the sense that (F,R) |= Q
iff they provide in finite (but unbounded) time a finite R-
derivation from F to Fk such that Fk |= Q.

Different kinds of chase In the oblivious chase (also cal-
led naive chase), e.g., (Calı̀, Gottlob, and Kifer 2008), a rule
R is applied according to a homomorphism π only if it has
not already been applied according to the same homomor-
phism. Let Fi = α(F′i−1,R, π), then F′i = F′i−1 if R was
previously applied according to π, otherwise F′i = Fi. This
can be slightly improved. Two applications π and π′ of the
same rule add the same atoms if they map frontier variables
identically (for any frontier variable x of R, π(x) = π′(x)) ;
we say that they are frontier-equal. In the frontier chase, let
Fi = α(F′i−1,R, π), we take F′i = F′i−1 if R was previously
applied according to some π′ frontier-equal to π, otherwise
F′i = Fi. The skolem chase (Marnette 2009) relies on a sko-
lemisation of the rules : a rule R is transformed into a rule
skolem(R) by replacing each occurrence of an existential va-
riable y with a functional term f R

y (~x), where ~x are the frontier
variables of R. Then the oblivious chase is run on skolemized
rules. It can easily be checked that frontier chase and skolem
chase yield isomorphic results, in the sense that they gene-
rate exactly the same atomsets, up to a bijective renaming of
variables by skolem terms.

The restricted chase (also called standard chase) (Fagin
et al. 2005) detects a kind of local redundancy. Let Fi =
α(F′i−1,R, π), then F′i = Fi if π is useful, otherwise F′i =

185

F′i−1. The core chase (Deutsch, Nash, and Remmel 2008)
considers the strongest possible form of redundancy : for
any Fi, F′i is the core of Fi.

A chase is said to be local if ∀i ≤ j, F′i ⊆ F′j. All chase
variants presented above are local, except for the core chase.
This property will be critical for nonmonotonic existential
rules.

Chase termination Since entailment is undecidable, the
chase may not halt. We call C-chase a chase relying on some
criterion C to generate σ(Fi) = F′i . So C can be oblivious,
skolem, restricted, core or any other criterion that ensures
the equivalence between Fi and F′i . A C-chase generates a
possibly infinite R-derivation σ0(F), σ1(F1), . . . , σk(Fk), . . .

We say that this derivation produces the (possibly infi-
nite) atomset (F,R)C = ∪0≤i≤∞σi(Fi)\∪0≤i≤∞(σi(Fi)), where
(σi(Fi)) = Fi \ σ(Fi). Note that this produced atomset is
usually defined as the infinite union of the σi(Fi). Both defi-
nitions are equivalent when the criterion C is local. But the
usual definition would produce too big an atomset with a
non-local chase such as the core chase : an atom generated
at step i and removed at step j would still be present in the
infinite union. We say that a (possibly infinite) derivation ob-
tained by the C-chase is complete when any further rule ap-
plication on that derivation would produce the same atomset.
A complete derivation obtained by any C-chase produces a
universal model (i.e., most general) of (F,R) : for any atom-
set Q, we have F,R |= Q iff (F,R)C |= Q.

We say that the C-chase halts on (F,R) when the C-chase
generates a finite complete R-derivation from F to Fk. Then
(F,R)C = σk(Fk) is a finite universal model. We say that R is
universally C-terminating when the C-chase halts on (F,R)
for any atomset F. We call C-finite the class of universally
C-terminating sets of rules. It is well known that the chase
variants do not behave in the same way w.r.t. termination.
The following examples highlight these different behaviors.
Example 2 (Oblivious / Skolem chase) Let R = p(x, y) →
p(x, z) and F = {p(a, b)}. The oblivious chase does not halt :
it adds p(a, z0), p(a, z1), etc. The skolem chase considers the
rule p(x, y)→ p(x, f R

z (x)) ; it adds p(a, f R
y (a)) then halts.

Example 3 (Skolem / Restricted chase) Let R : p(x) →
r(x, y), r(y, y), p(y) and F = {p(a)}. The skolem chase does
not halt : at Step 1, it maps x to a and adds r(a, f R

y (a)),
r(f R

y (a), f R
y (a)) and p(f R

y (a)) ; at step 2, it maps x to f R
y (a)

and adds r(f R
y (a), f R

y (f R
y (a))), etc. The restricted chase per-

forms a single rule application, which adds r(a, y0), r(y0, y0)
and p(y0) ; indeed, the rule application that maps x to y0
yields only redundant atoms w.r.t. r(y0, y0) and p(y0).
Example 4 (Restricted / Core chase) Let F = s(a), R1 =
s(x) → p(x, x1), p(x, x2), r(x2, x2), R2 = p(x, y) → q(y) and
R3 = q(x) → r(x, y), q(y). Note that R1 creates redundancy
and R3 could be applied indefinitely if it were the only rule.
R1 is the first applied rule, which creates new variables, cal-
led x1 and x2 for simplicity. The restricted chase does not
halt : R3 is not applied on x2 because it is already satisfied
at this point, but it is applied on x1, which creates an infinite
chain. The core chase applies R1, computes the core of the
result, which removes p(a, x1), then halts.

It is natural to consider the oblivious chase as the weakest
form of chase and necessary to consider the core chase as
the strongest form of chase (since the core is the minimal re-
presentative of its equivalence class). We say that a criterion
C is stronger than C′ and write C ≥ C′ when C′-finite ⊆
C-finite. We say that C is strictly stronger than C′ (and write
C > C′) when C ≥ C′ and C′ � C.

It is well-known that core > restricted > skolem > obli-
vious. An immediate remark is that core-finite corresponds
to finite expansion sets (fes) defined in (Baget and Mugnier
2002). To sum up, the following inclusions hold between
C-finite classes : oblivious-finite ⊂ skolem-finite = frontier-
finite ⊂ restricted-finite ⊂ core-finite = fes.

Known Acyclicity Notions
We can only give a brief overview of known acylicity no-

tions, which should however allow to place our contribution
within the existing landscape. A comprehensive taxonomy
can be found in (Cuenca Grau et al. 2013).

Acyclicity notions ensuring that some chase variant ter-
minates can be divided into two main families, each of them
relying on a different graph : a “position-based” approach
which basically relies on a graph encoding variable sharing
between positions in predicates and a “rule dependency ap-
proach” which relies on a graph encoding dependencies bet-
ween rules, i.e., the fact that a rule may lead to trigger ano-
ther rule (or itself).

Position-based approach In the position-based approach,
cycles identified as dangerous are those passing through po-
sitions that may contain existential variables ; intuitively,
such a cycle means that the creation of an existential variable
in a given position may lead to create another existential va-
riable in the same position, hence an infinite number of exis-
tential variables. Acyclicity is then defined by the absence
of dangerous cycles. The simplest notion of acyclicity in this
family is that of weak acyclicity (wa) (Fagin et al. 2003) (Fa-
gin et al. 2005), which has been widely used in databases. It
relies on a directed graph whose nodes are the positions in
predicates (we denote by (p, i) the position i in predicate p).
Then, for each rule R : B → H and each variable x in B
occurring in position (p, i), edges with origin (p, i) are built
as follows : if x is a frontier variable, there is an edge from
(p, i) to each position of x in H ; furthermore, for each exis-
tential variable y in H occurring in position (q, j), there is
a special edge from (p, i) to (q, j). A set of rules is weakly
acyclic if its associated graph has no cycle passing through
a special edge.

Example 5 (Weak-acyclicity) Let R1 = h(x) → p(x, y),
where y is an existential variable, and R2 = p(u, v), q(v) →
h(v). The position graph of {R1,R2} contains a special edge
from (h, 1) to (p, 2) due to R1 and an edge from (p, 2) to (h, 1)
due to R2, thus {R1,R2} is not wa.

Weak-acyclicity has been generalized, mainly by shif-
ting the focus from positions to existential variables (joint-
acyclicity (ja)(Krötzsch and Rudolph 2011)) or to positions
in atoms instead of predicates (super-weak-acyclicity (swa)
(Marnette 2009)). Other related notions can be imported

186

from logic programming, e.g., finite domain (fd) (Calimeri
et al. 2008) and argument-restricted (ar) (Lierler and Lif-
schitz 2009). See the first column in Figure 1, which shows
the inclusions between the corresponding classes of rules
(all these inclusions are known to be strict).

Rule Dependency In the second approach, the aim is to
avoid cyclic triggering of rules (Baget 2004; Baget et al.
2009; Deutsch, Nash, and Remmel 2008; Cuenca Grau et
al. 2012). We say that a rule R2 depends on a rule R1 if
there exists an atomset F such that R1 is applicable to F
according to a homomorphism π and R2 is applicable to
F′ = α(F,R1, π) according to a new useful homomorphism.
This abstract dependency relation can be effectively compu-
ted with a unification operation known as piece-unifier (Ba-
get et al. 2009). Piece-unification takes existential variables
into account, hence is more complex than the usual unifica-
tion between atoms. A piece-unifier of a rule body B2 with a
rule head H1 is a substitution µ of vars(B′2)∪vars(H′1), where
B′2 ⊆ B2 and H′1 ⊆ H1, such that (1) µ(B′2) = µ(H′1) and (2)
existential variables in H′1 are not unified with separating
variables of B′2, i.e., variables that occur both in B′2 and in
(B2 \ B′2) ; in other words, if a variable x occuring in B′2 is
unified with an existential variable y in H′1, then all atoms in
which x occurs also belong to B′2. It holds that R2 depends
on R1 iff there is a piece-unifier of B2 with H1 satisfying
easy to check additional conditions (atom erasing (Baget et
al. 2011) and usefulness (Cuenca Grau et al. 2013)).

Example 6 (Rule dependency) Consider the rules from
Example 5. There is no piece-unifier of B2 with H1. The sub-
stitution µ = {(u, x), (v, y)}, with B′2 = p(u, v) and H′1 = H1,
is not a piece-unifier because v is unified with an existential
variable, whereas it is a separating variable of B′2 (thus, q(v)
should be included in B′2, which is impossible). Thus R2 does
not depend on R1.

The graph of rule dependencies of a set of rules R, de-
noted by GRD(R), encodes the dependencies between rules
in R. It is a directed graph with set of nodes R and an edge
(Ri,R j) if R j depends on Ri (intuition : “Ri may lead to trig-
ger R j in a new way”). E.g., considering the rules in Example
6, the only edge is (R2,R1).

When the GRD is acyclic (aGRD, (Baget 2004)), any de-
rivation sequence is necessarily finite. This notion is incom-
parable with those based on positions.

We point out here that the oblivious chase may not stop
on wa rules. Thus, the only acyclicity notion in Figure 1 that
ensures the termination of the oblivious chase is aGRD since
all other notions generalize wa.

Combining both approches Both approaches have their
weaknesses : there may be a dangerous cycle on positions
but no cycle w.r.t. rule dependencies (see the preceeding
examples), and there may be a cycle w.r.t. rule dependencies
whereas rules contain no existential variables (e.g. p(x, y)→
p(y, x), q(x)). Attempts to combine both notions only succe-
ded to combine them in a “modular way” : if the rules in
each strongly connected component (s.c.c.) of the GRD be-
long to a fes class, then the set of rules is fes (Baget 2004;
Deutsch, Nash, and Remmel 2008). More specifically, it is

wa a-grd

waD

waU

waU+

f d

ar

ja

swa

msa

f dD

arD

jaD

swaD

msaD

f dU

arU

jaU

swaU

msaU

f dU+

arU+

jaU+

swaU+

msaU+

m f a

P coNP

Exp

2-Exp

Figure 1 – Relations between recognizable acyclicity pro-
perties. All inclusions are strict and complete (i.e., if there is
no path between two properties then they are incomparable).

easy to check that if for a given C-chase, each s.c.c. is C-
finite, then the C-chase stops.

In this paper, we propose an “integrated” way of combi-
ning both approaches, which relies on a single graph. This
allows to unify preceding results and to generalize them wi-
thout complexity increasing (the new acyclicity notions are
those with a gray background in Figure 1).

Finally, let us mention model-faithful acyclicity (mfa)
(Cuenca Grau et al. 2012), which generalizes the pre-
vious acyclicity notions and cannot be captured by our ap-
proach. Briefly, mfa involves running the skolem chase un-
til termination or a cyclic functional term is found. The
price to pay for the generality of this property is high com-
plexity : checking if a set of rules is universally mfa (i.e., for
any set of facts) is 2EXPTIME-complete. Checking model-
summarizing acyclicity (msa), which approximates mfa, re-
mains EXPTIME-complete. In contrast, checking position-
based properties is in PTIME and checking agrd is also co-
NP-complete. Sets of rules satisfying mfa are skolem-finite
(Cuenca Grau et al. 2012), thus all properties studied in this
paper ensure C-finiteness, when C ≥ skolem.

Extending Acyclicity Notions
In this section, we combine rule dependency and propa-

gation of existential variables into a single graph. W.l.o.g.
we assume that distinct rules do not share any variable. Gi-

187

ven an atom a = p(t1, . . . , tk), the ith position in a is deno-
ted by <a, i>, with pred(<a, i>) = p and term(<a, i>) = ti. If
a ∈ A, we say that <a, i> is in A. If term(<a, i>) is an exis-
tential (resp. frontier) variable, <a, i> is called an existential
(resp. frontier) position. In the following, we use “position
graph” as a generic name to denote a graph whose nodes are
positions in atoms. We define several position graphs of in-
creasing expressivity, i.e., allowing to check termination for
increasingly larger classes of rules.

Definition 1 ((Basic) Position Graph (PG)) The position
graph of a rule R : B → H is the directed graph PG(R)
defined as follows :

– there is a node for each <a, i> in B or in H ;
– for all frontier position <b, i>∈ B and all <h, j>∈ H,

there is an edge from <b, i> to <h, j> if term(<b, i>) =
term(<h, j>) or if <h, j> is existential.

Given a set of rules R, the basic position graph of R, denoted
by PG(R), is the disjoint union of PG(Ri), for all Ri ∈ R.

An existential position <a, i> is said to be C-infinite if there
is an atomset F such that running the C-chase on F produces
an unbounded number of instantiations of term(<a, i>). In
what follows, we consider any chase that is stronger than the
skolem chase, and will simply denote such a position by an
infinite position, without further reference to the chase used.
To detect infinite positions, we encode how variables may be
“propagated” among rules by adding edges to PG(R), called
transition edges, which go from positions in rule heads to
positions in rule bodies. The set of transition edges has to be
correct : if an existential position <a, i> is infinite, there must
be a cycle going through <a, i> in the graph.

Definition 2 (PGX) Let R be a set of rules. The three follo-
wing position graphs are obtained from PG(R) by adding a
(transition) edge from each position ph in a rule head Hi to
each position pb in a rule body B j, with the same predicate,
provided that some condition is satisfied :

– full PG, denoted by PGF(R) : no additional condition,
– dependency PG (PGD(R)) : if R j depends on Ri,
– PG with unifiers (PGU(R)) : if there is a piece-unifier
µ of B j with Hi such that µ(term(ph)) = µ(term(pb)).

All three position graphs are correct for chases stronger
than the skolem one. Intuitively, PGF(R) corresponds to the
case where all rules are supposed to depend on all rules ;
its set of cycles is in bijection with the set of cycles in the
predicate position graph defining weak-acyclicity. PGD(R)
encodes actual rule dependencies. Finally, PGU(R) adds in-
formation about the piece-unifiers themselves. This provides
an accurate encoding of variable propagation from an atom
position to another.

Proposition 1 (Inclusions between PGX) Let R be a set
of rules. PGU(R) ⊆ PGD(R) ⊆ PGF(R). Furthermore,
PGD(R) = PGF(R) if GRD(R) is a complete graph.

Example 7 (PGF and PGD) Let R = {R1,R2} from Ex. 5.
Figure 2 pictures PGF(R) and PGD(R). The dashed edges
belong to PGF(R) but not to PGD(R). Indeed, R2 does not
depend on R1. PGF(R) has a cycle while PGD(R) has not.

h(x)
p(x, y)

p(x, y)

p(u, v)

p(u, v)

q(v)

h(v)

Figure 2 – PGF(R) and PGD(R) from Ex. 7. Position <a, i>
is represented by underlining the i-th term in a.

Example 8 (PGD and PGU) Let R = {R1,R2}, with R1 =
t(x, y) → p(z, y), q(y) and R2 = p(u, v), q(u) → t(v,w). In
Figure 3, the dashed edges belong to PGD(R) but not to
PGU(R). Indeed, the only piece-unifier of B2 with H1 unifies
u and y. Hence, the cycle in PGD(R) disappears in PGU(R).

We now study how acyclicity properties can be expressed
on position graphs. The idea is to associate, with an acycli-
city property, a function that assigns to each position a subset
of positions reachable from this position, according to some
propagation constraints ; then, the property is fulfilled if no
existential position can be reached from itself. More preci-
sely, a marking function Y assigns to each node <a, i> in a
position graph PGX , a subset of its (direct or indirect) suc-
cessors, called its marking. A marked cycle for <a, i> (w.r.t.
X and Y) is a cycle C in PGX such that <a, i>∈ C and for
all <a′, i′>∈ C, <a′, i′> belongs to the marking of <a, i>. Ob-
viously, the less situations there are in which the marking
may “propagate” in a position graph, the stronger the acycli-
city property is.
Definition 3 (Acyclicity property) Let Y be a marking
function and PGX be a position graph. The acyclicity pro-
perty associated with Y in PGX , denoted by YX , is satisfied
if there is no marked cycle for an existential position in PGX .
If YX is satisfied, we also say that PGX(R) satisfies Y.

For instance, the marking function associated with weak-
acyclicity assigns to each node the set of its successors in
PGF(R), without any additional constraint. The next propo-
sition states that such marking functions can be defined for
each class of rules between wa and swa (first column in Fi-
gure 1), in such a way that the associated acyclicity property
in PGF characterizes this class.

t(x, y)

t(x, y)

p(z, y)

p(z, y)

q(y)

p(u, v)

p(u, v)

q(u)

t(v,w)

t(v,w)

Figure 3 – PGD(R) and PGU(R) from Ex. 8.

188

Proposition 2 A set of rules R is wa (resp. f d, ar, ja, swa)
iff PGF(R) satisfies the acyclicity property associated with
wa- (resp. f d-, ar-, ja-, swa-) marking.

As already mentioned, all these classes can be safely ex-
tended by combining them with the GRD. To formalize this,
we recall the notion Y< from (Cuenca Grau et al. 2013) :
given an acyclicity property Y , a set of rules R is said to sa-
tisfy Y< if each s.c.c. of GRD(R) satisfies Y , except for those
composed of a single rule with no loop. 1 WhetherR satisfies
Y< can be checked on PGD(R) :

Proposition 3 Let R be a set of rules, and Y be an acyclicity
property. R satisfies Y< iff PGD(R) satisfies Y, i.e., Y< = YD.

For the sake of brevity, if Y1 and Y2 are two acyclicity
properties, we write Y1 ⊆ Y2 if any set of rules satisfying Y1
also satisfies Y2. The following results are straightforward.

Proposition 4 Let Y1,Y2 be two acyclicity properties. If
Y1 ⊆ Y2, then YD

1 ⊆ YD
2 .

Proposition 5 Let Y be an acyclicity property. If a-grd * Y
then Y ⊂ YD.

Hence, any class of rules satisfying a property YD strictly
includes both a-grd and the class characterized by Y ; (e.g.,
Figure 1, from Col. 1 to Col. 2). More generally, strict inclu-
sion in the first column leads to strict inclusion in the second
one :

Proposition 6 Let Y1,Y2 be two acyclicity properties such
that Y1 ⊂ Y2, wa ⊆ Y1 and Y2 * YD

1 . Then YD
1 ⊂ YD

2 .

The next theorem states that PGU is strictly more power-
ful than PGD ; moreover, the “jump” from YD to YU is at
least as large as from Y to YD.

Theorem 1 Let Y be an acyclicity property. If Y ⊂ YD then
YD ⊂ YU . Furthermore, there is an injective mapping from
the sets of rules satisfying YD but not Y, to the sets of rules
satisfying YU but not YD.

Proof: Assume Y ⊂ YD and R satisfies YD but not Y . R can
be rewritten into R′ by applying the following steps. First,
for each rule Ri = Bi[~X, ~Y] → Hi[~Y , ~Z] ∈ R, let Ri,1 =

Bi[~X, ~Y]→ pi(~X, ~Y) where pi is a fresh predicate ; and Ri,2 =

pi(~X, ~Y) → Hi[~Y , ~Z]. Then, for each rule Ri,1, let R′i,1 be the
rule (B′i,1 → Hi,1) with B′i,1 = Bi,1 ∪ {p′j,i(x j,i) : ∀R j ∈ R},
where p′j,i are fresh predicates and x j,i fresh variables. Now,
for each rule Ri,2, let R′i,2 be the rule (Bi,2 → H′i,2) with H′i,2 =

Hi,2 ∪ {p′i, j(zi, j) : ∀R j ∈ R}, where zi, j are fresh existential
variables. Let R′ =

⋃
Ri∈R

{R′i,1,R
′
i,2}. This construction ensures

that each R′i,2 depends on R′i,1, and each R′i,1 depends on each
R′j,2, thus, there is a transition edge from each R′i,1 to R′i,2 and
from each R′j,2 to each R′i,1. Hence, PGD(R′) contains exactly
one cycle for each cycle in PGF(R). Furthermore, PGD(R′)
contains at least one marked cycle wrt Y , and then R′ is not
YD. Now, each cycle in PGU(R′) is also a cycle in PGD(R),

1. This particular case is to cover aGRD, in which each s.c.c. is
an isolated node.

and, since PGD(R) satisfies Y , PGU(R′) also does. Hence,
R′ does not belong to YD but to YU . �

We also check that strict inclusions in the second column
in Figure 1 lead to strict inclusions in the third column.

Theorem 2 Let Y1 and Y2 be two acyclicity properties. If
YD

1 ⊂ YD
2 then YU

1 ⊂ YU
2 .

Proof: Let R be a set of rules such that R satisfies YD
2 but

does not satisfy YD
1 . We rewrite R into R′ by applying the

following steps. For each pair of rules Ri,R j ∈ R such that
R j depends on Ri, for each variable x in the frontier of R j
and each variable y in the head of Ri, if x and y occur both in
a given predicate position, we add to the body of R j a new
atom pi, j,x,y(x) and to the head of Ri a new atom pi, j,x,y(y),
where pi, j,x,y denotes a fresh predicate. This construction al-
lows each term from the head of Ri to propagate to each term
from the body of R j, if they shared some predicate position
in R. Thus, any cycle in PGD(R) is also in PGU(R′), without
any change in the behavior w.r.t. the acyclicity properties.
Hence R′ satisfies YU

2 but does not satisfy YU
1 . �

The next result states that YU is a sufficient condition for
chase termination :

Theorem 3 Let Y be an acyclicity property ensuring the
halting of some chase variant C. Then, the C-chase halts
for any set of rules R that satisfies YU (hence YD).

Finally, we remind that classes from wa to swa can be re-
cognized in PTIME, and checking a-grd is coNP-complete.
The next result shows that checking the more expressive YU

instead of YD is made at no additional complexity cost.

Theorem 4 (Complexity) Let Y be an acyclicity property,
and R be a set of rules. If checking that R is Y is in coNP,
then checking that R is YD or YU is coNP-complete.

Further Refinements
Still without complexity increasing, we can further ex-

tend YU into YU+

by a finer analysis of marked cycles and
unifiers. We define the notion of incompatible sequence of
unifiers, which ensures that a given sequence of rule appli-
cations is impossible. Briefly, a marked cycle for which all
sequences of unifiers are incompatible can be ignored. Be-
side the gain for positive rules, this refinement will allow one
to take better advantage of negation.

We first point out that the notion of piece-unifier is not
appropriate to our purpose. We have to relax it, as illustrated
by the next example. We call unifier, of a rule body B2 with a
rule head H1, a substitution µ of vars(B′2) ∪ vars(H′1), where
B′2 ⊆ B2 and H′1 ⊆ H1, such that µ(B′2) = µ(H′1) (thus, it
satisfies Condition (1) of a piece-unifier).

Example 9 Let R = {R1,R2,R3,R4} with :
R1 : p(x1, y1)→ q(y1, z1)
R2 : q(x2, y2)→ r(x2, y2)
R3 : r(x3, y3) ∧ s(x3, y3)→ p(x3, y3)
R4 : q(x4, y4)→ s(x4, y4)
There is a dependency cycle (R1,R2,R3,R1) and a corres-
ponding cycle in PGU . We want to know if such a sequence
of rule applications is possible. We build the following new

189

rule, which is a composition of R1 and R2 (formally defined
later) : R1 �µ R2 : p(x1, y1)→ q(y1, z1) ∧ r(y1, z1)
There is no piece-unifier of R3 with R1 �µ R2, since y3 would
be a separating variable mapped to the existential variable
z1. This actually means that R3 is not applicable right after
R1 �µ R2. However, the atom needed to apply s(x3, y3) can
be brought by a sequence of rule applications (R1,R4). We
thus relax the notion of piece-unifier to take into account
arbitrary long sequences of rule applications.

Definition 4 (Compatible unifier) Let R1 and R2 be rules.
A unifier µ of B2 with H1 is compatible if, for each position
<a, i> in B′2, such that µ(term(<a, i>)) is an existential variable
z in H′1, PGU(R) contains a path, from a position in which z
occurs, to <a, i>, that does not go through another existential
position. Otherwise, µ is incompatible.

Note that a piece-unifier is necessarily compatible.

Proposition 7 Let R1 and R2 be rules, and let µ be a unifier
of B2 with H1. If µ is incompatible, then no application of R2
can use an atom in µ(H1).

We define the rule corresponding to the composition of
R1 and R2 according to a compatible unifier, then use this
notion to define a compatible sequence of unifiers.

Definition 5 (Unified rule, Compatible sequence of unifiers)

• Let R1 and R2 be rules such that there is a compa-
tible unifier µ of B2 with H1. The associated unified rule
Rµ = R1 �µ R2 is defined by Hµ = µ(H1) ∪ µ(H2), and
Bµ = µ(B1) ∪ (µ(B2) \ µ(H1)).
• Let (R1, . . . ,Rk+1) be a sequence of rules. A sequence
s = (R1 µ1 R2 . . . µk Rk+1), where, for 1 ≤ i ≤ k, µi is a
unifier of Bi+1 with Hi, is a compatible sequence of unifiers
if : (1) µ1 is a compatible unifier of B2 with H1, and (2) if
k > 0, the sequence obtained from s by replacing (R1 µ1 R2)
with R1 �µ1 R2 is a compatible sequence of unifiers.

E.g., in Example 9, the sequence (R1 µ1 R2 µ2 R3 µ3 R1),
with the obvious µi, is compatible. We can now improve all
previous acyclicity properties (see the fourth column in Fi-
gure 1).

Definition 6 (Compatible cycles) Let Y be an acyclicity
property, and PGU be a position graph with unifiers. The
compatible cycles for <a, i> in PGU are all marked cycles C
for <a, i> wrt Y, such that there is a compatible sequence of
unifiers induced by C. Property YU+is satisfied if, for each
existential position <a, i>, there is no compatible cycle for
<a, i> in PGU .

Results similar to Theorem 1 and Theorem 2 are obtained
for YU+

w.r.t. YU , namely :
– For any acyclicity property Y , YU ⊂ YU+.
– For any acyclicity properties Y1 and Y2, if YU

1 ⊂ YU
2 ,

then YU+
1 ⊂ YU+

2 .
Moreover, Theorem 3 can be extended to YU+

: let Y be
an acyclicity property ensuring the halting of some chase
variant C ; then the C-chase halts for any set of rules R that
satisfies YU+

(hence YU). Finally, the complexity result from
Theorem 4 still holds for this improvement.

Handling Nonmonotonic Negation
We now add nonmonotonic negation, which we denote

by not. A nonmonotonic existential rule (NME rule) R is
of the form (B+,notB−1 , . . . ,notB−k → H), where B+, B−i
and H are atomsets, respectively called the positive body,
the negative bodies and the head of R. Note that we genera-
lize the usual notion of negative body by allowing to negate
conjunctions of atoms. Moreover, the rule head may contain
several atoms. However, we impose a safeness condition :
∀1 ≤ i ≤ k, vars(B−i) ⊆ vars(B+). The formula assigned
to R is Φnot(R) = ∀~x∀~y(φ(B+) ∧ notφ(B−1), . . . ,notφ(B−k) →
∃~zφ(H). We write pos(R) the existential rule obtained from
R by removing its negative bodies, and pos(R) the set of all
pos(R) rules, for R ∈ R.

About our Stable Model Semantics Answer Set Pro-
gramming (Gelfond 2007) introduced stable model seman-
tics for propositional logic, and was naturally extended to
grounded programs (i.e., sets of NME rules without va-
riables). In this framework, the semantics can be provided
through the Gelfond-Lifschitz reduct operator that allows
to compute a saturation (i.e., a chase) using only grounded
NME rules. This semantics can be easily extended to rules
with no existential variable in the head, or to skolemized
NME rules, as done, for instance, in (Magka, Krötzsch, and
Horrocks 2013). The choice of the chase/saturation mecha-
nism is here irrelevant, since no such mechanism can pro-
duce any redundancy.

The problem comes when considering existential va-
riables in the head of rules. Several semantics have been pro-
posed in that case, for instance circumscription in (Ferraris,
Lee, and Lifschitz 2011), or justified stable models in (You,
Zhang, and Zhang 2013). We have chosen not to adopt cir-
cumscription since it translates NME rules to second-order
expressions, and thus would not have allowed to build upon
results obtained in the existential rule formalism. In the same
way, we have not considered justified stable models, whose
semantics does not correspond to stable models on grounded
rules, as shown by the following example :
Example 10 Let Π1 = {∅ → p(a); p(a),not q(a) → t(a).}
be a set of ground NME rules. Then {p(a); q(a)} is a justi-
fied stable model, but not a stable model. Let Π2 = {∅ →
p(a); p(a),not q(b) → t(a)} . Then {p(a); t(a)} is a stable
model but not a justified stable model.

Let us now recast the Gelfond-Lifschitz reduct-based se-
mantics in terms of the skolem-chase. Essentially (we will
be more precise in the next section), a stable model M is a
possibly infinite atomset produced by a skolem-chase that
respects some particular conditions :

– all rule applications are sound, i.e., none of its negative
bodies can be found in the stable model produced (the
rule is not blocked) ;

– the derivation is complete, i.e., any rule applicable and
not blocked is applied in the derivation.

In the next subsection, we formally define the notion of a
stable model, while replacing the skolem-chase with any C-
chase. We thus obtain a family of semantics parameterized
by the considered chase, and define different notions of C-
stable models.

190

On the Chase and Stable Models We define a notion of
stable model directly on nonmonotonic existential rules and
provide a derivation algorithm inspired from the notion of
computation in (Liu et al. 2010) and Answer Set Program-
ming solvers that instantiate rules on the fly (Lefèvre and
Nicolas 2009; Dao-Tran et al. 2012) instead of grounding
rules before applying them. The difference with our frame-
work is that they consider normal logic programs, which are
a generalization of skolemized NME rules.

A natural question is then to understand if the choice of a
chase mechanism has an impact, not only on the termination,
but also on the semantics. Thus, we consider the chase as
a parameter. Intuitively, a C-stable set A is produced by a
C-chase that, according to (Gelfond 2007), must satisfy the
NME rules (we say that it is sound, i.e., that no negative body
appearing in the chase is in A) and the rationality principle
(the sound chase does not generate anything that cannot be
believed, and it must be complete : any rule application not
present in the chase would be unsound).

To define C-stable sets, we first need to introduce
additional notions. A NME R-derivation from F is a
pos(R)-derivation from R. This derivation D = (F0 =
σ0(F), . . . , σk(Fk), . . .) produces a possibly infinite atomset
A. Let R be a NME rule such that pos(R) was applied at
some step i in D, i.e., Fi+1 = α(σi(Fi), pos(R), πi). We say
that this application is blocked if one of the πi(B−q) (for any
negative body B−q in R) can be found in A. This can hap-
pen in two ways. Either πi(B−q) can already be found in
σi(Fi) or it appears later in the derivation. In both cases,
there is a σ j(F j) (with j ≥ i) that contains the atomset
πi(B−q), as transformed by the sequence of simplifications
from Fi to F j, i.e., there exists F j with j ≥ i s.t. the atom-
set σi→ j(πi(B−q)) = σ j(. . . (σi+1(πi(B−q))) . . .) is included in
σ j(F j). We say that a derivation D is sound when no rule
application is blocked in A. A sound derivation is said to be
complete when adding any other rule application to the de-
rivation would either make it unsound, or would not change
the produced atomset. The derivation is a C-chase when the
σi used at each step is determined by the criterion C.

Definition 7 (C-stable sets) Let F be a finite atomset, and
R be a set of NME rules. We say that a (possibly infinite)
atomset A is C-stable for (F,R) if there is a complete sound
nonmonotonic C-chase from F that produces A.

Proposition 8 If R is a set of existential rules, then there
is a unique C-stable set, which is equivalent to the univer-
sal model (F,R)C . If {F} ∪ R is a set of skolemized NME
rules (with F being seen as a rule with empty body), then its
skolem-stable sets are in bijection with its stable models.

Sketch of proof : First part of the claim stems from the fact
that existential rules generate a unique branch that corres-
ponds to a derivation. When that branch is complete, it cor-
responds to a chase. Second part of the claim comes from
the fact that our definitions mimic the behavior of the sound
and complete algorithm implemented in (Lefèvre and Nico-
las 2009). �

C-chase Tree The problem with the fixpoint Definition 7
is that it does not provide an effective algorithm : at each

step of the derivation, we need to know the set produced by
that derivation. The algorithm used in the solver ASPéRIX
(Lefèvre and Nicolas 2009) is here generalized to a proce-
dure that generates the (possibly infinite) C-derivation tree
of (F,R). All nodes of that tree are labeled by three fields.
The field in contains the atomset that was inferred in the
current branch. The field out contains the set of forbid-
den atomsets, i.e., that must not be inferred. Finally, the
field mbt (“must be true”) contains the atomset that has yet
to be proven. A node is called unsound when a forbidden
atomset has been inferred, or has to be proven, i.e., when
out ∩ (in ∪ mbt) , ∅. At the initial step, the root of the
C-derivation tree is a positive node labeled (σ0(F), ∅, ∅).
Then, let us chose a node N that is not unsound and has no
child. Assume there is a rule R = B+,notB−1 , . . . ,notB−k →
H in R such that there is a homomorphism π from B+

to in(N). Then we will (possibly) add k + 1 children un-
der N, namely N+,N−1 , . . . ,N

−
k . These children are added

if the rule application is not blocked, and produces new
atoms. Intuitively, the positive child N+ encodes the effec-
tive application of the rule, while the k negative children
N−i encode the k different possibilities of blocking the rule
(with each of the negative bodies). Let us consider the se-
quence of positive nodes from the root of the tree to N+.
It encodes a pos(R)-derivation from F. On that derivation,
the C-chase generates a sequence σ0(F), . . . , σp(Fp), S =
σ(α(σp(Fp), pos(R), π)). S produces something new when
S * σp(Fp). We now have to fill the fields of the obtai-
ned children : let (in, out, mbt) be the label of a node N.
Then label(N+) = (S , out ∪ {πi(B−1), . . . , πi(B−k)},mbt) and
label(N−i) = (in, out,mbt ∪ πi(B−i)).

We say that a (possibly infinite) branch in the C-derivation
tree is unsound when it contains an unsound node. A sound
branch is said to be complete when its associated derivation
is complete. Finally, a sound and complete branch is stable
when for every node N in the branch such that B− ∈ mbt(N),
there exists a descendant N′ of N such that B− ∈ in(N′). We
say that a branch is unprovable if there exists a node N in the
branch and an atomset B− ∈ mbt(N) such that no complete
branch containing N is stable. We call a C-chase tree any
C-derivation tree for which all branches are either unsound,
unprovable or complete.
Proposition 9 An atomset A is a C-stable set for (F,R) iff a
C-chase tree of (F,R) contains a stable branch whose asso-
ciated derivation produces A.

On the applicability of the chase variants In the positive
case, all chase variants produce equivalent universal models
(up to skolemization). Moreover, running a chase on equiva-
lent knowledge bases produce equivalent results. Do these
semantic properties still hold with nonmonotonic existential
rules ? The answer is no in general.

The next example shows that the chase variants presen-
ted in this paper, core chase excepted, may produce non-
equivalent results from equivalent knowledge bases.
Example 11 Let F = {p(a, y), t(y)} and F′ =
{p(a, y′), p(a, y), t(y)} be two equivalent atomsets. Let
R : p(u, v),not t(v)→ r(u). For any C-chase other than core
chase, there is a single C-stable set for (F, {R}) which is F

191

(or sk(F)) and a single C-stable set for (F′, {R}) which is
F′∪{r(a)} (or sk(F′)∪{r(a)}). These sets are not equivalent.

Of course, if we consider that the initial knowledge base is
already skolemized (including F seen as a rule), this trouble
does not occur with the skolem-chase since there are no re-
dundancies in facts and no redundancy can be created by a
rule application. This problem does not arise with core chase
either. Thus the only two candidates for processing NME
rules are the core chase and the skolem chase (if we assume
a priori skolemisation, which is already a semantic shift).

The choice between both mechanisms is important since,
as shown by the next example, they may produce different
results even when they both produce a unique C-stable set. It
follows that skolemizing existential rules is not an innocuous
transformation in presence of nonmontonic negation.

Example 12 We consider F = i(a), R1 = i(x) → p(x, y),
R2 = i(x) → q(x, y), R3 = q(x, y) → p(x, y), t(y) and R4 =
p(u, v),not t(v)→ r(u). The core chase produces at first step
p(a, y0) and q(a, y1), then p(a, y1) and t(y1) and removes the
redundant atom p(a, y0), hence R4 is not applicable. The
unique core-stable set is {i(a), q(a, y1), p(a, y1), t(y1)}. With
the skolem chase, the produced atoms are p(a, f R1 (a)) and
q(a, f R2 (a)), then p(a, f R2 (a)) and t(f R2 (a)). R4 is applied
with p(u, v) mapped to p(a, f R1 (a)), which produces r(a).
These atoms yield a unique skolem-stable set. These stable
sets are not equivalent.

Termination of the Chase Tree
On the finiteness of C-chase trees We say that the C-
chase-tree halts on (F,R) when there exists a finite C-chase
tree of (F,R) (in that case, a breadth-first strategy for the rule
applications will generate it). We can thus define C-stable-
finite as the class of sets of nonmonotonic existential rules
R for which the C-chase-tree halts on any (F,R). Our first
intuition was to assert “if pos(R) ∈ C-finite, then R ∈ C-
stable-finite”. However, this property is not true in general,
as shown by the following example :

Example 13 Let R = {R1,R2} where R1 = h(x) →
p(x, y), h(y) and R2 = p(x, y),not h(x) → p(x, x). See that
pos(R) ∈ core-finite (as soon as R1 is applied, R2 is also ap-
plied and the loop p(x, x) makes any other rule application
redundant) ; however the only core-stable set of ({h(a)},R)
is infinite (because all applications of R2 are blocked).

The following property shows that the desired property is
true for local chases.

Proposition 10 Let R be a set of NME rules and C be a
local chase. If pos(R) ∈ C-finite, then R ∈ C-stable-finite.

We have previously argued that the only two interes-
ting chase variants w.r.t. the desired semantic properties are
skolem and core. However, the core-finiteness of the posi-
tive part of a set of NME rules does not ensure the core-
stable-finiteness of these rules. We should point out now
that if C ≥ C′, then C′-stable-finiteness implies C-stable-
finiteness. We can thus ensure core-stable-finiteness when
C-finiteness of the positive part of rules is ensured for a lo-
cal C-chase.

Proposition 11 Let R be a set of NME rules and C be a
local chase. If pos(R) ∈ C-finite, then R ∈ core-stable-finite.

We can rely upon all acyclicity results in this paper to
ensure that the core-chase tree halts.

Improving finiteness results with negative bodies We
now explain how negation can be exploited to enhance
preceding acyclicity notions. We first define the notion of
self-blocking rule, which is a rule that will never be ap-
plied in any derivation. A rule B+,not B−1 , . . . ,not B−k is self-
blocking if there is a negative body B−i such that B−i ⊆
(B+ ∪ H). Such a rule will never be applied in a sound way,
so will never produce any atom. It follows that :
Proposition 12 Let R′ be the non-self-blocking rules of R.
If pos(R′) ∈ C-finite and C is local, then R ∈ C-stable-finite.

This idea can be further extended. We have seen for exis-
tential rules that if R′ depends on R, then there is a uni-
fier µ of body(R′) with head(R), and we can build a rule
R′′ = R �µ R′ that captures the sequence of applications en-
coded by the unifier. We extend Def. 5 to take into account
negative bodies : if B− is a negative body of R or R′, then
µ(B−) is a negative body of R′′. We also extend the notion
of dependency in a natural way, and say that a unifier µ of
head(R) with body(R′) is self-blocking when R �µ R′ is self-
blocking, and R′ depends on R when there exists a unifier of
head(R) with body(R′) that is not self-blocking. This exten-
ded notion of dependency exactly corresponds to the positive
reliance in (Magka, Krötzsch, and Horrocks 2013).
Example 14 Let R = q(x),not p(x) → r(x, y) and R′ =
r(x, y) → p(x), q(y). Their associated positive rules are not
core-finite. There is a single unifier µ of R′ with R, and
R �µ R′ : q(x),not p(x) → r(x, y), p(x), q(y) is self-blocking.
Then the skolem-chase-tree halts on (F, {R,R′}) for any F.

Results obtained from positive rules can thus be generali-
zed by considering this extended notion of dependency (for
PGU we only encode non self-blocking unifiers). Note that
it does not change the complexity of the acyclicity tests.

We can further generalize this and check if a unifier se-
quence is self-blocking, thus extend the YU+ classes to take
into account negative bodies. Let us consider a compatible
cycle C going through <a, i> that has not been proven safe.
Let Cµ be the set of all compatible unifier sequences induced
by C. We say that a sequence µ1 . . . µk ∈ Cµ is self-blocking
when the rule R1�µ1 R2 . . .Rk�µk Rk+1 obtained by combining
these unifiers is self-blocking. When all sequences in Cµ are
self-blocking, we say that C is also self-blocking. This test
comes again at no additional computational cost.
Example 15 Let R1 = q(x1),notp(x1) → r(x1, y1), R2 =
r(x2, y2) → s(x2, y2), R3 = s(x3, y3) → p(x3), q(y3).
PGU+({R1,R2,R3}) has a unique cycle, with a unique indu-
ced compatible unifier sequence. The rule R1 � R2 � R3 =
q(x1),notp(x1) → r(x1, y1), s(x1, y1), p(x1), q(y1) is self-
blocking, hence R1 � R2 � R3 � R1 also is. Thus, there is no
“dangerous” cycle.

Proposition 13 If, for each existential position <a, i>, all
compatible cycles for <a, i> in PGU are self-blocking, then
the stable computation based on the skolem chase halts.

192

Conclusion
We have revisited chase termination with several results.

First, a new tool that allows to unify and extend most exis-
ting acyclicity conditions, while keeping good computatio-
nal properties. Second, a chase-like mechanism for nonmo-
notonic existential rules under stable model semantics, as
well the extension of acyclicity conditions to take negation
into account. This latter contribution extends the notion of
negative reliance of (Magka, Krötzsch, and Horrocks 2013) ;
and does not rely upon stratification (and thus does not en-
force the existence of a single stable model).

This work will be pursued on the theoretical side by a
complexity study of entailment for the new acyclic classes
and by a deeper study of logical foundations for NME rules,
since it remains to relate our core-stable sets to an existing
first-order semantics for general NME rules.

Acknowledgements
We thank the reviewers for their comments. This work is

part of the ASPIQ and Pagoda projects and was partly fun-
ded by the french Agence Nationale de la Recherche (ANR)
grants ANR-12-BS02-0003 and ANR-12-JS02-0007.

References
Baader, F. ; Brandt, S. ; and Lutz, C. 2005. Pushing the el
envelope. In IJCAI’05, 364–369.
Baget, J.-F., and Mugnier, M.-L. 2002. The Complexity of
Rules and Constraints. J. Artif. Intell. Res. (JAIR) 16 :425–
465.
Baget, J.-F. ; Leclère, M. ; Mugnier, M.-L. ; and Salvat, E.
2009. Extending decidable cases for rules with existential
variables. In IJCAI’09, 677–682.
Baget, J.-F. ; Leclère, M. ; Mugnier, M.-L. ; and Salvat, E.
2011. On rules with existential variables : Walking the deci-
dability line. Artificial Intelligence 175(9-10) :1620–1654.
Baget, J.-F. 2004. Improving the forward chaining algorithm
for conceptual graphs rules. In KR’04, 407–414. AAAI
Press.
Beeri, C., and Vardi, M. 1981. The implication problem
for data dependencies. In ICALP’81, volume 115 of LNCS,
73–85.
Calı̀, A. ; Gottlob, G. ; and Kifer, M. 2008. Taming the
infinite chase : Query answering under expressive relational
constraints. In KR’08, 70–80.
Calı̀, A. ; Gottlob, G. ; and Lukasiewicz, T. 2009a. A general
datalog-based framework for tractable query answering over
ontologies. In PODS’09, 77–86.
Calı, A. ; Gottlob, G. ; and Lukasiewicz, T. 2009b. Tractable
query answering over ontologies with datalog±. In Procee-
dings of the DL Home 22nd International Workshop on Des-
cription Logics (DL 2009).
Calimeri, F. ; Cozza, S. ; Ianni, G. ; and Leone, N. 2008.
Computable functions in asp : Theory and implementation.
In Logic Programming. Springer. 407–424.
Calvanese, D. ; Giacomo, G. D. ; Lembo, D. ; Lenzerini, M. ;
and Rosati, R. 2007. Tractable reasoning and efficient query

answering in description logics : The DL-Lite family. J. Au-
tom. Reasoning 39(3) :385–429.
Chandra, A. K. ; Lewis, H. R. ; and Makowsky, J. A. 1981.
Embedded implicational dependencies and their inference
problem. In STOC’81, 342–354. ACM.
Cuenca Grau, B. ; Horrocks, I. ; Krötzsch, M. ; Kupke, C. ;
Magka, D. ; Motik, B. ; and Wang, Z. 2012. Acyclicity
conditions and their application to query answering in des-
cription logics. In KR.
Cuenca Grau, B. ; Horrocks, I. ; Krötzsch, M. ; Kupke, C. ;
Magka, D. ; Motik, B. ; and Wang, Z. 2013. Acyclicity
notions for existential rules and their application to query
answering in ontologies. Journal of Artificial Intelligence
Research 47 :741–808.
Dao-Tran, M. ; Eiter, T. ; Fink, M. ; Weidinger, G. ; and
Weinzierl, A. 2012. Omiga : an open minded grounding
on-the-fly answer set solver. In Logics in Artificial Intelli-
gence. Springer. 480–483.
Deutsch, A. ; Nash, A. ; and Remmel, J. 2008. The chase
revisited. In PODS’08, 149–158.
Fagin, R. ; Kolaitis, P. G. ; Miller, R. J. ; and Popa, L.
2003. Data exchange : Semantics and query answering. In
ICDT’03, 207–224.
Fagin, R. ; Kolaitis, P. G. ; Miller, R. J. ; and Popa, L. 2005.
Data exchange : semantics and query answering. Theor.
Comput. Sci. 336(1) :89–124.
Ferraris, P. ; Lee, J. ; and Lifschitz, V. 2011. Stable models
and circumscription. Artif. Intell. 175(1) :236–263.
Gelfond, M. 2007. In Handbook of Knowledge Representa-
tion. Elsevier Science. chapter Answer Sets.
Gottlob, G. ; Hernich, A. ; Kupke, C. ; and Lukasiewicz, T.
2012. Equality-friendly well-founded semantics and appli-
cations to description logics. In Description Logics.
Krötzsch, M., and Rudolph, S. 2011. Extending decidable
existential rules by joining acyclicity and guardedness. In
IJCAI’11, 963–968.
Lefèvre, C., and Nicolas, P. 2009. A first order forward chai-
ning approach for answer set computing. In Logic Program-
ming and Nonmonotonic Reasoning. Springer. 196–208.
Lierler, Y., and Lifschitz, V. 2009. One more decidable
class of finitely ground programs. In Logic Programming.
Springer. 489–493.
Liu, L. ; Pontelli, E. ; Son, T. C. ; and Truszczyński, M. 2010.
Logic programs with abstract constraint atoms : The role of
computations. Artificial Intelligence 174(3–4) :295 – 315.
Magka, D. ; Krötzsch, M. ; and Horrocks, I. 2013. Com-
puting stable models for nonmonotonic existential rules. In
Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI 2013). AAAI Press.
Marnette, B. 2009. Generalized schema-mappings : from
termination to tractability. In PODS, 13–22.
Mugnier, M.-L. 2011. Ontological Query Answering with
Existential Rules. In RR’11, 2–23.
You, J.-H. ; Zhang, H. ; and Zhang, Y. 2013. Disjunctive
logic programs with existential quantification in rule heads.
Theory and Practice of Logic Programming 13 :563–578.

193

Causality in Databases: The Diagnosis and Repair Connections

Babak Salimi and Leopoldo Bertossi
Carleton University, School of Computer Science

Ottawa, Canada
{bsalimi, bertossi}@scs.carleton.ca

Abstract

In this work we establish and investigate the connections be-
tween causality for query answers in databases, database re-
pairs wrt. denial constraints, and consistency-based diagno-
sis. The first two are relatively new problems in databases,
and the third one is an established subject in knowledge rep-
resentation. We show how to obtain database repairs from
causes and the other way around. The vast body of research
on database repairs can be applied to the newer problem of
determining actual causes for query answers. By formulating
a causality problem as a diagnosis problem, we manage to
characterize causes in terms of a system’s diagnoses.

1 Introduction
When querying a database, a user may not always obtain
the expected results, and the system could provide some ex-
planations. They could be useful to further understand the
data or check if the query is the intended one. Actually, the
notion of explanation for a query result was introduced in
(Meliou et al. 2010a), on the basis of the deeper concept of
actual causation.

Intuitively, a tuple t is a cause for an answer ā to a con-
junctive query Q from a relational database instance D if
there is a “contingent” set of tuples Γ, such that, after re-
moving Γ from D, removing/inserting t from/into D causes
ā to switch from being an answer to being a non-answer. Ac-
tual causes and contingent tuples are restricted to be among
a pre-specified set of endogenous tuples, which are admissi-
ble, possible candidates for causes, as opposed to exogenous
tuples.

Some causes may be stronger than others. In order to cap-
ture this observation, (Meliou et al. 2010a) also introduces
and investigates a quantitative metric, called responsibility,
which reflects the relative degree of causality of a tuple for
a query result. In applications involving large data sets, it is
crucial to rank potential causes by their responsibility (Me-
liou et al. 2010b; Meliou et al. 2010a).

Actual causation, as used in (Meliou et al. 2010a), can be
traced back to (Halpern, and Pearl 2001; Halpern, and Pearl
2005), which provides a model-based account of causation
on the basis of the counterfactual dependence. Responsibil-
ity was also introduced in (Chockler, and Halpern 2004), to
capture the degree of causation.

Apart from the explicit use of causality, research on expla-
nations for query results has focused mainly, and rather im-
plicitly, on provenance (Buneman, Khanna, and Tan 2001;
Buneman, and Tan 2007; Cheney, Chiticariu, and Tan 2009;
Cui, Widom, and Wiener 2000; Karvounarakis, Ives, and
Tannen 2010; Karvounarakis, and Green 2012; Tannen
2013), and more recently, on provenance for non-answers
(Chapman, and Jagadish 2009; Huang et al. 2008).1 A close
connection between causality and provenance has been es-
tablished (Meliou et al. 2010a). However, causality is a
more refined notion that identifies causes for query results
on the basis of user-defined criteria, and ranks causes ac-
cording to their responsibility (Meliou et al. 2010b). For a
formalization of non-causality-based explanations for query
answers in DL ontologies, see (Borgida, Calvanese, and
Rodriguez-Muro 2008).

Consistency-based diagnosis (Reiter 1987), a form of
model-based diagnosis (Struss 2008, sec. 10.3), is an area
of knowledge representation. The main task here is, given
the specification of a system in some logical formalism and
a usually unexpected observation about the system, to obtain
explanations for the observation, in the form of a diagnosis
for the unintended behavior.

In a different direction, a database instance, D, that is ex-
pected to satisfy certain integrity constraints (ICs) may fail
to do so. In this case, a repair of D is a database D′ that
does satisfy the ICs and minimally departs from D. Dif-
ferent forms of minimality can be applied and investigated.
A consistent answer to a query from D and wrt. the ICs is a
query answer that is obtained from all possible repairs, i.e. is
invariant or certain under the class of repairs. These notions
were introduced in (Arenas, Bertossi, and Chomicki 1999)
(see (Bertossi 2011) for a recent survey). We should men-
tion that, although not in the framework of database repairs,
consistency-based diagnosis techniques have been applied to
restoring consistency of a database wrt. a set of ICs (Gertz
1997)

These three forms of reasoning, namely inferring causal-
ity in databases, consistency-based diagnosis, and consistent
query answers (and repairs) are all non-monotonic. For ex-

1That is, tracing back, sometimes through the interplay of
database tuple annotations, the reasons for not obtaining a possi-
bly expected answer to a query.

194

ample, a (most responsible) cause for a query result may not
be such anymore after the database is updated. In this work
we establish natural, precise, useful, and deeper connections
between these three reasoning tasks.

We show that inferring and computing actual causes
and responsibility in a database setting become, in differ-
ent forms, consistency-based diagnosis reasoning problems
and tasks. Informally, a causal explanation for a conjunc-
tive query answer can be viewed as a diagnosis, where in
essence the first-order logical reconstruction of the relational
database provides the system description (Reiter 1982), and
the observation is the query answer. Furthermore, we unveil
a strong connection between computing causes and their re-
sponsibilities for conjunctive queries, on the one hand, and
computing repairs in databases (Bertossi 2011) wrt. denial
constraints, on the other hand. These computational prob-
lems can be reduced to each other.

More precisely, our results are as follows:

1. For a boolean conjunctive query and its associated denial
constraint (which is violated iff the query is true), we es-
tablish a precise connection between actual causes for the
query (being true) and the subset-repairs of the instance
wrt. the constraint. Namely, we obtain causes from re-
pairs.

2. In particular, we establish the connection between an ac-
tual cause’s responsibility and cardinality repairs wrt. the
associated constraint.

3. We characterize and obtain subset- and cardinality- re-
pairs for a database under a denial constraint in terms of
the causes for the associated query being true.

4. We consider a set of denials constraints and a database
that may be inconsistent wrt. them. We obtain the
database repairs by means of an algorithm that takes as
input the actual causes for constraint violations and their
contingency sets.

5. We establish a precise connection between consistency-
based diagnosis for a boolean conjunctive query being
unexpectedly true according to a system description, and
causes for the query being true. In particular, we can com-
pute actual causes, their contingency sets, and responsi-
bilities from minimal diagnosis.

6. Being this a report on ongoing work, we discuss several
extensions and open issues that are under investigation.

2 Preliminaries
We will consider relational database schemas of the form
S = (U,P), where U is the possibly infinite database do-
main and P is a finite set of database predicates of fixed ar-
ities. A database instance D compatible with S can be seen
as a finite set of ground atomic formulas (in databases aka.
atoms or tuples), of the form P (c1, ..., cn), where P ∈ P
has arity n, and c1, . . . , cn ∈ U . A conjunctive query is a
formula Q(x̄) of the first-order (FO) logic language, L(S),
associated to S of the form ∃ȳ(P1(t̄1) ∧ · · · ∧ Pm(t̄m)),
where the Pi(t̄i) are atomic formulas, i.e. Pi ∈ P , and the
t̄i are sequences of terms, i.e. variables or constants of U .

The x̄ in Q(x̄) shows all the free variables in the formula,
i.e. those not appearing in ȳ. The query is boolean, if x̄ is
empty, i.e. the query is a sentence, in which case, it is true
or false in a database, denoted by D |= Q and D 6|= Q,
respectively. A sequence c̄ of constants is an answer to an
open query Q(x̄) if D |= Q[c̄], i.e. the query becomes true
in D when the variables are replaced by the corresponding
constants in c̄.

An integrity constraint is a sentence of language L(S),
and then, may be true or false in an instance for schema S.
Given a set IC of ICs, a database instance D is consistent if
D |= IC; otherwise it is said to be inconsistent. In this work
we assume that sets of ICs are always finite and logically
consistent. A particular class of integrity constraints (ICs)
is formed by denial constraints (DCs), which are sentences
κ of the from: ∀x̄¬(A1(x̄1) ∧ · · · ∧ An(x̄n), where x̄ =⋃
x̄i and each Ai(x̄i) is a database atom, i.e. predicate A ∈

P . DCs will receive special attention in this work. They
are common and natural in database applications since they
disallow combinations of database atoms.

Causality and Responsibility. Assume that the database
instance is split in two, i.e. D = Dn ∪ Dx, where Dn

andDx denote the sets of endogenous and exogenous tuples,
respectively. A tuple t ∈ Dn is called a counterfactual cause
for a boolean conjunctiveQ , ifD |= Q andDr{t} 6|= Q. A
tuple t ∈ Dn is an actual cause forQ if there exists Γ ⊆ Dn,
called a contingency set, such that t is a counterfactual cause
for Q in D r Γ (Meliou et al. 2010a).

The responsibility of an actual cause t for Q , denoted by
ρ(t), is the numerical value 1

(|Γ|+1) , where |Γ| is the size of
the smallest contingency set for t. We can extend responsi-
bility to all the other tuples in Dn by setting their value to 0.
Those tuples are not actual causes for Q.

In (Meliou et al. 2010a), causality for non-query answers
is defined on basis of sets of potentially missing tuples that
account for the missing answer. Computing actual causes
and their responsibilities for non-answers becomes a rather
simple variation of causes for answers. In this work we focus
on causality for query answers.

Example 1. Consider a database D with relations R and S
as below, and the query Q : ∃x∃y(S(x) ∧ R(x, y) ∧ S(y)).
D |= Q and we want to find causes for Q being true in D
under the assumption that all tuples are endogenous.

R X Y
a4 a3

a2 a1

a3 a3

S X
a4

a2

a3

Tuple S(a3) is a counterfactual cause for Q. If S(a3) is
removed from D, we reach a state where Q is no longer an
answer. Therefore, the responsibility of S(a3) is 1. Besides,
R(a4, a3) is an actual cause for Q with contingency set
{R(a3, a3)}. If R(a3, a3) is removed from D, we reach
a state where Q is still an answer, but further removing
R(a4, a3) makes Q a non-answer. The responsibility of
R(a4, a3) is 1

2 , because its smallest contingency sets have
size 1. Likewise, R(a3, a3) and S(a4) are actual causes for

195

Q with responsibility 1
2 . �

Now we can show that counterfactual causality for query
answers is a non-monotonic notion.

Example 2. (ex. 1 cont.) Consider the same query Q, but
now the database instance D = {S(a3), S(a4), R(a4, a3)},
with the partition Dn = {S(a4), S(a3)} and Dx =
{R(a4, a3)}. Both S(a3) and S(a4) are counterfactual
causes for Q.

Now assume R(a3, a3) is added to D as an exogenous tu-
ple, i.e. (Dx)′ = {R(a4, a3), R(a3, a3)}. Then, S(a4) is
no longer a counterfactual cause forQ inD′ = Dn∪ (Dx)′:
If S(a4) is removed from the database, Q is still true in
D′. Moreover, S(a4) not an actual cause anymore, because
there is no contingency set that makes S(a4) a counterfac-
tual cause.

Notice that, if R(a3, a3) is instead inserted as an endoge-
nous tuple, i.e. (Dn)′ = {S(a4), S(a3), R(a3, a3)}, then,
S(a4) is still an actual cause for Q, with contingency set
{R(a3, a3)}. �

The following proposition shows that the notion of actual
causation is non-monotone in general.
Notation: CS(Dn, Dx,Q) denotes the set of actual causes
for BCQ Q (being true) from instance D = Dn ∪ Dx.
When Dn = D and Dx = ∅, we sometimes simply write:
CS(D,Q).

Proposition 1. Let (Dn)′, (Dx)′ denote updates of
instances Dn, Dx by insertion of tuple t, resp. It holds:
(a) CS(Dn, Dx, Q) ⊆ CS((Dn)′, Dx,Q). (b)
CS(Dn, (Dx)′, Q) ⊆ CS(Dn, Dx,Q) . �

Example 2 shows that the inclusion in (b) may be strict.
It is easy to show that it can also be strict for (a). This result
tells us that, for a fixed query, inserting an endogenous tu-
ples may extend the set of actual cases, but it may shrink by
inserting an endogenous tuple. It is also easy to verify that
most responsible causes may not be such anymore after the
insertion of endogenous tuples.

Database Repairs. Given a set IC of ICs, a subset-repair
(simply, S-repair) of a possibly inconsistent instance D for
schema S is an instance D′ for S that satisfies IC and makes
∆(D,D′) = (D r D′) ∪ (D′ r D) minimal under set in-
clusion. Srep(D, IC) denotes the set of S-repairs of D wrt.
IC (Arenas, Bertossi, and Chomicki 1999). c̄ is a consistent
answer to query Q(x̄) if D′ |= Q[c̄] for every D′ ∈ Srep,
denoted D |=S Q[c̄]. S-repairs and consistent query an-
swers for DCs were investigated in detail (Chomicki, and
Marcinkowski 2005). (Cf. (Bertossi 2011) for more refer-
ences.)

Similarly, D′ is a cardinality repair (simply C-repair)
of D if D′ satisfies IC and minimizes |∆(D,D′)|.
Crep(D, IC) denotes the class of C-repairs of D wrt. IC.
That c̄ is a consistent answer to Q(x̄) wrt. C-repairs is de-
noted by D |=C Q[c̄]. C-repairs were investigated in detail
in (Lopatenko, and Bertossi 2007).

C-repairs are S-repairs of minimum cardinality, and, for
DCs, they are obtained from the original instance by delet-
ing a cardinality-minimum or a subset-minimal set of tuples,
respectively. Obtaining repairs and consistent answers is a
non-monotonic process. That is, after an update of D to
u(D), obtained by tuple insertions, a repair or a consistent
answer for D may not be such for u(D) (Bertossi 2011).

Consistency-Based Diagnosis. The starting point of this
consistency-based approach to diagnosis is a diagnosis prob-
lem of the formM = (SD ,COMPS , OBS), where SD is
the description in logic of the intended properties of a sys-
tem under the explicit assumption that all its components,
those in the set of constants COMPS, are normal (or work-
ing normally). OBS is a finite set of FO sentences (usually
a conjunction of ground literals) that represents the observa-
tions.

Now, if the system does not behave as expected (as
shown by the observations), then the logical theory ob-
tained from SD ∪ OBS plus the explicit assumption, say∧
c∈COMPS ¬ab(c), that the components are indeed behav-

ing normally, becomes inconsistent.2 This inconsistency
is captured via the minimal conflict sets, i.e. those mini-
mal subsets COMPS 0 of COMPS, such that SD ∪ OBS ∪
{
∧
c∈COMPS0

¬ab(c)} is still inconsistent. As expected,
different notions of minimality can be used at this point. It
is common to use the distinguished predicate ab(·) for de-
noting abnormal (or abnormality). So, ab(c) says that com-
ponent c is abnormal.

On this basis, a minimal diagnosis for M is a minimal
subset ∆ of COMPS , such that SD ∪OBS ∪{¬ab(c) | c ∈
COMPS r ∆} ∪ {ab(c) | c ∈ ∆} is consistent. That is,
consistency is restored by flipping the normality assumption
to abnormality for a minimal set of components, and those
are the ones considered to be (jointly) faulty. The notion
of minimality commonly used is subset-minimality, i.e. a
minimal diagnosis must not have a proper subset that is still
a diagnosis. We will use this kind of minimality in relation
to diagnosis. Diagnosis can be obtained from conflict sets
(Reiter 1987). See also (Struss 2008, sec. 10.4) for a broader
review of model-based diagnosis.

Diagnostic reasoning is non-monotonic in the sense that a
diagnosis may not survive after the addition of new observa-
tions (Reiter 1987).

3 Repairs and Causality for Query Answers
Let D = Dn ∪ Dx be a database instance for schema S,
and Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)) be a boolean con-
junctive query (BCQ). Suppose Q is unexpectedly true in
D. Actually, it is expected that D 6|= Q, or equivalently, that
D |= ¬Q. Now, ¬Q is logically equivalent to a formula of
the form κ(Q) : ∀x̄¬(P1(x̄1)∧· · ·∧Pm(x̄m)), which has the
form of a denial constraint. The requirement that ¬Q holds
can be captured by imposing the corresponding DC κ(Q) to
D.

2Here, and as usual, the atom ab(c) expresses that component
c is (behaving) abnormal(ly).

196

Since D |= Q, D is inconsistent wrt. the DC κ(Q). Now,
repairs for (violations of) DCs are obtained by tuple dele-
tions. Intuitively, tuples that account for violations of κ(Q)
in D are actual causes for Q. Minimal sets of tuples like
this are expected to correspond to S-repairs forD and κ(Q).
Next we make all this precise.

Given an instance D = Dn ∪ Dx, a BCQ Q, and a tu-
ple t ∈ D, we consider the class containing the sets of dif-
ferences between D and those S-repairs that do not contain
tuple t ∈ Dn, and are obtained by removing a subset of Dn:

DF(D,Dn, κ(Q), t) = {D rD′ | D′ ∈ Srep(D,κ(Q)),
t ∈ (D rD′) ⊆ Dn}.

Now, s ∈ DF(D,Dn, κ(Q), t) can written as s = s′ ∪ {t}.
From the definition of a S-repair, including its S-minimality,
D r (s′ ∪ {t}) |= κ(Q), but D r s′ |= ¬κ(Q), i.e. D r
(s′ ∪ {t}) 6|= Q, but D r s′ |= Q. So, we obtain that t is an
actual cause for Q with contingency set s′. The following
proposition formalizes this result.

Proposition 2. Given an instance D = Dn ∪ Dx,
and a BCQ Q, t ∈ Dn is an actual cause for Q iff
DF(D,Dn, κ(Q), t) 6= ∅. �

The next proposition shows that the responsibility of a tuple
can also be determined from DF(D,Dn, κ(Q), t).

Proposition 3. Given an instance D = Dn∪Dx, a BCQQ,
and t ∈ Dn,

1. If DF(D,Dn, κ(Q), t) = ∅, then ρ(t) = 0.
2. Otherwise, ρ(t) = 1

|s| , where s ∈ DF(D,Dn, κ(Q), t)
and there is no s′ ∈ DF(D,Dn, κ(Q), t) such that,
|s′| < |s|. �

Example 3. (ex. 1 cont.) Consider the same instance D and
query Q. In this case, the DC κ(Q) is, in Datalog notation
as a negative rule: ← S(x), R(x, y), S(y).

Here, Srep(D,κ(Q)) = {D1, D2, D3} and
Crep(D,κ(Q)) = {D1}, with D1 = {R(a4, a3),
R(a2, a1), R(a3, a3), S(a4), S(a2)}, D2 = {R(a2, a1),
S(a4), S(a2), S(a3)}, D3 = {R(a4, a3), R(a2, a1),
S(a2), S(a3)}.

For tuple R(a4, a3), DF(D,D, κ(Q), R(a4, a3)) =
{D r D2} = {{R(a4, a3), R(a3 , a3)}}. This, together
with Propositions 2 and 3, confirms that R(a4, a3) is an ac-
tual cause, with responsibility 1

2 .
For tuple S(a3),DF(D,D, κ(Q), S(a3)) = {DrD1}=

{S(a3)}. So, S(a3) is an actual cause with responsibility 1.
Similarly,R(a3, a3) is an actual cause with responsibility 1

2 ,
becauseDF(D,D, κ(Q), R(a3, a3)) = {DrD2, DrD3}
= {{R(a4, a3), R(a3, a3)}, {R(a3, a3), S(a4)}}.

It is easy to verify that DF(D, D, κ(Q), S(a2)) and
DF(D,D, κ(Q), R(a2, a1)) are empty, because all repairs
contain those tuples. This means that they do not participate
in the violation of κ(Q), or equivalently, they do not
contribute to make Q true. So, S(a2) and R(a2, a1) are not
actual causes for Q, confirming the result in Example 1. �

Now, we reduce computation of repairs for inconsistent
databases wrt. a denial constraint to corresponding problems
for causality.

Consider the database instance D for schema S and a
denial constraint κ : ← A1(x̄1), . . . , An(x̄n), to which a
boolean conjunct ive violation view V κ : ∃x̄(A1(x̄1)∧ · · · ∧
An(x̄n)) can be associated: D violates (is inconsistent wrt.)
κ iff D |= V κ.

Intuitively, actual causes for V κ, together with their con-
tingency sets, account for violations of κ by D. Removing
those tuples from D should remove the inconsistency.

Given an inconsistent instance D wrt. κ, we collect all S-
minimal contingency sets associated with the actual cause t
for V κ, as follows:

CT (D,Dn, V κ, t) = {s ⊆ Dn | D r s |= V κ,

D r (s ∪ {t}) 6|= V κ, and
∀s′′ $ s, D r (s′′ ∪ {t}) |= V κ}.

Notice that for sets s ∈ CT (D,Dn, V κ, t), t /∈ s. Now
consider, t ∈ CS(D, ∅, V κ), the set of actual causes for
V κ when the entire database is endogenous. From the
definition of an actual cause and the S-minimality of sets
s ∈ CT (D,D, V κ, t), s′′ = s ∪ {t} is an S-minimal set
such that D r s′′ 6|= V κ. So, D r s′′ is an S-repair for D.
We obtain:

Proposition 4. (a) Given an instance D and a DC κ, D is
consistent wrt. κ iff CS(D, ∅, V κ) = ∅. (b) D′ ⊆ D is an
S-repair for D iff, for every t ∈ D rD′, t ∈ CS(D, ∅, V κ)
and D r (D′ ∪ {t}) ∈ CT (D,D, V κ, t). �

Now we establish a connection between most responsible
actual causes and C-repairs. For this, we collect the most
responsible actual causes for V κ:

MRC(D,V κ) = {t ∈ D | t ∈ CS(D, ∅, V κ),
6 ∃t′ ∈ CS(D, ∅, V κ) with ρ(t′) > ρ(t)}.

Proposition 5. For an instance D and denial constraint
κ, D′ is a C-repair for D wrt. κ iff for a t ∈ D r D′:
t ∈MRC(D,V κ) and Dr (D′ ∪{t}) ∈ CT (D,V κ, t). �

Example 4. Consider D = {P (a, b), R(b, c), R(b, b)}, and
the denial constraint κ :← P (x, y), R(y, z), which prohibits
a join between P and R. The corresponding violation view
(query) is, V κ : ∃xyz(P (x, y) ∧ R(y, z)). Since D |= V κ,
D is inconsistent wrt. κ.

Here, CS(D, ∅, V κ) = {P (a, b), R(b, c), R(b, b)}, each
of whose members is associated with S-minimal con-
tingency sets: CT (D,D, V κ, R(b, c)) = {{R(b, b)}},
CT (D,D, V κ, R(b, b)) = {{R(b, c)}}, and
CT (D,D, V κ, P (a, b)) = {∅}.

According to Proposition 4, the instance obtained by re-
moving each actual cause for V κ together with its con-
tingency set forms a S-repair for D. Therefore, D1 =
D r {P (a, b)} = {R(b, c), R(b, b)} is an S-repair. Notice
that the S-minimal contingency set associated to P (a, b) is
an empty set. Likewise, D2 = D r {R(b, c), R(b, b)} =

197

{P (a, b)} is a S-repair. It is easy to verify that D does not
have any S-repair other than D1 and D2.

Furthermore,MRC(D,V κ) = {P (a, b)}. So, according
to Proposition 5, D1 is also a C-repair for D. �

Given an instance D, a DC κ and a ground atomic query
A, the following proposition establishes the relationship be-
tween consistent query answers to A wrt. the S-repair se-
mantics and actual cases for the violation view V κ.
Proposition 6. A ground atomic query A, is consistently
true, i.e. D |=S A, iff A ∈ D r CS(D, ∅, V κ). �

Example 5. Consider D = {P (a, b), R(b, c), R(a, d)},
the DC κ : ← P (x, y), R(y, z), and the ground
atomic query Q : R(a, d). It is easy to see that
CS(D, ∅, V κ) = {P (a, b), R(b, c)}. Then, according
to Proposition 6, R(a, d) is consistently true in D, because
D r CS(D, ∅, V κ) = {R(a, d)}. �

4 Causes for IC violations
We may consider a set Σ of ICs ψ that have violation
views V ψ that become boolean conjunctive queries, e.g. de-
nial constraints. Each of such views has the form V ψ :
∃x̄(A1(x̄1) ∧ · · · ∧ An(x̄n)). When the instance D is in-
consistent wrt. Σ, some of these views (queries) get the an-
swer yes (they become true), and for each of them there
is a set C(D,Dn, V ψ) whose elements are of the form
〈t, {C1(t), . . . , Cm(t)}〉, where t is a tuple that is an actual
cause for V ψ , together with their contingency sets Ci(t),
possibly minimal in some sense. The natural question is
whether we can obtain repairs of D wrt. Σ from the sets
C(D,Dn, V ψ).

In the following we consider the case where Dn = D,
i.e. we consider the sets C(D,D, V ψ), simply denoted
C(D,V ψ). We recall that CS(D,V ψ) denotes the set of ac-
tual causes for V ψ . We denote with CT (D,V ψ, t) the set
of all subset-minimal contingency sets associated with the
actual cause t for V ψ .

The (naive) Algorithm SubsetRepairs that we describe in
high-level term in the following accepts as input an instance
D, a set of DCs Σ, and the sets C(D,V ψ), each of them
with elements of the form 〈t, {C1(t), . . . , Cm(t)}〉 where
each Ci(t) is subset-minimal. The output of the algorithm is
Srep(D,Σ), the set of S-repairs for D.

The idea of the algorithm is as follows. For each V ψ ,
D r ({t} ∪ C(t)) where, t ∈ CS(D,V ψ) and C(t) ∈
CT (D,V ψ, t), is consistent with ψ since, according to the
definition of an actual cause, D r ({t} ∪ C(t)) 6|= Vψ .

Therefore, D′ = D r
⋃
ψ∈Σ{{t} ∪ C(t) | t ∈

CS(D,V ψ) and C(t) ∈ CT (D,V ψ, t)} is consistent with
Σ. However, it may not be an S-repair, because some viola-
tion views may have common causes.

In order to obtain S-repairs, the algorithm finds common
causes for the violation views, and avoids removing redun-
dant tuples to resolve inconsistencies. In this direction, the
algorithm forms a set collecting all the actual causes for vi-
olation views: S = {t | ∃ψ ∈ Σ, t ∈ CS(D,V ψ)}.

It also builds the collection of non-empty sets of actual
causes for each violation view: C = {CS(D,V ψ) | ∃ψ ∈
Σ, CS(D,V ψ) 6= ∅}. Clearly, C is a collection of subsets of
set S.

Next, the algorithm computes the set of all subset-
minimal hitting sets of the collection C.3 Intuitively, an S-
minimal hitting set of C contains an S-minimal set of actual
causes that covers all violation views, i.e. each violation
view has an actual cause in the hitting set. The algorithm
collects all S-minimal hitting sets of C inH.

Now, for a hitting set h ∈ H, for each t ∈ h, if t covers
Vψ , the algorithm removes both t and C(t) from D (where
C(t) ∈ CT (D,V ψ, t)). Since it may happen that a violation
view is covered by more than one element in h, the algorithm
makes sure that just one of them is chosen. The result is an
S-repair for D. The algorithm repeats this procedure for all
sets inH. The result is Srep(D,Σ).

Example 6. Consider the instance D =
{P (a, b), R(b, c), S(c, d)}, and the set of DCs
Σ = {ψ1, ψ2}, with ψ1 : ← P (x, y), R(y, z), and
ψ2 : ← R(x, y), S(y, z). The corresponding viola-
tion views are V ψ1 : ∃xyz(P (x, y) ∧ R(y, z)), and
V ψ2 : ∃xyz(R(x, y) ∧ S(y, z)).

Here, C(D,V ψ1) = {〈P (a, b), {∅}〉, 〈R(b, c), {∅}〉}, and
C(D,V ψ2) = {〈R(b, c), {∅}〉, 〈S(c, d), {∅}〉}.

The set S in the algorithm above, actual causes for ψ1 or
ψ2, is S = {P (a, b), R(b, c), S(c, d)}. The collection C,
of sets of actual causes for ψ1 and ψ2, is C = {{P (a, b),
R(b, c)}, {R(b, c), S(c, d)}}.

The subset-minimal hitting sets for the collection C
are: h1 = {R(b, c)}, h2 = {S(c, d), P (a, b)}. Since the
contingency set for each of the actual causes is empty,
D r h1 and D r h2 are the S-repairs for D. �

The following theorem states that algorithm SubsetRe-
pairs provides a sound and complete method for computing
Srep(D,Σ).

Theorem 1. Given an instance D, a set Σ of DCs, and
the sets C(D,V ψ), for ψ ∈ Σ, SubsetRepairs computes
exactly Srep(D ,Σ). �

The connection between causality and databases repair
provides this opportunity to apply results and techniques de-
veloped in each context to the other one. In particular, in our
future works we will use this connection to provide some
complexity results in the context of consistent query answer-
ing.

5 Diagnosis and Query Answer Causality
As before, let D = Dn ∪ Dx be a database instance for
schema S, and Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)) be BCQ.
Assume that Q is, possibly unexpectedly, true in D. Also
as above, the associated DC is κ(Q) : ∀x̄¬(P1(x̄1) ∧ · · · ∧
Pm(x̄m)). So, it holds D 6|= κ(Q), i.e. D violates the DC.

3A set S′ ⊆ S is a hitting set for C if, for every Ci ∈ C, there is
a c ∈ Ci with c ∈ S′. A hitting set is subset-minimal if no proper
subset of it is also a hitting set.

198

This is our observation, and we want to find causes for it, us-
ing a diagnosis-based approach. Those causes will become
causes for Q being true; and the diagnosis will uniquely de-
termine those causes.

In this direction, for each predicate P ∈ P , we introduce
predicate abP , with the same arity as P . Any tuple in its
extension is said to be abnormal for P . Our “system de-
scription”, SD , for a diagnosis problem will include, among
other elements, the original database, expressed in logical
terms, and the DC being true “under normal conditions”.

More precisely, we consider the following diagnosis
problem, M = (SD , Dn,Q), associated to Q. Here, SD
is the FO system description that contains the following el-
ements: (a) Th(D), which is Reiter’s logical reconstruction
of D as a FO theory (Reiter 1982). (b) Sentence κ(Q)ext,
which is κ(Q) rewritten as follows:

κ(Q)ext : ∀x̄¬(P1(x̄1) ∧ ¬abP1(x̄1) ∧ · · · ∧ (1)
Pm(x̄m) ∧ ¬abPm

(x̄m)).

(c) The sentence ¬κ(Q) ←→ Q, where Q is the ini-
tial boolean query. (d) The inclusion dependencies:
∀x̄(abP (x̄)→ P (x̄)).

Now, the last entry in M, Q, is the observation, which
together with SD will produce (see below) and inconsis-
tent theory. This is because in M we make the initial and
explicit assumption that all the abnormality predicates are
empty (equivalently, that all tuples are normal), i.e. we con-
sider, for each predicate P , the sentence

∀x̄(abP (x̄)→ false), (2)

where, false is a propositional atom that is always false. Ac-
tually, the second entry in M tells us how we can restore
consistency, namely by (minimally) changing the abnormal-
ity condition of tuples in Dn. In other words, the rules
(2) are subject to qualifications: some endogenous tuples
may be abnormal. Each diagnosis for the diagnosis problem
shows a subset-minimal set of endogenous tuples that are
abnormal.

Example 7. (ex. 2 cont.) For the instance D = {S(a3),
S(a4), R(a4, a3)}, withDn = {S(a4), S(a3)}, consider the
diagnostic problemM = (SD , {S(a4), S(a3)}, Q), where
SD contains the following sentences:

(a) Predicate completion axioms:
∀xy(R(x, y)↔ x = a4 ∧ y = a3),
∀x(S(x)↔ x = a3 ∨ x = a4).

(a) Unique names assumption: a4 6= a3.
(b) κ(Q)ext : ∀xy¬(S(x) ∧ ¬abS(x) ∧ R(x, y) ∧
¬abR(x, y) ∧ S(y) ∧ ¬abS(y)).

(c) ¬κ(Q)←→ Q (with κ(Q) and Q as before).
(d) ∀xy(abR(x, y)→ R(x, y)), ∀x(abS(x)→ S(x)).

The explicit assumption about the normality of all tuples is
captured by:
∀xy(abR(x, y)→ false), ∀x(abS(x)→ false). �

Now, the observation isQ (is true), obtained by evaluating
queryQ on (theory of)D. In this case,D 6|= κ(Q). Since all

the abnormality predicates are assumed to be empty, κ(Q)
is equivalent to κ(Q)ext , which also becomes false wrt D.
As a consequence, SD ∪ {(2)} ∪ {Q} is an inconsistent FO
theory. Now, a diagnosis is a set of endogenous tuples that,
by becoming abnormal, restore consistency.

Definition 1. (a) A diagnosis for a diagnosis problem
M is a ∆ ⊆ Dn, such that SD ∪ {abP (c̄) | P (c̄) ∈
∆} ∪ {¬abP (c̄) | P (c̄) ∈ D r ∆} ∪ {Q} becomes
consistent. (b) D(M, t) denotes the set of subset-minimal
diagnoses for M that contain a tuple t ∈ Dn. (c)
MCD(M, t) denotes the set of diagnoses of M that
contain a tuple t ∈ Dn and have the minimum cardinality
(among those diagnoses that contain t). �

Clearly,MCD(M, t) ⊆ D(M, t). The following propo-
sition specifies the relationship between minimal diagnoses
forM and actual causes for Q.

Proposition 7. Consider D = Dn ∪Dx, a BCQ Q, and the
diagnosis problemM associated to Q. Tuple t ∈ Dn is an
actual cause for Q iff D(M, t) 6= ∅. �

The next proposition tells us that the responsibility of an
actual cause t is determined by the cardinality of the diag-
noses inMCD(M, t).

Proposition 8. Consider D = Dn ∪ Dx, a BCQ Q, the
diagnosis problemM associated to Q, and a tuple t ∈ Dn.

(a) ρ(t) = 0 iffMCD(M, t) = ∅.
(b) Otherwise, ρ(t) = 1

|s| , where s ∈MCD(M, t). �

Example 8. (ex. 7 cont.) The diagnosis problemM has two
diagnosis namely, ∆1 = {S(a3)} and ∆4 = {S(a4)}.

Here, D(M, S(a3)) = MCD(M, S(a3)) = {{S(a3)}}
and D(M, S(a4)) = MCD(M, S(a4)) = {{ S(a4)}}.
Therefore, according to Proposition 7 and 8, both S(a3) and
S(a4) are actual cases for Q, with responsibility 1. �

Notice that the consistency-based approach to causality
provided in this section can be considered as a technique
for computing repairs for inconsistent databases wrt. denial
constraints (it is a corollary of 4 and 8). It is worth men-
tioning that this approach has been implicitly used before in
databases repairing in (Arenas et al. 2003), where the au-
thors introduce conflict graphs to characterize S-repairs for
inconsistent databases wrt. FDs. We will use this connection
in our future work to provide some complexity results in the
context of causality.

6 Discussion
Here we discuss some directions of possible or ongoing re-
search.

Open queries. We have limited our discussion to boolean
queries. It is possible to extend our work to consider
conjunctive queries with free variables, e.g. Q(x) :
∃yz(R(x, y) ∧ S(y, z)). In this case, a query answer would
be of the form 〈a〉, for a a constant, and causes would be
found for such an answer. In this case, the associated denial
constraint would be of the form κ〈a〉 : ← R(a, y), S(y, z),
and the rest would be basically as above.

199

Algorithms and complexity. Given the connection be-
tween causes and different kinds of repairs, we might take
advantage for causality of algorithms and complexity results
obtained for database repairs. This is matter of our ongoing
research. In this work, apart from providing a naive algo-
rithm for computing repairs from causes, we have not gone
into detailed algorithm or complexity issues. The results we
already have in this direction will be left for an extended
version of this work.

Endogenous repairs. The partition of a database into
endogenous and exogenous tuples has been exploited in
the context of causality. However, this kind of partition
is also of interest in the context of repairs. Considering
that we should have more control on endogenous tuples
than on exogenous ones, which may come from external
sources, it makes sense to consider endogenous repairs that
are obtained by updates (of any kind) on endogenous tu-
ples. For example, in the case of violation of denial con-
straints, endogenous repairs would be obtained -if possible-
by deleting endogenous tuples only. If there are no re-
pairs based on endogenous tuples only, a preference con-
dition could be imposed on repairs (Yakout et al. 2011;
Staworko, Chomicki, and Marcinkowski 2012), privileging
those that change exogenous the least. (Of course, it could
also be the other way around, that is we may feel more
inclined to change exogenous tuples than our endogenous
ones.)

As a further extension, it could be possible to assume that
combinations of (only) exogenous tuples never violate the
ICs, something that could be checked at upload time. In this
sense, there would be a part of the database that is consid-
ered to be consistent, while the other is subject to possible
repairs. A situation like this has been considered, for other
purposes and in a different form, in (Greco, Pijcke, and Wi-
jsen 2014).

Actually, going a bit further, we could even consider the
relations in the database with an extra, binary attribute, N ,
that is used to annotate if a tuple is endogenous or exogenous
(it could be both), e.g. a tuple likeR(a, b, yes). ICs could be
annotated too, e.g. the “exogenous” version of DC κ, could
be κE :← P (x, y, yes), R(y, z, yes), and could be assumed
to be satisfied.

ASP specification of causes. Above we have presented
a connection between causes and repairs. S-repairs can be
specified by means of answer set programs (ASPs) (Arenas,
Bertossi, and Chomicki 2003; Barcelo, and Bertossi 2002;
Barcelo, Bertossi, and Bravo 2003), and C-repairs too, with
the use of weak program constraints (Arenas, Bertossi, and
Chomicki 2003). This should allow for the introduction of
ASPs in the context of causality, for specification and rea-
soning. There are also ASP-based specifications of diag-
nosis (Eiter et al. 1999) that could be brought into a more
complete picture.

Causes and functional dependencies. Functional depen-
dencies (FDs), that can be considered as denial constraints,
have violation views that are conjunctive, but contain in-
equalities. They are still monotonic views though. Much

has been done in the area of repairs and consistent query an-
swering (Bertossi 2011). On the other side, in causality only
conjunctive queries without built-ins have been considered
(Meliou et al. 2010a). It is possible that causality can be
extended to conjunctive queries with built-ins through the
repair connection; and also to non-conjunctive queries via
repairs wrt. more complex integrity constraints.

View updates. Another venue to explore for fruitful con-
nections relates to the view update problem, which is about
updating a database through views. This old and important
problem in databases has also been treated from the point of
view of abductive reasoning (Kakas, and Mancarella 1990;
Console, Sapino, and Theseider-Dupre 1995).4 User knowl-
edge imposed through view updates creates or reflects un-
certainty about the base data, because alternative base in-
stances may give an account of the intended view updates.

The view update problem, specially in its particular form
of of deletion propagation, has been recently related in
(Kimelfeld 2012; Kimelfeld, Vondrak, and Williams 2012)
to causality as introduced in (Meliou et al. 2010a).5

Database repairs are also related to the view update prob-
lem. Actually, answer set programs (ASP) for database re-
pairs (Barcelo, Bertossi, and Bravo 2003) implicity repair
the database by updating intentional, annotated predicates.

Even more, in (Bertossi, and Li 2013), in order to protect
sensitive information, databases are explicitly and virtually
“repaired” through secrecy views that specify the informa-
tion that has to be kept secret. In order to protect informa-
tion, a user is allowed to interact only with the virtually re-
paired versions of the original database that result from mak-
ing those views empty or contain only null values. Repairs
are specified and computed using ASP, and in (Bertossi, and
Li 2013) an explicit connection to prioritized attribute-based
repairs (Bertossi 2011) is made.

7 Conclusions
In this work, we have uncovered the relationships between
causality in databases, database repairs, and consistency-
based reasoning, as three forms of non-monotonic reason-
ing. Establishing the connection between these problems
allows us to apply results and techniques developed for each
of them to the others. This should be particularly beneficial
for causality in databases, where still a limited number of re-
sults and techniques have been obtained or developed. This
becomes matter of our ongoing and future research.

Our work suggests that diagnostic reasoning, as a form
of non-monotonic reasoning, can provide a solid theoretical
foundation for query answer explanation and provenance.
The need for such foundation and the possibility of using
non-monotonic logic for this purpose are mentioned in (Ch-
eney et al. 2009; Cheney 2011).

4Abduction has also been explicitly applied to database repairs
(Arieli et al. 2004).

5Notice only tuple deletions are used with violation views and
repairs associated to denial constraints.

200

Acknowledgments: Research funded by NSERC Discov-
ery, and the NSERC Strategic Network on Business Intelli-
gence (BIN). L. Bertossi is a Faculty Fellow of IBM CAS.
Conversations on causality in databases with Alexandra Me-
liou during Leo Bertossi’s visit to U. of Washington in 2011
are much appreciated. He is also grateful to Dan Suciu and
Wolfgang Gatterbauer for their hospitality. Leo Bertossi is
also grateful to Benny Kimelfeld for stimulating conversa-
tions at LogicBlox, and pointing out to (Kimelfeld 2012;
Kimelfeld, Vondrak, and Williams 2012).

References
Arenas, M., Bertossi, L. and Chomicki, J. Consistent Query
Answers in Inconsistent Databases. Proc. ACM PODS,
1999, pp. 68-79.
Arenas, M., Bertossi, L., Chomicki, J. Answer Sets for Con-
sistent Query Answers. Theory and Practice of Logic Pro-
gramming, 2003, 3(4&5):393-424.
Arenas, M., Bertossi, L., Chomicki, J., He, X., Ragha-
van, V. and Spinrad, J. Scalar Aggregation in Inconsistent
Databases. Theoretical Computer Science, 2003, 296:405-
434.
Arieli, O., Denecker, M., Van Nuffelen, B. and
Bruynooghe, M. Coherent Integration of Databases
by Abductive Logic Programming. J. Artif. Intell. Res.,
2004, 21:245-286.
Barcelo, P. and Bertossi, L. Repairing Databases with An-
notated Predicate Logic. Proc. NMR, 2002.
Barcelo, P., Bertossi, L. and Bravo, L. Characterizing and
Computing Semantically Correct Answers from Databases
with Annotated Logic and Answer Sets. In Semantics of
Databases, Springer LNCS 2582, 2003, pp. 1-27.
Bertossi, L. and Li, L. Achieving Data Privacy through
Secrecy Views and Null-Based Virtual Updates. IEEE
Transaction on Knowledge and Data Engineering, 2013,
25(5):987-1000.
Bertossi, L. Database Repairing and Consistent Query An-
swering. Morgan & Claypool, Synthesis Lectures on Data
Management, 2011.
Bertossi, L. Consistent Query Answering in Databases.
ACM SIGMOD Record, 2006, 35(2):68-76.
Borgida, A., Calvanese, D. and Rodriguez-Muro, M. Expla-
nation in DL-Lite. Proc. DL WS, CEUR-WS 353, 2008.
Buneman, P., Khanna, S. and Tan, W. C. Why and Where:
A Characterization of Data Provenance. Proc. ICDT, 2001,
pp. 316–330.
Buneman, P. and Tan, W. C. Provenance in Databases. Proc.
ACM SIGMOD, 2007, pp. 1171–1173.
Chapman, A., and Jagadish, H. V. Why Not? Proc. ACM
SIGMOD, 2009, pp.523–534.
Cheney, J., Chiticariu, L. and Tan, W. C. Provenance in
Databases: Why, How, And Where. Foundations and Trends
in Databases, 2009, 1(4): 379-474.
Cheney, J., Chong, S., Foster, N., Seltzer, M. I. and Van-
summeren, S. Provenance: A Future History. OOPSLA
Companion (Onward!), 2009, pp. 957–964.

Cheney, J. Is Provenance Logical? Proc. LID, 2011, pp.
2–6.
Chomicki, J. and Marcinkowski, J. Minimal-Change In-
tegrity Maintenance Using Tuple Deletions. Information
and Computation, 2005, 197(1-2):90-121.
Chockler, H. and Halpern, J. Y. Responsibility and Blame:
A Structural-Model Approach. J. Artif. Intell. Res., 2004,
22:93-115.
Console, L., Sapino M. L., Theseider-Dupre, D. The Role of
Abduction in Database View Updating. J. Intell. Inf. Syst.,
1995, 4(3): 261-280.
Cui, Y., Widom, J. and Wiener, J. L. Tracing The Lineage
of View Data in a Warehousing Environment. ACM Trans.
Database Syst., 2000, 25(2):179-227.
Eiter, Th., Faber, W., Leone, N. and Pfeifer, G. The Di-
agnosis Frontend of the DLV System. AI Commun., 1999,
12(1-2):99-111.
Gertz, M. Diagnosis and Repair of Constraint Violations in
Database Systems. PhD Thesis, Universität Hannover, 1996.
Greco, S., Pijcke, F. and Wijsen, J. Certain Query Answering
in Partially Consistent Databases. PVLDB, 2014, 7(5):353-
364.
Halpern, Y. J., and Pearl, J. Causes and Explanations: A
Structural-Model Approach: Part 1 Proc. UAI, 2001, pp.
194-202.
Halpern, Y. J., and Pearl, J. Causes and Explanations: A
Structural-Model Approach: Part 1. British J. Philosophy of
Science, 2005, 56:843-887.
Huang, J., Chen, T., Doan, A. and Naughton, J. F. On
The Provenance of Non-Answers to Queries over Extracted
Data. PVLDB, 2008, 1(1):736–747.
Kakas A. C. and Mancarella, P. Database Updates through
Abduction. Proc. VLDB, 1990, pp. 650-661.
Karvounarakis, G. and Green, T. J. Semiring-Annotated
Data: Queries and Provenance? SIGMOD Record, 2012,
41(3):5-14.
Karvounarakis, G. Ives, Z. G. and Tannen, V. Querying Data
Provenance. Proc. ACM SIGMOD, 2010, pp. 951–962.
Kimelfeld, B. A Dichotomy in the Complexity of Deletion
Propagation with Func- tional Dependencies. Proc. ACM
PODS, 2012.
Kimelfeld, B., Vondrak, J. and Williams, R. Maximizing
Conjunctive Views in Deletion Propagation. ACM Trans.
Database Syst., 2012, 37(4):24.
Lopatenko, A. and Bertossi, L. Complexity of Consistent
Query Answering in Databases under Cardinality-Based and
Incremental Repair Semantics. Proc. ICDT, 2007, Springer
LNCS 4353, pp. 179-193.
Meliou, A., Gatterbauer, W. Moore, K. F. and Suciu, D. The
Complexity of Causality and Responsibility for Query An-
swers and Non-Answers. Proc. VLDB, 2010, pp. 34-41.
Meliou, A., Gatterbauer. W., Halpern, J. Y., Koch, C., Moore
K. F. and Suciu, D. Causality in Databases. IEEE Data Eng.
Bull, 2010, 33(3):59-67.

201

Reiter, R. A Theory of Diagnosis from First Principles. Ar-
tificial Intelligence, 1987, 32(1):57-95.
Reiter, R. Towards a Logical Reconstruction of Relational
Database Theory. In On Conceptual Modelling, Springer,
1984, pp. 191-233.
Staworko, S., Chomicki, J. and Marcinkowski, J. Prioritized
Repairing and Consistent Query Answering in Relational
Databases. Ann. Math. Artif. Intell., 2012, 64(2-3):209-246.
Struss, P. Model-based Problem Solving. In Handbook of
Knowledge Representation, chapter 10. Elsevier, 2008.
Tannen, V. Provenance Propagation in Complex Queries.
In Buneman Festschrift, 2013, Springer LNCS 8000, pp.
483173.
Yakout, M., Elmagarmid, A., Neville, J., Ouzzani, M. and
Ilyas, I. Guided Data Repair. PVLDB, 2011, 4(5):279-289.

202

Interactive Debugging of ASP Programs

Kostyantyn Shchekotykhin
University Klagenfurt, Austria

kostya@ifit.uni-klu.ac.at

Abstract

Broad application of answer set programming (ASP)
for declarative problem solving requires the develop-
ment of tools supporting the coding process. Program
debugging is one of the crucial activities within this
process. Modern ASP debugging approaches allow ef-
ficient computation of possible explanations of a fault.
However, even for a small program a debugger might
return a large number of possible explanations and se-
lection of the correct one must be done manually. In
this paper we present an interactive query-based ASP
debugging method which extends previous approaches
and finds a preferred explanation by means of observa-
tions. The system automatically generates a sequence of
queries to a programmer asking whether a set of ground
atoms must be true in all (cautiously) or some (bravely)
answer sets of the program. Since some queries can be
more informative than the others, we discuss query se-
lection strategies which, given user’s preferences for
an explanation, can find the best query. That is, the
query an answer of which reduces the overall number
of queries required for the identification of a preferred
explanation.

Introduction
Answer set programming is a logic programming paradigm
(Baral 2003; Brewka, Eiter, and Truszczynski 2011; Geb-
ser et al. 2012) for declarative problem solving that has
become popular during the last decades. The success of
ASP is based on its fully declarative semantics (Gelfond
and Lifschitz 1991) and availability of efficient solvers, e.g.
(Simons, Niemelä, and Soininen 2002; Leone et al. 2006;
Gebser et al. 2011). Despite a vast body of the theoreti-
cal research on foundations of ASP only recently the atten-
tion was drawn to the development of methods and tools
supporting ASP programmers. The research in this direc-
tion focuses on a number of topics including integrated de-
velopment environments (Febbraro, Reale, and Ricca 2011;
Oetsch, Pührer, and Tompits 2011b; Sureshkumar et al.
2007), visualization (Cliffe et al. 2008), modeling tech-
niques (Oetsch et al. 2011) and, last but not least, debugging
of ASP programs.

Modern ASP debugging approaches are mostly based on
declarative strategies. The suggested methods use elegant
techniques applying ASP itself to debug ASP programs. The

idea is to transform a faulty program in the special debug-
ging program whose answer sets explain possible causes of a
fault. These explanations are given by means of meta-atoms.
A set of meta-atoms explaining a discrepancy between the
set of actual and expected answer sets is called a diagno-
sis. In practice considering all possible diagnoses might be
inefficient. Therefore, modern debugging approaches apply
built-in minimization techniques of ASP solvers to compute
only diagnoses comprising the minimal number of elements.
In addition, the number of diagnoses can be reduced by so
called debugging queries, i.e. sets of integrity constraints fil-
tering out irrelevant diagnoses.

The computation of diagnoses is usually done by con-
sidering answer sets of a debugging program. In the ap-
proach of (Syrjänen 2006) a diagnosis corresponds to a set
of meta-atoms indicating that a rule is removed from a pro-
gram. (Brain et al. 2007) use the tagging technique (Del-
grande, Schaub, and Tompits 2003) to obtain more fine-
grained diagnoses. The approach differentiates between four
types of problems: unsatisfied rules, unsupported atoms and
unfounded loops. Each problem type is denoted by a spe-
cial meta-predicate. Extraction of diagnoses can be done by
a projection of an answer set of a debugging program to
these meta-predicates. The most recent techniques (Gebser
et al. 2008; Oetsch, Pührer, and Tompits 2010) apply meta-
programming, where a program over a meta language is used
to manipulate a program over an object language. Answer
sets of a debugging meta-program comprise sets of atoms
over meta-predicates describing faults of the similar nature
as in (Brain et al. 2007).

The main problem of the aforementioned declarative ap-
proaches is that in real-world scenarios it might be prob-
lematic for a programmer to provide a complete debugging
query. Namely, in many cases a programmer can easily spec-
ify some small number of atoms that must be true in a de-
sired answer set, but not a complete answer set. In this case
the debugging system might return many alternative diag-
noses. Our observations of the students developing ASP pro-
grams shows that quite often the programs are tested and
debugged on some small test instances. This way of devel-
opment is quite similar to modern programming method-
ologies relying on unit tests (Beck 2003) which were im-
plemented in ASPIDE (Febbraro et al. 2013) recently. Each
test case calls a program for a predefined input and verifies

203

whether the actual output is the same as expected. In terms
of ASP, a programmer often knows a set of facts encoding
the test problem instance and a set of output atoms encoding
the expected solution of the instance. What is often unknown
are the “intermediate” atoms used to derive the output atoms.
However, because of these atoms multiple diagnoses are
possible. The problem is to find and add these atoms to
a debugging query in a most efficient way1. Existing de-
bugging systems (Brain and Vos 2005; Gebser et al. 2008;
Oetsch, Pührer, and Tompits 2010) can be used in an “inter-
active” mode in which a user specifies only a partial debug-
ging query as an input. Given a set of diagnoses computed
by a debugger the user extends the debugging query, thus,
filtering out irrelevant answer sets of a meta-program. How-
ever, this sort of interactivity still requires a user to select
and provide atoms of the debugging query manually.

Another diagnosis selection issue is due to inability of a
programmer to foresee all consequences of a diagnosis, i.e.
in some cases multiple interpretations might have the same
explanation for not being answer sets. The simplest example
is an integrity constraint which can be violated by multiple
interpretations. In this case the modification of a program
accordingly to a selected diagnosis might have side-effects
in terms of unwanted answer sets. These two problem are
addressed by our approach which helps a user to identify the
target diagnosis. The latter is the preferred explanation for a
given set of atoms not being true in an answer set, on the one
hand, and is not an explanation for unwanted interpretations,
on the other.

In this paper we present an interactive query-based de-
bugging method for ASP programs which differentiates be-
tween the diagnoses by means of additional observations (de
Kleer and Williams 1987; Shchekotykhin et al. 2012). The
latter are acquired by automatically generating a sequence
of queries to an oracle such as a user, a database, etc. Each
answer is used to reduce the set of diagnoses until the target
diagnosis is found. In order to construct queries our method
uses the fact that in most of the cases different diagnoses
explain why different sets of interpretations are not answer
sets. Consequently, we can differentiate between diagnoses
by asking an oracle whether a set of atoms must be true or
not in all/some interpretations relevant to the target diagno-
sis. Each set of atoms which can be used as a query is gener-
ated by the debugger automatically using discrepancies in
the sets of interpretations associated with each diagnosis.
Given a set of queries our method finds the best query ac-
cording to a query selection strategy chosen by a user.

The suggested debugging approach can use a variety of
query selection strategies. In this paper we discuss my-
opic and one step look-ahead strategies which are com-
monly used in active learning (Settles 2012). A myopic
strategy implements a kind of greedy approach which in
our case prefers queries that allow to reduce a set of diag-
noses by half, regardless of an oracle’s answer. The one step

1A recent user study indicates that the same problem can
be observed also in the area of ontology debugging (see
https://code.google.com/p/rmbd/wiki/UserStudy for preliminary
results).

look-ahead strategy uses beliefs/preferences of a user for a
cause/explanation of an error represented in terms of prob-
ability. Such a strategy selects those queries whose answers
provide the most information gain, i.e. in whose answers a
strategy is most uncertain about. New information provided
by each answer is taken into account using Bayes-update.
This allows the strategy to adapt its behavior on the fly.

To the best of our knowledge there are no approaches to
interactive query-based ASP debugging allowing automatic
generation and selection of queries. The method presented
in this paper suggests an extension of the current debugging
techniques by an effective user involvement in the debug-
ging process.

Preliminaries
A disjunctive logic program (DLP) Π is a finite set of rules
of the form

h1 ∨ · · · ∨ hl ← b1, . . . , bm, not bm+1, . . . , not bn

where all hi and bj are atoms and 0 ≤ l,m, n. A literal is
an atom b or its negation not b. Each atom is an expression
of the form p(t1, . . . , tk), where p is a predicate symbol and
t1, . . . , tk are terms. A term is either a variable or a constant.
The former is denoted by a string starting with an uppercase
letter and the latter starting with a lowercase one. A literal,
a rule or a program is called ground, if they are variable-
free. A non-ground program Π, its rules and literals can be
grounded by substitution of variables with constants appear-
ing in Π. We denote the grounded instantiation of a program
Π by Gr(Π) and by At(Π) the set of all ground atoms ap-
pearing in Gr(Π).

The set of atoms H(r) = {h1, . . . , hl} is called
the head of the rule r, whereas the set B(r) =
{b1, . . . , bm, not bm+1, . . . , not bn} is the body of r. In ad-
dition, it is useful to differentiate between the sets B+(r) =
{b1, . . . , bm} and B−(r) = {bm+1, . . . , bn} comprising
positive and negative body atoms. A rule c ∈ Π with
H(c) = ∅ is an integrity constraint and a rule f ∈ Π with
B(f) = ∅ is a fact. A rule r is normal, if |H(r)| ≤ 1. A
normal program includes only normal rules.

An interpretation I for Π is a set of ground atoms
I ⊆ At(Π). A rule r ∈ Gr(Π) is applicable under I , if
B+(r) ⊆ I and B−(r) ∩ I = ∅, otherwise the rule is
blocked. We say that r is unsatisfied by I , if it is appli-
cable under I and H(r) ∩ I = ∅; otherwise r is satis-
fied. An interpretation I is a model of Π, if it satisfies ev-
ery rule r ∈ Gr(Π). For a ground program Gr(Π) and an
interpretation I the Gelfond-Lifschitz reduct is defined as
ΠI = {H(r)← B+(r)|r ∈ Gr(Π), I ∩B−(r) = ∅}. I is
an answer set of Π, if I is a minimal model of ΠI (Gelfond
and Lifschitz 1991). The program Π is inconsistent, if the
set of all answer sets AS(Π) = ∅.

(Lee 2005) provides another characterization of answer
sets of a program Π based on the notion of support. Thus, a
rule r ∈ Gr(Π) is a support for A ⊆ At(Π) with respect to
I , if a rule r is applicable under an interpretation I , H(r) ∩
A 6= ∅ and H(r)∩ I ⊆ A. A support is external, if B+(r)∩
A = ∅. A set of ground atoms A is unsupported by Π with

204

respect to I , if no rule in Gr(Π) supports it. A loop is a non-
empty set L ⊆ At(Π) such that for any two distinct atoms
ai, aj ∈ L there is a path P in a positive dependency graph
G = (At(Π), {(h, b)|r ∈ Gr(Π), h ∈ H(r), b ∈ B+(r)}),
where P 6= ∅ and P ⊆ L. A loop L is unfounded by Π
with respect to I , if no rule in Gr(Π) supports it externally;
otherwise L is founded. An interpretation I is an answer set
of Π, iff I is a model of Π such that each atom a ∈ I is
supported and each loop L ⊆ I is founded (Lee 2005).

Debugging of ASP programs
The approach presented in our paper is based on the meta-
programming technique presented in (Gebser et al. 2008).
This debugging method focuses on the identification of se-
mantical errors in a disjunctive logic program, i.e. disagree-
ments between the actual answer sets of a program and the
expected ones. The main idea is to use a program over a
meta-language that manipulates another program over an
object-language. The latter is a ground disjunctive program
Π and the former is a non-ground normal logic program
∆[Π]. Each answer set of a meta-program ∆[Π] comprises
a set of atoms specifying an interpretation I and a number
of meta-atoms showing, why I is not an answer set of a pro-
gram Π. In addition, the method guarantees that there is at
least one answer set of ∆[Π] for each interpretation I which
is not an answer set of Π.

The debugger provides explanations of four error types
denoted by the corresponding error-indicating predicates:

1. Unsatisfied rules: I is not a classical model of Gr(Π) be-
cause the logical implication expressed by a rule r is false
under I . Atom unsatisfied(idr) in an answer set of ∆[Π]
expresses that a rule r is unsatisfied by I , where idr is a
unique identifier of a rule r ∈ Π.

2. Violated integrity constraints: I cannot be an answer set
of Gr(Π), if a constraint r is applicable under I . Atom
violated(idr) indicates that r is violated under I .

3. Unsupported atoms: there is no rule r ∈ Gr(Π) which al-
lows derivation of {a} ⊆ I and, therefore, I is not a min-
imal model of ΠI . Each unsupported atom a is indicated
by an atom unsupported(ida) in an answer set of ∆[Π],
where ida is a unique identifier of an atom a ∈ At(Π).

4. Unfounded loops: I is not a minimal model of ΠI , if a
loop L ⊆ I is unfounded by a program Π with respect
to I . An atom ufLoop(ida) expresses that an atom a ∈
At(Π) belongs to the unfounded loop L.

The set Er(∆[Π]) ⊆ At(∆[Π]) comprises all ground atoms
over error-indicating predicates of the meta-program ∆[Π].

There are seven static modules in the meta-program ∆[Π],
see (Gebser et al. 2008). The input module πin comprises
two sets of facts about atoms {atom(ida)← |a ∈ At(Π)}
and rules {rule(idr)← |r ∈ Π} of the program Π. More-
over, for each rule r ∈ Π the module πin defines which
atoms are in H(r), B+(r) and B−(r). Module πint gener-
ates an arbitrary interpretation I of a program Π as follows:

int(A)← atom(A), not int(A)

int(A)← atom(A), not int(A)

where atom int(A) is complimentary to the atom int(A),
i.e. no answer set can comprise both atoms. The module πap

checks for every rule, whether it is applicable or blocked un-
der I . The modules πsat, πsupp and πufloop are responsible
for the computation of at least one of the four explanations
why I is not an answer set of Π listed above. Note, πufloop

searches for unfounded loops only among atoms supported
by Π with respect to I . This method ensures that each of the
found loops is critical, i.e. it is a reason for I not being an
answer set of Π. The last module, πnoas restricts the answer
sets of ∆[Π] only to those that include any of the atoms over
the error-indicating predicates.

The fault localization is done manually by means of
debugging queries which specify an interpretation to be
investigated as a set of atoms, e.g. I = {a}. Then
I is transformed into a finite set of constraints, e.g.{
← int(ida),← int(idb), . . .

}
, pruning irrelevant answer

sets of ∆[Π].

Fault localization in ASP programs
In our work we extend the meta-programming approach by
allowing a user to specify background theory B as well as
positive P and negativeN test cases. In this section we show
how this additional information is used to keep the search
focused only on relevant interpretations and diagnoses.

Our idea of background knowledge is similar to (Brain
et al. 2007) and suggests that some set of rules B ⊆ Π
must be considered as correct by the debugger. In the meta-
programming method the background theory can be ac-
counted by addition of integrity constraints to πnoas which
prune all answer sets of ∆[Π] suggesting that r ∈ B is faulty.
Definition 1. Let ∆[Π] be a meta-program and B ⊆ Π a set
of rules considered as correct. Then, a debugging program
∆[Π,B] is defined as an extension of ∆[Π] with the rules:

{ ← rule(idr), violated(idr),
← rule(idr), unsatisfied(idr) | r ∈ B}

In addition to background knowledge, further restrictions
on the set of possible explanations of a fault can be made by
means of test cases.
Definition 2. Let ∆[Π,B] be a debugging program. A test
case for ∆[Π,B] is a set A ⊆ At(∆[Π,B]) of ground atoms
over int/1 and int/1 predicates.

The test cases are either specified by a user before a de-
bugging session or acquired by a system automatically as we
show in subsequent sections.
Definition 3. Let ∆[Π,B] be a debugging program and
D ⊆ Er(∆[Π,B]) a set of atoms over error-indicating pred-
icates. Then a diagnosis program forD is defined as follows:
∆[Π,B,D] := ∆[Π,B] ∪ {← di | di ∈ Er(∆[Π,B]) \ D}

In our approach we allow four types of test cases corre-
sponding to the two ASP reasoning tasks (Leone et al. 2006):
• Cautious reasoning: all atoms a ∈ A are true in all answer

sets of the diagnosis program, resp. ∆[Π,B,Dt] |=c A,
or not, resp. ∆[Π,B,Dt] 6|=c A. Cautiously true test cases
are stored in the set CT + whereas cautiously false in the
set CT−.

205

• Brave reasoning: all atoms a ∈ A are true in some answer
set of the diagnosis program, resp. ∆[Π,B,Dt] |=b A, or
not, resp. ∆[Π,B,Dt] 6|=b A. The set BT + comprises all
bravely true test cases and the set BT− all bravely false
test cases.
In the meta-programming approach we handle the test

cases as follows: Let I be a set of ground atoms resulting
from a projection of an answer set as ∈ AS(∆[Π,B,D])
to the predicates int/1 and int/1. By Int(∆[Π,B,D])
we denote a set comprising all sets Ii for all asi ∈
AS(∆[Π,B,D]). Each set of grounded atoms I corresponds
to an interpretation I of the program Π which is not an an-
swer set of Π as explained by D. The set Int(∆[Π,B,D])
comprises a meta representation of each such interpreta-
tion for a diagnosis D. Given a set of grounded atoms A,
we say that I satisfies A (denoted I |= A), if A ⊆ I.
Int(∆[Π,B,D]) satisfies A (denoted Int(∆[Π,B,D]) |=
A), if I |= A for every I ∈ Int(∆[Π,B,D]). Analogously,
we say that a set Int(∆[Π,B,D]) is consistent with A, if
there exists I ∈ Int(∆[Π,B,D]) which satisfies A.

Let A be a test case, then A denotes a comple-
mentary test case, i.e. A =

{
int(a) | int(a) ∈ A

}
∪{

int(a) | int(a) ∈ A
}

. For the verification whether a diag-
nosis program ∆[Π,B,D] fulfills all test cases it is sufficient
to check if the following conditions hold:
• Int(∆[Π,B,D]) |= ct+ ∀ct+ ∈ CT +

• Int(∆[Π,B,D]) |= bt− ∀bt− ∈ BT−

• Int(∆[Π,B,D]) ∪ ct− is consistent ∀ct− ∈ CT−

• Int(∆[Π,B,D]) ∪ bt+ is consistent ∀bt+ ∈ BT +

As we can see a diagnosis program has the same verification
procedure with respect to both cautiously true CT + bravely
false BT− test cases. The same holds for the cautiously false
CT− and bravely true BT + test cases. Therefore, in the
following we can consider only the set of positive test cases
P and the set of negative test cases N which are defined as:

P := CT + ∪
{

bt− | bt− ∈ BT−
}

N := BT + ∪
{

ct− | ct− ∈ CT−
}

Definition 4. Let ∆[Π,B] be a debugging program, P be a
set of positive test cases,N be a set of negative test cases and
Er(∆[Π,B]) denote a set of all ground atoms over error-
indicating predicates of ∆[Π,B]. A diagnosis problem is to
find such set of atoms D ⊆ Er(∆[Π,B]), called diagnosis,
such that the following requirements hold:
• the diagnosis program ∆[Π,B,D] is consistent,
• Int(∆[Π,B,D]) |= p ∀p ∈ P ,
• Int(∆[Π,B,D]) is consistent with n ∀n ∈ N .
A tuple 〈∆[Π,B], P,N〉 is a diagnosis problem instance
(DPI).

In the following we assume that the background theory B
together with the sets of test cases P and N always allow
computation of the target diagnosis. That is, a user provides
reasonable background knowledge as well as positive and
negative test cases that do not interfere with each other.

Proposition 1. A diagnosis D for a DPI 〈∆[Π,B], P,N〉
does not exists if either (i) ∆′ := ∆[Π,B] ∪
{ai ← | ai ∈ p,∀p ∈ P} is inconsistent or (ii) ∃n ∈ N such
that the program ∆′ ∪ {ai ← | ai ∈ n} is inconsistent.

Proof. In the first case if ∆′ is inconsistent, then either
∆[Π,B] has no answer sets or every answer set of ∆[Π,B]
comprises an atom over int/1 or int/1 predicate compli-
mentary to some atom of a test case p ∈ P . The latter means
that for any D ⊆ Er(∆[Π,B]) there exists p ∈ P such that
∆[Π,B,D] 6|= p. In the second case there exists a negative
test case which is not consistent with any possible diagnosis
program ∆[Π,B,D] for any D ⊆ Er(∆[Π,B]). Therefore
in neither of the two cases requirements given in Definition 4
can be fulfilled for any D ⊆ Er(∆[Π,B]).

Verification whether a set of atoms over error-indicating
predicates is a diagnosis with respect to Definition 4 can be
done according to the following proposition.

Proposition 2. Let 〈∆[Π,B], P,N〉 be a DPI. Then, a set of
atoms D ⊆ Er(∆[Π,B]) is a diagnosis for 〈∆[Π,B], P,N〉
iff ∆′ := ∆[Π,B,D] ∪

⋃
p∈P {ai ← | ai ∈ p} is consistent

and ∀n ∈ N : ∆′ ∪ {ai ← | ai ∈ n} is consistent.

Proof. (sketch) (⇒) Let D be a diagnosis for
〈∆[Π,B], P,N〉. Since ∆[Π,B,D] is consistent and
Int(∆[Π,B,D]) |= p for all p ∈ P it follows that
∆[Π,B,D] ∪

⋃
p∈P {ai ← | ai ∈ p} is consistent.

The latter program has answer sets because every
p ∈ P is a subset of every I ∈ Int(∆[Π,B,D]).
In addition, since the set of meta-interpretations
Int(∆[Π,B,D]) is consistent with every n ∈ N there
exists such set I ∈ Int(∆[Π,B,D]) that n ⊆ I. Therefore
the program ∆[Π,B,D] ∪ {ai ← | ai ∈ n} has at least one
answer set. Taking into account that ∆′ is consistent we can
conclude that ∆′ ∪ {ai ← | ai ∈ n} is consistent as well.

(⇐) Let D ⊆ Er(∆[Π,B]) and 〈∆[Π,B], P,N〉 be
a DPI. Since ∆′ is consistent the diagnosis program
∆[Π,B,D] is also consistent. Moreover, for all p ∈
P Int(∆[Π,B,D]) |= p because {ai ← | ai ∈ p} ⊆
∆′. Finally, for every n ∈ N consistency of ∆′ ∪
{ai ← | ai ∈ n} implies that there must exist an interpre-
tation I ∈ Int(∆[Π,B,D]) satisfying n.

Definition 5. A diagnosis D for a DPI 〈∆[Π,B], P,N〉 is
a minimal diagnosis iff there is no diagnosis D′ such that
|D′| < |D|.

In our approach we consider only minimal diagnoses of
a DPI since they might require less changes to the program
than non-minimal ones and, thus, are usually preferred by
users. However, this does not mean that our debugging ap-
proach is limited to minimal diagnoses of an initial DPI. As
we will show in the subsequent sections the interactive de-
bugger acquires test cases and updates the DPI automatically
such that all possible diagnoses of the initial DPI are in-
vestigated. Computation of minimal diagnoses can be done
by extension of the debugging program with such optimiza-
tion criteria that only answer sets including minimal number
of atoms over error-indicating predicates are returned by a

206

solver. Also, in practice a set of all minimal diagnoses is of-
ten approximated by a set of n diagnoses in order to improve
the response time of a debugging system.

Computation of n diagnoses for the debugging program
∆[Π,B] of a problem instance 〈∆[Π,B], P,N〉 is done as
shown in Algorithm 1. The algorithm calls an ASP solver
to compute one answer set as of the debugging program
(line 3). In case ∆[Π,B] has an answer set the algorithm
obtains a set D (line 5) and generates a diagnosis program
∆[Π,B,D] (line 6). The latter, together with the sets of
positive and negative test cases is used to verify whether
D is a diagnosis or not (line 7). All diagnoses are stored
in the set D. In order to exclude the answer set as from
AS(∆[Π,B]) the algorithm calls the EXCLUDE function
(line 8) which extends the debugging program with the fol-
lowing integrity constraint, where atoms d1, . . . , dn ∈ D
and dn+1, . . . , dm ∈ Er(∆[Π,B]) \ D:

← d1, . . . , dn, not dn+1, . . . , not dm

Note, similarly to the model-based diagnosis (Reiter
1987; de Kleer and Williams 1987) our approach assumes
that each error-indicating atom er ∈ D is relevant to an ex-
planation of a fault, whereas all other atoms Er(∆[Π]) \ D
are not. That is, some interpretations are not an answer sets
of a program only because of reasons suggested by a diag-
nosis. Consequently, if a user selects a diagnosisD resulting
in the debugging process, i.e. declares D as a correct ex-
planation of a fault, then all other diagnoses automatically
become incorrect explanations.

Example Let us exemplify our debugging approach on the
following program Πe:

r1 : a← not d r2 : b← a r3 : c← b

r4 : d← c r5 :← d

Assume also that the background theory B = {← d} and,
therefore, the debugging program ∆[Πe,B] comprises two
integrity constraints:

← rule(idr5), violated(idr5)
← rule(idr5), unsatisfied(idr5)

Since the program Πe is inconsistent, a user runs the de-
bugger to clarify the reason. In fact, the inconsistency is
caused by an odd loop. That is, if d is set to false, then the
body of the rule r1 is satisfied and a is derived. However,
given a and the remaining rules d must be set to true. In
case when d is true, a is not derived and, consequently, there
is no justification for d. The debugging program ∆[Πe,B]
of a DPI 1 := 〈∆[Πe,B], ∅, ∅〉 has 16 answer sets. The ad-
dition of optimization criteria allows to reduce the number
of answer sets to 4 comprising only the minimal number of
atoms over the error-indicating predicates. Since both sets
of test cases are empty, a projection of these answer sets to
the error-indicating predicates results in the following diag-
noses:

D1 : {unsatisfied(idr1)} D2 : {unsatisfied(idr2)}
D3 : {unsatisfied(idr3)} D4 : {unsatisfied(idr4)}

Definition 4 allows to identify the target (preferred) di-
agnosis Dt for the program Πe by providing sufficient in-
formation in the sets B, P and N . Assume that DPI 1

is updated with two test cases – one positive {int(a)}
and one negative

{
int(b)

}
– and the debugger gener-

ates DPI 2 :=
〈
∆[Πe,B], {{int(a)}} ,

{{
int(b)

}}〉
. These

test cases require Int(∆[Πe,B,Dt]) |= {int(a)} and
Int(∆[Πe,B,Dt]) to be consistent with

{
int(b)

}
corre-

spondingly. Given this information the debugger will re-
turn only one diagnosis in our example, namely D2, since
Int(∆[Πe,B,D2]) |= {int(a)} and Int(∆[Πe,B,D2]) is
consistent with

{
int(b)

}
. Indeed, a simple correction of Πe

by a user removing the rule r2 results in a consistent pro-
gram Π2 such that all new answer sets of Π2 fulfill all given
test cases. All other sets of atoms D1,D3,D4 are not diag-
noses of DPI 2 because they violate the requirements. Thus,
Int(∆[Πe,B,D1]) 6|= {int(a)} and Int(∆[Πe,B,Di]) is
not consistent with

{
int(b)

}
for Di ∈ {D3,D4}. Conse-

quently, D2 is the only possible diagnosis and it is accepted
by a user as the target diagnosis Dt.

Query-based diagnosis discrimination
The debugging system might generate a set of diagnoses
for a given DPI. In our example for simple DPI 1 the de-
bugger returns four minimal diagnoses {D1, . . . ,D4}. As
it is shown in the previous section, additional information,
provided in the background theory and test cases of a DPI
〈∆[Π,B], P,N〉 can be used by the debugging system to re-
duce the set of diagnoses. However, in a general case the user
does not know which sets of test cases should be provided
to the debugger s.t. the target diagnosis can be identified.
That is, in many cases it might be difficult to provide a com-
plete specification of a debugging query localizing a fault.
Therefore, the debugging method should be able to find an
appropriate set of atoms A ⊆ At(Π) on its own and only
query the user or some other oracle, whether these atoms
are cautiously/bravely true/false in the interpretations asso-
ciated with the target diagnosis. To generate a query for a set
of diagnoses D = {D1, . . . ,Dn} the debugging system can
use the diagnosis programs ∆[Π,B,Di], where Di ∈ D.

Since in many cases different diagnoses explain why dif-
ferent sets of interpretations of a program Π are not its
answer sets, we can use discrepancies between the sets
of interpretations to discriminate between the correspond-
ing diagnoses. In our example, for each diagnosis program
∆[Πe,B,Di] an ASP solver returns a set of answer sets en-
coding an interpretation which is not an answer set of Πe and
a diagnosis, see Table 1. Without any additional information
the debugger cannot decide which of these atoms must be
true in the missing answer sets of Πe. To get this informa-
tion the debugging algorithm should be able to access some
oracle which can answer a number of queries.

Definition 6. Let 〈∆[Π,B], P,N〉 be a DPI, then a query is
set of ground atoms Q ⊆ At(Π).

Each answer of an oracle provides additional informa-
tion which is used to update the actual DPI 〈∆[Π,B], P,N〉.
Thus, if an oracle answers

207

Algorithm 1: COMPUTEDIAGNOSES(〈∆[Π,B], P,N〉 , n)
Input: DPI 〈∆[Π,B], P,N〉, maximum number of minimal diagnoses n
Output: a set of diagnoses D
D← ∅;1
while |D| < n do2

as← GETANSWERSET(∆[Π,B]);3
if as = ∅ then exit loop;4
D ← as ∩ Er(∆[Π,B]));5
∆[Π,B,D]← DIAGNOSISPROGRAM(∆[Π,B],D);6
if VERIFY(∆[Π,B,D], P,N) then D← D ∪ {D};7
∆[Π,B]← EXCLUDE(∆[Π,B],D);8

return D;9

Diagnosis Interpretations

D1 : unsatisfied(idr1)
{{
int(a), int(b), int(c), int(d)

}}
D2 : unsatisfied(idr2)

{{
int(a), int(b), int(c), int(d)

}}
D3 : unsatisfied(idr3)

{{
int(a), int(b), int(c), int(d)

}}
D4 : unsatisfied(idr4)

{{
int(a), int(b), int(c), int(d)

}}
Table 1: Interpretations Int(∆[Πe,B,Di]) for each of the diagnoses D = {D1, . . . ,D4}.

• cautiously true, the set {int(a) | a ∈ Q} is added to P ;

• cautiously false, the set
{
int(a) | a ∈ Q

}
is added to N ;

• bravely true, the set {int(a) | a ∈ Q} is added to N ;

• bravely false, the set
{
int(a) | a ∈ Q

}
is added to P .

The goal of asking a query is to obtain new information
characterizing the target diagnosis. For instance, the de-
bugger asks a user about classification of the set of atoms
{c}. If the answer is cautiously true, the new DPI 3 =
〈∆[Πe,B], {{int(c)}} , ∅〉 has only one diagnosis D4 which
is the target diagnosis w.r.t. a user answer. All other minimal
sets of atoms over error-indicating predicates are not diag-
noses because they do not fulfill the necessary requirements
of Definition 4. If the answer is bravely false, then the set{
int(c)

}
is added to P and D4 is rejected. Consequently,

we have to ask an oracle another question in order to dis-
criminate between the remaining diagnoses. Since there are
many subsets of At(Π) which can be queried, the debugger
has to generate and ask only those queries which allow to
discriminate between the diagnoses of the current DPI.

Definition 7. Each diagnosis Di ∈ D for a DPI
〈∆[Π,B], P,N〉 can be assigned to one of the three sets DP,
DN or D∅ depending on the query Q where:

• Di ∈ DP if it holds that:

Int(∆[Π,B,Di]) |= {int(a) | a ∈ Q}

• Di ∈ DN if it holds that:

Int(∆[Π,B,Di]) |=
{
int(a) | a ∈ Q

}
• Di ∈ D∅ if Di 6∈

(
DP ∪DN

)

A partition of the set of diagnoses D with respect to a query
Q is denoted by a tuple

〈
Q,DP

i ,D
N
i ,D

∅
i

〉
.

Given a DPI we say that the diagnoses in DP predict a
positive answer (yes) as a result of the queryQ, diagnoses in
DN predict a negative answer (no), and diagnoses in D∅ do
not make any predictions. Note, the answer yes corresponds
to classification of the query to the set of positive test cases
P , whereas the answer no is a result of a classification of the
query to the set of negative test cases N . Therefore, without
limiting the generality, in the following we consider only
these two answers.

The notion of a partition has an important property.
Namely, each partition

〈
Q,DP

i ,D
N
i ,D

∅
i

〉
indicates the

changes in the set of diagnoses after the sets of test cases
of an actual DPI are updated with respect to the answer of
an oracle.
Property 1. Let D be a set of diagnoses for a DPI
〈∆[Π,B], P,N〉,Q be a query,

〈
Q,DP

i ,D
N
i ,D

∅
i

〉
be a par-

tition of D with respect to Q and v ∈ {yes,no} be an an-
swer of an oracle to a query Q.
• if v = yes , then the set of diagnoses D′ for the updated

DPI 〈∆[Π,B], P ′, N〉 does not comprise any elements of
DN, i.e. D′ ∩DN = ∅ and (DP ∪D∅) ⊆ D′.

• if v = no, then for set of diagnoses D′ of the updated
DPI 〈∆[Π,B], P,N ′〉 it holds that D′ ∩ DP = ∅ and
(DN ∪D∅) ⊆ D′.
Consequently, depending on the answer of an oracle to a

query Q the set of diagnoses of an updated diagnosis prob-
lem instance comprises either DP ∪D∅ or DN ∪D∅.

In order to generate queries, we have to investigate for
which sets DP,DN ⊆ D a query exists that can be used to

208

Algorithm 2: FINDPARTITIONS(〈∆[Π,B], P,N〉 ,D)
Input: DPI 〈∆[Π,B], P,N〉, a set of diagnoses D
Output: a set of partitions PR
PR← ∅;1

foreach DP
i ∈ P (D) do2

Ei ← COMMONATOMS(DP
i);3

Qi ← {a | int(a) ∈ Ei};4
if Qi 6= ∅ then5 〈

Qi,DP
i ,D

N
i ,D

∅
i

〉
← GENERATEPARTITION(Qi,D,DP

i);6

if DN
i 6= ∅ then PR← PR ∪ {

〈
Qi,DP

i ,D
N
i ,D

∅
i

〉
};7

return PR;8

differentiate between them. A straight forward approach to
query generation is to generate and verify all possible sub-
sets of D. This is feasible if we limit the number n of mini-
mal diagnoses to be considered during the query generation
and selection. For instance, given n = 9 the algorithm has to
verify 512 partitions in the worst case. In general, the num-
ber of diagnoses n must be selected by a user depending on
personal time requirements. The larger is the value of n the
more time is required to compute a query, but an answer to
this query will provide more information to a debugger.

Given a set of diagnoses D for a DPI 〈∆[Π,B], P,N〉 Al-
gorithm 2 computes a set of partitions PR comprising all
queries that can be used to discriminate between the diag-
noses in D. For each element DP

i of the power setP (D) the
algorithm checks whether there is a set of atoms common
to all interpretations of all diagnoses in DP

i . The function
COMMONATOMS (line 3) returns an intersection of all sets
I ∈ Int(∆[Π,B,Dj]) for all Dj ∈ DP

i . Given a non-empty
query the function GENERATEPARTITION (line 6) uses Def-
inition 7 to obtain a partition by classifying each diagnosis
Dk ∈ D \ DP

i into one of the sets DP
i , DN

i or D∅i . Fi-
nally, all partitions allowing to discriminate between the di-
agnoses, i.e. comprising non-empty sets DP

i and DN
i , are

added to the set PR.

Example (cont.) Reconsider the set of diagnoses D =
{D1,D2,D3,D4} for the DPI 〈∆[Πe, {← d}], ∅, ∅〉. The
power set P (D) = {{D1}, {D2} , . . . , {D1,D2,D3,D4}}
comprises 15 elements, assuming we omit the element
corresponding to ∅ since it does not allow to compute a
query. In each iteration an element of P (D) is assigned
to the set DP

i . For instance, the algorithm assigned DP
0 =

{D1,D2}. In this case the set Q0 is empty since the set
E0 =

{
int(b), int(c), int(d)

}
(see Table 1). Therefore,

the set {D1,D2} is rejected and removed from P (D).
Assume that in the next iteration the algorithm selected
DP

1 = {D2,D3}, for which the set of common atoms
E1 =

{
int(a), int(c), int(d)

}
and, thus, Q1 = {a}.

The remaining diagnoses D1 and D4 are classified accord-
ing to Definition 7. That is, the algorithm selects the first
diagnosis D1 and verifies whether Int(∆[Π,B,D1]) |=
{int(a)}. Given the negative answer, the algorithm checks

if Int(∆[Π,B,D1]) |=
{
int(a)

}
. Since the condition is sat-

isfied the diagnosis D1 is added to the set DN
1 . The second

diagnosisD4 is added to the set DP
1 as it satisfies the first re-

quirement Int(∆[Π,B,D4]) |= {int(a)}. The resulting par-
tition 〈{a}, {D2,D3,D4}, {D1}, ∅〉 is added to the set PR.
In general, Algorithm 2 returns a large number of possible
partitions and the debugger has to select the best one. A ran-
dom selection might not be a good strategy as it can overload
an oracle with unnecessary questions (see (Shchekotykhin
et al. 2012) for an evaluation of a random strategy). There-
fore, the debugger has to decide query of which partition
should be asked first in order to minimize the total num-
ber of queries to be answered. Query selection is the cen-
tral topic of active learning (Settles 2012) which is an area
of machine learning developing methods that are allowed to
query an oracle for labels of unlabeled data instances. Most
of the query selection measures used in active learning can
be applied within our approach. In this paper, we discuss
two query selection strategies, namely, myopic and one step
look-ahead.

Myopic query strategies determine the best query us-
ing only the set of partitions PR. A popular “Split-in-
half” strategy prefers those queries which allow to remove
a half of the diagnoses from the set D, regardless of the an-
swer of an oracle. That is, “Split-in-half” selects a partition〈
Qi,DP

i ,D
N
i ,D

∅
i

〉
such that |DP

i | = |DN
i | and D∅i = ∅. In

our example, 〈{b} , {D3,D4} , {D1,D2} , ∅〉 is the preferred
partition, since the set of all diagnoses of an updated DPI
will comprise only two elements regardless of the answer of
an oracle.

One step look-ahead strategies, such as prior entropy
or information gain (Settles 2012), allow to find the tar-
get diagnosis using less queries by incorporating heuris-
tics assessing the prior probability p(Di) of each diagnosis
Di ∈ D to be the target one (de Kleer and Williams 1987;
Shchekotykhin et al. 2012). Such heuristics can express dif-
ferent preferences/expectations of a user for a fault expla-
nation. For instance, one heuristic can state that rules in-
cluding many literals are more likely to be faulty. Another
heuristics can assign higher probabilities to diagnoses com-
prising atoms over unsatisfiable/1 predicate if a user ex-
pects this type of error. In addition, personalized heuris-

209

tics can be learned by analyzing the debugging actions of
a user in, e.g., ASPIDE (Febbraro, Reale, and Ricca 2011)
or SeaLion (Oetsch, Pührer, and Tompits 2011b).

A widely used one step look-ahead strategy (de Kleer and
Williams 1987) suggests that the best query is the one which,
given the answer of an oracle, minimizes the expected en-
tropy of the set of diagnoses. Let p(Qi = v) denote the
probability that an oracle gives an answer v ∈ {yes, no}
to a query Qi and p(Dj |Qi = v) be the probability of di-
agnosis Dj given an oracle’s answer. The expected entropy
after querying Qi is computed as (see (Shchekotykhin et al.
2012) for details):

He(Qi) =
∑

v∈{yes,no}

p(Qi = v)×

−
∑
Dj∈D

p(Dj |Qi = v) log2 p(Dj |Qi = v)

The required probabilities can be computed from the par-
tition

〈
Qi,DP

i ,D
N
i ,D

∅
i

〉
for the query Qi as follows:

p(Qi = yes) = p(DP
i) + p(D∅i)/2

p(Qi = no) = p(DN
i) + p(D∅i)/2

where the total probability of a set of diagnoses can be de-
termined as: p(Si) =

∑
Dj∈Si

p(Dj), since all diagnoses
are considered as mutually exclusive, i.e. they cannot occur
at the same time. The latter follows from the fact that the
goal of the interactive debugging process is identification of
exactly one diagnosis that explains a fault and is accepted by
a user. As soon as the user accepts the preferred diagnosis all
other diagnoses become irrelevant. The total probability of
diagnoses in the set D∅i is split between positive and nega-
tive answers since these diagnoses make no prediction about
outcome of a query, i.e. both outcomes are equally proba-
ble. Formally, the probability of an answer v for a query Qi

given a diagnosis Dj is defined as:

p(Qi = v|Dj) =


1, if Dj predicted Qs = v;
0, if Dj is rejected by Qs = v;
1
2 , if Dj ∈ D∅s .

The probability of a diagnosis given an answer, required for
the calculation of the entropy, can be found using the Bayes
rule:

p(Dj |Qi = v) =
p(Qi = v|Dj)p(Dj)

p(Qi = v)
After a query Qs is selected by a strategy

Qs = arg min
Qi

He(Qi)

the system asks an oracle to provide its classification. Given
the answer v of an oracle, i.e. Qs = v, we have to update
the probabilities of the diagnoses to take the new informa-
tion into account. The update is performed by the Bayes rule
given above.

In order to reduce the number of queries a user can specify
a threshold, e.g. σ = 0.95. If the absolute difference in prob-
abilities between two most probable diagnoses is greater

than this threshold, the query process stops and returns the
most probable diagnosis.

Note that, in the worst case the number of queries required
to find the preferred diagnosis equals to the number of diag-
noses of the initial DPI. In real-world applications, however,
the worst case scenario is rarely the case. It is only possi-
ble if a debugger always prefers queries of such partitions〈
Qi,DP

i ,D
N
i ,D

∅
i

〉
that either |DP

i | = 1 or |DN
i | = 1 and

an answer of an oracle always unfavorable. That is, only one
diagnosis of the actual DPI will not appear the set of diag-
noses of the updated DPI.

We have not found any representative set of faulty ASP
programs for which the preferred explanation of a fault, i.e.
the target diagnosis, is known. Therefore, we do not report
in this paper about the number of queries required to find
such diagnosis. However, the evaluation results presented
in (Shchekotykhin et al. 2012) show that only a small num-
ber of queries is usually required to find the preferred di-
agnosis. In the worst case their approach asked 12 queries
on average to find the preferred diagnosis from over 1700
possible diagnoses. In better cases only 6 queries were re-
quired. This study indicates a great potential of the sug-
gested method for debugging of ASP programs. We plan
verify this conjecture in out future work. In addition, our
approach can use RIO (Rodler et al. 2013), which is a query
strategy balancing method that automatically selects the best
query selection strategy during the diagnosis session, thus,
preventing the worst case scenario.

The interactive debugging system (Algorithm 3) takes a
ground program or a ground instantiation of non-ground
program as well as a query selection strategy as an input.
Optionally a user can provide background knowledge, rele-
vant test cases as well as a set of heuristics assessing proba-
bilities of diagnoses. If the first three sets are not specified,
then the corresponding arguments are initialized with ∅. In
case a user specified no heuristics, we add a simple func-
tion that assigns a small probability value to every diagnosis.
The algorithm starts with the initialization of a DPI. The de-
bugging program ∆[Π,B] is generated by spock2, which
implements the meta-programming approach of (Gebser et
al. 2008). First, the main loop of Algorithm 3 computes the
required number of diagnoses such that |D| = n. Next, we
find a set of partitions for the given diagnoses and select a
query according to a query strategy S selected by a user.
If the user selected the myopic strategy then probabilities
of diagnoses are ignored by SELECTQUERY. The oracle is
asked to classify the query and the answer is used to up-
date the DPI as well as a the set D from which we remove
all elements that are not diagnoses of the updated DPI. The
main loop of the algorithm exits if either there is a diagnosis
which probability satisfies the threshold σ or only one di-
agnosis remains. Finally, the most probable diagnosis or, in
case of a myopic strategy, the first diagnosis is returned to a
user. Algorithm 3 was prototypically implemented as a part
of a general diagnosis framework3. A plug-in for SeaLion
providing a user-friendly interface for our interactive debug-

2www.kr.tuwien.ac.at/research/debug
3https://code.google.com/p/rmbd/wiki/AspDebugging

210

Algorithm 3: INTERACTIVEDEBUGGING(Π, S,B, P,N,H, n, σ)
Input: ground disjunctive program Π, query selection strategy S, background knowledge B, sets of positive P and

negative N test cases, set of heuristics H , maximum number minimal diagnoses n, acceptance threshold σ
Output: a diagnosis D
〈∆[Π,B], P,N〉 ← GENERATEDPI(Π,B); D← ∅;1
while BELOWTHRESHOLD(D, H, σ) ∧ |D| > 1 do2

D← D ∪ COMPUTEDIAGNOSES(〈∆[Π,B], P,N〉 , n− |D|);3
PR← FINDPARTITIONS(〈∆[Π,B], P,N〉 ,D);4
Q← SELECTQUERY(PR, H, S);5
if Q = ∅ then exit loop;6
A← GETANSWER(Q);7
〈∆[Π,B], P,N〉 ← UPDATEDPI(A, 〈∆[Π,B], P,N〉);8
D← UPDATEDIADNOSES(A,Q,PR, H);9

return MOSTPROBABLEDIAGNOSIS(D, S,H);10

ging method is currently in development.

Summary and future work
In this paper we presented an approach to the interactive
query-based debugging of disjunctive logic programs. The
differentiation between the diagnoses is done by means of
queries which are automatically generated from answer sets
of the debugging meta-program. Each query partitions a set
of diagnoses into subsets that make different predictions for
an answer of an oracle. Depending on the availability of
heuristics assessing the probability of a diagnosis to be the
target one, the debugger can use different query selection
strategies to find the most informative query allowing effi-
cient identification of the target diagnosis.

In the future work we are going to investigate the appli-
cability of our approach to the method of (Oetsch, Pührer,
and Tompits 2010) since (a) this method can be applied to
non-grounded programs and (b) it was recently extended
to programs with choice rules, cardinality and weight con-
straints (Polleres et al. 2013). In addition, there is a num-
ber of other debugging methods for ASP that might be in-
tegrated with the suggested query selection approach. For
instance, the method of (Mikitiuk, Moseley, and Truszczyn-
ski 2007) can be used to translate the program and queries
into a natural language representation, thus, simplifying the
query classification problem. Another technique that can be
used to simplify the query answering is presented in (Pon-
telli, Son, and El-Khatib 2009) where the authors suggest a
graph-based justification technique for truth values with re-
spect to an answer set. Moreover, we would like to research
whether query generation and selection ideas can be applied
in the debugging method of (Oetsch, Pührer, and Tompits
2011a). This interactive framework allows a programmer to
step through an answer set program by iteratively extending
a state of a program (partial reduct) with new rules. The au-
thors suggest a filtering approach that helps a user to find
such rules and variable assignments that can be added to a
state. We want to verify whether the filtering can be extended
by querying about disagreements between the next states,
such as “if user adds a rule r1 then r2 cannot be added”.

One more interesting source of heuristics, that we also
going to investigate, can be obtained during testing of
ASP programs (Janhunen et al. 2010). The idea comes
from spectrum-based fault localization (SFL) (Harrold et
al. 1998), which is widely applied to software debugging.
Given a set of test cases specifying inputs and outputs of
a program SFL generates an observation matrix A which
comprises information about: (i) parts of a program exe-
cuted for a test case and (ii) an error vector E comprising
results of tests executions. Formally, given a program with
n software components C := {c1, . . . , cn} and a set of test
cases T := {t1, . . . , tm} a hit spectra is a pair (A,E). A is
a n × m matrix where each aij = 1 if cj was involved in
execution of the test case ti and aij = 0 otherwise. Simi-
larly for each ei ∈ E, ei = 1 if the test case ti failed and
ei = 0 in case of a success. Obviously, statistics collected
by the hit spectra after execution of all tests allows to de-
termine the components that were involved in execution of
failed test cases. Consequently, we can obtain a set of fault
probabilities for the components C. The same methodology
can be applied to debugging and testing of ASP programs.
For each test case ti we have to keep a record which sets of
ground rules (Gelfond-Lifschitz reducts) were used to obtain
answer sets that violate/satisfy ti. Next, we can use the ob-
tained statistics to derive fault probabilities for ground rules
of an ASP program being debugged. The probabilities of di-
agnoses can then be computed from the probabilities of rules
as it is shown in (Shchekotykhin et al. 2012).

Acknowledgments
The authors would like to thank Gerhard Friedrich and
Patrick Rodler for the discussions regarding query selection
strategies. We are also very thankful to anonymous review-
ers for their helpful comments.

References
Baral, C. 2003. Knowledge representation, reasoning and
declarative problem solving. Cambridge University Press.
Beck, K. 2003. Test-driven development: by example.
Addison-Wesley Professional.

211

Brain, M., and Vos, M. D. 2005. Debugging Logic Programs
under the Answer Set Semantics. In Proceedings of the 3rd
International Workshop on Answer Set Programming, 141–
152.
Brain, M.; Gebser, M.; Pührer, J.; Schaub, T.; Tompits, H.;
and Woltran, S. 2007. Debugging ASP programs by means
of ASP. In Proceedings of the 9th International Conference
on Logic Programming and Nonmonotonic Reasoning, 31–
43.
Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer
set programming at a glance. Communications of the ACM
54(12):92–103.
Cliffe, O.; Vos, M.; Brain, M.; and Padget, J. 2008. As-
pviz: Declarative visualisation and animation using answer
set programming. In Garcia de la Banda, M., and Pontelli,
E., eds., Logic Programming, volume 5366 of Lecture Notes
in Computer Science, 724–728. Springer Berlin Heidelberg.
de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple
faults. Artificial Intelligence 32(1):97–130.
Delgrande, J. P.; Schaub, T.; and Tompits, H. 2003. A frame-
work for compiling preferences in logic programs. Theory
and Practice of Logic Programming 3(02):129–187.
Febbraro, O.; Leone, N.; Reale, K.; and Ricca, F. 2013.
Applications of Declarative Programming and Knowledge
Management. In Tompits, H.; Abreu, S.; Oetsch, J.; Pührer,
J.; Seipel, D.; Umeda, M.; and Wolf, A., eds., Applications
of Declarative Programming and Knowledge Management,
volume 7773 of Lecture Notes in Computer Science, 345–
364. Berlin, Heidelberg: Springer Berlin Heidelberg.
Febbraro, O.; Reale, K.; and Ricca, F. 2011. ASPIDE: In-
tegrated development environment for answer set program-
ming. In Proceedings of the 11th International Conference
on Logic Programming and Nonmonotonic Reasoning, 317–
330. Springer.
Gebser, M.; Pührer, J.; Schaub, T.; and Tompits, H. 2008.
A meta-programming technique for debugging answer-set
programs. In Proceedings of 23rd AAAI Conference on Ar-
tificial Intelligence (AAAI’08), 448–453.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Schneider, M. 2011. Potassco: The Pots-
dam Answer Set Solving Collection. AI Communications
24(2):107–124.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Morgan & Claypool
Publischers.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New generation
computing 9(3-4):365–386.
Harrold, M. J.; Rothermel, G.; Wu, R.; and Yi, L. 1998. An
empirical investigation of program spectra. ACM SIGPLAN
Notices 33(7):83–90.
Janhunen, T.; Niemelä, I.; Oetsch, J.; Pührer, J.; and Tom-
pits, H. 2010. On Testing Answer-Set Programs. In 19th Eu-
ropean Conference on Artificial Intelligence (ECAI-2010),
951–956.

Lee, J. 2005. A Model-theoretic Counterpart of Loop For-
mulas. In Proceedings of the 19th International Joint Con-
ference on Artificial Intelligence, IJCAI’05, 503–508. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri,
S.; and Scarcello, F. 2006. The DLV system for knowledge
representation and reasoning. ACM Transactions on Com-
putational Logic (TOCL) 7(3):499–562.
Mikitiuk, A.; Moseley, E.; and Truszczynski, M. 2007. To-
wards Debugging of Answer-Set Programs in the Language
PSpb. In Proceedings of the 2007 International Conference
on Artificial Intelligence, 635–640.
Oetsch, J.; Pührer, J.; Seidl, M.; Tompits, H.; and Zwickl,
P. 2011. VIDEAS : Supporting Answer-Set Program De-
velopment using Model-Driven Engineering Techniques. In
Proceedings of the 11th International Conference on Logic
Programming and Nonmonotonic Reasoning, 382–387.
Oetsch, J.; Pührer, J.; and Tompits, H. 2010. Catching
the Ouroboros: On Debugging Non-ground Answer-Set Pro-
grams. Theory and Practice of Logic Programming 10(4-
6):2010.
Oetsch, J.; Pührer, J.; and Tompits, H. 2011a. Stepping
through an Answer-Set Program. In Proceedings of the 11th
international conference on Logic programming and non-
monotonic reasoning, volume 231875, 134–147.
Oetsch, J.; Pührer, J.; and Tompits, H. 2011b. The SeaLion
has Landed: An IDE for Answer-Set Programming – Pre-
liminary Report. CoRR abs/1109.3989.
Polleres, A.; Frühstück, M.; Schenner, G.; and Friedrich, G.
2013. Debugging Non-ground ASP Programs with Choice
Rules, Cardinality and Weight Constraints. In Cabalar, P.,
and Son, T., eds., Logic Programming and Nonmonotonic
Reasoning, volume 8148 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg. 452–464.
Pontelli, E.; Son, T. C.; and El-Khatib, O. 2009. Justifica-
tions for logic programs under answer set semantics. Theory
and Practice of Logic Programming 9(01):1.
Reiter, R. 1987. A Theory of Diagnosis from First Princi-
ples. Artificial Intelligence 32(1):57–95.
Rodler, P.; Shchekotykhin, K.; Fleiss, P.; and Friedrich, G.
2013. RIO: Minimizing User Interaction in Ontology De-
bugging. In Faber, W., and Lembo, D., eds., Web Reasoning
and Rule Systems, volume 7994 of Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg. 153–167.
Settles, B. 2012. Active Learning, volume 6 of Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publischers.
Shchekotykhin, K.; Friedrich, G.; Fleiss, P.; and Rodler, P.
2012. Interactive ontology debugging: Two query strategies
for efficient fault localization. Web Semantics: Science, Ser-
vices and Agents on the World Wide Web 12-13(0):88 – 103.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extend-
ing and implementing the stable model semantics. Artificial
Intelligence 138(1-2):181–234.
Sureshkumar, A.; Vos, M. D.; Brain, M.; and Fitch, J. 2007.

212

APE: An AnsProlog* Environment. In Software Engineer-
ing for Answer Set Programming, 101–115.
Syrjänen, T. 2006. Debugging Inconsistent Answer Set Pro-
grams. In Proceedings of the 11th International Workshop
on Non-Monotonic Reasoning, 77–84.

213

Semantics and Compilation of Answer Set Programming with Generalized Atoms

Mario Alviano
University of Calabria, Italy

mario@alviano.com

Wolfgang Faber
University of Huddersfield, UK

wf@wfaber.com

Abstract

Answer Set Programming (ASP) is logic programming un-
der the stable model or answer set semantics. During the last
decade, this paradigm has seen several extensions by gener-
alizing the notion of atom used in these programs. Among
these, there are aggregate atoms, HEX atoms, generalized
quantifiers, and abstract constraints. In this paper we refer to
these constructs collectively as generalized atoms. The idea
common to all of these constructs is that their satisfaction de-
pends on the truth values of a set of (non-generalized) atoms,
rather than the truth value of a single (non-generalized) atom.
Motivated by several examples, we argue that for some of the
more intricate generalized atoms, the previously suggested
semantics provide unintuitive results and provide an alterna-
tive semantics, which we call supportedly stable or SFLP an-
swer sets. We show that it is equivalent to the major previ-
ously proposed semantics for programs with convex general-
ized atoms, and that it in general admits more intended mod-
els than other semantics in the presence of non-convex gen-
eralized atoms. We show that the complexity of supportedly
stable models is on the second level of the polynomial hier-
archy, similar to previous proposals and to stable models of
disjunctive logic programs. Given these complexity results,
we provide a compilation method that compactly transforms
programs with generalized atoms in disjunctive normal form
to programs without generalized atoms. Variants are given
for the new supportedly stable and the existing FLP seman-
tics, for which a similar compilation technique has not been
known so far.

Introduction
Answer Set Programming (ASP) is a widely used problem-
solving framework based on logic programming under the
stable model semantics. The basic language relies on Dat-
alog with negation in rule bodies and possibly disjunction
in rule heads. When actually using the language for repre-
senting practical knowledge, it became apparent that gener-
alizations of the basic language are necessary for usability.
Among the suggested extensions are aggregate atoms (sim-
ilar to aggregations in database queries) (Niemelä, Simons,
and Soininen 1999; Niemelä and Simons 2000; Dell’Armi
et al. 2003; Faber et al. 2008) and atoms that rely on ex-
ternal truth valuations (Calimeri, Cozza, and Ianni 2007;
Eiter et al. 2004; 2005). These extensions are characterized
by the fact that deciding the truth values of the new kinds

of atoms depends on the truth values of a set of traditional
atoms rather than a single traditional atom. We will refer
to such atoms as generalized atoms, which cover also sev-
eral other extensions such as abstract constraints, general-
ized quantifiers, and HEX atoms.

Concerning semantics for programs containing general-
ized atoms, there have been several different suggestions.
All of these appear to coincide for programs that do not
contain generalized atoms in recursive definitions. The
two main semantics that emerged as standards are the PSP
semantics defined in (Pelov 2004; Pelov, Denecker, and
Bruynooghe 2007) and (Son and Pontelli 2007), and the
FLP semantics defined in (Faber, Leone, and Pfeifer 2004;
2011). In a recent paper (Alviano and Faber 2013) the re-
lationship between these two semantics was analyzed in de-
tail; among other, more intricate results, it was shown that
the semantics coincide up to convex generalized atoms. It
was already established earlier that each PSP answer set is
also an FLP answer set, but not vice versa. So for programs
containing non-convex generalized atoms, some FLP answer
sets are not PSP answer sets. In particular, there are pro-
grams that have FLP answer sets but no PSP answer sets.

In this paper, we argue that the FLP semantics is still too
restrictive, and some programs that do not have any FLP
answer set should instead have answer sets. In order to il-
lustrate the point, consider a coordination game that is re-
motely inspired by the prisoners’ dilemma. There are two
players, each of which has the option to confess or defect.
Let us also assume that both players have a fixed strategy
already, which however still depends on the choice of the
other player as well. In particular, each player will confess
exactly if both players choose the same option, that is, if both
players confess or both defect. The resulting program is P1

in Example 2, where a means that the first player confesses
and b means that the second player confesses. As will be ex-
plained later, the FLP semantics does not assign any answer
set to this program, and therefore also the PSP semantics will
not assign any answer sets to this program. However, this is
peculiar, as the scenario in which both players confess seems
like a reasonable one; indeed, even a simple inflationary op-
erator would result in this solution.

Looking at the reason why this is not an FLP answer set,
we observe that it has two countermodels that prevent it from
being an answer set: One in which only the first player con-

214

fesses, and another one in which only the second player con-
fesses. Both of these countermodels are models in the clas-
sical sense, but they are weak in the sense that they are not
supported, meaning that there is no rule justifying their truth.
This is a situation that does not occur for aggregate-free pro-
grams, which always have supported countermodels. We ar-
gue that one needs to look at supported countermodels, in-
stead of looking at minimal countermodels. It turns out that
doing this yields the same results not only for aggregate-free
programs, but also for programs containing convex aggre-
gates, which we believe is the reason why this issue has not
been noticed earlier.

In this paper, we define a new semantics along these lines
and call it supportedly stable or SFLP (supportedly FLP) se-
mantics. It provides answer sets for more programs than
FLP and PSP, but is shown to be equal on convex pro-
grams. Analyzing the computational complexity of the new
semantics, we show that it is in the same classes as the FLP
and PSP semantics when considering polynomial-time com-
putable generalized atoms. It should also be mentioned that
the new semantics has its peculiarities, for instance adding
“tautological” rules like a← a can change the semantics of
the program.

This complexity result directly leads us to the second con-
tribution of this paper. While it has been known for quite
some time that the complexity of programs with general-
ized atoms (even without disjunctions) is equal to the com-
plexity of disjunctive programs, no compact transformation
from programs with generalized atoms to disjunctive stan-
dard programs is known yet. We provide a contribution with
this respect and show how to achieve such a compact com-
pilation for both FLP and SFLP semantics when non-convex
aggregates are in disjunctive normal form. It hinges on the
use of disjunction and fresh symbols to capture satisfaction
of a generalized atom.

The remainder of this paper is structured as follows. In
the next section, we present the syntax and FLP semantics
for programs with generalized atoms. After that, we analyze
issues with the FLP semantics and define the SFLP seman-
tics, followed by a section that proves several useful prop-
erties of the new semantics. The subsequent section then
deals with compiling programs with generalized atoms into
generalized-atom-free programs, followed by conclusions.

Syntax and FLP Semantics
In this section we present the syntax used in this paper and
present the FLP semantics (Faber, Leone, and Pfeifer 2004;
2011). To ease the presentation, we will directly describe a
propositional language here. This can be easily extended to
the more usual ASP notations of programs involving vari-
ables, which stand for their ground versions (that are equiv-
alent to a propositional program).

Syntax
Let B be a countable set of propositional atoms.

Definition 1. A generalized atom A on B is a mapping from
2B to Boolean truth values. Each generalized atom A has an

associated, finite1 domain DA ⊆ B, indicating those propo-
sitional atoms that are relevant to the generalized atom.
Example 1. A generalized atom A1 modeling a conjunc-
tion a1, . . . , an (n ≥ 0) of propositional atoms is such that
DA1 = {a1, . . . , an} and, for every I ⊆ B, A1 maps I to
true if and only if DA1 ⊆ I .

A generalized atom A2 modeling a conjunction
a1, . . . , am,∼am+1, . . . ,∼an (n ≥ m ≥ 0) of literals,
where a1, . . . , an are propositional atoms and ∼ denotes
negation as failure, is such that DA2 = {a1, . . . , an}
and, for every I ⊆ B, A2 maps I to true if and only if
{a1, . . . , am} ⊆ I and {am+1, . . . , an} ∩ I = ∅.

A generalized atom A3 modeling an aggregate
COUNT ({a1, . . . , an}) 6= k (n ≥ k ≥ 0), where
a1, . . . , an are propositional atoms, is such that
DA3 = {a1, . . . , an} and, for every I ⊆ B, A3 maps
I to true if and only if |DA3 ∩ I| 6= k.

In the following, when convenient, we will represent gen-
eralized atoms as conjunctions of literals or aggregate atoms.
Subsets of B mapped to true by such generalized atoms will
be those satisfying the associated conjunction.
Definition 2. A general rule r is of the following form:

H(r)← B(r) (1)

where H(r) is a disjunction a1 ∨ · · · ∨ an (n ≥ 0) of propo-
sitional atoms in B referred to as the head of r, and B(r) is
a generalized atom on B called the body of r. For conve-
nience, H(r) is sometimes considered a set of propositional
atoms.

A general program P is a set of general rules.
Example 2. Consider the following rules:

r1 : a ← COUNT ({a, b}) 6= 1
r2 : b ← COUNT ({a, b}) 6= 1

The following are general programs:

P1 := {r1; r2}
P2 := {r1; r2; a← b; b← a}
P3 := {r1; r2;← ∼a;← ∼b}
P4 := {r1; r2; a ∨ b←}
P5 := {r1; r2; a← ∼b}

FLP Semantics
An interpretation I is a subset of B. I is a model for a gen-
eralized atom A, denoted I |= A, if A maps I to true. Oth-
erwise, if A maps I to false, I is not a model of A, denoted
I 6|= A. I is a model of a rule r of the form (1), denoted
I |= r, if H(r)∩I 6= ∅ whenever I |= B(r). I is a model of
a program P , denoted I |= P , if I |= r for every rule r ∈ P .

Generalized atoms can be partitioned into two classes ac-
cording to the following definition.
Definition 3 (Convex Generalized Atoms). A generalized
atom A is convex if for all triples I, J, K of interpretations
such that I ⊂ J ⊂ K, I |= A and K |= A implies J |= A.

1In principle, we could also consider infinite domains, but re-
frain to do so for simplicity.

215

Note that convex generalized atoms are closed under con-
junction (but not under disjunction or negation). A convex
program is a general program whose rules have convex bod-
ies.

We now describe a reduct-based semantics, usually re-
ferred to as FLP, which has been introduced and analyzed
in (Faber, Leone, and Pfeifer 2004; 2011).
Definition 4 (FLP Reduct). The FLP reduct P I of a pro-
gram P with respect to I is defined as the set {r ∈ P | I |=
B(r)}.
Definition 5 (FLP Answer Sets). I is an FLP answer set of
P if I |= P and for each J ⊂ I it holds that J 6|= P I . Let
FLP (P) denote the set of FLP answer sets of P .
Example 3. Consider the programs from Example 2. The
models of P1 are {a}, {b} and {a, b}, none of which is an
FLP answer set. Indeed,

P
{a}
1 = P

{b}
1 = ∅,

which have the trivial model ∅, which is of course a subset
of {a} and {b}. On the other hand

P
{a,b}
1 = P1,

and so
{a} |= P

{a,b}
1 ,

where {a} ⊂ {a, b}. We will discuss in the next section why
this is a questionable situation.

Concerning P2, it has one model, namely {a, b}, which is
also its unique FLP answer set. Indeed,

P
{a,b}
2 = P2,

and hence the only model of P
{a,b}
2 is {a, b}.

Interpretation {a, b} is also the unique model of program
P3, which however has no FLP answer set. Here,

P
{a,b}
3 = P1,

hence similar to P1,

{a} |= P
{a,b}
3

and {a} ⊂ {a, b}.
P4 instead has two FLP answer sets, namely {a} and {b},

and a further model {a, b}. In this case,

P
{a}
4 = {a ∨ b←},

and no proper subset of {a} satisfies it. Also

P
{b}
4 = {a ∨ b←},

and no proper subset of {b} satisfies it. Instead, for {a, b},
we have

P
{a,b}
4 = P4,

and hence
{a} |= P

{a,b}
4

and {a} ⊂ {a, b}.
Finally, P5 has tree models, {a}, {b} and {a, b}, but only

one answer set, namely {a}. In fact, P
{a}
5 = {a ← ∼b}

and ∅ is not a model of the reduct. On the other hand, ∅ is a
model of P

{b}
5 = ∅, and {a} is a model of P

{a,b}
5 = P1.

SFLP Semantics
As noted in the introduction, the fact that P1 has no FLP
answer sets is striking. If we first assume that both a and b
are false (interpretation ∅), and then apply a generalization
of the well-known one-step derivability operator, we obtain
truth of both a and b (interpretation {a, b}). Applying this
operator once more again yields the same interpretation, a
fix-point. {a, b} is also a supported model, that is, for all
true atoms there exists a rule in which this atom is the only
true head atom, and in which the body is true.

It is instructive to examine why this seemingly robust
model is not an FLP answer set. Its reduct is equal to the
original program, P

{a,b}
1 = P1. There are therefore two

models of P1, {a} and {b}, that are subsets of {a, b} and
therefore inhibit {a, b} from being an FLP answer set. The
problem is that, contrary to {a, b}, these two models are
rather weak, in the sense that they are not supported. In-
deed, when considering {a}, there is no rule in P1 such that
a is the only true atom in the rule head and the body is true
in {a}: The only available rule with a in the head has a false
body. The situation for {b} is symmetric.

It is somewhat counter-intuitive that a model like {a, b}
should be inhibited by two weak models like {a} and {b}.
Indeed, this is a situation that normally does not occur in
ASP. For programs that do not contain generalized atoms,
whenever one finds a J ⊆ I such that J |= P I there is for
sure also a K ⊆ I such that K |= P I and K is supported.
Indeed, we will show in the following section that this is the
case also for programs containing only convex generalized
atoms. Our feeling is that since such a situation does not
happen for a very wide set of programs, it has been over-
looked so far.

We will now attempt to repair this kind of anomaly by
stipulating that one should only consider supported models
for finding inhibitors of answer sets. In other words, one
does not need to worry about unsupported models of the
reduct, even if they are subsets of the candidate. Let us first
define supported models explicitly.
Definition 6 (Supportedness). A model I of a program P is
supported if for each a ∈ I there is a rule r ∈ P such that
I ∩ H(r) = {a} and I |= B(r). In this case we will write
I |=s P .
Example 4. Continuing Example 3, programs P1, P2, and
P3 have one supported model, namely {a, b}. The model
{a} of P1 is not supported because the body of the the rule
with a in the head has a false body with respect to {a}. For
a symmetric argument, model {b} of P1 is not supported ei-
ther. The supported models of P4, instead, are {a}, {b}, and
{a, b}, so all models of the program are supported. Note
that both models {a} and {b} have the disjunctive rule as
the only supporting rule for the respective single true atom,
while for {a, b}, the two rules with generalized atoms serve
as supporting rules for a and b. Finally, the supported mod-
els of P5 are {a} and {a, b}.

We are now ready to formally introduce the new seman-
tics. In this paper we will normally refer to it as SFLP an-
swer sets or SFLP semantics, but also call it supportedly sta-
ble models occasionally.

216

Definition 7 (SFLP Answer Sets). I is a supportedly FLP
answer set (or SFLP answer set, or supportedly stable
model) of P if I |=s P and for each J ⊂ I it holds that
J 6|=s P I . Let SFLP (P) denote the set of SFLP answer
sets of P .

Example 5. Consider again the programs from Example 2.
Recall that P1 has only one supported model, namely {a, b},
and

P
{a,b}
1 = P1,

but
∅ 6|=s P

{a,b}
1 ,

{a} 6|=s P
{a,b}
1 ,

{b} 6|=s P
{a,b}
1 ,

therefore no proper subset of {a, b} is a supported model,
hence it is an SFLP answer set.

Concerning P2, it has one model, namely {a, b}, which
is supported and also its unique SFLP answer set. Indeed,
recall that

P
{a,b}
2 = P2,

and hence no proper subset of {a, b} can be a model (let
alone a supported model) of P

{a,b}
2 .

Interpretation {a, b} is the unique model of program P3,
which is supported and also its SFLP answer set. In fact

P
{a,b}
3 = P1.

P4 has two SFLP answer sets, namely {a} and {b}. In
this case, recall

P
{a}
4 = {a ∨ b←},

and no proper subset of {a} satisfies it. Also

P
{b}
4 = {a ∨ b←},

and no proper subset of {b} satisfies it. Instead, for {a, b},
we have

P
{a,b}
4 = P4,

hence since
{a} |=s P

{a,b}
4 ,

{b} |=s P
{a,b}
4 ,

we obtain that {a, b} is not an SFLP answer set.
Finally, P5 has two SFLP answer sets, namely {a} and

{a, b}. In fact, P
{a}
5 = {a← ∼b} and P

{a,b}
5 = P1.

The programs, models, FLP answer sets, supported mod-
els, and SFLP answer sets are summarized in Table 1.

An alternative, useful characterization of SFLP answer
sets can be given in terms of Clark’s completion (Clark
1978). In fact, it is well-known that supported models of
a program are precisely the models of its completion. We
define this notion in a somewhat non-standard way, making
use of the concept of generalized atom.

Next, we first define the completion of a propositional
atom a with respect to a general program P as a general-
ized atom encoding the supportedness condition for a.

Definition 8. The completion of a propositional atom a ∈ B
with respect to a general program P is a generalized atom
comp(a, P) mapping to true any interpretation I containing
a and such that there is no rule r ∈ P for which I |= B(r)
and I ∩H(r) = {a}.

These generalized atoms are then used to effectively de-
fine a program whose models are the supported model of P .

Definition 9. The completion of a general program P is a
general program comp(P) extending P with a rule

← comp(a, P)

for each propositional atom a occurring in P .

Example 6. Consider again programs from Example 2. Pro-
gram comp(P1) extends P1 with the following rules:

← a, COUNT ({a, b}) = 1
← b, COUNT ({a, b}) = 1

Program comp(P2) extends P2 with the following rules:

← a, COUNT ({a, b}) = 1, ∼b

← b, COUNT ({a, b}) = 1, ∼a

Program comp(P3) is equal to comp(P1), and program
comp(P4) extends P4 with the following rules:

← a, COUNT ({a, b}) = 1, b

← b, COUNT ({a, b}) = 1, a

Program comp(P5) instead extends P5 with the following
rules:

← a, COUNT ({a, b}) = 1, b

← b, COUNT ({a, b}) = 1

The only model of comp(P1), comp(P2), and comp(P3) is
{a, b}. The models of comp(P4) and comp(P5) instead are
{a}, {b}, and {a, b}.
Proposition 1. Let P be a general program and I an inter-
pretation. I |=s P iff I |= comp(P).

This characterization (which follows directly from (Clark
1978)) provides us with a means for implementation that re-
lies only on model checks, rather than supportedness checks.

Proposition 2. Let P be a general program and I an inter-
pretation. I is a supportedly FLP answer set of P if I |=
comp(P) and for each J ⊂ I it holds that J 6|= comp(P I).

Properties
The new semantics has a number of interesting properties
that we report in this section. First of all, it is an extension
of the FLP semantics, in the sense that each FLP answer set
is also an SFLP answer set.

Theorem 1. Let P be a general program. FLP (P) ⊆
SFLP (P).

Proof. Let I be an FLP answer set of P . Hence, each J ⊂ I
is such that J 6|= P I . Thus, we can conclude that J 6|=s P I

for any J ⊂ I . Therefore, I is a SFLP answer set of P .

217

Table 1: (Supported) models and (S)FLP answer sets of programs in Example 2, where A := COUNT ({a, b}) 6= 1.

Rules Models FLP Supported Models SFLP
P1 a← A b← A {a}, {b}, {a, b} — {a, b} {a, b}
P2 a← A b← A a← b b← a {a, b} {a, b} {a, b} {a, b}
P3 a← A b← A ← ∼a ← ∼b {a, b} — {a, b} {a, b}
P4 a← A b← A a ∨ b← {a}, {b}, {a, b} {a}, {b} {a}, {b}, {a, b} {a}, {b}
P5 a← A b← A a← ∼b {a}, {b}, {a, b} {a} {a}, {a, b} {a}, {a, b}

The inclusion is strict in general. In fact, P1 is a simple
program for which the two semantics disagree (see Exam-
ples 2–5 and Table 1). On the other hand, the two semantics
are equivalent for a large class of programs, as shown below.
Theorem 2. If P is a convex program then FLP (P) =
SFLP (P).

Proof. FLP (P) ⊆ SFLP (P) holds by Theorem 1. For
the other direction, consider an interpretation I not being an
FLP answer set of P . Hence, there is J ⊂ I such that J |=
P I . We also assume that J is a subset-minimal model of P I ,
that is, there is no K ⊂ J such that K |= P I . We shall show
that J |=s P I . To this end, suppose by contradiction that
there is a ∈ J such that for each r ∈ P I either J 6|= B(r)
or J ∩ H(r) 6= {a}. Consider J \ {a} and a rule r ∈ P I

such that J \ {a} |= B(r). Since r ∈ P I , I |= B(r),
and thus J |= B(r) because B(r) is convex. Therefore,
J ∩H(r) 6= {a}. Moreover, J ∩H(r) 6= ∅ because J |= P I

by assumption. Hence, (J \ {a})∩H(r) 6= ∅, and therefore
J \ {a} |= P I . This contradicts the assumption that J is a
subset-minimal model of P I .

We will now focus on computational complexity. We con-
sider here the problem of determining whether an SFLP an-
swer set exists. We note that the only difference to the FLP
semantics is in the stability check. For FLP, subsets need to
be checked for being a model, for SFLP, subsets need to be
checked for being a supported model. Intuitively, one would
not expect that this difference can account for a complexity
jump, which is confirmed by the next result.
Theorem 3. Let P be a general program whose generalized
atoms are polynomial-time computable functions. Checking
whether SFLP (P) 6= ∅ is in ΣP

2 in general; it is ΣP
2 -hard

already in the disjunction-free case if at least one form of
non-convex generalized atom is permitted. The problem is
NP -complete if P is disjunction-free and convex.

Proof. For the membership in ΣP
2 one can guess an interpre-

tation I and check that there is no J ⊂ I such that J |=s P .
The check can be performed by a coNP oracle.

To prove ΣP
2 -hardness we note that extending a general

program P by rules a ← a for every propositional atom
occurring in P is enough to guarantee that all models of any
reduct of P are supported. We thus refer to the construction
and proof by (Alviano and Faber 2013).

If P is disjunction-free and convex then SFLP (P) =
FLP (P) by Theorem 2. Hence, NP -completeness follows
from results in (Liu and Truszczyński 2006).

We would like to point out that the above proof also illus-
trates a peculiar feature of SFLP answer sets, which it shares
with the supported model semantics: the semantics is sensi-
tive to tautological rules like a ← a, as their addition can
turn non-SFLP answer sets into SFLP answer sets.

Compilation
The introduction of generalized atoms in logic programs
does not increase the computational complexity of checking
FLP as well as SFLP answer set existence, as long as one
is allowed to use disjunctive rule heads. However, so far no
compilation method that compactly transforms general pro-
grams to logic programs without generalized atoms has been
presented for the FLP semantics. In the following we pro-
vide such a compilation for non-convex aggregates in dis-
junctive normal form. The compilation is also extended for
the new SFLP semantics. We point out that such compila-
tions are not necessarily intended to provide efficient meth-
ods for computing answer sets of general programs. Their
purpose is instead to provide insights that may lead to obtain
such methods in the future.

In this section we only consider generalized atoms in dis-
junctive normal form, that is, a generalized atom A will be
associated with an equivalent propositional formula of the
following form:

k∨
i=1

ai1 ∧ . . . ∧ aim
∧ ∼aim+1 ∧ . . . ∧ ∼ain

(2)

where k ≥ 1, in ≥ im ≥ 0 and ai1 , . . . , ain
are proposi-

tional atoms for i = 1, . . . , k. We will also assume that the
programs to be transformed have atomic heads. To general-
ize our compilations to cover disjunctive general rules is a
problem to be addressed in future work.

Let P be a program. In our construction we will use
the following fresh propositional atoms, i.e., propositional
atoms not occurring in P : AT for each generalized atom A;
AFi for each generalized atom A and integer i ≥ 0. For a
generalized atom A of the form (2) and integer i = 1, . . . , k,
let tr(A, i) denote the following rule:

AT ∨ aim+1 ∨ · · · ∨ ain
← ai1 , . . . , aim

,∼AF0 . (3)

Moreover, let fls(A, i, j) denote

AFi ← ∼aij ,∼AT (4)

for j = i1, . . . , im, and

AFi ← aij
,∼AT (5)

218

for j = im+1, . . . , in. Abusing of notation, let fls(A) de-
note the following rule:

AF0 ← AF1 , . . . , AFk ,∼AT . (6)

Intuitively, rule tr(A, i) forces truth of AT whenever the i-
th disjunct of A is true. Similarly, rule fls(A, i, j) forces
truth of AFi whenever the i-th disjunct of A is false due to
atom aij

; if all disjuncts of A are false, rule fls(A) forces
truth of AF0 to model that A is actually false. Note that
atoms occurring in negative literals of the i-th disjunct of A
have been moved in the head of tr(A, i). In this way, the
information encoded by tr(A, i) is preserved in the reduct
with respect to an interpretation I whenever the i-th disjunct
of A is true with respect to a subset of I , not necessarily I
itself.

The rewriting of A, denoted rew(A), is the following set
of rules:

{tr(A, i) | i = 1, . . . , k} ∪ {fls(A)} ∪
{fls(A, i, j) | i = 1, . . . , k ∧ j = 1, . . . , n} (7)

The rewriting of P , denoted rew(P), is obtained from P
by replacing each generalized atom A by AT . The FLP-
rewriting of P , denoted rewFLP (P), is obtained from
rew(P) by adding rules in rew(A) for each generalized
atom A occurring in P . The SFLP-rewriting of P , denoted
rewSFLP (P), is obtained from rewFLP (P) by adding a
rule supp(a) of the form

AT
1 ∨ · · · ∨AT

n ← a (8)

for each propositional atom a occurring in P , where a← Ai

(i = 1, . . . , n) are the rules of P having head a.

Example 7. Let A be the generalized atom in Example 2.
Its disjunctive normal form is ∼a∧∼b∨ a∧ b. Rules r1 and
r2 are then a← A and b← A. Program rewFLP (P1) is

rew({r1}) : a ← AT

rew({r2}) : b ← AT

tr(A, 1) : AT ∨ a ∨ b ← ∼AF0

tr(A, 2) : AT ← a, b,∼AF0

fls(A, 1, 1) : AF1 ← a,∼AT

fls(A, 1, 2) : AF1 ← b,∼AT

fls(A, 2, 1) : AF2 ← ∼a,∼AT

fls(A, 2, 2) : AF2 ← ∼b,∼AT

fls(A) : AF0 ← AF1 , AF2 ,∼AT

One can check that rewFLP (P1) has no answer set. In par-
ticular, {a, b, AT } is not an answer set of rewFLP (P1). Its
FLP reduct consists of the first four rules

a ← AT

b ← AT

AT ∨ a ∨ b ← ∼AF0

AT ← a, b,∼AF0

and both {a} and {b} are minimal models of the reduct. On
the other hand, neither {a} nor {b} are models of the original
program, and so also not answer sets.

Program rewSFLP (P1) extends rewFLP (P1) with the
following rules:

supp(a) : AT ← a
supp(b) : AT ← b

The program rewSFLP (P1) has one answer set:

{a, b, AT }.

In contrast to rewFLP (P1) its FLP reduct now consists of
the first four rules of rewFLP (P1) plus the two additional
rules:

a ← AT

b ← AT

AT ∨ a ∨ b ← ∼AF0

AT ← a, b,∼AF0

AT ← a
AT ← b

These two additional rules impede {a} and {b} to be models,
and indeed only {a, b, AT } is a model of the reduct.

Program rewFLP (P2) is rewFLP (P1)∪{a← b; b← a}.
(To simplify the presentation, bodies equivalent to atomic
literals are not rewritten.)

In this case,
{a, b, AT }

is its only answer set. Different to rewFLP (P2), the addi-
tional rules will be present in the reduct for {a, b, AT }:

a ← AT

b ← AT

AT ∨ a ∨ b ← ∼AF0

AT ← a, b,∼AF0

a ← b
b ← a

Thus the reduct models {a} and {b} are avoided.
Program rewSFLP (P2) extends rewFLP (P2) with

supp(a)′ : AT ∨ b ← a
supp(b)′ : AT ∨ a ← b

It is easy to see that these additional rules do not alter an-
swer sets, so also rewSFLP (P2) has a single answer set
{a, b, AT }.

Program rewFLP (P3) is rewFLP (P1)∪{← ∼a;← ∼b}.
This program has no answer sets for the same reason as
rewFLP (P1). Indeed, the two additional rules are not in the
reduct for {a, b, AT }, and so {a} and {b} are again minimal
models.

Program rewSFLP (P3) is rewSFLP (P1) ∪ {← ∼a;←
∼b}. For the same reason as for rewSFLP (P1), this program
has exactly one answer set:

{a, b, AT }.

The two new rules disappear in the reduct, but the rules
present in rewSFLP (P1) but not in rewFLP (P1) do not al-
low models {a} and {b}.

Program P4 contains a disjunctive rule and is thus not in
the domain of rewFLP and rewSFLP described here.

219

In the examples provided so far, it can be checked that
answer sets are preserved by our transformations if auxiliary
symbols are ignored. In the remainder of this section we will
formalize this intuition.
Definition 10. The expansion of an interpretation I for a
program P , denoted exp(I), is the following interpretation:

I ∪ {AT | AT occurs in rew(P), I |= A}
∪ {AFi | AFi occurs in rew(P), I 6|= A}.

(9)

The contraction of an interpretation I to the symbols of P ,
denoted I|P , is the following interpretation:

I ∩ {a ∈ B | a occurs in P}. (10)

Below, we show that expansions and contractions define
bijections between the answer sets of a program and those
of the corresponding compilations. In the claim we consider
only FLP answer sets of the rewritten program because it is
convex, and thus its FLP and SFLP answer sets coincide by
Theorem 2.
Theorem 4. Let P be a program, andF ∈ {FLP, SFLP}.

1. If I ∈ F(P) then exp(I) ∈ FLP (rewF (P)).
2. If I ∈ FLP (rewF (P)) then I|P ∈ F(P).

Proof (item 1). Let I be an F answer set of P . Hence,
I |=s P (see Definition 7 and Theorem 1). Since each
generalized atom A occurring in P is replaced by AT in
rew(P), and AT ∈ exp(I) if and only if I |= A, we
have I |= rew(P). Consider rules in rew(A) for some
generalized atom A of the form (2) occurring in P , and
note that either AT ∈ exp(I) or AF0 , . . . , AFk ∈ exp(I).
In both cases, all rules in rew(A) are satisfied by exp(I).
Hence, exp(I) |= rewFLP (P). Consider a rule supp(a)
of the form (8) such that a ∈ I . Since I |=s P , there is
i ∈ {1, . . . , n} such that I |= Ai. Thus, AT

i ∈ exp(I), and
therefore exp(I) |= supp(a). We can conclude exp(I) |=
rewSFLP (P).

Let J ⊆ exp(I) be such that J |= rewF (P)exp(I). We
first show that J |P = I . Consider a rule a ← A in P I

such that I |= A and J |P |= A, where A is of the form (2).
Hence, there is i ∈ {1, . . . , k} such that

J |P |= ai1 ∧ . . . ∧ aim
∧ ∼aim+1 ∧ . . . ∧ ∼ain

.

Therefore, AT ∈ J because tr(A, i) ∈ rewF (P)exp(I),
and consequently a ∈ J because of rule a ← AT in
rewF (P)exp(I). We thus conclude J |P |= P I . For F =
FLP , this already proves J |P = I . For F = SFLP , let
X ⊆ J |P be the atoms without support, i.e., X is a subset-
maximal set such that a ∈ X implies J |P \X 6|= A for each
rule a ← A in P I . Hence, J |P \X |=s P I . It follows that
J |P \X = I , i.e., X = ∅ and J |P = I .

We can now show that J = exp(I). Let A be a gen-
eralized atom of the form (2). If J |P |= A there is i ∈
{1, . . . , k} such that

J |P |= ai1 ∧ . . . ∧ aim
∧ ∼aim+1 ∧ . . . ∧ ∼ain

,

and thus AT ∈ J because tr(A, i) ∈ rewF (P)exp(I) and
J |= rewF (P)exp(I). Otherwise, if J |P 6|= A then for all

i ∈ {1, . . . , k} there is either j ∈ {1, . . . ,m} such that aij
/∈

J |P , or j ∈ {m + 1, . . . , n} such that aij ∈ J |P . Hence,
AFi ∈ J because J |= fls(A, i, j), and thus AF0 ∈ J
because J |= fls(A).

Proof (item 2). Let I be an FLP answer set of rewF (P).
Let A be a generalized atom A of the form (2) occurring in
P . We prove the following statements:

|I ∩ {AT , AFi}| ≤ 1 holds for i = 1, . . . , k (11)

AT ∈ I if and only if I|P |= A (12)

|I ∩ {AT , AFi}| = 1 holds for i = 1, . . . , k (13)

To prove (11), define set X as a maximal subset satisfying
the following requirements: If {AT , AFi} ⊆ I (for some
i ∈ {1, . . . , k}) then {AT , AF0 , . . . , AFk} ⊆ X; if an atom
a is not supported by I \X in rewFLP (P)I then a ∈ X . We
have I \X |= rewF (P)I , from which we conclude X = ∅.

Consider (12). If AT ∈ I then by (11) no AFi be-
longs to I . Recall that FLP answer sets are supported
models, i.e., I |=s rewF (P). Thus, for F = FLP ,
there is i ∈ {1, . . . , k} such that I |= B(tr(A, i)) and
I ∩ H(tr(A, i)) = {AT }. Therefore, I|P |= A. For
F = SFLP , we just note that if AT is supported only
by a rule of the form (8), then atom a is only supported
by a rule a ← AT in rewF (P). I \ {a, AT } would
be a model of rewF (P)I in this case, then contradicting
I ∈ FLP (rewF (P)). Now consider the right-to-left di-
rection. If I|P |= A then there is i ∈ {1, . . . , k} such that
I|P |= ai1∧. . .∧aim

∧∼aim+1∧. . .∧∼ain
, and thus AFi /∈ I

(see Equations 4–5). Hence, AF0 /∈ I (see Equation 6).
From rule tr(A, i) (see Equation 3) we have AT ∈ I .

Concerning (13), because of (11) and (12), we have just to
show that AF0 , . . . , AFk ∈ I whenever I|P 6|= A. In fact, in
this case AT /∈ I by (12), and for each i ∈ {1, . . . , k} there
is either j ∈ {1, . . . ,m} such that aij /∈ I|P , or j ∈ {m +
1, . . . , n} such that aij

∈ I|P . Hence, AFi ∈ I because of
rules fls(r, i, j) and fls(r).

We can now prove the main claim. We start by showing
that I|P |= P . Indeed, for a rule a ← A in P such that
I|P |= A, rew(P) contains a rule a ← AT . Moreover,
AT ∈ I by (12), and thus a ∈ I . If F = SFLP , then for
each a ∈ I we have I |= supp(a), where supp(a) is of the
form (8). Hence, there is i ∈ 1, ..., n such that AT

i ∈ I .
Therefore, (12) implies I|P |= Ai, that is, a is supported by
I|P in P . We can thus conclude that IP |=s P .

To complete the proof, for F = FLP we consider X ⊆
I|P such that I|P \ X |= P I|P , while for F = SFLP we
consider X ⊆ I|P such that I|P \X |=s P I|P . Let J be the
interpretation obtained from I \X by removing all atom AT

such that I|P \X 6|= A. We shall show that J |= rewF (P)I ,
from which we conclude X = ∅. Consider a rule of the
form a ← AT in rewF (P)I such that AT ∈ J . Hence,
I|P \X |= A by construction of J . Since a← A is a rule in
P I|P , we conclude a ∈ I|P \X and thus a ∈ J . Consider
now a rule tr(A, i) in rewF (P)I such that J |= B(tr(A, i))
and AT /∈ J . Hence, I|P \ X 6|= A by construction of J ,
which means that there is either j ∈ {1, . . . ,m} such that

220

aij
/∈ I|P \ X , or j ∈ {m + 1, . . . , n} such that aij

∈
I|P \X . We conclude that J |= tr(A, i). Rules fls(A, i, j)
and fls(A) are satisfied as well because no AFi has been
removed. For F = SFLP , consider a rule supp(a) of the
form (8) such that a ∈ J . Since I|P \ X |=s P I|P , there
is rule a ← A in P I|P such that I|P \ X |= A. Hence, by
construction of J , AT ∈ J and thus J |= supp(a).

Conclusion
In this paper, we have first defined a new semantics for
programs with generalized atoms, called supportedly sta-
ble models, supportedly FLP, or SFLP semantics. We have
motivated its definition by an anomaly that arises for the
FLP semantics in connection with non-convex generalized
atoms. In particular, only unsupported models may in par-
ticular cases inhibit the stability of candidate models. The
new definition overcomes this anomaly and provides a ro-
bust semantics for programs with generalized atoms. We
show several properties of this new semantics, for example
it coincides with the FLP semantics (and thus also the PSP
semantics) on convex programs, and thus also on standard
programs. Furthermore, the complexity of reasoning tasks
is equal to the respective tasks using the FLP semantics. We
also provide a characterization of the new semantics by a
Clark-inspired completion.

We observe that other interesting semantics, such as the
one by (Ferraris 2005), are also affected by the anomaly on
unsupported models. In particular, the semantics by (Fer-
raris 2005) is presented for programs consisting of arbitrary
set of propositional formulas, and it is based on a reduct
in which false subformulas are replaced by ⊥. Answer
sets are then defined as interpretations being subset-minimal
models of their reducts. For the syntax considered in this
paper, when rewriting generalized atoms to an equivalent
formula, the semantics by (Ferraris 2005) coincides with
FLP, which immediately shows the anomaly. In (Ferraris
2005) there is also a method for rewriting aggregates, how-
ever COUNT ({a, b}) 6= 1 is not explicitly supported, but
should be rewritten to ¬(COUNT ({a, b}) = 1). Doing
this, one can observe that for P1, P2, P3, and P5 the se-
mantics of (Ferraris 2005) behaves like SFLP (cf. Table 1),
while for P4 the semantics of (Ferraris 2005) additionally
has the answer set {a, b}, which is not a supported minimal
model of the FLP reduct. P4 therefore shows that the two
semantics do not coincide, even if generalized atoms are in-
terpreted as their negated complements, and the precise re-
lationship is left for further study. However, we also believe
that rewriting a generalized atom into its negated comple-
ment is not always natural, and we are also not convinced
that there should be a semantic difference between a gener-
alized atom and its negated complement.

The second part of the paper concerns the question of
compactly compiling generalized atoms away, to arrive at a
program that contains only traditional atoms whose answer
sets are in a one-to-one correspondence with the original
program. Previously existing complexity results indicated
that such a translation can exist, but that it has to make use of
disjunction in rule heads. However, no such method is cur-

rently known. We show that similar techniques can be used
for both FLP and the new SFLP semantics when non-convex
aggregates are represented in disjunctive normal form.

Concerning future work, implementing a reasoner sup-
porting the new semantics would be of interest. However,
we believe that it would actually be more important to col-
lect example programs that contain non-convex generalized
atoms in recursive definitions. We have experimented with a
few simple domains stemming from game theory (as out-
lined in the introduction), but we are not aware of many
other attempts. Our intuition is that such programs would
be written in several domains that describe features with
feedback loops, which applies to many so-called complex
systems. Also computing or checking properties of neural
networks might be a possible application in this area. An-
other, quite different application area could be systems that
loosely couple OWL ontologies with rule bases, for instance
by means of HEX programs. HEX atoms interfacing to on-
tologies will in general not be convex, and therefore using
them in recursive definitions falls into our framework, where
the FLP and SFLP semantics differ.

Another area of future work arises from the fact that rules
like a ← a are not irrelevant for the SFLP semantics. To
us, it is not completely clear whether this is a big drawback.
However, we intend to study variants of the SFLP semantics
that do not exhibit this peculiarity.

References
Alviano, M., and Faber, W. 2013. The complexity bound-
ary of answer set programming with generalized atoms un-
der the flp semantics. In Cabalar, P., and Tran, S. C., eds.,
Logic Programming and Nonmonotonic Reasoning — 12th
International Conference (LPNMR 2013), number 8148 in
Lecture Notes in AI (LNAI), 67–72. Springer Verlag.
Calimeri, F.; Cozza, S.; and Ianni, G. 2007. External
sources of knowledge and value invention in logic program-
ming. Annals of Mathematics and Artificial Intelligence
50(3–4):333–361.
Clark, K. L. 1978. Negation as Failure. In Gallaire, H., and
Minker, J., eds., Logic and Data Bases. New York: Plenum
Press. 293–322.
Dell’Armi, T.; Faber, W.; Ielpa, G.; Leone, N.; and Pfeifer,
G. 2003. Aggregate Functions in Disjunctive Logic Pro-
gramming: Semantics, Complexity, and Implementation in
DLV. In Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence (IJCAI) 2003, 847–852. Aca-
pulco, Mexico: Morgan Kaufmann Publishers.
Eiter, T.; Lukasiewicz, T.; Schindlauer, R.; and Tompits,
H. 2004. Combining Answer Set Programming with De-
scription Logics for the Semantic Web. In Principles of
Knowledge Representation and Reasoning: Proceedings
of the Ninth International Conference (KR2004), Whistler,
Canada, 141–151. Extended Report RR-1843-03-13, Insti-
tut für Informationssysteme, TU Wien, 2003.
Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2005.
A Uniform Integration of Higher-Order Reasoning and Ex-
ternal Evaluations in Answer Set Programming. In Inter-

221

national Joint Conference on Artificial Intelligence (IJCAI)
2005, 90–96.
Faber, W.; Pfeifer, G.; Leone, N.; Dell’Armi, T.; and Ielpa,
G. 2008. Design and implementation of aggregate functions
in the dlv system. Theory and Practice of Logic Program-
ming 8(5–6):545–580.
Faber, W.; Leone, N.; and Pfeifer, G. 2004. Recursive ag-
gregates in disjunctive logic programs: Semantics and com-
plexity. In Alferes, J. J., and Leite, J., eds., Proceedings
of the 9th European Conference on Artificial Intelligence
(JELIA 2004), volume 3229 of Lecture Notes in AI (LNAI),
200–212. Springer Verlag.
Faber, W.; Leone, N.; and Pfeifer, G. 2011. Semantics and
complexity of recursive aggregates in answer set program-
ming. Artificial Intelligence 175(1):278–298. Special Issue:
John McCarthy’s Legacy.
Ferraris, P. 2005. Answer Sets for Propositional Theo-
ries. In Baral, C.; Greco, G.; Leone, N.; and Terracina,
G., eds., Logic Programming and Nonmonotonic Reason-
ing — 8th International Conference, LPNMR’05, Diamante,
Italy, September 2005, Proceedings, volume 3662, 119–131.
Springer Verlag.
Liu, L., and Truszczyński, M. 2006. Properties and appli-
cations of programs with monotone and convex constraints.
Journal of Artificial Intelligence Research 27:299–334.
Niemelä, I., and Simons, P. 2000. Extending the Smod-
els System with Cardinality and Weight Constraints. In
Minker, J., ed., Logic-Based Artificial Intelligence. Dor-
drecht: Kluwer Academic Publishers. 491–521.
Niemelä, I.; Simons, P.; and Soininen, T. 1999. Stable
Model Semantics of Weight Constraint Rules. In Gelfond,
M.; Leone, N.; and Pfeifer, G., eds., Proceedings of the 5th
International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’99), volume 1730 of Lec-
ture Notes in AI (LNAI), 107–116. El Paso, Texas, USA:
Springer Verlag.
Pelov, N.; Denecker, M.; and Bruynooghe, M. 2007.
Well-founded and Stable Semantics of Logic Programs with
Aggregates. Theory and Practice of Logic Programming
7(3):301–353.
Pelov, N. 2004. Semantics of Logic Programs with Aggre-
gates. Ph.D. Dissertation, Katholieke Universiteit Leuven,
Leuven, Belgium.
Son, T. C., and Pontelli, E. 2007. A Constructive Semantic
Characterization of Aggregates in ASP. Theory and Practice
of Logic Programming 7:355–375.

222

A Family of Descriptive Approaches To Preferred Answer Sets

Alexander Šimko
Department of Applied Informatics

Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava

Mlynská dolina, 842 48 Bratislava, Slovakia

Abstract

In logic programming under the answer set semantics, pref-
erences on rules are used to choose which of the conflicting
rules are applied. Many interesting semantics have been pro-
posed. Brewka and Eiter’s Principle I expresses the basic in-
tuition behind the preferences. All the approaches that satisfy
Principle I introduce a rather imperative feature into other-
wise declarative language. They understand preferences as
the order, in which the rules of a program have to be applied.
In this paper we present two purely declarative approaches for
preference handling that satisfy Principle I, and work for gen-
eral conflicts, including direct and indirect conflicts between
rules. The first approach is based on the idea that a rule can-
not be defeated by a less preferred conflicting rule. This ap-
proach is able to ignore preferences between non-conflicting
rules, and, for instance, is equivalent with the answer set se-
mantics for the subclass of stratified programs. It is suitable
for the scenarios, when developers do not have full control
over preferences. The second approach relaxes the require-
ment for ignoring conflicting rules, which ensures that it stays
in the NP complexity class. It is based on the idea that a rule
cannot be defeated by a rule that is less preferred or depends
on a less preferred rule. The second approach can be also
characterized by a transformation to logic programs without
preferences. It turns out that the approaches form a hierarchy,
a branch in the hierarchy of the approaches by Delgrande et.
al., Wang et. al., and Brewka and Eiter. Finally, we show an
application for which the existing approaches are not usable,
and the approaches of this paper produce expected results.

Introduction
Preferences on rules are an important knowledge represen-
tation concept. In logic programming, one usually writes
general rules, and needs to express exceptions. Consider we
have the following rules

r1: select(car1) ← nice(car1)
r2: ¬select(car1) ← expensive(car1)
r3: select(car1) ← fast(car1)

If a car1 is both nice, expensive, and fast, the rules lead
to contradiction. If we have preferences on rules, e.g., we
prefer r1 over r2, and r2 over r3, we can use default negation
to express exceptions between rules. Since the rules r1 and
r3 have the same head, we have to use an auxiliary literal in
order to ensure that r3 does not defeat r2.

r1a: aux ← nice(car1)
r1b: select(car1) ← select(car1)
r2: ¬select(car1) ← expensive(car1),not aux
r3: select(car1) ← fast(car1),not ¬select(car1)

The hand-encoding of preferences has to use auxiliary lit-
erals, we have to split rules, and the resulting program is
less readable. If the complementary literals are derived via
other rules, and the program has hundreds of rules, the hand-
encoding becomes even less readable.

More readable way to encode the exceptions between the
rules is to make rules mutually exclusive, represent prefer-
ences using a relation on rules, and use a semantics for logic
programs with preferences, in order to handle preferences.

r1: select(car1) ← nice(car1),not ¬select(car1)
r2: ¬select(car1) ← expensive(car1),not select(car1)
r3: select(car1) ← fast(car1),not ¬select(car1)

r3 < r2 < r1

The rules r1 and r2 are mutually exclusive: whenever we ap-
ply the rule r1, the rule r2 is not applicable, and vice versa.
We call this mutual exclusivity a conflict. The resulting pro-
gram is much tolerant to changes. If we decide that the rule
r3 is the most preferred, and r3 is the least preferred, only
the preference relation needs to be changed, and the rules
stay intact.

Several semantics for logic programs with preferences
on rules have been proposed in the literature. In the first
group are semantics that extend the well-founded seman-
tics (Van Gelder, Ross, and Schlipf 1991): (Brewka 1996;
Wang, Zhou, and Lin 2000; Schaub and Wang 2002) modify
the alternating fixpoint characterization of the well-founded
semantics in order to take preferences into account.

In the second group are the semantics that extend the
answer set semantics (Gelfond and Lifschitz 1991). Each
model of a program with preferences, called a preferred an-
swer set, is guaranteed to be an answer set of the underly-
ing program without preferences. (Brewka and Eiter 1999;
Wang, Zhou, and Lin 2000; Delgrande, Schaub, and Tompits
2003) provide prescriptive (Delgrande et al. 2004) seman-
tics, i.e. preferences are understood as the order in which
the rules of a program have to be applied. A rule can be
defeated only by rules that were applied before it w.r.t. to
this order. Each answer set is tested whether it can be con-

223

structed in aforementioned way. (Zhang and Foo 1997) it-
eratively non deterministically removes from a program less
preferred rules that are defeated by the remainder of the pro-
gram. (Sakama and Inoue 2000) transforms preferences on
rules to preferences on literals, which leads to comparison of
the sets of generating rules. Roughly speaking, answer set
generated by maximal rules (w.r.t. a preference relation) are
selected. (Šefránek 2008) understands preference handling
as a kind of argumentation.

Brewka and Eiter have proposed Principle I (Brewka and
Eiter 1999) that captures the intuition behind preferences on
rules. If two answer sets are generated by the same rules
except for two rules, and one rule is preferred over the other,
an answer set generated by the less preferred rule should not
be preferred.

The existing approaches to preference handling that sat-
isfy Principle I (Brewka and Eiter 1999; Wang, Zhou, and
Lin 2000; Delgrande, Schaub, and Tompits 2003), denoted
here as PASBE , PASWZL and PASDST , introduce a
rather imperative feature into the otherwise declarative lan-
guage. They understand preferences on rules as the order
in which the rules of a program have to be applied. This,
on the one hand goes against declarative spirit of logic pro-
gramming. On the other hand, it makes the approaches un-
usable in the situations when we need to automatically gen-
erate preferences.

Example 1 Consider a modified version of the scenario
from (Brewka and Eiter 1999). Imagine we have a car rec-
ommender system. A program written by the developers
of the system contains a database of cars and recommends
them to a user.

r1: nice(car1) ←
r2: safe(car2) ←

r3: rec(car1) ← nice(car1),not ¬rec(car1)
r4: rec(car2) ← nice(car2),not ¬rec(car2)

The system recommends nice cars to the user. We allow the
user to write his/her own rules during the run time of a sys-
tem. Imagine the user writes the following rules

u1: ¬rec(car2) ← rec(car1)
u2: ¬rec(car1) ← rec(car2)

u3: rec(car1) ← safe(car1),not ¬rec(car1)
u4: rec(car2) ← safe(car2),not ¬rec(car2)

to say that maximally one car should be recommended, and
that the user is interested in safe cars.

Due to the rules u1 and u2, the rule u3 is conflicting with
r4: (i) The rule u1 depends on r3, and its head is in the
negative body of u4. (ii) The rule u2 depends on u4, and its
head is in the negative body of r3. We also have that u3 is
conflicting with u4, and r3 is conflicting with r4 and u4. All
the conflicts are indirect – without the rules u1 and u2 there
are no conflicts.

The purpose of the user’s rules is to override the default
behaviour of the system in order to provide the user the
best experience possible. Therefore we want the rule
u3 to override r4, and u4 to override r3. Since the ui

rules are only known at the run time, preferences cannot
be specified beforehand by the developers of the system.
Moreover, we cannot expect a user to know all the ri

rules. It is reasonable to prefer each ui rule over each
rj rule, and let the semantics to ignore preferences be-
tween non-conflicting rules. Hence we have the preferences:

u1 is preferred over r1

u1 is preferred over r2

. . .
u4 is preferred over r4

The prerequisites nice(car2) and safe(car1) of r4 and u3

cannot be derived. The only usable conflicting rules are r3

and u4. The rule u4 being preferred, u4 defines an exception
to r3. We expect u4 to be applied, and r3 defeated. The only
answer set that uses u4 is S = F ∪{¬rec(car1), rec(car2)}
where F = {nice(car1), safe(car2)}. Hence S is the
unique expected preferred answer set.

None of the existing approaches satisfying Principle I
works as expected. PASBE does not handle indirect con-
flicts, and provides two preferred answer sets S and S2 =
F ∪ {rec(car1),¬rec(car2)}. PASDST and PASWZL
provide no preferred answer set due to they imperative na-
ture. Since u4 is preferred over r2, they require that u4 is
applied before r2. It is impossible as r2 is the only rule that
derives r4’s prerequisite.

It is not crucial for the example that the facts r1 and r2 are
less preferred. If one feels that they should be separated from
the rest of the rules, we can easily modify the program, e.g.,
by replacing the fact safe(car2) by the fact volvo(car2)
and the rule safe(car2)← volvo(car2).

Our goal is to develop an approach to preference handling
that (i) is purely declarative, (ii) satisfies Brewka and Eiter’s
Principle I, and (iii) is usable in the above-mentioned situa-
tion.

We have already proposed such a semantics for the case of
direct conflicts, and we denote it by PASD (Šimko 2013).
We understand this semantics as the reference semantics for
the case of direct conflicts, and extend it to the case of gen-
eral conflicts in this paper.

We present two approaches. The first one, denoted by
PASG, is based on the intuition that a rule cannot be de-
feated by a less preferred (generally) conflicting rule. The
approach is suitable for situations when we need to ignore
preferences between non-conflicting rules, and is equivalent
to the answer set semantics for the subclass of stratified pro-
grams. We consider this property to be important for the
aforementioned situations as stratified programs contain no
conflicts.

The second approach, denoted PASGNO, relaxes the re-
quirement for ignoring preferences between non-conflicting
rules, and stays is the NP complexity class. There are strati-
fied programs with answer sets and no preferred answer sets
according to the approach. The approach is suitable in sit-
uations when a developer has a full control over a program.
The approach is based on the intuition that a rule cannot be
defeated by a less preferred rule or a rule that depends on a

224

less preferred rule. The approach can be also characterized
by a transformation from logic programs with preferences to
logic programs without preferences such that the answer sets
of the transformed program (modulo new special-purpose
literals) are the preferred answer sets of an original one.

The two approaches of this paper and our approach for
direct conflicts PASD form a hierarchy, which in general
does not collapse. Preferred answer sets of PASGNO are
preferred according to PASG, and preferred answer sets of
PASG are preferred according to PASD.
PASD is thus the reference semantics for the case of

direct conflicts. PASGNO can be viewed as a computa-
tionally acceptable approximation of PASG. PASGNO
is sound w.r.t. PASG, but it is not complete w.r.t.
PASG, meaning that each preferred answer set according
to PASGNO is a preferred answer set according to PASG,
but not vice versa.

When dealing with preferences, it is always important to
remember what the abstract term “preferences” stands for.
Different interpretations of the term lead to different require-
ments on a semantics. We want to stress that we under-
stand preferences as a mechanism for encoding exceptions
between rules in this paper.

The rest of the paper is organized as follows. We first
recapitulate preliminaries of logic programming, answer set
semantics and our approach to preferred answer sets for di-
rect conflicts PASD. Then we provide the two approaches
to preferred answer sets for general conflicts. After that we
show relation between the approaches of this paper, and also
between approaches of this paper and existing approaches.
Finally we show how the approaches work on the problem-
atic program from Example 1. Proofs not presented here can
be found in the technical report (Šimko 2014).

Preliminaries
In this section, we give preliminaries of logic programming
and the answer set semantics. We recapitulate the alterna-
tive definition of answer sets based on generating sets from
(Šimko 2013), upon which this paper builds.

Syntax
Let At be a set of all atoms. A literal is an atom or an ex-
pression ¬a, where a is an atom. Literals of the form a and
¬a where a is an atom are complementary. A rule is an ex-
pression of the form l0 ← l1, . . . , lm,not lm+1, . . . ,not ln,
where 0 ≤ m ≤ n, and each li (0 ≤ i ≤ n) is a literal.
Given a rule r of the above form we use head(r) = l0 to
denote the head of r, body(r) = {l1, . . . ,not ln} the body
of r. Moreover, body+(r) = {l1, . . . , lm} denotes the posi-
tive body of r, and body−(r) = {lm+1, . . . , ln} the negative
body of r. For a set of rules R, head(R) = {head(r) : r ∈
R}. A fact is a rule with the empty body. A logic program
is a finite set of rules.

We say that a rule r1 defeats a rule r2 iff head(r1) ∈
body−(r2). A set of rules R defeats a rule r iff head(R) ∩
body−(r) 6= ∅. A set of rules R1 defeats a set of rules R2 iff
R defeats a rule r2 ∈ R2.

For a set of literals S and a program P we use GP (S) =
{r ∈ P : body+(r) ⊆ S and body−(r) ∩ S = ∅}.

A logic program with preferences is a pair (P,<) where:
(i) P is a logic program, and (ii) < is a transitive and asym-
metric relation on P . If r1 < r2 for r1, r2 ∈ P we say that
r2 is preferred over r1.

Answer Set Semantics
A set of literals S is consistent iff a ∈ S and ¬a ∈ S holds
for no atom a.

A set of rules R ⊆ P positively satisfies a logic program
P iff for each rule r ∈ P we have that: If body+(r) ⊆
head(R), then r ∈ R. We will use Q(P) to denote the
minimal (w.r.t. ⊆) set of rules that positively satisfies P .
It contains all the rules from P that can be applied in the
iterative manner: we apply a rule which positive body is
derived by the rules applied before.

Example 2 Consider the following program P :

r1: a ←
r2: b ← a
r3: d ← c

We have that R1 = {r1, r2} and R2 = {r1, r2, r3} posi-
tively satisfy P . On the other hand R3 = {r1} doe not posi-
tively satisfy P as body+(r2) ⊆ head(R3) and r2 6∈ R3.

We also have that Q(P) = R1.

The reduct PR of a logic program P w.r.t. a set of rules
R ⊆ P is obtained from P by removing each rule r with
head(R) ∩ body−(r) 6= ∅.

A set of rules R ⊆ P is a generating set of a logic pro-
gram P iff R = Q(PR).

Definition 1 (Answer set) A consistent set of literals S is
an answer set of a logic program P iff there is a generating
set R such that head(R) = S.

Example 3 Consider the following program P

r1: a ← not b
r2: c ← d,not b
r3: b ← not a

Let R = {r1}. When constructing PR we remove r3 as
body−(r3) ∩ head(R) 6= ∅. We get that PR = {r1, r2},
and Q(PR) = {r1}. The rule r2 is not included as d ∈
body+(r2) cannot be derived. We have that Q(PR) = R.
Therefore R is a generating set of P and {a} = head(R) is
an answer set of P .

It holds that: if a set of rules R is a generating set of
a logic program P , and S = head(R) is consistent, then
R = GP (S).

Conflicts
Informally, two rules are conflicting, if their applicability
is mutually exclusive: if the application of one rule causes
the other rule to be inapplicable, and vice versa. We divide
general conflicts into two disjunctive categories:
• direct conflicts, and
• indirect conflicts.

225

In case of a direct conflict, application of a conflicting rule
causes immediately the other rule to be inapplicable.

Definition 2 (Directly Conflicting Rules) We say that
rules r1 and r2 are directly conflicting iff: (i) r1 defeats r2,
and (ii) r2 defeats r1.

Example 4 Consider the following program

r1: a ← not b
r2: b ← not a

The rules r1 and r2 are directly conflicting. If r1 is used,
then r2 is not applicable, and vice versa.

In case of an indirect conflict, another, intermediate rule,
has to be used. The following example illustrated the idea.

Example 5 Consider the following program

r1: x ← not b
r2: b ← not a
r3: a ← x

Now, the rule r1 is not able to make r2 inapplicable on its
own. The rule r3 is also needed. Therefore we say that r1

and r2 are indirectly conflicting, and the conflict is formed
via the rules r3.

When trying to provide a formal definition of a general
conflict, one has to address several difficulties.

First, an indirect conflict is not always effectual. The fol-
lowing example illustrates what we mean by that.

Example 6 Consider the following program.

r1: x ← not b
r2: b ← not a
r3: a ← x,not y
r4: y ←
When the rule r2 is used, the rule r1 cannot be used. How-
ever, if we use r1, the rule r2 is still applicable as the rule r3

that depends on r1 and defeats r2 is defeated by the fact r4.
Note that this cannot happen in the case of direct conflicts.

Second, we need to define that an indirect conflict is
formed via rules that are somehow related to a conflicting
rule.

Example 7 Consider the following program:

r1: a ← not b
r2: x ← not a
r3: b ←
If we fail to see that r3 does not depend on r2, we can come
to wrong conviction that r1 and r2 are conflicting via r3 as
(i) r1 defeats r2, and (ii) r3 defeats r1.

Third, in general, the rules depending on a rule are con-
flicting, thus creating alternatives, in which the rule is/is not
conflicting. The following example illustrates this.

Example 8 Consider the following program:

r1: x ← not c
r2: a ← x,not b
r3: b ← x,not a
r4: c ← not a

Since the rules r2 and r3 are directly conflicting, they can-
not be used at the same time. If r2 is used, r1 and r4 are
conflicting via r2. If r3 is used, r1 and r4 are not conflicting.

In this paper we are going to address these issues from
a different angle. Instead of defining a general conflict be-
tween two rules, we will move to sets of rules and define
conflicts between sets of rules in the later sections.

Approach to Direct Conflicts
In this section we recapitulate our semantics for directs con-
flicts (Šimko 2013), which we generalize in this paper for
the case of general conflicts.

We say that a rule r1 directly overrides a rule r2 w.r.t. a
preference relation < iff (i) r1 and r2 are directly conflicting,
and (ii) r2 < r1.

The reduct PR of a logic program with preferences P =
(P,<) w.r.t. a set of rules R ⊆ P is obtained from P by
removing each rule r1 ∈ P , for which there is a rule r2 ∈ R
such that:

• r2 defeats r1, and

• r1 does not directly override r2 w.r.t. <.

A set of rules R ⊆ P is a preferred generating set of
a logic program with preferences P = (P,<) iff R =
Q(PR).

A consistent set of literals S is a preferred answer set of
a logic program with preferences P iff there is a preferred
generating set R of P such that head(R) = S.

We will use PASD(P) to denote the set of all the pre-
ferred answer sets of P according to this definition.

It holds that each preferred generating set of P = (P,<)
is a generating set of P .

Principles
An important direction in preference handling research is
the study of principles that a reasonable semantics should
satisfy. Brewka and Eiter have proposed first two principles
(Brewka and Eiter 1999).

Principle I tries to capture the meaning of preferences. If
two answer sets are generated by the same rules except for
two rules, the one generated by a less preferred rule is not
preferred.

Principle I ((Brewka and Eiter 1999)) Let P = (P,<) be
a logic program with preferences, S1, S2 be two answer sets
of P . Let GP (S1) = R∪ {r1} and GP (S2) = R∪ {r2} for
R ⊂ P . Let r2 < r1. Then S2 is not a preferred answer set
of P .

Principle II says that the preferences specified on a rule
with an unsatisfied positive body are irrelevant.

Principle II ((Brewka and Eiter 1999)) Let S be a pre-
ferred answer set of a logic program with preferences P =
(P,<), and r be a rule such that body+(r) 6⊆ S. Then S is
a preferred answer set of a logic program with preferences
P ′ = (P ′, <′), where P ′ = P ∪{r} and <′ ∩(P ×P) =<.

226

Principle III1 requires that a program has a preferred an-
swer set whenever a standard answer set of the underlying
program exists. It follows the view that the addition of pref-
erences should not cause a consistent program to be incon-
sistent.

Principle III Let P = (P,<) be a logic program with pref-
erences. If P has an answer set, then P has a preferred
answer set.

Before we proceed, we remind that our approach to pref-
erence handling is for general conflicts, and understands
preferences on rules as a mechanism for expressing excep-
tion between rules. Using this view, we show that Principle
II and Principle III should be violated by a semantics, and
hence are not relevant under this understanding of prefer-
ences.

Example 9 Consider the following program P = (P,<)

r1: select(a) ← not ¬select(a)
r2: select(b) ← not ¬select(b)

r3: ¬select(a) ← select(b)

r2 < r1

The program is stratified, and has the unique answer set
S = {¬select(a), select(b)}. Since there are no conflicts
between the rules, the unique answer set should be pre-
ferred.

We construct P ′ = (P ′, <), P ′ = P ∪ {r4}, by adding
the rule

r4: ¬select(b) ← select(a)
We have an indirect conflict between the rules r1 and r2 via
r3 and r4. The rule r1 being preferred, S should not be a
preferred answer set of P ′.

Hence Principle II is violated: body+(r4) =
{select(a)} 6⊆ S, but S is not a preferred answer set of
P ′.
Example 10 Consider the following program P = (P,<).

r1: select(a) ← not ¬select(a)
r2: ¬select(a) ← not select(a)

r2 < r1

When we interpret preference r1 < r2 as a way of saying
that r1 defines an exception to r2 and not vice versa, the
program has the following meaning:

r1: select(a) ←
r2: ¬select(a) ← not select(a)
Hence S = {select(a)} is the unique preferred answer set
of P .

We construct P ′ = (P ′, <), P ′ = P ∪ {r3}, by adding
the rule

r3 : inc← select(a),not inc

1It is an idea from Proposition 6.1 from (Brewka and Eiter
1999). Brewka and Eiter did not consider it as a principle. On
the other hand (Šefránek 2008) did.

The program P ′ has the following meaning:
r1: select(a) ←
r2: ¬select(a) ← not select(a)
r3: inc ← select(a),not inc

The program has no answer set, and hence P ′ has no pre-
ferred answer set.

Hence Principle III is violated: The program P ′ has an
answer set, but P ′ has no preferred answer set.

Approach One to General Conflicts
In this section we generalize our approach to direct conflicts
to the case of general conflicts. As we have already noted,
we deliberately avoid defining what a general conflict be-
tween two rules is. We will define when two sets of rules
are conflicting instead. For this reason we develop an alter-
native definition of an answer set as a set of sets of rules,
upon which the semantics for preferred answer sets will be
defined.

Alternative Definition of Answer Sets
A building block of the alternative definition of answer sets
is a fragment. The intuition behind a fragment is that it is
a set of rules that can form the one hand side of a conflict.
The positive bodies of the rules must be supported in a non-
cyclic way.
Definition 3 (Fragment) A set of rules R ⊆ P is a frag-
ment of a logic program P iff Q(R) = R.
Example 11 Consider the following program P that we will
use to illustrate the definitions of this paper.
r1: a ← x
r2: x ← not b
r3: b ← not a

The sets F1 = ∅, F2 = {r2}, F3 = {r3}, F4 = {r2, r1},
F5 = {r2, r3}, F6 = {r1, r2, r3} are all the fragments of the
program. For example, {r1} is not a fragment asQ({r1}) =
∅.
Notation 1 We will denote by F (P) the set of all the frag-
ments of a program P .
Notation 2 Let P be a logic program and E ⊆ F (P).

We will denote R(E) =
⋃

X∈E X , and head(E) =
head(R(E)).

Given a guess of fragments, we define the reduct. Since
fragments are sets of rules, we can speak about defeating
between fragments.
Definition 4 (Reduct) Let P be a logic program and E ⊆
F (P).

The reduct PE of P w.r.t. E is obtained from F (P) by
removing each fragment X ∈ F (P) for which there is Y ∈
E that defeats X .
Example 12 (Example 11 continued) Let E1 =
{F1, F2, F4}. We have that PE1 = {F1, F2, F4}. The
fragments F3, F5, and F6 are removed as they contain the
rule r3 which is defeated by F4 ∈ E1.

Let E2 = {F2}. We have that PE2 =
{F1, F2, F3, F4, F5, F6}. Since no rule has x in its negative
body, no fragment is removed.

227

A stable fragment set, an alternative notion to the notion
of answer set, is a set of fragments that is stable w.r.t. to the
reduction.

Definition 5 (Stable fragment set) A set E ⊆ F (P) is a
stable fragment set of a program P iff PE = E.

Example 13 (Example 12 continued) We have that
PE1 = E1, so E1 is a stable fragment set. On the other
hand, E2 is not a stable fragment set as PE2 6= E2.

Proposition 1 Let P be a logic program, and E ⊆ F (P).
E is a stable fragment set of P iff R(E) is a generating

set of P and E = {T : T = Q(T) and T ⊆ R(E)}.
From Proposition 1 we directly have that the following is

an alternative definition of answer sets.

Proposition 2 Let P be a logic program and S a consistent
set of literals.

S is an answer set of P iff there is a stable fragment set
E of P such that head(E) = S.

Example 14 (Example 13 continued) E1 = {F1, F2, F4}
and E3 = {F1, F3} are the only stable fragment sets of
the program. The sets {a, x} = head(E1) and {b} =
head(E3) are the only answer sets of the program.

Preferred Answer Sets
In this subsection we develop our first definition of preferred
answer sets for general conflicts from the alternative defini-
tion of answer sets based on stable fragment sets.

The basic intuition behind the approach is that a rule can-
not be defeated by a less preferred conflicting rule. This
intuition is realized by modifying the definition of reduct.
We do not allow a fragment X to be removed because of a
fragment Y if Y uses less preferred conflicting rules. For
this purpose we use the term “override”.

Definition 6 (Conflicting Fragments) Fragments X and
Y are conflicting iff (i) X defeats Y , and (ii) Y defeats X .

Example 15 (Example 11 continued) Let us recall the
fragments: F2 = {r2}, F3 = {r3}, and F4 = {r2, r1}.
The fragments F3 and F4 are conflicting as head(r3) ∈
body−(r2) and head(r1) ∈ body−(r3). On the other hand,
F2 and F3 are not conflicting. The fragment F3 defeats F2,
but not the other way around as head(r2) 6∈ body−(r3).

Definition 7 (Override) Let X and Y be conflicting frag-
ments. We say that X overrides Y w.r.t. a preference rela-
tion < iff for each r1 ∈ X that is defeated by Y , there is
r2 ∈ Y defeated by X , and r2 < r1.

Example 16 (Example 15 continued) Let us continue with
preference r2 < r3. We have that F3 overrides F4 and F3

overrides F6. On the other hand F3 does not override F2

because F2 does not defeat F3. From the following Proposi-
tion 3 we also have that F6 does not override F6.

Proposition 3 Let P = (P,<) be a logic program with
preferences, X and Y be fragments of P .

If X overrides Y w.r.t. <, then Y does not override X
w.r.t. <.

When constructing the reduct w.r.t. a guess, a fragment
X cannot be removed because of a fragment Y which is
overridden by X .

Definition 8 (Reduct) Let P = (P,<) be a logic program
with preferences, and E ⊆ F (P).

The reduct PE of P w.r.t. E is obtained from F (P) by
removing each X ∈ F (P) such that there is Y ∈ E that:
• Y defeats X , and
• X does not override Y w.r.t. <.

Example 17 (Example 16 continued) Let E1 =
{F1, F2, F4}. We have that PE1 = {F1, F2, F3, F4}.
Now, the fragment F3 is not removed as the only fragment
from E1 that defeats it is F4, but F3 overrides F4.

Definition 9 (Preferred stable fragment set) Let P =
(P,<) be a logic program with preferences., and E ⊆
F (P).

We say that E is a preferred stable fragment set of P iff
PE = E.

Example 18 (Example 16 continued) Now we have that
PE1 6= E1, so E1 is not a preferred stable fragment set.
On the other hand, E3 = {F1, F3} is a preferred stable
fragment set as PE3 = E3.

Definition 10 (Preferred answer set) Let P = (P,<) be a
logic program with preferences, and S be a consistent set of
literals.

S is a preferred answer set of P iff there is a preferred
stable fragment set E of P such that head(E) = S.

We will use PASG(P) to denote the set of all the pre-
ferred answer sets of P according to this definition.

Example 19 (Example 18 continued) The set
E3 = {F1, F3} is the only preferred stable fragment
set, and {b} = head(E3) is the only preferred answer set of
the program.

Proposition 4 Let P = (P,<) be a logic program with
preferences, and E ⊆ F (P).

If E is a preferred stable fragment set of P , then E is a
stable fragment set of P .

Properties
Preferred answer sets as defined in Definition 10 enjoy fol-
lowing nice properties.

Proposition 5 Let P = (P,<) be a logic program with
preferences. Then PASG(P) ⊆ AS(P).

Proposition 6 Let P = (P, ∅) be a logic program with pref-
erences. Then PASG(P) = AS(P).

Proposition 7 Preferred answer sets as defined in Defini-
tion 10 satisfy Principle I.

Proposition 8 Let P1 = (P,<1), P2 = (P,<2) be logic
programs with preferences such that <1⊆<2.

Then PASG(P2) ⊆ PASG(P1).

On the subclass of stratified programs, the semantics is
equivalent to the answer set semantics. We consider this
property to be an important one as stratified programs con-
tain no conflicts.

228

Proposition 9 Let P = (P,<) be a logic program with
preferences such that P is stratified. Then PASG(P) =
AS(P).

The following example illustrates how the approach
works on stratified programs.

Example 20 Consider a problematic program from
(Brewka and Eiter 1999):

r1: a ← not b
r2: b ←

r2 < r1

The program is stratified and has a unique answer set S =
{b}.

The program has the following fragments F0 = ∅, F1 =
{r1}, F2 = {r2}, F3 = {r1, r2}. The set E = {F0, F2} is a
unique stable fragment set.

We have that F2 defeats both F1, and F3. Neither F1 nor
F3 override F2 as they are not conflicting with F2. This
is the reason why preference r2 < r1 is ignored here, and
both F1 and F3 are removed during the reduction: PE =
{F0, F2} = E. Therefore S is a unique preferred answer
set.

From the computational complexity point of view, so far,
we have established only the upper bound. Establishing the
lower bound remains among open problems for future work.

Proposition 10 Given a logic program with preferences P ,
deciding whether P has a preferred answer set is in ΣP

3 .

Approach Two to General Conflicts
If we have an application domain, where we can relax the
requirements for preference handling in a sense that we no
longer require preferences between non-conflicting rules to
be ignored, we can ensure that the semantics stays in the NP
complexity class.

In this section we simplify our first approach by using the
following intuition for preference handling: a rule cannot
be defeated by a less preferred rule or a rule depending on
a less preferred rule.

The definition of the approach follows the structure of our
approach for direct conflicts. The presented intuition is real-
ized using a set TR

r in the definition of reduct.

Definition 11 (Reduct) Let P = (P,<) be a logic program
with preferences, and R ⊆ P be a set of rules.

The reduct PR of P w.r.t. R is obtained from P by remov-
ing each rule r ∈ P such that body−(r) ∩ head(TR

r) 6= ∅,
where TR

r = Q({p ∈ R : p 6< r}).

Example 21 (Example 16 continued) Let us recall the
program:

r1: a ← x
r2: x ← not b
r3: b ← not a

r2 < r3

Let R1 = {r1, r2}. We have that TR1
r1

= R1, TR1
r2

= R1.
On the other hand TR1

r3
= ∅ as r2 < r3 and r1 depends on

r2. No rule less preferred, and no rule that depends on a
rule less preferred than r3 can be used to defeat r3. In this
case no rule can defeat r3.

Hence PR1 = {r1, r2, r3}.
Definition 12 (Preferred generating set) Let P = (P,<)
be a logic program with preferences, and R be a generating
set of P .

We say that R is a preferred generating set of P iff R =
Q(PR).

Example 22 (Example 21 continued) We have that
Q(PR1) = P 6= R1. Hence R1 is not a preferred
generating set.

Definition 13 (Preferred answer set) Let P = (P,<) be a
logic program with preferences, and S be a consistent set of
literals.

S is a preferred answer set of P iff there is a preferred
generating set R such that S = head(R).

We will use PASGNO(P) to denote the set of all the pre-
ferred answer sets of P according to this definition.

Example 23 (Example 22 continued) The set R2 = {r3}
is the only preferred generating set, and {b} = head(R2) is
the only preferred answer set.

Transformation
It turns out that the second approach can be characterized
by a transformation from programs with preferences to pro-
grams without preferences in a way that the answer sets of
the transformed program correspond (modulo new special-
purpose literals) to the preferred answer sets of an original
program.

The idea of the transformation is to use special-purpose
literals and auxiliary rules in order to allow a rule r to be
defeated only by TR

r where R is a preferred generating set
guess. We first present the definition of the transformation
and then explain each rule.

Notation 3 If r is a rule of a program P , then nr denotes a
new literal not occurring in P .

If r is a rule of a program P , and x is a literal of P , then
xr denotes a new literal not occurring in P and different
from nq for each q ∈ P . For a set of literals S, Sr denotes
{xr : x ∈ S}.

We will also use inc to denote a literal not occurring in P
and different from all previously mentioned literals.

Definition 14 (Transformation) LetP = (P,<) be a logic
program with preferences.

Let r be a rule. Then tP(r) is the set of the rules

head(r) ← nr (1)
nr ← body+(r),not body−(r)r (2)

and the rule

head(p)r ← body+(p)r, np (3)

for each p ∈ P such that p 6< r, and the rule

inc ← nr, x,not inc (4)

229

for each x ∈ body−(r).
t(P) =

⋃
r∈P tP(r).

A preferred generating set guess R is encoded using nr

literals. The meaning of a literal nr is that a rule r was
applied. In order to derive nr literals, we split each rule r of
a program into two rules: The rule (2) derives literal nr, and
the rule (1) derives the head of the original rule r.

The special-purpose literals xr are used in the negative
body of the rule (2) in order to ensure that only TR

r can de-
feat a rule r. The xr literals are derived using the rules of
the form (3).

The rules of the form (4) ensure that no answer set of t(P)
contains both nr and x. This condition is needed in order to
ensure that R is also a generating set.

Example 24 Consider again our running program P:

r1: a ← x
r2: x ← not b
r3: b ← not a

r2 < r3

t(P) is as follows:

a ← nr1 x ← nr2 b ← nr3

nr1 ← x nr2 ← not br2 nr3 ← not ar3

ar1 ← xr1 , nr1 ar2 ← xr2 , nr1 ar3 ← xr3 , nr1

xr1 ← nr2 xr2 ← nr2

br1 ← nr3 br2 ← nr3 br3 ← nr3

inc ← nr2 , b,not inc
inc ← nr3 , a,not inc

Now, as r2 < r3, a transformed rule deriving xr3 coming
from r2 is not included.

The transformation captures the semantics of preferred
answer sets as defined in Definition 13.

Proposition 11 Let P = (P,<) be a logic program with
preferences. Let Lit be a set of all the literals constructed
from the atoms of P , and NP(S) = {nr : r ∈ GP (S)}, and
Aux(S) =

⋃
r∈P head(TR

r)r, where R = GP (S).
If S is a preferred answer set ofP , then A = S∪NP(S)∪

Aux(S) is an answer set of t(P).
If A is an answer set of t(P), then S = A ∩ Lit is a

preferred answer set of P , and A = S ∪NP(S) ∪Aux(S).

Properties
Preferred answer sets as defined in Definition 13 enjoy sev-
eral nice properties.

Proposition 12 Let P = (P,<) be a logic program with
preferences. Then PASGNO(P) ⊆ AS(P).

Proposition 13 Let P = (P, ∅) be a logic program with
preferences. Then PASGNO(P) = AS(P).

Proposition 14 Preferred answer sets as defined in Defini-
tion 13 satisfy Principle I.

Proposition 15 Let P1 = (P,<1) and P2 = (P,<2) be
logic programs with preferences such that <1⊆<2. Then
PASGNO(P2) ⊆ PASGNO(P1).

The approach two is not equivalent to the answer set se-
mantics for the subclass of stratified programs.

Proposition 16 There is a logic program with preferences
P = (P,<) where P is stratified and PASGNO(P) = ∅.

Example 25 shows such a program. Example 20 and 25
illustrate the main difference between the two approaches.
While PASG ignores preferences between non-conflicting
rules, PASGNO is not always able to do so.

Example 25 Consider again the program from Example 20:

r1: a ← not b
r2: b ←

r2 < r1

The program is stratified and has a unique answer set S =
{b}. A unique generating set R = {r2} corresponds to the
answer set S.

We have that TR
r1

= ∅. The rule r2 is not included as
r2 < r1. Due to a simplicity of the approach, preference
r2 < r1 is not ignored. Hence head(TR

r1
)∩ body−(r1) = ∅,

and r1 ∈ PR. From that Q(PR) 6= R, and S is not a
preferred answer set.

On the other hand the approach stays in the NP complex-
ity class.

Proposition 17 Deciding whether PASGNO(P) 6= ∅ for a
logic program with preferences P is NP-complete.

Proof: Membership: Using Proposition 11, we can re-
duce the decision problem PASGNO(P) 6= ∅ to the prob-
lem AS(t(P)) 6= ∅ (in polynomial time), which is in NP.
Hardness: Deciding AS(P) 6= ∅ for a program P is NP-
complete. Using Proposition 13 we can reduce it to the de-
cision PASGNO((P, ∅)) 6= ∅.

Relation between the Approaches of this Paper
It turns out that the approaches of this paper form a hierar-
chy, which does not collapse.

Notation 4 Let A and B be names of semantics.
We write A ⊆ B iff each preferred answer set according

to A is a preferred answer set according to B.
We write A = B iff A ⊆ B and B ⊆ A.

Proposition 18 PASGNO ⊆ PASG ⊆ PASD

Proposition 19 PASD 6⊆ PASG

Proposition 20 PASG 6⊆ PASGNO

We interpret the results as follows. The semantics PASD
is the reference semantics for the case of direct conflicts.
The semantics PASGNO and PASG extend the seman-
tics to the case of indirect conflicts. The semantics PASG
ignores preferences between non-conflicting rules, e.g. it
is equivalent to the answer set semantics for the subclass

230

of stratified programs (Stratified programs contain no con-
flicts). If an application domain allows it, we can drop the re-
quirement for ignoring preferences between non-conflicting
rules and use the semantics PASGNO that stays in the NP
complexity class. The semantics PASGNO is sound w.r.t.
PASG but it is not complete w.r.t. PASG. Some preferred
answer sets according to PASG are not preferred accord-
ing toPASGNO due to preferences between non-conflicting
rules.

Relation to Existing Approaches
Schaub and Wang (Schaub and Wang 2003) have shown
that the approaches (Delgrande, Schaub, and Tompits 2003;
Wang, Zhou, and Lin 2000; Brewka and Eiter 1999), re-
ferred here as PASDST , PASWZL, PASBE form a hi-
erarchy.

Proposition 21 ((Schaub and Wang 2003)) PASDST ⊆
PASWZL ⊆ PASBE

We have shown that our approach for direct conflicts con-
tinues in this hierarchy (Šimko 2013).

Proposition 22 ((Šimko 2013)) PASBE ⊆ PASD

The relations PASDST ⊆ PASGNO and PASWZL ⊆
PASG are the only subset relation between our seman-
tics for general conflicts PASGNO, PASG and PASDST ,
PASWZL and PASBE .

Proposition 23 PASDST ⊆ PASGNO.

Proposition 24 PASWZL ⊆ PASG.

Proposition 25 PASGNO 6⊆ PASBE .

Corollary 1
• PASGNO 6⊆ PASWZL, PASGNO 6⊆ PASDST ,
• PASG 6⊆ PASBE , PASG 6⊆ PASWZL, PASG 6⊆
PASDST .

Proposition 26 PASWZL 6⊆ PASGNO

The overall hierarchy of the approaches is depicted in Fig-
ure 1.

Figure 1: The hierarchy of the approaches.

PASGNO ⊆ PASG

PASDST

⊆

⊆

⊆

⊆
PASD⊆

PASWZL ⊆ PASBE

An Example
In this section we show that the approaches of this paper
handle correctly the program of Example 1 from Introduc-
tion. We remind that neither of the approaches PASDST ,
PASWZL andPASBE provides intended preferred answer
sets.

Example 26 We recall the program:

r1: nice(car1) ←
r2: safe(car2) ←

r3: rec(car1) ← nice(car1),not ¬rec(car1)
r4: rec(car2) ← nice(car2),not ¬rec(car2)

u1: ¬rec(car2) ← rec(car1)
u2: ¬rec(car1) ← rec(car2)

u3: rec(car1) ← safe(car1),not ¬rec(car1)
u4: rec(car2) ← safe(car2),not ¬rec(car2)

ri < uj for each i and j.

The program has two answer sets S1 =
{rec(car1),¬rec(car2)} ∪ F and S2 =
{¬rec(car1), rec(car2)} ∪ F where F =
{nice(car1), safe(car2)}. As we mentioned in Intro-
duction, S2 is the intended unique preferred answer
set.

PASG : We start by listing fragments of the program. We
denote by Fi fragments formed by the facts. Let F0 = ∅,
F1 = {r1}, F2 = {r2}, F3 = {r1, r2}.

The rules r3 and u4 are conflicting. We denote by Ai

fragments containing the rule r3: A1 = {r1, r3}, A2 =
{r1, r3, u1}, A3 = {r1, r2, r3}, A4 = {r1, r2, r3, u1}.

We denote by Bi fragments containing the rule u4. Let
B1 = {r2, u4}, B2 = {r2, u4, u2}, B3 = {r1, r2, u4},
B4 = {r1, r2, u4, u2}.

A stable fragment set E1 =
{F0, F1, F2, F3, A1, A2, A3, A4} corresponds to
the answer set S1 and a stable fragment set
E2 = {F0, F1, F2, F3, B1, B2, B3, B4} corresponds
to the answer set S2.

We have that B3 overrides both A2 and A4. Hence B3 ∈
PE1 , and PE1 6= E1. Hence S1 is not a preferred answer
set.

On the other hand E2 = PE2 , and S2 is a preferred an-
swer set.

PASGNO : A generating set R1 = {r1, r2, r3, u1} cor-
responds to the answer set S1, and R2 = {r1, r2, u4, u2}
corresponds to the answer set S2.

We have that TR1
u4

= {u1}. The rules r1, r2, r3 are
not included as they are less preferred that u4. Hence
body−(u4) ∩ head(TR1

u4
) = ∅. Therefore u4 cannot be de-

feated, i.e. u4 ∈ PR1 . Hence R1 6= Q(PR1), and the
answer set S1 is not a preferred answer set.

On the other hand R2 = Q(PR2), and the answer set S2

is a preferred answer set.

Conclusions
When dealing with preferences it is always important to re-
member what the abstract term “preferences” represents. In
this paper we understand preferences as a mechanism for en-
coding exceptions. In case of conflicting rules, the preferred

231

rules define exceptions to less preferred ones, and not the
other way around. For this interpretation of preferences, it is
important that a semantics for preferred answer sets satisfies
Brewka and Eiter’s Principle I. All the existing approaches
for logic programming with preferences on rules that satisfy
the principle introduce an imperative feature into the lan-
guage. Preferences are understood as the order in which the
rules of a program are applied.

The goal of this paper was to develop a purely declara-
tive approach to preference handling satisfying Principle I.
We have developed two approaches PASG and PASGNO.
The first one is able to ignore preferences between non-
conflicting rules. For example, it is equivalent with the an-
swer set semantics on stratified programs. It is designed for
situations, where developer does not have full control over
preferences. An example is a situation where a user is able to
write his/her own rules in order to override developer’s rules.
If the user’s rules are not known until run-time of the system,
we have to prefer all the user’s rules over the developer’s
rules. To the best of our knowledge, no existing approach
for logic programming with preferences satisfying Principle
I is usable in this situation. On the other hand, in situations
where we can drop the requirement for ignoring preferences
between non-conflicting rules, e.g. if a developer has full
control over the program, we can use PASGNO which is in
the NP complexity class. Naturally, since the requirement
for ignoring preferences between non-conflicting rules was
dropped, there are stratified programs with answer sets and
no preferred answer sets according to PASGNO.

The two presented approaches are not independent. They
form a hierarchy, a branch in the hierarchy of the approaches
PASDST , PASWZL, PASBE and PASD.

One of our future goals is to better understand the com-
plexity of the decision problem PASG(P) 6= ∅. So far,
we have ΣP

3 membership result. It is not immediately clear
whether the problem is also ΣP

3 hard.
We also plan to investigate relation between PASG and

argumentation, and to implement a prototype solver for the
semantics using a meta-interpretation technique of (Eiter et
al. 2003).

Acknowledgments
We would like to thank the anonymous reviewers for de-
tailed and useful comments. This work was supported by the
grant UK/276/2013 of Comenius University in Bratislava
and 1/1333/12 of VEGA.

References
Brewka, G., and Eiter, T. 1999. Preferred Answer Sets
for Extended Logic Programs. Artificial Intelligence 109(1-
2):297–356.
Brewka, G. 1996. Well-Founded Semantics for Extended
Logic Programs with Dynamic Preferences. Journal of Ar-
tificial Intelligence Research 4:19–36.
Delgrande, J. P.; Schaub, T.; Tompits, H.; and Wang, K.
2004. A classification and survey of preference handling
approaches in nonmonotonic reasoning. Computational In-
telligence 20(2):308–334.

Delgrande, J. P.; Schaub, T.; and Tompits, H. 2003. A
Framework for Compiling Preferences in Logic Programs.
Theoretical Computer Science 3(2):129–187.
Eiter, T.; Faber, W.; Leone, N.; and Pfeifer, G. 2003. Com-
puting Preferred Answer Sets by Meta-Interpretation in An-
swer Set Programming. Theoretical Computer Science 3(4-
5):463–498.
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Genera-
tion Computing 9(3-4):365–386.
Sakama, C., and Inoue, K. 2000. Prioritized logic program-
ming and its application to commonsense reasoning. Artifi-
cial Intelligence 123(1-2):185–222.
Schaub, T., and Wang, K. 2002. Preferred well-founded
semantics for logic programming by alternating fixpoints:
Preliminary Report. In 9th International Workshop on Non-
Monotonic Reasoning, 238–246.
Schaub, T., and Wang, K. 2003. A semantic framework for
preference handling in answer set programming. Theoretical
Computer Science 3(4-5):569–607.
Šefránek, J. 2008. Preferred answer sets supported by ar-
guments. In Proceedings of Twelfth International Workshop
on Non-Monotonic Reasoning.
Šimko, A. 2013. Extension of Gelfond-Lifschitz Reduction
for Preferred Answer Sets : Preliminary Report. In Proceed-
ings of 27th Workshop on Logic Programming (WLP2013),
2–16.
Šimko, A. 2014. Proofs for the Approaches to Preferred
Answer Sets with General Conflicts. Technical report, De-
partment of Applied Informatics, Comenius University in
Bratislava. http://dai.fmph.uniba.sk/˜simko/
nmr2014_proofs.pdf.
Van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991. The
Well-founded Semantics for General Logic Programs. Jour-
nal of the ACM.
Wang, K.; Zhou, L.; and Lin, F. 2000. Alternating Fixpoint
Theory for Logic Programs with Priority. In Proceedings of
the First International Conference on Computational Logic,
164–178.
Zhang, Y., and Foo, N. Y. 1997. Answer Sets for Prioritized
Logic Programs. In Proceedings of the 1998 International
Logic Programming Symposium, 69–83.

232

KR3: An Architecture for Knowledge Representation and Reasoning in Robotics

Shiqi Zhang
Department of Computer Science

Texas Tech University, USA
shiqi.zhang6@gmail.com

Mohan Sridharan
Department of Computer Science

Texas Tech University, USA
mohan.sridharan@ttu.edu

Michael Gelfond
Department of Computer Science

Texas Tech University, USA
michael.gelfond@ttu.edu

Jeremy Wyatt
School of Computer Science

University of Birmingham, UK
jlw@cs.bham.ac.uk

Abstract

This paper describes an architecture that combines the com-
plementary strengths of declarative programming and proba-
bilistic graphical models to enable robots to represent, reason
with, and learn from, qualitative and quantitative descriptions
of uncertainty and knowledge. An action language is used for
the low-level (LL) and high-level (HL) system descriptions in
the architecture, and the definition of recorded histories in the
HL is expanded to allow prioritized defaults. For any given
goal, tentative plans created in the HL using default knowl-
edge and commonsense reasoning are implemented in the LL
using probabilistic algorithms, with the corresponding obser-
vations used to update the HL history. Tight coupling be-
tween the two levels enables automatic selection of relevant
variables and generation of suitable action policies in the LL
for each HL action, and supports reasoning with violation of
defaults, noisy observations and unreliable actions in large
and complex domains. The architecture is evaluated in sim-
ulation and on physical robots transporting objects in indoor
domains; the benefit on robots is a reduction in task execu-
tion time of 39% compared with a purely probabilistic, but
still hierarchical, approach.

1 Introduction
Mobile robots deployed in complex domains receive far
more raw data from sensors than is possible to process
in real-time, and may have incomplete domain knowledge.
Furthermore, the descriptions of knowledge and uncertainty
obtained from different sources may complement or contra-
dict each other, and may have different degrees of relevance
to current or future tasks. Widespread use of robots thus
poses fundamental knowledge representation and reasoning
challenges—robots need to represent, learn from, and reason
with, qualitative and quantitative descriptions of knowledge
and uncertainty. Towards this objective, our architecture
combines the knowledge representation and non-monotonic
logical reasoning capabilities of declarative programming
with the uncertainty modeling capabilities of probabilistic
graphical models. The architecture consists of two tightly
coupled levels and has the following key features:

1. An action language is used for the HL and LL sys-
tem descriptions and the definition of recorded history
is expanded in the HL to allow prioritized defaults.
2. For any assigned objective, tentative plans are cre-

ated in the HL using default knowledge and common-
sense reasoning, and implemented in the LL using prob-
abilistic algorithms, with the corresponding observa-
tions adding suitable statements to the HL history.
3. For each HL action, abstraction and tight coupling

between the LL and HL system descriptions enables au-
tomatic selection of relevant variables and generation of
a suitable action policy in the LL.

In this paper, the HL domain representation is translated into
an Answer Set Prolog (ASP) program, while the LL domain
representation is translated into partially observable Markov
decision processes (POMDPs). The novel contributions of
the architecture, e.g., allowing histories with prioritized de-
faults, tight coupling between the two levels, and the resul-
tant automatic selection of the relevant variables in the LL,
support reasoning with violation of defaults, noisy observa-
tions and unreliable actions in large and complex domains.
The architecture is grounded and evaluated in simulation and
on physical robots moving objects in indoor domains.

2 Related Work
Probabilistic graphical models such as POMDPs have been
used to represent knowledge and plan sensing, navigation
and interaction for robots (Hoey et al. 2010; Rosenthal and
Veloso 2012). However, these formulations (by themselves)
make it difficult to perform commonsense reasoning, e.g.,
default reasoning and non-monotonic logical reasoning, es-
pecially with information not directly relevant to tasks at
hand. In parallel, research in classical planning has pro-
vided many algorithms for knowledge representation and
logical reasoning (Ghallab, Nau, and Traverso 2004), but
these algorithms require substantial prior knowledge about
the domain, task and the set of actions. Many of these
algorithms also do not support merging of new, unreli-
able information from sensors and humans with the cur-

233

rent beliefs in a knowledge base. Answer Set Programming
(ASP), a non-monotonic logic programming paradigm, is
well-suited for representing and reasoning with common-
sense knowledge (Gelfond 2008; Baral 2003). An interna-
tional research community has been built around ASP, with
applications such as reasoning in simulated robot house-
keepers and for representing knowledge extracted from nat-
ural language human-robot interaction (Chen et al. 2012;
Erdem, Aker, and Patoglu 2012). However, ASP does not
support probabilistic analysis, whereas a lot of information
available to robots is represented probabilistically to quanti-
tatively model the uncertainty in sensor input processing and
actuation in the real world.

Researchers have designed cognitive architectures (Laird,
Newell, and Rosenbloom 1987; Langley and Choi 2006;
Talamadupula et al. 2010), and developed algorithms that
combine deterministic and probabilistic algorithms for task
and motion planning on robots (Kaelbling and Lozano-Perez
2013; Hanheide et al. 2011). Recent work has also inte-
grated ASP and POMDPs for non-monotonic logical infer-
ence and probabilistic planning on robots (Zhang, Sridha-
ran, and Bao 2012). Some examples of principled algo-
rithms developed to combine logical and probabilistic rea-
soning include probabilistic first-order logic (Halpern 2003),
first-order relational POMDPs (Sanner and Kersting 2010),
Markov logic network (Richardson and Domingos 2006),
Bayesian logic (Milch et al. 2006), and a probabilistic ex-
tension to ASP (Baral, Gelfond, and Rushton 2009). How-
ever, algorithms based on first-order logic for probabilisti-
cally modeling uncertainty do not provide the desired ex-
pressiveness for capabilities such as default reasoning, e.g.,
it is not always possible to express uncertainty and degrees
of belief quantitatively. Other algorithms based on logic pro-
gramming that support probabilistic reasoning do not sup-
port one or more of the desired capabilities: reasoning as
in causal Bayesian networks; incremental addition of proba-
bilistic information; reasoning with large probabilistic com-
ponents; and dynamic addition of variables with different
ranges (Baral, Gelfond, and Rushton 2009). The architec-
ture described in this paper is a step towards achieving these
capabilities. It exploits the complementary strengths of
declarative programming and probabilistic graphical mod-
els to represent, reason with, and learn from qualitative and
quantitative descriptions of knowledge and uncertainty, en-
abling robots to automatically plan sensing and actuation in
larger domains than was possible before.

3 KRR Architecture
This section describes our architecture’s HL and LL domain
representations. The syntax, semantics and representation
of the corresponding transition diagrams are described in an
action language AL (Gelfond and Kahl 2014). Action lan-
guages are formal models of parts of natural language used
for describing transition diagrams. AL has a sorted signa-
ture containing three sorts: statics, fluents and actions.
Statics are domain properties whose truth values cannot be
changed by actions, while fluents are properties whose truth
values are changed by actions. Actions are defined as a set
of elementary actions that can be executed in parallel. A do-

main property p or its negation ¬p is a domain literal. AL
allows three types of statements:

a causes lin if p0, . . . , pm (Causal law)
l if p0, . . . , pm (State constraint)
impossible a0, . . . ,ak if p0, . . . , pm

(Executability condition)

where a is an action, l is a literal, lin is a inertial fluent literal,
and p0, . . . , pm are domain literals. The causal law states, for
instance, that action a causes inertial fluent literal lin if the
literals p0, . . . , pm hold true. A collection of statements of
AL forms a system/domain description.

As an illustrative example used throughout this paper, we
will consider a robot that has to move objects to specific
places in an indoor domain. The domain contains four spe-
cific places: office, main library, aux library, and kitchen,
and a number of specific objects of the sorts: textbook,
printer and kitchenware.

3.1 HL domain representation

The HL domain representation consists of a system descrip-
tion DH and histories with defaults H . DH consists of a
sorted signature and axioms used to describe the HL tran-
sition diagram τH . The sorted signature: ΣH = 〈O,F ,P〉
is a tuple that defines the names of objects, functions, and
predicates available for use in the HL. The sorts in our ex-
ample are: place, thing, robot, and object; object and
robot are subsorts of thing. Robots can move on their own,
but objects cannot move on their own. The sort object has
subsorts such as textbook, printer and kitchenware. The
fluents of the domain are defined in terms of their arguments:

loc(thing, place) (1)
in hand(robot,ob ject)

The first predicate states the location of a thing; and the sec-
ond predicate states that a robot has an object.These two
predicates are inertial fluents subject to the law of inertia,
which can be changed by an action. The actions in this do-
main include:

move(robot, place) (2)
grasp(robot,ob ject)
putdown(robot,ob ject)

The dynamics of the domain are defined using the following
causal laws:

move(robot,Pl) causes loc(robot,Pl) (3)
grasp(robot,Ob) causes in hand(robot,Ob)
putdown(robot,Ob) causes ¬in hand(robot,Ob)

state constraints:

loc(Ob,Pl) if loc(robot,Pl), in hand(robot,Ob) (4)
¬loc(T h,Pl1) if loc(T h,Pl2), Pl1 6= Pl2

234

and executability conditions:

impossible move(robot,Pl) if loc(robot,Pl) (5)
impossible A1, A2, if A1 6= A2.

impossible grasp(robot,Ob) if loc(robot,Pl1),
loc(Ob,Pl2),Pl1 6= Pl2

impossible grasp(robot,Ob) if in hand(robot,Ob)
impossible putdown(robot,Ob) if ¬in hand(robot,Ob)

The top part of Figure 1 shows some state transitions in the
HL; nodes include a subset of fluents (robot’s position) and
actions are the arcs between nodes. Although DH does not
include the costs of executing actions, these are included in
the LL (see Section 3.2).

Histories with defaults A recorded history of a dynamic
domain is usually defined as a collection of records of the
form obs(f luent,boolean,step) and hpd(action,step). The
former states that a specific fluent was observed to be true or
false at a given step of the domain’s trajectory, and the latter
states that a specific action happened (or was executed by the
robot) at that step. In this paper, we expand on this view by
allowing histories to contain (possibly prioritized) defaults
describing the values of fluents in their initial states. A de-
fault d(X) stating that in the typical initial state elements of
class c satisfying property b also have property p is repre-
sented as:

d(X) =


de f ault(d(X))
head(d(X), p(X))
body(d(X),c(X))
body(d(X),b(X))

(6)

where the literal in the “head” of the default, e.g., p(X)
is true if all the literals in the “body” of the default, e.g.,
b(X) and c(X), hold true; see (Gelfond and Kahl 2014)
for formal semantics of defaults. In this paper, we abbre-
viate obs(f , true,0) and obs(f , f alse,0) as init(f , true) and
init(f , f alse) respectively.

Example 1 [Example of defaults]
Consider the following statements about the locations of
textbooks in the initial state in our illustrative example. Text-
books are typically in the main library. If a textbook is not
there, it is in the auxiliary library. If a textbook is checked
out, it can be found in the office. These defaults can be rep-
resented as:

de f ault(d1(X))
head(d1(X), loc(X ,main library))
body(d1(X), textbook(X))

(7)

de f ault(d2(X))
head(d2(X), loc(X ,aux library))
body(d2(X), textbook(X))
body(d2(X),¬loc(X ,main library))

(8)

de f ault(d3(X))
head(d3(X), loc(X ,o f f ice))
body(d3(X), textbook(X))
body(d3(X),¬loc(X ,main library))
body(d3(X),¬loc(X ,aux library))

(9)

A default such as “kitchenware are usually in the kitchen”
may be represented in a similar manner. We first present
multiple informal examples to illustrate reasoning with
these defaults; Definition 3 (below) will formalize this rea-
soning. For textbook tb1, history H1 containing the above
statements should entail: holds(loc(tb1,main library),0).
A history H2 obtained from H1 by adding an ob-
servation: init(loc(tb1,main library), f alse) ren-
ders the first default inapplicable; hence H2 should
entail: holds(loc(tb1,aux library),0). A his-
tory H3 obtained from H2 by adding an obser-
vation: init(loc(tb1,aux library), f alse) entails:
holds(loc(tb1,o f f ice),0).

Consider history H4 obtained by adding observation:
obs(loc(tb1,main library), f alse,1) to H1. This observa-
tion should defeat the default d1 in Equation 7 because if
this default’s conclusion were true in the initial state, it
would also be true at step 1 (by inertia), which contradicts
our observation. The book tb1 is thus not in the main li-
brary initially. The second default will conclude that this
book is initially in the auxiliary library—the inertia ax-
iom will propagate this information and H4 will entail:
holds(loc(tb1,aux library),1).

The definition of entailment relation can now be given with
respect to a fixed system description DH . We start with the
notion of a state of transition diagram τH of DH compati-
ble with a description I of the initial state of history H .
We use the following terminology. We say that a set S of
literals is closed under a default d if S contains the head of
d whenever it contains all literals from the body of d and
does not contain the literal contrary to d’s head. S is closed
under a constraint of DH if S contains the constraint’s head
whenever it contains all literals from the constraint’s body.
Finally, we say that a set U of literals is the closure of S if
S ⊆U , U is closed under constraints of DH and defaults of
H , and no proper subset of U satisfies these properties.

Definition 1 [Compatible initial states]
A state σ of τH is compatible with a description I of the
initial state of history H if:

1. σ satisfies all observations of I ,
2. σ contains the closure of the union of statics

of DH and the set { f : init(f , true) ∈ I } ∪ {¬ f :
init(f , f alse) ∈I }.

Let Ik be the description of the initial state of history Hk.
States in Example 1 compatible with I1, I2, I3 must then
contain {loc(tb1,main library)}, {loc(tb1,aux library)},
and {loc(tb1,o f f ice)} respectively. There are multiple such
states, which differ by the location of robot. Since I1 = I4
they have the same compatible states. Next, we define mod-
els of history H , i.e., paths of the transition diagram τH of
DH compatible with H .

Definition 2 [Models]
A path P of τH is a model of history H with description I
of its initial state if there is a collection E of init statements
such that:

1. If init(f , true) ∈ E then ¬ f is the head of one of
the defaults of I . Similarly, for init(f , f alse).

235

2. The initial state of P is compatible with the de-
scription: IE = I ∪E.

3. Path P satisfies all observations in H .
4. There is no collection E0 of init statements which

has less elements than E and satisfies the conditions
above.

We will refer to E as an explanation of H . Models of
H1, H2, and H3 are paths consisting of initial states com-
patible with I1, I2, and I3—the corresponding explana-
tions are empty. However, in the case of H4, the situation
is different—the predicted location of tb1 will be different
from the observed one. The only explanation of this discrep-
ancy is that tb1 is an exception to the first default. Adding
E = {init(loc(tb1,main library), f alse)} to I4 will resolve
the problem.

Definition 3 [Entailment and consistency]
• Let H n be a history of length n, f be a fluent, and

0≤ i≤ n be a step of H n. We say that H n entails a state-
ment Q = holds(f , i) (¬holds(f , i)) if for every model P
of H n, fluent literal f (¬ f) belongs to the ith state of P.
We denote the entailment as H n |= Q.
• A history which has a model is said to be consistent.

It can be shown that histories from Example 1 are consistent
and that our entailment captures the corresponding intuition.

Reasoning with HL domain representation The HL do-
main representation (DH and H) is translated into a pro-
gram in CR-Prolog, which incorporates consistency restor-
ing rules in ASP (Balduccini and Gelfond 2003; Gelfond
and Kahl 2014); specifically, we use the knowledge rep-
resentation language SPARC that expands CR-Prolog and
provides explicit constructs to specify objects, relations, and
their sorts (Balai, Gelfond, and Zhang 2013). ASP is a
declarative language that can represent recursive definitions,
defaults, causal relations, special forms of self-reference,
and other language constructs that occur frequently in non-
mathematical domains, and are difficult to express in clas-
sical logic formalisms (Baral 2003). ASP is based on the
stable model semantics of logic programs, and builds on
research in non-monotonic logics (Gelfond 2008). A CR-
Prolog program is thus a collection of statements describing
domain objects and relations between them. The ground lit-
erals in an answer set obtained by solving the program rep-
resent beliefs of an agent associated with the program1; pro-
gram consequences are statements that are true in all such
belief sets. Algorithms for computing the entailment rela-
tion of AL and related tasks such as planning and diagnos-
tics are thus based on reducing these tasks to computing an-
swer sets of programs in CR-Prolog. First, DH and H are
translated into an ASP program Π(DH ,H) consisting of di-
rect translation of causal laws of DH , inertia axioms, closed
world assumption for defined fluents, reality checks, records
of observations, actions and defaults from H , and special
axioms for init:

holds(F,0)← init(F, true) (10)
¬holds(F,0)← init(F, f alse)

1SPARC uses DLV (Leone et al. 2006) to generate answer sets.

In addition, every default of I is turned into an ASP rule:

holds(p(X),0)←c(X), holds(b(X),0), (11)
not ¬holds(p(X),0)

and a consistency-restoring rule:

¬holds(p(X),0) +←c(X), holds(b(X),0) (12)

which states that to restore consistency of the program one
may assume that the conclusion of the default is false. For
more details about the translation, CR-rules and CR-Prolog,
please see (Gelfond and Kahl 2014).

Proposition 1 [Models and Answer Sets]
A path P = 〈σ0,a0,σ1, . . . ,σn−1,an〉 of τH is a model of his-
tory H n iff there is an answer set S of a program Π(DH ,H)
such that:

1. A fluent f ∈ σi iff holds(f , i) ∈ S,
2. A fluent literal ¬ f ∈ σi iff ¬holds(f , i) ∈ S,
3. An action e ∈ ai iff occurs(e, i) ∈ S.

The proposition reduces computation of models of H to
computing answer sets of a CR-Prolog program. This propo-
sition allows us to reduce the task of planning to comput-
ing answer sets of a program obtained from Π(DH ,H) by
adding the definition of a goal, a constraint stating that the
goal must be achieved, and a rule generating possible future
actions of the robot.

3.2 LL domain representation
The LL system description DL consists of a sorted signa-
ture and axioms that describe a transition diagram τL. The
sorted signature ΣL of action theory describing τL includes
the sorts from signature ΣH of HL with two additional sorts
room and cell, which are subsorts of sort place. Their ele-
ments satisfy the static relation part of(cell, room). We also
introduce the static neighbor(cell, cell) to describe neigh-
borhood relation between cells. Fluents of ΣL include those
of ΣH , an additional inertial fluent: searched(cell, object)—
robot searched a cell for an object—and two defined fluents:
found(object, place)—an object was found in a place—and
continue search(room, object)—the search for an object is
continued in a room.

The actions of ΣL include the HL actions that are viewed
as being represented at a higher resolution, e.g., movement
is possible to specific cells. The causal law describing the
effect of move may be stated as:

move(robot,Y) causes {loc(robot,Z) : neighbor(Z,Y)}
(13)

where Y,Z are cells. This causal law states that moving to
a cell can cause the robot to be in one of the neighboring
cells2. The LL includes an additional action search that en-
ables robots to search for objects in cells; the corresponding

2This is a special case of a non-deterministic causal law defined
in extensions of AL with non-boolean fluents, i.e., functions whose
values can be elements of arbitrary finite domains.

236

loc(rob1, office)

HL

LL

move(rob1, kitchen)

move(rob1, office)

loc(rob1, c3)

loc(rob1, c4)

move(rob1, c2) move(rob1, c1) move(rob1, c4) move(rob1, c3)

loc(rob1, c1)

loc(rob1, c2)

move(rob1, c4)

move(rob1, c2)

r1 (office) r2 (kitchen)

loc(rob1, kitchen)

Figure 1: Illustrative example of state transitions in the HL
and the LL of the architecture.

causal laws and constraints may be written as:

search(cell,ob ject) causes searched(cell,ob ject) (14)
f ound(ob ject,cell) if searched(cell,ob ject),

loc(ob ject,cell)
f ound(ob ject,room) if part o f (cell,room),

f ound(ob ject,cell)
continue search(room,ob ject) if ¬ f ound(ob ject,room),

part o f (cell,room),¬searched(cell,ob ject)

We also introduce a defined fluent failure that holds iff the
object under consideration is not in the room that the robot
is searching—this fluent is defined as:

f ailure(ob ject,room) if loc(robot,room), (15)
¬continue search(room,ob ject),¬ f ound(ob ject,room)

This completes the action theory that describes τL. The
states of τL can be viewed as extensions of states of τH
by physically possible fluents and statics defined in the lan-
guage of LL. Moreover, for every HL state-action-state tran-
sition 〈σ ,a,σ ′〉 and every LL state s compatible with σ (i.e.,
σ ⊂ s), there is a path in the LL from s to some state com-
patible with σ ′.

Unlike the HL system description in which effects of ac-
tions and results of observations are always accurate, the
action effects and observations in the LL are only known
with some degree of probability. The state transition func-
tion T : S×A× S′→ [0,1] defines the probabilities of state
transitions in the LL. Due to perceptual limitations of the
robot, only a subset of the fluents are observable in the LL;
we denote this set of fluents by Z. Observations are elements
of Z associated with a probability, and are obtained by pro-
cessing sensor inputs using probabilistic algorithms. The
observation function O : S×Z→ [0,1] defines the probabil-
ity of observing specific observable fluents in specific states.
Functions T and O are computed using prior knowledge, or
by observing the effects of specific actions in specific states
(see Section 4.1).

States are partially observable in the LL, and we introduce
(and reason with) belief states, probability distributions over
the set of states. Functions T and O describe a probabilis-
tic transition diagram defined over belief states. The initial
belief state is represented by B0, and is updated iteratively
using Bayesian inference:

Bt+1(st+1) ∝ O(st+1,ot+1)∑
s

T (s,at+1,st+1) ·Bt(s) (16)

The LL system description includes a reward specification
R : S×A×S′→ℜ that encodes the relative cost or value of
taking specific actions in specific states. Planning in the LL
then involves computing a policy that maximizes the reward
over a planning horizon. This policy maps belief states to
actions: π : Bt 7→ at+1. We use a point-based approximate
algorithm to compute this policy (Ong et al. 2010). In our
illustrative example, an LL policy computed for HL action
move is guaranteed to succeed, and that the LL policy com-
puted for HL action grasp considers three LL actions: move,
search, and grasp. Plan execution in the LL corresponds to
using the computed policy to repeatedly choose an action
in the current belief state, and updating the belief state af-
ter executing that action and receiving an observation. We
henceforth refer to this algorithm as “POMDP-1”.

Unlike the HL, history in the LL representation consists
of observations and actions over one time step; the current
belief state is assumed to be the result of all information
obtained in previous time steps (first-order Markov assump-
tion). In this paper, the LL domain representation is trans-
lated automatically into POMDP models, i.e., specific data
structures for representing the components of DL (described
above) such that existing POMDP solvers can be used to ob-
tain action policies.

We observe that the coupling between the LL and the HL
has some key consequences. First, for any HL action, the
relevant LL variables are identified automatically, improv-
ing the computational efficiency of computing the LL poli-
cies. Second, if LL actions cause different fluents, these flu-
ents are independent. Finally, although defined fluents are
crucial in determining what needs to be communicated be-
tween the levels of the architecture, they themselves need
not be communicated.

3.3 Control loop
Algorithm 1 describes the architecture’s control loop3. First,
the LL observations obtained in the current location add
statements to the HL history, and the HL initial state (sH

init)
is communicated to the LL (line 1). The assigned task deter-
mines the HL goal state (sH

goal) for planning (line 2). Plan-
ning in the HL provides a sequence of actions with deter-
ministic effects (line 3).

In some situations, planning in the HL may provide multi-
ple plans, e.g., when the object that is to be grasped can be in
one of multiple locations, tentative plans may be generated
for the different hypotheses regarding the object’s location.
In such situations, all the HL plans are communicated to the

3We leave the proof of the correctness of this algorithm as fu-
ture work.

237

Algorithm 1: Control loop of architecture
Input: The HL and LL domain representations, and the

specific task for robot to perform.

LL observations reported to HL history; HL initial1

state (sH
init) communicated to LL.

Assign goal state sH
goal based on task.2

Generate HL plan(s).3
if multiple HL plans exist then4

Send plans to the LL, select plan with lowest5
(expected) action cost and communicate to the
HL.

end6
if HL plan exists then7

for aH
i ∈ HL plan: i ∈ [1,n] do8

Pass aH
i and relevant fluents to LL.9

Determine initial belief state over the relevant10
LL state space.
Generate LL action policy.11

while aH
i not completed and aH

i achievable do12
Execute an action based on LL action13
policy.
Make an LL observation and update belief14
state.

end15
LL observations and action outcomes add16
statements to HL history.
if results unexpected then17

Perform diagnostics in HL.18
end19
if HL plan invalid then20

Replan in the HL (line 3).21
end22

end23

end24

LL and compared based on their costs, e.g., the expected
time to execute the plans. The plan with the least expected
cost is communicated to the HL (lines 4-6).

If an HL plan exists, actions are communicated one at a
time to the LL along with the relevant fluents (line 9). For
HL action aH

i , the communicated fluents are used to auto-
matically identify the relevant LL variables and set the ini-
tial belief state, e.g., a uniform distribution (line 10). An
LL action policy is computed (line 11) and used to execute
actions and update the belief state until aH

i is achieved or
inferred to be unachievable (lines 12-15). The outcome of
executing the LL policy, and the LL observations, add to
the HL history (line 16). For instance, if defined fluent fail-
ure is true for object ob1 and room rm1, the robot reports:
obs(loc(ob1,rm1), f alse) to the HL history. If the results
are unexpected, diagnosis is performed in the HL (lines 17-
19); we assume that the robot is capable of identifying these
unexpected outcomes. If the HL plan is invalid, a new plan
is generated (lines 20-22); else, the next action in the HL
plan is executed.

4 Experimental setup and results

This section describes the experimental setup and results of
evaluating the proposed architecture in indoor domains.

4.1 Experimental setup

The architecture was evaluated in simulation and on phys-
ical robots. To provide realistic observations in the simu-
lator, we included object models that characterize objects
using probabilistic functions of features extracted from im-
ages captured by a camera on physical robots (Li and Srid-
haran 2013). The simulator also uses action models that re-
flect the motion of the robot. Specific instances of objects
of different classes were simulated in a set of rooms. The
experimental setup also included an initial training phase in
which the robot repeatedly executed the different movement
actions and applied the visual input processing algorithms
on images with known objects. A human participant pro-
vided some of the ground truth data, e.g., labels of objects
in images. A comparison of the expected and actual out-
comes was used to define the functions that describe the
probabilistic transition diagram (T , O) in the LL, while the
reward specification is defined by also considering the com-
putational time required by different visual processing and
navigation algorithms.

In each trial of the experimental results summarized be-
low, the robot’s goal is to move specific objects to specific
places; the robot’s location, target object, and locations of
objects are chosen randomly in each trial. A sequence of ac-
tions extracted from an answer set obtained by solving the
SPARC program of the HL domain representation provides
an HL plan. If a robot (robot1) that is in the office is asked
to fetch a textbook (tb1) from the main library, the HL plan
consists of the following sequence of actions:

move(robot1,main library)
grasp(robot1, tb1)
move(robot1,o f f ice)
putdown(robot1, tb1)

The LL action policies for each HL action are generated
by solving the appropriate POMDP models using the APPL
solver (Ong et al. 2010; Somani et al. 2013). In the LL, the
location of an object is considered to be known with cer-
tainty if the belief (of the object’s occurrence) in a grid cell
exceeds a threshold (0.85).

We experimentally compared our architecture, with the
control loop described in Algorithm 1, henceforth referred
to as “PA”, with two alternatives: (1) POMDP-1 (see Sec-
tion 3.2); and (2) POMDP-2, which revises POMDP-1 by
assigning high probability values to defaults to bias the ini-
tial belief states. These comparisons evaluate two hypothe-
ses: (H1) PA enables a robot to achieve the assigned goals
more reliably and efficiently than using POMDP-1; (H2) our
representation of defaults improves reliability and efficiency
in comparison with not using default knowledge or assign-
ing high probability values to defaults.

238

10
0

10
1

10
2

10
3

20

40

60

80

100

Number of cells

S
u

c
c
e
ss

 (
%

)

 PA

 POMDP−1

Figure 2: Ability to successfully achieve the assigned goal,
as a function of the number of cells in the domain; with a
limit on the time to compute policies PA significantly in-
creases accuracy in comparison with just POMDP-1 as the
number of cells in the domain increases.

4.2 Experimental Results
To evaluate H1, we first compared PA with POMDP-1 in
a set of trials in which the robot’s initial position is known
but the position of the object to be moved is unknown. The
solver used in POMDP-1 is given a fixed amount of time
to compute action policies. Figure 2 summarizes the abil-
ity to successfully achieve the assigned goal, as a function
of the number of cells in the domain. Each point in Fig-
ure 2 is the average of 1000 trials, and we set (for ease of
interpretation) each room to have four cells. PA significantly
improves the robot’s ability to achieve the assigned goal in
comparison with POMDP-1. As the number of cells (i.e.,
size of the domain) increases, it becomes computationally
difficult to generate good POMDP action policies which,
in conjunction with incorrect observations (e.g., false pos-
itive sightings of objects) significantly impacts the ability to
successfully complete the trials. PA, on the other hand, fo-
cuses the robot’s attention on relevant regions of the domain
(e.g., specific rooms and cells). As the size of the domain
increases, a large number of plans of similar cost may still
be generated which, in conjunction with incorrect observa-
tions, may affect the robot’s ability to successfully complete
the trials—the impact is, however, much less pronounced.

Next, we computed the time taken by PA to generate a
plan as the size of the domain increases. Domain size is
characterized based on the number of rooms and the num-
ber of objects in the domain. We conducted three sets of
experiments in which the robot reasons with: (1) all avail-
able knowledge of domain objects and rooms; (2) only
knowledge relevant to the assigned goal—e.g., if the robot
knows an object’s default location, it need not reason about
other objects and rooms in the domain to locate this ob-
ject; and (3) relevant knowledge and knowledge of an addi-
tional 20% of randomly selected domain objects and rooms.
Figure 3 summarizes these results. We observe that PA
supports the generation of appropriate plans for domains
with a large number of rooms and objects. We also ob-
serve that using only the knowledge relevant to the goal sig-
nificantly reduces the planning time—such knowledge can

0 50 100
0

2

4

6

8

10

P
la

n
n

in
g

 t
im

e

Rooms: 10

0 50 100
0

5

10

15

20

Number of objects

Rooms: 20

0 50 100
0

10

20

30

40

50

60
Rooms: 40

0 50 100
0

50

100

150

200

250

300
Rooms: 80

 All knowledge

 20% knowledge

 Relevant knowledge

Figure 3: Planning time as a function of the number of
rooms and the number of objects in the domain—PA scales
to larger number of rooms and objects.

10 20 30 40 50 60 70 80 90
0

50

100

150

Number of rooms

A
v

er
ag

e
n

o
.

o
f

ac
ti

o
n

s

 PA*

 PA

Figure 4: Effect of using default knowledge—principled
representation of defaults significantly reduces the number
of actions (and thus time) for achieving assigned goal.

be automatically selected using the relationships included
in the HL system description. Furthermore, if we only
use a probabilistic approach (POMDP-1), it soon becomes
computationally intractable to generate a plan for domains
with many objects and rooms; these results are not shown
in Figure 3—see (Sridharan, Wyatt, and Dearden 2010;
Zhang, Sridharan, and Washington 2013).

To evaluate H2, we first conducted multiple trials in which
PA was compared with PA∗, a version that does not include
any default knowledge. Figure 4 summarizes the average
number of actions executed per trial as a function of the
number of rooms in the domain—each sample point is the
average of 10000 trials. The goal in each trial is (as before)
to move a specific object to a specific place. We observe that
the principled use of default knowledge significantly reduces
the number of actions (and thus time) required to achieve
the assigned goal. Next PA was compared with POMDP-2,
which assigns high probability values to default information
and suitably revises the initial belief state. We observe that
the effect of assigning a probability value to defaults is arbi-
trary depending on multiple factors: (a) the numerical value
chosen; and (b) whether the ground truth matches the default

239

main_office

kitchen
robotics_labd_lab

study_corner

main_libraryaux_library

(a) Domain map (b) Robot platform

Figure 5: Subset of the map of the second floor of our department; specific places are labeled as shown, and used during
planning to achieve the assigned goals. The robot platform used in the experimental trials is also shown.

information. For instance, if a large probability is assigned
to the default knowledge that books are typically in the li-
brary, but the book the robot has to move is an exception to
the default (e.g., a cookbook), it takes a significantly large
amount of time for POMDP-2 to revise (and recover from)
the initial belief. PA, on the other hand, enables the robot to
revise initial defaults and encode exceptions to defaults.

Robot Experiments: In addition to the trials in simulated
domains, we compared PA with POMDP-1 on a wheeled
robot over 50 trials conducted on two floors of our depart-
ment building. This domain includes places in addition to
those included in our illustrative example, e.g., Figure 5(a)
shows a subset of the domain map of the third floor of our
department, and Figure 5(b) shows the wheeled robot plat-
form. Such domain maps are learned by the robot using laser
range finder data, and revised incrementally over time. Ma-
nipulation by physical robots is not a focus of this work.
Therefore, once the robot is next to the desired object, it
currently asks for the object to be placed in the extended
gripper; future work will include existing probabilistic algo-
rithms for manipulation in the LL.

For experimental trials on the third floor, we considered
15 rooms, which includes faculty offices, research labs,
common areas and a corridor. To make it feasible to use
POMDP-1 in such large domains, we used our prior work
on a hierarchical decomposition of POMDPs for visual sens-
ing and information processing that supports automatic be-
lief propagation across the levels of the hierarchy and model
generation in each level of the hierarchy (Sridharan, Wy-
att, and Dearden 2010; Zhang, Sridharan, and Washington
2013). The experiments included paired trials, e.g., over
15 trials (each), POMDP-1 takes 1.64 as much time as PA
(on average) to move specific objects to specific places. For
these paired trials, this 39% reduction in execution time pro-
vided by PA is statistically significant: p-value = 0.0023 at
the 95% significance level.

Consider a trial in which the robot’s objective is to bring
a specific textbook to the place named study corner. The

robot uses default knowledge to create an HL plan that
causes the robot to move to and search for the textbook in
the main library. When the robot does not find this text-
book in the main library after searching using a suitable LL
policy, replanning in the HL causes the robot to investigate
the aux library. The robot finds the desired textbook in the
aux library and moves it to the target location. A video of
such an experimental trial can be viewed online:
http://youtu.be/8zL4R8te6wg

5 Conclusions
This paper described a knowledge representation and rea-
soning architecture for robots that integrates the comple-
mentary strengths of declarative programming and proba-
bilistic graphical models. The system descriptions of the
tightly coupled high-level (HL) and low-level (LL) domain
representations are provided using an action language, and
the HL definition of recorded history is expanded to allow
prioritized defaults. Tentative plans created in the HL us-
ing defaults and commonsense reasoning are implemented
in the LL using probabilistic algorithms, generating obser-
vations that add suitable statements to the HL history. In
the context of robots moving objects to specific places in
indoor domains, experimental results indicate that the archi-
tecture supports knowledge representation, non-monotonic
logical inference and probabilistic planning with qualitative
and quantitative descriptions of knowledge and uncertainty,
and scales well as the domain becomes more complex. Fu-
ture work will further explore the relationship between the
HL and LL transition diagrams, and investigate a tighter
coupling of declarative logic programming and probabilis-
tic reasoning for robots.

Acknowledgments
The authors thank Evgenii Balai for making modifications to
SPARC to support some of the experiments reported in this
paper. This research was supported in part by the U.S. Of-
fice of Naval Research (ONR) Science of Autonomy Award

240

N00014-13-1-0766. Opinions, findings, and conclusions are
those of the authors and do not necessarily reflect the views
of the ONR.

References
Balai, E.; Gelfond, M.; and Zhang, Y. 2013. Towards Answer Set
Programming with Sorts. In International Conference on Logic
Programming and Nonmonotonic Reasoning.
Balduccini, M., and Gelfond, M. 2003. Logic Programs with
Consistency-Restoring Rules. In Logical Formalization of Com-
monsense Reasoning, AAAI Spring Symposium Series, 9–18.
Baral, C.; Gelfond, M.; and Rushton, N. 2009. Probabilistic Rea-
soning with Answer Sets. Theory and Practice of Logic Program-
ming 9(1):57–144.
Baral, C. 2003. Knowledge Representation, Reasoning and Declar-
ative Problem Solving. Cambridge University Press.
Chen, X.; Xie, J.; Ji, J.; and Sui, Z. 2012. Toward Open Knowledge
Enabling for Human-Robot Interaction. Journal of Human-Robot
Interaction 1(2):100–117.
Erdem, E.; Aker, E.; and Patoglu, V. 2012. Answer Set Program-
ming for Collaborative Housekeeping Robotics: Representation,
Reasoning, and Execution. Intelligent Service Robotics 5(4).
Gelfond, M., and Kahl, Y. 2014. Knowledge Representation, Rea-
soning and the Design of Intelligent Agents. Cambridge University
Press.
Gelfond, M. 2008. Answer Sets. In Frank van Harmelen and
Vladimir Lifschitz and Bruce Porter., ed., Handbook of Knowledge
Representation. Elsevier Science. 285–316.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Planning:
Theory and Practice. San Francisco, USA: Morgan Kaufmann.
Halpern, J. 2003. Reasoning about Uncertainty. MIT Press.
Hanheide, M.; Gretton, C.; Dearden, R.; Hawes, N.; Wyatt, J.;
Pronobis, A.; Aydemir, A.; Gobelbecker, M.; and Zender, H. 2011.
Exploiting Probabilistic Knowledge under Uncertain Sensing for
Efficient Robot Behaviour. In International Joint Conference on
Artificial Intelligence.
Hoey, J.; Poupart, P.; Bertoldi, A.; Craig, T.; Boutilier, C.; and
Mihailidis, A. 2010. Automated Handwashing Assistance for
Persons with Dementia using Video and a Partially Observable
Markov Decision Process. Computer Vision and Image Under-
standing 114(5):503–519.
Kaelbling, L., and Lozano-Perez, T. 2013. Integrated Task and
Motion Planning in Belief Space. International Journal of Robotics
Research 32(9-10).
Laird, J. E.; Newell, A.; and Rosenbloom, P. 1987. SOAR: An
Architecture for General Intelligence. Artificial Intelligence 33(3).
Langley, P., and Choi, D. 2006. An Unified Cognitive Architecture
for Physical Agents. In The Twenty-first National Conference on
Artificial Intelligence (AAAI).
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri, S.;
and Scarcello, F. 2006. The DLV System for Knowledge Represen-
tation and Reasoning. ACM Transactions on Computational Logic
7(3):499–562.
Li, X., and Sridharan, M. 2013. Move and the Robot will Learn:
Vision-based Autonomous Learning of Object Models. In Interna-
tional Conference on Advanced Robotics.
Milch, B.; Marthi, B.; Russell, S.; Sontag, D.; Ong, D. L.; and
Kolobov, A. 2006. BLOG: Probabilistic Models with Unknown
Objects. In Statistical Relational Learning. MIT Press.

Ong, S. C.; Png, S. W.; Hsu, D.; and Lee, W. S. 2010. Planning
under Uncertainty for Robotic Tasks with Mixed Observability. In-
ternational Journal of Robotics Research 29(8):1053–1068.
Richardson, M., and Domingos, P. 2006. Markov Logic Networks.
Machine learning 62(1).
Rosenthal, S., and Veloso, M. 2012. Mobile Robot Planning to
Seek Help with Spatially Situated Tasks. In National Conference
on Artificial Intelligence.
Sanner, S., and Kersting, K. 2010. Symbolic Dynamic Program-
ming for First-order POMDPs. In National Conference on Artifi-
cial Intelligence (AAAI).
Somani, A.; Ye, N.; Hsu, D.; and Lee, W. S. 2013. DESPOT: On-
line POMDP Planning with Regularization. In Advances in Neural
Information Processing Systems (NIPS).
Sridharan, M.; Wyatt, J.; and Dearden, R. 2010. Planning to See:
A Hierarchical Aprroach to Planning Visual Actions on a Robot
using POMDPs. Artificial Intelligence 174:704–725.
Talamadupula, K.; Benton, J.; Kambhampati, S.; Schermerhorn,
P.; and Scheutz, M. 2010. Planning for Human-Robot Teaming
in Open Worlds. ACM Transactions on Intelligent Systems and
Technology 1(2):14:1–14:24.
Zhang, S.; Sridharan, M.; and Bao, F. S. 2012. ASP+POMDP: Inte-
grating Non-monotonic Logical Reasoning and Probabilistic Plan-
ning on Robots. In International Joint Conference on Development
and Learning and on Epigenetic Robotics.
Zhang, S.; Sridharan, M.; and Washington, C. 2013. Active Visual
Planning for Mobile Robot Teams using Hierarchical POMDPs.
IEEE Transactions on Robotics 29(4).

241

An ASP-Based Architecture for Autonomous UAVs in Dynamic Environments:
Progress Report

Marcello Balduccini and William C. Regli and Duc N. Nguyen
Applied Informatics Group

Drexel University
Philadelphia, PA, USA

Abstract

Traditional AI reasoning techniques have been used
successfully in many domains, including logistics,
scheduling and game playing. This paper is part of a
project aimed at investigating how such techniques can
be extended to coordinate teams of unmanned aerial ve-
hicles (UAVs) in dynamic environments. Specifically
challenging are real-world environments where UAVs
and other network-enabled devices must communicate
to coordinate—and communication actions are neither
reliable nor free. Such network-centric environments
are common in military, public safety and commercial
applications, yet most research (even multi-agent plan-
ning) usually takes communications among distributed
agents as a given. We address this challenge by devel-
oping an agent architecture and reasoning algorithms
based on Answer Set Programming (ASP). ASP has
been chosen for this task because it enables high flex-
ibility of representation, both of knowledge and of rea-
soning tasks. Although ASP has been used successfully
in a number of applications, and ASP-based architec-
tures have been studied for about a decade, to the best
of our knowledge this is the first practical application
of a complete ASP-based agent architecture. It is also
the first practical application of ASP involving a com-
bination of centralized reasoning, decentralized reason-
ing, execution monitoring, and reasoning about network
communications. This work has been empirically vali-
dated using a distributed network-centric software eval-
uation testbed and the results provide guidance to de-
signers in how to understand and control intelligent sys-
tems that operate in these environments.

Introduction
Unmanned Aerial Vehicles (UAVs) promise to revolutionize
the way in which we use our airspace. From talk of automat-
ing the navigation for major shipping companies to the use
of small helicopters as ”deliverymen” that drop your pack-
ages at the door, it is clear that our airspaces will become
increasingly crowded in the near future. This increased uti-
lization and congestion has created the need for new and
different methods of coordinating assets using the airspace.
Currently, airspace management is the job for mostly hu-
man controllers. As the number of entities using the airspace
vastly increases—many of which are autonomous—the need
for improved autonomy techniques becomes evident.

The challenge in an environment full of UAVs is that the
world is highly dynamic and the communications environ-
ment is uncertain, making coordination difficult. Commu-
nicative actions in such setting are neither reliable nor free.

The work discussed here is in the context of the develop-
ment of a novel application of network-aware reasoning and
of an intelligent mission-aware network layer to the problem
of UAV coordination. Typically, AI reasoning techniques do
not consider realistic network models, nor does the network
layer reason dynamically about the needs of the mission
plan. With network-aware reasoning (Figure 1a), a reasoner
(either centralized or decentralized) factors in the commu-
nications network and its conditions, while with mission-
aware networking, an intelligent network middleware ser-
vice considers the mission and network state, and dynami-
cally infers quality of service (QoS) requirements for mis-
sion execution.

In this paper we provide a general overview of the ap-
proach, and then focus on the aspect of network-aware
reasoning. We address this challenge by developing an
agent architecture and reasoning algorithms based on An-
swer Set Programming (ASP, (Gelfond and Lifschitz 1991;
Marek and Truszczynski 1999; Baral 2003)). ASP has been
chosen for this task because it enables high flexibility of
representation, both of knowledge and of reasoning tasks.
Although ASP has been used successfully in a number of
applications, and ASP-based architectures have been stud-
ied for about a decade, to the best of our knowledge this is
the first practical application of a complete ASP-based agent
architecture. It is also the first practical application of ASP
involving a combination of centralized reasoning, decentral-
ized reasoning, execution monitoring, and reasoning about
network communications. This work has been empirically
validated using a distributed network-centric software eval-
uation testbed and the results provide guidance to designers
in how to understand and control intelligent systems that op-
erate in these environments.

The next section describes relevant systems and reason-
ing techniques, and is followed by a motivating scenario that
applies to UAV coordination. The Technical Approach sec-
tion describes network-aware reasoning and demonstrates
the level of sophistication of the behavior exhibited by the
UAVs using example problem instances. Next is a descrip-
tion of the network-centric evaluation testbed used for sim-

242

Mission	
 Planner	

Domain	
 and	
 Problem	
 Info	

Mission	
 Plan	
 Observe	

Explain	

Local	
 Planner	

Observa9ons	

Observa9ons	
 +	

Explana9ons	

Plan	

Execute	

UAV 1
Observe	

Explain	

Local	
 Planner	

Observa9ons	

Observa9ons	
 +	

Explana9ons	

Plan	

Execute	

UAV n

Network Node 1

Plan-­‐Aware	
 Networking	

Component	

Networking	

Decisions	

Network	

State	

Network Node k

Plan-­‐Aware	
 Networking	

Component	

Networking	

Decisions	

Network	

State	

Figure 1: (a) The current state of reasoning and networking (lower-left) vs our goal combination (top-right); (b) Information
flow in our framework.

ulations. Finally, we draw conclusions and discuss future
work.

Related Work
Incorporating network properties into planning and
decision-making has been investigated in (Usbeck, Cleve-
land, and Regli 2012). The authors’ results indicate that
plan execution effectiveness and performance is increased
with the increased network-awareness during the planning
phase. The UAV coordination approach in this current
work combines network-awareness during the reasoning
processes with a plan-aware network layer.

The problem of mission planning for UAVs under com-
munication constraints has been addressed in (Kopeikin et
al. 2013), where an ad-hoc task allocation process is em-
ployed to engage under-utilized UAVs as communication re-
lays. In our work, we do not separate planning from the en-
gagement of under-utilized UAVs, and do not rely on ad-hoc,
hard-wired behaviors. Our approach gives the planner more
flexibility and finer-grained control of the actions that occur
in the plans, and allows for the emergence of sophisticated
behaviors without the need to pre-specify them.

The architecture adopted in this work is an evolution of
(Balduccini and Gelfond 2008), which can be viewed as
an instantiation of the BDI agent model (Rao and Georgeff
1991; Wooldridge 2000). Here, the architecture has been ex-
tended to include a centralized mission planning phase, and
to reason about other agents’ behavior. Recent related work
on logical theories of intentions (Blount, Gelfond, and Bal-
duccini 2014) can be further integrated into our approach to
allow for a more systematic hierarchical characterization of
actions, which is likely to increase performance.

Traditionally, AI planning techniques have been used (to
great success) to perform multi-agent teaming, and UAV co-
ordination. Multi-agent teamwork decision frameworks such
as the ones described in (Pynadath and Tambe 2002) may
factor communication costs into the decision-making. How-

ever, the agents do not actively reason about other agent’s
observed behavior, nor about the communication process.
Moreover, policies are used as opposed to reasoning from
models of domains and of agent behavior.

The reasoning techniques used in the present work have
already been successfully applied to domains ranging from
complex cyber-physical systems to workforce scheduling.
To the best of our knowledge, however, they have never been
applied to domains combining realistic communications and
multiple agents.

Finally, high-fidelity multi-agent simulators (e.g., Agent-
Fly (David Sislak and Pechoucek 2012)) do not account for
network dynamism nor provide a realistic network model.
For this reason, we base our simulator on the Common Open
Research Emulator (CORE) (Ahrenholz 2010). CORE pro-
vides network models in which communications are neither
reliable nor free.

Motivating Scenario
To motivate the need for network-aware reasoning and
mission-aware networking, consider a simple UAV coordi-
nation problem, depicted in Figure 4a, in which two UAVs
are tasked with taking pictures of a set of three targets, and
with relaying the information to a home base.

Fixed relay access points extend the communications
range of the home base. The UAVs can share images of the
targets with each other and with the relays when they are
within radio range. The simplest solution to this problem
consists in entirely disregarding the networking component
of the scenario, and generating a mission plan in which each
UAV flies to a different set of targets, takes pictures of them,
and flies back to the home base, where the pictures are trans-
ferred. This solution, however, is not satisfactory. First of all,
it is inefficient, because it requires that the UAVs fly all the
way back to the home base before the images can be used.
The time it takes for the UAVs to fly back may easily render
the images too outdated to be useful. Secondly, disregarding

243

the network during the reasoning process may lead to mis-
sion failure — especially in the case of unexpected events,
such as enemy forces blocking transit to and from the home
base after a UAV has reached a target. Even if the UAVs
are capable of autonomous behavior, they will not be able
to complete the mission unless they take advantage of the
network.

Another common solution consists of acknowledging the
availability of the network, and assuming that the network
is constantly available throughout plan execution. A corre-
sponding mission plan would instruct each UAV to fly to a
different set of targets, and take pictures of them, while the
network relays the data back to the home base. This solution
is optimistic in that it assumes that the radio range is suffi-
cient to reach the area where the targets are located, and that
the relays will work correctly throughout the execution of
the mission plan.

This optimistic solution is more efficient than the previous
one, since the pictures are received by the home base soon
after they are taken. Under realistic conditions, however, the
strong assumptions it relies upon may easily lead to mission
failure—for example, if the radio range does not reach the
area where the targets are located.

In this work, the reasoning processes take into account not
only the presence of the network, but also its configuration
and characteristics, taking advantage of available resources
whenever possible. The mission planner is given informa-
tion about the radio range of the relays and determines, for
example, that the targets are out of range. A possible mission
plan constructed by this information into account consists in
having one UAV fly to the targets and take pictures, while the
other UAV remains in a position to act as a network bridge
between the relays and the UAV that is taking pictures. This
solution is as efficient as the optimistic solution presented
earlier, but is more robust, because it does not rely on the
same strong assumptions.

Conversely, when given a mission plan, an intelligent net-
work middleware service capable of sensing conditions and
modifying network parameters (e.g., modify network routes,
limit bandwidth to certain applications, and prioritize net-
work traffic) is able to adapt the network to provide opti-
mal communications needed during plan execution. A relay
or UAV running such a middleware is able to interrupt or
limit bandwidth given to other applications to allow the other
UAV to transfer images and information toward home base.
Without this traffic prioritization, network capacity could be
reached prohibiting image transfer.

Technical Approach
In this section, we formulate the problem in more de-
tails; provide technical background; discuss the design of
the agent architecture and of the reasoning modules; and
demonstrate the sophistication of the resulting behavior of
the agents in two scenarios.

Problem Formulation
A problem instance for coordinating UAVs to observe tar-
gets and deliver information (e.g., images) to a home base

is defined by a set of UAVs, u1, u2, . . ., a set of targets,
t1, t2, . . ., a (possibly empty) set of fixed radio relays,
r1, r2, . . ., and a home base. The UAVs, the relays, and the
home base are called radio nodes (or network nodes). Two
nodes are in radio contact if they are within a distance ρ from
each other, called radio range1, or if they can relay informa-
tion to each other through intermediary radio nodes that are
themselves within radio range. The UAVs are expected to
travel from the home base to the targets to take pictures of
the targets and deliver them to the home base. A UAV will
automatically take a picture when it reaches a target. If a
UAV is within radio range of a radio node, the pictures are
automatically shared. From the UAVs’ perspective, the envi-
ronment is only partially observable. Features of the domain
that are observable to a UAV u are (1) which radio nodes u
can and cannot communicate with by means of the network,
and (2) the position of any UAV that near u.

The goal is to have the UAVs take a picture of each of the
targets so that (1) the task is accomplished as quickly as pos-
sible, and (2) the total “staleness” of the pictures is as small
as possible. Staleness is defined as the time elapsed from
the moment a picture is taken, to the moment it is received
by the home base. While the UAVs carry on their tasks, the
relays are expected to actively prioritize traffic over the net-
work in order to ensure mission success and further reduce
staleness.

Answer Set Programming
In this section we provide a definition of the syntax of
ASP and of its informal semantics. We refer the reader to
(Gelfond and Lifschitz 1991; Niemelä and Simons 2000;
Baral 2003) for a specification of the formal semantics. Let
Σ be a signature containing constant, function and predicate
symbols. Terms and atoms are formed as usual in first-order
logic. A (basic) literal is either an atom a or its strong (also
called classical or epistemic) negation ¬a. A rule is a state-
ment of the form:

h1 OR . . . OR hk ← l1, . . . , lm, not lm+1, . . . , not ln

where hi’s and li’s are ground literals and not is the so-called
default negation. The intuitive meaning of the rule is that
a reasoner who believes {l1, . . . , lm} and has no reason to
believe {lm+1, . . . , ln}, must believe one of hi’s. Symbol
← can be omitted if no li’s are specified. Often, rules of
the form h ← not h, l1, . . . , not ln are abbreviated into←
l1, . . . , not ln, and called constraints. The intuitive meaning
of a constraint is that {l1, . . . , lm, not lm+1, . . . , not ln}
must not be satisfied. A rule containing variables is inter-
preted as the shorthand for the set of rules obtained by re-
placing the variables with all the possible ground terms. A
program is a pair 〈Σ,Π〉, where Σ is a signature and Π is
a set of rules over Σ. We often denote programs just by the
second element of the pair, and let the signature be defined
implicitly. Finally, the answer set (or model) of a program
Π is the collection of its consequences under the answer set

1For simplicity, we assume that all the radio nodes use com-
parable network devices, and that thus ρ is unique throughout the
environment.

244

semantics. Notice that the semantics of ASP is defined in
such a way that programs may have multiple answer sets,
intuitively corresponding to alternative solutions satisfying
the specification given by the program. The semantics of de-
fault negation provides a simple way of encoding choices.
For example, the set of rules {p ← not q. q ← not p.}
intuitively states that either p or q may hold, and the cor-
responding program has two answer sets, {p}, {q}. The
language of ASP has been extended with constraint liter-
als (Niemelä and Simons 2000), which are expressions of
the form m{l1, l2, . . . , lk}n, where m, n are arithmetic ex-
pressions and li’s are basic literals as defined above. A con-
straint literal is satisfied whenever the number of literals that
hold from {l1, . . . , lk} is between m and n, inclusive. Using
constraint literals, the choice between p and q, under some
set of conditions Γ, can be compactly encoded by the rule
1{p, q}1 ← Γ. A rule of this kind is called choice rule. To
further increase flexibility, the set {l1, . . . , lk} can also be
specified as {l(~X) : d(~X)}, where ~X is a list of variables.
Such an expression intuitively stands for the set of all l(~x)
such that d(~x) holds. We refer the reader to (Niemelä and
Simons 2000) for a more detailed definition of the syntax of
constraint literals and of the corresponding extended rules.

Agent Architecture
The architecture used in this project follows the BDI agent
model (Rao and Georgeff 1991; Wooldridge 2000), which
provides a good foundation because of its logical underpin-
ning, clear structure and flexibility. In particular, we build
upon ASP-based instances of this model (Baral and Gelfond
2000; Balduccini and Gelfond 2008) because they employ
directly-executable logical languages featuring good com-
putational properties while at the same time ensuring elab-
oration tolerance (McCarthy 1998) and elegant handling of
incomplete information, non-monotonicity, and dynamic do-
mains.

A sketch of the information flow throughout the system
is shown in Figure 1b.2 Initially, a centralized mission plan-
ner is given a description of the domain and of the problem
instance, and finds a plan that uses the available UAVs to
achieve the goal.

Next, each UAV receives the plan and begins executing
it individually. As plan execution unfolds, the communica-
tion state changes, potentially affecting network connectiv-
ity. For example, the UAVs may move in and out of range
of each other and of the other network nodes. Unexpected
events, such as relays failing or temporarily becoming dis-
connected, may also affect network connectivity. When that
happens, each UAV reasons in a decentralized, autonomous
fashion to overcome the issues. As mentioned earlier, the key
to taking into account, and hopefully compensating for, any
unexpected circumstances is to actively employ, in the rea-
soning processes, realistic and up-to-date information about
the communications state.

The control loop used by each UAV is shown in
Figure 2a. In line with (Gelfond and Lifschitz 1991;

2The tasks in the various boxes are executed only when neces-
sary.

Marek and Truszczynski 1999; Baral 2003), the loop
and the I/O functions are implemented procedu-
rally, while the reasoning functions (Goal Achieved,
Unexpected Observations, Explain Observations,
Compute P lan) are implemented in ASP. The loop
takes in input the mission goal and the mission plan,
which potentially includes courses of actions for multiple
UAVs. Functions New Observations, Next Action, Tail,
Execute, Record Execution perform basic manipulations
of data structures, and interface the agent with the execution
and perception layers. Functions Next Action and Tail
are assumed to be capable of identifying the portions of
the mission plan that are relevant to the UAV executing the
loop. The remaining functions occurring in the control loop
implement the reasoning tasks. Central to the architecture
is the maintenance of a history of past observations and
actions executed by the agent. Such history is stored in
variable H and updated by the agent when it gathers
observations about its environment and when it performs
actions. It is important to note that variable His local to
the specific agent executing the loop, rather than shared
among the UAVs (which would be highly unrealistic in a
communication-constrained environment). Thus, different
agents will develop differing views of the history of the
environment as execution unfolds. At a minimum, the
difference will be due to the fact that agents cannot observe
each other’s actions directly, but only their consequences,
and even those are affected by the partial observability of
the environment.

Details on the control loop can be found in (Balduccini
and Gelfond 2008). With respect to that version of the loop,
the control loop used in the present work does not allow for
the selection of a new goal at run-time, but it extends the
earlier control loop with the ability to deal with, and reason
about, an externally-provided, multi-agent plan, and to rea-
son about other agents’ behavior. We do not expect run-time
selection of goals to be difficult to embed in the control loop
presented here, but doing so is out of the scope of the current
phase of the project.

Network-Aware Reasoning
The major reasoning tasks (centralized mission planning, as
well as anomaly detection, explanation and planning within
each agent) are reduced to finding models of answer-set
based formalizations of the corresponding problems. Cen-
tral to all the reasoning tasks is the ability to represent the
evolution of the environment over time. Such evolution is
conceptualized into a transition diagram (Gelfond and Lifs-
chitz 1993), a graph whose nodes correspond to states of the
environment, and whose arcs describe state transitions due
to the execution of actions. Let F be a collection of fluents,
expressions representing relevant properties of the domain
that may change over time, and let A be a collection of ac-
tions. A fluent literal l is a fluent f ∈ F or its negation ¬f .
A state σ is a complete and consistent set of fluent literals.

The transition diagram is formalized in ASP by rules
describing the direct effects of actions, their executability
conditions, and their indirect effects (also called state con-
straints). The succession of moments in the evolution of the

245

(a) Step 5: u1 is disconnected from home base. (b) Step 6: u2 connects with u1 and transfers images t2 and
t3.

(c) Step 7: u2 reconnects with relays, transfers images to
the home base.

(d) Step 8: u2 reconnects with u1 to relay images of t1.

Figure 4: Example instance 1 illustrating “data mule” information relaying between u1 and u2.

246

Input: M : mission plan;
G: mission goal;

Vars: H : history;
P : current plan;

P := M ;
H := New Observations();
while ¬Goal Achieved(H,G) do

if Unexpected Observations(H) then
H := Explain Observations(H);
P := Compute Plan(G,H,P);

end if
A := Next Action(P);
P := Tail(P);
Execute(A);
H := Record Execution(H,A);
H := H ∪ New Observations();

loop

Figure 2: Agent Control Loop.

0	

2	

4	

6	

8	

10	

12	

14	

16	

Exp-­‐1	
 Exp-­‐2	
 Exp-­‐3	
 Exp-­‐4	

	
 N
um

be
r	
 o

f	
 S
te
ps
	

Mission	
 Length	

Net-­‐aware	
 Net-­‐unaware	

(a) Length of the mission in time steps for the example instances.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

Exp-­‐1	
 Exp-­‐2	
 Exp-­‐3	
 Exp-­‐4	

Ag
e	

of
	
 P
ic
tu
re
s	

Total	
 Staleness	

Net-­‐aware	
 Net-­‐unaware	

(b) The total staleness of the image transfers.

Figure 3: Performance comparison.

environment is characterized by discrete steps, associated
with non-negative integers. The fact that a certain fluent f
is true at a step s is encoded by an atom h(f, s). If f is false,
this is expressed by ¬h(f, s). The occurrence of an action
a ∈ A at step s is represented as o(a, s).

The history of the environment is formalized in ASP by
two types of statements: obs(f, true, s) states that f was
observed to be true at step s (respectively, obs(f, false, s)
states that f was false); hpd(a, s) states that a was observed
to occur at s. Because in the this paper other agents’ ac-
tions are not observable, the latter expression is used only to
record an agent’s own actions.

Objects in the UAV domain discussed in this paper are the
home base, a set of fixed relays, a set of UAVs, a set of tar-
gets, and a set of waypoints. The waypoints are used to sim-
plify the path-planning task, which we do not consider in the
present work. The locations that the UAVs can occupy and
travel to are the home base, the waypoints, and the locations
of targets and fixed relays. The current location, l, of UAV
u is represented by a fluent at(u, l). For each location, the
collection of its neighbors is defined by relation next(l, l′).
UAV motion is restricted to occur only from a location to a
neighboring one. The direct effect of action move(u, l), in-
tuitively stating that UAV u moves to location l, is described
by the rule:

h(at(U,L2), S + 1)←
o(move(U,L2), S),
h(at(U,L1), S),
next(L1, L2).

The fact that two radio nodes are in radio contact is encoded
by fluent in contact(r1, r2). The next two rules provide a
recursive definition of the fluent, represented by means of
state constraints:

h(in contact(R1, R2), S)←
R1 6= R2,
¬h(down(R1), S), ¬h(down(R2), S),
h(at(R1, L1), S), h(at(R2, L2), S),
range(Rg),
dist2(L1, L2, D), D ≤ Rg2.

h(in contact(R1, R3), S)←
R1 6= R2, R2 6= R3, R1 6= R3,
¬h(down(R1), S), ¬h(down(R2), S).
h(at(R1, L1), S), h(at(R2, L2), S),
range(Rg),
dist2(L1, L2, D), D ≤ Rg2,
h(in contact(R2, R3), S),

The first rule defines the base case of two radio nodes that
are directly in range of each other. Relation dist2(l1, l2, d)
calculates the square of the distance between two locations.
Fluent down(r) holds if radio r is known to be out-of-order,
and a suitable axiom (not shown) defines the closed-world
assumption on it. In the formalization, in contact(R1, R2)
is a defined positive fluent, i.e., a fluent whose truth value,
in each state, is completely defined by the current value of
other fluents, and is not subject to inertia. The formalization
of in contact(R1, R2) is thus completed by a rule capturing

247

the closed-world assumption on it:

¬h(in contact(R1, R2), S)←
R1 6= R2,
not h(in contact(R1, R2), S).

Functions Goal Achieved and Unexpected Observations,
in Figure 2a, respectively check if the goal has been
achieved, and whether the history observed by the agent con-
tains any unexpected observations. Following the definitions
from (Balduccini and Gelfond 2003), observations are unex-
pected if they contradict the agent’s expectations about the
corresponding state of the environment. This definition is
captured by the reality-check axiom, consisting of the con-
straints:

← obs(F, true, S), ¬h(F, S).
← obs(F, false, S), h(F, S).

Function Explain Observations uses a diagnostic process
along the lines of (Balduccini and Gelfond 2003) to iden-
tify a set of exogenous actions (actions beyond the control
of the agent that may occur unobserved), whose occurrence
explains the observations. To deal with the complexities of
reasoning in a dynamic, multi-agent domain, the present
work extends the previous results on diagnosis by consider-
ing multiple types of exogenous actions, and preferences on
the resulting explanations. The simplest type of exogenous
action is break(r), which occurs when radio node r breaks.
This action causes fluent down(r) to become true. Actions
of this kind may be used to explain unexpected observations
about the lack of radio contact. However, the agent must also
be able to cope with the limited observability of the posi-
tion and motion of the other agents. This is accomplished
by encoding commonsensical statements (encoding omitted)
about the behavior of other agents, and about the factors that
may affect it. The first such statement says that a UAV will
normally perform the mission plan, and will stop perform-
ing actions when its portion of the mission plan is complete.
Notice that a mission plan is simply a sequence of actions.
There is no need to include pre-conditions for the execution
of the actions it contains, because those can be easily identi-
fied by each agent, at execution time, from the formalization
of the domain.

The agent is allowed to hypothesize that a UAV may have
stopped executing the mission plan (for example, if the UAV
malfunctions or is destroyed). Normally, the reasoning agent
will expect a UAV that aborts execution to remain in its lat-
est location. In certain circumstances, however, a UAV may
need to deviate completely from the mission plan. To ac-
commodate for this situation, the agent may hypothesize
that a UAV began behaving in an unpredictable way (from
the agent’s point of view) after aborting plan execution. The
following choice rule allows an agent to consider all of the
possible explanations:

{ hpd(break(R), S), hpd(aborted(U, S)),
hpd(unpredictable(U, S)) }.

A constraint ensures that unpredictable behavior can be con-
sidered only if a UAV is believed to have aborted the plan.
If that happens, the following choice rule is used to consider

all possible courses of actions from the moment the UAV
became unpredictable to the current time step.

{hpd(move(U,L), S′) : S′ ≥ S : S′ < currstep} ←
hpd(unpredictable(U, S)).

In practice, such a thought process is important to enable co-
ordination with other UAVs when communications between
them are impossible, and to determine the side-effects of the
inferred courses of actions and potentially take advantage of
them (e.g., “the UAV must have flown by target t3. Hence, it
is no longer necessary to take a picture of t3”). A minimize
statement ensures that only cardinality-minimal diagnoses
are found:

#minimize[hpd(break(R), S),
hpd(aborted(U, S)),
hpd(unpredictable(U, S))].

An additional effect of this statement is that the reasoning
agent will prefer simpler explanations, which assume that a
UAV aborted the execution of the mission plan and stopped,
over those hypothesizing that the UAV engaged in an unpre-
dictable course of actions.

Function Compute Plan, as well as the mission plan-
ner, compute a new plan using a rather traditional ap-
proach, which relies on a choice rule for generation of can-
didate sequences of actions, constraints to ensure the goal
is achieved, and minimize statements to ensure optimality of
the plan with respect to the given metrics.

The next paragraphs outline two experiments, in increas-
ing order of sophistication, which demonstrate the features
of our approach, including non-trivial emerging interactions
between the UAVs and the ability to work around unex-
pected problems autonomously.
Example Instance 1. Consider the environment shown in in
Figure 4. Two UAVs, u1 and u2 are initially located at the
home base in the lower left corner. The home base, relays
and targets are positioned as shown in the figure, and the
radio range is set to 7 grid units.

The mission planner finds a plan in which the UAVs begin
by traveling toward the targets. While u1 visits the first two
targets, u2 positions itself so as to be in radio contact with u1

(Figures 4a and 4b). Upon receipt of the pictures, u2 moves
to within range of the relays to transmit the pictures to the
home base (Figure 4c). At the same time, u1 flies toward
the final target. UAV u2, after transmitting pictures to home
base, moves to re-establish radio contact with u1 and to re-
ceive the picture of t3 (Figure 4d). Finally, u2 moves within
range of the relays to transmit picture of t3 to the home base.

Remarkably, in this problem instance the plan establishes
u2 as a ”data mule” in order to cope with the network limits.
The ”data mule” behavior is well-known in sensor network
applications (Shah et al. 2003; Jea, Somasundara, and Sri-
vastava 2005); however, no description of such behavior is
included in our planner. Rather, the behavior emerges as a
result of the reasoning process. The data-mule behavior is
adopted by the planner because it optimizes the evaluation
metrics (mission length and total staleness).
Example Instance 2. Now consider a more challenging and
realistic example (Figure 5), in which the UAVs must cope

248

with unexpected events occurring during mission execution.
Environment and mission goals are as above.

The mission planner produces the same plan described
earlier3, in which u2 acts as a “data mule.” The execution
of the plan begins as expected, with u1 reaching the area of
the targets and u2 staying in radio contact with it in order
to receive the pictures of the first two targets (Figure 5a).
When u2 flies back to re-connect with the relays, however,
it observes (“Observe” step of the architecture from Fig-
ure 1b) that the home base is unexpectedly not in radio con-
tact. Hence, u2 uses the available observations to determine
plausible causes (“Explain” step of the architecture). In this
instance, u2 observes that relays r5, r6, r7 and all the net-
work nodes South of them are not reachable via the network.
Based on knowledge of the layout of the network, u2 deter-
mines that the simplest plausible explanation is that those
three relays must have stopped working while u2 was out
of radio contact (e.g., started malfunctioning or have been
destroyed).4 Next, u2 replans (“Local Planner” step of the
architecture). The plan is created based on the assumption
that u1 will continue executing the mission plan. This as-
sumption can be later withdrawn if observations prove it
false. Following the new plan, u2 moves further South to-
wards the home base (Figure 5c). Simultaneously, u1 con-
tinues with the execution of the mission plan, unaware that
the connectivity has changed and that u2 has deviated from
the mission plan. After successfully relaying the pictures to
the home base, u2 moves back towards u1. UAV u1, on the
other hand, reaches the expected rendezvous point, and ob-
serves that u2 is not where expected (Figure 5d). UAV u1

does not know the actual position of u2, but its absence is
evidence that u2 must have deviated from the plan at some
point in time. Thus, u1’s must now replan. Not knowing u2’s
state, u1’s plan is to fly South to relay the missing picture to
the home base on its own. This plan still does not deal with
the unavailability of r5, r6, r7, since u1 has not yet had a
chance to get in radio contact with the relays and observe
the current network connectivity state. The two UAVs con-
tinue with the execution of their new plans and eventually
meet, unexpectedly for both (Figure 5e). At that point, they
automatically share the final picture. Both now determine
that the mission can be completed by flying South past the
failed relays, and execute the corresponding actions.
Experimental Comparison. As mentioned earlier, we be-
lieve that our network-aware approach to reasoning provides
advantages over the state-of-the-art techniques that either
disregard the network, or assume perfect communications.
Figure 3b provides an overview of a quantitative experimen-
tal demonstration of such advantages. The figure compares

3The careful reader may notice from the figures that the tra-
jectory used to visit the targets is the mirror image of the one from
the previous example. The corresponding plans are equivalent from
the point of view of all the metrics, and the specific selection of one
over the other is due to randomization used in the search process.

4As shown in Figure 5b this is indeed the case in our experi-
mental set-up, although it need not be. Our architecture is capable
of operating under the assumption that its hypotheses are correct,
and later re-evaluate the situation based on further observations,
and correct its hypotheses and re-plan if needed.

our approach with the one in which the network is disre-
garded, in terms of mission length and total staleness.5 The
optimistic approach is not considered, because its brittle-
ness makes it not viable for actual applications. The com-
parison includes the two example instances discussed ear-
lier (labeled Exp-2 and Exp-4). Of the other two experi-
ments, Exp-1 is a variant of Exp-2 that can be solved with
the data-mule in a static position, while Exp-3 is a variant
of Exp-2 with 5 targets. As can be seen, the network-aware
approach is always superior. In Exp-1, the UAV acting as a
data-mule extends the range of the network so that all the
pictures are instantly relayed to the home base, reducing to-
tal staleness to 0. In Exp-4, it is worth stressing that the net-
work, which the UAVs rely upon when using our approach,
suddenly fails. One would expect the network-unaware ap-
proach to have an advantage under these circumstances, but,
as demonstrated by the experimental results, our approach
still achieves a lower total staleness of the pictures thanks to
its ability to identify the network issues and to work around
them.

From a practical perspective, the execution times of the
various reasoning tasks have been extremely satisfactory,
taking only fractions of a second on a modern desktop com-
puter running the CLASP solver (Gebser, Kaufmann, and
Schaub 2009), even in the most challenging cases.

Simulation and Experimental Setup
The simulation for the experimental component of this
work was built using the Common Open Research Emu-
lator (CORE) (Ahrenholz 2010). CORE is a real-time net-
work emulator that allows users to create lightweight vir-
tual nodes with full-fledged network communications stack.
CORE virtual nodes can run unmodified Linux applications
in real-time. The CORE GUI incorporates a basic range-
based model to emulate networks typical in mobile ad-hoc
network (MANET) environments. CORE provides an inter-
face for creating complex network topologies, node mobil-
ity in an environment, and access to the lower-level net-
work conditions, e.g., network connectivity. Using CORE
as a real-time simulation environment allows agents, repre-
sented as CORE nodes, to execute mission plans in realistic
radio environments. For this work, CORE router nodes rep-
resent the home base, relays, and UAVs. The nodes are in-
terconnected via an ad-hoc wireless network. As the UAVs
move in the environment, CORE updates the connectivity
between other UAVs and relays based on the range dictated
by the built-in wireless model. The radio network model has
limited range and bandwidth capacity. Each node runs the
Optimized Link-State Routing protocol (OLSR) (Jacquet et
al. 2001), a unicast MANET routing algorithm, which main-
tains the routing tables across the nodes. The routing table
makes it possible to determine if a UAV can exchange in-
formation with other radio nodes at any given moment. Us-
ing CORE allows us to account for realistic communications
in ways not possible with multi-agent simulators such as
AgentFly (David Sislak and Pechoucek 2012).

5For simplicity we measure mission length and staleness in time
steps, but it is not difficult to add action durations.

249

Conclusion and Future Work
This paper discussed a novel application of an ASP-based
intelligent agent architecture to the problem of UAV coor-
dination. The UAV scenarios considered in this paper are
bound to be increasingly common as more levels autonomy
are required to create large-scale systems. Prior work on dis-
tributed coordination and planning has mostly overlooked or
simplified communications dynamics, at best treating com-
munications as a resource or other planning constraint.

Our work demonstrates the reliability and performance
gains deriving from network-aware reasoning. In our ex-
perimental evaluation, our approach yielded a reduction in
mission length of up to 30% and in total staleness between
50% and 100%. We expect that, in more complex scenar-
ios, the advantage of a realistic networking model will be
even more evident. In our experiments, execution time was
always satisfactory, and we believe that several techniques
from the state-of-the-art can be applied to curb the increase
in execution time as the scenarios become more complex.
For the future, we intend to extend the mission-aware net-
working layer with advanced reasoning capabilities, inte-
grate network-aware reasoning and mission-aware network-
ing tightly, and execute experiments demonstrating the ad-
vantages of such a tight integration.

References
Ahrenholz, J. 2010. Comparison of CORE network emula-
tion platforms. In IEEE Military Communications Conf.
Balduccini, M., and Gelfond, M. 2003. Diagnostic reason-
ing with A-Prolog. Journal of Theory and Practice of Logic
Programming (TPLP) 3(4–5):425–461.
Balduccini, M., and Gelfond, M. 2008. The AAA Architec-
ture: An Overview. In AAAI Spring Symp.: Architectures for
Intelligent Theory-Based Agents.
Baral, C., and Gelfond, M. 2000. Reasoning Agents In Dy-
namic Domains. In Workshop on Logic-Based Artificial In-
telligence, 257–279. Kluwer Academic Publishers.
Baral, C. 2003. Knowledge Representation, Reasoning, and
Declarative Problem Solving. Cambridge University Press.
Blount, J.; Gelfond, M.; and Balduccini, M. 2014. Towards a
Theory of Intentional Agents. In Knowledge Representation
and Reasoning in Robotics, AAAI Spring Symp. Series.
David Sislak, Premysl Volf, S. K., and Pechoucek, M. 2012.
AgentFly: Scalable, High-Fidelity Framework for Simula-
tion, Planning and Collision Avoidance of Multiple UAVs.
Wiley Inc. chapter 9, 235–264.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2009. The
Conflict-Driven Answer Set Solver clasp: Progress Report.
In Logic Programming and Nonmonotonic Reasoning.
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Genera-
tion Computing 9:365–385.
Gelfond, M., and Lifschitz, V. 1993. Representing Action
and Change by Logic Programs. Journal of Logic Program-
ming 17(2–4):301–321.

Jacquet, P.; Muhlethaler, P.; Clausen, T.; Laouiti, A.;
Qayyum, A.; and Viennot, L. 2001. Optimized link state
routing protocol for ad hoc networks. In IEEE INMIC: Tech-
nology for the 21st Century.
Jea, D.; Somasundara, A.; and Srivastava, M. 2005. Multiple
controlled mobile elements (data mules) for data collection
in sensor networks. Distr. Computing in Sensor Sys.
Kopeikin, A. N.; Ponda, S. S.; Johnson, L. B.; and How, J. P.
2013. Dynamic Mission Planning for Communication Con-
trol in Multiple Unmanned Aircraft Teams. Unmanned Sys-
tems 1(1):41–58.
Marek, V. W., and Truszczynski, M. 1999. The Logic Pro-
gramming Paradigm: a 25-Year Perspective. Springer Ver-
lag, Berlin. chapter Stable Models and an Alternative Logic
Programming Paradigm, 375–398.
McCarthy, J. 1998. Elaboration Tolerance.
Niemelä, I., and Simons, P. 2000. Logic-Based Artificial
Intelligence. Kluwer Academic Publishers. chapter Extend-
ing the Smodels System with Cardinality and Weight Con-
straints.
Pynadath, D. V., and Tambe, M. 2002. The Communicative
Multiagent Team Decision Problem: Analyzing Teamwork
Theories and Models. JAIR 16:389–423.
Rao, A. S., and Georgeff, M. P. 1991. Modeling Rational
Agents within a BDI-Architecture. In Proc. of the Int’l Conf.
on Principles of Knowledge Representation and Reasoning.
Shah, R. C.; Roy, S.; Jain, S.; and Brunette, W. 2003. Data
MULEs: modeling and analysis of a three-tier architecture
for sparse sensor networks. Ad Hoc Networks 1(2-3).
Usbeck, K.; Cleveland, J.; and Regli, W. C. 2012. Network-
centric ied detection planning. IJIDSS 5(1):44–74.
Wooldridge, M. 2000. Reasoning about Rational Agents.
MIT Press.

250

(a) Step 5: u1 is transmitting images to u2. (b) Step 6: u2 moves toward relays. Relay
nodes 5, 6, and 7 have failed.

(c) Step 7: u2 re-plans and moves closer to
home base.

(d) Step 8: u2 moves toward u1. (e) Step 9: u2 and u1 reconnect and move
back toward home base.

Figure 5: Example instance 2 illustrates re-planning after relay node failure between steps 5 and 6 forcing the UAVs to re-plan.

251

Implementing Default and Autoepistemic Logics via the Logic of GK

Jianmin Ji
School of Computer Science and Technology

University of Science and Technology of China
Hefei, China

Hannes Strass
Computer Science Institute

Leipzig University
Leipzig, Germany

Abstract

The logic of knowledge and justified assumptions, also
known as the logic of grounded knowledge (GK), was pro-
posed by Lin and Shoham as a general logic for nonmono-
tonic reasoning. To date, it has been used to embed in it de-
fault logic (propositional case), autoepistemic logic, Turner’s
logic of universal causation, and general logic programming
under stable model semantics. Besides showing the general-
ity of GK as a logic for nonmonotonic reasoning, these em-
beddings shed light on the relationships among these other
logics. In this paper, for the first time, we show how the
logic of GK can be embedded into disjunctive logic program-
ming in a polynomial but non-modular translation with new
variables. The result can then be used to compute the ex-
tension/expansion semantics of default logic, autoepistemic
logic and Turner’s logic of universal causation by disjunctive
ASP solvers such as GNT, cmodels, DLV, and claspD(-2).

Introduction
Lin and Shoham [1992] proposed a logic with two modal op-
erators K and A, standing for knowledge and assumption,
respectively. The idea is that one starts with a set of assump-
tions (those true under the modal operator A), computes the
minimal knowledge under this set of assumptions, and then
checks to see if the assumptions were justified in that they
agree with the resulting minimal knowledge. For instance,
consider the GK formula Ap ⊃ Kp. If we assume p, then
we can conclude that we know p, thus the assumption that
p holds is justified, and we get a GK model where both Ap
and Kp are true. (There is another GK model where we do
not assume p and hence do not know p.) However, there is
no GK model of ¬Ap ⊃ Kp: if we do not assume p, we are
forced to conclude Kp, but then knowledge and assumptions
do not coincide; if we do assume p, we cannot conclude that
we know p and thus assuming p was not justified.

To date, there have been embeddings from default
logic [Reiter, 1980] and autoepistemic logic [Moore, 1985]
to the logic of GK [Lin and Shoham, 1992], from Turner’s
logic of universal causation [Turner, 1999] to the logic
of GK [Ji and Lin, 2012], as well as from general logic
programs [Ferraris, 2005] to the logic of GK [Lin and
Zhou, 2011]. Among other things, these embeddings
shed new light on nonmonotonic reasoning, and have led
to an interesting characterization of strong equivalence in

logic programming [Lin, 2002; Lin and Zhou, 2011], and
helped relate logic programming to circumscription [Lin and
Shoham, 1992] as the semantics of GK is just a minimization
(of knowledge) together with an identity check (of assump-
tions and knowledge) after the minimization.

In this paper, for the first time, we consider computing
models of GK theories by disjunctive logic programs. We
shall propose a polynomial translation from a (pure) GK
theory to a disjunctive logic program such that there is a
one-to-one correspondence between GK models of the GK
theory and answer sets of the resulting disjunctive logic
program. The result can then be used to compute the ex-
tension/expansion semantics of default logic, autoepistemic
logic and Turner’s logic of universal causation by disjunc-
tive ASP solvers such as GNT [Janhunen and Niemelä,
2004], cmodels [Giunchiglia, Lierler, and Maratea, 2006],
DLV [Leone et al., 2006], claspD [Drescher et al., 2008] and
claspD-2 [Gebser, Kaufmann, and Schaub, 2013]. In par-
ticular, the recent advances in disjunctive answer set solv-
ing [Gebser, Kaufmann, and Schaub, 2013] open up promis-
ing research avenues towards applications of expressive non-
monotonic knowledge representation languages.

To substantiate this claim, we have implemented the
translation and report on some preliminary experiments that
we conducted on the special case of computing extensions
for Reiter’s default logic [Reiter, 1980]. The implementa-
tion, called gk2dlp, is available for download from the sec-
ond author’s home page.1

Providing implementations for theoretical formalisms has
a long tradition in nonmonotonic reasoning, for an overview
see [Dix, Furbach, and Niemelä, 2001]. In fact, nonmono-
tonic reasoning itself originated from a desire to more ac-
curately model the way humans reason, and was since its
conception driven by applications in commonsense reason-
ing [McCarthy, 1980, 1986]. Today, thanks to extensive re-
search efforts, we know how closely interrelated the differ-
ent formalisms for nonmonotonic reasoning are, and can use
this knowledge to improve the scope of implementations.

This paper is organized as follows. Section 2 reviews
logic programs, the logic of GK and default and autoepis-
temic logics. Section 3 presents our main result, the map-

1http://informatik.uni-leipzig.de/˜strass/
gk2dlp/

252

http://informatik.uni-leipzig.de/~strass/gk2dlp/
http://informatik.uni-leipzig.de/~strass/gk2dlp/

ping from GK to disjunctive logic programming. Section
4 presents our prototypical implementation, several experi-
ments we conducted to analyze the translation, possible ap-
plications for it, and a comparison with previous and related
work. Section 5 concludes with ideas for future work.

Preliminaries
We assume a propositional language with two zero-place
logical connectives > for tautology and ⊥ for contradiction.
We denote by Atom the set of atoms, the signature of our
language, and Lit the set of literals: Lit = Atom ∪ {¬p |
p ∈ Atom}. A set I of literals is called complete if for each
atom p, exactly one of {p,¬p} is in I .

In this paper, we identify an interpretation with a complete
set of literals. If I is a complete set of literals, we use it as
an interpretation when we say that it is a model of a formula,
and we use it as a set of literals when we say that it entails
a formula. In particular, we denote by Th(I) the logical
closure of I (considered to be a set of literals).

Logic Programming
A nested expression is built from literals using the 0-place
connectives > and ⊥, the unary connective “not” and the
binary connectives “,” and “;” for conjunction and disjunc-
tion. A logic program with nested expressions is a finite set
of rules of the form F ← G, where F and G are nested ex-
pressions. The answer set of a logic program with nested
expressions is defined as in [Lifschitz, Tang, and Turner,
1999]. Given a nested expression F and a set S of liter-
als, we define when S satisfies F , written S |= F below,
recursively as follows (l is a literal):

• S |= l if l ∈ S,

• S |= > and S 6|= ⊥,

• S |= not F if S 6|= F ,

• S |= F,G if S |= F and S |= G, and

• S |= F ;G if S |= F or S |= G.

S satisfies a rule F ← G if S |= F whenever S |= G. S
satisfies a logic program P , written S |= P , if S satisfies all
rules in P .

The reduct PS of P related to S is the result of replacing
every maximal subexpression of P that has the form not F
with ⊥ if S |= F , and with > otherwise. For a logic pro-
gram P without not, the answer set of P is any minimal
consistent subset S of Lit that satisfies P . We use ΓP (S) to
denote the set of answer sets of PS . Now a consistent set S
of literals is an answer set of P iff S ∈ ΓP (S). Every logic
program with nested expressions can be equivalently trans-
lated to disjunctive logic programs with disjunctive rules of
the form

l1; · · · ; lk ←lk+1, . . . , lt, not lt+1, . . . , not lm,

not not lm+1, . . . , not not ln

where n ≥ m ≥ t ≥ k ≥ 0 and l1, . . . , ln are propositional
literals.

Default Logic
Default logic [Reiter, 1980] is for making and withdrawing
assumptions in the light of incomplete knowledge. This is
done by defaults, that allow to express rules of thumb such
as “birds usually fly” and “tools usually work.” For a given
logical language, a default is any expression of the form
φ : ψ1, . . . , ψn/ϕ where φ, ψ1, . . . , ψn, ϕ are formulas of
the underlying language. A default theory is a pair (W,D),
where W is a set of formulas and D is a set of defaults. The
meaning of default theories is given through the notion of
extensions. An extension of a default theory (W,D) is “in-
terpreted as an acceptable set of beliefs that one may hold
about the incompletely specified world W ” [Reiter, 1980].
For a default theory (W,D) and any set S of formulas let
Γ(S) be the smallest set satisfying (1) W ⊆ Γ(S), (2)
Th(Γ(S)) = Γ(S), (3) If φ : ψ1, . . . , ψn/ϕ ∈ D, φ ∈ Γ(S)
and ¬ψ1, . . . ,¬ψn /∈ S, then ϕ ∈ Γ(S). A set E of formu-
las is called an extension for (W,D) iff Γ(E) = E.

Autoepistemic Logic
Moore [1985] strives to formalize an ideally rational agent
reasoning about its own beliefs. He uses a belief modality L
to explicitly refer to the agent’s belief within the language.
Given a set A of formulas (the initial beliefs), a set T is an
expansion of A if it coincides with the deductive closure of
the set A ∪ {Lϕ | ϕ ∈ T} ∪ {¬Lϕ | ϕ /∈ T}. In words, T
is an expansion if it equals what can be derived using the
initial beliefs A and positive and negative introspection with
respect to T itself. It was later discovered that this defini-
tion of expansions allows unfounded, self-justifying beliefs.
Such beliefs are however not always desirable when repre-
senting the knowledge of agents.

The Logic of GK
The language of GK proposed by Lin and Shoham [1992] is
a modal propositional language with two modal operators,
K, for knowledge, and A, for assumption. GK formulas ϕ
are propositional formulas with K and A, that is,

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Kϕ | Aϕ

where p is an atom. A GK theory is a set of GK formulas.
GK is a nonmonotonic logic, and its semantics is defined

using the standard Kripke possible world interpretations. In-
formally speaking, a GK model is a Kripke interpretation
where what is true under K is minimal and exactly the same
as what is true under A. The intuition here is that given a
GK formula, one first makes some assumptions (those true
under A), then one minimizes the knowledge thus entailed,
and finally checks to make sure that the initial assumption is
justified in the sense that the minimal knowledge is the same
as the initial assumption.

Formally, a Kripke interpretation M is a tuple
〈W,π,RK , RA, s〉, where W is a nonempty set of possi-
ble worlds, π a function that maps a possible world to an
interpretation, RK and RA binary relations over W rep-
resenting the accessibility relations for K and A, respec-
tively, and s ∈W , called the actual world of M . The
satisfaction relation |= between a Kripke interpretation

253

M = 〈W,π,RK , RA, s〉 and a GK formula ϕ is defined in a
standard way:

• M 6|= ⊥,

• M |= p iff p ∈ π(s), where p is an atom,

• M |= ¬ϕ iff M 6|= ϕ,

• M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ,

• M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ,

• M |= Kϕ iff 〈W,π,RK , RA, w〉 |= ϕ for any w ∈ W
such that (s, w) ∈ RK ,

• M |= Aϕ iff 〈W,π,RK , RA, w〉 |= ϕ for any w ∈ W
such that (s, w) ∈ RA.

Note that for any w ∈W , π(w) is an interpretation. We say
that a Kripke interpretationM is a model of a GK formula ϕ
if M satisfies ϕ, M is a model of a GK theory T if M satis-
fies every GK formula in T . In the following, given a Kripke
interpretation M , we let

K(M) = {φ | φ is a propositional formula and M |= Kφ },
A(M) = {φ | φ is a propositional formula and M |= Aφ }.

Notice that K(M) and A(M) are always closed under clas-
sical logical entailment – they are propositional theories.

Given a GK formula T , a Kripke interpretation M is a
minimal model of T ifM is a model of T and there does not
exist another model M1 of T such that A(M1) = A(M)
and K(M1) (K(M). We say that M is a GK model of T
if M is a minimal model of T and K(M) = A(M).

In this paper, we consider only GK formulas that do not
contain nested occurrences of modal operators. Specifically,
an A-atom is a formula of the form Aφ and a K-atom is
a formula of the form Kφ, where φ is a propositional for-
mula. A GK formula is called a pure GK formula if it is
formed from A-atoms, K-atoms and propositional connec-
tives. Similarly, a pure GK theory is a set of pure GK for-
mulas. Given a pure GK formula F , we denote

AtomK(F) = {φ | Kφ is a K-atom occurring in F },
AtomA(F) = {φ | Aφ is an A-atom occurring in F }.

For a pure GK theory T , we use AtomK(T) =⋃
F∈T AtomK(F) and AtomA(T) =

⋃
F∈T AtomA(F)

to denote their modal atoms.
So far, the applications of the logic of GK only ever use

pure GK formulas. We now present some embeddings of
well-known nonmonotonic knowledge representation lan-
guages into the logic of GK.

Default logic A (propositional) default theory ∆ =
(W,D) (under extension semantics) is translated into pure
GK formulas in the following way: (1) Translate each φ ∈
W to Kφ; (2) translate each (φ : ψ1, . . . , ψn/ϕ) ∈ D to
Kφ ∧ ¬A¬ψ1 ∧ · · · ∧ ¬A¬ψn ⊃ Kϕ. For the weak exten-
sion semantics, a default (φ : ψ1, . . . , ψn/ϕ) ∈ D is trans-
lated to Aφ ∧ ¬A¬ψ1 ∧ · · · ∧ ¬A¬ψn ⊃ Kϕ.

Autoepistemic logic An L-sentence of autoepistemic
logic that is in normal form [Konolige, 1988], that is, a
disjunction of the form ¬Lφ ∨ Lψ1 ∨ · · · ∨ Lψn ∨ ϕ,

is (under expansion semantics) expressed as
Aφ ∧ ¬Aψ1 ∧ · · · ∧ ¬Aψn ⊃ Kϕ. For strong expansion
semantics, it becomes Kφ ∧ ¬Aψ1 ∧ · · · ∧ ¬Aψn ⊃ Kϕ.

Notice that the translation of default and autoepistemic
theories into the logic of GK is compatible with Kono-
lige’s translation from default logic into autoepistemic
logic [Konolige, 1988]. Indeed, Konolige’s translation per-
fectly aligns the weak extension semantics of default logic
with expansion semantics for autoepistemic logic, and like-
wise for extension and strong expansion semantics [De-
necker, Marek, and Truszczyński, 2003].

Logic of universal causation The logic of universal cau-
sation is a nonmonotonic propositional modal logic with one
modality C [Turner, 1999]. A formula of this logic is trans-
lated to the pure logic of GK by replacing every occurrence
of C by K, adding A before each atom which is not in the
range of C in it, and adding Ap∨A¬p for each atom p. For
example, if a UCL formula is (p ∧ ¬q) ⊃ C(p ∧ ¬q) and
Atom = {p, q}, then the corresponding pure GK formula is
((Ap ∧ ¬Aq) ⊃ K(p ∧ ¬q))∧(Ap∨A¬p)∧(Aq∨A¬q).

Disjunctive logic programs A disjunctive LP rule

p1 ∨ · · · ∨ pk ← pk+1, . . . , pl, not pl+1, . . . , not pm,

where p’s are atoms, corresponds to the pure GK formula:

Kpk+1∧· · ·∧Kpl∧¬Apl+1∧· · ·∧¬Apm ⊃ Kp1∨· · ·∨Kpk

Main Result: From Pure GK to Disjunctive
ASP

Before presenting the translation, we introduce some nota-
tions. Let F be a pure GK formula, we use trp(F) to denote
the propositional formula obtained from F by replacing each
occurrence of a K-atom Kφ by kφ and each occurrence of
an A-atom Aψ by aψ , where kφ and aψ are new atoms with
respect to φ and ψ respectively. For a pure GK theory T , we
define trp(T) =

∧
F∈T trp(F). To illustrate these and the

definitions that follow, we use a running example.

Example 1 (Normal Reiter default) Consider the pure
GK theory {F} with F = ¬A¬p ⊃ Kp corresponding
to the default > : p/p, and another pure GK theory
{F,G} with G = K¬p corresponding to the de-
fault > : >/¬p. Then trp({F}) = ¬a¬p ⊃ kp and
trp({F,G}) = (¬a¬p ⊃ kp) ∧ k¬p, where a¬p, kp, and
k¬p are new atoms.

Here we introduce a set of new atoms kφ and aψ for each for-
mula φ ∈ AtomK(T) and ψ ∈ AtomA(T). Intuitively, the
new atom kφ (resp. aψ) will be used to encode containment
of the formula φ in K(M) (resp. A(M)) of a GK model M
for T .

Given a propositional formula φ and an atom a, we use
φa to denote the propositional formula obtained from φ by
replacing each occurrence of an atom p with a new atom pa

with respect to a. These formulas and new atoms will later
be used in our main translation to perform the minimality
check of the logic of GK’s semantics.

We now stepwise work our way towards the main result.
We start out with a result that relates a pure GK theory to

254

a propositional formula that will later reappear in our main
translation.
Proposition 1 Let T be a pure GK theory. A Kripke inter-
pretation M is a model of T if and only if there exists a
model I∗ of the propositional formula ΦT where

ΦT = trp(T) ∧ Φsnd ∧ ΦK
wit ∧ ΦA

wit with

Φsnd =
∧

φ∈AtomK(T)

(kφ ⊃ φk) ∧
∧

φ∈AtomA(T)

(aφ ⊃ φa)

ΦK
wit =

∧
ψ∈AtomK(T)

(
¬kψ ⊃ ΦK

ψ

)
ΦA

wit =
∧

ψ∈AtomA(T)

(
¬aψ ⊃ ΦA

ψ

)
ΦK
ψ = ¬ψkψ ∧

∧
φ∈AtomK(T)

(kφ ⊃ φkψ)

ΦA
ψ = ¬ψaψ ∧

∧
φ∈AtomA(T)

(aφ ⊃ φaψ)

such that
• K(M)∩AtomK(T) = {φ | φ ∈ AtomK(T), I∗ |= kφ};
• A(M)∩AtomA(T) = {φ | φ ∈ AtomA(T), I∗ |= aφ}.

The proposition examines the relationship between mod-
els of a pure GK theory and particular models of the proposi-
tional formula ΦT . The first conjunct trp(T) of the formula
ΦT indicates that the k-atoms and a-atoms in it can be inter-
preted in accordance with K(M) and A(M) such that I∗ |=
trp(T) iff M is a model of T . The soundness formula Φsnd

achieves that the sets {φ | φ ∈ AtomK(T) and I∗ |= kφ}
and {φ | φ ∈ AtomA(T) and I∗ |= aφ} are consistent. The
witness formulas Φwit indicate that, if I∗ |= ¬kψ for some
ψ ∈ AtomK(T) (resp. ψ ∈ AtomA(T)) then there exists a
model I ′ of K(M) (resp. A(M)) such that I ′ |= ¬ψ, where
I ′ is explicitly indicated by newly introduced pkψ (resp. paψ)
atoms. So intuitively, if a formula is not known (or not as-
sumed), then there must be a witness for that. This condition
is necessary: for instance, the set {kp, kq,¬kp∧q} satisfies
the formula (kp∧q ⊃ kp) ∧ (kp∧q ⊃ kq), however, since
K(M) is a theory there does not exist a Kripke interpreta-
tionM such that p ∈ K(M), q ∈ K(M) and p∧q /∈ K(M).
Example 1 (Continued) Formula Φ{F} is given by:

trp({F}) = ¬a¬p ⊃ kp
Φsnd({F}) = (kp ⊃ pk) ∧ (a¬p ⊃ ¬pa)

ΦK
wit({F}) = ¬kp ⊃ (¬pkp ∧ (kp ⊃ pkp))

ΦA
wit({F}) = ¬a¬p ⊃ (¬¬pa¬p ∧ (a¬p ⊃ ¬pa¬p))

Formula Φ{F,G} is given by:
trp({F,G}) = (¬a¬p ⊃ kp) ∧ k¬p

Φsnd({F,G}) = Φsnd({F}) ∧ (k¬p ⊃ ¬pk)

ΦK
wit({F,G}) = (¬kp ⊃ ΦK

p) ∧ (¬k¬p ⊃ ΦK
¬p)

ΦA
wit({F,G}) = ΦA

wit({F})
ΦK
p = ¬pkp ∧ (kp ⊃ pkp) ∧ (k¬p ⊃ ¬pkp)

ΦK
¬p = ¬¬pk¬p ∧ (kp ⊃ pk¬p) ∧ (k¬p ⊃ ¬pk¬p)

where pk , pa , pkp , pa¬p , and pk¬p are new atoms. Note that
formula Φsnd({F,G}) prevents a model that satisfies both
kp and k¬p.

While Proposition 1 aligns Krikpe models and proposi-
tional models of the translation, there is yet no mention of
GK’s typical minimization step. This is the task of the next
result, which extends the above relationship to GK models.

Proposition 2 Let T be a pure GK theory. A Kripke inter-
pretation M is a GK model of T if and only if there exists a
model I∗ of the propositional formula ΦT such that
• K(M) = A(M) = Th ({φ | φ ∈ AtomK(T), I∗ |= kφ});
• for each ψ ∈ AtomA(T),

I∗ |= aψ iff ψ ∈ Th({φ | φ ∈ AtomK(T) and I∗ |= kφ})
• there does not exist another model I∗′ such that

I∗′ ∩ {aφ | φ ∈ AtomA(T)} = I∗ ∩ {aφ | φ ∈ AtomA(T)},
I∗′ ∩ {kφ | φ ∈ AtomK(T)} (I∗ ∩ {kφ | φ ∈ AtomK(T)}.
Example 1 (Continued) Clearly the intended reading of
our running example {F} is that there is no reason to as-
sume that p is false, and the default lets us conclude that
we know p. This is testified by the partial interpretation
I∗ = {¬a¬p, kp, pk , pa¬p} (the remaining atoms are not rel-
evant). It is easy to see that I∗ is a model for Φ{F} and there
is no model I∗′ with the properties above. Now kp ∈ I∗
shows that p is known in the corresponding GK model.

Similarly, G provides a reason to assume that p is false
and {F,G} concludes that we know ¬p. Consider the par-
tial interpretation I∗ = {a¬p,¬kp, k¬p,¬pk ,¬pa ,¬pkp},
it specifies a model for Φ{F,G} and there is no model I∗′
with the properties above. In particular, k¬p ∈ I∗ shows
that ¬p is known in the corresponding GK model.

In Proposition 2, we only need to consider a Kripke inter-
pretation M such that A(M) ∪ K(M) is consistent. This
means that formula ΦT can be modified to ΨT where

ΨT = trp(T) ∧Ψsnd ∧ΨK
wit ∧ΨA

wit with

Ψsnd =
∧

φ∈AtomK(T)

(kφ ⊃ φ) ∧
∧

φ∈AtomA(T)

(aφ ⊃ φ)

ΨK
wit =

∧
ψ∈AtomK(T)

(
¬kψ ⊃ ΨK

ψ

)

ΨA
wit =

∧
ψ∈AtomA(T)

(
¬aψ ⊃ ΨA

ψ

)

ΨK
ψ = ¬ψkψ ∧

∧
φ∈AtomK(T)

(kφ ⊃ φkψ) ∧

∧
φ∈AtomA(T)

(aφ ⊃ φkψ)

ΨA
ψ = ¬ψaψ ∧

∧
φ∈AtomK(T)

(kφ ⊃ φaψ) ∧

∧
φ∈AtomA(T)

(aφ ⊃ φaψ)

255

So the soundness formula Ψsnd actually becomes easier,
since soundness of knowledge and assumptions is enforced
for one and the same vocabulary (the one from the original
theory). The witness formulas become somewhat more com-
plicated, as the witnesses have to respect both the knowledge
as well as the assumptions of the theory. This is best ex-
plained by consulting our running example again.

Example 1 (Continued) While F ’s propositionalization
trp({F}) stays the same, the soundness and witness formu-
las change in the step from formula Φ{F} to formula Ψ{F}.
We only show the first conjunct of the witness formula Ψwit ,
which is given by

¬kp ⊃
(
¬pkp ∧

(
kp ⊃ pkp

)
∧
(
a¬p ⊃ ¬pkp

))
Intuitively, the formula expresses that whenever p is not
known, then there must be a witness, that is, an interpre-
tation where p is false. Since the witnessing interpretations
could in principle be distinct for each K-atom, they have to
be indexed by the respective K-atom they refer to, as in pkp .
Of course, the witnesses have to obey all that is known and
assumed, which is guaranteed in the last two conjuncts.

Using this new formula, the result of Proposition 2 can be
restated.

Proposition 3 Let T be a pure GK theory. A Kripke inter-
pretation M is a GK model of T if and only if there exists a
model I∗ of the propositional formula ΨT such that
• K(M) = A(M) = Th ({φ | φ ∈ AtomK(T), I∗ |= kφ});
• for each ψ ∈ AtomA(T), we have that I∗ |= aψ implies

ψ ∈ Th({φ | φ ∈ AtomK(T) and I∗ |= kφ})

• there does not exist another model I∗′ of ΦT such that

I∗′ ∩ {aφ | φ ∈ AtomA(T)} = I∗ ∩ {aφ | φ ∈ AtomA(T)}
I∗′ ∩ {kφ | φ ∈ AtomK(T)} (I∗ ∩ {kφ | φ ∈ AtomK(T)}

We are now ready for our main result, translating a pure
GK theory to a disjunctive logic program. First, we intro-
duce some notations. Let T be a pure GK theory, we use
trne(T) to denote the nested expression obtained from ΨT

by first converting it to negation normal form2, then replac-
ing “∧” by “,” and “∨” by “;”. A propositional formula φ
can be equivalently translated to conjunctive normal form
(involving at most linear blowup)

(p1 ∨ · · · ∨ pt ∨ ¬pt+1 ∨ · · · ∨ ¬pm) ∧ . . .
∧ (q1 ∨ · · · ∨ qk ∨ ¬qk+1 ∨ · · · ∨ ¬qn)

where p’s and q’s are atoms; we use tr c(φ) to denote the set
of rules

p1; . . . ; pt ← pt+1, . . . , pm . . . q1; . . . ; qk ← qk+1, . . . , qn

We use φ̂ to denote the propositional formula obtained from
φ by replacing each occurrence of an atom p by a new atom
p̂.

2A propositional formula is in Negation Normal Form
(NNF) if negation occurs only immediately above atoms, and
{⊥,>,¬,∧,∨} are the only allowed connectives.

We use T ∗ to denote the propositional formula obtained
from the formula ΦT by replacing each occurrence of an
atom p (except atoms in {aφ | φ ∈ AtomA(T)}) by a new
atom p∗. Intuitively, each atom that is not an a-atom is re-
placed by a new atom.

Notice that trne(T) is obtained from ΨT while T ∗ is ob-
tained from ΦT . Intuitively, by Proposition 3, trne(T) is
used to restrict interpretations for introduced k-atoms and
a-atoms so that these interpretations serve as candidates for
GK models, and by Proposition 1, T ∗ constructs possible
models of the GK theory which are later used to test whether
these models prevent the candidate to be a GK model.

Inspired by the linear translation from parallel circum-
scription into disjunctive logic programs by Janhunen and
Oikarinen [2004], we have the following theorem.
Theorem 1 Let T be a pure GK theory. A Kripke interpre-
tation M is a GK model of T if and only if there exists an
answer set S of the logic program tr lp(T) in Figure 1 with
K(M) = A(M) = Th({φ | φ ∈ AtomK(T) and kφ ∈ S}).

The intuition behind the construction is as follows:
• (1) and (2) in tr lp(T): I∗ is a model of the formula ΨT .
• (3–8): if there exists a model I∗′ of the formula ΦT with

I∗ ∩ {aφ | φ ∈ AtomA(T)} = I∗′ ∩ {aφ | φ ∈ AtomA(T)}
I∗′ ∩ {kφ | φ ∈ AtomK(T)} (I∗ ∩ {kφ | φ ∈ AtomK(T)},

then there exists a set S∗ constructed from new atoms
in tr c(T ∗) (which is a copy of the formula ΦT with
same aφ for each φ ∈ AtomA(T)) and cφ for some
φ ∈ AtomK(T) such that S∗ satisfies rules (3) to (8) and
u /∈ S∗.

• (9) and (10): if there is such a set S∗ then it is the least set
containing u, all p∗’s and c-atoms.

• (11): such a set S∗ should not exist. (See item 3 in Propo-
sition 3.)

• (12) and (13): if there exists a model of the formula∧
φ∈AtomK(T)(kφ ⊃ φ̂)∧¬

∧
φ∈AtomA(T)(aφ ⊃ φ̂), then

v should not occur in the minimal model of the program.

• (14):
∧
φ∈AtomK(T)(kφ ⊃ φ̂)∧¬

∧
φ∈AtomA(T)(aφ ⊃ φ̂)

should not be consistent. (This is necessary by item 2 in
Proposition 3.)
Given a model S of the logic program tr lp(T), the new

atom u is used to indicate that the model I∗ of ΨT w.r.t. S
(specified by (1) and (2)) satisfies item 3 in Proposition 3.
Specifically, if I∗ does not satisfy item 3, then there exists a
subset S∗ of p∗’s and c-atoms that satisfies (3) to (8). If
in addition u /∈ S∗, then there exists a subset of S that
satisfies all rules in tr lp(T) except (11), thus S cannot be
an answer set of tr lp(T). Similarly, v is used to indicate
that I∗ satisfies item 2 in Proposition 3. Specifically, if
I∗ does not satisfy item 2, then the propositional formula∧
φ∈AtomK(T)(kφ ⊃ φ̂) ∧ ¬

∧
φ∈AtomA(T)(aφ ⊃ φ̂) is sat-

isfiable, thus there exists a subset Ŝ of p̂’s that satisfies (12).
If in addition v /∈ Ŝ, then there exists a subset of S that sat-
isfies all rules in tr lp(T) except (14), thus S cannot be an
answer set of tr lp(T).

256

(1) ⊥ ← not trne(T)

(2) p′;¬p′ ← > (for each atom p′ occurring in trne(T))
(3) u;A← B (for each rule A← B in tr c(T ∗))
(4) u; cφ1 ; · · · ; cφm ← > ({φ1, . . . , φm} = AtomK(T))
(5) u← cφ, not kφ (for each φ ∈ AtomK(T))
(6) u← k∗φ, not kφ (for each φ ∈ AtomK(T))

(7) u← cφ, k
∗
φ, not¬kφ (for each φ ∈ AtomK(T))

(8) u; cφ; k∗φ ← not¬kφ (for each φ ∈ AtomK(T))

(9) p∗ ← u (for each new atom p∗ occurring in tr c(T ∗))
(10) cφ ← u (for each φ ∈ AtomK(T))
(11) ⊥ ← not u

(12) v;A← B (for each rule A← B in

tr c

 ∧
φ∈AtomK(T)

(kφ ⊃ φ̂) ∧ ¬
∧

φ∈AtomA(T)

(aφ ⊃ φ̂)

)

(13) p̂← v (for each atom p̂ except k-atoms and a-atoms occurring in

tr c

 ∧
φ∈AtomK(T)

(kφ ⊃ φ̂) ∧ ¬
∧

φ∈AtomA(T)

(aφ ⊃ φ̂)

)

(14) ⊥ ← not v

Figure 1: Translation from pure GK theory T to disjunctive logic program tr lp(T) used in Theorem 1, where u, v, and cφ (for
each φ ∈ AtomK(T)) are new atoms.

Example 1 (Continued) For our running example theory
{F} with F = ¬A¬p ⊃ Kp, we find that the logic program
translation tr lp({F}) has a single answer set S with kp ∈ S
Thus by Theorem 1 we can conclude that the GK theory {F}
has a single GK model M in which K(M) = Th({p}).
Likewise, the logic program tr lp({F,G}) has a single an-
swer set S′ with k¬p ∈ S′, whence {F,G} has a single GK
model M ′ in which K(M ′) = Th({¬p}).

Computational complexity We have seen in the prelim-
inaries section that disjunctive logic programs can be mod-
ularly and equivalently translated into pure formulas of the
logic of GK. Conversely, Theorem 1 shows that pure GK
formulas can be equivalently translated into disjunctive logic
programs. Eiter and Gottlob showed that the problem of de-
ciding whether a disjunctive logic program has an answer set
is ΣP2 -complete [Eiter and Gottlob, 1995]. In combination,
these results yield the following straightforward complexity
result for the satisfiability of pure GK.
Proposition 4 Let T be a pure GK theory. The problem of
deciding whether T has a GK model is ΣP2 -complete.
We remark that the hardness of disjunctive logic programs
stems from so-called head cycles (at least two atoms that
mutually depend on each other and occur jointly in some
rule head). It is straightforwardly checked that our encoding
creates such head cycles, for example the head of rule (8)
contains the cycle induced by rules (7) and (10).

Implementation
We have implemented the translation of Theorem 1 into a
working prototype gk2dlp. The program is written in Pro-
log and uses the disjunctive ASP solver claspD-2 [Gebser,
Kaufmann, and Schaub, 2013], which was ranked first place
in the 2013 ASP competition.3

Our prototype is the first implementation of the (pure)
logic of GK to date. The restriction to pure formulas seems
harmless since all known applications of the logic of GK
use only pure formulas. We remark that gk2dlp implements
default and autoepistemic logics such that input and target
language are of the same complexity.

Evaluation To have a scalable problem domain and in-
spired by dl2asp [Chen et al., 2010], we chose the fair di-
vision problem [Bouveret and Lang, 2008] for experimental
evaluation. An instance of the fair division problem consists
of a set of agents, a set of goods, and for each agent a set
of constraints that intuitively express which sets of goods
the agent is willing to accept. A solution is then an assign-
ment of goods to agents that is a partition of all goods and
satisfies all agents’ constraints. Bouveret and Lang [2008]
showed that the problem is ΣP2 -complete, and can be natu-
rally encoded in default logic.

3http://www.mat.unical.it/ianni/storage/
aspcomp-2013-lpnmrtalk.pdf

257

http://www.mat.unical.it/ianni/storage/aspcomp-2013-lpnmrtalk.pdf
http://www.mat.unical.it/ianni/storage/aspcomp-2013-lpnmrtalk.pdf

We created random instances of the fair division prob-
lem with increasing numbers of agents and goods. We then
applied the translation of [Bouveret and Lang, 2008], fur-
thermore the translation from default logic into the logic of
GK, then invoked gk2dlp to produce logic programs and fi-
nally used gringo 3.0.3 and claspD version 2 (revision 6814)
to compute all answer sets of these programs, thus all ex-
tensions of the original default theory corresponding to all
solutions of the problem instance. The experiments were
conducted on a Lenovo laptop with an Intel Core i3 proces-
sor with 4 cores and 4GB of RAM running Ubuntu 12.04.
We recorded the size of the default theory, the size of the
translated logic program, the translation time and the solv-
ing time, as well as the number of solutions obtained. We
started out with 2 agents and 2 goods, and stepwise in-
creased these numbers towards 6. For each combination
in (a, g) ∈ {2, . . . , 6} × {2, . . . , 6}, we tested 20 randomly
generated instances. Random generation here means that
we create agents’ preferences by iteratively drawing random
subsets of goods to add to an agent’s acceptable subsets with
probability P , where P is initialized with 1 and discounted
by the factor g−1

g for each subset that has been drawn.
In accordance with our theoretical predictions, we ob-

served that the increase in size from GK formula to logic
program is indeed polynomial (albeit with a low exponent).
The plot on the right (Figure 2) shows the solving time in
relation to the size of the default theory, where the time
axis is logarithmic. We can see that the runtime behavior
of gk2dlp is satisfactory. We acknowledge however that
the runtimes we measured are not competitive with those
reported by Chen et al. [2010] for dl2asp. However, a direct
comparison of the two systems is problematic for a num-
ber of reasons. First of all, the system dl2asp is not pub-
licly available to the best of our knowledge. Furthermore,
Chen et al. [2010] do not describe how they create random
instances of the fair division problem, so we cannot compare
the runtimes they report and the ones we measured. Finally,
dl2asp is especially engineered for default logic, and it is
not clear how their approach can be generalized to other lan-
guages, for example Turner’s logic of universal causation. In
general, the approaches to translation that are followed by
dl2asp and gk2dlp are completely different: dl2asp trans-
lates a ΣP2 -complete problem to an NP-complete problem
using a translation in ∆P

2 . Our system gk2dlp translates
a ΣP2 -complete problem into another ΣP2 -complete problem
using a translation that can be computed in polynomial time.

Applications We see immediate applicability of the trans-
lation of the present paper to several areas. Reiter [1987]
provided a theory of diagnosis from first principles, and
showed how default logic can be used as an implementation
device. Cadoli, Eiter, and Gottlob [1994] proposed to use
default logic as an expressive query language on top of rela-
tional databases, and gave an example of achieving strate-
gic behavior in an economic setting. In reasoning about
actions, Thielscher [1996] used default logic to solve the
qualification problem of dealing with unexpected action fail-
ures. Martin and Thielscher [2001] later provided an imple-
mentation of that approach where extensions are enumer-

0.1

1

10

100

1000

0 500 1000 1500 2000 2500

so
lv

in
g

tim
e

(s
ec

on
ds

)

default theory size

Figure 2: Solving time (log scale) with respect to default
theory size.

ated in Prolog. Recently, Baumann et al. [2010] introduced
a method for default reasoning in action theories, that is, an
approach to the question what normally holds in a dynamic
domain. Our translation yields an implementation of their
approach, something that they stated as future work and later
achieved to a limited extent (for a restricted sublanguage of
their framework [Strass, 2012]). In a similar vein, Pagnucco
et al. [2013] looked at belief change in the situation calculus
and proposed an implementation based on default logic with
preferences [Brewka, 1994; Delgrande and Schaub, 2000].

Related work The translation presented in this paper is
a generalization of the one presented for Turner’s logic of
universal causation by Ji and Lin [2013]. We chose the
logic of GK as general nonmonotonic language, we could
also have chosen the logic of minimal belief and negation as
failure [Lifschitz, 1994], the logic of here-and-there [Heyt-
ing, 1930] or the nonmonotonic modal logic S4F [Schwarz
and Truszczynski, 1994]. In terms of implementations, there
are few approaches that treat as broad a range of propo-
sitional nonmonotonic knowledge representation languages
as gk2dlp. Notable exceptions are the works of Junker
and Konolige [1990], who implemented both autoepistemic
and default logics by translating them to truth maintenance
systems; Niemelä [1995], who provides a decision proce-
dure for autoepistemic logic which also incorporates exten-
sion semantics for default logics; and Rosati [1999], who
provides algorithms for Lifschitz’ logic of minimal belief
and negation as failure [1994]. Other approaches are re-
stricted to specific languages, where default logic seems to
be most popular. The recent system dl2asp [Chen et al.,
2010] translates default theories to normal (non-disjunctive)
logic programs; the translation figures out all implication
relations between formulas occurring in the default theory,
just as Junker and Konolige [1990] did. The authors of
dl2asp [Chen et al., 2010] already observed that default logic
and disjunctive logic programs are of the same complex-
ity; they even stated the search for a polynomial translation
from the former to the latter (that we achieved in this pa-
per) as future work. Gadel [Nicolas, Saubion, and Stéphan,

258

2000] uses a genetic algorithm to compute extensions of
a default theory; likewise the system DeReS [Cholewiński
et al., 1999] is not translation-based but directly searches
for extensions; similarly the XRay system [Schaub and
Nicolas, 1997] implements local query-answering in default
logics. Risch and Schwind [1994] describe a tableaux-
based algorithm for computing all extensions of general de-
fault theories, but do not report runtimes for their Prolog-
based implementation. For autoepistemic logic, Marek and
Truszczyński [1991] investigate sceptical reasoning with re-
spect to Moore’s expansion semantics.

Discussion
We have presented the first translation of pure formulas of
the logic of GK to disjunctive answer set programming.
Among other things, this directly leads to implementations
of Turner’s logic of universal causation as well as implemen-
tations of default and autoepistemic logics under different
semantics. We have prototypically implemented the transla-
tion and experimentally analysed its performance, which we
found to be satisfactory given the system’s generality.

In the future, we plan to integrate further nonmonotonic
reasoning formalisms. This is more or less straightforward
due to the generality of this work: to implement a language,
it suffices to provide a translation into pure formulas of GK,
then Theorem 1 of this paper does the rest. Particular for-
malism we want to look at are default logics with prefer-
ences [Brewka, 1994; Delgrande and Schaub, 2000] and the
logic of only-knowing [Lakemeyer and Levesque, 2005]. It
also seems worthwhile to check whether our translation can
be adapted to the nonmonotonic modal logic S4F [Schwarz
and Truszczynski, 1994; Truszczyński, 2007], that has only
one modality instead of two. We finally plan to study the
approaches mentioned as applications in the previous sec-
tion to try out our translation and implementation on agent-
oriented AI problems.

References
Baumann, R.; Brewka, G.; Strass, H.; Thielscher, M.; and Zaslawski,

V. 2010. State Defaults and Ramifications in the Unifying Action
Calculus. In KR, 435–444.

Bouveret, S., and Lang, J. 2008. Efficiency and envy-freeness in fair
division of indivisible goods: Logical representation and complexity.
JAIR 32:525–564.

Brewka, G. 1994. Adding Priorities and Specificity to Default Logic. In
JELIA, 247–260.

Cadoli, M.; Eiter, T.; and Gottlob, G. 1994. Default logic as a query
language. In KR, 99–108.

Chen, Y.; Wan, H.; Zhang, Y.; and Zhou, Y. 2010. dl2asp: Implementing
Default Logic via Answer Set Programming. In JELIA, volume 6341,
104–116.

Cholewiński, P.; Marek, V. W.; Truszczyński, M.; and Mikitiuk, A.
1999. Computing with default logic. AIJ 112(1):105–146.

Delgrande, J. P., and Schaub, T. 2000. Expressing Preferences in Default
Logic. AIJ 123(1–2):41–87.

Denecker, M.; Marek, V. W.; and Truszczyński, M. 2003. Uni-
form Semantic Treatment of Default and Autoepistemic Logics. AIJ
143(1):79–122.

Dix, J.; Furbach, U.; and Niemelä, I. 2001. Nonmonotonic reasoning:
Towards efficient calculi and implementations. Handbook of Auto-
mated Reasoning 2(18):1121–1234.

Drescher, C.; Gebser, M.; Grote, T.; Kaufmann, B.; König, A.; Os-
trowski, M.; and Schaub, T. 2008. Conflict-Driven Disjunctive An-
swer Set Solving. In KR, 422–432.

Eiter, T., and Gottlob, G. 1995. On the computational cost of disjunctive
logic programming: Propositional case. AMAI 15(3–4):289–323.

Ferraris, P. 2005. Answer sets for propositional theories. In LPNMR,
119–131.

Gebser, M.; Kaufmann, B.; and Schaub, T. 2013. Advanced conflict-
driven disjunctive answer set solving. In IJCAI.

Giunchiglia, E.; Lierler, Y.; and Maratea, M. 2006. Answer Set Pro-
gramming Based on Propositional Satisfiability. J. Autom. Reasoning
36(4):345–377.

Heyting, A. 1930. Die formalen Regeln der intuitionistischen Logik. In
Sitzungsberichte der preußischen Akademie der Wissenschaften, 42–
65, 57–71, 158–169. Physikalisch-mathematische Klasse.

Janhunen, T., and Niemelä, I. 2004. GnT – A Solver for Disjunctive
Logic Programs. In LPNMR, 331–335.

Janhunen, T., and Oikarinen, E. 2004. Capturing parallel circumscrip-
tion with disjunctive logic programs. In Logics in Artificial Intelli-
gence. 134–146.

Ji, J., and Lin, F. 2012. From Turner’s Logic of Universal Causation to
the Logic of GK. In Correct Reasoning, volume 7265, 380–385.

Ji, J., and Lin, F. 2013. Turner’s logic of universal causation, proposi-
tional logic, and logic programming. In LPNMR, 401–413.

Junker, U., and Konolige, K. 1990. Computing the Extensions of Au-
toepistemic and Default Logics with a Truth Maintenance System. In
AAAI, 278–283.

Konolige, K. 1988. On the Relation Between Default and Autoepistemic
Logic. AIJ 35(3):343–382.

Lakemeyer, G., and Levesque, H. J. 2005. Only-knowing: Taking it
beyond autoepistemic reasoning. In AAAI, 633–638.

Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri, S.; and
Scarcello, F. 2006. The DLV system for knowledge representation
and reasoning. ACM Transactions on Computational Logic 7(3):499–
562.

Lifschitz, V.; Tang, L. R.; and Turner, H. 1999. Nested expressions in
logic programs. AMAI 25(3-4):369–389.

Lifschitz, V. 1994. Minimal belief and negation as failure. AIJ 70(1–
2):53–72.

Lin, F., and Shoham, Y. 1992. A logic of knowledge and justified as-
sumptions. AIJ 57(2-3):271–289.

Lin, F., and Zhou, Y. 2011. From answer set logic programming to
circumscription via logic of GK. AIJ 175(1):264–277.

Lin, F. 2002. Reducing strong equivalence of logic programs to entail-
ment in classical propositional logic. In KR, 170–176.

Marek, V. W., and Truszczyński, M. 1991. Computing intersection of
autoepistemic expansions. In LPNMR, 37–50.

Martin, Y., and Thielscher, M. 2001. Addressing the Qualification Prob-
lem in FLUX. In KI/ÖGAI, 290–304.

McCarthy, J. 1980. Circumscription – a form of non-monotonic reason-
ing. AIJ 13:295–323.

McCarthy, J. 1986. Applications of circumscription to formalizing com-
monsense knowledge. AIJ 28:89–118.

259

Moore, R. 1985. Semantical considerations on nonmonotonic logic. AIJ
25(1):75–94.

Nicolas, P.; Saubion, F.; and Stéphan, I. 2000. Gadel: a genetic algo-
rithm to compute default logic extensions. In ECAI, 484–490.

Niemelä, I. 1995. A decision method for nonmonotonic reasoning based
on autoepistemic reasoning. J. Autom. Reasoning 14(1):3–42.

Pagnucco, M.; Rajaratnam, D.; Strass, H.; and Thielscher, M. 2013.
Implementing Belief Change in the Situation Calculus and an Appli-
cation. In LPNMR, volume 8148, 439–451.

Reiter, R. 1980. A logic for default reasoning. AIJ 13(1-2):81–132.

Reiter, R. 1987. A theory of diagnosis from first principles. AIJ
32(1):57–95.

Risch, V., and Schwind, C. 1994. Tableaux-based characterization and
theorem proving for default logic. J. Autom. Reasoning 13(2):223–
242.

Rosati, R. 1999. Reasoning about minimal belief and negation as failure.
JAIR 11:277–300.

Schaub, T., and Nicolas, P. 1997. An implementation platform for query-
answering in default logics: The XRay system, its implementation
and evaluation. In LPNMR. 441–452.

Schwarz, G., and Truszczynski, M. 1994. Minimal knowledge problem:
A new approach. AIJ 67(1):113–141.

Strass, H. 2012. The draculasp system: Default reasoning about actions
and change using logic and answer set programming. In NMR.

Thielscher, M. 1996. Causality and the Qualification Problem. In KR,
51–62.

Truszczyński, M. 2007. The modal logic S4F, the default logic, and the
logic here-and-there. In AAAI, 508–514.

Turner, H. 1999. Logic of universal causation. AIJ 113(1):87–123.

Appendix
Proof of Proposition 1:
⇒: Let M be a model of T , I1 ⊆ Lit a model of K(M),

and I2 ⊆ Lit a model of A(M). Clearly, for each φ ∈
AtomK(T), if φ ∈ K(M) then I1 |= φ; if φ /∈ K(M) then
there exists a model I ′ of K(M) such that I ′ |= ¬φ. Same
results are established for each φ ∈ AtomA(T).

Then, we can create an interpretation I∗ such that

I∗ = {lk | l ∈ I1} ∪ {la | l ∈ I2}
∪ {kφ | φ ∈ AtomK(T) ∩K(M)}
∪ {aφ | φ ∈ AtomA(T) ∩A(M)}

∪ {¬kφ | φ ∈ AtomK(T) and φ /∈ K(M)}
∪ {¬aφ | φ ∈ AtomA(T) and φ /∈ A(M)}

∪
⋃

ψ∈AtomK(T)
ψ∈K(M)

{lkψ | l ∈ I1} ∪
⋃

ψ∈AtomA(T)
ψ∈A(M)

{laψ | l ∈ I2}

∪
⋃

ψ∈AtomK(T)
ψ/∈K(M)

{
lkψ | l ∈ I ′, I ′ is a model of K(M) ∪ {¬ψ}

}
∪

⋃
ψ∈AtomA(T)
ψ/∈A(M)

{laψ | l ∈ I ′, I ′ is a model of A(M) ∪ {¬ψ}} .

It is easy to verify that I∗ is a model of ΦT and

• K(M)∩AtomK(T) = {φ | φ ∈ AtomK(T), I∗ |= kφ};
• A(M)∩AtomA(T) = {φ | φ ∈ AtomA(T), I∗ |= aφ}.
⇐: Let I∗ be a model of ΦT . We can create a Kripke

interpretation M such that

• K(M) = Th ({φ | φ ∈ AtomK(T) and I∗ |= kφ});

• A(M) = Th ({φ | φ ∈ AtomA(T) and I∗ |= aφ}).

Note that, {l ∈ Lit | I∗ |= lk} is a model of K(M) and
{l ∈ Lit | I∗ |= la} is a model of A(M), then both K(M)
and A(M) are consistent.

For each φ ∈ AtomK(T), if I∗ |= kφ then
φ ∈ K(M); if I∗ |= ¬kφ then there exists a model
I ′ = {l ∈ Lit | I∗ |= lkφ} such that I ′ is a model of K(M)
and I ′ |= ¬φ, thus φ /∈ K(M). So I∗ |= kφ iff φ ∈ K(M).
The same result is established for each φ ∈ AtomA(T).
Note that, I∗ |= trp(T) then M is a model of T .

Proof of Proposition 2:
⇒: LetM be a GK model of T . From the proof of Propo-

sition 1, we can create a model I∗ of ΦT . Now we want to
prove that I∗ satisfies all conditions in the proposition.

From Theorem 3.5 in [Lin and Shoham, 1992], K(M) =
Th({φ | φ ∈ AtomK(T) ∩ K(M)}), then K(M) =
A(M) = Th({φ | φ ∈ AtomK(T) and I∗ |= kφ}).

Assume that there exists another model I∗′ of ΦT with

I∗′ ∩ {aφ | φ ∈ AtomA(T)} = I∗ ∩ {aφ | φ ∈ AtomA(T)}
I∗′ ∩ {kφ | φ ∈ AtomK(T)} (I∗ ∩ {kφ | φ ∈ AtomK(T)}

Then, from Proposition 1, there exists a Kripke inter-
pretation M ′ such that K(M ′) = Th({φ | φ ∈
AtomK(T) and I∗′ |= kφ}), A(M ′) = A(M), and M ′ is a
model of T . Note that, for each φ ∈ AtomK(T), I∗′ |= ¬kφ
implies K(M ′) 6|= φ, then K(M ′) (K(M). From the def-
inition of GK models, there does not exist such a model M ′,
which conflicts to the assumption, then there does not exist
such a model I∗′.

From the construction of I∗, for each ψ ∈ AtomA(T),
I∗ |= aψ iff ψ ∈ A(M). Note that, K(M) = A(M) =
Th({φ | φ ∈ AtomK(T) and I∗ |= kφ}), then I∗ |= aψ iff
ψ ∈ Th({φ | φ ∈ AtomK(T) and I∗ |= kφ}).

So I∗ is a model of ΦT which satisfies all conditions in
the proposition.
⇐: Let I∗ be a model of ΦT which satisfies correspond-

ing conditions in the proposition. We can create a Kripke
interpretation M such that K(M) = A(M) = Th({φ | φ ∈
AtomK(T) and I∗ |= kφ}).

From the third condition in the proposition, I∗ |= aφ
iff φ ∈ K(M) for each φ ∈ AtomA(T). Then A(M) ∩
AtomA(T) = {φ | φ ∈ AtomA(T) and I∗ |= aφ}. From
the proof of Proposition 1, M is a model of T and I∗ |= kφ
(resp. I∗ |= aφ) iff φ ∈ K(M) for each φ ∈ AtomK(T)
(resp. φ ∈ AtomA(T)). Now we want to prove that M is a
GK model of T .

Assume that there exists another model M ′ of T such
that A(M ′) = A(M) and K(M ′) (K(M). Note that
K(M) = Th({φ | φ ∈ AtomK(T) and I∗ |= kφ}), then
K(M ′) ∩AtomK(T) (K(M) ∩AtomK(T).

260

Let I = I∗ ∩ {lk | l ∈ Lit}, clearly, I is a model
of K(M), A(M), and K(M ′). We can construct another
model I∗′ of ΦT as

I∗′ = {lk | l ∈ I} ∪ {la | l ∈ I}
∪{kφ | φ ∈ AtomK(T) ∩K(M ′)}
∪{aφ | φ ∈ AtomA(T) ∩A(M)}
∪{¬kφ | φ ∈ AtomK(T) and φ /∈ K(M ′)}
∪{¬aφ | φ ∈ AtomA(T) and φ /∈ A(M)}

∪
⋃

ψ∈AtomK(T)
ψ∈K(M′)

{lkψ | l ∈ I}

∪
⋃

ψ∈AtomA(T)
ψ∈A(M)

{laψ | l ∈ I}

∪
⋃

ψ∈AtomK(T)
ψ/∈K(M′)

{lkψ | l ∈ I ′, I ′ is a model of
K(M ′) ∪ {¬ψ}}

∪
⋃

ψ∈AtomA(T)
ψ/∈A(M)

{laψ | l ∈ I ′, I ′ is a model of
A(M) ∪ {¬ψ}}.

From the proof of Proposition 1, I∗′ is a model of ΦT , and

I∗′∩{aφ|φ∈AtomA(T)} = I∗∩{aφ|φ∈AtomA(T)}
I∗′∩{kφ|φ∈AtomK(T)} (I∗∩{kφ|φ∈AtomK(T)}.

This conflicts to the second condition in the proposition,
then the assumption is not valid. So there does not exist
another model M ′ of T such that A(M ′) = A(M) and
K(M ′) (K(M), thus M is a GK model of T .

Proof of Theorem 1:
⇒: Let M be a GK model of T . From Proposition 3,

there exists a model I∗ of ΨT such that K(M) = A(M) =
Th({φ | φ ∈ AtomK(T) and I∗ |= kφ}). We can create a
set S of literals as S = I∗ ∪ {u, v} ∪
{p∗ | for each new atom p∗ occurring in tr c(T ∗)} ∪
{cφ | φ ∈ AtomK(T)} ∪ {p̂ | p ∈ Atom}.

Clearly, S satisfies each rule in tr lp(T). Now we want to
prove that S is an answer set of the program.

Assume that S is not an answer set of tr lp(T), then there
exists another set S′ (S such that S′ satisfies each rule
in the reduct tr lp(T)S . Note that, I∗ ⊆ S′, u implies
{p∗ | for each new atom p∗ occurring in tr c(T ∗)} ∪ {cφ |
φ ∈ AtomK(T)} and v implies {p̂ | p ∈ Atom}. Then
there are only two possible cases: u /∈ S′ or v /∈ S′.

Case 1: u /∈ S′, then there exists a set

T = S′ ∩
(
{p∗ | p∗ is a new atom occurring in tr c(T ∗)}

∪ {aφ | φ ∈ AtomA(T)}
)

such that T satisfies tr c(T ∗). For each φ ∈ AtomK(T),

• by the rule u← cφ, not kφ, I∗ |= ¬kφ implies cφ /∈ S′;
• by the rule u← k∗φ, not kφ, I∗ |= ¬kφ implies k∗φ /∈ S′;
• by rules u ← cφ, k

∗
φ, not¬kφ and u; cφ; k∗φ ← not¬kφ,

I∗ |= kφ implies either cφ or k∗φ is in S′ but not both;

• by the rule u; cφ1 ; · · · ; cφm ← >, there exists cψ ∈ S′ for
some ψ ∈ AtomK(T).

So there exists ψ ∈ AtomK(T) such that kψ ∈ S′, cψ ∈ S′
and k∗ψ /∈ S′. Then we could create an interpretation I∗′ as

I∗′ = {p | p ∈ Atom and p∗ ∈ S′}
∪{¬p | p ∈ Atom and p∗ /∈ S′}
∪{kφ | φ ∈ AtomK(T) and k∗φ ∈ S′}
∪{¬kφ | φ ∈ AtomK(T) and k∗φ /∈ S′}
∪{aφ | φ ∈ AtomA(T) and aφ ∈ S′}
∪{¬aφ | φ ∈ AtomA(T) and aφ /∈ S′}

∪
⋃

ψ∈AtomK(T)

{pkψ | pkψ∗ ∈ S′}

∪
⋃

ψ∈AtomK(T)

{¬pkψ | pkψ∗ /∈ S′}

∪
⋃

ψ∈AtomA(T)

{paψ | paψ∗ ∈ S′}

∪
⋃

ψ∈AtomA(T)

{¬paψ | paψ∗ /∈ S′}.

Clearly, I∗′ is a model of ΨT . From the above results,

• I∗′ ∩ {aφ | φ ∈ AtomA(T)} = I∗ ∩ {aφ | φ ∈
AtomA(T)}, and

• I∗′ ∩ {kφ | φ ∈ AtomK(T)} (I∗ ∩ {kφ | φ ∈
AtomK(T)}.

From Proposition 3, such I∗′ does not exist. This conflicts
to the assumption, then Case 1 is impossible.

Case 2: v /∈ S′, then there exists a set

U = S′ ∩
(
{â | a ∈ Atom} ∪ {kφ | φ ∈ AtomK(T)}

∪ {aφ | φ ∈ AtomA(T)}
)

such that U satisfies each rule in
tr c(

∧
φ∈AtomK(T)(kφ ⊃ φ̂) ∧ ¬

∧
ψ∈AtomA(T)(aψ ⊃ ψ̂)).

Then there exists ψ ∈ AtomA(T) such that I∗ |= aψ
and there exists an interpretation I ⊆ Lit such that I |=∧
φ∈AtomK(T),I∗|=kφ φ ∧ ¬ψ, thus ψ /∈ Th({φ | φ ∈

AtomK(T) and I∗ |= kφ}). From Proposition 3, such ψ
does not exist. This conflicts to the assumption, then Case
2 is impossible. So both cases are impossible, then S′ does
not exist and S is an answer set of tr lp(T).
⇐: Let S be an answer set of tr lp(T). We can create

an interpretation I∗ as the intersection of S with the set of
atoms occurring in ΨT . Clearly, I∗ is a model of ΨT .

Similar to the above proof: If there exists another model
I∗′ of ΨT such that

I∗′ ∩ {aφ | φ ∈ AtomA(T)} = I∗ ∩ {aφ | φ ∈ AtomA(T)}
I∗′ ∩ {kφ | φ ∈ AtomK(T)} (I∗ ∩ {kφ | φ ∈ AtomK(T)}

then there exists another set S′ such that S′ satisfies each
rule in the reduct tr lp(T)S and u /∈ S′, thus S′ (S. This
conflicts to the precondition that S is an answer set, then
such a model I∗′ does not exist.

261

If there exists ψ ∈ AtomA(T) such that I∗ |= aψ and
ψ /∈ Th({φ | φ ∈ AtomK(T) and I∗ |= kφ}), then there
exists another set S′ such that S′ satisfies each rule in the
reduct tr lp(T)S and v /∈ S′, thus S′ (S. This conflicts to
the precondition that S is an answer set, then such ψ does
not exist.

From Proposition 3, a Kripke interpretation M such that
K(M) = A(M) = Th({φ | φ ∈ AtomK(T) and kφ ∈ S})
is a GK models of T .

262

Compact Argumentation Frameworks∗

Ringo Baumann and Hannes Strass
Leipzig University, Germany

Wolfgang Dvořák
University of Vienna, Austria

Thomas Linsbichler and Stefan Woltran
Vienna University of Technology, Austria

Abstract

Abstract argumentation frameworks (AFs) are one of the
most studied formalisms in AI. In this work, we introduce
a certain subclass of AFs which we call compact. Given an
extension-based semantics, the corresponding compact AFs
are characterized by the feature that each argument of the AF
occurs in at least one extension. This not only guarantees a
certain notion of fairness; compact AFs are thus also minimal
in the sense that no argument can be removed without chang-
ing the outcome. We address the following questions in the
paper: (1) How are the classes of compact AFs related for
different semantics? (2) Under which circumstances can AFs
be transformed into equivalent compact ones? (3) Finally,
we show that compact AFs are indeed a non-trivial subclass,
since the verification problem remains coNP-hard for certain
semantics.

1 Introduction
In recent years, argumentation has become a major con-

cept in AI research (Bench-Capon & Dunne 2007; Rah-
wan & Simari 2009). In particular, Dung’s well-studied
abstract argumentation frameworks (AFs) (Dung 1995) are
a simple, yet powerful formalism for modeling and decid-
ing argumentation problems. Over the years, various se-
mantics have been proposed, which may yield different re-
sults (so called extensions) when evaluating an AF (Dung
1995; Verheij 1996; Caminada, Carnielli, & Dunne 2012;
Baroni, Caminada, & Giacomin 2011). Also, some sub-
classes of AFs such as acyclic, symmetric, odd-cycle-free
or bipartite AFs, have been considered, where for some of
these classes different semantics collapse (Coste-Marquis,
Devred, & Marquis 2005; Dunne 2007).

In this work we introduce a further class, which to the
best of our knowledge has not received attention in the liter-
ature, albeit the idea is simple. We will call an AF compact
(with respect to a semantics σ), if each of its arguments ap-
pears in at least one extension under σ. Thus, compact AFs
yield a “semantic” subclass since its definition is based on
the notion of extensions. Another example of such a seman-
tic subclass are coherent AFs (Dunne & Bench-Capon 2002);
there are further examples in (Baroni & Giacomin 2008;
Dvořák et al. 2014).

∗This research has been supported by DFG (project BR 1817/7-
1) and FWF (projects I1102 and P25518).

Importance of compact AFs mainly stems from the fol-
lowing two aspects. First, compact AFs possess a cer-
tain fairness behavior in the sense that each argument has
the chance to be accepted. This might be a desired feature
in some of the application areas such as decision support
(Amgoud, Dimopoulos, & Moraitis 2008), where AFs are
employed for a comparative evaluation of different options.
Given that each argument appears in some extension ensures
that the model is well-formed in the sense that it does not
contain impossible options. The second and more concrete
aspect is the issue of normal-forms of AFs. Indeed, compact
AFs are attractive for such a normal-form, since none of the
arguments can be removed without changing the extensions.

Following this idea we are interested in the question
whether an arbitrary AF can be transformed into a compact
AF without changing the outcome under the considered se-
mantics. It is rather easy to see that under the naive seman-
tics, which is defined as maximal conflict-free sets, any AF
can be transformed into an equivalent compact AF. How-
ever, as has already been observed by Dunne et al. (2013),
this is not true for other semantics. As an example consider
the following AF F1, where nodes represent arguments and
directed edges represent attacks.

x
aa′

b b′

c c′

The stable extensions (conflict-free sets attacking all other
arguments) of F1 are {a, b, c}, {a, b′, c′}, {a′, b, c′},
{a′, b′, c}, {a, b, c′}, {a′, b, c}, and {a, b′, c}. It was shown
in (Dunne et al. 2013) that there is no compact AF (in this
case an F ′1 not using argument x) which yields the same sta-
ble extensions as F1. By the necessity of conflict-freeness
any such compact AF would only allow conflicts between ar-
guments a and a′, b and b′, and c and c′, respectively. More-
over, there must be attacks in both directions for each of
these conflicts in order to ensure stability. Hence any com-
pact AF having the same stable extensions as F1 necessarily
yields {a′, b′, c′} in addition. As we will see, all semantics
under consideration share certain criteria which guarantee
impossibility of a translation to a compact AF.

Like other subclasses, compact AFs decrease complexity
of certain decision problems. This is obvious by the defini-

263

tion for credulous acceptance (does an argument occur in at
least one extension). For skeptical acceptance (does an ar-
gument a occur in all extensions) in compact AFs this prob-
lem reduces to checking whether a is isolated. If yes, it is
skeptically accepted; if no, a is connected to at least one fur-
ther argument which has to be credulously accepted by the
definition of compact AFs. But then, it is the case for any
semantics which is based on conflict-free sets that a can-
not be skeptically accepted, since it will not appear together
with b in an extension. However, as we will see, the prob-
lem of verification (does a given set of arguments form an
extension) remains coNP-hard for certain semantics, hence
enumerating all extensions of an AF remains non-trivial.

An exact characterization of the collection of all sets of
extensions which can be achieved by a compact AF under a
given semantics σ seems rather challenging. We illustrate
this on the example of stable semantics. Interestingly, we
can provide an exact characterization under the condition
that a certain conjecture holds: Given an AF F and two argu-
ments which do not appear jointly in an extension of F , one
can always add an attack between these two arguments (and
potentially adapt other attacks in the AF) without changing
the stable extensions. This conjecture is important for our
work, but also an interesting question in and of itself.

To summarize, the main contributions of our work are:

• We define the classes of compact AFs for some of the most
prominent semantics (namely naive, stable, stage, semi-
stable and preferred) and provide a full picture of the re-
lations between these classes. Then we show that the ver-
ification problem is still intractable for stage, semi-stable
and preferred semantics.

• Moreover we use and extend recent results on maximal
numbers of extensions (Baumann & Strass 2014) to give
some impossibility-results for compact realizability. That
is, we provide conditions under which for an AF with a
certain number of extensions no translation to an equiva-
lent (in terms of extensions) compact AF exists.

• Finally, we study signatures (Dunne et al. 2014) for com-
pact AFs exemplified on the stable semantics. An exact
characterization relies on the open explicit-conflict con-
jecture mentioned above. However, we give some suffi-
cient conditions for an extension-set to be expressed as
a stable-compact AF. For example, it holds that any AF
with at most three stable extensions possesses an equiva-
lent compact AF.

2 Preliminaries
In what follows, we recall the necessary background on

abstract argumentation. For an excellent overview, we refer
to (Baroni, Caminada, & Giacomin 2011).

Throughout the paper we assume a countably infinite do-
main A of arguments. An argumentation framework (AF) is
a pair F = (A,R) where A ⊆ A is a non-empty, finite set
of arguments and R ⊆ A × A is the attack relation. The
collection of all AFs is given as AFA. For an AF F = (B,S)
we use AF and RF to refer to B and S, respectively. We
write a 7→F b for (a, b) ∈ RF and S 7→F a (resp. a 7→F S)

if ∃s ∈ S such that s 7→F a (resp. a 7→F s). For S ⊆ A, the
range of S (wrt.F), denoted S+

F , is the set S∪{b | S 7→F b}.
Given F = (A,R), an argument a ∈ A is defended (in

F) by S ⊆ A if for each b ∈ A, such that b 7→F a, also
S 7→F b. A set T of arguments is defended (in F) by S
if each a ∈ T is defended by S (in F). A set S ⊆ A is
conflict-free (in F), if there are no arguments a, b ∈ S, such
that (a, b) ∈ R. cf(F) denotes the set of all conflict-free sets
in F . S ∈ cf(F) is called admissible (in F) if S defends
itself. adm(F) denotes the set of admissible sets in F .

The semantics we study in this work are the naive, stable,
preferred, stage, and semi-stable extensions. Given F =
(A,R) they are defined as subsets of cf(F) as follows:
• S ∈ naive(F), if there is no T ∈ cf(F) with T ⊃ S
• S ∈ stb(F), if S 7→F a for all a ∈ A \ S
• S ∈ pref(F), if S ∈ adm(F) and @T ∈ adm(F) s.t. T⊃S
• S ∈ stage(F), if @T ∈ cf(F) with T+

F ⊃ S
+
F

• S ∈ sem(F), if S ∈ adm(F) and @T ∈ adm(F) s.t.
T+
F ⊃ S

+
F

We will make frequent use of the following concepts.
Definition 1. Given S ⊆ 2A, ArgS denotes

⋃
S∈S S and

PairsS denotes {(a, b) | ∃S ∈ S : {a, b} ⊆ S}. S is called
an extension-set (over A) if ArgS is finite.

As is easily observed, for all considered semantics σ,
σ(F) is an extension-set for any AF F .

3 Compact Argumentation Frameworks
Definition 2. Given a semantics σ the set of compact argu-
mentation frameworks under σ is defined as CAFσ = {F ∈
AFA | Argσ(F) = AF }. We call an AF F ∈ CAFσ just
σ-compact.

Of course the contents of CAFσ differ with respect to the
semantics σ. Concerning relations between the classes of
compact AFs note that if for two semantics σ and θ it holds
that σ(F) ⊆ θ(F) for any AF F , then also CAFσ ⊆ CAFθ.
Our first important result provides a full picture of the rela-
tions between classes of compact AFs under the semantics
we consider.
Proposition 1. 1. CAFsem ⊂ CAFpref;

2. CAFstb ⊂ CAFσ ⊂ CAFnaive for σ ∈ {pref, sem, stage};
3. CAFθ 6⊆ CAFstage and CAFstage 6⊆ CAFθ for θ ∈
{pref, sem}.

Proof. (1) CAFsem ⊆ CAFpref is by the fact that, in any
AF F , sem(F) ⊆ pref(F). Properness follows from the
AF F ′ in Figure 1 (including the dotted part)1. Here
pref(F ′) = {{z}, {x1, a1}, {x2, a2}, {x3, a3}, {y1, b1},
{y2, b2}, {y3, b3}}, but sem(F ′) = (pref(F ′) \ {{z}}),
hence F ′ ∈ CAFpref, but F ′ /∈ CAFsem.
(2) Let σ ∈ {pref, sem, stage}. The ⊆-relations follow from
the fact that, in any AF F , stb(F) ⊆ σ(F) and each σ-
extension is, by being conflict-free, part of some naive ex-
tension. The AF ({a, b}, {(a, b)}), which is compact under

1 The construct in the lower part of the figure represents sym-
metric attacks between each pair of arguments.

264

a3 a1
a2 b3 b1

b2

x1 x2 x3 y1 y2 y3

z

Figure 1: AFs illustrating the relations between various se-
mantics.

naive but not under σ, and AF F from Figure 1 (now with-
out the dotted part), which is compact under σ but not under
stable, show that the relations are proper.
(3) The fact thatF ′ from Figure 1 (again including the dotted
part) is also not stage-compact shows CAFpref 6⊆ CAFstage.
Likewise, the AF G depicted below is sem-compact, but not
stage-compact.

c a b

s3 s1 s2 t3 t1 t2 u3 u1 u2

x1 x2 x3 x4 x5 x6 x7

The reason for this is that argument a does not occur
in any stage extension. Although {a, u1, x5}, {a, u2, x6},
{a, u3, x7} ∈ sem(G), the range of any conflict-free set con-
taining a is a proper subset of the range of every stable ex-
tension of G. stage(G) = {{c, ui, x4} | i ∈ {1, 2, 3}} ∪
{{b, ui, sj , xi+4} | i, j ∈ {1, 2, 3}} ∪ {{ti, uj , si, xi} |
i, j ∈ {1, 2, 3}}. Hence CAFsem 6⊆ CAFstage.
Finally, the AF ({a, b, c}, {(a, b), (b, c), (c, a)}) shows
CAFstage 6⊆ CAFθ for θ ∈ {pref, sem}.

Considering compact AFs obviously has effects on the
computational complexity of reasoning. While credulous
and skeptical acceptance are now easy (as discussed in the
introduction) the next theorem shows that verifying exten-
sions is still as hard as in general AFs.

Theorem 2. For σ ∈ {pref, sem, stage}, AF F = (A,R) ∈
CAFσ and E ⊆ A, it is coNP-complete to decide whether
E ∈ σ(F).

Proof. For all three semantics the problem is known
to be in coNP (Caminada, Carnielli, & Dunne 2012;
Dimopoulos & Torres 1996; Dvořák & Woltran 2011). For
hardness we only give a (prototypical) proof for pref. We use
a standard reduction from CNF formulas ϕ(X) =

∧
c∈C c

with each clause c ∈ C a disjunction of literals fromX to an
AF Fϕ with arguments Aϕ = {ϕ, ϕ̄1, ϕ̄2, ϕ̄3} ∪C ∪X ∪ X̄
and attacks (i) {(c, ϕ) | c∈C}, (ii) {(x, x̄), (x̄, x) | x∈X},
(iii) {(x, c) | x occurs in c} ∪ {(x̄, c) | ¬x occurs in c},
(iv) {(ϕ, ϕ̄1), (ϕ̄1, ϕ̄2), (ϕ̄2, ϕ̄3), (ϕ̄3, ϕ̄1)}, and (v)
{(ϕ̄1, x), (ϕ̄1, x̄) | x ∈ X}. It holds that ϕ is satisfiable iff
there is an S 6= ∅ in σ1(Fϕ) (Dimopoulos & Torres 1996).
We extend Fϕ with four new arguments {t1, t2, t3, t4} and
the following attacks: (a) {(ti, tj), (tj , ti) | 1 ≤ i < j ≤ 4},

(b) {(t1, c) | c ∈ C}, (c) {(t2, c), (t2, ϕ̄2) | c ∈ C} and (d)
{(t3, ϕ̄3)}. This extended AF is in CAFpref and moreover
{t4} is a preferred extension thereof iff pref(Fϕ) = {∅} iff
ϕ is unsatisfiable.

4 Limits of Compact AFs
Extension-sets obtained from compact AFs satisfy certain

structural properties. Knowing these properties can help us
decide whether – given an extension-set S – there is a com-
pact AF F such that S is exactly the set of extensions of F
for a semantics σ. This is also known as realizability: A set
S ⊆ 2A is called compactly realizable under semantics σ iff
there is a compact AF F with σ(F) = S.

Among the most basic properties that are necessary for
compact realizability, we find numerical aspects like possi-
ble numbers of σ-extensions.
Example 1. Consider the following AF F2:

a1 a2

a3

c1 c2

c3

b1 b2

z

Let us determine the stable extensions of F2. Clearly, taking
one ai, one bi and one ci yields a conflict-free set that is also
stable as long as it attacks z. Thus from the 3 · 2 · 3 = 18
combinations, only one (the set {a1, b1, c2}) is not stable,
whence F2 has 18 − 1 = 17 stable extensions. We note
that this AF is not compact since z occurs in none of the
extensions. Is there an equivalent stable-compact AF? The
results of this section will provide us with a negative answer.

In (Baumann & Strass 2014) it was shown that there
is a correspondence between the maximal number of sta-
ble extensions in argumentation frameworks and the max-
imal number of maximal independent sets in undirected
graphs (Moon & Moser 1965). Recently, the result was
generalized to further semantics (Dunne et al. 2014) and
is stated below.2 For any natural number n we define:

σmax(n) = max {|σ(F)| | F ∈ AFn}

σmax(n) returns the maximal number of σ-extensions among
all AFs with n arguments. Surprisingly, there is a closed
expression for σmax.

Theorem 3. The function σmax(n) : N→ N is given by

σmax(n) =


1, if n = 0 or n = 1,
3s, if n ≥ 2 and n = 3s,
4 · 3s−1, if n ≥ 2 and n = 3s+ 1,
2 · 3s, if n ≥ 2 and n = 3s+ 2.

What about the maximal number of σ-extensions on con-
nected graphs? Does this number coincide with σmax(n)?

2In this section, unless stated otherwise we use σ as a place-
holder for stable, semi-stable, preferred, stage and naive semantics.

265

The next theorem provides a negative answer to this ques-
tion and thus, gives space for impossibility results as we will
see. For a natural number n define

σcon
max(n) = max {|σ(F)| | F ∈ AFn, F connected}

σcon
max(n) returns the maximal number of σ-extensions among

all connected AFs with n arguments. Again, a closed ex-
pression exists.

Theorem 4. The function σcon
max(n) : N→ N is given by

σcon
max(n) =


n, if n ≤ 5,
2 · 3s−1 + 2s−1, if n ≥ 6 and n = 3s,
3s + 2s−1, if n ≥ 6 and n = 3s+ 1,
4 · 3s−1 + 3 · 2s−2, if n ≥ 6 and n = 3s+ 2.

Proof. First some notations: for an AF
F = (A,R), denote its irreflexive version by
irr(F) = (A,R \ {(a, a) | a ∈ A}); denote its sym-
metric version by sym(F) = (A,R ∪ {(b, a) | (a, b) ∈ R}.
Now for the proof. (≤) Assume given a connected AF
F . Obviously, naive(F) ⊆ naive(sym(irr(F))). Thus,
|naive(F)| ≤ |naive(sym(irr(F))|. Note that for any
symmetric and irreflexive F , naive(F) = MIS(und(F)).
Consequently, |naive(F)| ≤ |MIS(und(sym(irr(F))))|.
Fortunately, due to Theorem 2 in (Griggs, Grinstead, &
Guichard 1988) the maximal number of maximal inde-
pendent sets in connected n-graphs are exactly given by
the claimed value range of σcon

max(n). (≥) Stable-realizing
AFs can be derived by the extremal graphs w.r.t. MIS in
connected graphs (consider Fig. 1 in (Griggs, Grinstead, &
Guichard 1988)). Replacing undirected edges by symmetric
directed attacks accounts for this.
In consideration of stb ⊆ stage ⊆ naive we obtain: σcon

max(n)
provides a tight upper bound for σ ∈ {stb, stage, naive}. Fi-
nally, using stb ⊆ sem ⊆ pref, pref(F) ⊆ pref(sym(irr(F)))
and pref(sym(irr(F))) = stb(sym(irr(F))) (compare Corol-
lary 1 in (Baroni & Giacomin 2008)) we obtain that σcon

max(n)
even serves for σ ∈ {sem, pref}.

A further interesting question concerning arbitrary AFs is
whether all natural numbers less than σmax(n) are compactly
realizable.3 The following theorem shows that there is a se-
rious gap between the maximal and second largest number.
For any positive natural n define

σ2
max(n) = max ({|σ(F)| | F ∈ AFn} \ {σmax(n)})

σ2
max(n) returns the second largest number of σ-extensions

among all AFs with n arguments. Graph theory provides us
with an expression.

Theorem 5. Function σ2
max(n) : N \ {0} → N is given by

σ2
max(n) =


σmax(n)− 1, if 1 ≤ n ≤ 7,
σmax(n) · 11

12 , if n ≥ 8 and n = 3s+ 1,
σmax(n) · 8

9 , otherwise.

3We sometimes speak about realizing a natural number n and
mean realizing an extension-set with n extensions.

Proof. (≥) σ-realizing AFs can be derived by the extremal
graphs w.r.t. the second largest number of MIS (consider
Theorem 2.4 in (Jin & Li 2008)). Replacing undirected
edges by symmetric directed attacks accounts for this. This
means, the second largest number of σ-extensions is at least
as large as the claimed value range.
(≤) If n ≤ 7, there is nothing to prove. Given F ∈ AFn s.t.
n ≥ 8. Suppose, towards a contradiction, that σ2

max(n) <
|σ(F)| < σmax(n). It is easy to see that for any symmetric
and irreflexive F , σ(F) = MIS(und(F)). Furthermore, due
to Theorem 2.4 in (Jin & Li 2008) the second largest num-
bers of maximal independent sets in n-graphs are exactly
given by the claimed value range of σ2

max(n). Consequently,
F cannot be symmetric and self-loop-free simultaneously.
Hence, |σ(F)| < |σ(sym(irr(F)))| = σmax(n). Note that
up to isomorphisms the extremal graphs are uniquely deter-
mined (cf. Theorem 1 in (Griggs, Grinstead, & Guichard
1988)). Depending on the remainder of n on division by
3 we have K3’s for n ≡ 0, either one K4 or two K2’s
and the rest are K3’s in case of n ≡ 1 and one K2 plus
K3’s for n ≡ 2. Consequently, depending on the re-
mainder we may thus estimate |σ(F)| ≤ k · σmax(n) where
k ∈ { 2

3 ,
3
4 ,

1
2}. Since (≥) is already shown we finally state

l · σmax(n) ≤ σ2
max(n) < |σ(F)| ≤ 3

4 · σmax(n) where
l ∈ { 11

12 ,
8
9}. This is a clear contradiction concluding the

proof.

To showcase the intended usage of these theorems, we
now prove that the AF F2 seen earlier indeed has no equiva-
lent compact AF.
Example 2. Recall that the (non-compact) AF F2 we dis-
cussed previously had the extension-set S with |S| = 17 and
|ArgS| = 8. Is there a stable-compact AF with the same
extensions? Firstly, nothing definitive can be said by Theo-
rem 3 since 17 ≤ 18 = σmax(8). Furthermore, in accordance
with Theorem 4 the set S cannot be compactly σ-realized
by a connected AF since 17 > 15 = σcon

max(8). Finally, us-
ing Theorem 5 we infer that the set S is not compactly σ-
realizable because σ2

max(8) = 16 < 17 < 18 = σmax(8).
The compactness property is instrumental here, since

Theorem 5 has no counterpart in non-compact AFs. More
generally, allowing additional arguments as long as they do
not occur in extensions enables us to realize any number of
stable extensions up to the maximal one.
Proposition 6. Let n be a natural number. For each
k ≤ σmax(n), there is an AF F with |Argstb(F)| = n and
|stb(F)| = k.

Proof. To realize k stable extensions with n arguments, we
start with the construction for the maximal number from
Theorem 3. We then subtract extensions as follows: We
choose σmax(n) − k arbitrary distinct stable extensions of
the AF realizing the maximal number. To exclude them, we
use the construction of Def. 9 in (Dunne et al. 2014).

Now we are prepared to provide possible short cuts when
deciding realizability of a given extension-set by initially
simply counting the extensions. First some formal defini-
tions.

266

Definition 3. Given an AF F = (A,R), the component-
structure K(F) = {K1, . . . ,Kn} of F is the set of sets
of arguments, where each Ki coincides with the arguments
of a weakly connected component of the underlying graph;
K≥2(F) = {K ∈ K(F) | |K| ≥ 2}.
Example 3. The AF F = ({a, b, c}, {(a, b)}) has
component-structure K(F) = {{a, b}, {c}}.

The component-structure K(F) gives information about
the number n of components of F as well as the size |Ki|
of each component. Knowing the components of an AF,
computing the σ-extensions can be reduced to computing
the σ-extensions of each component and building the cross-
product. The AF resulting from restricting F to component
Ki is given by F↓Ki

= (Ki, RF ∩Ki ×Ki).

Lemma 7. Given an AF F with component-structure
K(F) = {K1, . . . ,Kn} it holds that the extensions in σ(F)
and the tuples in σ(F↓K1

)× · · · × σ(F↓Kn
) are in one-to-

one correspondence.

Given an extension-set S we want to decide whether S
is realizable by a compact AF under semantics σ. For an
AF F = (A,R) with σ(F) = S we know that there can-
not be a conflict between any pair of arguments in PairsS,
hence R ⊆ PairsS = (A × A) \ PairsS. In the next section,
we will show that it is highly non-trivial to decide which of
the attacks in PairsS can be and should be used to realize
S. For now, the next proposition implicitly shows that for
argument-pairs (a, b) /∈ PairsS, although there is not neces-
sarily a direct conflict between a and b, they are definitely in
the same component.

Proposition 8. Given an extension-set S, the component-
structure K(F) of any AF F compactly realizing S under
semantics σ (F ∈ CAFσ , σ(F) = S) is given by the equiva-
lence classes of the transitive closure of PairsS,

(
PairsS

)∗
.

Proof. Consider some extension-set S together with an AF
F ∈ CAFσ with σ(F) = S. We have to show that for any
pair of arguments a, b ∈ ArgS it holds that (a, b) ∈

(
PairsS

)∗
iff a and b are connected in the graph underlying F .

If a and b are connected in F , this means that there is
a sequence s1, . . . , sn such that a = s1, b = sn, and
(s1, s2), . . . , (sn−1, sn) /∈ PairsS, hence (a, b) ∈

(
PairsS

)∗
.

If (a, b) ∈
(
PairsS

)∗
then also there is a se-

quence s1, . . . , sn such that a = s1, b = sn,
and (s1, s2), . . . , (sn−1, sn) ∈ PairsS. Consider some
(si, si+1) ∈ PairsS and assume, towards a contradiction,
that si occurs in another component of F than si+1. Re-
call that F ∈ CAFσ , so each of si and si+1 occur in some
extension and σ(F) 6= ∅. Hence, by Lemma 7, there
is some σ-extension E ⊇ {si, si+1} of F , meaning that
(si, si+1) ∈ PairsS, a contradiction. Hence all si and si+1

for 1 ≤ i < n occur in the same component of F , proving
that also a and b do so.

We will denote the component-structure induced by an
extension-set S as K(S). Note that, by Proposition 8, K(S)
is equivalent to K(F) for every F ∈ CAFσ with σ(F) = S.

Given S, the computation of K(S) can be done in polyno-
mial time. With this we can use results from graph theory
together with number-theoretical considerations in order to
get impossibility results for compact realizability.

Recall that for a single connected component with n argu-
ments the maximal number of stable extensions is denoted
by σcon

max(n) and its values are given by Theorem 4. In the
compact setting it further holds for a connected AF F with
at least 2 arguments that σ(F) ≥ 2.
Proposition 9. Given an extension-set S where |S| is odd, it
holds that if ∃K ∈ K(S) : |K| = 2 then S is not compactly
realizable under semantics σ.

Proof. Assume to the contrary that there is an F ∈ CAFσ
with σ(F) = S. We know that K(F) = K(S). By assump-
tion there is aK ∈ K(S) with |K| = 2, whence |σ(K)| = 2.
Thus by Lemma 7 the total number of σ-extensions is even.
Contradiction.

Example 4. Consider the extension-set S = {{a, b, c},
{a, b′, c′}, {a′, b, c′}, {a′, b′, c}, {a, b, c′}, {a′, b, c},
{a, b′, c}} = stb(F1) where F1 is the non-compact AF
from the introduction. There, it took us some effort to
argue that S is not compactly stb-realizable. Proposi-
tion 9 now gives an easier justification: PairsS yields
K(S) = {{a, a′}, {b, b′}, {c, c′}}. Thus S with |S| = 7
cannot be realized.

We denote the set of possible numbers of σ-extensions of
a compact AF with n arguments asP(n); likewise we denote
the set of possible numbers of σ-extensions of a compact
and connected AF with n arguments as Pc(n). Although
we know that p ∈ P(n) implies p ≤ σmax(n), there may
be q ≤ σmax(n) which are not realizable by a compact AF
under σ; likewise for q ∈ Pc(n).

Clearly, any p ≤ n is possible by building an undirected
graph with p arguments where every argument attacks all
other arguments, a Kp, and filling up with k isolated argu-
ments (k distinct copies of K1) such that k + p = n. This
construction obviously breaks down if we want to realize
more extensions than we have arguments, that is, p > n.
In this case, we have to use Lemma 7 and further graph-
theoretic gadgets for addition and even a limited form of
subtraction. Space does not permit us to go into too much
detail, but let us show how for n = 7 any number of exten-
sions up to the maximal number 12 is realizable. For
12 = 3 · 4, Theorem 3 yields the realization, a disjoint
union of a K3 and a K4 (). For the remaining num-
bers, we have that 8 = 2 · 4 · 1 and so we can combine a
K2, a K4 and a K1 (). Likewise, 9 = 3 · 3 · 1
(); 10 = 3 ·3+1 () and finally 11 = 3 ·4−1
(). These small examples already show that P and
Pc are closely intertwined and let us deduce some general
corollaries: Firstly, Pc(n) ⊆ P(n) since connected AFs are
a subclass of AFs. Next,P(n) ⊆ P(n+1) as in the step from

to . We even know that P(n) (P(n + 1)
since σmax(n+ 1) ∈ P(n+ 1) \ P(n). Furthermore, when-
ever p ∈ P(n), then p+ 1 ∈ Pc(n+ 1), as in the step from

to . The construction that goes from 12 to

267

11 above obviously only works if there are two weakly con-
nected components overall, which underlines the importance
of the component structure of the realizing AF. Indeed, mul-
tiplication of extension numbers of single components is our
only chance to achieve overall numbers that are substantially
larger than the number of arguments. This is what we will
turn to next. Having to leave the exact contents of P(n) and
Pc(n) open, we can still state the following result:
Proposition 10. Let S be an extension-set that is com-
pactly realizable under semantics σ where K≥2(S) =
{K1, . . . ,Kn}. Then for each 1 ≤ i ≤ n there is a
pi ∈ Pc(|Ki|) such that |S| =

∏n
i=1 pi.

Proof. First note that components of size 1 can be ignored
since they have no impact on the number of σ-extensions.
Lemma 7 also implies that the number of σ-extensions of an
AF with multiple components is the product of the number
of σ-extensions of each component. Since the factor of any
component Ki must be in Pc(|Ki|) the result follows.

Example 5. Consider the extension-set S′ =
{{a, b, c}, {a, b′, c′}, {a′, b, c′}, {a′, b′, c}}. (In fact
there exists a (non-compact) AF F with stb(F) = S′).
We have the same component-structure K(S′) = K(S)
as in Example 4, but since now |S′| = 4 we cannot use
Proposition 9 to show impossibility of realization in terms
of a compact AF. But with Proposition 10 at hand we
can argue in the following way: Pc(2) = {2} and since
∀K ∈ K(S′) : |K| = 2 it must hold that |S| = 2 · 2 · 2 = 8,
which is obviously not the case.

In particular, we have a straightforward non-realizability
criterion whenever |S| is prime: the AF (if any) must have
at most one weakly connected component of size greater
than two. Theorem 4 gives us the maximal number of σ-
extensions in a single weakly connected component. Thus
whenever the number of desired extensions is larger than
that number and prime, it cannot be realized.
Corollary 11. Let extension-set S with |ArgS| = n be com-
pactly realizable under σ. If |S| is a prime number, then
|S| ≤ σcon

max(n).
Example 6. Let S be an extension-set with
|ArgS| = 9 and |S| = 23. We find that
σcon

max(9) = 2 · 32 + 22 = 22 < 23 = |S| and thus S is
not compactly realizable under semantics σ.

We can also make use of the derived component structure
of an extension-set S. Since the total number of extensions
of an AF is the product of these numbers for its weakly con-
nected components (Lemma 7), each non-trivial component
contributes a non-trivial amount to the total. Hence if there
are more components than the factorization of |S| has primes
in it, then S cannot be realized.
Corollary 12. Let extension-set S be compactly realiz-
able under σ and fz11 · . . . · fzm

m be the integer factoriza-
tion of |S|, where f1, . . . , fm are prime numbers. Then
z1 + . . .+ zm ≥ |K≥2(S)|.
Example 7. Consider an extension-set S containing 21 ex-
tensions and |K(S)| = 3. Since 21 = 31 ∗ 71 and further
1 + 1 < 3, S is not compactly realizable under semantics σ.

5 Capabilities of Compact AFs
The results in the previous section made clear that the re-

striction to compact AFs entails certain limits in terms of
compact realizability. Here we provide some results ap-
proaching an exact characterization of the capabilities of
compact AFs with a focus on stable semantics.

5.1 C-Signatures
The signature of a semantics σ is defined as Σσ =

{σ(F) | F ∈ AFA} and contains all possible sets of ex-
tensions an AF can possess under σ (see (Dunne et al. 2014)
for characterizations of such signatures). We first provide
alternative, yet equivalent, characterizations of the signa-
tures of some the semantics under consideration. Then we
strengthen the concept of signatures to “compact” signatures
(c-signatures), which contain all extension-sets realizable
with compact AFs.

The most central concept when structurally analyzing
extension-sets is captured by the Pairs-relation from Def-
inition 1. Whenever two arguments a and b occur jointly
in some element S of extension-set S (i.e. (a, b) ∈ PairsS)
there cannot be a conflict between those arguments in an AF
having S as solution under any standard semantics. (a, b) ∈
PairsS can be read as “evidence of no conflict” between a
and b in S. Hence, the Pairs-relation gives rise to sets of
arguments that are conflict-free in any AF realizing S.

Definition 4. Given an extension-set S, we define

• Scf = {S ⊆ ArgS | ∀a, b ∈ S : (a, b) ∈ PairsS};
• S+ = max⊆ Scf.

To show that the characterizations of signatures in Propo-
sition 13 below are indeed equivalent to the ones given in
(Dunne et al. 2014) we first recall some definitions from
there.

Definition 5. For an extension-set S ⊆ 2A, the downward-
closure of S is defined as dcl(S) = {S′ ⊆ S | S ∈ S}.
Moreover, S is called

• incomparable, if for all S, S′ ∈ S, S ⊆ S′ implies S=S′,
• tight if for all S ∈ S and a ∈ ArgS it holds that if

(S ∪ {a}) /∈ S then there exists an s ∈ S such that
(a, s) /∈ PairsS.

Proposition 13. Σnaive ={S 6= ∅ | S = S+};
Σstb ={S | S ⊆ S+}; Σstage ={S 6= ∅ | S ⊆ S+}.

Proof. Being aware of Theorem 1 from (Dunne et al. 2014)
we have to show that, given an extension-set S ⊆ 2A the
following hold:

1. S is incomparable and tight iff S ⊆ S+,
2. S is incomparable and dcl(S) is tight iff S = S+.

(1)⇒: Consider an incomparable and tight extension-set S
and assume that S 6⊆ S+. To this end let S ∈ S with S /∈ S+.
Since S ∈ Scf by definition, there must be some S′ ⊃ S
with S′ ∈ S+. S′ /∈ S holds by incomparability of S. But
S′ ∈ S+ means that there is some a ∈ (S′ \ S) such that
∀s ∈ S : (a, s) ∈ PairsS, a contradiction to the assumption
that S is tight.

268

⇐: Let S be an extension-set such that S ⊆ S+. Incompa-
rability is clear. Now assume, towards a contradiction, that
are some S ∈ S and a ∈ ArgS such that (S ∪ {a}) /∈ S and
∀s ∈ S : (a, s) ∈ PairsS. Then there is some S′ ⊇ (S∪{a})
with S′ ∈ S+, a contradiction to S ∈ S+.
(2) ⇒: Consider an incomparable extension-set S where
dcl(S) is tight and assume that S 6= S+. Note that PairsS =
Pairsdcl(S). Since dcl(S) being tight implies that S is tight
(cf. Lemma 2.1 in (Dunne et al. 2014)), S ⊆ S+ follows by
(1). Now assume there is some S ∈ S+ with S /∈ S. Note
that |S| ≥ 3. Now let S′ ⊂ S and a ∈ (S \ S′) such that
S′ ∈ dcl(S) and (S′ ∪ {a}) /∈ dcl(S). Such an S′ exists
since for each pair of arguments a, b ∈ S′, (a, b) ∈ PairsS
holds as S ∈ S+. Since also ∀s ∈ S′ : (a, s) ∈ PairsS, we
get a contradiction to the assumption that dcl(S) is tight.
⇐: Consider an extension-set S with S = S+. Incompara-
bility is straight by definition. Now assume, towards a con-
tradiction, that are some S ∈ dcl(S) and a ∈ ArgS such
that (S ∪ {a}) /∈ dcl(S) and ∀s ∈ S : (a, s) ∈ PairsS. Then
(S∪{a}) ∈ Scf, and moreover there is some S′ ⊇ (S∪{a})
with S′ ∈ S+ and S′ /∈ S, a contradiction to S = S+.

Let us now turn to signatures for compact AFs.
Definition 6. The c-signature Σcσ of a semantics σ is defined
as

Σcσ = {σ(F) | F ∈ CAFσ}.
It is clear that Σcσ ⊆ Σσ holds for any semantics. The

following result is mainly by the fact that the canonical AF

F cf
S = (Acf

S , R
cf
S) = (ArgS, (ArgS × ArgS) \ PairsS)

has S+ as extensions under all semantics under considera-
tion and by extension-sets obtained from non-compact AFs
which definitely cannot be transformed to equivalent com-
pact AFs.

The following technical lemma makes this clearer.
Lemma 14. Given a non-empty extension-set S, it holds that
σ(F cf

S) = S+ where σ ∈ {naive, stb, stage, pref, sem}.

Proof. naive: The set naive(F cf
S) contains the ⊆-maximal

elements of cf(F cf
S) just as S+ does of Scf. Therefore

naive(F cf
S) = S+ follows directly from the obvious fact that

cf(F cf
S) = Scf.

stb, stage, pref, sem: Follow from the fact that for the sym-
metric AF F cf

S , naive(F cf
S) = stb(F cf

S) = stage(F cf
S) =

pref(F cf
S) = sem(F cf

S) (Coste-Marquis, Devred, & Marquis
2005).

Proposition 15. It holds that (1) Σcnaive = Σnaive; and (2)
Σcσ ⊂ Σσ for σ ∈ {stb, stage, sem, pref}.

Proof. Σcnaive = Σnaive follows directly from the facts that
naive(F cf

S) = S+ (cf. Lemma 14) and F cf
S ∈ CAFnaive.

stb, stage: Consider the extension-set S = {{a, b, c},
{a, b, c′}, {a, b′, c}, {a, b′, c′}, {a′, b, c}, {a′, b, c′},
{a′, b′, c}} from the example in the introduction. It is easy
to verify that S ⊆ S+, thus S ∈ Σstb and S ∈ Σstage. The
AF realizing S under stb and stage is F1 from the intro-
duction. We now show that there is no AF F = (ArgS, R)

b a

x1 x2 y1 y2 z1 z2

s3 s1 s2

Figure 2: AF compactly realizing an extension-set S 6⊆ S+

under pref.

such that stb(F) = S or stage(F) = S. First, given
that the sets in S must be conflict-free the only possible
attacks in R are (a, a′), (a′, a), (b, b′), (b′, b), (c, c′),
(c′, c). We next argue that all of them must be in R.
First consider the case of stb. As {a, b, c} ∈ stb(F) it
attacks a′ and the only chance to do so is (a, a′) ∈ R and
similar as {a′, b, c} ∈ stb(F) it attacks a and the only
chance to do so is (a′, a) ∈ R. By symmetry we obtain
{(b, b′), (b′, b), (c, c′), (c′, c)} ⊆ R. Now let us consider the
case of stage. As {a, b, c} ∈ stage(F) ⊆ naive(F) either
(a, a′) ∈ R or (a′, a) ∈ R. Consider (a, a′) 6∈ R then
{a′, b, c}+F ⊃ {a, b, c}

+
F , contradicting that {a, b, c} is a

stage extension. The same holds for pairs (b, b′) and (c, c′);
thus for both cases we obtain R = {(a, a′), (a′, a), (b, b′),
(b′, b), (c, c′), (c′, c)}. However, for the resulting framework
F = (A,R), we have that {a′, b′, c′} ∈ stb(F) = stage(F),
but {a′, b′, c′} 6∈ S. Hence we know that S /∈ Σcstb.

pref, sem: Let σ ∈ {pref, sem} and consider S = {{a, b},
{a, c, e}, {b, d, e}}. The figure below shows an AF (with
additional arguments) realizing S under pref and sem. Hence
S ∈ Σσ holds.

a′

b′

a

b c

d e

f

Now suppose there exists an AF F = (ArgS, R) such that
σ(F) = S. Since {a, c, e}, {b, d, e} ∈ S, it is clear that R
must not contain an edge involving e. But then, e is con-
tained in each E ∈ σ(F). It follows that σ(F) 6= S.

For ordinary signatures it holds that Σnaive ⊂ Σstage =
(Σstb \ {∅}) ⊂ Σsem = Σpref (Dunne et al. 2014). This
picture changes when considering the relationship of c-
signatures.

Proposition 16. Σcpref 6⊆ Σcstb; Σcpref 6⊆ Σcstage; Σcpref 6⊆ Σcsem;
Σcnaive ⊂ Σcσ for σ ∈ {stb, stage, sem}; Σcstb ⊆ Σcsem; Σcstb ⊆
Σcstage.

Proof. Σcpref 6⊆ Σcstb, Σcpref 6⊆ Σcstage: For the extension-
set S = {{a, b}, {a, x1, s1}, {a, y1, s2}, {a, z1, s3},
{b, x2, s1}, {b, y2, s2}, {b, z2, s3}} it does not hold that
S ⊆ S+ (as {a, b, s1}, {a, b, s2}, {a, b, s3} ∈ Scf, hence
{a, b} /∈ S+), but there is a compact AF F realizing S under
the preferred semantics, namely the one depicted in Figure 2.
Hence Σcpref 6⊆ Σcstb and Σcpref 6⊆ Σcstage.

269

Σcpref 6⊆ Σcsem: Let T = (S ∪ {{x1, x2, s1}, {y1, y2, s2},
{z1, z2, s3}}) and assume there is some F = (ArgT, R)
compactly realizing T under the semi-stable semantics.
Consider the extensions S = {a, x1, s1} and T =
{x1, x2, s1}. There must be a conflict between a and x2,
otherwise (S ∪ T) ∈ sem(F). If (a, x2) ∈ R then,
since T must defend itself and (s1, a), (x1, a) ∈ PairsT,
also (x2, a) ∈ R. On the other hand if (x2, a) ∈ R
then, since {a, b} must defend itself and (b, x2) ∈ PairsT,
also (a, x2) ∈ R. Hence, by all symmetric cases we get
{(a, α1), (α1, a), (b, α2), (α2, b) | α ∈ {x, y, z}} ⊆ R.
Now as U = {a, b} ∈ T and U must not be in conflict
with any of s1, s2, and s3, each si must have an attacker
which is not attacked by any a, b, or si. Hence wlog.
{(s1, s2), (s2, s3), (s3, s1)} ⊆ R. Again consider exten-
sion S and observe that s1 must be defended from s3, hence
(x1, s3) ∈ R. We know that S+

F ⊇ (ArgT \ {y1, z1}).
Now we observe that S has to attack both y1 and z1 since
otherwise either S would not defend itself or y1 (resp. z1)
would have to be part of S. But this leads us to a contra-
diction because S+

F = ArgT, but U+
F ⊂ ArgT, meaning that

U cannot be a semi-stable extension of F . Σcpref 6⊆ Σcsem
now follows from the fact that pref(F ′) = T for F ′ =
(AF , RF \ {(α1, α2), (α2, α1) | α ∈ {x, y, z}}) where F is
the AF depicted in Figure 2.

Σcnaive ⊂ Σcσ for σ ∈ {stb, stage, sem}: First of
all note that any extensions-set compactly realizable un-
der naive is compactly realizable under σ (by making the
AF symmetric). Now consider the extension-set S =
{{a1, b2, b3}, {a2, b1, b3}, {a3, b1, b2}}. S 6= S+ since
{b1, b2, b3} ∈ S+, hence S /∈ Σcnaive. Σcnaive ⊂ Σcσ fol-
lows from the fact that the AF below compactly realizes S
under σ.

a1 a2 a3

b1 b2 b3

Σcstb ⊆ Σcsem, Σcstb ⊆ Σcstage: Follow from the fact that
stage(F) = sem(F) = stb(F) for any F ∈ CAFstb (Cami-
nada, Carnielli, & Dunne 2012).

5.2 The Explicit-Conflict Conjecture
So far we only have exactly characterized c-signatures for

the naive semantics (Proposition 15). Deciding membership
of an extension-set in the c-signature of the other seman-
tics is more involved. In what follows we focus on stable
semantics in order to illustrate difficulties and subtleties in
this endeavor.

Although there are, as Proposition 1 showed, more com-
pact AFs for naive than for stb, one can express a greater
diversity of outcomes with the stable semantics, i.e. S = S+

does not necessarily hold. Consider some AF F with S =
stb(F). By Proposition 13 we know that S ⊆ S+ must hold.
Now we want to compactly realize extension-set S under stb.
If S = S+, then we can obviously find a compact AF realiz-
ing S under stb, since F cf

S will do so. On the other hand, if
S 6= S+ we have to find a way to handle the argument-sets

in S− = S+ \ S. In words, each S ∈ S− is a ⊆-maximal set
with evidence of no conflict, which is not contained in S.

Now consider some AF F ′ ∈ CAFstb having S (S+ as
its stable extensions. Further take some S ∈ S−. There
cannot be a conflict within S in F ′, hence we must be able
to map S to some argument t ∈ (ArgS \ S) not attacked by
S in F ′. Still, the collection of these mappings must fulfill
certain conditions in order to preserve a justification for all
S ∈ S to be a stable extension and not to give rise to other
stable extensions. We make these things more formal.
Definition 7. Given an extension-set S, an exclusion-
mapping is the set

RS =
⋃
S∈S−

{(s, fS(S)) | s ∈ S s.t. (s, fS(S)) /∈ PairsS}

where fS : S− → ArgS is a function with fS(S) ∈ (ArgS \ S).

Definition 8. A set S ⊆ 2A is called independent if there
exists an antisymmetric exclusion-mapping RS such that it
holds that

∀S ∈ S∀a ∈ (ArgS \ S) : ∃s ∈ S : (s, a) /∈ (RS ∪ PairsS).

The concept of independence suggests that the more sep-
arate the elements of some extension-set S are, the less crit-
ical is S−. An independent S allows to find the required ori-
entation of attacks to exclude sets from S− from the stable
extensions without interferences.
Theorem 17. For every independent extension-set S with
S ⊆ S+ it holds that S ∈ Σcstb.

Proof. Consider, given an independent extension-set S
and an antisymmetric exclusion-mapping RS fulfilling the
independence-condition (cf. Definition 8), the AF F stb

S =
(ArgsS, R

stb
S) with Rstb

S = (Rcf
S \ RS). We show that

stb(F stb
S) = S. First note that stb(F cf

S) = S+ ⊇ S. As RS
is antisymmetric, one direction of each symmetric attack of
F cf

S is still in F stb
S . Hence stb(F stb

S) ⊆ S+.
stb(F stb

S) ⊆ S: Consider some S ∈ stb(F stb
S) and assume

that S /∈ S, i.e. S ∈ S−. Since RS is an exclusion-mapping
fulfilling the independence-condition by assumption, there
is an argument fS(S) ∈ (ArgS\S) such that {(s, fS(S)) | s ∈
S, (s, fS(S)) /∈ PairsS} ⊆ RS. But then, by construction
of F stb

S , there is no a ∈ S such that (a, fS(S)) ∈ Rstb
S , a

contradiction to S ∈ stb(F stb
S).

stb(F stb
S) ⊇ S: Consider some S ∈ S and assume that S /∈

stb(F stb
S). We know that S is conflict-free in F stb

S . Therefore
there must be some t ∈ (ArgS \ S) with S 67→F stb

S
t. Hence

∀s ∈ S : (s, t) ∈ (PairsS ∪ RS), a contradiction to the
assumption that S is independent.

Corollary 18. For every S ∈ Σstb, with |S| ≤ 3, S ∈ Σcstb.

Proof. It is easy to see that for an extension-set S with |S| ≤
3 it holds that |S−| ≤ 1. If S− = ∅ we are done; if S− =
{S} observe that by S ⊆ S+ for each T ∈ S there is some
t ∈ T with t /∈ S. Hence choosing arbitrary T ∈ S and t ∈
T with t /∈ S yields the antisymmetric exclusion-mapping
RS = {(s, t) | s ∈ S s.t. (s, t) /∈ PairsS} which fulfills the
independence-condition from Definition 8.

270

Theorem 17 gives a sufficient condition for an extension-
set to be contained in Σcstb. Section 4 provided necessary
conditions with respect to number of extensions. As these
conditions do not match, we have not arrived at an exact
characterization of the c-signature for stable semantics yet.
In what follows, we identify the missing step which we have
to leave open but, as we will see, results in an interesting
problem of its own. Let us first define a further class of
frameworks.

Definition 9. We call an AF F = (A,R) conflict-explicit
under semantics σ iff for each a, b ∈ A such that (a, b) /∈
Pairsσ(F), we find (a, b) ∈ R or (b, a) ∈ R (or both).

In words, a framework is conflict-explicit under σ if any
two arguments of the framework which do not occur to-
gether in any σ-extension are explicitly conflicting, i.e. they
are linked via the attack relation.

As a simple example consider the AF F = ({a, b, c, d},
{(a, b), (b, a), (a, c), (b, d)}) which has S = stb(F) =
{{a, d}, {b, c}}. Note that (c, d) /∈ PairsS but (c, d) /∈ R
as well as (d, c) /∈ R. Thus F is not conflict-explicit under
stable semantics. However, if we add attacks (c, d) or (d, c)
we obtain an equivalent (under stable semantics) conflict-
explicit (under stable semantics) AF.

Theorem 19. For each compact AF F which is conflict-
explicit under stb, it holds that stb(F) is independent.

Proof. Consider some F ∈ CAFstb which is conflict-explicit
under stb and let E = stb(F). Observe that E ⊆ E+. We
have to show that there exists an antisymmetric exclusion-
mapping RS fulfilling the independence-condition from
Definition 8. Let RE = {(b, a) /∈ R | (a, b)∈R} and con-
sider the AF F s = (AF , RF ∪RE) being the symmetric ver-
sion of F . Now letE ∈ E−. Note thatE ∈ cf(F) = cf(F s).
But as E /∈ E there must be some t ∈ (A \ E) such that
for all e ∈ E, (e, t) /∈ RF . For all such e ∈ E with
(e, t) /∈ PairsE it holds, as F is conflict-explicit under stb,
that (t, e) ∈ RF , hence (e, t) ∈ RE, showing that RE is an
exclusion-mapping.

It remains to show that RE is antisymmetric and ∀E ∈
E∀a ∈ ArgS \ E : ∃e ∈ E : (e, a) /∈ (RE ∪ PairsE) holds.
As some pair (b, a) is in RE iff (a, b) ∈ R and (b, a) /∈ R,
RE is antisymmetric. Finally consider some E ∈ E and
a ∈ ArgS \ E and assume that ∀e ∈ E : (e, a) ∈ RE ∨
(e, a) ∈ PairsE. This means that e 67→F a, a contradiction to
E being a stable extension of F .

Since our characterizations of signatures completely ab-
stract away from the actual structure of AFs but only focus
on the set of extensions, our problem would be solved if the
following was true.

EC-Conjecture. For each AF F = (A,R) there exists an
AF F ′ = (A,R′) which is conflict-explicit under the stable
semantics such that stb(F) = stb(F ′).

Note that the EC-conjecture implies that for each compact
AF, there exists a stable-equivalent conflict-explicit (under
stable) AF.

s a1 a2
a3

x1 x2 x3 y

Figure 3: Orientation of non-explicit conflicts matters.

Theorem 20. Under the assumption that the EC-conjecture
holds,

Σcstb = {S | S ⊆ S+ ∧ S is independent}.
Unfortunately, the question whether an equivalent

conflict-explicit AF exists is not as simple as the example
above suggests. We provide a few examples showing that
proving the conjecture includes some subtle issues. Our first
example shows that for adding missing attacks, the orienta-
tion of the attack needs to be carefully chosen.
Example 8. Consider the AF F in Figure 3 and ob-
serve stb(F) = {{a1, a2, x3}, {a1, a3, x2}, {a2, a3, x1},
{s, y}}.
Pairsstb(F) yields one pair of arguments a1 and s whose
conflict is not explicit by F , i.e. (a1, s) /∈ Pairsstb(F), but
(a1, s), (s, a1) /∈ RF . Now adding the attack a1 7→F s to F
would reveal the additional stable extension {a1, a2, a3} ∈
(stb(F))+. On the other hand by adding the attack s 7→F a1

we get the conflict-explicit AF F ′ with stb(F) = stb(F ′).
Finally recall the role of the arguments x1, x2, and x3.

Each of these arguments enforces exactly one extension (be-
ing itself part of it) by attacking (and being attacked by) all
arguments not in this extension. We will make use of this
construction-concept in Example 9.

Even worse, it is sometimes necessary to not only add the
missing conflicts but also change the orientation of existing
attacks such that the missing attack “fits well”.
Example 9. Let X = {xs,t,i, xs,u,i, xt,u,i | 1 ≤ i ≤ 3}∪
{xa,1,2, xa,1,3, xa,2,3} and S = {{si, ti, xs,t,i},
{si, ui, xs,u,i}, {ti, ui, xt,u,i} | i ∈ {1, 2, 3}}∪
{{a1, a2, xa,1,2}, {a1, a3, xa,1,3}, {a2, a3, xa,2,3}}.
Consider the AF F = (A′ ∪ X,R′ ∪

⋃
x∈X{(x, b), (b, x) |

b ∈ (A′ \ Sx)} ∪ {(x, x′) | x, x′ ∈ X,x 6= x′}), where
the essential part (A′, R′) is depicted in Figure 4 and Sx is
the unique set X ∈ S with x ∈ X . We have stb(F) = S.
Observe that F contains three non-explicit conflicts under
the stable semantics, namely the argument-pairs (a1, s1),
(a2, s2), and (a3, s3). Adding any of (si, ai) to RF
would turn {si, ti, ui} into a stable extension; adding
all (ai, si) to RF would yield {a1, a2, a3} as additional
stable extension. Hence there is no way of making the
conflicts explicit without changing other parts of F and
still getting a stable-equivalent AF. Still, we can realize
stb(F) by a compact and conflict-explicit AF, for example
by G = (AF , (RF ∪ {(a1, s1), (a2, s2), (a3, s3)}) \
{(a1, xa,2,3), (a2, xa,1,3), (a3, xa,1,2)}).

This is another indicator, yet far from a proof, that the EC-
conjecture holds and by that Theorem 20 describes the exact
characterization of the c-signature under stable semantics.

271

a1 s1 t1 u1

a2 s2 t2 u2

a3 s3 t3 u3

Figure 4: Guessing the orientation of non-explicit conflicts
is not enough.

6 Discussion
We introduced and studied the novel class of σ-compact

argumentation frameworks for σ among naive, stable, stage,
semi-stable and preferred semantics. We provided the full
relationships between these classes, and showed that the
extension verification problem is still coNP-hard for stage,
semi-stable and preferred semantics. We next addressed the
question of compact realizability: Given a set of extensions,
is there a compact AF with this set of extensions under se-
mantics σ? Towards this end, we first used and extended
recent results on maximal numbers of extensions to provide
shortcuts for showing non-realizability. Lastly we studied
signatures, sets of compactly realizable extension-sets, and
provided sufficient conditions for compact realizability. This
culminated in the explicit-conflict conjecture, a deep and in-
teresting question in its own right: Given an AF, can all im-
plicit conflicts be made explicit?

Our work bears considerable potential for further re-
search. First and foremost, the explicit-conflict conjecture
is an interesting research question. But the EC-conjecture
(and compact AFs in general) should not be mistaken for a
mere theoretical exercise. There is a fundamental compu-
tational significance to compactness: When searching for
extensions, arguments span the search space, since exten-
sions are to be found among the subsets of the set of all
arguments. Hence the more arguments, the larger the search
space. Compact AFs are argument-minimal since none of the
arguments can be removed without changing the outcome,
thus leading to a minimal search space. The explicit-conflict
conjecture plays a further important role in this game: im-
plicit conflicts are something that AF solvers have to deduce
on their own, paying mostly with computation time. If there
are no implicit conflicts in the sense that all of them have
been made explicit, solvers have maximal information to
guide search.

References
[Amgoud, Dimopoulos, & Moraitis 2008] Amgoud, L.; Dimopoulos, Y.;

and Moraitis, P. 2008. Making decisions through preference-based ar-
gumentation. In KR, 113–123.

[Baroni & Giacomin 2008] Baroni, P., and Giacomin, M. 2008. A

systematic classification of argumentation frameworks where semantics
agree. In COMMA, volume 172 of FAIA, 37–48.

[Baroni, Caminada, & Giacomin 2011] Baroni, P.; Caminada, M.; and
Giacomin, M. 2011. An introduction to argumentation semantics. KER
26(4):365–410.

[Baumann & Strass 2014] Baumann, R., and Strass, H. 2014. On the
Maximal and Average Numbers of Stable Extensions. In TAFA 2013,
volume 8306 of LNAI, 111–126.

[Bench-Capon & Dunne 2007] Bench-Capon, T. J. M., and Dunne, P. E.
2007. Argumentation in artificial intelligence. AIJ 171(10-15):619–641.

[Caminada, Carnielli, & Dunne 2012] Caminada, M.; Carnielli, W. A.;
and Dunne, P. E. 2012. Semi-stable semantics. JLC 22(5):1207–1254.

[Coste-Marquis, Devred, & Marquis 2005] Coste-Marquis, S.; Devred,
C.; and Marquis, P. 2005. Symmetric argumentation frameworks. In
ECSQARU, volume 3571 of Lecture Notes in Computer Science, 317–
328.

[Dimopoulos & Torres 1996] Dimopoulos, Y., and Torres, A. 1996.
Graph theoretical structures in logic programs and default theories. The-
oretical Computer Science 170(1-2):209–244.

[Dung 1995] Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic programming and
n-person games. AIJ 77(2):321–357.

[Dunne & Bench-Capon 2002] Dunne, P. E., and Bench-Capon, T. J. M.
2002. Coherence in finite argument systems. AIJ 141(1/2):187–203.

[Dunne et al. 2013] Dunne, P. E.; Dvořák, W.; Linsbichler, T.; and
Woltran, S. 2013. Characteristics of multiple viewpoints in ab-
stract argumentation. In Proc. DKB, 16–30. Available under
http://www.dbai.tuwien.ac.at/staff/linsbich/
pubs/dkb_2013.pdf.

[Dunne et al. 2014] Dunne, P. E.; Dvořák, W.; Linsbichler, T.; and
Woltran, S. 2014. Characteristics of multiple viewpoints in abstract
argumentation. In KR.

[Dunne 2007] Dunne, P. E. 2007. Computational properties of argument
systems satisfying graph-theoretic constraints. AIJ 171(10–15):701–
729.

[Dvořák & Woltran 2011] Dvořák, W., and Woltran, S. 2011. On the
intertranslatability of argumentation semantics. JAIR 41:445–475.

[Dvořák et al. 2014] Dvořák, W.; Järvisalo, M.; Wallner, J. P.; and
Woltran, S. 2014. Complexity-sensitive decision procedures for abstract
argumentation. AIJ 206:53–78.

[Griggs, Grinstead, & Guichard 1988] Griggs, J. R.; Grinstead, C. M.;
and Guichard, D. R. 1988. The number of maximal independent sets
in a connected graph. Discrete Mathematics 68(23):211–220.

[Jin & Li 2008] Jin, Z., and Li, X. 2008. Graphs with the second
largest number of maximal independent sets. Discrete Mathematics
308(23):5864–5870.

[Moon & Moser 1965] Moon, J. W., and Moser, L. 1965. On cliques in
graphs. Israel Journal of Mathematics 23–28.

[Rahwan & Simari 2009] Rahwan, I., and Simari, G. R., eds. 2009. Ar-
gumentation in Artificial Intelligence.

[Verheij 1996] Verheij, B. 1996. Two approaches to dialectical argu-
mentation: admissible sets and argumentation stages. In Proc. NAIC,
357–368.

272

http://www.dbai.tuwien.ac.at/staff/linsbich/pubs/dkb_2013.pdf
http://www.dbai.tuwien.ac.at/staff/linsbich/pubs/dkb_2013.pdf

Extension–based Semantics of Abstract Dialectical Frameworks

Sylwia Polberg
Vienna University of Technology
Institute of Information Systems

Favoritenstraße 9-11, 1040 Vienna, Austria ∗

Abstract

One of the most prominent tools for abstract argumentation is
the Dung’s framework, AF for short. It is accompanied by a
variety of semantics including grounded, complete, preferred
and stable. Although powerful, AFs have their shortcomings,
which led to development of numerous enrichments. Among
the most general ones are the abstract dialectical frameworks,
also known as the ADFs. They make use of the so–called ac-
ceptance conditions to represent arbitrary relations. This level
of abstraction brings not only new challenges, but also re-
quires addressing existing problems in the field. One of the
most controversial issues, recognized not only in argumenta-
tion, concerns the support cycles. In this paper we introduce
a new method to ensure acyclicity of the chosen arguments
and present a family of extension–based semantics built on it.
We also continue our research on the semantics that permit
cycles and fill in the gaps from the previous works. More-
over, we provide ADF versions of the properties known from
the Dung setting. Finally, we also introduce a classification of
the developed sub–semantics and relate them to the existing
labeling–based approaches.

1 Introduction
Over the last years, argumentation has become an influen-
tial subfield of artificial intelligence (Rahwan and Simari
2009). One of its subareas is the abstract argumentation,
which became especially popular thanks to the research of
Phan Minh Dung (Dung 1995). Although the framework he
has developed was relatively limited, as it took into account
only the conflict relation between the arguments, it inspired a
search for more general models (see (Brewka, Polberg, and
Woltran 2013) for an overview). Among the most abstract
enrichments are the abstract dialectical frameworks, ADFs
for short (Brewka and Woltran 2010). They make use of the
so–called acceptance conditions to express arbitrary interac-
tions between the arguments. However, a framework cannot
be considered a suitable argumentation tool without properly
developed semantics.

The semantics of a framework are meant to represent what
is considered rational. Given many of the advanced seman-
tics, such as grounded or complete, we can observe that

∗The author is funded by the Vienna PhD School of Informat-
ics. This research is a part of the project I1102 supported by the
Austrian Science Fund FWF.

they return same results when faced with simple, tree–like
frameworks. The differences between them become more
visible when we work with more complicated cases. On
various occasions examples were found for which none
of the available semantics returned satisfactory answers.
This gave rise to new concepts: for example, for handling
indirect attacks and defenses we have prudent and care-
ful semantics (Coste-Marquis, Devred, and Marquis 2005a;
2005b). For the problem of even and odd attack cycles we
can resort to some of the SCC–recursive semantics (Baroni,
Giacomin, and Guida 2005), while for treatment of self at-
tackers, sustainable and tolerant semantics were developed
(Bodanza and Tohmé 2009). Introducing a new type of rela-
tion, such as support, creates additional problems.

The most controversial issue in the bipolar setting con-
cerns the support cycles and is handled differently from for-
malism to formalism. Among the best known structures are
the Bipolar Argumentation Frameworks (BAFs for short)
(Cayrol and Lagasquie-Schiex 2009; 2013), Argumentation
Frameworks with Necessities (AFNs) (Nouioua 2013) and
Evidential Argumentation Systems (EASs) (Oren and Nor-
man 2008). While AFNs and EASs discard support cycles,
BAFs do not make such restrictions. In ADFs cycles are per-
mitted unless the intuition of a given semantics is clearly
against it, for example in stable and grounded cases. This
variety is not an error in any of the structures; it is caused
by the fact that, in a setting that allows more types of rela-
tions, a standard Dung semantics can be extended in several
ways. Moreover, since one can find arguments both for and
against any of the cycle treatments, lack of consensus as to
what approach is the best should not be surprising.

Many properties of the available semantics can be seen
as ”inside” ones, i.e. ”what can I consider rational?”. On
the other hand, some can be understood as on the ”out-
side”, e.g. ”what can be considered a valid attacker, what
should I defend from?”. Various examples of such behav-
ior exist even in the Dung setting. An admissible exten-
sion is conflict–free and defends against attacks carried out
by any other argument in the framework. We can then add
new restrictions by saying that self–attackers are not ratio-
nal. Consequently, we limit the set of arguments we have to
protect our choice from. In a bipolar setting, we can again
define admissibility in the basic manner. However, one of-
ten demands that the extension is free from support cy-

273

cles and that we only defend from acyclic arguments, thus
again trimming the set of attackers. From this perspective
semantics can be seen as a two–person discussion, describ-
ing what ”I can claim” and ”what my opponent can claim”.
This is also the point of view that we follow in this paper.
Please note that this sort of dialogue perspective can al-
ready be found in argumentation (Dung and Thang 2009;
Jakobovits and Vermeir 1999), although it is used in a
slightly different context.

Although various extension–based semantics for ADFs
have already been proposed in the original paper (Brewka
and Woltran 2010), many of them were defined only for
a particular ADF subclass called the bipolar and were not
suitable for all types of situations. As a result, only three of
them – conflict–free, model and grounded – remain. More-
over, the original formulations did not solve the problem of
positive dependency cycles. Unfortunately, neither did the
more recent work into labeling–based semantics (Brewka et
al. 2013), even though they solve most of the problems of
their predecessors. The aim of this paper is to address the is-
sue of cycles and the lack of properly developed extension–
based semantics. We introduce a family of such semantics
and specialize them to handle the problem of support cy-
cles, as their treatment seems to be the biggest difference
among the available frameworks. Furthermore, a classifica-
tion of our sub–semantics in the inside–outside fashion that
we have described before is introduced. We also recall our
previous research on admissibility in (Polberg, Wallner, and
Woltran 2013) and show how it fits into the new system. Our
results also include which known properties, such as Funda-
mental Lemma, carry over from the Dung framework. Fi-
nally, we provide an analysis of similarities and differences
between the extension and labeling–based semantics in the
context of produced extensions.

The paper is structured as follows. In Sections 2 to 4 we
provide a background on argumentation frameworks. Then
we introduce the new extension–based semantics and ana-
lyze their behavior in Section 5. We close the paper with
a comparison between the new concepts and the existing
labeling–based approach.

2 Dung’s Argumentation Frameworks
Let us recall the abstract argumentation framework by Dung
(Dung 1995) and its semantics. For more details we refer the
reader to (Baroni, Caminada, and Giacomin 2011).
Definition 2.1. A Dung’s abstract argumentation frame-
work (AF for short) is a pair (A,R), where A is a set of
arguments and R ⊆ A×A represents an attack relation.
Definition 2.2. Let AF = (A,R) be a Dung’s framework.
We say that an argument a ∈ A is defended1 by a set E in
AF , if for each b ∈ A s.t. (b, a) ∈ R, there exists c ∈ E s.t.
(c, b) ∈ R. A set E ⊆ A is:
• conflict–free in AF iff for each a, b ∈ E, (a, b) /∈ R.
• admissible iff conflict–free and defends all of its members.
• preferred iff it is maximal w.r.t set inclusion admissible.

1Please note defense is often also termed acceptability, i.e. if a
set defends an argument, the argument is acceptable w.r.t. this set.

• complete iff it is admissible and all arguments defended
by E are in E.

• stable iff it is conflict–free and for each a ∈ A \ E there
exists an argument b ∈ E s.t. (b, a) ∈ R.

The characteristic function FAF : 2A → 2A is defined as:
FAF (E) = {a | a is defended by E in AF}. The grounded
extension is the least fixed point of FAF .

In the context of this paper, we would also like to recall
the notion of range:
Definition 2.3. Let E+ be the set of arguments attacked by
E and E− the set of arguments that attack E . E+ ∪ E is
the range of E.

Please note the concepts E+ and the E− sets can be used
to redefine defense. This idea will be partially used in creat-
ing the semantics of ADFs. Moreover, there is also an alter-
native way of computing the grounded extension:
Proposition 2.4. The unique grounded extension of AF is
defined as the outcome E of the following algorithm. Let us
start with E = ∅:
1. put each argument a ∈ A which is not attacked in AF

into E; if no such argument exists, return E.
2. remove from AF all (new) arguments in E and all ar-

guments attacked by them (together with all adjacent at-
tacks) and continue with Step 1.

What we have described above forms a family of
the extension–based semantics. However, there exist also
labeling–based ones (Caminada and Gabbay 2009; Baroni,
Caminada, and Giacomin 2011). Instead of computing sets
of accepted arguments, they generate labelings, i.e. total
functions Lab : A → {in, out, undec}. Although we will
not recall them here, we would like to draw the attention
to the fact that for every extension we can obtain an appro-
priate labeling and vice versa. This property is particularly
important as it does not fully carry over to the ADF setting.

Finally, we would like to recall several important lemmas
and theorems from the original paper on AFs (Dung 1995).
Lemma 2.5. Dung’s Fundamental Lemma LetE be an ad-
missible extension, a and b two arguments defended by E.
Then E′ = E ∪ {a} is admissible and b is defended by E′.
Theorem 2.6. Every stable extension is a preferred exten-
sion, but not vice versa. Every preferred extension is a com-
plete extension, but not vice versa. The grounded extension
is the least w.r.t. set inclusion complete extension. The com-
plete extensions form a complete semilattice w.r.t. set inclu-
sion. 2

3 Argumentation Frameworks with Support
Currently the most recognized frameworks with support are
the Bipolar Argumentation Framework BAF (Cayrol and
Lagasquie-Schiex 2013), Argumentation Framework with
Necessities AFN (Nouioua 2013) and Evidential Argumen-
tation System EAS (Oren and Norman 2008). We will now

2A partial order (A,≤) is a complete semilattice iff each
nonempty subset of A has a glb and each increasing sequence of S
has a lub.

274

briefly recall them in order to further motivate the directions
of the semantics we have taken in ADFs.

The original bipolar argumentation framework BAF (Cay-
rol and Lagasquie-Schiex 2009) studied a relation we will
refer to as abstract support:

Definition 3.1. A bipolar argumentation framework is a
tuple (A,R, S), where A is a set of arguments, R ⊆ A×A
represents the attack relation and S ⊆ A×A the support.

The biggest difference between this abstract relation and
any other interpretation of support is the fact that it did not
affect the acceptability of an argument, i.e. even a supported
argument could be accepted ”alone”. The positive interac-
tion was used to derive additional indirect forms of attack
and based on them, stronger versions of conflict–freeness
were developed.

Definition 3.2. We say that an argument a support attacks
argument b, if there exists some argument c s.t. there is a
sequence of supports from a to c (i.e. aS...Sc) and cRb. We
say that a secondary attacks b if there is some argument c
s.t. cS...Sb and aRc. We say that B ⊆ A is:

• +conflict–free iff @a, b ∈ B s.t. a (directly or indirectly)
attacks b.

• safe iff @b ∈ A s.t. b is at the same time (directly or in-
directly) attacked by B and either there is a sequence of
supports from an element of B to b, or b ∈ B.

• closed under S iff ∀b ∈ B, a ∈ A, if bSa then a ∈ B.

The definition of defense remains the same and any Dung
semantics is specialized by choosing an given notion of
conflict–freeness or safety. Apart from the stable semantics,
no assumptions as to cycles occurring in the support relation
are made. The later developed deductive support (Boella et
al. 2010) remains in the BAF setting and is also modeled by
new indirect attacks (Cayrol and Lagasquie-Schiex 2013).
Consequently, acyclicity is not required.

The most recent formulation of the framework with nec-
essary support is as follows (Nouioua 2013):

Definition 3.3. An argumentation framework with neces-
sities is a tuple (A,R,N), where A is the set of argu-
ments, R ⊆ A × A represents (binary) attacks, and N ⊆
(2A \ ∅)×A is the necessity relation.

Given a set B ⊆ A and an argument a, BNa should be
read as ”at least one element of B needs to be present in
order to accept a”. The AFN semantics are built around the
notions of coherence:

Definition 3.4. We say that a set of arguments B is coher-
ent iff every b ∈ B is powerful, i.e. there exists a sequence
a0, .., an of some elements of B s.t 1) an = b, 2) @C ⊆ A
s.t. CNa0, and 3) for 1 ≤ i ≤ n it holds that for every set
C ⊆ A if CNai, then C ∩ {a0, ..., ai−1} 6= ∅. A coherent
set B is strongly coherent iff it is conflict–free.

Although it may look a bit complicated at first, the defini-
tion of coherence grasps the intuition that we need to provide
sufficient acyclic support for the arguments we want to ac-
cept. Defense in AFNs is understood as the ability to provide
support and to counter the attacks from any coherent set.

Definition 3.5. We say that a set B ⊆ A defends a, if B ∪
{a} is coherent and for every c ∈ A, if cRa then for every
coherent set C ⊆ A containing c, BRC.

Using the notion of strong coherence and defense, the
AFN semantics are built in a way corresponding to Dung
semantics. It is easy to see that, through the notion of co-
herency, AFNs discard cyclic arguments both on the ”inside”
and the ”outside”. This means we cannot accept them in an
extension and they are not considered as valid attackers.

The last type of support we will consider here is the the
evidential support (Oren and Norman 2008). It distinguishes
between standard and prima facie arguments. The latter are
the only ones that are valid without any support. Every other
argument that we want to accept needs to be supported by at
least one prima facie argument, be it directly or not.

Definition 3.6. An evidential argumentation system (EAS)
is a tuple (A,R,E) where A is a set of arguments, R ⊆
(2A\∅)×A is the attack relation, andE ⊆ (2A\∅)×A is the
support relation. We distinguish a special argument η ∈ A
s.t. @(x, y) ∈ R where η ∈ x; and @x where (x, η) ∈ R or
(x, η) ∈ E.

η represents the prima facie arguments and is referred to
as evidence or environment. The idea that the valid argu-
ments (and attackers) need to trace back to it is captured
with the notions of e–support and e–supported attack3.

Definition 3.7. An argument a ∈ A has evidential support
(e–support) from a set S ⊆ A iff a = η or there is a non-
empty S′ ⊆ S s.t. S′Ea and ∀x ∈ S′, x has e–support from
S \ {a}.
Definition 3.8. A set S ⊆ A carries out an evidence sup-
ported attack (e–supported attack) on a iff (S′, a) ∈ R
where S′ ⊆ S, and for all s ∈ S′, s has e–support from
S. An e–supported attack by S on a is minimal iff there is
no S′ ⊂ S that carries out an e–supported attack on a.

The EASs semantics are built around the notion of accept-
ability in a manner similar to those of Dung’s. However, in
AFs only the attack relation was considered. In EASs, also
sufficient support is required:

Definition 3.9. An argument a is acceptable w.r.t. a set S ⊆
A iff a is e–supported by S and given a minimal e–supported
attack by a set T ⊆ A against a, it is the case that S carries
out an e–supported attack against a member of T .

The notion of conflict–freeness is easily adapted to take
set, not just binary conflict into account. With this and the
notion of acceptability, the EASs semantics are built just like
AF semantics. From the fact that every valid argument needs
to be grounded in the environment it clearly results that EAS
semantics are acyclic both on the inside and outside.

4 Abstract Dialectical Frameworks
Abstract dialectical frameworks have been defined in
(Brewka and Woltran 2010) and further studied in (Brewka

3The presented definition is slightly different from the one
available in (Oren and Norman 2008). The new version was ob-
tained through personal communication with the author.

275

et al. 2013; Polberg, Wallner, and Woltran 2013; Strass
2013a; 2013b; Strass and Wallner 2014). The main goal of
ADFs is to be able to express arbitrary relations and avoid
the need of extending AFs by new relation sets each time
they are needed. This is achieved by the means of the ac-
ceptance conditions, which define what arguments should
be present in order to accept or reject a given argument.
Definition 4.1. An abstract dialectical framework (ADF)
as a tuple (S,L,C), where S is a set of abstract arguments
(nodes, statements), L ⊆ S × S is a set of links (edges)
and C = {Cs}s∈S is a set of acceptance conditions, one
condition per each argument. An acceptance condition is a
total function Cs : 2par(s) → {in, out}, where par(s) =
{p ∈ S | (p, s) ∈ L} is the set of parents of an argument s.

One can also represent the acceptance conditions by
propositional formulas (Ellmauthaler 2012) rather than
functions. By this we mean that given an argument s ∈ S,
Cs = ϕs, where ϕs is a propositional formula over ar-
guments S. As we will be making use of both extension
and labeling–based semantics, we need to provide neces-
sary information on interpretations first (more details can be
found in (Brewka et al. 2013; Polberg, Wallner, and Woltran
2013)). Please note that the links in ADFs only represent
connections between arguments, while the burden of decid-
ing the nature of these connections falls to the acceptance
conditions. Moreover, parents of an argument can be easily
extracted from the conditions. Thus, we will use of short-
ened notation D = (S,C) through the rest of this paper.

Interpretations and decisiveness
A two (or three–valued) interpretation is simply a mapping
that assigns the truth values {t, f} (respectively {t, f ,u})
to arguments. We will be making use both of partial (i.e.
defined only for a subset of S) and the full ones. In the
three–valued setting we will adopt the precision (informa-
tion) ordering of the values: u ≤i t and u ≤i f The pair
({t, f,u},≤i) forms a complete meet–semilattice with the
meet operation u assigning values in the following way:
t u t = t, f u f = f and u in all other cases. It can naturally be
extended to interpretations: given two interpretations v and
v′ on S, we say that v′ contains more information, denoted
v ≤i v

′, iff ∀s∈S v(s) ≤i v
′(s). Similar follows for the meet

operation. In case v is three and v′ two–valued, we say that
v′ extends v. This means that elements mapped originally to
u are now assigned either t or f . The set of all two–valued
interpretations extending v is denoted [v]2.
Example 4.2. Let v = {a : t, b : t, c : f , d : u) be a
three–valued interpretation. We have two extending inter-
pretations, v′ = {a : t, b : t, c : f , d : t) and v′′ = {a : t, b :
t, c : f , d : f). Clearly, it holds that v ≤i v

′ and v ≤i v
′′.

However, v′ and v′′ are incomparable w.r.t. ≤i.
Let now w = {a : f , b : f , c : f , d : t) be another three–

valued interpretation. v u w gives us a new interpretation
w′ = {a : u, b : u, c : f , d : u): as the assignments of a, b
and d differ between v and w, the resulting value is u. On
the other hand, c is in both cases f and thus retains its value.

We will use vx to denote a set of arguments mapped to x
by v, where x is some truth–value. Given an acceptance con-

a b cd

b→ d a ∧ c ⊥d

Figure 1: Sample ADF

dition Cs for some argument s ∈ S and an interpretation v,
we define a shorthand v(Cs) as Cs(v

t∩par(s)). For a given
propositional formula ϕ and an interpretation v defined over
all of the atoms of the formula, v(ϕ) will just stand for the
value of the formula under v. However, apart from knowing
the ”current” value of a given acceptance condition for some
interpretation, we would also like to know if this interpreta-
tion is ”final”. By this we understand that no new informa-
tion will cause the value to change. This is expressed by the
notion of decisive interpretations, which are at the core of
the extension–based ADF semantics.

Definition 4.3. Given an interpretation v defined over a set
A, completion of v to a set Z where A ⊆ Z is an interpre-
tation v′ defined on Z in a way that ∀a ∈ A v(a) = v′(a).
By a t/f completion we will understand v′ that maps all ar-
guments in Z \A respectively to t/f .

The similarity between the concepts of completion and
extending interpretation should not be overlooked. Basi-
cally, given a three–valued interpretation v defined over S,
the set [v]2 precisely corresponds to the set of completions
to S of the two–valued part of v. However, the extension
notion from the three–valued setting can be very misleading
when used in the extension–based semantics. Therefore, we
would like to keep the notion of completion.

Definition 4.4. We say that a two–valued interpretation v
is decisive for an argument s ∈ S iff for any two comple-
tions vpar(s) and v′par(s) of v to A ∪ par(s), it holds that
vpar(s)(Cs) = v′par(s)(Cs). We say that s is decisively out/in
wrt v if v is decisive and all of its completions evaluate Cs

to respectively out, in.

Example 4.5. Let ({a, b, c, d}, {ϕa : b→ d, ϕb : a∧ c, ϕc :
⊥, ϕd : d}) be an ADF depicted in Figure 1. Example of a
decisively in interpretation for a is v = {b : f}. It simply
means that knowing that b is false, not matter the value of
d, the implication is always true and thus the acceptance
condition satisfied. From the more technical side, it is the
same as checking that both completions to {b, d}, namely
{b : f , d : t} and {b : f , d : f} satisfy the condition. Example
of a decisively out interpretation for b is v′ = {c : f}. Again,
it suffices to falsify one element of a conjunction to know that
the whole formula will evaluate to false.

Acyclicity
Let us now focus on the issue of positive dependency cycles.
Please note we refrain from calling them support cycles in
the ADF setting in order not to confuse them with specific
definitions of support available in the literature (Cayrol and
Lagasquie-Schiex 2013).

Informally speaking, an argument takes part in a cycle if
its acceptance depends on itself. An intuitive way of veri-
fying the acyclicity of an argument would be to ”track” its

276

evaluation, e.g. in order to accept a we need to accept b,
to accept b we need to accept c and so on. This basic case
becomes more complicated when disjunction is introduced.
We then receive a number of such ”paths”, with only some
of them proving to be acyclic. Moreover, they might be con-
flicting one with each other, and we can have a situation
in which all acyclic evaluations are blocked and a cycle is
forced. Our approach to acyclicity is based on the idea of
such ”paths” that are accompanied by sets of arguments used
to detect possible conflicts.

Let us now introduce the formal definitions. Given an ar-
gument s ∈ S and x ∈ {in, out}, by min dec(x, s) we will
denote the set of minimal two–valued interpretations that are
decisively x for s. By minimal we understand that both vt
and vf are minimal w.r.t. set inclusion.

Definition 4.6. Let A ⊆ S be a nonempty set of argu-
ments. A positive dependency function on A is a func-
tion pd assigning every argument a ∈ A an interpretation
v ∈ min dec(in, a) s.t. vt ⊆ A or N (null) iff no such
interpretation can be found.

Definition 4.7. An acyclic positive dependency evaluation
acea for a ∈ A based on a given pd–function pd is a
pair ((a0, ..., an), B), 4 where B =

⋃n
i=0 pd(ai)

f and
(a0, ..., an) is a sequence of distinct elements of A s.t.:
1) ∀ni=0 pd(ai) 6= N , 2) an = a, 3) pd(a0)t = ∅, and
4) ∀ni=1, pd(ai)

t ⊆ {a0, ..., ai−1}. We will refer to the se-
quence part of the evaluation as pd–sequence and to the B
as the blocking set. We will say that an argument a is pd–
acyclic in A iff there exist a pd–function on A and a corre-
sponding acyclic pd–evaluation for a.

We will write that an argument has an acyclic pd–
evaluation on A if there is some pd–function on A from
which we can produce the evaluation. There are two ways
we can ”attack” an acyclic evaluation. We can either discard
an argument required by the evaluation or accept one that
is capable of preventing it. This corresponds to rejecting a
member of a pd–sequence or accepting an argument from
the blocking set. We can now formulate this ”conflict” by
the means of an interpretation:

Definition 4.8. Let A ⊆ S be a set of arguments and a ∈ A
s.t. a has an acyclic pd–evaluation acea = ((a0, ..., an), B)
in A. We say that a two–valued interpretation v blocks acea
iff ∃b ∈ B s.t. v(b) = t or ∃ai ∈ {a0, ..., an} s.t. v(ai) = f .

Let us now show on an example why we require minimal-
ity on the chosen interpretations and why do we store the
blocking set:

Example 4.9. Let us assume an ADF ({a, b, c}, {Ca :
¬c ∨ b, Cb : a,Cc : c}) depicted in Figure 2. For argu-
ment a there exist the following decisively in interpretations:
v1 = {c : f}, v2 = {b : t}, v3 = {b : t, c : f}, v4 =
{b : t, c : t}, v5 = {b : f , c : f}. Only the first two are
minimal. Considering v4 would give us a wrong view that a
requires c for acceptance, which is not a desirable reading.
The interpretations for b and c are respectivelyw1 = {a : t}
and z1 = {c : t}. Consequently, we have two pd–functions

4Please note that it is not required that B ⊆ A

ab c

¬c ∨ ba c

Figure 2: Sample ADF

on {a, b, c}, namely pd1 = {a : v1, b : w1, c : z1}
and pd2 = {a : v2, b : w1, c : z1}. From them we ob-
tain one acyclic pd–evaluation for a: ((a), {c}), one for b:
((a, b), {c}) and none for c.

Let us look closer at a set E = {a, b, c}. We can see that
c is not pd–acyclic in E. However, the presence of c also
”forces” a cycle between a and b. The acceptance conditions
of all arguments are satisfied, thus this simple check is not
good enough to verify if a cycle occurs. Only looking at the
whole evaluations shows us that a and b are both blocked
by c. Although a and b are pd–acyclic in E, we see that
their evaluations are in fact blocked and this second level of
conflict needs to be taken into account by the semantics.

As a final remark, please note that it can be the case that
an evaluation is self–blocking. We can now proceed to recall
existing and introduce new semantics of the abstract dialec-
tical frameworks.

5 Extension–Based Semantics of ADFs
Although various semantics for ADFs have already been de-
fined in the original paper (Brewka and Woltran 2010), only
three of them – conflict–free, model and grounded (initially
referred to as well–founded) – are still used (issues with
the other formulations can be found in (Brewka et al. 2013;
Polberg, Wallner, and Woltran 2013; Strass 2013a)). More-
over, the treatment of cycles and their handling by the se-
mantics was not sufficiently developed. In this section we
will address all of those issues. Before we continue, let us
first motivate our choice on how to treat cycles. The opinions
on support cycles differ between the available frameworks,
as we have shown in Section 3. Therefore, we would like to
explore the possible approaches in the context of ADFs by
developing appropriate semantics.

The classification of the sub–semantics that we will adopt
in this paper is based on the inside–outside intuition we
presented in the introduction. Appropriate semantics will
receive a two–element prefix xy−, where x will denote
whether cycles are permitted or not on the ”inside” and y on
the ”outside”. We will use x, y ∈ {a, c}, where a will stand
for acyclic and c for cyclic constraints. As the conflict–free
(and naive) semantics focus only on what we can accept, we
will drop the prefixing in this case. Although the model, sta-
ble and grounded fit into our classification (more details can
be found in this section and in (Polberg 2014)), they have
a sufficiently unique naming and further annotations are not
necessary. We are thus left with admissible, preferred and
complete. The BAF approach follows the idea that we can
accept arguments that are not acyclic in our opinion and
we allow our opponent to do the same. The ADF seman-
tics we have developed in (Polberg, Wallner, and Woltran
2013) also shares this view. Therefore, they will receive the
cc− prefix. On the other hand, AFN and EAS semantics do

277

not permit cycles both in extensions and as attackers. Conse-
quently, the semantics following this line of reasoning will
be prefixed with aa−. Please note we believe that a non–
uniform approach can also be suitable in certain situations.
By non–uniform we mean not accepting cyclic arguments,
but still treating them as valid attackers and so on (i.e. ca−
and ac−). However, in this paper we would like to focus
only on the two perspectives mentioned before.

Conflict–free and naive semantics
In the Dung setting, conflict–freeness meant that the ele-
ments of an extension could not attack one another. Provid-
ing an argument with the required support is then a sepa-
rate condition in frameworks such as AFNs and EASs. In
ADFs, where we lose the set representation of relations in
favor of abstraction, not including ”attackers” and accepting
”supporters” is combined into one notion. This represents
the intuition of arguments that can stand together presented
in (Baroni, Caminada, and Giacomin 2011). Let us now as-
sume an ADF D = (S,C).

Definition 5.1. A set of arguments E ⊆ S is conflict–free
in D iff for all s ∈ E we have Cs(E ∩ par(s)) = in.

In the acyclic version of conflict–freeness we also need to
deal with the conflicts arising on the level of evaluations. To
meet the formal requirements, we first have to show how the
notions of range and the E+ set are moved to ADFs.

Definition 5.2. Let E ⊆ S a conflict–free extension of D
and vE a partial two–valued interpretation built as follows:

1. Let M = E and for every a ∈M set vE(a) = t;
2. For every argument b ∈ S \M that is decisively out in
vE , set vE(b) = f and add b to M ;

3. Repeat the previous step until there are no new elements
added to M .

By E+ we understand the set of arguments vfE and we will
refer to it as the discarded set. vE now forms the range in-
terpretation of E.

However, the notions of the discarded set and the range
are quite strict in the sense that they require an explicit ”at-
tack” on arguments that take part in dependency cycles. This
is not always a desirable property. Depending on the ap-
proach we might not treat cyclic arguments as valid and
hence want them ”out of the way”.

Definition 5.3. Let E ⊆ S a conflict–free extension of D
and vaE a partial two–valued interpretation built as follows:

1. Let M = E. For every a ∈M set vaE(a) = t.
2. For every argument b ∈ S \ M s.t. every acyclic pd–

evaluation of b in S is blocked by vaE , set vaE(b) = f and
add b to M .

3. Repeat the previous step until there are no new elements
added to M .

By Ea+ we understand the set of arguments mapped to f by
vaE and refer to it as acyclic discarded set. We refer to vaE as
acyclic range interpretation of E.

We can now define an acyclic version of conflict–freeness:

Definition 5.4. A conflict–free extension E is a pd–acyclic
conflict–free extension of D iff every argument a ∈ E has
an unblocked acyclic pd–evaluation on E w.r.t. vE .

As we are dealing with a conflict– free extension, all the
arguments of a given pd–sequence are naturally t both in
vE and vaE . Therefore, in order to ensure that an evaluation
((a0, ..., an), B) is unblocked it suffices to check whether
E∩B = ∅. Consequently, in this case it does not matter w.r.t.
to which version of range we are verifying the evaluations.

Definition 5.5. The naive and pd–acyclic naive extensions
are respectively maximal w.r.t. set inclusion conflict–free
and pd–acyclic conflict–free extensions.

Example 4.9 (Continued). Recall the ADF ({a, b, c}, {Ca :
¬c ∨ b, Cb : a,Cc : c}). The conflict–free extensions are
∅, {a}, {c}, {a, b} and {a, b, c}. Their standard discarded
set in all cases is just ∅ – none of the sets has the power to
decisively out the non–members. The acyclic discarded set
of ∅, {a} and {a, b} is now {c}, since it has no acyclic eval-
uation to start with. In the case of {c}, it is {a, b}, which is to
be expected since c had the power to block their evaluations.
Finally, {a, b, c}a+ is ∅. In the end, only ∅, {a} and {a, b}
qualify for acyclic type. The naive and pd–acyclic naive ex-
tensions are respectively {a, b, c} and {a, b}.

Model and stable semantics
The concept of a model basically follows the intuition that if
something can be accepted, it should be accepted:

Definition 5.6. A conflict–free extension E is a model of D
if ∀ s ∈ S, Cs(E ∩ par(s)) = in implies s ∈ E.

Although the semantics is simple, several of its properties
should be explained. First of all, given a model candidate E,
checking whether a condition of some argument s is satis-
fied does not verify if an argument depends on itself or if it
”outs” a previously included member of E. This means that
an argument we should include may break conflict–freeness
of the set. On the other hand, an argument can be out due to
positive dependency cycles, i.e. its supporter is not present.
And since model makes no acyclicity assumptions on the in-
side, arguments outed this way can later appear in a model
E ⊂ E′. Consequently, it is clear to see that model seman-
tics is not universally defined and the produced extensions
might not be maximal w.r.t. subset inclusion.

The model semantics was used as a mean to obtain the sta-
ble models. The main idea was to make sure that the model
is acyclic. Unfortunately, the used reduction method was not
adequate, as shown in (Brewka et al. 2013). However, the
initial idea still holds and we use it to define stability. Al-
though the produced extensions are now incomparable w.r.t.
set inclusion, the semantics is still not universally defined.

Definition 5.7. A model E is a stable extension iff it is pd–
acyclic conflict–free.

Example 4.9 (Continued). Let us again come back to the
ADF ({a, b, c}, {Ca : ¬c ∨ b, Cb : a,Cc : c}). The conflict–
free extensions were ∅, {a}, {c}, {a, b} and {a, b, c}. The
first two are not models, as in the first case a and in the
latter b can be accepted. Recall that ∅, {a} and {a, b} were

278

the pd–acyclic conflict–free extensions. The only one that is
also a model is {a, b} and thus we obtain our single stable
extension.

Grounded semantics
Next comes the grounded semantics (Brewka and Woltran
2010). Just like in the Dung setting, it preserves the unique–
status property, i.e. produces only a single extension. More-
over, it is defined in the terms of a special operator:

Definition 5.8. Let Γ′D(A,R) = (acc(A,R), reb(A,R)),
where acc(A,R) = {r ∈ S | A ⊆ S′ ⊆ (S\R)⇒ Cr(S′ ∩
par(r)) = in} and reb(A,R) = {r ∈ S | A ⊆ S′ ⊆
(S\R)⇒ Cr(S′∩par(r)) = out}. ThenE is the grounded
model ofD iff for someE′ ⊆ S, (E,E′) is the least fix–point
of Γ′D.

Although it might look complicated at first, this is nothing
more than analyzing decisiveness using a set, not interpreta-
tion form (please see (Polberg 2014) for more details). Thus,
one can also obtain the grounded extension by an ADF ver-
sion of Proposition 2.4:

Proposition 5.9. Let v be an empty interpretation. For every
argument a ∈ S that is decisively in w.r.t. v, set v(a) = t
and for every argument b ∈ S that is decisively w.r.t. v, set
v(b) = f . Repeat the procedure until no further assignments
can be done. The grounded extension of D is then vt.

Example 4.9 (Continued). Recall our ADF ({a, b, c}, {Ca :
¬c ∨ b, Cb : a,Cc : c}). Let v be an empty interpretation.
It is easy to see that no argument is decisively in/out w.r.t.
v. If we analyze a, it is easy to see that if we accept c, the
condition is out, but if we accept both b and c it is in again.
Although both b and c are out in v, the condition of b can be
met if we accept a, and condition of c if we accept c. Hence,
we obtain no decisiveness again. Thus, ∅ is the grounded
extension.

Admissible and preferred semantics
In (Polberg, Wallner, and Woltran 2013) we have presented
our first definition of admissibility, before the sub–semantics
classification was developed. The new, simplified version of
our previous formulation, is now as follows:

Definition 5.10. A conflict–extension E ⊆ S is cc–
admissible in D iff every element of E is decisively in w.r.t
to its range interpretation vE .

It is important to understand how decisiveness encapsu-
lates the defense known from the Dung setting. If an argu-
ment is decisively in, then any set of arguments that would
have the power to out the acceptance condition is ”pre-
vented” by the interpretation. Hence, the statements required
for the acceptance of a are mapped to t and those that would
make us reject a are mapped to f . The former encapsulates
the required support, while the latter contains the ”attackers”
known from the Dung setting.

When working with the semantics that have to be acyclic
on the ”inside”, we not only have to defend the members,
but also their acyclic evaluations:

Definition 5.11. A pd–acyclic conflict–free extension E is
aa–admissible iff every argument in E 1) is decisively in
w.r.t. acyclic range interpretation vaE , and 2) has an un-
blocked acyclic pd–evaluation on E s.t. all members of its
blocking set B are mapped to f by vaE .
Definition 5.12. A set of arguments is xy–preferred iff it is
maximal w.r.t. set inclusion xy–admissible.

The following example shows that decisiveness encapsu-
lates defense of an argument, but not necessarily of its eval-
uation:
Example 5.13. Let us modify the ADF depicted in Figure 2
by changing the condition of c: ({a, b, c}, {Ca : ¬c∨ b, Cb :
a,Cc : >}). The new pd–evaluations are ((a), {c}) for a,
((a, b), {c}) for b and ((c), ∅) for c. The conflict–free exten-
sions are now ∅, {a}, {c}, {a, b} and {a, b, c}. Apart from
the last, all are pd–acyclic conflict–free. ∅ and {c} are triv-
ially both aa and cc–admissible and {a, b, c} cc–admissible.
The standard and acyclic discarded sets of {a} are both
empty, thus a is not decisively in (we can always utter c)
and the set is neither aa nor cc–admissible. The discarded
sets of {a, b} are also empty; however, it is easy to see that
both a and b are decisively in. Although uttering c would
not change the values of acceptance conditions, it blocks the
pd–evaluations of a and b. Thus, {a, b} is cc, but not aa–
admissible. The cc and aa–preferred extensions are respec-
tively {a, b, c} and {c}.
Example 4.9 (Continued). Let us come back to the orig-
inal ADF ({a, b, c}, {Ca : ¬c ∨ b, Cb : a,Cc : c}).
∅, {a}, {c}, {a, b} and {a, b, c} were the standard and
∅, {a}, {a, b} pd–acyclic conflict–free extensions. ∅ is triv-
ially both aa and cc, while {c} and {a, b, c} cc–admissible.
The standard discarded sets of {a} and {a, b} are both
empty, while the acyclic ones are {c}. Consequently, {a}
is aa, but not cc–admissible. {a, b} is both, but for differ-
ent reasons; in the cc–case, all arguments are decisively in
(due to cyclic defense). In aa–approach, they are again de-
cisively in, but the evaluations are ”safe” only because c is
not considered a valid attacker.

Complete semantics
Completeness represents an approach in which we have to
accept everything we can safely conclude from our opin-
ions. In the Dung setting, ”safely” means defense, while in
the bipolar setting it is strengthened by providing sufficient
support. In a sense, it follows the model intuition that what
we can accept, we should accept. However, now we not only
use an admissible base in place of a conflict–free one, but
also defend the arguments in question. Therefore, instead of
checking if an argument is in, we want it to be decisively in.
Definition 5.14. A cc–admissible extension E is cc–
complete in D iff every argument in S that is decisively in
w.r.t. to range interpretation vE is in E.
Definition 5.15. An aa–admissible extension E is aa–
complete in D iff every argument in S that is decisively in
w.r.t. to acyclic range interpretation vaE is in E.

Please note that in the case of aa–complete semantics, no
further ”defense” of the evaluation is needed, as visible in

279

AA Fundamental Lemma (i.e. Lemma 5.17). This comes
from the fact that if we already have a properly ”protected”
evaluation, then appending a decisively in argument to it is
sufficient for creating an evaluation for this argument.
Example 4.9 (Continued). Let us now finish with the ADF
({a, b, c}, {Ca : ¬c ∨ b, Cb : a,Cc : c}). It is easy to
see that all cc–admissible extensions are also cc–complete.
However, only {a, b} is aa–complete. Due to the fact that c
is trivially included in any discarded set, a can always be
accepted (thus, ∅ is disqualified). Then, from acceptance of
a, acceptance of b follows easily and {a} is disqualified.

Properties and examples
Although the study provided here will by not be exhaustive,
we would like to show how the lemmas and theorems from
the original paper on AFs (Dung 1995) are shifted into this
new setting. The proofs can be found in (Polberg 2014).

Even though every pd–acyclic conflict–free extension is
also conflict–free, it does not mean that every aa–admissible
is cc–admissible. These approaches differ significantly. The
first one makes additional restrictions on the ”inside”, but
due to acyclicity requirements on the ”outside” there are less
arguments a given extension has to defend from. The latter
allows more freedom as to what we can accept, but also gives
this freedom to the opponent, thus there are more possible
attackers. Moreover, it should not come as a surprise that
these differences pass over to the preferred and complete se-
mantics, as visible in Example 5.19. Our results show that
admissible sub–semantics satisfy the Fundamental Lemma.
Lemma 5.16. CC Fundamental Lemma: Let E be a cc–
admissible extension, vE its range interpretation and a, b ∈
S two arguments decisively in w.r.t. vE . Then E′ = E ∪{a}
is cc–admissible and b is decisively in w.r.t. v′E .
Lemma 5.17. AA Fundamental Lemma: Let E be an aa-
admissible extension, vaE its acyclic range interpretation and
a, b ∈ S two arguments decisively in w.r.t. vaE . Then E′ =
E ∪ {a} is aa–admissible and b is decisively in w.r.t. v′E .

The relations between the semantics presented in (Dung
1995) are preserved by some of the specializations:
Theorem 5.18. Every stable extension is an aa–preferred
extension, but not vice versa. Every xy–preferred extension
is an xy–complete extension for x, y ∈ {a, c}, but not vice
versa. The grounded extension might not be an aa–complete
extension. The grounded extension is the least w.r.t. set in-
clusion cc–complete extension.
Example 5.19. Let ({a, b, c, d}, {Ca : ¬b, Cb : ¬a,Cc :
b ∧ ¬d,Cd : d}) be the ADF depicted in Figure 3. The ob-
tained extensions are visible in Table 1. The conflict–free,
model, stable, grounded, admissible, complete and preferred
semantics will be abbreviated to CF, MOD, STB, GRD,
ADM, COMP and PREF. The prefixing is visible in second
column. In case of conflict–freeness, C will denote the stan-
dard, and A the pd–acyclic one.

6 Labeling–Based Semantics of ADFs
The two approaches towards labeling–based semantics of
ADFs were developed in (Strass 2013a; Brewka et al. 2013).

a b c d

¬b ¬a b ∧ ¬d d

Figure 3: Sample ADF

Table 1: Extensions of the ADF from Figure 3.

CF C ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
A ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}

MOD ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
STB ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
GRD ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}

ADM CC ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
AA ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}

COMP CC ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
AA ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}

PREF CC ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
AA ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}

We will focus on the latter one, based on the notion of a
three–valued characteristic operator:
Definition 6.1. Let VS be the set of all three–valued inter-
pretations defined on S, s and argument in S and v an inter-
pretation in VS . The three–valued characteristic operator
of D is a function ΓD : VS → VS s.t. ΓD(v) = v′ with
v′(s) =

d
w∈[v]2 Cs(par(s) ∩ wt).

Verifying the value of an acceptance condition under a
set of extensions[v]2 of a three–valued interpretation v is ex-
actly checking its value in the completions of the two–valued
part of v. Thus, an argument that is t/f in ΓD(v) is decisively
in/out w.r.t. to the two–valued part of v.

It is easy to see that in a certain sense this operator al-
lows self–justification and self–falsification, i.e. that status
of an argument depends on itself. Take, for example, a self–
supporter; if we generate an interpretation in which it is false
then, obviously, it will remain false. Same follows if we as-
sume it to be true. This results from the fact that the operator
functions on interpretations defined on all arguments, thus
allowing a self–dependent argument to affect its status.

The labeling–based semantics are now as follows:
Definition 6.2. Let v be a three–valued interpretation forD
and ΓD its characteristic operator. We say that v is:
• three–valued model iff for all s ∈ S we have that v(s) 6=

u implies that v(s) = v(ϕs);
• admissible iff v ≤i ΓD(v);
• complete iff v = ΓD(v);
• preferred iff it is ≤i–maximal admissible;
• grounded iff it is the least fixpoint of ΓD.

Although in the case of stable semantics we formally re-
ceive a set, not an interpretation, this difference is not sig-
nificant. As nothing is left undecided, we can safely map all
remaining arguments to f . The current state of the art defini-
tion (Strass 2013a; Brewka et al. 2013) is as follows:

280

Definition 6.3. Let M be a model of D. A reduct of D w.r.t.
M is DM = (M,LM , CM), where LM = L ∩ (M ×M)
and for m ∈ M we set CM

m = ϕm[b/f : b /∈ M]. Let gv be
the grounded model ofDM . ModelM is stable iffM = gvt.

Example 5.19 (Continued). Let us now compute the possi-
ble labelings of our ADF. As there are over twenty possible
three–valued models, we will not list them. We have in total
15 admissible interpretations: v1 = {a : f , b : t, c : u, d :
t}, v2 = {a : t, b : f , c : u, d : u}, v3 = {a : u, b : u, c :
u, d : t}, v4 = {a : t, b : f , c : u, d : t}, v5 = {a : f , b :
t, c : u, d : f}, v6 = {a : t, b : f , c : u, d : f}, v7 = {a :
u, b : u, c : u, d : u}, v8 = {a : u, b : u, c : f , d : t}, v9 =
{a : t, b : f , c : f , d : t}, v10 = {a : f , b : t, c : t, d :
f}, v11 = {a : u, b : u, c : u, d : f}, v12 = {a : t, b : f , c :
f , d : u}, v13 = {a : f , b : t, c : u, d : u}, v14 = {a : f , b :
t, c : f , d : t} and v15 = {a : t, b : f , c : f , d : f}. Out
of them v7 to v15 are complete. The ones that maximize the
information content in this case are the ones without any u
mappings: v9, v10, v14 and v9. v10 and v15 are stable and
finally, v7 is grounded.

Comparison with the extension–based approach
We will start the comparison of extensions and labelings by
relating conflict–freeness and three–valued models. Please
note that the intuitions of two–valued and three–valued mod-
els are completely different and should not be confused. We
will say that an extension E and a labeling v correspond iff
vt = E.

Theorem 6.4. Let E be a conflict–free and A a pd–acyclic
conflict–free extension. The u–completions of vE , vA and
vaA are three–valued models.

Let us continue with the admissible semantics. First, we
will tie the notion of decisiveness to admissibility, following
the comparison of completions and extending interpretations
that we have presented in Section 4.

Theorem 6.5. Let v be a three–valued interpretation and v′
its (maximal) two–valued sub–interpretation. v is admissible
iff all arguments mapped to t are decisively in w.r.t. v′ and
all arguments mapped to f are decisively out w.r.t. v′.

Please note that this result does not imply that admissible
extensions and labelings ”perfectly” coincide. In labelings,
we guess an interpretation, and thus assign initial values
to arguments that we want to verify later. If they are self–
dependent, it of course affects the outcome. In the exten-
sion based approaches, we distinguish whether this depen-
dency is permitted. Therefore, the aa– and cc– approaches
will have a corresponding labeling, but not vice versa.

Theorem 6.6. Let E be a cc–admissible and A an aa–
admissible extension. The u–completions of vE and vaA are
admissible labelings.

Let us now consider the preferred semantics. Informa-
tion maximality is not the same as maximizing the set of
accepted arguments and due to the behavior of ΓD we can
obtain a preferred interpretation that can map to t a subset of
arguments of another interpretation. Consequently, we fail to
receive an exact correspondence between the semantics. By

a b c

¬b a ¬b ∨ c

(a) ADF1

a b c

¬a ∧ b a ¬b

(b) ADF2

Figure 4: Sample ADFs

this we mean that given a framework there can exist an (arbi-
trary) preferred extension without a labeling counterpart and
a labeling without an appropriate extension of a given type.
Theorem 6.7. For any xy–preferred extension there might
not exist a corresponding preferred labeling and vice versa.
Example 6.8. Let us look at ADF1 = ({a, b, c}, {Ca :
¬a,Cb : a,Cc : ¬b ∨ c}), as depicted in Figure 4a. a and b
cannot form a conflict–free extension to start with, so we are
only left with c. However, the attack from b on c can be only
overpowered by self–support, thus it cannot be part of an
aa–admissible extension. Therefore, we obtain only one aa–
preferred extension, namely the empty set. The single pre-
ferred labeling solution would be v = {a : u, b : u, c : t}
and we can see there is no correspondence between the re-
sults. On the other hand, there is one with the cc–preferred
extension {c}.

Finally, we have ADF2 = ({a, b, c}, {Ca : ¬a ∧ b, Cb :
a,Cc : ¬b}) depicted in Figure 4b. The preferred labeling
is {a : f , b : f , c : t}. The single cc–preferred extension is
∅ and again, we receive no correspondence. However, it is
compliance with the aa–preferred extension {c}.

The labeling–based complete semantics can also be de-
fined in terms of decisiveness:
Theorem 6.9. Let v be a three–valued interpretation and v′
its (maximal) two–valued sub–interpretation. v is complete
iff all arguments decisively out w.r.t. v′ are mapped to f by v
and all arguments decisively in w.r.t. v′ are mapped to t by
v.

Fortunately, just like in the case of admissible semantics,
complete extensions and labelings partially correspond:
Theorem 6.10. Let E be a cc–complete and A an aa–
complete extension. The u–completions of vE and vaA are
complete labelings.

Please recall that in the Dung setting, extensions and la-
belings agreed on the sets of accepted arguments. In ADFs,
this relation is often only one way – like in the case of admis-
sible and complete cc– and aa– sub–semantics – or simply
nonexistent, like in preferred approach. In this context, the
labeling–based admissibility (and completeness) can be seen
as the most general one. This does not mean that specializa-
tions, especially handling cycles, are not needed. Even more
so, as to the best of our knowledge no methods for ensuring
acyclicity in a three–valued setting are yet available.

Due to the fact that the grounded semantics has a very
clear meaning, it is no wonder that both available approaches
coincide, as already noted in (Brewka et al. 2013). We con-
clude this section by relating both available notions of sta-
bility. The relevant proofs can be found in (Polberg 2014).

281

Theorem 6.11. The two–valued grounded extension and the
grounded labeling correspond.

Theorem 6.12. A setM ⊆ S of arguments is labeling stable
iff it is extension–based stable.

7 Concluding Remarks
In this paper we have introduced a family of extension–
based semantics as well as their classification w.r.t. positive
dependency cycles. Our results also show that they satisfy
ADF versions of Dung’s Fundamental Lemma and that ap-
propriate sub–semantics preserve the relations between sta-
ble, preferred and complete semantics. We have also ex-
plained how our formulations relate to the labeling–based
approach. Our results show that the precise correspondence
between the extension–based and labeling–based semantics,
that holds in the Dung setting, does not fully carry over.

It is easy to see that in a certain sense, labelings provide
more information than extensions due to distinguishing false
and undecided states. Therefore, one of the aims of our fu-
ture work is to present the sub–semantics described here also
in a labeling form. However, since our focus is primarily on
accepting arguments, a comparison w.r.t. information con-
tent would not be fully adequate for our purposes and the
current characteristic operator could not be fully reused. We
hope that further research will produce satisfactory formula-
tions.

References
Baroni, P.; Caminada, M.; and Giacomin, M. 2011. An
introduction to argumentation semantics. Knowledge Eng.
Review 26(4):365–410.
Baroni, P.; Giacomin, M.; and Guida, G. 2005. SCC-
Recursiveness: A general schema for argumentation seman-
tics. Artif. Intell. 168(1-2):162–210.
Bodanza, G. A., and Tohmé, F. A. 2009. Two approaches to
the problems of self-attacking arguments and general odd-
length cycles of attack. Journal of Applied Logic 7(4):403
– 420. Special Issue: Formal Models of Belief Change in
Rational Agents.
Boella, G.; Gabbay, D.; van der Torre, L.; and Villata, S.
2010. Support in abstract argumentation. In Proc. of
COMMA 2010, 111–122. Amsterdam, The Netherlands,
The Netherlands: IOS Press.
Brewka, G., and Woltran, S. 2010. Abstract dialectical
frameworks. In Proc. KR ’10, 102–111. AAAI Press.
Brewka, G.; Ellmauthaler, S.; Strass, H.; Wallner, J. P.; and
Woltran, S. 2013. Abstract dialectical frameworks revisited.
In Proc. IJCAI’13, 803–809. AAAI Press.
Brewka, G.; Polberg, S.; and Woltran, S. 2013. Generaliza-
tions of Dung frameworks and their role in formal argumen-
tation. Intelligent Systems, IEEE PP(99). Forthcoming.
Caminada, M., and Gabbay, D. M. 2009. A logical account
of formal argumentation. Studia Logica 93(2):109–145.
Cayrol, C., and Lagasquie-Schiex, M.-C. 2009. Bipolar ab-
stract argumentation systems. In Simari, G., and Rahwan, I.,
eds., Argumentation in Artificial Intelligence. 65–84.

Cayrol, C., and Lagasquie-Schiex, M.-C. 2013. Bipolarity in
argumentation graphs: Towards a better understanding. Int.
J. Approx. Reasoning 54(7):876–899.
Coste-Marquis, S.; Devred, C.; and Marquis, P. 2005a. In-
ference from controversial arguments. In Sutcliffe, G., and
Voronkov, A., eds., Proc. LPAR ’05, volume 3835 of LNCS,
606–620. Springer Berlin Heidelberg.
Coste-Marquis, S.; Devred, C.; and Marquis, P. 2005b. Pru-
dent semantics for argumentation frameworks. In Proc. of
ICTAI’05, 568–572. Washington, DC, USA: IEEE Com-
puter Society.
Dung, P. M., and Thang, P. M. 2009. A unified frame-
work for representation and development of dialectical proof
procedures in argumentation. In Proc. of IJCAI’09, 746–
751. San Francisco, CA, USA: Morgan Kaufmann Publish-
ers Inc.
Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artif. Intell. 77:321–357.
Ellmauthaler, S. 2012. Abstract dialectical frameworks:
properties, complexity, and implementation. Master’s the-
sis, Faculty of Informatics, Institute of Information Systems,
Vienna University of Technology.
Jakobovits, H., and Vermeir, D. 1999. Dialectic semantics
for argumentation frameworks. In Proc. of ICAIL ’99, 53–
62. New York, NY, USA: ACM.
Nouioua, F. 2013. AFs with necessities: Further seman-
tics and labelling characterization. In Liu, W.; Subrahma-
nian, V.; and Wijsen, J., eds., Proc. SUM ’13, volume 8078
of LNCS. Springer Berlin Heidelberg. 120–133.
Oren, N., and Norman, T. J. 2008. Semantics for evidence-
based argumentation. In Proc. COMMA ’08, volume 172
of Frontiers in Artificial Intelligence and Applications, 276–
284. IOS Press.
Polberg, S.; Wallner, J. P.; and Woltran, S. 2013. Ad-
missibility in the abstract dialectical framework. In Proc.
CLIMA’13, volume 8143 of LNCS, 102–118. Springer.
Polberg, S. 2014. Extension–based semantics of abstract
dialectical frameworks. Technical Report DBAI-TR-2014-
85, Institute for Information Systems, Technical University
of Vienna.
Rahwan, I., and Simari, G. R. 2009. Argumentation in Arti-
ficial Intelligence. Springer, 1st edition.
Strass, H., and Wallner, J. P. 2014. Analyzing the Compu-
tational Complexity of Abstract Dialectical Frameworks via
Approximation Fixpoint Theory. In Proc. KR ’14. Forth-
coming.
Strass, H. 2013a. Approximating operators and semantics
for abstract dialectical frameworks. Artificial Intelligence
205:39 – 70.
Strass, H. 2013b. Instantiating knowledge bases in abstract
dialectical frameworks. In Proc. CLIMA’13, volume 8143
of LNCS, 86–101. Springer.

282

Credulous and Skeptical Argument Games for Complete Semantics in
Conflict Resolution based Argumentation ∗

Jozef Frtús

Department of Applied Informatics
Faculty of Mathematics, Physics, and Informatics

Comenius University in Bratislava, Slovakia

Abstract

Argumentation is one of the most popular approaches
of defining a non-monotonic formalism and several ar-
gumentation based semantics were proposed for defea-
sible logic programs. Recently, a new approach based
on notions of conflict resolutions was proposed, how-
ever with declarative semantics only. This paper gives
a more procedural counterpart by developing skepti-
cal and credulous argument games for complete se-
mantics and soundness and completeness theorems for
both games are provided. After that, distribution of
defeasible logic program into several contexts is investi-
gated and both argument games are adapted for multi-
context system.

Introduction

Argumentation is successfully applied as an approach
of defining non-monotonic formalisms. The main ad-
vantage of semantics based on formal models of argu-
mentation is its closeness to real humans discussions.
Therefore, the semantics can be explained also for peo-
ple not trained in formal logic or mathematics.

To capture the knowledge, a logical language is
needed. Usually the language of Defeasible Logic
Programming (DeLP) is considered, where two kinds
for rules are distinguished. Strict rules represent
deductive reasoning: whenever their preconditions
hold, we accept the conclusion. On the other hand,
defeasible rules formalize tentative knowledge that
can be defeated. Several semantics based on argu-
mentation were proposed for defeasible logic programs
(Prakken and Sartor 1997), (García and Simari 2004),
(Caminada and Amgoud 2007),
(Prakken 2010), (Modgil and Prakken 2011),
(Baláž, Frtús, and Homola 2013). However, as Cam-
inada and Amgoud (Caminada and Amgoud 2007)
pointed out, careless design of semantics may lead
to very unintuitive results, such as inconsistency of
the system (justification for both an atom A and its
negation ¬A is provided) or unsatisfying of strict
rules (system justifies all preconditions, but not the
conclusion of a strict rule).

∗This work is supported from the VEGA project
no. 1/1333/12.

In this paper we take the approach by Baláž et
al. (Baláž, Frtús, and Homola 2013) as the starting
point, since it both respects intuitions of logic program-
ming and satisfies desired semantical properties. In
(Baláž, Frtús, and Homola 2013) notion of conflict res-
olutions and new methodology of justification of argu-
ments is introduced, however only in a declarative way.
Our main goal, in this paper, is to give a more proce-
dural counterpart. This is especially useful when deal-
ing with algorithms and implementations. We adapt
skeptical and credulous argument games for complete
semantics and prove soundness and completeness for
both of them, what is the main contribution of this pa-
per. Then we are investigating with distribution of de-
feasible logic program into several contexts (programs)
and both argument games are adapted for distributed
computing. This can be useful in ambient intelligence
environments, where distributed and contextual defea-
sible reasoning is heavily applied.

The paper is structured as follows: first preliminaries
of Dung’s abstract argumentation frameworks and de-
feasible logic programming are introduced. Then the
declarative conflict resolution based semantics intro-
duced in (Baláž, Frtús, and Homola 2013) is recapitu-
lated. Argument games are developed and their prop-
erties are proved in the next section. The last section
is devoted to contextualization of defeasible logic pro-
grams.

Preliminaries

Argumentation Framework

Definition 1 (Abstract Argumentation Framework
(Dung 1995)). An abstract argumentation framework is
a pair F = (A,R) where

1. A is a set of arguments, and

2. R ⊆ A×A is an attack relation on A.

An argument A attacks an argument B if (A,B) ∈
R. A set of arguments S attacks an argument A if
an argument in S attacks A. A set of arguments S

is attack-free1 if S does not attack an argument in S .

1Note that we will use the original term “conflict-free” in
slightly different context.

283

A set of arguments S defends an argument A if each
argument attacking A is attacked by S . An attack-
free set of arguments S is admissible iff S defends each
argument in S . The characteristic function FAF of an
argumentation framework AF = (A, Def) is a mapping
FAF : 2A 7→ 2A where for all S ⊆ A, FAF (S) is defined
as {a ∈ A | S defends a}.

Definition 2 (Extension (Dung 1995)). An admissible
set of arguments S is

1. a complete extension iff S contains each argument
defended by S .

2. the grounded extension iff S is the least complete ex-
tension.

3. a preferred extension iff S is a maximal complete ex-
tension.

4. a stable extension iff S attacks each argument which
does not belong to S .

We will prove following lemma2, which will be used
in procedural formalization of the grounded semantics.
Its intuitive meaning is that an argument x to be in
the grounded extension, it can not be defended only by
itself.

Lemma 1. Given an argumentation framework
(A, Def) and a finite ordinal i, argument A ∈ F i+1 iff
for each argument Y defeating A, there is an argument
Z ∈ F i such that (Z, Y) ∈ Def and Z 6= A.

Defeasible Logic Program

An atom is a propositional variable. A classical literal
is either an atom or an atom preceded by classical nega-
tion ¬. A default literal is a classical literal preceded
by default negation ∼. A literal is either a classical or
a default literal. By definition ¬¬A equals to A and
∼∼L equals to L, for an atom A and a classical literal
L. By D we will denote the set of all default literals.
By convention ∼S equals to {∼L | L ∈ S} for any set
of literals S.

A strict rule is an expression of the form
L1, . . . , Ln → L0 where 0 ≤ n, each Li, 1 ≤ i ≤ n, is
a literal, and L0 is a classical literal. A defeasible rule
is an expression of the form L1, . . . , Ln ⇒ L0 where
0 ≤ n, each Li, 1 ≤ i ≤ n, is a literal, and L0 is a clas-
sical literal. A defeasible logic program P is a finite set
of of strict rules Π and defeasible rules ∆. In the fol-
lowing text we use the symbol to denote either strict
or defeasible rule.

Conflict Resolution based Semantics

Existing argumentation formalisms (Prakken 2010;
García and Simari 2004; Prakken and Sartor 1997) are
usually defined through five steps. At the beginning,

2Note that all proofs are presented in the
extended version of the paper available at
http://dai.fmph.uniba.sk/~frtus/nmr2014.pdf

some underlying logical language is chosen for describ-
ing knowledge. The notion of an argument is then de-
fined within this language. Then conflicts between ar-
guments are identified. The resolution of conflicts is
captured by an attack relation among conflicting argu-
ments. The status of an argument is then determined
by the attack relation.

The conflict resolution based approach
(Baláž, Frtús, and Homola 2013) diverge from this
methodology. Instead of attacking a conflicting ar-
gument, one of the weaker building blocks (called
vulnerabilities) used to construct the argument is
attacked. Specifically, the resolution of a conflict is
either a default assumption or a defeasible rule. The
status of an argument does not depend on attack
relation between arguments but on attack relation
between conflict resolutions.

Conflict resolution based semantics for the DeLP con-
sists of five steps:

1. Construction of arguments on top of the language of
defeasible logic programs.

2. Identification of conflicts between arguments.

3. Proposing a conflict resolution strategy.

4. Instantiation of Dung’s AFs with conflict resolutions.

5. Determination of the status of default assumptions,
defeasible rules, and arguments with respect to suc-
cessful conflict resolutions.

A vulnerability is a part of an argument that may be
defeated to resolve a conflict. It is either a defeasible
rule or a default literal.

Definition 3 (Vulnerability). Let P be a defeasible
logic program. A vulnerability is a defeasible rule in P
or a default literal in D. By VP we will denote the set
of all vulnerabilities of P .

Two kinds of arguments are usually be constructed
in the language of defeasible logic programs. Default
arguments correspond to default literals. Deductive
arguments are constructed by chaining of rules. The
following is a slightly more general definition, where
a knowledge base K denotes literals for which no fur-
ther backing is needed.

Definition 4 (Argument). Let P = (Π, ∆) be a defea-
sible logic program. An argument A for a literal L over
a knowledge base K is

1. [L], where L ∈ K

Conc(A) = L

Vuls(A) = {L} ∩ D

2. [A1, . . . ,An L] where each Ai, 0 ≤ i ≤ n, is an
argument for a literal Li, r : L1, . . . ,Ln L is a rule
in P .

Conc(A) = L

Vuls(A) = Vuls(A1) ∪ · · · ∪Vuls(An) ∪ ({r} ∩ ∆)

By AP we will denote the set of all arguments of P .

284

http://dai.fmph.uniba.sk/~frtus/nmr2014.pdf

The typical example of knowledge base within the
language of defeasible logic programming is the set of
default literals D and we will not specify K until the sec-
tion about contextual DeLP. Therefore, whenever the K
is left unspecified, it is implicitly set to D. Arguments
created by chaining of rules will be called deductive.

Example 1. Consider the following defeasible logic pro-
gram P :

⇒ a ⇒ c
⇒ b ⇒ d

a, b → h c, d → ¬h

Six deductive arguments can be constructed from P

A1 = [⇒ a] A4 = [⇒ c]
A2 = [⇒ b] A5 = [⇒ d]
A3 = [A1,A2 → h] A6 = [A3,A4 → ¬h]

Vulnerabilities of arguments A3 are A6 are Vuls(A3) =
{⇒ a,⇒ b} and Vuls(A6) = {⇒ c,⇒ d}.

Two kinds of conflicts among arguments may arise,
each corresponds to one type of negation.

Definition 5 (Conflict). Let P be a defeasible logic
program. Arguments A,B ∈ AP are conflicting iff A

rebuts or undercuts B where

1. A rebuts B iff A and B are deductive arguments and
Conc(A) = ¬Conc(B),

2. A undercuts B iff A is a deductive argument, B is
a default argument, and Conc(A) = ∼Conc(B).

The set C = {A,B} is called a conflict. The first kind is
called a rebutting conflict and the second kind is called
an undercutting conflict. By CP we will denote the set
of all conflicts of P .

Conflicts are resolved by defeating one of the building
blocks of conflicting arguments. Each default assump-
tion or defeasible rule used to construct a conflicting
argument is a possible resolution. Strict rules can not
be used as a resolution of any conflict because they have
to be always satisfied.

Definition 6 (Conflict Resolution). Let P be a defea-
sible logic program. A vulnerability V ∈ VP is a reso-
lution of a conflict C ∈ CP if V ∈ Vuls(C). The pair
R = (C ,V) is called a conflict resolution. By RP we
will denote the set of all conflict resolutions of P .

In general, each conflict may have more resolutions.
Some of them may be more preferred than others. The
choice of preferred conflict resolutions is always domain
dependent. Some vulnerabilities can be defeated in one
domain, but they may as well stay undefeated in an-
other. Therefore we allow the user to choose any con-
flict resolution strategy she might prefer.

Definition 7 (Conflict Resolution Strategy). Let P be
a defeasible logic program. A conflict resolution strat-
egy is a finite subset σ of RP . We say that a vulnera-
bility V ∈ VP is a σ-resolution of a conflict C ∈ CP if
(C ,V) ∈ σ. A conflict resolution strategy σ is total iff
for each conflict C ∈ CP there exists a σ-resolution of
C .

In existing approaches various conflict resolution
strategies are applied. Examples of default, last-link
and weakest-link conflict resolution strategies are pre-
sented in (Baláž, Frtús, and Homola 2013).

Example 2 (Continuation of Example 1). The only con-
flict in the defeasible logic program P is the C =
{A3,A6}. Consider following six conflict resolutions.

R1 = (C ,⇒ a) R3 = (C ,⇒ c)
R2 = (C ,⇒ b) R4 = (C ,⇒ d)

Then σ = {R1}, σ′ = {Ri | 1 ≤ i ≤ 4}, σ′′ = ∅ are
examples of conflict resolution strategies for P . We can
see that strategies σ, σ′ are total.

To determine in which way conflicts will be resolved,
Dung’s AF is instantiated with conflict resolutions. The
intuitive meaning of a conflict resolution (C ,V) is “the
conflict C will be resolved by defeating the vulnerabil-
ity V ”. The conflict resolution based semantics is built
on three levels of attacks: attacks on the vulnerabilities,
attacks on the arguments, and attacks on the conflict
resolutions. Such an approach is necessary: if a vulner-
ability is defeated, so should be all arguments built on
it, and consequently all conflict resolutions respective
to the argument.

Definition 8 (Attack). A conflict resolution R =
(C ,V) attacks

• a vulnerability V ′ iff V ′ = V .

• an argument A iff R attacks a vulnerability in
Vuls(A).

• a conflict resolution R′ = (C ′,V ′) iff either

1. V 6= V
′ and R attacks an argument in C

′ or

2. V = V ′ and R attacks all arguments in C ′.

A set of conflict resolutions S ⊆ RP attacks a vulnera-
bility V ∈ VP (resp. an argument A ∈ AP or a conflict
resolution R ∈ RP) iff a conflict resolution in S attacks
V (resp. A or R).

Intuitively, it should not happen that both a con-
flict resolution R = (C ,V) and a vulnerability V are
accepted. Therefore, if R is accepted, V and all argu-
ments constructed on top of it should be defeated. The
notion of attack between conflict resolutions formalizes
the ideas that there may be more alternatives how to
resolve a conflict and a conflict resolution may resolve
other conflicts as well, thus causing other conflict res-
olutions to be irrelevant. The distinction between two
kinds of attacks between conflict resolutions is neces-
sary to achieve the intended semantics when dealing
with self-conflicting arguments. The interested reader
is kindly referred to (Baláž, Frtús, and Homola 2013)
for demonstrative examples.

Definition 9 (Instantiation). The instantiation for
a conflict resolution strategy σ is an abstract argumen-
tation framework F = (A,R) where

• A = σ

• R is the attack relation on σ from the Definition 8.

285

Now thanks to the instantiation we can use the
Dung’s semantics in order to compute which vulnera-
bilities (resp. arguments, conflict resolutions) are unde-
feated (status In), defeated (status Out), or undecided
(status Undec).

Definition 10 (Defense). Let σ be a conflict resolu-
tion strategy for a defeasible logic program P . A set
of conflict resolutions S ⊆ σ defends a vulnerability
V ∈ VP (resp. an argument A ∈ AP or a conflict reso-
lution R ∈ σ) iff each conflict resolution in σ attacking
V (resp. A or R) is attacked by S .

Definition 11 (Status). Let σ be a conflict resolu-
tion strategy for a defeasible logic program P and E
be a complete extension of the instantiation for σ. The
status of a vulnerability V ∈ VP (resp. an argument
A ∈ AP or a conflict resolution R ∈ σ) with respect to
E is

• In if E defends V (resp. A or R),

• Out if V (resp. A or R) is attacked by E ,

• Undec otherwise.

Let s ∈ {In,Undec,Out}. By As

P
(E) we denote the

set of all arguments with the status s with respect to
a complete extension E .

The following definitions define actual semantics of
the DeLP program P and entailment relation between
a program P and a literal L.

Definition 12 (Output). Let σ be a conflict resolu-
tion strategy for a defeasible logic program P and E be
a complete extension of the instantiation for σ. The
output of E is a set of literals OutputP(E) = {L ∈ L |
AIn

P
(E) contains an argument for L}.

Note that we will omit default literals in output to
improve the legibility.

Definition 13 (Entailment). Let σ be a conflict reso-
lution strategy for a defeasible logic program P and F
be the instantiation for σ. Defeasible logic program
P skeptically (resp. credulously) entails a literal L,
P |=sk L (resp. P |=cr L) iff for each (resp. at least
one) complete extension E of F , L ∈ OutputP(E).

Example 3 (Continuation of Example 2). Consider the
conflict resolution strategy σ′ from Example 2. The
instantiation for σ′ is on the Figure 1.

R1 R2

R3R4

Figure 1: The instantiation for the conflict resolution
strategy σ′.

All conflict resolutions are now exclusive, since to re-
solve the conflict, it is sufficient to reject only one of
the defeasible rules. Therefore σ′ induces the complete
graph.

There are five complete extensions {R1}, {R2}, {R3},
{R4}, {} of the instantiation and each of them de-
termine one program output {b, c, d,¬h}, {a, c, d,¬h},
{a, b, d, h}, {a, b, c, h}, {}.

Procedural Semantics

In the previous section we recapitulated
(Baláž, Frtús, and Homola 2013) conflict resolu-
tion based semantics in the original declarative way.
Although this declarative approach is very elegant
and provides nice algebraic investigations, the more
procedural style of semantics is appropriate when
dealing with algorithms and implementations. One
can see a parallel in a mathematical logic where we are
similarly interested in a logical calculi (proof theory)
which is sound and complete with respect to defined
model-theoretic semantics. In this section our goal is
to define skeptical and credulous argument games for
complete semantics.

For a conflict resolution R = ({A,B},V) we define
auxiliary functions which will be frequently used.

con(R) = {A,B}

res(R) = V

vuls(R) = (Vuls(A) \ {V }) ∪ (Vuls(B) \ {V })∪

(Vuls(A) ∩ Vuls(B) ∩ {V })

con(R) denotes the conflict and res(R) the resolution
of a conflict resolution R. The meaning of the set of
vulnerabilities vuls(R) can be explained as following:
suppose R is in a conflict resolution strategy σ and E
is a complete extension of instantiation for σ. If R ∈ E
and all the vulnerabilities in vuls(R) have the status In,
then in order to resolve the conflict con(R), the status
of the vulnerability res(R) is Out.

Now we characterize the attack between conflict res-
olutions in terms of aforementioned functions. This will
be useful in proofs for soundness and completeness of
argument games.

Proposition 1. Let P be a defeasible logic program,
σ a conflict resolution strategy and R = (C ,V), R′ =
(C ′,V ′) ∈ σ are conflict resolutions. Then R attacks
R′ iff res(R) ∈ vuls(R′).

Argumentation can be seen and thus also formalized
as a discussion of two players. The aim of the first
player (called proponent Pro) is to prove an initial ar-
gument. The second player is an opponent (Opp), what
means that her goal is to prevent proponent to prove
the initial argument. Hence a dispute essentially is a
sequence of moves where each player gives a counterar-
gument to the last stated.

Proof theory of argumentation is well stud-
ied area and argument games for various se-
mantics were proposed (Modgil and Caminada 2009),
(Prakken and Sartor 1997). The process of proving
a literal L via an argument game, in conflict resolu-
tion based setting, considered in this paper, takes two
steps:

286

1. Find an argument A with conclusion L.

2. Justify all vulnerabilities in Vuls(A).

Intuitively, a move (pl,R,V) is a triple denoting:
player pl claims that the set of vulnerabilities V is true
and resolution R is a reason for the other player why
her set of vulnerabilities is not justified.

Definition 14 (Move). Let σ be a conflict resolution
strategy for a defeasible logic program P . A move is
a triple µ = (pl,R,V), where pl ∈ {Opp,Pro} denotes
the player, R ∈ σ is a resolution and V ⊆ VP is a set of
vulnerabilities.

Now since the very first move in a dialogue does not
counter argue any of the previous move, the resolution
R will be left unspecified and in such case we will write
(pl,−,V). Convention Pro = Opp and Opp = Pro

will be used for denoting the opposite players. We
say that a move (pl,R,V) attacks a move (pl,R′,V ′)
iff res(R) ∈ V ′.

Definition 15 (Argument Dialogue). A dialogue is a fi-
nite nonempty sequence of moves µ1, . . . , µn, 1 ≤ i < n
where:

• pli = Pro (Opp) iff i is odd (even)

• µi+1 attacks µi

Intuitively, for a given argument, there can be more
than one counterargument. This leads to a tree repre-
sentation of discussion. Now, since the burden of proof
is on the player Pro, proponent proves an initial argu-
ment if she wins all disputes. On the other hand, the
burden of attack is on the player Opp, meaning that
opponent must “play” all possible counterarguments,
against Pro’s last argument, forming new branches in
a discussion tree.

Definition 16 (Argument Game). Let σ be a conflict
resolution strategy for a defeasible logic program P . An
argument game for an argument A is a finite tree such
that:

• (Pro,−,Vuls(A)) is the root,

• all branches are dialogues,

• if move µ played by Pro is a node in the tree, then
every move (Opp,R, vuls(R)) defeating µ is a child
of µ.

• if µ, µ′ are any moves played by Pro in T then µ
does not defeat µ′.

A player wins a dispute if the counterpart can not
make any move (give a counterargument). This can
roughly be paraphrased as “the one who has the last
word laughs best”. Since the burden of proof is on the
proponent, Pro, in order to win, has to win all branches
in the game. On the other hand, for opponent to win
an argument game, it is sufficient to win at least one
branch of the game.

Definition 17 (Winner). A player pl wins a dialogue
iff she plays the last move in it. Player Pro (resp.
Opp) wins an argument game T iff she wins all (resp.
at least on of the) branches in the argument game T .
An argument game is successful iff it is won by Pro.

Definition 18 (Proved Literal). Let σ be a conflict
resolution strategy for a defeasible logic program P .
A literal L is :

• proved in an argument game T iff T is a successful
argument game for an argument A with Conc(A) =
L.

• proved iff there is an argument game T proving L.

Now we propose two particular argument games and
prove their soundness and completeness with respect to
declarative semantics defined in the previous section.

Argument Game for Skeptical Complete
Semantics

First we will investigate with skeptical complete se-
mantics which corresponds to the grounded semantics.
Since the grounded semantics gives the highest burden
of proof on membership of the extension it defines, the
opponent is allowed to repeat her moves and proponent
is not.

Definition 19 (Skeptical Game). An argument game
T is called skeptical iff in each branch of T holds:
if (Pro,R,V), (Pro,R′,V ′) are two moves played by
Pro, then R 6= R′.

Argument game for skeptical complete semantics is
sound and complete with respect to declarative conflict
resolution based grounded semantics.

Proposition 2. Let P be a defeasible logic program and
L be a literal. P |=sk L iff L is skeptically proved3.

Let demonstrate the skeptical argument game in ex-
ample.

Example 4. Consider the following defeasible logic pro-
gram P = {⇒ a,⇒ ¬ a} with conflict resolution strat-
egy σ = {R1,R2}. There are two deductive arguments
A1, A2, one conflict C and two conflict resolutions R1,
R2.

A1 = [⇒ a] A2 = [⇒ ¬ a]
C = {A1,A2}
R1 = (C ,⇒ a) R2 = (C ,⇒ ¬ a)

We would like to skeptically prove literal a. The skep-
tical argument game for argument A1 is on the Figure
2.

Proponent cannot repeat her move µ3 and therefore
she loses the game.

Argument Game for Credulous Complete
Semantics

Credulous complete semantics corresponds to the pre-
ferred semantics, where an argument can be defended
by itself. Therefore, in credulous game, proponent is
allowed to repeat her moves and opponent is not.

3 A literal L is skeptically proved iff there is an skeptical
argument game T such that L is proved in T .

287

µ1 = (Pro,−, {⇒ a})

µ2 = (Opp,R1, {⇒ ¬ a})

µ3 = (Pro,R2, {⇒ a})

µ4 = (Opp,R1, {⇒ ¬ a})

Figure 2: The skeptical argument game for argument
A1.

Definition 20 (Credulous Game). An argument game
T is called credulous iff in each branch of T holds:
if (Opp,R,V), (Opp,R′,V ′) are two moves played by
Opp, then R 6= R′.

Argument game for credulous complete semantics is
sound and complete with respect to declarative conflict
resolution based preferred semantics.

Proposition 3. Let P be a defeasible logic program and
L be a literal. P |=cr L iff L is credulously proved4.

Now we will consider the defeasible logic program P
and conflict resolution strategy σ from Example 4 and
try to prove literal a credulously.

Example 5 (Continuation of Example 4). We would like
to credulously prove literal a. The credulous argument
game for argument A1 is on the Figure 3.

µ1 = (Pro,−, {⇒ a})

µ2 = (Opp,R1, {⇒ ¬ a})

µ3 = (Pro,R2, {⇒ a})

Figure 3: The credulous argument game for argument
A1.

Opponent cannot repeat her move µ2 and therefore
the game is successful.

In (Governatori et al. 2004; Billington et al. 2010)
several variants of defeasible logics with procedural se-
mantics are proposed. Repeating an argument for Pro

in our approach corresponds to the ∆ proof tag of
(Billington et al. 2010) and repeating an argument by
Opp in our approach corresponds to the σ proof tag of
(Billington et al. 2010).

Contextual DeLP

In the previous section we developed a procedural se-
mantics based on argument games, now we will gen-
eralize these ideas to a distributive setting, where not

4 A literal L is credulously proved iff there is an credulous
argument game T such that L is proved in T .

only one, but the whole set of defeasible logic programs
is assumed. Each of these programs may be viewed as
a context (i.e. agent), which describes the world within
its own language (i.e. propositional symbols). Contexts
are interconnected into multi-context system through
non-monotonic bridge rules, which import knowledge
(foreign literals) from other contexts.

Our goal is to adapt the argument games to multi-
context systems and satisfy following requirements:

• To minimize the necessary communication complex-
ity between contexts. The conflict between argu-
ments can be decided in other context, but the struc-
ture of arguments should not be communicated.

• Contexts provide just distributive computing, they
should not change the semantics. Hence if we look at
multi-context system as a monolithic program, the
output should be the same as in distributive case.

Note that the distributed reasoning is a very complex
task involving also issues of communication protocols
and information security. In this chapter we abstract
from this and focus only on the reasoning part.

Distributed computing of semantics is a hot topic
in the area of multi-agent systems, for García
and Simari’s (García and Simari 2004) DeLP a dis-
tributed argumentation framework was proposed in
(Thimm and Kern-Isberner 2008). Contextual defea-
sible reasoning is also applied in environment of Am-
bient Intelligence (Bikakis and Antoniou 2010), where
devices, software agents and services are supposed to
integrate and cooperate in support of human objectives.

A vocabulary V is a set of propositional variables.
We say that a literal is local if its propositional variable
is in V , otherwise it is foreign. A local rule contains
only local literals. A mapping rule contains local literal
in the head and at least one foreign literal in the body.
A contextual defeasible logic program is a set of local
strict rules, and local or mapping defeasible rules.

Sometimes we will denote the context pertaining to
a foreign literal. For example 2: a, c ⇒ b means that
foreign literal a is imported from the second context.

Definition 21 (Context). A context is a triple C =
(V, P, σ) where V is a set of propositional variables, P is
a contextual defeasible logic program and σ is a conflict
resolution strategy.

Since, within the one context we do not know the
structure of an argument supporting some foreign lit-
eral, foreign literals cannot be used as resolutions of
conflicts (their set of vulnerabilities is empty).

Contextual argument is an argument, where some of
the literals (foreign) do not need a further backing and
are considered as an import of the knowledge from the
other context.

Definition 22 (Contextual Argument). Given a con-
text C = (V, P, σ) and the set of foreign literals F ,
a contextual argument is an argument over a knowledge
base ∼V ∪ F . The set of all foreign literals contained

288

by an argument in a set of arguments A will be denoted
F (A).

Contextual argument is foreign if it is of the form [L],
where L is a foreign literal.

Following proposition means that foreign literals can-
not incorporate a conflict.

Proposition 4. Given a context C = (V, P, σ) and the
set of foreign literals F , a foreign argument A cannot be
in conflict with by any contextual argument from context
C.

Definition 23 (Multi-Context System). A multi-
context system 5 is a finite nonempty set of contexts
C = {C1, . . . , Cn} where 0 < n, each Ci = (Vi, Pi, σi),
1 ≤ i ≤ n, is a context and {V1, . . . , Vn} is a partition
of the set of all propositional variables in

⋃n

i=1
Pi.

A multi context system C is cyclic iff there are con-
texts C1, C2, . . . , Cn, n ≥ 2 such that context Ci,
1 ≤ i < n, contains a mapping rule with a foreign lit-
eral from the context Ci+1 and Cn, contains a mapping
rule with a foreign literal from the context C1. A multi
context system is acyclic iff it is not cyclic.

Sometimes it is useful to look at a multi-context
system as a monolithic defeasible logic program and
vice versa. We say that a multi-context system C =
{C1, . . . , Cn} is a contextualization of a defeasible logic
program P and conflict resolution strategy σ iff P =
⋃n

i=1
Pi and σ =

⋃n

i=1
σi. The idea of contextualiza-

tion of a program or an argument is illustrated in the
following example.

Example 6. Consider the following multi-context sys-
tem consisting of two contexts

C1 = ({a, d, h}, P1, σ1) C2 = ({b, c}, P2, σ2)
⇒ a ⇒ b
⇒ d ⇒ c

2: b, a → h
2: c, d → ¬h

σ1 = {({A1
3,A

1
6},⇒ a)} σ2 = ∅

Six contextual arguments can be constructed in P1

A1
1 = [⇒ a] A1

4 = [c]
A1

2 = [b] A1
5 = [⇒ d]

A1
3 = [A1

1,A
1
2 → h] A1

6 = [A1
4,A

1
5 → ¬h]

Two contextual arguments can be constructed in P2

A2
1 = [⇒ b] A2

2 = [⇒ c]

We can see that C is a contextualization of defeasible
logic program P and conflict resolution strategy σ from
Example 2. Similarly, we will define a notion of contex-
tual version of argument by examples: arguments A1

1,
A1

3, A1
5, A1

6 are (in order) contextual versions of argu-
ments A1, A3, A5, A6, but A1

2, A1
4 are not contextual

versions of arguments A2, A4 in Example 1.

5Note that symbol C was originally used to denote a con-
flict and symbol C for denoting the set of all conflicts. How-
ever, the denotation of symbols will always be clear from
the actual text.

The process of proving a literal L via an argument
game in contextual setting is still consisting of two
steps:

1. Find a contextual argument A with conclusion L.

2. Justify all vulnerabilities in Vuls(A) and send accep-
tance queries to contexts pertaining to foreign literals
F ({A}).

The second step means that whenever a player pl plays
in a dialogue a move µ, not only all vulnerabilities of
µ but also all foreign literals occurring in µ must be
justified in order to pl will be the winner.

It is not hard to see that support dependency through
foreign literals may be cyclic in a multi-context system.
For example context C1 may use a foreign literal from
context C2 and vice versa. Therefore we have to take
care of termination of the queries to other contexts.

Example 7. Consider the following multi-context sys-
tem consisting of two contexts, each using foreign literal
from the other context.

Context 1 Context 2
⇒ a 1: a ⇒ ¬ b

2: b ⇒ ¬ a ⇒ b

σ1 = {R1 = (C1,⇒ a)} σ2 = {R2 = (C2,⇒ b)}

Where conflict C1 = {[⇒ a], [2 : b ⇒ ¬ a]} and conflict
C2 = {[1 : a ⇒ ¬ b], [⇒ b]}.

Consider now query about credulous acceptance of
literal a. There is only one rule deriving a and the only
conflict resolution R1 defeating it. Recall the intuitive
meaning of conflict resolution in distributive setting: If
the vulnerability {b ⇒ ¬ a} and foreign literal b are ac-
cepted, rule ⇒ a is defeated. Defeasible rule b ⇒ ¬ a is
not a resolution of any conflict so its trustworthiness is
not a subject of dispute. Now the query about accep-
tance of the foreign literal b is given to the Context 2.
The process of proving b in Context 2 is similar, there-
fore we skip details and only remark that query about
acceptance of the foreign literal a is given back to the
Context 1. We can see that naive adaptation of argu-
ment games may lead to infinite sending of queries be-
tween contexts which have cyclic support dependency.

To overcome problem illustrated in the previous ex-
ample, from now on in this paper we investigate with
acyclic multi-context systems only and more general
cases are left for the future work.

Now we will define notions for contextual proving
and argument games. Contextual argument game is
an argument game T accompanied with a query func-
tion Q defining queries for every move in T . Intuitively,
a query is a foreign literal that needs to proved in other
context.

Definition 24 (Contextual Argument Game). Let C
be a context and µ be a move (pl,R,V). A contextual
argument game for a contextual argument A is a pair
(T,Q), where T is an argument game for A and Q is

289

a query function

Q(µ) =

{

F ({A}) if µ is the root of the tree
F (con(R)) otherwise

assigning queries for each move.

We say that a contextual argument game for a literal
L is a contextual argument game for a contextual ar-
gument A with Conc(A) = L. Given a query function
Q, the set of all foreign literals, played by a player pl
in a contextual argument game (T,Q), will be denoted
by Q(pl).

Contextual skeptical and credulous games respect
conditions of move repetitions. That is, in contextual
skeptical (credulous) game, opponent (proponent) is al-
lowed to repeat her moves and proponent (opponent) is
not. However, since parts of the argument game can be
queried to another contexts, we have to take care that
requirements of (non)repetitions of moves are satisfied
also there. Realize that each time a query about for-
eign literal F to other context C′ is sent from a move
(pl,R,V) in an argument game T , no matter whether pl
is proponent or opponent, the argument game for F in
context C′ will be started by proponent. Therefore, if pl
is Pro, the semantics of argument game in context C′

does not change. On the other hand, if pl is is Opp, the
semantics of argument game in context C′ will switch
in order to keep the requirements of (non)repetitions of
moves.

This leads into two mutually recursive definitions
of skeptical and credulous contextual argument games.
Note however that the recursion is well-founded (always
terminates) since we are considering multi-context sys-
tems with acyclic support dependency only.

Definition 25 (Contextual Skeptical Game). Let µ be
a move (pl,R,V). A contextual argument game (T,Q)
is called skeptical iff

• T is skeptical game and

• for each move in T with Q(µ) 6= ∅ there is a sem(µ)
contextual argument game, where

sem(µ) =

{

skeptical if pl = Pro

credulous otherwise

defines the acceptance semantics for queries.

Definition 26 (Contextual Credulous Game). Let µ be
a move (pl,R,V). A contextual argument game (T,Q)
is called credulous iff

• T is credulous game and

• for each move in T with Q(µ) 6= ∅ there is a sem(µ)
contextual argument game, where

sem(µ) =

{

credulous if pl = Pro

skeptical otherwise

defines the acceptance semantics for queries.

Recall that player pl, in order to be the winner, has to
justify not only all the vulnerabilities played by her, but

also all pl’s queries have to successful. Hence, although
player does not play the last move in a dialogue, she
can still be a winner if a query of the second player is
not justified.

Again, the definition is recursive but the assumption
of acyclicity guarantees its termination.

Definition 27 (Contextual Winner). Let (T,Q) be
a contextual argument game. A player pl wins a di-
alogue in contextual argument game (T,Q) iff

• all contextual argument games for literals in Q(pl)
are successful and

• at least one of the following holds:

– pl plays the last move in the dialogue, or

– at least one of the contextual argument game for
literals in Q(pl) is not successful.

A player Pro (resp. Opp) wins a contextual argument
game iff she wins all (resp. at least one of the) branches
in the contextual argument game. A contextual argu-
ment game is successful iff it is won by Pro.

Definition 28 (Contextually Proved Literal). Let C
be a multi-context system and C ∈ C be a context.
A literal L is (skeptically, resp. credulously) proved in:

• a contextual argument game (T,Q) iff there is a con-
textual argument A with Conc(A) = L, T is an
(skeptical, resp. credulous) argument game for A and
(T,Q) is successful.

• a context C iff C = (V, P, σ), L ∈ V and there is
a contextual argument game (skeptically, resp. cred-
ulously) proving L.

• a multi-context system C iff there is a context C such
that L is (skeptically, resp. credulously) proved in C.

One of our goals was that contextualization of a pro-
gram provides just a distributive computing and should
not change its output. The following proposition claims
that we are successful by achieving it.

Proposition 5. Let C be an acyclic contextualization
of a defeasible logic program P and L be a literal.

1. P |=sk L iff L is skeptically proved in C.

2. P |=cr L iff L is credulously proved in C.

Distribution of argument games is demonstrated in
example.

Example 8. Consider the following multi-context sys-
tem consisting of two contexts

C1 = ({a}, P1, σ1) C2 = ({b}, P2, σ2)
⇒ a ⇒ b

2: b ⇒ ¬ a ⇒ ¬ b

σ1 = {({A1
1,A

1
3},⇒ a)} σ2 = {({A2

1,A
2
2},⇒ b)}

Three contextual arguments can be constructed in P1

A1
1 = [⇒ a] A1

2 = [b]
A1

3 = [A1
2 ⇒ ¬ a]

Two contextual arguments can be constructed in P2

A2
1 = [⇒ b] A2

2 = [⇒ ¬ b]

290

The contextual argument game T (both skeptical and
credulous) is on the Figure 4, the contextual game T ′

for query b is on the Figure 5.

µ1
1 = (Pro,−, {⇒ a})

µ1
2 = (Opp,R1, {2: b ⇒ ¬ a}), Q(µ1

2) = {b}

Figure 4: The contextual argument game for literal a
in context C1.

µ2
1 = (Pro,−, {⇒ b})

µ2
2 = (Opp,R2, {⇒ ¬ b})

Figure 5: The contextual argument game for a query b
in context C2.

Although the proponent did not play the last move
in T , she is still winner, since the query about foreign
literal b was not successful.

Conclusion

We have developed a procedural conflict resolution
based semantics by adaptation of skeptical and cred-
ulous argument games for complete semantics. The
soundness and completeness properties for both type of
games are proved, what is the main contribution of this
paper. At the end we have showed how the semantics of
defeasible logic program can be computed in a distribu-
tive fashion and both skeptical and credulous argument
games were modified for multi-context systems. How-
ever, only multi-context systems with acyclic support
dependency have been considered and the more general
cases were left for the future work.

References

[Baláž, Frtús, and Homola 2013] Baláž, M.; Frtús, J.;
and Homola, M. 2013. Conflict resolution in structured
argumentation. In Proceedings of the 19th International
Conference on Logic for Programming, Artificial Intel-
ligence, and Reasoning.

[Bikakis and Antoniou 2010] Bikakis, A., and Antoniou,
G. 2010. Defeasible Contextual Reasoning with Argu-
ments in Ambient Intelligence. IEEE Transactions on
Knowledge and Data Engineering 22(11):1492–1506.

[Billington et al. 2010] Billington, D.; Antoniou, G.;
Governatori, G.; and Maher, M. 2010. An inclusion
theorem for defeasible logics. ACM Trans. Comput.
Logic 12(1):6:1–6:27.

[Caminada and Amgoud 2007] Caminada, M., and Am-
goud, L. 2007. On the evaluation of argumentation
formalisms. Artificial Intelligence 171(5-6):286–310.

[Dung 1995] Dung, P. M. 1995. On the acceptability of
arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Ar-
tificial Intelligence 77(2):321–357.

[García and Simari 2004] García, A. J., and Simari,
G. R. 2004. Defeasible logic programming: an argu-
mentative approach. Theory and Practice of Logic Pro-
gramming 4(2):95–138.

[Governatori et al. 2004] Governatori, G.; Maher, M. J.;
Antoniou, G.; and Billington, D. 2004. Argumenta-
tion semantics for defeasible logic. J. Log. and Comput.
14:675–702.

[Modgil and Caminada 2009] Modgil, S., and Cami-
nada, M. 2009. Proof theories and algorithms for
abstract argumentation frameworks. In Rahwan, I.,
and Simari, G., eds., Argumentation in Artificial In-
telligence. Springer Publishing Company Incorporated.
105–129.

[Modgil and Prakken 2011] Modgil, S., and Prakken, H.
2011. Revisiting Preferences and Argumentation. In
Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence, 1021–1026. AAAI
Press.

[Prakken and Sartor 1997] Prakken, H., and Sartor, G.
1997. Argument-based extended logic programming
with defeasible priorities. Journal of Applied Nonclas-
sical Logics 7(1):25–75.

[Prakken 2010] Prakken, H. 2010. An abstract frame-
work for argumentation with structured arguments. Ar-
gument & Computation 1(2):93–124.

[Thimm and Kern-Isberner 2008] Thimm, M., and
Kern-Isberner, G. 2008. A distributed argumentation
framework using defeasible logic programming. In
Proceedings of the 2008 Conference on Computa-
tional Models of Argument: Proceedings of COMMA
2008, 381–392. Amsterdam, The Netherlands, The
Netherlands: IOS Press.

291

On the Relative Expressiveness of Argumentation Frameworks,
Normal Logic Programs and Abstract Dialectical Frameworks

Hannes Strass
Computer Science Institute

Leipzig University, Germany

Abstract

We analyse the expressiveness of the two-valued semantics of
abstract argumentation frameworks, normal logic programs
and abstract dialectical frameworks. By expressiveness we
mean the ability to encode a desired set of two-valued in-
terpretations over a given propositional signature using only
atoms from that signature. While the computational complex-
ity of the two-valued model existence problem for all these
languages is (almost) the same, we show that the languages
form a neat hierarchy with respect to their expressiveness.

Introduction
More often than not, different knowledge representation lan-
guages have conceptually similar and partially overlapping
intended application areas. What are we to do if faced with
an application and a choice of several possible knowledge
representation languages which could be used for the applic-
ation? One of the first axes along which to compare different
formalisms that comes to mind is computational complexity:
if a language is computationally too expensive when con-
sidering the problem sizes typically encountered in practice,
then this is a clear criterion for exclusion.

But what if the available language candidates have the
same computational complexity? If their expressiveness in
the computational-complexity sense of “What kinds of prob-
lems can the formalism solve?” is the same, we need a more
fine-grained notion of expressiveness. In this paper, we use
such an alternative notion and perform an exemplary study
of the relative expressiveness of several different know-
ledge representation languages: argumentation frameworks
(AFs) (Dung, 1995), normal logic programs (LPs), abstract
dialectical frameworks (ADFs) (Brewka and Woltran, 2010)
and propositional logic.

This choice of languages is largely motivated by the sim-
ilar intended application domains of argumentation frame-
works and abstract dialectical frameworks and the close re-
lation of the latter to normal logic programs. We add pro-
positional logic to have a well-known reference point. Fur-
thermore, the computational complexity of their respective
model existence problems is the same (with one exception):

• for AFs, deciding stable extension existence is NP-
complete (Dimopoulos, Nebel, and Toni, 2002);

• for LPs, deciding the existence of supported/stable mod-
els is NP-complete (Bidoit and Froidevaux, 1991; Marek
and Truszczyński, 1991);

• for ADFs, deciding the existence of models is NP-
complete (Brewka et al., 2013), deciding the existence of
stable models is ΣP2 -complete for general ADFs (Brewka
et al., 2013) and NP-complete for the subclass of bipolar
ADFs (Strass and Wallner, 2014);

• the satisfiability problem of propositional logic is NP-
complete.
In view of these almost identical complexities, we use an

alternative measure of the expressiveness of a knowledge
representation language L: “Given a set of two-valued in-
terpretations, is there a knowledge base in L that has this
exact model set?” This notion lends itself straightforwardly
to compare different formalisms (Gogic et al., 1995):

Formalism L2 is at least as expressive as formalism L1

if and only if every knowledge base in L1 has an equi-
valent knowledge base in L2.

So here expressiveness is understood in terms of realisabil-
ity, “What kinds of model sets can the formalism express?”

It is easy to see that propositional logic can express any
set of two-valued interpretations. The same is easy (but less
easy) to see for logic programs under supported model se-
mantics. For logic programs under stable model semantics,
it is clear that not all model sets can be expressed, since
two different stable models are always incomparable with
respect to the subset relation. In this paper, we study such
expressiveness properties for all the mentioned formalisms
under different semantics. It will turn out that the languages
form a more or less strict expressiveness hierarchy, with AFs
at the bottom, ADFs and LPs under stable semantics higher
up and ADFs and LPs under supported model semantics at
the top together with propositional logic.

To show that a language L2 is at least as expressive as a
language L1 we will mainly use two different techniques.
In the best case, we can use a syntactic compact and faith-
ful translation from knowledge bases of L1 to those of L2.
Compact means that the translation does not change the
vocabulary, that is, does not introduce new atoms. Faith-
ful means that the translation exactly preserves the models
of the knowledge base for respective semantics of the two
languages. In the second best case, we assume given the

292

knowledge base of L1 in the form of a setX of desired mod-
els and construct a semantic realisation ofX in L2, that is, a
knowledge base in L2 whose model set corresponds exactly
to X . To show that language L2 is strictly more expressive
than L1, we additionally have to present a knowledge base
K from L2 of which we prove that L1 cannot express the
model set of K.

For all methods, we can make use of several recent works
on the formalisms we study here. First of all, we [2013]
studied the syntactic intertranslatability of ADFs and LPs,
but did not look at expressiveness or realisability. The lat-
ter was recently studied for argumentation frameworks by
Dunne et al. (2014). They allow to extend the vocabulary in
order to realise a given model set, as long as the new vocab-
ulary elements are evaluated to false in all models. For sev-
eral semantics of AFs, Dunne et al. found necessary (and
sufficient) conditions for realisability. While their sufficient
conditions are not applicable to our setting, they discovered
a necessary condition for realisability with stable extension
semantics that we will make use of in this paper. There has
also been work on translating ADFs into AFs for the ADF
model and AF stable extension semantics (Brewka, Dunne,
and Woltran, 2011), however this translation introduces ad-
ditional arguments and is therefore not compact.

The gain that is achieved by our results is not only that
of increased clarity about fundamental properties of these
knowledge representation languages – What can these form-
alisms express, actually? – but has several further applica-
tions. As Dunne et al. (2014) remarked, a major application
is in constructing knowledge bases with the aim of encoding
a certain model set. As a necessary prerequisite to this, it
must be known that the intended model set is realisable in
the first place. For example, in a recent approach to revising
argumentation frameworks (Coste-Marquis et al., 2013), the
authors avoid this problem by assuming to produce a collec-
tion of AFs whose model sets in union produce the desired
model set. While the work of Dunne et al. (2014) showed
that this is indeed necessary in the case of AFs and stable ex-
tension semantics (that is, there are model sets that a single
AF just cannot express), our work shows that for ADFs un-
der the model semantics, a single knowledge base (ADF) is
always enough to realise any given model set.

Of course, the fact that the languages we study have the
same computational complexity means that there in prin-
ciple exist polynomial intertranslations for the respective de-
cision problems. But such intertranslations may involve the
introduction of new atoms. In theory, a polynomial blowup
from n atoms to nk atoms for some k is of no consequence.
In practice, it has a profound impact: the number n of atoms
directly influences the search space that any implementation
potentially has to cover. There, an increase from 2n to 2n

k

is no longer polynomial, but exponential, and accordingly
makes itself felt. Being able to realise a model set com-
pactly, without new atoms, therefore attests that a language
L has a certain basic kind of efficiency property, in the sense
that the L-realisation of a model set does not unnecessarily
enlarge the search space of algorithms operating on it.

The paper proceeds as follows. We first define the notion
of expressiveness formally and then introduce the languages

we will study. After reviewing several intertranslatability
results for these languages, we stepwise obtain the results
that lead to the expressiveness hierarchy. We conclude with
a discussion of avenues for future work.

Background
We assume given a finite set A of atoms (statements, argu-
ments), the vocabulary. A knowledge representation lan-
guage interpreted over A is then some set L; a (two-valued)
semantics for L is a mapping σ : L→ 22A

that assigns sets
of two-valued models to the language elements. (So A is
implicit in L.) Strictly speaking, a two-valued interpretation
is a mapping from the set of atoms into the two truth values
true and false, but for technical ease we represent two-valued
interpretations by the sets containing the atoms that are true.

For a language L, we denote the range of the semantics
σ by σ(L). Intuitively, σ(L) is the set of models that lan-
guage L can express, with any knowledge base over vocab-
ulary A whatsoever. For example, for L = PL propositional
logic and σ = mod the usual model semantics, we have
σ(PL) = 22A

since obviously any set of models is realis-
able in propositional logic.1 This leads us to compare dif-
ferent pairs of languages and semantics with respect to the
semantics’ range of models. Our concept of “language” con-
centrates on semantics and decidedly remains abstract.

Definition 1. Let A be a finite vocabulary, L1, L2 be lan-
guages that are interpreted over A and σ1 : L1 → 22A

and
σ2 : L2 → 22A

be two-valued semantics. We define

Lσ1
1 ≤e L

σ2
2 iff σ1(L1) ⊆ σ2(L2)

Intuitively, language L2 under semantics σ2 is at least as
expressive as language L1 under semantics σ1, because all
models that L1 can express under σ1 are also contained in
those that L2 can produce under σ2. (If the semantics are
clear from the context we will omit them; this holds in par-
ticular for argumentation frameworks and propositional lo-
gic, where we only look at a single semantics.) As usual,

• L1 <e L2 iff L1 ≤e L2 and L2 6≤e L1;

• L1
∼=e L2 iff L1 ≤e L2 and L2 ≤e L1.

The relation ≤e is reflexive and transitive by definition, but
not necessarily antisymmetric. That is, there might different
languages L1 6= L2 that are equally expressive: L1

∼=e L2.
We next introduce the particular knowledge representa-

tion languages we study in this paper. All will make use of
a vocabulary A; the results of the paper are all considered
parametric in such a given vocabulary.

Logic Programs
For a vocabulary A define not A = {not a | a ∈ A} and
the set of literals over A as A± = A ∪ not A. A normal
logic program rule over A is then of the form a← B where
a ∈ A and B ⊆ A±. The rule can be read as logical con-
sequence, “a is true if all literals in B are true.” The set B

1For a set X ⊆ 2A we can simply define ϕX =
W

M∈X ϕM

with ϕM =
V

a∈M a ∧
V

a∈A\M ¬a and clearly mod(ϕX) = X .

293

is called the body of the rule, we denote by B+ = B ∩A
and B− = {a ∈ A | not a ∈ B} the positive and negative
body atoms, respectively. A rule is definite if B− = ∅. For
singletonB = {b}we denote the rule just by a← b. A logic
program (LP) P over A is a set of logic program rules over
A, and it is definite if all rules in it are definite.

At first, logic programs were restricted to definite pro-
grams, whose semantics was defined through the proof-
theoretic procedure of SLD resolution. The meaning of
negation not was only defined operationally through neg-
ation as failure. Clark (1978) gave the first declarative
semantics for normal logic programs via a translation to
classical logic that will be recalled shortly. This leads to
the supported model semantics for logic programs: A rule
a← B ∈ P is active in a set M ⊆ A iff B+ ⊆M and
B− ∩M = ∅ imply a ∈M . M is a supported model for
P iff M = {a ∈ A | a← B ∈ P is active in M}. For a lo-
gic program P we denote the set of its supported models by
su(P). The intuition behind this semantics is that everything
that is true in a model has some kind of support.

However, this support might be cyclic self-support. For
instance, the logic program {a← a} has two supported
models, ∅ and {a}, where the latter is undesired in many ap-
plication domains. As an alternative, Gelfond and Lifschitz
(1988) proposed the stable model semantics, a declarative
semantics for negation as failure that does not allow self-
support: M ⊆ A is a stable model for P iff M is the⊆-least
supported model of PM , where the definite program PM is
obtained from P by (1) eliminating each rule whose body
contains a literal not a with a ∈M , and (2) deleting all lit-
erals of the form not a from the bodies of the remaining
rules. We write st(P) for the set of stable models of P . It
follows from the definition of stable models that st(P) is a
⊆-antichain: for all M1 6= M2 ∈ st(P) we have M1 6⊆M2.

Argumentation Frameworks
Dung (1995) introduced argumentation frameworks as pairs
F = (A,R) whereA is a set andR ⊆ A×A a relation. The
intended reading of an AF F is that the elements of A are
arguments whose internal structure is abstracted away. The
only information about the arguments is given by the relation
R encoding a notion of attack: a pair (a, b) ∈ R expresses
that argument a attacks argument b in some sense.

The purpose of semantics for argumentation frameworks
is to determine sets of arguments (called extensions) which
are acceptable according to various standards. For a given
extension S ⊆ A, the arguments in S are considered to be
accepted, those that are attacked by some argument in S are
considered to be rejected, and all others are neither, their
status is undecided. We will only be interested in so-called
stable extensions, sets S of arguments that do not attack each
other and attack all arguments not in the set. For stable ex-
tensions, each argument is either accepted or rejected by
definition, thus the semantics is two-valued. More form-
ally, a set S ⊆ A of arguments is conflict-free iff there are
no a, b ∈ S with (a, b) ∈ R. A set S is a stable extension
for (A,R) iff it is conflict-free and for all a ∈ A \ S there
is a b ∈ S with (b, a) ∈ R. For an AF F , we denote the set
of its stable extensions by st(F). Again, it follows from the

definition of a stable extension that the set st(F) is always a
⊆-antichain.

Abstract Dialectical Frameworks
An abstract dialectical framework (ADF) is a directed graph
whose nodes represent statements or positions which can be
accepted or not. The links represent dependencies: the status
of a node a only depends on the status of its parents (denoted
par(a)), that is, the nodes with a direct link to a. In addition,
each node a has an associated acceptance condition Ca spe-
cifying the exact conditions under which a is accepted. Ca
is a function assigning to each subset of par(a) one of the
truth values t or f . Intuitively, if for some R ⊆ par(a) we
have Ca(R) = t, then a will be accepted provided the nodes
in R are accepted and those in par(a) \R are not accepted.

More formally, an abstract dialectical framework is a
tuple D = (A,L,C) where

• A is a set of statements,

• L ⊆ A×A is a set of links,

• C = {Ca}a∈A is a collection of total functions
Ca : 2par(a) → {t, f}, one for each statement a.
The function Ca is called acceptance condition of a.

It is often convenient to represent acceptance conditions by
propositional formulas. In particular, we will do so for sev-
eral results of this paper. There, each Ca is represented
by a propositional formula ϕa over par(a). Then, clearly,
Ca(R ∩ par(a)) = t iff R is a model for ϕa, R |= ϕa.

Brewka and Woltran (2010) introduced a useful subclass
of ADFs: an ADF D = (A,L,C) is bipolar iff all links in
L are supporting or attacking (or both). A link (b, a) ∈ L
is supporting in D iff for all R ⊆ par(a), we have that
Ca(R) = t impliesCa(R ∪ {b}) = t. Symmetrically, a link
(b, a) ∈ L is attacking in D iff for all R ⊆ par(a), we have
that Ca(R ∪ {b}) = t implies Ca(R) = t. If a link (b, a) is
both supporting and attacking then b has no influence on a,
the link is redundant (but does not violate bipolarity). We
will sometimes use this circumstance when searching for
ADFs; there we simply assume that L = A×A, then links
that are actually not needed can be expressed by acceptance
conditions that make them redundant.

There are numerous semantics for ADFs; we will only
be interested in two of them, (supported) models and stable
models. A set M ⊆ A is a model of D iff for all a ∈ A
we find that a ∈M iff Ca(M) = t. The definition of stable
models is inspired by logic programming and slightly more
complicated (Brewka et al., 2013). Define an operator by
ΓD(Q,R) = (acc(Q,R), rej (Q,R)) for Q,R ⊆ A, where

acc(Q,R) = {a ∈ A | for all Q ⊆ Z ⊆ (A \R),
we have Ca(Z) = t}

rej (Q,R) = {a ∈ A | for all Q ⊆ Z ⊆ (A \R),
we have Ca(Z) = f}

The intuition behind the operator is as follows: A pair
(Q,R) represents a partial interpretation of the set of state-
ments where those in Q are accepted (true), those in R
are rejected (false), and those in S \ (Q ∪ R) are neither.

294

The operator checks for each statement a whether all total
interpretations that can possibly arise from (Q,R) agree
on their truth value for the acceptance condition for a.
That is, if a has to be accepted no matter how the state-
ments in S \ (Q ∪R) are interpreted, then a ∈ acc(Q,R).
The set rej (Q,R) is computed symmetrically, so the pair
(acc(Q,R), rej (Q,R)) constitutes a refinement of (Q,R).

For M ⊆ A, the reduced ADF DM = (M,LM , CM) is
defined by LM = L ∩M ×M and for each a ∈M setting
ϕMa = ϕa[b/f : b /∈M], that is, replacing all b /∈M by false
in the acceptance formula of a. A modelM forD is a stable
model ofD iff the least fixpoint of the operator ΓDM is given
by (M, ∅). As usual, su(D) and st(D) denote the model sets
of the two semantics. While ADF models can be subsets of
one another, ADF stable models cannot.

Translations between the formalisms
From AFs to BADFs Brewka and Woltran (2010) showed
how to translate AFs into ADFs: For an AF F = (A,R),
define the ADF associated to F as D(F) = (A,R,C) with
C = {ϕa}a∈A and ϕa =

∧
(b,a)∈R ¬b for a ∈ A. Clearly,

the resulting ADF is bipolar; parents are always attacking.
Brewka and Woltran (2010) proved that this translation is
faithful for the AF stable extension and ADF model se-
mantics (Proposition 1). Brewka et al. (2013) later proved
the same for the AF stable extension and ADF stable model
semantics (Theorem 4). It is easy to see that the translation
can be computed in polynomial time.

From ADFs to PL Brewka and Woltran (2010) also
showed that ADFs under supported model semantics can
be faithfully translated into propositional logic: When ac-
ceptance conditions of statements a ∈ A are represented by
propositional formulas ϕa, then the supported models of an
ADF D over A are given by the classical models of the for-
mula set {a↔ ϕa | a ∈ A}.

From AFs to PL In combination, the previous two trans-
lations yield a polynomial and faithful translation chain from
AFs into propositional logic.

From ADFs to LPs In recent work we showed that
ADFs can be faithfully translated into normal logic pro-
grams (Strass, 2013). For an ADF D = (A,L,C), its stand-
ard logic program P (D) is given by

{a← (M ∪ not (par(a) \M)) | a ∈ A,Ca(M) = t}

It is an easy consequence of Lemma 3.14 in (Strass, 2013)
that this translation preserves the supported model se-
mantics. For complexity reasons, we cannot expect that this
translation is also faithful for the stable semantics. And in-
deed, the ADF D = ({a} , {(a, a)} , {ϕa = a ∨ ¬a}) has a
stable model {a} while its standard logic program P (D) =
{a← a, a← not a} has no stable model.

From AFs to LPs The translation chain from AFs to
ADFs to LPs is compact, and faithful for AF stable se-
mantics and LP stable semantics (Osorio et al., 2005), and
AF stable semantics and LP supported semantics (Strass,
2013).

From LPs to PL It is well-known that normal logic
programs under supported model semantics can be trans-
lated to propositional logic (Clark, 1978). There, a lo-
gic program P is translated to a propositional theory
ΦP = {a↔ ϕa | a ∈ A} where

ϕa =
∨

a←B∈P

(∧
b∈B+

b ∧
∧
b∈B−

¬b

)

for a ∈ A. For the stable model semantics, additional for-
mulas have to be added, but the extended translation works
all the same (Lin and Zhao, 2004).

From LPs to ADFs The Clark completion of a normal
logic program directly yields an equivalent ADF over the
same signature (Brewka and Woltran, 2010). Clearly the
translation is computable in polynomial time and the blowup
(with respect to the original logic program) is at most lin-
ear. The resulting translation is faithful for the supported
model semantics, which is a straightforward consequence of
Lemma 3.16 in (Strass, 2013).

Relative Expressiveness
We now analyse and compare the relative expressiveness of
argumentation frameworks – AFs –, (bipolar) abstract dia-
lectical frameworks – (B)ADFs –, normal logic programs –
LPs – and propositional logic – PL. We first look at the dif-
ferent families of semantics – supported and stable models
– in isolation and afterwards combine the two. For the lan-
guages L ∈ {ADF,LP} that have both supported and stable
semantics, we will indicate the semantics σ via a superscript
as in Definition 1. For AFs we only consider the stable ex-
tension semantics, as this is (to date) the only two-valued
semantics for AFs. For propositional logic PL we consider
the usual model semantics.

With the syntactic translations we reviewed in the previ-
ous section, we currently have the following relationships.
For the supported semantics,

AF ≤e BADFsu ≤e ADFsu ∼=e LPsu ≤e PL

and for the stable semantics,

AF ≤e BADFst ≤e ADFst <e PL
AF ≤e LPst <e PL

Note that ADFst <e PL and LPst <e PL hold since sets
of stable models have an antichain property, in contrast to
model sets of propositional logic.

Supported semantics
As depicted above, we know that expressiveness from AFs
to propositional logic does not decrease. However, it is not
yet clear if any of the relationships is strict.

We first show that ADFs can realise any set of models.
To show this, we first make a case distinction whether the
desired-model set is empty. If there should be no model, we
construct an ADF without models. If the set of desired mod-
els is nonempty, we construct acceptance conditions directly
from the set of desired interpretations. The construction is

295

similar in design to the one we reviewed for propositional lo-
gic, but takes into account the additional interaction between
statements and their acceptance conditions.
Theorem 1. PL ≤e ADFsu

Proof. Consider a vocabularyA and a setX ⊆ 2A. We con-
struct an ADF Dsu

X with su(Dsu
X) = X as follows.

1. X = ∅. We choose some a ∈ A and set
Dsu
X = ({a} , {(a, a)} , {Ca}) with Ca(∅) = t and

Ca({a}) = f . It is easy to see that Dsu
X has no model.

2. X 6= ∅. Define Dsu
X = (A,L,C) where L = A×A and

for each a ∈ A and M ⊆ A, we set Ca(M) = t iff

(M ∈ X and a ∈M) or (M /∈ X and a /∈M)

We have to show that M ∈ X iff M is a model for Dsu
X .

“if”: Let M be a model of Dsu
X .

(a) M = ∅. Pick any a ∈ A. Since M is a model of
Dsu
X , we have Ca(M) = f . So either (A) M ∈ X and

a /∈M or (B) M /∈ X and a ∈M , by definition of
Ca. By assumption M = ∅, thus a /∈M and M ∈ X .

(b) M 6= ∅. Let a ∈M . Then Ca(M) = t since M is a
model of Dsu

X . By definition of Ca, M ∈ X .
“only if”: Let M ∈ X .
(a) M = ∅. Choose any a ∈ A. By assumption, a /∈M

andM ∈ X , whenceCa(M) = f by definition. Since
a ∈ A was chosen arbitrarily, we have Ca(M) = f iff
a /∈M . Thus M is a model of Dsu

X .
(b) M 6= ∅. Let a ∈ A. If a ∈M , then by assump-

tion and definition of Ca we have Ca(M) = t. Con-
versely, if a /∈M , then by definition Ca(M) = f .
Since a ∈ A was arbitrary, M is a model of Dsu

X . �

When the acceptance conditions are written as proposi-
tional formulas, the construction in Theorem 1 simply sets

ϕa =
∨

M∈X,a∈M
ϕM ∨

∨
M⊆A,M /∈X,a/∈M

ϕM

ϕM =
∧
a∈M

a ∧
∧

a∈A\M

¬a

Since ADFs under supported semantics can be faithfully
translated into logic programs, which can be likewise further
translated to propositional logic, we have the following.
Corollary 2. ADFsu ∼=e LPsu ∼=e PL

While general ADFs under the supported model se-
mantics can realise any set of models, the subclass of bipolar
ADFs turns out to be less expressive. This is shown using
the next result, which allows us to decide realisability of a
given model set X ⊆ 2A in non-deterministic polynomial
time. We assume that the size of the input is in the order of∣∣2A∣∣, that is, the input set X is represented directly. The de-
cision procedure then basically uses the construction of The-
orem 1 and an additional encoding of bipolarity to define a
reduction to the satisfiability problem in propositional logic.

Theorem 3. Let X ⊆ 2A be a set of sets. It is decidable
in non-deterministic polynomial time whether there exists a
bipolar ADF D with su(D) = X .

Proof. We construct a propositional formula φX that is sat-
isfiable if and only if X is bipolarly realisable. The proposi-
tional signature we use is the following: For each a ∈ A and
M ⊆ A, there is a propositional variable pMa that expresses
whether Ca(M) = t. This allows to encode all possible ac-
ceptance conditions for the statements in A. To enforce bi-
polarity, we use additional variables to model supporting and
attacking links: for all a, b ∈ A, there is a variable pa,bsup say-
ing that a supports b, and a variable pa,batt saying that a attacks
b. So the vocabulary of φX is given by

P =
{
pMa , p

a,b
sup , p

a,b
att

∣∣∣M ⊆ A, a ∈ A, b ∈ A}
To guarantee the desired set of models, we constrain the ac-
ceptance conditions as dictated by X: For any desired set
M and statement a, the containment of a in M must corres-
pond exactly to whether Ca(M) = t; this is encoded in φ∈X .
Conversely, for any undesired set M and statement a, there
must not be any such correspondence, which φ/∈X expresses.

φ∈X =
∧
M∈X

 ∧
a∈M

pMa ∧
∧

a∈A\M

¬pMa


φ/∈X =

∧
M⊆A,M /∈X

 ∨
a∈M
¬pMa ∨

∨
a∈A\M

pMa


To enforce bipolarity, we state that each link must be sup-
porting or attacking. To model the meaning of support and
attack, we encode all ground instances of their definitions.

φbipolar =
∧
a,b∈A

((
pa,bsup ∨ p

a,b
att

)
∧ φa,bsup ∧ φ

a,b
att

)
φa,bsup = pa,bsup →

∧
M⊆A

(
pMb → p

M∪{a}
b

)
φa,batt = pa,batt →

∧
M⊆A

(
p
M∪{a}
b → pMb

)

The overall formula is given by φX = φ∈X ∧ φ
/∈
X ∧ φbipolar .

The rest of the proof – showing thatX is bipolarly realisable
if and only if φX is satisfiable – is delegated to Lemma 12
in the Appendix. �

Remarkably, the decision procedure does not only give an
answer, but in the case of a positive answer we can read off
the BADF realisation from the satisfying evaluation of the
constructed formula. We illustrate the construction with an
example that will subsequently be used to show that general
ADFs are strictly more expressive than bipolar ADFs.

Example 1. Consider A = {x, y, z} and this model set:

X1 = {∅, {x, y} , {x, z} , {y, z}}

296

The construction of Theorem 3 yields these formulas:

φ∈X1
= ¬p∅x ∧ ¬p∅y ∧ ¬p∅z ∧

p{x,y}x ∧ p{x,y}y ∧ ¬p{x,y}z ∧

p{x,z}x ∧ ¬p{x,z}y ∧ p{x,z}z ∧

¬p{y,z}x ∧ p{y,z}y ∧ p{y,z}z

φ/∈X1
= (¬p{x}x ∨ p{x}y ∨ p{x}z) ∧

(p{y}x ∨ ¬p{y}y ∨ p{y}z) ∧

(p{z}x ∨ p{z}y ∨ ¬p{z}z) ∧

(¬p{x,y,z}x ∨ ¬p{x,y,z}y ∨ ¬p{x,y,z}z)

The remaining formulas about bipolarity are independent of
X1, we do not show them here. We have implemented the
translation of Theorem 3 and used the solver clasp (Gebser
et al., 2011) to verify that φX1 is unsatisfiable.

A manual proof of bipolar non-realisability of X1 seems
to amount to a laborious case distinction that explores the
mutual incompatibility of the disjunctions in φ/∈X1

and bi-
polarity, a task that is better left to machines. Together with
the straightforward statement of fact that X1 can be realised
by a non-bipolar ADF, the example leads to the next result.
Theorem 4. BADFsu <e ADFsu

Proof. The model set from ?? 1 is realisable under model
semantics by ADF DX1 with acceptance conditions

ϕx = (y = z), ϕy = (x = z), ϕz = (x = y)

where “=” denotes exclusive disjunction XOR. However,
there is no bipolar ADF realising the model set X1, as is
witnessed by unsatisfiability of φX1 and Theorem 3. �

Clearly ADF DX1 is not bipolar since in all acceptance for-
mulas, all statements are neither supporting nor attacking. It
is not the only realisation, some alternatives are given by

D′X1
: ϕx = (y = z), ϕy = y, ϕz = z

D′′X1
: ϕx = x, ϕy = (x = z), ϕz = z

D′′′X1
: ϕx = x, ϕy = y, ϕz = (x = y)

This shows that we cannot necessarily use the model set X1

to determine a single reason for bipolar non-realisability,
that is, a single link (b, a) that is neither supporting nor
attacking in all realisations. Rather, the culprit(s) might
be different in each realisation, and to show bipolar non-
realisability, we have to prove that for all realisations, there
necessarily exists some reason for non-bipolarity. And the
number of different ADF realisations of a given model set
X can be considerable, as our next result shows.
Proposition 5. Let |A| = n, X ⊆ 2A with

∣∣2A \X∣∣ = m.
The number of distinct ADFs D with su(D) = X is

r(n,m) = (2n − 1)m

Proof. We have to count the number of distinct models of
the formula φ′X = φ∈X ∧ φ

/∈
X from the proof of Theorem 3.

We first observe that for each a ∈ A and M ⊆ A, the pro-
positional variable pMa occurs exactly once in φ′X . For-
mula φ∈X is a conjunction of literals and does not contribute

to combinatorial explosion. Formula φ/∈X contains m con-
juncts. Each of the conjuncts is a disjunction of n distinct
literals. There are 2n − 1 ways to satisfy such a disjunction.
The claim now follows since for each of m conjuncts, we
can choose one of 2n − 1 different ways to satisfy it. �

So the main contributing factor is the number m of inter-
pretations that are excluded from the desired model set X .
For ?? 1, for instance, there are (23 − 1)4 = 74 = 2401
ADFs with the model set X1. According to The-
orem 4, none of them is bipolar. Obviously, the max-
imal number of realisations is achieved by X = ∅ whence
r(n, 2n) = (2n − 1)2

n

. On the other hand, the model set
X = 2A has exactly one realisation, r(n, 0) = 1.

It is comparably easy to show that BADF models are
strictly more expressive than AFs, since sets of supported
models of bipolar ADFs do not have the antichain property.

Proposition 6. AF <e BADFsu

Proof. Consider the vocabulary A = {a} and the BADF
D = (A, {(a, a)} , {ϕa}) with ϕa = a. It is straightforward
to check that its model set is su(D) = {∅, {a}}. Since
model sets of AFs under stable extension semantics satisfy
the antichain property, there is no equivalent AF over A. �

This yields the following overall relationships:

AF <e BADFsu <e ADFsu ∼=e LPsu ∼=e PL

Stable semantics
As before, we recall the current state of knowledge:

AF ≤e BADFst ≤e ADFst <e PL and AF ≤e LPst <e PL

We first show that BADFs are strictly more expressive
than AFs.

Proposition 7. AF <e BADFst

Proof. Consider the BADF from ?? 6, where the acceptance
formula of the single statement a is given by ϕa = a. Its
only stable model is ∅. However there is no AF with a single
argument with the same set of stable extensions: the only
candidates are ({a} , ∅) and ({a} , {(a, a)}); their respective
stable-extension sets are {{a}} and ∅. �

Even if we discount for this special case of realising the
empty stable extension, there are non-trivial extension-sets
that AFs cannot realise.

Example 2 ((Dunne et al., 2014)). Consider the model set
X2 = {{x, y} , {x, z} , {y, z}}. Dunne et al. (2014) proved
that X2 is not realisable with stable AF semantics. Intuit-
ively, the argument is as follows: Since x and y occur in
an extension together, there can be no attack between them.
The same holds for the pairs x, z and y, z. But then the set
{x, y, z} is conflict-free and thus there must be a stable ex-
tension containing all three arguments, which is not allowed
by X2. The reason is AFs’ restriction to individual attack,
as set attack (also called joint or collective attack) suffices to
realise X2 with BADF D under stable model semantics:

ϕx = ¬y ∨ ¬z, ϕy = ¬x ∨ ¬z, ϕz = ¬x ∨ ¬y

297

Let us exemplarily show that M = {x, y} is a stable
model (the other cases are completely symmetric): The re-
duct DM is characterised by the two acceptance formulas
ϕx = ¬y ∨ ¬f and ϕy = ¬x ∨ ¬f . We then easily find that
ΓDM (∅, ∅) = (M, ∅) = ΓDM (M, ∅).

The construction from the previous example model set
comes from logic programming (Eiter et al., 2013) and can
be generalised to realise any non-empty model set satisfying
the antichain property.
Definition 2. Let X ⊆ 2A. Define the following BADF
Dst
X = (A,L,C) where Ca for a ∈ A is given by

ϕa =
∨

M∈X,a∈M

 ∧
b∈A\M

¬b


and thus L = {(b, a) |M ∈ X, a ∈M, b ∈ A \M}.

We next show that the construction indeed works.
Theorem 8. LetX with ∅ 6= X ⊆ 2A be a⊆-antichain. We
find that st(Dst

X) = X .
Proof. Let M ⊆ A.
“⊆”: Let M /∈ X . We show that M /∈ su(Dst

X) ⊇ st(Dst
X).

1. There is an N ∈ X with M (N . Then there is
an a ∈ N \M . Consider its acceptance formula
ϕa. Since a ∈ N and N ∈ X , the formula ϕa has
a disjunct ψa,N =

∧
b∈A\N ¬b. Now M ⊆ N im-

plies A \N ⊆ A \M and M is a model for ψa,N .
Thus M is a model for ϕa although a /∈M , hence
M /∈ su(Dst

X).
2. For all N ∈ X , we have M 6⊆ N . Obviously M 6= ∅

since X 6= ∅. Let a ∈M . For each N ∈ X with
a ∈ N , the acceptance formula ϕa contains a disjunct
ψa,N =

∧
b∈A\N ¬b. By assumption, for each N ∈ X

there is a bN ∈M \N . Clearly bN ∈ A \N and bN is
evaluated to true by M . Hence for each N ∈ X with
a ∈ N , the disjunct ψa,N is evaluated to false by M .
Thus ϕa is false under M and M /∈ su(Dst

X).
“⊇”: Let M ∈ X . We first show that M is a model of Dst

X ,
that is: for all a ∈ A, a ∈M iff M is a model for ϕa.

1. Let a ∈M . By construction, we have that ϕa in Dst
X

contains a disjunct of the form ψa,M =
∧
b∈A\M ¬b.

According to the interpretation M , all such b ∈ A \M
are false and thus ψa,M is true whence ϕa is true.

2. Let a ∈ A \M and consider its acceptance formula
ϕa. Assume to the contrary that M is a model for
ϕa. Then there is some N ∈ X with a ∈ N such
that M is a model for ψa,N =

∧
b∈A\N ¬b, that is,

A \N ⊆ A \M . Hence M ⊆ N and X is not a ⊆-
antichain. Contradiction. Thus M is no model for ϕa.

Now consider the reduct DM of Dst
X with re-

spect to M . There, ϕMa contains the disjunct
ψMa,M = ψa,M [b/f : b /∈M] where all b ∈ A \M have
been replaced by false, whence ψMa,M = ¬f ∧ . . . ∧ ¬f
and ϕMa is equivalent to true. Thus each a ∈M is true
in the least fixpoint of ΓDM and thus M ∈ st(Dst

X). �

The restriction to non-empty model sets is immaterial, since
we can use the construction of Theorem 1 to realise the
empty model set.

Since the stable model semantics for both ADFs and nor-
mal logic programs have the antichain property, the follow-
ing is clear.
Corollary 9. ADFst ≤e BADFst and LPst ≤e BADFst

For the family of stable semantics, this leads to the fol-
lowing overall expressiveness relationships:

AF <e BADFst ∼=e ADFst ∼=e LPst <e PL

Supported vs. stable semantics
Now we put the supported and stable pictures together. From
the proof of Theorem 8, we can read off that for the canon-
ical realisation Dst

X of an antichain X , the supported and
stable semantics coincide, that is, su(Dst

X) = st(Dst
X) = X .

With this observation, also bipolar ADFs under the suppor-
ted semantics can realise any antichain, and we have this:
Proposition 10. BADFst ≤e BADFsu

As we have seen in ?? 6, there are bipolar ADFs with
supported-model sets that are not antichains. Thus we get
the following result.
Corollary 11. BADFst <e BADFsu

This result allows us to close the last gap and put together
the big picture in Figure 1 below.

AF

BADFst ∼=e ADFst ∼=e LPst

BADFsu

ADFsu ∼=e LPsu ∼=e PL

Figure 1: The expressiveness hierarchy. Expressiveness
strictly increases from bottom to top. Lσ denotes lan-
guage L under semantics σ, where “su” is the supported
and “st” the stable model semantics; languages are among
AFs (argumentation frameworks), ADFs (abstract dialect-
ical frameworks), BADFs (bipolar ADFs), LPs (normal lo-
gic programs) and PL (propositional logic).

Discussion
We compared the expressiveness of abstract argumentation
frameworks, abstract dialectical frameworks, normal logic
programs and propositional logic. We showed that express-
iveness under different semantics varies for the formalisms
and obtained a neat expressiveness hierarchy. These results
inform us about the capabilities of these languages to encode
sets of two-valued interpretations, and help us decide which
languages to use for specific applications.

For instance, if we wish to encode arbitrary model sets,
for example when using model-based revision, then ADFs

298

and logic programs under supported semantics are a good
choice. If we are happy with the restricted class of model
sets having the antichain property, then we would be ill-
advised to use general ADFs under stable model semantics
with their ΣP2 -hard stable model existence problem; to real-
ise an antichain, it suffices to use bipolar ADFs or normal
logic programs, where stable model existence is in NP.

There is much potential for further work. First of all, for
results on non-realisability, it would be better to have neces-
sary conditions than having to use a non-deterministic de-
cision procedure. For this, we need to obtain general criteria
that all model sets of a given formalism must obey, given
the formalism is not universally expressive. This is non-
trivial in general, and for AFs it constitutes a major open
problem (Dunne et al., 2014; Baumann et al., 2014). Like-
wise, we sometimes used semantical realisations instead of
syntactic ones; for example, to show universal realisabil-
ity of ADFs under supported models we started out with
model sets. It is an interesting question whether a real-
ising ADF can be constructed from a given propositional
formula without computing the models of the formula first.
Second, there are further semantics for abstract dialectical
frameworks whose expressiveness could be studied; Dunne
et al. (2014) already analyse many of them for argument-
ation frameworks. This work is thus only a start and the
same can be done for the remaining semantics, for example
admissible, complete, preferred and others, which are all
defined for AFs, (B)ADFs and LPs (Strass, 2013; Brewka
et al., 2013). Third, there are further formalisms in abstract
argumentation (Brewka, Polberg, and Woltran, 2013) whose
expressiveness is by and large unexplored to the best of our
knowledge. Fourth, the requirement that realisations may
only use a fixed vocabulary without any additional symbols
is quite restrictive. Intuitively, it should be allowed to add a
reasonable number of additional atoms, for example a con-
stant number or one that is linear in the original vocabulary.
Finally, our study only considered if a language can express
a model set, but not to what cost in terms of representation
size. So the natural next step is to consider the succinctness
of formalisms, “How large is the smallest knowledge base
expressing a given model set?” (Gogic et al., 1995). A land-
mark result in this direction has been obtained by Lifschitz
and Razborov (2006), who have shown that logic programs
(with respect to two-valued stable models) are exponentially
more succinct than propositional logic. That is, there are
logic programs whose respective sets of stable models can-
not be expressed by a propositional formula whose size is at
most polynomial in the size of the logic program, unless a
certain widely believed assumption of complexity theory is
false. With the results of the present paper, we have laid the
groundwork for a similar analysis of the other knowledge
representation languages considered here, perhaps working
towards a “map” of these languages in the sense of Darwiche
and Marquis’ knowledge compilation map [2002].
Acknowledgements. The author wishes to thank Stefan
Woltran for providing a useful pointer to related work on
realisability in logic programming, and Frank Loebe for sev-
eral informative discussions. This research was partially
supported by DFG (project BR 1817/7-1).

References
Baumann, R.; Dvořák, W.; Linsbichler, T.; Strass, H.; and

Woltran, S. 2014. Compact argumentation frameworks.
In Konieczny, S., and Tompits, H., eds., Proceedings of
the Fifteenth International Workshop on Non-Monotonic
Reasoning (NMR).

Bidoit, N., and Froidevaux, C. 1991. Negation by default
and unstratifiable logic programs. Theoretical Computer
Science 78(1):85–112.

Brewka, G., and Woltran, S. 2010. Abstract Dialectical
Frameworks. In Proceedings of the Twelfth International
Conference on the Principles of Knowledge Representa-
tion and Reasoning (KR), 102–111.

Brewka, G.; Ellmauthaler, S.; Strass, H.; Wallner, J. P.; and
Woltran, S. 2013. Abstract Dialectical Frameworks Re-
visited. In Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence (IJCAI), 803–
809. IJCAI/AAAI.

Brewka, G.; Dunne, P. E.; and Woltran, S. 2011. Relat-
ing the Semantics of Abstract Dialectical Frameworks and
Standard AFs. In Proceedings of the Twenty-Second In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), 780–785. IJCAI/AAAI.

Brewka, G.; Polberg, S.; and Woltran, S. 2013. Gener-
alizations of Dung frameworks and their role in formal
argumentation. IEEE Intelligent Systems PP(99). Special
Issue on Representation and Reasoning. In press.

Clark, K. L. 1978. Negation as Failure. In Gallaire, H., and
Minker, J., eds., Logic and Data Bases, 293–322. Plenum
Press.

Coste-Marquis, S.; Konieczny, S.; Mailly, J.-G.; and Mar-
quis, P. 2013. On the revision of argumentation sys-
tems: Minimal change of arguments status. Proceedings
of TAFA.

Darwiche, A., and Marquis, P. 2002. A Knowledge Com-
pilation Map. Journal of Artificial Intelligence Research
(JAIR) 17:229–264.

Dimopoulos, Y.; Nebel, B.; and Toni, F. 2002. On
the computational complexity of assumption-based argu-
mentation for default reasoning. Artificial Intelligence
141(1/2):57–78.

Dung, P. M. 1995. On the Acceptability of Arguments and
its Fundamental Role in Nonmonotonic Reasoning, Logic
Programming and n-Person Games. Artificial Intelligence
77:321–358.

Dunne, P. E.; Dvořák, W.; Linsbichler, T.; and Woltran, S.
2014. Characteristics of Multiple Viewpoints in Abstract
Argumentation. In Proceedings of the Fourteenth Inter-
national Conference on the Principles of Knowledge Rep-
resentation and Reasoning (KR). To appear.

Eiter, T.; Fink, M.; Pührer, J.; Tompits, H.; and Woltran,
S. 2013. Model-based recasting in answer-set program-
ming. Journal of Applied Non-Classical Logics 23(1–
2):75–104.

299

Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski,
M.; Schaub, T.; and Schneider, M. 2011. Po-
tassco: The Potsdam Answer Set Solving Collec-
tion. AI Communications 24(2):105–124. Available at
http://potassco.sourceforge.net.

Gelfond, M., and Lifschitz, V. 1988. The Stable Model
Semantics for Logic Programming. In Proceedings of the
International Conference on Logic Programming (ICLP),
1070–1080. The MIT Press.

Gogic, G.; Kautz, H.; Papadimitriou, C.; and Selman, B.
1995. The comparative linguistics of knowledge repres-
entation. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence (IJCAI), 862–
869. Morgan Kaufmann.

Lifschitz, V., and Razborov, A. 2006. Why are there so
many loop formulas? ACM Transactions on Computa-
tional Logic 7(2):261–268.

Lin, F., and Zhao, Y. 2004. ASSAT: Computing Answer Sets
of a Logic Program by SAT Solvers. Artificial Intelligence
157(1-2):115–137.

Marek, V. W., and Truszczyński, M. 1991. Autoepistemic
logic. Journal of the ACM 38(3):587–618.

Osorio, M.; Zepeda, C.; Nieves, J. C.; and Cortés, U. 2005.
Inferring acceptable arguments with answer set program-
ming. In Proceedings of the Sixth Mexican International
Conference on Computer Science (ENC), 198–205. IEEE
Computer Society.

Strass, H., and Wallner, J. P. 2014. Analyzing the Computa-
tional Complexity of Abstract Dialectical Frameworks via
Approximation Fixpoint Theory. In Proceedings of the
Fourteenth International Conference on the Principles of
Knowledge Representation and Reasoning (KR). To ap-
pear.

Strass, H. 2013. Approximating operators and semantics
for abstract dialectical frameworks. Artificial Intelligence
205:39–70.

Appendix
Lemma 12. X is bipolarly realisable if and only if the for-
mula φX from Theorem 3 is satisfiable.

Proof. “if”: Let I ⊆ P be a model for φX . For each
a ∈ A, we define an acceptance condition as follows:
for M ⊆ A, set Ca(M) = t iff pMa ∈ I . It is easy to
see that φbipolar guarantees that these acceptance con-
ditions are all bipolar. The ADF is now given by
Dsu
X = (A,A×A,C). It remains to show that any

M ⊆ A is a model of Dsu
X if and only if M ∈ X .

“if”: Let M ∈ X . We have to show that M is a model of
Dsu
X . Consider any a ∈ A.

1. a ∈M . Since I is a model of φ∈X , we have pMa ∈ I
and thus by definition Ca(M) = t.

2. a ∈ A \M . Since I is a model of φ∈X , we have
pMa /∈ I and thus by definition Ca(M) = f .

“only if”: LetM /∈ X . Since I is a model of φ/∈X , there is
an a ∈M such that Ca(M) = f or an a /∈M such that
Ca(M) = t. In any case, M is not a model of Dsu

X .
“only if”: Let D be a bipolar ADF with su(D) = X . We

use D to define a model I for φX . First, for M ⊆ A and
a ∈ A, set pMa ∈ I iff Ca(M) = t. Since D is bipolar,
each link is supporting or attacking and for all a, b ∈ A
we can find a valuation for pa,bsup and pa,batt . It remains to
show that I is a model for φX .

1. I is a model for φ∈X : Since D realises X , each M ∈ X
is a model of D and thus for all a ∈ A we have
Ca(M) = t iff a ∈M .

2. I is a model for φ/∈X : Since D realises X , each M ⊆ A
with M /∈ X is not a model of D. Thus for each such
M , there is an a ∈ A witnessing that M is not a model
of D: (1) a ∈M and Ca(M) = f , or (2) a /∈M and
Ca(M) = t.

3. I is a model for φbipolar : This is straightforward since
D is bipolar by assumption. �

300

