On Syntactic Forgetting with relativized Strong Persistence

Matti Berthold

ScaDS.Al Universitiit Leipzig

Abstract

Strong Persistence (SP), since its perception ten years ago, has been at the center of attention in the realm of forgetting in logic
programming. So-called forgetting instances, for which it is possible to obtain (SP) were characterized; semantic classes of procedures
satisfying (SP) when possible, or various relaxations when it is not, were found; and concrete operators representing these classes were
constructed. Recently, (SP) was relaxed in a novel dimension, taking into account the strong persistence of a forgetting result relativized
to a subset of the remaining atoms. In this paper, we construct a syntactic forgetting operator that satisfies this newly defined desideratum

relativized Strong Persistence (rSP’), whenever possible.

1. Introduction

Logic programming (LP) under answer set semantics is a
declarative non-monotonic reasoning formalism with a ro-
bust theoretical (and monotonic) foundation based in intu-
itionistic logic [1]. In essence, answer sets (which are some-
times referred to as stable models) are a second-order notion
over classical formulas [2], providing more expressive power
than first-order logic, making it possible, for example, to
identify Hamiltonian cycles [3].

The question of how a program may be simplified is not
simply answered. The surge of research around it, rather
suggests that it is very nuanced, where the limits and possi-
bilities vary greatly, depending on the exact definition of what
is meant by being simpler, and the concrete formalism that
is being investigated. Such processes might find application,
e.g. in a legal context; in order to exclude dependencies that
are no longer deemed relevant; or to reduce the complexity
of reasoning tasks.

Forgetting [4, 5, 6], or variable elimination, which is
one such possible interpretation of simplification, intuitively
means that a programs signature is restricted, while the logi-
cal dependencies of the remaining atoms are left unchanged.
It has been considered with respect to many properties in-
cluding strong persistence (SP) which seemingly captures
best its intuitions [7]. In essence, (SP) ensures that the re-
sult of forgetting atoms V' from a program P exerts the
same behavior as P under the addition of a context program
R not containing any forgotten atoms. There are instances
for which (SP) is impossible to be achieved [8]. Follow-
ing this negative result, several relaxations of (SP) were
proposed, which are attainable through different semantic
means [9, 10, 11].

While results of forgetting using the desired semantics may
be obtained by counter-model construction [12] and perhaps
be minimized using a version of the Quine-McCluskey algo-
rithm [13], a much more direct and conservative approach
is to forget by syntactically manipulating an input program.
There are several such syntactical operators in the literature
[14, 15, 16, 17, 18, 19, 20], where notably fsp, as its name
suggests, satisfies (SP) whenever possible.

Example 1.1. [t is possible that by forgetting an atom we
may introduce double negations. E.g. forgetting q from P =
{a « not q;q < nota} results in P’ = {a < notnota}
If an atom is forgotten that appears in such a self-loop, the
syntactic derivations are a bit opaque. Consider forgetting q
from the following program:

22nd International Workshop on Nonmonotonic Reasoning, November
2-4, 2024, Hanoi, Vietnam

© 2024 This work is licensed under a “CC BY 4.0” license.
[

a<—q b<— notq q < notnotq

Already, it is impossible to satisfy (SP) [8]. However, a
possible result satisfying a relaxation of (SP) may be [17]:

avb<«— b < notnotb a < notnota

where a and b each support themselves, and at least one of
them is true.

The fact that forgetting in practice should not be done
by hand, is probably best witnessed by the fact that forget-
ting about multiple atoms may not be reduced to forgetting
them in iteration. Rather, the result is derived by a recursive
derivation tree [19]. '

Abstraction by omission [21, 22, 23] can be seen as a
relaxed version of forgetting, where atoms are removed from
a program, but its answer-sets are only required to behave as
before, under no addition of another program R.

The aptly named Simplification [24] reduces the signature
of a program P by a set of atoms A as well, requiring the
result to behave the same as P under a context program R
that may contain atoms A in a restricted way.

These different ideas as well as several versions of equiva-
lence were recently captured by an overarching notion of A-
simplifications of P relative to B, where A is a set of atoms
that is to be removed, and B is the signature of possible con-
text programs R [25]. Interestingly, by taking into account
the full spectrum of all of these ideas, a novel, relaxed ver-
sion of (SP), so-called relativized Strong Persistence (rSP)
emerged.

What is missing from the picture now, is a concrete syn-
tactic transformation f,sp that satisfies (rSP), whenever pos-
sible. Since (SP) and (rSP) coincide in some cases, it is
clear that we should start our search at fsp and see how we
get to f,sp from there. While the question this paper is out
to answer may appear simple at first, its answer is far from
it. To be able to construct f,sp, it turns out that it is neces-
sary to intrically modify sub-procedures of fsp. Finally, with
this operator at our disposal, we are then able to construct
syntactically general B-relativized A-simplifications.

Given that the class of forgetting operators F,ss to sat-
isfy (rSP), whenever possible, is defined methodologically
to meet this criterion, and that the operator f,sp is defined
methodologically to match F,ss, we assume any intuition
about the derivation rules one may find to be ‘post hoc’. We
therefore leave the task of finding an intuitive explanation of
why they are as they are for future studies.

!There are accessible implementations of all forgetting operators staying
within logic programs available online, including the ones in this paper:
https://service.scadsai.uni-leipzig.de/ForgettingWeb
https://github.com/mattiberthold/ForgettingWeb

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://service.scadsai.uni-leipzig.de/ForgettingWeb
https://github.com/mattiberthold/ForgettingWeb

2. Background

Given that F,ss and therefore f,sp require the understanding
of several topics that are ‘non-canon’ and scientific papers
should be self-contained there is a surprising amount of re-
search to be recalled, in spite of the fact that the topic of this
paper is forgetting. Therefore, after recalling the foundations
of logic programming, we compile and streamline a rather
long list of definitions and results from the literature.

Logic Programs. We assume a propositional signature
3. A logic program P over % is a finite set of rules of the
form

a1V ...vag<—bi,....,b,notci,...,notcnm,
notnotds,...,notnotdy,,
whereallal,...7ak,b1,..,,bhch...,cm,anddl,...7dn

are atoms of X [26]. Such rules r are also written more
succinctly as

H(r) < B*(r),not B~ (r),notnot B~ (r),

where H(r) = {ai,...,ar}, BY(r) = {b1,...,b},
B~ (r) = {c1,...,¢cm}, and B™7(r) = {d1,...,dn},
and we will use both forms interchangeably. Given a rule
r, H(r) is called the head of r, and B(r) = B*(r) u
not B~ (r)unot not B~ (r) is called the body of r, where,
for a set A of atoms, not A = {notq | ¢ € A} and
notnot A = {notnotq | q € A}.

Y (P) and X(r) denote the set of atoms appearing in P
and r, respectively.

Given a program P and an interpretation, i.e., a set
I < X of atoms, the reduct of P given I, is defined as
P! = {H(r) < BT (r) | r € Psuchthat B (r) n I =
& and B~ (r) € I}. An HT-interpretation is a pair (X, Y)
s.t. X €Y < 3. Given a program P, an HT-interpretation
(XY is an HT-model’ of P, (X,Y) }= P,iff Y |= P
and X = PY, where |= both denotes the standard satis-
faction relation for classical logic and for HT-logic.> An
HT-interpretation (X, Y") is total iff X =Y. Given arule r,
(X,Y) Er,iff(X,Y) = {r}. We admit that the set of HT-
models of a program P is restricted to X(P) even if (P) <
3. We denote by HT (P) the set of all HT-models of P. A
set of atoms Y is an answer set of P iff (YY) € HT (P),
and there is no X < Y such that (X,Y) € HT(P). We
term HT-models (X,Y") s.t. X < Y witnesses. The set of
all answer sets of P is denoted by AS(P). Two programs
Py, P, are equivalent iff AS(Py) = AS(P-) and strongly
equivalent, P, = Ps, iff AS(P1 U R) = AS(P> u R)
for any program R. It is well-known that P; = P> exactly
when HT (P1) = HT (P2) [27]. Givenaset V € X, the V-
exclusion of a set of answer sets (a set of HT-interpretations)
M, denoted My, is {X\V | X € M} ({{X\V,Y\V) |
(X,Y)e M}).

Forgetting: Properties and Operators. Let P be the
set of all logic programs. A forgetting operator is a (partial)
function f : P x 2¥ — P. The program f(P, V) is inter-
preted as the result of forgetting about V' from P. Moreover,

2Although it is possible to define HT-semantics more broadly over (propo-
sitional) formulas, here we use a more succinctly definition over logic
programs that is closer to the usual definition of answer sets.

3For brevity, parentheses, commas and union signs within HT-
interpretations may be omitted, such that, for example, (&, Y pg)
means (@5, Y U {p, q})-

S(f(P,V)) € X(P)\V is usually required. In the follow-
ing we introduce some well-known properties for forgetting
operators [8].

Strong persistence is presumably the best known one [16].
It requires that the result of forgetting f(P, V') is strongly
equivalent to the original program P, modulo the forgotten
atoms.

(SP) f satisfies strong persistence iff, for each program P
and each set of atoms V', we have:
AS(PUR) v = AS(f(P,V)uUR) for all programs
R with $(R) € X\V.

Notably, (SP) can be decomposed into the following three
properties, i.e. an operator f satisfies (SP) iff f satisfies all
(wC), (sC) and (SI), where

(wC) f satisfies weakened consequence iff, for each P and
each set of atoms V: AS(f(P,V)) 2 AS(P)v.

(sC) f satisfies strengthened consequence iff, for each
P and each set of atoms V: AS(f(P,V)) <
AS(P)|v.

Strong invariance requires that rules not mentioning atoms
to be forgotten can be added before or after forgetting.

(SI) f satisfies strong invariance iff, for each program P
and each set of atoms V', we have: f(P,V) U R =
f(P v R, V) for all programs R with X(R) < X\V.

Note that the presented properties are often considered
for certain subclasses such as disjunctive, normal or Horn
programs. Moreover, they naturally extend over classes of
forgetting operators, where a class satisfies a property, iff all
its members do.

In the light of the impossibility for a forgetting operator
to satisfy (SP) for all pairs (P, V'), called forgetting in-
stances, where P is a program and V is a set of atoms to be
forgotten from P [8], (SP) was defined for concrete forget-
ting instances. A forgetting operator f satisfies (SP) (P
if AS(f(P,V) u R) = AS(P U R))v, for all programs R
with ¥(R) € X\V. A sound and complete criterion 2 char-
acterizes when it is not possible to forget while satisfying

(SP)¢p vy

Definition 2.1 (Gongcalves et al. (2016)). Let P be a pro-
gram over ¥ and V. C Y. The forgetting instance (P, V')
satisfies criterion Q) if there exists Y © X\V such that the set
of sets R} p vy = {RZ;‘W | Ae Rel{pyw} is non-empty
and has no least element, where

R}y o= {X\V [(X,Y U A) € HT(P)}, and
Rellpyy = {ACV |[{Y UAY U Aye HT(P)and
1A c Ast (Y UAY U A e HT(P)}.

Corresponding to the €2 criterion the classes Fr and Fsp
specify the HT-models of the forgetting result. It was shown
that Fsp satisfies (SP) p, y, for all instances (P, V) that do
not satisfy (2. Moreover, in the case where €2 is satisfied,
Fsp still exhibits desirable behavior, such as satisfying (ST)
and (wC), two of three characterizing criterions of (SP).
Fr on the other hand always satisfies (sC) and (SI), which
makes it an ideal choice, if no new answer sets should be
created [9].

The classes Fr and Fsp are defined as follows:

Fri= {f[HT(F(P,V))={X,Y) | Y = Z(P)\V A

Xe U szpyv>}7 for all programs P and V' < X},
Fsp:={f | HT(f(P,V))={KX,Y) | Y < Z(P)\V A
Xe ﬂ R{P7V>}7 for all programs P and V' < X}.

Abstraction and Simplification. Abstraction as an
over-approximation is defined as follows.

Definition 2.2 (Saribatur and Eiter (2018)). Given P
over ¥ and Q over ¥’ with |3| = |Y'|, and a mapping
m: Y — ¥ u{T}, Q is an abstraction of P w.r.t. m, if
m(AS(P)) < AS(Q).

For an omission abstraction, i.e. ¥’ < ¥, this becomes
(wC). An abstraction is called faithful, if it additionally
satisfies (sC).

This notion was later generalized to take into account
context programs, of a certain form, where a program R over
Y is A-separated, if there are Ry over X\ A and Ry over A,
s.t. R =Ry U Ras.

Definition 2.3 (Saribatur and Woltran (2023)). Given, P
over ¥, A € %, and Q over X\A. Q is a strong A-
simplification of P if for any program R over X that is
A-separated:

AS(P U R)jja = AS(Q U Rjja)
where:
Rjja:={H(r) < B(r)\(A U notnot A) |
(Hr)uBY(r)n A=), re R}
P is strong A-simplifiable if there is such a Q.

Theorem 2.4 (Saribatur and Woltran (2023)). If pro-
gram P is strongly A-simplifiable, then P4 is a strong
A-simplification of P.

Relativized (Strong) Simplification. Recently simpli-
fications have been relaxed to take into account relativized
equivalence, i.e. s.t. the simplification) of P only needs to
stay equivalent under addition of any R over a relativized
signature B < X.

Definition 2.5 (Woltran (2004)). A pair of interpretations
(X,Y) is a (relativized) B-HT-interpretation iff either X =
Y or X < (Y\B). The former are called total and the
latter non-total B-HT-interpretations. Moreover, a B-HT-
interpretation {X,Y ') is a (relativized) B-HT-model of a
program P iff:
1. Y EP;
2. forallY' <Y with(Y\B) = (Y\B) : Y’ }= P¥;
and
3. X < Y implies existence of a X' € Y with X'\B =
X, such that X' = PY holds.

The set of B-HT-models of P is given by HT2(P). Two
programs Py and Ps are strongly equivalent relative to B iff

HTE(P) = HTE(P2).

Definition 2.6 (Saribatur and Woltran (2024)). Given P
over ¥, A,B € X, and Q over X\ A, Q is a (strong) A-
simplification of P relative to B if for any program R over
B that is A-separated:

AS(P U R)jja = AS(Q U Rja)

Program P is B-relativized (strong) A-simplifiable if there
is such a Q.

The relativized equivalence can similarly be taken into
account in forgetting.

Definition 2.7 (Saribatur and Woltran (2024)). A forget-
ting operator f satisfies relativized strong persistence for
a relativized forgetting instance {(P,V,B), S < A, de-
noted by (rSP) p .y, g, if for all programs R over B,
AS(f(P,V,B) UR) = AS(P U R)|v.

As Q) characterizes instances (P, V') for which (SP) is sat-
isfiable, 24, p characterizes instances (P, A, B) for which
(rSP) p 4, p is satisfiable.

Definition 2.8 (Saribatur and Woltran (2024)). Let P be
a program over ¥ and A, B € X. P satisfies criterion Q.
if there exists Y © X\ A such that the set of sets

Rlpan = {X\A|(X,Y UAYeHT?(P)}

| A" Ay VALY LA e HTP(P)}

Proposition 2.9 (Saribatur and Woltran (2024)). If a for-
getting operator f satisfies (SP) (p,ay then it satisfies
(rSP) p 4 py forany B < A.

Definition 2.10 (Saribatur and Woltran (2024)). Given
program P over ¥ and A, B < %, the A-B-HT-models of
P are given by the set
HTA(P) :={Y,Y)a | (Y. Y) e HTP(P)} v

(X, Y)a [(X, Y) e HTB(P)vX cy,

and for all (Y',Y"y € HT " (P) with Y|4 = Y],

(X' Y"y e HTP(P) with X' = X|ja}

Definition 2.11 (Saribatur and Woltran (2024)). Let P
be a program. The relativization of HT-models of P over A
to the set B of atoms” is denoted by

HTHP(P) = ((X,Y) |{(X,Y)e HTE(P),Y < X\A}.
Definition 2.12 (Saribatur and Woltran (2024)).

Fiss := {f | HTP(F(P, A, B)) = {(X.Y) |
Y SR\ A Xe(|Rpan)
for all programs P and A, B € X}

The class Fss satisfies (rSP) whenever possible.

Theorem 2.13 (Saribatur and Woltran (2024)). Every

f € Fiss satisfies (rSP)<P’A,B>, B < A, for every
relativized forgetting instance { P, A, B), where P does not
satisfy Qa4 B.

The following theorem confirms that forgetting can be
used as a stepping-stone to, more generally, derive B-
relativized A-simplifications.

Theorem 2.14 (Saribatur and Woltran (2024)). Let P be
B-relativized A-simplifiable, and f € Fiss. Then
f(PanB, A\B, B\A) is a B-relativized A-simplification
of P.

“In order to streamline the presentation the original definition was slightly
altered. In particular, 77 -5 (P) behaves as if taking into account the
complement A of A.

2.1. Syntactic Tools

Defining a syntactic forgetting operators that obeys the se-
mantics of F.sp inevitably comes down to modifying the
existing operator fsp’, which is why we recall it and its
auxiliary constructions. For succinctness, for examples of
established definitions, we refer to [19].

As usual [29, 30, 13, 31, 16, 17] the program is first
brought into a normal form, to avoid complications and un-
necessary calculations caused by redundant (parts of) rules.

A rule 7 is tautological iff H(r) BT (r) # &, Bt (r)n
B™(r) # g,or B~ (r) n B~ (r) # &; r is fundamen-
tal, iff it is not tautological, and H(r) n B~ (r) = J and
BY(r)n B~ (r) = &.

Definition 2.15 (Cabalar et al. (2007)). Given two rules r
and s, s subsumes r, in symbols s < r, iff:

H(s) <€ H(r) v B~ (r),

B (s)c BT (r)u B~ (v),

B™(s) € B~ (r),

B~ (s) € B~ (r) u BY(r), and

BY(s)n B~ (r)= JorH(s)n H(r) = &.

A

Proposition 2.16 (Cabalar et al. (2007)).
r<s< HT(r) S HT(s)

A rule r is minimal in P, iff it is not (strictly) subsumed
by another rule s in P,ie.iff ~-3se P:s<r Ar £s.

Definition 2.17. Let P be a program. The normal form
NF(P) is obtained from P by:
1. removing all tautological rules;
2. removing all atoms a from B~ (r) in the remaining
rules v, whenever a € BT (r);
3. removing all atoms a from H(r) in the remaining
rules r, whenever a € B~ (r);
4. removing from the resulting program all rules that
are not minimal.

A program P is in normal form iff NF(P) = P.

The g-exclusion notation is shorthand to remove an atom.

Definition 2.18 (g-exclusion Berthold (2022)). Given an
atom q € %, and a set of literals L, a rule r and a program P

over S, the g-exclusions are L' := L\{q, not q, not not ¢},
= H\q(r) — B\q(r) and P\ := {7'\‘1 | r e P}.

We define a partition of a program along the occurrences
of a given atom q.

Definition 2.19 (Berthold (2022)). Given a program P in
normal form over ¥ and an atom q € %, P is parti-
tioned according to the occurrence of q, i.e. occ(P,q) =
(R, Ro, R1, R2, R3, R4), where:

R :={reP|q¢X(r)}
Ry:={reP|qe B(r)}

Ry :={reP|notqe B(r)}

Ry :={re P |notnotqe B(r),q¢ H(r)}
Rs:={re P|notnotqe B(r),qe H(r)}
Ry :={re P|notnotq¢ B(r),qe H(r)}

5By fsp we refer to what is called fs"f, by Berthold (2022).

There are some correspondences between the models of a
program and its rules that we can spot by this partitioning.

Proposition 2.20 (Berthold (2022)). Given a program P
in normal form over ¥, X €'Y < %, and an atom q €
>, with q ¢ Y, and OCC(P, q) = <R, Ro, R1, Ra, R3, R4>.
Then the following equivalencies hold:

X,)YykPeIre RURMUR (XY)
(Xq¢,YOKEP<Ire RUR URy : {Xq,YQ KT
X, YOEP<IreRUR URs Ry : (X, YO K

The next construction conversely identifies, which inter-
pretations are models of a program.

The as-dual construction [17] generalizes constructions
that collect sets of conjunctions of literals aiming to replace
negated occurrences of a literal [15, 16].

Definition 2.21 (Berthold (2022)). Given a program P =
{r1,...,rn} over ¥ and an atom q € ¥, then:

DI (P):={l1,...,ln} |

l; € not B\ (r;) U notnot H'(r;),1 < i < n},

where, for a set S of literals, notS = {nots | s € S}
and notnot S = {notnots | s € S}, where, forp € %,
we assume the simplification notnotnotp = notp and
not not not not p = not not p.

By applying the as-dual to certain subsets of a program, we
are able to construct rules that point towards certain models
of a program.

Proposition 2.22 (Berthold (2022)). Given a program P
in normal form over 3, Y € %, and an atom q € 3, with
q¢Y,andocc(P,q) = (R, Ro, R1, R2, Rs, R4). Then the
following implications hold:

Y, YY) P=3DeDI (R URy): (Y, Y e <« D

Yq,Ygo=EP=3DeDI (RouR:):Yq,YO)H <« D

YYq)EP=3DeDi(Rs v Rs) : YY) - < D

In the case that R = (J the first and second implication hold
in both directions.

The product of rules and programs are defined in order to
unite their models.

Definition 2.23 (Product of Rules Berthold (2022)). Let
r1 and r2 be rules. Their product r1 X ra, is defined as:

H(r1) v H(r2) « B(r1) u B(r2)

Proposition 2.24 (Berthold (2022)). Let ri,72 be rules
overX,and X C Y C 3,

Y|:T1><T'2<:>Y):T1vY|:r2
X EA{rixra} o X " v X E {ra}”

Definition 2.25 (Product of Programs Berthold (2022)).
Let Py and P, be programs. Their product P; x Ps, is
defined as:

{T1><7‘2|7“1€P1/\7“2€P2}

Proposition 2.26 (Berthold (2022)). Let Py, P> be pro-
grams over ¥, and X € Y C 3,

Y'=P1><P2©Y)=P1\/Y)=P2
XEP xP)Y «oXEP vXEP

The double negation of a rule is such, to be able to reason
about, whether the second item Y of an HT-model (X, Y") is
a classical model, and therefore whether the corresponding
total model (Y, Y") is a potential answer set.

Definition 2.27 (Berthold (2022)). Given a rule r, we de-
fine the double negation of r, i.e. not not r, as:

notnotr := «— not H(r) u not not B(r)

Proposition 2.28 (Berthold (2022)). Given a rule r over %,
and X €'Y € 3 the following statement holds:

YEreX,Y)Enotnotr

We would like to point out that similarly, a formula ¢
holds classically iff ~~ 1 holds intuitionistically. This
connection is little surprising, given that HT-logic lies be-
tween classical and intuitionistic logic [27]. Further, if we
extend the definition of double negation over programs, i.e.
notnot P := {notnotr | r € P}, we are able to con-
struct a program that unites the HT-models of two programs:
HT (P1) v HT (P2) = HT((Pr v notnot P1) x (Py u
notnot Ps)).

Any rule 7 subsumes not not r. In order not to lose double
negated rules, we therefore restrict the normal form construc-
tion N F’ to its first three steps, denoted n f, when necessary.

We will also tweak subsumption, since as it is defined
above it has some properties that make it impractical to use.
For one, it is not anti-symmetrical, two syntactically different
rules may subsume each other, such as: r1 := <« notnota
and rg := <« a,wherer; < rpandry < 7.

Moreover, even though a rule may subsume another rule,
this relation may break, when both of them are conjoined by
x with the same third rule, e.g. let r3 := b «—, then

r1 Xr3=b<« notnota <b<«a=ry Xrs.

To avoid these issues, we define a stricter version of sub-
sumption.

Definition 2.29. Given two fundamental rules r and s, s
strongly subsumes 7, in symbols s <; r, iff:

1. H(s)< H(r)u B~ (r),

2. BT(s) < BT (r),

3. B (s) < B (r), and

4. B~(s) € B~ (r) u B*(r).

Then s <s 1, iff s <sT ASF#T.

Proposition 2.30. Strong subsumption is finer than regular
subsumption:

s<sr=s<r (@))]
Strong subsumption is anti-symmetric:
SKsTAT<Ss8=>8=T. 2)

Strong subsumption is a greatest subset of regular subsump-
tion, to be anti-symmetric and transitive:

S<Tr=s85<sT 3)

S<s T AT <gt=8<,t. 4)
Strong subsumption is preserved under x:
s<sr=s5xt<sr xtforall rulest. (@)

As a consequence, strong subsumption is ‘modular’ in the
following sense:

sésrc)VAgZ:s\A ésr\A. 6)

Proof:

(1) The requirement for <; is stricter than that of <.

(2) Follows from basic set theory and the fact that s and
r are fundamental, and therefore H(t) n B~ (t) =
@ =Bt ()~ B~ (t) fort € {s,r}.

(3) The requirement for <; is stricter than that of <.

(4) The subset relation is transitive.

(5) Adding literals to either part of s and r has no effect
on the required subset-relationship.

(6) Is a consequence of (5).

A rule r is minimal in P, iff it is not strongly subsumed
by another rule s in P, i.e.iff -3se P:s <s r.

All the aforementioned correspondences between models
and rules remain, when an atom q is removed from a rule as
well as from an interpretation.

Proposition 2.31 (Berthold 2022). Given a program P in
normal form over 3, X ¢ 'Y € %, and an atom q € %, with
q¢Y,andocc(P,q) = (R, Ro, R1, Ra, Rs, R4). Then the
following hold:
Y, Yy P<3re R u Ry : (Y,Y) k= notnot "
v IreR: Y, Y)Kr
(X,YYlEP<3Ire RUR URy : (X,Y) 1\
(Yq,Yq) b= P < 3re Ry u Ry : (Y, Y f= not not r\?
viareR: Y, Y)yHkr
YYpEPeYqYqhP
v 3r€ Ry U Ry : Y, Y k= notnot r\?
YYpEPeYqYpEP
A3D e DY (Rs U Ry): (Y,Y) e« D
(Xq, YY) P<3re RURyU Ry : (X, Y) =1\
X YQ EP<(Yq,Yq =P
Vv Ire RURy URs U Ry : (X,Y) Hr\

If additionally R = (, then

(Y,Y) e Pe3IDe DL (R Ry): (Y,Y) e — D
Yq,Yq) P <3DeDi(Rov Re) : {Y,Y) =< D

Forallrs € Ro:

Yq, Y@ re<e ,Yq) =12, and
Xq, Y@ Er:e (X,)Yq) Era.

The rules identified in Prop. 2.31 constitute the essential
pillars of defining forgetting operators.

2.2. Syntactic Forgetting with (SP)

Given that the semantics of F,sp and Fsp coincide for some
inputs, it is not surprising that a representative of F,sp needs
to be a modification of fsp. We, hence, recall its construc-
tion [19]. The operator fsp is defined via two auxiliary opera-
tors fr and fw, each of which is again defined using auxiliary
operators 3 and iy, which are defined inductively.

Definition 2.32 (f). Given a program P in nor-
mal form over ¥ and q € X st occ(P,q) =
(R, Ro, R1, Rz, R3, Ry). Then:

fa(Pq):=nf(lu2u3u4)
where:
1:={< D|DeDL(Rsu R4)}
2:= {notnotr'? | r € Ry U Ra}
3:={r'"|re RUR,}
4:={(ro x1')\" | ro € Ro,7" € Rs U R4}

Proposition 2.33. Given a program P over %, an atom q €
Y, andsets X and Y, s.t. X < Y < 3\{q}, then:

YY) i (P,q) < {q} € Rellp (g},
If{q} € Rel<YP,{q», then:

(X,)Y) =i (Pq) & (Xq,Yq) =P Vv{X,Yq) =P

Definition 2.34 (f;). Given a program P in nor-
mal form over ¥ and q¢ € X st occ(P,q) =
(R, Ro, R1, R2, R3, R4). Then:

fx (P.g) = nf(1L2)
where:
1:={""|+" e RURyURy}
2:={notnotr’\" | v’ € Ry U R4}
The operators f4' is defined inductively by nested calls on
fi and f; . In order to fix a concrete forgetting result, we

assume an arbitrary order on V', which has no effect on the
following propositions.

Definition 2.35 (f4)). Let P be a program over %, and
Ac{q,q,...,qn} =V € %, 5.t. 0 < n, then:

f8 (P, &) := P

A\an

fl?(Pv V) = 1:R®n (fR (P7 V\{qn})7 Qn)

where:

fOn . fl;—7 ifgn € A
R fr, otherwise

Proposition 2.36. Given a program P over %, and sets X,
Y, AandV,st. AV S X and X €Y € X\V, then

YY) EfR(P,V) & A€ Rellp
IfAe Rel}fp,w, then:
(X, YYERP V)34 c A: (XA YA =P

Definition 2.37 (fr). Let P be a program over . in normal
formandV < 3.

fr(P,V) == NF(X f(P,V))
ACV

Theorem 2.38. fr € Fr

The operator fy, which contradicts any (X, Y for which
Rel%jpyw # Jand X ¢ R{P7V>’ is again defined by induc-
tion. By uniting fr with fyw, we are then able to construct
fsp.

Definition 2.39 (fVT,). Given a program P in nor-
mal form over ¥ and q¢ € X st occ(P,q) =
<R,]’%07 R1, Rz, Rg, R4>, then:

fy(P,q) := NF(1 L 2)
where:
1:= {(ro x v’ x notnotr)\! x « D |
ro € Ro, 7,7 € R3 U Ry, D € DL, (Ro U Ra)}
2:= {(r x notnotr’)\? x « D |

T e RURQ,’/’/ € R3) R47D€DZS(R0) Rz)}

Definition 2.40 (f,,). Given a program P in nor-
mal form over ¥ and q¢ € X st occ(P,q) =
<R, Ro, R1, Ra, R3, R4>, then:

fw (P q) := NF(I)

where:

1:={""%x «D|r e RURy URsDeDI (R U R4}

Definition 2.41 (fiy). Let P be a program over %, and
Ac{q,q,...,qn} =V € %, 5.t. 0 < n, then:

fw(P, &) := P
\an
(P, V) o=y (f " (P\R,V\{gn}),2) U R
where:
f®n — fV“\;’ #q” € A
W fw, otherwise

R:={reP|VnX(r)=J}

Proposition 2.42. Given a program P over %, and sets X,
Y, AandV,st. AV X XY cX\V, and
R={reP |V nX(r)=J} =, then:

A€ Rellpyy A\VA" C A (XA" YA = P
< (X,Y) I fu(PV)

Definition 2.43 (fw). Given a program P in normal form
over ¥ and V < 3. Then:

fw(P,V) = NF(|] fa(P,V))
AcV

Definition 2.44 (f%,). Let P be a program over ¥ in normal
formandV < X..

fsp(P, V) := NF(fw(P,V) u fr(P,V))

Example 2.45. Let P> 45 = {a < b,q;c < d,notq;q —
notnot q}, and V= {p, q}. Then fsp(P, V') can be derived
by:

féQ}(P, V) < {c—d} féf}(P, V) = {a < b,notnot a}
f2(P,V)CS{a b} f2(P,V)={c< d notnotc}

fsp(P,V) = NF(f\ (P, V) x f2(P, V)
U fPV)UES(P V)

={a v c<b,d;a — bnotnota;c <« d,notnotd}

Theorem 2.46. fsp € Fsp

3. Towards Syntactic Forgetting
with (rSP)

The idea in the following constructions is to modify the
results of the previous operators, to take into account a set B
to relativize to. As witnessed in the previous section, half of
the construction of fsp is a member of another class Fr. We
define a relaxation F,r of this class too, to aim for first.

Fir = {f | HTHP(f(P, A, B)) = {(X,Y) |
Y SO\V A X el JRpan}
for all programs P and A, B € ¥}

While the ‘r’ in (rSP) and the ‘R’ in Fr both mean ‘rela-
tivized’, it is not clear in which sense Fr corresponds to the
idea of relativized equivalence. Still we use the subscript ‘TR’
for this new class in reference to its origin in Fg.

Assume a program P over >, V., B € ¥, st. Vn B = (J,
and Y C B.If we take a look at the definition of the class F,r,
we can note that there is a similarity in how it treats forgotten
atoms V' and atoms that it relativizes from X(P)\B:

* Given A € V, a total model (Y A,Y A) of P, s.t.
there is a A’ = A with (Y A',)YA) = P is not
considered by RZP, VB>

* Similarly, given C € 3(P)\(B u V), a total model
(YC,YC) of P, s.t. there is a C' < C with
(YC',YC) k= P is not considered by R)py .
by the construction of HT Z(P).

The operator fr includes an encoding for the first bullet-
point. The key-idea therefore is to manipulate the auxiliary
constructions of fr further, to encode the second bullet-point.

For each A € V and C < 3(P)\(B u V), we de-
fine an auxiliary operator gg’c that determines for any
Y < (2(P) n B)\V whether) Y AU C E P,
and whether (ii) there are no A’ < A and C' < C, s.t.
A uB < AuB,and (YA'C',YAC) |= P. Then
gh ¢ (P, V), satisfies (Y C, Y C), iff (i) and (ii). Further, we
let gi°“ (P, V) contradict each (XC”, Y C) with X c Y,
C" < C,iff P = (YA'C',YAC) for all A’ = A and
c'cC.

The operators g‘é"c are defined taking into account f3' as
a baseline, i.e. gQ’C(P, V,B) := gk (f{ (P, V), B). These
gS we define inductively, starting at |C| = 1.

Definition 3.1 (g;{r). Given a program P in normal form
over ¥ and c € ¥ 5.t. occ(P, ¢) = (R, Ro, R1, R2, Rs, Ra).
Then:

gt (Pc):=nflu2u3u4u5)
where:

1:={< D|DeD(Rs uRy)}
2:={r|reRu Ry}
3:={notnotr |re Ry u Rz}
4:={r' |7 € Rs U Ry}
5:={<— notc}

Proposition 3.2. Given a program P over 3, anatom c € %,
and sets X and Y, s.t. X 'Y C X, then:

YEgi(Pe)eYEPAceY AY\{c} EPY

IfY = gi (P, c), then:
X,Y)EfR(Pg =X Y)EP

Definition 3.3 (g). Given a program P in normal form
overYand c € ¥ s.t. occ(P, ¢) = (R, Ro, R1, R2, R3, R4).
Then:

gr (Pyc) :==nf(Iu2u3)
where:
1:={r'" |7 € RURiUR4}

2 :={notnotr’ | r' € R1 U R4}

3 :={< notnotc}

Proposition 3.4. Given a program P over ¥, an atom c € %,
and sets X and Y, s.t. X <Y C X, then:

YiEgi(Pc)ec¢Y AY =P
IfY | gt (P, c), then:
X,)Y) (P e (X,)Y)EP

As before, in order to fix a concrete forgetting result, we
assume an arbitrary order on C.

Definition 3.5 (g<). Let P be a program over ¥, B € %
and
Og {61,62,...

,cn} = B :=X(P)\B, 5.t. 0 < n, then:
gk (P, &) = P
g (P, B) = g8" gk " (P.C\{ea}), cn)
where:

On g;, ifcn, € C
gr T

gr, oOtherwise

Proposition 3.6. Given a program P over ¥, sets of atoms
B c X C < B := X(P)\B, and sets X and Y, s.t.
X cY cCYand X C B, then:

Y gk (P, B)
s YEPAY\B=C
AW Y, st Y =P andY' ~nB=Y n B
IfY k= gf (P, B), then for each C' < C:
(XC'Y) gk (P,B) & (XC'Y) = P

Definition 3.7 (gr). Let P be a program over ¥ in normal
formandV,B C ¥.5t.V n B = . B :=3(P)\B.

gr(P,V,B) :== NF(X g’ (P,V,B))
)4

where
ga“(P,V,B) := gk (f{ (P, V), B)

For an illustration of how ggr functions we refer to Figure 1
on the last page.

Theorem 3.8. gr € Fir

4. Syntactic Forgetting with (rSP)

Again we define gw s.t. it modifies an auxiliary result of
fw to take into account whether a C € B := X(P)\B is
relevant.

Remember, that the auxiliary operators fyy implement a
check for whether A is relevant for Y (A € Relzfpyw), ie.
that (Y A, Y A) is a model of P, but (Y A", Y A) is not a
model of P for all A’ = A. As we have seen in the last
section this requirement extends to relativized forgetting, in
the sense that we additionally need to check whether Y u C'
can be a stable model of P under addition of rules over B —
g checks, whether (Y C, Y C) = Pand (YC",YC) = P
forall C' < C.

By compounding the constructions fiy with g%, i.e.
gVA;,’C(P7 V, B) := g&(fa (P, V), B), we get operators with
the following properties.

Given a program Pover ¥, V, B € Y withV n B = (J,
XcYcSEnB, AcV,andC' < C < I(P)\B, then,
gy (P, V, B) contradicts (XC', YC)ie. (XC',YC) =
g < (P,V,B),iff (YCA,YCA) |= P, forall A’ € Aand
C"cCwith A vC" c AuC: (YA C" YAC) | P,
and forall A’ € A: (XC'A",) Y AC) | P.

The auxiliary operators giy are again inductively defined
via g, and gy .

Definition 4.1 (g\j'v). Given a program P in normal form
over ¥ and c € ¥ 5.t. occ(P, ¢) = (R, Ro, R1, R2, Rs, Ra),
then:

g (P,c):=NF(I1u?2)

where:
1:= {r xnotnotr x < D|

r,7’ € R3 U Ry, D € DS, (Ry U R2)}
2:= {(r x notnotr') x < D |

r€ RU R, € R3 UR4,DeD (Ryu R2)}

The building-blocks g, and g, of our inductive definition
take into account one atom that is relativized away. We can
therefore again use the observations of Prop. 2.31 to see that
for the case |C| = 1 they have the desired properties.

Proposition 4.2. Given a program P over 3, anatom c € %,
and sets X and Y, s.t. X €Y C ¥, then:

(X,Y) b gr (Pic)
SYEPAceY AY\{c} e PP AX,YYEP

Definition 4.3 (g,,). Given a program P in nor-
mal form over ¥ and q € X st occ(P,q) =
<R,]’%07 R1, RQ, R3, R4>, then:

gw(Pc) == NF(I)
where:
1:={r'x «D|reRURI URs,DeDL (R UR}

Proposition 4.4. Given a program P over ¥, anatom c € %,
and sets X and Y, s.t. X 'Y C X, then:

X,Y) K= gr (Prc)
Sc¢YAYEPAXY)EP

To define g for arbitrary C' < ¥(P)\ B, we assume an ar-
bitrary ordering on X, e.g. the lexicographic order, and apply
repeatedly the operators g}, or g, depending on whether an
atom c is in C.. For example, let P be over {a, b, ¢,d}, B =
{a,b} and C' = {d}, then g (P, B) = gy, (gw (P, ¢),d).
Definition 4.5 (g5). Let P be a program over &, B € %

and ~
C c{ci,c2,...,cn} = B:=X(P)\B, s.t. 0 < n, then:

gw(P, &) =P
gG(P,B) i= g2 (5" (P\R, B\{ca}),) U R

where:

Rn . g\;rw lfcn € C
8w =y - .
gy, Otherwise

R:={reP|X(r)c B}

The fact that the properties of gy, and gy, extend to g
can be checked rather straight-forwardly by induction.

Proposition 4.6. Given a program P over %, sets of atoms
BcX CcX(P)\B andsets X andY,st. X cY € %,
then:

(X,Y) I gw(P, B)
< YEPAY\B=C

AW Y, stY =P andY nB=Y n B
AX, Y)Y = P

To construct gw, fiy and g& are compounded for each
A € Vad C c X%(P)\B, ie. gy“(P,V,B) :=
g% (fa (P, V), B). The resulting rules of each of these com-
pounds are then united.

Definition 4.7 (gw). Given a program P in normal form
over X and V < X. Then:

gw(P,V,B):= NF(| e’ (P,V,B))

Acv
ccB

where:
g (P.V,B) := gy (fi(P,V), B)

We would like to remark here that, while this construction
may appear rather costly computationally, some factors that
may dampen the blow-up that have been discussed in non-
relativized forgetting [19], also apply here.

Most importantly, the operator g{,?,’c is such that its re-
sult is the empty program, if the combination A, C'is ‘non-
relevant’. If this ‘non-relevancy’ is detected within a recur-
sive step of g\‘,?,’c possibly exponentially many calculations
can be disregarded.

More concretely, assume for example a program P over
{a,...,z}, V. = {p,...,z} and B = {a,...,h}. If
f,(P,p) = &, then ggy® (P, V, B) will be the empty pro-
gram for any A 2 {p} and any C, which lets us disregard a
large part of the recursive calculation-tree.

Definition 4.8 (f.sp). Let P be a program over X in normal
formandV < X.

fisp (P, V) := NF(gw(P, V) U gr(P, V))
Theorem 4.9. f.sp € Fiss

Corollary 4.10. Let P be B-relativized A-simplifiable, then
fise(Planp, A\B, B) is a B-relativized A-simplification of
P.

5. Let’s not Forget about
Predicates

It remains an open question, as to how forgetting proposi-
tional atoms from a program translates to the more general
case of forgetting from a program with variables. As has been
done for classical formulas [4] one may consider forgetting
about terms, ground atoms, or predicate symbols, where the
latter probably comes closest to the propositional case. When
forgetting about predicate symbols, two obstacles come to
mind. (i) A predicate may be recursive, making it impossible
to find a (finite) forgetting result. E.g.: consider forgetting ¢
from the following program:

HX,Y) —e(X,Y). a(X,Y) < t(X,Y),b(X,Y).
H(X,Z) « t(X,Y),e(Y, Z).

One may consider finite forgetting results that have desirable
properties up to some bound, as has been similarly done for
classical logic [32]. (ii) Even if a non-recursive predicate
symbol is forgotten we may have to leave the class of logic
programs to represent a result of forgetting. E.g. consider
forgetting about about b from the following program where
b marks all pairs which are connected through two edges:

b(X,Z) —e(X,Y),eY,2).
a(X,Y) —notb(X,Y),n(X),n(Y).

A possible forgetting result in full first order syntax is v:

VX,Z: (—3Y : (e(X,Y) re(Y,Z)) An(X) An(Y)
—a(X,2)
rne(X,Z) - (n(X) An(Z2)))

where the impossiblility of) to be put into a prenex-
normalform, is inherited from intuitionism. It may be worth-
while to consider subclasses of the full first-order syntax that
are well behaved w.r.t. forgetting. Related to this question
there are two extensions of logic programs that are able to
capture the full polynomial hierarchy, stable-unstable pro-
grams [33] and logic programs with quantifiers [34]. A re-
laxed version of forgetting from logic programs, so-called
interpolation has recently been successfully reduced to the
classical case [35].

6. Conclusion

The question on how a logic program may be simplified, has
become a rather large one, sparking several subtopics that
cover different particular aims: forgetting, abstraction, sim-
plification. These ideas have recently been captured under an
umbrella-term of (strong) A-simplifications of P relativized
to B [25]. The existence of this more abstract version of
forgetting tore open a hole between the semantics and syn-
tax that that was just recently closed [19]. In this paper we
were able to close it again by intricately modifying fsp, to
be able to take into account a relativization set. Given that
most of the recent results are limited to the propositional
case, we believe that it would be interesting to explore how
they translate to forgetting about predicate-symbols next.

n(X) — e(X,Y).
n(Y) —e(X,Y).

P
{abchq, abchq) {abeg, abeg)y
{abh, abchq) {abc, abeq)y
{a, abcg)
{abch, abch) {abc, abc)
{abc, abch)y {a, abc)
{ah, abch)
L (p,v)
{abch, abch)
{abh, abch)
{abch, abch) {abc, abc)
{abc, abch) {a, abc)
{ah, abch)
& (P.V)
gk (" (P,V), B) gk (k" (PV), B)
{abch,, abch)
{abh, abch) %]
{ab, abch)
{abc, abc)y
(%) {a, abc)
gk (FS(P.V), B) & (f (P.V), B)
gr(P,V, B)
{abch, abch) {abc, abc)
{abh, abch) {a, abc)
{ab, abch)

Figure 1: This figure illustrates how gg takes a divide and
conquer approach to be able to encode the semantics of
F.r. Here we abstract away from the specific syntax of each
auxiliary program and only look at their models. For each
set of models in a box such a representative exists [13].
The models of an initial program P are on the top most
box, the models of the auxiliary results of forgetting V' = {q}
relativized to B = {a, b, c} are listed from there on downward.
The workings of f,sp follow a similar pattern, but are hard
to put into an illustration, since the auxiliary operators g\‘,/\;B
satisfy a lot more models.

Acknowledgements

This work was supported by the German Federal Ministry of
Education and Research (BMBF, 011S18026B-F) by fund-
ing the competence center for Big Data and Al “ScaDS.AI”
Dresden/Leipzig.

References

(1]

(2]

(3]

(4]
(3]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

A. Heyting, Die formalen regeln der intuitionis-
tischen logik, in: Sitzungsberichte der Preussis-
chen Akademie der Wissenschaften. Physikalisch-
mathematische Klasse, 1930.

V. Lifschitz, D. Pearce, A. Valverde, A characteri-
zation of strong equivalence for logic programs with
variables, in: Proceedings of (LPNMR-07), 2007.
doi:10.1007/978-3-540-72200-7_17.

Y. Chen, Y. Zhang, Y. Zhou, First-order indefinability
of answer set programs on finite structures, in: Pro-
ceedings of (AAAI-10), 2010.

F. Lin, R. Reiter, Forget it, in: Working Notes of AAAI
Fall Symposium on Relevance, 1994.

J. P. Delgrande, A knowledge level account of forget-
ting, Journal of Artificial Intelligence Research (2017).
doi:10.1613/9air.5530.

T. Eiter, G. Kern-Isberner, A brief survey on for-
getting from a knowledge representation and reason-
ing perspective, KI - Kiinstliche Intelligenz (2018).
doi:10.1007/s13218-018-0564-6.

R. Gongalves, M. Knorr, J. Leite, The ultimate guide to
forgetting in answer set programming, in: Proceedings
of (KR-16), 2016.

R. Gongalves, M. Knorr, J. Leite, You can’t always for-
get what you want: On the limits of forgetting in answer
set programming, in: Proceedings of (ECAI-16), 2016.
doi:10.3233/978-1-61499-672-9-957.

R. Gongalves, M. Knorr, J. Leite, S. Woltran, When you
must forget: Beyond strong persistence when forgetting
in answer set programming, Theory and Practice of
Logic Programming (2017).

R. Gongalves, T. Janhunen, M. Knorr, J. Leite,
S. Woltran, Forgetting in modular answer set pro-
gramming, in: Proceedings of (AAAI-19), 2019.
doi:10.1609/aaai.v33101.33012843.

R. Gongalves, T. Janhunen, M. Knorr, J. Leite, On
syntactic forgetting under uniform equivalence, in: Pro-
ceedings of (JELIA-21), volume 12678, 2021, pp. 297-
312.doi:10.1007/978-3-030-75775-5_20.

P. Cabalar, P. Ferraris, Propositional theories are
strongly equivalent to logic programs, Theory and
Practice of Logic Programming (2007).

P. Cabalar, D. Pearce, A. Valverde, Minimal logic
programs, in: Proceedings of (ICLP-07), 2007.

Y. Zhang, N. Y. Foo, Solving logic program con-
flict through strong and weak forgettings, Artificial
Intelligence 170 (2006) 739-778. doi:10.1016/ 7.
artint.2006.02.002.

T. Eiter, K. Wang, Semantic forgetting in answer set
programming, Artificial Intelligence (2008).

M. Knorr, J. J. Alferes, Preserving strong equivalence
while forgetting, in: Proceedings of (JELIA-14), 2014.
doi:10.1007/978-3-319-11558-0_209.

M. Berthold, R. Gongalves, M. Knorr, J. Leite, A syn-
tactic operator for forgetting that satisfies strong per-

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

sistence, Theory and Practice of Logic Programming
(2019). doi:10.1017/51471068419000346.

R. Gongalves, T. Janhunen, M. Knorr, J. Leite, On
syntactic forgetting under uniform equivalence, in:
Proceedings of (JELIA-21), 2021. doi:10.1007/
978-3-030-75775-5_20.

M. Berthold, On syntactic forgetting with strong per-
sistence, in: Proceedings of (KR-22), 2022.

F. Aguado, P. Cabalar, J. Fandinno, D. Pearce, G. Pérez,
C. Vidal, Syntactic ASP forgetting with forks, Arti-
ficial Intelligence (2024). doi:10.1016/J.ARTINT.
2023.104033.

Z. G. Saribatur, T. Eiter, Omission-based abstraction
for answer set programs, in: Proceedings of (KR-18),
2018.

T. Eiter, Z. G. Saribatur, P. Schiiller, Abstraction for
zooming-in to unsolvability reasons of grid-cell prob-
lems, CoRR (2019). arXiv:1909.04998.

Z. G. Saribatur, T. Eiter, A semantic perspective on
omission abstraction in ASP, in: Proceedings of (KR-
20), 2020. doi:10.24963/KR.2020/75.

Z. G. Saribatur, S. Woltran, Foundations for projecting
away the irrelevant in ASP programs, in: Proceedings
of (KR-23),2023. doi:10.24963/KR.2023/60.
Z. G. Saribatur, S. Woltran, A unified view on for-
getting and strong equivalence notions in answer set
programming, in: Proceedings of (AAAI-24), 2024.
doi:10.1609/AAAT.V3819.28940.

V. Lifschitz, L. R. Tang, H. Turner, Nested expres-
sions in logic programs, Annals of Mathematics
and Artificial Intelligence (1999). doi:10.1023/A:
1018978005636.

V. Lifschitz, D. Pearce, A. Valverde, Strongly equiva-
lent logic programs, ACM Transactions on Computa-
tional Logic (2001).

S. Woltran, Characterizations for relativized no-
tions of equivalence in answer set programming, in:
Proceedings of (JELIA-04), 2004. doi:10.1007/
978-3-540-30227-8_16.

K. Inoue, C. Sakama, Negation as failure in the head,
Journal of Logic Programming (1998).

K. Inoue, C. Sakama, Equivalence of logic programs
under updates, in: Proceedings of (JELIA-04), 2004.
M. Slota, J. Leite, Back and forth between rules and
SE-models, in: Proceedings of (LPNMR-11), 2011.
Y. Zhou, Y. Zhang, Bounded forgetting, in: Pro-
ceedings of (AAAI-11),2011. doi:10.1609/AAAT.
V25I1.7842.

B. Bogaerts, T. Janhunen, S. Tasharrofi, Stable-unstable
semantics: Beyond NP with normal logic programs,
Theory and Practice of Logic Programming (2016).
doi:10.1017/S1471068416000387.

G. Amendola, F. Ricca, M. Truszczynski, Beyond
NP: quantifying over answer sets, Theory and Prac-
tice of Logic Programming (2019). doi:10.1017/
51471068419000140.

J. Heuer, C. Wernhard, Synthesizing strongly equiv-
alent logic programs: Beth definability for answer
set programs via craig interpolation in first-order
logic, CoRR (2024). doi:10.48550/ARXIV.2402.
07696.arXxiv:2402.07696.

http://dx.doi.org/10.1007/978-3-540-72200-7_17
http://dx.doi.org/10.1613/jair.5530
http://dx.doi.org/10.1007/s13218-018-0564-6
http://dx.doi.org/10.3233/978-1-61499-672-9-957
http://dx.doi.org/10.1609/aaai.v33i01.33012843
http://dx.doi.org/10.1007/978-3-030-75775-5_20
http://dx.doi.org/10.1016/j.artint.2006.02.002
http://dx.doi.org/10.1016/j.artint.2006.02.002
http://dx.doi.org/10.1007/978-3-319-11558-0_29
http://dx.doi.org/10.1017/S1471068419000346
http://dx.doi.org/10.1007/978-3-030-75775-5_20
http://dx.doi.org/10.1007/978-3-030-75775-5_20
http://dx.doi.org/10.1016/J.ARTINT.2023.104033
http://dx.doi.org/10.1016/J.ARTINT.2023.104033
http://arxiv.org/abs/1909.04998
http://dx.doi.org/10.24963/KR.2020/75
http://dx.doi.org/10.24963/KR.2023/60
http://dx.doi.org/10.1609/AAAI.V38I9.28940
http://dx.doi.org/10.1023/A:1018978005636
http://dx.doi.org/10.1023/A:1018978005636
http://dx.doi.org/10.1007/978-3-540-30227-8_16
http://dx.doi.org/10.1007/978-3-540-30227-8_16
http://dx.doi.org/10.1609/AAAI.V25I1.7842
http://dx.doi.org/10.1609/AAAI.V25I1.7842
http://dx.doi.org/10.1017/S1471068416000387
http://dx.doi.org/10.1017/S1471068419000140
http://dx.doi.org/10.1017/S1471068419000140
http://dx.doi.org/10.48550/ARXIV.2402.07696
http://dx.doi.org/10.48550/ARXIV.2402.07696
http://arxiv.org/abs/2402.07696

	1 Introduction
	2 Background
	2.1 Syntactic Tools
	2.2 Syntactic Forgetting with (SP)

	3 Towards Syntactic Forgetting with (rSP)
	4 Syntactic Forgetting with (rSP)
	5 Let's not Forget about Predicates
	6 Conclusion

