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Abstract
Nonmonotonic reasoning based on ordinal conditional functions (OCFs), often called ranking functions, and description logics are
both well-established methodologies in knowledge representation and reasoning. However, nonmonotonic reasoning mainly focuses
on propositional logic as a base logic, while description logics investigate fragments of first-order logic for efficient reasoning with
terminological knowledge. In this paper, we investigate how OCFs can be employed to define inference relations induced from first-order
conditional knowledge bases. The goal of this work is to present first steps towards an interpretation of defeasible subsumptions in
description logics (DL) which is thoroughly based on conditionals and ranking functions. In the process, we adapt a recently proposed
DL version of the KLM postulates, a popular framework for non-monotonic reasoning from propositional knowledge bases, for the use
with conditional first-order logic. Moreover, we consider some additional recently proposed rationality postulates for a KLM approach
based on (restricted) first-order logic. Concrete examples are provided for reasoning with strategic c-representations, a special type of
ranking functions based on the underlying conditional structures of a knowledge base, yielding high-quality non-monotonic inferences
without the need to specify external relations, e.g., expressing typicality among individuals.
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1. Introduction
Rules in the form of conditional statements “If A then (usu-
ally) B” (sometimes equipped with a quantitative degree)
are basic to human reasoning and also to logics in Artificial
Intelligence, and have been explored in the area of non-
monotonic reasoning since the 80s of the past century. They
can be formalized as conditionals (𝐵|𝐴), allowing for a non-
classical, three-valued interpretation of conditional state-
ments. Semantics for knowledge bases consisting of condi-
tionals are provided by epistemic states, often equipped with
total preorders on possible worlds. Using total preorders
ensures a high quality of nonmonotonic reasoning in terms
of broadly accepted axioms. Ordinal conditional functions
[1, 2], often called ranking functions, can be considered an
implementation of such epistemic states that assign to each
possible world 𝜔 an implausibility rank 𝜅(𝜔) such that the
higher 𝜅(𝜔), the less plausible 𝜔 is, and with the normal-
ization constraint that there are worlds that are maximally
plausible.

Similar to conditionals for propositional logic, statements
of the form “Usually, As are Bs” encoded as defeasible con-
cept inclusions 𝐴 ⊏∼ 𝐵, also called defeasible subsumptions,
are a natural extension for description logics (DLs) in or-
der to introduce conditional reasoning. Recently, different
semantics for defeasible DL knowledge bases have been
proposed [3, 4, 5].

In order to compare and contrast different approaches to
non-monotonic reasoning, as well as to provide unifying
frameworks, postulates are necessary. A popular approach
for non-monotonic reasoning, preferential models, is char-
acterized by the so-called KLM postulates [6]. However,
preferential models have been mostly considered for propo-
sitional logics. Recently, Britz et al. [4] have proposed a
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DL version of these postulates, lifting the KLM approach to
defeasible description logics.

The goal of this paper is to propose first steps towards
an interpretation of defeasible subsumptions in description
logics (DL) which is thoroughly based on conditionals and
ranking functions. To this end, we lift the notion of inductive
inference operators defined in [7] to first-order conditional
knowledge bases. Additionally, we adapt the KLM postu-
lates from [4], as well as additional rationality postulates for
the KLM approach from [3] and show that they are fulfilled
by our approach. Moreover, we illustrate the application
of ranking-based first-order conditional semantics to a DL
example well-known from the literature and compare it to
concept-wise multipreference (cwm) semantics from [5].

The rest of this paper is organized as follows. In Section 2,
the basics on first-order conditionals and defeasible 𝒜ℒ𝒞
are summarized. In Section 3, we describe inductive infer-
ence operators for first-order (conditional) knowledge bases.
In Section 4, postulates from [4] and [8] are adapted and
evaluated for the use with first-order conditional logic. In
Section 5, we compare the OCF-based semantics for first-
order knowledge bases with cwm-semantics [5] for defeasi-
ble 𝒜ℒ𝒞 knowledge bases. In Section 6, we conclude this
paper with summarizing its main contributions and some
pointers for future work.

2. Preliminaries
This section recalls some formal basics on conditional first-
order logic and defeasible description logics. For a more
thorough introduction to description logics, we recommend
[9].

2.1. Conditionals in First-Order Logic
In this section, we recall relevant parts of the first-order
conditional logic introduced in [10]. We start with syntac-
tical details. Let Σ = ⟨𝑃Σ, 𝑈Σ⟩ be a first-order signature
consisting of a finite set of predicates 𝑃Σ and a finite set
of constant symbols 𝑈Σ but without function symbols of
arity > 0. An atom is a predicate of arity 𝑛 together with a
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list of 𝑛 constants and/or variables. A literal is an atom or a
negated atom. Formulas are built on atoms using conjunc-
tion (∧), disjunction (∨), negation (¬), material implication
(⇒), and quantification (∀, ∃). We abbreviate conjunctions
by juxtaposition and negations usually by overlining, e. g.
𝐴𝐵 means 𝐴∧𝐵 and 𝐴 means ¬𝐴. The symbol ⊤ denotes
an arbitrary tautology, and ⊥ denotes an arbitrary contra-
diction. A ground formula contains no variables. In a closed
formula, all variables (if they occur) are bound by quanti-
fiers, otherwise, the formula is open, and the variables that
occur outside of the range of quantifiers are called free. If a
formula 𝐴 contains free variables we also use the notation
𝐴(�⃗�) where �⃗� = (𝑥1, . . . , 𝑥𝑛) contains all free variables in
𝐴. If �⃗� is a vector of the same length as �⃗� then 𝐴(�⃗�) is meant
to denote the instantiation of 𝐴 with �⃗�. A formula ∀�⃗�𝐴(�⃗�)
(∃�⃗�𝐴(�⃗�)) is universal (existential) if 𝐴 involves no further
quantification. Let ℒΣ be the first-order language that al-
lows no nested quantification, i.e., all quantified formulas
are either universal or existential formulas. ℒΣ contains
both open and closed formulas.

ℒΣ is extended by a conditional operator “|” to a condi-
tional language (ℒΣ|ℒΣ) containing first-order condition-
als (𝐵|𝐴) with 𝐴,𝐵 ∈ ℒΣ. We write (𝐵(�⃗�)|𝐴(�⃗�)) to
highlight free variables. Then we assume �⃗� to mention
all free variables occurring in 𝐴 or 𝐵 where the positions
of the variables are suitably adapted. Note that 𝐴 and 𝐵
usually will have free variables in common but may also
mention free variables which do not occur in the respec-
tive other formula. E.g., the conditional (𝐹𝑟𝑖𝑒𝑛𝑑𝑠(𝑦, 𝑥) ∧
𝐹𝑟𝑖𝑒𝑛𝑑𝑠(𝑥, 𝑧)|𝐹𝑟𝑖𝑒𝑛𝑑𝑠(𝑥, 𝑦)) (if 𝑥 is a friend of 𝑦 then
usually 𝑦 is also a friend of 𝑥 and 𝑥 has also a(nother)
friend 𝑧) would be represented by (𝐵(𝑥, 𝑦, 𝑧)|𝐴(𝑥, 𝑦, 𝑧))
with 𝐵(𝑥, 𝑦, 𝑧) = 𝐹𝑟𝑖𝑒𝑛𝑑𝑠(𝑦, 𝑥) ∧ 𝐹𝑟𝑖𝑒𝑛𝑑𝑠(𝑥, 𝑧) and
𝐴(𝑥, 𝑦, 𝑧) = 𝐹𝑟𝑖𝑒𝑛𝑑𝑠(𝑥, 𝑦). Note that conditionals cannot
be nested, and that conditionals with tautological antecedent
are identified with the corresponding non-conditional state-
ment, i.e., (𝐴|⊤) ≡ 𝐴. Nevertheless, we distinguish be-
tween such plausible statements (𝐴|⊤) ≡ 𝐴 and strict
facts. Let ℒ𝑐

Σ = ℒΣ ∪ (ℒΣ|ℒΣ) be the language contain-
ing both first-order formulas and conditionals as specified
above.

A first-order conditional knowledge base ℛ is a finite set
of conditional formulas. A first-order knowledge base 𝒦ℬ =
⟨ℱ ,ℛ⟩ consists of a first-order conditional knowledge base
ℛ, together with a set ℱ of closed formulas from ℒΣ, called
facts. The open formulas and conditionals in ℛ are meant
to represent defeasible plausible beliefs.

Regarding semantics, we base our first-order conditional
semantics on the Herbrand semantics. A possible world
𝜔 is a subset of the Herbrand base ℋΣ, which contains all
ground atoms of the first-order signature Σ. Possible worlds
can be concisely represented as complete conjunctions or
minterms, i.e. conjunctions of literals where every atom
of ℋΣ appears either in positive or in negated form. The
set of all possible worlds is denoted by ΩΣ. For an open
conditional 𝑟 = (𝐵(�⃗�)|𝐴(�⃗�)), the set ℋ𝑟 denotes the set
of all vectors from the Herbrand universe that appear in
groundings of 𝑟, i.e.

ℋ(𝐵(�⃗�)|𝐴(�⃗�)) = {�⃗� ∈ 𝑈Σ | |�⃗�| = |�⃗�|}.

Ordinal conditional functions [1], usually called rank-
ing functions, can be defined just as in the propositional
case. They associate degrees of (im)plausibility with possi-
ble worlds.

Definition 1. An ordinal conditional function (OCF) 𝜅 on
ΩΣ is a function 𝜅 : ΩΣ → N ∪ {∞} with 𝜅−1(0) ̸= ∅.

We can now make use of the possible world semantics
to assign degrees of disbelief also to formulas and (non-
quantified) conditionals. In the following, let 𝐴,𝐵 ∈ ℒΣ

denote closed formulas, and let 𝐴(�⃗�), 𝐵(�⃗�) ∈ ℒΣ denote
open formulas.

Definition 2 (𝜅-ranks of closed formulas [10]). Let 𝜅 be
an OCF. The 𝜅-ranks of closed formulas are defined (as in the
propositional case) via

𝜅(𝐴) = min
𝜔|=𝐴

𝜅(𝜔) and 𝜅(𝐵 |𝐴) = 𝜅(𝐴𝐵)− 𝜅(𝐴).

By convention, 𝜅(⊥) = ∞, because ranks are supposed
to reflect plausibility.

The ranks of first-order formulas are coherently based on
the usage of OCFs for propositional formulas. These degrees
of beliefs are used to specify when a formula from (ℒΣ|ℒΣ)
is accepted by a ranking function 𝜅 (where acceptance is
denoted by |=). We will first consider the acceptance of
closed (conditional) formulas.

Definition 3 (Acceptance of closed formulas [10]). Let 𝜅
be an OCF. The acceptance relation between 𝜅 and closed
formulas from ℒΣ and (ℒΣ|ℒΣ) is defined as follows:

• 𝜅 |= 𝐴 iff for all 𝜔 ∈ Ω with 𝜅(𝜔) = 0, it holds that
𝜔 |= 𝐴.

• 𝜅 |= (𝐵 |𝐴) iff 𝜅(𝐴𝐵) < 𝜅(𝐴𝐵).

Acceptance of a sentence by a ranking function is the
same as in the propositional case for ground sentences, and
interprets the classical quantifiers in a straightforward way.

The treatment of acceptance of open formulas is more
intricate, as such formulas will be used to express default
statements, like in “𝐴 is plausible”, or in “usually, if 𝐴 holds,
then 𝐵 also holds”.

Definition 4 (𝜅-ranks of open formulas [10]). We define the
ranks of open formulas and open conditionals by evaluating
most plausible instances:

𝜅(𝐴(�⃗�)) = min
�⃗�∈ℋ𝐴(�⃗�)

𝜅(𝐴(�⃗�))

𝜅(𝐵(�⃗�)|𝐴(�⃗�)) = min
�⃗�∈ℋ(𝐵(�⃗�)|𝐴(�⃗�))

𝜅(𝐴(�⃗�)𝐵(�⃗�))− 𝜅(𝐴(�⃗�)).

Generalizing the notion of acceptance of a first-order for-
mula or conditional is straightforward for closed formulas
and conditionals. The basic idea here is that such (condi-
tional) open statements hold if there are individuals called
representatives that provide most convincing instances of
the respective conditional.

Definition 5 (representative [10]). Let 𝑟 = (𝐵(�⃗�)|𝐴(�⃗�))
be an open conditional. We call �⃗� ∈ ℋ𝑟 a weak representa-
tive of 𝑟 iff both of the following conditions are satisfied:

𝜅(𝐴(�⃗�)𝐵(�⃗�)) = 𝜅(𝐴(�⃗�)𝐵(�⃗�)) (1)

𝜅(𝐴(�⃗�)𝐵(�⃗�)) < 𝜅(𝐴(�⃗�)𝐵(�⃗�)) (2)

The set of weak representatives of 𝑟 is denoted by wRep(𝑟).
Further, �⃗� ∈ wRep(𝑟) is a (strong) representative of 𝑟 iff

𝜅
(︀
𝐴(�⃗�)𝐵(�⃗�)

)︀
= min

�⃗�∈wRep(𝑟)
𝜅
(︁
𝐴(�⃗�)𝐵(�⃗�)

)︁
. (3)

The set of strong representatives of 𝑟 is denoted by Rep(𝑟).



(Strong) Representatives of a conditional are character-
ized by being most general (1) and least exceptional (3). And
of course, their instantiation should be accepted by 𝜅 (2).
Note that Rep(𝑟) ̸= ∅ iff wRep(𝑟) ̸= ∅. Now we can base
our definition of acceptance of open conditionals on the
notion of representatives as follows.

Definition 6 (acceptance of open conditionals [10]). Let 𝜅
be an OCF and 𝑟 = (𝐵(�⃗�)|𝐴(�⃗�)). Then 𝜅 |= 𝑟 iff Rep(𝑟) ̸=
∅ and either of the two following conditions holds.

(A) It holds that

𝜅(𝐴(�⃗�)𝐵(�⃗�)) < 𝜅(𝐴(�⃗�)𝐵(�⃗�)). (4)

(B) 𝜅(𝐴(�⃗�)𝐵(�⃗�)) = 𝜅(𝐴(�⃗�)𝐵(�⃗�)) and either
Rep((𝐵(�⃗�)|𝐴(�⃗�))) = ∅, or for all 𝑎1⃗ ∈
Rep((𝐵(�⃗�)|𝐴(�⃗�))), 𝑎2⃗ ∈ Rep((𝐵(�⃗�)|𝐴(�⃗�)))
it holds that

𝜅(𝐴(𝑎1⃗)𝐵(𝑎1⃗)) < 𝜅(𝐴(𝑎2⃗)𝐵(𝑎2⃗)). (5)

We also have to ensure that strict knowledge (facts) are
interpreted suitably by ranking functions. An OCF can
enforce factual knowledge by setting the ranks of all worlds
which violate facts to infinity.

Definition 7 (enforcement of facts). Let 𝜅 be an OCF and let
𝐴 ∈ ℒΣ be a closed formula. Then we define that 𝜅 enforces
the fact 𝐴, denoted by 𝜅 ||− 𝐴, iff 𝜅(𝐴) = ∞.

Observe the difference between acceptance and enforce-
ment: while 𝜅 |= 𝐴 is the same as 𝜅 |= (𝐴|⊤) and
only means that 𝐴 has to hold in the 𝜅-minimal worlds,
𝜅 ||− 𝐴 means that 𝐴 holds in all feasible (i.e. finitely-
ranked) worlds. Nevertheless, enforcement is downward-
compatible to plausible acceptance, as the next proposition
shows.

Proposition 1. Let 𝜅 be an OCF and let 𝐴 ∈ ℒΣ be a closed
formula. 𝜅 ||− 𝐴 implies 𝜅 |= 𝐴.

Proof. If 𝜅 ||− 𝐴, then 𝜔 |= 𝐴 for all 𝜔 ∈ Ω such that
𝜅(𝜔) < ∞. This implies particularly that 𝜔 |= 𝐴 for all
𝜔 ∈ Ω such that 𝜅(𝜔) = 0, i.e., 𝜅 |= 𝐴.

With the necessary notation for the treatment of both un-
certain and factual knowledge in place, we are now ready to
define the conditions for whether an OCF can be considered
a model of a first-order knowledge base.

Definition 8 ((ranking) model of a first-order KB [10]). Let
𝜅 be an OCF and let 𝒦ℬ = ⟨ℱ ,ℛ⟩ be a first-order knowledge
base. We say that 𝜅 is a (ranking) model of 𝒦ℬ if both of the
following conditions hold.

• 𝜅 ||− 𝐴 for every fact 𝐴 ∈ ℱ .
• 𝜅 |= 𝑟 for every rule 𝑟 ∈ ℛ.

We illustrate first-order knowledge bases and their rank-
ing models in the following example.

Example 1. We consider a signature Σ = ⟨𝑃Σ, 𝑈Σ⟩ con-
sisting of two unary predicates 𝑃Σ = {𝐴,𝐵} and at least
two constants {𝑎, 𝑏} ⊆ 𝑈Σ. Let the knowledge base 𝒦ℬ =
⟨ℱ ,ℛ⟩ be specified by ℱ = {𝐴(𝑎)𝐵(𝑎), 𝐴(𝑏)𝐵(𝑏)} and
ℛ = {(𝐵(𝑥)|𝐴(𝑥)), (𝐵(𝑏)|𝐴(𝑏))}. Any model 𝜅 of 𝒦ℬ
must assign rank ∞ to all 𝜔 ̸|= ℱ , i.e., can have finite ranks
only for worlds 𝜔 satisfying 𝜔 |= 𝐴(𝑎)𝐵(𝑎)𝐴(𝑏)𝐵(𝑏). This
implies, also by Proposition 1, that 𝜅(𝐴(𝑎)𝐵(𝑎)) = 0 =

𝜅(𝐴(𝑏)𝐵(𝑏)) and 𝜅(𝐴(𝑎)𝐵(𝑎)) = ∞ = 𝜅(𝐴(𝑏)𝐵(𝑏)).
Moreover, we must have 𝜅 |= (𝐵(𝑥)|𝐴(𝑥)) and 𝜅 |=
(𝐵(𝑏)|𝐴(𝑏)). For the second closed conditional, this simply
means 𝜅(𝐴(𝑏)𝐵(𝑏)) < 𝜅(𝐴(𝑏)𝐵(𝑏)), which clearly holds.
For the open conditional (𝐵(𝑥)|𝐴(𝑥)), we must apply Def-
inition 6. In particular, we must consider representatives of
this conditional. Since 𝜅(𝐴(𝑎)𝐵(𝑎)) = 0 = 𝜅(𝐴(𝑏)𝐵(𝑏)),
we also have 𝜅(𝐴(𝑥)𝐵(𝑥)) = 0 = 𝜅(𝐴(𝑥)𝐵(𝑥)) by
Definition 4. Hence the more complicated option (B) of
Definition 6 applies, and we must also consider represen-
tatives of (𝐵(𝑥)|𝐴(𝑥)). Natural candidates of representa-
tives for (𝐵(𝑥)|𝐴(𝑥)) resp. (𝐵(𝑥)|𝐴(𝑥)) would be 𝑎 resp.
𝑏, but let us go into more details here. For both, we have
𝜅(𝐴(𝑎)𝐵(𝑎)) = ∞ = 𝜅(𝐴(𝑏)𝐵(𝑏)), so they are defi-
nitely weak representatives of the respective conditional. How-
ever, for strong representatives, their rank of falsification
must also be minimal among all weak representatives, ac-
cording to (3). For 𝑎 and 𝑏, this rank is maximal due to
𝜅(𝐴(𝑎)𝐵(𝑎)) = ∞ = 𝜅(𝐴(𝑏)𝐵(𝑏)), and at least prima fa-
cie, it is well imaginable that there are other constants 𝑐 ∈ 𝑈Σ

with lower, i.e., finite falsification ranks. So, at this point we
stop our investigations here and will come back later to this
example when we can use more detailed information about
the structure of ranking models of 𝒦ℬ in the next section.

Now we have set up the formal framework of our ranking-
based approach that we need for reasoning from first-order
knowledge bases. Before dealing with inference from such
knowledge bases in the next section, we briefly summarize
the syntactic basics of a description logics with defeasible
subsumptions.

2.2. Defeasible𝒜ℒ𝒞
Let 𝑁𝐶 be a set of atomic concept names, 𝑁𝑅 be a set of
role names and 𝑁𝐼 be a set of individual names. The set of
𝒜ℒ𝒞-concepts is defined by the rule

𝐶 ::= 𝐴|⊤|⊥|¬𝐶|𝐶 ⊓ 𝐶|𝐶 ⊔ 𝐶|∃𝑟.𝐶|∀𝑟.𝐶 ,

where 𝐴 ∈ 𝑁𝐶 and 𝑟 ∈ 𝑁𝑅.
An 𝒜ℒ𝒞-interpretation is a tuple 𝐼 = ⟨∆ℐ , ·ℐ⟩, where

∆ℐ is a domain and ·ℐ is an interpretation function which
maps 𝐴 ∈ 𝑁𝐶 , 𝑟 ∈ 𝑁𝑅, 𝑎 ∈ 𝑁𝐼 to 𝐴ℐ ⊆ ∆ℐ , 𝑟ℐ ⊆
∆ℐ ×∆ℐ , 𝑎ℐ ∈ ∆ℐ , respectively. For complex concepts:

⊤ℐ = ∆ℐ

⊥ℐ = ∅

¬𝐶ℐ = ∆ℐ ∖ 𝐶ℐ

(𝐶 ⊓𝐷)ℐ = 𝐶ℐ ∩𝐷ℐ

(𝐶 ⊔𝐷)ℐ = 𝐶ℐ ∪𝐷ℐ

(∃𝑟.𝐶)ℐ = {𝑥 ∈ ∆ℐ | ∃𝑦.(𝑥, 𝑦) ∈ 𝑟ℐ ∧ 𝑦 ∈ 𝐶ℐ}

(∀𝑟.𝐶)ℐ = {𝑥 ∈ ∆ℐ | ∀𝑦.(𝑥, 𝑦) ∈ 𝑟ℐ ⇒ 𝑦 ∈ 𝐶ℐ}

Classical (strict) subsumptions 𝐶 ⊑ 𝐷 (where 𝐶,𝐷 are
concepts) hold in an interpretation 𝐼 (short: 𝐼 |= 𝐶 ⊑ 𝐷)
iff 𝐶ℐ ⊆ 𝐷ℐ . Assertions of the form 𝐶(𝑎) or 𝑟(𝑎, 𝑏) (where
𝐶 is a concept, 𝑟 is a role and 𝑎, 𝑏 are individuals) hold if
𝑎 ∈ 𝐶ℐ or (𝑎, 𝑏) ∈ 𝑟ℐ , respectively.

Beyond classical logics and similar to first-order condi-
tionals, defeasible subsumptions 𝐶 ⊏∼ 𝐷 encode information
of the form “Usually, instances of 𝐶 are instances of 𝐷” or
“Typical 𝐶s are 𝐷s”.



A defeasible (𝒜ℒ𝒞) knowledge base 𝒦ℬ = ⟨𝒯 ,𝒟,𝒜⟩
consists of a TBox 𝒯 (containing strict subsumptions), a
DBox 𝒟 (containing defeasible subsumptions) and an ABox
𝒜 (containing assertions).

A popular approach to provide semantics for defeasible
subsumptions (e.g. used in [4, 5]) is to introduce some order-
ing over the domain elements ∆ℐ and require the minimal
instances of 𝐶 (with respect to said ordering) to be instances
of 𝐷 in order for 𝐶 ⊏∼ 𝐷 to hold.

In this paper, we understand defeasible subsumptions as
open conditionals and interpret them via ranking functions.

3. Reasoning from First-Order
Knowledge Bases

In this section, we consider inference relations induced by
first-order (FO) knowledge bases, similar to the ones con-
sidered for the propositional case in [7].

3.1. Inductive FO-Inference Relations
Let 𝒦ℬ = ⟨ℱ ,ℛ⟩ be a first-order knowledge base. We
are interested in defeasible inferences that we can draw
from 𝒦ℬ, i.e., we consider (nonmonotonic) inferences of
the form 𝒦ℬ |∼ 𝜙 with 𝜙 ∈ ℒ𝑐

Σ being a first-order formula
or conditional. More precisely, we study inductive inference
relations |∼⊆ ℒ𝑐

Σ ×ℒ𝑐
Σ similar to the ones presented in [7].

Two fundamental postulates for such inference relations pre-
supposed in [7] are that formulas from the knowledge base
can be inferred (this is called Direct Inference (DI)), and that
without conditionals in the knowledge base, conditionals
can be inferred only trivially (Trivial Vacuity (TV)).

(DI) 𝜙 ∈ ℱ ∪ℛ implies ⟨ℱ ,ℛ⟩ |∼ 𝜙.

(TV) ⟨ℱ , ∅⟩ |∼ (𝐵(�⃗�)|𝐴(�⃗�)) only if there is a constant
vector �⃗� such that ℱ |= 𝐴(�⃗�) ⇒ 𝐵(�⃗�).

Note that (DI) is a bit basic concerning the treatments of
facts. Actually, we would expect facts from ℱ to be enforced.
We will see that our approach can guarantee this.

One natural way to construct an inductive inference re-
lation is to choose a model 𝜅 for each knowledge base and
consider the inferences induced by 𝜅 via

⟨ℱ ,ℛ⟩ |≈𝜅 𝜙 iff 𝜅 |= 𝜙, (6)

where 𝜙 ∈ ℒ𝑐
Σ, and ⟨ℱ ,ℛ⟩ |≈𝜅 𝜙 means that 𝜙 can be

inferred from ⟨ℱ ,ℛ⟩ via its ranking model 𝜅.
However in general, it is not easy to decide on the ex-

istence of models of a first-order knowledge base, i.e., on
the satisfiability of such knowledge bases in our ranking-
based semantics, as we saw in Example 1. In particular,
knowledge given by facts in ℱ may interact with plausi-
ble beliefs specified by conditionals in ℛ. For example, if
ℱ |= ∀�⃗�.𝐴(�⃗�) ⇒ 𝐵(�⃗�), the conditional (𝐵(�⃗�)|𝐴(�⃗�)) ∈ ℛ
cannot be accepted by a ranking function 𝜅. In this case,
the 𝒦ℬ = ⟨ℱ ,ℛ⟩ would be not satisfiable.

In the next subsection, we recall a class of ranking models
of first-order knowledge bases that allow for more trans-
parent investigations into the satisfiability of first-order
knowledge bases and usually provide a basis for quite well-
behaved inductive inference.

3.2. Inductive FO-Inference Based on
c-Representations

c-Representations, originally defined for the propositional
setting [11, 12], are a special kind of ranking models which
assign ranks to possible worlds in a regular way by adhering
to the conditional structures of knowledge bases. A (simpli-
fied) version of c-representations for first-order conditinal
knowledge bases was proposed in [10].

Definition 9 (c-Representation [10]). Let 𝒦ℬ = ⟨ℱ ,ℛ⟩
with ℛ = {(𝐵1(�⃗�1)|𝐴1(�⃗�1)), . . . , (𝐵𝑛(�⃗�𝑛)|𝐴𝑛(�⃗�𝑛))} be
a first-order knowledge base. An OCF 𝜅 is a c-representation
of 𝒦ℬ if 𝜅(𝜔) = ∞ for all 𝜔 ̸|= ℱ and 𝜅 |= 𝑟 for every
𝑟 ∈ ℛ, and for all 𝜔 |= ℱ , 𝜅(𝜔) is of the form

𝜅(𝜔) = 𝜅0 +
∑︁

1≤𝑖≤𝑛

𝑓𝑖(𝜔)𝜂𝑖, (7)

where 𝑓𝑖(𝜔) = #{�⃗�𝑖 ∈ ℋ𝑟𝑖 | 𝑟𝑖 = (𝐵𝑖(�⃗�𝑖) |𝐴𝑖(�⃗�𝑖)) ∈
ℛ, 𝜔 |= 𝐴𝑖(�⃗�𝑖)𝐵𝑖(�⃗�𝑖)} is the number of possible grounding
vectors that appear in falsifications of 𝑟𝑖 in 𝜔, and 𝜅0, 𝜂𝑖 ∈ N
with 𝜂𝑖 ≥ 0 are suitably chosen to ensure that 𝜅 is an OCF
and 𝜅 |= ℛ.

The value 𝜅0 is a normalizing factor for ensuring that
min𝜔∈Ω 𝜅(𝜔) = 0, and the values 𝜂𝑖 are called impact fac-
tors. Observe that the value of 𝜂𝑖 does not depend on the
specific world 𝜔 under consideration, but on the other condi-
tionals in ℛ, and can be determined via a set of inequalities
between the different 𝜂𝑖. Therefore, c-representations exist
iff this system of inequalities is solvable. This allows for
deriving sufficient conditions for the satisfiability of knowl-
edge bases in terms of solutions of inequalities. However, in
the first-order case, this system of inequalities is much more
complex than in the propositional case because conditionals
can be both verified and falsified by different constants in
the same world, and due to the interactions between facts
and conditionals. Therefore, it is hardly possible to give a
generic representation of these inequalities for first-order
knowledge bases. We illustrate c-representations by contin-
uing our Example 1.

Example 2 (Example 1 cont’d). We consider the knowledge
base 𝒦ℬ = ⟨ℱ ,ℛ⟩ with ℱ = {𝐴(𝑎)𝐵(𝑎), 𝐴(𝑏)𝐵(𝑏)} and
ℛ = {𝑟1 = (𝐵(𝑥)|𝐴(𝑥)), 𝑟2 = (𝐵(𝑏)|𝐴(𝑏))} from Exam-
ple 1. A c-representation 𝜅 of 𝒦ℬ has the form 𝜅(𝜔) =
𝜅0 +

∑︀
1≤𝑖≤2 𝑓𝑖(𝜔)𝜂𝑖 for 𝜔 |= 𝐴(𝑎)𝐵(𝑎)𝐴(𝑏)𝐵(𝑏),

and 𝜅(𝜔) = ∞ for 𝜔 ̸|= 𝐴(𝑎)𝐵(𝑎)𝐴(𝑏)𝐵(𝑏). Since
𝐴(𝑏)𝐵(𝑏) ∈ ℱ , conditional 𝑟2 cannot be falsified by finitely-
ranked worlds, so the impact factor 𝜂2 is ineffective, and we
just have

𝜅(𝜔) = 𝜅0 + 𝑓1(𝜔)𝜂1 (8)

for 𝜔 |= 𝐴(𝑎)𝐵(𝑎)𝐴(𝑏)𝐵(𝑏). For any such 𝜔, 𝜅(𝜔) ≥
𝜅0 + 𝜂1 because of the falsification of 𝑟1 by 𝑏, and if no
other constant falsifies 𝑟1, we obtain 𝜅(𝜔) = 𝜅0 + 𝜂1 as the
minimum rank which must be 0. This yields 𝜅0 = −𝜂1.

The impact factor 𝜂1 ≥ 0 has to be chosen in such a
way that 𝑟1 is accepted by 𝜅. As for any model of 𝒦ℬ,
it holds that 0 = 𝜅(𝐴(𝑥)𝐵(𝑥)) = 𝜅(𝐴(𝑎)𝐵(𝑎)) <
𝜅(𝐴(𝑎)𝐵(𝑎)) = ∞ and 0 = 𝜅(𝐴(𝑥)𝐵(𝑥)) =
𝜅(𝐴(𝑏)𝐵(𝑏)) < 𝜅(𝐴(𝑏)𝐵(𝑏)) = ∞, so 𝑎 ∈ wRep(𝑟1)
and 𝑏 ∈ wRep((𝐵(𝑥)|𝐴(𝑥))), and Definition 6 (B) applies.
Consider any constant 𝑐 ̸∈ {𝑎, 𝑏}. Since 𝜔 |= 𝐴(𝑐)𝐵(𝑐)
can be chosen in such a way that 𝜔 |= 𝐴(𝑑) for any fur-
ther constant 𝑑 ̸∈ {𝑎, 𝑏, 𝑐}, we obtain 𝜅(𝐴(𝑐)𝐵(𝑐)) =



𝜅(𝐴(𝑎)𝐵(𝑎)𝐴(𝑏)𝐵(𝑏)𝐴(𝑐)𝐵(𝑐)) = 0 = 𝜅(𝐴(𝑥)𝐵(𝑥)),
and analogously, 𝜅(𝐴(𝑐)𝐵(𝑐)) = 𝜂1.

Consider the case 𝜂1 = 0. Then we would have
𝜅(𝐴(𝑐)𝐵(𝑐)) = 0 = 𝜅(𝐴(𝑐)𝐵(𝑐)), so 𝑐 ̸∈ wRep(𝑟1) and
𝑐 ̸∈ wRep((𝐵(𝑥)|𝐴(𝑥))). Hence wRep(𝑟1) = {𝑎} and
wRep((𝐵(𝑥)|𝐴(𝑥))) = {𝑏}, and therefore Rep(𝑟1) = {𝑎}
and Rep((𝐵(𝑥)|𝐴(𝑥))) = {𝑏}. So finally, we have to check
the last condition (5) from Definition 6 (B) for 𝑎 and 𝑏, and
find that 𝜅(𝐴(𝑎)𝐵(𝑎)) = ∞ = 𝜅(𝐴(𝑏)𝐵(𝑏)), hence (5) is
violated. Therefore, 𝜂1 = 0 cannot ensure the acceptance of
𝑟1.

On the other hand, for any (finite) 𝜂1 > 0 and for any
constant 𝑐 ̸∈ {𝑎, 𝑏}, we then calculate 𝜅(𝐴(𝑥)𝐵(𝑥)) =
𝜅(𝐴(𝑐)𝐵(𝑐)) = 0 < 𝜂1 = 𝜅(𝐴(𝑐)𝐵(𝑐)). Hence each
such 𝑐 is a weak representative satisfying 𝜅(𝐴(𝑐)𝐵(𝑐)) =
𝜂1 < ∞ = 𝜅(𝐴(𝑎)𝐵(𝑎)). So in this case, 𝑎 cannot be
a strong representative of 𝑟1, and we obtain Rep(𝑟1) =
𝑈Σ ∖ {𝑎, 𝑏}. Obviously, any 𝑐 ∈ 𝑈Σ ∖ {𝑏} cannot be a
(weak) representative of (𝐵(𝑥)|𝐴(𝑥)), and therefore we have
wRep((𝐵(𝑥)|𝐴(𝑥))) = Rep((𝐵(𝑥)|𝐴(𝑥))) = {𝑏}. Fi-
nally, since for any 𝑐 ∈ Rep(𝑟1), 𝜅(𝐴(𝑐)𝐵(𝑐)) = 𝜂1 <
∞ = 𝜅(𝐴(𝑏)𝐵(𝑏)), also (5) can be satisfied. Therefore, any
finite 𝜂1 > 0 in (8) yields a c-representation of 𝒦ℬ.

Nevertheless, if c-representations of a first-order knowl-
edge base exist at all, then there are usually infinitely many
of them. E.g., in Example 2 above, infinitely many 𝜂1 > 0
define infinitely many c-representations. Therefore, some
kind of selection procedure is needed in order to formal-
ize which c-representations an inductive inference operator
should choose.

Definition 10 (selection strategy 𝜎). A selection strategy
(for c-representations) is a function 𝜎 assigning to each first-
order conditional knowledge base 𝒦ℬ = ⟨ℱ ,ℛ⟩ an impact
vector �⃗� ∈ N|ℛ|

𝜎 : 𝒦ℬ ↦→ �⃗�

such that the OCF obtained by using �⃗� as impacts in Defini-
tion 9 is a c-representation of ℛ.

With the help of selection strategies, we are now able to
define inductive inference operators specifically for infer-
ences obtained from c-representations of a given knowledge
base.

Definition 11 (Cc-rep
𝜎 ). An inductive inference operator for

c-representations with selection strategy 𝜎 is a function

Cc-rep
𝜎 : 𝒦ℬ ↦→ 𝜅𝜎(𝒦ℬ)

where 𝜎 is a selection strategy for c -representations. As before,
a corresponding inductive inference relation can be obtained
via Equation (6).

It can easily be checked that the postulates (DI) and
(TV) are satisfied by all inference relations induced from
c-representations. (DI) is ensured by the fact that each c-
representation is a model of the knowledge base, and (TV)
is immediate from Equation (7), as the following lemma
shows.

Lemma 1. Let ⟨ℱ , ∅⟩ be a first-order knowledge base, let
𝜅 be a c-representation of ⟨ℱ , ∅⟩. Then for any conditional
(𝐵(�⃗�)|𝐴(�⃗�)), 𝜅 |= (𝐵(�⃗�)|𝐴(�⃗�)) only if there is a constant
vector �⃗� such that ℱ |= 𝐴(�⃗�) ⇒ 𝐵(�⃗�).

Proof. Any c-representation 𝜅 of ⟨ℱ , ∅⟩ has the form (7)
for 𝜔 |= ℱ and satisfies 𝜅(𝜔) = ∞ for 𝜔 ̸|= ℱ . Since
there are no conditionals in the rule base, we simply have
𝜅(𝜔) = 𝜅0 for 𝜔 |= ℱ , hence the normalization constant
must satisfy 𝜅0 = 0. If 𝜅 |= (𝐵(�⃗�)|𝐴(�⃗�)) holds, there
must be weak representative for (𝐵(�⃗�)|𝐴(�⃗�)), hence there
must be a constant vector �⃗� such that 𝜅(𝐴(�⃗�)𝐵(�⃗�)) <
𝜅(𝐴(�⃗�)𝐵(�⃗�)). This is possible only if 𝜅(𝐴(�⃗�)𝐵(�⃗�)) = 0
and 𝜅(𝐴(�⃗�)𝐵(�⃗�)) = ∞, since 𝜅 has only these two ranks.
This implies 𝜅(𝜔) = ∞ for all 𝜔 |= 𝐴(�⃗�)𝐵(�⃗�), i.e., for
all 𝜔 |= 𝐴(�⃗�)𝐵(�⃗�), 𝜔 ̸|= ℱ . Via contraposition, ℱ |=
¬(𝐴(�⃗�)𝐵(�⃗�)) ≡ 𝐴(�⃗�) ⇒ 𝐵(�⃗�). This was to be shown.

3.3. c-Representations for Defeasible 𝒜ℒ𝒞
The basic idea of our approach is to understand defeasi-
ble subsumptions as open first-order conditionals. This
allows for considering defeasible 𝒜ℒ𝒞 knowledge bases
as first-order (conditional) knowledge bases and make use
of ranking functions to provide semantics for defeasible
𝒜ℒ𝒞 knowledge bases. Even more, we are then able to
reason inductively from defeasible 𝒜ℒ𝒞 knowledge bases
via c-representations. We will investigate both the general
ranking-based semantics of defeasible 𝒜ℒ𝒞 reasoning and
its more sophisticated version based on c-representations
in the following to show the potential of this semantics for
description logics. Since this paper only takes first steps in
this direction, we want to focus on main techniques of our
approach to not burden the general line of thought with
too many technical details. Therefore, the following three
prerequisites apply for the rest of this paper:

1. Both components ℱ and ℛ of first-order conditional
knowledge bases do not mention any constant. For
defeasible 𝒜ℒ𝒞 knowledge bases, this means that
the ABox is empty.

2. The ranking-based semantics for open first-order
conditionals is restricted to option (A) of Definition 6,
i.e., in the following, 𝜅 |= 𝑟 = (𝐵(�⃗�)|𝐴(�⃗�)) iff
Rep(𝑟) ̸= ∅ and

𝜅(𝐴(�⃗�)𝐵(�⃗�)) < 𝜅(𝐴(�⃗�)𝐵(�⃗�)).

3. Moreover, we also presuppose that there are
“enough” constants available in 𝑈Σ to ensure that
for every conditional there is some constant vector
that can serve as a strong representative, and that
non-acceptance of conditionals is not due to |𝑈Σ|
being too small. E.g., one may assume that for every
conditional 𝑟 = (𝐵(�⃗�)|𝐴(�⃗�)) there exists a special
constant vector �⃗�𝑟 with �⃗�𝑟 ∈ ℋ𝑟 the components of
which do not occur anywhere else in the knowledge
base.

The first prerequisite is not uncommon for description logics
and is an intuitive justification for the second prerequisite.
Although the ranking-based conditional semantics for first-
order knowledge bases from Section 2.1 is able very well
to deal with information about individuals and even allows
for having a defeasible ABox, as Examples 1 and 2 illustrate,
these examples also show how intricate investigations can
be when option (B) of Definition 6 must be applied. This
option is typically relevant only in cases where knowledge
or beliefs about individuals are present. Since we focus on
generic (conditional) beliefs in this paper, i.e., our knowledge



bases consist of quantified first-order sentences and open
conditionals representing defeasible subsumptions, we use
only option (A) of Definition 6 in this paper.

In fact, condition (4) is enough to ensure the acceptance
of a conditional, as the following proposition shows.

Proposition 2. Let 𝜅 be an OCF and let (𝐵(�⃗�)|𝐴(�⃗�)) be an
open conditional. If 𝜅(𝐴(�⃗�)𝐵(�⃗�)) < 𝜅(𝐴(�⃗�)𝐵(�⃗�)) holds,
then 𝜅 |= (𝐵(�⃗�)|𝐴(�⃗�)).

Proof. We have to show that (4) ensures that the con-
ditional has strong representatives. Let �⃗� be such that
𝜅(𝐴(�⃗�)𝐵(�⃗�)) = 𝜅(𝐴(�⃗�)𝐵(�⃗�)). Since 𝜅(𝐴(�⃗�)𝐵(�⃗�)) <
𝜅(𝐴(�⃗�)𝐵(�⃗�)) ≤ 𝜅(𝐴(�⃗�)𝐵(�⃗�)), we have 𝜅(𝐴(�⃗�)𝐵(�⃗�)) <
𝜅(𝐴(�⃗�)𝐵(�⃗�)). Therefore, �⃗� is at least a weak representative
of (𝐵(�⃗�)|𝐴(�⃗�)), which means that Rep((𝐵(�⃗�)|𝐴(�⃗�))) ̸=
∅. Because (A) holds by definition, it follows that 𝜅 |=
(𝐵(�⃗�)|𝐴(�⃗�)).

To motivate prerequisite (3), consider Example 2 again. If
𝑈Σ would consist only of the constants 𝑎 and 𝑏, conditional
𝑟1 could not be accepted for the only reason that neither 𝑎
nor 𝑏 can be a strong representative for 𝑟1 (please see the
argumentation for case 𝜂1 = 0 in the example). At least a
third constant 𝑐 ̸∈ {𝑎, 𝑏} is needed to ensure the acceptance
of 𝑟1.

However, even under all three prerequisites from above,
it is hard to make general statements about the consistency
of a first-order knowledge base, or the system of inequalities
that impact factors in c-representations have to solve. The
papers [13, 14] present a sufficient condition for the consis-
tency of a first-order knowledge base by lifting the concept
of a tolerance partition (on which the propositional system
Z [15] is based) to the first-order case. However, it is still an
open question under which conditions c-representations for
a first-order knowledge base exist. Our conjecture here is
that they exist if the knowledge base is consistent, i.e., if it
has a ranking model at all, just as in the propositional case.
We leave further investigations into this research question
for future work and focus on the quality of inductive rea-
soning based on c-representations for defeasible description
logics in the following.

4. KLM-style Postulates and Beyond
In [4], the well-known KLM postulates for non-monotonic
reasoning were translated for use with defeasible description
logics, and also the postulate of rational monotonicity was
considered. Let 𝐴,𝐵,𝐶 be concepts.

(Ref) 𝐴 ⊏∼ 𝐴.

(LLE) If 𝐴 ≡ 𝐵 and 𝐴 ⊏∼ 𝐶 , then 𝐵 ⊏∼ 𝐶 .

(RW) If 𝐴 ⊏∼ 𝐵 and 𝐵 ⊑ 𝐶 , then 𝐴 ⊏∼ 𝐶 .

(And) If 𝐴 ⊏∼ 𝐵 and 𝐴 ⊏∼ 𝐶 , then 𝐴 ⊏∼ (𝐵 ⊓ 𝐶).

(Or) If 𝐴 ⊏∼ 𝐶 and 𝐵 ⊏∼ 𝐶 , then (𝐴 ⊔𝐵) ⊏∼ 𝐶 .

(CM) If 𝐴 ⊏∼ 𝐵 and 𝐴 ⊏∼ 𝐶 , then (𝐴 ⊓𝐵) ⊏∼ 𝐶 .

(RM) If 𝐴 ⊏∼ 𝐶 and 𝐴
⧸︀
⊏∼ ¬𝐵, then (𝐴 ⊓𝐵) ⊏∼ 𝐶 .

Moreover, in [4], quantified versions of (CM) and (RM)
which are adapted to the specific form of DL concepts have
been presented.

(CM∃) If ∃𝑟.𝐴 ⊏∼ 𝐶 and ∃𝑟.𝐴 ⊏∼ ∀𝑟.𝐵, then ∃𝑟.(𝐴⊓𝐵) ⊏∼
𝐶 .

(CM∀) If ∀𝑟.𝐴 ⊏∼ 𝐶 and ∀𝑟.𝐴 ⊏∼ ∀𝑟.𝐵, then ∀𝑟.(𝐴⊓𝐵) ⊏∼
𝐶 .

(RM∃) If ∃𝑟.𝐴 ⊏∼ 𝐶 and ∃𝑟.𝐴
⧸︀
⊏∼ ∀𝑟.¬𝐵, then ∃𝑟.(𝐴 ⊓

𝐵) ⊏∼ 𝐶 .

(RM∀) If ∀𝑟.𝐴 ⊏∼ 𝐶 and ∀𝑟.𝐴
⧸︀
⊏∼ ∀𝑟.¬𝐵, then ∀𝑟.(𝐴 ⊓

𝐵) ⊏∼ 𝐶 .

We now present a version of the KLM-style postulates
using first-order conditionals. Since concepts and roles in
description logics are unary and binary predicates, respec-
tively, we use single variables 𝑥, 𝑦 instead of vectors �⃗� here
in order to simplify notation. However, none of the proofs
in this paper rely on the arity of the predicates. Moreover,
in compliance with the prerequisites stated in the previous
section, we can assume that there is at least one constant
symbol, i.e. 𝑈Σ ̸= ∅.

(Ref) 𝜅 |= (𝐴(𝑥)|𝐴(𝑥)).

(LLE) If 𝜅 ||− ∀𝑥.[𝐴(𝑥) ⇔ 𝐵(𝑥)] and 𝜅 |= (𝐶(𝑥)|𝐴(𝑥)),
then 𝜅 |= (𝐶(𝑥)|𝐵(𝑥)).

(RW) If 𝜅 ||− ∀𝑥.[𝐵(𝑥) ⇒ 𝐶(𝑥)] and 𝜅 |= (𝐵(𝑥)|𝐴(𝑥)),
then 𝜅 |= (𝐶(𝑥)|𝐴(𝑥)).

(And) If 𝜅 |= (𝐵(𝑥)|𝐴(𝑥)), (𝐶(𝑥)|𝐴(𝑥)), then 𝜅 |=
(𝐵(𝑥) ∧ 𝐶(𝑥)|𝐴(𝑥)).

(Or) If 𝜅 |= (𝐶(𝑥)|𝐴(𝑥)), (𝐶(𝑥)|𝐵(𝑥)), then 𝜅 |=
(𝐶(𝑥)|𝐴(𝑥) ∨𝐵(𝑥)).

(CM) If 𝜅 |= (𝐵(𝑥)|𝐴(𝑥)), (𝐶(𝑥)|𝐴(𝑥)), then 𝜅 |=
(𝐶(𝑥)|𝐴(𝑥) ∧𝐵(𝑥)).

(RM) If 𝜅 |= (𝐶(𝑥)|𝐴(𝑥)) and 𝜅 ̸|= (𝐵(𝑥)|𝐴(𝑥)), then
𝜅 |= (𝐶(𝑥)|𝐴(𝑥) ∧𝐵(𝑥)).

The translation of the quantified postulates using first-order
conditionals is given below.

(CM∃) If 𝜅 |= (𝐶(𝑥) | ∃𝑦.[𝑅(𝑥, 𝑦) ∧ 𝐴(𝑦)]) and 𝜅 |=
(∀𝑦.[𝑅(𝑥, 𝑦) ⇒ 𝐵(𝑦)] | ∃𝑦.[𝑅(𝑥, 𝑦)∧𝐴(𝑦)]), then
𝜅 |= (𝐶(𝑥)|∃𝑦.𝑅(𝑥, 𝑦) ∧𝐴(𝑦) ∧𝐵(𝑦)).

(CM∀) If 𝜅 |= (𝐶(𝑥) | ∀𝑦.[𝑅(𝑥, 𝑦) ⇒ 𝐴(𝑦)]) and 𝜅 |=
(∀𝑦.[𝑅(𝑥, 𝑦) ⇒ 𝐵(𝑦)] | ∀𝑦.[𝑅(𝑥, 𝑦) ⇒ 𝐴(𝑦)]),
then 𝜅 |= (𝐶(𝑥) | ∀𝑦.[𝑅(𝑥, 𝑦) ⇒ (𝐴(𝑦) ∧𝐵(𝑦))]).

(RM∃) If 𝜅 |= (𝐶(𝑥) | ∃𝑦.[𝑅(𝑥, 𝑦) ∧ 𝐴(𝑦)]) and 𝜅 ̸|=
(∀𝑦.[𝑅(𝑥, 𝑦) ⇒ 𝐵(𝑦)] | ∃𝑦.[𝑅(𝑥, 𝑦)∧𝐴(𝑦)]), then
𝜅 |= (𝐶(𝑥) | ∃𝑦.[𝑅(𝑥, 𝑦) ∧𝐴(𝑦) ∧𝐵(𝑦)]).

(RM∀) If 𝜅 |= (𝐶(𝑥) | ∀𝑦.[𝑅(𝑥, 𝑦) ⇒ 𝐴(𝑦)]) and 𝜅 ̸|=
(∀𝑦.[𝑅(𝑥, 𝑦) ⇒ 𝐵(𝑦)] | ∀𝑦.[𝑅(𝑥, 𝑦) ⇒ 𝐴(𝑦)]),
then 𝜅 |= (𝐶(𝑥) | ∀𝑦.[𝑅(𝑥, 𝑦) ⇒ (𝐴(𝑦) ∧𝐵(𝑦))]).

Proposition 3. All of the postulates given above hold for
every OCF 𝜅.

Proof. In the following proofs for the individual postulates,
we implicitly use Proposition 2 and prove the acceptance
of desired conditionals by proving that their verification is
more plausible than their falsification.

(Ref): This postulate is straightforward as 𝜅(𝐴(𝑥)) <
𝜅(⊥) by definition.



(LLE): Let 𝐴(𝑥) be equivalent to 𝐵(𝑥) for all 𝑥 in all
feasible possible worlds, and let 𝜅 |= (𝐶(𝑥)|𝐴(𝑥)). Be-
cause of the equivalence of 𝐴(𝑥) and 𝐵(𝑥), we have
𝜅(𝐴(𝑎)𝐶(𝑎)) = 𝜅(𝐵(𝑎)𝐶(𝑎)) and 𝜅(𝐴(𝑎)𝐶(𝑎)) =
𝜅(𝐵(𝑎)𝐶(𝑎)) for every 𝑎. Therefore, if 𝑎 is a represen-
tative of (𝐶(𝑥)|𝐴(𝑥)), it has to be a representative of
(𝐶(𝑥)|𝐵(𝑥)) as well. Hence, if condition (A) or (B) from
Definition 6 holds for (𝐶(𝑥)|𝐴(𝑥)), the respective condi-
tion has to hold for (𝐶(𝑥)|𝐵(𝑥)), too.

(RW): We have 𝜅(𝐴(𝑥)𝐵(𝑥)) < 𝜅(𝐴(𝑥)𝐵(𝑥)) and
the fact ∀𝑥.[𝐵(𝑥) ⇒ 𝐶(𝑥)]. Therefore, we have
𝜅(𝐴(𝑥)𝐶(𝑥)) ≤ 𝜅(𝐴(𝑥)𝐵(𝑥)𝐶(𝑥)) = 𝜅(𝐴(𝑥)𝐵(𝑥)) and
𝜅(𝐴(𝑥)𝐶(𝑥)) = 𝜅(𝐴(𝑥)𝐵(𝑥)𝐶(𝑥)) ≥ 𝜅(𝐴(𝑥)𝐵(𝑥)).
Hence, 𝜅(𝐴(𝑥)𝐶(𝑥)) < 𝜅(𝐴(𝑥)𝐶(𝑥)).

(And): Because of 𝜅(𝐴(𝑥)𝐵(𝑥)) < 𝜅(𝐴(𝑥)𝐵(𝑥))
and 𝜅(𝐴(𝑥)𝐶(𝑥)) < 𝜅(𝐴(𝑥)𝐶(𝑥)), the minimal worlds
𝜔 in 𝜅 with 𝜔 |= 𝐴(𝑎) for some 𝑎 have to sat-
isfy both 𝐵(𝑎) and 𝐶(𝑎) as well. Therefore, we
can conclude that 𝜅(𝐴(𝑥)𝐵(𝑥)) = 𝜅(𝐴(𝑥)𝐶(𝑥)) =
𝜅(𝐴(𝑥)𝐵(𝑥)𝐶(𝑥)). It follows that 𝜅(𝐴(𝑥)𝐵(𝑥)𝐶(𝑥)) <
min{𝐴(𝑥)𝐵(𝑥), 𝐴(𝑥)𝐶(𝑥)} = 𝜅(𝐴(𝑥)(𝐵(𝑥) ∨ 𝐶(𝑥))).

(Or): It holds that 𝜅(𝐴(𝑥)𝐶(𝑥) ∨ 𝐵(𝑥)𝐶(𝑥)) =
min{𝜅(𝐴(𝑥)𝐶(𝑥)), 𝜅(𝐵(𝑥)𝐶(𝑥))} <
min{𝜅(𝐴(𝑥)𝐶(𝑥)), 𝜅(𝐵(𝑥)𝐶(𝑥))} = 𝜅(𝐴(𝑥)𝐶(𝑥) ∨
𝐵(𝑥)𝐶(𝑥)).

(CM): Because of 𝜅(𝐴(𝑥)𝐵(𝑥)) < 𝜅(𝐴(𝑥)𝐵(𝑥)) and
𝜅(𝐴(𝑥)𝐶(𝑥)) < 𝜅(𝐴(𝑥)𝐶(𝑥)), the minimal worlds 𝜔
in 𝜅 with 𝜔 |= 𝐴(𝑎) for some 𝑎 have to satisfy both
𝐵(𝑎) and 𝐶(𝑎) as well. Therefore, we can conclude that
𝜅(𝐴(𝑥)𝐵(𝑥)) = 𝜅(𝐴(𝑥)𝐶(𝑥)) = 𝜅(𝐴(𝑥)𝐵(𝑥)𝐶(𝑥)).
It follows that 𝜅(𝐴(𝑥)𝐵(𝑥)𝐶(𝑥)) < 𝜅(𝐴(𝑥)𝐶(𝑥)) ≤
𝜅(𝐴(𝑥)𝐵(𝑥)𝐶(𝑥)).

(CM∃): Let 𝜔 be a minimal world in 𝜅 such that 𝑥, 𝑦 ex-
ist with 𝜔 |= 𝑅(𝑥, 𝑦)𝐴(𝑦). Since (A) holds, for every 𝜔′

with 𝜅(𝜔′) = 𝜅(𝜔) we have 𝜔′ |= ∀𝑥.∀𝑦.[𝑅(𝑥, 𝑦)𝐴(𝑦) ⇒
𝐶(𝑥)𝐵(𝑦)], and for every 𝜔′′ with 𝜅(𝜔′′) < 𝜅(𝜔)
we have 𝜔′′ |= ∀𝑥.∀𝑦.𝑅(𝑥, 𝑦) ∨ 𝐴(𝑦). Therefore,
𝜅(𝜔) = 𝜅(𝐶(𝑥) ∧ ∃𝑦.[𝑅(𝑥, 𝑦)𝐴(𝑦)𝐵(𝑦)]) < 𝜅(𝐶(𝑥) ∧
∃𝑦.[𝑅(𝑥, 𝑦)𝐴(𝑦)𝐵(𝑦)]).

(CM∀): Let 𝜔 be a minimal world in 𝜅 such that 𝑥 ex-
ists with 𝜔 |= ∀𝑦.𝑅(𝑥, 𝑦) ⇒ 𝐴(𝑦). Since (A) holds, for
every 𝜔′ with 𝜅(𝜔′) = 𝜅(𝜔) it holds for all 𝑥 that 𝜔′ |=
∀𝑦.[𝑅(𝑥, 𝑦) ⇒ 𝐴(𝑦)] implies 𝜔′ |= 𝐶(𝑥)∧∀𝑦.[𝑅(𝑥, 𝑦) ⇒
𝐵(𝑦)]. And for every 𝜔′′ with 𝜅(𝜔′′) < 𝜅(𝜔) we have
𝜔′′ |= ∀𝑥.∃𝑦.𝑅(𝑥, 𝑦)𝐴(𝑦). Therefore, 𝜅(𝜔) = 𝜅(𝐶(𝑥) ∧
∀𝑦.[𝑅(𝑥, 𝑦) ⇒ 𝐴(𝑦)𝐵(𝑦)]) < 𝜅(𝐶(𝑥) ∧ ∀𝑦.[𝑅(𝑥, 𝑦) ⇒
𝐴(𝑦)𝐵(𝑦)]).

For the case (A), (RM), (RM∃), and (RM∀) are implied by
(CM), (CM∃), and (CM∀), respectively.

In [8], the authors present an approach to defeasible rea-
soning for a restricted first-order logic which they evaluate
according to postulates that are inspired by rational closure
[16]. Beyond the KLM-postulates the satisfaction of which
we proved above, they also propose further postulates. E.g.,
the postulate (INCL) in that paper corresponds to our (DI). In
the following, we adapt and extend three of those properties
that deal with relations to classical logic and irrelevance to
the framework here. First, we consider relations to classical
logic resp. implication:

(CLA) Let 𝒦ℬ = ⟨ℱ ,ℛ⟩ be a first-order conditional
knowledge base, and let 𝜅 be a model of 𝒦ℬ. If
ℱ |= 𝛼 ∈ ℒΣ, then 𝜅 ||− 𝛼.

(SUB) ⟨∅, {(𝐵(�⃗�)|𝐴(�⃗�))}⟩ |∼ (𝐴(�⃗�) ⇒ 𝐵(�⃗�)|⊤).

Postulate (CLA) claims that each ranking model of a con-
ditional knowledge base respects all classical consequences
of the facts. Postulate (SUB) reveals a compatibility between
a conditional and its counterpart as material implication.
But note that this counterpart is only plausible.

The next proposition shows that both these postulates
are also satisfied by our approach.

Proposition 4. Let 𝜅 be an OCF. If 𝜅 is a model of ⟨ℱ ,ℛ⟩
then 𝜅 ||− 𝛼 for all 𝛼 ∈ ℒΣ with ℱ |= 𝛼. If 𝜅 is a model of
⟨∅, {(𝐵(�⃗�)|𝐴(�⃗�))}⟩ then 𝜅 |= (𝐴(�⃗�) ⇒ 𝐵(�⃗�)|⊤).

Proof. Let 𝜅 be a model of ⟨ℱ ,ℛ⟩, let 𝛼 ∈ ℒΣ with
ℱ |= 𝛼. Then 𝜅(𝜔) = ∞ for all 𝜔 ̸|= ℱ and hence
also for all 𝜔 ̸|= 𝐴. Therefore, 𝜅 ||− 𝛼. If 𝜅 is a
model of ⟨∅, {(𝐵(�⃗�)|𝐴(�⃗�))}⟩ then 𝜅 |= (𝐵(�⃗�)|𝐴(�⃗�)),
i.e., 𝜅(𝐴(�⃗�)𝐵(�⃗�)) < 𝜅(𝐴(�⃗�)𝐵(�⃗�)). Since 𝜅(𝐴(�⃗�) ⇒
𝐵(�⃗�)) = 𝜅(¬𝐴(�⃗�) ∨ 𝐵(�⃗�)) ≤ 𝜅(𝐴(�⃗�)𝐵(�⃗�)), the state-
ment follows.

The next postulate deals with obviously irrelevant vari-
ables in an open conditional, i.e., variables that do not occur
in both the antecedent and the consequent of the conditional.
It adapts the postulate (IRR) from [8].

(IRR) Let �⃗�, �⃗�, �⃗� mention variables from pairwise dis-
joint sets. Then ⟨∅, {(𝐵(�⃗�, �⃗�)|𝐴(�⃗�, �⃗�))}⟩ |∼
(𝐵(�⃗�, �⃗�)|𝐴(�⃗�, �⃗�)) for all proper groundings �⃗�, �⃗� of
�⃗� resp. �⃗� in 𝐴 resp. 𝐵.

This postulate does not hold in general for our ranking
semantics but we can show that it holds for ranking models
which are c-representations.

Proposition 5. Let �⃗�, �⃗�, �⃗� mention variables from pairwise
disjoint sets, and let 𝒦ℬ = ⟨∅, {(𝐵(�⃗�, �⃗�)|𝐴(�⃗�, �⃗�))}⟩. Let
𝜅 = 𝜅𝜎(𝒦ℬ) be a strategic c-representation of 𝒦ℬ. Then
𝜅 |= (𝐵(�⃗�, �⃗�)|𝐴(�⃗�, �⃗�)) for all proper groundings �⃗�, �⃗� of �⃗�
resp. �⃗� in 𝐴 resp. 𝐵.

Proof. Let �⃗�, �⃗�, �⃗� mention variables from pairwise disjoint
sets, and let 𝒦ℬ = ⟨∅, {(𝐵(�⃗�, �⃗�)|𝐴(�⃗�, �⃗�))}⟩. Each c-
representation 𝜅 of 𝒦ℬ has the form

𝜅(𝜔) = 𝜅0 + 𝑓1(𝜔)𝜂1,

where 𝑓1(𝜔) = #{(�⃗�, �⃗�, �⃗�)|(�⃗�, �⃗�, �⃗�) are proper groundings
of �⃗�, �⃗�, �⃗� in (𝐵(�⃗�, �⃗�)|𝐴(�⃗�, �⃗�))} and 𝜅0, 𝜂1 ∈ N with 𝜂1
suitably chosen to ensure that 𝜅 |= (𝐵(�⃗�, �⃗�)|𝐴(�⃗�, �⃗�)). This
latter condition enforces that

min
�⃗�,�⃗�,�⃗�

𝜅(𝐴(�⃗�, �⃗�)𝐵(�⃗�, �⃗�) < min
�⃗�,�⃗�,�⃗�

𝜅(𝐴(�⃗�, �⃗�)𝐵(�⃗�, �⃗�).

The left hand side here is 0 (all instantiations verifying the
conditional), and the right hand side here is 𝜂1 (just one
falsification of the conditional), so we obtain 𝜂1 > 0 from
that.

Now, if we take any proper groundings �⃗�, �⃗� of �⃗� resp. �⃗�
in 𝐴 resp. 𝐵 and check whether

min
�⃗�

𝜅(𝐴(�⃗�, �⃗�)𝐵(�⃗�, �⃗�) < min
�⃗�

𝜅(𝐴(�⃗�, �⃗�)𝐵(�⃗�, �⃗�),

we find again that the left hand side is 0 and the right hand
side is 𝜂1. Since 𝜂1 > 0 must hold, we conclude that 𝜅 |=
(𝐵(�⃗�, �⃗�)|𝐴(�⃗�, �⃗�)) for all proper groundings �⃗�, �⃗� of �⃗� resp. �⃗�
in 𝐴 resp. 𝐵.



5. Application of OCF-based
Reasoning to a DL Knowledge
Base

The goal of this section is to provide an example for how
a DL knowledge base can be translated into a first-order
knowledge base, so that OCF-based inductive reasoning can
be applied. Further, we point out some commonalities and
differences between the OCF-based semantics and the cwm-
semantics introduced by Giordano and Theseider Dupré in
[5] which we consider first.

5.1. Concept-Wise Multipreference
Semantics

In [5], a concept-wise multipreference (cwm) semantics for
ranked defeasible knowledge bases was presented, which
makes use of a typicality operator T on concepts used for
the construction of typicality inclusions of the form T(𝐶) ⊑
𝐷 (where 𝐶,𝐷 are concepts). We provide an equivalent
definition using the notation 𝐶 ⊏∼ 𝐷 here. Note that our
definition here is a simplified version of the one given in
[5], because we only consider non-ranked knowledge bases
in this paper.

In order to define a preference relation over individuals,
the DBox 𝒟 is partitioned based on the left-hand side of the
defeasible inclusions. Let 𝒞 = {𝐶 | (𝐶 ⊏∼ 𝐷) ∈ 𝒟}. For
each concept 𝐶 ∈ 𝒞, let 𝒟𝐶 be the set that contains all de-
feasible inclusions (𝐶 ⊏∼ 𝐷) ∈ 𝒟, and for an interpretation
ℐ = ⟨∆ℐ , ·ℐ⟩, let 𝒟ℐ

𝐶(𝑥) be the set of defeasible inclusions
from 𝒟𝐶 which are not violated by 𝑥, i.e.

𝒟ℐ
𝐶(𝑥) = {(𝐶 ⊏∼ 𝐷) ∈ 𝒟𝐶 | 𝑥 ∈ (¬𝐶 ⊔𝐷)ℐ}.

Based on the amount of non-violated defeasible subsump-
tions, for each concept 𝐶 ∈ 𝒞 a preference relation ≤𝐶 is
defined via

𝑥 ≤𝐶 𝑦 iff |𝒟ℐ
𝐶(𝑥)| ≥ |𝒟ℐ

𝐶(𝑦)|. (9)

Before we can define cwm-models, we need one more
definition: If a concept 𝐶 is a (potentially) strict subset of
another concept 𝐷, the subset 𝐶 can be viewed as more
specific then 𝐷.

Definition 12 (specificity of concepts [5]). Given a defea-
sible knowledge base 𝒦ℬ = ⟨𝒯 ,𝒟,𝒜⟩ and two concepts
𝐶,𝐷 ∈ 𝒞, we call 𝐶 more specific than 𝐷 (short: 𝐶 ≻ 𝐷)
iff 𝒯 |= 𝐶 ⊑ 𝐷 and 𝒯 ̸|= 𝐷 ⊑ 𝐶 .

In cwm-models of defeasible knowledge bases, the prefer-
ence relations for the specific concepts defined in Equation 9
are combined into a global preference relation based on the
concepts’ specificity.

Definition 13 (cwm-model [5]). A cwm-model of a defea-
sible knowledge base 𝒦ℬ = ⟨𝒯 ,𝒟,𝒜⟩ is a tuple ℳ =
⟨∆ℐ , ·ℐ , <ℳ⟩, where ∆ℐ ̸= ∅, ⟨∆ℐ , ·ℐ⟩ is an 𝒜ℒ𝒞-
interpretation satisfying 𝒯 and 𝒜, and <ℳ is an ordering
over ∆ℐ such that 𝑥 <ℳ 𝑦 iff

1. 𝑥 <𝐶 𝑦 for some 𝐶 ∈ 𝒞, and
2. for all 𝐶 ∈ 𝒞: 𝑥 ≤𝐶 𝑦, or there exists 𝐶′ such that

𝐶′ ≻ 𝐶 and 𝑥 <𝐶′ 𝑦.

A cwm-model ℳ satisfies a defeasible subsumption 𝐶 ⊏∼
𝐷 iff the <ℳ-minimal instances of 𝐶 are instances of 𝐷:

ℳ |= 𝐶 ⊏∼ 𝐷 iff min(<ℳ, 𝐶ℐ) ⊆ 𝐷ℐ ,

where min(<,𝑆) = {𝑠 ∈ 𝑆 | ∄𝑠′ ∈ 𝑆 : 𝑠′ < 𝑠} as usual.
Now we move towards defining 𝑐𝑤m-entailment from

defeasible knowledge bases. Let𝒮𝒦ℬ be the set that contains
𝐶 and ¬𝐶 for all concepts 𝐶 that occur in a knowledge base
𝒦ℬ = ⟨𝒯 ,𝒟,𝒜⟩. We say that {𝐷1, . . . , 𝐷𝑚} ⊆ 𝒮𝒦ℬ is
consistent with 𝒦ℬ if

𝒯 ̸|= (𝐷1 ⊓ · · · ⊓𝐷𝑚) ⊑ ⊥ ,

i.e. if the intersection of 𝐷1 to 𝐷𝑚 does not have to be
empty.

Definition 14 (canonical interpretation [5]). A cwm-model
ℳ = ⟨∆ℐ , ·ℐ , <ℳ⟩ is canonical for a knowledge base
𝒦ℬ = ⟨𝒯 ,𝒟,𝒜⟩ if ⟨∆ℐ , ·ℐ⟩ satisfies 𝒯 , and for any set of
concepts {𝐷1, . . . , 𝐷𝑚} ⊆ 𝒮𝒦ℬ consistent with 𝒦ℬ, there
exists 𝑥 ∈ (𝐷1 ⊓ · · · ⊓𝐷𝑚)ℐ .

In other words, an interpretation is canonical if there is
at least one domain element 𝑥 ∈ ∆ℐ in every intersection
of concepts that occur in 𝒦ℬ.

Definition 15 (T-compliant interpretation [5]). A cwm-
model ℳ = ⟨∆ℐ , ·ℐ , <ℳ⟩ is T-compliant for a knowledge
base 𝒦ℬ = ⟨𝒯 ,𝒟,𝒜⟩ if ⟨∆ℐ , ·ℐ⟩ satisfies 𝒯 and for all 𝐶 ∈
𝒞 with 𝐶ℐ ̸= ∅, there exists 𝑥 ∈ 𝐶ℐ such that 𝒟ℐ

𝐶(𝑥) = 𝒟𝐶 .

The definition above means that for all non-empty con-
cepts 𝐶 , there is at least one instance of 𝐶 which does not
violate any defeasible subsumptions in with 𝐶 on the left-
hand side.

Definition 16 (cwm-entailment [5]). A defeasible subsump-
tion 𝑑 = 𝐶 ⊏∼ 𝐷 is cwm-entailed by a knowledge base 𝒦ℬ
(short: 𝒦ℬ |≈cwm 𝑑) if all canonical and T-compliant cwm-
models of 𝒦ℬ satisfy 𝑑.

It was proven in [5] that cwm-entailment fulfills the prop-
erties (Ref), (LLE), (And), (Or), and (CM).

5.2. Translation of a DL Knowledge Base
In order to allow for a comparison between the approach
of [5] and the OCF-based semantics in the next part of this
section, we now give an example for how a defeasible knowl-
edge base can be transformed into a first-order knowledge
base.

Example 3. We consider the following example DL knowl-
edge base, which is very similar to the running example pre-
sented in [5].

𝒯 = {Employee ⊑ Adult, PhdStudent ⊑ Student,
(∃has_funding.⊤ ⊓ ¬Funded) ⊑ ⊥},

𝒟Employee = { 𝑑1 : Employee ⊏∼ ¬Young,
𝑑2 : Employee ⊏∼ ∃has_boss.Employee },

𝒟Student = { 𝑑3 : Student ⊏∼ ∃has_classes.⊤,

𝑑4 : Student ⊏∼ Young,
𝑑5 : Student ⊏∼ ¬Funded },

𝒟PhdStudent = { 𝑑6 : PhdStudent ⊏∼ ∃has_funding.Money,
𝑑7 : PhdStudent ⊏∼ Bright }.



As description logics are fragments of first-order logic, the
knowledge base above can easily be translated into a first-
order knowledge base. We start by translating the strict sub-
sumptions in the TBox as facts.

ℱ = {∀𝑥.[Employee(𝑥) ⇒ Adult(𝑥)],
∀𝑥.[PhdStudent(𝑥) ⇒ Student(𝑥)],
∀𝑥.[∃𝑦.has_funding(𝑥, 𝑦) ⇒ Funded(𝑥)]} .

The defeasible subsumptions can be translated as open con-
ditionals. From now on, all predicates are shortened to their
initial letters.

ℛ = { 𝑟1 : (¬𝑌 (𝑥) | 𝐸(𝑥)),

𝑟2 : (∃𝑦.[hb(𝑥, 𝑦) ∧ 𝐸(𝑦)] | 𝐸(𝑥)),

𝑟3 : (∃𝑦.hc(𝑥, 𝑦) | 𝑆(𝑥)),
𝑟4 : (𝑌 (𝑥) | 𝑆(𝑥)),
𝑟5 : (¬𝐹 (𝑥) | 𝑆(𝑥)),
𝑟6 : (∃𝑦.[hf (𝑥, 𝑦) ∧𝑀(𝑦)] | 𝑃 (𝑥)),

𝑟7 : (𝐵(𝑥) | 𝑃 (𝑥)) }

We demonstrate below how the inequality for the acceptance
of 𝑟6 by a c-representation 𝜅 can be computed. In order to
keep formulas compact and readable, we indicate by a dot
over a literal (e.g. �̇�(𝑎)) that the literal may be either positive
or negative (𝐴(𝑎) or ¬𝐴(𝑎)) and an underscore serves as a
wildcard that may be filled by all suitable constants 𝑐 ∈ 𝑈Σ.
For roles, i.e., binary predicates, the constants 𝑏𝑎𝑖 are the ones
used together with a constant 𝑎 in order to form a candidate
for a strong representative for the rule 𝑟𝑖.

𝜅 |= 𝑟6
(4)⇔ 𝜅(𝑃 (𝑥)hf (𝑥, 𝑦)𝑀(𝑦))

< 𝜅(𝑃 (𝑥) ∧ ∀𝑦.hf (𝑥, 𝑦)𝑀(𝑦))

⇔ min
𝑎∈𝑈Σ

𝜅(𝑃 (𝑎)hf (𝑎, 𝑏𝑎6)𝑀(𝑏𝑎6))

< min
𝑎∈𝑈Σ

𝜅(𝑃 (𝑎)
⋀︁

𝑏∈𝑈Σ

hf (𝑎, 𝑏)𝑀(𝑏))

⇔ min
𝑎∈𝑈Σ

𝜅
(︁
𝑃 (𝑎)hf (𝑎, 𝑏𝑎6)𝑀(𝑏𝑎6)

�̇� (𝑎)𝑆(𝑎)𝐸(𝑎)hc(𝑎, 𝑏𝑎3)𝑌 (𝑎)

�̇�(𝑎)𝐵(𝑎)�̇�(𝑎)hḃ(𝑎, _)
)︁

< min
𝑎∈𝑈Σ

𝜅
(︁
𝑃 (𝑎)

⋀︁
𝑏∈𝑈Σ

(︀
hf (𝑎, 𝑏) ∨𝑀(𝑏)

)︀
�̇� (𝑎)𝑆(𝑎)𝐸(𝑎)hc(𝑎, 𝑏𝑎3)𝑌 (𝑎)

�̇�(𝑎)𝐵(𝑎)�̇�(𝑎)hḃ(𝑎, _)
)︁

⇔ 𝜂5 < 𝜂6

The other inequalities can be computed in a similar way. The
resulting system of inequalities can be solved, i.e. the knowl-
edge base ⟨ℱ ,ℛ⟩ is consistent for the OCF-based semantics
as well.

5.3. Inheritance of Properties and
Conflicting Information

One particular advantage of the cwm-semantics is that it sup-
ports sub-concepts to both inherit and override properties
defined for their parent-concepts, depending on whether
there is a conflict of information. This is not the case for e.g.
Rational Closure [4], which suffers from the well-known
drowning problem.

In the following, we present an example which shows that
the desirable properties of cwm-semantics w.r.t. inheritance
of properties are fulfilled by the OCF-based semantics as
well. A full axiomatization of “proper inheritance of proper-
ties” is out of the scope of this paper, and will be addressed
in future work.

Example 4. We consider again the knowledge base from
Example 3. In [5], several possible queries and desirable re-
sults are mentioned. Formulated as queries for the first-order
knowledge base defined above, they read as follows.

1. ⟨ℱ ,ℛ⟩ |≈𝜅

(︀
∃𝑦.hb(𝑥, 𝑦) | 𝑆(𝑥) ∧ 𝐸(𝑥)

)︀
?

→˓ should be yes (inheritance)
2. ⟨ℱ ,ℛ⟩ |≈𝜅

(︀
∃𝑦.hc(𝑥, 𝑦) | 𝑆(𝑥) ∧ 𝐸(𝑥)

)︀
?

→˓ should be yes (inheritance)
3. ⟨ℱ ,ℛ⟩ |≈𝜅

(︀
¬𝐹 (𝑥) | 𝑆(𝑥) ∧ 𝐸(𝑥)

)︀
?

→˓ should be yes (inheritance)
4. ⟨ℱ ,ℛ⟩ |≈𝜅

(︀
𝑌 (𝑥) | 𝑆(𝑥) ∧ 𝐸(𝑥)

)︀
?

→˓ should be no (conflict)
5. ⟨ℱ ,ℛ⟩ |≈𝜅

(︀
¬𝑌 (𝑥) | 𝑆(𝑥) ∧ 𝐸(𝑥)

)︀
?

→˓ should be no (conflict)
6. ⟨ℱ ,ℛ⟩ |≈𝜅

(︀
¬𝑌 (𝑥) | 𝑆(𝑥) ∧ Italian(𝑥)

)︀
?

→˓ should be no (irrelevance)
7. ⟨ℱ ,ℛ⟩ |≈𝜅

(︀
¬𝐹 (𝑥) | 𝑃 (𝑥)

)︀
?

→˓ should be no (override)

When the OCF 𝜅 used for answering the queries above is a
(minimal) c-representation, all of the queries are answered
correctly. As an example, we will compute the answer for
query 7 below. The conditional mentioned in the query is
accepted by 𝜅 iff 𝜅(𝐹 (𝑥)𝑃 (𝑥)) < 𝜅(𝐹 (𝑥)𝑃 (𝑥). Hence, we
need to compute these two ranks.

𝜅(𝑃 (𝑥)𝐹 (𝑥)) = min
𝑎∈𝑈Σ

𝜅(𝑃 (𝑎)𝐹 (𝑎))

= min
𝑎∈𝑈Σ

𝜅
(︀
𝑃 (𝑎)𝐹 (𝑎)𝑆(𝑎)hf (𝑎, _)

𝐸(𝑎))hḃ(𝑎, _)hc(𝑎, 𝑏𝑎3)𝑌 (𝑎)

𝐵(𝑎)�̇�(𝑎)�̇�(𝑎)
)︀

= 𝜂6

𝜅(𝑃 (𝑥)𝐹 (𝑥)) = min
𝑎∈𝑈Σ

𝜅(𝑃 (𝑎)𝐹 (𝑎))

= min
𝑎∈𝑈Σ

𝜅
(︀
𝑃 (𝑎)𝐹 (𝑎)𝑆(𝑎)hf (𝑎, 𝑏𝑎6)

𝑀(𝑏𝑎6)𝐸(𝑎))hḃ(𝑎, _)hc(𝑎, 𝑏𝑎3)
𝑌 (𝑎)𝐵(𝑎)�̇�(𝑎)�̇�(𝑎)

)︀
= 𝜂5

The computation above shows that the conditional
(𝐹 (𝑥)|𝑃 (𝑥)) is accepted by 𝜅 if 𝜂6 < 𝜂5. However, we know
from Example 3 that 𝜂5 < 𝜂6. Hence, the answer to the query
is no.

The example above shows that the OCF-based semantics,
just like cwm-semantics, allows subclasses to appropriately
inherit and override information specified for their respec-
tive superclass.

Observe another interesting feature of c-representations
that comes to light in the example above: We did not have
to compute the ranks for all possible worlds or even just the
values of the 𝜂𝑖, but could answer the query based on the
underlying conditional structures of the knowledge base,
captured by the inequalities between the 𝜂𝑖.

There are some key differences between our approach and
the semantics proposed for defeasible description logics in



the literature. While most of these approaches are based on
an ordering over individuals and uses some notion of typical
individuals for specific concepts, our approach uses an order-
ing over possible worlds and makes use of representatives
for conditionals. Even if canonical models look very similar
to orderings over possible worlds, only considering typi-
cality between domain elements (even on a concept-level)
when constructing the global ordering < seems to be less
restrictive than considering representatives for conditionals,
as it allows knowledge bases to have models that would be
considered inconsistent under our semantics. However, this
breaks (DI), as the following example shows.

Example 5. Consider the following knowledge base.

𝒯 = {𝐴 ⊑ 𝐵}
𝒟𝐴 = {𝐴 ⊏∼ ¬𝐶}
𝒟𝐵 = {𝐵 ⊏∼ 𝐴,𝐵 ⊏∼ 𝐶}

A canonical and T-compliant model ℳ for this knowledge
base is given by the orderings below. The individuals are
named after the concepts that they are interpreted in, with
overlines indicating negation, i.e. for the individual 𝑎𝑏𝑐 we
have 𝑎𝑏𝑐 ∈ (¬𝐴 ⊓ ¬𝐵 ⊓ 𝐶)ℐ .

𝑎𝑏𝑐, 𝑎𝑏𝑐, 𝑎𝑏𝑐, 𝑎𝑏𝑐, 𝑎𝑏𝑐 <𝐴 𝑎𝑏𝑐

𝑎𝑏𝑐, 𝑎𝑏𝑐, 𝑎𝑏𝑐 <𝐵 𝑎𝑏𝑐, 𝑎𝑏𝑐 <𝐵 𝑎𝑏𝑐

𝑎𝑏𝑐, 𝑎𝑏𝑐 <ℳ 𝑎𝑏𝑐, 𝑎𝑏𝑐 <ℳ 𝑎𝑏𝑐 <ℳ 𝑎𝑏𝑐

We have min<(𝐵
ℐ) = {𝑎𝑏𝑐, 𝑎𝑏𝑐}, i.e. min<(𝐵

ℐ) ⊈ 𝐴ℐ

and min<(𝐵
ℐ) ⊈ 𝐶ℐ . Therefore, 𝒦ℬ ̸|≈cwm 𝐵 ⊏∼ 𝐴 and

𝒦ℬ ̸|≈cwm 𝐵 ⊏∼ 𝐶 .

6. Conclusions
In this paper, we have presented an approach for first-order
conditional logic from [10], and added a definition of in-
ductive inference operators for first-order knowledge bases.
Moreover, we have shown that an inductive inference op-
erator based on strategic c-representations fulfills the DL-
version of the KLM postulates defined in [4], as well as
additional postulates from [8]. Additionally, we have shown
how to apply our approach to defeasible DL knowledge
bases, while pointing out some commonalities and differ-
ences with cwm-semantics for defeasible description logics
[5].

The work done in this paper lays the foundation for future
research on the capabilities of OCF-based semantics for
first-order conditional knowledge bases and, in particular,
for more in-depth comparisons between c-representation-
based inductive inference operators and different entailment
relations proposed for defeasible DL knowledge bases like
rational entailment [17, 4], relevant entailment [3], and cwm-
entailment [5]. There is some recent work on connections
between defeasible DL semantics and OCF-based semantics
[18], albeit only using propositional conditional logic.

Additionally, most work done so far on first-order condi-
tional knowledge bases and defeasible DL knowledge bases
focus on the general case where no facts or no ABox, respec-
tively, are present. Our approach is basically also capable
of dealing with information from an ABox, but for this, we
must also include option (B) from Definition 6 into our con-
siderations. We will work this out in future work. Moreover,
also more postulates describing how different approaches
deal specifically with facts are needed.

More advanced properties like syntax splitting [7] could
be considered for the first-order case as well. Our results
concerning the property (IRR) dealing with splitting of vari-
ables can be considered as first steps in this direction.
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