
Proceedings of the Twelfth International Workshop on

Non-Monotonic Reasoning

Editors:

Maurice Pagnucco Michael Thielscher

ARC Centre of Excellence in Autonomous Systems Computational Logic Group

and National ICT Australia Artificial Intelligence Institute

School of Computer Science and Engineering Department of Computer Science

The University of New South Wales Dresden University of Technology

Sydney, NSW 2052 D-01062 Dresden

Australia Germany

morri@cse.unsw.edu.au mit@inf.tu-dresden.de

Technical Report

UNSW-CSE-TR-0819

September 2008

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering

The University of New South Wales

Sydney 2052, Australia

Preface

This informal proceedings is for the Twelfth International Workshop on Non-Monotonic Reasoning. Its
aim is to bring together active researchers in the broad area of nonmonotonic reasoning, including belief
revision, reasoning about actions, planning, logic programming, argumentation, causality, probabilistic
and possibilistic approaches to KR, and other releated topics.

As part of the program we will be considering the status of the field and discussing issues such as:
Significant recent achievements in the theory and automation of NMR; critical short and long term goals
for NMR; emerging new research directions in NMR; practical applications of NMR; significance of NMR
to knowledge representation and AI in general.

The workshop programme is chaired by Maurice Pagnucco and Michael Thielscher, and the programme
is composed of the following sessions (with session chairs).

1. Actions and Belief Change (Sebastian Sardina and Dongmo Zhang)

2. Applications (Tomi Janhunen and Eugenia Ternovska)

3. Argument, Dialogue and Decision (Yannis Dimopoulos and Gerard Vreeswijk)

4. Declarative Programming Paradigms and Systems for NMR (Esra Erdem and João Leite)

5. Preferences (Hans Tompits and Kewen Wang)

6. Foundations of NMR and Uncertainty (Alberto Finzi and Frank Wolter)

Authors have been invited to submit papers directly to any of the above sessions, and all papers have
been reviewed by two or three experts in the field.

In addition to the paper sessions, this year’s workshop featured joint invited talks by two internationally
renowned researchers: Alexander Bochman (Holon Academic Institute of Technology) and Fangzhen Lin
(Hong Kong University of Science and Technology).

The programme chairs are very grateful to the session chairs for organizing each session, and for arranging
the reviewing of the submissions. The programme chairs are also very grateful to the reviewers for their
hard work in assessing the submissions and for providing excellent feedback to the authors.

We would also like to thank Mirek Truszczynski for his financial support for the workshop. Our special
thanks go to Sandra Grossmann who put these Proceedings together. This turned out to be an enormous
effort and we appreciate their work very much.

August 2008

Maurice Pagnucco University of New South Wales

Michael Thielscher Dresden University of Technology

NMR-2008

ii

Table of Contents

Actions and Belief Change 1

Judgment Aggregation with Rule Confidence Scores . 2

F. Benamara, S. Kaci, G. Pigozzi

Integrating Golog and Planning: An Empirical Evaluation . 10

J. Claßen, V. Engelmann, G. Lakemeyer, G. Röger

A diff-Based Merging Operator . 19

P. Everaere, S. Konieczny, P. Marquis

Activity Recognition with Intended Actions, Answer Set Programming Approach 26

A. Gabaldon

Model-Based Contractions for Description Logics . 34

M. O. Moguillansky, M. A. Falappa, G. R. Simari

Degrees of Recovery and Inclusion in Belief Base Dynamics . 43

M. M. Ribeiro, R. Wassermann

Consistency Maintenance of Plausible Belief Bases Based on Agents Credibility . 50

L. H. Tamargo, A. J. Garćıa, M. A. Falappa, G. R. Simari

Action Theory Revision in Dynamic Logic . 59

I. J. Varzinczak

Properties of Knowledge Forgetting . 68

Y. Zhang, Y. Zhou

Embedding General Default Logic into the Logic of GK . 76

Y. Zhou, F. Lin, Y. Zhang

Applications 84

Anton: Answer Set Programming in the Service of Music . 85

G. Boenn, M. Brain, M. De Vos, J. ffitch

Tools for Representing and Reasoning about Biological Models in Action Language C 94

S. Dworschak, T. Grote, A. König, T. Schaub, P. Veber

NMR-2008

iii

Argument, Dialogue and Decision 103

Towards Enforcement of Confidentiality in Agent Interactions . 104

J. Biskup, G. Kern-Isberner, M. Thimm

Application of Possibilistic Stable Models to Decision Making . 113

J. Forth

Formalizing Accrual in Defeasible Logic Programming . 122

M. J. Gómez Lucero, C. I. Chesñevar, G. R. Simari

An Abstract Argumentation Framework for Handling Dynamics . 131

N. D. Rotstein, M. O. Moguillansky, A. J. Garćıa, G. R. Simari

Declarative Programming Paradigms and Systems for NMR 140

Heuristics in Conflict Resolution . 141

C. Drescher, M. Gebser, B. Kaufmann, T. Schaub

A Versatile Intermediate Language for Answer Set Programming . 150

M. Gebser, T. Janhunen, M. Ostrowski, T. Schaub, S. Thiele

Engineering an Incremental ASP Solver . 160

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, S. Thiele

Defeasible Knowledge and Argumentative Reasoning for 3APL Agent Programming 170

S. Gottifredi, A. J. Garćıa, G. R. Simari

Using Collaborations for Distributed Argumentation with Defeasible Logic Programming 179

M. Thimm, A. J. Garćıa, G. Kern-Isberner, G. R. Simari

gidL: A Grounder for FO+ . 189

J. Wittocx, M. Mariën, M. Denecker

NMR-2008

iv

Preferences 199

Distributed Defeasible Reasoning in Multi-Context Systems . 200

A. Bikakis, G. Antoniou

Learning Preference Relations over Combinatorial Domains . 207

J. Lang, J. Mengin

Defeasible Logic to Model n-persons Argumentation Game . 215

D. H. Pham, S. Thakur, G. Governatori

Incorporating a Qualitative Ranked Preference System into Planning . 223

C. L. Schmidt, J. P. Delgrande

Preferred Answer Sets Supported by Arguments . 232

J. Šefránek

On Planning with Preferences in HTN . 241

S. Sohrabi, S. A. McIlraith

Foundations of NMR and Uncertainty 249

Simple Generalized Default Theories . 250

A. Bochman

Specificity Principle in Querying Databases with Preferences . 259

S. Kaci, R. da Silva Neves

A Characterization of an Optimality Criterion for Decision Making under Complete Ignorance 268

R. B. Larbi, S. Konieczny, P. Marquis

NMR-2008

v

Special Session on Actions and Belief Change

Reasoning about actions, causality, and belief change are well established research areas in nonmonotonic
reasoning. Thanks to advances in these areas in recent years, it becomes evident that the boundaries be-
tween these research areas are hardly discernible and that they have more in common than was previously
believed. For this reason, from the last NRAC workshop, the traditional NMR “Action and Change” and
“Belief Change” tracks have been merged into a new “Actions and Belief Change” sub-workshop.

In addition to the traditional topics in the areas of reasoning about actions and belief change, we partic-
ularly encourage papers exploring the common territory that will further promote the cross-fertilization
between these two areas. This would include, for example, reasoning about complex and dynamic environ-
ments, belief and knowledge merging under actions, multi-agent belief revision through communication,
and so on.

Session Chairs

Sebastian Sardina, RMIT University, Australia
Dongmo Zhang, University of Western Sydney, Australia

Program Committee

Chitta Baral, Arizona State University, USA
Richard Booth, Mahasarakham University, Thailand
James Delgrande, Simon Fraser University, Canada
Eduardo Fermé, University of Madeira, Portugal
Alfredo Gabaldon, National ICT Australia, Australia
Aditya Ghose, University of Wollongong, Australia
Koen Hindriks, Delft University of Technology, The Netherlands
John-Jules Meyer, Utrecht University, The Netherlands
Pavlos Peppas, University of Patras, Greece
Laurent Perrussel, IRIT – Toulouse, France
Guilin Qi, University of Karlsruhe, Germany
Hans Rott, University of Regensburg, Germany
Mikhail Soutchanski, Ryerson University, Canada

NMR-2008

1

Judgment Aggregation with Rule Confidence Scores

Farah Benamara
IRIT-CNRS

118 rt de Narbonne, 31062
Toulouse, France

benamara@irit.fr

Souhila Kaci
Université Lille-Nord de France, Artois

CRIL, CNRS UMR 8188
F-62307 - IUT de Lens

kaci@cril.univ-artois.fr

Gabriella Pigozzi
University of Luxembourg

Computer Science and Communications
Luxembourg

gabriella.pigozzi@uni.lu

Abstract

Judgment aggregation is a recent formal discipline that
studies how to aggregate individual judgments to form
collective decisions. Examples are expert panels, legal
courts, boards, and councils. The problems investigated
in this new field are relevant and common to many situ-
ations. Nevertheless, the existing procedures are ideal-
ized and, as for the related problems of preference ag-
gregation in social choice theory, the field is plagued by
impossibility theorems. In order to escape the impossi-
bility results, a more realistic framework is needed. The
goal of this paper is to extend standard judgment ag-
gregation to take into account the judgment status and
the confidence a group member may have in the deci-
sion rule. We propose to distinguish between abstainers
and neutral judgment as well as to model the notion of
confidence by assigning to each criterion a normalized
weight. We then show how this additional information
may help us to avoid indecision.

Introduction
Judgment aggregation is a recent formal discipline that stud-
ies how to aggregate individual judgments to form collec-
tive decisions. Examples are expert panels, legal courts,
boards, and councils (List 2007). This field has recently at-
tracted attention in multi-agent systems and artificial intelli-
gence, in particular due to the relations with belief merging
(Pigozzi 2006), for example for the combination of opinions
of equally reliable individuals.

Judgment aggregation problems consider a group of peo-
ple stating their views (in the binary form of 1 or 0) on some
logically interconnected propositions. An example is the
problem of choosing a candidate for a professor position in
a university (Bovens & Rabinowicz 2006). A candidate is
offered the job (conclusion R) only if she is good at teach-
ing (premise P) and good at research (premise Q), that is
the decision rule can be expressed as (P ∧ Q) ↔ R. As
we will see, problems arise because a seemingly reasonable
aggregation procedure leads to paradoxical outcomes.

Clearly, the problems investigated in this new field are
relevant and common to many situations. Nevertheless, the

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

existing procedures are idealized and, as for the related prob-
lems of preference aggregation in social choice theory (Diet-
rich & List 2006), the field is plagued by impossibility theo-
rems. To provide a more realistic framework, and to escape
the impossibility results are among the goals of the paper.
More specifically, we introduce the following changes:

1. An agent may not vote and thus abstain. In the previous
example, a committee member may abstain because she
believes that the decision rule is inappropriate, or because
there is no suitable candidate.

2. It is not realistic to impose that the agents always have
a clear position on every proposition. Our model allows
the individuals to express a neutral judgment. It is worth
noticing that abstention and neutral judgments are dis-
tinct. The difference will be clarified later in the paper.

3. Borrowing the terminology from the field of multiple-
criteria decision making (Keeney & Raiffa 1976;
Figueira, Greco, & Ehrgott 2004), we call the proposi-
tions that support a certain conclusion criteria (instead of
premises). This is justified by the fact that, in many de-
cision problems, agents make their evaluations by taking
into account different criteria and, even when the individ-
uals agree on the criteria, they may assign them different
weights. For example, some agents may deem research to
be more important than teaching. Moreover, our frame-
work allows the group members to state whether or not
they agree on the rule governing the decision.

4. Some procedures can avoid paradoxical outcomes at the
price of indecision (Pigozzi 2006). However, indecision
is a very tedious problem. Our more refined procedure is
an attempt to escape the impossibility results in judgment
aggregation problems while, at the same time, resolves
indecision.

In this paper, we propose to extend standard judgment aggre-
gation to take into account the above considerations. More
precisely, we will answer the following research questions:
• How to model judgment status? We will distinguish three

cases: (a) classical binary evaluations, (b) neutral judg-
ments and (c) abstentions.

• How to model the confidence a member has in the deci-
sion rule? We propose to model the notion of confidence

Actions and Belief Change NMR-2008

2

by assigning to each criterion a normalized weight.

• How to adapt standard aggregation procedures to take into
account the judgment status as well as the confidence? We
then show how this additional information may help us to
avoid most cases of indecision.

• How to model degree of support? We propose the notion
of legitimacy.

The remainder of this paper is organized as follows. After
necessary background on the problem of judgment aggre-
gation, we first recall some related works. We then present
our general framework extending classical judgment aggre-
gation procedure with confidence in the decision rule, judg-
ment status and legitimacy of the result. After that we intro-
duce the formal representation, the aggregation procedure
and show that classical judgment aggregation is a special
case of our more generalized framework. Lastly, we con-
clude.

Judgment aggregation
In the original problem of judgment aggregation (Korn-
hauser & Sager 1986; 1993), a court has to make a decision
on whether a person is liable of breaching a contract (propo-
sition R). The judges have to reach a verdict following the
legal doctrine. This states that a person is liable if and only
if there was a contract (P) and there was a conduct constitut-
ing breach of such a contract (Q). The legal doctrine can be
formally expressed by the rule (P ∧Q) ↔ R. Each member
of the court expresses her judgment on the propositions P ,
Q and R such that the rule (P ∧Q) ↔ R is satisfied.

Suppose now that the three members of the court make
their judgments according to Table 1.

P Q R = (P ∧Q)
Judge A 1 0 0
Judge B 0 1 0
Judge C 1 1 1
Majority 1 1 0

Table 1: Doctrinal paradox. Premises: P = There was a
contract, Q = There was conduct constituting breach of such
a contract. Conclusion: R = (P ∧Q) = There was a breach
of contract.

Each judge expresses a consistent opinion, i.e. she says
yes to R if and only if she says yes to both P and Q. How-
ever, proposition-wise majority voting (consisting in the sep-
arate aggregation of the votes for each proposition P , Q and
R via majority rule) results in a majority for P and Q and yet
a majority for ¬R. This is an inconsistent collective result,
in the sense that {P,Q,¬R, (P ∧ Q) ↔ R} is inconsistent
in propositional logic. The paradox lies in the fact that ma-
jority voting can lead a group of rational agents to endorse
an irrational collective judgment, i.e. to have a majority be-
lieving that the defendant should be left free while another
majority deems there are reasons to sentence her. The liter-
ature on judgment aggregation refers to such problem as the

doctrinal paradox. Clearly, the relevance of such aggrega-
tion problems goes beyond the specific court example and
affects all collective decisions on logically interconnected
propositions.

The first two ways to avoid the inconsistency that have
been suggested are the premise-based procedure and the
conclusion-based procedure (Pettit 2001; Chapman 2002).
According to the premise-based procedure, each member
casts her vote on each premise. The conclusion is then in-
ferred from the judgment of the majority of the group on
the premises using the rule (P ∧ Q) ↔ R. In the exam-
ple above, the premise-based procedure would declare the
defendant liable of breaching the contract.

According to the conclusion-based procedure, the
members decide privately on P and Q and only express
their opinions on R publicly. The judgment of the group
is then inferred from applying the majority rule to the
agent judgments on the conclusion. The defendant will
be declared liable if and only if a majority of the judges
actually believes that she is liable, and no reasons for
the court decision could be supplied. In the example,
contrary to the premise-based procedure, the application
of the conclusion-based procedure would free the defendant.

In order to investigate how strong the paradoxical out-
comes are, some seemingly reasonable conditions were as-
sumed on the aggregation function. Unfortunately, most of
the results obtained in the field are negative (List & Pettit
2002; 2004; Pauly & van Hees 2006; Dietrich 2006).

To give a flavor of a typical impossibility result in the
judgment aggregation field, and to introduce some terminol-
ogy, we state the first impossibility theorem (List & Pettit
2002). A set of agents N = {1, 2, . . . , n}, with n ≥ 3, has
to make judgments on logically interconnected propositions
of a language L. The set of propositions on which the judg-
ments have to be made is called agenda. A (individual or
collective) judgment set is the set of propositions believed
by the agents or the group. An n-tuple (J1, J2, . . . , Jn) of
agent judgment sets is called profile. A judgment aggrega-
tion rule F assigns a collective judgment set J to each pro-
file (J1, J2, . . . , Jn) of agent judgment sets. A judgment set
is consistent if it is a consistent set in L, and is complete if,
for any P ∈ L, P ∈ J or ¬P ∈ J .

A set of seemingly rational and desirable conditions are
imposed on the aggregation rules and then, typically, an im-
possibility result is derived. The first impossibility theorem
of judgment aggregation states that there exists no aggrega-
tion rule F satisfying the following conditions:

Universal Domain: The domain of F is the set of all pro-
files of consistent and complete judgment sets.

Anonymity: Intuitively, this means that all agents have
equal weight.

Systematicity: This condition ensures that the collective
judgment on each proposition depends only on the agent
judgments on that proposition, and that the aggregation
rule is the same across all propositions. Systematicity is
clearly a very strong condition. In subsequent impossibil-

Actions and Belief Change NMR-2008

3

ity results, systematicity has been weakened to the inde-
pendence of irrelevant alternatives:

Independence of Irrelevant Alternatives (IIA): IIA is
systematicity without the neutrality condition, requiring
that all propositions are equally treated.

Related works
In this section we refer to works that proposed to relax some
of the assumptions made in the classical judgment aggrega-
tion framework. However, our model is the first that com-
bines all these different aspects and introduces new ones.

Abstention and neutral judgments
Results in judgment aggregation usually assume complete
judgment sets both at the individual and collective level.
Gärdenfors (2006) was the first to criticize such assump-
tion as being too strong and unrealistic. He allows voters
to abstain from expressing judgments on some propositions
in the agenda. He proves that, if the judgment sets may not
be complete (but logically closed and consistent), then ev-
ery aggregation function that is IIA and Paretian1, must be
oligarchic.2

Gärdenfors’ framework requires the agenda to have a very
rich logical structure (with an infinite number of issues).
More recently, Dokow and Holzman (Dokow & Holzman
2007) extended Gärdenfors’ result and consider finite agen-
das. Again, impossibility results are obtained. Hence, relax-
ing the completeness assumption does not avoid the impos-
sibility results.

Nevertheless, allowing the voters to not express their
judgments on some of the issues in the agenda provides a
more realistic model of judgment aggregation, which is the
aim of our paper. In order to avoid confusion, we must ob-
serve that we distinguish abstaining from being neutral with
respect to an issue in the agenda. Abstentions in Gärdenfors
and Dokow and Holzman’ works correspond to what we call
“neutral judgments”. In our model, a voter abstains when
she does not state her judgments on any issue in the agenda.
Abstaining is a meaningful position, i.e. the refuse to partic-
ipate in the decision process. This will affect the legitimacy
of the decision outcome as an election with a high abstention
rate is invalid.

On the other hand, being neutral on a certain issue cap-
tures those situations in which voters do not have a clear
position on that issue, do not feel competent, or simply pre-
fer not to take position on that matter. Unlike the abstainers,
these voters wish to actively participate in the decision pro-
cess. For example, given (P ∧ Q) ↔ R, if an individual
believes P to be true but does not know about Q, then her
judgment set will be {(1, 0, 0), (1, 1, 1)}.

1A Paretian aggregation function is such that, if all the individ-
uals in the group adopt the same position on a certain issue, this
position will be adopted at the collective level as well.

2An aggregation function is oligarchic if, for every issue in the
agenda, the group adopts a position 0 (resp. 1) if and only if all the
members of a subset of the group (the oligarchy) adopt position 0
(resp. 1) on that issue. Clearly, when there is only one individual
in the oligarchy, it corresponds to dictatorship.

Weighted criteria
Borrowing the terminology from multi-criteria decision
making, we will refer to the premises as criteria for the de-
cision. Like multiple criteria decision methods, group mem-
bers in a judgment aggregation setting evaluate a candidate
on the basis of a finite number of premises. However, the
two fields have some differences. The first is that multi-
criteria decision methods study how a group can select (pos-
sibly) one candidate from a set of alternatives by attribut-
ing weights to each criterion. Instead, in judgment aggre-
gation, group members are asked to express their judgments
on propositions that refer to a single candidate per time. The
second noticeable difference is in the distinction between
criteria/premises and conclusion in judgment aggregation,
which is missing in multi-criteria literature, as well as the
logical interrelations among those propositions.

The main novelty we introduce in the judgment aggrega-
tion framework is that in our model group members assign
weights to the criteria in the decision rule. As we will see,
this amounts to allocate a confidence score to the rule gov-
erning the decision. Group members not only participate in
the decision process but they also express how well-suited
the adopted rule is for the decision at hand.

So far the only approach that resembles ours is that of Di-
etrich and List (2005), where they investigate judgment ag-
gregation problems using quota rules. A threshold is fixed
for each proposition in the agenda and a proposition is col-
lectively accepted only if the number of group members ac-
cepting it is at least equal to the threshold for that proposi-
tion. The motivation for quota rules was to capture many
real-world decision-making situations, where the proposi-
tions may differ in status and importance, which is taken
into consideration by fixing different threshold values.

We sympathize with that approach but we want to go fur-
ther. Instead of having an a priori fixed threshold for accept-
ing each proposition, we want to allow the group members
to state their individual views on the relevance of each cri-
terion to the decision. In this way, people can also express
how much they agree with (resp. dissent from) the rule, by
assigning high (resp. low) weights to the criteria. The closer
the sum of the weights is to 1, the more an individual be-
lieves that the rule is the correct one to assess that decision
problem. If, on the other hand, she assigns low weights, it
means that she deems that the more important criteria have
been overlooked or dismissed.

As an example, consider the board of a research fund-
ing agency whose members have to decide which research
project to support on the basis of three criteria: quality
(P), originality (Q), and applicability (S). Assume as well
that the applicability criterion has been introduced only re-
cently following some new regulation that impose all re-
search funding agency to be evaluated on the basis of like-
ness to attract the interest of private funding. If a good part
of the board members dissent with the criterion S because
they believe that this will damage pure theoretical projects
to the benefit of pure applied ones, they will cast their votes
on the propositions, but assign a very low weight to S. This
will be reflected at the end of the process, when a certain de-
cision will be made, but also the information about how the

Actions and Belief Change NMR-2008

4

group views the criteria selected for the rule will be publicly
available.

General Framework
A formula representing judgment aggregation has the form

P ↔ R,

where P is a general propositional formula built on literals
representing criteria and R is a literal representing the con-
clusion. Since any propositional formula P can be written
in a disjunctive form, i.e. P = (P1 ∧ · · · ∧ Pn) ∨ (P ′

1 ∧
· · · ∧ P ′

m) ∨ · · · then handling P ↔ R turns to handling
(P1 ∧ · · · ∧ Pn) ↔ R or (P ′

1 ∧ · · · ∧ P ′
m) ↔ R or · · ·. In-

deed we describe the judgment aggregation procedure cor-
responding to

(P1 ∧ · · · ∧ Pn) ↔ R (1)

where Pi are criteria and R is the conclusion.
The other decision rules (P ′

1 ∧ · · · ∧ P ′
m) ↔ R, · · · are

treated in a similar way.

In the following (1) is referred to as the decision rule.
Let us now formalize the extensions we intend to give to
classical judgments aggregation, namely: confidence in the
decision rule, judgment status and legitimacy of the result.

Confidence in the decision rule
The confidence in the decision rule is represented locally at
the level of each criterion. A weight αij ∈ [0, 1] associated
to a criterion Pi expresses how much Pi is relevant for the
conclusion in the decision rule for the member j3. Thus (1)
is generalized as follows:

(P1, α1j)Λ · · ·Λ(Pn, αnj) iff R, (2)

with 0 ≤ α1j + · · · + αnj ≤ 1, where Λ stands for the
conjunction between weighted criteria.

Note that when αij = 0, the judgment corresponding to
the associated criterion Pi is simply ignored and the value
of R is decided only using the remaining criteria. This is
intuitively meaningful since αij = 0 means that the member
j judges that the criterion Pi should not be considered.

Depending on the values of the weights α1j , · · · , αnj , we
distinguish the following cases:

a) Full agreement “α1j + · · ·+ αnj = 1”.
This means that, for member j, either the criteria
P1, · · · , Pn are the all and only relevant ones to make a
judgment on R, or they include all the relevant criteria
together with some completely irrelevant ones. Thus j
completely agrees on (1). Indeed (2) reduces to (1) such
that Pi is ignored if αij = 0, i.e. the decision rule is

3It is important to notice that αij does not express how much
a member is confident when expressing her judgment w.r.t. a cri-
terion Pi, but how much member judges that Pi is relevant in the
decision rule.

(P1 ∧ · · · ∧ Pi−1 ∧ Pi+1 ∧ · · · ∧ Pn) ↔ R.

It is worth observing that the original legal paradox of
judgment aggregation is an instance of the full agreement
case, where all group members (the judges) have to fully
endorse the legal code, or behave as if this is the case.

b) Partial agreement “α1j + · · ·+ αnj < 1”.
This case means that member j doesn’t fully agree on the
decision rule, i.e. she deems that (all or some of) the rel-
evant criteria have been dismissed (and, possibly, that the
rule includes some irrelevant criteria for the decision).

Example 1 Let us consider the example of the board of
a research funding agency again. We recall that the deci-
sion on whether to support a research project is taken by
looking at three criteria: quality (P), originality (Q), and
applicability (S). The five members state their judgments
on P , Q and S as in Table 2.

P Q S
M1 (0, .33) (0, .33) (1, .34)
M2 (1, .3) (1, .3) (1, .4)
M3 (0, .5) (0, .5) (0, 0)
M4 (1, .3) (1, .3) (0, 0)
M5 (1, .2) (1, .1) (1, .1)

Table 2: Individual judgments and weights assignments on
the criteria.

The first two members deem the criteria P , Q, and S to be
the all and only relevant attributes for funding a project.
Since for them α1j + α2j + α3j = 1 (for j = 1, 2), they
fully agree with the decision rule (P ∧Q ∧ S) ↔ R. The
third member also fully agrees with the rule but, unlike
the first two, she believes that P and Q are the only rel-
evant criteria and S is completely irrelevant for the deci-
sion. Like the third agent, M4 thinks that the applicability
criterion should not play a role in the decision of which
project to fund. However, she believes that one or more
relevant criteria have not been taken into consideration
(α14 + α24 + α34 < 1). Finally, M5 agrees with M4

that other important criteria for the decision have been
ignored, but she thinks that the applicability of a project
should be taken into account, though it is not a very im-
portant aspect for the final decision.

The criteria weights should play a role in the way group
members express their judgments on the conclusion.
Moreover, the information about how relevant the mem-
bers deem the criteria to be for the decision has to be
taken into account when the individual judgments are ag-
gregated to derive a collective decision.
We distinguish the following sub-cases depending on the
level of global non-agreement on the decision rule. Let t
(1 > t > 0) be a threshold.

b.1) High partial agreement “t ≤ α1j+· · ·+αnj < 1”.
Even if member j does not fully agree on the decision

Actions and Belief Change NMR-2008

5

rule, she believes that this includes enough relevant
criteria (α1j + · · · + αnj ≥ t). This means that j
deems the rule sufficiently appropriate to decide R on
the basis of the given criteria. Hence, the judgment on
the conclusion is obtained following the given rule: (2)
reduces to (1) such that Pi is ignored if αij = 0.
Note that a and b.1 can be both represented by
t ≤ α1j + · · ·+ αnj ≤ 1.

b.2) Low partial agreement “0 ≤ α1j + · · ·+αnj < t”.
In this case, the confidence in the decision rule is very
low, i.e. criteria Pi are not adequate or some very
important criteria are missing. In this case, the member
fixes the value of R according also to the missing
criteria. The intuition is that, if an individual wants to
have her saying in a decision process, but considers the
adopted rule unable to capture the relevant criteria for
the decision, she must be able to express her judgment
on the conclusion while making explicit that she
deems the rule to be not completely appropriate. Note,
however that if a group member assigns a judgment 0
to a criterion Pi and αij 6= 0 then R should be 0. This
is to ensure coherence. Indeed the decision rule for
that member is (P1 ∧ · · · ∧ Pm ∧ T1 ∧ · · · ∧ Tl) ↔ R,
where P1, · · · , Pm are criteria whose associated αij is
different from 0 and T1, · · · , Tl are missing criteria.
Since only criteria Pi are present in the decision
process, we may for example have R = 0 while
P1 = · · · = Pm = 14 because the judgment of
the group member j is 0 w.r.t. at least one missing
criterion. Now, if at least one Pi has a judgment
0 then R is necessarily equal to 0. Indeed a group
member is free to fix the value of R only in case
0 ≤ α1j + · · · + αnj < t and all criteria whose
associated weight is different from 0 are assigned a
judgment 1.

The weights α1j , · · · , αnj are then used to compute the
confidence score CSj of the rule for each group member j;
namely CSj = α1j + · · ·+ αnj .

Example 2 Following b.1 and b.2, the table below summa-
rizes the judgments of the members of our funding board
example:

P Q S CS R
M1 (0, .33) (0, .33) (1, .34) 1 0
M2 (1, .3) (1, .3) (1, .4) 1 1
M3 (0, .5) (0, .5) (0, 0) 1 0
M4 (1, .3) (1, .3) (0, 0) .6 1
M5 (1, .2) (1, .1) (1, .1) .4 0

Table 3: Individual judgments on all propositions in the
agenda.

4Pi = 1 is a short hand notation to express that the judgment
w.r.t. criterion Pi is 1.

The first three members fully agree with the decision rule
(P ∧Q ∧ S) ↔ R. Hence, the judgment on the conclusion
R is logically derived from the values assigned to P , Q,
S and the rule. Things are different for the last two group
members. Suppose that t = .5. M4 assigned zero weight to
S but her CS is above the threshold. Hence, M4 assigns
R a value according to the values of only P and Q and
the decision rule. Instead, M5 has a low CS in the rule.
In order to capture the intuition that she should cast her
vote on R sincerely (according to what she considers the
missing criteria), M5 can decide whether the research
project without following the rule. For instance, she can
refuse the funding (R = 0).

When CSj = α1j + · · · + αnj = 0 the judgments of the
group member j are ignored but this is not considered as an
abstention since the given αij are considered in the aggrega-
tion process, as explained below.

Judgment status
We distinguish three possible judgments: classical binary
judgment 1 (for) or 0 (against), neutral judgment and ab-
stention. As classical binary judgment is already used, we
only detail abstention and neutral judgments.

• Neutral judgment We represent a neutral judgment by a
question mark “?” which is interpreted as the judgment
may be 1 or 0. A group member may express a neutral
judgment w.r.t. some or all criteria (and - possibly - on
the conclusion as well).

• Abstention In case of abstention, a group member does
not give any judgment on P1, · · · , Pn (and by conse-
quence no values on α1, · · · , αn) and R. Abstainers are
not taken into account in the aggregation process but in
the computation of the legitimacy of the conclusion (see
below).

Legitimacy
The legitimacy, denoted lg, expresses to what extent the de-
cision process is reliable. It is equal to the total number
of voters over the number of authorized people to vote (i.e
0 ≤ lg ≤ 1). The closer lg is to 1, more reliable the process
is. The legitimacy does not play a role in the final outcome.
However the legitimacy level may declare the decision out-
come invalid. But this comes in a second step. First we ag-
gregate using our aggregation procedure that we will present
in the next section and then legitimacy considerations can
play a role.

Representation and aggregation procedure
We represent a judgment expressed by a member j by the
following tuple

Jj = ((P1j , α1j), · · · , (Pnj , αnj), Rj , CSj),

Pij , Rj ∈ {0, 1, ?} and αij , CSj ∈ [0, 1].

Note that CSj can be computed from α1j , · · · , αnj (we
have CSj = α1j + · · · + αnj). However we include it in

Actions and Belief Change NMR-2008

6

Jj for simplicity reading since it allows to see whether we
apply the decision rule or not. This remarks also holds for
CSagg in D given below.
Rj is either derived following the decision rule or fixed by
the group member depending on whether the confidence
rule CSj is above the threshold or not. In case of abstention
we write Jj = (X, · · · , X,X,X).

Given a set of judgments {J1, · · · , Jk}, the collective de-
cision is represented as follows 5:

D = ((Pagg1 , αagg1), · · · , (Paggn
, αaggn

), Ragg, CSagg, lg),

such that:
• Paggi

is the majority of Pi1, · · · , Pik (with αij 6= 0) fol-
lowing proposition-wise majority voting. So neutral judg-
ments simply follow the majority.
In case of indecision i.e. a tie between the number of
Pij = 1 and Pij = 0, compute the sum of αij associ-
ated to Pij = 1 and the sum of αij associated to Pij = 0
taken individually and follow the judgment corresponding
to the greatest sum. In this case, neutral judgments follow
the will of judgments having a greater weight. In case of
a tie, we put Paggi

=?. Note that this is the only extreme
case where our approach does not solve the indecision.

• αaggi
(resp. CSagg) is a numerical aggregation of

αi1, · · · , αik (resp. CS1, · · · , CSk). In this paper, we use
the average function but any other numerical aggregation
function may be used as well.
Note that CSagg = αagg1 +· · ·+αaggn . This is important
since it means that expressing the confidence in the deci-
sion rule or relevance of each criterion leads to the same
result.

• Ragg is computed by premise-based or conclusion-based
procedure. The procedure is chosen w.r.t. CSagg and t:

– if CSagg < t then we use conclusion-based procedure
and R is computed on the basis of R1, · · · , Rk. This is
intuitively meaningful since CSagg < t means that the
group members thought that the decision rule was not
the right one for that decision, so the only reasonable
thing they can say is the final conclusion, without
giving reasons for that. Ragg is calculated by simple
majority voting. In case of indecision we compute
the sum of CSj for which Rj = 1 and the sum of
CSj for which Rj = 0. Then we follow the judgment
associated to the greatest sum. In case of a tie, we put
Ragg =?. Again this is the only extreme case where
indecision is not solved.

– if CSagg ≥ t then Ragg is computed follow-
ing premise-based procedure. In fact CSagg ≥ t
means that we agree on the decision rule. Having
CSagg = αagg1 + · · · + αaggn

consolidates us in

5The aggregation procedure doesn’t assume that all members
have to agree on the decision rule. Our extended framework allows
each member to follow the rule or not depending on the weights
she assign to the criteria.

this choice since if the only information we have is
(Pagg1 , αagg1), · · · , (Paggn , αaggn) then we first com-
pute αagg1 + · · ·+ αaggn . Then if the sum is above the
threshold, we use the decision rule. The indecision is
handled in the same way as in the previous item replac-
ing CSj by αaggi

.

• lg is the legitimacy. It is equal to the total number of
voters over the number of authorized people to vote.

We now illustrate the procedure with our running example.

Example 3 Table 4 gives judgments expressed by five mem-
bers of our funding board. Let t = .8. Since CSagg =
.86 ≥ .8 we use premise-based procedure. We get R = 1.
The legitimacy of this decision is equal to 4/5 = .8. We
can observe that the collective decision of the members of
the funding board agree on the three criteria but with a very
low confidence about the relevance of Applicability (S).

P Q S CS R
M1 (1, .5) (0, .5) (?, 0) 1 0
M2 (?, .4) (1, .4) (1, .1) .9 ?
M3 X X X X X
M4 (1, .3) (1, .4) (?, .1) .8 ?
M5 (1, .4) (1, .3) (1, .05) .75 1

collective decision (1, .4) (1, .4) (1, .06) .86 1

Table 4: Example of judgment aggregation with confidence
scores.

Example 4 Let us now consider individuals who have to
make a collective decision using the rule (P ∧ Q) ↔ R,
which they think is not appropriate, i.e. CS < t. Suppose
that their judgments are as in Table 5 and that t = .5.

P Q CS R
M1 (1, .1) (1, .2) .3 0
M2 (0, .1) (1, .1) .2 0
M3 (1, .2) (0, .2) .4 0
M4 (1, .2) (1, .1) .3 1
M5 (0, .2) (0, .2) .4 0

collective decision (1, .16) (1, .16) .32 0

Table 5: Example of judgment aggregation with low confi-
dence scores.

All five members assign a very low confidence score to
the decision rule. As we have seen, a low CS means that
the group members believe that the most important criteria
for the decision are missing. Therefore, they express their
judgments on the criteria in the rule, but their decision on
the conclusion R takes into account what they believe are
the missing attributes. For example, M1 states that R = 0
despite the fact that P = 1 and Q = 1. This suggests that
M1 considers that other criteria are not satisfied, so she is
against R. In this situation, the group will conclude R = 0
and they will be able to provide only partial reasons in sup-
port of their decisions. The group cannot reach a decision

Actions and Belief Change NMR-2008

7

by proposition-wise majority voting on the criteria, as P and
Q do not exhaust the reasons for or against R.

Notice that the above line of reasoning also illustrates
why our framework is less sensitive to paradoxical out-
comes.

Classical judgment aggregation vs judgment
aggregation with rule confidence score

In this section we compare how our approach behaves com-
pared to standard judgment aggregation. More precisely, we
describe the behavior of our approach and show that in ex-
treme cases we recover the classical judgment aggregation
procedure.

In our approach, the threshold governs our decision on
whether we use the decision rule or not when computing
Rj and also Ragg . The lower t is fixed, the more the
group members are forced to adopt the decision rule, and
the collective decision will be driven by the judgments
on the criteria. This is coherent with our proposal to use
premise-based procedure when CS ≥ t. Symmetrically,
setting a high t exposes the collective decision to be driven
by the individual judgments on the conclusion, i.e. possibly
less criteria will be considered important in the decision
process. Again this is coherent with our proposal to use
conclusion-based aggregation procedure when CS < t.

Our approach supposes to fix the value of the threshold
t in order to choose the relevant aggregation function. The
problem of setting a threshold is common to all frameworks
that use such quantitative approach (see for example, the
work by (Dietrich & List 2005) using quota rules). The
following questions can then be asked: who fix the threshold
and when ? In this work, we didn’t pretend to answer these
open questions since our aim is to study how weights can be
used to model the confidence a member has in the decision
rule. On the other hand, if all members disagree on the rule,
we can conclude that the decision rule is note adequate.
This can allow, for example, to update the next JA for
other candidates by analysing which are the common irrel-
evant criteria in order to remove them from the decision rule.

The proposed extension has a nice behavior since it re-
duces into classical judgment aggregation procedure when
basic hypothesis are considered. More precisely suppose
that all weights are equal and α1j + · · · + αnj = 1 (for
j = 1, · · · , k), there is no threshold and there are neither
neutral judgments nor abstainers. In such a case:

(i) the notion of legitimacy is no longer meaningful since
there are no abstainers,

(ii) Paggi
is the majority of Pi1, · · · , Pik as it is the case in

classical judgment aggregation procedure,

(iii) CSj = α1j+· · ·+αnj = 1 means that the group mem-
ber j fully agrees on the decision rule so Rj is computed
following the decision rule as it is the case in classical
judgment aggregation procedure,

(iv) Since there is no threshold we recover the dilemma
on whether we use premise-based or conclusion-based

aggregation procedure.

In addition, our aggregation procedure verifies some de-
sirable properties such as anonimity, no dictatorship and
universal domain. Anonimity and no dictatorship are the
same as in standard judgment aggregation. The first property
requires that all group members who participated in the de-
cision process (i.e. excluding abstainers) have equal weight
in the aggregation. The absence of a dictator guarantees that
there exists no single individual that always determines the
collective decision. Universal domain guarantees that our
aggregation rule takes the set of all admissible individual
judgment sets and assigns a collective judgment set. In our
framework, a judgment set is admissible if the weights of
Pi, the judgments on the criteria Pi and on the conclusion R
are assigned accordingly to the decision rule, the CS in the
rule, and the individual judgment status.

Clearly, the controversial independence of irrelevant al-
ternatives (IIA) condition is not satisfied by our aggregation
procedure. Depending on whether CS ≥ t or CS < t,
our aggregation turns to premise-wise or conclusion-based
procedure. Not satisfying the IIA condition, our approach
provides an escape from the impossibility results plaguing
standard judgment aggregation.

Conclusion and Future Work
We extended classical judgment aggregation procedure in
order to offer a more realistic framework, and to escape
the impossibility results. We introduce two main changes.
Firstly, we define judgment status where a member can ab-
stain or give binary or neutral judgments. Secondly, mem-
bers assign weights to the criteria. A confidence score is
computed on the basis of these weights. It expresses how
well-suited a group member thinks that the adopted rule is
for the decision process. This new representation of criteria
allows us to avoid most cases of indecision by using specific
decision rule (conclusion-based or premises-based) accord-
ing to the value of the confidence score. Lastly, we intro-
duce the notion of legitimacy that expresses to what extent
the conclusion tends for a consortium.

This work can be extended in different directions:

(i) refine the notion of abstention by allowing abstention at
the level of a criterion and study its impact on the legiti-
macy of the decision. This is appropriate when the weight
associated to a criterion is equal to 0,

(ii) extend our framework in order to treat extreme cases of
indecision,

(iii) investigate the relationship between criteria having the
highest weight in our framework and works on coalitions
(Shehory & Kraus 1998). More precisely, we intend to
study how group members can form coalitions and manip-
ulate their confidence scores in order to drive the decision
process in a particular direction.

(iv) Lastly, investigate the relationship with opinion aggre-
gation in order to go beyond binary judgments (Ben-Arieh
& Chen 2007).

Actions and Belief Change NMR-2008

8

Acknowledgments
Souhila Kaci has partially been supported by the French Na-
tional Research Agency (Agence Nationale de la Recherche)
under contract n0 NT05-4−41833.

References
Ben-Arieh, D., and Chen, Z. 2007. Linguistic group
decision-making: opinion aggregation and measures of
consensus. Fuzzy Optimization and Decision Making
5(4):371–386.
Bovens, L., and Rabinowicz, W. 2006. Democratic an-
swers to complex questions. an epistemic perspective. Syn-
these 150:131–153.
Chapman, B. 2002. Rational aggregation. Politics, Philos-
ophy and Economics 1(3):337–354.
Dietrich, F., and List, C. 2005. Judgment aggregation by
quota rules. Journal of Theoretical Politics.
Dietrich, F., and List, C. 2006. Arrow’s theorem in judg-
ment aggregation. Social Choice and Welfare.
Dietrich, F. 2006. Judgment aggregation: (im)possibility
theorems. Journal of Economic Theory 126(1):286–298.
Dokow, E., and Holzman, R. 2007. Aggregation of binary
evaluations with abstentions. Working paper.
Figueira, J.; Greco, S.; and Ehrgott, M., eds. 2004. Mul-
tiple Criteria Decision Analysis: State of the Art Surveys.
Springer.
Gärdenfors, P. 2006. A representation theorem for vot-
ing with logical consequences. Economics and Philosophy
22:181–190.
Keeney, R., and Raiffa, H. 1976. Decision with Multiple
Objectives: Preferences and Value Trade-Offs. John Wiley,
New York.
Kornhauser, L., and Sager, L. 1986. Unpacking the court.
Yale Law Journal 96:82–117.
Kornhauser, L., and Sager, L. 1993. The one and the many:
Adjudication in collegial courts. California Law Review
81:1–51.
List, C., and Pettit, P. 2002. Aggregating sets of judgments:
An impossibility result. Economics and Philosophy 18:89–
110.
List, C., and Pettit, P. 2004. Aggregating sets of judg-
ments: Two impossibility results compared. Synthese
140(1-2):207–235.
List, C. 2007. Judgment aggregation - a bib-
liography on the discursive dilemma, the doctri-
nal paradox and decisions on multiple propositions.
http://personal.lse.ac.uk/LIST/doctrinalparadox.htm.
Pauly, M., and van Hees, M. 2006. Logical constraints
on judgment aggregation. Journal of Philosophical Logic
35:569–585.
Pettit, P. 2001. Deliberative democracy and the discursive
dilemma. Philosophical Issues 11:268–299.
Pigozzi, G. 2006. Belief merging and the discursive
dilemma: an argument-based account to paradoxes of judg-
ment aggregation. Synthese 152(2):285–298.

Shehory, O., and Kraus, S. 1998. Methods for task allo-
cation via agent coalition formation. Artificial Intelligence
101(1-2):165–200.

Actions and Belief Change NMR-2008

9

Integrating Golog and Planning: An Empirical Evaluation

Jens Claßen† and Viktor Engelmann† and Gerhard Lakemeyer† and Gabriele Röger‡
† Dept. of Computer Science, RWTH Aachen University, Germany

‡ Dept. of Computer Science, University of Freiburg, Germany

Abstract

The Golog family of action languages has proven to be
a useful means for the high-level control of autonomous
agents, such as mobile robots. In particular, the In-
diGolog variant, where programs are executed in an on-
line manner, is applicable in realistic scenarios where
agents possess only incomplete knowledge about the
state of the world, have to use sensors to gather nec-
essary information at runtime and need to react to spon-
taneous, exogenous events that happen unpredictably
due to a dynamic environment. Often, the specification
of such an agent’s program also involves that certain
subgoals have to be solved by means of planning. In-
diGolog supports this in principle by providing a va-
riety of lookahead mechanisms, but when it comes to
pure, sequential planning, these usually cannot compete
with modern state-of-the-art planning systems, most of
which being based on the Planning Domain Defini-
tion Language PDDL. Previous theoretical results pro-
vide insights on the semantical compatibility between
Golog and PDDL and how they compare in terms of ex-
pressiveness. In this paper, we complement these results
with an empirical evaluation that shows that equipping
IndiGolog with a PDDL planner (FF in our case) pays
off in terms of the runtime performance of the overall
system. For that matter, we study a number of example
application domains and compare the needed computa-
tion times for varying problem sizes and difficulties.

Introduction

The Golog (Levesque et al. 1997) family of action languages
has already proven to be a suitable means when it comes to
the high-level control of autonomous agents, such as mobile
robots (Burgard et al. 1998). It provides the programmer
with the flexibility to chose the right balance between de-
terministic, predefined behavior on the one hand and on the
other hand leave certain non-deterministic parts to be solved
by the system.

The IndiGolog (De Giacomo, Levesque, and Sardina
2001) variant, which is in turn based on ConGolog (De Gia-
como, Lespérance, and Levesque 2000), possesses a number
of features that makes it particularly suited for many practi-
cal scenarios. For one, it works in cases where agents only

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

have incomplete knowledge about the state of the world, and
where sensing actions can and most often have to be used in
order to gather further information that is required to fulfill
the task. Furthermore, so-called exogenous actions reflect
changes in a dynamic environment that are not caused by an
action of the agent.

For another, an important aspect about the language is
that programs are executed in an incremental, online man-
ner. Unlike in the original Golog, where the system searches
for an action sequence that constitutes a legal execution of
the entire input program, IndiGolog does not apply a general
lookahead, but leaves it to the programmer to explicitly state
which parts of the program ought to be solved by means of
search. This helps to keep program execution tractable, in
particular in the presence of incomplete knowledge and pos-
sible occurrences of exogenous actions.

However, in many application domains for which In-
diGolog is suited in principle, one often encounters sub-
problems that are rather combinatorial in nature. Typical
examples include scheduling currently pending requests to
the system, finding a route through a certain topology, or a
combination of these two. These are cases for classical plan-
ning, where the programmer only provides a list of available
actions and a description of the goal state, and it is up to the
system to search for an appropriate (and preferably short)
sequence of action instances that achieves the goal. While
Golog supports this in principle, it soon becomes infeasible
for all but the smallest problem sizes.

However, sequential planning has received a lot of atten-
tion in recent years. PDDL, the Planning Domain Defini-
tion Language (Ghallab et al. 1998) was introduced as the
common input language for the systems competing at the
biennial International Planning Competition. It extends the
well-known STRIPS language (Fikes and Nilsson 1971) by
features from Pednault’s (1989) ADL. Later extensions in-
clude (among other things) durative and concurrent actions
(Fox and Long 2003; Edelkamp and Hoffmann 2004) as well
as constraints on plan trajectories and preferences among
goals (Gerevini and Long 2005). The language has become
a de-facto standard for formulating planning benchmarks.
Many efficient planners that use it have been developed by
now, using a large variety of techniques and heuristics.

It suggests itself to benefit from these developments by
embedding such a planner into IndiGolog. The idea is that

Actions and Belief Change NMR-2008

10

whenever a planning subproblem arises during the execu-
tion of a Golog program, it is translated into PDDL and the
planner is called. The resulting plan is translated back and
Golog resumes executing that plan. For the ADL fragment
of PDDL, the theoretical foundations for such an embedding
have been laid in previous work. Claßen et al. (2007) show
that the state updates in PDDL can be understood as pro-
gression for a certain form of Golog action theories; Röger,
Helmert and Nebel (2008; 2007) identify a maximal class of
such theories that are equivalent to the ADL sub-language
in terms of expressiveness.

Based on these theoretical results, we extended the current
implementation of IndiGolog with the possibility of redi-
recting planning subgoals to a PDDL planner, in our case
the FF system. In this paper, we do an empirical study
that shows that such an extension is beneficial in terms of
the overall computation time needed by the system. For
this purpose we developed a number of example application
domains, ran them in simulations and measured the corre-
sponding runtimes for varying problem sizes.

The remainder of the paper is organized as follows. In
the following section, we present details concerning the In-
diGolog framework, the FF planning system, and our inte-
gration of the two. Next, we introduce the application do-
mains that we developed, after which we discuss our experi-
mental setup and the results obtained. We close with a brief
conclusion.

Integrating FF into IndiGolog

IndiGolog

The situation calculus (McCarthy and Hayes 1969; Reiter
2001) is a dialect of first-order logic (with some second-
order extensions) for reasoning about dynamic domains.
Changes in the world are assumed to be the result of prim-
itive actions, which are performed by some implicit agent
and modelled by terms like move(l1, l2). Properties that
are affected by performing such actions are called fluents,
which can be predicates like Holding(obj2, s) or func-
tions like position(robot, s). The last argument of a flu-
ent is a situation, which should be understood as the cur-
rent history of actions that have been executed. The con-
stant S0 is used to denote the initial situation, and when
a is an action and s a situation, then do(a, s) denotes the
situation that results from performing a in s. For exam-
ple Holding(letter, do(pickup(letter, S0))) means that the
agent is holding the letter after picking it up. A particular do-
main is described by a basic action theory, which is a set of
situation calculus formulas that define the fluents’ values in
the initial situation and preconditions and effects of actions.

Based on the situation calculus, the members of the
Golog (Levesque et al. 1997) family of languages allow the
definition of complex actions, also called programs. The
ConGolog (De Giacomo, Lespérance, and Levesque 2000)
variant supports the following constructs:

α primitive action
φ? test
δ1; δ2 sequence
δ1 | δ2 nondeterministic choice

πx.δ(x) nondeterministic choice of argument
δ∗ nondeterministic iteration
if φ then δ1 else δ2 endIf conditional
while φ do δ endWhile loop
δ1||δ2 concurrent execution
δ1〉〉δ2 prioritized concurrency

δ|| concurrent iteration
〈~x : φ(~x) → δ(~x)〉 interrupt

P (~t) procedure call

Apart from conditionals, loops and recursive procedures,
which are common to imperative programming languages,
an important aspect is that parts of a program can also be
nondeterministic. For instance, δ1 | δ2 means to do either
δ1 or δ2, and δ∗ performs δ zero or more times. The idea is
that a program does not represent a complete solution to the
problem, but only a sketch of it, where the nondeterministic
parts constitute gaps which have to be filled by the system.

ConGolog models concurrency as (nondeterministic) in-
terleavings of the involved processes, i.e. actions are always
performed one at a time. This includes so-called exogenous
actions, which are used to model spontaneous changes in the
dynamic environment that do not constitute (direct) effects
of the agent’s actions. Interrupts can be used to define reac-
tive responses that are triggered when such an event occurs
or some other condition is met; the normal program execu-
tion then continues afterwards.

Programs are executed off-line in ConGolog. This means
that the interpreter first analyzes the entire program to find
a conforming execution trace before the first action is actu-
ally executed in the real world. This soon becomes a prob-
lem when the program is large; furthermore in many sce-
narios, the agent has only incomplete knowledge about its
environment, making it necessary to gather information at
runtime. IndiGolog (De Giacomo, Levesque, and Sardina
2001) is an extension where these issues are tackled. Pro-
grams are executed on-line, which means that there is no
general lookahead; the interpreter simply executes the next
possible action in each step (treating nondeterminism like
random choices). A new operator Σ(δ) is introduced which
has to be used to explicitly mark subprograms which have
to be solved by means of search. This does not represent
a loss of generality since one might encapsulate the entire
program, but gives the programmer much more control over
where the system spends its computational effort. In ad-
dition, programs may contain sensing actions for acquiring
needed information at runtime. When such an action is ex-
ecuted, a sensing result is obtained (which normally is the
current value of some fluent) and used to update the agent’s
knowledge base. Thus, a subsequent choice in the program
that depends on this sensed value can be made on-line.

The features mentioned above make IndiGolog applica-
ble in many practical scenarios, where we often are con-
fronted with dynamically changing environments, where
sensing has to be used to fill gaps in the agent’s informa-
tion about the world, and where computational power usu-
ally is limited. A PROLOG-based implementation of an
IndiGolog agent architecture is available at Sourceforge1

1http://sourceforge.net/projects/indigolog/

Actions and Belief Change NMR-2008

11

and has already been successfully applied for controlling
robots of the LEGO MINDSTORMS system, the ER1 EVO-
LUTION robot and other software agents.

Golog is therefore an appropriate means for the overall
control of an agent in many application domains. How-
ever, the general task often involves certain combinatorial
subproblems, like finding a route through a certain topol-
ogy, scheduling currently pending requests or a combina-
tion of these two. When one is unable (or it is to tedious)
to specify some (partially nondeterministic) program to re-
strain the space of possible execution traces, these examples
correspond to classical planning tasks where only the cur-
rent state, a goal, and a set of available actions are provided,
and where it is the job of the system to search for an action
sequence that achieves that goal.

In principle, even classical planning can be done in Golog
with a completely nondeterministic program as follows:

while (¬Goal) do (πa) a endWhile.

A (successful) execution trace of this program corresponds
to a plan that reaches a situation where Goal holds. How-
ever, since the Golog interpreter uses the PROLOG back-
tracking mechanism to resolve nondeterminism, performing
planning like this basically amounts to do a blind search.
The IndiGolog system further contains a number of built-in
planning mechanisms, but these are merely proof of con-
cepts for different kinds of conditional planning (Sardina et
al. 2004), which use very basic, unguided search strategies.
In any of these cases, planning soon becomes infeasible for
all but the smallest problem sizes.

The FF Planning System

A large research community engaged in developing sophis-
ticated techniques and domain-independent heuristics for
solving classical planning problems has evolved in the last
decade, where the PDDL language has become a de-facto
standard for formalizing benchmarks that allow the compar-
ison of different approaches.

The FF Planning System developed by Hoffmann (2001)
is a fully automated system for classical planning. It sup-
ports the ADL fragment of PDDL which is sufficient for our
purposes. Furthermore, it has proven its quality by winning
the automated track of the planning competition in 2000 and
still being part of state-of-the-art planning systems that sup-
port a wider fragment of PDDL.

FF performs a forward search in the state space, guided by
a heuristic function that is automatically extracted from the
domain description. The heuristic gets derived from the cor-
responding relaxed planning task that results from the origi-
nal one by ignoring the delete effects of the actions. This re-
laxed task can be solved in polynomial time and the number
of actions in the resulting plan provides an estimate for the
goal distance in the original task. Furthermore, the relaxed
task is used to identify so-called helpful actions that are ex-
pected to be a good choice for the next action and which
hence are considered first during search.

The search method used by the FF system is a variant of
hill-climbing called enforced hill climbing. The main differ-
ence to the standard algorithm is that in the case of a plateau

it switches to best first search until a node with a strictly
better evaluation is found.

Integration

We embedded the FF planning system into the IndiGolog
framework to benefit from these developments. For
that purpose, we introduced a new program construct
achieve ff(G,A), where G is a goal formula and A is
a list of actions. Whenever an achieve ff statement is
encountered during the execution of a program, it causes the
current state, the goal and the available actions to be trans-
lated into a PDDL planning problem which is referred to FF.
The resulting plan is translated back and Golog continues
with executing that action sequence.

The semantical soundness of this proceeding has been laid
in previous work. In a first paper (Claßen et al. 2007) it
was shown that the state updates in PDDL’s ADL fragment
(i.e. the language we obtain when only the :adl require-
ment flag is set) can be understood as progression for a cer-
tain form of Golog action theories; in two further papers
(Röger and Nebel 2007; Röger, Helmert, and Nebel 2008)
a maximal class of such theories is identified that are equiv-
alent to the ADL sub-language in terms of expressiveness.
ADL extends basic STRIPS with conditional effects as well
as negated, disjunctive and quantified preconditions.

We will not discuss the theoretical details here, but pro-
vide an intuition by means of an example translation, taken
from one of our test applications. A PDDL planner requires
two files: a domain description, containing types, predicates
and operator definitions, and a problem description, which
specifies the objects in the domain, the initial values of pred-
icates and the goal formula.

Since in PDDL the closed world assumption holds, fluents
and action parameters can only take values from a finite set
of object constants. These may be divided into types and
subtypes that are used to restrict the possible values of pa-
rameters. We use unary PROLOG predicates with finite ex-
tensions to represent types and declare the subtypes of the
general supertype object as follows:

object(X) :- passenger(X) ; floor(X).

In general, subtypes can of course be further subdivided, us-
ing similar clauses. These Golog declarations are directly
mapped to type declarations in the PDDL domain file:

(:types passenger floor - object)

A relational fluent with type restrictions on its arguments is
in the following way declared in the Golog axiomatization:

rel_fluent(lift_at(F)) :- floor(F).

The compiled PDDL domain definition then contains:

(:predicates

(lift_at ?f - floor) ...

An action is given by a declaration (with type restrictions),
a precondition and a number of positive and negative effect
axioms:

action(move(F1,F2)) :-

floor(F1), floor(F2).

Actions and Belief Change NMR-2008

12

poss(move(F1,F2),

and(lift_at(F1),

or(above(F1,F2),above(F2,F1)))).

causes_false(move(F1,F2),

lift_at(F1),true).

causes_true(move(F1,F2),

lift_at(F2),true).

The last argument of an effect axiom may contain a condi-
tion that must hold for the effect to actually take place. In
case of true, the translation is straightforward:

(:action move

:parameters

(?f1 - floor ?f2 - floor)

:precondition

(and (lift_at ?f1)

(or (above ?f1 ?f2)

(above ?f2 ?f1)))

:effect

(and (lift_at ?f2)

(not (lift_at ?f1)))

)

The following example shows how an effect is translated that
involves a non-trivial condition and additional variables that
are not arguments of the action:

causes_true(stop(F),

boarded(P), origin(P,F)).

Such conditions result in conditional effects in the PDDL ac-
tion (the type of the quantified variable is determined on the
basis of the type definition of the arguments of origin):

(forall (?p - passenger)

(when (origin ?p ?f)(boarded ?p)))

To generate the actual planning instance, we need to col-
lect all objects of the involved types, e.g.

passenger(p1). passenger(p2).

floor(f1). floor(f2). floor(f3).

and declare them in the PDDL problem file:

(:objects p1 p2 - passenger

f1 f2 f3 - floor)

We then determine which fluent ground atoms F evaluate
to true given the current action history H, i.e. we collect
all solutions of has value(F,H,true). For instance, if
lift at(f2) is one such atom, then the :init section
of the problem file contains

(:init (lift_at f2)

...)

Finally, the problem description contains the translation
of the goal formula G. For example, a goal formula
all(p,passenger,served(p)) results in

(:goal (forall (?p - passenger)

(served ?p)))

We remark that of course the specific, restricted form of
clauses in the Golog action theory is only required for those
parts that are relevant for the planning problem. The axiom-
atization may contain additional parts that PDDL does not
understand, in particular exogenous and sensing actions.

Benchmark Domains
We designed three example application domains. The first
two examples are representatives of so-called transportation
domains (Helmert 2008). The characterizing property of
such problems is that there are portables that should be trans-
ported from their origin to their destination location using
mobiles that can move between some of the locations. This
type of problem is especially interesting because such tasks
arise very often in practice. This is probably also the reason
why a large fraction of the benchmarks used in the Interna-
tional Planning Competitions is among these domains. The
most interesting aspect of our last example domain is that it
in addition involves sensing. In the following we will briefly
introduce each of these domains.

A Logistics Domain

The first domain that we studied serves as a representative
for all kinds of logistics applications. The task is to trans-
port packages to their destination locations, using a number
of trucks which can only hold one package at a time. The
direct connections between locations form a (not necessar-
ily complete) graph structure.

The domain has the dynamic aspect that new packages
keep arriving at runtime, represented by exogenous actions,
and have to be picked up and delivered in turn.

An Elevator Domain

The second test domain has been inspired by the miconic
elevator domains of the International Planning Competition
in 2000. There is an elevator moving between the floors of a
building. At some floors passengers are waiting and should
be transported to their respective destination floor. During
the program execution new passengers arrive randomly.

There are three sorts of actions that can be used to serve
the passengers: Movement actions move the elevator from
one floor to an adjacent floor. Since an elevator can move
faster if it does not have to stop at each floor, there are also
actions for fast movements that overcome two floors within
one step. The third sort of actions are the stop actions which
cause all passengers waiting at the current floor to enter the
elevator and drop off all boarded passengers whose destina-
tion is the current floor.

A Mail Delivery Robot Domain

The third domain is a variant of a common application ex-
ample (Tam et al. 1997) of a mobile robot operating in
an office environment, where it has to deliver letters and
parcels between the workers’ mailboxes. Here, the struc-
ture of the building is assumed to consist of a number of
hallways, which are connected (e.g. by an elevator) to other
hallways, and where there is a certain number of offices at
each hallway. Each office may contain one or multiple dif-
ferent mailboxes, each of which serving for both incoming
and outgoing mails.

This domain involves sensing since the robot must look
into a mailbox in order to find out how many and which
letters it currently contains. Furthermore, before the agent
actually knows where to deliver a letter, it has to pick it up
and read off the addressee.

Actions and Belief Change NMR-2008

13

Experiments and Results

For our experiments, we further have extended the In-
diGolog framework by a simple simulator that plays the
role of the outside world. It runs in a separate instance of
PROLOG and communicates with Golog via TCP/IP sockets.
The basic idea is to keep track of the (relevant part of the)
world state using PROLOG’s assert and retract mech-
anism. When an exogenous actions occurs and what sensing
result is returned after the execution of an action can then be
defined as conditions wrt to the simulated state. All exper-
iments were performed on a PC with an Intel Core 2 Duo
E6750 CPU running at 2.66 GHz with 2 GB of memory.

Logistics

In the logistics domain, we defined a control program using
prioritized interrupts:

proc mainControl
〈 undeliveredPackages → deliverPackages 〉 〉〉
〈 ¬ finished → wait 〉

The program is to be understood as follows. In each cycle
of the (implicit) main loop, if there are packages that have
not been delivered yet, compute a plan to deliver them and
execute it. If this is not the case but execution is not yet
finished, do nothing for one cycle. Otherwise terminate.

Here, finished is a fluent that serves as a flag for sig-
nalling when program execution is supposed to halt. This
is necessary to be able to perform finite experiments for a
task that is indeed open-ended: While delivering the cur-
rently pending packages, new delivery requests keep arriv-
ing, each of which being modelled by an exogenous ac-
tion new package(p,l,d) that sets the current loca-
tion of package p to l and its destination to d. Since
the system does not know in advance when and how many
new package arrivals will occur, a special exogenous action
no more packages is used to set finished to TRUE after
the last new package event indicating that the experiment
ends at this point.

Testing whether there are still packages to be delivered is
done by procedure undeliveredPackages:

proc undeliveredPackages
∃p : package ∃l : location ∃d : location.

at(p, l) ∧ destination(p, d) ∧ (l 6= d)

The deliverPackages procedure is the part where planning
comes into play:

proc deliverPackages
solve(∀p : package ∀d : location.

destination(p, d) ⊃ at(p, d),
[load,unload,drive])

Here, the first argument of solve is the goal formula and the
second one the list of actions the planner has to consider. In
our experiments, we tested two different versions of solve:
one calling the external FF planner via achieve ff, the
other, achieve, being an internal, PROLOG-implemented
construct of the IndiGolog framework that basically per-
forms an iterative deepening search. The two planners were
in each case given the same amount of information: a list

Pack. Trucks Loc. iN eN iR eR

3 2 3 9 9 10 10
3 2 4 10 7 7 10
3 2 5 10 9 7 10
3 2 6 10 10 3 9
3 2 7 9 10 3 8
5 2 3 9 10 7 10
5 2 4 10 8 3 10
5 2 5 7 10 1 10
5 2 6 7 9 0 10
5 2 7 4 10 0 10
3 3 3 10 10 9 10
3 3 4 10 10 7 10
3 3 5 10 10 6 10
3 3 6 9 10 5 10
3 3 7 7 10 4 10
5 3 3 10 10 6 10
5 3 4 9 10 5 9
5 3 5 4 10 1 10
5 3 6 7 10 1 10
5 3 7 6 9 0 10

Table 1: Logistics: Number of instances solved

of available actions, the fluent predicates involved (includ-
ing their initial values) and objects’ as well as fluent and
action parameters’ types. Whereas the internal achieve
construct directly uses the appropriate part of the Golog do-
main axiomatization, FF is provided with the corresponding
PDDL translation as described earlier.

For both of the planners, we considered two variants. In
the first one, once a plan is found it gets executed entirely.
Packages arriving during that time are ignored until plan ex-
ecution finishes and the next call to the planner is made. In
the other variant, the system aborts the current plan and per-
forms a re-planning after each new package event.

We performed a series of experiments where the number
of locations varied between 3 to 7, the number of trucks
between 2 and 3 and the number of dynamically arriving
packages among 3 and 5. For each combination, we cre-
ated 10 different domain instances. The initial locations of
trucks and packages as well as the destinations of the pack-
ages are chosen randomly. Two locations are connected with
a probability of 50%; additional random edges ensure that
the roadmap graph forms a single connected component. In
each instance, there is one initial package, and the intervals
between the arrival times of new packages vary between 2
and 8 steps, where one step corresponds to the execution of
a primitive, non-exogenous action.

For each planner variant and domain instance we mea-
sured the overall runtime of the system and the number of
steps (minus the number of wait actions) that were taken
until termination. Runs that did not terminate within 300
seconds were aborted. The runtime includes a wait inter-
val of 0.5 seconds after each executed action which was re-
served to handle the communication with and the state up-
date of the simulator.

Actions and Belief Change NMR-2008

14

Pack. Trucks Loc. iN eN iR eR

3 2 3 14.0 14.0 16.5 15.0
3 2 4 15.0 14.5 35.0 14.0
3 2 5 16.0 13.0 23.5 15.0
3 2 6 30.5 14.5 300.0 16.5
3 2 7 25.0 14.5 300.0 17.0
5 2 3 20.0 18.0 82.5 19.0
5 2 4 35.5 20.5 300.0 21.0
5 2 5 47.5 19.0 300.0 21.0
5 2 6 75.5 19.0 300.0 21.0
5 2 7 300.0 19.5 300.0 22.5
3 3 3 17.0 14.0 28.5 15.0
3 3 4 21.0 14.0 35.5 15.0
3 3 5 27.5 14.5 174.5 15.0
3 3 6 42.5 14.0 225.0 15.0
3 3 7 127.0 14.0 300.0 15.5
5 3 3 27.5 19.0 95.5 19.5
5 3 4 58.5 21.0 298.0 23.0
5 3 5 300.0 19.5 300.0 21.5
5 3 6 216.0 20.5 300.0 22.0
5 3 7 235.5 20.5 300.0 21.0

Table 2: Logistics: Median runtimes in seconds

Table 1 summarizes how many of the 10 instances were
solved within the time limit by each method. Here, “e” refers
to the variant where FF was used for planning while “i”
means that the internal achieve was used. Further “R”
means the variant where instant re-planning was done af-
ter the arrival of a new request and “N” the one where the
current plan was not immediately aborted. The median run-
times for each combination are given in Table 2 and shown
graphically in Figure 1, using a logarithmic scale. In those
cases where the run did not finish within the timeout the
value is set to the maximal time of 300 seconds. Table 3
contains the median number of steps that were taken, con-
sidering only instances that were solved by all methods.

The results clearly show that using FF instead of the inter-
nal planner has a large impact on the necessary computation
time of the system, letting it solve instances within seconds
which otherwise would require several minutes. One might
object that our comparison is not equitable because we con-
trast FF which is a satisficing planner (i.e. which may return
suboptimal plans in terms of plan length) with the internal
planner that generates optimal plans (following an iterative
deepening search strategy). We argue that in many cases op-
timal planning is not expedient: in fact, in the presence of
unpredictable exogenous events or sensing it is not possible
to plan really optimal. Furthermore, the results in Table 3
show that the number of steps required by the internal sys-
tem is only slightly lower. Actually, our other benchmark
domains show that using the external planning system also
can result in a lower number of steps (Table 9). Neverthe-
less, there might be applications where optimal planning is
more suitable, e.g. because there are no exogenous events
and sensing is not required, or because the actual execution
of an action takes a lot of time. Since we use PDDL to com-
municate with the external planner, our approach can easily

 100

 1000

3
2
3

3
3
3

5
2
3

5
3
3

3
2
4

3
3
4

5
2
4

5
3
4

3
2
5

3
3
5

5
2
5

5
3
5

3
2
6

3
3
6

5
2
6

5
3
6

3
2
7

3
3
7

5
2
7

5
3
7

T
im

e
 (

m
e

d
ia

n
)

Tasks (each representing 10 random instances)

internal, no replanning
internal, replanning

external, no replanning
external, replanning

Pack.
Trucks

Loc.

Figure 1: Logistics: Median runtimes in seconds

Pack. Trucks Loc. Tasks iN eN iR eR

3 2 3 8 14.0 14.0 14.0 14.0
3 2 4 5 14.0 14.0 14.0 14.0
3 2 5 6 13.5 13.5 13.5 14.0
3 2 6 3 15.0 15.0 15.0 15.0
3 2 7 2 15.0 15.5 15.0 15.5
5 2 3 7 20.0 20.0 20.0 20.0
5 2 4 3 25.0 25.0 25.0 25.0
5 2 5 1 24.0 24.0 24.0 24.0
3 3 3 9 14.0 14.0 14.0 14.0
3 3 4 7 14.0 15.0 14.0 15.0
3 3 5 6 15.0 15.0 15.0 15.0
3 3 6 5 15.0 16.0 15.0 16.0
3 3 7 4 16.0 16.5 16.0 16.5
5 3 3 6 20.0 20.0 20.0 20.0
5 3 4 5 22.0 21.0 22.0 21.0
5 3 5 1 21.0 21.0 21.0 21.0
5 3 6 1 23.0 23.0 22.0 23.0

Table 3: Logistics: Median number of steps taken

be adapted to use any other planning system that handles
PDDL, including optimal ones. As these planning systems
are highly optimized, we would expect that they still would
produce better results than the internal routine.

Elevator

The experimental setting for the elevator domain is analo-
gous to the one of the logistics domain and uses the follow-
ing main program.

proc mainControl
〈 unservedPassengers → servePassengers 〉 〉〉
〈 ¬ finished → wait 〉

Planning is used to serve the passengers that have not
reached their destination yet:

proc servePassengers
solve(∀p : passenger. served(p),

[move fast,move,stop])

Actions and Belief Change NMR-2008

15

Pass.. Floors Tasks iN eN iR eR

3 5 10 10 10 10 10
3 6 10 8 10 8 10
3 7 10 10 9 4 10
3 8 10 6 10 3 10
5 5 10 10 9 7 9
5 6 10 8 10 1 9
5 7 10 4 9 0 9
5 8 10 5 7 0 10
7 5 10 7 10 1 10
7 6 10 1 10 0 10
7 7 10 0 9 0 8
7 8 10 0 10 0 10
9 5 10 4 9 0 10
9 6 10 0 9 1 10
9 7 10 0 7 0 10
9 8 10 0 8 0 9

Table 4: Elevator: Number of instances solved

Pass.. Floors iN eN iR eR

3 5 17.0 14.0 23.5 14.5
3 6 22.0 12.0 35.5 13.5
3 7 39.5 15.0 300.0 15.0
3 8 87.0 17.0 300.0 18.0
5 5 23.0 19.0 81.5 24.0
5 6 90.0 20.5 300.0 27.0
5 7 300.0 24.0 300.0 28.0
5 8 276.5 20.5 300.0 27.5
7 5 79.5 28.0 300.0 26.5
7 6 300.0 29.5 300.0 28.0
7 7 300.0 33.0 300.0 31.5
7 8 300.0 31.5 300.0 31.5
9 5 300.0 33.0 300.0 31.5
9 6 300.0 33.5 300.0 37.0
9 7 300.0 33.5 300.0 43.0
9 8 300.0 36.5 300.0 44.5

Table 5: Elevator: Median runtimes in seconds

Again, we tested two versions of solve, one calling the inter-
nal planner, the other calling the FF system, each with and
without re-planning on the arrival of a new passenger.

For the benchmark instances of this domain we let the
number of new passengers vary among 3, 5, 7 and 9 and the
number of floors between 5 and 8. As above, we created 10
different instances for each combination, choosing the pas-
sengers’ origins and destinations randomly. Initially there
is always one passenger request and the intervals between
newly arriving passengers lie between 2 and 8 steps.

In analogy to the previous domain, table 4 summarizes
how many of the 10 instances were solved within the time
limit by each method. The median runtimes for each combi-
nation are stated in Table 5 and shown graphically in Figure
2. Table 6 contains the median number of taken steps, con-
sidering only instances that were solved by all methods.

 100

 1000

3
5

3
6

3
7

3
8

5
5

5
6

5
7

5
8

7
5

7
6

7
7

7
8

9
5

9
6

9
7

9
8

T
im

e
 (

m
e

d
ia

n
)

Tasks (each representing 10 random instances)

internal, no replanning
internal, replanning

external, no replanning
external, replanning

Pass.
Floors

Figure 2: Elevator: Median runtimes in seconds

Pass.. Floors Tasks iN eN iR eR

3 5 10 16.5 16.5 15.5 16.5
3 6 7 19.0 19.0 16.0 18.0
3 7 3 19.0 19.0 16.0 19.0
3 8 3 19.0 19.0 19.0 19.0
5 5 5 25.0 25.0 29.0 30.0
5 6 1 37.0 38.0 32.0 33.0
7 5 1 34.0 34.0 32.0 32.0

Table 6: Elevator: Median number of steps taken

Again, the variants with the external planner performed
much better than the ones using the internal search method.
The fifth row in Table 6 shows also an interesting detail: The
re-planning strategy sometimes causes the overall number
of steps to increase. This happens when a current plan is
discarded to serve a new request, and when later another
new request is made it turns out that following the original
plan would have been less costly.

Mail Delivery

The mail delivery robot is controlled as follows:

proc mainControl
while(¬finished) do

(πr m : mailbox) getLettersFrom(m);
deliverLetters

Here, πr denotes a variant of the non-deterministic choice of
argument where the argument’s instantiation is picked ran-
domly. In case of the normal π construct, IndiGolog other-
wise instantiates the variable always with the first applica-
ble symbol, which would cause the program above to pick
the same mailbox in each cycle of the loop. Once the next
mailbox that should be visited is chosen, the path to it is
determined by means of planning:

proc getLettersFrom(m)
(π l : location)

at(m, l)?;
solve(robotAt(l),[move]);
takeAllLetters(m)

Actions and Belief Change NMR-2008

16

Taking letters out of a mailbox requires sensing:

proc takeAllLetters(m)
look into(m);
while(∃ l : letter. in(l,m))

π l : letter
in(l,m)?;
take out(l,m);
look at(l)

look into(m)

look into(m) is a sensing action whose outcome is a
constant l denoting one of the letters in the box (i.e. the
robot can always only “see” the topmost one). Thus, the
agent gets to know that fluent in(l,m) is currently true. In
case the mailbox is empty, the return value is instead sim-
ply the special constant “empty”. After picking up l, action
look at(l) is applicable and causes addressee(l,m′) to be-
come known to the agent for some mailbox m′, which is the
destination of letter l. For delivering the letters obtained like
this, another call to the planner is made:

proc deliverLetters
solve(∀ l : letter.

(∃ m : mailbox. addressee(l,m))
⊃ delivered(l),

[put in,move])

Again, we study the system’s behavior for the case in which
solve uses the internal planner and for the case where FF is
called instead. Since there are no exogenous actions in this
scenario, we do not consider dynamic re-planning.

In our benchmark scenarios the number of offices varies
among 4, 8 and 16, the number of hallways among 2, 4 and
8, and the number of letters among 2, 4, 8 and 16. As in the
other domains we created 10 instances for each combina-
tion, the offices being connected randomly to some hallway
and hallways being connected to one another in a tree-like
fashion. There are as many mailboxes as offices, but they
are placed randomly. Therefore, it is possible that an of-
fice contains multiple mailboxes, only one, or even none at
all. The origins and addressees of the letters are also chosen
randomly.

Table 7 once again summarizes how many of the 10 in-
stances were solved within the time limit by each method.
The median runtimes for each combination are given in Ta-
ble 8 and shown graphically in Figure 3. Table 9 contains the
median number of steps that were taken, considering only
instances that were solved by all methods.

The results for this domain are again quite conclusive.
The controller using FF was able to solve more tasks and
throughout required less computation time. In terms of
steps, the two methods are comparable, but the results are
somewhat erratic, which is mostly because of the random-
ized strategy that was used.

Conclusion

We empirically evaluated a system that integrates the FF
planning system into the IndiGolog agent framework. For
that purpose, we developed three example application do-
mains in which classical planning subproblems arise in the

Lett. Off. Hall. Tasks i e

10 4 2 10 6 10
10 4 4 10 6 10
10 4 8 10 4 10
10 8 2 10 4 10
10 8 4 10 5 10
10 8 8 10 5 10
10 16 2 10 5 10
10 16 4 10 6 10
10 16 8 10 7 10
15 4 2 10 1 10
15 4 4 10 1 10
15 4 8 10 0 10
15 8 2 10 1 10
15 8 4 10 0 10
15 8 8 10 2 10
15 16 2 10 2 10
15 16 4 10 2 10
15 16 8 10 0 10

Table 7: Mail Delivery: Number of instances solved

 100

 1000

10
4
2

10
4
4

10
4
8

10
8
2

10
8
4

10
8
8

10
16
2

10
16
4

10
16
8

15
4
2

15
4
4

15
4
8

15
8
2

15
8
4

15
8
8

15
16
2

15
16
4

15
16
8

T
im

e
 (

m
e

d
ia

n
)

Tasks (each representing 10 random instances)

internal
external

Lett.
Off.

Hall.

Figure 3: Mail Delivery: Median runtimes in seconds

course of the execution of a high-level program. A series
of experiments with different scenarios and problem sizes
shows that the integration of the external planner decreases
the required computation time a lot, keeping the number
of executed actions similar. We ran further experiments in
order to examine the effect of re-planning after exogenous
events. This strategy does not pay off if planning is done
by the internal mechanism because the additional computa-
tion time dominates the savings. Using the external planning
system, the results are more balanced but still not clearly in-
dicating that re-planning pays off. This may be due to the
relatively simple strategy that we used. A possible direction
for future work therefore is to study what effect it has on
our system to use a more sophisticated method for execu-
tion monitoring and re-planning.

Actions and Belief Change NMR-2008

17

Lett. Off. Hall. i e

10 4 2 133.0 29.5
10 4 4 105.5 30.0
10 4 8 300.0 30.0
10 8 2 300.0 39.0
10 8 4 193.0 38.5
10 8 8 210.5 35.0
10 16 2 227.0 59.0
10 16 4 268.0 52.0
10 16 8 148.5 57.0
15 4 2 300.0 40.5
15 4 4 300.0 41.0
15 4 8 300.0 37.5
15 8 2 300.0 50.0
15 8 4 300.0 49.5
15 8 8 300.0 48.0
15 16 2 300.0 66.0
15 16 4 300.0 69.5
15 16 8 300.0 70.5

Table 8: Mail Delivery: Median runtimes in seconds

Acknowledgments
This work was supported by the Deutsche Forschungsge-
meinschaft under grants La 747/14-1 and Ne 623/10-1. We
thank Sebastian Sardina and Stavros Vassos for their help
with the IndiGolog framework.

References
Burgard, W.; Cremers, A. B.; Fox, D.; Hähnel, D.; Lake-
meyer, G.; Schulz, D.; Steiner, W.; and Thrun, S. 1998.
The interactive museum tour-guide robot. In Proc. AAAI-
98, 11–18.

Claßen, J.; Eyerich, P.; Lakemeyer, G.; and Nebel, B. 2007.
Towards an integration of Golog and planning. In Proc.
IJCAI 2007, 1846–1851.

De Giacomo, G.; Lespérance, Y.; and Levesque, H. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artif. Intell. 121(1–2):109–169.

De Giacomo, G.; Levesque, H. J.; and Sardina, S. 2001.
Incremental execution of guarded theories. Computational
Logic 2(4):495–525.

Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th international planning
competition. report 195, Inst. f. Informatik, Univ. Freiburg.

Fikes, R., and Nilsson, N. J. 1971. STRIPS: a new ap-
proach to the application of theorem proving to problem
solving. Artif. Intell. 2(3/4):189–208.

Fox, M., and Long, D. 2003. PDDL2.1: An extension
to PDDL for expressing temporal planning domains. JAIR
20:61–124.

Gerevini, A., and Long, D. 2005. Plan constraints and pref-
erences in PDDL3. Technical report, University of Brescia.

Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL—the planning domain definition language.

Lett. Off. Hall. Tasks i e

10 4 2 6 50.5 51.0
10 4 4 6 49.5 51.0
10 4 8 4 54.0 50.0
10 8 2 4 68.5 63.0
10 8 4 5 61.0 67.0
10 8 8 5 71.0 59.0
10 16 2 5 92.0 93.0
10 16 4 6 92.0 93.5
10 16 8 7 91.0 95.0
15 4 2 1 69.0 72.0
15 4 4 1 69.0 70.0
15 8 2 1 101.0 92.0
15 8 8 2 76.0 95.0
15 16 2 2 134.5 114.5
15 16 4 2 112.5 105.5

Table 9: Mail Delivery: Median number of steps taken

Helmert, M. 2008. Understanding Planning Tasks – Do-
main Complexity and Heuristic Decomposition, volume
4929 of LNAI. Springer-Verlag.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.

Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. J. Log. Prog. 31:59–84.

McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence 4.
New York: American Elsevier. 463–502.

Pednault, E. P. D. 1989. ADL: exploring the middle ground
between STRIPS and the situation calculus. In Proc. KR-
89, 324–332.

Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
MIT Press.

Röger, G., and Nebel, B. 2007. Expressiveness of ADL
and Golog: Functions make a difference. In Proc. AAAI
2007.

Röger, G.; Helmert, M.; and Nebel, B. 2008. On the rel-
ative expressiveness of ADL and Golog: The last piece in
the puzzle. In Proc. KR 2008. to appear.

Sardina, S.; De Giacomo, G.; Lespérance, Y.; and
Levesque, H. J. 2004. On the semantics of deliberation
in Indigolog—from theory to implementation. Annals of
Mathematics and Artificial Intelligence 41(2-4):259–299.

Tam, K.; Lloyd, J.; Lespérance, Y.; Levesque, H. J.; Lin, F.;
Marcu, D.; Reiter, R.; and Jenkin, M. R. M. 1997. Control-
ling autonomous robots with GOLOG. In Proc. IJCAI-97,
1–12.

Actions and Belief Change NMR-2008

18

A diff-Based Merging Operator

Patricia Everaere Sébastien Konieczny Pierre Marquis
LIFL - CNRS

Université de Lille 1 - Lille - France
patricia.everaere@univ-lille1.fr

CRIL - CNRS
Université d’Artois - Lens - France
{konieczny, marquis}@cril.fr

Abstract

Merging operators aim at defining the beliefs (resp. the goal)
of a group of agents from a profile of bases, gathering the be-
liefs (resp. the goals) of each member of the group. In the
propositional setting, a well-studied family of merging oper-
ators are distance-based ones: the models of the merged base
are the closest interpretations to the given profile. Closeness
is, in this context, measured as a number resulting from the
aggregation of the distances to each base of the profile. In
this work we define a new kind of propositional merging op-
erators, close to such distance-based merging operators, but
relying on a set-theoretic definition of closeness, already at
work in several revision/update operators from the literature.
We study a specific merging operator of this family, obtained
by considering set-product as the aggregation function.

Introduction
Information merging is a very important task in artificial
intelligence: the issue is to determine the beliefs, or the
goals, of a group of agents from their individual points of
view. Much work has been devoted to the definition of
merging operators in the propositional case (Revesz 1997;
Liberatore & Schaerf 1998; Baral et al. 1992; Konieczny &
Pino Pérez 2002a; Meyer, Pozos Parra, & Perrussel 2005),
and to the study of their properties with respect to different
criteria, mainly logical properties, strategy-proofness, com-
plexity. See for instance (Konieczny & Pino Pérez 2002a;
Revesz 1997; Liberatore & Schaerf 1998; Konieczny, Lang,
& Marquis 2004) for logic-based characterizations, (Ever-
aere, Konieczny, & Marquis 2007) for an investigation of
strategy-proofness issues, and (Konieczny, Lang, & Mar-
quis 2004; Everaere, Konieczny, & Marquis 2007) for com-
putational complexity results. There exist also works on
merging in richer logical settings than propositional logic,
see for instance (Meyer 2001; Benferhat et al. 2002;
Chopra, Ghose, & Meyer 2006; Benferhat, Lagrue, & Rossit
2007).

In (Konieczny & Pino Pérez 2002a) a set of postulates is
proposed to characterize different families of merging oper-
ators, and several families of operators satisfying these pos-
tulates are defined. Such operators are called model-based
merging operators because basically they select the models

Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

of a given integrity constraint (i.e., a formula encoding laws,
norms, etc., used for constraining the result of the merging)
that are the closest ones to the given profile of belief/goal
bases of the group. Often, these operators are defined from
a distance between interpretations.This distance between in-
terpretations induce a distance between an interpretation and
a base, which indicates how plausible/satisfactory the inter-
pretation is with respect to the base. Once such distances
are computed, an aggregation function is used to define the
overall distance of each model (of the integrity constraints)
to the profile. The models of the result of the merging are
the closest models of the integrity constraints to the profile.

A commonly-used distance between interpretations is the
Hamming distance (also called Dalal distance (Dalal 1988)).
The Hamming distance between two interpretations is the
number of propositional variables the two interpretations
disagree on. The closeness between two interpretations is
thus assessed as the number of atoms whose truth values
must be flipped in one interpretation in order to make it iden-
tical to the second one. Such a distance is meaningful when
no extra-information on the epistemic states of the agents are
available.

The major problem with distance-based merging opera-
tors is that evaluating the closeness between two interpre-
tations as a number may lead to lose too much information.
Thus, the conflicting variables themselves (and not only how
many they are) can prove significant. Especially, when vari-
ables express real-world properties, it can be the case that
some variables are more important than others, or that some
variables are logically connected. In these cases, distances
are not mandatory.

As an alternative to distance, an interesting measure used
to evaluate the closeness of two interpretations is diff, the sy-
metrical difference between them. Instead of evaluating the
degree of conflict between two interpretations as the number
of variables on which they differ (as it is the case with the
Hamming distance), the diff measure assesses it as the set of
such variables.

In this paper, we consider the family of propositional
merging operators based on the diff measure. We specifi-
cally focus on the operator ∆diff,⊕ from this family obtained
by considering set-product as the aggregation function. We
evaluate it with respect to three criteria: logical properties,
strategy-proofness and complexity. Other operators from

Actions and Belief Change NMR-2008

19

this family are presented in (Everaere, Konieczny, & Mar-
quis 2008).

The rest of the paper is as follows. In the following sec-
tion, we give some formal preliminaries. Then, we define
the family of model-based merging operators based on the
diff measure of closeness, and make precise the specific op-
erator ∆diff,⊕ we focus on. In the next section, we report on
the logical properties of ∆diff,⊕ and we discuss the strategy-
proofness issues for it. The computational complexity of
∆diff,⊕ is given after, just before a discussion about some
related work. The paper ends with some perspectives.

Preliminaries
We consider a propositional languageL defined from a finite
set of propositional variables P and the usual connectives.

An interpretation (or world) is a total function from P to
{0, 1}, denoted by a bit vector whenever a strict total order
on P is specified. The set of all interpretations is noted W .
An interpretation ω is a model of a formula φ ∈ L if and
only if it makes it true in the usual truth functional way. [φ]
denotes the set of models of formula φ, i.e., [φ] = {ω ∈
W | ω |= φ}.

A base K denotes the set of beliefs or goals of an agent, it
is a finite and consistent set of propositional formulas, inter-
preted conjunctively. Unless stated otherwise, we identify
K with the conjunction of its elements.

A profile E denotes the group of agents involved in the
merging process. It is a multi-set (bag) of belief/goal bases
E = {K1, . . . ,Kn} (hence two agents are allowed to ex-
hibit identical bases). We note t the union of multi-sets.
We denote by

∧
E the conjunction of bases of E, i.e.,∧

E = K1 ∧ . . . ∧Kn. A profile E is said to be consistent
if and only if

∧
E is consistent. We say that two profiles

are equivalent, noted E1 ≡ E2, if there exists a bijection f
from E1 to E2 such that for every φ ∈ E1, φ and f(φ) are
logically equivalent.

The result of the merging of the bases of a profile E, un-
der the integrity constraints µ, is the merged base denoted
∆µ(E). The integrity constraints consist of a formula the
merged base has to satisfy.

Diff-Based Merging Operators
As a gentle introduction to diff-based merging operators, let
us first recall how distance-based merging operators are de-
fined. This calls for a notion of (pseudo-)distance between
interpretations and a notion of aggregation function.

Definition 1 A (pseudo-)distance between interpretations is
a total function d from W ×W to IN such that for every ω1,
ω2 ∈ W :

• d(ω1, ω2) = d(ω2, ω1), and
• d(ω1, ω2) = 0 if and only if ω1 = ω2.

Any distance between interpretations d induces a ”dis-
tance” between an interpretation ω and a base K defined
by d(ω, K) = minω′|=K d(ω, ω′).

Definition 2 An aggregation function is a total function f
associating a non-negative integer to every finite tuple of

non-negative integers and verifying (non-decreasingness),
(minimality) and (identity).
• if x ≤ y, then f(x1, . . . , x, . . . , xn) ≤

f(x1, . . . , y, . . . , xn).
(non-decreasingness)

• f(x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0.
(minimality)

• for every non-negative integer x, f(x) = x. (identity)

We can now define distance-based merging operators:

Definition 3 Let d be a distance and f be an aggregation
function. The distance-based merging operator induced by d
and f is defined by: for any profile E = {K1, . . . ,Kn} and
any integrity constraint µ,

[∆d,f
µ (E)] =

{ω |= µ | f(d(ω, K1), . . . , d(ω, Kn)) is minimal}.

Such operators have been extensively studied, and many
”standard” merging operators belong to this class (Revesz
1997; Liberatore & Schaerf 1998). Their logical properties
are stated in (Konieczny & Pino Pérez 2002a), their strategy-
proofness is studied in (Everaere, Konieczny, & Marquis
2007), and their computational complexity in (Konieczny,
Lang, & Marquis 2004).

Let us now turn to diff-based merging operators. Basi-
cally, the idea consists in evaluating closeness between two
interpretations ω and ω′ as the set of variables on which they
differ:

diff(ω, ω′) = {p ∈ P | ω(p) 6= ω′(p)}.
This definition has already been used in the belief revi-

sion/update literature in order to define a number of opera-
tors (Katsuno & Mendelzon 1991; Weber 1986; Satoh 1988;
Borgida 1985; Winslett 1988).

As for distances, we can straightforwardly define, using
diff, a notion of closeness between an interpretation and a
base, as the minimum closeness between the interpretation
and the models of the base. Of course, since diff gives as
output a set instead of a number, set-inclusion has to be con-
sidered as minimality criterion:

diff(ω, K) = min({diff(ω, ω′) | ω′ |= K},⊆).

So the closeness between an interpretation ω and a base K
is measured as the set of all minimal sets (for set inclusion)
of propositional variables which have to be flipped in ω to
make it a model of K.

Now, we need to aggregate these measures in order to de-
fine a global notion of closeness between an interpretation
and a profile. This is the aim of the aggregation functions.
Of course, usual functions at work for distance-based oper-
ators cannot be used here simply because we do not work
with numbers, but with sets.

Several aggregation functions can be considered in our
setting. We focus on a single one in this paper. We consider
set-product ⊕ as aggregation function: for two sets of sets
E and E′, E ⊕ E′ = {c ∪ c′ | c ∈ E and c′ ∈ E′}.

Actions and Belief Change NMR-2008

20

ω diff(ω, K1) diff(ω, K2) diff(ω, {K1,K2})
0000 {{p, q, r}} {{p, s}} {{p, q, r, s}}
0001 {{p, q, r}} {{p}} {{p, q, r}}
0010 {{p, q}} {{p, s}} {{p, q, s}}
0011 {{p, q}} {{p}} {{p, q}}
0100 {{p, r}} {{p, q, s}} {{p, q, r, s}}
0101 {{p, r}} {{p, q}} {{p, q, r}}
0110 {{p}} {{p, q, s}} {{p, q, s}}
0111 {{p}} {{p, q}} {{p, q}}
1000 {{q, r}} {{s}} {{q, r, s}}
1001 {{q, r}} ∅ {{q, r}}
1010 {{q}} {{s}} {{q, s}}
1011 {{q}} ∅ {{q}}
1100 {{r}} {{q, s}} {{q, r, s}}
1101 {{r}} {{q}} {{q, r}}
1110 ∅ {{q, s}} {{q, s}}
1111 ∅ {{q}} {{q}}

Table 1: Computation of ∆diff,⊕
> (E)

Definition 4 Let E = {K1, . . . ,Kn} be a profile and ω an
interpretation. The closeness between ω and E is given by:

diff(ω, E) = min({⊕Ki∈E diff(ω, Ki)},⊆).

By construction, each element of diff(ω, E) is a minimal
set c of variables (a conflict set) such that for each base Ki,
ω can be transformed into a model of Ki by flipping in ω the
variables of c.

Finally, we define a merging operator ∆diff,⊕ which picks
up the models of the integrity constraints whose closeness to
the profile E contains at least one of the minimal (w.r.t. ⊆)
conflict set:

Definition 5 Let E = {K1,K2, . . . ,Kn} be a profile, µ an
integrity constraint. Then:

diffµ(E) = min({diff(ω, E) | ω |= µ},⊆)

and

[∆diff,⊕
µ (E)] = {ω |= µ | ∃c ∈ diff(ω, E) s.t. c ∈ diffµ(E)}.

Example 1 We consider a profile E = {K1,K2}
with K1 = {p ∧ q ∧ r} and K2 = {p ∧ ¬q ∧
s}, there is no integrity constraint (i.e., µ ≡ >).
diffµ(E) = min({{p, q, r, s}, {p, q, r}, {p, q, s}, {p, q},
{q, r, s}, {q, r}, {q, s}, {q}},⊆) = {{q}}. [∆diff,⊕

> (E)] =
{1111, 1011} so ∆diff,⊕

> (E) ≡ p ∧ r ∧ s (see Table 1).

Just as many IC merging operators can be considered as
generalizations of AGM revision operators (Konieczny &
Pino Pérez 2002a), one can easily show that ∆diff,⊕ can be
viewed as a generalization of the well-known Satoh’s revi-
sion operator (Satoh 1988), denoted ◦S :

Proposition 1 Let K be a base and µ an integrity con-
straint. We have:

∆diff,⊕
µ ({K}) ≡ K ◦S µ.

Logical Properties
Since we aim at investigating the logical properties of the
merging operator ∆diff,⊕, a set of properties must first be
considered as a base line. The following set of postulates
was proposed in (Konieczny & Pino Pérez 2002a):

Definition 6 4 is an IC merging operator if and only if it
satisfies the following postulates:

(IC0) 4µ(E) |= µ

(IC1) If µ is consistent, then 4µ(E) is consistent
(IC2) If

∧
E is consistent with µ, then 4µ(E) ≡

∧
E ∧ µ

(IC3) If E1 ≡ E2 and µ1 ≡ µ2, then4µ1(E1) ≡ 4µ2(E2)
(IC4) If K1 |= µ and K2 |= µ, then4µ({K1,K2})∧K1 is

consistent if and only if4µ({K1,K2})∧K2 is consistent
(IC5) 4µ(E1) ∧4µ(E2) |= 4µ(E1 t E2)
(IC6) If 4µ(E1) ∧4µ(E2) is consistent,

then 4µ(E1 t E2) |= 4µ(E1) ∧4µ(E2)
(IC7) 4µ1(E) ∧ µ2 |= 4µ1∧µ2(E)
(IC8) If 4µ1(E) ∧ µ2 is consistent, then 4µ1∧µ2(E) |=
4µ1(E)

For explanations on these postulates see (Konieczny &
Pino Pérez 2002a).

Proposition 2 ∆diff,⊕ satisfies (IC0), (IC1), (IC2), (IC3),
(IC4) and (IC7). It does not satisfy (IC5), (IC6) and (IC8).

The reason why ∆diff,⊕ does not satisfies (IC8) is that
this property requires a total criterion (i.e., the correspond-
ing syncretic assignment (Konieczny & Pino Pérez 2002b)
must associates a total pre-order to each profile, so that any
two interpretations can always be compared), whereas diff
gives rise only to partial relations.

∆diff,⊕ also does not satisfy (IC5) and (IC6), which are
postulates capturing aggregation properties. This is not
surprising since, unlike distance-based operators (as the
ones based on Hamming distance), ∆diff,⊕ keeps a justi-
fication of the minimality of an interpretation (as a con-
flict set). So, when joining two groups, it may happen
that the justifications needed to motivate this choice be-
come too weak. As an example, assume that two pro-
files E1 and E2 select independently as the result of the
merging a formula with only two models ω and ω′ (i.e.,
[∆diff,⊕

µ (E1)] = [∆diff,⊕
µ (E2)] = {ω, ω′}), and suppose that

the conflict sets between the models and the profiles are the
following ones: diff(ω, E1) = diff(ω′, E1) = diff(ω, E2) =
{{a, b}}, and diff(ω′, E2) = {{a, c}}. Then, if we join
the two groups we obtain diff(ω, E1 t E2) = {{a, b}} and
diff(ω′, E1 t E2) = {{a, b, c}}. The conflict set associated
to ω′ is not minimal anymore. Since diff(ω, E1 t E2) ⊂
diff(ω′, E1 tE2), we have ω′ 6|= ∆diff,⊕

µ (E1 tE2), whereas
ω′ |= ∆diff,⊕

µ (E1) ∧∆diff,⊕
µ (E2), which contradicts (IC6).

On the following example, we illustrate how ∆diff,⊕ can
prove better than usual distance-based merging operators:

Example 2 Consider four bases [K1] = {0010, 0100},
[K2] = {0001, 0100}, [K3] = {0111, 0100}, and [K4] =
{1011, 0100}. E = {K1,K2,K3,K4}. The only possible
worlds are [µ] = {0011, 0000}.

Actions and Belief Change NMR-2008

21

ω 0011 0000
diff(ω, K1) dH(ω, K1) {{d}} 1 {{b}, {c}} 1
diff(ω, K2) dH(ω, K2) {{c}} 1 {{b}, {d}} 1
diff(ω, K3) dH(ω, K3) {{b}} 1 {{b}} 1
diff(ω, K4) dH(ω, K4) {{a}, {b, c, d}} 1 {{b}, {a, c, d}} 1
diff(ω, E) dH,Σ(ω, E) {{b, c, d}} 4 {{b}} 4

Table 2: Computations of ∆diff,⊕
µ (E) and ∆dH ,Σ

µ (E)

Computations of the merged bases for operators ∆diff,⊕ and
∆dH ,Σ

µ are summed up in Table 2 (∆dH ,Σ
µ is the distance-

based merging operator relying on the Hamming distance
and using sum as an aggregation function (Revesz 1997;
Konieczny & Pino Pérez 2002a)).
We get [∆diff,⊕

µ (E)] = {0000}, while [∆dH ,Σ
µ (E)] =

{0011, 0000}.
Clearly the Hamming distance dH does not discriminate be-
tween the two possible worlds, which can be problematic.
Here all the agents agree on what they disagree with 0000
(i.e., the conflict is on b), while this is not the case for 0011.
Operators based on the Hamming distance cannot make this
distinction. As one can check in Table 2 the Hamming dis-
tances of the interpretations to the bases are all identical
and equal to 1, whereas the diff distance exhibits the fact
that there is less conflict on 0000 than on 0011 (while flip-
ping the variable b in 0000 is enough to obtain a model of
all the bases, it is not the case with 0011).

Beyond the IC postulates, ∆diff,⊕ satisfies also an inter-
esting additional logical property:

Definition 7 A merging operator ∆ satisfies the temperance
property iff for every profile {K1, . . . ,Kn}:

∆>({K1, . . . ,Kn}) is consistent with each Ki

(temperance)

Proposition 3 ∆diff,⊕ satisfies (temperance).

This proposition shows that the merged base obtained us-
ing ∆diff,⊕ is consistent with every base of the profile (when
there is no integrity constraint). This proposition also gives
an additional explanation to the fact that ∆diff,⊕ does not
satisfy (IC6), since temperance is not compatible with this
postulate.

Proposition 4 There is no merging operator satisfying all
of (IC2), (IC6), and (temperance).

It is worth noting that the temperance property is not satis-
fied by many merging operators. In particular, as implied by
the previous proposition, none of the IC merging operators
satisfies temperance. Interestingly, the temperance property
shows that ∆diff,⊕ can be viewed as a kind of negotiation op-
erator, which can be used for determining the most consen-
sual parts of the bases of all agents. This can prove useful for
defining new negotiation operators, as studied for instance in
(Zhang et al. 2004; Meyer et al. 2004b; 2004a; Booth 2001;
2006; Konieczny 2004).

Strategy-Proofness
Let us now investigate how robust ∆diff,⊕ is with respect
to manipulation. Intuitively, a merging operator is strategy-
proof if and only if, given the beliefs/goals of the other
agents, reporting untruthful beliefs/goals does not enable an
agent to improve her satisfaction. A formal counterpart of
this idea is given in (Everaere, Konieczny, & Marquis 2004;
2007):

Definition 8 Let i be a satisfaction index, i.e., a total func-
tion from L × L to IR. A merging operator ∆ is strategy-
proof for i if and only if there is no integrity constraint µ, no
profile E = {K1, . . . ,Kn}, no base K and no base K ′ such
that

i(K, ∆µ(E t {K ′})) > i(K,∆µ(E t {K})).
Clearly, there are numerous different ways to define

the satisfaction of an agent given a merged base. While
many ad hoc definitions can be considered, the following
three indexes are meaningful when no additional informa-
tion are available (Everaere, Konieczny, & Marquis 2004;
2007):

Definition 9

• idw
(K, K∆) =

{
1 if K ∧K∆ is consistent,
0 otherwise.

• ids
(K, K∆) =

{
1 if K∆ |= K,
0 otherwise.

• ip(K, K∆) =
{

#([K]∩[K∆])
#([K∆]) if #([K∆]) 6= 0,

0 otherwise.

For the weak drastic index (idw
), the agent is considered

satisfied as soon as its beliefs/goals are consistent with the
merged base. For the strong drastic index (ids

), in order
to be satisfied, the agent must impose her beliefs/goals to
the whole group. The last index (“probabilistic index” ip)
is not a Boolean one, leading to a more gradual notion of
satisfaction. The more compatible the merged base with the
agent’s base the more satisfied the agent. The compatibility
degree of K with K∆ is the (normalized) number of models
of K that are models of K∆ as well.

Proposition 5 In the general case ∆diff,⊕ is not strategy-
proof for any of the three indexes idw

, ids
and ip. When there

is no integrity constraint (i.e., µ ≡ >), ∆diff,⊕ is strategy-
proof for idw , but still not strategy-proof for ids or ip.

Most of the model-based operators are not strategy-proof,
even in very restricted situations (Everaere, Konieczny, &
Marquis 2007). For example, ∆dH ,Σ or ∆dH ,Gmin, which

Actions and Belief Change NMR-2008

22

are the best model-based operators with respect to strategy-
proofness, are not strategy-proof for idw , even if µ ≡ >.
∆diff,⊕ performs slightly better than any of them with this
respect.

Complexity Issues
Let us consider now the complexity issue for the inference
problem from a ∆diff,⊕-merged base. We assume the reader
acquainted with basics of complexity theory (see (Papadim-
itriou 1994)).

Formally, let us consider the following decision problem
MERGE(∆diff,⊕):

• Input: A triple 〈E,µ, α〉 where E = {K1, . . . ,Kn} is a
profile, µ ∈ L is a formula, and α ∈ L is a formula.

• Question: Does ∆diff,⊕
µ (E) |= α hold?

Proposition 6 MERGE(∆diff,⊕) is Πp
2-complete.

This result shows that ∆diff,⊕ is computationally harder
than usual distance-based operators, but is at the same com-
plexity level as many formula-based operators (Konieczny,
Lang, & Marquis 2004), and as complex as the correspond-
ing revision operator (see Proposition 1) (Eiter & Gottlob
1992).

Related Work: Consistency-Based Operators
In (Delgrande & Schaub 2007) two consistency-based merg-
ing operators, based on a default inference relation, are pro-
posed. The idea is to use a specific language for each of
the bases (disjoint from all other), so as to make their union
consistent, and then to add as much default equivalence as
possible in order to identify the corresponding variables of
the different languages.

At a first glance, these operators seem very close to
∆diff,⊕, since they try to maximise the agreement between
the bases at the variable level, whereas ∆diff,⊕ tries to min-
imize the conflict. Furthermore, these two operators satisfy
also the temperance property. However one can show that all
three operators are actually distinct (and even incomparable
as to their inferential power).

Let us first give a brief refresher on Delgrande and
Schaub’s operators. A i-renaming of a language L is the
language Li, built from the set of propositional variables
Pi = {pi | p ∈ P}, where for each α ∈ L, αi is the re-
sult of replacing in α each propositional variable p ∈ P by
the corresponding propositional variable pi ∈ Pi. Given a
base K, the i-renaming of (the formulas of) K, is denoted
Ki.

Definition 10 Let E = {K1,K2, . . . ,Kn} be a profile.

• Let EQ be a maximal (w.r.t ⊆) subset of {pk ⇔ pl | p ∈
L and k, l ∈ {1 . . . n}} such that (

∧
Ki∈E Ki

i) ∧ EQ is
consistent.
Then {α | ∀j ∈ {1 . . . n} (

∧
Ki∈E Ki

i) ∧ EQ |= αj} is a
consistent symmetric belief change extension of E.
The skeptical merging ∆s(E) of E is the intersection of
all the consistent symmetric belief change extensions of
E.

ω diff(ω, K1) diff(ω, K2) diff(ω, K3) diff(ω, E)
000 {{p, q}, {q, r}} {{p}, {q}} {∅} {{p, q}, {q, r}}
001 {{q}} {{p, r}, {q, r}} {{r}} {{q, r}}
010 {{p}, {r}} {∅} {{q}} {{p, q}, {q, r}}
011 {∅} {{r}} {{q, r}} {{q, r}}
100 {{q}} {∅} {∅} {{q}}
101 {{p, q}, {q, r}} {{r}} {{r}} {{q, r}}
110 {∅} {{q}, {p}} {{q}} {{q}}
111 {{p}, {r}} {{q, r}, {p, r}} {{q, r}} {{q, r}}

Table 3: Example 2 - Computation of ∆diff,⊕
> (E)

• Let EQ be a maximal (w.r.t ⊆) subset of {pj ⇔ p | p ∈
L and j ∈ {1 . . . n}} such that (

∧
Ki∈E Ki

i)∧EQ is con-
sistent.
Then (

∧
Ki∈E Ki

i) ∧ EQ is a consistent projected belief
change extension of E.
The skeptical merging ∇s(E) of E is the intersection of
all the consistent projected belief change extensions of E.

Example 3 We consider the profile E = {K1,K2,K3},
with K1 = (p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ r), K2 = (p ∧ ¬q ∧
¬r) ∨ (¬p ∧ q ∧ ¬r) and K3 = ¬q ∧ ¬r.
The computation of ∆diff,⊕

> (E) is described in Table 3. We
have ∆diff,⊕

> (E) ≡ p ∧ ¬r.
There are four maximal sets of equivalences for ∆s(E):
EQ1 = {p1 ⇔ p2, p1 ⇔ p3, p2 ⇔ p3, r1 ⇔ r2, r1 ⇔ r3,

r2 ⇔ r3, q2 ⇔ q3}
EQ2 = {p1 ⇔ p3, r1 ⇔ r2, r1 ⇔ r3, r2 ⇔ r3, q1 ⇔ q2}
EQ3 = {p2 ⇔ p3, r1 ⇔ r2, r1 ⇔ r3, r2 ⇔ r3, q1 ⇔ q2}
EQ4 = {p1 ⇔ p2, p1 ⇔ p3, p2 ⇔ p3, r2 ⇔ r3, q1 ⇔ q2}

So, ∆s(E) ≡ ¬r ∨ (¬p ∧ q), and ∆s(E) 6|= ∆diff,⊕
> (E).

For ∇s, the maximal sets of equivalences are the following
ones (p ⇔ p1 ⇔ p2 ⇔ p3 is used as a concise notation
for p ⇔ p1, p ⇔ p2, p ⇔ p3 and similarly for the other
variables):

EQ1 = {p ⇔ p1 ⇔ p2 ⇔ p3, r ⇔ r1 ⇔ r2 ⇔ r3,
q ⇔ q2 ⇔ q3}

EQ′
1 = {p ⇔ p1 ⇔ p2 ⇔ p3, r ⇔ r1 ⇔ r2 ⇔ r3, q ⇔

q1},
EQ2 = {p ⇔ p1 ⇔ p3, r ⇔ r1 ⇔ r2 ⇔ r3, q ⇔ q1 ⇔

q2}
EQ3 = {p ⇔ p2 ⇔ p3, r ⇔ r1 ⇔ r2 ⇔ r3, q ⇔ q1 ⇔

q2}
EQ4 = {p ⇔ p1 ⇔ p2 ⇔ p3, r ⇔ r2 ⇔ r3, q ⇔ q1 ⇔

q2}
EQ′

4 = {p ⇔ p1 ⇔ p2 ⇔ p3, r ⇔ r1, q ⇔ q1 ⇔ q2}

So,∇s(E) ≡ (p∧¬r)∨(¬p∧q), and∇s(E) 6|= ∆diff,⊕
> (E).

More generally, we can prove the following statement:

Proposition 7 ∆diff,⊕
> , ∆s, ∇s are pairwise incomparable

with respect to inferential power, i.e., it is not the case that
for every profile E, the merged base obtained using one of
these operators implies the merged base obtained using an-
other operator among these three ones.

Actions and Belief Change NMR-2008

23

Conclusion and Perspectives
In this paper we have introduced a family of model-based
merging operators, relying on a set-theoretic measure of
conflict. We focused on set-product as an aggregation func-
tion and considered the corresponding operator ∆diff,⊕. A
feature of this operator, typically not shared by existing
model-based operators, is that it satisfies the temperance
property, and as a consequence, it is strategy-proof for the
weak drastic index when there are no integrity constraints.
The price to be paid is a higher complexity than usual model-
based operators (but similar to the one of formula-based
merging operators (Everaere, Konieczny, & Marquis 2007)).

An important point of this work is that it illustrates the fact
that the widely used Hamming distance (and more generally
all distance-based operators whatever the distance), can be
criticized for aggregation. We show through examples in
this paper that using diff can allow to find subtler results.

The main perspective opened by this work is to charac-
terize the merging scenarios requiring such subtler informa-
tion, and to improve existing merging operators by taking
it into account. This work calls for a number of other per-
spectives. Especially, there are several parameters used in
the definition of ∆diff,⊕ for which alternative choices could
be made (especially, other aggregation functions, other min-
imality criteria for characterizing the models of the merged
base). It would be interesting to determine whether some
specific choices for these parameters would lead to majority-
like operators or arbitration-like operators (Konieczny &
Pino Pérez 2002a). Another issue for further research con-
sists in determining rationality conditions on aggregation
functions (as it has been achieved for distance-based merg-
ing operators). More generally, investigating the properties
of the whole family of diff-based operators is an interesting
issue.

Acknowledgements
The authors would like to thank the anonymous reviewers
for their helpful comments. They have been partly supported
by the ANR project PHAC (ANR-05-BLAN-0384).

References
Baral, C.; Kraus, S.; Minker, J.; and Subrahmanian, V. S.
1992. Combining knowledge bases consisting of first-order
theories. Computational Intelligence 8(1):45–71.
Benferhat, S.; Dubois, D.; Kaci, S.; and Prade, H. 2002.
Possibilistic merging and distance-based fusion of propo-
sitional information. Annals of Mathematics and Artificial
Intelligence 34(1-3):217–252.
Benferhat, S.; Lagrue, S.; and Rossit, J. 2007. An egali-
tarist fusion of incommensurable ranked belief bases under
constraints. In Proceedings of the American National Con-
ference on Artificial Intelligence (AAAI’07), 367–372.
Booth, R. 2001. A negotiation-style framework for
non-prioritised revision. In Proceedings of the Interna-
tional Conference on Theoretical Aspects of Rationality
and Knowledge (TARK’01), 137–150.

Booth, R. 2006. Social contraction and belief negotiation.
Information Fusion 7(1):19–34.
Borgida, A. 1985. Language features for flexible han-
dling of exceptions in information systems. ACM Trans.
on Database Syst. 10:563–603.
Chopra, S.; Ghose, A. K.; and Meyer, T. 2006. Social
choice theory, belief merging, and strategy-proofness. In-
formation Fusion 7(1):61–79.
Dalal, M. 1988. Investigations into a theory of knowl-
edge base revision: preliminary report. In Proceedings
of the American National Conference on Artificial Intel-
ligence (AAAI’88), 475–479.
Delgrande, J., and Schaub, T. 2007. A consistency-based
framework for merging knowledge bases. Journal of Ap-
plied Logic 5(3):459–477.
Eiter, T., and Gottlob, G. 1992. On the complexity of
propositional knowledge base revision, updates, and coun-
terfactuals. Artificial Intelligence 57(2–3):227–270.
Everaere, P.; Konieczny, S.; and Marquis, P. 2004. On
merging strategy-proofness. In Proceedings of the Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning (KR’04), 357–367.
Everaere, P.; Konieczny, S.; and Marquis, P. 2007. The
strategy-proofness landscape of merging. Journal of Artifi-
cial Intelligence Research 28:49–105.
Everaere, P.; Konieczny, S.; and Marquis, P. 2008.
Conflict-based merging operators. In Proceedings of the
International Conference on the Principles of Knowledge
Representation and Reasoning (KR’08). to appear.
Katsuno, H., and Mendelzon, A. O. 1991. Propositional
knowledge base revision and minimal change. Artificial
Intelligence 52:263–294.
Konieczny, S., and Pino Pérez, R. 2002a. Merging infor-
mation under constraints: a logical framework. Journal of
Logic and Computation 12(5):773–808.
Konieczny, S., and Pino Pérez, R. 2002b. On the frontier
between arbitration and majority. In Proceedings of the
International Conference on the Principles of Knowledge
Representation and Reasoning (KR’02), 109–118.
Konieczny, S.; Lang, J.; and Marquis, P. 2004. DA2 merg-
ing operators. Artificial Intelligence 157:49–79.
Konieczny, S. 2004. Belief base merging as a game. Jour-
nal of Applied Non-Classical Logics 14(3):275–294.
Liberatore, P., and Schaerf, M. 1998. Arbitration (or how
to merge knowledge bases). IEEE Transactions on Knowl-
edge and Data Engineering 10(1):76–90.
Meyer, T.; Foo, N.; Zhang, D.; and Kwok, R. 2004a. Log-
ical foundations of negotiation: Outcome, concession and
adaptation. In Proceedings of the American National Con-
ference on Artificial Intelligence (AAAI’04), 293–298.
Meyer, T.; Foo, N.; Zhang, D.; and Kwok, R. 2004b.
Logical foundations of negotiation: Strategies and prefer-
ences. In Proceedings of the International Conference on
the Principles of Knowledge Representation and Reason-
ing (KR’04), 311–318.

Actions and Belief Change NMR-2008

24

Meyer, T.; Pozos Parra, P.; and Perrussel, L. 2005. Me-
diation using m-states. In Proceedings of the European
Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU’05), 489–500.
Meyer, T. 2001. On the semantics of combination op-
erations. Journal of Applied Non-Classical Logics 11(1-
2):59–84.
Papadimitriou, C. H. 1994. Computational Complexity.
Addison-Wesley.
Revesz, P. Z. 1997. On the semantics of arbitration. In-
ternational Journal of Algebra and Computation 7(2):133–
160.
Satoh, K. 1988. Non-monotonic reasoning by minimal
belief revision. In Proceedings of the International Con-
ference on Fifth Generation Computer Systems, 455–462.
Weber, A. 1986. Updating propositional formulas. In Pro-
ceedings of First Conference on Expert Database Systems,
487–500.
Winslett, M. 1988. Reasoning about action using a possible
model approach. In Proceedings of the American National
Conference on Artificial Intelligence (AAAI’88), 89–93.
Zhang, D.; Foo, N.; Meyer, T.; and Kwok, R. 2004. Ne-
gotiation as mutual belief revision. In Proceedings of the
American National Conference on Artificial Intelligence
(AAAI’04), 317–322.

Actions and Belief Change NMR-2008

25

Activity Recognition with Intended Actions,
Answer Set Programming Approach

Alfredo Gabaldon
NICTA & UNSW
Sydney, Australia

alfredo@cse.unsw.edu.au

Abstract

We consider an activity recognition problem as follows. We
are given a description of the action capabilities of an agent
being observed. This description includes a description of the
preconditions and effects of atomic actions the agent may ex-
ecute and a description of activities (sequences of actions).
Given this description and a set of propositions about action
occurrences and intended actions, called history, the problem
is to determine what has already happened, what the inten-
tions of the agent are, and what may happen as a result of the
agent acting on those intentions. Our formalization is based
on a recent approach to reasoning about intended actions in
(A-like) action languages with answer set programming im-
plementations.

Introduction
We consider the following problem: given a partial record
of what an agent being observed is doing, including a) in-
tended actions, b) action executions, c) fluent values, all at
various time points, determine a complete picture of what
the agent has done, intends and may do in the future. This
problem is what we will refer to as activity recognition, and
our approach to it is based on logical reasoning about the ob-
servations with respect to a background knowledge base that
includes a formal action theory representing how the world
evolves as the agent executes actions, knowledge about non-
elementary actions, called activities, that the agent might be
executing, and a theory of intended actions.

Our approach to activity recognition is novel in that it is
based on a formal theory of actions and reasoning with an
explicit notion of intended actions. We discuss related work
before Conclusions.

We will use a modified and extended version of the cook-
ing example from (Kautz and Allen 1996) throughout the
paper.

Example 1 The observed agent in this domain is capable
of executing various meal preparation activities: it can cook
chicken marinara which consists in making marinara sauce
and putting it together with chicken by mixing chicken mari-
nara. It can cook fettuccini alfredo by making fettuccini,

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

making alfredo sauce and putting it together by mixing fet-
tuccini alfredo. It can also cook fettuccini marinara, cook
spaghetti carbonara and cook chicken primavera using simi-
lar steps. Then, if the agent declares that he intends to make
fettuccini at time 1, and we observe that mix chicken mari-
nara occurred at time 3, then the possible conclusions are
that the agent intends to cook two dishes: one of the fettuc-
cini dishes and chicken marinara. In the case that he is mak-
ing fettuccini marinara, it is possible that he makes marinara
sauce once, for both dishes, i.e. the two cooking activities
share an action.

Reasoning about Intended Actions
The action description language ALI, introduced in (Baral
and Gelfond 2005), extends similar action languages, in par-
ticular AL(Baral and Gelfond 2000), with the capability of
reasoning about intended actions. In this section we give an
overview of this language.

Like other A-like languages, a domain description in
ALI includes a set of dynamic causal laws, static causal
laws and executability propositions. A set of such state-
ments, called action description, describes a transition sys-
tem which models how the world moves from one state to
another as actions are executed. A separate set of constructs
in the language is used to capture a history: a set of state-
ments about observed values of fluents and occurrences of
actions at specified time points. Given a domain description
and a possibly incomplete history, the reasoning task is then
to determine a complete trajectory that the world may have
followed and that is compatible with the history. Addition-
ally, the language ALI allows for reasoning about intended
actions, thus it includes a construct for specifying in a his-
tory that at a given time the agent intends to execute a given
action. The underlying principle incorporated in ALI states
that normally, unfulfilled intentions persist, meaning that if
the agent is not able to execute an intended action at a spec-
ified time (e.g. because the action was not executable at that
time) then the intention persists until the agent successfully
executes the action. The formal syntax and semantics of this
language is as follows.

The signature of ALI consists of two disjoint, finite sets:
a set of elementary action names A, and a set of symbols
F , called fluents, which represent properties of the domain
that change when actions are executed. A fluent literal is a

Actions and Belief Change NMR-2008

26

fluent f or its negation, denoted by ¬f . A set of literals Y
is called complete if for every f ∈ F , f ∈ Y or ¬f ∈ Y ,
and Y is called consistent if there is no f s.t. f,¬f ∈ Y .
A state is a complete and consistent set of fluent literals and
represents one possible state of the domain. An action is
a set {a1, . . . , an} of elementary actions representing their
simultaneous execution. Sequences of actions are lists of
actions separated by commas and enclosed by 〈·〉.

Given a signature Σ = (A,F), a transition diagram over
Σ is defined as a directed graph T where:

• the states of T are the states of Σ, which are denoted by
σi’s;

• the arcs of T are labeled by actions of Σ.

A path 〈σ0, a1, σ1, . . . , an, σn〉 of a transition diagram is
called a trajectory of the domain.

As mentioned above, an action description in ALI con-
sists of a set of statements understood as describing a tran-
sition diagram. These statements are of the following three
forms (ae denotes an elementary action and the li denote
fluent literals):

1. dynamic causal laws: causes(ae, l0, [l1, . . . , ln]), stating
that executing ae in a state where l1, . . . , ln hold causes
l0 to be true in the resulting state;

2. static causal laws: caused(l0, [l1, . . . , ln]), stating that l0
is caused to hold in every state where l1, . . . , ln hold;

3. executability propositions:1 impossible if (ae, [l1, . . . ln]),
stating that ae cannot be executed in a state where
l1, . . . , ln hold.

The definition of the transition diagram specified by an
action description requires the following notions and nota-
tion: An action a is executable in a state σ if there is no
proposition impossible if (ae, [l1, . . . ln]) s.t. ae ∈ a and
{l1, . . . , ln} ⊆ σ. A set S of fluent literals is closed un-
der a set Z of static causal laws if S includes the head l0
of every static causal law s.t. {l1, . . . , ln} ⊆ S. The set
CnZ(S) of consequences of S under Z is the smallest set of
fluent literals that contains S and is closed under Z. The no-
tation E(ae, σ) is used to denote the set of all literals l0 s.t.
there is a dynamic causal law causes(ae, l0, [l1, . . . , ln]) and
{l1, . . . , ln} ⊆ σ. Moreover, E(a, σ) =

⋃
ae∈a E(ae, σ).

An action description specifies a transition diagram that
satisfies certain properties. One is that all the states of the
transition diagram must satisfy the static causal laws. Sec-
ond, if there is a transition from σ to σ′ labeled by a, then
a must be executable in σ. Furthermore, σ′ must include
the direct effects E(a, σ) of a, the indirect effects that fol-
low from the static causal laws and it must contain literals
that are otherwise not affected by a but are preserved by the
common sense law of inertia.

Formally, the transition system specified by an action de-
scription AD is defined as follows.

1This name is normally used for propositions declaring when
an action is executable, not impossible. But since they are used
with a similar purpose, we will call these the same.

Definition 1 An action description AD with signature Σ
describes the transition system T = (S, R) where:

1. S is the set of all the states of Σ that are closed under the
static laws of AD;

2. R is the set of all triples 〈σ, a, σ′〉 s.t. a is executable in σ
and σ′ is the fixpoint of the equation:

σ′ = CnZ(E(a, σ) ∪ (σ ∩ σ′)) (1)

where Z is the set of all the static causal laws in AD.

For activity recognition, we are interested in determining
what an agent is doing given an action description and a his-
tory. The propositions used in ALIto describe the history
have the following form (α denotes an action sequence, i a
time point, and l a fluent literal):

1. intended(α, i): meaning that the agent intends to execute
α at time point i;

2. happened(α, i): meaning that α happened starting at time
point i;

3. observed(l, i): meaning that l was observed to hold at
time point i.

A history is then a set of propositions of the above forms.
The semantics of happened and observed is defined in the
usual way for A-like languages (see Definition 2 below).
The semantics of intended as defined in (Baral and Gelfond
2005) is based on the following assumptions:

1. once an agent establishes the intention to execute an ac-
tion, it does so as soon as the action is executable;

2. for an intended sequence 〈a1, . . . , an〉, a1 is intended first
and each ai+1 is subsequently intended only after ai exe-
cutes;

3. if an intended action is not executable, the intention to
execute it persists until it becomes possible to execute it.

A history is interpreted by trajectories of the background
transition system. The following definition describes when
a trajectory is a model of a history.

Definition 2 Let AD be an action description, P =
〈σ0, a1, σ1, . . . , an, σn〉 be a trajectory, H be a history and
1 ≤ i ≤ n.

1. P satisfies observed(l, i) if l is true in σi (l ∈ σi). Simi-
larly for initial state statements, P satisfies observed(l, 0)
if l is true in σ0.

2. P satisfies happened(〈a′1, . . . , a′n〉, i) if for all 1 ≤ j ≤ n,
a′j ⊆ ai+j−1. In this case, each element of a′j is said to
be supported at i + j − 1.

3. P satisfies intended(a, i) if
(a) a ⊆ ai; or
(b) a is not executable in σi−1 (i.e. there is a proposition

impossible if (ae,~l) ∈ AD s.t. ae ∈ a and ~l ⊆ σi−1),
i < n and P satisfies intended(a, i + 1).

If a ⊆ ai, we say that a ends at i+1 and that each element
of a is supported at i.

Actions and Belief Change NMR-2008

27

4. P satisfies intended(α, i) where α = 〈a′1, . . . , a′m〉 and
m > 1, if

(a) P satisfies intended(a′1, i) and
(b) P satisfies intended(〈a′2, . . . , a′m〉, j) where a′1 ends at

j in P .
We say that α ends at k in P , if a′m ends at k in P .

5. P is a model of a history H if it satisfies all the statements
of H and, for all 1 ≤ i ≤ n, all the elements of ai are
supported at i in P .

Notice that the definitions do not rule out empty actions
(i.e. nothing occurs) from appearing in a history.

Activities
Technically, the problem of activity recognition as described
above can be cast as the problem of finding models of the
recorded history, after taking care of a few issues. Activity
recognition differs from reasoning about histories in ALI in
several respects. First, activity recognition is done from the
perspective of an external observer of the agent that is ex-
ecuting the actions. Second, in addition to the background
theory of actions and the statements in the history, the rea-
soner has additional knowledge in the form of a set of activ-
ities that the agent being observed may do and information
about which actions are “purposeful.”

Named Activities
Our approach to activity recognition, like other approaches,
is based on the availability of a set background activities that
the observed agent may do. These then serve as a hypothesis
space to the recognition system. In our case these activities
will be represented as pairs (s, α) where s is the name of
the activity and α a sequence of actions (including other ac-
tivities). Thus we extend the signature of the language with
an additional set C of activity names. An action descrip-
tion will contain a set of pairs (s, α) with at most one pair
for each s ∈ C. We will often use s to refer to an activity
(s, α). Sequences α in named activities are assumed not to
repeat actions.

In the cooking domain example, we have activities

(ccm, 〈mk marinara, mix chicken marinara〉)

(cfm, 〈mk fettuccini,mk marinara,mix fettuccini marinara〉)

(cfa, 〈mk fettuccini,mk alfredo,mix fettuccini alfredo〉)

and so on.
We assume that only actions can be observed to occur and

thus will not use activity names in happened statements. On
the other hand, we do allow activity names in intended state-
ments as part of the history, as we consider the possibility
that the observed agent declares its intentions or that the ac-
tivity recognizer is otherwise informed of those intentions.

Purposeful Actions
By purposeful actions we mean actions whose execution in
isolation, as opposed to as part of a more complex activity,
is considered reasonable. For example, one may consider
the action of taking a bus as not purposeful since normally a
person does not take a bus for the sake of taking a bus, but
does so as part of a more complex activity such as commut-
ing to work. Here we treat purposefulness as a fixed (non
fluent) property of activities. A more elaborate treatment of
purposefulness intuitively seems to require this notion to be
context dependent and to be captured as a default. We will
consider this more general notion of purposefulness in future
work.

In our example, we declare the action of mk marinara
sauce as not purposeful. The activity of cooking fettuccini
marinara, cfm above, on the other hand, is considered pur-
poseful since it is a complete meal cooking activity. Pur-
posefulness is subjective, one can easily elaborate the cook-
ing scenario by adding an activity for “having a meal” in the
context of which cooking a meal may no longer be consid-
ered purposeful.

Purposeful actions are simply declared to be so by means
of statements of the form purposeful(c), where c is an action
or an activity. Actions not declared to be purposeful are as-
sumed not to be purposeful. In the next section we formally
describe how knowledge about the purposefulness of actions
and activities influences reasoning about intended actions.

Activity Recognition
In our formalization of activity recognition we do not allow a
history to state that a named activity happened, only actions
can be observed. We moreover assume that all the observed
actions were intentional.

The definition of satisfaction of history statements
observed(l, i), happened(a, i) and intended(a, i) by a tra-
jectory is as before. While activities cannot be observed to
occur, we allow that the reasoner may be informed that the
observed agent intends to execute a named activity. This
means that we must extend histories by allowing statements
intended(s, i) where s is an activity name, and extend the
definition of satisfaction of such statements by a trajectory
P . The definition is as follows.

Definition 3 A trajectory P satisfies a statement
intended(s, i), where (s, α) is a named activity, if P
satisfies intended(α, i).

We will assume that any intended sequence in the his-
tory is named so that intended(s, i) is used instead of
intended(α, i) for an activity (s, α). From now on we will
use actions to refer to both non-elementary actions (sets of
elementary actions) and named activities

Before we introduce models of a history, we need to in-
troduce some terminology. We say that an action (including
named activities) c starts at i in a trajectory P if P satisfies
intended(c, i) but does not satisfy intended(c, i − 1), i.e. it
is said to start when it becomes intended. A named activity
(s, 〈a1, . . . , an〉) ends at i in P if an ends at i in P (as in

Actions and Belief Change NMR-2008

28

Definition 2).2 Furthermore, an action c (including named
activities) is said to be in progress at k in P if c starts at i
and ends at j in P and i ≤ k < j. Henceforth we will omit
a reference to P when clear from context and say c starts at
i, c ends at j, etc.

Next we define the key notion of justified actions. This
notion captures the intuition that if an action that is not pur-
poseful is stated to have occurred or to be intended at time
point i, then it must be the case that a purposeful activity
is in progress at the same time i and the action is part of it.
The following definition formally describes when an action
is justified.

Definition 4 Let AD be an action description, P be a tra-
jectory and c be an action.

1. c is justified by c (self-justified) at i if purposeful(c) ∈
AD;

2. c is justified by s at i if the following conditions are satis-
fied:

(a) (s, α) is a named activity in AD,
(b) c appears in α,
(c) s is in progress at i,
(d) s does not justify c at an earlier time point in its current

execution, that is, if l is the latest start time of s such
that l < i, then s does not justify c at k such that l ≤
k < i.

We say that c is justified at i if c is justified by b at i for
some action b.

Note that an action can be justified by more than one ac-
tion at the same time instant.

We are now ready to define models of a history. This defi-
nition must take into account whether actions are justified or
not for the purpose of reasoning about activity recognition.

In addition to satisfying history statements as defined
above, a trajectory must satisfy a number of additional con-
ditions to be a model. Condition (2) below precludes vacu-
ous actions from models. Condition (3) intuitively says that
for every action in progress there must be at least one action
that justifies it from start to end. Condition (4) says that an
activity cannot end if an action that appears in its sequence
is still intended, unless that action is justified by some other
activity. Finally, Condition (5) says that at the end of the
trajectory, no intended actions remain.

Definition 5 A trajectory P = 〈σ0, a1, σ1, . . . , an, σn〉 is
a model of a history H of an action description AD if the
following conditions hold:

1. P satisfies all the statements of H;
2. for each 1 ≤ i ≤ n, all the elements of ai are supported

at i;
3. for every action c such that P satisfies intended(c, i) and

c starts at i and ends at j, there is an action c′ such that c
is justified by c′ at k for every i ≤ k < j;
2An action “starts” when it becomes intended even if it has not

yet started to execute. So “starts” and “ends” mark the period be-
tween an action first becoming intended and the termination of its
execution.

4. for every activity (s, 〈c1, . . . , cm〉) such that s ends at i +
1, there is no action ck, 1 ≤ k < m, in the sequence of s
such that

(a) P satisfies intended(ck, i),
(b) ck is justified by s at i,
(c) there is no s′ 6= s such that ck is justified by s′ at i;

5. for every action c, if c is in progress at n, then c ends at
n + 1.

Example 2 Consider again the Cooking domain of Exam-
ple 1. Suppose that we have a history containing the follow-
ing statements:

intended(mk fettuccini, 1),
intended(mix chicken marinara, 3).

If we do not allow concurrent actions, this history has no
models of length less than 4. It has one model of length 4
with actions:

mk fettuccini,
mk marinara,
mix chicken marinara,
mix fettuccini marinara

occurring in that order. (With concurrency it can be short-
ened to a length of 3.) Intuitively, this means that two activ-
ities are occurring: cooking chicken marinara (ccm), which
is in progress from time 2 to 3, and cooking fettuccini mari-
nara (cfm), which is in progress from 1 to 4. The activities
share the action mk marinara which is justified by both ccm
and cfm at time 2.

The same history has 4 models of length 5. One of them
contains the actions

mk marinara,
mk fettuccini,
mix chicken marinara,
mk marinara,
mix fettuccini marinara

In this model ccm and cfm are again the purposeful activ-
ities that occur. ccm is in progress from 1 to 3 and cfm from
1 to 5. This time mk marinara is not shared between the ac-
tivities because it occurs for ccm before it becomes intended
for cfm.

In the other two models, ccm and cooking fettuccini al-
fredo (cfa) occur, in one mk marinara occurs at 1 and
mk fettuccini at 2. In the other they are in the opposite order.

Formalization in ASP
Our formalization of activity recognition in Answer Set Pro-
gramming captures the domain transition system of Def-
inition 1 by means of a set of rules using the predicate
holds(F, T) (see e.g. (Baral 2003)). We have also adapted
rules defining intention for elementary actions (Baral and
Gelfond 2005) and activities (Gelfond 2006). The notion
of justified activities requires a substantial elaboration with
rules to recognize intention of actions at earlier times with
respect to a given history statement. In the ASP formaliza-
tion below, we assume that actions contain at most one prim-
itive action. In other words, there is no concurrency and the

Actions and Belief Change NMR-2008

29

empty action, i.e., nothing occurs, is allowed. This permits
us to treat actions as primitive objects rather than sets and
makes the presentation simpler. It is not difficult, however,
to extend the formalization with general concurrent actions.

Let us describe the main components of the ASP formal-
ization. Although many rules below seem to be unsafe, we
assume implicit domain predicates are used to make them
safe. For computing answer sets, we use the Smodels con-
struct #domain to specify a domain for all the variables that
appear in the rules below. We omit domain predicates for
readability but it should be kept in mind that they are needed
and included in order to make all the rules safe. We start
with the component that, given a statement intended(c, i) in
the history, conjectures that some activity s that has c in its
sequence is in progress.

inprogress(S,I) :-
component(C,K,S),
intended(C,I),
K <= I,
not other_justified(C,I,S).

other_justified(C,I,S) :-
component(C,K,S),
justified(C,I,S1),
neq(S,S1).

Conjecturing that activities are in progress possibly leads
to concluding that the conjectured activity was intended at
some point:

intended(S,I) :-
inprogress(S,I),
not inprogress(S,I-1).

intended(S,I) :-
inprogress(S,I),
ends(S,I).

Next we describe the component that captures the notion
of justified actions, starting with self-justified actions:

justified(C,I,C) :-
inprogress(C,I),
purposeful(C).

The following two rules capture item 2 of Definition 4:

justified(C,I,C) :-
inprogress(C,I),
component(C,K,S),
inprogress(S,I),
not justified_before(C,S,I).

justified_before(C,S,I2) :-
start_to_now(S,I1,I2),
justified(C,I,S),
not other_justified(C,I,S),
ends(C,I3),
I1 <= I, I < I3, I3 <= I2.

Another part of our formalization captures reasoning
about which actions are in progress and which are intended.
This part can be divided into two components: given a his-
tory statement about time point i, one component does in-
ference about what holds at time points preceding i and the

other inference about time points later than i. We start with
the rules for reasoning about later time points.

The following two rules directly encode the definition of
in progress:
inprogress(S,I) :- starts(S,I).

inprogress(S,I) :-
inprogress(S,I-1),
not ends(S,I).

In (Gelfond 2006), the formalization of intended actions
includes rules for drawing conclusions about later time
points with respect to history statements. In addition to the
use of inprogress and some other differences, we must gen-
eralize those rules to take into account reasoning about jus-
tified actions.
intended(C,I) :-

starts(S,I),
component(C,1,S).

intended(C2,I) :-
inprogress(S,I),
component(C2,K,S),
component(C1,K-1,S),
ends(C1,I),
justified(C1,I-1,S).

The component for inference at earlier time points in-
cludes a rule saying that if an activity is in progress and it
justifies one of its components that is not the first, then it is
in progress in the previous time point:
inprogress(S,I) :-

inprogress(S,I+1),
intended(A,I+1),
component(A,K,S),
K > 1,
justified(A,I+1,S).

Given history statements about the occurrence of an ac-
tion, it is possible to draw inferences about the intentions of
the agent before the action was executed, especially if the
action is not self-justified. The following rules say, roughly,
that if the action is a component of an activity and the ac-
tivity has an earlier component, then either the earlier com-
ponent is intended in the preceding time point or the action
that occurred was intended in the preceding time point.
intended(A1,I) :-

inprogress(S,I+1),
occurs(A2,I+1),
component(A2,K,S),
component(A1,K-1,S),
not -occurs(A1,I),
not intended(A2,I).

intended(A2,I) :-
inprogress(S,I+1),
occurs(A2,I+1),
component(A2,K,S),
component(A1,K-1,S),
not intended(A1,I).

Finally, the following rules capture conditions (3–5) in
Definition 5:

Condition (3):

Actions and Belief Change NMR-2008

30

:- inter(C,I,I1),
not full_just(C,I,I1).

full_just(C,I,I1) :-
full_justified(C,C1,I,I1).

full_justified(C,C1,I,I1) :-
justified(C,I,C1).

full_justified(C,C1,I,I1) :-
justified(C,I,C1),
I < I1,
full_justified(C,C1,I+1,I1).

Condition (4):
:- ends(S,I+1),

intended(C,I),
justified(C,I,S),
not other_justified(C,I,S),
length(S,K),
not component(C,K,S).

Condition (5):
:- intended(C,n).

In the above last rule, n is a constant defined to be the
maximum length of the trajectories to be considered when
solving an activity recognition problem.

The above set of rules will be denoted by Πar.

The encoding of a history H and an action description
AD is as follows. Statements intended(c, i), intended(s, i),
happened(a, i) and observed(l, i) are encoded di-
rectly as facts intended(a,i), intended(s,i),
happened(a,i) and observed(l,i), respectively.
The set of such facts obtained from a history H is denoted
by π(H).

The translation of a domain description AD is denoted by
π(AD) and contains the following rules and facts. For each
named activity (s, 〈c1, . . . , cm〉) we include the facts:
activity(s).
length(s,m).
component(c_1,1,s).
...
component(c_m,m,s).

As mentioned earlier, there is a fact purposeful(c)
for each purposeful action or named activity c.

Dynamic causal laws, static causal laws and executability
propositions are translated as follows:

For each dynamic causal law causes(a, l0, [l1, . . . , ln]) in
AD:
holds(l_0,I+1) :-

occurs(a,I),
holds(l_1,I),
...
holds(l_n,I).

For each static causal law caused(l0, [l1, . . . , ln]) in AD:
holds(l_0,I) :-

holds(l_1,I),
...
holds(l_n,I).

Finally, for each executability proposition
impossible if (a, [l1, . . . ln]) in AD:
-occurs(a,I) :-

holds(l_1,I),
...
holds(l_n,I).

We also include in π(AD) a rule for the common sense
law of inertia:

holds(L,I+1) :-
holds(L,I),
not holds(-L,I+1).

For reasoning about intended atomic actions, we use the
following set of rules, denoted by ΠI :

%% Observed actions are intended
intended(A,I) :- happened(A,I).
occurs(A,I) :- happened(A,I).

occurs(A,I) :-
intended(A,I),
not -occurs(A,I).

intended(A,I+1) :-
intended(A,I),
-occurs(A,I),
not -inteded(A,I+1).

starts(A,I) :-
intended(A,I),
not inteded(A,I-1).

starts(A,I) :-
intended(A,I),
ends(A,I).

ends(A,I+1) :- occurs(A,I).

inprogress(A,I) :- starts(A,I).

inprogress(A,I) :-
inprogress(A,I-1),
not ends(A,I).

The rest of the rules in the formalization are minor auxil-
iary rules.

Throughout the paper we have been focusing on inten-
tion and occurrence of actions and have sidelined reason-
ing about the value of fluents in the states of the trajectory.
Incompleteness of information about fluents is another in-
teresting aspect of the activity recognition problem we are
considering. We leave that side of the problem for the full
version of this paper. The following result assumes a history
with complete initial state, i.e. for every fluent f there is a
statement observed(f, 0) or observed(¬f, 0).

The complete formalization of an activity recogni-
tion problem in answer set programming is the program
π(AD,H) = ΠI ∪ Πar ∪ π(AD) ∪ π(H). The models
of a program π(AD,H) induce trajectories as follows.

Definition 6 Let A be a subset of the literals of a given
program π(AD,H). A is said to define the trajectory

Actions and Belief Change NMR-2008

31

〈σ0, a1, σ1, . . . , σn, an〉 if σi = {l | holds(l, i) ∈ A} and
occurs(aj , j) ∈ A for all 0 ≤ i ≤ n and 1 ≤ j ≤ n

Theorem 1 For an action description AD and history H
with complete initial state, a trajectory P without concur-
rency (i.e. all actions are singletons or empty sets) is a
model of H iff P is defined by an answer set of the program
π(AD,H).

Example 3 The following are the results of some sample
runs with the Cooking domain. Using the following facts:
intended(make_fettuccini,1).
happened(mix_chicken_marinara,3).

and setting the max (plus 1) trajectory length constant
const n=5 we obtain an answer set that contains:
inprogress(cfm,1)
inprogress(cfm,2) inprogress(ccm,2)
inprogress(ccm,3) inprogress(cfm,3)
inprogress(cfm,4)
justified(make_fettuccini,1,cfm)
justified(make_marinara,2,ccm)
justified(make_marinara,2,cfm)
justified(mix_chicken_marinara,3,ccm)
justified(mix_fettuccini_marinara,3,cfm)
justified(mix_fettuccini_marinara,4,cfm)
occurs(make_fettuccini,1)
occurs(make_marinara,2)
occurs(mix_chicken_marinara,3)
occurs(mix_fettuccini_marinara,4)

Now let us try the following history:
happened(make_marinara,2).
happened(make_marinara,4).

With const n=5 we get no answer sets, as expected. If
we increase the constant to 6 we get two answer sets. In one,
ccm happens twice and with no action occurring at 1:
inprogress(ccm,2)
inprogress(ccm,3)
inprogress(ccm,4)
inprogress(ccm,5)
occurs(make_marinara,2)
occurs(mix_chicken_marinara,3)
occurs(make_marinara,4)
occurs(mix_chicken_marinara,5)

In the second answer set, cfm is in progress from 1 to 3
and ccm from 4 to 5.
inprogress(cfm,1)
inprogress(cfm,2)
inprogress(cfm,3)
inprogress(ccm,4)
inprogress(ccm,5)
occurs(make_fettuccini,1)
occurs(make_marinara,2)
occurs(mix_fettuccini_marinara,3)
occurs(make_marinara,4)
occurs(mix_chicken_marinara,5)

Setting const n=7 gives us two additional answer sets:
inprogress(ccm,2)
inprogress(ccm,3) inprogress(cfm,3)
inprogress(ccm,4) inprogress(cfm,4)

inprogress(ccm,5) inprogress(cfm,5)
inprogress(ccm,6)
occurs(make_marinara,2)
occurs(make_fettuccini,3)
occurs(make_marinara,4)
occurs(mix_fettuccini_marinara,5)
occurs(mix_chicken_marinara,6)

and

inprogress(ccm,2)
inprogress(ccm,3) inprogress(cfm,3)
inprogress(ccm,4) inprogress(cfm,4)
inprogress(ccm,5) inprogress(cfm,5)

inprogress(cfm,6)
occurs(make_marinara,2)
occurs(make_fettuccini,3)
occurs(make_marinara,4)
occurs(mix_chicken_marinara,5)
occurs(mix_fettuccini_marinara,6)

Related Work
There is a substantial body of work on activity or plan
recognition. The work of (Kautz and Allen 1996), from
which we adapted the cooking example, was among the
first to use some kind of action formalism, albeit a sim-
ple one and without considering an explicit notion of in-
tended actions. There are some recent approaches based on
Hidden Markov Models (Bui, Venkatesh, and West 2002;
Blaylock and Allen 2003). These approaches cannot handle
multiple activities occurring simultaneously as in our frame-
work. Perhaps closer to our action based approach is the re-
cent work of (Demolombe and Hamon 2002; Demolombe
and Fernandez 2005). This work is based on a different ac-
tion formalism, the situation calculus, and instead of notions
of purposeful and justified actions, that framework relies on
an explicit specification of which actions must not occur at
particular points of an activity if is to be recognized from the
history. This makes the definitions of activities more compli-
cated and less elaboration tolerant. The approach of (Goulti-
aeva and Lespeance 2007) extends that of (Demolombe and
Hamon 2002) by reformalizing the problem in a way that
allows incremental recognition of plans. Both of these ap-
proaches require the history to be a complete prefix of an
activity in order to recognize it. Thus they are not able to
solve the problems in Example 3 because the history is miss-
ing some of the earlier occurring actions. These frameworks
also require observations of actions to be made in the order
the actions occur and cannot handle shared actions between
activities. On the other hand, they can define more complex
activities than sequences. A more general notion of activity
is in our plans for future work.

It is worth pointing out as well that none of the above
frameworks allow in the history statements of intention to
execute an action or activity, since they do not employ a
formal notion of intended actions. Finally, another unique
feature of our approach is the direct implementation of the
answer set programming formalization through execution by
answer set finders like Smodels (Niemelä and Simons 1997).
Nevertheless, several of the above frameworks have features
we would like to integrate into our framework, e.g. activities

Actions and Belief Change NMR-2008

32

of a more general form than sequences, and probabilities or
qualitative information useful for choosing among alterna-
tive solutions to an activity recognition problem.

Conclusion
We have introduced a new approach to activity recognition
that is based on a formal theory of actions and a notion of in-
tended actions. Our approach is based on using knowledge
about the intention and the occurrences of non-purposeful
actions to conjecture that more complex purposeful activ-
ities may be occurring. In addition to A-type action lan-
guage domain descriptions with a transition system-based
semantics, we provide a formalization in answer set pro-
gramming that can be readily used to solve problems by
submitting the formalization to an answer set finder such as
Smodels (Niemelä and Simons 1997). We have illustrated
our approach with problems in a meal cooking domain and
included some sample results obtained with Smodels.

This framework can be extended in many possible ways.
For instance, if one considers a case where the observed
agent’s actions can fail, then we would need to recognize
or predict that the agent repeated the execution of an action
because the first try failed, and that because it failed, its in-
tention to execute that action persisted after the first try. An-
other extension to consider is where the observed agent may
abandon an intended activity in the middle of the execution
and start executing some other activity. We plan to look at
these and many other interesting possibilities in future work.

References
Baral, C., and Gelfond, M. 2000. Reasoning agents in
dynamic domains. In Minker, J., ed., Logic-Based Artificial
Intelligence. Kluwer.
Baral, C., and Gelfond, M. 2005. Reasoning about in-
tended actions. In Procs. of the 20th National Conference
on Artificial Intelligence (AAAI’05), 689–694.
Baral, C. 2003. Knowledge representation, reasoning and
declarative problem solving. Cambridge University Press.
Blaylock, N., and Allen, J. 2003. Corpus-based statisti-
cal goal recognition. In Proceedings Procs. of the 18th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI’03).
Bui, H.; Venkatesh, S.; and West, G. 2002. Policy recog-
nition in the abstract hidden markov model. Journal of
Artificial Intelligence Research.
Demolombe, R., and Fernandez, A. 2005. Intention
recognition in the situation calculus and probability theory
frameworks. Computational Logic in Multi Agent Systems
358–372.
Demolombe, R., and Hamon, E. 2002. What does it mean
that an agent is performing a typical procedure? a formal
definition in the situation calculus. In Procs. of the 1st In-
ternational Joint Conference on Autonomous Agents and
Multiagent Systems, 905–911.
Geib, C. W., and Steedman, M. 2007. On natural lan-
guage processing and plan recognition. In Procs. of the In-

ternational Joint Conference on Artificial Intelligence (IJ-
CAI’07).
Gelfond, M. 2006. Going places - notes on a modu-
lar development of knowledge about travel. In Procs. of
the AAAI Spring Symposium “Formalizing and Compiling
Background Knowledge and Its Applications to Knowledge
Representation and Question Answering”.
Goultiaeva, A., and Lespeance, Y. 2007. Incremental
plan recognition in an agent programming framework. In
Procs. of AAAI 2007 Workshop on Plan, Activity, and Intent
Recognition (PAIR’07).
Kautz, H., and Allen, J. F. 1996. Generalized plan recog-
nition. In Procs. of 13th National Conference on Artificial
Intelligence (AAAI’96), 32–37.
Niemelä, I., and Simons, P. 1997. Smodels–an implemen-
tation of the stable model and well-founded semantics for
normal logic programs. In Proc. 4th Int’l Conf. on Logic
Programming and Non-Monotonic Reasoning, 420–429.

Actions and Belief Change NMR-2008

33

Model-Based Contractions for Description Logics

Martı́n O. Moguillansky and Marcelo A. Falappa and Guillermo R. Simari
Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET)

Department of Computer Science and Engineering
Universidad Nacional del Sur (UNS), Bahı́a Blanca, ARGENTINA

e-mail: {mom, maf, grs}@cs.uns.edu.ar

Abstract

Model-Based Contractions are a formalism –based on
model-theoretic semantics– which characterizes an op-
eration that modifies a knowledge base to avoid the sat-
isfiability of a given expression. In the context of ontol-
ogy revision, model-based contractions are a functional
component that yields an ontology ready to evolve con-
sistently. In this work we formalize the theory for con-
tractions providing a model, variations, and their ax-
iomatic characterization. Afterwards an algorithm to-
wards its realization is proposed. Such algorithm has no
further impact in computability, since it works on top of
the satisfiability checking of the incoming information.

Introduction
We propose an ontology change operator which models the
dynamics of the knowledge represented by ontologies. Such
operator allow the addition of axioms (terminological de-
scriptions) and assertions to the respective ontology in a con-
sistent manner. In this sense, we follow consistency by as-
suming the change operator to be applied to ontologies for
which consistency is a critical matter due to either, the do-
main they model, or the systems referring to them. Because
of its highly reusable distributed nature, this kind of ontolo-
gies should pass only through consistent intermediate states
of an evolutional process.

For an ontology change operation, it is important to fol-
low the minimal change principle. This is related to the
avoidance of instance data loss, i.e., assertions, whenever it
is possible. When some change is stated, as a result of that,
some axioms may end up unsatisfiable, turning the ontology
to incoherency. Here another important issue is unveiled re-
garding how the old and the new information is considered.

For the sake of ontology evolution, the new information is
some new appreciation of the world produced by a change in
the shared domain, or in its conceptualization. This means
that the new knowledge should be prioritized over the older.
Therefore, when some axiom experiences satisfiability loss
it should be considered outdated wrt. the current state of the
shared domain. Hence, its condition is analyzed in order
to automatically restore its satisfiability, unless the ontology
engineer interprets it needs to be treated separately.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Therefore, realization of the ontology change operation
will rely on two sub-operations, the first one, namely model-
based contractions, will modify the ontology accordingly
to the incoming information such that it could be consis-
tently and coherently incorporated later, whereas the latter
sub-operation1 will restore the satisfiability of the outdated
axioms in order to coherently reincorporate them along with
the new information in a consistent manner.

In this work, we formally define the model-based con-
traction operator, providing its axiomatic characterization,
and an algorithm for its realization. Consequently, as de-
scription logic reasoners usually deal with huge ontologies,
it is of utmost importance to provide an algorithm capable
of reusing previous computations. This means that such al-
gorithm should work on top of the satisfiability checking of
the incoming information.

Description Logics Brief Overview
The following constitutes a very brief overview of the de-
scription logics (DLs) used in this paper, for more detailed
information refer to (Baader et al. 2003). An interpretation
I = (ΔI, ·I) consists of a nonempty domain ΔI , and an
interpretation function ·I that maps every concept to a sub-
set of ΔI , every role to a subset of ΔI × ΔI , and every
individual to an element of ΔI .

The basic description language AL is formed by con-
cept descriptions according to the syntax C, D −→
A|⊥|�|¬A|C �D|∀R.C|∃R.� where A is an atomic con-
cept, R is an atomic role; and the interpretation function ·I
is extended to the universal concept as �I = ΔI ; the bot-
tom concept as ⊥I = ∅; the atomic negation as (¬A)I =
ΔI\AI; the intersection as (C �D)I = CI ∩DI ; the uni-
versal quantification as (∀R.C)I = {a ∈ ΔI|∀b.(a, b) ∈
RI → b ∈ CI}; and the limited existential quantification as
(∃R.�)I = {a ∈ ΔI|∃b.(a, b) ∈ RI}.

More expressive languages are possible by adding dif-
ferent constructors to AL like union of concepts (identi-
fied as U), interpreted as (C �D)I = CI ∪ DI; full ex-
istential quantification (E), interpreted as (∃R.C)I = {a ∈
ΔI|∃b.(a, b) ∈ RI ∧ b ∈ CI}; full negation or complement
(C), interpreted as (¬C)I = ΔI\CI; and more. Extend-

1The formalizations for the second sub-operation and the ontol-
ogy change operation are out of the scope of this work.

Actions and Belief Change NMR-2008

34

ing AL by any of the above yields a particular language re-
spectively named by a string of the form AL[U][E][C]. DLs
considered in this work follow such kind of specifications.

A knowledge base (KB) is a pair Σ = 〈TΣ,AΣ〉, where
TΣ represents the TBox, containing the terminologies (or
axioms) of the application domain, and AΣ, the ABox,
which contains assertions about named individuals in terms
of these terminologies. Regarding the TBox TΣ, axioms are
sketched as C � D and C ≡ D, therefore, an interpretation
I satisfies them whenever CI ⊆ DI and CI = DI respec-
tively. An interpretation I is a model for the TBox TΣ if I
satisfies all the axioms in TΣ. Thus, the TBox TΣ is said to
be satisfiable if it admits a model. Besides, in the ABoxAΣ,
I satisfies C(a) if a ∈ CI , and R(a, b) if (a, b) ∈ RI . An
interpretation I is said to be a model of the ABox AΣ if ev-
ery assertion of AΣ is satisfied by I . Hence, the ABox AΣ

is said to be satisfiable if it admits a model. Finally, regard-
ing the entire KB, an interpretation I is said to be a model
of Σ if every statement in Σ is satisfied by I, and Σ is said
to be satisfiable if it admits a model.

In the rest of this article, we write L to identify some
specific AL[U][E][C] DL. When necessary, we will make
difference in a logic L between the representation for ax-
ioms, writing LT , and the L logic for assertions, noted as
LA. A KB contains implicit knowledge that is made ex-
plicit through inferences. The notion of semantic entailment
is given by Σ |= α, meaning that every model of the KB
Σ ⊆ LT × LA is also a model of the sentence α ∈ L.

(Semantic Entailment) Σ |= α iff M(Σ) ⊆M({α})
The semantics of an ABox in DLs (as every ontologi-

cal language), are characterized by the open world assump-
tion (OWA), this means that absence of information in an
ABox means nothing but lack of knowledge, in contrast to
instances in databases where absence of information is in-
terpreted as negative information.

Remark 1 (Restriction Towards a Practical Approach)
For some description languages (like ALC), every satisfi-
able KB is known to have infinitely many models most of
which are infinite. In order to provide a practical approach,
we will restrict this work to finite sets of finite models.
Besides, unique name assumption (UNA) is also assumed in
order to assure that each individual (in the world) will map
to a unique individual name. Finally, we will assume that
the representation of every KB taken into consideration is
made with an acyclic TBox.

Given the assumptions above, a query α to the KB Σ,
noted as Σ |=? α, is solved by checking if every element I ∈
M(Σ) (i.e., every model of Σ), is also a model of α. If this is
true, the query is said to be satisfied, namely Σ |= α, and α
inferred, being YES the answer. To the contrary, if Σ |= ¬α,
the query is not satisfied, being NO its answer. Finally, if
none of the previous are verified, i.e., Σ �|= α and Σ �|= ¬α,
then the query is answered as UNKNOWN.

Intuitions for Ontology Change Operations
Given a DL L, a consistent KB Σ ⊆ LT × LA and a satis-
fiable sentence ϕ ∈ L, we want Σ to evolve towards a new

KB ΣR ⊆ LT × LA such that ΣR |= ϕ, or equivalently,
by reduction to unsatisfiability, ΣR ∪ {¬ϕ} has no models.
An intuitive solution is to avoid the inference of ¬ϕ such
that the further inclusion of ϕ would end up in a consistent
KB. Therefore, this change operation would be composed by
two main sub-operations, passing from satisfaction of ¬ϕ,
to uncertainty, and afterwards to satisfaction of ϕ. From a
model-theoretic viewpoint (see Fig. 1), this is analogous to
pass from a state in which every model satisfies ¬ϕ, through
an intermediate state in which some models does not satisfy
¬ϕ, to a final state in which no model satisfies ¬ϕ, exactly
as reduction to satisfiability requires.

M(f:'g)M(f:'g))

M(f'g)

M(f:'g)M(f:'g)

M(f'g)

M(f:'g)

M(f'g)

M(§) §Ä :'

M(§0)
M(§R)

§0 © ©

MMMMMMMM((((§§§§RRRRR)))
MMMMMMMMM(((((((§§§§§§00)))))

:

())

MMM((ff::''gg))

MMMMMMMM((((§§§§§)))

(:):

()

M(§)

M(§0)
M(§R)

Figure 1: The operation CΣ(ϕ) and its two sub-operations.

As stated in the introductory section, we want to gener-
ate consistent outcomes from each sub-operation, preserv-
ing coherency and consistency of the final evolved KB. In
this sense, as an effect of the first sub-operation, if an axiom
is predicted to become unsatisfiable –considered along with
the incoming sentence ϕ– it would be eliminated by the first
sub-operation. Afterwards, the second sub-operation would
repair such axioms and incorporate them along with ϕ to the
resultant KB.

Satisfiability restoration of a given axiom may be
achieved by considering its maximal consistent fragment.
For this matter, we can take advantage of the advances
achieved in the last years in the area of ontology debugging
(Schlobach & Cornet 2003; Kalyanpur et al. 2006).

After the first sub-operation is applied, a second sub-
operation consistently adds a set Φ = {ϕ} ∪ TZ , where
ϕ stands for the original expression, and TZ , for the set of
repaired axioms eliminated from Σ. Finally, the ontology
change operation would be: CΣ(ϕ) = (Σ�¬ϕ)⊕Φ, where
“�” refers to the first sub-operation, namely model-based
contraction. The second sub-operation “⊕” is out of the
scope of this paper, and is part of our future work to for-
malize the specification of the ontology change operator C.

The following example shows, in an intuitive manner,
how the ontology change operation would operate.

Example 1 Let ΔI = {a} be a domain for the KB Σ =
〈{C � D1, D3 � C � ¬D2}, {C(a), D1(a), ¬D2(a),
D3(a)}〉. We want to consistently integrate the axiom C �
D1 �D2 to the KB. Since C � D1 is part of the TBox, the
sentence ϕ to incorporate will be just C � D2. Thus, by ef-
fect of an ontology change operation CΣ(C � D2), we want
to achieve a KB ΣR such that ΣR |= ϕ.

By reduction to unsatisfiability, ΣR ∪ {(C � ¬D2)(x)}
for a free variable x, should have no models. Consequently,

Actions and Belief Change NMR-2008

35

we will first generate a contracted KB Σ′ = Σ � (C �
¬D2)(x) such that Σ′ |= ¬ϕ is not verified. Two min-
imal proofs2 arise for ¬ϕ: {C(a),¬D2(a)} and {D3 �
C �¬D2, D3(a)}. Suppose now ¬D2(a) is retired from the
former set, and the axiom D3 � C � ¬D2 from the latter –
given that it becomes unsatisfiable if considered along with
C � D2. Hence, after the contraction “�”, the resultant
KB would be Σ′ = 〈{C � D1}, {D1(a), C(a), D3(a)}〉.

From the second stage of the ontology change operation
“C”, the sentence D3 � C � ¬D2 needs to be repaired. A
possible solution may be to change it to D3 � C.3 Now,
by effect of the final sub-operation “⊕”, we can consistently
add the sentence ϕ along with the repaired axiom. Hence,
the final KB would be ΣR = 〈{C � D1 � D2, D3 � C},
{D1(a), C(a), D3(a)}〉.

Model-Based Contractions
Belief bases are sets of formulae not closed under logical
consequence, containing implicit beliefs that are made ex-
plicit through inferences. Conforming the AGM model (Al-
chourrón, Gärdenfors, & Makinson 1985) of theory change,
Kernel Contractions (Hansson 1994) are a construction for
contracting belief bases based on the following intuition: in
order to avoid the KB to infer a given sentence α, at least
one element of each α-kernel (minimal α proof) is removed.
Afterwards, no proof for α will appear in the resultant KB.

Applying directly kernel contractions to ontology lan-
guages –considering open-world semantics– important con-
cerns appear. For instance, kernel contractions are not de-
signed to reason following case analysis as done by semantic
entailment. This problem is made clear below.

Example 2 Let Σ = 〈∅, {SU (a, b), SU (b, c), SU (c, d),
Re(a), ¬Re(c), ¬Re(d)}〉 be a KB where SU and Re stand
for “supervised-by” and “researcher”, respectively. Now
suppose a new regulation poses that no academic researcher
might be supervised by a non-researcher. Therefore, we
would need to provoke the ontology to evolve by an opera-
tion CΣ(ϕ), where ϕ = Re � ∀SU .Re. In consequence, we
should first apply a model-based contraction Σ � α, where
α = (Re �∃SU .¬Re)(x), avoiding any certainty about the
existence of some researcher who is supervised by a non re-
searcher.

Assuming a domain ΔI = {a, b, c, d}, the only possibil-
ity to answer α is by case analysis on the interpretation I of
the individual name b regarding the concept Re. That is, in
case b ∈ ReI , the related minimal proof would be {Re(b),
SU (b, c),¬Re(c)}, whereas if b ∈ ¬ReI , the related min-
imal proof would be {Re(a), SU (a, b),¬Re(b)}. Finally,
the query Σ |= α is satisfied.

Queries in such situations cannot be correctly answered if
case analysis is not performed. In such a case, kernel con-
tractions would not recognize any α-kernel and therefore,
the inference of α could not be avoided. An alternative for
it could be its redefinition by use of the semantic entailment

2Minimal proofs will be formally defined later.
3A brief discussion on this matter is given by the end of this

article.

“|=”, but again some new problems would appear since it
would no longer find minimal proofs but minimal sets. Each
of those sets will contain an incomplete proof considering
an individual a ∈ CI and the opposite proof for the case in
which a ∈ ¬CI .

Example 3 (Ex. 2 cont.) A set K = {SU (a, b), SU (b, c),
Re(a), ¬Re(c)} is a minimal subset K ⊆ Σ entailing α,
i.e., Σ |= α.

Example 4 Given Σ = 〈∅,AΣ〉, where AΣ = {SU (a, b),
SU (b, c), SU (c, d), SU (e, b), SU (b, f), Re(a), Re(e),
¬Re(c), ¬Re(d), ¬Re(f)}, and the sentence α = (Re �
∃SU .¬Re)(x). Considering a domain ΔI = {a, b, c, d, e,
f}, four different minimal sets for α appear:
K1 = {SU (a, b),SU (b, c),Re(a),¬Re(c)}
K2 = {SU (a, b),SU (b, f),Re(a),¬Re(f)}
K3 = {SU (e, b),SU (b, c),Re(e),¬Re(c)}
K4 = {SU (e, b),SU (b, f),Re(e),¬Re(f)}
From the previous examples, in order to avoid Σ |= α we

may eliminate at least one belief from each set K such that
no minimal set for α would exist. Although this method
“seems to successfully4” achieve a contraction operation,
it is not so reasonable since this would require exponential
space to compute. That is, O(mn), where m is an average of
minimal α-proofs valid in each model I ∈ M(Σ), and n is
the cardinality ofM(Σ). Hence, adapting the classical the-
ory of kernel contractions to ontology languages, by simply
changing its classical consequence operator “�” to semantic
entailment, seems to be quite unnatural and very inefficient.

Contractions Machinery
Our interest relies on a construction requiring polynomial
space to compute. That is, a different construction is needed
over which some new methodology is to be applied. This
construction should rely on the KB and some sole model.
In consequence, the methodology would run in polynomial
space wrt. to the number of minimal α-proofs appearing in
the construction determined by an appropriate model. Such
an approach would allow to operate the change in a more
efficient, intuitive, and natural manner; irrespective of con-
sidering a possibly infinite setM(Σ).

In general, our proposal is based on a similar intuition
to that of Kernels, but since semantic entailment considers
an inference by verifying its satisfiability in every model,
minimal proofs for α should be found in every “extension”
of the KB Σ. Such KB extension, namely ΣI , will contain
the KB Σ extended by the assumptions made in the related
model I ∈ M(Σ).

Definition 1 (KB Extension “ΣI”) Let L be a DL, Σ ⊆
LT × LA, a knowledge base such that Σ = 〈TΣ,AΣ〉, and
M(Σ), its set of models. The finite Σ extension by a finite
model I ∈ M(Σ) is a KB ΣI = 〈TΣ,AΣ ∪ SΣI 〉 where:

SΣI = {C(a)|∀a ∈ ΔI, where a ∈ CI and C(a) �∈ AΣ}∪
{R(a, b)|∀a, b ∈ ΔI , where (a, b) ∈ RI and

R(a, b) �∈ AΣ}.
4It will be clear later that such methodology does not guarantee

success.

Actions and Belief Change NMR-2008

36

The set SΣI is referred as “set of assumptions” determined
by the finite model I.

From the definition above, the extended ABox AΣI of
ΣI is composed by two different kinds of assertions: fac-
tual assertions, i.e., those contained in AΣ; and non-factual
assertions, or so called set of assumptions SΣI .

Whenever Σ |= α, for a KB Σ and a sentence α, we may
identify different explanations for α conformed as minimal
sets, inside some KB extension from a model I.

Definition 2 (Extended α-Kernel “EαK”) Given a DL L,
a KB Σ ⊆ LT × LA, its extension ΣI = 〈TΣ,AΣ ∪ SΣI 〉
and a sentence α ∈ L. An extended α-Kernel (for short
EαK), is a KB K = 〈TK, FK ∪ SK〉 verifying the following
conditions:

(1) K ⊆ ΣI , i.e., TK ⊆ TΣ, FK ⊆ AΣ, and SK ⊆ SΣI .

(2) K |= α.
(3) There is no K′ ⊂ K such that K′ |= α.

From Def. 2, given an EαK K = 〈TK,AK〉, the factual
assertions FK ⊆ AK may be identified as AΣ ∩ AK. The
set containing every EαK in a KB extension is defined as
follows.

Definition 3 (Set of EαKs “ΣI⊥⊥α”) Given a DL L, a KB
Σ ⊆ LT × LA, and a sentence α ∈ L. The set ΣI⊥⊥α ⊆
2LT ×LA is the set of every EαK in the KB extension ΣI .

Different models may determine different sets of EαKs
for each associated KB extension, as is shown below.

Example 5 (Ex. 4 cont.) Consider I ∈ M(Σ) the model
generating the KB extension ΣI = 〈TΣ,AΣ ∪ SΣI 〉, where
SΣI = {}. Therefore, the related EαKs are the four Ki ⊆
ΣI detailed in Ex. 4. Later on, ΣI⊥⊥α = {K1,K2,K3,K4}.

Consider now, a different model I ′ = (ΔI′
, ·I′

), where
ΔI′

= ΔI , and b ∈ ¬ReI . Then, for the related KB exten-
sion ΣI′ = 〈TΣ,AΣ ∪ SΣI′ 〉, it follows SΣI′ = {¬Re(b)}.
Finally, ΣI′⊥⊥α = {{Re(a), SU (a, b), ¬Re(b)}, {Re(e),
SU (e, b), ¬Re(b)}}.

We identify as complete EαK to an EαK containing all the
necessary knowledge to infer α with no need to make case
analysis, i.e., no extra assumptions are required to be done.
From the example above, each EαKin ΣI′⊥⊥α is complete.

We look for a KB extension in which every complete EαK
is contained. In this sense, we can apply a methodology
running in polynomial space wrt. to the number of EαKs in
the KB extension. It is clear that not every model allows to
determine such a KB extension. Thus, it is needed to extend
the KB regarding some appropriate model I.

In this sense, the appropriate KB extension may be de-
termined by upper and lower bounds. That is, the KB ex-
tension should contain only the necessary non-factual asser-
tions to (completely) explain α (i.e., the upper bound); but in
the other hand, every EαK should be completed using only
non-factual assertions from the KB extension (i.e., the lower
bound). In the same manner, the model I determining such
a KB extension should also consider an appropriate mini-
mal domain. That is, the smallest domain which suffices to
identify every complete EαK.

Definition 4 (α-Minimal Extension & α-Minimal Model)
Given a sentence α, a KB Σ, and a model I ∈ M(Σ). The
KB extension ΣI = 〈TΣ,AΣ ∪ SΣI 〉 is α-minimal iff it
follows:

(1) SΣI =
⋃

K∈(ΣI⊥⊥α)
SK, and

(2) there is no I ′ ∈ M(Σ), where ΔI ⊆ ΔI′
, such that for

the related KB extension ΣI′ it holds (1) and ΣI ⊂ ΣI′ .

Consequently, the α-minimal model I is noted as Iα, and
the associated α-minimal extension ΣI is referred as ΣIα .

Proposition 1 If (ΣIα ⊆ ΣI) then (ΣIα
⊥⊥α = ΣI⊥⊥α).

In particular, we are interested in the set of EαKs
“ΣIα

⊥⊥α” determined by an α-minimal model I α. In the
following example it is shown how the structure proposed
so far is built. Note that, although more than one model is
considered in the examples (and thus, more than one KB ex-
tension), the theory requires just one single model.

Example 6 Consider Σ = 〈{C � D}, {C(a), D(b)}〉, α =
D(a), and models of domain {a, b}, determining: SI1 =
{C(b), D(a)}, and SI2 = {¬C(b), D(a)}. Thus, for the KB
extensions Σ1 = 〈{C � D}, {C(a), D(b), C(b), D(a)}〉,
and Σ2 = 〈{C � D}, {C(a), D(b),¬C(b), D(a)}〉, their
respective sets of EαKs will be Σ1

⊥⊥D(a) = {〈{C � D},
{C(a)}〉,〈{}, {D(a)}〉} = Σ2

⊥⊥D(a).
Note that there is just one α-minimal extension ΣIα =
〈{C � D}, {C(a), D(b), D(a)}〉. Hence, its related set of
EαKs ΣIα

⊥⊥D(a) coincides with Σ1
⊥⊥D(a) and Σ2

⊥⊥D(a).

Example 7 (Ex. 2 cont.) Let Iα
1
, Iα

2
∈ M(Σ) be the two

α-minimal models with domain ΔI , such that b ∈ ReIα
1 and

b ∈ ¬ReIα
2 . One EαK appears in each α-minimal exten-

sion: K1 = 〈{}, {SU (b, c), ¬Re(c), Re(b)}〉, K1 ⊆ ΣIα
1
.

K2 = 〈{}, {Re(a), SU (a, b)}∪ {¬Re(b)}〉, K2 ⊆ ΣIα
2
.

Finally, the related sets of EαKs are: ΣIα
1
⊥⊥α = {K1}, and

ΣIα
2
⊥⊥α = {K2}.

In order to avoid α inferences, we need to analyze every
EαK in some set ΣI⊥⊥α. A function “γ”, namely selection
function, determines the appropriate model from where the
KB extension and the set of EαKs are built. Such function
should apply the restrictions in Def. 4 guided by some model
preference criterion, namely “≺”, used to univocally deter-
mine the “most profitable” α-minimal model.

Definition 5 (Model Selection Function “γ”) Let Σ be a
KB, α, a sentence, and “≺”, a model preference criterion.
A function “γ” is a “model selection function” determined
by “≺” iff γα(Σ) = Iα ∈ M(Σ), where Iα is an α-
minimal model and for no other model I ∈ M(Σ), it fol-
lows I ≺ Iα. The selected model Iα will be noted as Iγ .

As stated before, the intuition behind a model-based con-
traction is to impact the cardinality of the set of models sat-
isfying the KB such that some new admitted model will fail
to satisfy α in the resultant KB. For this matter, we will gen-
erate the set of EαKs ΣIγ ⊥⊥α of the KB extension obtained
from the model I γ selected by the function “γ”. Afterwards,
we will define a mapping “σ” from the set ΣIγ ⊥⊥α to a sub-
KB to be further eliminated from the original KB.

Actions and Belief Change NMR-2008

37

In this sense, two levels of deletions are to be considered:
(1) axioms, or (2) assertions supporting the inference of α
from every EαK in the selected KB extension. The foun-
dations of such kind of contractions have been explained
before: axioms are considered outdated and assertions are
chosen when no axiom is considered in the EαK.

Definition 6 (Model Incision Function “σ”) Let L be a
DL, Σ ⊆ LT × LA, a KB, α ∈ L, a sentence, Iγ , the
model selected by the model selection function “γ”, and
σ : 2LT ×LA −→ LT × LA, a function mapping from
(ΣIγ ⊥⊥α) to a KB 〈Tσ,Aσ〉. Then, “σ” is a “model inci-
sion function” iff it verifies:

(1) σ(ΣIγ ⊥⊥α) ⊆ (
⋃

K∈(ΣIγ
⊥⊥α)
K) ∩ Σ.

(2) For all EαK K ∈ (ΣIγ ⊥⊥α) it follows:
a) TK ⊆ Tσ, and
b) if TK = ∅ and FK �= ∅ then FK ∩ Aσ �= ∅.
Note that, from Def. 6, the fact of considering assertions

only when no axiom exists, may be used to specify the
model preference criterion “≺” from Def. 5. Therefore, an
option to identify the “most profitable” α-minimal model
may be to analyze which Iα leads to the KB extension with
less EαKs K verifying TK = ∅. This would avoid instance
data loss, passing more axioms to be debugged by the sec-
ond change sub-operation.

Definition 7 (Model-Based Contraction) Let L be a DL,
Σ ⊆ LT × LA, a KB, α ∈ L, a sentence, ΣIγ , the
KB extended through the selected model I γ; and “σ”, a
model incision function. The operator “�σ”, referred as
model-based contraction determined by “σ”, is defined as
Σ �σ α = Σ\σ(ΣIγ ⊥⊥α).

Finally, “�” is a “model-based contraction operator” for
Σ iff there exists a model incision function “σ” such that
Σ � α = Σ �σ α for all sentence α.

Example 8 (Ex. 6 cont.) From Def. 5 we have only one α-
minimal model Iα = Iγ determining ΣIγ . Later on, there
are two EαKs in ΣIγ ⊥⊥α, from which one is not considered
by the incision function given that its related sets TK and
FK are empty. Finally, since the other EαK considers termi-
nologies (axioms), from Def. 6 we have that σ(ΣIγ ⊥⊥α) =
〈{C � D}, {}〉. Finally, the resultant KB would be Σ′ =
Σ � D(a) = Σ\σ(ΣIγ ⊥⊥D(a)) = 〈{}, {C(a), D(b)}〉.

Axiomatic Characterization
As the basis for the axiomatization, we extend the basic pos-
tulates for bases given in (Hansson 1999).

(Inclusion) Σ � α ⊆ Σ.

(Success) 5 If �|= α then Σ � α �|= α.

(Core Retainment) 6 If β ∈ Σ and β �∈ Σ � α then there is
some H ⊆ ΣIγ such that H �|= α but (H ∪ {β}) |= α.

(Uniformity) For every H ⊆ ΣIγ it is verified that if H |=
α iff H |= β then Σ � α = Σ � β.

5We use |= α to denote α as tautological.
6When β is an axiom, (H ∪ 〈{β}, ∅〉) |= α follows; whereas

when β is an assertion, it follows (H ∪ 〈∅, {β}〉) |= α.

As is shown below, a model-based contraction operator
defined so far does not guarantee success.

Example 9 (Ex. 7 cont.) Suppose I γ = Iα
1

, thus ¬Re(c)
could be chosen by the incision “σ”. In such a case, the
resultant KB Σ′ would admit new models I ′ where c ∈ ReI′

.
Hence a new EαK will appear: H ∪ 〈∅, {Re(c)}〉, where
H = 〈∅, {SU (c, d), ¬Re(d)}〉, H ⊆ Σ′, but also H ⊆ Σ.

A contraction operation not guaranteing success was pro-
posed in (Fermé & Hansson 2001), but in the context of on-
tology evolution, we believe that success should be a must.

After a model-based contraction deletes some beliefs, it
may fail to guarantee success if some subset H ⊆ Σ along
with the negation of some beliefs chosen by “σ”, turns out
being a new α-proof in the resultant KB. These kind of sub-
sets are referred as shielding sets of information. Note that
a shielding set is also a KB.

For a shielding set H , it follows H ∪ 〈∅, Âσ〉 |= α, if Âσ

is a disagreement set of the assertions chosen by “σ”. Intu-
itively, a disagreement set negates some of those assertions
and keeps the rest of them as they are.

Definition 8 (Disagreement set) Given an ABox A, the set
δ(A) of disagreement sets Â is:

δ(A) = {Â �= A|∀β, β ∈ (A\Â) iff ¬β ∈ (Â\A)}

Note that a disagreement set Â may be also referred as a
disagreement ABox. Now we can formally define the shield-
ing sets by means of some disagreement set of AΣ.

Definition 9 (Shielding Set) A set H ⊆ Σ is a “shielding
set” iff H ∪ 〈∅, Â〉 |= α, for some Â ∈ δ(A), A ⊆ AΣ.

From an incision, some of its disagreements may “acti-
vate” a shielding set from Σ. In such a situation, the resul-
tant KB will keep the previous EαKs, and for the new trig-
gered models, a new EαK will appear. Thus, by restricting
incisions, we avoid any shielding set to be activated.

(Anti-Shielding) There is no H ⊆ Σ\σ(ΣIγ ⊥⊥α) such that
H ∪ 〈∅, Âσ〉 |= α, for some Âσ ∈ δ(Aσ).7

This property anticipates the generation of a new model
satisfying α in the resultant KB. If this happens, anti-
shielding restricts the incision function in order to avoid the
validity of that model. Hence, by considering a model-based
contraction determined by a model incision function which
satisfies anti-shielding, we guarantee success.

Definition 10 (Anti-Shielding Model-Based Contraction)
Let “�” be a model-based contraction operator determined
by a model incision function “σ”. The function “σ”
guaranties anti-shielding iff “�” is an “anti-shielding
model-based contraction operator”.

In the following example it is shown how a model incision
function is restricted by anti-shielding.

Example 10 (Ex. 9 cont.) Assume A = {¬Re(c)}, hence
δ(A) = {{Re(c)}}. Thus, given H ∪ 〈∅, Â〉 |= α, where

7Note that σ(ΣIγ
⊥⊥α) = 〈Tσ,Aσ〉.

Actions and Belief Change NMR-2008

38

Â ∈ δ(A), if Aσ = A, where σ(ΣIγ ⊥⊥α) = 〈Tσ,Aσ〉, it
is clear that “σ” does not guarantee anti-shielding. Finally,
σ(ΣIγ ⊥⊥α) = 〈{}, {SU (b, c)}〉. Hence, for the resultant
KB Σ � α = 〈∅, {SU (a, b), SU (c, d), Re(a), ¬Re(c),
¬Re(d)}〉 success is assured, i.e., Σ � α �|= α.

Proposition 2 An operator “�” is an anti-shielding model-
based contraction iff it guaranties success.

Proof: Given a KB Σ = 〈TΣ,AΣ〉, and a sentence α, we will
assume Σ |= α, and �|= α. Moreover, a new contracted KB
Σ′ = Σ � α is such that Σ′ = 〈TΣ′ ,AΣ′〉, where TΣ′ and
AΣ′ are the contracted TBox and ABox, respectively.

(⇒) For the first part, if “�” is an anti-shielding model-
based contraction then it guaranties success, let us assume to
the contrary that “�” does not guarantee success, i.e., Σ ′ |=
α. It follows that every model I ′ ∈ M(Σ′) satisfies α.
Thus, in every KB extension Σ′

I′α there exists at least one
EαK K = 〈TK, FK ∪ SK〉 such that H = 〈TK, FK〉, where
TK ⊆ TΣ′ and FK ⊆ AΣ′ , and a subset of assumed be-
liefs SK ⊆ SI′α , where I ′α ∈ M(Σ′). Let σ(ΣIγ ⊥⊥α) =
〈Tσ,Aσ〉 be the KB determined by model incision function,
such that Tσ ⊆ TΣ and Aσ ⊆ AΣ.

By Def. 7, Aσ �⊆ TΣ′ , then some Σ′
I′α may consider any

disagreement Âσ ∈ δ(Aσ), as well as Aσ itself. Therefore,
SK ⊆ Âσ holds for any Âσ ∈ δ(Aσ). Hence, K |= α,
and in particular H ∪ 〈∅, Âσ〉 |= α hold, contradicting the
anti-shielding postulate.

(⇐) For the opposite way, if “�” does guarantee suc-
cess then it is an anti-shielding model-based contraction. We
know that every I ∈ M(Σ) satisfies α, but since Σ′ �|= α,
there is some I ′ ∈ M(Σ′) which does not satisfy α. Thus,
it is plausible to assume that the interpretation I ′ ends up
being a model for Σ′ as a result of the contraction operation,
i.e., Σ\σ(ΣIγ ⊥⊥α) where Iγ ∈ M(Σ), and σ(ΣIγ ⊥⊥α) =
〈Tσ,Aσ〉. Thereafter, for every EαK K ∈ (ΣIγ ⊥⊥α) we
have two standpoints from Def. 6: a)TK ⊆ Tσ, and b) if
TK = ∅ and FK �= ∅ then FK ∩ Aσ �= ∅.

Since anti-shielding affects only assertional knowledge in
σ(ΣIγ ⊥⊥α), the former case is verified trivially. From case
b), we have Aσ ⊆ Σ and Aσ �⊆ Σ′. This means that Aσ is
satisfied by every model I ∈ M(Σ), but there are some I ′ ∈
M(Σ′) that do not satisfy it. Therefore, for each β ∈ Aσ

there is some I ′ satisfying ¬β. Moreover, there is at least
one model I ′ for each disagreement Âσ ∈ δ(Aσ). Finally,
each I ′ determines a KB extension Σ′

I′ that do not contain
any EαK for α. This means that Σ′

I′ �|= α and since Âσ ⊆
SI′ ⊆ Σ′

I′ , it is clear that there is no H ⊆ Σ′, i.e., H ⊆
Σ\σ(ΣIγ ⊥⊥α) such that H∪〈∅, Âσ〉 |= α, as stated by anti-
shielding. �

Theorem 1 (Anti-Shielding Model-Based Contraction)
An operator “�” is an anti-shielding model-based con-
traction operator iff it satisfies success, inclusion, core
retainment, and uniformity.

Proof: Construction-to-postulates: Let “�” be an anti-
shielding model-based contraction for Σ = 〈TΣ,AΣ〉. We
will show that it satisfies the four conditions of the theorem.

Success follows from the first part of Prop. 2, and inclu-
sion, trivially from Def. 7. For core-retainment, suppose that

β ∈ Σ and β �∈ Σ � α. Then it holds that β ∈ σ(ΣIγ ⊥⊥α),
given that Σ � α = Σ\σ(ΣIγ ⊥⊥α) by Def. 7. Therefore,
by Def. 6, σ(ΣIγ ⊥⊥α) ⊆ (

⋃
K∈(ΣIγ

⊥⊥α)
K) ∩ Σ, where

σ(ΣIγ ⊥⊥α) = 〈Tσ,Aσ〉. Thus, there is some EαKK ⊆ ΣIγ

such that β ∈ K. It follows that β ∈ TΣ or β ∈ AΣ. For
the former, when β ∈ TΣ, we know β ∈ TK and following
condition (2a) in Def. 6, TK ⊆ Tσ holds for every K. For
the latter, when β ∈ AΣ, we know β ∈ FK and following
condition (2b) in Def. 6, we know that TK = ∅, FK �= ∅, and
β ∈ (FK ∩Aσ). Thus, in any case, it is proved the existence
of some EαK K ⊆ ΣIγ such that β ∈ K. Let now consider
H = K\{β}. It is clear that H ⊆ ΣIγ , then H �|= α but
H ∪ {β} |= α (from condition (3) in Def. 2) shows core-
retainment is satisfied.

For uniformity, suppose that it holds for all subsets
B ⊆ ΣIγ that B |= α if and only if B |= β. By
Prop. 3, ΣIγ ⊥⊥α=ΣIγ ⊥⊥β. It follows from this that
σ(ΣIγ ⊥⊥α) = σ(ΣIγ ⊥⊥β), and by the definition of “�” that
Σ � α = Σ � β, so that uniformity is satisfied.

Postulates-to-construction: Let “�” and Σ be such that the
four conditions of the theorem are satisfied. We are going to
show that “�” is an anti-shielding model-based contraction.
For that purpose, let σ be such that for all α:

σ(ΣIγ ⊥⊥α) = Σ\(Σ � α).

This follows from inclusion (Σ � α ⊆ Σ) and Σ � α =
Σ\σ(ΣIγ ⊥⊥α) as posed by Def. 7. Thereafter, we need to
verify that σ is an anti-shielding model incision function for
Σ. To be that, both “γ” and “σ” must be functions, and “σ”
also satisfy (1), and (2) from Def. 6, and anti-shielding.

Proof that “γ” and “σ” are functions: Let α and β be two
sentences such that ΣIγ ⊥⊥α = ΣIγ ⊥⊥β. We need to show
that γα = γβ = Iγ and σ(ΣIγ ⊥⊥α) = σ(ΣIγ ⊥⊥β). It
follows from ΣIγ ⊥⊥α = ΣIγ ⊥⊥β, by Prop. 3, that every
subset B ⊆ ΣIγ implies α if and only if it implies β. Thus,
by uniformity, Σ�α = Σ�β. Hence, from the definition of
“γ”, “σ”, and “�” it follows that σ(ΣIγ ⊥⊥α) = σ(ΣIγ ⊥⊥β).

Proof that (1) is satisfied: We will show that
σ(ΣIγ ⊥⊥α) ⊆ (

⋃
K∈(ΣIγ

⊥⊥α)
K) ∩ Σ. Let β ∈ σ(ΣIγ ⊥⊥α),

it follows from core-retainment (given its preconditions β ∈
Σ and β �∈ Σ � α) that there is some H ⊆ ΣIγ such
that H �|= α but H ∪ {β} |= α. Hence, it follows that
there is some EαK K such that β ∈ K ∈ (ΣIγ ⊥⊥α).
Thus, β ∈

⋃
K∈(ΣIγ

⊥⊥α)
K and since β ∈ Σ, we conclude

β ∈ ((
⋃

K∈(ΣIγ
⊥⊥α)
K) ∩ Σ).

Proof that (2) is satisfied: Suppose that 〈∅, ∅〉 �= K ∈
ΣIγ ⊥⊥α. It follows from this that �|= α. By success, Σ�α �|=
α. Since σ(ΣIγ ⊥⊥α) ⊆ Σ (where σ(ΣIγ ⊥⊥α) = 〈Tσ,Aσ〉)
and K |= α we may conclude that (TK ∪ FK) �⊆ Σ � α,
i.e., that there is some β ∈ (TK ∪ FK) such that β �∈ Σ � α.
This leave us two options: β ∈ Tσ or β ∈ Aσ . Besides,
since (TK ∪ FK) ⊆ Σ it follows β ∈ (Σ\Σ � α), i.e., β ∈
σ(ΣIγ ⊥⊥α). Therefore, we have also that β ∈ TK or β ∈ FK.
Hence, if β ∈ TK, this is enough to prove a). To the contrary,
if β ∈ FK, we have that TK = ∅, FK �= ∅, and β ∈ (FK∩Aσ).
Finally (FK ∩ Aσ) �= ∅.

Actions and Belief Change NMR-2008

39

Proof that “σ” guaranties anti-shielding: Given success, it
follows directly from the second part of Prop. 2. �

The following equivalence is similar to that introduced in
(Hansson 1999). Its proof is absence due to space reasons.

Proposition 3 The following conditions are equivalent:

(1) ΣIγ ⊥⊥α=ΣIγ ⊥⊥β

(2) For all subsets H ⊆ ΣIγ : H |= α iff H |= β.

The following theorems are related to the principles pro-
posed in (Dalal 1988). Theorem 2 assures that any resultant
KB from a model-based contraction operation will conform
the DL used for the previous KB, whereas Theorem 3 ab-
stract away from the DL used, stating that any pair of logi-
cally equivalent knowledge will be equally treated.

Theorem 2 (Adequacy of Representation) Let L be an
AL[U][E][C] DL. For any KB Σ ⊆ LT × LA and any sen-
tence α ∈ L, it follows (Σ � α) ⊆ L× L.

Theorem 3 (Irrelevance of Syntax) Let L,L′ be two
AL[U][E][C] DLs, Σ ⊆ LT × LA and Σ′ ⊆ LT ′ × LA′,
two KBs, and α ∈ L and α′ ∈ L′, two such DL sentences.
If α ≈ α′ (where ≈ means logically equivalent to) and for
every β ∈ Σ and every β ′ ∈ Σ′, β ≈ β′, then for every
βR ∈ (Σ � α) and every β′

R ∈ (Σ′ � α′), βR ≈ β′
R.

Algorithm Specification
Since our theory relies on the proper selection of an α-
minimal model Iγ ∈ M(Σ), it is important to propose an
algorithm implementing the selection function. An interest-
ing approach would be to take advantage of the tableau algo-
rithm used by the DL’s subjacent inference engine, in such
a way that Iγ turns out being its outcome at the time the
satisfiability of α is being checked. This would provide an
important shortcut in favor of the computability, such that
finding the proper model I γ would be attached to the time
of computing the satisfiability checking of the sentence α.

Notice that the (canonical) model identified by a classical
tableau procedure has the form of a model I α, thus we will
trivially assume the devised model as the one selected by the
model selection function “γ”, such that Iα = Iγ . Hence, its
related α-minimal KB extension ΣIγ may be generated and
therefore it could be checked which of the EαKs obtained
by the tableau process is included in ΣIγ , thus generating
the set of EαKs ΣIγ ⊥⊥α. Hence, a model incision function
“σ” may be applied obtaining σ(ΣIγ ⊥⊥α) and finally the
contraction Σ � α is resolved.

A special mention should be done regarding the anti-
shielding property. As seen before, the anti-shielding val-
idation is directly related to the assertional knowledge the
incision function chooses to eliminate, and the sentence α to
be contracted . The main problem appears when the incised
assertions Aσ , and its disagreement sets Âσ, may conform
new models satisfying α. That is, if the sentence α to be con-
tracted considers a concept C and also some role R whose
range is in its complement ¬C (see Ex. 2), this may pro-
voke the disagreement sets to be part of the new α-minimal
extensions of the resultant KB.

To solve this situation, a simple heuristic may consider
to avoid any incision of a concept if its complement is also

considered in the satisfiability checking of the tableau ma-
chinery, disregarding both are relating different individual
names. This is specified below.

Anti-Shielding Rule
Condition: A contains A(x), and ∀R.¬A(y) or ∃R.¬A(y),

for any individual names x, y such that x �= y.
Action: A′ ← A\{A(x),¬A(y)}.

Notice that the anti-shielding rule will be used after ob-
taining a closed constraint system, and it will always leave a
non-empty ABoxA′ since such a rule could only be applied
in the presence of some role R(x, y). Therefore, the model
incision function would have at least R(x, y) to choose.

Algorithm 1 Calculate Σ′ = Σ � α.
Input: Σ, α.
Output: Σ′.−→

S ← tableauProc(Σ, α).

if
−→
S is closed then
Iα ← canonicalModel (Σ,

−→
S).

σ(ΣIγ ⊥⊥α)← antiShIncision(Σ, Iα,
−→
S).

Σ′ ← Σ\σ(ΣIγ ⊥⊥α).
else

Σ′ ← Σ.
end if

The antiShIncision procedure identifies each EαK from
the closed constraint system conforming the model I α and
the KB Σ. This is done by recognizing each EαK at a time,
in order to maintain the same space requirement of the re-
lated tableau procedure. After one EαK is identified, it is
viewed as an instantiation from the closed constraint system,
then the Anti-Shielding Rule above is applied to the EαK
restricting the domain of the incision wrt. assertions. Con-
sequently, the model incision is applied to the remainder of
the EαK at issue, in accordance to Def. 6. Afterwards, the
closed constraint system (which remains intact) will deter-
mine the next recognition of a new EαK.

Theorem 4 (Model-Based Contractions Complexity) Let
L be an ALC DL, Σ ⊆ L, a KB, α ∈ L, a sentence, and
“�”, an anti-shielding model-based contraction operator.
The complexity of Σ � α is PSPACE-complete.

Proof sketch: ALC DLs have been proved to be PSPACE-
complete for satisfiability of concepts descriptions, follow-
ing the related tableau algorithm. Thus, since Algorithm 1
calls once to the tableau procedure, we should analyze that
the rest of the algorithm could be computed in polynomial
space as being required by the procedure tableauProc.

The most problematic procedure in our algorithm may be
antiShIncision . Conforming the given canonical model and
the resultant constraint system, antiShIncision chooses the
related knowledge to each EαK by calculating, and consid-
ering them, each at a time (this is done with no need to calcu-
late the related KB extension). Afterwards, since each EαK
fits the space of the constraint system considered, it follows

Actions and Belief Change NMR-2008

40

that antiShIncision is executed in the polynomial space re-
quired before. Finally, Alg.1 for ALC DLs is proved to be
PSPACE-complete. �

Related Work
Ontology revision is currently an interesting topic in which
belief revision meets description logics. In the last few
years, several articles in this area has been published. For
instance, in (Flouris et al. 2006), incoherence and incon-
sistency of ontologies are formally presented. Based on the
distinction between coherent and consistent negation, a set
of postulates for revising DLs is proposed, although no op-
erator is specified. Recently in (Qi et al. 2008), a kernel
revision operator for terminologies was presented, there an
incision function is specified to delete axioms avoiding a ter-
minology to evolve incoherently. (Ribeiro & Wassermann
2007) presents a similar approach in which an incision is
performed over terminologies dealing with inconsistency.
Similarly, in (Haase et al. 2005), based on a selection func-
tion different sub-ontologies are identified to consistently in-
corporate a given new axiom.

In general, most of the ontology change operators pro-
posed so far are based on the notions of MIPS and MUPS.
Such constructions were originally presented in (Schlobach
& Cornet 2003) as a debug tool for pinpointing terminolog-
ical errors to correct inconsistencies. In contrast, in (Meyer,
Lee, & Booth 2005) the KB is weakened and inconsistencies
are also tolerated.

In our approach, we manage the evolution in ontologies
by considering not only axioms but also assertional knowl-
edge. Moreover, a model-based contraction addresses in ad-
vance inconsistencies and incoherencies, that is, statements
eliminated from the ontology avoid as much as possible in-
stance data loss (following minimal change). Afterwards,
the intention of the complete change operator is to accom-
modate the deleted axioms to avoid incoherency, and further
reincorporate them. This latter sub-task of the change oper-
ator is part of our ongoing work in the matter.

Similar to the construction of α-kernels, MUPS are de-
fined as minimal inconsistent sets for a given atomic con-
cept. This structure is constructed with the aim of restor-
ing satisfiability to an unsatisfiable concept definition. In
our approach, we anticipate the change and prepare the on-
tology to accept the new information consistently, leaving
the accommodation of outdated axioms to the completion
of the ontology change operation. This is the purpose of
model-based contractions, defined as a functional part of the
general change operation that makes effective an ontological
change.

As stated before, model-based contractions are motivated
by kernel contractions in their intuitions of breaking mini-
mal proofs for a given sentence, but despite both construc-
tions delete beliefs from minimal proofs, they are seman-
tically different. In kernel contractions, deletions break or
cut proofs. However, in model-based contractions deletions
imply a variation of the set of models and therefore the gen-
eration of new associated KB extensions, while the original
proofs remain.

In (Dalal 1988) a KB revision operation was semanti-
cally specified at the knowledge level by considering model-
theoretic semantics. Although, as stated by the author, no
consideration about differential treatment of certain atoms,
and even formulae, is taken into account, so that some be-
liefs could be more easily given up.

The six AGM basic postulates for contractions (Al-
chourrón, Gärdenfors, & Makinson 1985) were supposed to
capture the intuition behind any contraction operation on a
belief set (closed under logical consequence). But recently
in (Flouris February 2006), it was shown that some Tarskian
logics –non-AGM Compliant logics– do not admit a contrac-
tion operation satisfying the six AGM postulates. However,
they admit contractions without recovery.

Regarding DLs, we are particularly interested in very ex-
pressive logics like SHIF(D) andSHOIN (D), which are
shown to be equivalent to OWL-Lite and OWL-DL (Hor-
rocks & Patel-Schneider 2003), the two OWL sub-languages
for which complete reasoners are known. Such DLs are
known to be non-AGM Compliant (Flouris February 2006),
but since this requires to guarantee recovery, the alternative
to find some replacement postulate appears sensible.

In particular, recovery has been the most problematic pos-
tulate, standing unnaturally for the principle of minimal
change. For instance, in (Hansson 1999) regarding bases,
core-retainment have been proposed as a substitute for re-
covery, while uniformity stands for extensionality.

Discussion
In contrast to item 2a) in Def. 6, it seems enough for it to be
defined as: “If TK �= ∅ then TK ∩ Tσ �= ∅, and... ”.

Although that would (apparently) follow minimal change,
such decision would be a detriment to minimal change wrt.
the complete ontology change operator, as will be seen be-
low. In consequence, we decided to take complete termi-
nologies as stated by the following intuition: when an axiom
ends up being unsatisfiable, a contradiction appears while
checking its unfolded version. Since that terminology is part
of a minimal α-proof, each of the axioms considered –along
with the sentence to be incorporated– are interrelated, as in-
ferential steps to infer a minimal incoherence.

Axiom unfolding may provoke an explosion in the size
of the search space leading to a notable degradation in per-
formance. For that reason, a careful analysis is required to
provide an efficient methodology. In (Tsarkov, Horrocks, &
Patel-Schneider 2007), a complete overview of lazy unfold-
ing and other reasoning optimizations are described.

By analyzing a unique unfolded axiom it let us to iden-
tify the exact point in which the axiom turns to unsatisfia-
bility. That is, the terminology from each EαK along with
the sentence ϕ is a minimal incoherence preserving sub-
terminology (MIPS). After that, technics from ontology de-
bugging could be applied to restore coherence to the sub-
terminology. Finally, it is incorporated to the KB.

For instance, in Ex. 1, we have axiom D3 � C � ¬D2

in an EαK. Considering the sentence ϕ = C � D2, note
that {D3 � C � ¬D2, C � D2} is a MIPS. It is clear that
the unfolded axiom D3 � D2 � ¬D2 is unsatisfiable. Later

Actions and Belief Change NMR-2008

41

on, coherency may be restored by assuming the unfolded
axiom as D3 � D2, which means that the repaired sub-
terminology ends up being {D3 � C, C � D2}. Finally, the
repaired terminology may be reincorporated to the evolved
KB, which would end up consistent and coherent.

Note that, this (apparently) drawback on minimal change
wrt. the contraction does not contradict core-retainment.
The matter discussed above is part of the ongoing work, and
is proposed as future work for the completion of the ontol-
ogy change operation.

Conclusions and Future Work
In this paper we have proposed a new contraction operator
of model-theoretic semantics, dedicated to avoid the infer-
ence of a sentence α in a specific ontology, both expressed
in some description language as AL[U][E][C].

The process modeled by model-based contractions may
be summed up as follows: from an ontology O and some
finite model I, we extend the ontology to OI . In it, differ-
ent sub-ontologies, namely EαKs K1,K2, . . . are identified.
Analyzing the information in such sub-ontologies, an inci-
sion function “σ” determines a sub-ontologyOσ ⊆ O, such
that O |= α, but (O\Oσ) �|= α.

Our intention regarding the formal theory here provided,
is to apply it on other more expressive DLs like SHIF(D)
and SHOIN (D). This work is introductory in that sense.
As part of its preliminary results, an algorithm was pro-
vided as a possible option towards its further realization.
Such algorithm has been defined on top of the tableau proce-
dure used by the related DL reasoner to find the appropriate
model for the theory to be applied. Moreover, since the the-
ory mostly relies on such a selection, the complexity results
in terms of the space required to compute, depends on the
tableaux algorithm used to reason.

In this sense, the model selection (and its related prefer-
ence criterion “≺”) has been abstracted away from the al-
gorithm, and assumed to be the canonical model recognized
from the tableau procedure. For this matter, it becomes in-
teresting to investigate the model preference criterion “≺”
to be specified. By determining such a criterion, the tableau
procedure might be directed by specifying an order of the
transformation rules to apply, and different properties to de-
termine which constraint systems should be attended first.

Since ontologies are highly reusable distributed, genera-
tion of intermediate inconsistent states may be critical for
any change operation. This is a considerable advantage that
model-based contractions provide, since they “foretell” any
undesired effect from the change operation, repairing it in
advance. In this sense, adjustment of outdated axioms is
part of our future work in the field of ontology debugging.

This proposal would be incomplete, without considering
model-based contractions as a sub-operation of a broader
ontology change operator. Indeed, some assumptions made
relying on that consideration, are sensible only for that mat-
ter. Future work also involves the formalization of the ontol-
ogy change operation, along with a set of general principles
for the evolution, to state a set of postulates by which the
new change operator may be axiomatically characterized.

Acknowledgments
We would like to thank to Nicolás D. Rotstein, Juergen Dix,
Gabriele Kern-Isberner, and Pablo R. Fillottrani for the in-
valuable contributions provided. This work is partially fi-
nanced by CONICET (PIP 5050), Universidad Nacional del
Sur (PGI 24/ZN11) and Agencia Nacional de Promoción
Cientı́fica y Tecnológica (PICT 2002 Nro 13096).

References
Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985.
On the Logic of Theory Change: Partial Meet Contraction
and Revision Functions. The Journal of Symbolic Logic
50:510–530.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P., eds. 2003. Description Logic Hand-
book: Theory, Implementation and Application. Cam-
bridge: Cambridge University Press.
Dalal, M. 1988. Investigations into a Theory of Knowledge
Base Revision. In AAAI, 475–479.
Fermé, E., and Hansson, S. O. 2001. Shielded Contrac-
tion. In M-A Williams and H. Rott eds. Frontiers in Belief
Revision. Applied Logic Series 22 85–107.
Flouris, G.; Huang, Z.; Pan, J. Z.; Plexousakis, D.; and
Wache, H. 2006. Inconsistencies, Negations and Changes
in Ontologies. In AAAI, 1295–1300.
Flouris, G. February 2006. On Belief Change and On-
tology Evolution. Doctoral Dissertation, Department of
Computer Science, University of Crete.
Haase, P.; van Harmelen, F.; Huang, Z.; Stuckenschmidt,
H.; and Sure, Y. 2005. A Framework for Handling Incon-
sistency in Changing Ontologies. In ISWC, 353–367.
Hansson, S. O. 1994. Kernel Contraction. Journal of Sym-
bolic Logic 59:845–859.
Hansson, S. O. 1999. A Textbook of Belief Dynamics:
Theory Change and Database Updating. Springer.
Horrocks, I., and Patel-Schneider, P. 2003. Reducing OWL
Entailment to Description Logic Satisfiability. ISWC, 2003
2870:17–29.
Kalyanpur, A.; Parsia, B.; Sirin, E.; and Grau, B. C. 2006.
Repairing Unsatisfiable Concepts in OWL Ontologies. In
ESWC, 170–184.
Meyer, T.; Lee, K.; and Booth, R. 2005. Knowledge Inte-
gration for Description Logics. In AAAI, 645–650.
Qi, G.; Haase, P.; Huang, Z.; and Pan, J. Z. 2008. A Kernel
Revision Operator for Terminologies. In DL.
Ribeiro, M. M., and Wassermann, R. 2007. Base Revision
in Description Logics - prelimimnary results. In IWOD.
Schlobach, S., and Cornet, R. 2003. Non-Standard Rea-
soning Services for the Debugging of Description Logic
Terminologies. In IJCAI, 355–362.
Tsarkov, D.; Horrocks, I.; and Patel-Schneider, P. F. 2007.
Optimizing Terminological Reasoning for Expressive De-
scription Logics. J. Autom. Reason. 39(3):277–316.

Actions and Belief Change NMR-2008

42

Degrees of Recovery and Inclusion in Belief Base Dynamics

Márcio Moretto Ribeiro and Renata Wassermann
Department of Computer Science
University of São Paulo, Brasil

{marciomr,renata}@ime.usp.br

Abstract

When contracting a formula from a belief base, two desider-
ata compete: one wants to avoid including any new belief in
the process (inclusion) but may want to be able to recover
information that was in the base before the contraction took
place (recovery).
The AGM paradigm imposes both constraints on contraction
operations. However, for finite belief bases inclusion and re-
covery cannot be simultaneously satisfied.
In this paper, we examine constructions that weaken the in-
clusion constraint and retain some form of recovery. We show
that depending on what is allowed to be added, we obtain a
counterpart to the principle of minimal change, where we add
just enough information to allow recovery.

Introduction
Belief Revision (Gärdenfors 1988; Gärdenfors and Rott
1995; Hansson 1999) deals with the problem of accommo-
dating new information into a body of existing beliefs. The
new piece of information may be inconsistent with the pre-
vious information held by the agent. In this case, he may
have to give up some previous beliefs.

The problem has been extensively studied in the litera-
ture and most formal proposals derive from what is known
as the AGM paradigm, due to the initials of the authors
of (Alchourrón, Gärdenfors, and Makinson 1985). In the
AGM paradigm, three operations of belief change are distin-
guished: expansion, which is the simple addition of a new
belief; contraction, which consists in removing the desired
belief; and revision, which consists in adding a new belief in
such a way that the resulting set is consistent.

In the AGM paradigm, the beliefs of an agent are rep-
resented by a set of formulas closed under logical conse-
quence, a belief set. The operation of expansion is obtained
by adding the new belief and closing the resulting set un-
der logical consequence. The operations of contraction and
revision are not uniquely defined, but restricted by a set of
desired axioms (the rationality postulates). Several mathe-
matical constructions were proposed that have the property
of being equivalent to the set of postulates, in the sense that
not only an operation following these constructions satisfies

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the postulates, but also any operation satisfying the postu-
lates can be obtained from these constructions (Gärdenfors
1988). All of these constructions satisfy the Levi identity,
that shows how revision can be obtained from contraction
and expansion. Therefore, in this paper we will concentrate
on the contraction operation.

The six basic AGM postulates for contraction are listed
below:

(K-1) K − ϕ is a belief set (closure)
(K-2) K − ϕ ⊆ K (inclusion)
(K-3) If ϕ 6∈ K, then K − ϕ = K (vacuity)
(K-4) If not ` ϕ, then ϕ 6∈ K − ϕ (success)
(K-5) K ⊆ (K − ϕ) + ϕ (recovery)
(K-6) If ` ϕ↔ ψ, then K −ϕ = K −ψ (extensionality)

These postulates are supposed to capture the intuition be-
hind the operation of giving up a belief in a rational way.
Postulate (K-1) says that the result of contracting a belief
set by a formula should again be a belief set. The next pos-
tulate assures that in an operation of contraction no new for-
mulas are added to the initial belief set. If the formula to
be contracted is not an element of the initial belief set, then
by (K-3) nothing changes. Postulate (K-4) says that unless
the sentence to be contracted is logically valid (and hence,
an element of every theory), it is not an element of the re-
sulting belief set. The recovery postulate (K-5) is the most
controversial one (Makinson 1987). It says that a contrac-
tion should be recoverable, that is, that the original belief
set should be recovered by expanding by the formula that
was contracted. The last postulate assures that contraction
by logically equivalent sentences produces the same output.

The postulate of recovery has been debated since the very
beginning of the AGM paradigm. We want to avoid contrac-
tion operations that simply discard all the beliefs. Intuitively,
when we contract by a formula α, we want to discard a min-
imal subset of the belief set such that the resulting set does
not contain α. This is known as the Principle of Minimal
Change. Recovery is one way to try to capture this minimal-
ity, but some examples show that the postulate may be too
strong:

Example 1 (Hansson 1999): “I have read in a book
about Cleopatra that she had both a son and a daughter. My

Actions and Belief Change NMR-2008

43

set of beliefs therefore contains both p and q, where p de-
notes that Cleopatra had a son and q that she had a daughter.
I then learn from a knowledgeable friend that the book is in
fact a historical novel. After that I contract p ∨ q from my
set of beliefs, i.e., I do not any longer believe that Cleopatra
had a child. Soon after that, however, I learn from a reliable
source that Cleopatra had a child. It seems perfectly reason-
able for me to then add p ∨ q to my set of beliefs without
also reintroducing either p or q. This contradicts Recovery.”

Operations that satisfy (K-1)-(K-4) and (K-6), i.e., that do
not satisfy recovery, were called withdrawals in (Makinson
1987). There are several constructions in the literature that
do not satisfy recovery (Makinson 1987; Fermé 2001; Rott
and Pagnucco 1999), but for belief sets they all present some
other undesirable property.

The postulates of success and inclusion are sometimes
seen as the minimal requirements for a contraction opera-
tion. Together they state that the desired belief is removed
and nothing else new is included in the belief set. (Booth et
al. 2005) calls retraction an operation that satisfies (K-1),
(K-3), (K-4) and (K-6) plusK−⊥ = K (failure). A retrac-
tion does not satisfy recovery or inclusion. The idea is that
the contraction of a formula can “liberate” other beliefs that
were abandoned because of that formula.

An alternative representation to belief sets is the use of
belief bases, i.e., sets of formulas that are not necessarily
closed under logical consequence. Besides being more ex-
pressive (as we can always derive the corresponding belief
set taking the closure of a belief base), belief bases have
clear advantages from the computational point of view. For
belief bases, there are constructions that seem reasonable
and do not satisfy recovery, as we will show later. The use
of belief bases instead of logically closed sets brings with it
the possibility of distinguishing between different syntacti-
cal representations of the same information. The belief bases
B1 = {p, q}, B2 = {p ∧ q}, and B3 = {p, p → q} are all
different, although they imply exactly the same formulas ac-
cording to classical logic. We can look at this possibility as
an advantage in terms of expressivity. If we do not want to
distinguish between the three cases, we only have to look to
the formulas in the logical closure of the bases.

In this paper we will discuss the role and adequacy of the
inclusion postulate and its relation to recovery. If we move
from closed belief sets to belief bases, the postulate may be
too restrictive, as the following examples show:

Example 2: Suppose we have a belief base containing
p ∧ q, which stands for the fact that Cleopatra had a son (p)
and a that she had a daughter (q). If we want to contract the
base by p, i.e., we want to remove the belief that she had a
son, we have to give up the whole conjunction, and since the
formula q is not included in the base, we give up the belief
that Cleopatra had a daughter too.

Example 3: Suppose I believe that penguins are birds
(p → b) and that birds fly (b → f). Now I want to con-
tract my belief that penguins fly (p → f). We may want
to end with the belief that all birds except for penguins fly

((b ∧ ¬p) → f). This is also not allowed if the inclusion
postulate holds.

The third example is a typical case of what (Maranhao
2001) calls Refinement, where there is a rule that needs to
be weakened in order to accommodate exceptions.

We would like to have a construction that allows us to
keep parts of formulas being removed. In this paper, we
will present some ideas on such constructions. We will
present two constructions for contraction without inclusion:
one which is based on the idea of first expanding the base
and then applying partial meet contraction (Alchourrón,
Gärdenfors, and Makinson 1985) to it and one where we first
apply partial meet contraction to the base and then expand
the result.

It is important to note that even if we are questioning the
adequacy of inclusion, we are concerned about it with re-
spect to belief bases. We are not willing to allow completely
new information to be added during contraction (as is the
case of retraction), but only to allow the addition of infor-
mation that was previously derivable. If we look at the clo-
sure of the belief base, we are not adding, but just retaining
information.

The rest of the paper is organized as follows: in the next
section, we introduce partial meet contraction of belief bases
and its properties. Then we give an example of contraction
without inclusion and propose a more general construction.
We show that this construction can be instantiated and give
rise to operations with different properties. We also pro-
pose a second construction together with a new rationality
postulate and show how to introduce the idea of degrees of
recovery.

Throughout the paper we use lower case letters to denote
atoms, Greek lower case for formulas and upper case letters
to denote set of formulas. We considerCn to be the classical
consequence operator and A ` α if and only if α ∈ Cn(A).

Contraction of Belief Bases
In this section, we will present postulates and a construc-
tion for contraction of belief bases. We will then discuss the
properties of the operation.

The first construction for contraction that was proposed
and proved to be equivalent to the six AGM postulates
was Partial Meet Contraction (Alchourrón, Gärdenfors, and
Makinson 1985). The operation is based on the idea of se-
lecting maximal subsets of a belief set that do not imply the
formula to be contracted.

Given a belief set K and a formula α, the remainder of K
and α, denoted by K⊥α is the set of maximal subsets of K
that do not imply α.

Definition 1 (Alchourrón and Makinson 1982) Let X be a
set of formulas and α a formula. For any set Y , Y ∈ X⊥α
if and only if:

• Y ⊆ X
• Y 6` α
• For all Y ′ such that Y ⊂ Y ′ ⊆ X , Y ′ ` α.

Actions and Belief Change NMR-2008

44

The operation of contraction is based on selecting the best
sets in K⊥α and taking their intersection. The choice is
encoded into a selection function:

Definition 2 (Alchourrón, Gärdenfors, and Makinson
1985) A selection function for K is a function γ such that:

• If K⊥α 6= ∅, then ∅ 6= γ(K⊥α) ⊆ K⊥α.
• Otherwise, γ(K⊥α) = {K}.
Definition 3 (Alchourrón, Gärdenfors, and Makinson
1985) The partial meet contraction operator on K based
on a selection function γ is the operator−γ such that for all
sentences α:
K−γα =

⋂
γ(K⊥α).

The operation of partial meet contraction was proven to
be completely axiomatized by the set of postulates (K-1)-
(K-6):

Theorem 4 (Alchourrón, Gärdenfors, and Makinson 1985)
An operation − is a partial meet contraction if and only if it
satisfies postulates (K-1)-(K-6).

The same construction can be used for belief bases. It is
easy to see that for belief bases, −γ satisfies (K-2), (K-4),
(K-6) and a stronger version of (K-3) that we call logical
vacuity: If α 6∈ Cn(B), then B−α = B. To see that it does
not satisfy (K-5), we can look at the Cleopatra example:

Example 1 Revisited: Let B = {p, q}. Then the re-
mainder of B and p ∨ q is B⊥(p ∨ q) = {∅}. Hence,
γ(B⊥(p ∨ q)) = {∅} and the contraction is given by
B−γ(p ∨ q) = ∅.

But adding p ∨ q again does not necessarily bring all the
information back: B 6⊆ B−γ(p ∨ q) + (p ∨ q) = {p ∨ q}.

Given a contraction operator on belief bases, we can de-
fine a contraction operator on belief sets generated from it
by taking the closure of the result. If − is a contraction
on belief bases, then it generates an operator −′ such that
Cn(B) −′ α = Cn(B − α). If −γ is a partial meet base
contraction, the example shows that even the operation on
belief sets generated from it does not satisfy recovery, i.e.,
Cn(B) 6⊆ Cn(B−γ(p ∨ q)) + (p ∨ q) = Cn({p ∨ q}).
Actually, Hansson (Hansson 1999) has shown that under

very general conditions, any base-generated contraction op-
eration fails to satisfy recovery.

Hansson has proposed an alternative axiomatization for
partial meet base contraction and proven that it is equivalent
to the construction:

Theorem 5 (Hansson 1992) An operator − is an operator
of partial meet base contraction on B if and only if:

• If α 6∈ Cn(∅), then α 6∈ Cn(B−α) (success)
• B−α ⊆ B (inclusion)
• If β ∈ B \ (B−α), then there is some B′ such that
B−α ⊆ B′ ⊆ B, α 6∈ Cn(B′) and α ∈ Cn(B′ ∪ {β})
(relevance)

• If for all subsets B′ of B, α ∈ Cn(B′) if and only if
β ∈ Cn(B′), then B−α = B−β (uniformity)

The inclusion and success postulates are the same as (K-
2) and (K-4). The closure postulate ((K-1)) does not apply
to belief bases. The last postulate (uniformity) is a stronger
version of extensionality. Instead of recovery, Hansson sug-
gested the relevance postulate in order to capture the idea of
minimal change. In a contraction by α, the only formulas
given up are those that somehow contribute to the derivation
of α.

As we have seen, adapting the traditional AGM construc-
tion of partial meet contraction to belief bases results in an
operation that satisfies inclusion and success, but not recov-
ery. In the next section, we will see how weakening inclu-
sion can bring back some sort of recovery.

Contraction without Inclusion
We have seen in the Introduction that even the inclusion pos-
tulate may be too strong when talking about belief bases. We
would like sometimes to retain parts of the beliefs that are
being given up, which means replacing them by some of
their consequences. The second Cleopatra example (Exam-
ple 2) shows that we may want to have {p ∧ q} − p = {q},
i.e., instead of giving up the conjunction, replace it by one
of its conjuncts.

Giving up inclusion all together may bring too much free-
dom for the allowed constructions: we could end up adding
just any formula that did not threaten success, such as hav-
ing {p} − p = {q}. The idea is to weaken the postulate so
as to allow the addition of some kinds of formulas. In this
section and the next one, we will explore some possibilities.
The constructions that we propose satisfy logical inclusion,
a weaker version of inclusion proposed in (Hansson 1989):

(logical inclusion) Cn(B − α) ⊆ Cn(B)

Note that if Cn is Tarskian, logical inclusion is equivalent
to B − α ⊆ Cn(B). We will use any of the two forms in
this paper. Hansson called an operation satisfying success
and logical inclusion a pseudo-contraction.

Following the same line, we may think of a weaker ver-
sion of recovery. Recall that recovery for belief bases would
state that B ⊆ (B − α) ∪ {α}. We can relax the postulate
requiring only that the original base is contained in the clo-
sure of the result of first contracting and then expanding by
the same formula:

(logical recovery) B ⊆ Cn(B − α+ α)

It is easy to see that logical recovery is indeed weaker
than recovery. Recovery implies logical recovery, since Cn
is Tarskian. If we look again at Example 2, we can think
of an operation that satisfies logical recovery but does not
satisfy recovery.

Example 2 Revisited: Let B = {p ∧ q}, and suppose we
want to give up the belief in p and retain the belief in q, i.e.,
we want that the result of removing p fromB isB−p = {q}.
If expansion is defined in the usual way, as the simple union
of a base and a formula, than B 6⊆ (B − p) + p = {p, q},
but B ⊆ Cn({p, q}).

Actions and Belief Change NMR-2008

45

Nebel has proposed a construction for pseudo-contraction
that satisfies logical recovery. The idea is to add to partial
meet contraction some consequences of the formulas of the
original belief base so that they allow for the recovery of the
contracted sentences:
Definition 6 (Nebel 1989) Let B be a finite belief base, α a
formula and γ a selection function.

B−α =
{
B if α ∈ Cn(∅)⋂
γ(B⊥α) ∪ {α→ β|β ∈ B} otherwise

It is easy to see that not all formulas of the form α → β
have to be added, we can restrict ourselves to those β such
that β ∈ B \

⋂
γ(B⊥α) and still retain logical recovery:

Proposition 7 LetB be a finite belief base, α a formula and
γ a selection function and define the contraction B − α as:

B−α =

{
B if α ∈ Cn(∅)⋂
γ(B⊥α) ∪ {α→ β|β ∈ B \

⋂
γ(B⊥α)}

otherwise
Then − satisfies logical inclusion, logical vacuity, suc-

cess, logical recovery and extensionality.
Proof: Logical inclusion, logical vacuity, logical recov-

ery and extensionality follow directly from the construction.
To see that success is satisfied, suppose that α 6∈ Cn(∅)
and α ∈ Cn(B−α). Then there are β1, β2, ..., βn in
B \

⋂
γ(B⊥α) such that

⋂
γ(B⊥α) ∪ {α → β1, α →

β2, ..., α → βn} ` α. Using the deduction theorem and
the fact that (α → β) → α is equivalent to α, we have that⋂
γ(B⊥α) ` α, which we know cannot be the case (since

this is the traditional partial meet construction). 2

In a sense, Nebel’s construction seems to have been
coined to satisfy recovery. There is no other intuition about
why exactly the implications of the form {α → β|β ∈ B}
should be added.

If we go back to our second Cleopatra example (Example
2), Nebel’s pseudo-contraction (or the more economic form
of it) would make {p∧ q}− p = {p→ p∧ q}, which means
that if we do not believe anymore that Cleopatra had a son,
we do not know anything about her having a daughter.

We will propose here a slightly different construction.
Suppose that we have a partial meet contraction for a be-
lief base B, with an associated selection function γ. Instead
of taking the result of the contraction and then adding some
formulas, we will first expand the belief base and then per-
form a partial meet contraction.

Let Cn∗ denote an operation that generates some conse-
quences of a set of formulas, i.e., Cn∗(A) ⊆ Cn(A). As
an example, we could have Cn∗(A) = {α ∨ β|α ∈ A}.
Given a selection function γ for a set B, we can extend γ to
a selection function for a superset of B. Such extension is
usually not unique.
Definition 8 Let γ be a selection function for B and let B∗
contain B. An extension of γ to B∗ is a selection function
γ∗ such that for every Y ∈ γ∗(B∗⊥α) there is an X ∈
γ(B⊥α) such that X ⊆ Y .
Observation 9 Let γ be a selection function for B and let
B∗ contain B. If γ∗ is an extension of γ to B∗, then for any
X ∈ γ(B⊥α) there is a Y ∈ γ∗(B∗⊥α) such that X ⊆ Y .

We define the general partial meet pseudo-contraction by
first expanding B by a set containing some of the conse-
quences of the formulas that would be given up in a partial
meet contraction, and then applying partial meet contraction
on the expanded base. The set of formulas that would be
given up is given by {β|β ∈ B \

⋂
γ(B⊥α)} and the conse-

quences that will be used are selected by Cn∗. We call B∗
the result of expanding B with the selected consequences.

Definition 10 Let B be a finite belief base, α a formula
and γ a selection function for B. The general partial meet
pseudo-contraction B − α is given by:

B − α =
{
B if α ∈ Cn(∅)⋂
γ∗(B∗⊥α) otherwise

where B∗ = B ∪ Cn∗({β|β ∈ B \
⋂
γ(B⊥α)}) and γ∗

is an extension of γ.

Proposition 11 The pseudo-contraction operation defined
as above satisfies logical inclusion, logical vacuity, success,
and extensionality.

Proof: Directly from the definition and the observation
that

⋂
γ(B⊥α) satisfies extensionality, thus equivalent for-

mulas generate the same B∗. 2

The proposition shows that general pseudo-contraction
satisfies some form of inclusion, vacuity, success and ex-
tensionality, four of the five relevant AGM postulates (clo-
sure is not applicable to belief bases). Moreover, if we
consider the operation on belief sets generated from gen-
eral partial meet pseudo-contraction, it satisfies closure, in-
clusion, vacuity, success, and extensionality. Whether this
construction satisfies logical recovery or not depends on
the Cn∗ used. It is easy to see that the restricted form
of Nebel’s pseudo-contraction can be obtained if we take
Cn∗(A) = {α → β|β ∈ A}. In this particular case, we
do have logical recovery. And the operation on belief sets
generated from it satisfies recovery.

We can think of different definitions for Cn∗ depending
on the intuitions. For example, if we look once more to
the Cleopatra example, we may want to allow the addition
of only those consequences which are subformulas of the
formulas removed. The pseudo-contraction operation using
this definition of Cn∗ does not satisfy logical recovery, as
can be seen from the following example:

Example 4: Let B = {p, p → q}. Then B⊥q =
{{p}, {p → q}}. Suppose that γ(B⊥q) = {{p → q}}.
Since the only consequence of p → q that is a subformula
of it is the whole formula, we have B∗ = B. And since γ∗
extends γ, we must have γ∗(B⊥q) = {{p → q}}. Hence
B − q = {p→ q} and B 6⊆ Cn(B − q + q).

The operation does not even satisfy the weaker postulate
of relevance, as inclusion may not hold and thus we may not
have a set B′ such that B−α ⊆ B′ ⊆ B. It does how-
ever satisfy a still weaker version of relevance, introduced
by Hansson in (Hannson 1991):

(core-retainment) If β ∈ B \ (B−α), then there is some
B′ such that B′ ⊆ B, α 6∈ Cn(B′) and α ∈ Cn(B′ ∪ {β})

Actions and Belief Change NMR-2008

46

Core-retainment, as relevance, states that if a belief is
given up in a contraction, then it was relevant for the deriva-
tion of the formula contracted. But unlike relevance, it does
not require inclusion. In fact, core-retainment is satisfied
for any general partial meet pseudo-contraction, regardless
of the particular Cn∗ used (we do not even need to have
Cn∗(A) ⊆ Cn(A)):

Proposition 12 For any operatorCn∗, general partial meet
pseudo-contraction satisfies core-retainment.

Proof: Let β ∈ B \ (B−α). Then, there is X ∈
γ∗(B∗⊥α) such that β 6∈ X . As γ∗ extends γ, there must
be Y ∈ γ(B⊥α) such that Y ⊆ X . Then take B′ = Y . 2

Another way to relax relevance is to follow what was done
with inclusion and recovery. Instead of requiring inclusion,
we can require logical inclusion:

(logical relevance) If β ∈ B \ (B−α), then there is some
B′ such that B−α ⊆ B′ ⊆ Cn(B), α 6∈ Cn(B′) and α ∈
Cn(B′ ∪ {β}).

Logical relevance is satisfied by any general partial meet
pseudo-contraction whenever Cn∗ selects only classical
consequences of the set, i.e., Cn∗(A) ⊆ Cn(A):

Proposition 13 If for every set A, Cn∗(A) ⊆ Cn(A), then
general partial meet pseudo-contraction satisfies logical rel-
evance.

Proof: Let β ∈ B \ (B−α). Then, there is X ∈
γ∗(B∗⊥α) such that β 6∈ X . Since B∗ ⊆ Cn(B), we can
make B′ = X . 2

Propositions 13 and 11 show that if Cn∗ is such that for
every set A, Cn∗(A) ⊆ Cn(A), then general partial meet
pseudo-contraction satisfies logical inclusion, logical vacu-
ity, success, logical relevance and extensionality. Moreover,
the operation on belief sets generated from it satisfies clo-
sure, inclusion, vacuity, success, relevance and extensional-
ity. (Fuhrmann and Hansson 1994) has shown that for belief
sets, if an operation satisfies relevance, then it satisfies re-
covery. We have then the following corollary:

Corollary 14 A belief set contraction generated from gen-
eral partial meet pseudo-contraction where for every set A,
Cn∗(A) ⊆ Cn(A), satisfies the six AGM postulates for con-
traction.

Minimal Additions
In the previous section, we have presented a general con-
struction for contraction without inclusion which was based
on the idea of first expanding the base and then applying par-
tial meet to it. In this section, we follow a different approach,
closer to Nebel’s proposal: we first apply partial meet con-
traction to the base and then expand the result. In the end of
this section we show the relation between both approaches.

Recall that Nebel’s construction (Definition 6) adds the
set {α → β|β ∈ B} to the result of the partial meet
contraction in order to obtain logical recovery. We have
shown in Proposition 7 that it suffices to add {α → β|β ∈

B\
⋂
γ(B⊥α)}. This means adding an implication for each

formula that was given up in the contraction. Can we do with
less than that? That is, are there cases in which we can add
less than that and still retain logical recovery? The answer is
clearly yes: consider a base containing {p∧¬r, p∧¬r ∧ q}
and a contraction by p. Both formulas of the base are given
up, but in order to be logically recoverable, we only need to
add p→ p ∧ ¬r ∧ q.

We would like to ensure that only formulas really needed
for logical recovery are added in the contraction operation.
The following postulate is one option:

(core-addition) If β ∈ (B−α) \B, then there exist β′ ∈
B \ (B − α) and B′ ⊆ B − α such that α→ β′ 6∈ Cn(B′)
but α→ β′ ∈ Cn(B′ ∪ {β}).

This postulate assures that if a new formula is added when
performing a contraction, it is needed in order for some be-
lief that was given up to be recoverable. Core-addition pro-
vides a counterpart to core-retainment with respect to min-
imal change: while core-retainment prevents unnecessary
loss of beliefs, core-addition avoids unnecessary addition of
new beliefs. In particular, the examples 2 and 3 of the in-
troduction do not satisfy inclusion, but they satisfy logical
inclusion and core-addition. In the example 2 we can add q
to the base because together with p it implies p ∧ q. Like-
wise, in the example 3 we can add b ∧ ¬p → f because it
helps to recover b→ f .

We are now left with the issue of finding constructions
that satisfy core-addition (together with logical inclusion,
logical recovery and success). The following definition pro-
vides such a construction, using the idea of a minimal set
that together with the partial meet contraction recovers the
base but does not imply the sentence being contracted:

Definition 15 Let B be a belief base, α a formula and γ a
selection function forB. Let ∆(B,α, γ) be a minimal subset
of Cn(B) such that:

• α → β ∈ Cn(
⋂
γ(B⊥α) ∪∆(B,α, γ) for all β ∈ B \

(
⋂
γ(B⊥α))

• For all X ∈ B⊥α, we have α 6∈ Cn(X ∪∆(B,α, γ))

We define the ∆-partial-meet pseudo-contraction of B by α
as B − α =

⋂
γ(B⊥α) ∪∆(B,α, γ)

GivenB, α and γ, ∆(B,α, γ) chooses one of the minimal
sets that satisfy the two properties, as there may be more
than one. We know that at least one such set exists, since the
set used in Nebel’s construction {α → β|β ∈ B} satisfies
the two properties and hence there must be a minimal subset
of it that satisfies the properties.

Proposition 16 ∆-Partial-meet pseudo-contraction satis-
fies success, logical inclusion, logical recovery, logical
vacuity, and core-addition.

Note that the construction does not always satisfy exten-
sionality, since ∆ depends on the particular formula being
contracted. If ∆ is such that for logically equivalent formu-
las α and β we always have ∆(B,α, γ) = ∆(B, β, γ) then
∆-partial-meet pseudo-contraction satisfies extensionality.

Actions and Belief Change NMR-2008

47

In this case, the operation on belief sets generated from ∆-
partial-meet pseudo-contraction satisfies the six AGM pos-
tulates for contraction.

We will now show that this construction is a special
case of general partial meet pseudo-contraction (Definition
10). Recall that general partial meet pseudo-contraction
was defined as

⋂
γ∗(B∗⊥α), where B∗ = B ∪ Cn∗(B \⋂

γ(B⊥α)) and γ∗ is an extension of γ. The definition
of Cn∗ was allowed to vary, and only for some definitions
we had logical recovery. Let us now consider the case
where Cn∗(B \

⋂
γ(B⊥α)) = ∆. We will show that⋂

γ∗(B∗⊥α) =
⋂
γ(B⊥α) ∪ ∆, i.e., that the two opera-

tions coincide.

Proposition 17 Let ∆ be a minimal subset of Cn(B) such
that:

• α → β ∈ Cn(
⋂
γ(B⊥α) ∪ ∆) for all β ∈ B \

(
⋂
γ(B⊥α))

• For all X ∈ B⊥α, we have α 6∈ Cn(X ∪∆)
and let Cn∗(B \

⋂
γ(B⊥α)) = ∆. Then

⋂
γ∗(B∗⊥α) =⋂

γ(B⊥α) ∪∆.

Proof: With Cn∗(B \
⋂
γ(B⊥α)) = ∆ we have that

B∗ = B ∪ ∆. From the definition of the extension γ∗ we
know that for every element Y of γ∗((B ∪ ∆)⊥α) there
is an X ∈ γ(B⊥α) such that X ⊆ Y . From the defini-
tion of remainders, since X is a maximal subset of B that
does not imply α, and since by the definition of ∆ we know
that X ∪ ∆ does not imply α, Y must be X ∪ ∆. This
means that ∆ ⊆ Y for all Y ∈ γ∗((B ∪∆)⊥α) and hence,
∆ ⊆

⋂
γ∗((B ∪∆)⊥α). And again by the definition of γ∗,⋂

γ∗((B ∪∆)⊥α) =
⋂
γ(B⊥α) ∪∆. 2

This proposition shows that ∆-partial-meet pseudo-
contraction is a special case of general partial-meet pseudo-
contraction that satisfies logical recovery.

Degrees of recovery
In the construction defined above, we have added enough
formulas to the belief base in order to be able to recover
all the information that was given up during contraction.
∆-Partial-meet pseudo contraction satisfies logical recovery
and is minimal in the sense captured by the core-addition
postulate.

As exemplified in the introduction, recovery, as well as
the logical recovery postulate can not always be accepted.
In some cases, however, we may be interested in partial re-
covery, i.e., in making sure that a subset of the previous be-
liefs can be recovered. The core-addition postulate tries to
avoid unnecessary addition of formulas to the belief base.
The additions are minimal in the sense that if some formula
is added to the base it is because it helps to recover some
previously removed formula.

∆-Partial-meet pseudo contraction satisfies core-addition
as well as logical recovery. However it is possible to define a
construction for contraction that satisfies core-addition, but
does not necessarily satisfy logical recovery. For this pur-
pose we need to define a function that chooses the formulas
that we want to keep recoverable. In this sense, we can talk

about different degrees of recovery. This function must re-
turn some elements of B \

⋂
γ(B⊥α). Formally, given a

set of formulas, let f choose a subset of it (for any set X ,
f(X) ⊆ X). We can easily adapt Definition 15 in order to
have partial recovery controlled by f , where ∆f then is the
minimal set that allows recovery of the formulas chosen by
f :

Definition 18 Let f be a function as defined above, B a be-
lief base, α a formula and γ a selection function for B. Let
∆f (B,α, γ) be a minimal subset of Cn(B) such that:

• α → β ∈ Cn(
⋂
γ(B⊥α) ∪ ∆f (B,α, γ)) for all β ∈

f(B \ (
⋂
γ(B⊥α)))

• For all X ∈ B⊥α, we have α 6∈ Cn(X ∪∆f (B,α, γ)).

We define the ∆f -partial-meet pseudo-contraction of B by
α as B − α =

⋂
γ(B⊥α) ∪∆f (B,α, γ).

This construction makes clear the relation between the
different degrees of recovery and inclusion. At one extreme,
if f selects the whole set, we have logical recovery at the
price of adding new formulas to the contracted base. At the
other extreme, if f selects the empty set, the contraction op-
eration satisfies inclusion, i.e., no new formulas are added.
Between these two extremes there is a whole universe of
contractions that recover parts of the base, each of which
satisfies success, logical inclusion and core-addition.

The adapted construction does not satisfy logical recov-
ery in general, but inherits relevance (and thus, also core-
retainment) from the usual partial-meet contraction included
in it.

And similarly to what we did to ∆-partial-meet pseudo
contraction, we can show that:

Proposition 19 If Cn∗(B \
⋂
γ(B⊥α)) = ∆f (B,α, γ),

then
⋂
γ∗(B∗⊥α) =

⋂
γ(B⊥α) ∪∆f (B,α, γ)

This proposition shows that if Cn∗ is such that it chooses
the same elements as ∆f , then ∆f -partial-meet pseudo-
contraction is a special case of general partial meet pseudo-
contraction.

Conclusions and Future Work
In this paper, we have discussed how weakening the inclu-
sion requirement can provide some sort of recovery for op-
erations on belief bases.

We have proposed two general constructions based on
partial meet that allow some consequences of the original
belief base to be added during contraction. We have shown
that Nebel’s construction (Nebel 1989) is a special case of
our proposals. We have then shown that our proposal allows
for operations that satisfy recovery (like Nebel’s), but also
operations that only satisfy weaker versions of it.

We are left with a whole spectrum of operations varying
from those where any formula can be added (i.e., no inclu-
sion postulate) to those where nothing can be added. In be-
tween, when we use a weaker notion of inclusion, there are
constructions satisfying recovery in different degrees.

Future work includes studying other possible construction
and proving representation results for them. We also plan

Actions and Belief Change NMR-2008

48

to explore the impact of different choices of Cn∗, γ∗ and
∆(B,α, γ).

Definition 15 has connections to abduction that we plan
to investigate. An abduction problem consists in, given a set
A and a formula α, finding a set X such that A∪X ` α and
A ∪X 6` ⊥. In our case, we have the set (B − α) + α and
we are looking for a set ∆ so that ((B−α)+α)∪∆ implies
all formulas of B.

Acknowledgments: The first author is supported by
FAPESP (grant 2006/53028-6) and the second author is par-
tially supported by CNPq (grant 302514/2007-4). This work
was developed as part of FAPESP project 2004/14107-2.

References
Alchourrón, C., and Makinson, D. 1982. On the logic of
theory change: contraction functions and their associated
revision functions. Theoria 48:14–37.
Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change. Journal of Symbolic Logic
50(2):510–530.
Booth, R.; Chopra, S.; Ghose, A.; and Meyer, T. 2005.
Belief liberation (and retraction). Studia Logica 79:47–72.
Fermé, E. 2001. Five faces of recovery. In Rott, H., and
Williams, M.-A., eds., Frontiers in Belief Revision. Kluwer.
Fuhrmann, A., and Hansson, S. O. 1994. A survey of
multiple contraction. Journal of Logic, Language and In-
formation 3(1):39–74.
Gärdenfors, P., and Rott, H. 1995. Belief revision. In
Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming, volume IV. Oxford University Press. chapter
4.2.
Gärdenfors, P. 1988. Knowledge in Flux - Modeling the
Dynamics of Epistemic States. MIT Press.
Hannson, S. O. 1991. Belief contraction without recovery.
Studia Logica 50(2):251–260.
Hansson, S. O. 1989. New operators for theory change.
Theoria 55:114–132.
Hansson, S. O. 1992. Reversing the Levi identity. Journal
of Philosophical Logic 22:637–639.
Hansson, S. O. 1999. A Textbook of Belief Dynamics.
Kluwer Academic Press.
Makinson, D. 1987. On the status of the postulate of recov-
ery in the logic of theory change. Journal of Philosophical
Logic 16:383–394.
Maranhao, J. 2001. Refinement: a tool to deal with incon-
sistencies. In ICAIL ’01: Proceedings of the 8th interna-
tional conference on Artificial intelligence and law, 52–60.
ACM.
Nebel, B. 1989. A knowledge level analysis of belief revi-
sion. In Brachman, R.; Levesque, H.; and Reiter, R., eds.,
First International Conference on Principles of Knowledge
Representation and Reasoning - KR’89, 301–311. Toronto,
ON: Morgan Kaufmann.
Rott, H., and Pagnucco, M. 1999. Severe withdrawal (and
recovery). Journal of Philosophical Logic 28(5):501–547.

Actions and Belief Change NMR-2008

49

Consistency Maintenance of Plausible Belief Bases
Based on Agents Credibility

Luciano H. Tamargo Alejandro J. Garcı́a Marcelo A. Falappa Guillermo R. Simari
Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET)

Artificial Intelligence Research and Development Laboratory,
Department of Computer Science and Engineering - Universidad Nacional del Sur (UNS),

Bahı́a Blanca, ARGENTINA,
e-mail: {lt, ajg, maf, grs}@cs.uns.edu.ar

Abstract

In this work we address the problem of knowledge represen-
tation in a collaborative multi-agent system where agents can
obtain new information from others through communication.
Informant agents will be ranked by their credibility. This
credibility order will be used when new incoming informa-
tion is contradictory with the current agent’s belief base. We
propose a method for analyzing the received information, if
inconsistency arises, the credibility order will be used to de-
cide which information prevails. The proposed operator sat-
isfies the minimal change principle and incoming information
can be rejected when the agent has more credible beliefs that
contradict the new information.

Introduction
In this paper we propose a formalism for knowledge repre-
sentation and consistency maintenance in a multi-agent sys-
tem where deliberative agents can receive new information
from others through communication.

A variety of notations have been adopted by researchers
investigating Belief Revision (BR) in Multi-Agent Systems
(MAS). A good understanding of the relationships between
these approaches is essential before carrying out any further
research. In (Liu and Williams 1999) an exhaustive analy-
sis of these approaches is presented and a very interesting
hierarchy is introduced (See Figure 1). Observe that in the
hierarchy, Multi-Agent Belief Revision (MABR) and Belief
Revision using information from Multiple Sources (MSBR)
are distinguished.

As stated in (Liu and Williams 1999), BR could be con-
sidered as part of the agent’s skills to maintain the con-
sistency of its own epistemic state. In this case, an in-
dividual BR process is carried out in a multi-agent envi-
ronment, where the new information may come from mul-
tiple sources and maybe conflict. BR in this sense is
called MSBR by (Dragoni, Giorgini, and Baffetti 1997).
Cantwell (Cantwell 1998) tries to resolve conflicting infor-
mation by ordering the information sources on the basis of
their trustworthiness. This could be served as a rational way

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Partially supported by CONICET (PIP 5050), UNS and Agen-
cia Nacional de Promoción Cientı́fica y Tecnológica.

of generating the new information credibility based on the
source reliability using the terms of MSBR.

However, as discussed in (Liu and Williams 1999), BR
could also be used to achieve a society’s or team’s mutual
belief goals (e.g. reaching consensus before carrying out
plans). In this setting, more than one agent takes part in the
process. In order to pursue the mutual goal, agents involved
need to communicate, cooperate, coordinate and negotiate
with one another. A MABR system is a MAS whose mutual
goal involves BR.

MSBR studies individual agent revision behaviors, i.e.,
when an agent receives information from multiple agents to-
wards whom it has social opinions. MABR investigates the
overall BR behavior of agent teams or a society. MSBR is
one of the essential components of MABR.

The AGM paradigm (Alchourrón, Gärdenfors, and
Makinson 1985) has been widely accepted as a standard
framework for BR. But it is only capable of prescribing re-
vision behaviors of a single agent. The BR process is more
complex in multiple agent case. Besides the Principle of
Minimal Change, there exist other requisites due to the so-
phisticated agent interactions.

An agent is capable of carrying out Individual Belief Re-
vision (IBR), while an agent society or team is capable of
MABR. IBR in a single agent environment (Single Belief
Revision, SBR) could be achieved using classical BR satis-
fying or adapting AGM postulates. IBR in a multiple agent
environment is MSBR, i.e., a single agent will have to pro-
cess information coming from more than one source.

Figure 1: Belief Revision Hierarchy
Different formalisms have been presented to deal with

MABR (Liu and Williams 1999; 2001; Kfir-Dahav and Ten-
nenholz 1996). In (Liu and Williams 1999; 2001) an on-
tology to solve MABR is defined. That is, in these papers
three major categories of heterogeneity, namely social, se-
mantic and syntactic heterogeneity are clarified. There, is
shown that several issues posed by such heterogeneities are

Actions and Belief Change NMR-2008

50

addressed in the context of BR. They also propose the use
of ontology as a tool to handle the heterogeneity issues so as
to achieve the necessary reliable communication and system
interoperability required by MABR.

In (Kfir-Dahav and Tennenholz 1996) research on MABR
in the context of heterogeneous systems is initiated. The
Private Domains (PDi) and the Shared Domain (SD) of
the agent knowledge base are defined in order to capture a
general setting where each agent has private beliefs as well
as beliefs shared with other agents. Under such knowledge
structure, each agent may have its own perspective of the
world but needs to coordinate (i.e. agree on) its belief on
shared elements. The shared domain also defines the com-
munication language for the agents.

In contrast to these last two proposals (Liu and Williams
1999; 2001; Kfir-Dahav and Tennenholz 1996), in our ap-
proach we focus on MSBR, where agents maintain the con-
sistency of their belief bases. Since an agent can receive
information that is contradictory with its own beliefs, in or-
der to maintain its belief base consistent, it has to decide
whether to accept or reject the new information. If an agent
decides to accept a new belief that is contradictory with its
belief base, then it has to select some beliefs from its belief
base in order to withdraw them and avoid the contradiction.
In this article, we will assume that an agent does not receive
contradictions.

Similarly to Dragoni (Dragoni, Giorgini, and Puliti 1994)
and Cantwel (Cantwell 1998), in our approach, informant
agents can have different credibility and this credibility will
be used to decide which information prevails when a con-
tradiction arises. However, there are differences with these
authors, which will be analyzed in the related work section.

In our approach, a credibility order among agents will be
defined, and this order will be used by all the participants of
the multi-agent system. We will assume that the credibility
order among agents is fixed. To decide whether to reject or
accept a new belief, a comparison criterion among beliefs
will be defined. As it will be explained in detail below, this
comparison criterion (that we call plausibility) will be based
on the credibility order among agents.

Based on our criterion that compares agent beliefs, a re-
vision operator will be proposed. This operator will satisfy
the following principles:
• Maintenance of Consistency (Dalal 1988): If a belief base

K and a belief α are both consistent, then K revised by α
is consistent.

• Minimal Changes: As much old knowledge as possible
should be retained in the revised knowledge.

• Non-Prioritization: If a belief base K is revised by a belief
α, the new belief is not necessarily accepted in the revised
belief base.
Since in our proposal plausibility of sentence is based on

the credibility order, our approach differs from (Benferhat,
Dubois, and Prade 1998) where they investigate revision of
information from multiple sources in face of uncertainty as
data fusion, using possibilistic logic.

As we will show in the next section, agent’s epistemic
states will be represented by belief bases (Fuhrmann 1991;

Hansson 1992). The most widely studied method of
changing a belief state is partial meet contraction-revision,
also known as AGM model (Alchourrón, Gärdenfors, and
Makinson 1985). The AGM model represents epistemic
states by means of belief sets, that is, sets of sentences
closed under logical consequence. However, our epistemic
model will use belief bases, that is, sets of sentences not
necessarily closed. As it will be explained below, we
will adapt the notion of kernel contraction (Hansson 1994;
1999) to our epistemic model, in which the beliefs are pro-
vided by agents.

This paper is organized as follows. Next section intro-
duces the epistemic model. The third section defines a plau-
sibility order among beliefs. Then, in the fourth section a
non-prioritized revision operator that uses the plausibility
order is introduced. In the fifth section a prioritized version
of the revision operator is defined. Retransmission of infor-
mation is considered in the sixth section. Finally, related
work and conclusions are included.

Epistemic Model
In this work, we will consider a finite set of agents identi-
fiers that will be denoted as Agents. Since agents can ob-
tain information from other agents, agents’ beliefs will be
represented as tuples (α,A), where A ∈ Agents and α is
a sentence of a propositional language L. We will adopt
a propositional language L with a complete set of boolean
connectives: ¬, ∧, ∨, →, ↔. Also, we assume the existence
of an operator Cn that satisfies inclusion (A ⊆ Cn(A)), it-
eration (Cn(A) = Cn(Cn(A))), and monotony (if A ⊆ B
then Cn(A) ⊆ Cn(B)) and it includes the classical conse-
quence operator. In general, we will write α ∈ Cn(A) as
A ` α.

Let K = 2L×Agents, each agent A ∈ Agents will have a
belief base KA ∈ K. As stated above, informant agents will
be ranked by their credibilities. Hence, a Credibility Order
over the set Agents will be introduced:

Definition 1 A credibility order among agents, denoted by
infix ‘≤Co’, is a total order overAgents, where A1 ≤Co A2

means that A2 is at least as credible as A1. The strict rela-
tion A1 <Co A2, representing A2 is strictly more credible
than A1, is defined as A1 ≤Co A2 and A2 6≤Co A1. More-
over, A1 =Co A2 means that A1 is as credible as A2, and it
holds when A1 ≤Co A2 and A2 ≤Co A1.

Since this order is total, then the following properties hold
for all A1, A2 and A3 ∈ Agents:
• Totality or Completeness: A1 ≤Co A2 or A2 ≤Co A1.
• Transitivity: if A1 ≤Co A2 and A2 ≤Co A3 then A1 ≤Co

A3.
• Antisymmetry: if A1 ≤Co A2 and A2 ≤Co A1 then

A1 =Co A2 .

Example 1 Consider a set Agents = {A1, A2, A3, A4}
where the credibility order is A1 ≤Co A2, A2 ≤Co

A3, A3 ≤Co A2, A3 ≤Co A4. Note that A2 is as
credible as A3. The belief base of the agent A1 is
KA1 = {(β, A1), (α, A2), (α, A3), (α → β,A2), (α → β,
A4), (ω,A1), (ω → β, A4), (α → δ,A2), (δ → β, A1),

Actions and Belief Change NMR-2008

51

(γ, A3), (γ → ε, A2), (ε → β, A2), (ε → β,A3), (ε →
β,A4)}. Observe that KA1 has three tuples with the sen-
tence ε → β. Although this can be considered as redun-
dancy, each one comes from a different informant agent. The
reasons for maintaining all of them will be explained below.

Next, two auxiliary functions are introduced in order to
obtain the set of sentences (resp. set of agents) that belong
to a belief base K ∈ K.

Definition 2 The sentence function, Sen : K 7→ 2L, is a
function such that for a given belief base K ∈ K, Sen(K) =
{α : (α,A) ∈ K for any A in Agents}.

Definition 3 The agent identifier function, Ag : K 7→
2Agents, is a function such that for a given belief base
K ∈ K, Ag(K) = {A : (α, A) ∈ K for any α in L}.

Example 2 Let us consider again the belief base KA1

showed in Example 1. Then

• Sen(KA1) = {β, α, α → β, ω, ω → β, α → δ, δ → β,
γ, γ → ε, ε → β}, and

• Ag(KA1) = {A1, A2, A3, A4}.

As stated above, agents can receive new beliefs from other
informants. This new information can be contradictory with
their current beliefs. For instance, consider again the belief
base (KA1) of Example 1, where Sen(KA1) ` β (observe
that there are several derivations for β). Suppose now that
the agent A1 receives the input (¬β, A4). It is clear that
adding (¬β,A4) to KA1 will produce an inconsistent belief
base. Therefore, the agent has to revise its beliefs and decide
whether it rejects (¬β, A4) or it withdraws β. The credibil-
ity order will be used to decide which information prevails.
However, since there can be several derivations of β, then
we have to “cut” all of them. For doing that, all the mini-
mal subsets of KA1 that entails β will be obtained, using an
extension of Kernel contractions.

Remark 1 It is important to note that the agent identifier in
a tuple may differ from the sender identifier (see “Retrans-
mission of Information” Section).

Kernel contractions introduced in (Hansson 1994) are
based on a selection among the sentences that are relevant
to derive the sentence to be retracted. In order to per-
form a contraction, kernel contractions use incision func-
tions which cut into the minimal subsets that imply the in-
formation to be given up. We will adapt the notion of kernel
contraction to our epistemic model. First, we will define the
kernel set (Definition 4) and then we will present incision
functions (Definition 13) that will cut beliefs according to
their plausibility (Definition 10).

Definition 4 Let K ∈ K and α ∈ L. Then H ∈ K⊥⊥α if
and only if
1. H ⊆ K.
2. Sen(H) ` α.
3. if H ′ ⊂ H , then Sen(H ′) 6` α.

The set of minimal subsets of a belief base K ∈ K that
imply α (denoted K⊥⊥α) is called a kernel set. Note that
each α-kernel (H ∈ K⊥⊥α) is a set of tuples from K.

Example 3 Consider KA1 of Example 1. K⊥⊥
A1

β = {Ha,
Hb,Hc, Hd, He,Hf ,Hg,Hh,Hi, Hj ,Hk} where
Ha = {(β, A1)},
Hb = {(α,A2), (α → β, A2)},
Hc = {(α, A2), (α → β, A4)},
Hd = {(α, A3), (α → β,A2)},
He = {(α, A3), (α → β, A4)},
Hf = {(ω, A1), (ω → β, A4)},
Hg = {(α, A2), (α → δ,A2), (δ → β, A1)},
Hh = {(α,A3), (α → δ,A2), (δ → β, A1)},
Hi = {(γ, A3), (γ → ε, A2), (ε → β, A2)},
Hj = {(γ, A3), (γ → ε, A2), (ε → β, A3)} and
Hk = {(γ, A3), (γ → ε, A2), (ε → β, A4)}.

The information (α,Ap) that an agent Ai receives from
Ap could be consistent with its current belief base KAi if
Sen(KAi) 6` α or Sen(KAi) ` α. If Sen(KAi) 6` α, then it
is clear that (α, Ap) is added to KAi . If Sen(KAi) ` α then
(α,Ap) is also added to KAi because the plausibility of α
may increase (see “Sentences Plausibility” Section below).
Therefore, a belief base K ∈ K may contain the same belief
in two tuples with different agents identifiers (for instance,
{(α,A1), (α,A2)} ⊆ K). Thus, we may say that K has re-
dundant information or we may say that K is redundant. In
Example 1 the sentence ε → β is in three tuples. From the
tuples point of view there is no redundancy, due to each tu-
ple represent to a different informant. Nevertheless, in this
work a kernel set will be computed over a non-redundant
belief base. Given a (possibly redundant) belief base K, the
non-redundant belief base K ′ of K (see Definition 6) will
not contain two tuples (α,Ai) and (α, Aj), where i 6= j,
for any sentence α in Sen(K). Each tuple (α, Ai) ∈ K ′
has the agent identifier Ai of the most credible source of
α. For this purpose, a maximum belief base function will
be defined next. Moreover, since a multi-agent system may
contain agents with the same degree of credibility, through-
out the rest of this paper a lexicographic order among agents
identifiers will be assumed. For instance, assuming set of
agent identifiers Agents = {A1, A2, A3}, identifier A1 is
considered the lowest lexicographically.

Definition 5 The top agent function, Top : L×K 7→ K, is
a function such that for a given sentence α ∈ L and a given
belief base K ∈ K, Top(α, K) = {(α, Ai) : (α, Ai) ∈ K
and for all (α,Aj) ∈ K,Aj ≤Co Ai}.

Definition 6 The maximum belief base function,
TopBase : K 7→ K, is a function such that for a
given belief base K ∈ K, TopBase(K) = {(α,A) :
(α,A) ∈ Top(α, K) and A is lexicographically the lowest
agent identifier of Ag(Top(α, K))}.

Example 4 Let us consider again the belief base KA1

showed in Example 1. Then,

• Top(ε → β,KA1) = {(ε → β,A4)}.
• TopBase(KA1) = {(β,A1), (α, A2), (α → β, A4),

(ω, A1), (ω → β, A4), (α → δ,A2), (δ → β, A1),
(γ,A3), (γ → ε, A2), (ε → β, A4)}.

• TopBase(KA1)
⊥⊥β = {Ha,He,Hf , Hh,Hn} where

Ha = {(β, A1)},

Actions and Belief Change NMR-2008

52

He = {(α,A2), (α → β, A4)},
Hf = {(ω, A1), (ω → β,A4)},
Hh = {(α, A2), (α → δ,A2), (δ → β, A1)} and
Hk = {(γ,A3), (γ → ε, A2), (ε → β,A4)}.

Let K ∈ K, note that Sen(TopBase(K)) = Sen(K)
and TopBase(K) ⊆ K. In case that TopBase(K) ⊂ K
then there is some sentence (β) in Sen(K) such that it is in
m tuples in K. Consider α ∈ L and X ∈ TopBase(K)⊥⊥α,
if β ∈ Sen(X) then K⊥⊥α will have at least m α-kernels
differing only in the agent identifier of the tuple in which
β is in. On the other hand, this will not happen with
TopBase(K) because in TopBase(K)⊥⊥α there will be
only one belief β in the greatest weighted tuple from those
m tuples according to≤Co. Therefore, TopBase(K)⊥⊥α ⊆
K⊥⊥α. Thus, since it is more expensive to compute K⊥⊥α
than to compute TopBase(K)⊥⊥α, then as more tuples con-
taining β are in K, the more expensive will be to compute
K⊥⊥α. Hence, since to compute the plausibility of a sen-
tence we will use α-kernels, we will use TopBase(K) in
order to do the computation. In the following section, we
will prove that it is equivalent to compute the plausibility of
a sentence either with TopBase(K) or with K. Besides, it
will be shown why keeping a non-redundant belief base is
the best option.

Remark 2 The use of TopBase(·) optimizes the computa-
tion of kernel sets.

In the following section we will show how the new opera-
tor uses the additional information (agents identifiers) in or-
der to guide the revision process. The plausibility of the sen-
tences will be defined by using the agents identifiers stored
in the belief bases of the agents and the credibility order
among agents.

Sentences Plausibility
The agents identifiers (which are in the second field of the
tuples) represent the information that will be used to com-
pute the plausibility of the beliefs. That is, each agent’s be-
lief will have an associated plausibility that will depend on
the agent identifier and the credibility order among agents.
The behavior of the plausibility is similar to the epistemic
entrenchment defined in (Gärdenfors and Makinson 1988).
That is, if α and β are sentences in L, the notation α ¹KA

β
will be used as a shorthand for “β is at least as plausible as
α relative to the belief base K of the agent A”.

One belief base K ∈ K may contain either explicit sen-
tences or entailed sentences. As stated above, the explicit
sentences are those contained in Sen(K). The entailed sen-
tences are those such that they are not in Sen(K) but they
are entailed by sentences in Sen(K). In order to obtain the
entailed sentences from a belief base K we are going to use
the following function:

Definition 7 The belief function, Bel : K 7→ 2L, is a
function such that for a given belief base K ∈ K, K:
Bel(K) = {α : α ∈ L and Sen(K) ` α}.

Note that also K may contain explicit sentences that are
entailed by Bel(K). Thus we will have several proofs for

the same sentence in K. For instance, in Example 3 we
showed that β has several proofs. Therefore, to calculate
the plausibility of a sentence (β) we should analyze all its
proofs. In order to achieve this, we are going to use the
kernel sets. We consider that this calculation should be cau-
tious. That is, from each β-kernel, we desire to obtain the
lesser-plausibility tuples. This plausibility gives us the plau-
sibility of each proof. Then, the plausibility of a derived
sentence β will be the greater plausibility among the plausi-
bilities of each β-kernel. In order to define that, two func-
tions will be given next.

Definition 8 The lesser-credibility sources function,
min : K 7→ K, is a function such that for a given belief
base K ∈ K, min(K) = {(α, Ai) : (α, Ai) ∈ K and for
all (δ,Aj) ∈ K,Ai ≤Co Aj}.

Definition 9 The greater-credibility sources function,
max : K 7→ K, is a function such that for a given belief
base K ∈ K, max(K) = {(α, Ai) : (α, Ai) ∈ K and for
all (δ,Aj) ∈ K,Aj ≤Co Ai}.

Example 5 Consider Agents = {A1, A2, A3} where
A1 ≤Co A2 ≤Co A3. Let KA1 = {(α, A1), (α, A2),
(β,A1), (γ, A1), (α → γ, A3)} be the belief base of A1.
Then,

• Bel(KA1) will contain the sentences from Sen(KA1) plus
the sentences derived by “`”. For instance, α, β, γ, α ∨
β, α ∨ β ∨ γ, . . . , and so on.

• min(KA1) = {(α, A1), (β,A1), (γ, A1)}.
• max(KA1) = {(α → γ, A3)}.

Next, we will introduce a function that returns the plau-
sibility of a sentence that can be explicitly in K or inferred
from K.

Definition 10 The Plausibility function, Pl : L ×
K 7→ Agents, is a function such that for a given
sentence α ∈ L and a belief base K ∈ K,
Pl(α,K) = lexicographically the lowest agent identifier of
Ag(max(

⋃
X∈TopBase(K)⊥⊥α min(X))).

It is important to note that if (γ, A1) ∈ KA1 then
Pl(γ,KA1) could be different from A1. For instance, con-
sider the Example 5, then Pl(α,KA1) = A2, Pl(β, KA1) =
A1 and Pl(γ, KA1) = A2. In Example 7 we will describe
(step by step) how the plausibility function returns an agent
identifier.

Definition 11 Plausibility Criterion. Let KA ∈ K be the
belief base of the agent A and let {α, β} ⊆ Bel(KA), then
α ¹KA

β if and only if Pl(α,KA) ≤Co Pl(β,KA).

The strict relation α ≺KA
β, representing “β is more

plausible than α”, is defined as “α ¹KA
β and β �KA

α”.
Moreover, α 'KA

β means that α is as plausible as β, and it
holds when α ¹KA

β and β ¹KA
α. From the previous def-

inition we can observe that the plausibility of the sentences
inherits the properties of the credibility order among agents
(‘¹KA ’ is a total order on L). Furthermore, note that the
relation ‘¹KA

’ is only defined with respect to a given KA

(different belief bases may be associated with different or-
dering of plausibility, in Example 6 this situation is shown).

Actions and Belief Change NMR-2008

53

Example 6 Consider a set Agents = {A1, A2, A3}
where the credibility order is A1 ≤Co A2, A2 ≤Co

A3. Suppose that the agent A2 has the following be-
lief base KA2 = {(α,A1), (β, A2), (γ, A3)}, and suppose
that the agent A3 has the following belief base KA3 =
{(α, A1), (β,A3), (γ, A2)}. Then, for both agents, β is
more plausible than α (i.e., α ¹KA2

β and α ¹KA3
β).

However, for A2, γ is more plausible than β (β ¹KA2
γ)

whereas for A3, β is more plausible than γ (γ ¹KA3
β).

Example 7 Suppose that the agent A1 from Example 1
needs to calculate the plausibility of β. In order to do so,
A1 will do the following steps.

• Step 1. Obtain the minimal subsets that derive β from
the non-redundant belief base K (TopBase(KA1)

⊥⊥β).
From Example 4 we can see that:
TopBase(KA1)

⊥⊥β = {Ha,He,Hf ,Hh,Hk}.
• Step 2. Obtain from each β-kernel ∈ TopBase(KA1)

⊥⊥β
the set containing the lesser plausibility tuples determined
by the lesser-credibility sources function “min”:
min(Ha) = {(β, A1)},
min(He) = {(α,A2)},
min(Hf) = {(ω,A1)},
min(Hh) = {(δ → β, A1)},
min(Hk) = {(γ, A3), (γ → ε, A2)}.

• Step 3. Obtain from the tuples of the previous item, the
set containing the greater plausibility tuples determined
by the greater-credibility sources function “max”:
max({(β,A1), (α, A2), (ω, A1), (δ → β, A1), (γ,A3),
(γ → ε, A2)}) = {(α, A2), (γ, A3), (γ → ε, A2)}.

• Step 4. Obtain from the tuples of the previous item, the
set containing the agents identifiers determined by the get
agent identifier function “Ag”:
Ag({(α, A2), (γ,A3), (γ → ε, A2)}) = {A3, A2}.

• Step 5. The agent identifier that will be associated to
the sentence is lexicographically the lowest of the agents
identifiers that are in the set of the previous item. Here,
the agent identifier A2 will be associated to β.

Therefore, Pl(β, KA1) = A2. Hence, when β is compared
with other belief, A2 will be used as the informant of β (the
plausibility of β will be given by A2).

The plausibility calculation can be made with
TopBase(·) or without it. Both ways return the same
result (See Proposition 1). However, making the calculation
without TopBase(·) requires to calculate more kernels than
with TopBase(·).

Proposition 1 Let K ∈ K and let α ∈ Bel(K), then
Pl(α, K) = Ag(max(

⋃
X∈TopBase(K)⊥⊥α min(X))) =

Ag(max(
⋃

X∈K⊥⊥α min(X))).
Proof:

Let Agents = {A1, . . . , An}. If TopBase(K) = K
then is trivially proved. If TopBase(K) ⊂ K then there
exists some sentence β in Sen(K) such that β occurs in m
tuples in K (m ≥ 2). Consider (β, Ai) ∈ X (1 ≤ i ≤ n)
for some X ∈ TopBase(K)⊥⊥α then K⊥⊥α will have m β-
kernels (X,Y1, . . . , Ym−1) such that they will differ only in

the tuple containing β. Suppose that (β, Ap
j) ∈ Yp for all p

(1 ≤ p ≤ m−1, j 6= i and 1 ≤ j ≤ n). Next, we will prove
that X will contain the only relevant tuples to calculate the
plausibility of α. There are three cases:

• If min(X) = (β, Ai), then we have that min(Yp) =
(β,Ap

j). This is because, by Definition 6, Ap
j ≤Co Ai for

all p. Moreover X, Y1, ..., Ym−1 differ only in the tuple in
that is β. Therefore, max((β,Ai),(β, A1

j),...,(β, Am−1
j))

= (β,Ai)∈ X .

• If min(X) 6= (β,Ai) and min(Yp) 6= (β, Ap
j), then min

will return the same tuple in all the cases. This is because,
X,Y1, ..., Ym−1 differ only in the tuple containing β.

• If min(X) 6= (β, Ai) (suppose that min(X) = (ω, Aj))
and min(Yp) = (β, Ap

j) for some p then since (ω, Aj) ∈
Yp, Ap

j ≤Co Aj . Note that, if min(Yp) 6= (β,Ap
j)

then by the previous case min(Yp) = (ω, Aj). Hence,
max(min(X) ∪ min(Y1) ∪ . . . ∪ min(Ym−1))) =
(ω, Aj) ∈ X .

Therefore, from the m β-kernels (X, Y1, . . . , Ym−1) only
X will contain the relevant tuples to calculate the plausibil-
ity of α. Then,
Pl(α,K) = Ag(max(

⋃
X∈TopBase(K)⊥⊥α min(X))) =

Ag(max(
⋃

X∈K⊥⊥α min(X))). ¤

As stated above, function TopBase(·) is used to calculate
plausibility. Recall that TopBase(·) optimizes the compu-
tation of kernel set. Moreover, since in this work the belief
base of an agent may contain the same sentence in several
different tuples, it could be natural to preserve only “the
most plausible derivation” of each sentence. However, in
the following example it is shown that this criterion may be
problematic.

Example 8 Consider Agents = {A1, A2, A3} where
A3 ≤Co A2 ≤Co A1. Let KA2 = {(β → α,A2), (α, A3)}
be the belief base of A2. Suppose that A2 incorporates
(β,A2) to KA2 . In this scenario KA2 ∗ (β, A2) = KA2 ∪
{(β,A2)}, there are two derivations for α, and Pl(α, K) =
A2. Note that the plausibility of α was increased, and it is
unnatural to withdraw sentences from KA2 in order to pre-
serve just one derivation of α.

As we have shown in the previous example, it is very re-
strictive to have each sentence supported by only one deriva-
tion. For this reason, in this work the belief bases may be
redundant. That is, a sentence α could be present in several
tuples of the same belief base. Thus, the plausibility of a sen-
tence will be determined only by the plausibility function. In
the following section, we will define a non-prioritized revi-
sion operator that uses the sentences plausibility in order to
guide the revision process.

Non Prioritized Revision Using Plausibility
In this section, the behavior of a new revision operator based
on the sentences plausibility will be shown. In case that a
belief base K ∈ K is revised by a tuple (α, Ai) we will have
two cases:

Actions and Belief Change NMR-2008

54

• α is consistent with Bel(K). This is the most simple case
of characterizing from the logical point of view because
it consists only in the addition of new tuples. In the limit
case in which α ∈ Bel(K) then this operation could in-
crease the plausibility of α.

• α is inconsistent with Bel(K), that is¬α ∈ Bel(K). This
case requires a deeper analysis because: a) it is necessary
to determine when the sentence will be accepted; and b)
if the input is accepted then it is necessary to erase some
tuples of K. For the second case we need to define an
incision function on each α-kernel.

We will adapt the incision function definition proposed
by (Hansson 1994) to our framework.

Definition 12 An incision function σ for K ∈ K is a func-
tion such that for all α

1. σ(K⊥⊥α) ⊆ ∪(K⊥⊥α).
2. if Ø 6= X ∈ K⊥⊥α, then X ∩ σ(K⊥⊥α) 6= Ø

The incision function selects the sentences to be discarded
from K. Therefore, the subset of K that is not affected by
the incision should equal the outcome of the contraction of
K by α.

In the definition of incision function of Hansson’s work is
not specified how the function selects the sentences that will
be discarded of each α-kernel. This can be solved with the
sentences plausibility that we have defined above. The in-
cision function σ will select the lesser plausibility sentences
of each α-kernel. Hence, the new operator differs of the ker-
nel revision operator defined by Hansson in the following
issues:

1. The new operator will do an analysis to determine if the
revision is necessary.

2. The sentences selection for the incision function will be
defined.

According to 1, the new operator permits two options,
completely accepts all the input, or completely rejects all the
input. For this reason the new operator is non prioritized.
Some non prioritized operators of the literature that com-
pletely accept or reject the input are Semi-Revision (Hans-
son 1997) and Screened Revision (Makinson 1997). An-
other operators may partially accept the new information,
for instance Revision by a Set of Sentences (Falappa, Kern-
Isberner, and Simari 2002) and Selective Revision (Fermé
and Hansson 1999).

Next we will define a specific incision function, based on
the beliefs plausibility, that will select the lesser plausibility
sentences of each α-kernel (following the principle of mini-
mal change).

Definition 13 σ↓ is a bottom incision function for K if σ↓
is an incision function such that, σ↓(K⊥⊥α) = {(δ,Ai) :
(δ,Ai) ∈ X ∈ K⊥⊥α and for all (β,Aj) ∈ X it holds that
Ai ≤Co Aj}.

Example 9 Consider a set Agents = {A1, A2, A3} where
the credibility order is A1 ≤Co A2, A2 ≤Co A3.
Suppose that the agent A2 has the following belief base

KA2 = {(α,A3), (β, A2), (β → α,A1), (ω, A1), (ω →
α, A3), (δ,A1)}. Then, K⊥⊥

A2
α = {Ha,Hb,Hc} where

Ha = {(α, A3)},
Hb = {(β,A2), (β → α,A1)},
Hc = {(ω, A1), (ω → α,A3)}.
σ↓(K⊥⊥

A2
α) = {(α,A3), (β → α, A1), (ω, A1)}.

Now that we have given the necessary background on the
behavior of the new operator, the Non-Prioritized Revision
Using Plausibility will be defined.

Definition 14 Let K ∈ K, let α ∈ L, let TopBase(·) be
a maximum belief base function, and let K⊥⊥α be the set of
α-kernels of K. Let σ↓ a bottom incision function 1 for K.
The operator “◦”, called Non-Prioritized Revision Using
Plausibility, is defined as follow:

K◦(α, Ai)=

K ∪ {(α, Ai)} if ¬α 6∈ Bel(K)
K if ¬α ∈ Bel(K)

and Ai ≤Co Pl(¬α, K)
(K\X) ∪ {(α, Ai)} if ¬α ∈ Bel(K)

and Pl(¬α, K) <Co Ai

where: X = {(ω, Aj) : ω ∈ Sen(σ↓(TopBase(K)⊥⊥¬α))
and (ω,Aj) ∈ K}.

Example 10 Consider a set Agents = {A1, A2, A3, A4,
A5} where the credibility order is A1 ≤Co A2, A2 ≤Co

A3, A3 ≤Co A2, A3 ≤Co A4, A4 ≤Co A5. Sup-
pose that the agent A1 has the following belief base
KA1 = {(β, A1), (α, A2), (α, A3), (α → β, A2), (α →
β, A4), (ω, A1), (ω → β,A4), (α → δ,A2), (δ →
β, A1), (γ, A3), (γ → ε, A2), (ε → β, A2), (ε →
β, A3), (ε → β,A4)}. Furthermore, we suppose A1 re-
ceives the tuple (¬β,A5). Then, A1 should revise KA1 by
(¬β,A5). Next we will describe the behavior of the new
operator step by step.

• Step 1. Obtain the minimal subsets that derive β from
non-redundant belief base KA1 .
TopBase(KA1) = {(β,A1), (α, A2), (α → β, A4),
(ω, A1), (ω → β, A4), (α → δ,A2), (δ → β, A1),
(γ,A3), (γ → ε, A2), (ε → β, A4)}.
TopBase(KA1)

⊥⊥β = {Ha,Hb,Hc,Hd,He} where
Ha = {(β, A1)}, Hb = {(α, A2), (α → β, A4)},
Hc = {(ω, A1), (ω → β,A4)},
Hd = {(α, A2), (α → δ,A2), (δ → β, A1)},
He = {(γ, A3), (γ → ε, A2), (ε → β, A4)}.

• Step 2. Apply the bottom incision function “σ↓” to
TopBase(KA1)

⊥⊥β to obtain the set containing the
lesser plausibility tuples from each β-kernel.
σ↓(TopBase(KA1)

⊥⊥β) = {(β, A1), (α, A2), (ω,A1),
(δ → β, A1), (γ, A3), (γ → ε, A2)}.

• Step 3. Obtain from the tuples of the previous
item, the set containing the greater plausibility tuples
determined by the greater-credibility sources function
“max”(max(σ↓(TopBase(KA1)

⊥⊥β))).
max({(β, A1), (α, A2), (ω,A1), (δ → β,A1), (γ, A3),
(γ → ε, A2)}) = {(α, A2), (γ, A3), (γ → ε, A2)}.
1Observe that the outcome of a bottom incision function would

be similar to that of a “safe contraction” (Alchourrón and Makin-
son 1985).

Actions and Belief Change NMR-2008

55

• Step 4. Compare the agent identifier of the input tu-
ple with the agent identifier of any tuple obtained from
previous item (lets suppose (α, Aj)). If A5 ≤Co Aj

the operation has no effect, the input is rejected, i.e.,
K ◦ (¬β,A5) = K. On the other hand, if Aj <Co

A5 then K ◦ (¬β,A5) = K \ {(ω, Aj) : ω ∈
Sen(σ↓(TopBase(K)⊥⊥¬α)) and (ω, Aj) ∈ K} ∪
{(α, Ai)}.
Since A2 ≤Co A5, then KA1 ◦ (¬β,A5) = {(α →
β,A2), (α → β, A4), (ω → β, A4), (α → δ,A2), (ε →
β,A2), (ε → β, A3), (ε → β, A4), (¬β, A5)}.
If the input is (β,A1) rather than (β, A5), then the revi-
sion will not have effect because A1 ≤Co A2.

Remark 3 Note that, since the belief base may be redun-
dant, in step 4 of Example 10 if the revision gives rise to
a contraction then we will discard from K all those tuples
whose sentences were selected by the bottom incision func-
tion without regarding the respective informants. Besides,
note that our operator will never discard more plausible sen-
tences than the input. This control can be seen in Step 4 of
Example 10.
Remark 4 In this approach, we have assumed that the cred-
ibility order among agents is fixed. However, this order may
be replaced and this will not affect the behavior of the oper-
ator. If the credibility order among agents changes, then the
plausibility of all sentences may also change without chang-
ing the belief bases of the agents. This feature was one of
the motivations for using agent identifiers instead of repre-
senting explicitly the plausibility of sentences as a number.
For instance, consider a set Agents = {A1, A2} where the
credibility order is A1 ≤Co A2, KA1 = {(α,A1), (β, A2)}
and KA2 = {(ω, A2), (γ, A1)}. Hence, α ¹KA1

β and
γ ¹KA2

ω. If the credibility order changes to A2 ≤Co A1

then β ¹KA1
α and ω ¹KA2

γ. Note that the tuples in K1

and K2 remain unchanged.
If the behavior of the new operator follows the Defini-

tion 14 then the operator follows the principles enunciated
in the introduction of this paper. These are:
• Maintenance of Consistency (Dalal 1988): If a belief base

K and a belief α are both consistent, then K revised by α
is consistent.

• Minimal changes: As much old knowledge as possible
should be retained in the revised knowledge. In other
words, in this paper, if the revision gives rise to a contrac-
tion, then the revision should discard those less plausible
beliefs.

• Non-Prioritization: If a belief base K is revised by a be-
lief α, the new belief is not necessarily accepted in the
revised belief base. In other words, in this paper the re-
vision could have no effect if some beliefs, that will be
possibly discarded, are more plausible than the input.

Lemma 1 The non-prioritized revision using plausibility
follows the principle of Maintenance of Consistency.
Proof:

Let K ∈ K be a belief base and let α ∈ L. Suppose that
K and α are consistent. By Definition 14 of Non-Prioritized
Revision Using Plausibility we have three cases:

• If ¬α 6∈ Bel(K) then K ◦ (α, Ai) = K ∪ {(α, Ai)}.
α and K are consistent, hence since ¬α 6∈ Bel(K) then
K ∪ {(α, Ai)} is consistent.

• If ¬α ∈ Bel(K) and Ai ≤Co Pl(¬α, K), then K ◦
(α,Ai) = K and we are done.

• If ¬α ∈ Bel(K) and Pl(¬α,K) <Co Ai then K ◦
(α,Ai) = (K \ X) ∪ {(α, Ai)} where X = {(ω, Aj) :
ω ∈ Sen(σ↓(TopBase(K)⊥⊥¬α)) and (ω, Aj) ∈ K}.
We must show that ¬α 6∈ Bel(K \X).
Suppose that ¬α ∈ Bel(K \ X). Then the ¬α-kernels
were not cut by the bottom incision function. That is, no
sentences from ¬α-kernel were removed. However, this
is absurd by the Definition 13 of bottom incision function.
The absurd comes from supposing ¬α ∈ Bel(K \ X).
Then ¬α 6∈ Bel(K \X).

Hence the non-prioritized revision using plausibility fol-
lows the principle of Maintenance of Consistency. ¤
Lemma 2 The non-prioritized revision using plausibility
follows the principle of Minimal Change.
Proof: Straightforward by Definition 13.
Lemma 3 The non-prioritized revision using plausibility
follows the principle of Non-Prioritization.
Proof: Straightforward by Definition 14.

In following section we will define a prioritized version of
this operator. The prioritized revision using plausibility will
not do an analysis to determine if the revision is necessary.

Prioritized Revision Using Plausibility
Note that we can easily define a prioritized version of the
Non-prioritized Revision Using Plausibility. The prioritized
version will have a similar behavior to the non-prioritized
version. However, the prioritized version will never reject
the input in contrast to the non-prioritized version that it
completely accepts or rejects the input.

Definition 15 Let K ∈ K, let α ∈ L, let TopBase(·) be
a maximum belief base function, and let K⊥⊥α be the set
of α-kernels of K. Let σ↓ a bottom incision function for
K. The operator “∗”, called Prioritized Revision Using
Plausibility, is defined as follow:

K ∗(α, Ai) =
{

K ∪ {(α, Ai)} if ¬α 6∈ Bel(K)
(K \X) ∪ {(α,Ai)} if ¬α ∈ Bel(K)

where: X = {(ω, Aj) : ω ∈ Sen(σ↓(TopBase(K)⊥⊥¬α))
and (ω,Aj) ∈ K}.

Example 11 Let us consider again Example 10. Next we
will describe the behavior of the prioritized revision using
plausibility operator when is applied over the belief base
KA1 with the tuple (¬β,A5) step by step.

• Step 1. Obtain the minimal subsets that derive β from
non-redundant belief base K.
TopBase(KA1) = {(β,A1), (α, A2), (α → β, A4),
(ω, A1), (ω → β, A4), (α → δ,A2), (δ → β, A1),
(γ,A3), (γ → ε, A2), (ε → β, A4)}.
TopBase(KA1)

⊥⊥β = {Ha,Hb,Hc,Hd,He} where

Actions and Belief Change NMR-2008

56

Ha = {(β,A1)}, Hb = {(α,A2), (α → β,A4)},
Hc = {(ω,A1), (ω → β, A4)},
Hd = {(α, A2), (α → δ,A2), (δ → β,A1)},
He = {(γ, A3), (γ → ε, A2), (ε → β, A4)}.

• Step 2. Apply the bottom incision function “σ↓” to
TopBase(KA1)

⊥⊥β to obtain the set containing the
lesser plausibility tuples from each β-kernel.
σ↓(TopBase(KA1)

⊥⊥β) = {(β,A1), (α, A2), (ω, A1),
(δ → β,A1), (γ, A3), (γ → ε, A2)}.

• Step 3. K ∗ (¬β,A5) = K \ {(ω,Aj) : ω ∈
Sen(σ↓(TopBase(K)⊥⊥¬α)) and (ω, Aj) ∈ K} ∪
{(α, Ai)}.
KA1 ∗ (¬β, A5) = {(α → β, A2), (α → β, A4), (ω →
β,A4), (α → δ,A2), (ε → β,A2), (ε → β,A3), (ε →
β,A4), (¬β, A5)}.

Retransmission of Information
As stated above, each agent A ∈ Agents will have a be-
lief base KA ∈ K, where K = 2L×Agents. Hence, the
agents store each belief with an agent identifier in tuples.
When an agent sends information to other agent, it sends
tuples. Consider for example an agent set {A1, A2, A3} ⊆
Agents where A1 ≤Co A2 ≤Co A3. Suppose that KA1 =
{(α, A3)} then if A1 wants to send α to A2, it has to send a
tuple with an agent identifier. This identifier may be:

• the proper sender identifier (e.g., A1), or

• the agent identifier stored with the belief in the sender’s
base (e.g., A3).

Here, we adopt the latter option. That is, A1 will send
the tuple (α,A3) to A2. Thus, the receiver agent A2 will
know the source from where the sender A1 has obtained the
information.

From the receiver point of view, when it receives from A1

the tuple (α, A3) it may store:

• (α, A3), i.e., the agent identifier stored with the belief in
the sender’s base, or

• (α, Ai) where Ai is the agent identifier more credible
(according to the credibility order among agents, Defini-
tion 1) that results of comparing the A1 and A3.

Here, we adopt the latter option. Thus, the agents will
hold their beliefs with the most credible informant known.
In this case, since A1 ≤Co A3, the receiver agent A2 will
apply the new revision operator over the tuple (α,A3).

Related Work
Two other approaches that cope with Multiple Sources Be-
lief Revision (MSBR) are (Dragoni, Giorgini, and Puliti
1994) and (Cantwell 1998). Like us, both consider that the
reliability of the source affects the credibility of incoming
information, and this reliability is used to decide whether
a received formula is accepted or rejected. However, these
two approaches differs from ours in several issues.

In (Dragoni, Giorgini, and Puliti 1994; Dragoni, Giorgini,
and Baffetti 1997) is considered that agents detect and store
in tables the nogoods, which are the minimally inconsistent

subsets of their knowledge bases. A good is a subset of the
knowledge base such that: it is not inconsistent (it is not a
superset of a nogood), and if augmented with whatever else
assumption in knowledge base it becomes inconsistent. In
contrast to our approach, they do not remove beliefs to avoid
a contradiction, but, quite more generally, to choose which is
the new preferred good among them in knowledge base. In
our model, we obtain the kernel sets to cut some sentences,
thus we broke the contradictions if it is necessary.

Like us, they propose to store additional information with
each sentence. However, their tuples contain 5 elements:
<Identifier, Sentence, OS, Source, Credibility>, where Ori-
gin Set (OS) records the assumption nodes upon which it re-
ally ultimately depends (as derived by the theorem prover).
In contrast to them, in our model a tuple only store a sen-
tence and a source, but a tuple does not store the credibility.
That is, in our model the plausibility of a sentence is not ex-
plicitly stored with it, as (Dragoni, Giorgini, and Puliti 1994)
does. Thus, when the plausibility of some sentence is needed
the plausibility function should be applied. As is shown in
Example 12, given a sentence α its plausibility depend on
its proofs (α-kernels). Therefore, if one of the sentences of
these proof changes, then the plausibility of α may change.
Hence, if the credibility order is replaced, then the sentence
plausibility may change without changing the belief base.

Example 12 Consider a setAgents = {A1, A2} where the
credibility order is A1 ≤Co A2, KA1 = {(α, A1), (α →
β, A2)} and KA2 = {(α,A2)}. By Definition 10,
Pl(β,KA1) = A1. Now, suppose that A1 receives from A2

the belief α. Now KA1 = {(α, A1), (α, A2), (α → β, A2)}
and A1 has two derivations for β, hence Pl(β,KA1) = A2.
Observe that plausibility of β is increased.

The communication policy that we have defined in
“Retransmission of Information” Section differs from the
one (Dragoni, Giorgini, and Puliti 1994) where the agents
do not communicate the sources of the assumptions, but
they present themselves as completely responsible for the
knowledge they are passing on; receiving agents consider
the sending ones as the sources of all the assumptions they
are receiving from them.

In (Cantwell 1998), a scenario (set of incoming informa-
tion) presented by a source is treated as a whole and not sen-
tence by sentence, and therefore, it can be inconsistent. A
relation of trustworthiness is introduced over sets of sources
and not between single sources. Besides, if two sources give
the same piece of information φ, and a single agent gives
¬φ, then φ will be preferred, that is, the decision is based on
majority. In his approach, the order in which the evidence is
considered does not seem to be important. However, in our
work, the order in which beliefs are considered is important:
If an agent receives α and then receives ¬α and both have
the same plausibility, then ¬α will be rejected.

Our work has some link with the idea of epistemic en-
trenchment (Gärdenfors and Makinson 1988; Rott 1992).
Here the sentence plausibility is used in a similar way to
epistemic entrenchment to update knowledge. However,
there are some differences between these. For instance, in
our work the order among sentences is based on the infor-

Actions and Belief Change NMR-2008

57

mants, whereas in (Gärdenfors and Makinson 1988) the or-
der among sentences is implicitly defined over belief states
represented by belief sets.

When we count with a multi-agent system that has only
one agent, the new operator is very drastic. This is because
in this scenario there is no order among agents. The same
happens when all the agents of a multi-agent system have
equal credibility. In these cases the bottom incision function
does not have enough information to select sentences and it
will erase all sentences in the α-kernels. This behavior is
similar to full meet revision on belief bases (Hansson 1999).
Nevertheless, when a multi-agent system has several agents
with different credibilities and it is necessary to represent
knowledge dynamics of the agents, plausibility seems to be
a good criteria.

Conclusion and Future Work
In this paper we have presented a formalism for knowledge
representation and consistency maintenance in a multi-agent
system where deliberative agents can receive new informa-
tion from others through communication. This type of Be-
lief Revision is called Belief Revision using information from
Multiple Sources (MSBR).

Similarly to Dragoni (Dragoni, Giorgini, and Puliti 1994)
and Cantwell (Cantwell 1998), in our approach, informant
agents can have different credibility and this credibility was
used to decide which information prevails when a contradic-
tion arises. However, there are differences with these au-
thors, which were analyzed in the “Related Work” Section.

To decide whether to reject or accept a new belief, a com-
parison criterion among beliefs was defined. This criterion
(called plausibility) is based on the credibility order among
agents. Although we have first assumed that the credibility
order among agents is fixed, as stated in Remark 4, this or-
der may be replaced without affecting the behavior of the
operator. As future work we propose to define an operator
to revise the credibility order. This will allow us to represent
changes over the credibility order.

As our model does not use (fixed) numbers or probabili-
ties in a tuple to maintain the plausibility of a sentence, the
plausibility depends on the sources of information of each
one of the proofs’ sentences. Thus, when the plausibility of
some sentence α is needed, the plausibility function should
be applied. Therefore, if one of the sentences of the proofs
at α changes, then the plausibility of α may change.

A revision operator was proposed based on the plausi-
bility that compares agents beliefs. This operator is based
on the kernel contraction and incision function defined
in (Hansson 1994), and satisfies the principles of Mainte-
nance of Consistency (Dalal 1988), Minimal Changes and
Non-Prioritization.

One of the limitations of the new operator is that a total
order among agents is necessary. As future work, we want to
relax this assumption and to consider a partial order among
agents. We also plan to provide an axiomatic characteriza-
tion for this operator.

References
Alchourrón, C., and Makinson, D. 1985. On the logic of
theory change: Safe contraction. St. Logica 44:405–422.

Alchourrón, C. E.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet contraction and
revision functions. J. of Symbolic Logic 50(2):510–530.
Benferhat, S.; Dubois, D.; and Prade, H. 1998. From se-
mantic to syntactic approaches to information combination
in possibilistic logic. Aggregation and Fusion of Imperfect
Information. B. Bouchon-Meunier (Eds.), Physica-Verlag,
Heidelberg 12:141–161.
Cantwell, J. 1998. Resolving conflicting information.
Journal of Logic, Language and Information 7(2):191–
220.
Dalal, M. 1988. Investigations into a theory of knowledge
base revision. Proceedings of AAAI 475–479.
Dragoni, A. F.; Giorgini, P.; and Baffetti, M. 1997. Dis-
tributed belief revision vs. belief revision in a multi-agent
environment: First results of a simulation experiment. In
MAAMAW, 45–62.
Dragoni, A.; Giorgini, P.; and Puliti, P. 1994. Distributed
belief revision versus distributed truth maintenance.
Falappa, M. A.; Kern-Isberner, G.; and Simari, G. R. 2002.
Explanations, belief revision and defeasible reasoning. Ar-
tificial Intelligence 141(1):1–28.
Fermé, E. L., and Hansson, S. O. 1999. Selective revision.
Studia Logica 63(3):331–342.
Fuhrmann, A. 1991. Theory contraction through base con-
traction. Journal of Philosophical Logic 20(2):175–203.
Gärdenfors, P., and Makinson, D. 1988. Revisions of
knowledge systems using epistemic entrenchment. In Pro-
ceedings of the Second Conference on Theoretical Aspects
of Reasoning about Knowledge Conference, 83–95. Mor-
gan Kaufmann.
Hansson, S. O. 1992. In defense of base contraction. Syn-
these 91(3):239–245.
Hansson, S. O. 1994. Kernel contraction. Journal of Sym-
bolic Logic 59(3):845–859.
Hansson, S. O. 1997. Semi-revision. Journal of Applied
Non-Classical Logic 151–175.
Hansson, S. O. 1999. A Textbook of Belief Dynamics: The-
ory Change and Database Updating. Kluwer Academic
Publishers.
Kfir-Dahav, N. E., and Tennenholz, M. 1996. Multi-agent
belief revision. In Shoham, Y., ed., Theoretical Aspects of
Rationality and Knowledge: Pro. of the Sixth Conf. (TARK
1996). San Francisco: Morgan Kaufmann. 175–196.
Liu, W., and Williams, M.-A. 1999. A framework for
multi-agent belief revision, part i: The role of ontology.
In Australian Joint Conference on A. I., 168–179.
Liu, W., and Williams, M.-A. 2001. A framework for
multi-agent belief revision. Studia Logica 67(2):291–312.
Makinson, D. 1997. Screened revision. Theoria: Special
Issue on Non-Prioritized Belief Revision.
Rott, H. 1992. Preferential belief change using generalized
epistemic entrenchment. Journal of Logic, Language and
Information 1(1):45–78.

Actions and Belief Change NMR-2008

58

Action Theory Revision in Dynamic Logic

Ivan Jośe Varzinczak

IRIT – Université de Toulouse
Toulouse, France

ivan.varzinczak@irit.fr

Meraka Institute
CSIR, Pretoria, South Africa

ivan.varzinczak@meraka.org.za

Abstract

Like any other logical theory, action theories in reason-
ing about actions may evolve, and thus need revision
methods to adequately accommodate new information
about the behavior of actions. Here we give a semantics
that complies with minimal change for revising action
theories stated in a version ofPDL. We give algorithms
that are proven correct w.r.t. the semantics for those the-
ories that are modular.

Introduction
In logic-based approaches to reasoning about actions, theo-
ries are collections of statements of the form: “ifcontext,
then effect after every executionof action” (effect laws);
and “if precondition, then action executable” (executabil-
ity laws). For example, in Propositional Dynamic Logic
(PDL) (Harel, Tiuryn, and Kozen 2000), one could have the
law (¬p

1
∧¬p

2
) → [a]p

1
, saying that in every context where

¬p
1
∧¬p

2
is the case, after every execution of actionawe get

the effectp
1
; and(p

1
∨ ¬p

2
) → 〈a〉⊤, stating thatp

1
∨ ¬p

2

is a sufficient condition fora’s executability.
These are examples of what we callaction laws, as they

specify the behavior of the actions of a given domain. Be-
sides that we can also have laws mentioning no action at
all (static laws). They characterize the underlying structure
of the world, i.e., its possible states. For instance, having
p
1
→ p

2
as a static law would meanp

1
∧¬p

2
is a forbidden

state. Action theories will then be collections of laws, each
of them seen as a global axiom inPDL.

Well, it may happen that such descriptions have to be re-
vised due e.g. to new incoming information about the be-
havior of the world. In our example, we may learn that the
only valid states are those satisfyingp

1
∧p

2
, or that actiona

has always¬p
2

as outcome in¬p
2
-contexts, or even thatp

1

is enough to guaranteea’s executability. Here we are inter-
ested in this kind of theory change.

The contributions of the present work are as follows:

• What is the semantics of revising an action theoryT by a
law Φ? How to get minimal change, i.e., how to keep as
much knowledge about other laws as possible?

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• How to syntactically revise an action theory so that its
result corresponds to the intended semantics?

Here we answer these questions.

Logical Preliminaries
Action Theories in Dynamic Logic
Our base formalism isPDL without the∗ operator. Let
Act = {a1, a2, . . .} be the set ofatomic actionsof a do-
main. To eacha there is associated a modal operator[a]. We
suppose our multimodal logic is independently axiomatized,
i.e., the logic is a fusion and there is no interaction between
the modal operators (Kracht and Wolter 1991).

Prop = {p
1
, p

2
, . . .} denotes the set of allpropositional

constantsor atoms. The set of literals isLit = {ℓ1, ℓ2, . . .},
where eachℓi is eitherp or ¬p, for somep ∈ Prop. In case
ℓ = ¬p, we identify¬ℓ with p. By |ℓ| we will denote the
atom in literalℓ.

By ϕ, ψ, . . . we denoteBoolean formulas, examples of
which arep

1
→ p

2
and¬p

1
⊕ p

2
. Fml is the set of all

Boolean formulas. A propositional valuationv is a maxi-
mally consistentset of literals. We denotev ϕ the fact
thatv satisfiesϕ. val(ϕ) is the set of all valuations satisfy-
ingϕ. |=

CPL
denotes the classical consequence relation.

With IP(ϕ) we denote the set ofprime implicants(Quine
1952) ofϕ. By π we denote a prime implicant, andatm(π)
is the set of atoms occurring inπ. For givenℓ andπ, ℓ ∈ π
abbreviates ‘ℓ is a literal ofπ’.

We denote complex formulas (with modal operators) by
Φ, Ψ, . . . 〈a〉 is the dual operator of[a], (〈a〉Φ =def ¬[a]¬Φ).
An example of a complex formula is(p

1
∧ (p

2
∨ ¬p

3
)) →

[a](¬p
1
∨ p

3
).

A PDL-modelis a tupleM = 〈W,R〉 whereW is a set
of valuations, andRmaps action constantsa to accessibility

relationsRa ⊆ W× W. Given a modelM , |=
M

w

p (p is true at

worldw of modelM) if w p; |=
M

w

[a]Φ if |=
M

w
′
Φ for everyw′

s.t.(w,w′) ∈ Ra; truth conditions for the other connectives
are as usual. ByM we will denote a set ofPDL-models.

M is a model ofΦ (noted|=
M
Φ) if and only if |=

M

w

Φ for all

w ∈ W. M is a model of a set of formulasΣ (noted|=
M

Σ)

if and only if |=
M
Φ for everyΦ ∈ Σ. Φ is aconsequence of

Actions and Belief Change NMR-2008

59

the global axiomsΣ in all PDL-models (notedΣ |=
PDL

Φ) if

and only if for everyM , if |=
M

Σ, then|=
M
Φ.

With PDL we can state laws describing the behavior of
actions. Following the tradition in the reasoning about ac-
tions community, we here distinguish three types of them.

Static Laws A static lawis a formulaϕ ∈ Fml. It charac-
terizes the possible states of the world. The set of all static
laws of a domain is denoted byS .

Effect Laws An effect law for ais of the formϕ → [a]ψ,
whereϕ, ψ ∈ Fml. Effect laws relate an action to its effects,
which can be conditional. The consequentψ is the effect
which always obtains whena is executed in a state where
the antecedentϕ holds. If a is a nondeterministic action,
thenψ is typically a disjunction. Ifψ is inconsistent we have
a special kind of effect law that we call aninexecutability
law. For example,(¬p

1
∧ p

2
) → [a]⊥ says thata cannot be

executed (there is noa-transition) in¬p
1
∧p

2
-contexts. The

set of effect laws of a domain is denoted byE .

Executability Laws An executability law for ahas the form
ϕ→ 〈a〉⊤, with ϕ ∈ Fml. It stipulates the context in which
a is guaranteed to be executable. (InPDL, the operator〈a〉 is
used to express executability,〈a〉⊤ thus reads “a’s execution
is possible”.) The set of all executability laws of a domain
is denoted byX .

Action TheoriesT = S ∪ E ∪ X is anaction theory.

Given an actiona, Ea (resp.Xa) will denote the set of
only those effect (resp. executability) laws abouta. For the
sake of clarity, we here abstract from the frame and rami-
fication problems, and assumeT contains all frame axioms
(cf. (Herzig, Perrussel, and Varzinczak 2006) for a contrac-
tion approach within a solution to the frame problem).

Elementary Atoms and Prime Valuations
Givenϕ ∈ Fml, E(ϕ) denotes the elementary atomsactu-
ally occurring inϕ. For example,E(¬p

1
∧ (¬p

1
∨ p

2
)) =

{p
1
, p

2
}. An atomp is essentialtoϕ if and only if p ∈ E(ϕ′)

for everyϕ′ such that|=
CPL

ϕ ↔ ϕ′. For instance,p
1

is es-
sential to¬p

1
∧ (¬p

1
∨ p

2
). E!(ϕ) will denote the essential

atoms ofϕ. (If ϕ is not contingent, i.e., it is a tautology or a
contradiction, thenE!(ϕ) = ∅.)

For ϕ ∈ Fml, ϕ∗ is the set of allϕ′ ∈ Fml such that
ϕ |=

CPL
ϕ′ andE(ϕ′) ⊆ E!(ϕ). For instance,p

1
∨ p

2
/∈ p

1
∗,

as p
1
|=
CPL

p
1
∨ p

2
but E(p

1
∨ p

2
) 6⊆ E!(p

1
). Moreover

E(ϕ∗) = E!(ϕ∗), and whenever|=
CPL

ϕ ↔ ϕ′, E!(ϕ) =

E!(ϕ′) and alsoϕ∗ = ϕ′∗.

Theorem 1 (Least atom-set theorem (Parikh 1999))
|=
CPL

ϕ ↔
∧
ϕ∗, and E(ϕ∗) ⊆ E(ϕ′) for everyϕ′ s.t.

|=
CPL

ϕ↔ ϕ′.

Thus for eachϕ ∈ Fml there is a unique least set of elemen-
tary atoms such thatϕ may equivalently be expressed using
only atoms from that set.1

1The dual notion (redundant atoms) is addressed in (Herzig and
Rifi 1999), with similar purposes.

Given a valuationv, v′ ⊆ v is asubvaluation. ForW a set
of valuations, a subvaluationv′ satisfiesϕ ∈ Fml moduloW
(notedv′

W
ϕ) if and only if v ϕ for all v ∈ W such that

v′ ⊆ v. A subvaluationv essentially satisfiesϕ (moduloW),
notedv !

W
ϕ, if and only if v

W
ϕ and{|ℓ| : ℓ ∈ v} ⊆

E!(ϕ). If v !

W
ϕ, we callv anessential subvaluationof ϕ

(moduloW).

Definition 1 Letϕ ∈ Fml and W be a set of valuations. v is

a prime subvaluationof ϕ (modulo W) if and only if v!

W
ϕ

and there is no v′ ⊆ v s.t. v′ !

W
ϕ.

Prime subvaluations of a formulaϕ are the weakest states
of truth in whichϕ is true. They are just another way of
seeing prime implicants ofϕ. By base(ϕ,W) we denote the
set of all prime subvaluations ofϕ moduloW.

Theorem 2 Letϕ ∈ Fml and W be a set of valuations. Then
for all w ∈ W,w ϕ if and only ifw

∨
v∈base(ϕ,W)

∧
ℓ∈v ℓ.

Closeness Between Models
When revising a model, we will perform a change in its
structure. Because there can be several different ways of
modifying a model (not all of them minimal), we need a no-
tion of distance between models to identify those that are
closest to the original one.

As we are going to see in more depth in the sequel, chang-
ing a model amounts to modifying its possible worlds or
its accessibility relation. Hence, the distance between two
PDL-models will depend upon the distance between their
sets of worlds and accessibility relations. These here will be
based on thesymmetric differencebetween sets, defined as
X−̇Y = (X \ Y) ∪ (Y \X).

Definition 2 Let M = 〈W,R〉 be a model.M ′ = 〈W′,R′
〉

is as close toM asM ′′ = 〈W′′,R′′
〉, notedM ′ �M M ′′,

if and only if

• either W−̇W′
⊆ W−̇W′′

• or W−̇W′ = W−̇W′′ and R−̇R′
⊆ R−̇R′′

(Notice that other distance notions are also possible, like
e.g. considering thecardinalityof symmetric differences.)

Semantics of Revision
Contrary to action theory contraction (Varzinczak 2008a),
where we want the negation of some law to becomesatis-
fiable, in revision we want to make a new lawvalid. This
means that one has to eliminate all cases satisfying its nega-
tion. This depicts the duality between revision and contrac-
tion: whereas in the latter one invalidates a formula by mak-
ing its negation satisfiable, in the former one makes a for-
mula valid by forcing its negation to be unsatisfiable prior to
adding the new law to the theory.

The idea behind our semantics is as follows: we initially
have a set of modelsM in which a given formulaΦ is (po-
tentially) not valid, i.e.,Φ is (possibly) not true in every
model inM. In the result we want to have only models of
Φ. AddingΦ-models toM is of no help. Moreover, adding

Actions and Belief Change NMR-2008

60

models makes us to lose laws: the corresponding resulting
theory would be more liberal.

One solution amounts to deleting fromM those models
that are notΦ-models. Of course removing only some of
them does not solve the problem, we must delete every such
a model. By doing that, all resulting models will be mod-
els ofΦ. (This corresponds totheory expansion, when the
resulting theory is satisfiable.) However, ifM contains no
model ofΦ, we will end up with∅. Consequence: the result-
ing theory is inconsistent. (This is the main revision prob-
lem.) In this case the solution is tosubstituteeach model
M in M by itsnearest modificationM ∗

Φ
that makesΦ true.

This lets us to keep as close as possible to the original mod-
els we had. But, what if for one model inM there are several
minimal (incomparable) modifications of it validatingΦ? In
that case we shall consider all of them. The result will also
be alist of modelsM∗

Φ
, all being models ofΦ.

Before defining revision of sets of models, we present
what modifications of (individual) models are.

Revising a Model by a Static Law
Consider the model depicted in Figure 1, and suppose we
want to revise it by the Boolean formulap

1
∨ p

2
, i.e., we

want such a formula to be a static law.

M :

p1,¬p2 ¬p1, p2

¬p1,¬p2

a

aa

Figure 1: A model where¬p
1
∧ ¬p

2
is satisfiable.

In such a model, we do not want the formula¬p
1
∧ ¬p

2

to be satisfiable, so the first step is to remove all worlds in
which it is true. The second step is to guarantee that all
the remaining worlds satisfy the new law. Such an issue
has been largely addressed in the literature on propositional
belief base revision and update (Gärdenfors 1988; Winslett
1988; Katsuno and Mendelzon 1992; Herzig and Rifi 1999).
Here we can achieve that with a semantics similar to that
of classical operators: basically one shall change the set of
possible valuations, by removing or adding worlds.

The delicate point in removing worlds is that we may
lose some executability laws: in the example, removing
{¬p

1
,¬p

2
} also removesp

2
→ 〈a〉⊤. From a semantic

point of view, this is intuitive: if the state of the world to
which we could move is no longer possible, then we do not
have a transition to that state anymore. Hence, if that transi-
tion was the only one we had, it is natural to lose it.

Similarly, one could ask what to do with the accessibil-
ity relation if new worlds are added (when expansion is not
possible): shall new arrows leave/arrive at the new world? If
no arrow leaves the new added world, we may lose an exe-
cutability law. If some arrow leaves it, we may lose an effect
law, the same holding if we add an arrow pointing to the new

world. If no arrow arrives at this new world, what about the
intuition? Do we want to have an unreachable state?

All this discussion shows how drastic a change in the
static laws may be: it is a change in the underlying struc-
ture (possible states) of the world! Changing it may have as
consequence the loss of an effect law or an executability law.

The tradition in the reasoning about actions community
says that executability laws are, in general, more difficult
to state than effect laws, and hence are more likely to be
incorrect. By adding no arrow to the resulting model we here
comply with that and postpone correction of executability
laws, if needed (cf. (Herzig, Perrussel, and Varzinczak 2006;
Varzinczak 2008a)).

The semantics for revision of one model by a static law is
as follows:

Definition 3 Let M = 〈W,R〉. M ′ = 〈W′,R′
〉 ∈ M ∗

ϕ
if

and only if:

• W′ = (W\ val(¬ϕ)) ∪ val(ϕ)

• R′
⊆ R

Clearly |=
M

′

ϕ for eachM ′ ∈ M ∗
ϕ

. The minimal models
resulting from revising a modelM byϕ are those closest to
M w.r.t.�M :

Definition 4 revise(M , ϕ) =
⋃

min{M ∗
ϕ
,�M}

Revising a Model by an Effect Law
Let our language now have three atoms and consider the
modelM in Figure 2.

M :

p1,¬p2,¬p3 ¬p1, p2, p3

p1, p2,¬p3

a
a

a

Figure 2: A model wherep
1
∧ 〈a〉p

2
is satisfiable.

(Notice that|=
M

p
2
→ p

1
⊕ p

3
.) Suppose we want to revise

M by p
1
→ [a]¬p

2
. This means that we should guarantee

the formulap
1
∧〈a〉p

2
is satisfiable in none of its worlds. To

do that, we have to look at the worlds satisfying it (if any)
and either makep

1
false, or make〈a〉p

2
false by removing

a-arrows leading top
2
-worlds.

In our example, the worlds{p
1
,¬p

2
,¬p

3
} and

{p
1
, p

2
,¬p

3
} satisfy p

1
∧ 〈a〉p

2
and both have to change.

Flippingp
1

would do the job but also has as consequence the
loss of a static law: we would violatep

2
→ p

1
⊕p

3
. Here we

think that changing action laws should not have as side effect
a change in the static laws. Given their special status, these
should change only if explicitly required (see above). In this
case, each world satisfyingp

1
∧ 〈a〉p

2
has to be changed

so that〈a〉p
2

is no longer true in it. In our example, we
should remove the arrows({p

1
,¬p

2
,¬p

3
}, {¬p

1
, p

2
, p

3
})

and({p
1
, p

2
,¬p

3
}, {p

1
, p

2
,¬p

3
}).

Actions and Belief Change NMR-2008

61

The semantics of one model revision for the case of a new
effect law is:

Definition 5 LetM = 〈W,R〉. M ′ = 〈W′,R′
〉 ∈ M ∗

ϕ→[a]ψ
if and only if:

• W′ = W
• R′

⊆ R

• If (w,w′) ∈ R\ R′, then|=
M

w

ϕ and|=
M

w
′
¬ψ

• |=
M

′

ϕ→ [a]ψ

The minimal models resulting from the revision of a
modelM by a new effect law are those that are closest to
M w.r.t.�M :

Definition 6 LetM be a model andϕ→ [a]ψ an effect law.
Then revise(M , ϕ→ [a]ψ) =

⋃
min{M ∗

ϕ→[a]ψ,�M}.

Revising a Model by an Executability Law
Let the model depicted in Figure 3 and suppose we want to
revise it by the new executability lawp

1
→ 〈a〉⊤.

M :

p1, p2

p1,¬p2 ¬p1, p2

¬p1,¬p2

a

a

a

Figure 3: A model wherep
1
∧ [a]⊥ is satisfiable.

Observe that¬(p
1
→ 〈a〉⊤) is satisfiable inM , hence we

must throwp
1
∧[a]⊥ away to ensure the new formula is true.

To removep
1
∧ [a]⊥ we have to look at all worlds satisfying

it and modifyM so that they no longer satisfy the formula.
Given world{p

1
,¬p

2
}, we have two options: change the in-

terpretation ofp
1

or add a new arrow leaving this world. A
question that raises is ‘what choice is more drastic: change a
world or an arrow’? Again, here we think that changing the
world’s content (the valuation) is more drastic, as the exis-
tence of such a world was foreseen by some static law and is
hence assumed to be as it is, unless we have information sup-
porting the contrary (see above). Thus we shall add a new
a-arrow from{p

1
,¬p

2
}. Having agreed on that, the issue

now is: to which world should the new arrow point? Four
options show up: point the arrow to{p

1
, p

2
}, {¬p

1
, p

2
},

{¬p
1
,¬p

2
} or {p

1
,¬p

2
} itself. The resulting model is such

that the unwanted formula is unsatisfiable andp
1
→ 〈a〉⊤

holds in all its worlds.
Whereas all these options make the new law true in

the resulting model, not all of them comply with minimal
change. To witness, putting ana-arrow from {p

1
,¬p

2
}

to {¬p
1
,¬p

2
} or {p

1
,¬p

2
} makes us lose the effect law

¬p
2
→ [a]p

2
; and pointing it to{¬p

1
, p

2
} also deletes from

the modelp
1
→ [a]p

1
. Note that these laws are preserved

if we point the arrow to{p
1
, p

2
}. What would support the

choice for the latter?

When pointing a new arrow leaving a worldw we want
to preserve as many effects as we had before doing so. To
achieve this, it is enough to preserve old effects only inw
(because the remaining structure of the model remains un-
changed after addingthis new arrow). The operation we
must carry out is to observe what is true inw and in the
candidate target worldw′:
• What changes fromw to w′ (w′ \ w) must be what is

obliged to do so.

• What does not change fromw tow′ (w∩w′) must be what
is either obliged or allowed to do so.
This means that every change outside what is forced to

change is not an intended one. In our example, when putting
the a-arrow from{p

1
,¬p

2
} to {¬p

1
, p

2
}, ¬p

1
becomes a

possible effect ofa. As far as¬p
1

is never caused bya,
there is no justification for having it in a target world of
{p

1
,¬p

2
}. Similarly, we want the literals preserved in the

target world to beat mostthose that either are consequences
of some effect or are usually preserved in that context. Ev-
ery preservation outside those may make us lose some law.
For instance, when putting the newa-arrow from{p

1
,¬p

2
}

to {¬p
1
,¬p

2
}, ¬p

2
is preserved. Because¬p

2
is not a nec-

essary effect ofa and is moreover never preserved acrossa’s
execution (inM), there is no reason to preserve it in this
newa-transition.

This looks like prime implicants, and that is where prime
subvaluations play their role: the worlds to which the new
arrow shall point are those whose difference w.r.t. the depart-
ing world are literals that are relevant, and whose similarity
w.r.t. it are literals that we know do not change.

Before giving a formal definition for that, we need to con-
sider two important issues: First, when checking satisfac-
tion of these two conditions, looking just at what is true in
the modelM we want to modify is not enough. It can be
a model in which a contingent, i.e., not true in all models
formula is true. Hence we shall consider all the models in
M. Second, ifa is never executable inw, i.e., Ra(w) = ∅

for everyM = 〈W,R〉 ∈ M, then lots of effects fora triv-
ially hold inw, and then not all of them should be taken into
account in deciding what has to be changed or preserved. In
this case, one should instead look at the effects that hold for
those worldsw such thatRa(w) 6= ∅ (because everything
that holds in these worlds also holds trivially in those worlds
with no transition bya).

Definition 7 Let M = 〈W,R〉 be a model,w,w′ ∈ W,M
a set of models such thatM ∈ M, andϕ → 〈a〉⊤ an
executability law. Thenw′ is a relevant target world ofw
w.r.t.ϕ→ 〈a〉⊤ for M in M if and only if:

• |=
M

w

ϕ

• If there isM ′ = 〈W′,R′
〉 ∈ M such that R′a(w) 6= ∅:

– for all ℓ ∈ w′
\ w, there isψ′

∈ Fml s.t. there is v′ ∈
base(ψ′,W) s.t. v′ ⊆ w′, ℓ ∈ v′, and for everyMi ∈

M, |=
Mi

w

[a]ψ′

– for all ℓ ∈ w ∩ w′, either there isψ′ ∈ Fml s.t. there
is v′ ∈ base(ψ′,W) s.t. v′ ⊆ w′, ℓ ∈ v′, and for all

Mi ∈ M, |=
Mi

w

[a]ψ′; or there isMi ∈ M s.t. 6|=
Mi

w

[a]¬ℓ

Actions and Belief Change NMR-2008

62

• If R′
a(w) = ∅ for everyM ′ = 〈W′,R′

〉 ∈ M:
– for all ℓ ∈ w′

\ w, there isMi = 〈Wi,Ri〉 ∈ M s.t.
there isu, v ∈ Wi s.t.(u, v) ∈ Ria andℓ ∈ v \ u

– for all ℓ ∈ w ∩ w′, there isMi = 〈Wi,Ri〉 ∈ M s.t.
there isu, v ∈ Wi s.t. (u, v) ∈ Ria and ℓ ∈ u ∩ v,
or for all Mi = 〈Wi,Ri〉 ∈ M, if (u, v) ∈ Ria, then
¬ℓ /∈ v \ u

By RelTgt(w,ϕ→ 〈a〉⊤,M ,M) we denote the set of all
relevant target worlds ofw w.r.t.ϕ→ 〈a〉⊤ for M in M.

The semantics of one model revision by a new executabil-
ity law is given by:

Definition 8 Let M = 〈W,R〉. M ′ = 〈W′,R′
〉 ∈

M ∗
ϕ→〈a〉⊤ if and only if:

• W′ = W
• R⊆ R′

• If (w,w′) ∈ R′
\ R, then w′

∈

RelTgt(w,ϕ → 〈a〉⊤,M ,M)

• |=
M

′

ϕ→ 〈a〉⊤

The minimal models resulting from revising a modelM

by a new executability law are those closest toM w.r.t.�M :

Definition 9 Let M be a model andϕ → 〈a〉⊤ be
an executability law. Then revise(M , ϕ → 〈a〉⊤) =⋃

min{M ∗
ϕ→〈a〉⊤,�M}.

Revising Sets of Models
Now we are ready to define revision of a set of modelsM

by a new lawΦ:

Definition 10 LetM be a set of models andΦ a law. Then

M
∗
Φ

=

{
M\ {M :6|=

M
Φ}, if there isM ∈ M s.t. |=

M
Φ

⋃
M∈M revise(M , Φ), otherwise

Observe that Definition 10 comprises bothexpansionand
revision: in the first one, simple addition of the new law
gives a satisfiable theory; in the latter a deeper change is
needed to get rid of inconsistency.

Syntactic Operators for Revision
We now turn our attention to the syntactical counterpart of
revision. Suppose we have an action theoryT and a lawΦwe
want to reviseT with. If T ∪ {Φ} is satisfiable, addingΦ to
T (expansion) will do the job. Otherwise, ifT ∪ {Φ} |=

PDL
⊥,

then we have to modify the laws inT to accommodate with
the new incoming law (proper revision). Our endeavor here
is to perform minimal change at the syntactical level. ByT

∗
Φ

we denote the result of revisingT with Φ.

Revision by a Static Law
Looking at the semantics of revision by Boolean formulas,
we see that revising an action theory by a new static law
may conflict with the executability laws: some of them may
be lost and thus have to be changed as well. The approach
here is to preserve as many executabilities as we can in the
old possible states. To do that, we look at each possible

valuation that is common to the newS and the old one. Ev-
ery time an executability used to hold in that state and no
inexecutability holds there in the new theory, we make the
action executable in such a context. For those contexts not
allowed by the oldS , we makea inexecutable (cf. the se-
mantics). Algorithm 1 deals with that (S ⋆ ϕ denotes the
classical revision ofS byϕ using any standard method from
the literature (Winslett 1988; Katsuno and Mendelzon 1992;
Herzig and Rifi 1999)).

Algorithm 1 Revision by a static law
input: T, ϕ
output: T∗

ϕ

if T ∪ {ϕ} 6|=
PDL

⊥ then
T∗
ϕ:= T ∪ {ϕ}

else
S ′:= S ⋆ ϕ, E ′:= E , X ′:= ∅
for all π ∈ IP(S ′) do

for all A ⊆ atm(π) do
ϕA:=

V

pi∈atm(π)
pi∈A

pi ∧
V

pi∈atm(π)
pi /∈A

¬pi

if S ′ 6|=
CPL

(π ∧ ϕA) → ⊥ then
if S 6|=

CPL
(π ∧ ϕA) → ⊥ then

if T |=
PDL

(π ∧ ϕA) → 〈a〉⊤ and S ′, E ′,X 6|=
PDL

¬(π ∧ ϕA) then
Xa

′:= {(ϕi ∧ π ∧ ϕA) → 〈a〉⊤ : ϕi → 〈a〉⊤ ∈
Xa}

else
E ′:= E ′ ∪ {(π ∧ ϕA) → [a]⊥}

T∗
ϕ:= S ′ ∪ E ′ ∪ X ′

Revision by an Effect Law
When revising a theory by a new effect lawϕ → [a]ψ, we
want to eliminate all possible executions ofa leading to¬ψ-
states. To achieve that, we look at allϕ-contexts and every
time a transition to some¬ψ-context is not always the case,
i.e., T 6|=

PDL
ϕ → 〈a〉¬ψ, we can safely force[a]ψ for that

context. On the other hand, if in such a context there is al-
ways an execution ofa to¬ψ, then we should strengthen the
executability laws to make room for the new effect in that
context we want to add. Algorithm 2 below does the job.

Revision by an Executability Law
Revising a theory by a new executability law will have as
immediate consequence a change in the set of effect laws:
all those laws preventing the execution ofa shall be weak-
ened. Besides that, in order to comply with minimal change,
we shall ensure that in all models of the resulting theory
there will be at mostonetransition bya from those worlds
in whichT precludeda’s execution.

Let Eϕ,⊥a denote a minimum subset ofEa such that
S , Eϕ,⊥a |=

PDL
ϕ → [a]⊥. In the case the theory is modu-

lar (Herzig and Varzinczak 2005) (see further), interpolation
guarantees that this set always exists. Moreover, note that
there can be more than one such a set, in which case we
denote them(Eϕ,⊥a)1, . . . , (E

ϕ,⊥
a)n. Let

E
−
a =

⋃
1≤i≤n

(Eϕ,⊥a)i

Actions and Belief Change NMR-2008

63

Algorithm 2 Revision by an effect law
input: T, ϕ → [a]ψ
output: T∗

ϕ→[a]ψ

if T ∪ {ϕ → [a]ψ} 6|=
PDL

⊥ then
T∗
ϕ→[a]ψ:= T ∪ {ϕ → [a]ψ}

else
T ′:= T
for all π ∈ IP(S ∧ ϕ) do

for all A ⊆ atm(π) do
ϕA:=

V

pi∈atm(π)
pi∈A

pi ∧
V

pi∈atm(π)
pi /∈A

¬pi

if S 6|=
CPL

(π ∧ ϕA) → ⊥ then
for all π′ ∈ IP(S ∧ ¬ψ) do

if T ′ |=
PDL

(π ∧ ϕA) → 〈a〉π′ then

T ′:=
(T ′ \ X ′

a) ∪
{(ϕi ∧ ¬(π ∧ ϕA)) → 〈a〉⊤ :
ϕi → 〈a〉⊤ ∈ X ′

a}

T ′:= T ′ ∪ {(π ∧ ϕA) → [a]ψ}
if T ′ 6|=

PDL
(π ∧ ϕA) → [a]⊥ then

T ′:= T ′∪{(ϕi∧π∧ϕA) → 〈a〉⊤ : ϕi → 〈a〉⊤ ∈
T}

T∗
ϕ→[a]ψ:= T ′

The effect laws inE−
a will serve as guidelines to get rid of

[a]⊥ in eachϕ-world allowed by the theory: they are the
laws to be weakened to allow for〈a〉⊤.

The idea behind our algorithm is as follows: to force
ϕ → 〈a〉⊤ to be true in all models of the resulting theory,
we visit every possibleϕ-context allowed by it and make the
following operations to ensure〈a〉⊤ is the case for that con-
text: Given aϕ-context, ifT not always precludesa from
being executed in it, we can safely force〈a〉⊤ without mod-
ifying other laws. On the other hand, ifa is always inexe-
cutable in that context, then we should weaken the laws in
E−

a . The first thing we must do is to preserve all old ef-
fects in all otherϕ-worlds. To achieve that we specialize the
above laws to each possible valuation (maximal conjunction
of literals) satisfyingϕ but the actual one. Then, in the cur-
rentϕ-valuation, we must ensure that actiona may have any
effect, i.e., from thisϕ-world we can reach any other pos-
sible world. We achieve that by weakening theconsequent
of the laws inE−

a to the exclusive disjunction of all possi-
ble contexts inT. Finally, to get minimal change, we must
ensure that all literals in thisϕ-valuation that are not forced
to change are preserved. We do this by stating a conditional
frame axiom of the form(ϕk ∧ ℓ) → [a]ℓ, whereϕk is the
aboveϕ-valuation.

Algorithm 3 gives the pseudo-code for that.

Correctness of the Algorithms
Suppose we have two atomsp

1
andp

2
, and only one action

a. Let the action theoryT1 = {¬p
2
, p

1
→ [a]p

2
, 〈a〉⊤}.

The only model ofT1 is M in Figure 4. Revising such a
model byp

1
∨ p

2
gives us the modelsM ′

i
, 1 ≤ i ≤ 3, in

Figure 4. Now, revisingT1 by p
1
∨p

2
will give usT1

∗
p1∨p2

=

{p
1
∧ ¬p

2
, p

1
→ [a]p

2
}. The only model ofT1

∗
p1∨p2

is M ′
1

Algorithm 3 Revision by an executability law
input: T, ϕ→ 〈a〉⊤
output: T∗

ϕ→〈a〉⊤

if T ∪ {ϕ → 〈a〉⊤} 6|=
PDL

⊥ then
T∗
ϕ→〈a〉⊤:= T ∪ {ϕ → 〈a〉⊤}

else
T ′:= T
for all π ∈ IP(S ∧ ϕ) do

for all A ⊆ atm(π) do
ϕA:=

V

pi∈atm(π)
pi∈A

pi ∧
V

pi∈atm(π)
pi /∈A

¬pi

if S 6|=
CPL

(π ∧ ϕA) → ⊥ then
if T ′ |=

PDL
(π ∧ ϕA) → [a]⊥ then

T ′:=

(T ′ \ E ′−
a) ∪

{(ϕi ∧ ¬(π ∧ ϕA)) → [a]ψi :

ϕi → [a]ψi ∈ E ′−
a } ∪

{(ϕi ∧ π ∧ ϕA) → [a]
L

π′∈IP(S)

A′⊆atm(π′)

(π′ ∧ ϕA′) :

ϕi → [a]ψi ∈ E ′−
a }

for all L ⊆ Lit do
if S |=

CPL
(π ∧ ϕA) →

V

ℓ∈L ℓ then
for all ℓ ∈ L do

if T |=
PDL

ℓ → [a]⊥ or (T 6⊢
PDL

ℓ → [a]¬ℓ
and T |=

PDL
ℓ→ [a]ℓ) then

T ′:= T ′ ∪ {(π ∧ ϕA ∧ ℓ) → [a]ℓ}
T ′:= T ′ ∪ {(π ∧ ϕA) → 〈a〉⊤}

T∗
ϕ→〈a〉⊤:= T ′

in Figure 4. This means that the semantic revision produces
models (viz.M ′

2
andM ′

3
in Figure 4) that are not models of

the revised theories.

M : ¬p1,¬p2

a

M ′
1

: p1,¬p2

M ′
2

: ¬p1, p2
M ′

3
: p1, p2

Figure 4: The modelM of T and the semantic revision of
M by p

1
∨ p

2
.

The other way round, the algorithms may produce theo-
ries whose models do not result from the semantic revision
of some model of the original theory. As an example, con-
siderT2 = {(p

1
∨ p

2
) → [a]⊥, 〈a〉⊤}, whose only model is

M in Figure 4. The revision ofM by p
1
∨ p

2
is as above.

HoweverT2
∗
p1∨p2

= {p
1
∨ p

2
, (p

1
∨ p

2
) → [a]⊥} has a

modelM ′′ = 〈{{p
1
, p

2
}, {p

1
,¬p

2
}, {¬p

1
, p

2
}}, ∅〉 that is

not inM ∗
p1∨p2

.
This happens because the possible states are not com-

pletely characterized by the static laws inS . Fortunately

Actions and Belief Change NMR-2008

64

we get the right result by requiringS to be ‘big enough’.
This is connected with the principle ofmodularity(Herzig
and Varzinczak 2005):
Definition 11 (Modularity (Herzig and Varzinczak 2005))
T is modularif and only if for everyϕ ∈ Fml, if T |=

PDL
ϕ,

thenS |=
CPL

ϕ.

Under modularity, revision of models ofT by a lawΦ
in the semantics produces models of the output of the algo-
rithmsT∗

Φ
:

Theorem 3 LetT be modular andΦ be a law. For all mod-
els M ′, if M ′ ∈ M∗

Φ
, for someM = {M :|=

M
T}, then

|=
M

′

T
∗
Φ

.

Also under modularity, models ofT∗
Φ

result from revision
of models ofT byΦ:

Theorem 4 Let T be modular andΦ a law. For everyM ′,

if |=
M

′

T
∗
Φ

, thenM ′
∈ M

∗
Φ

, for someM = {M :|=
M
T}.

In (Herzig and Varzinczak 2005) algorithms are given to
check whetherT satisfies the principle of modularity and
also to makeT satisfy it, if that is not the case.

Modular theories have other interesting properties (Herzig
and Varzinczak 2007): for example, consistency amounts to
that ofS ; deduction of effect laws does not need the exe-
cutability ones and vice versa; prediction of an effect of a
sequence of actionsa1; . . . ; an does not need the effect laws
for actions other thana1, . . . ,an. This also applies to plan
validation when deciding whether〈a1; . . . ; an〉ϕ is the case.

Conclusion and Perspectives
Contrary to classical belief change, the problem of action
theory change has only recently received attention in the
literature, both in action languages (Baral and Lobo 1997;
Eiter et al. 2005) and in dynamic logic (Herzig, Perrussel,
and Varzinczak 2006; Varzinczak 2008a).

Here we have studied what revising action theories by
a law means, both in the semantics and at the syntactical
level. We have defined a semantics based on distances be-
tween models that also captures minimal change w.r.t. the
preservation of effects of actions. With our algorithms and
the correctness results under modularity we have established
the link between the semantics and the syntax, and have also
shown that the modularity notion is fruitful. Since modular-
ity is preserved across revision (see Lemma 1 in the appen-
dices), it has to be ensured only once during the evolution of
the action theory.

Here we presented the case for revision. In (Varzinczak
2008a) we also define the contraction counterpart of ac-
tion theory change. There we show that moreover our con-
structions satisfy all Katsuno and Mendelzon’s postulates for
contraction (Katsuno and Mendelzon 1992).

Our next step on the subject is to define a general frame-
work in which to revise a theory byany formula of the
language and not only laws. We believe that such a def-
inition will use as basic operations semantic modifications
like those we studied here (addition/removal of arrows and
worlds). Hence our constructions will help us in better un-
derstanding what revision by a general formula means.

Acknowledgements
The author is thankful to Andreas Herzig and Laurent Per-
russel for interesting discussions on the subject of this work.

This work has been partially supported by the government
of the FEDERATIVE REPUBLIC OFBRAZIL . Grant: CAPES
BEX 1389/01-7.

References
Baral, C., and Lobo, J. 1997. Defeasible specifications in
action theories. InProc. IJCAI, 1441–1446.
Eiter, T.; Erdem, E.; Fink, M.; and Senko, J. 2005. Updat-
ing action domain descriptions. InProc. IJCAI, 418–423.
Gärdenfors, P. 1988.Knowledge in Flux: Modeling the
Dynamics of Epistemic States. MIT Press.
Harel, D.; Tiuryn, J.; and Kozen, D. 2000.Dynamic Logic.
MIT Press.
Herzig, A., and Rifi, O. 1999. Propositional belief
base update and minimal change.Artificial Intelligence
115(1):107–138.
Herzig, A., and Varzinczak, I. 2005. On the modularity of
theories. InAdvances in Modal Logic, volume 5. King’s
College Publications. 93–109.
Herzig, A., and Varzinczak, I. 2007. Metatheory of actions:
beyond consistency.Artificial Intelligence171:951–984.
Herzig, A.; Perrussel, L.; and Varzinczak, I. 2006. Elabo-
rating domain descriptions. InProc. ECAI, 397–401.
Katsuno, H., and Mendelzon, A. 1992. On the difference
between updating a knowledge base and revising it. InBe-
lief revision. Cambridge. 183–203.
Kracht, M., and Wolter, F. 1991. Properties of indepen-
dently axiomatizable bimodal logics.J. of Symbolic Logic
56(4):1469–1485.
Parikh, R. 1999. Beliefs, belief revision, and splitting lan-
guages. InLogic, Language and Computation, 266–278.
Quine, W. V. O. 1952. The problem of simplifying truth
functions.American Mathematical Monthly59:521–531.
Varzinczak, I. 2008a. Action theory contraction and mini-
mal change. To appear in Proc. KR 2008.
Varzinczak, I. 2008b. Action theory revision. Technical
Report IRIT/RT–2008-1–FR, IRIT, Toulouse.

Winslett, M.-A. 1988. Reasoning about action using a
possible models approach. InProc. AAAI, 89–93.

Proof of Theorem 3
Let Φ be a law,M ′ ∈ M∗

Φ
, and letT∗

Φ
be the output of our

algorithms on input theoryT and lawΦ.

If T ∪ {Φ} 6|=
PDL

⊥, thenM ′ ∈ M \ {M :6|=
M
Φ} andM ′

is a model ofT∗
Φ

= T ∪ {Φ}.

Let T ∪ {Φ} |=
PDL

⊥. We analyze each case.

Let Φ be someϕ ∈ Fml. ThenM ′ = 〈W′,R′
〉 where

W′ = (W\val(¬ϕ))∪val(ϕ) is minimal w.r.t.WandR′
⊆ R

is maximal w.r.t.R, for someM = 〈W,R〉 ∈ M.

Actions and Belief Change NMR-2008

65

As we have assumed the syntactical classical revision op-
erator ⋆ is sound and complete w.r.t. its semantics and is

moreover minimal, we have|=
M

′

S ⋆ ϕ. BecauseR′
⊆ R,

|=
M

′

E . Thus it is enough to show thatM ′ is a model of the
added laws.

Given(ϕi ∧ π ∧ ϕA) → 〈a〉⊤ ∈ T
∗
ϕ

, for everyw ∈ W′, if

|=
M

′

w

ϕi∧π∧ϕA, thenw ∈ W(becauseS 6|=
CPL

(π∧ϕA) → ⊥).
Fromw ϕi andϕi → 〈a〉⊤ ∈ Xa, we haveRa(w) 6= ∅.

SupposeR′
a(w) = ∅. As |=

M
′

S ⋆ ϕ ∪ E andR′ is maximal,

everyM ′′ = 〈W′′,R′′
〉 s.t. |=

M
′′

S ⋆ ϕ ∪ E is s.t.R′′
a(w) =

∅, and thenS ⋆ ϕ ∪ E |=
PDL

(π ∧ ϕA) → [a]⊥. Because
T |=

PDL
(π ∧ ϕA) → 〈a〉⊤, andS 6|=

CPL
(π ∧ ϕA) → ⊥ and

S ⋆ϕ 6|=
CPL

(π∧ϕA) → ⊥, we getS ⋆ϕ, E ,X |=
PDL

¬(π∧ϕA),
and then(ϕi ∧ π ∧ ϕA) → 〈a〉⊤ /∈ T

∗
ϕ

. HenceR′
a(w) 6= ∅,

and|=
M

′

(ϕi ∧ π ∧ ϕA) → 〈a〉⊤.
If (π ∧ ϕA) → [a]⊥ ∈ T

∗
ϕ

, thenS |=
CPL

(π ∧ ϕA) → ⊥.

Thus, for everyw ∈ W′, if |=
M

′

w

π ∧ ϕA, R′
a(w) = ∅ and the

result follows.

LetΦ now have the formϕ→ [a]ψ, forϕ, ψ ∈ Fml. Then
M′ = 〈W′,R′

〉 for someM = 〈W,R〉 ∈ M s.t.W′ = W
andR′

⊆ R, whereR′ is maximal w.r.t.R.

From W′ = W, |=
M

′

S . As R′
⊆ R, |=

M
′

E . Because
S ∪ E ⊆ T

∗
ϕ→[a]ψ, it suffices to show thatM ′ is a model of

the added laws.
By definition, |=

M
′

ϕ → [a]ψ, and then|=
M

′

(π ∧ ϕA) →

[a]ψ for everyπ ∈ IP(S ∧ ϕ).
If (ϕi ∧ π ∧ ϕA) → 〈a〉⊤ ∈ T

∗
ϕ→[a]ψ, then for every

w ∈ W′, if w ϕi ∧ π ∧ ϕA, we havew ϕi. Asw ∈ W,
andϕi → 〈a〉⊤ ∈ Xa, Ra(w) = ∅. If R′

a(w) = ∅, then
w′ ¬ψ for everyw′ ∈ Ra(w). Thus as far as we added
(π ∧ ϕA) → [a]ψ to T

∗
ϕ→[a]ψ, we must haveT∗

ϕ→[a]ψ |=
PDL

(π ∧ ϕA) → [a]⊥. HenceR′
a(w) 6= ∅.

Let (ϕi ∧
∧

T|=
PDL

(π∧ϕA)→〈a〉¬ψ ¬(π ∧ ϕA)) → 〈a〉⊤ ∈

T
∗
ϕ→[a]ψ. For every w ∈ W′, if |=

M
′

w

ϕi ∧∧
T|=

PDL
(π∧ϕA)→〈a〉¬ψ ¬(π ∧ ϕA), then w ϕi, and as

w ∈ W andϕi → 〈a〉⊤ ∈ Xa, we haveRa(w) 6= ∅. If

R′
a(w) = ∅, because|=

M
′

S ∧ E andR′ is maximal, every

M ′′ = 〈W′′,R′′
〉 s.t. |=

M
′′

S ∧ E is s.t.R′′
a(w) = ∅. Then

S , E |=
PDL

∧
ℓ∈w ℓ→ [a]⊥. But thenT |=

PDL

∧
ℓ∈w ℓ → [a]⊥,

and asϕi → 〈a〉⊤ ∈ Xa, T |=
PDL

¬(
∧
ℓ∈w ℓ ∧ ϕi), and then

w /∈ W, a contradiction. HenceR′
a(w) 6= ∅.

Finally, letΦ be of the formϕ → 〈a〉⊤, for someϕ ∈

Fml. ThenM ′ = 〈W′,R′
〉 for someM = 〈W,R〉 ∈ M s.t.

W′ = W andR′ = R∪ Rϕ,⊤a , with

Rϕ,⊤a = {(w,w′) : w′
∈ RelTgt(w,ϕ→ 〈a〉⊤,M ,M)}

such thatR′ is minimal w.r.t.R.
From W′ = W, |=

M
′

S . As R ⊆ R′, |=
M

′

X . As far as
S ∪ X ⊆ T

∗
ϕ→〈a〉⊤, it is enough to show thatM ′ satisfies

the added laws.

By definition,|=
M

′

ϕ → 〈a〉⊤, and then|=
M

′

(π ∧ ϕA) →

〈a〉⊤ for everyπ ∈ IP(S ∧ ϕ).
If (ϕi ∧ π ∧ ϕA) → [a](ψi ∨

⊕
π′∈IP(S)

A′⊆atm(π′)

(π′ ∧ ϕA′)) ∈

T
∗
ϕ→〈a〉⊤, then for everyw ∈ W′, if w ϕi ∧ π ∧ ϕA,

thenw ϕi. Because|=
M
ϕi → [a]ψi, we have|=

M

w
′
ψi for all

w′ ∈ Ws.t.(w,w′) ∈ Ra, and then|=
M

′

w
′
ψi for everyw′ ∈ W′

s.t. (w,w′) ∈ R′
a \ Rϕ,⊤a . Now, given(w,w′) ∈ Rϕ,⊤a , we

have|=
M

′

w
′

⊕
π′∈IP(S)

A′⊆atm(π′)

(π′
∧ ϕA′), and the result follows.

Let (ϕi ∧
∧

T|=
PDL

(π∧ϕA)→[a]⊥ ¬(π ∧ ϕA)) → [a]ψi ∈

T
∗
ϕ→〈a〉⊤. For every w ∈ W′, if |=

M
′

w

ϕi ∧

∧
T|=

PDL
(π∧ϕA)→[a]⊥ ¬(π∧ϕA), thenw ϕi, and as|=

M
ϕi →

[a]ψi, we have|=
M

w
′
ψi for all w′

∈ W s.t.(w,w′) ∈ Ra. Thus

|=
M

′

w
′
ψi for everyw′ ∈ W′ s.t. (w,w′) ∈ R′

a \ Rϕ,⊤a . Now,

if w 6 ϕ, thenRϕ,⊤a = ∅ and the result follows. Other-
wise, if w ϕ, thenT 6|=

PDL
(π ∧ ϕA) → [a]⊥, and then

(ϕi ∧
∧

T|=
PDL

(π∧ϕA)→[a]⊥ ¬(π ∧ ϕA)) → [a]ψi has not been

put inT
∗
ϕ→〈a〉⊤, a contradiction.

Let now (π ∧ ϕA ∧ ℓ) → [a]ℓ ∈ T
∗
ϕ→〈a〉⊤. For every

w ∈ W′, if |=
M

′

w

π ∧ ϕA ∧ ℓ, then|=
M

′

w

ℓ, and then|=
M

w

ℓ. From
(π ∧ ϕA ∧ ℓ) → [a]ℓ ∈ T

∗
ϕ→〈a〉⊤, we haveT |=

PDL
ℓ → [a]⊥

or T 6|=
PDL

ℓ → [a]¬ℓ andT |=
PDL

ℓ → [a]ℓ. In both cases,

|=
M

w
′
ℓ for everyw′ ∈ Ra(w), and then|=

M
′

w
′
ℓ for everyw′ s.t.

(w,w′) ∈ R′
\ Rϕ,⊤a . It remains to show that|=

M
′

w
′
ℓ for every

w′ ∈ W′ s.t.(w,w′) ∈ Rϕ,⊤a .

Suppose6|=
M

′

w
′
ℓ. Then¬ℓ ∈ w′ \w. From the construction

of M ′, there isM ′′ = 〈W′′,R′′
〉 ∈ M s.t. there is(u, v) ∈

R′′
a and¬ℓ ∈ v\u, i.e.,|=

M
′′

u

ℓ and|=
M

′′

v

¬ℓ. From(u, v) ∈ R′′
a ,

we do not haveT |=
PDL

ℓ → [a]⊥. From |=
M

′′

v

¬ℓ, we do
not haveT |=

PDL
ℓ → [a]ℓ. Thus the algorithm has not put

(π ∧ ϕA ∧ ℓ) → [a]ℓ in T
∗
ϕ→〈a〉⊤, a contradiction.

Proof of Theorem 4
Lemma 1 LetΦ be a law. IfT is modular andT∪{Φ} |=

PDL

⊥, thenT∗
Φ

is modular.

Proof: Let Φ be nonclassical. SupposeT∗
Φ

is not modular.
Then there isϕ′ ∈ Fml s.t.T∗

ϕ
|=
PDL

ϕ′ andS ′
6|=
CPL

ϕ′, where
S

′ is static laws inT∗
Φ

. SupposeT 6|=
PDL

ϕ′. Then we must
haveT∗

Φ
|=
PDL

¬ϕ′ → [a]⊥ andT∗
Φ
|=
PDL

¬ϕ′ → 〈a〉⊤.
SupposeΦ has the formϕ→ [a]ψ, for ϕ, ψ ∈ Fml. Then

for all ϕ∧¬ϕ′-contexts, as far asT∗
Φ
|=
PDL

(ϕ∧¬ϕ′) → [a]⊥,
(ϕ ∧ ¬ϕ′) → 〈a〉⊤ /∈ T

∗
Φ

. ThenT∗
Φ
|=
PDL

ϕ′ if and only if
S

′
|=
CPL

ϕ′, a contradiction.
SupposeΦ is of the formϕ → 〈a〉⊤, for ϕ ∈ Fml. Then

for allϕ∧¬ϕ′-contexts such thatT∗
Φ
|=
PDL

(ϕ∧¬ϕ′) → 〈a〉⊤,
T
∗
Φ
|=
PDL

(ϕ ∧ ¬ϕ′) → [a]⊥ is impossible as far asE−
a has

Actions and Belief Change NMR-2008

66

been weakened. ThenT∗
Φ
|=
PDL

ϕ′ if and only if S ′
|=
CPL

ϕ′, a
contradiction.

Hence we haveT |=
PDL

ϕ′. BecauseΦ is nonclassical,
S

′ = S . ThenT |=
PDL

ϕ′ andS 6|=
CPL

ϕ′, and henceT is not
modular.

Let nowΦ be someϕ ∈ Fml. SupposeT∗
ϕ

is not modular,
i.e., there isϕ′′ ∈ Fml s.t.T∗

ϕ
|=
PDL

ϕ′′ andS ′ = S ⋆ ϕ 6|=
CPL

ϕ′′.
FromS

′
6|=
CPL

ϕ′′, there isv ∈ val(S ′) s.t.v 6 ϕ′′.
If v ∈ val(S), asT is modular,T6|=

PDL
ϕ′′. From this and

T
∗
ϕ

|=
PDL

ϕ′′, we must haveT∗
ϕ

|=
PDL

¬ϕ′′ → [a]⊥ and
T
∗
ϕ

|=
PDL

¬ϕ′′ → 〈a〉⊤. From the latter, we getT |=
PDL

¬ϕ′′ → 〈a〉⊤, and from the first we haveT |=
PDL

¬ϕ′′ →

[a]⊥. Putting both results together we getT |=
PDL

ϕ′′. As
S 6|=

CPL
ϕ′′, we have a contradiction.

If v /∈ val(S), thenT∗
ϕ

6|=
PDL

¬ϕ′′ → 〈a〉⊤, as no ex-
ecutability for context¬ϕ′′ has been put intoT∗

ϕ
. Hence

T
∗
ϕ
6|=
PDL

ϕ′′, a contradiction.

Lemma 2 If Mbig = 〈Wbig,Rbig〉 is a model ofT, then

for everyM = 〈W,R〉 such that|=
M

T there is a mini-
mal (w.r.t. set inclusion) extension R′

⊆ Rbig \ R such that
M ′ = 〈val(S),R∪ R′

〉 is a model ofT.

Proof: See (Varzinczak 2008b).

Lemma 3 LetT be modular, andΦ be a law. ThenT |=
PDL

Φ

if and only if everyM ′ = 〈val(S),R′
〉 such that|=

〈W,R〉
T

and R⊆ R′ is a model ofΦ.

Proof:
(⇒): Straightforward, asT |=

PDL
Φ implies |=

M
Φ for every

M such that|=
M
T, in particular for those that are extensions

of some model ofT.

(⇐): SupposeT 6|=
PDL

Φ. Then there isM = 〈W,R〉 such

that|=
M
T and 6|=

M
Φ. As T is modular, the big modelMbig =

〈Wbig,Rbig〉 of T is a model ofT. Then by Lemma 2 there
is a minimal extensionR′ of R w.r.t. Rbig such thatM ′ =

〈val(S),R∪ R′
〉 is a model ofT. Because6|=

M
Φ, there is

w ∈ W such that6|=
M

w

Φ. If Φ is someϕ ∈ Fml or an effect

law, any extensionM ′ of M is such that6|=
M

′

w

Φ. If Φ is

of the formϕ → 〈a〉⊤, then |=
M

w

ϕ and Ra(w) = ∅. As
any extension ofM is such that(u, v) ∈ R′ if and only if
u ∈ val(S) \W, only worlds other than those inWget a new

leaving arrow. Thus(R∪ R′)a(w) = ∅, and then6|=
M

′

w

Φ.

Lemma 4 Let T be modular andΦ a law. If M ′ =

〈val(S ′),R′
〉 is a model ofT∗

Φ
, then there isM = {M :|=

M

T} s.t.M ′ ∈ M∗
Φ

.

Proof: Let M ′ = 〈val(S ′),R′
〉 be such that|=

M
′

T
∗
Φ

. If

|=
M

′

T, the result follows. Suppose6|=
M

′

T. We analyze each
case.

Let Φ be of the formϕ → [a]ψ, for ϕ, ψ ∈ Fml. Let
M = {M : M = 〈val(S),R〉}. As T is modular, by
Lemmas 2 and 3,M is non-empty and contains only models
of T.

SupposeM ′ is not a minimal model ofT∗
ϕ→[a]ψ, i.e., there

is M ′′ such thatM ′′ �M M ′ for someM ∈ M. Then
M ′ andM ′′ differ only in the effect ofa in a givenϕ-world,
viz. a π ∧ ϕA-context, for someπ ∈ IP(S ∧ ϕ) andϕA =∧

pi∈atm(π)
pi∈A

p
i
∧

∧
pi∈atm(π)

pi /∈A

¬p
i

such thatA ⊆ atm(π).

Because6|=
M

′

(π ∧ ϕA) → 〈a〉¬ψ, we must have|=
M

′′

(π ∧ ϕA) → 〈a〉¬ψ, and then6|=
M

′′

ϕ → [a]ψ. HenceM ′ is
minimal w.r.t.�M .

When revising by an effect law,S ′ = S . Hence tak-
ing the right R and Rϕ,¬ψa such thatM = 〈val(S),R〉

and R′ = R \ Rϕ,¬ψa , for someRϕ,¬ψa ⊆ {(w,w′) :|=
M

w

ϕ, |=
M

w
′
¬ψ and(w,w′) ∈ Ra}, we haveM ∈ M and then

M ′ ∈ M∗
ϕ→[a]ψ.

Let Φ have the formϕ → 〈a〉⊤, for ϕ ∈ Fml. LetM =
{M : M = 〈val(S),R〉}. As T is modular, by Lemmas 2
and 3,M is non-empty and contains only models ofT.

Suppose thatM ′ is not a minimal model ofT∗
ϕ→〈a〉⊤, i.e.,

there isM ′′ such that|=
M

′′

T
∗
ϕ→〈a〉⊤ andM ′′ �M M ′ for

someM ∈ M. ThenM ′ andM ′′ differ only on the exe-
cutability ofa in a givenϕ-world, i.e., aπ ∧ ϕA-context, for
someπ ∈ IP(S ∧ ϕ) andϕA =

∧
pi∈atm(π)

pi∈A

p
i
∧

∧
pi∈atm(π)

pi /∈A

¬p
i
,

such thatA ⊆ atm(π). This meansM ′′ has no arrow leav-

ing this π ∧ ϕA-world. Then|=
M

′′

(π ∧ ϕA) → [a]⊥, and

hence6|=
M

′′

ϕ → 〈a〉⊤. HenceM ′ is a minimal model of
T
∗
ϕ→〈a〉⊤ w.r.t.�M .
When revising by executability laws,S ′ = S . Thus

taking the rightR and a minimalRϕ,⊤a such thatM =
〈val(S),R〉 and R′ = R ∪ Rϕ,⊤a , for some Rϕ,⊤a ⊆

{(w,w′) :|=
M

w

ϕ andw′ ∈ RelTgt(w,ϕ→ 〈a〉⊤,M ,M)},
we getM ∈ M and thenM ′ ∈ M∗

ϕ→〈a〉⊤.
Finally, letΦ be someϕ ∈ Fml. ThenM ′ is such that

for everyw ∈ W′, if R′
a(w) 6= ∅, thenw ∈ val(S) and

Ra(w) 6= ∅ for everyM = 〈W,R〉 ∈ M. Choosing the
right M ∈ M the result follows.

Proof of Theorem 4

LetT∗
Φ

be the output of our algorithms on input theoryT
and lawΦ. If T∗

Φ
= T∪{Φ}, thenT∪{Φ} 6|=

PDL
⊥, and hence

everyM ′ such that|=
M

′

T
∗
Φ

is such thatM ′
∈ M\{M :6|=

M

Φ} and the result follows.

SupposeT ∪ {Φ} |=
PDL

⊥. From the hypothesis thatT
is modular and Lemma 1,T ′ is modular. ThenM ′ =
〈val(S ′),R〉 is a model ofT ′, by Lemma 2. From this and
Lemma 3 the result follows.

Actions and Belief Change NMR-2008

67

Properties of Knowledge Forgetting

Yan Zhang and Yi Zhou
Intelligent Systems Laboratory

University of Western Sydney, Australia
E-mail: {yan,yzhou}@scm.uws.edu.au

Abstract

In this paper we propose a formal theory of knowledge for-
getting based on the single agent S5 modal logic. We first
present a model theoretic definition of knowledge forgetting
and study its essential semantic properties. We show that
knowledge forgetting is a generalization of variable forget-
ting in propositional logic and can be precisely characterized
by four forgetting postulates. We then investigate the com-
putational properties of knowledge forgetting. We observe
that each propositional S5 formula can be transformed into a
kind of disjunctive normal form - this result leads us to de-
velop an algorithm for computing the syntactic representa-
tion of knowledge forgetting. By studying the major decision
problems, we prove that the complexity of model checking
problem for knowledge forgetting is NP complete, and the
complexity of its related inference problems varies from co-
NP complete to Π

P
2 complete.

Key words: belief revision and update, knowledge update,
computational aspects of knowledge representation

Introduction
Epistemic reasoning concerns the problem of how to rea-
son about agents’ epistemic states (knowledge) in a dynamic
environment. In the last decade, it has been demonstrated
that epistemic reasoning has many important applications
in computer science and AI fields (Meyer & van der Hoek
1995). Amongst various theories and approaches, one major
assumption in the study of epistemic reasoning is that agents
always remember their previous knowledge (i.e. agents have
perfect recall). However, as pointed by Fagin et al.: “There
are often scenarios of interest where we want to model the
fact that certain information is discarded. In practice, for
example, an agent may simply not have enough memory ca-
pacity to remember everything he has learned.” (page 129 in
(Fagin et al. 1995)). Hence knowledge forgetting is an im-
portant behaviour for an agent under certain circumstances.

An earlier formal study on the concept of knowledge for-
getting was due to Baral and Zhang’s work on knowledge
update ((Baral & Zhang 2005)), where they treated knowl-
edge forgetting as a special form of update with the effect
¬Kφ ∧ ¬K¬φ: after knowledge forgetting φ (φ is a propo-
sitional formula), the agent would neither know φ nor ¬φ.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Since Baral and Zhang’s knowledge forgetting is specified
from a knowledge update viewpoint, it does not seem to
obey the general intuition of forgetting in classical propo-
sitional theories (Lin & Reiter 1994), and their semantics
of forgetting update does not always represent an intuitive
meaning.

As a logical notion, forgetting was first formally defined
in propostional and first order logics by Lin and Reiter (Lin
& Reiter 1994). Over the years, researchers have demon-
strated many useful applications of the propositional forget-
ting theory in abductive reasoning, belief revision/update,
and reasoning about knowledge (Lang, Liberator, & Mar-
quis 2003; Lin 2001; Shu, Lv, & Zhang 2004). In recent
years, various theories of forgetting have also been proposed
under the answer set programming semantics and used in
solving logic program conflicts (Eiter & Wang 2008 to ap-
pear; Zhang & Foo 2006). From these works, we can see that
forgetting is an important and useful concept in knowledge
representation and reasoning. Nevertheless, it is not diffi-
cult to see that existing forgetting definitions in propositional
logic and answer set programming are not directly applica-
ble in modal logics. For instance, in propositional forgetting
theory, forgetting atom q from T ≡ (p→ q)∧ ((q∧r) → s)
is equivalent to a formula T [q/>] ∨ T [q/⊥], where T [q/>]
is a formula obtained from T by replacing each q with >
and T [q/⊥] is obtained from T by replacing each q with
⊥, which is (r → s) ∨ ¬p. However, this method cannot
be extended to a S5 modal logic formula. Consider an S5
formula T ′ ≡ Kp ∧ ¬Kq ∧ ¬K¬q. If we want to forget
atom q from T ′ by using the above method, we would have
T ′[q/>] ∨ T ′[q/⊥] ≡ ⊥. This is obviously not correct be-
cause after forgetting q, the agent’s knowledge set should
not become inconsistent!

From the above discussions, in order to have a formal the-
ory of of forgetting in propositional single agent S5 modal
logic, some new approach must be developed. In this pa-
per, we present a semantic definition of knowledge forget-
ting and propose four forgetting postulates that we argue that
the underlying knowledge forgetting should obey. We prove
a representaiton theorem showing that our knowledge for-
getting is precisely characterized by these four postulates.
We also study computational properties of knowledge for-
getting in details. We first develop an algorithm to compute
the syntactic representation of knowledge forgetting from a

Actions and Belief Change NMR-2008

68

given knowledge set, and then investigate the complexity of
decision problems in relation to knowledge forgetting. In
particular, we show that the complexity of model checking
problem for knowledge forgetting is NP complete, and the
complexity of its related inference problem varies from co-
NP complete to ΠP

2 complete.
The rest of the paper is organized as follows. Section 2

presents a model based semantic definition of knowledge
forgetting, while section 3 proves an important representa-
tion theorem for knowledge forgetting and studies other re-
lated semantic properties. Section 4 then addresses major
computational properties of knowledge forgetting. Finally
section 5 concludes this paper with some remarks.

Defining Knowledge Forgetting
Our knowledge forgetting will be defined on a basis of the
finite proportional modal logic S5. Let Atom be a finite
set of atoms (also called variables). The finite language
L of propositional S5 modal logic is defined recursively by
Atom, classical connectives ⊥, ¬, → and a modal operator
K as follows:

φ ::= ⊥ | p | ¬φ | φ → ψ | Kφ,

where p ∈ Atom. >, φ ∧ ψ and φ ∨ ψ, are defined as the
standard way. Elements in L are called formulas. Formulas
without modal operators are called objective formulas. A
knowledge set is a finite set of formulas. Literals are atoms
and their negations. Let φ be a formula and Γ a knowledge
set, we write V ar(φ) and V ar(Γ) to denote the set of atoms
occurred in φ and Γ respectively.

For convenience, we usually use a, b, c, · · ·, p, q, · · · to
denote atoms; φ, ψ, υ, · · · to denote formulas; and Γ, T , · · ·
to denote knowledge sets. Sometimes, we also use Γ = φ1∧
· · · ∧ φn to represent a finite set of formulas {φ1, · · · , φn}.

A Kripke structure is a triple S = 〈W,R,L〉, where W
is a set of possible worlds, R an equivalence relation on W ,
and L a set of interpretations for each world in W . As illus-
trated in (Meyer & van der Hoek 1995), an S5 Kripke inter-
pretation for single agent may be simplified asM = 〈W,w〉,
whereW is the set of all possible worlds, each world is iden-
tified as a set of atoms, andw ∈ W is called the actual world.
In this case, we call M = 〈W,w〉 a k-interpretation.

The satisfaction relation |= between k-interpretations and
formulas in L is defined recursively as follows1:

(1) 〈W,w〉 6|= ⊥;
(2) 〈W,w〉 |= p iff p ∈ w, where p ∈ Atom;
(3) 〈W,w〉 |= ¬φ iff 〈W,w〉 6|= φ;
(4) 〈W,w〉 |= φ → ψ iff 〈W,w〉 6|= φ or 〈W,w〉 |= ψ;
(5) 〈W,w〉 |= Kφ iff ∀w′ ∈ W , 〈W,w′〉 |= φ.
We say that M is a k-model of φ iff M |= φ. We write

Mod(φ) (or Mod(Γ) if Γ is a finite set of formulas) to
denote the set of all k-models of φ (or Γ resp.). We say
that two S5 formulas (knowledge sets) φ and ψ are equiv-
alent, denoted by φ ≡ ψ, iff Mod(φ) = Mod(ψ). Let
Γ and Γ′ be two knowledge sets. We write Γ |= Γ′ iff
Mod(Γ) ⊆Mod(Γ′).

1We write 〈W, w〉 6|= F if it is not the case that 〈W,w〉 |= F .

To present a formal definition of knowledge forgetting, we
first introduce a useful notion. Let w and w′ be two worlds
identified as two sets of atoms respectively, and V ⊆ Atom
a set of atoms. We say that w and w′ are identical with
exception on V , denoted byw ↔V w′, if for all p ∈ Atom\
V , p ∈ w iff p ∈ w′. Let M = 〈W,w〉 and M ′ = 〈W ′, w′〉
be two k-interpretations, and V ⊆ Atom a set of atoms,
we say that M and M ′ are bisimilar with exception on V ,
denoted by M ↔V M ′, iff there exists a binary relation
σ ⊆W ×W ′ such that:

1. σ(w,w′);
2. ∀w∗ ∈ W , ∃w∗′

∈ W ′ such that σ(w∗, w∗′

) (the forth
condition); and

3. ∀w∗′

∈ W ′, ∃w∗ ∈ W such that σ(w∗, w∗′

) (the back
condition).

4. if σ(w∗, w∗′

) then w∗ ↔V w∗′ .
Proposition 1 The relation ↔V is an equivalence relation.

Proof: It is easy to see that ↔V satisfies reflexivity and
symmetry. We now show that it satisfies transitivity as well.
Suppose that M0, M1, M2 are three Kripke interpretations
such that M0 ↔V M1 via the binary relation σ1 and
M1 ↔V M2 via the binary relation σ2. Construct a binary
relation σ3 ⊆ W0 × W2: for any two interpretations
w0 ∈ W0, w2 ∈ W2, σ3(w0, w2) iff there exists w1 ∈ W1

such that σ1(w0, w1) and σ2(w1, w2). It is easy to check
that M0 ↔M2 via σ3. �

Now we define knowledge forgetting as follows.
Definition 1 (Knowledge forgetting) Let Γ be a knowledge
set and p ∈ Atom an atom. A knowledge set, denoted as
KForget(Γ, p), is the result of knowledge forgetting p from
Γ, if the following condition holds:

Mod(KForget(Γ, p)) =
⋃

M∈Mod(Γ),M↔{p}M ′

M ′.

Similarly to model based update formulations (Baral &
Zhang 2005; Winslett 1988), KForget(Γ, p) denotes the re-
sult of knowledge forgetting atom p from Γ, where the set
of all k-models of KForget(Γ, p) is specified as in the def-
inition. Since we restrict to a finite propositional S5 modal
logic, such knowledge set KForget(Γ, p) always exists. In
section 5, we also provide an algorithm to compute a con-
crete S5 formula φ such that φ ≡ KForget(Γ, p).
Example 1 Consider knowledge sets K(p ∨ q), Kp ∨ Kq
and K(p ∧ q). From Definition 1, it is easy to check that
KForget(K(p ∨ q), p) ≡ >, KForget(Kp ∨ Kq, p) ≡ >,
and KForget(K(p ∧ q), p) ≡ Kq. �

We may extend Definition 1 to the case of knowledge for-
getting an arbitrary set V of atoms from Γ.
Definition 2 Let Γ be a knowledge set and V ⊆ Atom a
set of atoms. A knowledge set, denoted as KForget(Γ, V), is
the result of knowledge forgetting V from Γ, if the following
condition holds:

Mod(KForget(Γ, V)) =
⋃

M∈Mod(Γ),M↔V M ′

M ′.

Actions and Belief Change NMR-2008

69

The following proposition ensures that Definitions 1 and
2 are semantically coherent.
Proposition 2 Let Γ be a knowledge set and V a set
of atoms and p an atom such that p 6∈ V . Then
KForget(Γ, {p} ∪ V) ≡ KForget(KForget(Γ, p), V).

Proof: Let M1 = 〈W1, s1〉 be a k-model of
KForget(Γ, {p} ∪ V). By the definition, there exists a k-
model M = 〈W, s〉 of Γ, such that M ↔{p}∪V M1 via
a binary relation σ. We construct a k-interpretation M2 =
〈W2, s2〉 as follows: (1) for all pairs w ∈ W and w1 ∈ W1

such that σ(w,w1), let w2 ∈ W2 and (a) p ∈ w2 iff p ∈ w1,
(b) for all atoms q ∈ V , q ∈ w2 iff q ∈ w, (c) for all other
atoms q, q ∈ w2 iff q ∈ w1 iff q ∈ w; (2) delete duplicated
k-interpretations in W2; (3) let s2 be the world such that (a)
p ∈ s2 iff p ∈ s1, (b) for all atoms q ∈ V , q ∈ s2 iff q ∈ s,
(c) for all other atoms q′, q′ ∈ s2 iff q′ ∈ s1 iff q′ ∈ s. Then
we have the following results:
• M ↔{p} M2. Let σ1 ⊆W×W2 be a binary relation such

that σ(w,w2) iff w2 is constructed based on w (see the
construction of M2 above). It is easy to see that M ↔{p}

M2 via σ1.
• M2 ↔V M1. Let σ2 ⊆ W2 ×W1 be a binary relation

such that σ(w2, w1) iff w2 is specified based on w1 (see
the construction ofM2 above). It is observed thatM2 ↔V

M1 via σ2.
Thus, M2 is a k-model of KForget(Γ, p). This follows that
M1 is a k-model of KForget(KForget(Γ, p), V).

On the other hand, suppose that M1 is a k-model of
KForget(KForget(Γ, p), V), then there exists M2 such
that M2 is a k-model of KForget(Γ, p) and M2 ↔V M1,
and there exists M such that M is a k-model of Γ and
M ↔{p} M2. Therefore, M ↔{p}∪V M1, and conse-
quently,M1 is also a k-model of KForget(Γ, {p} ∪ V). �

Semantic characterizations
In this section we study essential semantic properties of
knowledge forgetting. We will first propose a set of pos-
tulates and show that these postulates precisely character-
ize the semantics of knowledge forgetting. We then discuss
other desired properties that our knowledge forgetting satis-
fies.

A representation theorem
Consider a formula φ. Intuitively, if a propositional atom
(variable) a does not occur in V ar(φ), we may consider that
φ is irrelevant to variable a. It is not surprising that the no-
tion of irrelevance plays an important role to characterize the
semantics of knowledge forgetting. We first give the follow-
ing formal definition.
Definition 3 (Irrelevance) Let Γ be a knowledge set and V
a set of atoms. We say that Γ is irrelevant to V , denoted by
IR(Γ, V), if there exists a knowledge set Γ′ such that Γ ≡ Γ′

and V ar(Γ′) ∩ V = ∅.

Let Γ and Γ′ be two knowledge sets, V a set of atoms.
Now we propose the following postulates:

(W) Weakening: Γ |= Γ′.
(PP) Positive Persistence: if IR(φ, V) and Γ |= φ, then

Γ′ |= φ.
(NP) Negative Persistence: if IR(φ, V) and Γ 6|= φ, then

Γ′ 6|= φ.
(IR) Irrelevance: IR(Γ′, V).

By specifying Γ′ ≡ KForget(Γ, V), we call (W), (PP),
(NP) and (IR) are four postulates for knowledge forgetting.
Let us take a closer look at these postulates. (W) seems an
essential requirement for knowledge forgetting: after forget-
ting some knowledge from a knowledge set, the resulting
knowledge set then becomes weaker. Indeed, as demon-
strated in propositional variable forgetting (Lin & Reiter
1994; Lin 2001), forgetting weakens the original formula.
The postulates of positive persistence (PP) and negative per-
sistence (NP) simply state that knowledge forgetting a set
of atoms should not affect those positive or negative infor-
mation respectively that is irrelevant to this set of atoms.
Also note that that (PP) and (NP) can be combined as: if
IR(φ, V), then Γ |= φ iff Γ′ |= φ. Finally, irrelevance (IR)
means that after knowledge forgetting, the resulting knowl-
edge set should be irrelevant to those atoms which we have
(knowledge) forgotten. We argue that these postulates pre-
cisely capture the basic properties that knowledge forgetting
should satisfy.
Lemma 1 Let V be a set of atoms, φ a formula such that
V ar(φ) ∩ V = ∅ and M a model of φ. Then for any M ′

such that M ↔V M ′, M ′ is also a model of φ.

Proof: We prove this assertion by induction on the structure
of φ.
• If φ is ⊥, this assertion holds obviously.
• If φ is an atom p, then M = 〈W,w〉 |= p iff p ∈ w iff
p ∈ w′, where M ′ = 〈W ′, w′〉 and M ↔V M ′ via the
binary relation σ iff M ′ |= p.

• If φ is ¬ψ, then M |= φ iff M 6|= ψ iff M ′ 6|= ψ iff
M ′ |= φ.

• If φ is φ1 → φ2, then M |= φ iff M 6|= φ1 or M |= φ2 iff
M ′ 6|= φ1 or M ′ |= φ2 iff M ′ |= φ.

• If φ is Kψ, then M |= φ iff for all w ∈ W , 〈W,w〉 |= ψ.
Suppose that M ↔V M ′ via the binary relation σ, given
w′ ∈ W ′, there exists w ∈ W such that σ(w,w′) and
w ↔V w′. Thus, 〈W,w〉 ↔V 〈W ′, w′〉. By induction
hypothesis, 〈W ′, w′〉 |= ψ. Thus, M ′ |= φ.

This completes the induction proof. �

Lemma 2 Let V be a set of atoms, φ a formula such that
IR(φ, V) and M a k-model of φ. Then for any M ′ such
that M ↔V M ′, M ′ is also a k-model of φ.

Proof: This assertion follows directly from Lemma 1 �

Now we have the following representation theorem which
states that our forgetting postulates precisely characterize
our knowledge forgetting semantics.

Actions and Belief Change NMR-2008

70

Theorem 1 (Representation theorem) Let Γ and Γ′be two
knowledge sets and V ⊆ Atom a set of atoms. Then the
following statements are equivalent:

1. Γ′ ≡ KForget(Γ, V);
2. Γ′ ≡ {φ | Γ |= φ, IR(φ, V)};
3. Postulates (W), (PP), (NP) and (IR) hold.

Theorem 1 is significant in the sense that it provides an
“if and only if” characterization on knowledge forgetting.
That is, given a knowledge set Γ and a set of atoms V ,
an S5 formula Γ′ represents a result of knowledge forget-
ting V from Γ if Γ′ satisfies postulates (W), (PP), (NP)
and (IR), and vice versa. We have observed that no such
theorem has been proved in the previous work regarding
propositional forgetting (Lang, Liberator, & Marquis 2003;
Lin & Reiter 1994) and logic programming forgetting (Eiter
& Wang 2008 to appear; Zhang & Foo 2006).

In order to prove Theorem 1, we need to first define the
notion of characteristic formula that plays a central role in
the proof of our representation theorem for knowledge for-
getting. Intuitively, given a propositional interpretation π,
π’s characteristic formula C(π, V) on a set V of atoms is
a propositional formula which represents π by a restricted
sources of atoms V . Formally, let π be an interpretation and
V a set of atoms, the characteristic formula of π on V , de-
noted by C(π, V), is defined as:

∧

a∈π,a∈V

a ∧
∧

b6∈π,b∈V

¬b.

It is clear that π |= C(π, V). Now we consider a k-
interpretation M = 〈W,w〉 and a set V of atoms. Then the
characteristic formula of M on V , denoted by C(M,V), is
defined as:
C(w, V) ∧

∧
w′∈W ¬K¬C(w′, V)∧∧

{∀w′′∈2Atom∧w′′ 6∈W,6∃w∗∈Ws.t.w′′↔Atom\V w∗}K¬C(w′′, V).
It is not difficult to check that M |= C(M,V).
Moreover, C(M,V) is irrelevant to Atom\V , i.e.
IR(C(M,V), Atom \ V).
Proposition 3 Let M and M ′ be two k-interpretations and
V a set of atoms. M ′ |= C(M,V) iff M ↔Atom\V M ′.

Proof: Firstly, given two propositional interpretations π and
π′ and a set V of atoms, it is clear that π′ |= C(π, V) iff
π ↔Atom\V π′. Let M = 〈W, s〉 and M ′ = 〈W ′, s′〉. Now
suppose that M ′ |= C(M,Atom\V). Then we have:
• M ′ |= C(s, V), and hence s′ |= C(s, V). So s↔Atom\V

s′.
• For all w ∈ W , M ′ |= ¬K¬C(w, V). That is, there

exists some w′ ∈ W ′ such that w′ |= C(w, V). This
follows w ↔Atom\V w′.

• For all w 6∈W such that there does not exist w1 ∈ W and
w ↔Atom\V w1, M ′ 6|= ¬K¬C(w, V). Thus, there does
not exist w′ ∈ W ′ such that w′ |= C(w, V). That means
that there does not exist w′ such that w ↔Atom\V w′.
Now we construct a binary relation σ ⊆ W ×W ′ such

that σ(w,w′) iff w ↔Atom\V w′. Then we can see that
M ↔Atom\V M ′ via the binary relation σ because:

1. σ(s, s′).
2. For all w ∈ W , there exists w′ ∈ W ′ such that
w ↔Atom\V w′.

3. For all w′ ∈ W ′, there exists w ∈ W such that
w ↔Atom\V w′. Otherwise, C(M,V) |= K¬C(w′, V).
Thus, M ′ 6|= M(C(w′, V)), a contradiction.

4. Finally, by the definition, for all pairs w,w′ such that
σ(w,w′), w ↔Atom\V w′.
On the other hand, we suppose that M ↔Atom\V M ′ via

the given binary relation σ above, then:
• We have that s ↔Atom\V s′. Thus s′ |= C(s, V). Thus
M ′ |= C(s, V).

• For eachw ∈ W , there existsw′ ∈W ′ such that σ(w,w′)
and w ↔Atom\V w′. Thus, w′ |= C(w, V). Thus M ′ |=
¬K¬C(w, V).

• For each w 6∈ W such that there does not exist w1 ∈ W
and w ↔Atom\V w1. We have that M ′ |= K¬C(w, V).
Otherwise, M ′ |= ¬K¬C(w, V). There exists w′ ∈ W ′

such that w′ |= C(w, V). Since M ↔Atom\V M ′, there
exits w1 ∈ W such that σ(w1, w

′), which means that
w1 ↔Atom\V w′. Thus w1 |= C(w, V), w1 ↔Atom\V

w, a contradiction.
This shows that M ′ |= C(M,V). �

Corollary 1 Let M be a k-interpretation and V a set of
atoms. M |= C(M,V).

Proof: This assertion follows directly from Proposition 3
since M ↔Atom\V M . �

Proposition 4 Let Γ be a knowledge base. Then

Γ ≡
∨

M∈Mod(Γ)

C(M,Atom).

Proof: Let M be a k-model of Γ. By Corollary 1,
M |= C(M,Atom). Thus, M is also a k-model of∨

M∈Mod(Γ) C(M,Atom). On the other hand, suppose that
M is a k-model of

∨
M∈Mod(Γ) C(M,Atom). Then there is

a M ′ ∈Mod(Γ) such that M |= C(M ′, Atom). By Propo-
sition 3,M ↔∅ M

′. Therefore,M is also a k-model of Γ. �

Proof of Theorem 1

To prove 1 ⇔ 2, We will show that
Mod(KForget(Γ, V)) = Mod({φ | Γ |=
φ, IR(φ, V)}) =

Mod(
∨

M |=Γ C(M,Atom\V)).
Firstly, suppose that M ′ is also a model of KForget(Γ, V).
By Definition 2, there exists a k-interpretation M such that
M is a k-mode of Γ and M ↔V M ′. By Lemma 2, for all
formula φ such that Γ |= φ and IR(φ, V), M ′ |= φ. Thus,
M ′ is a k-model of {φ | Γ |= φ, IR(φ, V)}.

Secondly, suppose that M ′ is a k-model of {φ | Γ |=
φ, IR(φ, V)}. Thus,

Actions and Belief Change NMR-2008

71

M ′ |=
∨

M∈Mod(Γ) C(M,Atom\V),

since
∨

M∈Mod(Γ) C(M,Atom\V) is irrelevant to V .
Finally, suppose that M ′ is a k-model of∨
M∈Mod(Γ) C(M,Atom\V). Then there exists

M ∈ Mod(Γ) such that M ′ |= C(M,Atom\V). By
Proposition 3, M ↔V M ′. Thus M ′ is also a k-model of
KForget(Γ, V).

Now we show 3 ⇒ 2. Suppose that all postulates hold.
By Positive Persistence, Γ′ |= {φ | Γ |= φ, IR(φ, V)}. Now
we show that {φ | Γ |= φ, IR(φ, V)} |= Γ′. Otherwise,
there exists formula ψ such that Γ′ |= ψ but {φ | Γ |=
φ, IR(φ, V)} 6|= ψ. There are three cases:

1. ψ is relevant to V . Thus, Γ′ is also relevant to V , a con-
tradiction to Irrelevance.

2. ψ is irrelevant to V and Γ |= ψ. This contradicts to our
assumption.

3. ψ is irrelevant to V and Γ 6|= ψ. By Negative Persistence,
Γ′ 6|= ψ, a contradiction.

Thus, Γ′ is equivalent to {φ | Γ |= φ, IR(φ, V)}.
Finally 2 ⇒ 3 is quite obvious. �

Corollary 2 Let Γ be a knowledge base, φ a formula and V
a set of atoms. KForget(Γ, V) |= φ iff IR(φ, V) and Γ |= φ.

Other semantic properties
As we have mentioned in Introduction, the notion of forget-
ting has been defined and used in a variety of contexts un-
der propositional logic (Lang, Liberator, & Marquis 2003;
Lin & Reiter 1994). It is important to know the relation-
ship between variable forgetting in propositional logic and
knowledge forgetting in S5 propositional modal logic.

Let φ be an objective formula. We use φ[p/⊥] and
φ[p/>] to denote the formulas obtained from φ by replac-
ing atom p with ⊥ and > respectively. Then formula
Forget(φ, p) is obtained from φ by forgetting p from φ, if
Forget(φ, p) ≡ φ[p/⊥] ∨ φ[p/>]. By forgetting a set of
atoms V in φ, we recursively define Forget(φ, V ∪ {p}) =
Forget(Forget(φ, p), V), where Forget(φ, ∅) = ∅. We first
have the following result.
Theorem 2 Let φ be an objective formula and V a set of
atoms. Then we have KForget(φ, V) ≡ Forget(φ, V) and
KForget(Kφ, V) ≡ K(Forget(φ, V)).

Proof: We prove Result 1 as follows. Suppose that M =
〈W,w〉 is a model of KForget(φ, V). Then there exists
M ′ = 〈W ′, w′〉 ∈ Mod(φ) such that M ′ ↔V M . Thus,
w′ ↔V w. Sincew′ |= φ, w |= Forget(φ, V). Hence,M is
also a model of Forget(φ, V). On the other hand, suppose
that M = 〈W,w〉 is a model of Forget(φ, V). Then there
exists w′ |= φ and w′ ↔V w. Construct a k-interpretation
M ′ = 〈W ′, w′〉 such that W ′ = W ∪ {w′}\{w}. It’s clear
that M ′ is a model of φ and M ′ ↔V M . Hence, M is also
a model of KForget(φ, V).

Now consider Result 2. Suppose that M = 〈W,w〉
is a model of KForget(Kφ, V). Then there exists
M ′ = 〈W ′, w′〉 ∈ Mod(Kφ) such that M ′ ↔V M . We

have that for all w′
1 ∈ W ′, w′

1 |= φ. Since M ′ ↔V M ,
for all w1 ∈ W , there exists w′

1 ∈ W ′ such that
w1 ↔V w′

1. Therefore w1 |= Forget(φ, V). This shows
that M |= K(Forget(φ, V)). On the other hand, suppose
thatM = 〈W,w〉 is a model ofK(Forget(φ, V)). Then for
all w1 ∈ W , w1 |= Forget(φ, V), and there exists w′

1 |= φ
andw′

1 ↔V w. Construct a k-interpretationM ′ = 〈W ′, w′〉
such that W ′ is the set of all w′

1 mentioned above and
w′ ↔V w. It’s clear that M ′ is a model of K(φ) and
M ′ ↔V M . Hence, M is also a model of KForget(φ, V).
�

Theorem 2 simply reveals that propositional variable for-
getting is a special case of knowledge forgetting, and also
knowledge forgetting of formulas with the form Kφ (where
φ is objective) can be achieved through the corresponding
propositional variable forgetting. However, the syntactic
definition of variable forgetting Forget(φ, p) ≡ φ[p/⊥] ∨
φ[p/>] cannot be extended to knowledge forgetting. Con-
sider that we wan to knowledge forget atom p from for-
mula K(p ≡ q). According to Definition 1, we have
KForget(K(p ≡ q), p) ≡ >, while K(p ≡ q)[p/⊥] ∨
K(p ≡ q)[p/>] ≡ Kq ∨K¬q.

The following results further illustrate other essential se-
mantic properties of knowledge forgetting.

Theorem 3 Let Γ, Γ1 and Γ2 be three knowledge sets, φ1

and φ2 two formulas, and V a set of atoms. Then the follow-
ing results hold:

1. KForget(Γ, V) is satisfiable iff Γ is satisfiable;

2. If Γ1 ≡ Γ2, then KForget(Γ1, V) ≡ KForget(Γ2, V);

3. if Γ1 |= Γ2, then KForget(Γ1, V) |= KForget(Γ2, V);

4. KForget(φ1 ∨ φ2, V) ≡ KForget(φ1, V) ∨
KForget(φ2, V);

5. KForget(φ1 ∧ φ2, V) |= KForget(φ1, V) ∧
KForget(φ2, V).

Proof: To prove Result 1, suppose thatM is a k-model of Γ.
Then M is also a model of KForget(Γ, V). This shows that
KForget(Γ, V) is satisfiable. On the other hand, suppose
that Γ is unsatisfiable. Then, Mod(Γ) = ∅. It follows that
Mod(KForget(Γ, V)) = ∅.

Result 2 directly follows from Definition 1 and the fact
Mod(Γ1) = Mod(Γ2).

Now we prove Result 3. Suppose that M is a k-model
of KForget(Γ1, V), then there exists a k-modelM ′ of Γ1, V
such thatM ↔V M ′. Since Γ1 |= Γ2, M ′ is also a k-model
of Γ2. Hence, M is a k-model of KForget(Γ2, V) as well.

To prove Result 4, we need to show Mod(KForget(φ1 ∨
φ2, V)) = Mod(KForget (φ1, V) ∨ KForget(φ2, V)). Sup-
pose that M is a k-model of KForget(φ ∨ ψ, V), then there
exists a k-model M0 of φ ∨ ψ such that M0 ↔V M . Since
M0 is a k-model of φ∨ψ, M0 is a k-model of φ or ψ. With-
out loss of generality, suppose that M0 is a k-model of φ.
We have that M is a k-model of KForget(φ, V). Thus, M is
a k-model of KForget(φ, V) ∨ KForget(ψ, V).

On the other hand, suppose that M is a k-model of
KForget(φ, V) ∨ KForget(ψ, V), then M is a k-model of

Actions and Belief Change NMR-2008

72

KForget(φ, V) or a k-model of KForget(ψ, V). With-
out loss of generality, suppose that M is a k-model of
KForget(φ, V), then there exists a model M0 of φ such that
M0 ↔V M . M0 is also a k-model of φ ∨ ψ. Thus, M is a
k-model of KForget(φ ∨ ψ, V).

Finally we prove Result 5. Suppose that M is a k-model
of KForget(φ ∧ ψ, V), then there exists a k-model M0 of
φ ∧ ψ such that M0 ↔V M . Therefore,M0 is a k-model of
φ. Thus, M is also a k-model of KForget(φ, V). Similarly,
M is a k-model of KForget(ψ, V) as well. �

In Theorem 3, we should note that the converse of Result
5 in Theorem 3 does not hold generally. For instance, let φ
be q ≡ p; φ be q ≡ r. Then, KForget(φ∧ψ, p) is equivalent
to q ≡ r, while KForget(φ, V) ∧ KForget(ψ, V) ≡ >.

Computational properties
In this section, we will develop an algorithm to compute the
syntactic representation of knowledge forgetting. We then
prove the complexity results of major decision problems in
relation to knowledge forgetting, and also characterize some
tractable subclasses of knowledge forgetting problems.

An algorithm for computing knowledge forgetting
From a technical consideration, we first introduce modal op-
eratorB in our language. B is viewed as a dual modal oper-
ator of K, where Bφ can be read as “the agent believes φ”.
Its semantics is defined as follows:
〈W,w〉 |= Bφ iff ∃w′ ∈W , 〈W,w′〉 |= φ.

It is easy to see that Kφ ≡ ¬B¬φ. Then we extend the
defintion of S5 formulas which may also contain modal
operator B. Obviously, introducing modal operator B in
the language does not affect the original semantics of finite
propositional S5 modal logic.
Proposition 5 Every S5 formula can be equivalently trans-
formed into a formula without nested modal operators in
polynomial time.

Proof: By applying the following rules, we can transform
each S5 formula into a form that only consists of proposi-
tional literals, connectives ∧ and ∨ and modal operators K
and B, and such transformation can be done in polynomial
time. That is, we may remove negations from the original
formula. These rules are:

1. ¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ.
2. ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ.
3. ¬Kφ ≡ B¬φ.
4. ¬Bφ ≡ K¬φ.

Then we remove nested nested modal operators in the fol-
lowing way: for every formula obtained in the above step, it
can be further transformed into a equivalent formula without
nested modal operators according to the following transfor-
mation rules. Again, such transformation can be done in
polynomial time. These rules are as follows:

1. K(φ ∧ ψ) ≡ Kφ ∧Kψ.
2. B(φ ∨ ψ) ≡ Bφ ∨ Bψ.

3. K(φ ∨Kψ) ≡ Kφ ∨Kψ.
4. K(φ ∨ Bψ) ≡ Kφ ∨Bψ.
5. B(φ ∧Kψ) ≡ Bφ ∧Kψ.
6. B(φ ∧ Bψ) ≡ Bφ ∧ Bψ.
�

Proposition 6 Every S5 formula can be equivalently trans-
formed into a disjunction of clauses of the following form:

φ0 ∧Kφ1 ∧Bφ2 ∧ . . . ∧ Bφn, (1)

where all φi (0 ≤ i ≤ n) are propositional formulas, and
any of φi may be absent.

Proof: By Proposition 5, every formula can be transformed
into an S5 formula without nested modal operators. By
replacing each modal sub-formula with a new atom, we can
view this formula as a propositional formula. Then this
formula can be transformed into a disjunctive normal form
(DNF). Notice that every clause in the DNF is actually an
S5 formula, which can be transformed into the form 1 using
rules illustrated in the proof of Proposition 5. �

Now we propose the following algorithm to compute a
syntactic representation of knowledge forgetting.
Algorithm 1
Input: an S5 formula φ; an atom p.
Output: the S5 formula obtained from φ by knowledge for-

getting p.
1. transform φ into a set of clauses of form (1);
2. for each formula of the form:

ψ0 ∧Kψ1 ∧ Bψ2 ∧ . . . ∧ Bψn,
obtained from Step 1, replace it with the following for-
mula:

Forget(ψ0, p) ∧ K(Forget(ψ1, p)) ∧
B(Forget(ψ1 ∧ ψ2, p))

∧ . . . ∧ B(Forget(ψ1 ∧ ψn), p).
3. return the disjunction of all formulas obtained from

Step 2.
From Algorithm 1, we can see that knowledge forgetting

can be precisely computed through propositional variable
forgetting.
Example 2 Let Γ ≡ Ka∧ (Kb∨¬Kc) be a knowledge set.
We consider to knowledge forget c from Γ by using Algo-
rithm 1. First, Γ is transformed into the form of (1): K(a ∧
b) ∨ Ka ∧ B¬c. Then for each clause we do the transfor-
mation as showed in Step 2 in the algorithm. That is, clause
K(a∧ b) is replaced byKForget(a∧ b, c), and clause Ka∧
B¬c is replaced by KForget(a, c) ∧ BForget(a ∧ ¬c, c),
where Forget(a ∧ b, c) ≡ K(a ∧ b), and KForget(a, c) ∧
BForget(a ∧ ¬c, c) ≡ Ka ∧ Ba ≡ Ka. So by using Algo-
rithm 1, we have KForget(Γ, c) ≡ K(a ∧ b) ∨ Ka ≡ Ka,
which is also equivalent to the result obtained using Defini-
tion 1. �
Theorem 4 Algorithm 1 is sound.

Actions and Belief Change NMR-2008

73

Proof: By Result (5) in Theorem 3, we only need to prove
that

KForget(ψ0 ∧Kψ1 ∧Bψ2 ∧ . . . ∧Bψn, p) ≡
Forget(ψ0, p) ∧K(Forget(ψ1, p))∧
B(Forget(ψ1 ∧ ψ2, p)) ∧ . . . ∧B(Forget(ψ1 ∧

ψn), p).
First suppose that M = 〈W, s〉 is a k-model of

KForget(ψ0 ∧ Kψ1 ∧ Mψ2 ∧ . . . ∧ Mψn, p), then there
exists a k-modelM1 = 〈W1, s1〉 of ψ0 ∧K(ψ1)∧B(ψ2)∧
. . . ∧ B(ψn) such that M1 ↔{p} M via a binary relation
σ. We will show that M is also a k-model of Forget(ψ0, p),
K(Forget(ψ1, p)), and B(Forget(ψ1 ∧ ψi, p)) (2 ≤ i ≤ n)
respectively. We consider the following cases.
Case 1. From Result (5) in Theorem 3, we know that M |=
KForget(ψ0, p). Since ψ0 is a propositional formula, from
Theorem 2, we have M |= Forget(ψ0, p).
Case 2. M1 |= K(ψ1). That is, for every w1 ∈ W1, w1 |=
ψ1. On the other hand, for each w ∈ W , there exists w1 ∈
W1 such that σ(w1, w), i.e. w1 ↔{p} w. So we have w |=
Forget(ψ1, p), which follows M |= K(Forget(ψ1, p)).
Case 3. For any i (2 ≤ i ≤ n), M1 |= B(ψi). Thus, there
exists some w1 ∈ W1 such that w1 |= ψi. Moreover, w1 |=
ψ1 ∧ ψi. On the other hand, there also exists some w ∈ W
such that σ(w1, w). That is, w1 ↔{p} w. So we have w |=
Forget(ψ1 ∧ ψi, p), which follows M |= B(Forget(ψ1 ∧
ψi, p)).

Hence M is a k-model of Forget(ψ0, p) ∧
K(Forget(ψ1, p)) ∧ B(Forget(ψ1 ∧ ψ2, p)) ∧ . . . ∧
B(Forget(ψ1 ∧ ψn), p).

Now we consider a k-model M = 〈W, s〉 of formula
Forget(ψ0, p)∧K(Forget(ψ1, p))∧B(Forget(ψ1∧ψ2, p))∧
. . .∧B(Forget(ψ1 ∧ψn), p). For this purpose, we construct
a k-interpretation M1 = 〈W1, s1〉 and a binary relation σ
simultaneously as follows:

(a) Since M |= Forget(ψ0, p), s |= Forget(ψ0, p). That is,
s |= ψ0[p/⊥]∨ ψ0[p/>]. Without loss of generality, sup-
pose that s |= ψ0[p/⊥]. Let s1 be the interpretation ob-
tained from s by assigning p to ⊥. We have that s1 |= ψ0

and s1 ↔{p} s. Let σ(s1, s).
(b) For each i (2 ≤ i ≤ n, M |= B(Forget(ψ1 ∧

ψi, p)). Thus, there exists some w ∈ W such that
w |= Forget(ψ1 ∧ ψi, p). Similarly, we can construct a
wi such that wi |= ψ1 ∧ψi and wi ↔{p} w. Let wi ∈ W1

and σ(wi, w).
(c) For each winW such that for all i (2 ≤ ileqn) w does

not satisfy Forget(ψ1 ∧ ψi,∧ψi, p), we have that w |=
Forget(ψ1, p). Similarly, we can construct a wj such that
wj |= ψ1 and wj ↔{p} w. Let wj ∈ W1 and σ(wj , w).

Then it is not difficult to verify that M1 |= ψ0 ∧ Kψ1 ∧
Bψ2 ∧ . . . ∧ Bψn and M1 ↔{p} M . This shows that M is
a k-model of KForget(ψ0 ∧ Kψ1 ∧ Bψ2 ∧ . . . ∧ Bψn, p).
This completes our proof. �

From Proposition 2 in section 2, we know that forgetting a
set V of atoms from a given knowledge set Γ can be sequen-
tially computed by forgetting a single atom of V from Γ one

by one using Algorithm 1. This means that Algorithm 1 can
be used for a general knowledge forgetting computation.

It is not difficult to observe that the time complexity of
Algorithm 1 is generally exponential in the size of input
knowledge set Γ because transforming Γ into the form (1)
(Step 1 in the algorithm) could be expensive. However, if
the input knowledge set Γ is already in the form (1), com-
puting knowledge forgetting of atom p from Γ can be done
in polynomial time.

Main complexity results

In this subsection we will mainly study the complexity of
three major decision problems in relation to knowledge for-
getting: model checking, inference and irrelevance.

First we introduce some useful notions of complexity the-
ory. Two basic complexity classes are P and NP. The class of
P includes all decision problems solvable by a polynomial-
time deterministic Turing machine, while the class of NP in-
cludes all decision problems solvable by a polynomial-time
nondeterministic Turing machine. Suppose C is a class of
decision problem. The class PC consists of the problems
solvable by a polynomial-time deterministic Turing machine
with an oracle for a problem from C, and the class NPC in-
cludes the problems solvable by a nondeterministic Turing
machine with an oracle for a problem in C. By co-C we
mean the class that consists of the complements of the prob-
lems in C.

The classes ΣP
k and ΠP

k of the polynomial hierarchy are
defined as follows:

ΣP
0 = ΠP

0 = P, and

ΣP
k = NPΣP

k−1 , ΠP
k =co-ΣP

k for all k > 1.

Note that NP=ΣP
1 and co-NP=ΠP

1 .

Theorem 5 (Model checking complexity) Let Γ be a
knowledge set, V a set of atoms and M a k-interpretation.
Deciding whether M is a k-model of KForget(Γ, V) is NP-
complete.

Proof: The problem can be determined by first guessing
a k-interpretation M ′ polynomial in the size of M and
then checking if M ′ |= Γ and M ↔V M ′. It is easy
to see that the checking part can be done in polynomial
time. Hence, the problem is in NP. For the hardness,
we show that model checking for propositional variable
forgetting is NP hard (considering that propositional vari-
able forgetting is a special case of knowledge forgetting).
Now we show that an objective formula φ is satisfiable
iff π |= Forget(φ, V ar(φ)), where π is a propositional
interpretation in which all atoms occurring in φ are assigned
true. Firstly, if φ is satisfiable, then Forget(φ, V ar(φ))
becomes >, which certainly should be satisfied in π.
Second, if π |= Forget(φ, V ar(φ)), then from Result (1)
in Theorem 3 we know that ψ must be satisfiable. This
follows that the model checking for propositional variable
forgetting is NP-hard. Consequently, the model checking
for knowledge forgetting is also NP-hard. �

Actions and Belief Change NMR-2008

74

Now we consider two types of decision problems related
to the inference of knowledge forgetting. Given a knowl-
edge set Γ, an S5 formula φ and a set of atoms V , we like
to decide: (1) whether KForget(Γ, V) |= φ; and (2) whether
φ |= KForget(Γ, V). Quite interestingly, our following re-
sult shows that these two types of inference have different
complexity.
Theorem 6 (Inference complexity) Let Γ be a knowledge
set, φ a formula, and V a set of atoms. Then we have the
results: (1) deciding whether KForget(Γ, V) |= φ is co-NP
complete; and (2) deciding whether φ |= KForget(Γ, V) is

ΠP
2 -complete.

Proof: For Result (1), the hardness is easy to see by set-
ting KForget(Γ, V ar(Γ)). For membership, from Corollary
2, we have KForget(Γ, V) |= φ iff Γ |= φ and IR(φ, V).
Clearly, in single agent S5 modal logic, deciding Γ |= φ is
in co-NP. We show that deciding whether IR(φ, V) is also
in co-NP. Without loss of generality, we assume that φ is
satisfiable. Then φ has a k-model in the polynomial size of
φ. We consider the complement of the problem: deciding
whether φ is not irrelevant to V . It is easy to see that φ is
not irrelevant to V iff there exist a k-model M of φ and an
k-interpretation M ′ in the polynomial size of φ such that
M ↔V M ′ and M ′ 6|= φ. So checking whether φ is not
irrelevant to V can be achieved in the following steps: (1)
guess two k-interpretations M and M ′ in the polynomial
size of φ, (2) check if M |= φ and M ′ 6|= φ, and (3) check
M ′ 6|= φ. Obviously (1) can be done in polynomial time
with a non-deterministic Turing machine while (2) and (3)
can be done in polynomial time.

Now we consider Result (2). Membership. First it is
well known that an S5 formula ψ is not valid iff there is
a polynomial size k-interpretation M such that M 6|= ψ
(Fagin et al. 1995). We consider the complement of the
problem. We may guess a polynomial size model M and
check whether M |= φ and M 6|= KForget(Γ, V). From
Theorem 5, we know that this is in ΣP

2 . So the original
problem is in ΠP

2 . Hardness. Let φ ≡ >. Then the problem
is reduced to decide KForget(Γ, V)’s validity. Since a
propositional variable forgetting is a special case knowledge
forgetting, the hardness is directly followed from the proof
of Proposition 24 in (Lang, Liberator, & Marquis 2003). �

As we showed in Section 3, irrelevance plays an important
role in characterizing knowledge forgetting. Recall that a
formula φ is irrelevant to a set of atoms V if there is a φ′

such that φ ≡ φ′ and V ar(φ′)∩V = ∅. In the following, we
consider the complexity of deciding whether an S5 formula
is irrelevant to a set of atoms V .
Theorem 7 (Irrelevance complexity) Let φ be an S5 for-
mula and V a set of atoms. Then deciding whether φ is
irrelevant to V is co-NP complete.

Proof: From the proof of Theorem 6, we know that
deciding whether IR(φ, V) is in co-NP. For the hardness,
we show that for any propositional formula φ, φ is valid iff
q ∧ (p ∨ φ) is irrelevant to p, where p, q are two different
atoms not occurring in V ar(φ). First, if φ is valid, then
q ∧ (p ∨ φ) ≡ q which is irrelevant to p. If q ∧ (p ∨ φ)

is irrelevant to p, again from Corollary 2, we know that
KForget(q ∧ (p∨ φ), p) |= q ∧ (p∨ φ). Then from Theorem
2, we can derive q ≡ q ∧ (p ∨ φ). This implies that φ must
be valid. �

Conclusion
In this paper, we have developed a formal theory of knowl-
edge forgetting under the propositional S5 single agent
modal logic. We showed that knowledge forgetting is not
only an important action that an agent may need in certain
situations, but also a useful notion in representing various
knowledge changes. Although the basic concept and intu-
ition of knowledge forgetting were discussed in previous
research. e.g. (Baral & Zhang 2005; Fagin et al. 1995),
its formal semantics and computational properties have not
been thoroughly studied. Our work presented in this paper
provided a first formalization on knowledge forgetting and
addressed its computational properties.

Some related issues remain for our further study. In this
paper we only considered the problem of knowledge for-
getting in a single agent S5 modal logic. In a multi-agent
system, it is more common that an agent not only needs to
forget his own knowledge due to a memory limit, but also
has to forget other agents’ knowledge for various reasons.
So generalizing our knowledge forgetting to the mutli-agent
S5 modal logic (and other multi-agent modal logics) will be
a challenge. One particular concern we should take into ac-
count in this development is common knowledge which does
not occur in single agent modal logic.

References
Baral, C., and Zhang, Y. 2005. Knowledge updates:
Semantic and complexity issues. Artificial Intelligence
164:209–243.
Eiter, T., and Wang, K. 2008 (to appear). Semantic forget-
ting in answer set programming. Artificial Intelligence.
Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 1995.
Reasoning about Knowledge. MIT Press.
Lang, J.; Liberator, P.; and Marquis, P. 2003. Propositional
independence: Formula-variable independence and forget-
ting. Journal of Artificial Intelligence Research 18:391–
443.
Lin, F., and Reiter, R. 1994. Forget it! In Working Notes
of AAAI Fall Symposium on Relevance, 154–159.
Lin, F. 2001. On the strongest necessary and weakest suf-
ficient conditions. Artificial Intelligence 128:143–159.
Meyer, J.-J., and van der Hoek, W. 1995. Epistemic Logic
for AI and Computer Science. Cambridge University Press.
Su, K.; Lv, G.; and Zhang, Y. 2004. Reasoning about
knowledge by variable forgetting. In Proceedings of the
9th Internaitonal Conference on Knowledge Representa-
tion and Reasoning (KR-2004), 576–586.
Winslett, M. 1988. Reasoning about action using a possible
models approach. In Proceedings of AAAI-88, 89–93.
Zhang, Y., and Foo, N. 2006. Solving logic program con-
flict through strong and weak forgettings. Artificial Intelli-
gence 170:739–778.

Actions and Belief Change NMR-2008

75

Embedding General Default Logic into the Logic of GK

Yi Zhou
School of Computing and Mathematics

UWS
yzhou@scm.uws.edu.au

Fangzhen Lin
Department of Computing Science

HKUST
flin@cs.ust.hk

Yan Zhang
School of Computing and Mathematics

UWS
yan@scm.uws.edu.au

Abstract

In this paper, we show that the logic of GK is indeed a gen-
eral framework for nonmonotonic reasoning by embedding
general default logic into it. More importantly, we illustrate
that it is also a powerful tool for studying nonmonotonic for-
malisms. We first show that checking for weak equivalence
and strong equivalence between two rule bases in general de-
fault logic can both be captured in the logic of GK and the
complexities for both problems are coNP complete. Then, we
show that each rule base is strongly equivalent to a set of rules
of normal form. Finally, we prove that auto-epistemic logic
is equivalent to a proper subset of general default logic, and
the self-introspection operator in auto-epistemic logic indeed
plays the same role as the double negation-as-failure operator
in general default logic.

Introduction
Recently, Zhouet al. (2007) proposed a nonmonotonic
logic, called general default logic, which extended both
Gelfondet al.’s disjunctive default logic (1991) (therefore
Reiter’s default logic (1980)) by allowing arbitrary nested
rule connectives and Ferraris’s general logic programming
(2005a) by allowing classical connectives.

However, many properties in relation to general default
logic remain unclear, for instance, whether it is a strict exten-
sion of disjunctive default logic (or Reiter’s default logic). In
this paper, we aim to study some fundamental properties of
general default logic by embedding it into the logic of GK
(Lin & Shoham 1992).

The logic of knowledge and justified assumptions (the
logic of GK for short), proposed by Lin and Shoham (1992),
is a non-standard modal logic with two modal operatorsK
(for knowledge) andA (for assumptions). The logic of GK
is a general framework for nonmonotonic formalisms. It has
been shown in the early 1990s that both Reiter’s default logic
(1980) and Moore’s auto-epistemic logic (1987) can be em-
bedded into the logic of GK. Recently, Lin and Zhou (2007)
showed that Ferraris’s general logic programming (2005a)
can be embedded into the logic of GK as well.

A question naturally arises whether general default logic
can also be embedded into the logic of GK. This paper an-
swers it positively. In section 3, we shall show that the logic

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of GK is flexible enough to capture general default logic as
well. Thus, our result confirms the generality of the logic of
GK.

More importantly, we shall also show that the logic of
GK is not only a general framework of nonmonotonic log-
ics but also a powerful tool to study them for three reasons.
Firstly, although the logic of GK is a non-standard logic, it
is based on a standard bi-modal logic. There are a lot of
useful existing techniques for modal logics, for instance, the
standard complexity analysis techniques (Halpern & Moses
1992). As an application of this aspect, in Section 4, we
shall first show that both weak equivalence and strong equiv-
alence in general default logic can be captured in the logic
of GK, and then show that the complexity of checking weak
equivalence and strong equivalence between two rules are
both coNP complete.

Secondly, there are many useful properties which can be
used in standard modal logic. For instance,K(P) ∧ K(Q)
is equivalent toK(P ∧Q). As an application of this aspect,
in Section 5, we shall show that each rule base in general
default logic is strongly equivalent to a set of rules of the
following form:

C1 & . . . & Cn & − Cn+1 & . . . & − Cm ⇒

Cm+1 | . . . | Ck | − Ck+1 | . . . | − Cl, (1)

whereCi, (1 ≤ i ≤ l) are propositional clauses. Moreover,
this form cannot be further transformed into disjunctive de-
fault rules. This shows that, to some extent, general default
logic is a strict extension of disjunctive default logic (thus
Reiter’s default logic).

Finally, as we mentioned earlier, the logic of GK is a
general framework of nonmonotonic logics. Thus, it can
serve as a platform for comparing different nonmonotonic
formalisms. As an application of this aspect, in Section
6, we shall show that Moore’s auto-epistemic logic (1987)
is equivalent to a proper subclass of general default logic.
As a consequence, the self-introspection operator in auto-
epistemic logic indeed plays the same role as the double
negation-as-failure operator in general default logic. Fur-
thermore, as Gottlob (1995) showed that auto-epistemic
logic can not be embedded into Reiter’s default logic by a
modular translation, this result also confirms that general de-
fault logic is a strict extension of Reiter’s default logic.

Actions and Belief Change NMR-2008

76

Preliminaries
We begin by recalling the basic concepts of propositional
logic, general default logic and the logic of GK.

The classical propositional languageL is defined recur-
sively by a setAtom of atoms and a set of classical connec-
tives⊥, ¬ and→ as follows:

F ::= ⊥ | p | ¬F | F → F,

wherep is an atom.⊤, ∧, ∨ and↔ are defined as usual.
Formulas inL are calledfacts. A theoryT is a set of facts
which is closed under classical entailment. LetΓ be a set of
facts, we writeTh(Γ) to denote the logical closure ofΓ un-
der classical entailment. We writeΓ to represent the theory
Th(Γ) if clear from the context. A theoryT is inconsistent
if there is a factF such thatF ∈ T and¬F ∈ T , other-
wiseT is consistent. Literals are atoms and their negations.
Clausesare disjunctions of sets of literals.

General default logic
The propositional rule languageR (Zhou, Lin, & Zhang
2007) is defined uponL by adding a set ofrule connectives
⇒ (for rule implication), & (for rule and) and | (for rule
or):

R ::= F | R ⇒ R | R & R | R | R,

whereF is a fact.−R andR ⇔ S are considered as short-
hands ofR ⇒ ⊥ and(R ⇒ S) & (S ⇒ R) respectively.
− is for negation as failure(or rule negation); ⇔ is for rule
equivalence. Formulas inR are calledrules. A rule base∆
is a set of rules.

Thesatisfaction relation|=1 between theories and rules is
defined recursively as follows:

• If R is a fact, thenT |= R iff R is entailed byT in classi-
cal propositional logic.

• T |= R & S iff T |= R andT |= S;

• T |= R | S iff T |= R or T |= S;

• T |= R ⇒ S iff T 6|= R or T |= S.

Thus, if T is consistent, thenT |= −R iff T 6|= R. If T is
inconsistent, then for every ruleR, T |= R. We say thatT
satisfiesR, or T is amodelof R iff T |= R.

Thesubrulerelationship between two rules is defined re-
cursively as follows:

• R is a subrule ofR;

• R andS are subrules ofR ⇒ S, R & S andR | S,

whereR andS are rules.
The reductof a ruleR relative to a theoryT , denoted by

RT , is the rule obtained fromR by replacing each maximal
subrule ofR which is not satisfied byT with ⊥. Let T be
a theory and∆ a rule base, the reduct of∆ relative toT ,
denoted by∆T , is the set of all the reducts of rules in∆
relative toT .

1In this paper, we overload the notation|=. We use it to denote
the satisfaction relation in classical logic, general default logic, the
logic of GK and auto-epistemic logic. Which one it stands for
should be clear from the context.

Definition 1 (extensions)Let T be a theory and∆ a rule
base. We say thatT is an extension of∆ iff:

1. T |= ∆T .
2. There is no theoryT1 such thatT1 ⊂ T andT1 |= ∆T .

We say that two rules areweakly equivalentif they have
the same set of models. The notion of weak equivalence, in-
troduced in (Zhou, Lin, & Zhang 2007), plays an important
role in computing extensions and simplifying default rules
after reduction. Notice that weak equivalence is not as the
same as equivalence defined for default logic as usual. Two
rule bases are said to beequivalentiff they have the same set
of extensions. For instance,−p ⇒ q is equivalent toq since
both of them have a unique extensionTh{q}. However, they
are not weakly equivalent. On the other hand,−p ⇒ q and
p | q are weakly equivalent but not equivalent.

Zhouet al. (2007) showed that Reiter’s default logic (Re-
iter 1980) in propositional case is a special case of general
default logic by restricting the rules of the following form

F & − G1 & . . . & − Gn ⇒ H,

wheren ≥ 0, F , Gi, (1 ≤ i ≤ n) andH are facts, and
F may be absent. Yet, under the context of Reiter’s default
logic, this form is represented as

F : M(¬G1), . . . , M(¬Gn)/H.

They also showed that Ferraris’s general logic program-
ming (Ferraris 2005a) is a special case of general default
logic by restricting the facts occurred in rules with atoms.
However, under the context of general logic programming,
rule connectives are represented by corresponding classical
connectives.

The logic of GK
The languageLGK of the logic of GK (Lin & Shoham 1992)
is extended fromL with two modal operatorsK (for knowl-
edge) andA (for assumption). Formulas inLGK are defined
recursively as follows:

F ::= ⊥ | p | ¬F | F → F | K(F) | A(F),

wherep ∈ Atom. ⊤, ∧, ∨ and↔ are defined the same
as in the classical modal logic. Formulas inLGK are called
GK formulas. Formulas constructed fromK(F) andA(F),
whereF is a fact, and the connectives⊥,¬ and→ are called
subjective formulas. In other words, subjective formulas are
those GK formulas without nested modal operator and each
atomp has to be in the scope of a modal operator.

A Kripke interpretationM is a tuple〈W, π, RK , RA, s〉,
whereW is a nonempty set, called the set ofpossible worlds,
π a function that mapsAtom to the power set ofW , RK

andRA binary relations onW , which represent the accessi-
bility relations forK andA respectively, ands ∈ W , called
theactual worldof M . Thesatisfaction relation|= between
Kripke interpretations and GK formulas is defined induc-
tively as follows:

• M 6|= ⊥;

• If p ∈ Atom, M |= p iff s ∈ π(p);

Actions and Belief Change NMR-2008

77

• M |= ¬F iff M 6|= F ;

• M |= F → G iff M 6|= F or M |= G;

• M |= K(F) iff 〈W, π, RK , RA, w〉 |= F for anyw ∈ W ,
such that(s, w) ∈ RK ;

• M |= A(F) iff 〈W, π, RK , RA, w〉 |= F for anyw ∈ W ,
such that(s, w) ∈ RA.

We say that a Kripke interpretationM satisfiesa GK for-
mulaF , or M is amodelof F iff M |= F . We say that two
GK formulas areequivalentin the logic of GK if they have
the same set of models.

Let

K(M) = {F | F is a fact andM |= K(F)}

A(M) = {F | F is a fact andM |= A(F)}.

It is clear that bothK(M) andA(M) are theories.

Definition 2 (GK Models) LetM be an interpretation and
F a formula. We say thatM is a minimal model ofF if

1. M is a model ofF ;

2. there is no interpretationM1 such thatM1 is also a model
of F andA(M1) = A(M), K(M1) ⊂ K(M).

We say thatM is aGK modelif M is a minimal model ofF
andK(M) = A(M).

Embedding General Default Logic into the
Logic of GK

In this section, we show that general default logic can be
embedded into the logic of GK as well.

Let R be a rule inR. By RA we denote the GK formula
obtained fromR by adding a modal operatorA in front of
every fact and then replacing all occurrences of rule con-
nectives with corresponding classical connectives. ByRGK

we denote the GK formula obtained fromR recursively as
follows:

• If R is a fact, thenRGK = K(R).

• If R is F & G, thenRGK is FGK ∧ GGK .

• If R is F | G, thenRGK is FGK ∨ GGK .

• If R is F ⇒ G, thenRGK is (FGK → GGK) ∧ (FA →

GA).

Thus, ifR is −F , thenRGK is (FGK → ⊥) ∧ (FA → ⊥),
which is equivalent to¬FGK ∧ ¬FA; if R is F ⇔ G, then
RGK is equivalent to(FGK ↔ GGK) ∧ (FA ↔ GA).

For every ruleR, it is clear that bothRA andRGK are
well defined subjective formulas inLGK. Let ∆ be a rule
base. By∆GK we denote the set of GK formulas:

∆GK = {RGK | R ∈ ∆}.

As general logic programming is a special case of general
default logic, this mapping is a natural generalization of the
translation from general logic programming into the logic of
GK proposed in (Lin & Zhou 2007).

Example 1 Let R be the rule−(p ∨ q) ⇒ ¬p | q. ThenR
has a unique extension{¬p}. On the other hand,RGK is

((−p∨q)GK → (¬p)GK∨qGK)∧((−p∨q)A → (¬p)A∨qA),

which is which is equivalent to

(K(p∨q)∨K(p∨q)∨K¬p∨Kq)∧(A(p∨q)∨A¬p∨Aq),

which has a unique (in the sense that two interpretationsM1

andM2 such thatK(M1) = K(M2) andA(M1) = A(M2)
are the same) GK modelM such thatK(M) = A(M) =
Th({¬p}).

We shall show that general default logic can be embedded
into the logic of GK with this mapping. We first present the
following lemma.

Lemma 1 2 Let R be a rule andM an interpretation such
that K(M) = T1 andA(M) = T2. T1 |= RT2 iff M is a
model ofRGK .

The following theorem shows that general default logic
can be embedded into the logic of GK with this mapping.

Theorem 2 Let∆ be a rule base andT a consistent theory.
T is an extension of∆ iff there is a GK modelM of ∆GK

such thatK(M) = A(M) = T .

The translation is not surprising since there are a large
number of similar translations (Lin & Shoham 1992; Lin
2002; Lin & Zhou 2007; Pearce, Tompits, & Woltran 2001;
Ferraris, Lee, & Lifschitz 2007) from answer set program-
ming or default logic into other nonmonotonic logics. Lin
and Shoham (1992) translated Reiter’s default logic into the
logic of GK. As a special case, Lin (2002) translated normal
logic programming into the logic of GK and showed that
checking strong equivalence between two normal logic pro-
grams can be reduced into classical propositional logic. Lin
and Zhou (2007) extended it into general logic programming
and also lifted it into first order case. Pearce et al. (2001)
showed that answer set programming can be translated into
QBF. Ferraris et al. (2007) translated a first order sentence to
second order one and treated it as the answer set semantics
for first order logic programs.

Of course, these translations work very well. However,
the intuitions behind them still remain unclear. Consider an-
other translation from general default logic into the logic of
GK as follows:

• If R is a fact, thenRGK
′ = K(R) ∧ A(R).

• If R is F &G, thenRGK
′ is (FGK

′ ∧GGK
′)∧(FA∧GA).

• If R is F |G, thenRGK
′ is (FGK

′ ∨GGK
′)∧ (FA ∨GA).

• If R is F ⇒ G, thenRGK
′ is (FGK

′ → GGK
′)∧ (FA →

GA).

Thus,(−F)GK
′ is¬FGK

′ ∧ ¬FA.

Proposition 3
∧

F∈L K(F) → A(F) |= RGK ↔ RGK
′ .

Corollary 4 Let R be a rule. RGK and RGK
′ have the

same set of GK models.

2See the appendix for some of the proof sketches.

Actions and Belief Change NMR-2008

78

According to this reformulation, the intuitions behind our
translation are very clear. Roughly speaking, each rule con-
nective is transformed into the classical conjunction of two
parts of corresponding classical connective. Then, a fixed
point semantics (here is the logic of GK) is used.

Another related result is due to Truszczyński (2007). He
showed that (disjunctive) default logic can be embedded
into modal default theories in S4F. Clearly, his work can be
applied to general default logic as well. Lifschitz (1991)
also introduced another nonmonotonic modal logic, called
MKNF, and translated Reiter’s default logic into it.

The topic of which nonmonotonic modal logic (GK, S4F,
MKNF) is more interesting is beyond the scope of this paper.
Here, we are not intending to argue which one is better since
each has its own merits. For example, S4F contains only one
modal operator and then seems more natural, whilst MKNF
allows first order components, which can be a basis for first
order nonmonotonic logics (Motik & Rosati 2007). On the
other hand, the logic of GK is based on a standard bi-modal
language, which is simple and well studied. Since there are
many useful techniques and properties for standard modal
logics, we can take advantages of them. As an example, in
the next two sections, we study weak equivalence, strong
equivalence, and normal forms in general default logic via
the logic of GK.

Weak Equivalence, Strong Equivalence and
Complexity Issues

In this section, we first show that the satisfiability problem
for subjective formulas in the logic of GK is NP complete.
Then we show that checking weak equivalence and strong
equivalence can both be reduced into checking the validity
of a certain subjective formula in the logic of GK.

Ladner (1977) showed that every satisfiableS5 formula
F must have a model polynomial in the length ofF . Then
he proved that the satisfiability problem forS5 is NP com-
plete. Halpern and Moses (1992) proved the same result for
KD45. Thus, the satisfiability problem forKD45 is also
NP complete.

Here, we prove a similar result for subjective formulas in
the logic of GK. All the complexity results addressed in this
section mainly follow from the following proposition.

Proposition 5 Let F be a subjective formula inLGK. F is
satisfiable iffF has a model with at most2|F | + 1 possible
worlds, where|F | is the length of the formulaF .

Notice that Proposition 5 only holds for subjective for-
mulas inLGK . It does not hold in the general case since the
languageLGK is a standard modal logic language with two
modal operators, whose satisfiability problem is generally
beyond NP complete (Halpern & Moses 1992).

Similar to the NP completeness proof of satisfiability of
S5 (Ladner 1977) andKD45 (Halpern & Moses 1992), we
have the following result.

Corollary 6 The complexity of checking whether a subjec-
tive formula is satisfiable is NP complete.

The following theorem shows that checking weak equiva-
lence between two rules can be captured in the logic of GK.

Theorem 7 Let R1 and R2 be two rules.R1 and R2 are
weakly equivalent iff(R1)A and (R2)A are equivalent in
the logic of GK.

Thus, checking weak equivalence can be reduced into
checking the validity of a subjective formula in the logic of
GK.

Corollary 8 Checking whether two rules are weakly equiv-
alent is in coNP.

The notion of strong equivalence, proposed by Lifschitz
et al. (2001) for logic programs, plays a crucial role in an-
swer set programming. Lin and Zhou (2007) showed that
checking strong equivalence between two general logic pro-
grams can be captured in the logic of GK. The notion of
strong equivalence is introduced into default logic by Turner
(2001). Here, we show that the strong equivalence relation-
ship between two rules can be captured in the logic of GK
as well.

We say that two rulesR1 andR2 arestrongly equivalent,
denoted byR1 ≡ R2, if for every ruleR3, R1 & R3 has the
same set of extensions asR2 & R3.

Given a ruleR, we specify

Fact(R) = {F | F is a fact,F is a subrule ofR}.

Theorem 9 LetR1 andR2 be two rules. The following four
statements are equivalent:

1. R1 andR2 are strongly equivalent.
2.

∧
F∈Fact(R1 & R2)

K(F) → A(F) |= (R1)GK ↔

(R2)GK .
3.

∧
F∈L K(F) → A(F) |= (R1)GK ↔ (R2)GK .

4. For every ruleR3 such thatR1 is a subrule of it, andR4

be the rule obtained fromR3 by replacing each occur-
rence ofR1 into R2, R3 has the same set of extensions as
R4.

Theorem 7 and Theorem 9 are convenient for checking
whether or not two rules are weak equivalent or strongly
equivalent.

Example 2 Let−p ⇒ q andp |q be two rules. We have that
(−p ⇒ q)A is¬Ap → Aq, which is equivalent toAp ∨ Aq.
On the other hand,(p | q)A is Ap ∨ Aq. This shows that
−p ⇒ q andp | q are weakly equivalent. However,(−p ⇒

q)GK is ((¬Ap ∧ ¬Kp) → Kq) ∧ (¬Ap → Aq), which is
equivalent toAp∨Kq under

∧
F∈L K(F) → A(F). On the

other hand,(p | q)GK is Kp | Kq. Obviously, they are not
equivalent in the logic of GK. Thus,−p ⇒ q andp | q are
not strongly equivalent.

Theorem 9 shows that checking whether two rules are
strongly equivalent can be reduced into checking whether
a certain GK formula is valid. Since this GK formula (the
formula in Condition 2, Theorem 9) is exactly a subjective
formula and polynomial in the length of these two rules, we
have the following result.

Corollary 10 Checking whether two rules are strongly
equivalent in general default logic is in coNP.

Finally, we show that both checking weak equivalence
and checking strong equivalence between two rules are
coNP hard by the following lemma.

Actions and Belief Change NMR-2008

79

Lemma 11 LetF andG be two facts.F is equivalent toG
in classical propositional logic iffF is weakly equivalent to
G iff F is strongly equivalent toG.

Theorem 12 The complexity of checking both whether two
rules are strongly equivalent and whether two rules are
weakly equivalent are coNP complete.

The notion of strong equivalence can be extended for rule
bases. Given two rule bases∆1 and∆2, we say that∆1 is
strongly equivalentto ∆2 if for every rule base∆3, ∆1 ∪

∆3 has the same set of extensions as∆2 ∪ ∆3. Obviously,
Theorem 7, 9 and 12 holds for rule bases as well.

Truszczyński (2007) showed that strong equivalence be-
tween default theories can be captured in S4F according to
his translation. However, the complexity issue is not ad-
dressed in his approach.

Normal Forms of General Default Logic
In this section, we show that each rule base can be strongly
equivalently transformed into a set of rules of form (1). The
key technique of proving this is Theorem 9.

By Theorem 9, we have that

Proposition 13 LetF andG be two facts.F ∧G ≡ F &G.

Corollary 14 Each ruleR is strongly equivalent to a rule
R1 such thatFact(R1) is a set of clauses.

Proposition 13 also indicates that the two connectives&
and∧ coincide with each other to some extent.

Furthermore, the following proposition describes more
strongly equivalent transformations.

Proposition 15 For any rulesF , G, H andR,

1. F & G is strongly equivalent to{F, G}.
2. −⊥ ≡ ⊤, −⊤ ≡ ⊥

3. F & ⊥ ≡ ⊥, F | ⊥ ≡ F ;
4. F & ⊤ ≡ F , F | ⊤ ≡ ⊤;
5. F & G ≡ G & F , F | G ≡ G | F ;
6. F &(G&H) ≡ (F &G)&H , F | (G |H) ≡ (F |G) |H ;
7. F & (G | H) ≡ (F & G) | (F & H), F | (G & H) ≡

(F | G) & (F | H).
8. −(F & G) ≡ −F | − G, −(F | G) ≡ −F & − G;
9. −−−F ≡ −F ;

10. −(F ⇒ G) ≡ −− F & − G;
11. (F | G) ⇒ H ≡ (F ⇒ H) & (G ⇒ H);
12. F ⇒ (G & H) ≡ (F ⇒ G) & (F ⇒ H);
13. (F ⇒ G) |H is strongly equivalent to{F ⇒ G |H, H | −

F | − −G};
14. (F ⇒ G) & R ⇒ H is strongly equivalent to{G & R ⇒

H, R ⇒ F | H | − G, R ⇒ H | − −F};
15. F ⇒ (G ⇒ H) is strongly equivalent to{F & G ⇒

H, F ⇒ −G | − −H};
16. F & −−G ⇒ H ≡ F ⇒ H | − G;
17. F ⇒ G | − −H ≡ F & − H ⇒ G.

By Corollary 14 and 1-9 in Proposition 15, we have the
following proposition.

Proposition 16 Each rule base without⇒ and ⇔ is
strongly equivalent to a set of rules of the following form

C1| . . . |Cn|−Cn+1| . . . |−Cm|−−Cm+1| . . . |−−Ck, (2)

whereCi, (1 ≤ i ≤ k) are propositional clauses.

Proposition 17 Each rule of the form−R is strongly equiv-
alent to a set of rules of the following form

−C1 | . . . | − Cn | − −Cn+1 | . . . | − −Cm, (3)

whereCi, (1 ≤ i ≤ m) are propositional clauses.

By Proposition 15 and Proposition 16,

Theorem 18 Each rule base is strongly equivalent to a set
of rules of the following form:

C1 & . . . & Cn & − Cn+1 & . . . & − Cm ⇒

Cm+1 | . . . | Ck | − Ck+1 | . . . | − Cl,

whereCi, (1 ≤ i ≤ l) are propositional clauses.

Notice that form (1) can not further be strongly equiva-
lently transformed into a set of disjunctive default rules in
(Gelfondet al. 1991). A simple example isp | − p, where
p is an atom. This, to some extent, indicates that general de-
fault logic is more expressive than disjunctive default logic
(thus Reiter’s default logic).

As stated in (Zhou, Lin, & Zhang 2007), general logic
programming (Ferraris 2005a) is a special case of general
default logic by restricting facts into atoms, Theorem 18
can be viewed as a generalization of recent work of Cabalar
and Ferraris (2007), who proved that each general logic pro-
gram can be strongly equivalently transformed into a set of
extended disjunctive rules. Moreover, Theorem 18 also in-
dicates that general answer set programming with classical
negation also has a similar normal form result.

On the Relationships between Default Logics
and Auto-epistemic Logic

Auto-epistemic is another dominant formalism for non-
monotonic reasoning. The relationships between default
logic and nonmonotonic reasoning is, of course, one of the
most important topics in nonmonotonic reasoning.

We first briefly introduce Moore’s auto-epistemic logic
(Moore 1987) and related issues. The languageLAEL of
auto-epistemic logic is extended fromL with a modal oper-
atorL for self introspection. Formulas inLAEL are defined
recursively as follows:

F ::= ⊥ | p | ¬F | F → F | L(F),

wherep ∈ Atom. ⊤, ∧, ∨ and↔ are defined as usual.
Formulas inLAEL are calledAEL formulas.

LetΓ be a set of AEL formulas. A setE of AEL formulas
is astable expansionof Γ if:

E = Th(Γ ∪ {L(F) | F ∈ E} ∪ {¬L(F) | F 6∈ E}).

A stable expansion is uniquely determined by the set of
propositional formulas in it. This is called thekernelof a
stable expansion (Konolige 1988). Hence, we can identify a
stable extension with its kernel, which is obviously a propo-
sitional theory.

Actions and Belief Change NMR-2008

80

Konolige (1988) proved that for every setΓ of AEL for-
mulas, there is a setΓ′ of AEL formulas of the following
form

¬L(F) ∨ L(G1) ∨ . . . ∨ L(Gn) ∨ H (4)

such thatΓ′ has the same set of stable expansions withΓ,
wheren ≥ 0, F , Gi, (1 ≤ i ≤ n) andH are facts,F may be
absent. Based on Konolige’s result, Lin and Shoham (1992)
showed that Moore’s auto-epistemic logic can be embedded
into the logic of GK by translating each AEL formula of the
form (4) into

¬A(F) ∨ A(G1) ∨ . . . ∨ A(Gn) ∨ K(H).

Theorem 19 (Lin and Shoham (1992))Let Γ be a set of
AEL formulas with form (4). A theoryT is the kernel of
a stable expansion of a setΓ of AEL formulas iff there is a
GK modelM of ΓGK such thatK(M) = T .

Now we show that auto-epistemic logic can be embedded
into general default logic via the logic of GK. Without loss
of generality, we consider AEL formulas of form (4). LetS
be an AEL formula of the form

¬L(F) ∨ L(G1) ∨ . . . ∨ L(Gn) ∨ H.

By Θ(S) we denote the following rule

−−−F | − −G1 | . . . | − −Gn | H.

A setΓ of AEL formulas with form (4) is translated into the
rule baseΘ(Γ) = {Θ(S) | S ∈ Γ}.

It is easy to see that(Θ(S))GK is equivalent toSGK un-
der

∧
F∈L K(F) → A(F) in the logic of GK. Therefore, the

following result follows directly from Theorem 2 and 19.

Theorem 20 A theoryT is the kernel of a stable expansion
of a setΓ of AEL formulas iffT is an extension ofΘ(Γ).

On the other hand, suppose thatRA is the subclass ofR
such that each rule inRA is a set of rules of the form:

−−−F | − −G1 | . . . | − −Gn | H.

In contrast with Theorem 20, we have the following result.

Theorem 21 A theoryT is an extension of a rule base∆ in
RA iff T is the kernel of a stable expansion ofΘ−1(∆),
whereΘ−1 translates each rule inRA of the form− −

−F | −−G1 | . . . | −−Gn |H into¬L(F)∨L(G1)∨ . . .∨
L(Gn) ∨ H .

According to Theorem 20 and Theorem 21, it can be con-
cluded that auto-epistemic logic is equivalent toRA, which
is a subclass of general default logic. Moreover, the self
introspection operatorL indeed plays the same role as the
double negation as failure operator−−.

We may be interested in whether a translation ismodular
or not. Rough speaking, a modular translation means that the
translation can be applied one by one. Modularity is impor-
tant in translation among non-monotonic formalisms both
from a conceptual and computational point of view (Gottlob
1995). We say that a translationtr from auto-epistemic logic
into general default logic ismodulariff for any two setsΓ1

andΓ2 of AEL formulas,tr(Γ1 ∪Γ2) = tr(Γ1)∪ tr(Γ2). It
is obvious that our translation from auto-epistemic logic to
general default logic is a modular translation.

As Gottlob pointed out in (Gottlob 1995), there is no mod-
ular translation from Reiter’s default logic to auto-epistemic
logic. Then he concluded that auto-epistemic logic is strictly
more expressive than Reiter’s default logic. Hence, our re-
sult shows that, in the sense of Gottlob’s idea of expressive-
ness, general default logic is a non-trivial extension of Re-
iter’s default logic.

Janhunen (1999) proposed another perspective on com-
paring expressiveness among nonmonotonic formalisms. He
also adopted Gottlob’s idea of translation as a basic tool.
However, in contrast, auxiliary atoms are allowed to intro-
duce. Interestingly, he concluded that, on the contrary, Re-
iter’s default logic is more expressive than auto-epistemic
logic. We believe that it is important to prohibit new atoms
since they also bring new information. Another reason
comes from Ferraris’s recent work (Ferraris 2005b), which
proves that, in terms of expressiveness among classes of
answer set programs, modular translation without auxiliary
atoms is identical to strong equivalence.

Ferraris’s idea of treating strong equivalence as a criterion
for expressiveness can be generalized into default logic as
well. Reiter’s default logic (Gelfond et al.’s disjunctive de-
fault logic) can also be considered as a subclassRN (RD)
of general default logic by restricting the rules into Reiter’s
original default rules (disjunctive default rules). Moreover,
RN (RD) is distinct withRA. That is, there exists a rule in
RN (RD), for instancep ⇒ q, which is not strongly equiv-
alent to any rules inRA. On the other hand, there exists a
rule inRA, for instance− − −p | q, which is not strongly
equivalent to any rules inRN (RD). Hence, Reiter’s default
logic (Gelfond et al.’s disjunctive default logic) and Moore’s
auto-epistemic logic are indeed two disjoint nonmonotonic
formalisms. However, both of them are subclasses of gen-
eral default logic. This also confirms that general default
logic is a non-trivial extension of Reiter’s default logic (dis-
junctive default logic).

The three subclasses of general logic can be compared
by considering the normal forms of them respectively under
strong equivalence.

Theorem 221. Each rule inRN (i.e. Reiter’s default logic)
is strongly equivalent to a set of rules of the following
form

C1 & . . . & Cn & − Cn+1 & . . . & − Cm ⇒ Cm+1,

whereCi, (1 ≤ i ≤ m + 1) are propositional clauses.

2. Each rule inRD ((i.e. disjunctive default logic)) is
strongly equivalent to a set of rules of the following form

C1& . . . &Cn&−Cn+1& . . . &−Cm ⇒ Cm+1 | . . . |Ck,

whereCi, (1 ≤ i ≤ k) are propositional clauses.

3. Each rule inRA (corresponding to auto-epistemic logic)
is strongly equivalent to a set of rules of the following
form

−C1 & . . . & − Cn ⇒ −Cn+1 | . . . | − Cm | Cm+1,

whereCi, (1 ≤ i ≤ m + 1) are propositional clauses.

Actions and Belief Change NMR-2008

81

Conclusion

The contribution of this paper are three folds. Firstly, we
showed that the logic of GK (Lin & Shoham 1992) is in-
deed a general framework for nonmonotonic reasoning by
embedding general default logic (Zhou, Lin, & Zhang 2007)
into it. We also clarified the intuitions behind this transla-
tion and other similar translations among nonmonotonic for-
malisms (Lin & Shoham 1992; Lin 2002; Lin & Zhou 2007;
Pearce, Tompits, & Woltran 2001; Ferraris, Lee, & Lifschitz
2007) by reformulating another equivalent translation.

Secondly, we demonstrated that the logic of GK is not
only a general framework of nonmonotonic formalisms but
also a powerful tool to study them. This is not pointed
out by previous work (Lin & Shoham 1992; Lin 2002;
Lin & Zhou 2007) before. As an example, we showed that
both weak equivalence and strong equivalence can be cap-
tured in the logic of GK and the complexities for both of
them are coNP complete. We also showed that each rule
base in general default logic can be strongly equivalently
transformed into a set of rules of form (1), which cannot
be further transformed into disjunctive default rules. This
result can also be viewed as a generalization of a similar re-
sult for general logic programming (Ferraris 2005a) since
answer set programming is a special case of general default
logic. Meanwhile, it also indicates that, to some extent, gen-
eral default logic is a strict extension of disjunctive default
logic (Gelfondet al. 1991) (thus Reiter’s default logic (Re-
iter 1980)).

Finally, we proved that Moore’s auto-epistemic logic
(Moore 1987) is equivalent to a proper subsetR

A of gen-
eral default logic via the logic of GK. Hence, the self-
introspection operatorL in auto-epistemic logic indeed
plays the same role as the double negation-as-failure opera-
tor −− in general default logic. Since Reiter’s default logic
(disjunctive default logic) can also be considered as a proper
subsetRN (RD) of general default logic, andRA andRN

(RD) are disjoint with each other, it can be concluded that
auto-epistemic logic and Reiter’s default logic are actually
two disjoint nonmonotonic formalisms. However, both of
them are proper subclasses of general default logic. As a
consequence, general default logic is a strict extension of
Reiter’s default logic (disjunctive default logic). Indeed, this
fact is also confirmed by Gottlob’s result (Gottlob 1995),
stating that auto-epistemic logic cannot be translated into
Reiter’s default logic by a modular translation without aux-
iliary atoms.

To sum up, in comparison with related work of transla-
tions among nonmonotonic formalisms, we are not only in-
terested in the translation itself, but also interested in the
benefits of it. As we have shown in this paper, the transla-
tion from general default logic into the logic of GK is in-
deed useful. First of all, it confirms the generality of the
logic of GK. And then, it solves a number of important
problems in relation to general default logic via the logic of
GK. Last but not least, it provides better understandings of
both two nonmonotonic formalisms and others, for instance,
auto-epistemic logic.

References
Cabalar, P., and Ferraris, P. 2007. Propositional theories are
strongly equivalent to logic programs.Theory and Practice
of Logic Programming7(6):745–759.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2007. A new perspec-
tive on stable models. InIJCAI, 372–379.
Ferraris, P. 2005a. Answer sets for propositional theories.
In Proceedings of the LPNMR’2005, 119–131.
Ferraris, P. 2005b. On modular translations and strong
equivalence. InProceedings of the LPNMR’2005, 79–91.
Gelfond, M.; Lifschitz, V.; Przymusinska, H.; and
Truszczyński, M. 1991. Disjunctive defaults. InProceed-
ings of the KR’91, 230–237.
Gottlob, G. 1995. Translating default logic into standard
autoepistemic logic.Journal of ACM42(4):711–740.
Halpern, J. Y., and Moses, Y. 1992. A guide to complete-
ness and complexity for modal logics of knowledge and
belief. Artificial Intelligence54(3):319–379.
Janhunen, T. 1999. On the intertranslatability of non-
monotonic logics.AMAI 27(1-4):79–128.
Konolige, K. 1988. On the relation between default and
autoepistemic logic.Artificial Intelligence35(3):343–382.
Ladner, R. E. 1977. The computational complexity of prov-
ability in systems of modal propositional logic.SIAM Jour-
nal on Computing6(3):467–480.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs.ACM Transactions on Compu-
tational Logic2:526–541.
Lifschitz, V. 1991. Nonmonotonic databases and epistemic
queries. InIJCAI, 381–386.
Lin, F., and Shoham, Y. 1992. A logic of knowledge and
justified assumptions.Artificial Intelligence57:271–289.
Lin, F., and Zhou, Y. 2007. From answer set logic pro-
gramming to circumscription via the logic of gk. InIJCAI,
441–446.
Lin, F. 2002. Reducing strong equivalence of logic pro-
grams to entailment in classical propositional logic. InKR,
170–176.
Moore, R. 1987. Possible-world semantics for autoepis-
temic logic. 137–142.
Motik, B., and Rosati, R. 2007. A faithful integration of
description logics with logic programming. InIJCAI, 477–
482.
Pearce, D.; Tompits, H.; and Woltran, S. 2001. Encod-
ings for equilibrium logic and logic programs with nested
expressions. InEPIA, 306–320.
Reiter, R. 1980. A logic for default reasoning.Artificial
Intelligence13:81–132.
Truszczynski, M. 2007. The modal logic s4f, the default
logic, and the logic here-and-there. InAAAI, 508–.
Turner, H. 2001. Strong equivalence for logic programs
and default theories (made easy). InLPNMR, 81–92.
Zhou, Y.; Lin, F.; and Zhang, Y. 2007. General default
logic. In Proceedings of the LPNMR’2007, 241–253.

Actions and Belief Change NMR-2008

82

Appendix
In the appendix, we outline the proof sketches of some prop-
erties presented in this paper.

Proof:[proof of Lemma 1] We prove this assertion by in-
duction on the structure ofR.

• If R is a fact, then this assertion holds obviously.

• If R isR1 |R2, thenRT2 is weakly equivalent toRT2
1
|RT2

2
.

T1 |= RT2 iff T1 |= RT2
1

|RT2
2

iff T1 |= RT2
1

or T1 |= RT2
2

iff M is a model of(R1)GK or M is a model of(R2)GK

iff M is a model ofRGK .

• If R is R1 & R2, then RT2 is weakly equivalent to
RT2

1
&RT2

2
. T1 |= RT2 iff T1 |= RT2

1
&RT2

2
iff T1 |= RT2

1

andT1 |= RT2
2

iff M is a model of(R1)GK andM is a
model of(R2)GK iff M is a model ofRGK .

• If R is R1 ⇒ R2, then RT2 is weakly equivalent to
RT2

1
⇒ RT2

2
. T1 |= RT2 iff T1 |= RT2

1
⇒ RT2

2
iff

T1 6|= RT2
1

or T1 |= RT2
2

iff M is not a model of(R1)GK

or M is a model of(R2)GK iff M is a model ofRGK .

This completes the induction proof.

Proof:[proof of Theorem 2]⇒: Suppose thatT is an ex-
tension of∆. Construct a Kripke interpretationM such that
K(M) = A(M) = T . By Lemma 1,M is a model of
∆GK . Moreover,M is a GK model of∆GK . Otherwise,
supposeM1 is a model of∆GK and K(M1) ⊂ K(M),
A(M1) = A(M) = T . By Lemma 1,K(M1) |= ∆T . This
shows thatT is not an extension of∆, a contradiction.
⇐: Suppose that there is a GK modelM of ∆GK such

that K(M) = A(M) = T . By Lemma 1,T |= ∆T .
Moreover, there is no proper subsetT1 of T such thatT1 is
also a model of∆T . Otherwise, we can construct a Kripke
interpretationM1 such thatK(M1) = T1 andA(M1) = T .
By Lemma 1,M1 is also a model of∆GK . This shows that
M is not a GK model of∆GK , a contradiction.

Proof:[proof of Proposition 5] LetM be a model ofF .
LetΓ be the set of facts thatF is constructed from. LetΓ1 =
{G |G ∈ Γ, M |= K(G)}. Then, for everyP ∈ Γ\Γ1, there
is a truth assignment satisfiesQ∧

∧
G∈Γ1

G. Symmetrically,
the same thing can be done for modal operatorA.

Construct a Kripke interpretationM1 such that theK
accessible worlds of the actual world are exactly the truth
assignments mentioned above, so are theA accessible
worlds. Then, for all formulaG ∈ Γ, M |= K(G) iff
M1 |= K(G); M |= A(G) iff M1 |= A(G). Hence,M1

is also a model ofF . Moreover,M1 has at most2|F | + 1
possible worlds.

Proof:[proof of Theorem 9]2 ⇒ 3 and4 ⇒ 1 are obvi-
ous.

3 ⇒ 4 : Firstly, if
∧

F∈L K(F) → A(F) |= (R1)GK ↔

(R2)GK , thenR1 andR2 are weakly equivalent. Thus, by
Theorem 7,(R1)A and(R2)A are equivalent in the logic of
GK. By induction on the structure,(R3)GK and(R4)GK are
equivalent. Thus they have the same set of GK models. By
Theorem 2,R3 andR4 have the same set of extensions.

1 ⇒ 2 : Suppose otherwiseM is a model of(R1)GK but
not a model of(R2)GK . LetT1 beK(M) andT2 beA(M).
There are two cases. (a)T2 |= RT2

2
. Let R3 be the rule

conjunction of{F | F ∈ Fact(R1 & R2), T1 |= F} and
{F ⇒ G|F, G ∈ Fact(R1&R2); T2 |= F, G; T1 6|= F, G.}.
We have thatT2 is an extension ofR2 & R3 but not an
extension ofR1 & R3. (b)T2 6|= RT2

2
. Let R3 be the rule

conjunction of{F | F ∈ Fact(R1 & R2), T2 |= F}. We
have thatT2 is an extension ofR1 &R3 but not an extension
of R2 & R3. In both cases,R1 is not strongly equivalent to
R2, a contradiction.

Proof:[proof of Proposition 13](F ∧G)GK is K(F ∧G);
while (F & G)GK is FGK ∧GGK , which isK(F)∧K(G).
Thus,(F ∧ G)GK is equivalent to(F & G)GK in the logic
of GK. By Theorem 9,F ∧ G ≡ F & G.

Proof:[proof of Proposition 15] All these assertions can
be proved the same way as the proof of Proposition 13 by
Theorem 9. As an example, here we only outline the proof
of 13.

Notice that if |=
∧

F∈L K(F) → A(F), then by induc-
tion on the structure, for every ruleR, RGK |= RA. Con-
sider 13,((F ⇒ G) | H)GK is

((FGK → GGK) ∧ (FA → GA)) ∨ HGK ,

which is equivalent to

(¬FGK ∨ GGK ∨ HGK) ∧ (¬FA ∨ GA ∨ HGK)

under
∧

F∈L K(F) → A(F). On the other hand,

((F ⇒ G | H) & (H | − F | − −G))GK

is equivalent to

(FGK → GGK∨HGK)∧(FA → GA∨HA)∧(HGK∨¬FA∨GA),

which is also equivalent to

(¬FGK ∨ GGK ∨ HGK) ∧ (¬FA ∨ GA ∨ HGK),

under
∧

F∈L K(F) → A(F). Thus by Theorem 9, 13
holds.

Proof:[proof of Theorem 18] We first prove a lemma by
induction on the structure that each rule base is strongly
equivalent to a set of rules of the formC ⇒ D, whereD
has the form of (3), andC has the form of

C1& . . .&Cn&−Cn+1& . . .&−Cm&−−Cm+1& . . .&−−Ck,

where Ci, (1 ≤ i ≤ k) are propositional clauses. A
tedious step of proving this lemma is to reduce the rule
(C1 ⇒ D1) & (C2 ⇒ D2) ⇒ (C3 ⇒ D3) mainly by
14 and 15 in Proposition 15.

Then, by 9, 16 and 17 in Proposition 15, this form can be
strongly equivalently transformed to form (1).

Proof:[Proof of Theorem 22] Point 1 and point 2 follow
easily from Theorem 3 and 4 in (Zhou, Lin, & Zhang
2007) and Corollary 14. Point 3 follows from Corollary 14
and the fact that−R1 & R2 ⇒ R3 is strongly equivalent
toR2 ⇒ R3|−−R1, whereR1, R2 andR3 are three rules.

Actions and Belief Change NMR-2008

83

Special Session on Applications

A number of systems which implement nonmonotonic reasoning (NMR) or make extensive use of NMR
techniques have been developed in the past decade. The efficiency of such systems has been boosted by
the increasing performance of computer hardware as well as advances in algorithm design. The current
performance level is already sufficient to enable industrial applications of nonmonotonic reasoning. Indeed,
a wide range of applications has emerged along with the development of NMR systems. This special session
aims to attract researchers who have interest and/or practical experience in significant applications of
NMR. The aim is to share views about the current state of the art and to look for new emerging areas of
application.

Session Chairs

Tomi Janhunen, Helsinki University of Technology, Finland
Eugenia Ternovska, Simon Fraser University, Canada

Program Committee

Leopoldo Bertossi, Carleton University, Canada
Jim Delgrande, Simon Fraser University, Canada
Wolfgang Faber, University of Calabria, Italy
Michael Fink, Vienna University of Technology, Austria
Paolo Liberatore, University of Rome “La Sapienza”, Italy
Leora Morgenstern, Stanford University, USA
Pascal Nicolas, University of Angers, France
Simona Perri, University of Calabria, Italy
Jussi Rintanen, NICTA, Australia
Riccardo Rosati, University of Rome “La Sapienza”, Italy
Torsten Schaub, University of Potsdam, Germany
Mirek Truszczynski, University of Kentucky, USA
Jia You, University of Alberta, Canada
Mary-Anne Williams, University of Technology Sydney, Australia

NMR-2008

84

Anton: Answer Set Programming in the Service of Music

Georg Boenn
Cardiff School of Creative & Cultural Industries

University of Glamorgan
Cardiff, CF24 2FN, UK
gboenn@glam.ac.uk

Martin Brain and Marina De Vos and John ffitch
Department of Computer Science

University of Bath
Bath, BA2 7AY, UK

{mjb,mdv,jpff}@cs.bath.ac.uk

Abstract

With the increasing efficiency of answer set solvers and a
better understanding of program design, answer set program-
ming has reached a stage where it can be more successfully
applied in a wider range of applications and where it attracts
attention from researchers in other disciplines. One of these
domains is music synthesis. In this paper we approach the
automation and analysis of composition of music as a knowl-
edge representation and advanced reasoning task. Doing so, it
is possible to capture the underlying rules of melody and har-
mony by a very small, simple and elegant set of logic rules
that can be interpreted under the answer set semantics. Our
system, ANTON is the first algorithmic composer to combine
both harmonic and melodic composition. In addition to de-
scribing the composition system thus created we consider the
advantages of constructing an algorithmic composer this way,
and also the limitations of current solvers.

Introduction

Originally computers were seen as machines to assist in nu-
merical calculations, and it was soon realised that they could
do other things, starting with commerce, but extending to
symbolic operations and eventually to near-universal use in
all technical areas. More recently the application of comput-
ers to artistic activity has become a subject of interest.

In this paper we report on the use of declarative logic pro-
gramming as a significant component of an artistic endeav-
our, the composition of music. We show that it is possible to
use Answer Set Programming (ASP) to create ab initio short
musical pieces that are both melodic and harmonic. After a
description of the computational basis we describe the mu-
sical context of this work, and why it is neither a trivial task,
nor a tractable one. Our system, ANTON, named in honour
of our favourite composer of the second Viennese School, is
presented as both a design and as a practical working system.
We report on our experience in using ASP for this system,
and indicate a number of potentially exciting directions in
which this system could develop, both musically and com-
putationally.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Answer Set Programming
Due to space constraints, only a brief overview of the answer
set semantics and Answer Set Programming (ASP) is given
here. The interested reader is referred to (Baral 2003) for
a more in-depth coverage of the definitions and ideas pre-
sented in this section.

The answer set semantics is a model based semantics for
normal logic programs.

Following the notation of (Baral 2003), we refer to the
language over which the answer set semantics is defined as
AnsProlog.

The basic components of the language are atoms, ele-
ments that can be assigned a truth value. An atom can be
negated using negation as failure in order to create the lit-
eral not a. If a is true then not a is false and vice versa.
Atoms and literals are used to create rules of the form:

a ← B, not C.

where a is an atom, B and C are sets of atoms. Intuitively,
this means “if all element of B are known/true and no ele-
ment of C is known/true, then a is known/true”. The set of
conditions of a rule (on the right hand side of the arrow) are
known as the body, written as B(r), and the atom that is the
consequence of the rule is referenced as the head of the rule,
written H(r). The body is split further in two sets of atoms,
B+(r) and B−(r) depending on whether the atom appears
positively or negatively. Rules with empty bodies are called
facts; their head should always be true.
A program in AnsProlog is a finite set of rules.

If a program Π contains no negated atoms (∀r ∈ Π ¦
B−(r) = ∅) its semantics is unambiguous and can easily
be computed as the fixed point of the Tp(the immediate con-
sequence) operator. Starting from the empty set, we check in
each iteration which rule bodies are true. The heads of those
rules are added to the set for the next iteration. This is a
monotonic process, so we obtain a unique fixpoint, denoted
T∞p (∅). This fixpoint is called the answer set.

For example, given the following program:

a ← b, c.

b ← c.

c ← .

d ← e.

e ← d.

Applications NMR-2008

85

the unique answer set is {a, b, c}, as Tp(∅) = {c},
Tp({c}) = {b, c}, Tp({b, c}) = {a, b, c} and
Tp({a, b, c}) = {a, b, c}. Note that d and e are not included
in the model as their is no way of concluding e without
knowing d and vice versa. This is different to the classi-
cal interpretation of this program (via Clark’s completion)
which would have two models, one of which would contain
d and e.

The natural mechanism for computing negation in logic
programs in negation as failure, which tends to be char-
acterised as epistemic negation (“we do not know this is
true”), rather than classical negation (“we know that this is
not true”). This correspondence is motivated by the intuition
that we should only claim to know things that can be proven;
thus anything that can not be proven is not known. To extend
the semantics to support this type of negation, the Gelfond-
Lifschitz reduct is used. This takes a set of proposed atoms
and gives a reduced, positive program by removing any rule
which depends on the negation of any atom in the set and
dropping all other negative dependencies.

Definition 1 Given an AnsProlog program Π and a set of
atoms A, the Gelfond-Lifschitz transform of Π with respect
to A is the following set of rules:

ΠA = {H(r)← B+(r)|r ∈ Π, B−(r) ∩A = ∅}

This allows us to extend the concept of answer sets to pro-
grams with negation. Intuitively, these are sets of possible
beliefs about the world which are consistent with all of the
rules and have acyclic support for every atom that is known,
and thus in the set.

Definition 2 Given an AnsProlog program Π, A is an an-
swer set of Π ⇐⇒ A is the unique answer set of ΠA.

For example, the following program has two answer sets:

a ← not b.

b ← not a.

c ← not d.

d ← b.

d ← e, not a, not c.

e ← d, not a.

{a, c} and {b, d, e}. Computing the reduct with respect to
{a, c} gives:

a ← .

c ← .

d ← b.

which results in T∞p (∅) = {a, c}.
A given program will have zero or more answer sets.

With AnsProlog we can represent and reason about NP-
complete problems in such a way that the answer sets of the
program correspond to the solutions of the problem.

When used as a knowledge representation and program-
ming language, AnsProlog is enhanced to contain con-
straints (e.g. ← b, not c) and choice rules (e.g. {a, b, c} ←

b, not c). The former are rules with an empty head, stating
that an answer set cannot meet the conditions given in the
body. The latter is a short hand notation for a conditional
choice; if the conditions in the body are met then a num-
ber of atoms in the head may (a non-deterministic choice)
be contained in answer set. These additions are syntactic
sugar and can be removed with linear, modular transforma-
tions (see (Baral 2003)). Variables and predicated rules are
also used and are handled, at the theoretical level and in most
implementations, by instantiation (referred to as grounding).

Answer set programming (ASP) is a programming
paradigm in which a problem is represented as an
AnsProlog program in such a way that the answer sets
can be interpreted to give the solutions. A reasoning en-
gine is then used to produce the answer sets of the pro-
gram. Typically these are composed of two components, a
grounder which removes the variables from the program by
instantiation and an answer set solver which compute an-
swer sets of the propositional program. GRINGO(Gebser,
Schaub, and Thiele 2007) and LPARSE(Syrjänen 2000) are
the grounders most commonly used and CLASP(Gebser et
al. 2007), SMODELS(Syrjänen and Niemelä 2001), CMOD-
ELS(Lierler and Maratea 2004) and DLV(Eiter et al. 1998)
represent the state of the art of solver development.

ASP has been used to tackle a variety of problems, in-
cluding: planning and diagnosis (Eiter et al. 2002; Lifschitz
2002; Nogueira et al. 2001), modelling and rescheduling of
the propulsion system of the NASA Space Shuttle (Nogueira
et al. 2001), multi-agent systems (Baral and Gelfond 2000;
Buccafurri and Caminiti 2005; Cliffe, De Vos, and Pad-
get 2006), Semantic Web and web-related technologies
(Polleres 2005; Ruffolo et al. 2005), superoptimisation
(Brain et al. 2006), reasoning about biological networks
(Grell, Schaub, and Selbig 2006), voting theory (Konczak
2006) and investigating the evolution of language (Erdem et
al. 2003).

The Musical Background
Music is a world-wide phenomenon across all cultures. The
details of what constitutes music may vary from nation to
nation, but it is clear that music is an important component
of being human.

In this paper we are concentrating on western traditional
musics, but as we will consider later in the section on future
music research, much of the technology can be translated to
other traditions.

The particular area of interest here is composition; that is
creating new musical pieces.

Creating melodies, that is sequences of pitched sounds,
is not as easy as it looks (sounds). We have cultural prefer-
ences for certain sequences of notes and preferences dictated
by the biology of how we hear. This may be viewed as an
artistic (and hence not scientific) issue, but most of us would
be quick to challenge the musicality of a composition cre-
ated purely by random whim. Students are taught rules of
thumb to ensure that their works do not run counter to cul-
tural norms and also fit the algorithmically definable rules of
pleasing harmony when sounds are played together.

Applications NMR-2008

86

“Western tonal” simply refers to what most people in
the West think of as “classical music”, the congenial Bach
through Brahms music which feels comfortable to the mod-
ern western ear because of its adherence to familiar rules.
Students of composition in conservatoires are taught to write
this sort of music as basic training. They learn to write
melodies and to harmonise given melodies in a number of
sub-versions. If we concentrate on early music then the
scheme often called “Palestrina Rules” is an obvious exam-
ple for the basis of this work. Similarly, harmonising Bach
chorales is a common student exercise, and has been the sub-
ject of many computational investigations using a variety of
methods.

In this paper, we take the somewhat arid technical rules
and embed them within a modern computational system,
which enables us to contemplate many original ways of ex-
ploiting the fact that they are simultaneously available; the
rules themselves can be explored, extended and refined, or
student exercises can be evaluated to ensure that they are
indeed “valid”. We will be able to complete partial sys-
tems, such as producing a melody consonant with a given
harmony structure, as well as, more adventurously, to create
new melodies.

For this paper we have opted to work with a sub-type of
the Palestrina Rules called Renaissance Counterpoint. This
style was used by composers like Josquin, Dufay or Palest-
rina and is very distinct from the Baroque Counterpoint used
by composers like Bach, Haendel.

We have used the teaching at one conservatoire in Köln
to provide the basic rules, which were then refined in line
with the general style taught. The point about generating
melodies is that the “tune” must be capable of being accom-
panied by one or more other lines of notes, to create a har-
monious whole. The requirement for the tune to be capable
of harmonisation is a constraint that turns a simple sequence
(a monody) to a melody.

Our experience with this work is to realise how many ac-
ceptable melodies can be created with only a few rules, and
as we add rules, how much better the musical results are.
This concept is developed further in the section on ANTON.

In this particular style of music complete pieces are not
usually created in one go. Composers create a number of
sections of melody, harmonising them as needed, and possi-
bly in different ways, and then structuring the piece around
these basic sections. Composing between 4 bars and 16 bars
is not only a computationally convenient task, it is actually
what the human would do, creating components from which
the whole is constructed. So although the system described
here may be limited in its melodic scope, it has the potential
to become a useful tool across a range of sub-styles.

Automatic Composition
A common problem in musical composition can be sum-
marised in the question “where is the next note coming
from?”. For many composers over the years the answer
has been to use some process to generate notes. It is clear
that in many pieces from the Baroque period that simple
note sequences are being elaborated in a fashion we would

now call algorithmic. For this reason we can say that al-
gorithmic composition is a subject that has been around for
a very long time. It is usual to credit Mozart’s Musikalis-
ches Würfelspiel (Musical Dice Game) (Chuang 1995) as
the oldest classical algorithmic composition, although there
is some doubt if the game form is really his. In essence the
creator provides a selection of short sections, which are then
assembled according to a few rules and the roll of a set of
dice to form a Minuet1. Two dice are used to choose the 16
minuet measures from a set of 176, and another die selects
the 16 trio measures2, this time from 96 possible. This gives
a total number of 1.3 × 1029 possible pieces. This system
however, while using some rules, relies on the coherence of
the individual measures. It remains a fun activity, and re-
cently web pages have appeared that allow users to create
their own original(ish) “Mozart” compositions.

In the music of the second Viennese school (“12-tone”,
serial music) there is a process in action, rotating, inverting
and use of retrograde, but usually performed by hand.

More recent algorithmic composition systems have con-
centrated on the generation of monody3, either from a math-
ematical sequence, chaotic processes, or Markov chains,
trained by consideration of acceptable other works. Fre-
quently the systems rely on a human to select which
monodies should be admitted, based on judgement rather
than rules. Great works have been created this way, in the
hands of great talents. Major descriptions of mathematical
note generators can be found for example in Formalized Mu-
sic (Xenakis 1992). Probably the best known of the Markov
chain approach is Cope’s significant corpus of Mozart pas-
tiche (Cope 2006).

In another variation on this approach, the accompanist,
either knowing the chord structure and style in advance, or
using machine-listening techniques, infers a style of accom-
paniment. The former of these approaches can be found in
commercial products, and the latter has been used by some
jazz performers to great effect, for example by George E.
Lewis.

A more recent trend is to cast the problem as one of
constraint satisfaction. For example PWConstraints is an
extension for IRCAM’s Patchwork, a Common-Lisp-based
graphical programming system for composition. It uses a
custom constraint solver employing backtracking over finite
integer domains. OMSituation and OMClouds are similar
and are more recently developed for Patchwork’s successor
OpenMusic. A detailed evaluation of them can be found
in (Anders 2007), where the author gives an example of a
1st-species counterpoint (two voices, note against note) af-
ter (Fux 1965 orig 1725) developed with Strasheela, a con-
straint system for music built on the multi-paradigm lan-
guage Oz. Our musical rules however implement the melody
and counterpoint rules described by (Thakar 1990), which
we find give better musical results.

1A dance form in triple time, i.e. with 3 beats in each measure
2A Trio is a short contrasting section played before the minuet

is repeated
3A monody is a single solo line, in opposition to homophony

and polyphony

Applications NMR-2008

87

One can distinguish between improvisation systems and
composition systems. In the former the note selection pro-
gresses through time, without detailed knowledge of what
is to come. In practice this is informed either by knowing
the chord progression or similar musical structures (Broth-
well and ffitch 2008), or using some machine listening. In
this paper we are concerned with composition, so the pro-
cess takes place out of time, and we can make decisions in
any order.

It should also be noted that these algorithmic systems
compose pieces of music of this style in either a melodic
or a harmonic fashion, and are frequently associated with
computer-based synthesis. The system we will propose later
is unique as it deals with both simultaneously.

Melodic Composition
In melodic generation a common approach is the use of
some kind of probabilistic finite state automaton or an equiv-
alent scheme, which is either designed by hand (some based
on chaotic oscillators or some other stream of numbers) or
built via some kind of learning process. Various Markov
models are commonly used, but there have been applica-
tions of n-grams, genetic algorithms and neural nets. What
these methods have in common is that there is no guarantee
that melodic fragments generated have acceptable harmonic
derivations. Our approach, described below is fundamen-
tally different in this respect, as our rules cover both aspects
simultaneously.

In contrast to earlier methods, which rely on learning, and
which are capable of giving only local temporal structure,
a common criticism of algorithmic melody (Leach 1999),
we do not rely on learning and hence we can aspire to a
more global, whole melody, approach. In addition we are no
longer subject to the limitations of the kind of process which,
because it only works in time in one direction, is hard to use
in a partially automated fashion; for example operations like
“fill in the 4 notes between these sections” is not a problem
for us.

We are also trying to move beyond experiments with ran-
dom note generation, which we have all tried and abandoned
because the results are too lacking in structure. Predictably,
the alternative of removing the non-determinism at the de-
sign stage (or replacing with a probabilistic choice) runs the
risk of ‘sounding predictable’! There have been examples of
good or acceptable melodies created like this, but the restric-
tion inherent in the process means it probably works best in
the hands of geniuses.

Harmonic Composition
A common usage of algorithmic composition is to add har-
monic lines to a melody; that is notes played at the same time
as the melody that are in general consonant and pleasing.
This is exemplified in the harmonisation of 4-part chorales,
and has been the subject of a number of essays in rule-based
or Markov-chain systems. Perhaps a pinnacle of this work
is (Ebcioğlu 1986) who used early expert system technol-
ogy to harmonise in the style of Bach, and was very suc-
cessful. Subsequently there have been many other systems,

% At every time step, every part either steps
% to the next note in the key or leaps to a
% further note in the key
1 { stepUp(P,T), stepDown(P,T), leapUp(P,T),

leapDown(P,T) } 1 :- part(P), time(T).

% A leap can only be over a consonant interval
% (3,4,5,7 or 12 semitones)
1 { leapBy(P,T,I) : consonantInterval(I) } 1

:- leapUp(P,T).

% When a part leaps up by I, the note at time T+1
% is I steps higher than the current note
chosenNote(P,T+1,N+I) :- chosenNote(P,T,N),

leapBy(P,T,I).

% Every note must be in the chosen mode
% (major, minor, etc.)
:- chosenNote(P,T,N), mode(M), not inMode(N,M).

% The interval between parts must not be dissonant
:- chosenNote(P1,T,N1), chosenNote(P2,T,N2),

interval(N1,N2,C), not consonantInterval(C).

Figure 1: A simplified ANTON fragment

with a range of technologies. There is a review included in
(Rohrmeier 2006).

Clearly harmonisation is a good match to constraint pro-
gramming based systems, there being accepted rules4. It
also has a history from musical education.

But these systems all start with a melody for which at least
one valid harmonisation exists, and the program attempts to
find one, which is clearly soluble. This differs significantly
from our system, as we generate the melody and harmoni-
sation together, the requirement for harmonisation affecting
the melody.

The ANTON Composition System
What we are seeking to do, which is a new application
in both music and computing, is to apply ASP techniques
to compositional rules to produce an algorithmic composi-
tion system which can be applied more widely and freely
than has previously been possible. AnsProlog is used to
create a description of the rules that govern the melodic
and harmonic properties of a correct piece of music. The
AnsProlog program works as a model for music composi-
tion that can be used to assist the composer by suggesting,
completing and verifying short pieces.

The rules of composition are modelled so that the
AnsProlog program defines the requirements for a piece
to be valid, and thus every answer set corresponds to a valid
piece. In generating an new piece, the composition system
simply has to generate an (arbitrary) answer set. Rather than
the traditional problem/solution mapping of answer set pro-
gramming, this is using an AnsProlog program to create a
‘random’ (arbitrary) example of a complex, structured ob-
ject.

Figure 1 presents a simplified fragment of the AnsProlog
program used in ANTON. The model is defined over a num-
ber of time steps, given by the variable T. The key proposi-

4For example see: http://www.wikihow.com/
Harmonise-a-Chorale-in-the-Style-of-Bach

Applications NMR-2008

88

tion is chosenNote(P,T,N) which represents the concept
“At time T, part P plays note N”. To encode the options for
melodic progress (“the tune either steps up or down one note
in the key, or it leaps more than one note”), choice rules are
used. To encode the melodic limits on the pattern of notes
and the harmonic limits on which combinations of notes may
be played at once, constraints are included.

To allow for verification and diagnosis, each rule is given
an error message:

% No tri-tones: No note can be within two notes
% of a tritone (a note +/- 6 semitones)
#const err tt="Tri-tone".
reason(err tt).
error(P,T,err tt) :- chosenNote(P,T,N1),

chosenNote(P,T+2,N1+6).
error(P,T,err tt) :- chosenNote(P,T,N1),

chosenNote(P,T+2,N1-6).

Depending on how you want to use the system, compo-
sition or diagnosis, you will either be interested in those
pieces that do not result in errors at all, or in an answer set
that mentions the error messages. For the former we sim-
ply specify the constraint :- error(P,T,R)., effectively
making any error rule into a constraint. For the latter we in-
clude the rules: errorFound :- error(P,T,R). and :-
not errorFound., requiring that an error is found (i.e. re-
turning no answers if the diagnosed piece is error free).

By adding constraints on which notes can be included, it is
possible to specify part or all of a melody, harmony or com-
plete piece. This allows ANTON to be used for a number
of other tasks beyond automatic composition. By fixing the
melody it is possible to use it as an automatic harmonisation
tool. By fixing part of a piece, it can be used as computer
aided composition tool.

The complete system consists of three major phases;
building the program, running the solver and interpreting the
results. As a simple example suppose we wish to create a 4
bar piece in E major one would use the Perl wrapper and
write
$ programBuilder.pl --task=compose \

--mode=major \
--time=16 > program

which builds the ASP program, giving the length and mode.
Then
$ lparse -W all < program | \

shuffle.pl 6298 | \
smodels 1 > tunes

runs the grounder and solver and generates a representation
of the piece. Using another Perl script we provide a number
of output formats, one of which is a CSOUND (Boulanger
2000) program with a suitable selection of sounds.
$ parse.pl --fundamental=e --output=csound \

< tunes > tunes.csd

generates the CSOUND input from the generic format, and
then
$ csound tunes.csd -o dac

plays the melody. We provide in addition to CSOUND, out-
put in text, AnsProlog facts or the LILYPOND score lan-
guage(Nienhuys and Nieuwenhuizen 2003). Naturally we
provide scripts for all main ways of using the system.

keyMode(lydian).
chosenNote(1,1,25).
chosenNote(1,2,24).
chosenNote(1,8,19).
chosenNote(1,9,20).
chosenNote(1,10,24).
chosenNote(1,14,29).
chosenNote(1,15,27).
chosenNote(1,16,25).
#const t=16.
configuration(solo).
part(1).

Figure 2: musing.lp: An example of a partial piece

Alternatively we could request the system to complete
part of a piece. In order to do so, we provide the system
with a set of AnsProlog facts expressing the mode (major,
minor, etc.), the notes which are already fixed, the number
of notes in your piece, the configuration and the number of
parts. Figure 2 contains an example of such file. The format
is the same as the one returned from the system except that
all the notes in the piece will have been assigned.

We then run the system just as before with the exception
of adding --piece=musing.lp when we run programBuilder.pl.
The system will then return all possible valid compositions
that satisfy the criteria set out in the partial piece.

The AnsProlog programs used in ANTON contains
less than 200 lines (not including comments, empty lines
and user defined pieces) and encodes 28 melodic and har-
monic rules. Once instantiated, the generated programs
range from 3,500 atoms and 13,400 rules (a solo piece with
8 notes) to 11,000 atoms and 1,350,000 rules (a 16 note
duet). The system is licensed under the GPL and is avail-
able, along with example pieces, from http://www.cs.
bath.ac.uk/˜mjb/ . Figure 3 contains an extract from a
series of simple duets composed by ANTON.

It should be noted that ANTON’s 200 lines of code con-
trast with the 8000 lines in Strasheela (Anders 2007) and
88000 in Bol (Bel 1998). For this reason we claim that our
representation of the musical problem is easily read and un-
derstood.

Evaluation of ANTON

Practical Use
All this construction is of little use if the system is not prac-
tical to use, so we benchmarked a variety of solvers us-
ing the programs ANTON generated. Table 1 contains the
times taken by a number of answer set solvers (SMODELS
(Syrjänen and Niemelä 2001), SMODELS-IE (Brain, De Vos,
and Satoh 2007), SMODELSCC (Ward and Schlipf 2004),
CMODELS (Lierler and Maratea 2004) and CLASP (Gebser
et al. 2007)) in composing a single piece of a given length.
Likewise Table 2 contains the times taken to compose a
two part piece of a given length. LPARSE (Syrjänen 2000)
was used to ground the programs and its run time, typically
around 30-60 seconds, is omitted from the results.

All times were recorded using a 2.4GHz AMD Athlon
X2 4600+ processor, running a 64 bit version of Open-
SuSE 10.3. All solvers were built in 32 bit mode. Each
run was limited to 20 minutes of CPU time and 2Gb of

Applications NMR-2008

89

smodels 2.32 smodels-ie 1.0.0 smodelscc 1.08 cmodels 3.75 clasp 1.0.5
Length Default Restarts Default Restarts No lookahead w/ zchaff w/ MiniSAT Default

4 1.02 1.03 0.09 0.09 1.17 0.33 0.39 0.22
6 2.43 2.43 0.38 0.38 2.58 0.64 0.85 0.46
8 5.16 5.16 1.03 1.04 4.94 1.06 1.62 1.01

10 12.25 11.72 2.58 2.59 8.55 1.54 2.63 1.33
12 28.25 46.13 8.08 15.14 11.36 2.42 4.04 2.27
14 40.62 140.00 10.50 43.54 18.78 3.14 6.05 3.48
16 101.05 207.25 29.40 69.53 27.94 4.01 9.40 4.62

Table 1: Time taken (in seconds) for a number of solvers generating a solo piece

smodels 2.32 smodels-ie 1.0.0 smodelscc 1.08 cmodels 3.75 clasp 1.0.5
Length Default Restarts Default Restarts No lookahead w/ zchaff w/ MiniSAT Default

4 3.77 3.77 0.31 0.32 4.08 1.18 1.26 0.77
6 10.36 11.24 1.89 1.89 13.90 2.17 2.81 1.60
8 54.64 77.10 14.71 21.84 26.07 3.88 5.93 3.73

10 Time out Time out Time out 500.26 78.72 9.51 11.12 9.34
12 Time out Time out Time out Time out 103.81 14.50 18.14 16.84
14 Time out Time out Time out Time out 253.92 32.41 32.34 25.59
16 Time out Time out Time out Time out 452.38 82.64 49.29 29.63

Table 2: Time taken (in seconds) for a number of solvers generating a duet

RAM. The AnsProlog programs used are available from
http://www.cs.bath.ac.uk/˜mjb/ .

These results show that the system, when using the more
powerful solvers, is fast enough to be used as a component
in an interactive composition tool. Further work would be
needed to support real time generation of music, but we are
not too far away. We also note that the only solvers able to
generate longer sequences in two parts all implement clause
learning strategies, which suggests that the problem is par-
ticularly susceptible to this kind of technique.

Music Quality
Judging quality is a subjective process; after all we do not
all like the same music. However we assert that the music is
acceptable, at least by the standards of a student of composi-
tion, and at times there are moments of excitement. For the
reader to judge we show in Figure 3 part of ANTON’s Opus
1: Twenty Short Pieces; the audio files of the complete work
can be found in http://cs.bath.ac.uk/˜mjb.

ASP as the Representation and Reasoning
Language
One of the main results reported in this paper is how easy it
was to encode the rules in terms both of ease of expression
and of ease of capturing the rules. Composers can think of
ANTON as a testbed for experimentation with musical ex-
pertise that can be formulated as essential musical rules for
all musical parameters5 in order to build relations between
those that either comply with a certain musical style or that
open up new musical experiences. We have made the case
that a sub-style of Renaissance Counterpoint and its melodic

5For a single note commonly known as pitch, loudness, timbre
(sound quality) and duration.

style can be represented with AnsProlog . The flexibility
of creating different solutions based on the same rules offers
the composer the opportunity to discover areas that he might
have never thought of. It is recognised among musicians that
an important component of composition is the use of the lis-
tener’s expectations to obtain an effect. The composer plays
on the listener by either satisfying his expectations or sur-
prising him by not doing what he was anticipating. This
facet of music is not confined to the experience of someone
listening to a completed piece of music. It is inherent in the
entire creative process, since a composer is also his own first
listener. Subtle changes of AnsProlog facts given to AN-
TON can give surprising results, as can small and skillful
adjustments to the set of rules to produce a break with the
previous set, thus allowing the composer to create the mold-
ings for his own creations in a step-by-step process. This
is a multi-faceted feedback-loop between writing the rules,
listening to and examining the musical outcomes and modi-
fying the rules if necessary. One of the most important mu-
sical tasks is to be able to work with impulse and resolution
on multiple levels and with different voices simultaneously.
This gathering and dissipation of musical energy (Thakar
1990) can happen in an infinite number of ways where all
musical lines, defined by their various parameters, partici-
pate together. This process has to take into account all past
musical events as well as the fragile balance between differ-
ent voices and their parameters. Therefore, the modelling of
rules that can capture musical impulse and resolution proves
to be the most challenging aspect of writing programs with
ANTON. There are currently no other programs known to us
offering solutions in this direction and much of our future
work will need to focus on this particular challenge.

There are also some negative points. One persistent
problem was the lack of mature development support

Applications NMR-2008

90

Figure 3: Part of a set of pieces composed by the system

tools, particularly debugging tools. SPOCK (Brain et
al. 2007) was used, but as its focus is on computing the
reasons behind the error, rather than the interface issues
of explaining these reasons to the user, it was normally
quicker to find bugs by looking at the last changes made
and which regression tests failed. Generally, the bugs that
were encountered where due to subtle mismatches between
the intended meaning of a rule and the declarative reading
of the rule used. For example the predicate stepUp(P,T)
is used to represent the proposition “At time T, part P steps
up to give the note at time T+1”; however, it could easily
be misinterpreted as “At time T-1, part P steps up to give
the note at time T”. Which of these is used is not important,
as long as the same declarative reading is used for all rules.
With the first “meaning” selected for ANTON, the rule:
chosenNote(P,T,N+S) :- chosenNote(P,T-1,N),

stepUp(P,T),
stepBy(P,T,S).

would not encode the intended progression of notes. To
avoid these errors it would be possible to develop a system
that translated rules into natural language, given the declar-
ative reading of the propositions involved. It should then
be relatively straightforward to check that the rule encoded
what was intended.

The Future
Music Research
This system could develop in a number of novel ways. For
example we might throw light on the compositional process
by learning aspects of the rules, finding which are inconsis-
tent or redundant, or determining the importance of rules.
We could investigate whether there are “unspoken” rules,
and experiment to find unacknowledged rules of composi-
tion. One particularly interesting possibility is using the sys-
tem to generate a large set of pieces, acquiring human evalu-
ations of the ‘quality’ of each and then using techniques such

as inductive logic programming to infer rules for composing
‘good’ pieces.

So far we have only considered a particular style of West-
ern music. However the framework should be applicable to
other styles, especially formal ones. e.g. the rules of Hindus-
tani classical music are taught in a traditional, oral, fashion,
but we see no reason why our framework could not capture
these. Recent work (Endrich 2008) indicates that there are
indeed universal melodic rules, and the combination of the
ASP methodology with this musical insight is an intriguing
one.

In real life pieces some of the rules are sometimes broken.
This could be simulated by one of a number of extensions to
answer set semantics (preferences (Brain and De Vos 2003),
consistency restoring rules, defensible rules, etc.). However
how to systematise the knowledge of when it is acceptable
to break the rules and in which contexts it is ‘better’ to break
them is an open problem.

A major deficiency of the current system is the lack of
rhythm, as all parts play all the time (with no rests), with
notes of equal duration, which, while usual in some styles,
stands in the way of a whole range of interesting variety.
We have not considered rhythm so far, but one of us is al-
ready researching rhythmic structures and performance ges-
ture (Boenn 2007), so in the longer term this may be incor-
porated.

Systems Development
The current system can write short melodies effectively and
efficiently. Development work is still needed to extend this
to entire pieces; we can start from these melodic fragments
but a longer piece needs a variety of different harmonisations
for the same melody, and related melodies with the same
harmonic structure and a number of similar techniques. We
have not solved the difficult global structure problem but our
system is a starting point on which we can build a structure

Applications NMR-2008

91

that is hierarchical over time scales; we have a mechanism
for building syntactically correct sentences, but these need
to be built into paragraphs and chapters, as it were.

Our results seem to suggest that a real-time composition
system is possible, which would open up the possibility for
performance and improvisation. Profiling of the current sys-
tem has indicated that some conceptually simple tasks, like
parsing, are taking a disproportionate fraction of the run-
time, and some engineering would assist in removing these
problems. Clearly this is one of a number of system-like
issues that need to be addressed. Also, the availability of
a parallel answer set solver that implements clause learning
would help in building this type of application.

An obvious extension to the composition of duets is to
expand this to three and four parts, by adding inner voices,
with their different rules.

Answer Set Synthesis
What we are doing is not answer set programming in the
classical sense because we are not solving a problem per se;
we are generating an arbitrary representative instance. Al-
though this may seem like a subtle shift of emphasis, it has a
number of interesting implications. Firstly for applications,
this takes NMR into ‘procedural synthesis’ of all kinds of
things — by describing what objects are, we can construct
arbitrary examples. This has some interesting possibilities
for computer games and virtual worlds where ‘randomly
generated’ content is needed. This content has to be non-
repetitive; increasingly it needs to be complex and structured
(and have some fixed, hard properties — such as there must
be a way out of the maze). In the case of things such as
background music, high ‘artistic merit’ is not as important
as consistent and non-repetitive.

This also raises questions for solver and language design.
Most solvers are calibrated towards ‘hard’ problems, that
are large (but tractable search spaces) with relatively few
answer sets. However programs from this answer set syn-
thesis school of application tend to have huge (intractable)
search spaces with a very large number of answer sets. Thus
the emphasis in solving shifts towards getting to an answer
quickly (assuming that many paths lead to solutions) rather
than trying to reduce and cover the search space efficiently.
This is likely to influence the choice of branching heuris-
tic. There are also a number of other interesting areas which
come to mind. A metric for distance between answer sets
would allow a solver to generate “things similar to the last
solution”, “things similar to the last solution but not too sim-
ilar”, “things as different as possible to the last solution”,
etc. Also there is a need for schemes for handling prefer-
ences (“it’s not impossible to have A and B, but it should be
avoided if possible”) and probabilities (“there is a choice be-
tween A and B but in 90% of solutions it should be A”), par-
ticularly as part of the solving process, rather than needing to
compute multiple solutions and then refining or optimising
the choice between them, again probably in the heuristic.

Conclusion
In this paper, we have presented ANTON, the first algorith-
mic composing system that is capable of both melodic and

harmonic composition. By using answer set programming
as our modelling language for the technical rules that under-
pin music composition, we have obtained a highly flexible,
extremely compact and efficient system. As all the rules are
simultaneously available the system enables us to explore
the rules themselves, to evaluate pieces for rule compliance,
to complete partial systems, such as producing a melody
consonant with a given harmony structure, as well as, more
adventurously, to create new melodies.

We have demonstrated that current ASP systems can be
used to generate aesthetically acceptable music within an
appropriate time frame.

The development of ANTON opens up interesting re-
search ideas both in the musicological direction and in
declarative programming in general and more specifically
answer set programming. In particular we have identified a
number of ways in which ASP solvers could be extended so
as to widen their application.

References
Anders, T. 2007. Composing Music by Composing Rules:
Design and Usage of a Generic Music Constraint System.
Ph.D. Dissertation, Queen’s University, Belfast, Depart-
ment of Music.
Baral, C., and Gelfond, M. 2000. Reasoning agents in
dynamic domains. In Logic-based artificial intelligence,
257–279. Kluwer Academic Publishers.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press,
1st edition.
Bel, B. 1998. Migrating Musical Concepts: An Overview
of the Bol Processor. Computer Music Journal 22(2):56–
64.
Boenn, G. 2007. Composing Rhythms Based Upon Farey
Sequences. In Digital Music Research Network Confer-
ence.
Boulanger, R., ed. 2000. The Csound Book: Tutorials in
Software Synthesis and Sound Design. MIT Press.
Brain, M., and De Vos, M. 2003. Implementing OCLP
as a Front End for Answer Set Solvers: From Theory to
Practice. In Proceedings of Answer Set Programming: Ad-
vances in Theory and Implementation (ASP’03). Ceur-WS.
Brain, M.; Crick, T.; De Vos, M.; and Fitch, J. 2006.
TOAST: Applying Answer Set Programming to Superopti-
misation. In International Conference on Logic Program-
ming, LNCS. Springer.
Brain, M.; Gebser, M.; Pührer, J.; Schaub, T.; Tompits,
H.; and Woltran, S. 2007. “That is illogical captain!” –
The Debugging Support Tool spock for Answer-Set Pro-
grams: System Description. In Proceedings of the Work-
shop on Software Engineering for Answer Set Program-
ming (SEA’07), 71–85.
Brain, M.; De Vos, M.; and Satoh, K. 2007. Smodels-ie :
Improving the Cache Utilisation of Smodels. In Costantini,
S., and Watson, R., eds., Proceedings of the 4th Workshop
on Answer Set Programming, 309–314.

Applications NMR-2008

92

Brothwell, A., and ffitch, J. 2008. An Automatic Blues
Band. In Barknecht, F., and Rumori, M., eds., 6th Inter-
national Linux Audio Conference, 12–17. Kunsthochscule
für Medien Köln: LAC2008.
Buccafurri, F., and Caminiti, G. 2005. A Social Semantics
for Multi-agent Systems. In 8th International Conference
of Logic Programming and Nonmonotonic Reasoning, vol-
ume 3662 of LNCS, 317–329. Springer.
Chuang, J. 1995. Mozart’s Musikalisches Würfelspiel.
http://sunsite.univie.ac.at/Mozart/
dice/.
Cliffe, O.; De Vos, M.; and Padget, J. 2006. Specifying and
Analysing Agent-based Social Institutions using Answer
Set Programming. In Boissier, O.; Padget, J.; Dignum,
V.; Lindemann, G.; Matson, E.; Ossowski, S.; Sichman,
J.; and Vazquez-Salceda, J., eds., Selected revised papers
from the workshops on Agent, Norms and Institutions for
Regulated Multi-Agent Systems (ANIREM) and Organiza-
tions and Organization Oriented Programming (OOOP) at
AAMAS’05, volume 3913 of LNCS, 99–113. Springer Ver-
lag.
Cope, D. 2006. A Musical Learning Algorithm. Computer
Music Journal 28(3):12–27.
Ebcioğlu, K. 1986. An Expert System for Harmonization of
Chorales in the Style of J.S. Bach. Ph.D. Dissertation, State
University of New York, Buffalo, Department of Computer
Science.
Eiter, T.; Leone, N.; Mateis, C.; Pfeifer, G.; and Scarcello,
F. 1998. The KR System dlv: Progress Report, Compar-
isons and Benchmarks. In KR’98: Principles of Knowledge
Representation and Reasoning. San Francisco, California:
Morgan Kaufmann. 406–417.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres, A.
2002. The DLVK Planning System. In Flesca, S.; Greco,
S.; Leone, N.; and Ianni, G., eds., European Conference,
JELIA 2002, volume 2424 of LNAI, 541–544. Cosenza,
Italy: Springer Verlag.
Endrich, A. 2008. Building Musical Relationships. In
preparation. seen in manuscript.
Erdem, E.; Lifschitz, V.; Nakhleh, L.; and Ringe, D. 2003.
Reconstructing the Evolutionary History of Indo-European
Languages Using Answer Set Programming. In Dahl, V.,
and Wadler, P., eds., PADL, volume 2562 of LNCS, 160–
176. Springer.
Fux, J. 1965, orig 1725. The Study of Counterpoint from
Johann Joseph Fux’s Gradus ad Parnassum. W.W. Norton.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. Conflict-Driven Answer Set Solving. In Proceeding
of IJCAI07, 386–392.
Gebser, M.; Schaub, T.; and Thiele, S. 2007. GrinGo: A
New Grounder for Answer Set Programming. In Baral, C.;
Brewka, G.; and Schlipf, J. S., eds., LPNMR, volume 4483
of LNCS, 266–271. Springer.
Grell, S.; Schaub, T.; and Selbig, J. 2006. Modelling bi-
ological networks by action languages via answer set pro-
gramming. In Etalle, S., and Truszczyński, M., eds., Pro-

ceedings of the International Conference on Logic Pro-
gramming (ICLP’06), volume 4079 of LNCS, 285–299.
Springer-Verlag.
Konczak, K. 2006. Voting Theory in Answer Set Pro-
gramming. In Fink, M.; Tompits, H.; and Woltran, S., eds.,
Proceedings of the Twentieth Workshop on Logic Program-
ming (WLP’06), number INFSYS RR-1843-06-02 in Tech-
nical Report Series, 45–53. Technische Universität Wien.
Leach, J. L. 1999. Algorithmic Composition and Musical
Form. Ph.D. Dissertation, University of Bath, School of
Mathematical Sciences.
Lierler, Y., and Maratea, M. 2004. Cmodels-2: SAT-based
Answer Set Solver Enhanced to Non-tight Programs. In
Proceedings of the 7th International Conference on Logic
Programming and Nonmonotonic Reasoning, volume 2923
of LNCS, 346–350. Springer.
Lifschitz, V. 2002. Answer set programming and plan
generation. J. of Artificial Intelligence 138(1-2):39–54.
Nienhuys, H.-W., and Nieuwenhuizen, J. 2003. Lilypond,
A System For Automated Music Engraving. In Proceed-
ings of the XIV Colloquium on Musical Informatics.
Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.;
and Barry, M. 2001. A A-Prolog Decision Support
System for the Space Shuttle. In Answer Set Program-
ming: Towards Efficient and Scalable Knowledge Repre-
senation and Reasoning. Stanford (Palo Alto), California,
US: American Association for Artificial Intelligence Press.
Polleres, A. 2005. Semantic Web Languages and Semantic
Web Services as Application Areas for Answer Set Pro-
gramming. In Nonmonotonic Reasoning, Answer Set Pro-
gramming and Constraints. IBFI.
Rohrmeier, M. 2006. Towards modelling harmonic move-
ment in music: Analysing properties and dynamic aspects
of pc set sequences in Bach’s chorales. Technical Report
DCRR-004, Darwin College, University of Cambridge.
Ruffolo, M.; Leone, N.; Manna, M.; Saccà, D.; and Za-
vatto, A. 2005. Exploiting ASP for Semantic Information
Extraction. In De Vos, M., and Provetti, A., eds., Answer
Set Programming, volume 142 of CEUR Workshop Pro-
ceedings. CEUR-WS.org.
Syrjänen, T., and Niemelä, I. 2001. The Smodels Sys-
tem. In Proceedings of the 6th International Conference
on Logic Programming and Nonmonotonic Reasoning.
Syrjänen, T. 2000. Lparse 1.0 User’s Manual. Helsinki
University of Technology.
Thakar, M. 1990. Counterpoint. New Haven.
Ward, J., and Schlipf, S. 2004. Answer Set Programming
with Clause Learning. In Proceedings of the 7th Interna-
tional Conference on Logic Programming and Nonmono-
tonic Reasoning, volume 2923 of LNCS. Springer.
Xenakis, I. 1992. Formalized Music. Stuyvesant, NY,
USA: Bloomington Press.

Applications NMR-2008

93

Tools for Representing and Reasoning about Biological Models in
Action LanguageC

Steve Dworschakand Torsten Grote and Arne K önig and Torsten Schaub and Philippe Veber
Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, D-14482 Potsdam, Germany

Abstract

We elaborate upon the usage of action languageC for repre-
senting and reasoning about biological models. First, we pro-
vide a simple extension ofC allowing for variables and show
its usefulness in modeling biochemical reactions according
to the well-known model of BIOCHAM. Second, we show
how the biological action description languageCTAID can be
mapped ontoC. Finally, we describe a toolbox for using ac-
tion languages, including among them, a compiler mapping
C and CTAID to logic programs under answer sets seman-
tics along with a web-service integrating different front- and
back-ends for addressing dynamical systems by means of ac-
tion description languages via answer set programming. This
is accompanied by an empirical evaluation with existing sys-
tems for processing action description languages.

Introduction
We elaborate uponaction languages(Gelfond and Lifs-
chitz 1998) for qualitative modeling of biological networks.
Action languages are formal models used for reasoning
about the effects of actions, while being close to natu-
ral language. Central to this approach to formalizing ac-
tions is the concept of a transition system, which consti-
tutes its semantic underpinning. The first action language
for representing and reasoning about biological networks
was introduced in (Tran and Baral 2004; Baral et al. 2004;
Tran 2006) and further extended in (Dworschak et al. 2007)
leading to action languageCTAID .

In what follows, we extend the overall approach in sev-
eral ways while centering it on the classical action language
C (Giunchiglia and Lifschitz 1998). To begin with, we pro-
vide a simple extension ofC allowing for variables and show
its usefulness in modeling biochemical reactions according
to the well-known model of BIOCHAM. Similar to the ap-
proach taken in thedlvk system based on action language
K (Eiter et al. 2003a), we delegate the treatment of vari-
ables to Answer Set Programming (ASP; (Baral 2003)) in
order to be able to use ASP grounders for variable instan-
tiation. Second, we provide a translation mapping the bio-
logically motivated action description languageCTAID onto
C and give a result fixing the formal correspondence. This
allows us to further developCTAID within a broader and
well-established framework, avoiding further dedicated im-
plementations. Moreover, it providesCTAID with access

to further implementations ofC, like CCalc (Giunchiglia
et al. 2004) orCPlan (Castellini, Giunchiglia, and Tac-
chella 2003) (even though they cannot harness existing ASP
grounders for variable treatment). Finally, we describe a
toolbox for using action languages, including among them,
a compiler mappingC andCTAID to logic programs under
answer sets semantics along with a web-service integrating
different front- and back-ends for addressing dynamical sys-
tems by means of action description languages via answer
set programming. Our tools are designed for an easy and
flexible integration with existing open source tools via pipes,
in particular, ASP grounders and solvers, as well as further
front- and back-ends. This is accompanied by an empirical
evaluation with existing systems for processing action de-
scription languages.

Background
Answer Set Programming. Our language is built from a
setF of functionsymbols (including the natural numbers), a
setV of variablesymbols, and a setP of predicatesymbols.
The setT of termsis the smallest set containingV and all
expressions of the formf(t1, . . . , tn), wheref ∈ F andti ∈
T for 1 ≤ i ≤ n. The setA of atomscontains expressions
of the form p(t1, . . . , tn), wherep ∈ P and ti ∈ T for
1 ≤ i ≤ n. A literal is an atoma or its negation¬a; both
can be preceded by default negation, denoted asnot a and
not ¬a, respectively. Fora ∈ A, we leta = ¬a and¬a = a.
A logic programoverA is a set ofrulesof the form

a← b1, . . . , bm,not cm+1, . . . ,not cn (1)

wherea, bi, cj are literals overA for 0 < i ≤ m < j ≤ n.
For a rule r as in (1), lethead(r) = a, body(r)+ =
{b1, . . . , bm}, andbody(r)− = {cm+1, . . . , cn}. Given an
expressione ∈ T ∪ A, let var (e) denote the set of all vari-
ables occurring ine; analogously,var (r) gives all variables
in rule r. The ground instantiationof a programP is de-
fined asgrd(P) = {rθ | r ∈ P, θ : var(r) → U}, where
U = {t ∈ T | var(t) = ∅}; analogously,grd(A) =
{a ∈ A | var (a) = ∅} is the set of all ground atoms. A
setX ⊆ grd(A) ∪ grd(A) is a (consistent)answer setof a
programP overA, if X is the⊆-smallest model of

{head(r)← body(r)+ | r ∈ grd(P), body(r)− ∩X = ∅} .

Applications NMR-2008

94

Action LanguageC. Action languages usefluentsto de-
scribe the states of a system andactionsinfluence the values
of fluents. InC (andCTAID), static lawsdescribe properties
between fluents that need to be satisfied in every state of the
system.Dynamic lawsdescribe the effects of actions, that
is, how the system evolves when actions are executed.

More formally, we consideraction languageC (Gel-
fond and Lifschitz 1998) over a Booleanaction signature
〈B,F,A〉, whereB is the set{f, t} of truth values,F is a
set offluent names, andA is a set ofaction names. In C, an
action descriptionDC over a signature〈B,F,A〉 consists of
static laws, such as

(caused ϕ if ψ) (2)

anddynamic lawsof the form

(caused ϕ if ψ after ω), (3)

whereϕ and ψ are propositional combinations of fluent
names andω is a propositional combination of fluent and
action names. Every action descriptionDC induces a unique
transition systemTC(DC) = 〈S, V,R〉, whereS is a set of
states, V is a function determining fluents values in state
s, andR is a relation containing all possible transitions be-
tween states. Atrajectorys0, A1, s1, . . . , sn−1, An, sn in a
transition system〈S, V,R〉 is a sequence of sets of actions
Ai ⊆ A and statessi ∈ S where(si−1, Ai, si) ∈ R for
0 ≤ i ≤ n. Intuitively, a trajectory represents one possi-
ble history (or simply path) within a transition system. In
(Gelfond and Lifschitz 1998), several syntactic extensions
are defined. For instance, the rule(ω may cause ϕ if ψ)
is a shorthand for(caused ϕ if ϕ after ψ ∧ ω). Similarly,
(inertial ϕ) is a shorthand for(caused ϕ if ϕ after ϕ).
We refer to (Gelfond and Lifschitz 1998) for more detailed
definitions.

Besides an action description language, bothC andCTAID

define aquery language. We implementedR (Gelfond
and Lifschitz 1998) as the query language forC and the
query mechanisms described in (Dworschak et al. 2007) for
CTAID . In this paper, we focus only on the transition sys-
tems and our toolbox realizing the different encodings, so
we omit a detailed description of query languages and the
different reasoning modes. In the biological setting, queries
combined with reasoning modes like planning and expla-
nation are used to answer biological questions. For exam-
ple, one is able to determine whether certain states can be
reached in molecular networks, queries about existence of
paths can be answered and it is possible to do high-level ex-
periment planning.

Encoding Action LanguageC
For implementing action languageC, we build upon the
translation to ASP described in (Lifschitz and Turner 1999).
Let DC be an action description over signature〈B,F,A〉.
We requireDC to bedefinite, that is, the headsϕ of laws
(caused ϕ if ψ) and(caused ϕ if ψ after ω) are fluent
literals (or the constant⊥). Furthermore,ψ is a conjunc-
tion of fluent literals andω is a conjunction of fluent and/or
action literals. In what follows, we denoteϕ by f , ψ by
g1 ∧ . . . ∧ gm andω by l1 ∧ . . . ∧ ln.

We define a logic programlpn(DC) whose answer sets
correspond to trajectories of lengthn in the transition system
induced byDC. lpn(DC) contains atomsa(t) andf(t) for
eacha ∈ A, f ∈ F andt = 0, . . . , n. For each static law
(caused f if g1 ∧ . . . ∧ gm) in DC , lpn(DC) contains for
eacht = 0, . . . , n a rule

f(t)← not g1(t), . . . ,not gm(t) .

Analogously, each dynamic law (caused f if g1 ∧ . . . ∧
gm after lm+1 ∧ . . . ∧ ln) in DC , adds tolpn(DC) for each
t = 0, . . . , n− 1 a rule

f(t+1)← not g1(t+ 1), . . . ,not gm(t+ 1), lm+1(t), . . . , ln(t) .

Furthermore,lpn(DC) contains

¬a(t) ← not a(t), ¬e(0) ← not e(0),
a(t) ← not ¬a(t), e(0) ← not ¬e(0)

for eacha ∈ A, t = 0, . . . , n and eache ∈ F .
Our implementation of the encoding allows to use vari-

ables when writing rules inC. This is done by delegating
the grounding of variables to the grounding process of the
underlying logic program. To this end, we start by extend-
ing the syntax ofC by a trailing keywordwhere followed
by domain predicates for binding the variables occurring in
the actual causal laws. To be precise, the causal laws in (2)
and (3) are extended as follows:

(caused ϕ if ψ where δ) (4)

(caused ϕ if ψ after ω where δ) (5)

whereϕ, ψ, andω are as defined in (2) and (3), except for
containing variables, andδ is a combination of non-fluent
and non-action atoms such thatvar (ϕ)∪var (ψ)∪var (ω) ⊆
var(δ). Intuitively, δ captures static domain information
used for binding the variables inϕ, ψ, ω. The concept of a
definite action description generalizes in the obvious way,
restrictingδ to conjunctions of non-fluent and non-action
atoms. Now, given such a definite action descriptionDC, the
variable-tolerating extension oflpn(DC) is obtained from
lpn(DC) by extending the body of each resulting logic pro-
gramming rule byd1, . . . , do whenever the causal law con-
tains the conditionwhere d1 ∧ · · · ∧ do.

Let us illustrate the practical impact of this pragmatic
extension by modeling the Biochemical Abstract Machine
(BIOCHAM; (Fages, Sollman, and Chabrier-Rivier 2004;
Chabrier-Rivier et al. 2004)), used to build biochemical sys-
tems. The biological background is indeed very easy. A
modeled scenario consists of different chemical reactions
that specify relations between different compounds.Reac-
tants are compounds that need to be present that a reac-
tion can take place andproductsare compounds that will
be present after a reaction took place. One can model this
scenario usingC with the following rules. At first, our syn-
tax requires to specify a preamble where actions and fluents
are defined:

<action> occurs(R) <where> reaction(R).
<fluent> present(P) <where> compound(P).

Applications NMR-2008

95

Strings enclosed in<> are keywords, variables start with
uppercase letters and lines end with a dot. That is, for
every termt belonging to the extension of the predicate
reaction, we introduce the actionsoccurs(t). For
every termt belonging to the extension of the predicate
compound, we introduce the fluentspresent(t).

We now can define the dynamics of the system:

<caused> present(P)
<after> occurs(R)
<where> reaction(R), compound(P),

product(P,R).

<caused> <false>
<after> occurs(R),-present(P)
<where> reaction(R),compound(P),

reactant(P,R).

occurs(R) <may cause> -present(P)
<where> reaction(R),compound(P),

reactant(P,R).

<inertial> present(P) <where> compound(P).
<inertial> -present(P) <where> compound(P).

The first rule states that a compoundP is present after a reac-
tionR occurred producingP. The second rule is a constraint
enforcing all compoundsP to be present if a reaction oc-
curs whereP is a reactant of. Note that negation is denoted
as- and<false> as well as<true> are keywords for
the two Boolean constants. The third rule models a certain
non-determinism: The semantics of BIOCHAM defines that
after a reaction occurs, it remains unclear whether the reac-
tants are still present or not. The reason is that the semantics
abstract from concentrations of compounds. That is, we con-
sider two cases: In one transition we assume that the com-
poundP was fully consumed, modeled as-present(P).
The other transition is thatP remains to be present. The
last two rules state that compounds that are not affected by
reactions do not change their value1.

Let us briefly detail how variables are passed through the
encoding proposed in (Lifschitz and Turner 1999). For this,
consider the first rule of the BIOCHAM example:

<caused> present(P)
<after> occurs(R)
<where> reaction(R), compound(P),

product(P,R).

It is translated to the following logic rule:

present_fluent(P,T+1)
:- occurs_action(R,T),

reaction(R),compound(P),product(P,R),
time(T).

Apart from the time-parameterT, we attach variableP to the
fluentpresent andR to the actionoccurs. The domain
information given in the<where> statement is then passed
as grounding information to the logic program rule.

1These rules represents the frame axiom: Compounds that are
not consumed remain present, absent compounds that where not
produced remain absent.

The last pending issue is to specify the domains:

compound(a). compound(b).
reaction(r1).
reactant(a,r1). product(b,r1).

The database is represented as a logic program. It can be
seen as static knowledge attached to the modeled dynamic
behavior of the system. In most cases, the database only
contains facts. In the example, we are now able to reason
about a scenario with two compounds and one reaction. An
encoding of a simple version of the biological textbook ex-
ample of theMitogen-activated protein kinase (MAPK)2 in-
cluding 23 products and 30 reactions, yields a problem in-
stance containing 147 facts. One of the advantages using
variables is that the system can be easily enhanced by ex-
tending the database, that is, without touching the specifica-
tion of the dynamics.

Mapping CTAID to C
As with C, anaction descriptionin CTAID is given relative
to an action signature〈B,F,A〉. The major conceptual dif-
ference betweenCTAID and C is that the latter implicitly
treats actions to be exogenous. That is, all actions might oc-
cur at every time-point as long as their effects do not lead
to a contradiction. For biological purposes, this behavior
is inappropriate. Unlike this,CTAID allows for specifying
explicit conditions when actions are executed or not. For
example, usingCTAID ’s triggering rule, we can describe
properties when (re)actions must be executed immediately.
Furthermore,CTAID offers the following constructs:Inhi-
bition rulesexpress when actions must not be executed and
allowance rulesexpress that actions might occur, but are not
forced to. Adefaultexpresses that a fluent takes a certain
value unless it is known otherwise.No-concurrency con-
straintsallow to control the parallel execution of actions. In
a more formal way, an action description inCTAID contains
expressions of the following form:

(a causes ϕ if ψ)

(ϕ if ψ)

(ϕ triggers a)

(ϕ allows a)

(ϕ inhibits a)

(noconcurrency ω)

(default f),

wherea is an action andω is either an action or a con-
junction of action literals,ϕ andψ are conjunctions of fluent
literals andf is a fluent literal. We refer to (Dworschak et
al. 2007) for a more detailed description ofCTAID .

We now describe our translation ofCTAID into C. To this
end, we need to extend the action signature to accommo-
date some control information. To be precise, we add the
fluentsih(a), tr(a), ex(a), al(a) for each action namea.
Intuitively, these fluents signal properties reflecting the be-
havior of inhibition, triggering, and allowance rules. With

2http://en.wikipedia.org/wiki/MAPK

Applications NMR-2008

96

them, we can define the mapping of rules inCTAID to rules
in C as follows.

Definition 1 LetDCTAID
be an action description inCTAID

over action signature〈B,F,A〉. The corresponding action
descriptionDC in C over action signature

〈B,F ∪
⋃

a∈A
{ih(a), tr(a), ex(a), al(a)}, A〉 (6)

is defined as follows:

1. For each action namea ∈ A, action descriptionDC con-
tains the static laws

(caused ¬ih(a) if ¬ih(a)),

(caused ¬tr(a) if ¬tr(a)),

(caused ¬ex(a) if ¬ex(a)), and

(caused ¬al(a) if ¬al(a)).

2. For each dynamic law(a causes ϕ if ψ) in DCTAID
,

whereϕ = f1 ∧ . . . ∧ fm,DC contains the laws

(caused fi if ⊤ after ψ ∧ a)

for eachfi where1 ≤ i ≤ m.
3. For each static law(ϕ if ψ) in DCTAID

,
whereϕ = f1 ∧ . . . ∧ fm,DC contains the laws

(caused fi if ψ)

for eachfi where1 ≤ i ≤ m.
4. For each allowance rule(ϕ allows a) inDCTAID

,DC con-
tains

(caused al(a) if ϕ) and

(caused ⊥ if ⊤ after ¬al(a) ∧ a).

5. For each triggering rule(ϕ triggers a) in DCTAID
, DC

contains

(caused tr(a) if ϕ),

(caused ex(a) if ⊤ after a),

(caused ⊥ if ¬ex(a) after tr(a) ∧ ¬ih(a)) and

(caused ⊥ if ex(a) after ¬tr(a)).

6. For each inhibition rule(ϕ inhibits a) in DCTAID
, DC

contains

(caused ih(a) if ϕ) and

(caused ⊥ if ⊤ after ih(a) ∧ a).

7. For each constraint(noconcurrency ω) in DCTAID
,DC

contains
(caused ⊥ if ⊤ after ω).

8. For each default rule(default f) inDCTAID
,DC contains

(caused f if f).

9. For eachf ∈ F , such that(default f) 6∈ DCTAID
, DC

contains

(caused f if f after f) and

(caused ¬f if ¬f after ¬f).

The symbols⊤ and⊥ denote the Boolean constants fort
andf in B.

The rules in 1. state thatih(a), tr(a), ex(a), andal(a)
are set to befalse by default. As described in 4.–6., they
are only settrue when certain properties hold. There is a
direct correspondence between static and dynamic rules in
CTAID andC (cf. 2. and 3.) except the fact that conjunc-
tions in heads are split in order to get a definite action de-
scription. An allowance rule is expressed using a static rule
settingal(a) and a dynamic rule that can be viewed as a
constraint eliminating transitions where actiona occurred
while al(a) was false (cf. 4.). Rules given in 5. express
triggering rules: whenever a trigger is applicable,tr(a) is
set and every execution of an actiona causesex(a) to be
true. The second dynamic rule eliminates transitions where
the conditions for a triggering rule were satisfied buta was
not executed, that is,ex(a) is false. SinceCTAID gives in-
hibition rules priority over triggering rules, the constraint is
only applicable if¬ih(a) is satisfied. The third dynamic rule
eliminates transitions wherea is executed without having an
applicable trigger. Inhibition rules are mapped in the same
way as allowance rules (cf. 6.). No-concurrency constraints
and defaults inCTAID have a direct correspondence to rules
in C (cf. 7. and 8.). Given that fluents are implicitly inertial3

in CTAID but not inC, for each fluent there is a dynamic rule
in DC that expresses inertial behavior (cf. 9.).

We can show the following result:

Theorem 1 LetDCTAID
be an action description inCTAID

over action signature〈B,F,A〉 and letDC be the corre-
sponding action description inC over the action signature
in (6) generated fromDCTAID

using the mapping in Defini-
tion 1.

Then, each trajectory in the transition systemTC(DC) (as
defined in (Gelfond and Lifschitz 1998)), corresponds to a
unique trajectory in the transition system induced byDCTAID

(as defined in (Dworschak et al. 2007)) and vice versa.

Problem descriptions inCTAID can now be dealt with
the general-purpose languageC. That is, we do not need
a rather complicated (re)definition of semantics in order to
describe transition systems having a biological background
usingCTAID . It can now be seen as another layer of interface
on top of the action description languageC.

In the following sections we describe how the different
encodings can be used in our toolchain and how they per-
form compared to other implementations.

The BioPlan System
Our approach to representing and reasoning about biologi-
cal models is as follows: at first, the biological model needs
to be specified in the action description language ofC or
CTAID . This description is compiled into a logic program as
described above and subsequently dealt with using an ASP
system, usually composed of a grounder and a solver. Once
the logic program is solved, the answers of the solver need to

3That is, fluents that are neither defaults nor affected directly or
indirectly by dynamic rules do not change their value in a transi-
tion.

Applications NMR-2008

97

Accessible via web-interface

C/CTAID

Interfaces

Firefox Editor

?

-

Compiler

al2asp

ASP

SolverGrounder

gringo clasp

6 -

Backends

Textual Output

as2sth

Statistics

gnuplot

6

Figure 1: Overview of our system architecture

be put back in correspondence to the original problem spec-
ification. Finally, the obtained data needs to be interpreted
in a biologically meaningful way by a human expert. An
overview of our system is given in Figure 1.

Interfaces
To begin with, we have a closer look at the interfaces to our
system. Our system is able to handle the discussed action
descriptions inC andCTAID . For action descriptions inC,
one has to write down the rules in an editor, as shown in the
BIOCHAM example. This is of course also possible using
CTAID . SinceCTAID has a much more biological orientation
thanC, we offer another interface forCTAID that is more in-
tuitive for users having a purely biological background: A
graphical interface that was built as a Firefox browser ex-
tension. It allows for building rules as a graph whose nodes
(fluents and actions) and edges (causal relationships) corre-
spond to the underlying expressions ofCTAID . An example
is shown in Figure 2. Since this paper has more a technical
orientation, we are not detailing a biological example using
CTAID .

Compiler
Once the description is done, it is passed to our compiler
al2asp. As mentioned before, this program is able to
handle the described languages and their different encodings
that need to be given via command line options:
al2asp -l c directC to ASP encoding
al2asp -l c taid directCTAID to ASP encoding
al2asp -l c taid2c CTAID to C encoding

While the two first commands yield a logic program4, the
last one outputs rules inC.5

al2asp is implemented inC++ and freely available
at (BioASP Tools). Notably,al2asp relies on scanner
and parser generatorsflex andbison++, making it easily
amenable to language extensions.

4The directCTAID to ASP encoding implements a slightly mod-
ified encoding according to the one given in (Dworschak et al.
2007) that is not discussed in this paper.

5One can just reuse the tool to complete the encoding:al2asp
-l c taid2c <file.desc> | al2asp -l c.

An al2asp generated logic program containing vari-
ables appears incomplete. The additional logic program pro-
viding the binding information must be concatenated to the
output ofal2asp in order to get the resulting logic pro-
gram that can be grounded. This ground program expresses
the transition system described by the original description in
C.

ASP Tools
Reconsidering Figure 1, the resulting logic program is dealt
with by an ASP system, consisting of a grounder and a
solver component. As discussed, the logical representation
of an action description may contain object variables that are
passed on to the grounder. Our grounder,gringo (Gebser,
Schaub, and Thiele 2007)6, systematically replaces all vari-
ables by ground terms, while aiming at producing a com-
pact propositional program. The resulting program is then
passed to the ASP solver,clasp (Gebser et al. 2007b;
2007a)7, which computes the stable models (see (Baral
2003) for details) of the program. Each such model rep-
resents a valid trajectory in the transition system induced by
the original action description.

Backends
The action description for the BIOCHAM system combined
with the underlying domain induces the transition system
given in Figure 3.

Given that fluent and action names are changed in the log-
ical encoding (ie. an additional time parameter appears as
additional argument) as well as the obtained solutions ap-
pear in an unsorted way, the output of an ASP system must
be transformed in a more readable and problem-oriented for-
mat. To this end, we offer different possibilities to present
the output using the programas2sth: One possibility is
a textual representation of the trajectories that gives a de-
tailed overview of actions and states involved in a given
solution. To illustrate this, recall our BIOCHAM example
and consider the answer sets representing all 8 trajectories
of length 1. Our interface displays them as follows.

6http://www.cs.uni-potsdam.de/gringo
7http://www.cs.uni-potsdam.de/clasp

Applications NMR-2008

98

Figure 2: Screenshot of our graphical user interface forCTAID . Problem descriptions can be modeled in a graphical way
by combining nodes with different arrows that correspond to rules inCTAID . The textual representation is generated by the
program in order to process it with our compiler or to directly send the description to our web-based service.

ANSWER 1
0 A + occurs(r1)
0 F + present(a)
0 F - present(b)
1 F - present(a)
1 F + present(b)
ANSWER 2
...
ANSWER 8
0 F + present(a)
0 F - present(b)
1 F + present(a)
1 F - present(b)
SUMMARY
models: 8

The first column denotes the timestep, the second one the
type of the logic literal (action or fluent), the third one the
value of the literal (true or false) and the last one the original
name as used in the action description.

This method becomes inapplicable when the number of
solutions increases, which is the case in most of the biologi-
cal applications. To this end, another possibility is to gener-

atecsv output that can be processed with external programs
like database systems, statistical tools, etc.

A third possibility is to use our built ingnuplot inter-
face: We currently provide some statistical post-processing
counting fluent values and actions at each time step in all tra-
jectories. For example, let us assume that a fluentf appears
to be true at a certain timestept in all trajectories. When pre-
senting all occurrences of fluents (or actions) in a graphical
way, one can easily see that fluentf is essential for having
solutions.8 Although our simple BIOCHAM example fo-
cuses on the transition system (having no queries at all), the
graphical representation can already be useful to get an idea.
Reconsider the transition system given in Figure 3. Figure 4
is the graphical representation of all 128 trajectories having
a length of 6. It is easy to see that there is a direct cor-
respondence between the presence of compounda andb.
While a tends to decrease,b tends to increase.9 It is nearly

8This can also be seen as a cautious reasoning mode.
9Indeed, this outcome seems to be trivial since this is exactly

the relation between the two compounds that was modeled before.
But on larger scale examples it is possible to identify relations that

Applications NMR-2008

99

a b ¬a b

a ¬b ¬a¬b

r1,
{}

{} {}

{}

r1 r1

r1

Figure 3: Transition system of the BIOCHAM example.
a and b are shorthands for fluentspresent(a) and
present(b),r1 is a shorthand for actionoccurs(r1).
{} denotes the empty action, that is, no action is executed
in a transition labeled like this. Note that the loop at node
{a, b} describes two transitions.

impossible to gain such information by only looking at the
calculated trajectories.

Toolchain Access
The whole reasoning tool is accessible in two ways. The first
possibility is to download the tools described in Figure 1
from (BioASP Tools) and to run them on a local machine.
We are building up a graphical tool wrapping the underly-
ing command-line execution of the described tools. By now,
given that the tools are available on a Linux machine, a user
may start the different programs via pipelining by hand. For
example, if we have a our BIOCHAM description inC given
in a file namedbiocham.alc, the domain specification
given in a file namedbiocham.stat and want to display
the chart as given in Figure 4 using gnuplot, you invoke on
your local system the following commands:

$UNIX> al2asp -l c biocham.alc | \
cat - biocham.stat | \
gringo -c n=5 | clasp 0 | \
as2sth --csv | \
asplot present(a) present(b) \
&& gnuplot plot.plt

The second possibility is more user-friendly. To this end,
we built up a web-based interface at (BioASP Tools), where
the described tools are fully encapsulated as a server appli-
cation. In this way, one can use the whole reasoning sys-
tem without installing local applications. The mentioned
Firefox-Plugin to describeCTAID problems in a graphical
way is able to access the web interface directly by send-
ing the underlying action description to the web server. We
added several examples on our web interface, where one can
see how descriptions and queries to the system look like and
how a user is able to access the different backends.

Benchmarks
In this section, our core tools (al2asp, gringo and
clasp) will be empirically compared to the systems

were not given explicitly in the action description.

Figure 4: Graphical representation of all trajectories of the
BIOCHAM example having length 6. Y-Axis denotes the
percentage of true propositions (resp. the presence of com-
pounds), and X-Axis denotes the timesteps. The two dif-
ferent bars represent the compoundsa andb. For exam-
ple, consider the second bar at timestep 1: it denotes that
present(b) is true at timestep 1 in 50% out of all answer
sets.

CCalc (Giunchiglia et al. 2004) anddlvk (Eiter et al.
2003a) since all of them use input languages based onC.
Unfortunately, the systemCPlan (Castellini, Giunchiglia,
and Tacchella 2003) is no longer maintained and the authors
provided a windows executable only which was not usable
in our benchmark setting.

The benchmarks were carried out on an Intel Core2Duo
6400 with 2.13GHz and 2 GB RAM running a 32-bit
version of Ubuntu GNU/Linux. For our tests, we used
al2asp v0.4,gringo v1.0.0 andclasp v1.0.5 with de-
fault settings.CCalc was used in version 2.0 and among
the provided SAT solversgrasp was used. Although
grasp does not provide the current state of the art SAT solv-
ing techniques, it was the only solver in our tests that pro-
duced all solutions. Regardingdlvk, we used release 2007-
10-11 with default settings.

Concerning pure planning problems, one is often inter-
ested in finding only the first solution. This issue is different
in our approach, in most of the biological applications there
is a need to consider all solutions. For example, recall Figure
4 where we need to process all answer sets in order to do sta-
tistical analysis. Biological queries to the system often lead
to a large number of answers that need to be processed by
biologists afterwards. Due to biologist’s additional knowl-
egde, some of the answers might make no sense in the real
biological background and sometimes they want to figure
out subsets satisfying certain constraints they did not know
before. To this end, we consider both cases when comparing
the different systems, finding one, and finding all solutions.

Unfortunately, our current biological applications get
solved too fast to make systems compareable. Being not

Applications NMR-2008

100

No. Instance length bioplan CCalc dlv
k

1 l1nc 10 0.10 0.14 17.81

2 l2nc 15 0.20 0.19 —

3 l3nc 20 2.12 0.26 —

4 l4nc 25 — 0.39 —

5 l1c 1 8.63 — 2.43

6 l2c 1 17.39 — 5.24

7 l3c 1 26.41 — 8.09

8 l4c 1 35.43 — 10.56

Average Time (Sum Timeouts) 12.90 (3) 0.24 (12) 8.82 (9)

Average Penalized Time 86.29 300.12 230.51

Table 2: Lights out experiments computing one solution

generic10, a comparison of different systems using our bio-
logical problems is not yet feasible. We use crafted artificial
problems instead to compare performance of systems.

The first problem is the well knownblocks worldwhich
consists of a table and several blocks. Given an initial state
of piled up blocks, the planning system’s task is to find out
how to rearrange the blocks such that they are piled up in
a predefined order. We used thedlvkencoding and prob-
lem instances from (Eiter et al. 2003b). Due to advances in
computer hardware, these old instances are solved too fast to
get reasonable runtimes. That is why we came up with five
additional instances (p6 - p10, see Table 1) which are still
demanding for the systems running on today’s hardware.

Our second benchmark suitelights out11 is very similar to
thebomb in the toiletproblem: All of a variable number of
light bulbs has to be switched off. In every state, every light
can either be switched on or off. The problem comes in two
flavors, either with concurrent execution of actions allowed
or with concurrency disabled. The optimal12 plan length in
the latter case is equal to the number of light bulbs. It is
easy to see that this problem leads ton! many optimal plans
regardingn bulbs that only differ in the sequence of switch-
ing off bulbs. Due to this behavior, we omit computing all
solutions as in the blocks world setting.

The results of theblocks worldbenchmarks are listed in
Table 1 and thelights outresults are in Table 2. For every
problem instance, we measured the time in seconds of three
separate solving processes and computed the average which
is shown in each systems column. A dash indicates that a
system was unable to compute a solution in less than 600
seconds. The column labeledlengthdenotes the length of
the shortest possible plan(s) for the problem instance which
is passed as a parameter to the different systems. The last
row in the tables lists penalized average times. In contrast
to normal average times, the penalized ones take timeouts
into account. Although the system might have taken much
longer to find a solution, the penalized average is computed
as if the system found a solution after 600 seconds.

10Unlike most artificial problems, we do not have parameters
controlling the size of problem instances.

11Idea taken from General Gameplaying Competition 2008.
12Optimal means that there is at least one solution at boundt,

but no solution can at boundt − 1.

Results show that compared to the other systems our sys-
tem performs quite well and appears to be robust. In the
blocks worldexample, it was the only system that could enu-
merate all solutions in reasonable time. As mentioned, this
issue is especially valuable because our biological applica-
tions often need all solutions to be computed. But also when
only one solution has to be found, our system outperformed
bothCCalc anddlvk. CCalc’s performance was compara-
ble to ours until the problems became too hard in benchmark
number 9.

Regarding thelights outproblem,CCalc performs sur-
prisingly well when concurrent execution of actions is not
allowed. It computes a solution almost instantly, whiledlvk

has difficulties even in the smallest instance. Although be-
ing quite fast with a few light bulbs, the runtime of our sys-
tem rises rapidly as soon as more than twenty bulbs are in-
volved. When allowing concurrency in this example,dlvk

is the fastest system.CCalc seems to have great problems
with the huge13 number of light bulbs which was used in the
problem instances and is unable to find a solution in any in-
stance. Our system performs quite well in this benchmark,
though not as well asdlvk. In general, the benchmarks show
that our system is more than competitive compared to other
planning systems.

Discussion
Although we motivate (and apply) our approach in a biolog-
ical setting, many features are readily applicable to repre-
senting and reasoning about dynamical systems in general.
Centering our approach onC has several benefits. First,
C is a rich and well-studied formalism. Second, it con-
stitutes a mainstream implementation line for action lan-
guages. To this end, we provided a translation of the bi-
ologically motivated action languageCTAID to C and de-
vise several tools for dealing with action descriptions inC
(andCTAID). Among them, we implemented the compiler
al2asp allowing for translating action descriptions inC
(andCTAID) to logic programs under answer sets seman-
tics. This approach is similar to the one taken bydlvk for
processing action languageK. Both approaches exploit the
grounding and solving capacities of ASP, offering uniform
(and thus instance independent) problem encodings and easy
variable handling. Our approach is supported by a variety of
pragmatic yet indispensable tools for addressing real world
applications. Compared to other planning systems, we are
able to compete with, and sometimes even outperform cur-
rent systems. Finally, our tools (as well as their source code)
and the benchmark problems are freely available at (BioASP
Tools).

References
Baral, C.; Chancellor, K.; Tran, N.; Tran, N.; Joy, A.; and
Berens, M. 2004. A knowledge based approach for rep-
resenting and reasoning about signaling networks. InPro-
ceedings of the Twelfth International Conference on Intelli-

1325.000 bulbs in instancel1c up until100.000 bulbs in instance
l4c.

Applications NMR-2008

101

No. Instance length bioplan - one CCalc - one dlv
k - one bioplan - all CCalc - all dlv

k - all

1 p01 05 0.31 0.51 0.06 0.32 0.51 0.06

2 p02 06 0.22 0.35 0.05 0.22 0.42 0.05

3 p03 08 1.19 1.21 1.21 1.21 8.23 4.57

4 p04 09 3.89 3.88 1.17 4.05 5.74 15.19

5 p05 11 5.04 5.39 2.92 4.92 11.24 22.98

6 p06 13 4.21 3.88 21.15 4.78 408.23 —

7 p07 14 8.76 7.08 42.04 11.81 364.22 —

8 p08 16 36.88 14.28 — 133.49 — —

9 p09 16 39.39 129.15 — 41.75 — —

10 p10 17 66.68 — — 85.83 — —

Average Time (Sum Timeouts) 17.49 (0) 19.47 (3) 10.54 (9) 20.61 (0) 122.87 (9) 9.58 (15)

Average Penalized Time 17.49 77.52 187.38 20.61 266.01 304.79

Table 1: Blocks world experiments computing one and all solutions

gent Systems for Molecular Biology/Third European Con-
ference on Computational Biology (ISMB’04/ECCB’04),
15–22.
Baral, C.; Brewka, G.; and Schlipf, J., eds. 2007.Pro-
ceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07),
volume 4483 ofLecture Notes in Artificial Intelligence.
Springer-Verlag.
Baral, C. 2003.Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
BioASP Tools. http://www.cs.uni-potsdam.
de/wv/bioasp.
Castellini, C.; Giunchiglia, E.; and Tacchella, A. 2003. Sat-
based planning in complex domains: Concurrency, con-
straints and nondeterminism.Artificial Intelligence147(1-
2):85–117.
Chabrier-Rivier, N.; Chiaverini, M.; Danos, V.; Fages, F.;
and Schächter, V. 2004. Modeling and querying biomolec-
ular interaction networks.Theor. Comput. Sci.325(1):25–
44.
Dworschak, S.; Grell, S.; Nikiforova, V.; Schaub, T.; and
Selbig, J. 2007. Modeling biological networks by action
languages via answer set programming.Constraints Jour-
nal. To appear.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres, A.
2003a. A logic programming approach to knowledge-state
planning.Artificial Intelligence144(1-2):157–211.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres,
A. 2003b. A logic programming approach to knowledge-
state planning, ii: The dlvk system.Artificial Intelligence
144(1-2):157–211.
Fages, F.; Sollman, S.; and Chabrier-Rivier, N. 2004. Mod-
elling and querying interaction networks in the biochemical
abstract machine biocham.Journal of Biological Physics
and Chemistry4:64–73.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007a. clasp: A conflict-driven answer set solver. In Baral
et al. (2007), 260–265.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub,
T. 2007b. Conflict-driven answer set solving. In

Veloso, M., ed.,Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence (IJCAI’07),
386–392. AAAI Press/The MIT Press. Available at
http://www.ijcai.org/papers07/contents.php.
Gebser, M.; Schaub, T.; and Thiele, S. 2007. GrinGo: A
new grounder for answer set programming. In Baral et al.
(2007), 266–271.
Gelfond, M., and Lifschitz, V. 1998. Action languages.
Electronic Transactions on Artificial Intelligence3(6):193–
210.
Giunchiglia, E., and Lifschitz, V. 1998. An action lan-
guage based on causal explanation: Preliminary report. In
Proceedings of the National Conference on Artificial Intel-
ligence (AAAI), 623–630.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2004. Nonmonotonic causal theories.Artificial
Intelligence153(1-2):49–104.
Lifschitz, V., and Turner, H. 1999. Representing transi-
tion systems by logic programs. In Gelfond, M.; Leone,
N.; and Pfeifer, G., eds.,Proceedings of the Fifth Interna-
tional Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’99), volume 1730 ofLecture
Notes in Artificial Intelligence, 92–106. Springer-Verlag.
Tran, N., and Baral, C. 2004. Reasoning about triggered
actions in AnsProlog and its application to molecular inter-
actions in cells. In Dubois, D.; Welty, C.; and Williams,
M., eds.,Proceedings of the Ninth International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR’04), 554–564. AAAI Press.
Tran, N. 2006.Reasoning and hypothesing about signaling
networks. Ph.D. Dissertation, Arizona State University.

Applications NMR-2008

102

Special Session on Argument, Dialogue and Decision

Since the work of John Pollock, Ronald Loui and others in the eighties, argumentation has proven to be
successful in nonmonotonic logic. In the early nineties Dung and others showed that argumentation is
also very suitable as a general framework for relating different nonmonotonic logics. Finally, in recent
years argument-based logics have been used to facilitate reasoning and communication in multi-agent
systems.

Argumentation can be studied on its own, but it also has interesting relations with other topics, such as
dialogue and decision. For instance, argumentation is an essential component of such phenomena as fact
finding investigations, computer supported collaborative work, negotiation, legal procedures, and online
dispute mediation. However, only recently have researchers begun to explore the use of argumentation
in these contexts.

Session Chairs

Yannis Dimopoulos, University of Cyprus, Cyprus
Gerard Vreeswijk, Universiteit Utrecht, The Netherlands

Program Committee

Leila Amgoud, Université Paul Sabatier, France
Jamal Bentahar, Concordia University, Canada
Gerhard Brewka, Universität Leipzig, Germany
Paul Dunne, University of Liverpool, UK
Michael Maher, National ICT, Australia
Pavlos Moraitis, Université Paris Descartes, France
Tim Norman, University of Aberdeen, UK
Simon Parsons, Brooklyn College CUNY, USA
Henry Prakken, Utrecht University and University of Groningen, The Netherlands
Iyad Rahwan, British University in Dubai, UAE; University of Edinburgh, UK
Guillermo Simari, Universidad Nacional del Sur, Argentina
Francesca Toni, Imperial College London, UK

NMR-2008

103

Towards Enforcement of Confidentiality in Agent Interactions

Joachim Biskup and Gabriele Kern-Isberner and Matthias Thimm
Faculty of Computer Science

Technische Universität Dortmund, Germany

Abstract

A lot of work has been done on interactions and nego-
tiations in multi agent systems. In this paper, we intro-
duce new aspects of security into this scenario by deal-
ing with confidentiality preservation. As we assume the
agents to be capable of reasoning, we also have to take
inferences of conveyed information into account. This
problem has been addressed bycontrolled query evalu-
ation (CQE) in the security community. We present a
conceptual integration of CQE techniques into aBDI in-
spired agent model that allows agents to explicitly han-
dle confidentiality preserving concerns when interact-
ing with other agents in a multi agent system. We il-
lustrate our ideas on an example of distributed meeting
scheduling.

Introduction
Negotiation between agents involves exchange of informa-
tion and persuasion in order to reach an agreement. In this
paper we are concerned with security aspects and especially
with confidentiality preservation aspects of negotiations be-
tween agents in multi agent systems which provide rich ap-
plication scenarios for problems dealing with confidentiality
and availability of information. There is much work on for-
malizing negotiation scenarios using multi agent systems,
see for example (Kraus 2001; Karunatillakeet al. 2005;
Rahwan, Sonenberg, & Dignum 2003; Booth 2002). But
very little work has been done in security aspects for multi
agent systems, most of this work handling secure commu-
nication and authentication problems, e g. (Winslett 2003;
Poslad, Charlton, & Calisti 2003; Sierraet al. 2003;
Boulosaet al. 2006). We are addressing the problem of con-
fidentiality preservation under the inference problem (Farkas
& Jajodia 2002) in the sense of (Biskup & Bonatti 2004;
Biskup & Weibert 2007a; 2007b) for multi agent systems.
When agents interact with other agents in a multi agent sys-
tem, pieces of information can be exchanged and by using
inference techniques, more information can be obtained. An
agent might not be fully aware of the conclusions a second
agent can infer from the given information, and thus the sec-
ond agent may be able to derive information he is not al-
lowed to know.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Controlled query evaluation(Biskup & Bonatti 2004;
Biskup & Weibert 2007a; 2007b) is a formal approach to
determine the conclusions an agent can infer if provided
with a specific information and to check whether the dis-
closure of said information violates confidentiality. We will
present a declarative concept of confidentiality preserving
negotiations in multi agent scenarios that is based on quite a
general type of negotiation acts. Apart from defining which
agent conveys to which other agent which piece of informa-
tion, we also include interactions concerning justifications
that often prove essential for reaching a negotiation goal.
We link our ideas to standard agent models by extending
theBDI model (Weiss 1999) by components for controlled
query evaluation, thus taking first steps towards an opera-
tional framework. Our approach is illustrated by the prob-
lem of distributed meeting scheduling (Garrido, Brena, &
Sycara 1996).

This paper is structured as follows: First, we give a brief
overview on controlled query evaluation. Then we identify
the problems of confidentiality preservation in agent interac-
tions and introduce our running example. We continue with
a formal description of our framework and sketch an agent
model that summarizes the formal functionalities in an ab-
stract manner afterwards. We conclude with comparisons to
other works and an outlook on future work.

Controlled Query Evaluation
Controlled Query Evaluation(CQE) is an approach for
preservation of confidential information in interactions be-
tween an information system and its users (Sichermann, de
Jonge, & van de Riet 1983; Bonatti, Kraus, & Subrahmanian
1995). Each user of the system might have some restrictions
on the information he is allowed to obtain from the sys-
tem. Ordinary database systems restrict permissions using
static access rights, but thus suffer from the inference prob-
lem (Farkas & Jajodia 2002). A malicious user can outsmart
such a system by exploiting the inference problem, given he
has some knowledge about the structure of the data. This
is illustrated in the following example, which is taken from
(Biskupet al. 2007).

Example 1. Suppose a database stores information about
employees and their salary but must not disseminate infor-
mation about the specific salary of a specific employee. If

Argument, Dialogue and Decision NMR-2008

104

using static access rights the two pieces of information ”Al-
ice is a manager“ and ”a manager’s salary is $ 50,00“ might
appear harmless; but if one combines them they imply the
information ”Alice’s salary is $ 50,000“ which should be
kept secret.

CQE is a dynamic approach to overcome the inference prob-
lem by dynamically checking the user’s knowledge to ensure
that he can not derive information he is not allowed to know.
By distorting answers to queries by either lying or refusing
to answer, it has been shown that confidential information
can be kept secret in many different scenarios (Biskup &
Bonatti 2004; Biskup & Weibert 2007b). What follows is a
brief introduction toCQE terminology that will suffice for
our needs.

Confidentiality Policies
Let L be a propositional language. AlthoughL is propo-
sitional we will also use predicates and rule schemata and
assume thatL is properly grounded. When considering sub-
sets ofL we assume these subsets to be consistent when not
mentioned otherwise. For a setS we denote withP(S) the
power set ofS.

Let φ ⊆ L be a finite set of sentences andα ∈ L a sen-
tence. Theevaluationof α in φ is eithertrue (iff α can be
inferred:φ ⊢ α), false (iff ¬α can be inferred:φ ⊢ ¬α) or
unknown (else). We consider queries addressing the infor-
mation systemφ, that consist only of a sentenceα ∈ L and
awaits an answer of the formtrue, false or unknown with
the obvious meaning.

At all times the system keeps a log of the user’s knowl-
edge, denotedlog, that consists of the assumed a priori
knowledge of the user and is updated with every answer the
system gives to that particular user. The actual controlled
query evaluation consists of two steps: first acensorchecks
whether the actual evaluation of a query, or a possible con-
clusion of it, together with the user’s assumed knowledge
violate confidentiality, and then, if necessary, amodificator
distorts the answer somehow so that the distorted answer can
be given to the user without violating confidentiality.

To represent a confidentiality policy we use the notion of
confidentiality targets. A confidentiality target consists of
the sentence to be protected and a set of truth values the user
should not infer.

Definition 1 (Confidentiality target, confidentiality pol-
icy). A confidentiality targetis a pair 〈ψ, V 〉 with ψ ∈

L and V ⊂ {true, false, unknown} and ∅ 6= V 6=
{true, false, unknown}. A confidentiality policyis a fi-
nite set of confidentiality targets.

Example 2. The confidentiality target〈a, {true, false}〉
defines that the user is not allowed to infer thata is either
true or false (whether this coincides with the information
system’s actual evaluation ofa or not).

The specification ofCQE does not make sense, when the
user already knows a confidential piece of information in
his a priori knowledgelog

0
. So it is reasonable to as-

sume that the user’s a priori knowledge does not already vi-
olate confidentiality in the first place. This condition and

all other possible restrictions on the use of the system are
formalized as a preconditionprecond. In general, for a
finite set of sentencesφ ⊆ L, the user’s assumed a pri-
ori knowledgelog

0
and a confidentiality policypolicy, the

tuple (φ, log
0
, policy) has tosatisfya given precondition

precond in order to use the system.

Preserving confidentiality
The approach ofCQE is described via aCQE-function that
basically maps a sequence of queries to a sequence of an-
swers. As a side effect, the function updates the maintained
user log appropriately with the newly acquired knowledge
of the user. The formal definition ofconfidentiality preserv-
ing is expressed in terms of an indistinguishability property,
roughly saying that for all reasonable situations, including
all possible sequences of queries, the user cannot distinguish
the actual information system instance from an alternative
instance in which the evaluation of a target-sentenceψ is
not in the corresponding target-setV .

A CQE-function can preserve confidentiality by either ly-
ing, i. e., providing a false answer to a query, or refusing to
answer at all, i. e., returning a special answer valuerefuse.
Nonetheless, such aCQE-function should also provide a
maximal availability towards the user, i. e., it should distort
as few answers as possible in order to preserve confidential-
ity.

Example 3. We continue Example 1. Suppose the user has
the a priori knowledgelog

0
= {m(X) ∧ mSalary(Y) ⇒

salary(X,Y)} which says that ”IfX is a manager and
a manager’s salary isY , then X ’s salary isY “. Fur-
thermore the information systemφ is given by φ =
{m(alice),mSalary(50000)}. The information about Al-
ice’s salary must be preserved inφ as given by the confiden-
tiality policy conf = {〈salary(alice, 50000), {true}〉}.
Suppose the user asksφ for the evaluation ofm(alice).
The information system can answer this query truthfully
with true as confidentiality is still preserved when this
information is disclosed. TheCQE method then adds
m(alice) to the user’s knowledge yieldinglog

1
= log

0
∪

{m(alice)}. When the user now asksφ about the evalua-
tion of mSalary(50000), the information system must not
answertrue because then the user can infer the confiden-
tial piece of informationsalary(alice, 50000). Thereforeφ
must lie by answering eitherfalse or unknown or refuse to
answer.

Operational frameworks forCQE have been investigated
in many different scenarios, see e. g. (Biskup & Weibert
2007b).

Confidentiality in Multi Agent Systems
AlthoughCQE is developed mostly for interactions between
an information system and its users, preservation of confi-
dentiality is needed in many different situations. Further-
more in the standardCQE scenarios confidentiality is only
the concern of the information system. When considering
multi agent systems, and especially multi agent systems per-
forming negotiation, preservation of confidentiality is a bi-
lateral concern of all agents. Although the agents are willing

Argument, Dialogue and Decision NMR-2008

105

to participate in a negotiation, they also might have secrets
they do not want to disclose to other agents participating in
that negotiation (Winslett 2003).

To illustrate our ideas of a confidentiality preserving multi
agent system, we use the problem of meeting scheduling as
an example (Garrido, Brena, & Sycara 1996). Although this
problem has already been studied under privacy issues in,
for example, (Wallace & Freuder 2002), we pursue a more
sophisticated approach. While in those papers the agents
attempt to preserve privacy and thus confidentiality by only
disseminating as little information as possible to achieve a
successful negotiation, we aim at implementing well-known
methods forCQE directly into the agent.

The problem of meeting scheduling as it fits to our pur-
poses is described as follows.1 We consider a set ofn differ-
ent agents, each of them has its own calendar of the week,
consisting of six days from Monday to Saturday, with eight
time slots of one hour each day. Every agent may already
have some time slots filled with appointments and some
agents may share the same appointments. The “negotiation
goal” of then agents is to determine a specific time slot for
a new appointment, such that every agent can attend to that
appointment. To reach this goal the agents can exchange in-
formation by querying other agents about their calendars and
other beliefs, give proposals for the new appointment, and
agree as well as reject given proposals. Agents may change
their beliefs over time and abandon other appointments in
order to reach an agreement. As negotiation involves persua-
sion and argumentation (Parsons, Sierra, & Jennings 1998;
Kraus, Nirkhe, & Sycara 1993; Karunatillakeet al. 2005)
we also enable the agents to ask for justifications for other
agents’ beliefs.

The confidentiality issues of an agent in this scenario
can be of different kinds. Suppose the agents are in an
employer/employee relationship, then the employee surely
wants to hide information about spare time activities or the
attendance to a strike commission. Furthermore the em-
ployer may also want to hide information about spare time
activities but also about the existence of a job interview for
a possible replacement for the said employee. In general we
consider the following four different privacy issues as rele-
vant for the problem of meeting scheduling: 1.) the date/time
of a specific appointment, 2.) whether a specific agents at-
tends a specific appointment or not, 3.) the existence of an
appointment at a specific date/time and 4.) whether an agent
is busy at a specific date/time or not.

The Declarative Concept
In this section we develop a declarative view of a multi
agent system with negotiating and confidentiality preserv-
ing agents. Our approach is inspired by the work of Kraus
in (Kraus 2001) but due to space restrictions we only give
a short overview of our ideas. Therefore we do not provide
a formal definition of the semantics, but give some exam-

1We simplify the problem of meeting scheduling in compari-
son to (Wallace & Freuder 2002) by omitting the locations of the
meetings.

ples to illustrate the integration of confidentiality preserva-
tion into an agent model.

Let A be a set of agent identifiersA = {A1, . . . , An}.
The agents negotiate on a givennegotiation goalNG which
is a subset ofL. NG specifies the search space for possible
solutions.

Example 4. SupposeL contains grounded predicates of
the form daytime(AP,D, TS, TE) where AP denotes
an appointment,D is the day andTS resp. TE is
the start resp. end time. Then the meaning of the in-
stancedaytime(staff meeting,monday , 12 , 13) is “The
staff meeting takes place on Monday between 12 and 13”.
Suppose a group of agents wants to negotiate about the day
and time for a project meeting with a duration of one hour.
Then the corresponding negotiation goalNG ⊆ L is

NG = {daytime(proj meeting,monday , 8 , 9),

daytime(proj meeting,monday , 9 , 10), . . .}

We abbreviate the above negotiation goal with
daytime(project meeting,X, Y, Y +1).

Given a negotiation goalNG the task of the agents is to de-
termine a sentenceng ∈ NG which can be mutually believed
or adopted to be believed (if a revision of the agent’s belief
is necessary) by all agents.

We continue our development by defining the possible
negotiation acts, i. e., the possible actions an agent can un-
dertake in this system. As in the previous section we only
consider simple yes/no/unknown-queries. But to enable the
agents to use refusal as possible distortion method for mod-
ification of confidentiality violating information, letΘ =
{true, false, unknown, refuse} be the set of possible an-
swers to a query. To define the possible actions of an agent
in our system, we define the setΨ of negotiation (speech)
acts as follows.

Definition 2 (Negotiation Acts). The set ofnegotiation acts
Ψ is the minimal set containing the following:

• For everyA ∈ A, B ⊆ A, α ∈ L and x ∈

{true, false, unknown} it is 〈A : inform B α x〉 ∈ Ψ
with the meaning:A tellsB that his evaluation ofα is x.

• For everyA,B ∈ A, α ∈ L it is 〈A : query B α〉 ∈ Ψ
with the meaning:A asksB for his evaluation ofα.

• For everyA,B ∈ A, α ∈ L, x ∈ Θ it is 〈A :
answer B α x〉 ∈ Ψ with the meaning: the answer of
A toB regardingα is x.

• For everyA ∈ A it is 〈A : abandon〉 ∈ Ψ with the mean-
ing: A abandons the current negotiation.

• For everyA ∈ A, α ∈ L it is 〈A : propose α〉 ∈ Ψ with
the meaning:A proposesα as a solution for the negotia-
tion.

• For everyA,B ∈ A, α ∈ L andx ∈ {true, false} it is
〈A : justify B α x〉 ∈ Ψ with the meaning:A asksB to
justify thatα has the evaluationx.

• For everyA,B ∈ A, α ∈ L,Φ ⊆ L and x ∈

{true, false} it is 〈A : justification B α x Φ〉 ∈ Ψ
with the meaning:A justifies thatα has the evaluationx
towardsB with Φ.

Argument, Dialogue and Decision NMR-2008

106

• It is ◦ ∈ Ψ which denotes the “empty” action.

We restrain our presentation of these negotiation acts on the
syntactic representation above and omit definitions of se-
mantics.

Let Σ denote the set of allnegotiation sequences, i. e., all
ordered tuples(τ1, . . . , τl) with τ1, . . . , τl ∈ Ψ, l ∈ N and
⋄ denoting the empty negotiation sequence. We use the ele-
ment operator∈ with the usual meaning also on negotiation
sequences, i. e., it isτ ∈ (τ1, . . . , τl) iff τ ∈ {τ1, . . . , τl}.

Negotiating agents
We assume a suitableBDI architecture (Weiss 1999) as a
basis for an agent. In this section we focus on modeling be-
liefs and confidentiality issues before proposing a complete
suitableBDI-inspired agent model in the next section.

An agent’s beliefs will comprise beliefs about himself and
the current state of the world as well as his view of the be-
liefs of other agents (Kraus, Nirkhe, & Sycara 1993). Fur-
thermore we explicitly represent an agent’s confidentiality
policy as a separate piece of the agent’s belief. As infor-
mation may be confidential differently with respect to the
different agents, we extend the definition of confidentiality
target appropriately.

Definition 3 (Personalized confidentiality target, personal-
ized confidentiality policy). A personalized confidential-
ity target is a triple 〈B,ψ, V 〉 with B ∈ A, ψ ∈ L

and V ⊂ {true, false, unknown} and ∅ 6= V 6=
{true, false, unknown}. A personalized confidentiality
policy is a finite set of personalized confidentiality targets.

The first component of a personalized confidentiality target
is the subject for this target, i. e., the agent from whom the
piece of information, thatψ has a truth-value inV , should
be kept secret.

Example 5. Let e1 andb1 be agents. Supposee1 wants to
hide fromb1 the information that he attends the appointment
scm (strike committee meeting). This can be represented as
the personalized confidentiality target

〈b1, attends(e1, scm), {true}〉

being part ofe1’s confidentiality policy.

Example 6. Let a1 and b1 be agents. Suppose agenta1

wants agentb1 to know nothing definite about the date and
time of an appointmentm1. This can be represented as (for
all possibleX,Y, Z)

〈b1, daytime(m1, X, Y, Z), {true, false}〉

being part ofa1’s confidentiality policy. , which is an abbre-
viation for

〈b1, daytime(m1,monday , 8, 9), {true, false}〉,

〈b1, daytime(m1,monday , 9, 10), {true, false}〉

. . .

Observe that the above personalized confidentiality target
also prohibits the disclosure of information that might not be
true in the current belief of an agent. Given adequate back-
ground constraints as “One appointment can not take place

at two different times” one of the above (sub-)targets neces-
sarily has to be false in the agent’s belief. But the above tar-
get states thatb1 must know nothing definite about the day
and time ofm1 and so he should also not believe a wrong
date for it.

When agents gather new information about other agents by
observing a negotiation act, they have to incorporate this
new information into their individual belief and their beliefs
about other agents, using belief operations as revision or up-
date (Krümpelmannet al. 2008). Thus the beliefs of an
agent have to be represented with respect to a given sequence
σ of hitherto executed negotiation acts.

Furthermore, we improve our underlying framework of
propositional logic in two ways.

First, as agents may have different beliefs about the world
and especially about the beliefs of other agents, the proposi-
tional languageL is not expressive enough to capture these
needs. We therefore extend the propositional languageL

by introducing a family of modal operatorsBX that read
“Agent X believes. . . ” as in epistemic logic with a stan-
dard Kripke-style semantics, yielding an extended language
LB with L ⊆ LB . We assume the standard properties for
BX and refer to (Faginet al. 2003) for a full axiomatiza-
tion. With the use of these modal operators, we can rep-
resent agents’ beliefs about other agents and the agents can
reason about other agents’ beliefs. Therefore, let|=B denote
an appropriate inference relation forLB.

Definition 4 (Beliefs). Thebeliefsbelσ

A
of an agentA after

the negotiation sequenceσ is a tuple

bel
σ

A
= (isσ

A
, confσ

A
, {viewσ

A,B1
, . . . , viewσ

A,Bm
})

with individual belief is
σ

A
⊆ LB, a person-

alized confidentiality policy conf
σ

A
, and views

view
σ

A,B1
, . . . , viewσ

A,Bm
⊆ L

B about agentsB1, . . . , Bm.
The a priori belief of the agent is denotedbel⋄

A
.

Second, given the current beliefsbelσ

A
and observing a ne-

gotiation actτ , or even participating in it, an agentA needs
to process the new information in order to derive the new be-
liefs belσ+τ

A
, where+ denotes concatenation. Such deriva-

tions might just apply propositional or modal logic infer-
ences, or suitable combinations of these with more sophis-
ticated and generally non-monotonic techniques like belief
operations, which are not the topic of this discussion, see
e. g. (Krümpelmannet al. 2008; Kern-Isberner 2001) for
more information.

As a simple example of deriving a new belief, let agent
A perform the negotiation act〈A : inform {C} α {true}〉

after the negotiation sequenceσ resulting in a negotiation
sequenceσ′. If C now derives by means of some appropriate
belief operations, thatA truly believes inα to be true, then
this negotiation act results inBAα ∈ view

σ
′

C,A
.

The above definition also offers the option to change the
personalized confidentiality policyconfσ

A
during a negotia-

tion process. In fact, to guarantee a successful negotiation it
might be necessary for the agent to abandon some of his per-
sonalized confidentiality targets in order to reach an agree-
ment as the abandonment of beliefs in general is a crucial

Argument, Dialogue and Decision NMR-2008

107

issue in non-trivial negotiations (Zhanget al. 2004). Nev-
ertheless the change of confidentiality policies is an open
research problem for ordinaryCQE as well, so assume that
conf

σ

A
= conf

⋄
A

for all σ andA.
To initiate a negotiation between several agents, the

agents have to accept a previously determined negotiation
goal as a precondition. Although the process of determining
an acceptable negotiation goal can itself be seen as a negoti-
ation we do not formalize this process but require the agents
to be willing to participate in a negotiation for a given nego-
tiation goal.

Definition 5 (Acceptance function). An acceptance func-
tionaccept

A
for an agentA is a functionaccept

A
: P(L) →

{true, false}.

An agentA accepts a subsetNG of L as a negotiation goal, if
accept

A
(NG) = true. We call a set of agentsA unwilling

if there is no negotiation goalNG such that for allA ∈ A
it holds accept

A
(NG) = true. We only consider sets of

agentsA that are willing to participate in a negotiation.
Once the negotiation goal is determined, the agents start

exchanging information using the possible negotiation acts
in Ψ. We introduce a simple function that determines the
best next action in the current situation (possibly the empty
action which is denoted by◦).

Definition 6 (Action function). An action functionactionA

for agentA is a functionactionA : Σ → Ψ.

After incorporating new information into their beliefs, the
agents’ attitudes towards proposals of other agents may
change. A negotiation ends when all agents agree to a given
proposalng in the solution space of the given negotiation
goalNG.

Definition 7 (Agreement function). An agreement function
agree

A
for an agentA is a functionagree

A
: Σ × L →

{true, false}.

An agentA agreesto a proposalng ∈ NG ⊆ L after ex-
changing some information during a sequenceσ, if it holds
agree

A
(σ, ng) = true. If agree

A
(σ, ng) = false, A re-

jectsthe proposal.
With the use of the above functions we can describe the

final product of a negotiation in our approach. We call a ne-
gotiation sequenceσ semi-complete, if it is intuitively well-
formed. That means for example, that every query and every
call for justification is answered, that there are no answers
without a query, and so on.

Definition 8 (Negotiation Product). A sentenceng is ane-
gotiation productwith respect toA, iff there exists a negoti-
ation goalNG, such that

1. ng ∈ NG,
2. for allA ∈ A it holdsaccept

A
(NG) = true and

3. there exists a semi-complete negotiation sequenceσ for A
andNG, such that

(a) 〈A : propose ng〉 ∈ σ for someA ∈ A and
(b) for allA ∈ A it holdsagree

A
(σ, ng) = true.

We say that a negotiation sequenceσ failed, if 〈A :
abandon〉 ∈ σ for aA ∈ A.

Preserving confidentiality in agent interactions
The confidentiality features are given on a declarative and
an operational layer.

On a declarative layer, a formal definition for “confiden-
tiality preserving” basically requires the following: If an
agent is not allowed to learn some piece of information, then
the agent’s particular view on the behaviour of the overall
system, applying for all possible initializations and all pos-
sible action sequences of the system, should never leave the
agent with a belief that the said piece of information holds.

On an operational layer a control component censors
each planned individual action for potential harmful conse-
quences and possibly modifies the plan appropriately. We
give some ideas on the operationalizing of the following
declarative concept in the next section.

Clearly, the basic challenges are to design a policy con-
trol, i. e., censors and modificators necessarily operating
action-wise, such that these mechanisms provably achieve
the confidentiality goal declaratively expressed referring to
all possible initializations and action sequences. These chal-
lenges are well-known to be highly demanding, see, e. g., the
rich work on noninterference (Goquen & Mesequer 1982;
Mantel 2001) or on cryptographic protocols (Goldreich
2004; 2001). Accordingly, in this paper we can only sketch
our general approach to provide a tentative solution for ne-
gotiation in multi agent systems.

Given a suitable definition of “indistinguishability of sit-
uations”, we propose the following (rough) generic outline
for the declarative layer (as above letprecond expresses that
confidentiality is not violated in the first place):
Definition 9 (Mutual confidentiality preservation). The
agentsA1, . . . , An mutually preserve confidentialityiff it
holds

for all negotiation goalsNG,
for all “actual situations”, i. e.,

for all initial a priori beliefsbel⋄
A1
, . . . , bel⋄

An
,

for all negotiation sequencesσ,
for all personalized confidentiality targets

〈Aj , ψ, V 〉 ∈ conf
σ

Ai
for somei, j

where(NG, {bel⋄
A1
, . . . , bel⋄

An
}) satisfiesprecond

there exists an “alternative situation”, i. e.,
there exist alternative a priori beliefs∆⋄

A1
, . . . ,∆⋄

An

such that(NG, {∆⋄
A1
, . . . ,∆⋄

An
})

satisfiesprecond, and
there exists an alternative negotiation sequenceσ′,

such that the following two conditions are met:
1. The actual situation as given above and the alter-

native situation as postulated are indistinguishable
from the point of view of agentAj .

2. From the point of view of agentAj in the alternative
situation, the evaluation ofψ is not inV .

Towards an Operational Framework
We now give some ideas on how to operationalize the declar-
ative layer from Definition 9 on confidentiality preservation

Argument, Dialogue and Decision NMR-2008

108

in agent interactions, i. e., we propose a method that an agent
can use to satisfy the above given security requirements for
some exemplary cases.

Censoring and modification
Whenever an agent is about to execute an action (which is
equivalent to the disclosure of information), he has to check
whether confidentiality will be preserved after having exe-
cuted said action. He does so by simulating the derivation
methods that would (presumably) be applied by the other
agents, when observing said action. Here we assume, that
an agent has complete knowledge about the deriving meth-
ods of other agents and about their background knowledge.
So the agent is capable of checking whether an action will
violate confidentiality at any time. This check is accom-
plished by the censor of the agent which prevents the agent
to disclose confidential information.

Definition 10 (Censor). The censor functionviolatesA
for an agentA is a function violatesA : Σ × Ψ →

{true, false}.

The censor evaluates the action under consideration regard-
ing the agent’s confidentiality policy. The definition of
violatesA depends on the type of action. Due to lack of space
we do not give a full definition ofviolatesA for all types of
actions but only some examples for necessary conditions for
violatesA to be true in order meet the declarative definition
of confidentiality preservation above (Definition 9). For an
actionτ = 〈A : inform {B} α true〉 and a sequenceσ it is
violatesA(σ, τ) = true if

∃ 〈B,ψ, {true}〉 ∈ conf
σ

A
: viewσ

A,B
∪ {α} |=B ψ

∨ ∃ 〈B,ψ, {false}〉 ∈ conf
σ

A
: viewσ

A,B
∪ {α} |=B

¬ψ

∨ . . .

The definition ofviolatesA is the same as above for the ac-
tion typeanswer. Interestingly, even a query can violate con-
fidentiality.

Example 7. The question “Are you busy on Wednesday at
12?” provides several pieces of information about the ques-
tioner. First the respondent can infer, that the questioner
does not know what the respondent does on Wednesday at
122 and second, that the questioner himself is assumably not
busy on Wednesday at 12.

Thus for an actionτ = 〈A : query C α〉 and a sequenceσ it
is violatesA(σ, τ) = true if

∃ 〈C,ψ, {true}〉 ∈ conf
σ

A
:

view
σ

A,C
∪ {¬BAα,¬BA¬α} |=B ψ

∨ ∃ 〈C,ψ, {false}〉 ∈ conf
σ

A
:

view
σ

A,C
∪ {¬BAα,¬BA¬α} |=B

¬ψ

∨ . . .

Remember thatBA is the modal operator that reads “Agent
A believes. . . ”.

2We assume that agents do only perform these queries if they
do not know the answer.

As mentioned before, agents can either use lying, re-
fusal or a combination of both to distort information, such
that confidentiality is preserved. When defining the censor
functionviolatesA, one has to consider the actual distortion
method to be used in order to actually preserve confidential-
ity. If the actual distortion method is lying, then the censor
must not only prohibit, that any individual confidential piece
of information is preserved, but the disjunction of all confi-
dential pieces of information (Bonatti, Kraus, & Subrahma-
nian 1995).

Example 8. Suppose thatconfσ

A
only consists of con-

fidentiality targets regarding agentB with the evalua-
tion “true” being the only confidential evaluation, i. e.
conf

σ

A
= {〈B,ψ1, {true}〉, . . . , 〈B,ψl, {true}〉}. If B

already knows, thatψ1 ∨ . . . ∨ ψl must be true, then the se-
quence of queries forψ1 toψl results in an inconsistent view
of the agent B’s beliefs, because the query for everyψi must
be answered withfalse.

Thus, for the confidentiality policy given in Example 8, an
actionτ = 〈A : inform {B} α true〉 and a sequenceσ it is
not sufficient to defineviolatesA(σ, τ) = true if

∃ i ∈ {1, . . . , l} : viewσ

A,B
∪ {α} |=B ψi

but necessary to defineviolatesA(σ, τ) = true if

view
σ

A,B
∪ {α} |=B ψ1 ∨ . . . ∨ ψl

Furthermore, if the actual distortion method is refusal, then
the censor must also take the possibility for meta inference
into account.

Example 9. Let “The evaluation ofα is true” be a confi-
dential piece of information. Suppose AgentB believes, that
α must be eithertrue or false, and that agentB is fully
aware of how agentA distorts answers to preserve confiden-
tiality. Assumeα is actuallyfalse for agentA and agent
B asksA about the truth-value ofα. ThenA truthfully re-
turns the answer “The evaluation ofα is false” as it does
not violate confidentiality. But suppose now, thatα is actu-
ally true for agentA andB asks the same question. Now
Amust refuse to answer, in order to preserve confidentiality.
But nowB can infer, thatα must betrue for A, because if
α would have beenfalse for A, thenA had not refused to
answer. To overcome this problemA must refuse to answer
the query aboutα in any case, so thatB can not distinguish
these two cases.

Suppose now thatviolatesA is properly defined and handles
the above mentioned security problems accordingly. Then
violatesA restrains the action functionactionA of an agent
A by ensuring the following constraint:

IF actionA(σ) = τ THEN violatesA(σ, τ) = false

As agreeing and rejecting a proposalng is equivalent to in-
forming all agents aboutng or ¬ng, the censorviolatesA

restrains the agreement functionagree
A

of an agentA by
ensuring the following constraint:

IF agree
A
(σ, α) = x THEN

violatesA(σ, 〈A : inform A α x〉) = false

Argument, Dialogue and Decision NMR-2008

109

If an action endangers confidentiality, the agent has to
choose another action to execute. In the case of actions of
the typeinform, abandon, query, justify this can be realized
by executing no action at all, as no other agent expects a
particularly action from the first agent. But if one or more
agents expect an action, either an answer to a query or a
justification for a belief, the agent must produce an alterna-
tive answer that preserves confidentiality. The same is true
for the agreement function of an agent, but as there are only
two values possible, preservation can only be achieved by
settingagree

A
(σ, α) = false if agree

A
(σ, α) = true vio-

lates confidentiality and vice versa3. In the case of answers
to queries, the agent has the additional options to answer
with unknown or to refuse to answer at all. Here standard
CQE methods can be used to determine the best alternative
answer (Biskup & Bonatti 2004; Biskup & Weibert 2007b).

Confidentiality preserving issues regarding disclosure of
justifications have not been investigated inCQE so far.
When the true justification for a belief violates confidential-
ity, many solutions to modify the answer are possible. The
agent can make up a new justification, present another one
that does not violate confidentiality or refuse to justify at all.
But as we only want to formalize a general framework for
enforcement of confidentiality between agents in this paper,
we do not discuss the matter here and leave it open for fu-
ture research. We conclude this section with an example that
illustrates the above definitions.

Example 10. We continue our example of meeting schedul-
ing. Suppose agente1 features the personalized confiden-
tiality policy conf

σ

e1
after a negotiation sequenceσ with

conf
σ

e1
= {〈b1, attends(e1, scm), {true}〉}

and does truly attend the strike committee meeting:
attends(e1, scm) ∈ is

σ

A
. Furthermoree1 has a pretty

good clue thatb1 knows that there is a strike committee
meeting being held on Wednesday at 12 to 13 and that if
someone is busy at that time, he assumably attends said
meeting. Soe1’s view of b1’s beliefs includes

view
σ

e1,b1
⊇ {daytime(scm ,wednesday , 12 , 13),

daytime(scm, X, Y, Z) ∧ busy(E,X, Y, Z)

⇒ attends(E, scm))}

Let 〈b1 : query e1 busy(e1,wednesday , 12 , 13)〉 be the
last action of the sequenceσ, i. e. b1 askse1 whether he
is busy on Wednesday at 12 to 13. Thene1 must not answer
this query truthfully, because we haveviolatesA(σ, 〈e1 :
answer b1 busy(e1,wednesday , 12 , 13) true〉) = true

due to

view
σ

e1,b1
∪ {busy(e1,wednesday , 12 , 13)} |=B

attends(e1, scm).

Therefore confidentiality is at risk ande1 must alter his an-
swer in order to preserve confidentiality. It is reasonable to
assume that an agent knows whether he is busy at a given

3We disregard the case that both values violate confidentiality.

time or not. Especiallye1 must assume thatb1 thinks so. So
it is for everyX,Y, Z:

Be1busy(e1, X, Y, Z)∨Be1¬busy(e1, X, Y, Z) ∈ view
σ

e1,b1

Due to this constrainte1 can not undertakeχ = 〈e1 :
answer b1 busy(e1,wednesday , 12 , 13) unknown〉 as next
action, because this would result in the sentence

¬Be1busy(e1, X, Y, Z) ∧ ¬Be1¬busy(e1, X, Y, Z)

to be incorporated intoviewσ

e1,b1
and therefore leads to an

inconsistency. So we haveviolatesA(σ, χ) = true, because
every confidential piece of information can be inferred from
view

σ

e1,b1
and the above piece of information. It follows that

e1 can only answerfalse or refuse to answer at all. Given
thate1 andb1 are in an employee/employer relationship, re-
fusal does not seem appropriate, so the answerfalse is the
best choice for agente1.

Confidentiality preservation for BDI agents

The above developed framework summarizes the essential
aspects of a negotiation in a formal but nonetheless mostly
declarative manner. A fully featured model of multi agent
negotiation needs among other things also to comprise de-
cision making processes (Kraus 2001) and belief operations
(Alchourrón, Gärdenfors, & Makinson 1985; Kern-Isberner
2001; Booth 2002; Krümpelmannet al. 2008). In this sec-
tion we only give a brief overview about the model of a ne-
gotiating and confidentiality preserving agent in an abstract
manner. Our agent model incorporates standardBDI archi-
tecture in order to represent a rational and autonomous agent
(Rao & Georgeff 1995; Weiss 1999).BDI stands for Beliefs,
Desires and Intentions and aBDI architecture separates the
logical model of an agent into these three areas.

Figure 1 shows an abstract view of our negotiating and
confidentiality preserving agent which incorporates both
BDI as well asCQE techniques. However, in our model
the beliefs component is explicitly divided into the beliefs of
the agent about the world and himself (is), the beliefs about
other agents (view) and a confidentiality policy (conf) as
developed in our formal framework in the previous section.
Furthermore the agent itself is divided into an active part
(upper half) and a reactive part (lower half) which coop-
erate in a parallel mode; information flow is depicted with
dashed lines, while action flow with solid lines. As in the
BDI model developed in (Weiss 1999) the agents continu-
ously evaluate the current state of the world, generate possi-
ble options for the next actions, and filter the best options
using their beliefs, some underlying preferences (not de-
picted in the figure), their desires (des) and their intentions
(int). Thereupon the best options are furthermore evalu-
ated in the sense of confidentiality preservation by an agent’s
policy control. If an intention can be selected to be per-
formed, the necessary actions are executed as depicted in
Figure 1. Newly acquired information must be incorporated
into the beliefs of the agent using revision and update tech-
niques (Krümpelmannet al. 2008). As in the active part,
also in the reactive part the preservation of confidentiality

Argument, Dialogue and Decision NMR-2008

110

Figure 1: A negotiating agent

is handled by the componentpolicy control, which pro-
hibits the dissemination of confidential information. When-
ever the agent needs to reply to a general query, a query
for justification or a proposal, thepolicy control checks
whether confidentiality is preserved and eventually alters the
intended reply.

Related Work
Frameworks for distributed negotiation have been investi-
gated very broadly so far, see (Rueda, Garcia, & Simari
2002; Kraus 2001; Karunatillakeet al. 2005; Rahwan, So-
nenberg, & Dignum 2003) for some examples. In this paper
we do not intend to neglect this huge body of work but to
add the new feature of confidentiality preservation. In fact
it should be investigated if confidentiality preservation can
be modularized and integrated into existing frameworks and
implementations for negotiation.

The example of meeting scheduling as a negotiation prob-
lem has been elaborated before (Garrido, Brena, & Sycara
1996; Wallace & Freuder 2002). In (Wallace & Freuder
2002) also security issues are raised. However, in contrast
to our approach, the preservation of confidentiality there is
handled in a very simple manner as the agents only aim at
disseminating as little information about themselves as nec-
essary but do not consider confidentiality targets. The dis-
semination of as less information as possible can also be
achieved in our approach with a suitable representation of
theBDI core of the agent. When restraining the agent to act
only passively in the environment so that he only reacts on
queries, he does not disclose any other information. How-
ever, in a negotiation scenario this is not a desirable fea-
ture for all agents as then no negotiation will succeed as no
action takes place; so a compromise between these two re-

quirements can be made by adjusting the preferences of the
agents accordingly. However, with the use of methods for
CQE the agents do have a better formal representation of
how to preserve their privacy. We therefore consider in our
framework a lot more confidentiality problems as in (Wal-
lace & Freuder 2002).

When talking about negotiation, another important as-
pect is argumentation. Argumentation theory has become
a very active field of research and many proposals exist
for introducing argumentative capabilities into negotiation
systems (Amgoud, Dimopolous, & Moraitis 2007; Bench-
Capon 2003; Rueda, Garcia, & Simari 2002; Karunatillake
et al. 2005; Thimm & Kern-Isberner 2008). In our frame-
work we provide a declarative support for handling argu-
mentation in a multi agent system with the action types
justify andjustification. However, future research includes
the evaluation of argumentation formalism for our frame-
work and especially regarding our perspective of privacy and
confidentiality issues.

Conclusion and future work
In this paper we presented a formal approach to adapt meth-
ods forCQE for the use in multi agent systems.CQE has
some history in scientific research but has not been adapted
for the use in multi agent systems so far. We are currently
developing a full framework for handling negotiation, belief
and confidentiality issues that bases on the approach pro-
posed in this paper. Although the work presented here is
just preliminary, the developed framework provides a solid
basis for future work. As mentioned above this includes
the exploration of argumentation formalism as well as an
adaption of techniques forCQE for more sophisticated ap-
proaches of knowledge representation. More precisely, the
fitness ofCQE techniques for non-monotonic representa-
tion formalism has not yet been investigated. As default
logics are common representation formalisms, an adaption
of CQE techniques for these is mandatory. Furthermore, as
persuasion (Bench-Capon 2003) is a fundamental aspect of
negotiation, agents must have the ability to abandon specific
confidentiality targets in order to reach agreements (Biskup
et al. 2007). Also the adaption of other agents’ confiden-
tiality targets must be taken into account in order to ensure
effective confidentiality handling.

Another main concern inCQE is the warranty of avail-
ability. This means that, although an agent must preserve
confidentiality, he is also committed to provide as much
useful information as possible. An agent can be equipped
with an availability policy as well as a confidentiality pol-
icy. In the employer/employee example the employee might
be committed to provide the employer with any information
concerning a specific project, even if this violates confiden-
tiality. The discrepancy between these two requirements has
to be handled by the agent appropriately.

References
Alchourrón, C. E.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet contraction and
revision functions.Journal of Symb. Logic50(2):510–530.

Argument, Dialogue and Decision NMR-2008

111

Amgoud, L.; Dimopolous, Y.; and Moraitis, P. 2007. A uni-
fied and general framework for argumentation-based nego-
tiation. InProceedings of the 6th International Joint Con-
ference on Autonomous Agents and Multi-Agents Systems,
AAMAS’2007.

Bench-Capon, T. 2003. Persuasion in practical argument
using value based argumentation frameworks.Journal of
Logic and Computation13(3):429–448.

Biskup, J., and Bonatti, P. 2004. Controlled query evalu-
ation for enforcing confidentiality in complete information
systems.Int. Journal of Information Security3(1):14–27.

Biskup, J., and Weibert, T. 2007a. Confidentiality policies
for controlled query evaluation. InProceedings of the 21th
IFIP WG11.3 Working Conference on Data and Applica-
tions Security, LNCS 4602, 1–13. Springer.

Biskup, J., and Weibert, T. 2007b. Keeping secrets in in-
complete databases.Int. Journal of Information Security
online first.

Biskup, J.; Burgard, D. M.; Weibert, T.; and Wiese, L.
2007. Inference control in logic databases as a constraint
satisfaction problem. InProc. of the Third International
Conference on Information Systems Security, 128–142.

Bonatti, P. A.; Kraus, S.; and Subrahmanian, V. S. 1995.
Foundations of secure deductive databases.IEEE Transac-
tions on Knowledge and Data Engineering7:406–422.

Booth, R. 2002. Social contraction and belief negotiation.
In Proc. of the 8th Conference on Principles of Knowledge
Representation and Reasoning, 375–384.

Boulosa, M.; Caib, Q.; Padgetc, J. A.; and Rushton, G.
2006. Using software agents to preserve individual health
data confidentiality in micro-scale geographical analyses.
Journal of Biomedical Informatics39(2):160–170.

Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 2003.
Reasoning about Knowledge. MIT Press.

Farkas, C., and Jajodia, S. 2002. The inference problem: a
survey.ACM SIGKDD Explorations Newsletter4:6–11.

Garrido, L.; Brena, R.; and Sycara, K. 1996. Cognitive
modeling and group adaptation in intelligent multi-agent
meeting scheduling. InFirst Iberoamerican Workshop on
DAI and MAS, 55–72.

Goldreich, O. 2001.Foundations of Cryptography I – Ba-
sic Tools. Cambridge University Press.

Goldreich, O. 2004.Foundations of Cryptography II –
Basic Applications. Cambridge University Press.

Goquen, J. A., and Mesequer, J. 1982. Security policies
and security models. InProc. IEEE Symposium on Security
and Privacy, 11–22.

Karunatillake, N. C.; Jennings, N. R.; Rahwan, I.; and Nor-
man, T. J. 2005. Argument-based negotiation in a social
context. InProc. of the 4th Int. joint conference on Au-
tonomous agents and multiagent systems, 1331–1332.

Kern-Isberner, G. 2001.Conditionals in nonmonotonic
reasoning and belief revision. Number 2087 in Lecture
Notes in Computer Science. Springer.

Kraus, S.; Nirkhe, M.; and Sycara, K. P. 1993. Reaching
agreements through argumentation: a logical model and
implementation. InProceedings of the 12th International
Workshop on Distributed Artificial Intelligence, 233–247.
Kraus, S. 2001. Automated negotiation and decision mak-
ing in multiagent environments. InSelected Tutorial Pa-
pers from the 9th ECCAI Advanced Course ACAI 2001 and
Agent Link’s 3rd European Agent Systems Summer School
on Multi-Agent Systems and Applications, 150–172.
Krümpelmann, P.; Thimm, M.; Ritterskamp, M.; and Kern-
Isberner, G. 2008. Belief operations for motivated BDI
agents. InProceedings of AAMAS’08.
Mantel, H. 2001. Preserving information flow properties
under refinement. InProc. IEEE Symposium on Security
and Privacy, 78–91.
Parsons, S.; Sierra, C.; and Jennings, N. 1998. Agents
that reason and negotiate by arguing.Journal of Logic and
Computation8(3):261–292.
Poslad, S.; Charlton, P.; and Calisti, M. 2003. Specify-
ing standard security mechanisms in multi-agent systems.
In Trust, Reputation, and Security: Theories and Practice,
volume 2631 ofLNCS. Springer. 227–237.
Rahwan, I.; Sonenberg, L.; and Dignum, F. 2003. Towards
interest-based negotiation. InProc. of the 2nd Int. Conf on
Autonomous Agents and Multi-Agent Systems, 773–780.
Rao, A. S., and Georgeff, M. P. 1995. BDI-agents: from
theory to practice. InProceedings of the First Intl. Confer-
ence on Multiagent Systems, 312–319.
Rueda, S. V.; Garcia, A.; and Simari, G. R. 2002.
Argument-based negotiation among bdi agents.Journal of
Computer Science and Technology2(7):1–8.
Sichermann, G. L.; de Jonge, W.; and van de Riet, R. P.
1983. Answering queries without revealing secrets.ACM
Transactions on Database Systems8:41–59.
Sierra, J. M.; Hernández, J. C.; Ponce, E.; and Ribagorda,
A. 2003. Protection of multiagent systems. InComputa-
tional Science and its Applications, 984–990.
Thimm, M., and Kern-Isberner, G. 2008. A distributed
argumentation framework using defeasible logic program-
ming. In Proc. of the 2nd International Conference on
Computational Models of Argument (COMMA’08).
Wallace, R., and Freuder, E. 2002. Constraint-based multi-
agent meeting scheduling: effects of agent heterogeneity
on performance and privacy loss. InProc. Workshop on
DCR, 176–182.
Weiss, G., ed. 1999.Multiagent Systems: A Modern Ap-
proach to Distributed Artificial Intelligence. MIT Press.
Winslett, M. 2003. An introduction to trust negotiation.
In iTrust 2003. Volume 2692 of Lecture Notes in Computer
Science. Springer-Verlag. 275–283.
Zhang, D.; Foo, N.; Meyer, T.; and Kwok, R. 2004. Ne-
gotiation as mutual belief revision. InProceedings of the
19th National Conference on Artificial Intelligence (AAAI-
04), 317–322.

Argument, Dialogue and Decision NMR-2008

112

Application of Possibilistic Stable Models to Decision Making

Jeremy Forth
Department of Computing
Imperial College London

London, UK
jforth@iweng.org

Abstract

This paper investigates the applicability of Possibilistic
Stable Models (PSM) for Logic Programming to deci-
sion making through the use of several extensions to the
PSM formalism that are chosen to enhance the realism
in the resulting decision making model. The selected
extensions to PSMs are unified through their incorpora-
tion into an argumentation framework designed to rep-
resent the combined formalism.
A PSM for a logic program is initially mapped to a
Possibilistic preferred extension of the argumentation
framework. This is first used as the basis for a particular
type of strength comparison between arguments where
the rule weights are interpreted as utilities. The frame-
work is then extended to a value-based system incorpo-
rating context dependent utilities, and uncertainty in its
domain knowledge. The strengths of arguments are as-
sessed using an aggregation function combining all the
significant magnitude information present in the argu-
ment. The concept of value projection rules are intro-
duced that serve to provide domain context sensitivity
for the mapping of circumstances onto values. Together
with the aggregation function, this constitutes a method
for realizing dynamic decision framing: the determina-
tion of the basis or grounds for the decision.
An example of some realism is identified from Psychol-
ogy literature based on an ethical dilemma familiar to
contemporary moral philosophers. This example is pre-
sented to the system using a standard axiomatization for
knowledge representation. Through the choice of a very
general aggregation function, the dilemma exemplifies
how the defined system capabilities may act together to
realize a meaningful decision function, which is later
independently characterized.

Introduction
Preference handing frameworks based on priorities between
rules have been defined previously in non-monotonic rea-
soning systems such as Default Logic e.g. (Reiter 1980;
Brewka 1994; Delgrande & Schaub 2000) and also An-
swer Set Programming (ASP) and Extended Logic Program-
ming e.g.(Gelfond & Lifschitz 1991; Zhang & Foo 1997;
Prakken & Sartor 1997) amongst others. These formalisms

Copyright © 2008, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

have proven their value in capturing various representation
problems in the study of commonsense reasoning, and more
specifically in qualitative decision making. A related ap-
proach for representing weighting between rules are for-
malisms based on Possibility Theory (Zadeh 1978). Typi-
cally this represents the degrees of a modality, usually un-
certainty or preference. In contrast with the qualitative pref-
erence representations mentioned above, Possibility Theory
usually adopts a numerical weighting measure that when
combined with a logical language yields a formalism with
sufficient expressive power to represent decision problems.
Possibilistic Logic (Dubois, Lang, & Prade 1994), an ex-
tension of classical logic, contains a measure representing
possibility (consistency) or necessity (certainty) information
occurring as part of a total ordering. The measure’s degree is
represented by weights attached to the formulas. In the ne-
cessity case, weights specifically represent the lower bounds
of necessity measures.

In order to augment the representation and reasoning
power of the logical language ASP to include numerical
weighting, (Nicolas, Garcia, & Stéphan 2005) extended the
notion of Stable Model Semantics (Gelfond & Lifschitz
1988) to Possibilistic Stable Models (PSM) for Logic Pro-
gramming. Benefits of this approach include good compu-
tational characteristics and appropriate semantics for repre-
senting conditional rules.1 Each stable model represents a
coherent possible world view, and is expressed as a minimal
set of atoms.)

The expressive power of PSMs (with some extensions)
provides an opportunity to reason about more complex deci-
sion domains than are possible using qualitative preferences.
In this paper we present and apply several such extensions to
decision domains, and extract the resulting decision model.

To form the extensions in a disciplined way, we make use
of an argumentation framework with the power to express all
the extensions we consider. Argumentation frameworks nor-
mally find application in the construction of plausible rea-
soners. The definition of plausibility can vary, but the one
used here is based on the selection of a set of mutually con-
sistent assumptions (normally facts or rules). The abstract

1Stable Model Semantics interprets Normal Logic Programs
(which possess default negation, and do not possess classical nega-
tion), including cases where the program’s clauses are not stratifi-
able.

Argument, Dialogue and Decision NMR-2008

113

argumentation system of (Dung 1995) may be used to cap-
ture various forms of non-monotonic reasoning by using a
layered abstraction design technique. We begin by defining
PSMs and showing that the PSMs are captured by a particu-
lar instantiation of the abstract argument framework.

Using the argumentation framework’s defined notion
of conflicting atoms and an argument being stronger than
another, the first decision mechanism is defined, given
an illustrative example, and characterized in terms of the
decision model realized. A PSM contains information not
fully exploited in the first model, therefore the system is
generalized through an assessment of arguments based on
an aggregated measure of argument strength. Through a
further enhancement to bipolar value based assessment,
and context dependent projection of consequences the
framework is shown to exhibit a powerful decision model,
able to represent a multi-criteria decision making domain
selected for realism from the Psychology decision literature.

Possibilistic Stable Models
We begin with this section where both Possibilistic Defi-
nite Logic Programs (PDLP) and Possibilistic Normal Logic
Programs (PNLP) are defined along with Possibilistic Stable
Models for both PDLPs and PNLPs.

Let B be a countable set of atoms α, letR be a countable
set of rules α ← β1, ... , βn where n ≥ 0, α, βi ∈ B for
0 ≤ i ≤ n, and let N be a set of necessity measures w.

A possibilistic atom is then an ordered pair a = (α, w) in
the set BN = B ×N . A possibilistic rule is an ordered pair
r ∈ {(α← β1, ... , βn, w) | α, βi ∈ B, 0 ≤ i ≤ n, w ∈ N}.

We will adopt the notation of r∗ and a∗ to represent a rule
and atom respectively with the weight removed, while r ◦

and a◦ represent the weight with the rule and atom removed
respectively.

Let B(P) = B be the Herbrand base of the program P , I
be a set of atoms forming an interpretation, and let P denote
the powerset operator.

Measure ΠP(α) describes how possible (compatible)
atom α is with P , while NP(α) describes how strongly α
is proved by P .

A possibility distribution places an ordering on the inter-
pretations of the theory. Definition 1 defines a distribution of
a PDLP through a function from interpretations to an inter-
val [0, 1]. Let ps(P∗, B) ⊆ P∗ represent the set of rules
whose preconditions are satisfied by B, and the function
head represent all head atoms in a given set of rules.

Definition 1 (Distribution of a PDLP). Given a Possibilis-
tic Definite Logic Program (PDLP) P and its induced pos-
sibility distribution πP with respect to a set B ∈ B, then
πP(B) = (0 : if B � head(ps(P∗, B)), or

ps(P∗, B) is not grounded,
1 : if ∀r ∈ P , B � r∗,
1−max r∈P{r◦ |B � r∗} : otherwise)

Definitions 2 and 3 below, capture a Possibilistic Stable
Model for a PDLP. Possibility and Necessity measures are

defined (induced) by a PDLP P to represent consistency and
certainty information respectively.

Definition 2 (Measures of a PDLP). Given a Possibilistic
Definite Logic Program (PDLP) P and its induced possi-
bility distribution πP , the possibility measure ΠP(α) and
necessity measure NP(α) are given by:

- ΠP(α) = maxI∈P(B(P)){πP(I) | α ∈ I},
- NP(α) = 1−maxI∈P(B(P)){πP(I) | α /∈ I},
From the definition of a Necessity measure, the Possibilistic
Stable Models of a Possibilistic Definite Logic Program can
be given.

Definition 3 (Possibilistic Stable Model of a PDLP).
Given a PDLP P and its possibility measure ΠP(α) and
necessity measure NP(α), then its Possibilistic Stable
Model is given by ΠM(P) = {(α, NP(α)) | α ∈
B(P), NP(α) > 0}.
It follows that ΠM(P)∗ = least model of P∗.

A possibilistic Normal Logic Program (PNLP) may now be
defined as an incremental extension from the PDLP.

A possibilistic rule is represented as an ordered pair r =
(α ← β1, ... , βn, not ν1, ... , not νm, w) for ν ∈ B, in the
set {(α′ ← β′

1, ... , β
′
n, not ν′

1, ... , not ν′
m, w′) | α′, β′

n ∈
B, n, m ≥ 0, w′ ∈ N}.

Let r+ be the positive-only component of rule r (rule r
with negative literals removed). Let tail−(r) to refer to the
negative atoms in the tail (body) of the rule, and I be a set
of possibilistic atoms of the form a = (α, w).

A definition for a Possibilistic stable model (Definition
4) now follows as a straightforward extension of the PDLP
case.

Definition 4 (Possibilistic Stable Model of a PNLP).
Given a PNLP P , and an atom set B ∈ B, the possibilis-
tic reduction of P wrt B is the PDLP

PB = {(r∗+, r◦) | r ∈ P , tail−(r) ∩B = ∅}.
Then I is a PSM of the PNLP P iff I = ΠM(PI∗

).

Argumentation Framework
An abstract argumentation framework was defined in (Dung
1995) with the potential to be instantiated in many different
forms, each having distinct properties that could also be un-
derstood within an overarching framework. (Bondarenko et
al. 1997) used this technique to show that many types of
non-monotonic logics could be expressed equivalently as an
argumentation system.

The clarity offered by such a modular method makes it
possible to detail an argumentation framework suitable for
capturing the Possibilistic Stable Models of a PNLP.

Throughout the discussion on argumentation frameworks
we will make use of the following notation. Let LB be a
countable set of atoms, and LR be a countable set of rules
of the form α ← β1, ... , βn where n ≥ 0 and α, βi ∈ LB
where 0 ≤ i ≤ n. Then L is a formal language of countably
many sentences L = LB ∪ LR.

Argument, Dialogue and Decision NMR-2008

114

Also let LBN be a countable set of possibilistic atoms
a = (α, w) where α ∈ LB, and LRN be a countable set
of possibilistic rules of the form r = (α ← β1, ... , βn, w)
where r∗ ∈ LR. ThenLN is a formal language of countably
many sentences LN = LBN ∪ LRN .

The following first two definitions define an underlying
monotonic logic, starting with Definition 5 for a proposi-
tional weighted deductive system. The deductive system is
defined to be aligned with Possibilistic Definite Logic Pro-
gramming, and also is a counterpart to Possibilistic Logic.

From the deductive system, two types of inference are
defined: an inference relying on sufficient support, and a
minimal inference requiring the least (with respect to rule
subsets) support adequate for the derivation of a given con-
clusion.

Definition 5 (Monotonic Deductive System). A
monotonic deductive system is defined by the pair
〈LN ,�〉 where � is defined by the inference rules

- [α← β1, ... , βn, w0], [(β1, w1), ... , (βn, wn)]
� [α, min(w0, ... , wn)]

- (α, w) � (α, w′), w′ < w.

Definition 6 defines two types of provability relations. The
first is a variant of modus ponens with inferred atom weights
equal to the minimum contained in the set of support. The
second inference enforces a minimality condition with re-
spect to the set of support: only those premises necessary
are permitted.

Definition 6 (Deduction). Given a deductive system
〈LN ,�〉, a set T of rules of type r, a sentence of possibilistic
atoms σ = a1, ... , an can be concluded from a premise set
T ,

- T � σ iff σ can be derived through an iterative application
of the inference rules to possibilistic propositional formu-
lae in T ,

- T �min σ iff T � σ and there does not exist T ′ ⊂ T such
that T ′ � σ.

An argumentation framework may now be defined in Defi-
nition 7, parametric on a background theory, set of assump-
tions, and a notion of Attack between arguments. Definition
8 then captures the idea that an argument for a conclusion
sentence is an inference from a set of assumptions and a
background theory. An argument is thus considered to be
based on a set of assumptions.

Definition 7 (Argumentation framework). Given a de-
ductive system 〈LN ,�〉, then an argumentation framework
wrt 〈LN ,�〉 is a tuple 〈T ,A, attack〉, where theory T ⊆
LN , assumptionsA ⊆ LN , and attack is a relation between
sets of assumptions.

Definition 8 (Argument). Given an argumentation frame-
work 〈T ,A, attack〉 wrt 〈LN ,�〉, an argument for a sen-
tence σ ∈ LN supported by a set of assumptions A ∈ A is
a deduction T ∪A � σ.

Definition 9 states how two arguments are regarded to be
in conflict with one another, and Definition 10 defines the
conditions under which one argument attacks another. This

definition is set up to be parametric on stronger, which will
be varied throughout the paper below according to varying
requirements. At this point stronger should be considered
atomic in nature. A collection CA of sets of atoms is also
introduced with the purpose of defining mutually conflicting
(contradictory) atoms. Frequently, this may consist of an
atom and its negation {α,¬α}, but in general may be any
arbitrary set of atoms in the language.

Definition 9 (Conflict). Given an argumentation frame-
work 〈T ,A, attack〉 wrt 〈LN ,�〉, and sets of assumptions
A, A′ ⊆ A, and a1, a2 ∈ LBN , then A conflicts with A′ over
a, a′ iff

- there exists CA ∈ CA s.t. a∗, a′∗ ∈ CA, and
- (A ∪ T) � a, and
- (A′ ∪ T) � a′.

Definition 10 (Attack). Given an argumentation frame-
work 〈T ,A, attack〉 wrt 〈LN ,�〉, and sets of assumptions
A, A′ ⊆ A, then A attacks A′ iff there exists a1, a2 ∈ LBN
such that,

- A conflicts with A′ over a, a′, and
- A′ is not stronger than A wrt a′, a.

A notion of non-monotonic consequence can now be defined
by the type of attack to which the framework is instanti-
ated. Stable sets, and their associated extensions in Defini-
tion 11 are a particular instance of credulous consequence,
while Definitions 12 and 13 together form the Preferred Ex-
tensions.

Definition 11 (Stable set). A set of assumptions A ⊆ A is
stable iff A attacks every assumption a /∈ A, and A does not
attack itself.

Definition 12 (Admissible set). A set of assumptions A ⊆
A is admissible iff A attacks every set of assumptions that
attacks A, and A does not attack itself.

Definition 13 (Preferred set). A set of assumptions A ⊆ A
is preferred iff A is maximal (with respect to set member-
ship) admissible.

Then, E is a stable extension iff E = Th(P ∪ A), where A
is a stable set. The consequence set contains all permitted
derived weightings for atoms, and may (for example)
include (a, 0.5) and its weaker variant (a, 0.3). This charac-
teristic preserves the property that the skeptical consequence
set is the intersection of credulous consequence sets2.

Argumentation System representing a
Possibilistic Logic Program

Having now defined both a PSM and an argumentation sys-
tem, we are in a position to parameterize the latter to capture
(represent) the former. An instantiation of the argumentation
framework is given below such that its stable extensions are
identical to the stable models of a Possibilistic NLP.

2This is solely a semantic notion, and for practical implementa-
tion, explicit enumeration of such weights would not be necessary.

Argument, Dialogue and Decision NMR-2008

115

Conceptually, negation by failure is viewed as default
negation, and accordingly the set of assumptions contains
all default negation literals. Then, the negation of an atom is
assumed unless it is possible to prove the contrary.

For a PNLP P , the instantiation of parameters is as fol-
lows. Given an argumentation framework 〈T ,A, attack〉
wrt 〈LN ,�〉, then, a Normal Logic Program P is repre-
sented by its corresponding assumption framework where
attack is defined in Definitions 9 and 10.

We introduce the notion of a contrary atom through the set
Lnaf = {not-α |α ∈ B} of special atoms taking the form
“not-α” that occur as a counterpart to every normal atom in
set B, the Herbrand base of P ∗. An associated transforma-
tion is made to the program’s rules creating a new program
P ′ = Tr(P) by replacing atoms negated by default in P
with the new corresponding atoms from set Lnaf .

P ′ = { (α← β1, ... , βn, not-ν1, ... , not-νm, w) |
(α← β1, ... , βn, not ν1, ... , not νm, w) ∈ P ,
m, n ≥ 0 }

The parameters of the argumentation framework may now
be assigned straightforwardly:

LB = B ∪ Lnaf ,
LR = (P ′∗),
LRN = (P ′),
LBN = BN ,
A = Lnaf ,
T = (P ′),
CA = { {α, not-α} |α ∈ B }.

The notion of attack between two sets of arguments is de-
fined in terms of a potential conflict. It may be noted here
that weighting information is not used in PSMs to partic-
ipate in conflict or attacks between arguments, therefore
no argument is stronger than another, and the condition
not stronger in Definition 10 always holds.

Using the definition of Stable Sets (Definition 11), and
the associated Stable Extension, it is possible to draw a cor-
respondence between Possibilistic Stable Models as defined
in Definitions 2-4, and Possibilistic Stable Extensions (PSE)
of the argumentation framework. In the following theorem
let E+ = E − Lnaf .

Theorem 1 (PSM = PSE). E is a stable extension of the
argumentation system corresponding to a program P ′ iff
M = E+ is a possibilistic stable model of PNLP P .

Proof (sketch)
E is a stable extension of the argumentation system,
⇔ E = {a | P ′ ∪AE � a},

(where AE = E − LBN),
⇔ {a | P ′ ∪AE � a} − Lnaf = {a | P � a},
⇔ {a | P � a} = M ,
⇔M = E+ is a possibilistic stable model of P .

Necessity Assessment of Argument Strength
One particular difference that exists between qualitative pri-
ority frameworks and Possibilistic frameworks is the use to

which preference information is put. Priority frameworks
make use of preference information to remove particular
credulous extensions. Due to the totally ordered nature of
weighted rules in Possibilistic Stable Models, if all prior-
ity information were used to resolve conflicts between rules,
then all stable models except one would be eliminated. For
the present section however, this is acceptable because we
will control which atoms are conflicting atoms using a dec-
laration.

Having established an argumentation framework for
PNLP, we will now substitute preferred extension semantics
for stable extension semantics. Also, in order to simplify the
language, we will consider just the case of Definite Logic
Programs. The resulting system yields a method of assess-
ing arguments based on the weighting of rules.

In this section, let CA be a collection of sets contain-
ing two conflicting atoms: CA = {{α1, β1}, ... , {αn, βn}},
D be a set of weighted defeasible rules, and S be a set of
strict (non-defeasible) weighted rules. Finally, we must de-
fine stronger. One argument is stronger than another when
the conflicting rule weights from their respective arguments
are arranged so the stronger argument has the greater rule
weight, Definition 14. It may be instructive to note that vari-
ables a and a′ are bound in the definition for conflict.

Definition 14 (Stronger). Given an argumentation frame-
work 〈T ,A, attack〉 wrt 〈LN ,�〉, sets of assumptions
A, A′ ⊆ A, then A is stronger than A′ wrt a, a′ ∈ LBN iff
(a◦ > a′◦).

In order to identify the relevant properties of this type of
possibilistic preferred extension, we will now look at a
decision making example.

Application to Decision Making: the resulting
Decision Model
Decision making can be seen as one particular type of plau-
sible reasoning. The example below will demonstrate unipo-
lar3 decision making similar in style to (Fox & Das 2000)
by utilizing necessity weights present in the formulae to ar-
bitrate conflicts between arguments induced from the pro-
gram’s rules.

A simple propositional language is employed to represent
a robot warrior’s decision making over whether it will at-
tempt to traverse one of three pathways: one that is rocky,
one that is sandy, and one that contains water. Deciding to
traverse the rocky path is represented by gor. A reason to
adopt the rocky path choice is reason1, and a consequence
of adopting the rocky path is consqr. Corresponding atoms
for the cases of sand and water follow in a similar way. A
decision making example is shown below where rules defin-
ing consqr represent a substitute for a ramification theory
used to derive a comprehensive set of consequences.

CA = { {reason1, reason2, reason3} }

3Unipolar decisions take into consideration only positive infor-
mation about potential choices, as opposed to positive and negative
information as is the case with bipolar decision making.

Argument, Dialogue and Decision NMR-2008

116

D = { gor ←, ... ,
gos←, ... ,
gow ←, ... , }

S = { consqr ← gor, ... ,
consqs← gos, ... ,
reason1← consqr, ... , 0.4
reason2← consqs, ... , 0.5
reason3← consqw, ... , 0.5 }

A decision theory can then be represented by the argumen-
tation framework where A = D and T = S. The preferred
extensions (with maximal weighting) are then:

{(gos), (reason2, 0.5), (consqs)} and
{(gow), (reason3, 0.5), (consqw)}.

It may be helpful to note that the extension
{(gor), (reason1, 0.4), (consqr)} was defeated be-
cause it conflicted with the other defaults, while having
lesser certainty. The system can be seen to have eliminated
potential decision choices, but still not come down to a sin-
gle answer even though there seems sufficient information
to do so.

The decision model induced by the system may be char-
acterized by considering a set AC of pairs (alternative,
consequence) describing the consequences following from
each alternative, and a set CV of triples (consequence,
reason, utility) describing projections from consequences
to reasons weighted with necessity measures. Then, the de-
cision model realized is the selection of all alternatives cor-
responding to the maximum utility in the reasons projected.

Let umax be the maximum derived utility of the reason
decision atoms, then

umax = max{u | ∃c, v.(c, v, u) ∈ CV }.
The set of consequences corresponding to the maximum
utility is given by

Cmax = {c | ∃v.(c, v, umax) ∈ CV }.
The set of alternatives corresponding to the selected conse-
quences is given by

AD = {a | (a, c), c ∈ Cmax}.
The decision choice(s) of the system is thus represented by
AD. We may say that the decision model chooses the alter-
native(s) corresponding to the ‘best’ reason. There may be
multiple chosen alternatives. This model is very similar to
the decision models of (Fox & Das 2000).

Upon examination, a number of shortcomings become ev-
ident in this approach. Firstly, the system is unipolar, in the
sense that reasons in support of an alternative can only be
positive. This makes it difficult to represent risk and danger
for example. Reasons in support of an alternative are also
assessed in isolation, with no extra weight accruing from a
combination of reasons. Related to this was a sensitivity to
small changes occurring in utility designations. Lastly, there
is no uncertainty representation in the formalism.

Each of these shortcomings will be addressed in the fol-
lowing sections where an alternative extension to PSMs is
given.

Aggregated assessment of Argument Strength
It is possible to utilize information already contained in
a Possibilistic Logic Program more completely than was
achieved in the section above. This involves accumulating,
or aggregating reasons (justifications) in support of one de-
cision choice over another.

In this framework, an argument is assessed based on the
underlying values that it embodies. This makes it possible
to dynamically alter the assessment of arguments based on
the values a particular audience subscribes to. One particu-
lar audience could be oneself. In this case, argument advo-
cacy can be viewed as rendering a judgment, or equivalently
as decision making: the argument advocates a scenario that
one will find to be a convincing rational case given the cir-
cumstances. An argument is convincing if it forms the basis
of a rational decision.

Let D be a set of alternatives expressed as unconditional
rules (i.e. rules with a head and no body). Let S be a set
of rules optionally weighted with a necessity measure. S
contains a consequence theory defining the conditions un-
der which consequences c1, ..., cn occur. From the conse-
quences, a set of rules termed value projection rules define
the distinguished predicate value-p for each relevant value
contained within S. Each value projection rule makes use of
a unique identifier to ensure it contributes only once, assur-
ing unique reasons are the sole basis for a decision alterna-
tive’s favorability. The rule takes the form below (with the
weight being optional).

value-p(v, vp, ui)← cn, a1, ..., an , w

Finally, S contains a set of rules defining another distin-
guished predicate value-w. Values may be positive or nega-
tive in nature, however value projections are always positive.
In the case of a negative value, a negative value utility, argu-
ment w is employed.

value-w(v, vu)← a1, ..., an , w

The set CA is a collection of sets of mutually conflicting
atoms. In the simplest case, it may be a mutually exclusive
set of alternatives e.g. {{alt1, alt2, alt3}} where only one
alternative may appear in a decision. This may also be used
to create sets of alternatives that may be deployed together,
e.g. {{alt1, alt2}, {alt2, alt3}} indicates that any alterna-
tive may be used individually, but the pair alt1, alt3 (among
others) may appear as part of the same decision. This capa-
bility is used in the realization of composite decisions.

A decision theory can then be represented by an argumen-
tation framework where A = D and T = S. Let set CS
be an argument characteristic set with elements ((vu, wvu),
(vp, wvp), vn, pn) where vu, vp, vn and pi represent the
value utility, value projection, value name and projection
unique identifier respectively, and wvu and wvp represent
the necessity uncertainty weights of vu, vp respectively.

The definitions for attack (Definition 10) and conflict (De-
finition 9) come from the previous section, however a new
definition is needed for stronger, updated so as to be aware
of aggregation (Definition 15). Definition 15 captures the
essential intuition of argument evaluation, and makes use of
the notion of an aggregation strength. The definition makes

Argument, Dialogue and Decision NMR-2008

117

use of an s-aggregation which should be considered atomic
until instantiation later.

Definition 15 (Stronger). Given an argumentation frame-
work 〈T ,A, attack〉 wrt 〈LN ,�〉, sets of assumptions
A, A′⊆A, then A is stronger than A′ wrt a, a′∈LBN iff

- (A forms an s1-aggregation), (A′ forms an s2-
aggregation), and s1 > s2 where s1, s2 ∈ R.

The aggregation strength definition makes use of an aggre-
gation function agg, a function from an argument character-
istic set (of weights) CS to a strength measure in R. Defi-
nition 16 identifies an argument’s characteristic set and ag-
gregates the weights together using a method defined by the
aggregation function.

Definition 16 (s-aggregation). Given an argumentation
framework 〈T ,A, attack〉wrt 〈LN ,�〉, sets of assumptions
A ⊆ A, a characteristic function agg, then A forms an s-
aggregation for s ∈ R iff s = agg(CS) where

- CS = { ((vu, wvu), (vp, wvp), vn, pi) |
(A ∪ T) � value-w(vn, vu), wvu ,
(A∪T) � value-p(vn, vp, pi), wvp }.

The properties of the argumentation system will clearly be
determined in part by the choice of aggregation function.
One instantiation will be given here, an analog of a decision
function of |CS| reasons. Let p be an individual projection,
and let vup be the vu component of projection p.

agg(CS) = 1�

p∈CS

|vup.vpp|(
∑

p∈CS

(vup.wp
vu.vpp.wp

vp))

This particular aggregation function is of a weighted
arithmetic mean type. Each projected value is weighted by
a real number according to the value weighting in effect,
then a weighted mean is taken of a set of necessary utility
measures. The weighted mean has several desirable proper-
ties such as being continuous, idempotent, linear, additive
and self-dual aggregation function. A limitation of this
aggregation is that it is not designed to address interactions
between utility values. Its use therefore makes an implicit
assumption that all values are mutually independent.

Application to Decision Making: the resulting
Decision Model
The aggregation based mechanism in the above section
makes possible a far more sophisticated decision model
than was possible previously. Decision making settings
frequently involve the consideration of a set of conflicting
objectives. A candidate alternative may then be assessed
against several criteria which in aggregate measure the de-
sirability of the alternative’s inherent consequences. This
approach is known as multi-criteria decision making.

The method identifies a set of distinct alternatives (a com-
posite notion containing consequences) and objectives rang-
ing from needs to wants (necessary requirements to desir-
able properties). A set of criteria is then selected that serves
as a performance measure for the objectives. Every alterna-
tive is evaluated using criteria chosen to be appropriate for

the decision context. The alternative (possibly non-unique)
emerging with the highest rank is selected as the decision.

Some authors e.g. (Keeney & Raiffa 1976) advocate tak-
ing a more abstract approach to objectives (than is conven-
tional in decision making) through the incorporation of val-
ues. These are more abstract objectives (or percepts) through
which to judge the desirability of an alternative. The preced-
ing section adopted a mechanism to realize the values ap-
proach to decision making through the use of value projec-
tion rules to provide context dependency in the assessment
of alternatives. This serves to identify the (differing) domi-
nant factors underpinning each particular decision. The pro-
jection rules work in conjunction with a (static) aggregation
function that conducts a cumulative (dynamic) weighting of
the projections into their respective criteria.

A set of decision criteria corresponds closely to a set of
values in the argumentation framework. Since criteria can
be inherently positive or negative in desirability, there needs
to be a bipolar evaluation method chosen. Criteria may also
have weights which change according to the context of deci-
sion making. Context-dependent value weighting therefore
appears valuable.

The decision domain is also subject to uncertainty, ap-
plicable to both domain knowledge and aspects of the de-
cision structure itself. In this framework, rule weights will
be interpreted in their conventional way as necessity mea-
sures indicating uncertainty in a rule that may represent the
domain, or part of the decision function.

Decision framing determines the basis or grounds for the
decision. It yields a way of stating a problem formally so
that analytical methods may be applied. To frame a decision
is to recognize context-specific aspects of its structure; fram-
ing is thus dynamic in nature. The choice of criteria relevant
to the circumstances and the mapping of domain conditions
to those criteria are the most significant aspects of framing
a decision. As a secondary factor, the relative weighting ap-
plied to the chosen criteria also contributes to a balance in
the judgment. The importance weighting applied to values
induces a total preference order over those values deemed
relevant to the decision.

Decision framing is made possible in the argumentation
framework using context sensitive, value (criteria) projec-
tion rules which map some (relevant) aspect of the situa-
tional circumstances to a value being satisfied by some de-
gree. Context dependent value weightings are also possible.
Context sensitive value projection rules can be understood
as providing relevance descriptions and decision-framing for
values we care about. The entire theory will be evaluated us-
ing the Possibilistic preferred model entailment. Each rule
will use a necessity measure, omitted if it is 1.

The following example was selected from the literature
for its known realism and discriminating properties in hu-
man decision making (Greene et al. 2001).

“A runaway maintenance railway trolley is about to hit
and kill five people. Suppose there is a lever that will divert
the trolley onto a different track where it will kill only one
person instead of five. Suppose also there is a large person
(larger than you) who may be pushed in front of the trolley,
killing him but saving the others? Is either option suitable?”

Argument, Dialogue and Decision NMR-2008

118

Test subjects generally say ‘yes’ to the first case and ‘no’
to the second in spite of the fact the cases are so similar. We
will now axiomatize the example using the methodology of
the preceding section. Axiom block (1) in the program be-
low is the consequence theory, block (2) the projected value
theory, and (3) the context-dependent value utilities. (Rules
without a weight are assumed to have weight 1.)

CA = { {no-action, button-pressed, push(1)} }
D = { no-action, button-pressed, push(1) }
S = { no-involvement← no-action (1)

edited-result← button-pressed

approaching(train, trackA)←
no-action, 0.7

approaching(train, trackC)
approaching(train, trackB)←

button-pressed, 0.9
authored-result← push(X)
on(trackA, people, 5)
on(trackB, people, 1)
on(trackC, people, 1)← push(1)
killed(N)← approaching(train, T),

on(T, people, N), 0.8
value-p(humanity-loss, N, pr1)← (2)

killed(N)
value-p(individual-harm, N, pr3)←

killed(N),
authored-result

value-w(humanity-loss, -1) (3)

value-w(individual-harm, -1)←
no-involvement

value-w(individual-harm, -3)←
edited-result

value-w(individual-harm, -50)←
authored-result

The Possibilistic Preferred semantics instantiated with the
aggregation function of section entails just the sets of atoms
below. Each set represents the conclusion atoms of a full
decision argument evaluated for desirability by the aggrega-
tion function. In this example, the decision model reduces
the three alternative choices all the way down to a single best
case. It is very unlikely for this not to be the case because
it would require two competing decision arguments to have
the same aggregation strength, something very unlikely for
anything but trivial examples.

1. {no-action, no-involvement,
approaching(train, trackC),
approaching(train, trackA), 0.7,
on(trackA, people, 5), killed(5), 0.7,
value-p(humanity-loss, 5, pr1), 0.7,
value-w(humanity-loss, -1),
value-w(individual-harm, -1)}

2. {button-pressed, edited-result,

approaching(train, trackC),
approaching(train, trackB), 0.9,
on(trackA, people, 5), on(trackB, people, 1),
killed(1), 0.8, value-p(humanity-loss, 1, pr1), 0.8,
value-w(humanity-loss, -3)}

3. {push(1), authored-result, killed(1), 0.8,
approaching(train, trackC),
on(trackA, people, 5), on(trackB, people, 1),
on(trackC, people, 1), value-p(humanity-
loss, 1, pr1), 0.8, value-p(individual-
harm, 1, pr3), 0.8,
value-w(humanity-loss, -1),
value-w(individual-harm, -50)}.

Set one has an aggregation value of -3.5, set two -0.8 and
set three -0.816. In this framework, the atoms in set two
are the only atoms entailed by the system either skeptically,
or credulously. Arguments one and three are subjected to
attacks while lacking sufficient power to defend themselves.
The alternative of pressing the button is thus the selected
decision of the system.

The result may be understood more clearly if we char-
acterize the decision model. For an argument A, given a
set of derived value weightings V W with elements (value,
weighting, uncertainly) and a set of derived value pro-
jections V P with elements (value, utility, uncertainty,
projection-identifier) then the argument characterization
set for argument A denoted by CSA may be defined as

CSA = { ((vu, wvu), (vp, wvp), vn, pi) |
(vn, vu, wvu, rn, pi) ∈ V P,
(vn, wvu, wvp) ∈ V W }

Maximum argument desirability evaluated for all non-self-
conflicting arguments may then be defined as

m = max{a | ∀A∈ Args , a = agg(CSA)}.
The set of alternatives is then selected as those correspond-
ing to maximum argument desirability as defined by the ag-
gregation function.

Although this particular case represents just one decision,
an argument may contain more than one decision: a com-
posite decision comprised of many decisions. The aggre-
gation function is able to assess multiple decisions concur-
rently, rendering a result globally optimal in terms of max-
imum necessary utility for the composite decision. In this
system however, each successful sub-decision does have the
same criteria weighting context. This may be justified on
the grounds of consistency in rational decision making, but
it does require more investigation to assess whether this is
universally applicable for real-world multiple decision mak-
ing.

Discussion
Decision making has been addressed previously in an argu-
mentation logic programming setting by (Kakas & Moraitis
2003) where qualitative preferences between rules are used
to resolve conflicts between argument conclusions. The se-
mantics for this system are somewhat close to, but do not

Argument, Dialogue and Decision NMR-2008

119

quite coincide with, the weakest-link principle for the deter-
mination of the strength of a conclusion. Thus, the decisions
rendered by the system differ somewhat from a qualitative
preference version of the first decision system in the present
paper.

Possibilistic argumentation in the language of logic pro-
gramming has also been addressed in (Chesñevar et al.
2004), however the focus of the work was not specifically on
decision making as it is in this paper, and therefore most of
the features employed here to realize decision models have
no direct counterpart in the work. However, it would be
interesting from a general reasoning standpoint to make a
comparison with the design choices made here.

Some comparison may be made between the use of values
in the decision model and those introduced into argumenta-
tion systems by (Bench-Capon 2002). However in the work,
the definition of values were static (not context dependent),
and there was no notion of aggregation or multi-criteria eval-
uation.

In the works of (Amgoud & Prade 2004) and (Amgoud
& Prade) a system for decision making in argumentation
was introduced. The focus of the work appears to be on
uncertainty management, rather than on the authenticity of
modeling of the structure of decision making. Accordingly,
there is no counterpart to context sensitivity of values or
weights, and neither is there a method of mapping conse-
quences onto values, making dynamic value allocation diffi-
cult. The framework also does not account for the variations
in how values are applied, for instance some domains are
value-additive while some not.

When applying the aggregation framework presented in
earlier sections, it is important to recognize that the sys-
tem accrues projected reasons rather than domain facts. This
yields considerably greater flexibility for handling what oth-
erwise would be pathological examples involving interac-
tion between accrued domain facts. The use of projection
rules for this purpose is exemplified in the axiomatization of
the railway decision domain selected for its practical realism
and displaying many of the system’s extended capabilities.

Conclusion
Due to the non-involvement of rule weights in the outcome
of rule conflicts in Possibilistic Stable Models for logic pro-
gramming, it is difficult to realize decision making func-
tionality possessing an adequate degree of realism. In or-
der to make extensions to the system in a uniform way, we
began by devising an argumentation framework capable of
capturing PSMs. A correspondence was then demonstrated
between the argumentation system’s Possibilistic Stable Ex-
tension and the Possibilistic Stable Model. The resulting
generality and expressive power of the argumentation sys-
tem was used to make several extensions to PSMs suitable
for decision making.

Through the incorporation of sets of declared conflict
atoms, projection axioms, and a context-aware aggregation
function, it has been possible to realize multi-criteria bipolar
decision making with automatic framing (structuring) of the
decision. Decision framing has the effect of selecting the

dominant factors for each particular decision. To our knowl-
edge, these capabilities are novel.

The system presented realizes automatic decision fram-
ing by a value projection theory. Value (criteria) projection
rules map domain circumstances to values being satisfied by
some degree, solving the value management problem, akin
to a “frame problem” for values. This also yields a clear
demarcation between consequences and values. Projection
rules allow a clear distinction to be drawn between primary
alternative choices and their secondary consequences. Con-
text dependent value weightings where value weightings are
derived from within the theory may be applied to the model-
ing of domains possessing values whose relative weighting
varies depending on the type of decision undertaken. Con-
text sensitivity of value projections where value projections
are derived from within the theory are useful for domains
possessing decision criteria whose applicability varies de-
pending on the type of decision undertaken. The use of
a strength aggregation based on the projected information
yields more flexibility in domain representation over prior
direct decision models. We believe individually and in com-
bination, these approaches represent a novel enhancement to
the methods presented previously in the literature.

An important part of the structural construction of the de-
cision context concerns the ability of a decision system to
predict a full set of consequences arising from a given can-
didate alterative. Depending on the type of implementation,
it may be appropriate to incorporate a modern ramification
theory for this purpose.

In future work for an extended version of this paper, par-
ticular classes of decision examples from the literature will
be applied to the system to discover more fully how its ca-
pabilities may be applied and developed.

References
Amgoud, L., and Prade, H. Using arguments for making
decisions: A possibilistic logic approach.
Amgoud, L., and Prade, H. 2004. Towards argumentation-
based decision making: A possibilistic logic approach. In
Proc. of the International Conference on Fuzzy Systems,
Budapest, 25-29/07/04, 1531–1536. IEEE.
Bench-Capon, T. J. M. 2002. Value-based argumentation
frameworks. In Benferhat, S., and Giunchiglia, E., eds.,
9th International Workshop on Non-Monotonic Reasoning
(NMR 2002), April 19-21, Toulouse, France, Proceedings,
443–454.
Bondarenko, A.; Dung, P. M.; Kowalski, R. A.; and Toni,
F. 1997. An abstract, argumentation-theoretic approach to
default reasoning. Artificial Intelligence 93(1–2):63–101.
Brewka, G. 1994. Adding priorities and specificity to de-
fault logic. Lecture Notes in Computer Science 838:247–
260.
Chesñevar, C. I.; Simari, G. R.; Alsinet, T.; and Godo, L.
2004. A logic programming framework for possibilistic ar-
gumentation with vague knowledge. In Chickering, D. M.,
and Halpern, J. Y., eds., UAI ’04, Proceedings of the 20th
Conference in Uncertainty in Artificial Intelligence, July 7-
11 2004, Banff, Canada, 76–84. AUAI Press.

Argument, Dialogue and Decision NMR-2008

120

Delgrande, J. P., and Schaub, T. 2000. Expressing prefer-
ences in default logic. Artificial Intelligence 123(1–2):41–
87.
Dubois, D.; Lang, J.; and Prade, H. 1994. Possibilistic
logic. In Gabbay, D.; Hogger, C. J.; and Robinson, J. A.,
eds., Handbook of Logic in Artificial Intelligence and Logic
Programming, Volume 3: Nonmonotonic Reasoning and
Uncertain Reasoning. Oxford: Oxford University Press.
439–513.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming, and n-person games. Artificial Intelligence
77(2):321–257.
Fox, J., and Das, S. 2000. Safe and Sound: Artificial Intel-
ligence in Hazardous Applications. AAAI Press.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In ICLP/SLP, 1070–1080.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9:365–385.
Greene, J.; Sommerville, R.; L.E.Nystrom; J.M.Darley;
and J.D.Cohen. 2001. An fMRI investigation of emotional
engagement in moral judgment. Science 293:2105–2108.
Kakas, A., and Moraitis, P. 2003. Argumentation based
decision making for autonomous agents. In Rovatsos, M.,
and Rahwan, I., eds., Second International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, vol-
ume 17, 883–890.
Keeney, R. L., and Raiffa, H. 1976. Decisions with Mul-
tiple Objectives: Preferences and Value Tradeoffs. New
York: Wiley and Sons.
Nicolas, P.; Garcia, L.; and Stéphan, I. 2005. Pos-
sibilistic stable models. In Brewka, G.; Niemelä, I.;
Schaub, T.; and Truszczynski, M., eds., Nonmonotonic
Reasoning, Answer Set Programming and Constraints, vol-
ume 05171 of Dagstuhl Seminar Proceedings. Interna-
tionales Begegnungs- und Forschungszentrum für Infor-
matik (IBFI), Schloss Dagstuhl, Germany.
Prakken, H., and Sartor, G. 1997. Argument-based ex-
tended logic programming with defeasible priorities. Jour-
nal of Applied Non-classical Logics 7:25–75.
Reiter, R. 1980. A logic for default reasoning. Artificial
Intelligence 13:81–132.
Zadeh, L. 1978. Fuzzy sets as a basis for a theory of pos-
sibility. Fuzzy Sets and Systems 1:3–28.
Zhang, Y., and Foo, N. Y. 1997. Answer sets for prior-
itized logic programs. In Małuszyński, J., ed., Proceed-
ings of the International Symposium on Logic Program-
ming (ILPS-97), 69–84. Cambridge: MIT Press.

Argument, Dialogue and Decision NMR-2008

121

Formalizing Accrual in Defeasible Logic Programming

Mauro J. Gómez Lucero and Carlos I. Chesñevar and Guillermo R. Simari
National Council of Scientific and Technical Research (CONICET)

Artificial Intelligence Research & Development Laboratory
Department of Computer Science and Engineering, Universidad Nacional del Sur

Av. Alem 1253, (B8000CPB) Bahı́a Blanca, Argentina
Tel: +54-291-459-5135 / Fax: +54-291-459-5136

Email: {mjg, cic, grs}@cs.uns.edu.ar

Abstract

Argumentation has evolved as a powerful paradigm to for-
malize commonsense qualitative reasoning. Several argu-
mentation frameworks have been developed, notably Defea-
sible Logic Programming (DeLP), a logic programming ap-
proach to argumentation which has proven to be successful
for many real-world applications. Recently the notion of ac-
crual of arguments has received some attention from the argu-
mentation community. Three principles for argument accrual
have been identified as necessary to hold in argumentation
frameworks. In this paper we propose an approach to model
the accrual of arguments based on the language and notion of
argument of DeLP. We will analyze the above principles in
the context of our proposal, studying as well other interesting
properties.1

Introduction
In the last years, argumentation has evolved as a power-
ful paradigm to formalize commonsense qualitative reason-
ing. Different argument-based frameworks have been devel-
oped, e.g. (Dung 1995; Garcı́a and Simari 2004; Besnard
and Hunter 2001). In order to determine whether a given
conclusion is finally accepted, most argumentation systems
perform a dialectical process in which arguments in favor
and against the conclusion are taken into account. Among
all existing approaches there exists a whole family of ar-
gumentative frameworks (e.g. (Prakken and Sartor 1997;
Garcı́a and Simari 2004; Alsinet et al. 2008)) that resulted of
integrating extensions of logic programming with argumen-
tation, providing a natural way of combining knowledge rep-
resentation and reasoning. In particular, Defeasible Logic
Programming (DeLP) (Garcı́a and Simari 2004) has proven
to be a successful representative of this family, finding ap-
plication in the context of different real-world problems (e.g.
(Chesñevar, Maguitman, and Simari 2006)).

The notion of accrual of arguments has received some
attention from the argumentation community (Verheij 1996;
Prakken 2005). This notion is based on the intuitive idea that
having more reasons or arguments for a given conclusion
makes such a conclusion more credible. Modelling accrual

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Partially supported by CONICET, Universidad Nacional del
Sur and Agencia Nacional de Promoción Cientı́fica y Tecnológica.

of arguments is not a simple issue, and previous research
(Prakken 2005) has identified different principles that should
hold for performing accrual of arguments in a sound way.

In this paper we propose an approach to model accrual of
arguments in the context of DeLP. We show that accrued ar-
guments can be conceptualized as structures which can be
subject to a dialectical analysis similar to the one applied
in conventional argumentation systems. We also analyze
Prakken’s principles in the context of our proposal, and de-
scribe some valuable features of our approach.

The rest of this paper is structured as follows. The next
section briefly describes DeLP. Next we present the notion
of accrued structure, which plays a central role in our pro-
posal. Based on this notion, we then formalize the notions
of attack and defeat among accrued structures. We show
then how to perform a dialectical analysis on accrued struc-
tures, formalizing the notion of justified accrued structure.
Next, we discuss related work and describe some significant
features of our approach. Finally, we present the main con-
clusions that have been obtained.

The DeLP system: a brief overview
Next we will briefly introduce DeLP (for more details see
(Garcı́a and Simari 2004)). As we will see in the next sec-
tion, DeLP will provide a natural context for modeling the
accrual of arguments. We begin by introducing its language.
Definition 1 (DeLP Language). The DeLP language is de-
fined in terms of three disjoint sets: a set of facts which are
literals, a set of strict rules of the form L0 ←− L1, ..., Lk,
and a set of defeasible rules of the form L0 —< L1, ..., Lk,
where L0, L1, . . . , Lk, with k > 0, are literals. In the
language of DeLP, a literal “L” is a ground atom “A” or
a negated ground atom “∼A”, where “∼” represents the
strong negation.

Pragmatically, facts and strict rules will be used
to represent strict (non defeasible) information (e.g.
mammal ←− dog) whereas defeasible rules will be used to
represent tentative or weak information (e.g. flies —< bird).
Definition 2 (DeLP program). A DeLP program P is a finite
set of facts, strict rules and defeasible rules. In a program
P we will distinguish the subset Π of facts and strict rules,
and the subset ∆ of defeasible rules. When required, we will
denote P as (Π, ∆).

Argument, Dialogue and Decision NMR-2008

122

Example 1. The following constitutes a DeLP program:

P =

a —< b, c b —< d c f
a —< b, f b —< e d h
a —< g g ←− h e

Definition 3 (Defeasible derivation). Let P be a DeLP pro-
gram and L a ground literal. A defeasible derivation of L
from P, consists of a finite sequence L1, . . . , Ln = L of
ground literals, such that for each i, 1 ≤ i ≤ n, Li is a
fact or there exists a rule Ri in P (strict or defeasible) with
head Li and body B1, . . . , Bm, such that each literal on the
body of the rule is an element Lj of the sequence appearing
before Li (j ≤ i).

We say that a given set of DeLP wffs is contradictory if
and only if there exists a defeasible derivation for a pair of
complementary literals (w.r.t. strong negation) from this set.
Definition 4 (Argument). Let P = (Π, ∆) be a DeLP pro-
gram. We will say that 〈A, h〉 is an argument for a literal h
from P, if A is the minimal set of defeasible rules (A⊆ ∆),
such that: (1) there exists a defeasible derivation for h from
Π ∪A, and (2) the set Π ∪A is non-contradictory.
Definition 5 (Subargument). An argument 〈B, q〉 is a sub-
argument of an argument 〈A, h〉 if B ⊆ A.
Example 2. Consider the DeLP program in Ex. 1. Then h, g, a
and d, b, c, a are defeasible derivations for a, 〈A1, a〉 =
〈{(a —< b, c), (b —< d)}, a〉 and 〈A2, a〉 = 〈{a —< g}, a〉 are ar-
guments, and 〈{b —< d}, b〉 is a subargument of 〈A1, a〉.

The attack among arguments in DeLP is defined in terms
of the notion of disagreement of literals. Given a DeLP pro-
gram P = (Π, ∆), two literals h1 and h2 are in disagree-
ment (or just disagree) iff the set Π ∪ {h1, h2} is contra-
dictory. Then, given two arguments 〈A, h〉 and 〈B, k〉 in
P, 〈B, k〉 attacks 〈A, h〉 at literal h′ iff there exist a subargu-
ment 〈A′, h′〉 of 〈A, h〉 such that k and h′ disagree. The sub-
argument 〈A′, h′〉 is called the disagreement subargument.

Modeling the Accrual of Arguments
We will introduce next the notion of accrued structure in or-
der to model the accrual of different arguments for the same
conclusion.
Definition 6 (Accrued Structure). Let P be a
DeLP program, and let Ω be a set of argu-
ments in P supporting the same conclusion h, i.e.,
Ω = {〈A1, h〉, 〈A2, h〉, ..., 〈An, h〉}. We define the accrued
structure for h (or just a-structure) from the set Ω (denoted
Accrual(Ω)) as [Φ, h], where Φ = A1 ∪A2 ∪ ... ∪An.
When Ω = ∅ we get the special accrued structure [∅, ε],
representing the accrual of no argument.
Example 3. Consider the DeLP program P in Ex. 1. Let
〈A1, a〉= 〈{(a —< b, c), (b —< d)}, a〉,
〈A2, a〉= 〈{(a —< b, c), (b —< e)}, a〉,
〈A3, a〉= 〈{(a —< b, f), (b —< e)}, a〉 and
〈A4, a〉= 〈{a —< g}, a〉 be arguments in P. Then

Accrual({〈A1, a〉, 〈A4, a〉}) = [Φ1, a] where
Φ1 = {(a —< b, c), (b —< d), (a —< g)} (Fig. 1a)

Accrual({〈A1, a〉, 〈A3, a〉}) = [Φ2, a] where
Φ2 = {(a —< b, c), (a —< b, f), (b —< d), (b —< e)} (Fig. 1b)

Accrual({〈A1, a〉, 〈A2, a〉}) = [Φ3, a] where
Φ3 = {(a —< b, c), (b —< d), (b —< e)} (Fig. 1c)

[Φ1, a] [Φ2, a] [Φ3, a]
(a) (b) (c)

Figure 1: Accrued Structures

An a-structure for a conclusion h can be seen as a spe-
cial kind of argument which subsumes different chains of
reasoning which provide support for h. For instance, the a-
structure [Φ1, a] (see Fig. 1a) provides two alternative chains
of reasoning supporting a, both coming from each of the ar-
guments accrued. On the one hand, a because of b and c,
and b because of d. On the other hand, a because of g. Note
that the graphical representation of a-structures shows both
strict and defeasible rules of the subsumed chains of reason-
ing (although the a-structure itself has only defeasible rules).

The case of [Φ2, a] in Ex. 3 illustrates an important fea-
ture of our notion of accrual. If two arguments for the same
conclusion share some intermediate conclusion but support
it in different ways, then by accruing them the reasons for
the intermediate conclusion also accrue. Fig. 1b shows this
situation for two different reasons for the intermediate con-
clusion b. The case of [Φ2, a] in Ex. 3 highlights another
feature of our characterization of accrual. Although each
of the arguments accrued stands for one chain of reasoning
supporting a conclusion a, the resulting a-structure [Φ2, a]
stands for four chains of reasoning for a (two of them are
not explicitly present in the individual arguments accrued).

The case of [Φ3, a] in Ex. 3 illustrates a situation simi-
lar to the previous one, where the arguments involved share
not only the intermediate conclusion b but also their topmost
parts (more precisely the rule a —< b, c), first differing in the
reasons supporting b. As shown in the the graphical repre-
sentation of [Φ3, a] in Fig. 1c, we consider that a-structures
factor out as many common steps of reasoning (of the argu-
ments accrued) as possible. In this way we can distinguish
that there are two different reasons for the intermediate con-
clusion b, and consequently that there are two reasons for the
final conclusion a. Note that in the graphical representation
of [Φ3, a] there are two (defeasible) arrows pointing to b and
only one pointing to a.

An important question that naturally emerges when con-
sidering the way we accrue arguments is what happens when
accruing two arguments that are in conflict (for instance
because they have contradictory intermediate conclusions).
We will come back to this issue later.

Definition 7. Let [Φ, h] be an a-structure. Then the set
of arguments in [Φ, h], denoted as Args([Φ, h]), is the set
of all arguments 〈A, h〉 such that A ⊆ Φ. Note that
Args([∅, ε]) = ∅.
Example 4. Consider the a-structures [Φ3, a] and
[Φ2, a] in Ex. 3. Then 〈{(a —< b, c), (b —< d)}, a〉 and
〈{(a —< b, c), (b —< e)}, a〉 are all the arguments in Args([Φ3, a])
and 〈{(a —< b, c), (b —< d)}, a〉, 〈{(a —< b, c), (b —< e)}, a〉,
〈{(a —< b, f), (b —< d)}, a〉 and 〈{(a —< b, f), (b —< e)}, a〉 are

Argument, Dialogue and Decision NMR-2008

123

all the arguments in Args([Φ2, a]).

Although Accrual and Args are not reverse operations
(as illustrated by the case of [Φ2, a] in Exs. 3 and 4), we can
ensure that the arguments accrued will always be among the
arguments in the resulting a-structure. We can also ensure
that by accruing the arguments in a given a-structure [Ψ, k]
we always get [Ψ, k] as a result.
Property 1. Let Ω be a set of arguments for a given con-
clusion h. Then Args(Accrual(Ω)) ⊇ Ω. Besides, for any
a-structure [Ψ, k] it holds that Accrual(Args([Ψ, k])) =
[Ψ, k] 2.
Definition 8 (Maximal a-structure). Let P be a DeLP pro-
gram. We say that an a-structure [Φ, h] is maximal iff
Args([Φ, h]) contains all arguments in P with conclusion
h.
Example 5. Consider the DeLP program P in Ex. 1. Then
[{(b —< d), (b —< e)}, b] is a maximal a-structure in P, whereas
[{(b —< d)}, b] is not.

Next we will formally define binary operations for the ad-
dition and substraction of a-structures with the same conclu-
sion.
Definition 9. Let [Φ, h] and [Ψ, h] be two a-structures. Then
we define the addition (+) and subtraction (-) of a-structures
as follows:
• [Φ, h] + [Ψ, h] =def Accrual(Args([Φ, h]) ∪Args([Ψ, h]))

• [Φ, h]− [Ψ, h] =def Accrual(Args([Φ, h]) \Args([Ψ, h]))

Note that [∅, ε] is the identity element for ‘+’, i.e., [Φ, h]+
[∅, ε] = [Φ, h]. We have also that [Φ, h]− [Φ, h] = [∅, ε].
Example 6. Consider the a-structures [Φ2, a] and [Φ3, a] in Ex.
3, and let [Φ4, a] = [{(a —< b, f), (b —< d), (b —< e)}, a]. Then
[Φ3, a] + [Φ4, a] = [Φ2, a] and [Φ2, a]− [Φ3, a] = [Φ4, a].

Next we will introduce the notion of narrowing of an a-
structure, which is analogous to the notion of narrowing in
(Verheij 1996). Intuitively, a narrowing of an a-structure
[Φ, h] is an a-structure [Θ, h] accounting for a subset of
Args([Φ, h]).
Definition 10 (Narrowing of an a-structure). Let [Φ, h] and
[Θ, h] be two a-structures. We say that [Θ, h] is a narrowing
of [Φ, h] iff there exists an a-structure [Λ, h] such that [Φ, h]
= [Θ, h] + [Λ, h].
Example 7. Consider the a-structures [Φ2, a] and [Φ3, a] in Ex.
3. Then [Φ3, a] is a narrowing of [Φ2, a], because [Φ2, a] = [Φ3, a]
+ [{(a —< b, f), (b —< d), (b —< e)}, a].

Definition 11 (a-substructure). Let [Φ, h] and [Θ, k] be
two a-structures such that every argument 〈Bi, k〉 ∈
Args([Θ, k]) is a subargument of some argument 〈A, h〉 ∈
Args([Φ, h]). Then we say that [Θ, k] is an accrued sub-
structure (o just a-substructure) of [Φ, h].

Intuitively, [Θ, k] is an a-substructure of [Φ, h] whenever
[Θ, k] accounts for the accrual of different subarguments (all
for the same conclusion) of arguments in Args([Φ, h]).
Example 8. Consider the a-structure [Φ3, a] in Ex. 3. Then
[{b —< d}, b], [{(b —< d), (b —< e)}, b] and [Φ3, a] itself are a-
substructures of [Φ3, a].

2For space reasons, proofs for properties are not included.

Intuitively, an a-substructure [Θ, k] of [Φ, h] is complete
if it is the largest a-substructure of [Φ, h] for the conclusion
k.

Definition 12 (Complete a-substructure). Let [Φ, h] be an
a-structure. Let [Θ, k] be an a-substructure of [Φ, h] such
that Args([Θ, k]) is the set of all subarguments 〈Bi, k〉 of
arguments in Args([Φ, h]). Then we will say that [Θ, k] is a
complete a-substructure.
Example 9. Consider the a-structure [Φ3, a] in Ex. 3. Then
[{(b —< d), (b —< e)}, b] is a complete a-substructure of [Φ3, a].

Conflict and Defeat among Accrued Structures
Next we will formalize the notion of attack between a-
structures, which differs from the notion of attack in ar-
gumentation frameworks in several respects. First, an a-
structure [Φ, h] generally stands for more than one chain of
reasoning (argument) supporting the conclusion h. Besides,
some intermediate conclusions in [Φ, h] could be shared by
some, but not necessarily all the arguments in Args([Φ, h]).
Thus, given two a-structures [Φ, h] and [Ψ, k], if the conclu-
sion k of [Ψ, k] contradicts some intermediate conclusion r
in [Φ, h], then only those arguments in Args([Φ, h]) involv-
ing r will be affected by the conflict.

Next we will define the notion of partial attack, where the
attacking structure generally affects only a narrowing of the
attacked one (that one containing exactly the arguments in
the attacked a-structure affected by the conflict).

Definition 13 (Partial Attack). Let P be a DeLP program.
Let [Φ, h] and [Ψ, k] be two a-structures in P. We say that
[Ψ, k] partially attacks [Φ, h] at literal h′, iff there exists a
complete a-substructure [Φ′, h′] of [Φ, h] such that k and
h′ disagree. The a-substructure [Φ′, h′] will be called the
disagreement a-substructure.
Example 10. Consider a DeLP program P where:

P =

x —< z ∼z —< w ∼x —< q u
x ←− y ∼z —< s s —< p v
z —< t y —< u y w
z —< v ∼y —< p t p

Consider the a-structures [Φ, x] and [Ψ1,∼z] in Fig.
2, where Φ = {(x —< z), (z —< t), (z —< v), (y —< u)} and
Ψ1 = {(∼z —< w), (∼z —< s), (s —< p)}. Then [Ψ1,∼z] par-
tially attacks [Φ, x] with disagreement a-substructure [Φ′, z] =
[{(z —< t), (z —< v)}, z]. Graphically, this attack relation will be
depicted with a dotted arrow (see Fig. 2).

Given an attack between two a-structures, the narrowing
of the attacked a-structure affected will be referred to as its
attacked narrowing, and it is formally defined as follows.

Definition 14 (Attacked Narrowing). Let [Φ, h] and [Ψ, k]
be two a-structures such that [Ψ, k] partially attacks [Φ, h]
with disagreement a-substructure [Φ′, h′]. Then we say
that [Λ, h] is the attacked narrowing of [Φ, h] iff [Λ, h] is
the minimal narrowing of [Φ, h] that has [Φ′, h′] as an a-
substructure.
Example 11. Consider the attack from [Ψ1,∼z] to
[Φ, x] in Ex. 10. The attacked narrowing of [Φ, x] is
[{(x —< z), (z —< t), (z —< v)}, x] (see Fig. 2).

Argument, Dialogue and Decision NMR-2008

124

Figure 2: Partial Attack

Accrued Structures: Evaluation and Defeat
In order to decide if a partial attack really succeeds and con-
stitutes a defeat we need a criterion to determine the relative
strength (or conclusive force) of those a-structures in con-
flict. In general, such comparison criterion must be defined
according to the application domain. In what follows, we
will abstract from that criterion assuming the existence of a
binary preference relation ‘À’ between a-structures.
Definition 15 (Partial Defeater). Let [Φ, h] and [Ψ, k] be two
a-structures. Then we say that [Ψ, k] is a partial defeater of
[Φ, h] (or equivalently that [Ψ, k] is a successful attack on
[Φ, h]) iff

• [Ψ, k] attacks [Φ, h] at literal h′, where [Φ′, h′] is the dis-
agreement a-substructure and

• it is not the case that [Φ′, h′]À [Ψ, k].
Example 12. Consider the attack from [Ψ1,∼z] to [Φ, x] with
disagreement a-substructure [Φ′, z] in Ex. 10 (Fig. 2), and suppose
that [Ψ1,∼z]À [Φ′, z]. Then the attack succeeds, constituting a
defeat. Graphically, this defeat relation will be depicted with a
continuous arrow (see Fig. 3).

Figure 3: Defeated and Undefeated Narrowings

Given an attack relation, we will identify two complemen-
tary narrowings associated with the attacked a-structure: the
narrowing that becomes defeated as a consequence of the
attack, and the narrowing that remains undefeated.
Definition 16 (Undefeated and Defeated narrowings). Let
[Φ, h] and [Ψ, k] be two a-structures such that [Ψ, k] attacks
[Φ, h]. Let [Λ, h] be the attacked narrowing of [Φ, h]. Then

Figure 4: Defeated and Undefeated Narrowings

the defeated narrowing of [Φ, h] associated with the attack,
denoted as ND

w([Φ, h], [Ψ, k]), is defined as follows:

ND
w([Φ, h], [Ψ, k]) =def

[Λ, h] if [Ψ, k] is a partial
defeater of [Φ, h];

[∅, ε] otherwise.

The undefeated narrowing of [Φ, h] associated with the
attack, denoted as NU

w([Φ, h], [Ψ, k]), is the a-structure
[Φ, h]− ND

w([Φ, h], [Ψ, k]).
Example 13. Fig. 3 illustrates a successful attack from [Ψ1,∼z]
to [Φ, x], as well as the defeated and undefeated narrowings
of [Φ, x] associated with the attack. Fig. 4 illustrates an un-
successful attack from [Ψ2,∼x] = [{∼x —< q},∼x] to [Φ, x]
with [Φ, x] itself as disagreement a-substructure, assuming that
[Φ, x]À [Ψ2,∼x].

Combined Attack
Until now we have considered only single attacks. When
a single attack succeeds, a nonempty narrowing of the at-
tacked a-structure becomes defeated. But two or more a-
structures could simultaneously attack another, possibly af-
fecting different narrowings of the target a-structure, and
thus causing a bigger narrowing to become defeated (com-
pared with the defeated narrowings associated with the in-
dividual attacks). Fig. 5 illustrates a combined attack from
the a-structures [Ψ1,∼z] and [Ψ3,∼y] against [Φ, x]. Note
that the associated defeated narrowing is the whole [Φ, x],
even though each attacking a-structure defeats only a proper
narrowing of [Φ, x].

Figure 5: Combined Defeat

Argument, Dialogue and Decision NMR-2008

125

Figure 6: Combined Defeat

Consider now the combined attack against [Φ, x] shown in
Fig. 6. One of the attacking a-structures ([Ψ1,∼z]) defeats a
narrowing of [Φ, x] on its own, whereas the other ([Ψ2,∼x])
only attacks [Φ, x], as shown in Figs. 3 and 4, respectively
(remember that we assumed that [Φ, x]À [Ψ2,∼x]). But
suppose that, although [Φ, x] is stronger than [Ψ2,∼x] ac-
cording to our criterion, [Ψ2,∼x] is stronger than [Φ′, x] =
[{y —< u}, x], a proper narrowing of [Φ, x]. That is possible
as, in general, a narrowing of an a-structure is weaker than
the a-structure itself. Then, as shown in Fig. 6, when the a-
structures [Ψ1,∼z] and [Ψ2,∼x] combine their attacks, they
cause the whole [Φ, x] to become defeated. The reason is
that the successful attack of [Ψ1,∼z] weakens the target a-
structure, allowing the attack of [Ψ2,∼x] to succeed.

As illustrated by the previous case, in order to determine
the defeated narrowing (and then the undefeated narrow-
ing) associated with a combined attack we cannot just con-
sider the attacks independently. Indeed, a given attacking
a-structure could be successful in attacking another target
a-structure only if the latter was previously “weakened” by
some other attack. The purpose of the following definitions
is to formally capture the notions of defeated and undefeated
narrowings associated with a combined attack.
Definition 17 (Sequential Degradation). Let [Φ, h] be an a-
structure and let Σ be a set of a-structures attacking [Φ, h].
A Sequential Degradation of [Φ, h], associated with the com-
bined attack of the a-structures in Σ, consists of a finite se-
quence of narrowings of [Φ, h]:

[Φ1, h], [Φ2, h], . . . , [Φm+1, h]
provided there exists a finite sequence of a-structures in Σ:

[Ψ1, k1], [Ψ2, k2], . . . , [Ψm, km]

where [Φ1, h] = [Φ, h], for each i, 1 ≤ i ≤ m, [Ψi, ki] par-
tially defeats [Φi, h] with associated undefeated narrowing
[Φi+1, h], and [Φm+1, h] has not defeaters in Σ.
Example 14. Fig. 7 shows two sequential degradations for
the combined attack of [Ψ1,∼z], [Ψ2,∼x] and [Ψ3,∼y] against
[Φ, x], namely S1 = [Φ, x], [Φ2, x], [∅, ε] and S2 =
[Φ, x], [Φ3, x], [∅, ε]. Fig. 8 shows the sequential degradation
S3 = [Φ, x], [Φ3, x] for the combined attack of [Ψ2,∼x] and
[Ψ3,∼y] against [Φ, x], assuming that [Φ3, x]À [Ψ2,∼x].

As shown in Fig. 7, there could exist more than one se-
quential degradation associated with the same combined at-
tack. However, not all sequential degradations associated
with a given attack will necessary end with the same a-
structure. This situation could arise when, according to the

Figure 7: Sequential Degradations

Figure 8: Sequential Degradation

preference relation, a given accrual is weaker than some
of its narrowings. Consider again the sequential degra-
dation in Fig. 8. Suppose that [Ψ2,∼x]À [Φ, x], but
[{(x —< z), (z —< t), (z —< v)}, x]À [Ψ2,∼x]. Then the
sequence in Fig. 8 is indeed a sequential degradation as-
sociated with the attack, but there exists other sequential
degradation that corresponds to applying first the defeat of
[Ψ2,∼x], immediately ending in [∅, ε]. Thus, if a particular
a-structure turns out to be weaker than some of its narrow-
ings, the order in which defeaters are introduced does matter.
The solution is to restrict the order of defeater application so
that the “deeper” defeats are applied first (and for the case
recently discussed, the application order of Fig. 8 will be the
right one). For the following definition, we will use the term
a-substructure defeater to refer to a defeater which attacks
the target a-structure at an intermediate conclusion, i.e., that
attacks an a-substructure of the target a-structure.

Definition 18 (Bottom-up sequential degradation). Let
[Φ, h] be an a-structure and let Σ be a set of a-structures at-
tacking [Φ, h]. Let S = [Φ1, h], . . . , [Φm+1, h] be a sequen-
tial degradation of [Φ, h] associated with the combined at-
tack of the a-structures in Σ, and let [Ψ1, k1], . . . , [Ψm, km]
be the associated sequence of a-structures in Σ. Let [Λi, ki]
be the disagreement a-substructure associated with the at-
tack of [Ψi, ki] against [Φi, h], 1 ≤ i ≤ m. Then we say that
the sequential degradation S is bottom-up iff [Λi, ki] has no
a-substructure defeater in Σ, 1 ≤ i ≤ m.

Argument, Dialogue and Decision NMR-2008

126

Thus, according to definition 18, the top most sequen-
tial degradation in Fig. 7 is not bottom-up. Note that the
disagreement a-substructure associated with the attack of
[Ψ2,∼x] against [Φ2, x], which is [Φ2, x] itself, has [Ψ3,∼y]
as a-substructure defeater. The other sequential degradation
in Fig. 7 is indeed bottom-up. Interestingly, it can be shown
that all bottom-up sequential degradations associated with a
given combined attack converge to the same a-structure.

Property 2. Let [Φ, h] be an a-structure
and let Σ be a set of a-structures attack-
ing [Φ, h]. Let [Φ1, h], [Φ2, h], . . . , [Φm, h] and
[Φ′1, h], [Φ′2, h], . . . , [Φ′n, h] be two bottom-up sequen-
tial degradations of [Φ, h] associated with the combined
attack of the a-structures in Σ. Then [Φm, h] = [Φ′n, h].

Definition 19 (Defeated and Undefeated Narrowings associ-
ated with a Combined Attack). Let [Φ, h] be an a-structure
and let Σ be a set of a-structures attacking [Φ, h]. Let
[Φ1, h], [Φ2, h], ..., [Φm+1, h] be a bottom-up sequential
degradation of [Φ, h] associated with the combined attack of
the a-structures in Σ. Then [Φm+1, h] is the undefeated nar-
rowing of [Φ, h] associated with the combined attack, and
[Φ, h]− [Φm+1, h] is its defeated narrowing.
Example 15. Consider the combined attack of [Ψ1,∼z],
[Ψ2,∼x] and [Ψ3,∼y] against [Φ, x]. The associated undefeated
narrowing of [Φ, x] is [∅, ε], i.e., the whole [Φ, x] results de-
feated. On the other hand, when only [Ψ2,∼y] and [Ψ3,∼x]
attack [Φ, x], its associated undefeated narrowing is [Φ3, x] =
[{(x —< z), (z —< t), (z —< v)}, x].

Dialectical Analysis for Accrued Structures
Given a DeLP program P and a maximal a-structure [Φ, h]
we are interested in determining which is the final unde-
feated narrowing of [Φ, h] after considering all possible par-
tial defeaters for [Φ, h]. As every partial defeater is on its
turn an a-structure, they can also have partial defeaters asso-
ciated with them. This prompts a recursive dialectical anal-
ysis formalized as follows.

Definition 20 (Accrued Dialectical Tree). Let [Φ, h] be a
maximal a-structure. The accrued dialectical tree for [Φ, h],
denoted T[Φ, h], is defined as follows:

1. The root of the tree is labeled with [Φ, h].
2. Let N be an internal node labelled with [Θ, k]. Let Σ

be the set of all disagreement a-substructures associated
with the attacks in the path from the root to N . Let [Θi, ki]
be an a-structure attacking [Θ, k] s.t. [Θi, ki] has no a-
substructures in Σ. Then the node N has a child node Ni

labelled with [Θi, ki]. If there is no a-structure attacking
[Θ, k] satisfying the above condition, then N is a leaf.

The condition involving the set Σ avoids the introduction
of a new a-structure as a child of a node N if it is already
present in the path from the root to N (resulting in a circular-
ity). This requirement is needed in order to avoid fallacious
argumentative reasoning, as discussed in (Garcı́a and Simari
2004).

Once the dialectical tree has been constructed, each com-
bined attack is analyzed, from the deepest ones to the one

(a) (b)
Figure 9: Dialectical Tree and Justification analysis.

against the root, in order to determine the undefeated nar-
rowing of each node in the tree.
Definition 21 (Undefeated narrowing of a Node). Let
T[Φ, h] be an accrued dialectical tree for [Φ, h]. Let N be

a node of T[Φ, h] labelled with [Θ, k]. Then the undefeated
narrowing of N is defined as follows:

1. If N is a leaf node, then the undefeated narrowing of N
is its own label [Θ, k].

2. Otherwise (i.e., if N is an internal node), let M1, ..., Mn

be the child nodes of N and let [Λi, k] be the undefeated
narrowing of the a-structure labelling the child node Mi,
1 ≤ i ≤ n. Then the undefeated narrowing of N is the
undefeated narrowing of [Θ, k] associated with the com-
bined attack involving all the [Λi, k], 1 ≤ i ≤ n.

Example 16. Fig. 9a shows the dialectical tree for [Φ, x]. Fig.
9b shows the dialectical tree for [Φ, x], where the undefeated nar-
rowings of each node are highlighted. The preference relation is
assumed the same as for sequential degradations in Figs. 7 and 8.
Additionally, we assume that [Ψ4,∼s]À [{s —< p}, s], and thus
[Ψ4,∼s] defeats a narrowing of [Ψ1,∼z]. We also assume that
although [Ψ1,∼z] is preferred over [{(z —< t), (z —< v)}, z], the
undefeated narrowing of [Ψ1,∼z] ([{∼z —< w},∼z]) is not, and
thus its attack against [Φ, x] does not succeed.

Definition 22 (Justified a-structure). Let P be a DeLP pro-
gram and let h be a literal. Let [Φ, h] be a maximal a-
structure for h such that the undefeated narrowing of [Φ, h]
in T[Φ, h] is a non empty a-structure [Φ′, h]. Then we say

that [Φ′, h] is a justified a-structure for its conclusion h.
According to the dialectical tree in Fig. 9b,

[{(x —< z), (z —< t), (z —< v), }, x] is a justified a-structure
for x.

The following property establishes that the a-structure
emerging as a result of the above dialectical process cannot
involve contradictory literals.
Property 3. Let P be a DeLP program, and let [Φ, h] be a
justified a-structure w.r.t. P. Then there exist no intermediate
conclusions k and r in [Φ, h] which are in disagreement.

Argument, Dialogue and Decision NMR-2008

127

Related Work
There has been some previous research in argumentation
concerning the treatment of accrual of reasons. In (Prakken
2005), Prakken enunciates three desirable principles that
“any formal treatment of accrual should satisfy”. The first
principle says that “accruals are sometimes weaker than
their elements” due to the possibility of accruing reasons
are not independent. The second principle states that “any
‘larger’ accrual that applies, makes all its ‘lesser’ versions
inapplicable”. Intuitively, that means that we should always
accrue as many arguments as possible, even if in the end
the accrual is outweighed by a conflicting accrual. The third
principle states that “flawed reasons or arguments may not
accrue”. That means that when an individual argument turns
out to be flawed, it should not take part in the accrual.

Indeed, our framework satisfies all these principles. The
first principle is satisfied since no assumption on the pref-
erence relation is made. Indeed, we introduced the notion
of bottom-up sequential degradation in order to obtain a
sound result when calculating the undefeated narrowing (as-
sociated with a given combined attack) of an accrual that
is weaker than its elements. The second principle is triv-
ially verified since the dialectical acceptance analysis only
considers maximal a-structures. Finally, although the third
principle is not verified in a strict sense, its underlying pur-
pose is. That is, we first allow that all arguments accrue (in a
maximal a-structure), and then we let the dialectical analysis
(based on the notion of partial defeat) to rule out the flawed
parts of the accrual. In the end, no flawed argument will be
present in a justified a-structure.

In (Prakken 2005), Prakken also presents a formaliza-
tion of accrual associated with the principles enunciated,
that adapts the way of modeling accrual of reasons in
Reason-Based Logic (Hage 1996) to an argument-based set-
ting. This formalization is based on a combination of two
widely recognized argument-based logics: Dung’s abstract
approach to argumentation (Dung 1995) instantiated with
Pollock’s approach to the structure of arguments (Pollock
1994). Prakken defines accrued arguments (or just accru-
als) as a special kind of defeasible derivations involving la-
bels. Given a knowledge base (KB), consisting of a set of
defeasible rules, defeasible derivations can be structured as
described next. Defeasible rules in the knowledge base ap-
ply only to unlabeled premises, and when applied “produce”
their conclusion labeled with such premises. Also, there ex-
ists a special accruing inference rule that from any set of
labeled versions of a certain formula produces an unlabeled
version. Then, the latter can in turn be used as a premise
of another defeasible rule in the knowledge base, and so on.
Consider the following KB:

r1 : b ⇒ a r3 : c ⇒ b c f
r2 : d ⇒ a r4 : f ⇒ ∼b d

Fig. 10 shows two derivations for a. The one on the left
represents an accrual of two reasons for a, whereas the other
represents the accrual of only one reason for a.

The attack relation between arguments is triggered by a
particular notion of conflict between formulas. Two formu-
las are in conflict only if they are complementary and they
are both unlabeled or have the same label. In this way, with

Figure 10: Prakken’s accruals as labeled derivations

the labeling-unlabeling derivation and this particular notion
of conflict, a reasoning process as in Reason-Based Logic
is achieved, where each time a defeasible conclusion is pro-
duced, first all reasons for and against it are combined into
two conflicting accruals, then the conflict between the two
accruals is adjudicated, and only then the winning defeasi-
ble conclusion can be used in the rest of the reasoning pro-
cess. Finally, a graph of attacks representing all the accruals
and the attacks among them is constructed, which is then
analyzed under the selected Dung’s semantics in order to
determine the status of accruals.

Unlike our formalization, Prakken’s approach considers
not only the maximal accruals in the status analysis, but all
possible accruals for each conclusion. In other words, the
graph of attacks will contain one node for each possible ac-
crual derivable from the KB. Then, in order to satisfy the
second principle of accrual a special ‘construction’ (Accrual
undercutter) is introduced. The instances of this construc-
tion can also be represented as nodes in the graph of attacks,
and they are used to state that when a given set of reasons
for the same conclusion accrues, no proper subset accrues.
Fig. 11 shows two derivations, A1 and A2, representing two
different (individual) reasons for a, and a third derivation
B representing a reason for ∼b. It also shows a part of the
graph of attacks generated by the system from the KB (the
part relevant to the conclusion a). In the graph there are three
accruals for a, the one accruing only A1, the one accruing
only A2 and the one accruing A1 and A2. There is also an
instance of an accrual undercutter (depicted as an accrual
but with conclusion ‘∗’) stating that if A1 and A2 success-
fully accrue (i.e., neither A1 nor A2 is flawed), then all the
‘lesser’ accruals are undercut (note the arrows between the
accrual undercutter and the lesser accruals). Finally, there is
also an accrual for ∼b, involving only the derivation B. As
the derivation A1 contains b as intermediate conclusion, the
accrual for ∼b attacks each accrual involving A1. For this
graph, Dung’s grounded extension coincides with the unique
preferred extension, and is the set containing the accrual for
∼b and the accrual for a involving only A1. Note that the
latter is the ’larger’ accrual for a not containing flawed rea-
sons.

In Verheij’s Cumula system (Verheij 1996; 1995), accrual
of reasons is carried out in two ways: through the notion of
argument (where the conclusion or intermediate conclusions
can be supported by more than one reason) and through the
notion of compound defeat (which in its more general ver-
sion allows to state that a certain set of arguments for the
same conclusion defeats another set of arguments also for
the same conclusion). In Cumula, the status of arguments
is defined using a Dung-like semantics. According to this
semantics, an argument is defeated if one of its subargu-

Argument, Dialogue and Decision NMR-2008

128

Figure 11: Graph of attacks

ments is defeated, and if a given argument is defeated, all
its narrowings are also defeated. As analyzed by Prakken
in (Prakken 2005), although Verheij’s approach satisfies the
three principles of accrual described above, the second one
is satisfied in a way that is too strong. Because of the condi-
tion imposed by Verheij’s semantics that if an accrual is de-
feated then all its narrowings are also defeated, it cannot be
modeled a situation where an accrual is defeated because of
subargument defeat so that some of its lesser versions (nar-
rowings) can be undefeated.

Finally, it must be remarked that some defeasible logics
(e.g., Defeasible Logic (Governatori et al. 2004)) incorpo-
rate the notions of team defeat, which is in some respect
similar to the notion of accrual.

Valuable features of our approach
Next we will summarize the most valuable features of our
approach, contrasting it with Prakken’s and Verheij’s ap-
proaches.

An extension of DeLP to model Accrual
In first place, DeLP is of particular interest so that adding
to it the capability of modeling accrual is significant in it-
self. DeLP has been applied in several real-world domains
(Chesñevar, Maguitman, and Simari 2006), and so this new
capability can be used to improve those existing applica-
tions.

There exists another advantage of using DeLP as a ba-
sis of our approach to model accrual. Several extensions
of DeLP have already been developed, notably P-DeLP
(Alsinet et al. 2008), a formalism that incorporates to DeLP
the treatment of possibilistic uncertainty and fuzzy knowl-
edge. This extension to DeLP can be applied almost directly
to our approach for modeling accrual.

Finally, the argumentation mechanism proposed by DeLP
is intended to answer queries from a given program, per-
forming this task very efficiently. For instance, the anal-
ysis to determine if a given conclusion is justified (query)
is formalized as a dialectical procedure, where only those
attacking arguments which are relevant to the status of the
analyzed conclusion are considered, leading to an optimized
way of answering the query. Moreover, pruning strategies
were defined for this dialectical procedure in order to im-
prove efficiency. Our approach to model accrual inherits all
these features from DeLP. On the other hand, the approaches
of Prakken and Verheij define the status of arguments using

Dung-like semantics. This semantics considers all the argu-
ments in the system in order to state the set (or the alterna-
tive sets) of accepted arguments. Certainly, the query-driven
feature of our approach is not a general advantage over the
approaches of Prakken and Verheij, but can be valuable for
achieving efficient argumentation in interactive real-world
applications.

Efficiency of the formalization: a comparison with
Prakken’s approach
In the dialectical procedure proposed by our approach only
maximal accruals are considered. On the other hand, in
Prakken’s approach, not only maximal accruals, but also all
the lesser ones are considered. Then, if there exist n differ-
ent individual reasons for a given conclusion x, Prakken’s
system will construct one accrual supporting x for each
nonempty subset of this n reasons, which implies a num-
ber of accruals for x that is exponential on n (concretely,
it is 2n − 1). Consider again the KB presented in the pre-
vious section and its associated graph of attacks (see Fig.
11). Note that as there exist two different reasons for a, A1

and A2, three accruals for a must be considered: the one
involving only A1, the one involving only A2 and the one
involving A1 and A2. In our formalization, the same an-
swer is obtained after constructing and analyzing the small
dialectical tree shown in Fig. 12a.

(a) (b)

Figure 12: Accrued Dialectical Trees

This situation becomes more evident if (for instance) we
add one more reason for a. Consider if we add the rule
r5 : e ⇒ a, together with the fact e. Fig. 13 shows the graph
of attacks constructed by Prakken’s system for the new KB.
Note that as there exist three different reasons for a, then
7 = 23 − 1 accruals for a are considered. Moreover, the
number of accrual undercutters is also exponential on the
number of individual reasons for the associated conclusion.
Finally, the number of attacks is also considerable. Firstly,
each accrual undercutter involving k reasons attacks all the
accruals involving a proper (non empty) subset of these k
reasons, which implies a number of attacks exponential on
k (concretely, 2k − 2 attacks). Besides, a conflict with an
individual reason implies one attack against each accrual in-
volving this reason. Consider the case in Fig. 13. As the
accrual for ∼b contradicts the intermediate conclusion b in
the derivation A1, then the former attacks all the accruals in-
volving A1. In conclusion, the number of nodes and arrows
in the graph of attacks grows exponentially with the num-

Argument, Dialogue and Decision NMR-2008

129

ber of individual accruing reasons, so that the computation
of Dung’s semantics becomes more complex. In contrast,
in our formalization, the same answer is obtained after con-
structing and analyzing the small dialectical tree shown in
Fig. 12b.

Figure 13: Graph of attacks

Explanations for justified conclusions
In the literature, an argument is often regarded as an expla-
nation for a certain literal. In (Garcı́a, Rotstein, and Simari
2007) a broader notion of explanation is proposed as pro-
viding the necessary information to understand the warrant
status of a literal, helping to comprehend and analyze an-
swers provided by argumentation systems based on dialecti-
cal proof procedures (as is the case for DeLP). This also ap-
plies as a potential feature in our proposal, not exhibited by
other frameworks which formalize the status of arguments
using Dung’s semantics.

Conclusions
In this paper we have proposed a novel formalization to
model the accrual of arguments based on the notion of ac-
crued structure, which accounts for different arguments sup-
porting a given conclusion. We have shown how accrued
structures can be in conflict in terms of the notions of par-
tial attack and defeat, from which defeated and undefeated
narrowings can be identified. The notions of combined at-
tack and sequential degradation were also defined, allowing
us to characterize a dialectical process which has as an in-
put a maximal a-structure [Φ, h] for a given conclusion, and
gives as an output a justified a-structure (if any) which cor-
responds to a narrowing of [Φ, h]. We have also shown that
our formalization satisfies Prakken’s principles for model-
ing accrual and we enunciated an interesting property (Prop.
3) of our approach which suggests an additional principle:
accrued structures which are ultimately accepted as justi-

fied should not involve conflicting arguments. Finally, we
described some valuable features of our approach.

It must be noted that there are several real-world prob-
lems in which accrual of arguments plays a major role (e.g.
legal reasoning, social networks, etc.). Part of our current
work involves representing those problems in terms of our
formalism, analyzing the obtained results. In order to test
the applicability of our proposal we are developing an imple-
mentation of our formalization using the DeLP system 3 as a
basis. We are studying different theoretical results emerging
from our proposal which could help to speed up the compu-
tation of accrued dialectical trees. Research in this direction
is currently being pursued.

References
Alsinet, T.; Chesñevar, C. I.; Godo, L.; and Simari, G. R.
2008. A logic programming framework for possibilistic ar-
gumentation: Formalization and logical properties. Fuzzy
Sets Syst. 159(10):1208–1228.
Besnard, P., and Hunter, A. 2001. A logic-based theory of
deductive arguments. Artif. Intell. 128(1-2):203–235.
Chesñevar, C. I.; Maguitman, A. G.; and Simari, G. R.
2006. Argument-Based Critics and Recommenders: A
Qualitative Perspective on User Support Systems. Journal
of Data and Knowledge Engineering 59(2):293–319.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence
77(2):321–358.
Garcı́a, A., and Simari, G. 2004. Defeasible logic pro-
gramming: An argumentative approach. Theory Practice
of Logic Programming 4(1):95–138.
Garcı́a, A. J.; Rotstein, N. D.; and Simari, G. R. 2007.
Dialectical explanations in defeasible argumentation. In
ECSQARU, 295–307.
Governatori, G.; Maher, M. J.; Antoniou, G.; and Billing-
ton, D. 2004. Argumentation semantics for defeasible
logic. J. Log. and Comput. 14(5):675–702.
Hage, J. 1996. A theory of legal reasoning and a logic to
match. Artificial Intelligence and Law 4(3–4):157–368.
Pollock, J. L. 1994. Justification and defeat. Artificial
Intelligence 67(2):377–407.
Prakken, H., and Sartor, G. 1997. Argument-based ex-
tended logic programming with defeasible priorities. Jour-
nal of Applied Non-Classical Logics 7(1):25–27.
Prakken, H. 2005. A study of accrual of arguments, with
applications to evidential reasoning. In ICAIL ’05: Pro-
ceedings of the 10th international conference on Artificial
intelligence and law, 85–94. New York, NY, USA: ACM.
Verheij, B. 1995. Accrual of arguments in defeasible argu-
mentation. In Proceedings of the 2nd Dutch/German Work-
shop on Nonmonotonic Reasoning, 217–224.
Verheij, B. 1996. Rules, Reasons, Arguments: Formal
studies of argumentation and defeat. Doctoral dissertation,
University of Maastricht.

3See http://lidia.cs.uns.edu.ar/delp

Argument, Dialogue and Decision NMR-2008

130

An Abstract Argumentation Framework for Handling Dynamics

Nicolás D. Rotstein and Martı́n O. Moguillansky and
Alejandro J. Garcı́a and Guillermo R. Simari

Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET)
Artificial Intelligence Research and Development Laboratory

Department of Computer Science and Engineering
Universidad Nacional del Sur – Bahı́a Blanca, Argentina

e-mail: {ndr,mom,ajg,grs}@cs.uns.edu.ar

Abstract

This article introduces the notion of dynamics into the con-
cept of abstract argumentation frameworks, by including the
concept of evidence to rule the validity of arguments when
considering a particular situation. The proposed formalism
is a refinement of Dung’s abstract argumentation framework,
to which many extensions have been defined. Our claim is
that this idea could be enriched by the dynamic theory we are
proposing. The main subject of this paper is the definition of
the Dynamic Argumentation Framework, from which a static
instance can be obtained. This instance is shown to be equiv-
alent to the widely adopted Dung’s framework. Therefore,
multiple frameworks can be obtained from different instances
of a given dynamic framework.

Introduction and Background
In this article we present a new abstract argumentation
framework capable of dealing with dynamics through the
consideration of a varying set of evidence. Certain configu-
rations of the set of evidence will determine an instance of
the framework in which some arguments hold and others do
not. The extended formalization, which is coherent with the
original abstractions, will provide the opportunity to tackle
new problems and applications.

Frameworks for abstract argumentation have gained wide
acceptance, and are the basis for the implementation of
concrete formalisms (Dung 1995). The original proposal
by Dung defines an abstract framework and several no-
tions of acceptability of arguments. Since then, many ex-
tensions were introduced to enrich this approach, not only
by defining new semantics (i.e., different ways of accept-
ing arguments) (Baroni and Giacomin 2007), but also by
adding properties to the framework (Amgoud, Cayrol, and
Lagasquie-Schiex 2004; Wyner and Bench-Capon 2007;
Martı́nez, Garcı́a, and Simari 2007) thus broadening the field
of application of the original contribution –a survey about
the applications of argumentation can be found in (Bench-
Capon and Dunne 2007). Part of the argumentation commu-
nity is moving in this direction, thus evolving the notion of
abstract argumentation framework, which have proven to be
suitable to model dialogues, negotiation processes and de-
cision making mechanisms. The combination of argumen-

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tation and other disciplines is also under study, like belief
revision (Rotstein et al. 2008). The spread of argumentation
into the knowledge representation area is very promising,
and this article aims to keep up with it by exploring a new
line that could contribute to the expansion of the existing
subareas. That is, the objective of this article is two-fold: it
provides an extension of the existing theory and it also can
be used as a base to enrich current abstract models.

In this article, we extend the classic theory of abstract
argumentation (Chesñevar, Maguitman, and Loui 2000;
Prakken and Vreeswijk 2000) to cope with the dynamics
of evidence. The framework defined here is a refinement
of Dung’s, attempting to take a step forward into a not-so-
abstract form of argumentation. In the literature, an argu-
ment is treated as an indivisible entity that suffices to support
a claim, whereas here arguments are also indivisible, but
they play a smaller role: they are aggregated in structures.
These argumental structures can be thought as if they were
arguments (in the usual sense), but they do not always guar-
antee their actual achievement of the claim. Moreover, in the
literature arguments are often considered as completely ab-
stract entities, with no regard about their composition. Here,
we not only use arguments to generate structures, but we
also explicitly mention a set of premises and a claim within
both arguments and structures. The consideration of these
features, i.e., premises, inference and claims, has been part
of the literature on logic, argumentation, and critical think-
ing from the early stages of the area (see (Toulmin 1959;
Walton 1996) and more recently in (Chesñevar et al. 2006)).

The association of a set of premises to each argument
leads us to the consideration of the role of evidence. We
rely on the available evidence in order to determine whether
arguments actually support their claim; this notion will be
translated in terms of argumental structures later on. The
study of the variation of the set of evidence and its impact
on the status of arguments (i.e., whether they can be used
to make inferences) is one of the main contributions of this
article, since it is the foundation of the dynamic framework.
The other important contribution is the equivalence between
Dung’s framework and what we call a static instance of the
DAF. We try to move forward in this direction, provided that
“static” argumentation frameworks have been analyzed quite
deeply in the last few years, since Dung’s seminal work. Al-
though the dynamic framework here proposed is enriched

Argument, Dialogue and Decision NMR-2008

131

with a number of features, we establish a relation that keeps
us close to the results accomplished in the area.

The article is organized in the following way: the next
section provides the theoretical elements (some of them
adapted from their standard form) in order to define the dy-
namic framework; the second section gathers the theory pre-
viously defined and formalizes the new framework; after-
wards, there is a section devoted to ongoing work regarding
this research line; finally, the last section summarizes the re-
sults achieved in this paper and describes further extensions
to the dynamic framework.

Preliminary Definitions
In this section we give the preliminary definitions from
which the dynamic framework can be built. First, we define
what an argument is, its relation with the set of evidence,
and expected behavior. Then, we organize arguments in ar-
gumental structures, which provide arguments with a con-
text when speaking of activeness (the actual availability of
arguments to perform reasoning).

Argument
Arguments are pieces of reasoning that provide backing for
a claim from a set of premises. These basic premises are
considered as the argument’s support. In the argumentation
frameworks theory it is usually assumed that these premises
(thus, the arguments they belong to) always hold, since
frameworks show a snapshot of what is happening. How-
ever, as we are defining a dynamic system, it is natural to
consider that some premises could be not satisfied. That is,
we should account for what is not happening. Therefore,
we must distinguish between what we call active and inac-
tive arguments. In this article, arguments deemed as active
will be those capable of actually achieving their claim. This
will depend on whether the argument’s premises are satis-
fied, i.e., available either as evidence or claims of other ac-
tive arguments. On this matter, a piece of evidence could be
considered as a claim supported by an empty argument, or
it could be treated separately, as a unique entity. In this ar-
ticle, we choose the latter option. Although we believe that
the notion of evidence could be related to that of a claim,
we also believe it represents a different concept. We could
also consider a piece of evidence as a claim that needs no ar-
gument; evidence is there, beyond discussion. In contrast to
the concept of active argument we introduce the definition of
inactive argument as an argument that, in concordance with
the current situation, is incapable of achieving its claim.

Given an argument A, we will identify both its claim
and support through the functions cl(A) and supp(A),
respectively. In the same way, given a set Args of argu-
ments, we assume a function returning the set of all the
claims in Args: clset(Args) = {cl(A) | A ∈ Args},
and a function returning the set of all the premises in Args:
suppset(Args) =

⋃
A∈Args supp(A). Finally, since argu-

ments are representing reasoning steps, we assume them as
being minimal and self-consistent: no premise is the claim
itself1, and the combination of claim plus premises is non-

1This is not the usual restriction for minimality, but it is as far

contradictory (see Definition 3). In this article, we say that
two sentences are contradictory or inconsistent if they can-
not be assumed together.

Definition 1 (Set of Evidence) A set of evidence is a con-
sistent set of facts representing the current state of the world.

Evidence is considered an indivisible and self-conclusive
piece of knowledge that could come from perception, com-
munication, or might be just agent’s own knowledge (e.g., its
role). As stated before, evidence “triggers” some arguments,
which we will call active. It is important to say that, through-
out this article, when we refer to a set of evidence, we as-
sume that it is consistent.

Definition 2 (Argument Support) Given an argument A
the argument support forA is a set of premises supp(A) =
{s1, . . . , sn}, where each premise si can be either evidence
or a claim of another argument.

In what follows, arguments will be noted as a pair, where
its first element is the argument’s set of premises, and
the second one, its claim. For instance, if supp(A) =
{a, b} and cl(A) = y, we will note this argument as
A = 〈{a, b}, y〉. Once the support and claim of an argu-
ment are clear (or when they are irrelevant), arguments will
be called just by their name.

Definition 3 (Argument) An argument A is a pair
〈{s1, . . . , sn}, α〉, verifying:

• {s1, . . . , sn, α} is consistent;
• there is no si ∈ supp(A) such that si = α.

Example 1 Assume an argument A for considering a route
as being dangerous because there are known thieves in that
area and the security there is poor. Then, we have that
supp(A) = {th, ps} and cl(A) = dr. Consider also an
argument B saying that underpaid cops might provide poor
security; then supp(B) = {upc} and cl(B) = ps. These
two arguments are depicted as triangles in Figure 1, each
with its corresponding set of premises on its base, and the
claim on top.

ps th

dr

upc

ps

A B

Figure 1: Arguments for dr and ps.

From the definition of argument support, it is clear that
a premise of an argument could be “instantiated” in many
ways; that is, by evidence or another argument’s claim. The
latter case gives rise to a larger, more complex structure
comprising other arguments. This set of arguments will be
called an argumental structure, as described in Definition 7.

The active/inactive status of an argument might involve
other arguments: sometimes it is not evidence what will be

as we can go when KR is made through abstract arguments.

Argument, Dialogue and Decision NMR-2008

132

directly activating arguments, but supporting arguments –
which are arguments achieving a part of the support of oth-
ers. That is, an argument could be activated by other argu-
ments, rather than by evidence; they, in turn, are to be acti-
vated by evidence or by their own supporting arguments, and
so on, until the last argument is based solely on evidence.

Definition 4 (Supporting Argument) An argument B is a
supporting argument of an argument A iff cl(B) ∈
supp(A). Let cl(B) = s, then we say that B supports
A through s.

The support of an argument A could lack some pieces
of evidence, but other arguments could provide their claims
as if they were evidence, so A should be considered active.
However, there will be conditions for an argument to be con-
sidered coherent, thus preventing some arguments from be-
coming active. This will be clear next, with the (recursive)
definition for an active argument, but before we introduce
the notion of coherent argument.

Definition 5 (Coherent Argument) An argument A is co-
herent wrt. a set E of evidence iff A verifies the following
properties:

• (Consistency wrt. E) An argumentA is consistent wrt. E
iff cl(A) does not contradict any evidence in E.

• (Non-Redundancy wrt. E) An argument A is non-
redundant wrt. E iff cl(A) �∈ E.

Redundant arguments wrt. evidence are not harmful, they
just introduce new information that is not going to be useful
–since evidence is beyond discussion and needs no reasons
supporting it. In opposition, inconsistent arguments wrt. ev-
idence may be harmful, since they could be used to activate
other arguments, rendering invalid all that reasoning chain,
thus requiring further restrictions in order to allow the con-
struction of valid reasoning chains.

From now on, we will assume that any given argument is
coherent wrt. the set of evidence corresponding to the con-
text the argument is immersed into, unless stated otherwise.

Definition 6 (Active Argument) Given a set Args of argu-
ments, a set E of evidence, a coherent argumentA ∈ Args
is active wrt. E iff for each s ∈ supp(A) either:

• s ∈ E, or
• there is an active argument B ∈ Args that supports A

through s.

Example 2 Consider Example 1. If the set of evidence is
E2 = {th, upc}, then A is active, because it can be acti-
vated by the evidence ‘th’ and the active (supporting) argu-
ment B for ‘ps’.

Example 3 From Example 2, if we consider a set of ev-
idence Eps = {poor security} ∪ E2, then argument
B would be incoherent due to its redundancy wrt. Eps.
In contrast, if we consider the set of evidence Enps =
{¬poor security} ∪ E2, then argument B should also be
incoherent, because it would be inconsistent wrt. Enps. In
both cases B would not be active because is incoherent.

RegardingA, from the set Eps, it becomes active directly
from evidence, whereas from the set Enps, it ends up being

inactive since its premises are left unsupported: although B
achieves ‘ps’, it is not compliant with the consistency argu-
ment constraint.

From what we have defined, an argument could be inac-
tive because: it might not have enough evidence and/or ac-
tive arguments to support it, and/or it might not comply with
at least one constraint. In both cases an inactive argument
fails in being a support for reaching its associated claim.

Finally, regarding attacks between arguments, there is a
normality condition to be taken into account: for a given
set of arguments, it must contain every pair of arguments
holding claims in contradiction.

Assumption 1 Let Args be a set of arguments and R ⊆
Args × Args, an attack relation. Given two arguments
{A,B} ⊆ Args, A = 〈{·}, c1〉, B = 〈{·}, c2〉, if c1 and c2

are in contradiction, thenARB or BRA.

Argumental Structures
The aggregation of arguments via the support relation needs
further formalization, giving rise to the concept of argumen-
tal structure. Next, we will introduce this core element.

Definition 7 (Argumental Structure) Given a set Args of
arguments, an argumental structure for a claim α from a set
of arguments Σ∗ ⊆ Args is a tree of arguments Σ verifying:

1. The root argument Atop ∈ Σ∗, called top argument, is
such that cl(Atop) = α;

2. An inner node is an argumentAi ∈ Σ∗ such that for each
of its premises β ∈ supp(Ai) there is at most one child
argumentAk ∈ Σ∗ supportingAi through β.

3. A leaf is an argument Ak ∈ Σ∗ such that there is no ar-
gumentAk ∈ Σ∗ supporting it.

Regarding notation for an argumental structure Σ:

• The support of Σ is defined as:

supp(Σ) = suppset(
⋃

k(Ak)), for every leaf Ak ∈ Σ
• The claim of Σ is noted as cl(Σ) = α.
• The set of arguments belonging to Σ is noted as Σ∗.

Note that the supp(·) and cl(·) functions are over-
loaded: now they are applied to argumental structures. This
is not going to be problematic, since either usage will be
rather explicit. From now on, when clear enough, we will
refer to argumental structures just as ‘structures’.

Example 4 From Example 2 we have the argumental struc-
ture Σ4, such that Σ∗

4
= {A,B} (illustrated in Figure 2),

where its support is supp(Σ4) = {th, upc} and its claim
is cl(Σ4) = cl(A) = dr. Note that the support of Σ4 is
different from the set of all premises in it: suppset(Σ4) =
{upc, ps, th}; finally, its set of claims is clset(Σ4) =
{ps, dr}.

However, the definition for an argumental structure is not
enough to represent knowledge in a sensible way. For in-
stance, it allows for contradictory claims in a pair of argu-
ments belonging to the same structure. Therefore, we have
to define what is considered a well-formed argumental struc-
ture, but in order to do this we need the definition for transi-
tive support.

Argument, Dialogue and Decision NMR-2008

133

ps th

dr

A

B
upc

Figure 2: Argumental structure for dangerous route (dr).

Definition 8 (Transitive Support) An argument Ai tran-
sitively supports an argument Aj iff there is a sequence
of arguments [B1, . . . ,Bn] where cl(Ai) ∈ supp(B1),
cl(Bn) ∈ supp(Aj) and cl(Bk) ∈ supp(Bk+1), with
1 ≤ k ≤ n− 1.

Definition 9 (Well-Formed Argumental Structure) An
argumental structure Σ is well-formed iff Σ verifies the
following properties:

• (Consistency) For each argument Ai ∈ Σ∗ there is no
argumentAk ∈ Σ∗ (i �= k) such that AiRAk;

• (Non-Circularity) No argumentAi ∈ Σ∗ transitively sup-
ports an argumentAk ∈ Σ∗ if cl(Ak) ∈ supp(Ai).

• (Uniformity) If a premise β ∈ suppset(Σ) is supported
by an argument B ∈ Σ∗, then for every Ai ∈ Σ∗ having
β as a premise, B supports Ai through β.

The property of consistency invalidates inherently con-
tradictory argumental structures. The requirement of non-
circularity avoids taking into consideration structures yield-
ing a fallacious reasoning chain, where an argument ends up
being transitively supported by itself. Finally, the restriction
of uniformity refrains non-minimal structures to be deemed
as well-formed, it does not allow heterogeneous support for
a premise throughout a structure. These constraints are de-
fined so we can trust a well-formed structure as a sensible
reasoning chain, independently from the set of evidence.
The consideration of a set of evidence is part of the notion
of active argument, which is addressed in Definition 11.

Example 5 The following sets of arguments are argumental
structures, but they are not well-formed 2:

b

a

A3

¬a
A2

c
A1

c

a

A3

b
A2

a
A1

c

a

A3
b

A2
x
A1

b

c

a

A3
b

A2
x
A1

y
A4
b

Σ4 Σ5 Σ6 Σ7

• Σ4 violates the consistency property, due to A1 and A3

achieving contradictory claims.

2Here, we assume a propositional language for claims and
premises, where strong negation indicates contradiction.

• Σ5 violates the non-circularity property, since
A1 = 〈{a}, b〉 transitively supportsA3 = 〈{c}, a〉.

• Σ6 and Σ7 violate the uniformity property:
– in Σ6, the premise ‘b’ has two occurrences, but is sup-

ported by A1 in one case, and left unsupported in the
other.

– in Σ7, the premise ‘b’ is supported by two different ar-
guments.

Example 6 The following sets of arguments do compose
well-formed argumental structures:

c

a

A3
b

A2
x
A1

y

c

a

A3
b

A2
x
A1

x
A1

b

Σ8 Σ9

• Structure Σ8 presents no controversy, is a simple argu-
mental structure.

• Structure Σ9 shows a case similar to that of Σ8. How-
ever, premise ‘b’ is always supported by the same argu-
ment (A1) therefore verifying the uniformity property.

From now on, we will assume that any given argumental
structure is well-formed, unless stated otherwise.

Definition 10 Let Σ∗ = {A} be the set of arguments of
the argumental structure Σ, then Σ is called a primitive ar-
gumental structure and supp(Σ) = supp(A), cl(Σ) =
cl(A).

The concept of primitive argumental structures shows that
an argument can be seen as a particular case of an argumen-
tal structure.

Now that we have defined what a well-formed argumen-
tal structure is, we can introduce the notion of active ar-
gumental structures. This will allow us to recognize those
structures that are capable of achieving their claims when
considering the current situation.

Definition 11 (Active Argumental Structure) Given a set
E of evidence, a well-formed argumental structure Σ is ac-
tive wrt. E iff supp(Σ) ⊆ E and every A ∈ Σ∗ is a coher-
ent argument wrt. E.

This definition states an important property: the premises
of an active argumental structure is composed just by evi-
dence. This puts this concept nearer to the notion of active
argument, showing that argumental structures can be seen as
arguments in the usual way if their inner composition is ab-
stracted away. The definition also requires every argument
to be coherent wrt. the set of evidence, therefore some well-
formed structures having their support satisfied by evidence
will not be active due to some argument being redundant
and/or inconsistent wrt. the evidence. Note that coherence

Argument, Dialogue and Decision NMR-2008

134

cannot be put as a requirement for a well-formed structure,
since it is tied to a particular set of evidence.

Example 7 (Extends Example 5) Consider E7 = {b, x, y}
to be a set of evidence, then structure Σ8 is not an active
structure, because A1 is redundant wrt. E7.

There is a subtle relation between active arguments and
active argumental structures that will be made explicit by
the following propositions.

Proposition 1 If Σ is an active argumental structure wrt. a
set E of evidence, then every sub-argument of Σ is an active
argument wrt. E.
Proof: By construction of an active structure Σ wrt. E, let
Atop be its active (thus coherent) top argument. Therefore,
either supp(Atop) ⊆ E, or some premise β ∈ supp(Atop)
is supported by an active argument Ai. In the latter case,
Ai is included into Σ, and then the same analysis is made
regarding the premises of Ai. The construction of the tree
of arguments is performed recursively, and in each step an
active argument is included into Σ. Therefore, Σ contains
only active arguments wrt. E �

The reverse of the latter proposition is not true, as shown
in the following example.

Example 8 Consider a set of evidence E8 = {a, b}, and
two structures Σ1 and Σ2 such that Σ∗

1
= {A1,A2} and

Σ∗
2

= {A1}, where A1 = 〈{c}, d〉, A2 = 〈{a, b}, c〉, as de-
picted below.

c

d

A1
c

d

A1

A2
a b

Σ2

Σ1
From E8, structure Σ1 is active, but Σ2 is not. Clearly,

both argumental structures contain active arguments, but
this condition does not ensure them to be active.

Example 8 shows that, in a way, argumental structures
have to be ‘complete’ in order for them to be active. That
is, they must include all of the necessary arguments for their
top argument to be active. Only then the support of these
structures will be composed by evidence. This statement is
made clear by the results of the following two propositions.

Proposition 2 Every active argument wrt. a set E of evi-
dence is the top argument of at least one active argumental
structure wrt. E.
Proof: Let assume that there is an argument A active wrt.
E that is not the top argument of any argumental structure
active wrt. E. Since A is active, either (1) its premises are
a subset of E, or (2) some premise is supported by an ac-
tive argument B. Case (1) clashes with the assumption of A
not being the top argument of any active structure, since the
primitive structure composed just byA would be active wrt.

E. Case (2) indicates that a structure could be built contain-
ing at least A and B, and then the analysis made over A is
also applicable to B, because it should also be active wrt.
E, in order for A to be active. Hence, the recursive consid-
eration of new arguments while including them into a new
hypothetical structure ends when all the premises of the last
argument is a subset of E. This would mean that the hypo-
thetical structure is active wrt. E, leading to absurdity. This
is due to the assumption of A not being the top argument of
any argumental structure active wrt. E �

Note that Proposition 2 allows for an active argument to
be top argument of more than one active argumental struc-
ture, which is correct, as depicted in the following example.

Example 9 Consider Σ1 from Example 8, an argument
A3 = 〈{x}, c〉, and a set of evidence E9 = {a, b, x}. Then,
the following active argumental structures can be built:

c

d

A1

A2
a b
Σ1

c

d

A1

A3
x
Σ3

Note that both are well-formed active argumental struc-
tures wrt. E9 and have the same top argument.

Proposition 3 Given an active argumental structure Σ wrt.
a set E of evidence, there is no proper substructure Σi of Σ
such that Σi is active wrt. E.
Proof: Let assume that Σi is an active structure wrt. E.
Then supp(Σi) ⊆ E. Now assume that Σ is also active
wrt. E. Therefore, there is at least one premise of Σi that,
in Σ, is supported by an argument B. Consequently, one
of the following holds: (1) B is redundant wrt. E and Σ is
not an active structure wrt. E; (2) Σi has a premise that
is not evidence. Either of these cases leads to absurdity.
This is due to the assumption of Σi being an active proper
substructure of Σ �

The Dynamic Argumentation Framework
Now that we have defined the main components of our the-
ory, we will put them together in the definition of the dy-
namic argumentation framework. In the literature, argumen-
tation frameworks are usually static, in the sense that every
argument in them participates in the argumentative interplay,
without regard to the actual validity of the arguments in the
current situation. This is so because they do not consider
such a thing as a possibly changing situation, but instead are
restricted to a single snapshot.

Almost every new approach to abstract argumentation
is built on top of Dung’s argumentation framework (Dung
1995) (from now on, simply ‘AF’). This framework is de-
fined as a pair with a set of arguments and a defeat relation
ranging over pairs of them. The objective of our approach
is to extend this theory to handle dynamics. To cope with

Argument, Dialogue and Decision NMR-2008

135

this we consider a set of available evidence, which deter-
mines what arguments can be used to make inferences. If
we follow Dung’s approach, the consideration of a changing
set of arguments would involve passing from a framework
to another, but this cannot be performed lightly: what is the
relation between these frameworks? Where do the new argu-
ments come from and where do the old ones go to? Further-
more, if we are incorporating a set of evidence that activates
arguments: how does the set of evidence change? How does
the set of evidence affect the status of arguments? These
questions have to be properly addressed in order to build a
coherent dynamic framework. Therefore, next we define the
notion of attack between structures, and then, we introduce
the dynamic argumentation framework.

The notion of argumental substructure allows us to rede-
fine attacks, now in terms of structures. Before this defini-
tion, we introduce the notion of argumental substructure.

Definition 12 (Argumental Substructure) Given an argu-
mental structure Σ from a set of arguments Args, the set Σi

is an argumental substructure of Σ iff Σ∗
i ⊆ Σ∗ and Σi is

an argumental structure from Args. If Σ∗
i � Σ∗ then Σi is

a proper argumental substructure of Σ.

Note that an argumental structure is an argumental sub-
structure of itself. As with the former, we will refer to the
latter just as a ‘substructure’, when convenient.

Definition 13 (Attack Between Argumental Structures)
Given a set Args of arguments, an attack relation
R ⊆ Args × Args between arguments, and two argu-
mental structures Σ1 and Σ2 from Args, the structure Σ1

attacks Σ2 iff there is a substructure Σ′
2

of Σ2 such that
top(Σ1)Rtop(Σ′

2
).

The attack relation between arguments is composed of
pairs of arguments; that is, given two arguments A and B,
if ARB ((A,B) ∈ R), then we have that A attacks (or de-
feats) B. Equivalently, we will say thatA is a defeater for B.
When speaking of argumental structures, we use the same
vocabulary.

Remark 1 Given an argumentA from an active argumental
structure Σ, ifA is defeated by an active argumentB, then Σ
is defeated by an argumental structure whose top argument
is B.

The statement made by this remark was referred as con-
flict inheritance in (Martı́nez, Garcı́a, and Simari 2007).

Definition 14 (Dynamic Argumentation Framework (DAF))
A DAF is a pair 〈E, (U, R)〉, composed by a set E of evi-
dence, and a framework (U, R), where U is the universal
set of arguments and R ⊆ U × U is the attack relation
between arguments.

Different instances of the set of evidence determine differ-
ent instances of the DAF. Thus, when “restricting” a frame-
work (U, R) to its associated set of evidence, we can ob-
tain a (static) framework in the classical sense, i.e., a pair in
which every argument is active, and the attack relation con-
tains pairs of them. This “restriction” will be called a static
instance, and is addressed below.

Example 10 Consider the argumental structure of Exam-
ple 4, in which knowing that there are thieves in a place
and that cops there are underpaid leads us to think that that
route is going to be dangerous. Let us assume that there are
many cops (noted as ‘mc’) in the location, therefore we have
a reason to think that security there is good (‘gs’). Another
argument leading us to think of good security is that the cops
could be volunteer (‘vc’), thus more motivated to do a good
job. Nonetheless, if cops are foreigners (‘fc’), then they are
probably not acquainted with the place (un), and that could
give the idea of poor security there (‘ps’). Then, we can
build the following argumental structures:

mc

gs

A2
th ps

dr

A3

upc
A1

vc

gs

B1
un

ps

B2

fc
B3Σ2 Σ1

Σ13 Σ32
Thus, we have a DAF 〈E10, (U10, R10)〉, where the uni-

versal set of arguments is U10 = {A1,A2,A3,B1,B2,B3},
and we will consider a set of evidence E10 =
{many cops, underpaid cops, thieves}, along with an
empty attack relation R10 = ∅. Then, from set U10,
arguments A1, A2 and A3 are active wrt. E10, thus
reaching their claims good security, poor security and
dangerous route. The latter claim is achieved via the ar-
gumental structure Σ13, whose top argument is A3. The
remaining arguments B1, B2 and B3 are inactive, as well as
structures Σ1 and Σ32, since they have unfulfilled supports
wrt. E10 and thus cannot reach their claims.

A subset of the universal set will be considered as the set
of active arguments wrt. the set of evidence. This set will
contain those arguments that are to be taken into account to
perform reasoning in concordance with the current situation.

Definition 15 (Set of Active Arguments) Given a DAF
F = 〈E, (U, R)〉, the set of active arguments in F is
A = {A ∈ U | A is active wrt. E}.

Given the universal set U of arguments and the set A of
active arguments we can derive the set of inactive arguments
as U \ A. This latter set would be very useful when reason-
ing about possible worlds, potential situations, or even goals
and the plausibility of reaching them. Moreover, since the
attack relation is given over the universal set, there will be
active and inactive attacks. The latter relation (involving at
least one inactive argument) would allow us to, say, activate
defeaters for currently active arguments. These concepts can
be translated into terms of argumental structures.

Definition 16 (Set of Active Argumental Structures)
Given a DAT T and the set A of active arguments in T , the
set of active argumental structures in T is the maximal set
S of argumental structures from A.

Argument, Dialogue and Decision NMR-2008

136

Proposition 4 Given a set A of active arguments and a set S
of active argumental structures from A, then

⋃
Σ

∗∈S
(Σ∗) =

A. Proof: Trivial from Definition 16.

As in the case of arguments, the set of active structures
allows us to distinguish the set SI of inactive argumental
structures, as a set of arguments composing an argumental
structure, but containing at least one argument that is not
active.

Example 11 From Example 10, the set of active argumental
structures is: S11 = {Σ13, Σ2}. An inactive argumental
structure would be Σ32.

Definition 17 (Inactive/Active Attacks) Given a DAF
〈E, (U, R)〉 and the set of active (inactive) argumental
structures S (SI) from U wrt. E, we have:

• The active attack relation:
R = {(Σ1, Σ2) | {Σ1, Σ2} ⊆ S, Σ1 attacks Σ2}
• The inactive attack relation:

RI = {(Σ1, Σ2) | Σ1 ∈ SI or Σ2 ∈ SI, Σ1 attacks Σ2}

Static Instance of a DAF
Next, we define the static instance of a given DAF, which
we will show that is equivalent to a an AF.

Definition 18 (Static Instance) Given a DAF 〈E, (U, R)〉,
the static instance of 〈E, (U, R)〉 is the AF (S, R), where S
is the set of active argumental structures from U wrt. E, and
R is the active attack relation between structures in S. The
notation is (U, R)|E = (S, R).

Every DAF, at any moment, has an associated static in-
stance, which is an AF. Therefore, all the work done on
acceptability of arguments and argumentation frameworks
semantics can be applied to the DAF here defined, just by
finding its static instance. Moreover, since we added some
structure to the notion of argument, we can go a step further
and consider justification of claims, either in a skeptical or a
cautious way.

DAFs can be seen as a template for generating multiple
AFs representing the same knowledge applied to different
situations. The number of static instances that can be ob-
tained from a single DAF is quite large. Provided that each
argument has at least one premise (i.e., a possible evidence),
then the amount of possible evidence equals or exceeds the
amount of arguments in the universal set. Let E be this set
of possible evidence, then if we consider a universal set U of
arguments we have: |E| ≥ |U|. Considering that each pos-
sible subset of evidence composes a different static instance
of the DAF, we have that the amount of static instances is in
the order of 2E. Finally, it is now clear that there is a large
number of AFs associated to a single DAF.

Updating Evidence in a DAF
Since the set of evidence is dynamic, it defines the partic-
ular instance of the DAF that corresponds with the current
situation. In order to cope with this, the basic operation per-
formed over a DAF is the evidence update. This mechanism
should ensure the DAF reflects the new (consistent) state of
the world. To ease the legibility of the next definition, we use

the complement notation to indicate contradiction between
pieces of evidence.

Definition 19 (Evidence Update (resp., Erasure))
Given a DAF 〈E, (U, R)〉, and E1, a set of evidence such
that for every β ∈ E1, β �∈ E (resp., β ∈ E). A (multiple)
evidence update (resp., erasure) operation is such that 〈E ∪
E1, (U, R)〉 (resp., 〈E\E1, (U, R)〉).

The evidence update/erasure changes the instance of the
DAF: it makes the set of active arguments vary. In that sense,
it could be seen as a form of revision: the specification of
what holds in the world is represented by active arguments
and attacks. However, the impact of the evidence update
in these sets neither performs nor is intended as a formal
revision of the theory whatsoever.

With updates and erasures we do not change the represen-
tation (or specification) of the knowledge about the world,
but what is perceived. Our update and erasure operations to
change the set of evidence are so far treated shallowly, since
it suffices to prove the usefulness of the theory presented in
this article. However, ongoing work is devoted to reinforce
this aspect, inspired by the original definitions given in (Kat-
suno and Mendelzon 1991).

Example 12 Consider Example 10 and
a DAF 〈E10, (U10, R12)〉, where R12 =
{(A2,A1), (B1,A1), (B2,B1)}, as depicted in Fig-
ure 33. Note that arrows represent the attack relation, and
gray dashed triangles are inactive arguments.

mc

gs

A2
th ps

dr

A3

upc
A1

vc

gs

BBB1
un

ps

BBB2

fc
3BBB

Figure 3: DAF from Example 12.

Then we have:

• S12 = {Σ2, Σ13} are active argumental structures;

• SI

12
= {Σ1, Σ32} are inactive argumental structures;

• R12 = {(Σ2, Σ13)} are active attacks;

• RI

12
= {(Σ1, Σ13), (Σ32, Σ1)} are inactive attacks.

The static instance (U10, R12)|E10
is the AF (S12, R12),

which is illustrated in Figure 4(a).
If we update the set of evidence by adding knowledge

about the cops saying that they are volunteer, we have that
Σ1 becomes active, as well as its attack against Σ13, leaving
Σ32 as the only inactive structure, and (Σ32, Σ1) is the only
inactive attack. The static instance of the updated DAF is
depicted in Figure 4(b).

3Primitive argumental structures composed of A1, A3, B2 and
B3 were not represented separately for the sake of simplicity.

Argument, Dialogue and Decision NMR-2008

137

Now consider we find out that the cops are foreigners, and
that there is not as many as we were told before. Therefore,
we make an update of the piece of evidence ‘fc’ and an era-
sure of ‘mc’. This activates Σ32 and the attack (Σ32, Σ1),
and inactivates Σ2 along with its attack against Σ13. This
static instance is shown in Figure 4(c).

Σ2

Σ13

Σ2 Σ1

Σ13

(a) (b)

Σ1 Σ

Σ13

32

(c)

Figure 4: Static instances from Example 12.

Each static instance yields a particular set of accepted ar-
guments. If we pick the grounded semantics (Dung 1995):
the static instance (a) accepts just the structure Σ2; the
static instance (b) accepts Σ2 and Σ1; the static instance
(c) accepts Σ32 and Σ13. Therefore, with this semantics, the
last one is the only scenario in which we would believe the
path we are analyzing to pass through is dangerous.

In order to complete the relation between our work and
Dung’s there is also a way to obtain the associated DAF
from a static framework. We only require the static frame-
work to include arguments with an explicit set of premises
and a claim, so they can be organized in primitive argumen-
tal structures (those containing just one argument). Then,
the union of the sets of support of each argumental structure
in the system is the set of evidence, and thus we have a DAF.
However, this part of the relation is somehow weak: obtain-
ing premises and claim out of an abstract argument may be
difficult to do in a standard way. Therefore, the obtention of
a DAF from a static framework is not currently in our focus.
We are more interested in the reverse relation, so that you
can specify a DAF and capture each of its static instances
in the well-known AF format, and then make the analysis of
acceptability of arguments in the usual way. The static in-
stance of a DAF contains only active argumental structures
(i.e., all of them are used to make inferences) and an active
attack relation connecting them, so the association between
a DAF’s static instance and an AF is quite direct. This is
captured by Lemma 1.

Lemma 1 The static instance of a DAF is equivalent to
Dung’s definition for an abstract argumentation framework.
Proof: Trivial from Definition 18.

On the Applications of the DAF
This section describes some ongoing research lines that
would take advantage of the DAF. Having a dynamic set of
evidence that has a direct correlation with the set of active
arguments allows reasoning about possible situations.

Argument Theory Change
Let us consider an argumentation-based agent with a cer-
tain goal G expressed in the form of a set of accepted argu-

ments. Thus, we wish to know how should we change the
set of evidence in order to reach G. In a recent paper (Rot-
stein et al. 2008), we presented a preliminary version of the
DAF (that can be easily evolved to the current form) along
with the basics of argument theory change. In that article, a
warrant-prioritized revision operator is introduced: it intro-
duces a new argument to a DAF seeking to be accepted; it
does so by removing those arguments that interfere with this
warrant, on behalf of a minimal change criterion. Hence,
we would be able to tell which pieces of evidence are to
be dropped for an argument to be accepted. Moreover, this
approach could be extended by going in the opposite direc-
tion: bringing up the necessary evidence to activate those
arguments that (because of the attacks they activate) would
ensure the new argument to be accepted. In this way, we
could go further and tell which pieces of evidence are to be
added and which are to be dropped in order for a whole set
of arguments to be accepted, whenever possible.

Argumentation-based Agent Architecture

An agent architecture is defined over a number of compo-
nents, as the BDI model is composed by the three compo-
nents handling beliefs, desires and intentions. If the com-
ponents of an architecture are represented through a DAF,
the agent is thus capable of not only updating its perception
of the world (i.e., the set of evidence), but also change its
preferences and knowledge accordingly by adding/dropping
the necessary pieces of evidence to activate/deactivate the
corresponding arguments. An agent immersed in a dynamic
environment should be prepared to incorporate changes in
the world’s rules (i.e., the way things are interpreted); for in-
stance, an agent dedicated to schedule processes in an agent-
oriented operative system must be able to change the sched-
ule policy. If the set of evidence is kept up-to-date, the agent
will make inferences based on the current state of the world,
but it could also hypothesize about possible states represent-
ing variations of the current one, thus being able to move
towards its goal. Finally, the dynamic modification of a par-
ticular subset of evidence could allow the agent to learn from
its own experience in order to adapt.

Analysis of Legal Cases

Another application that could benefit from the usage of
the dynamic argumentation framework is the analysis of le-
gal cases. Assume that a verdict has been reached regard-
ing a certain case and that the accused was found guilty.
We have a number of allegations (i.e., arguments) that were
posed against the presumption of innocence, and arguments
against them, and so on, yielding a graph of arguments in-
terrelated by the attack relation. The argument graph is a vi-
sualization of the framework that justifies the verdict. Note
that the semantics chosen should be sensible as to classify
the presumption of innocence as a rejected argument. We
also have the set of evidence from which arguments were
based. All the arguments posed should be active, since
they were accepted at the trial. Now an appropriate mecha-
nism could be used in order to vary the set of evidence and
discover under which circumstances the convict could have

Argument, Dialogue and Decision NMR-2008

138

been found innocent (for instance, we could use the warrant-
prioritized revision operator mentioned above, in ‘Argument
Theory Change’). Moreover, we could even add to the
framework those arguments that did not have enough sup-
port from available evidence (which are inactive), and play
with the possibility of actually having that evidence. The
dynamic framework plus an appropriate mechanism could
be a useful tool to hypothesize about possible scenarios and
outcomes of an actual legal case.

Conclusions and Future Work

In this article we have presented a new approach to abstract
argumentation frameworks. Our model, as many others, is
based on Dung’s framework (AF) and represents an exten-
sion that is the basis of several research lines, some of which
were introduced in the previous section. The main subject of
this paper is the definition of the Dynamic Argumentation
Framework, from which a static instance can be obtained.
This instance was shown to be equivalent to the AF. How-
ever, throughout several examples, it was shown that the
DAF allows for a more general representation of knowledge
than the mentioned framework: it considers a varying set of
evidence that changes the base to make inferences (i.e., the
underlying static instance); therefore, multiple AFs can be
obtained from different instances of a given DAF.

Regarding future work, besides what was already dis-
cussed in the previous section, we are also interested in
exploring the capability of reasoning about possible situ-
ations, and establishing a relation with the area of modal
logics. This work is currently underway. Although this re-
search line is mainly theoretical, one of its main goals is
to make an implementation out of each application for the
DAF. This is likely to be done in Defeasible Logic Program-
ming (DeLP) (Garcı́a and Simari 2004) or an extension of it.
For instance, the formalism defined in (Rotstein et al. 2008)
found its DeLP reification in (Moguillansky et al.).

Finally, we will explore two extensions of the DAF: (1)
a more natural way to specify and build the attack rela-
tion between arguments from constraints and preferences;
(2) change operators to modify the universal set of argu-
ments and the attack relation. The first extension will in-
volve a slight change in the definition of the framework: it
will build the attack relation from the specification of a set
of constraints among claims (each constraint is an n-tuple of
claims), stating which claims cannot hold together. As ex-
pected, some constraints are implicit, such as pairs of com-
plementary claims. Once conflicts among arguments are
obtained, a preference function will decide, for each pair,
which argument prevails. The second extension acts as a
meta-level debugging tool, allowing the dynamic modifi-
cation of the sets of arguments and attacks. Note that the
modification of the universal set of arguments turns it into a
working set instead. Special care has to be taken regarding
the addition of attacks, since this may introduce new argu-
ments. The same applies to the deletion of arguments, since
some attacks will no longer be valid.

Acknowledgements
This work is partially financed by CONICET (PIP 5050),
Universidad Nacional del Sur and Agencia Nacional de Pro-
moción Cientı́fica y Tecnológica.

References
Amgoud, L.; Cayrol, C.; and Lagasquie-Schiex, M.-C.
2004. On the bipolarity in argumentation frameworks. In
NMR, 1–9.
Baroni, P., and Giacomin, M. 2007. On principle-based
evaluation of extension-based argumentation semantics.
Artif. Intell. 171(10-15):675–700.
Bench-Capon, T., and Dunne, P. 2007. Argumentation in
artificial intelligence. Artif. Intell. 171(10-15):619–641.
Chesñevar, C.; McGinnis, J.; Modgil, S.; Rahwan, I.; Reed,
C.; Simari, G.; South, M.; Vreeswijk, G.; and Willmott, S.
2006. Towards an argument interchange format. Knowl.
Eng. Rev. 21(4):293–316.
Chesñevar, C.; Maguitman, A.; and Loui, R. 2000. Logical
Models of Argument. ACM Computing Surveys 32(4):337–
383.
Dung, P. M. 1995. On the Acceptability of Arguments
and its Fundamental Role in Nonmonotonic Reasoning and
Logic Programming and n-person Games. Artificial Intel-
ligence 77:321–357.
Garcı́a, A. J., and Simari, G. R. 2004. Defeasible Logic
Programming: An Argumentative Approach. Theory and
Practice of Logic Programming 4(1):95–138.
Katsuno, H., and Mendelzon, A. 1991. On the differ-
ence between updating a knowledge base and revising it.
In Proc. of KR’91. 387–394.
Martı́nez, D. C.; Garcı́a, A. J.; and Simari, G. R. 2007.
Modelling well-structured argumentation lines. In Proc. of
Int. Joint Conf. on Artif. Intelligence IJCAI-2007, 465–470.
Moguillansky, M.; Rotstein, N.; Falappa, M.; Garcı́a, A.;
and Simari, G. Argument Theory Change Applied to De-
feasible Logic Programming. In 23rd. AAAI Conf. on Arti-
ficial Intelligence (AAAI 2008), 132–137.
Prakken, H., and Vreeswijk, G. 2000. Logical systems for
defeasible argumentation. In D.Gabbay., ed., Handbook of
Philosophical Logic, 2nd ed. Kluwer Academic Pub.
Rotstein, N. D.; Moguillansky, M.; Falappa, M. A.; Garcı́a,
A. J.; and Simari, G. R. 2008. Argument theory change:
Revision upon warrant. In Besnard, P.; Doutre, S.; and
Hunter, A., eds., COMMA, volume 172 of Frontiers in Ar-
tificial Intelligence and Applications, 336–347. IOS Press.
Toulmin, S. 1959. The Uses of Argument. Cambridge
University Press.
Walton, D. 1996. Argument Structure: A Pragmatic Theory
(Toronto Studies in Philosophy). Univ. of Toronto Press.
Wyner, A., and Bench-Capon, T. 2007. Towards an exten-
sible argumentation system. In ECSQARU, 283–294.

Argument, Dialogue and Decision NMR-2008

139

Special Session on Declarative Programming Paradigms and

Systems for NMR

For many years now, formalisms rooted in the research area of Nonmonotonic Reasoning have been used
as the theoretical foundation for declarative programming paradigms. These programming paradigms
provide expressive languages to represent nonmonotonic concepts besides other knowledge, and systems
that are implemented to automate nonmonotonic reasoning. For instance, one of the most successful of
such paradigms is Answer Set Programming.

Some of the existing NMR systems are reaching a level of maturity where serious real-world applications
can be – and are being – developed. At the same time, we are still witnessing an impressive research
effort in creating, developing and extending (nonmonotonic) declarative languages to meet the (new)
needs of specific application domains (e.g., Multi-Agent Systems, Semantic Web, Web Services, Textual
Entailment, Computational Biology).

Session Chairs

Esra Erdem, Sabanci University, Turkey
João Leite, New University of Lisbon, Portugal

Program Committee

Jose Alferes, New University of Lisbon, Portugal
Marcello Balduccini, Kodak Research Labs, USA
Chitta Baral, Arizona State University, USA
Marina de Vos, University of Bath, UK
Jürgen Dix, TU Clausthal, Germany
Thomas Eiter, Vienna University of Technology, Austria
Paolo Ferraris, Google, USA
Michael Fink, Vienna University of Technology, Austria
Norman Foo, NICTA, University of New South Wales, Australia
Alfredo Gabaldon, NICTA, University of New South Wales, Australia
Martin Gebser, University of Potsdam, Germany
Michael Gelfond, Texas Tech University, USA
Giovambattista Ianni, University of Calabria, Italy
Joohyung Lee, Arizona State University, USA
Nicola Leone, University of Calabria, Italy
Yuliya Lierler, University of Texas at Austin, USA
Fangzhen Lin, Hong Kong University of Science and Technology, Hong Kong
Marco Maratea, University of Genoa, Italy
Ilkka Niemelä, Helsinki University of Technology, Finland
Enrico Pontelli, New Mexico State University, USA
Chiaki Sakama, Wakayama University, Japan
Ken Satoh, National Institute of Informatics, Japan
Torsten Schaub, University of Potsdam, Germany
Tran Cao Son, New Mexico State University, USA
Terrance Swift, XSB Inc., USA
Mirek Truszczynski, University of Kentucky, USA

NMR-2008

140

Heuristics in Conflict Resolution

Christian Drescher and Martin Gebser and Benjamin Kaufmann and Torsten Schaub
Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, D-14482 Potsdam, Germany

Abstract

Modern solvers for Boolean Satisfiability (SAT) and Answer
Set Programming (ASP) are based on sophisticated Boolean
constraint solving techniques. In both areas, conflict-driven
learning and related techniques constitute key features whose
application is enabled by conflict analysis. Although various
conflict analysis schemes have been proposed, implemented,
and studied both theoretically and practically in the SAT area,
the heuristic aspects involved in conflict analysis have not yet
received much attention. Assuming a fixed conflict analy-
sis scheme, we address the open question of how to iden-
tify “good” reasons for conflicts, and we investigate several
heuristics for conflict analysis in ASP solving. To our knowl-
edge, a systematic study like ours has not yet been performed
in the SAT area, thus, it might be beneficial for both the field
of ASP as well as the one of SAT solving.

Introduction
The popularity of Answer Set Programming (ASP; (Baral
2003)) as a paradigm for knowledge representation and
reasoning is mainly due to two factors: first, its rich
modeling language and, second, the availability of high-
performance ASP systems. In fact, modern ASP solvers,
such as clasp (Gebser et al. 2007a), cmodels (Giunchiglia,
Lierler, & Maratea 2006), and smodelscc (Ward & Schlipf
2004), have meanwhile closed the gap to Boolean Satis-
fiability (SAT; (Mitchell 2005)) solvers. In both fields,
conflict-driven learning and related techniques have led to
significant performance boosts (Bayardo & Schrag 1997;
Marques-Silva & Sakallah 1999; Moskewicz et al. 2001;
Gebser et al. 2007d). The basic prerequisite for the ap-
plication of such techniques is conflict analysis, that is, the
extraction of non-trivial reasons for dead ends encountered
during search. Even though ASP and SAT solvers exploit
different inference patterns, their underlying search tech-
niques are closely related to each other. For instance, the
basic search strategy of SAT solver chaff (Moskewicz et
al. 2001), nowadays a quasi standard in SAT solving, is
also exploited by ASP solver clasp, in particular, the prin-
ciples of conflict analysis are similar. Vice versa, the so-
lution enumeration approach implemented in clasp (Gebser
et al. 2007b) could also be applied by SAT solvers. Given
these similarities, general search or, more specifically, con-
flict analysis techniques developed in one community can

(almost) immediately be exploited in the other field too.
In this paper, we address the problem of identifying

“good” reasons for conflicts to be recorded within an ASP
solver. In fact, conflict-driven learning exhibits several de-
grees of freedom. For instance, several constraints may be-
come violated simultaneously, in which case one can choose
the conflict(s) to be analyzed. Furthermore, distinct schemes
may be used for conflict analysis, such as the resolution-
based First-UIP and Last-UIP scheme (Zhang et al. 2001).
Finally, if conflict analysis is based on resolution, several
constraints may be suitable resolvents, likewise permitting
to eliminate some literal in a resolution step.

For the feasibility of our study, it was necessary to prune
dimensions of freedom in favor of predominant options.
In the SAT area, the First-UIP scheme (Marques-Silva &
Sakallah 1999) has empirically been shown to yield better
performance than other known conflict resolution strategies
(Zhang et al. 2001). We thus fix the conflict analysis strat-
egy to conflict resolution according to the First-UIP scheme.
Furthermore, it seems reasonable to analyze the first conflict
detected by a solver (although conflicts encountered later
on may actually yield “better” reasons). This leaves to us
the choice of the resolvents to be used for conflict resolu-
tion, and we investigate this issue with respect to different
goals: reducing the size of reasons to be recorded, skipping
greater portions of the search space by backjumping (ex-
plained below), reducing the number of conflict resolution
steps, and reducing the overall number of encountered con-
flicts (roughly corresponding to runtime). To this end, we
modified the conflict analysis procedure of our ASP solver
clasp1 for accommodating a variety of heuristics for choos-
ing resolvents. The developed heuristics and comprehensive
empirical results for them are presented in this paper.

Logical Background
We assume basic familiarity with answer set semantics (see,
for instance, (Baral 2003)). This section briefly introduces
notations and recalls a constraint-based characterization of
answer set semantics according to (Gebser et al. 2007c).
We consider propositional (normal) logic programs over an
alphabet P . A logic program is a finite set of rules

p0 ← p1, . . . , pm,∼pm+1, . . . ,∼pn (1)
1http://www.cs.uni-potsdam.de/clasp

Declarative Programming Paradigms and Systems for NMR NMR-2008

141

where 0 ≤ m ≤ n and pi ∈ P is an atom for 0 ≤ i ≤ n.
For a rule r as in (1), let head(r) = p0 be the head of r
and body(r) = {p1, . . . , pm,∼pm+1, . . . ,∼pn} be the body
of r. The set of atoms occurring in a logic program Π is de-
noted by atom(Π), and the set of bodies in Π is body(Π) =
{body(r) | r ∈ Π}. For regrouping bodies sharing the same
head p, define body(p) = {body(r) | r ∈ Π, head(r) = p}.

For characterizing the answer sets of a program Π, we
consider Boolean assignments A over domain dom(A) =
atom(Π) ∪ body(Π). Formally, an assignment A is a se-
quence (σ1, . . . , σn) of (signed) literals σi of the form Tv
or Fv for v ∈ dom(A) and 1 ≤ i ≤ n. Intuitively, Tv ex-
presses that v is true and Fv that it is false in A. We denote
the complement of a literal σ by σ, that is, Tv = Fv and
Fv = Tv. Furthermore, we let A ◦ B denote the sequence
obtained by concatenating two assignments A and B. We
sometimes abuse notation and identify an assignment with
the set of its contained literals. Given this, we access the
true and false propositions in A via AT = {p ∈ dom(A) |
Tp ∈ A} and AF = {p ∈ dom(A) | Fp ∈ A}. Finally, we
denote the prefix of A up to a literal σ by

A[σ] =
{

(σ1, . . . , σm) if A = (σ1, . . . , σm, σ, . . . , σn)
A if σ /∈ A .

In our context, a nogood (Dechter 2003) is a set
{σ1, . . . , σm} of literals, expressing a constraint violated by
any assignment containing σ1, . . . , σm. An assignment A
such that AT ∪AF = dom(A) and AT ∩AF = ∅ is a solu-
tion for a set ∆ of nogoods if δ 6⊆ A for all δ ∈ ∆. Given a
logic program Π, we below specify nogoods such that their
solutions correspond to the answer sets of Π.

We start by describing nogoods capturing the models of
the Clark’s completion (Clark 1978) of a program Π. For
(β = {p1, . . . , pm,∼pm+1, . . . ,∼pn}) ∈ body(Π), let

∆β =

{Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn,Fβ},
{Fp1,Tβ}, . . . , {Fpm,Tβ},
{Tpm+1,Tβ}, . . . , {Tpn,Tβ}

 .

Observe that every solution for ∆β must assign body β
equivalent to the conjunction of its elements. Similarly, for
an atom p ∈ atom(Π), the following nogoods stipulate p to
be equivalent to the disjunction of body(p) = {β1, . . . , βk}:

∆p =
{
{Fβ1, . . . ,Fβk,Tp},
{Tβ1,Fp}, . . . , {Tβk,Fp}

}
.

Combining the above nogoods for Π, we get

∆Π =
⋃
β∈body(Π)∆β ∪

⋃
p∈atom(Π)∆p .

The solutions for ∆Π correspond one-to-one to the models
of the completion of Π. If Π is tight (Fages 1994; Erdem
& Lifschitz 2003), these models are guaranteed to match the
answer sets of Π. This can be formally stated as follows.

Theorem 1 ((Gebser et al. 2007c)) Let Π be a tight logic
program. Then, X ⊆ atom(Π) is an answer set of Π iff
X = AT ∩ atom(Π) for a (unique) solution A for ∆Π.

We proceed by considering non-tight programs Π. As
shown in (Lin & Zhao 2004), loop formulas can be added
to the completion of Π to establish full correspondence to
the answer sets of Π. For U ⊆ atom(Π), let EBΠ(U) be

{body(r) | r ∈ Π, head(r) ∈ U, body(r) ∩ U = ∅} .

Observe that EBΠ(U) contains the bodies of all rules in Π
that can externally support (Lee 2005) an atom in U . Given
U = {p1, . . . , pj} and EBΠ(U) = {β1, . . . , βk}, the fol-
lowing nogoods capture the loop formula of U :

ΛU =
{
{Fβ1, . . . ,Fβk,Tp1}, . . . ,
{Fβ1, . . . ,Fβk,Tpj}

}
.

Furthermore, we define

ΛΠ =
⋃
U⊆atom(Π)ΛU .

By augmenting ∆Π with ΛΠ, Theorem 1 can be extended to
non-tight programs.
Theorem 2 ((Gebser et al. 2007c)) Let Π be a logic pro-
gram. Then, X ⊆ atom(Π) is an answer set of Π iff
X = AT∩atom(Π) for a (unique) solutionA for ∆Π∪ΛΠ.

By virtue of Theorem 2, the nogoods in ∆Π ∪ ΛΠ pro-
vide us with a constraint-based characterization of the an-
swer sets of Π. However, it is important to note that the
size of ∆Π is linear in atom(Π)×body(Π), while ΛΠ con-
tains exponentially many nogoods. As shown in (Lifschitz
& Razborov 2006), under current assumptions in complexity
theory, the exponential number of elements in ΛΠ is inher-
ent, that is, it cannot be reduced significantly in the worst
case. Hence, ASP solvers do not determine the nogoods
in ΛΠ a priori, but include mechanisms to determine them
on demand. This is illustrated further in the next section.

Algorithmic Background
This section recalls the basic decision procedure of clasp
(Gebser et al. 2007c), abstracting Conflict-Driven Clause
Learning (CDCL; (Mitchell 2005)) for SAT solving from
clauses, that is, Conflict-Driven Nogood Learning (CDNL).

Conflict-Driven Nogood Learning
Algorithm 1 shows our main procedure for deciding whether
a program Π has some answer set. The algorithm starts with
an empty assignment A and an empty set ∇ of recorded
nogoods (Lines 1–2). Note that dynamic nogoods added
to ∇ in Line 5 are elements of ΛΠ, while those added in
Line 9 result from conflict analysis (Line 8). In addition to
conflict-driven learning, the procedure performs backjump-
ing (Lines 10–11), guided by a decision level k determined
by conflict analysis. Via decision level dl , we count deci-
sion literals, that is, literals in A that have been heuristically
selected in Line 15. The initial value of dl is 0 (Line 3), and
it is incremented in Line 16 before a decision literal is added
to A (Line 17). All literals in A that are not decision liter-
als have been derived by propagation in Line 5, and we call
them implied literals. For any literal σ in A, we write dl(σ)
to refer to the decision level of σ, that is, the value dl had
when σ was added to A. After propagation, the main loop

Declarative Programming Paradigms and Systems for NMR NMR-2008

142

Algorithm 1: CDNL
Input : A program Π.
Output: An answer set of Π.

A← ∅ // assignment over atom(Π) ∪ body(Π)1
∇ ← ∅ // set of (dynamic) nogoods2
dl ← 0 // decision level3
loop4

(A,∇)← PROPAGATION(Π,∇, A)5
if ε ⊆ A for some ε ∈ ∆Π ∪∇ then6

if dl = 0 then return no answer set7
(δ, k)← CONFLICTANALYSIS(ε,Π,∇, A)8
∇ ← ∇∪ {δ}9
A← A \ {σ ∈ A | k < dl(σ)}10
dl ← k11

else if AT ∪AF = atom(Π) ∪ body(Π) then12

return AT ∩ atom(Π)13
else14

σd ← SELECT(Π,∇, A)15
dl ← dl + 116
A← A ◦ (σd)17

(Lines 4–17) distinguishes three cases: a conflict detected
via a violated nogood (Lines 6–11), a solution (Lines 12–
13), or a heuristic selection with respect to a partial assign-
ment (Lines 14–17). Finally, note that a conflict at decision
level 0 signals that Π has no answer set (Line 7).

Propagation
Our propagation procedure, shown in Algorithm 2, derives
implied literals and adds them to A. Lines 3–9 describe unit
propagation (cf. (Mitchell 2005)) on ∆Π∪∇. If a conflict is
detected in Line 4, unit propagation terminates immediately
(Line 5). Otherwise, in Line 6, we determine all nogoods δ
that are unit-resulting wrt A, that is, the complement σ of
some literal σ ∈ δ must be added to A because all other lit-
erals of δ are already true inA. If there is some unit-resulting
nogood δ (Line 7), A is augmented with σ in Line 8. Ob-
serve that δ is chosen non-deterministically, and several dis-
tinct nogoods may imply σ wrt A. This non-determinism
gives rise to our study of heuristics for conflict resolution,
selecting a resolvent among the nogoods δ that imply σ.

The second part of Algorithm 2 (Lines 10–14) checks
for unit-resulting or violated nogoods in ΛΠ. If Π is tight
(Line 10), sophisticated checks are unnecessary (cf. Theo-
rem 1). Otherwise, we consider sets U ⊆ atom(Π) such
that EBΠ(U) ⊆ AF, called unfounded sets (Van Gelder,
Ross, & Schlipf 1991). An unfounded setU is determined in
Line 12 by a dedicated algorithm, whereU∩AF = ∅. If such
a nonempty unfounded set U exists, each nogood δ ∈ ΛU
is either unit-resulting or violated wrt A, and an arbitrary
δ ∈ ΛU is recorded in Line 14 for triggering unit propaga-
tion. Note that all atoms in U must be falsified before an-
other unfounded set is determined (cf. Lines 11–12). Even-
tually, propagation terminates in Line 13 if no nonempty un-
founded set has been detected in Line 12.

Algorithm 2: PROPAGATION

Input : A program Π, a set∇ of nogoods, and an
assignment A.

Output: An extended assignment and set of nogoods.

U ← ∅ // unfounded set1
loop2

repeat3
if δ ⊆ A for some δ ∈ ∆Π ∪∇ then4

return (A,∇)5

Σ← {δ ∈ ∆Π ∪∇ | δ \A = {σ}, σ /∈ A}6
if Σ 6= ∅ then let σ ∈ δ \A for some δ ∈ Σ in7

A← A ◦ (σ)8

until Σ = ∅9

if TIGHT(Π) then return (A,∇)10

U ← U \AF11
if U = ∅ then U ← UNFOUNDEDSET(Π, A)12
if U = ∅ then return (A,∇)13
let δ ∈ ΛU in∇ ← ∇∪ {δ}14

Algorithm 3: CONFLICTANALYSIS

Input : A violated nogood δ, a program Π, a set∇ of
nogoods, and an assignment A.

Output: A derived nogood and a decision level.

loop1
let σ ∈ δ such that δ \A[σ] = {σ}2
k ← max ({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0})3
if k = dl(σ) then4

Σ← {ε ∈ ∆Π ∪∇ | ε \A[σ] = {σ}}5
ε← SELECTANTECEDENT(Σ)6
δ ← (δ \ {σ}) ∪ (ε \ {σ})7

else return (δ, k)8

Conflict Analysis
Algorithm 3 shows our conflict analysis procedure, which
is based on resolution. Given a nogood δ that is violated
wrt A, we determine in Line 2 the literal σ ∈ δ added last
to A. If σ is the single literal of its decision level dl(σ) in δ
(cf. Line 3), it is called a unique implication point (UIP;
(Marques-Silva & Sakallah 1999)). Among a number of
conflict resolution schemes, the First-UIP scheme, stopping
conflict resolution as soon as the first UIP is reached, has
turned out to be the most efficient and most robust strategy
(Zhang et al. 2001). Our conflict analysis procedure follows
the First-UIP scheme by performing conflict resolution only
if σ is not a UIP (tested in Line 4) and, otherwise, return-
ing δ along with the smallest decision level k at which σ is
implied by δ after backjumping (Line 8).

Let us take a closer look at conflict resolution steps in
Lines 5–7. It is important to note that, if σ is not a UIP, it
cannot be the decision literal of dl(σ). Rather, it must have
been implied by some nogood ε ∈ ∆Π ∪ ∇. As a conse-
quence, the set Σ determined in Line 5 cannot be empty, and

Declarative Programming Paradigms and Systems for NMR NMR-2008

143

we call its elements antecedents of σ. Note that each an-
tecedent ε contains σ and had been unit-resulting immedi-
ately before σ was added to A; we thus call ε \ {σ} a reason
for σ. Knowing that σ may have more than one antecedent,
a non-deterministic choice among them is made in Line 6.
Exactly this choice is subject to the heuristics studied below.
Furthermore, as σ is the literal of δ added last toA, δ\{σ} is
also a reason for σ. Since they imply complementary liter-
als, no solution can jointly contain both reasons, viz., δ\{σ}
and ε \ {σ}. Hence, combining them in Line 7 gives again
a nogood violated wrt A. Finally, note that conflict reso-
lution is guaranteed to terminate at some UIP, but different
heuristic choices in Line 6 may result in different UIPs.

Implication Graphs and Conflict Graphs
To portray the matter of choosing among several distinct an-
tecedents, we modify the notion of an implication graph
(Beame, Kautz, & Sabharwal 2004). At a given state of
CDNL, the implication graph contains a node for each lit-
eral σ in assignment A and, for a violated nogood δ ⊆ A, a
node σ is included, where σ is the literal of δ added last toA,
that is, δ \ A[σ] = {σ}. Furthermore, for each antecedent δ
of an implied literal σ, the implication graph contains di-
rected edges labeled with δ from all literals in the reason
δ \ {σ} to σ. Different from (Beame, Kautz, & Sabharwal
2004), where implication graphs reflect exactly one reason
per implied literal, our implication graph thus includes all of
them. If the implication graph contains both σ and σ, we
call them conflicting literals. Note that an implication graph
contains at most one such pair {σ, σ}, called conflicting as-
signment, because our propagation procedure in Algorithm 2
stops as soon as a nogood becomes violated (cf. Lines 4–5).

An exemplary implication graph is shown in Figure 1.
Each of its nodes (except for one among the two conflict-
ing literals) corresponds to a literal that is true in assignment

A =
(
Fa,Fb,Fp,Tq,Tr,Ts,Fv,Tt,Fu,Fw,Tx

)
.

The three decision literals in A are underlined, and all
other literals are implied. For each literal σ, its decision
level dl(σ) is also provided in Figure 1 in parentheses. Ev-
ery edge is labeled with at least one antecedent of its target,
that is, the edges represent the following nogoods:

n0 = {Fa,Tb} n1 = {Tr,Fs}
n2 = {Ts,Ft} n3 = {Ts,Tu}
n4 = {Ts,Tw} n5 = {Tr,Tv}
n6 = {Tq,Fv,Tw} n7 = {Tt,Fu,Fx}
n8 = {Fp,Tt,Fx} n9 = {Fw,Tx} .

Furthermore, nogood {Ta} is unit-resulting wrt the empty
assignment, thus, implied literal Fa (whose decision level
is 0) does not have any incoming edge. Observe that the im-
plication graph contains conflicting assignment {Tx,Fx},
where Tx has been implied by nogood n7 and likewise
by n8. It is also the last literal inA belonging to violated no-
good n9, so that its complement Fx is the second conflicting
literal in the implication graph. Besides Tx, literal Fw has
multiple antecedents, namely, n4 and n6, which can be read
off the labels of the incoming edges of Fw.

T

F

Fp

x

Fw

Tq

(3)

(3)
(3)

(3)vF

(3)uF

(3)tT

(3)sT

(3)Tr

x

(1)

(2)

n

n

n

n

n

n
n

1
n

5

6

7,8

7

6

2
n

3

4
n

n
8

9

Assignment
Conflicting

Fb (0)Fa (0)

n
0

Figure 1: An exemplary implication graph containing a con-
flicting assignment.

The conflict resolution done in Algorithm 3, in particu-
lar, the heuristic choice of antecedents in Line 6, can now be
viewed as an iterative projection of the implication graph. In
fact, if an implied literal has incoming edges with distinct la-
bels, all edges with a particular label are taken into account,
while the edges with different labels only are dropped. This
observation motivates the following definition: a subgraph
of an implication graph is a conflict graph if it contains a
conflicting assignment and, for each implied literal σ in the
subgraph, the set of predecessors of σ is a reason for σ. Note
that this definition allows us to drop all literals that do not
have a path to any conflicting literal, such as Fa and Fb in
Figure 1. Furthermore, the requirement that the predeces-
sors of an implied literal form a reason corresponds to the
selection of an antecedent, where only the incoming edges
with a particular label are traced via conflict resolution.

The next definition accounts for a particularity of ASP
solving related to unfounded set handling: a conflict graph
is level-aware if each conflicting literal σ has some prede-
cessor ρ such that dl(ρ) = dl(σ). In fact, propagation in
Algorithm 2 is limited to falsifying unfounded atoms, thus,
unit propagation on nogoods in ΛΠ is performed only par-
tially and may miss implied literals corresponding to exter-
nal bodies (cf. (Gebser et al. 2007c)). If a conflict graph
is not level-aware, the violated nogood δ provided as in-
put to Algorithm 3 already contains a UIP, thus, δ itself
is returned without performing any conflict resolution in-
between. Given that we are interested in conflict resolution,
we below consider level-aware conflict graphs only.

Finally, we characterize nogoods derived by Algorithm 3
by cuts in conflict graphs (cf. (Zhang et al. 2001; Beame,
Kautz, & Sabharwal 2004)). A conflict cut in a conflict
graph is a bipartition of the nodes such that all decision liter-
als belong to one side, called reason side, and the conflicting
assignment is contained in the other side, called conflict side.
The set of nodes on the reason side that have some edge into
the conflict side form the conflict nogood associated with
a particular conflict cut. For illustration, a First-New-Cut
(Beame, Kautz, & Sabharwal 2004) is shown in Figure 2.
For the underlying conflict graph, we can choose among the

Declarative Programming Paradigms and Systems for NMR NMR-2008

144

T

F

Fp

x

Fw

Tq

(3)

(3)
(3)

(3)vF

(3)uF

(3)tT

(3)sT

(3)Tr

x

(1)

(2)

n

n

n

n

n

n
n

1
n

5

6

7,8

7

6

2
n

3

4
n

n
8

9

Cut

Reason
Side

Conflict
Side

Figure 2: The implication graph with a First-New-Cut.

incoming edges of Tx whether to include the edges labeled
with n7 or the ones labeled with n8. With n7, we get conflict
nogood {Tt,Fu,Fw}, while n8 yields {Fp,Tt,Fw}.

Different conflict cuts correspond to different resolution
schemes, where we are particularly interested in the First-
UIP scheme. Given a conflict graph and conflicting assign-
ment {σ, σ}, a UIP σUIP can be identified as a node such
that all paths from σd, the decision literal of decision level
dl(σ) = dl(σ), to either σ or σ go through σUIP (cf. (Zhang
et al. 2001)). In view of this alternative definition of a UIP,
it becomes even more obvious than before that σd is indeed
a UIP, also called the Last-UIP. In contrast, a literal σUIP

is the First-UIP if it is the UIP “closest” to the conflicting
literals, that is, if no other UIP is reachable from σUIP . The
First-UIP-Cut is then given by the conflict cut that has all lit-
erals lying on some path from the First-UIP to a conflicting
literal, except for the First-UIP itself, on the conflict side and
all other literals (including the First-UIP) on the reason side.
The First-UIP-Nogood, that is, the conflict nogood associ-
ated with the First-UIP-Cut, is exactly the nogood derived
by conflict resolution in Algorithm 3 when antecedents that
contribute edges to the conflict graph are selected for conflict
resolution. Also note that the First-UIP-Cut for a conflict
graph is unique, thus, by projecting an implication graph
to a conflict graph, we implicitly fix the First-UIP-Nogood.
With this is mind, the next section deals with heuristics for
extracting conflict graphs from implication graphs.

Heuristics
In this section, we propose several heuristics for conflict res-
olution striving for different goals.

Recording Short Nogoods
Under the assumption that short nogoods prune larger por-
tions of the search space than longer ones, a First-UIP-
Nogood looks the more attractive the less literals it contains.
In addition, unit propagation on shorter nogoods is usually
faster and might even be enabled to use particularly opti-
mized data structures, for instance, specialized to binary or
ternary nogoods (Ryan 2004). As noticed in (Mahajan, Fu,

T

F

x

Fw

(3)

(3)
(3)

(3)uF

(3)tT

(3)sT

(3)Tr

x

n

n

n

n

1
n

7

2
n

3

4
n

9

7

Reason
Side

Side
Conflict

First−UIP−Cut

Figure 3: A First-UIP-Cut obtained with Hshort .

& Malik 2005), a conflict nogood stays short when the re-
solvents are short, when the number of resolvents is small,
or when the resolvents have many literals in common. In the
SAT area, it has been observed that preferring short nogoods
in conflict resolution may lead to resolution sequences in-
volving mostly binary and ternary nogoods, so that derived
conflict nogoods are not much longer than the originally vi-
olated nogoods (Mitchell 2005). Our first heuristics,Hshort ,
thus selects an antecedent containing the smallest number of
literals among the available antecedents of a literal. Given
the same implication graph as in Figure 1 and 2, Hshort

may yield the conflict graph shown in Figure 3 by prefer-
ring antecedent n7 of Tx over n8 and antecedent n4 of Fw
over n6 during conflict resolution. The corresponding First-
UIP-Nogood, {Ts}, is indeed short and enables CDNL to
after backjumping derive Fs by unit propagation at decision
level 0. However, the antecedents n7 and n8 of Tx are of
the same size, thus, Hshort may likewise pick n8, in which
case the First-UIP-Cut in Figure 4 is obtained. The corre-
sponding First-UIP-Nogood, {Fp,Ts}, is longer. Nonethe-
less, our experiments below empirically confirm that Hshort

tends to reduce the size of First-UIP-Nogoods. But before,
we describe further heuristics focusing also on other aspects.

Performing Long Backjumps
By backjumping, CDNL may skip the exhaustive explo-
ration of regions of the search space, possibly escaping spare
regions not containing any solution. Thus, it seems rea-
sonable to aim at First-UIP-Nogoods such that their liter-
als belong to small decision levels, as they are the deter-
mining factor for the lengths of backjumps. Our second
heuristics, Hlex , thus uses a lexicographic order to rank an-
tecedents according to the decision levels of their literals.
Given an antecedent δ of a literal σ, we arrange the liter-
als in the reason δ \ {σ} for σ in descending order of their
decision levels. The so obtained sequence (σ1, . . . , σm),
where δ \ {σ} = {σ1, . . . , σm}, induces a descending list
levels(δ) = (dl(σ1), . . . , dl(σm)) of decision levels. An
antecedent δ is then considered to be smaller than another
antecedent ε, viz., δ < ε, if the first element that differs in
levels(δ) and levels(ε) is smaller in levels(δ) or if levels(δ)

Declarative Programming Paradigms and Systems for NMR NMR-2008

145

T

F

Fp

x

Fw

(3)

(3)
(3)

(3)tT

(3)sT

(3)Tr

x

(1)

n

n

1
n

2
n

4
n

n
8

9

Reason
Side

Side
Conflict

8

First−UIP−Cut

Figure 4: A First-UIP-Cut obtained with Hlex .

is a prefix of levels(ε) and shorter than levels(ε). Due to
the last condition, Hlex also prefers an antecedent δ that is
shorter than ε, provided that literals of the same decision lev-
els as in δ are also found in ε. Reconsidering the implication
graph in Figure 1 and 2, we obtain levels(n8) = (3, 1) <
(3, 3) = levels(n7) for antecedents n7 and n8 of Tx, and
we have levels(n4) = (3) < (3, 2) = levels(n6) for an-
tecedents n4 and n6 of Fw. By selecting antecedents that
are lexicographically smallest, Hlex leads us to the conflict
graph shown in Figure 4. In this example, the corresponding
First-UIP-Nogood, {Fp,Ts}, is weaker than {Ts}, which
may be obtained with Hshort (cf. Figure 3).

Given that lexicographic comparisons are computation-
ally expensive, we also consider a lightweight variant of
ranking antecedents according to decision levels. Our third
heuristics, Havg , prefers an antecedent δ over ε if the aver-
age of levels(δ) is smaller than the average of levels(ε). In
our example, we get avg [levels(n8)] = avg(3, 1) = 2 <
3 = avg(3, 3) = avg [levels(n7)] and avg [levels(n6)] =
avg(3, 2) = 2.5 < 3 = avg(3) = avg [levels(n4)], yield-
ing the conflict graph shown in Figure 5. Unfortunately, the
corresponding First-UIP-Nogood, {Fp,Tq,Tr}, does not
match the goal of Havg as backjumping only returns to de-
cision level 2, where Tr is then flipped to Fr. Note that this
behavior is similar to chronological backtracking, which can
be regarded as the most trivial form of backjumping.

Shortening Conflict Resolution
Our fourth heuristics,Hres , aims at speeding up conflict res-
olution itself by shortening resolution sequences. In order
to earlier encounter a UIP, Hres prefers antecedents such
that the number of literals at the current decision level dl is
smallest. In our running example,Hres prefers n8 over n7 as
it contains fewer literals whose decision level is 3. However,
antecedents n4 and n6 of Fw are indifferent, thus,Hres may
yield either one of the conflict graphs in Figure 4 and 5.

Search Space Pruning
The heuristics presented above rank antecedents merely by
structural properties, thus disregarding their contribution in
the past to solving the actual problem. The latter is estimated
by nogood deletion heuristics of SAT solvers (Goldberg &

T

F

Fp

x

Fw

Tq

(3)

(3)
(3)

(3)vF

(3)tT

(3)sT

(3)Tr

x

(1)

(2)

n

n

n

n
n

1
n

5

6

6

2
n

n
8

9

Reason
Side

Side
Conflict

8

First−UIP−Cut

Figure 5: A First-UIP-Cut obtained with Havg .

Novikov 2002; Mahajan, Fu, & Malik 2005), and clasp also
maintains activity scores for nogoods (Gebser et al. 2007a).
Our fifth heuristics, Hactive , makes use of them and ranks
antecedents according to their activities.

Finally, we investigate a heuristics,Hprop , that stores (and
prefers) the smallest decision level at which a nogood has
ever been unit-resulting. The intuition underlying Hprop is
that the number of implied literals at small decision levels
can be viewed as a measure for the progress of CDNL, in
particular, as attesting unsatisfiability requires a conflict at
decision level 0. Thus, it might be a good idea to prefer no-
goods that gave rise to implications at small decision levels.

Experiments
For their empirical assessment, we have implemented the
heuristics proposed above in a prototypical extension of our
ASP solver clasp version 1.0.2. (Even though there are
newer versions of clasp, a common testbed, omitting some
optimizations, is sufficient for a representative comparison.)
Note that clasp (Gebser et al. 2007a) incorporates various
advanced Boolean constraint solving techniques, e.g.:
• lookback-based decision heuristics (Goldberg & Novikov

2002),
• restart and nogood deletion policies (Eén & Sörensson

2003),
• watched literals for unit propagation on “long” nogoods

(Moskewicz et al. 2001),
• dedicated treatment of binary and ternary nogoods (Ryan

2004), and
• early conflict detection (Mahajan, Fu, & Malik 2005).
Due to this variety, the solving process of clasp is a complex
interplay of different features. Thus, it is almost impossi-
ble to observe the impact of a certain feature, such as our
conflict resolution heuristics, in isolation. However, we be-
low use a considerable number of benchmark classes with
different characteristics and shuffled instances, so that noise
effects should be compensated at large.

For accommodating conflict resolution heuristics consid-
ering several antecedents per literal, the low-level imple-
mentation of clasp had to be modified. These modifications

Declarative Programming Paradigms and Systems for NMR NMR-2008

146

are less optimized than the original implementation, so that
our prototype incurs some disadvantages in raw speed that
can potentially be reduced by optimizing the implementa-
tion. However, for comparison, we include unmodified clasp
version 1.0.2, not applying any particular heuristics in con-
flict resolution. Given that unit propagation in clasp privi-
leges binary and ternary nogoods, they are more likely to be
used as antecedents than longer nogoods, as original clasp
simply stores the first antecedent it encounters and ignores
others. In view of this, unit propagation of original clasp
leads conflict resolution into the same direction as Hshort ,
though in a less exact way. The next table summarizes all
clasp variants and conflict resolution heuristics under con-
sideration, denoting the unmodified version simply by clasp:

Label Heuristics Goal
clasp — speeding up unit propagation

claspshort Hshort recording short nogoods
clasplex Hlex performing long backjumps
claspavg Havg performing long backjumps
claspres Hres shortening conflict resolution

claspactive Hactive search space pruning
claspprop Hprop search space pruning

Note that all clasp variants perform early conflict detection,
that is, they encounter a unique conflicting assignment be-
fore beginning with conflict resolution. Furthermore, all of
them perform conflict resolution according to the First-UIP
scheme. Thus, we do not explore the first two among the
three degrees of freedom mentioned in the introductory sec-
tion and concentrate fully on the choice of resolvents.

We conducted experiments on the benchmarks used in
categories SCore and SLparse of the first ASP system com-
petition (Gebser et al. 2007d). Tables 1–4 group bench-
mark instances by their classes, viz., Classes 1–11. Via su-
perscripts s and r in the first column, we indicate whether
the n instances belonging to a class are structured (e.g.,
15-Puzzle) or randomly generated (e.g., BlockedN-Queens).
We omit classifying Factoring, which is a worst-case prob-
lem where an efficient algorithm would yield a crypto-
graphic attack. Furthermore, Tables 1–4 show results for
computing one answer set or deciding that an instance has no
answer set. For each benchmark instance, we performed five
runs on different shuffles, resulting in 5n runs per bench-
mark class. All experiments were run on a 3.4GHz PC un-
der Linux; each run was limited to 600s time and 1GB RAM.
Note that, in Tables 1–3, we consider only the instances on
which runs were completed by all considered clasp variants.

Table 1 shows the average lengths of First-UIP-Nogoods
for the heuristics aiming at short nogoods, implemented by
claspshort and clasplex , among which the latter uses the
lengths of antecedents as a tie breaker. For comparison, we
also include original clasp. On most benchmark classes, we
observe that claspshort as well as clasplex tend to reduce the
lengths of First-UIP-Nogoods, up to 14 percent shorter than
the ones of clasp on BlockedN-Queens. But there remains
only a slight reduction of about 6 percent shorter First-
UIP-Nogoods of clasplex in the summary of all benchmark
classes (weighted equally). We also observe that claspshort ,
more straightly preferring short antecedents than clasplex ,

No. Class n claspshort clasplex clasp

1s 15-Puzzle 10 22.33 22.35 23.03
2r BlockedN-Queens 7 27.32 28.23 31.85
3s EqTest 5 172.12 178.27 189.12
4 Factoring 5 134.95 130.67 141.34
5s HamiltonianPath 14 12.96 11.73 12.04
6r RandomNonTight 14 31.82 32.07 32.74
7r BoundedSpanningTree 5 35.06 36.68 33.95
8s Solitaire 4 24.55 22.02 25.03
9s Su-Doku 3 16.22 15.09 13.99
10s TowersOfHanoi 5 52.89 52.31 58.29
11r TravelingSalesperson 5 101.37 90.35 99.26

Average First-UIP-Nogood Length 45.15 44.46 47.21

Table 1: Average lengths of First-UIP-Nogoods per conflict.

No. Class n claspavg clasplex clasp

1s 15-Puzzle 10 2.12 2.14 2.10
2r BlockedN-Queens 7 1.07 1.08 1.07
3s EqTest 5 1.03 1.04 1.03
4 Factoring 5 1.20 1.21 1.20
5s HamiltonianPath 14 2.53 2.58 2.62
6r RandomNonTight 14 1.15 1.16 1.15
7r BoundedSpanningTree 5 3.12 3.47 3.06
8s Solitaire 4 3.34 3.28 2.92
9s Su-Doku 3 2.55 3.01 2.76
10s TowersOfHanoi 5 1.46 1.46 1.40
11r TravelingSalesperson 5 1.27 1.51 1.43

Average Backjump Length 1.89 1.99 1.89

Table 2: Average backjump lengths per conflict.

does not reduce First-UIP-Nogood lengths any further. In-
terestingly, there is no clear distinction between structured
and randomly generated instances, neither regarding magni-
tudes nor reduction rates of First-UIP-Nogood lengths.

Table 2 shows the average backjump lengths in terms of
decision levels for the clasp variants aiming at long back-
jumps, viz., claspavg and clasplex . We note that average
backjump lengths of more than 2 decision levels indicate
structured instances, except for BoundedSpanningTree. Re-
garding the increase of backjump lengths, claspavg does not
exhibit significant improvements, and the polarity of dif-
ferences to original clasp varies. Only the more sophisti-
cated heuristics of clasplex almost consistently leads to in-
creased backjump lengths (except for HamiltonianPath), but
the amounts of improvements are rather small.

Table 3 shows the average numbers of conflict resolu-
tion steps for claspres and clasplex , among which the for-
mer particularly aims at their reduction. Somewhat surpris-
ingly, claspres in all performs more conflict resolution steps
even than original clasp, while clasplex almost consistently
exhibits a reduction of conflict resolution steps (except for
Su-Doku). This negative result for claspres suggests that
trimming conflict resolution regardless of its outcome is not
advisable. The quality of recorded nogoods certainly is a key
factor for the performance of conflict-driven learning solvers
for ASP and SAT, thus, shallow savings in their retrieval are
not worth it and might even be counterproductive globally.

Declarative Programming Paradigms and Systems for NMR NMR-2008

147

No. Class n claspshort clasplex claspavg claspres claspactive claspprop clasp

1s 15-Puzzle 10
195.00 203.96 203.54 248.00 261.44 226.96 241.18
0.13 0.14 0.14 0.15 0.16 0.15 0.14

2r BlockedN-Queens 7
27289.06 26989.57 28176.00 27553.63 30240.71 29119.60 28588.34

116.87 (24) 122.04 (21) 39.70 (27) 86.24 (24) 138.01 (22) 68.10 (25) 24.52 (22)

3s EqTest 5
62430.92 62648.96 59330.52 62705.00 62374.84 63303.44 62290.76

19.47 21.66 19.41 19.98 20.03 21.30 15.66

4 Factoring 5
15468.44 14838.64 14985.72 16016.56 16365.52 15404.64 16920.68

6.30 5.85 6.27 6.55 6.36 6.36 5.11

5s HamiltonianPath 14
703.70 683.29 653.19 564.83 764.16 694.33 650.70
0.05 0.05 0.05 0.04 0.06 0.05 0.05

6r RandomNonTight 14
427031.71 411024.73 402846.21 429955.23 423332.74 405476.81 406007.41

53.85 55.17 51.53 54.92 53.33 52.78 41.79

7r BoundedSpanningTree 5
879.92 640.88 801.76 634.96 662.22 940.92 949.84
4.51 4.37 4.38 4.36 4.27 4.98 4.42

8s Solitaire 4
193.85 145.85 103.40 134.75 103.40 95.90 134.00

66.14 (2) 0.22 (5) 30.81 (4) 0.22 (5) 0.21 (5) 0.21 (5) 0.23 (4)

9s Su-Doku 3
123.40 127.80 164.60 111.93 108.67 119.87 123.93

. 18.89 19.85 19.75 19.10 19.39 19.77 19.96

10s TowersOfHanoi 5
145064.20 124222.96 71220.52 140386.64 97411.80 134192.96 133760.48

62.43 46.69 21.86 52.19 32.76 47.63 37.60

11r TravelingSalesperson 5
2512.20 1018.80 3243.16 2535.40 1334.32 2500.16 947.56
34.06 21.63 42.22 36.77 25.70 34.42 20.89

Average Number of Conflicts 56824.37 53545.45 48477.39 56737.24 52748.20 54339.63 54217.91
Average Time (Sum Timeouts) 31.89 (26) 24.81 (26) 19.68 (31) 23.38 (29) 25.02 (27) 21.31 (30) 14.20 (26)

Average Penalized Time 49.25 46.75 45.28 48.05 47.12 47.14 37.27

Table 4: Average numbers of conflicts and runtimes.

No. Class n claspres clasplex clasp

1s 15-Puzzle 10 102.95 103.45 103.77
2r BlockedN-Queens 7 18.17 17.61 17.74
3s EqTest 5 86.94 84.78 85.76
4 Factoring 5 325.54 290.36 296.07
5s HamiltonianPath 14 11.87 12.03 12.14
6r RandomNonTight 14 16.41 16.47 32.74
7r BoundedSpanningTree 5 20.11 20.27 20.66
8s Solitaire 4 79.05 67.70 79.89
9s Su-Doku 3 21.48 20.86 19.73
10s TowersOfHanoi 5 41.60 40.36 42.69
11r TravelingSalesperson 5 141.68 96.06 122.98

Average Number of Resolution Steps 78.71 70.00 75.83

Table 3: Average numbers of resolution steps per conflict.

Finally, Table 4 provides average numbers of conflicts and
average runtimes in seconds for all clasp variants. For each
benchmark class, the first line provides the average num-
bers of conflicts encountered on instances where runs were
completed by all clasp variants, while the second line gives
the average times of completed runs and numbers of time-
outs in parentheses. (Recall that all clasp variants were run
on 5n shuffles of the n instances per class, leading to more
than n timeouts on BlockedN-Queens and, with some clasp
variants, also on Solitaire.) At the bottom of Table 4, we
summarize average numbers of conflicts and average run-
times over all benchmark classes (weighted equally). Note
that the last but one line provides the sums of timeouts in
parentheses, while the last line penalizes timeouts with max-

imum time, viz., 600 seconds. As mentioned above, origi-
nal clasp is highly optimized and does not suffer from the
overhead incurred by the extended infrastructure for apply-
ing heuristics in conflict resolution. As a consequence, we
observe that original clasp outperforms its variants on most
benchmark classes as regards runtime. Among the variants
of clasp, claspavg in all exhibits the best average number of
conflicts and runtime. However, it also times out most often
and behaves unstable, as the poor performance on Classes 2
and 11 shows. In contrast, claspshort and clasplex lead to
fewest timeouts (in fact, as many timeouts as clasp), and
clasplex encounters fewer conflicts than claspshort . Vari-
ant claspactive , preferring “critical” antecedents, exhibits a
comparable performance, while claspres and claspprop yield
more timeouts and also encounter relatively many conflicts.
Overall, we notice that some clasp variants perform reason-
ably well, but without significantly decreasing the number
of conflicts in comparison to original clasp. As there is no
clear winner among our clasp variants, unfortunately, they
do not suggest any “universal” conflict resolution heuristics.

Discussion
We have proposed a number of heuristics for conflict resolu-
tion and conducted a systematic empirical study in the con-
text of our ASP solver clasp. However, it is too early to con-
clude any dominant approach or to make general recommen-
dations. As has also been noted in (Mitchell 2005), conflict
resolution strategies are almost certainly important but have
received little attention in the literature so far. In fact, dedi-
cated approaches in the SAT area (Ryan 2004; Mahajan, Fu,

Declarative Programming Paradigms and Systems for NMR NMR-2008

148

& Malik 2005) merely aim at reducing the size of recorded
nogoods. Though this might work reasonably well in prac-
tice, it is unsatisfactory when compared to sophisticated de-
cision heuristics (Goldberg & Novikov 2002; Ryan 2004;
Mahajan, Fu, & Malik 2005; Dershowitz, Hanna, & Nadel
2005) resulting from more profound considerations. We thus
believe that heuristics in conflict resolution deserve further
attention. Future lines of research may include developing
more sophisticated scoring mechanisms than the ones pro-
posed here, combining several scoring criterions, or even de-
termining and possibly recording multiple reasons for a con-
flict (corresponding to different conflict graphs). Any future
improvements in these directions may significantly boost the
state-of-the-art in both ASP and SAT solving.

References
Baral, C.; Brewka, G.; and Schlipf, J., eds. 2007. Pro-
ceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07).
Springer-Verlag.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Bayardo, R., and Schrag, R. 1997. Using CSP look-back
techniques to solve real-world SAT instances. In Proceed-
ings of the Fourteenth National Conference on Artificial In-
telligence (AAAI’97), 203–208. AAAI Press/MIT Press.
Beame, P.; Kautz, H.; and Sabharwal, A. 2004. Towards
understanding and harnessing the potential of clause learn-
ing. Journal of Artificial Intelligence Research 22:319–
351.
Clark, K. 1978. Negation as failure. In Gallaire, H., and
Minker, J., eds., Logic and Data Bases, 293–322. Plenum
Press.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann Publishers.
Dershowitz, N.; Hanna, Z.; and Nadel, A. 2005. A clause-
based heuristic for SAT solvers. In Bacchus, F., and Walsh,
T., eds., Proceedings of the Eigth International Confer-
ence on Theory and Applications of Satisfiability Testing
(SAT’05), 46–60. Springer-Verlag.
Eén, N., and Sörensson, N. 2003. An extensible SAT-
solver. In Proceedings of the Sixth International Confer-
ence on Theory and Applications of Satisfiability Testing
(SAT’03), 502–518.
Erdem, E., and Lifschitz, V. 2003. Tight logic programs.
Theory and Practice of Logic Programming 3(4-5):499–
518.
Fages, F. 1994. Consistency of Clark’s completion and the
existence of stable models. Journal of Methods of Logic in
Computer Science 1:51–60.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007a. clasp: A conflict-driven answer set solver. In Baral
et al. (2007), 260–265.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007b. Conflict-driven answer set enumeration. In Baral
et al. (2007), 136–148.

Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub,
T. 2007c. Conflict-driven answer set solving. In Veloso,
M., ed., Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI’07), 386–392.
AAAI Press/MIT Press.
Gebser, M.; Liu, L.; Namasivayam, G.; Neumann, A.;
Schaub, T.; and Truszczyński, M. 2007d. The first an-
swer set programming system competition. In Baral et al.
(2007), 3–17.
Giunchiglia, E.; Lierler, Y.; and Maratea, M. 2006. An-
swer set programming based on propositional satisfiability.
Journal of Automated Reasoning 36(4):345–377.
Goldberg, E., and Novikov, Y. 2002. BerkMin: A fast and
robust SAT solver. In Proceedings of the Fifth Conference
on Design, Automation and Test in Europe (DATE’02),
142–149. IEEE Press.
Lee, J. 2005. A model-theoretic counterpart of loop for-
mulas. In Kaelbling, L., and Saffiotti, A., eds., Proceedings
of the Nineteenth International Joint Conference on Artifi-
cial Intelligence (IJCAI’05), 503–508. Professional Book
Center.
Lifschitz, V., and Razborov, A. 2006. Why are there so
many loop formulas? ACM Transactions on Computa-
tional Logic 7(2):261–268.
Lin, F., and Zhao, Y. 2004. ASSAT: computing answer sets
of a logic program by SAT solvers. Artificial Intelligence
157(1-2):115–137.
Mahajan, Y.; Fu, Z.; and Malik, S. 2005. Zchaff2004: An
efficient SAT solver. In Hoos, H., and Mitchell, D., eds.,
Proceedings of the Seventh International Conference on
Theory and Applications of Satisfiability Testing (SAT’04),
360–375. Springer-Verlag.
Marques-Silva, J., and Sakallah, K. 1999. GRASP:
A search algorithm for propositional satisfiability. IEEE
Transactions on Computers 48(5):506–521.
Mitchell, D. 2005. A SAT solver primer. Bulletin of the
European Association for Theoretical Computer Science
85:112–133.
Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient SAT solver.
In Proceedings of the Thirty-eighth Conference on Design
Automation (DAC’01), 530–535. ACM Press.
Ryan, L. 2004. Efficient algorithms for clause-learning
SAT solvers. Master’s thesis, Simon Fraser University.
Van Gelder, A.; Ross, K.; and Schlipf, J. 1991. The well-
founded semantics for general logic programs. Journal of
the ACM 38(3):620–650.
Ward, J., and Schlipf, J. 2004. Answer set programming
with clause learning. In Lifschitz, V., and Niemelä, I.,
eds., Proceedings of the Seventh International Conference
on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’04), 302–313. Springer-Verlag.
Zhang, L.; Madigan, C.; Moskewicz, M.; and Malik, S.
2001. Efficient conflict driven learning in a Boolean satis-
fiability solver. In Proceedings of the International Confer-
ence on Computer-Aided Design (ICCAD’01), 279–285.

Declarative Programming Paradigms and Systems for NMR NMR-2008

149

A Versatile Intermediate Language for Answer Set Programming

Martin Gebser 1 and Tomi Janhunen 2 and Max Ostrowski 1 and Torsten Schaub 1 and Sven Thiele 1

1 Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, D-14482 Potsdam, Germany
2 Helsinki University of Technology, Department of Information and Computer Science, P.O. Box 5400, FI-02015 TKK, Finland

Abstract

The attractiveness of Answer Set Programming (ASP) and re-
lated paradigms for declarative problem solving is consider-
ably due to the availability of highly efficient yet easy-to-use
implementations. A major driving force for the development
and improvement of tools are standardized problem repre-
sentations, for several reasons. First, they relieve developers
from the burden of inventing their own input formats. Sec-
ond, they establish interoperability between separate tools,
allowing users to easily compare and exchange them without
extensively converting their problem representations. Third,
they facilitate the acquisition of problem descriptions from
distinct sources, which is useful for benchmarking and as-
sessment purposes. Historically, however, standards for rep-
resenting logic programs, serving as inputs to ASP systems,
were mainly dictated by the few available tools. In fact, there
currently are two quasi standards, namely, the formats used
by lparse and dlv, incompatible with each other. As a first
step towards overcoming this deficiency, this work proposes
an intermediate format for ground logic programs, intended
for the representation of inputs to ASP solvers. The format
is not designed to be a primary input language, given that
ASP systems usually deploy a second component, called a
grounder, to deal with the inputs provided by users. In view
of this, our format is situated intermediate a grounder and a
solver, guided by the example of grounder lparse and solver
smodels, the latter marking the first among nowadays a va-
riety of solvers processing the output of lparse. However,
the output format of lparse has some decisive drawbacks,
namely, its restrictive range and limited extensibility. We thus
propose a new intermediate language, where our major de-
sign goals are flexibility in problem representation and easy
extensibility to new language constructs.

Introduction
Answer Set Programming (ASP; (Baral 2003; Gelfond &
Leone 2002; Marek & Truszczyński 1999; Niemelä 1999))
is a declarative approach to modeling and solving search
problems, represented as logic programs. As illustrated in
Figure 1, an ASP system usually consists of two compo-
nents, a grounder and a solver. The input to an ASP system
usually consists of a non-ground problem encoding and a
ground problem instance. In such uniform encodings, the
use of first-order variables reduces size and permits sim-
pler, and therefore easier to write, logic programs. Further-
more, regarding the input language, several extensions have

Problem
Representation

Grounder // Intermediate
Representation

Solver // Variable
Assignment

Figure 1: Basic Architecture of an ASP System

been proposed, like aggregates, cardinality and weight con-
straints, and optimize statements (Dell’Armi et al. 2003;
Leone et al. 2006; Simons, Niemelä, & Soininen 2002). A
grounder translates such a problem representation (typically
a pair of an encoding and an instance) from the input lan-
guage into a ground logic program, represented in a simpli-
fied, solver-readable form. Starting from a grounder’s out-
put, a solver then searches for answer sets, corresponding to
solutions of the original problem. The most common solv-
ing approaches are based on the Davis-Putnam-Logemann-
Loveland (DPLL; (Davis, Logemann, & Loveland 1962;
Davis & Putnam 1960)) algorithm, like in dlv (Leone et al.
2006) and smodels (Simons, Niemelä, & Soininen 2002),
or Conflict-Driven Clause Learning (CDCL; (Marques-Silva
& Sakallah 1999; Mitchell 2005; Moskewicz et al. 2001)),
e.g., used in clasp (Gebser et al. 2007a).

There currently is a single intermediate language accessi-
ble to ASP solvers, namely, the output format of grounder
lparse (Syrjänen).1 However, the format is not standardized
and might thus change over different lparse versions, which
is a delicate issue since no version information is included,
e.g., for backward compatibility. The latter also makes ad
hoc extensions of lparse’s output format intricate and error-
prone.2 Furthermore, the fact that lparse’s output format is
designed to match smodels’ internal data structures necessi-
tates program transformations incurring a loss of structural
information (Liu & Truszczyński 2005). We thus consider
the restrictedness, on the one hand, and the limited extensi-
bility, on the other hand, of lparse’s output format as serious
drawbacks, making it unsuitable as a general standard.

This work proposes a new intermediate format, called AS-
Pils (“ASP intermediate language standard”), for the use in-
between grounders and solvers. Important design goals are:

1The dlv system uses an internal grounder that is directly cou-
pled with the solver.

2For instance, the tool dencode (Janhunen) includes function-
ality for making conversions between the disjunctive rule output
formats of old (up to version 1.0.14) and new versions of lparse.

Declarative Programming Paradigms and Systems for NMR NMR-2008

150

• simplicity and efficiency in outputting and parsing;

• independence of grounder and solver implementations;

• support of the existing (input) language constructs (cf.
(Dell’Armi et al. 2003; Leone et al. 2006) & (Syrjänen));

• support of version information, meta-information, and
user comments; and

• flexibility and easy extensibility.

The development of ASPils is inspired by experiences
made in related fields, such as Boolean Satisfiability (SAT),
having standardized problem description languages, e.g.,
DIMACS format (DIMACS 1993).3 For one, such standard-
ized languages establish interoperability between solvers
and further tools, for instance, tools generating solver inputs.
As a concrete example in ASP, a standardized intermediate
language might enable (arbitrary) solvers to process the out-
put of dlv’s grounding component, and also dlv’s solving
component to process the output of an external grounder.
From a user’s point of view, interoperability facilitates run-
ning different solvers, as a problem encoding written in the
input language of a particular grounder could after ground-
ing be processed by an arbitrary solver. Furthermore, a
standardized intermediate language supported by all solvers
would greatly foster ASP solver competitions, where in the
past the different input formats of dlv and other solvers have
been a major bottleneck (Gebser et al. 2007b). In fact,
as a secondary benefit, a common language eases collect-
ing challenging benchmarks from distinct sources and might
thus push the further development of ASP solvers, like it has
been experienced in SAT. To this end, this paper introduces
ASPils and illustrates its potential usage on examples; full
details are provided in (Gebser et al. 2008a).

In order to put this document in perspective, let us stress
that ASPils is proposed as a standard for the transmission
of ground logic programs from grounders to solvers. At
this stage, our proposal aims at recording the language con-
structs currently supported by lparse-based solvers as well
as dlv’s solving component and at integrating them into a
common framework, also anticipating future extensions to a
certain extent. Of course, an input format for ASP solvers
can only turn into a standard if it is widely supported and
used in practice, which requires a community effort, espe-
cially, from ASP system developers. Our proposal of ASPils
thus aims at providing a starting point for a community-wide
discussion of a standardized input format for ASP solvers.
Even if such a standard is successfully established, it will
not instantly abolish all differences and peculiarities of ASP
systems. For instance, grounders and integrated ASP sys-
tems may further (have to) use proprietary input languages,
and any modular (Oikarinen & Janhunen 2006), incremen-
tal (Gebser et al. 2008b), or even a system not following
the computational pattern shown in Figure 1 might not be
readily supplied with an appropriate input format. How-
ever, before succeeding to standardize the simplest element
in the workflow of ASP systems, namely, the intermediate

3See (Janhunen 2007; Gebser et al. 2008a) for detailed discus-
sions of intermediate formats.

language used in-between a grounder and a solver, any at-
tempts to standardize more diversified matters would most
likely be prone to fail. Hence, even though the scope of AS-
Pils is limited to an intermediate representation according to
Figure 1, we think that it may initiate a worthwhile discus-
sion on language standards in ASP.

General Design of ASPils
We now briefly describe the design decisions underlying AS-
Pils, the new intermediate language for ASP we propose
here. Our global goal is to specify a language that has the
potential to become a standard format for inputs to ASP
solvers. Thus, we have to respect that different ASP solvers
support different language constructs, e.g., dlv deals with
aggregates (Dell’Armi et al. 2003) and smodels with ex-
tended rules (Simons, Niemelä, & Soininen 2002). In order
to reflect this diversity, our language must be general and
solver-independent. Furthermore, it is impossible to foresee
language constructs that might evolve in the future. Hence,
extensibility of the language is an important issue. We thus
include a version number in problem descriptions of ASPils.
In addition, normal forms are used to specify language frag-
ments. Their main purpose is to reflect different capabilities
of solvers, which are thus enabled to check whether a prob-
lem description is appropriate before processing it further.

The body of ASPils consists of entries, mainly defining
objects of particular types. The idea is similar to the output
format of lparse (Syrjänen), using several rule types. How-
ever, ASPils goes further than lparse by not restricting types
to rules, rather, all entities in a ground logic program, e.g.,
atoms, conjunctions, disjunctions, etc., are objects having a
type. An advantage of this is that complex structures oc-
curring in a program, e.g., conjunctions of cardinality and
weight constraints, can be represented in a modular and
structure-preserving way. In contrast, lparse would have to
introduce new atoms and rules to represent complex struc-
tures in its restrictive output format. Another advantage of
types is the easy embedding of new language constructs, as
it only requires the definition of a type identifier and a syn-
tax for objects of the type. To avoid clashes of custom type
identifiers, we use numbers consisting of a “major” and a
“minor” slot (similar to IP addresses), where the major slot
ought to be related to a research group defining the type. If
newly introduced types turn into a standard, they can be in-
tegrated into ASPils via an additional normal form or even a
new language version.

As mentioned above, every object occurring in a prob-
lem description has an associated type. In addition, each
object has a unique ID, that is, a positive integer, to refer
to the object. This makes the language modular because,
on the syntactic level, other objects make use only of the
ID of an referenced object, but not of its internal structure.
Hence, if new language constructs are introduced, their ob-
jects can immediately be used within available structures,
without needing to exchange them. A second potential ben-
efit of object IDs is the possibility to re-use them if the same
object has multiple occurrences in a ground logic program,
thus compacting the representation. Note that this accounts

Declarative Programming Paradigms and Systems for NMR NMR-2008

151

for ordinary propositional atoms as well as for non-atomic
structures, such as conjunctions and disjunctions.

On the technical level, our language shall be easy to parse,
independent of system environments, and resistant against
potential parsing errors. To this end, we use a numeri-
cal text format and number 0 as an explicit delimiter for
entries. As 0 can also occur within an entry (not as de-
limiter), each entry must specify its number of consecu-
tive (numeric and/or symbolic) parameters directly after its
type. This shall enable the correct syntactic decomposi-
tion of ASPils sentences, even without recognizing the con-
tents, and it deliberately introduces a layer of redundancy
in order to avoid parsing errors. Also note that most pa-
rameters occurring in entries are numeric and thus repre-
sented by integers, which should facilitate their recogni-
tion by solvers. In particular, negative integers are used
to denote the default negations of objects having the ab-
solute values as their IDs. Of course, the use of numbers
makes ASPils less human-readable, but human-readability
is not one of our design goals anyway. Symbolic infor-
mation can still be included, most likely, for defining atom
names, but usually such information needs not be interpreted
by solvers. Furthermore, arbitrary meta-information as well
as user comments can be provided using dedicated types.
Note that comments are the only kind of objects not hav-
ing an ID, as they ought to be ignored by solvers. In con-
trast, meta-information may be exploited by solvers, but it
should not be mandatory for solvers to recognize it. We
do not suggest any kind of meta-information, but infor-
mation like whether a logic program is tight (Fages 1994;
Erdem & Lifschitz 2003) or whether it has an answer set
might be useful for particular purposes.

Language Description
This section describes the elementary constituents of our
proposed intermediate language ASPils, where we focus on
intuitions and examples. The formal specification of ASPils
can be found in (Gebser et al. 2008a). Below, italic and
typewriter fonts indicate non-terminals and terminals,
respectively, in the grammar of ASPils.

Header
Every sentence of ASPils starts with a header.4 E.g., header

1 3 1 3 0 0

consists of a 1 indicating the type header, a 3 providing the
number of parameters before the delimiter, the second 1 stat-
ing that this is the first version of ASPils, the second 3 indi-
cating conformance to normal form “SModels” (introduced
below), a 0 stating that there are no additional headers, and
the second 0 delimiting the header. Note that language ver-
sion 1 of ASPils, defined in (Gebser et al. 2008a), does not
specify any additional headers, hence, their number will al-
ways be 0. The pattern that a type number is followed by the
number of parameters before delimiter 0 recurs in each of
the types described below, while the parameters themselves
are specific.

4Only comments are allowed before header and after object eof.

End Of File
Every sentence of ASPils is terminated with an occurrence
of object eof,4 looking as follows:

0 0 0 .

The first 0 indicates the object’s type, the second its number
of parameters, and the third one delimits it. (The full stop
sign “.” is part of the surrounding text, but not of ASPils.)

Entries
In-between the header and end of file, a ground logic pro-
gram is specified by entries, providing meta-information,
comments, or defining elements of the program at hand.
Each entry starts with its type number, an up to eight digits
long hexadecimal cipher. The first four digits denote the re-
search group that has developed the type; for the core types
described below, the four leading digits are zeros and can
thus be omitted. The last four digits of a type number must
not evaluate to zero (reserved for object eof). Each type
number is followed by the number of consecutive param-
eters before the entry is delimited by an occurrence of 0.
Each entry type imposes particular parameters, that is, the
slots specified in the grammar (Gebser et al. 2008a) must be
filled with terminals.

Meta-Information. Objects of type 2 can be used to pro-
vide meta-information. Although we do not suggest any par-
ticular meta-object, the following one is syntactically valid:

2 3 42 "tight program" 23 0 .

Among the 3 parameters of the entry, 42 is the object ID,
"tight program" is a safe verbal, that is, a list of
strings and whitespaces enclosed in double quotes, and 23
is the single element of a list of meta-options (that is, inte-
gers). Meta-information may be exploited by solvers, but
any such information should not affect the semantics of the
specified ground logic program, so that it is admissible for
solvers to simply ignore unrecognized meta-objects.

Comments. Comments of type 3 do not define any object
(i.e., they do not have an object ID as parameter). An exam-
ple comment looks as follows:

3 1 "grounded by GrinGo version 2" 0 .

As comments are not associated with an ID, they cannot be
referenced by objects defined in an ASPils problem descrip-
tion. In fact, comments are understood to be completely up
to user information, such as the author of a problem de-
scription or the grounder that generated it. Unlike meta-
information, comments must always be ignored by solvers.

Atoms. Objects of type 4 define atoms. E.g., consider:

4 2 8 p(a,1) 0
4 5 15 "-p(a,1)" 1 2 8 0 .

The first entry specifies that object ID 8 stands for an atom
whose name is p(a,1), and the second entry defines ob-

Declarative Programming Paradigms and Systems for NMR NMR-2008

152

ject ID 15 to represent another atom with name -p(a,1).5
Furthermore, atom option 1, provided for -p(a,1), de-
clares the atom as hidden, that is, the atom name shall be
suppressed in the output of an ASP solver. We include this
option in order to reflect the effect of hide declarations in the
input language of lparse (Syrjänen). However, while lparse
suppresses atom names by not including them in the symbol
table, we choose to keep the symbolic names of atoms and to
signal their hidden nature via an option. In this way, it stays
possible to recover a symbolic representation from the in-
termediate format, as it is done by tool lplist (Janhunen) for
lparse’s output format using the symbolic information still
available there. The second atom option 2 for -p(a,1)
declares the atom to be the classical negation of the object
with ID 8, viz., of atom p(a,1). Classical negation is un-
derstood in the sense of (Gelfond & Lifschitz 1991). In our
example, it means that atoms p(a,1) and -p(a,1) can-
not jointly belong to a stable model of the program at hand.

Rules, Facts, and Integrity Constraints. In ASP, a logic
program is a set of rules, each rule consisting of a head and
a body. Either the head or the body may be constant, in
which case the rule is called a fact or an integrity constraint,
respectively. Let us consider the following example logic
program containing a rule, a fact, and an integrity constraint:

-p(a,1) :- not p(a,1).
p(a,1).

:- -p(a,1).

Reusing object IDs 8 and 15 for p(a,1) and -p(a,1),
respectively, corresponding entries in ASPils are as follows:

5 3 55 15 -8 0
6 2 66 8 0
7 2 77 15 0 .

Here, type numbers 5, 6, and 7 indicate that the objects with
IDs 55, 66, and 77 are a rule, a fact, and an integrity con-
straint, respectively. Note that -8 in the first entry refers
to the default negation of the atom with ID 8, viz., of atom
p(a,1). Furthermore, observe that the second entry spec-
ifies only a head literal and the third one only a body lit-
eral, while the rule defined by the first entry contains both
a head and a body literal. The choice of introducing three
different types is motivated by the goal of not imposing any
hard-wired assumptions on the structure of heads and bod-
ies, while still being able to identify the role of particular lit-
erals. Importantly, workarounds such as the false atom,
introduced by lparse (Syrjänen) as the head of integrity con-
straints, ought to be avoided. Due to the generic design of
entries for rules, facts, and integrity constraints, allowing to
refer to arbitrary and possibly default negated objects, there
are no restrictions on the structure of heads and bodies (rules
might even reference each other) a priori. Below, the issue
of ensuring certain formats is dealt with via normal forms.

5The name of the second atom must be provided as a safe ver-
bal, enclosed in double quotes. Double quotes may only be omitted
for atom names starting with a letter. Due to this requirement, the
first symbols of atom names and integers become unambiguous.

Conjunctions and Disjunctions. In order to express more
complex rules than the ones given above, entries may specify
conjunctions and disjunctions of literals. For instance,

8 3 89 -8 -15 0

defines an object with ID 89 as the conjunction of the de-
fault negations of the objects with IDs 8 and 15. Similarly,

9 3 98 8 15 0

defines a disjunction of the objects with IDs 8 and 15.
Assuming that ID 8 stands for atom p(a,1) and 15 for
-p(a,1), the entries

7 2 78 89 0
6 2 67 98 0

describe the following integrity constraint and disjunctive
fact:

:- not p(a,1), not -p(a,1).
p(a,1) | -p(a,1).

Finally, note that the normal forms described below restrict
conjunctions to occur in bodies of rules and disjunctions to
being used in rule heads.

Default Negation. Programs in “canonical form” (Lee
2005; Lifschitz, Tang, & Turner 1999) permit double (de-
fault) negation of atoms. Rather than permitting multiple
occurrences of “-” at the beginning of a literal (which would
make literals and integers syntactically different), we intro-
duce entries defining default negation objects for represent-
ing nested negation. This allows us to express a “choice”

p(a,1) :- not not p(a,1).

in terms of the following entries:
a 2 44 -8 0
5 3 45 8 44 0 .

Observe that the object defined by the first entry stands for
the default negation of literal -8 and, thus, for the double
negation of the object with ID 8, viz., of atom p(a,1).
Finally, note that, under answer set semantics, rules using an
atom and those using its double negation are not necessarily
equivalent (Lifschitz, Tang, & Turner 1999), so that double
negation constitutes a proper syntactic feature.

Cardinality and Weight Constraints. Cardinality and
weight constraints (Simons, Niemelä, & Soininen 2002;
Syrjänen) permit expressing conditions on sets of literals,
that is, true literals can be counted or their weights can be
summed up in order to compare the result against a lower
and an upper bound. Letting object IDs 1, 2, 3, and 4 stand
for atoms a, b, c, and d, we can represent the expressions

2{a, b, not c, not d}3
-1[a=-2, b=1, not c=3, not d=-4]2

in ASPils as follows:
b 7 5 2 3 1 2 -3 -4 0
c 11 6 -1 2 1 2 -3 -4 -2 1 3 -4 0 .

Here, the object IDs 5 and 6 of the cardinality and weight
constraint, respectively, are immediately followed by their
lower and upper bounds. Afterwards, the literals are pro-
vided, and for weight constraint 6, also a list of weights (ex-
actly one weight per literal). The primary constituents of a

Declarative Programming Paradigms and Systems for NMR NMR-2008

153

logic program, viz., rules, facts, and integrity constraints,
can incorporate cardinality and weight constraints just like
atoms, simply by referencing their IDs directly or indirectly
through literals. Observe that, in general, we allow for upper
bounds as well as for negative weights, both of which can
occur in the input language, but not in the output language,
of lparse. In fact, lparse performs a number of transforma-
tions and introduces new atoms to remove them. Some of the
normal forms below impose similar restrictions, thus, spec-
ifying lparse-like fragments of ASPils. In such fragments,
only trivial upper bounds are permitted, obtained by sum-
ming up all (positive) weights, where weight 1 is used for
the literals of cardinality constraints.

Weighted Literals. Weighted literals are auxiliary con-
cepts, devised for the use with aggregates and optimization
statements (see below), thus, establishing a uniform way of
referencing objects (simple or complex ones) evaluating to
numbers. For instance, we may associate weights to literals,
as in the above weight constraint, via the following entries:

d 3 11 1 -2 0
d 3 12 2 1 0
d 3 13 -3 3 0
d 3 14 -4 -4 0 .

Aggregates. We adopt the aggregates supported by dlv
(Dell’Armi et al. 2003), allowing for five operations, viz.,
count, sum, max, min, and times. While count applies to
Boolean operands, that is, to literals, the other four aggre-
gates operate on numerical values, thus, they require object
IDs rather than literals as parameters. Reusing atoms a, b,
c, and d as well as weighted literals as specified above, we
may define a count and a sum aggregate as follows:

e 5 21 1 2 -3 -4 0
f 5 22 11 12 13 14 0 .

Observe that count applies to (possibly negative) literals,
while dlv’s aggregates are restricted to atoms. As such a
restriction does not significantly simplify dealing with ag-
gregates, we do not adopt it here, and the weighted literals
used by sum may also apply to negative literals (as it is the
case for the objects with IDs 13 and 14). However, in or-
der to reasonably apply an aggregate, operands must have
appropriate types, being an issue to the normal forms below.

Operators. Arithmetic comparison operators can be ap-
plied to weighted literals and aggregates in order to retrieve
Boolean values from them. Thus, operators can be refer-
enced by rules, facts, and integrity constraints in the same
way as atoms. We provide two kinds of operators: (binary)
operators of type in-between 13 and 17 can be used to com-
pare the numerical values of two objects with one another,
while unary operators of type in-between 18 and 1c al-
low for comparing an object’s numerical value to an inte-
ger. Both kinds of operators support the following compar-
ison operations: eq (“equal”), leq (“less or equal”), lt (“less
than”), geq (“greater or equal”), and gt (“greater than”). For
instance, the following entry describes the application of the
(binary) operator eq to the aggregates with IDs 21 and 22
as defined above:

13 3 31 21 22 0 .

An application of unary operator leq to the aggregate with
ID 22 and integer 0 can be specified as follows:

19 3 91 22 0 0 .

Finally, note that current ASP solvers do not support (bi-
nary) operators of type in-between 13 and 17, hence, they
will not be permitted by the normal forms below.

Optimization. Amongst the most common optimization
techniques in ASP are “minimize statements” (Simons,
Niemelä, & Soininen 2002) supported by smodels and
“weak constraints” (Leone et al. 2006) supported by dlv. In
order to reflect them, we introduce an optimize object whose
underlying strategy is minimization of (arbitrarily many) ob-
jective functions of distinct priorities, the priorities forming
a strict total order. Other strategies than lexicographic or-
dering of objective functions, e.g., Pareto optimality, would
also be possible but are currently not in use, so we do not
(yet) consider them. In what follows, we detail how “mini-
mize statements” and “weak constraints” can be represented
in ASPils.

Minimize Statements of smodels: Assume that an input
program provided to lparse contains two minimize state-
ments (in order):

minimize[not a, b, c].
minimize[a=4, not b=3, c=2].

The first statement expresses that a minimum number of
its literals should be true, while the second one is about
minimizing the sum of weights of true literals. The cor-
responding objective functions are expressed by a count
and a sum aggregate (over weighted literals), respectively,
where we assume IDs 1, 2, and 3 for atoms a, b, and c:

d 3 11 1 4 0
d 3 12 -2 3 0
d 3 13 3 2 0
e 4 21 -1 2 3 0
f 4 22 11 12 13 0 .

Note that the count aggregate with ID 21 gives the objec-
tive function minimized by the first statement over liter-
als, and the sum aggregate with ID 22 takes the weights
provided in the second minimize statement into consider-
ation. We are now ready to define a single optimize object
that incorporates both aggregates:

1d 4 43 1e 22 21 0 .

The type of this object is 1d, 4 the number of parame-
ters, and 43 the ID. Furthermore, 1e specifies the lexi-
cographic optimization strategy, which is the only strat-
egy included in the first version of ASPils. Finally, min-
imizing the numerical value of the sum aggregate with
ID 22 takes higher priority than minimizing the value of
the count aggregate with ID 21. This priority, reverse to
the order of minimize statements in the input, is indeed
applied by smodels. While smodels derives the (reverse)
priorities of minimize statements implicitly from the or-
der in the input, in the ASPils representation, priorities are
explicit because the objective functions to be minimized
are combined within an optimize object.

Declarative Programming Paradigms and Systems for NMR NMR-2008

154

Weak Constraints of dlv: We start with an example. Con-
sider the following weak constraints:

:˜ a, not b. [1:2]
:˜ not c. [1:1]
:˜ b, c. [2:1]

Note that the numbers in brackets describe weights and
levels. As level 2 of the first weak constraint is greater
than 1, the first weak constraint is of higher priority than
the second and the third one. Among the last two weak
constraints, the priority of the third one is greater simply
because its weight 2 is greater than 1. In order to express
the non-singleton bodies of weak constraints, we define
conjunctions as follows:

8 3 81 1 -2 0
8 3 83 2 3 0 .

The conjunction with ID 81 stands for the body of the first
weak constraint, and the one with ID 83 for the body of
the third weak constraint. We can now proceed by defin-
ing weighted literals, one per weak constraint:

d 3 11 81 1 0
d 3 21 -3 1 0
d 3 22 83 2 0 .

Observe that the weight of each weak constraint is the
weight given in the input. Finally, we use a sum aggre-
gate for multiple weak constraints at the same level and
define an optimize object as follows:

f 3 24 21 22 0
1d 4 35 1e 11 24 0 .

The last entry expresses that we minimize weights starting
with the weak constraint at level 2 and, secondarily, for
the weak constraints at level 1.
We now provide a general scheme of how to represent
multiple weak constraints of distinct levels in ASPils.
Consider the following weak constraints ordered by their
levels lj , where we assume li > lj if i < j in order to
respect level priorities:
:˜ body11

. [w11 : l1] . . . :˜ bodyn1
. [wn1 : l1]

...
:˜ body1m

. [w1m : lm] . . . :˜ bodynm
. [wnm : lm] .

In ASPils, the bodies body11
, . . . , bodynm

of weak con-
straints can be defined by literals either over atoms (for
singleton bodies) or over conjunctions, which can be de-
fined as usual. Thus, we keep notation body ij

in the fol-
lowing weighted literals:
d 3 x11 body11

w11 0
...
d 3 xn1 bodyn1

wn1 0
...
d 3 x1m body1m

w1m 0
...
d 3 xnm bodynm

wnm 0 .
The weighted literals defined above are similar to those
used in the representation of minimize statements. In
fact, it makes no difference in ASPils whether they re-
fer to atoms or to conjunctions. The next step of adding

Conglomeration (7)

⊃

((PPPPPPPPPPPP
⊂

uulllllllllllll

CModelsExtended (5)

⊃

))RRRRRRRRRRRRR DLV (6)

∪

��

CModels (4)

⊃

((PPPPPPPPPPPP
⊂

uulllllllllllll

SModels (3)

⊃

))RRRRRRRRRRRRR SimpleDLP (2)

⊂

vvnnnnnnnnnnnn

Simple (1)

Figure 2: Normal Form Hierarchy

level-wise sum aggregates and a single optimize object is
similar to minimize statements:
f n1+1 s1 x11 . . . xn1 0
...
f nm+1 sm x1m . . . xnm 0

1d m+2 o 1e s1 . . . sm 0 .
The given embeddings in ASPils indicate that minimize
statements and weak constraints are handled likewise, us-
ing weighted literals, sum aggregates (sometimes, simpler
constructs are sufficient), and an optimize object.

Normal Forms
This section describes seven normal forms corresponding
to different language fragments handled by existing ASP
solvers. The normal forms stand in a hierarchy, as shown
in Figure 2. Each of the normal forms is identified via a
corresponding number, given in parentheses in Figure 2, to
be provided within the header of a problem description in
ASPils. The full specification of the normal forms presented
below can be found in (Gebser et al. 2008a). In particu-
lar, admissible object types and reference relationships are
defined for each normal form in turn. In what follows, we
focus on their main features and provide examples.

Normal Form Simple
This normal form corresponds to the input language used in
the SCore category of the ASP system competition (Gebser
et al. 2007b). It allows for representing ground normal logic
programs without any extended constructs (like aggregates,
etc.). For example, consider the following input program:

a :- not b.
b :- not a.
:- b.
c :- d, not b.
d.
#hide a.

This program can be represented in ASPils as follows:6

6We indicate the meanings of objects in comments preceding
their definitions.

Declarative Programming Paradigms and Systems for NMR NMR-2008

155

3 1 "header, language version =: 1,
normal form =: 1" 0

1 3 1 1 0 0
3 1 "a =: 1 and hidden,

b =: 2, c =: 3, d =: 4" 0
4 3 1 a 1 0
4 2 2 b 0
4 2 3 c 0
4 2 4 d 0
3 1 "(a :- not b.) =: 5" 0
5 3 5 1 -2 0
3 1 "(b :- not a.) =: 6" 0
5 3 6 2 -1 0
3 1 "(:- b.) =: 7" 0
7 2 7 2 0
3 1 "(d, not b) =: 8" 0
8 3 8 4 -2 0
3 1 "(c :- d, not b.) =: 9" 0
5 3 9 3 8 0
3 1 "(d.) =: 10" 0
6 2 10 4 0
3 1 "end of file" 0
0 0 0 .

Note that the above representation is not unique, for in-
stance, we could have assigned different object IDs or
changed the order of entries.

Normal Form SimpleDLP
This normal form, corresponding to the input language used
in the SCore∨ category of the ASP system competition
(Gebser et al. 2007b), extends normal form “Simple” by
allowing disjunctions over atoms to occur in heads of rules
and facts. E.g., consider the following disjunctive program:

a | b.
b | c | d :- a, not d.

This program can be represented in ASPils as follows:
3 1 "header, language version =: 1,

normal form =: 2" 0
1 3 1 2 0 0
3 1 "a =: 1, b =: 2, c =: 3, d =: 4" 0
4 2 1 a 0
4 2 2 b 0
4 2 3 c 0
4 2 4 d 0
3 1 "(a | b) =: 5" 0
9 3 5 1 2 0
3 1 "(a | b.) =: 6" 0
6 2 6 5 0
3 1 "(b | c | d) =: 7" 0
9 4 7 2 3 4 0
3 1 "(a, not d) =: 8" 0
8 3 8 1 -4 0
3 1 "(b | c | d :- a, not d.) =: 9" 0
5 3 9 7 8 0
3 1 "end of file" 0
0 0 0 .

As in the previous subsection, this representation in ASPils
is not unique.

Normal Form SModels
This normal form is inspired by the input language of solver
smodels (Simons, Niemelä, & Soininen 2002), that is, it ex-
tends “Simple” by cardinality and weight constraints as well

as optimize objects. Note that the weights used in weight
constraints and weighted literals have to be non-negative.
Furthermore, the upper bounds of cardinality and weight
constraints must be trivial, that is, they cannot be smaller
than the number of literals or the sum of weights, respec-
tively, in a constraint. If a cardinality constraint occurs as
the head of a rule or fact, its lower bound must also be trivial,
viz., it must be 0, while weight constraints are not permitted
as heads. Finally, note that weighted literals as well as count
and sum aggregates may only be used in combination with
an optimize object, but not as a part of a rule, a fact, or an
integrity constraint. Let us consider the following program:

{a, b}.
c :- a, not b.
:- 3[a=2, b=1, not c=2].
minimize[not a=1, not b=2, c=2].

The following is a possible representation in ASPils:
3 1 "header, language version =: 1,

normal form =: 3" 0
1 3 1 3 0 0
3 1 "a =: 1, b =: 2, c=: 3" 0
4 2 1 a 0
4 2 2 b 0
4 2 3 c 0
3 1 "{a, b} =: 4" 0
b 5 4 0 2 1 2 0
3 1 "({a, b}.) =: 5" 0
6 2 5 4 0
3 1 "(a, not b) =: 6" 0
8 3 6 1 -2 0
3 1 "(c :- a, not b.) =: 7" 0
5 3 7 3 6 0
3 1 "3[a=2, b=1, not c=2] =: 8" 0
c 9 8 3 5 1 2 -3 2 1 2 0
3 1 "(:- 3[a=2, b=1, not c=2].) =: 9" 0
7 2 9 8 0
3 1 "(not a=1) =: 10, (not b=2) =: 11,

(c=2) =: 12" 0
d 3 10 -1 1 0
d 3 11 -2 2 0
d 3 12 3 2 0
3 1 "sum[not a=1, not b=2, c=2] =: 13" 0
f 4 13 10 11 12 0
3 1 "(minimize[not a=1, not b=2, c=2].)

=: 14" 0
1d 3 14 1e 13 0
3 1 "end of file" 0
0 0 0 .

Normal Form CModels
This normal form is closely related to the input language
of solver cmodels (Giunchiglia, Lierler, & Maratea 2006;
Lierler 2005), basically, augmenting “SModels” normal
form with disjunctions in heads of rules and facts.7

Normal Form CModelsExtended
This normal form is derived from “CModels” by dropping
some restrictions. Non-trivial upper bounds are permitted
for cardinality and weight constraints. Furthermore, both of
them can occur with non-trivial bounds as heads of rules and

7While cmodels does not process minimize statements, they can
be expressed in “CModels” via optimize objects.

Declarative Programming Paradigms and Systems for NMR NMR-2008

156

facts. Finally, negative weights can be used within weight
constraints and weighted literals being subject to optimize
objects. The following program uses these extra features:

0[a=1, b=-1]0 :- 0[c=-1, d=1]0.
0[c=1, d=-1]0 :- 0[a=-1, b=1]0.
minimize[not a=-1, not b=2, c=-2, d=1].

This program can be represented in ASPils as follows:
3 1 "header, language version =: 1,

normal form =: 5" 0
1 3 1 5 0 0
3 1 "a =: 1, b =: 2, c =: 3, d =: 4" 0
4 2 1 a 0
4 2 2 b 0
4 2 3 c 0
4 2 4 d 0
3 1 "0[a=1, b=-1]0 =: 5" 0
c 7 5 0 0 1 2 1 -1 0
3 1 "0[c=-1, d=1]0 =: 6" 0
c 7 6 0 0 3 4 -1 1 0
3 1 "(0[a=1, b=-1]0 :- 0[c=-1, d=1]0.)

=: 7" 0
5 3 7 5 6 0
3 1 "0[c=1, d=-1]0 =: 8" 0
c 7 8 0 0 3 4 1 -1 0
3 1 "0[a=-1, b=1]0 =: 9" 0
c 7 9 0 0 1 2 -1 1 0
3 1 "(0[c=1, d=-1]0 :- 0[a=-1, b=1]0.)

=: 10" 0
5 3 10 8 9 0
3 1 "(not a=-1) =: 11, (not b=2) =: 12,

(c=-2) =: 13, (d=1) =: 14" 0
d 3 11 -1 -1 0
d 3 12 -2 2 0
d 3 13 3 -2 0
d 3 14 4 1 0
3 1 "sum[not a=-1, not b=2, c=-2, d=1]

=: 15" 0
f 5 15 11 12 13 14 0
3 1 "(minimize[not a=-1, not b=2, c=-2,

d=1].) =: 16" 0
1d 3 16 1e 15 0
3 1 "end of file" 0
0 0 0 .

Normal Form DLV
This normal form is inspired by the input language of solver
dlv (Dell’Armi et al. 2003; Leone et al. 2006). Hence,
it allows for disjunctions over atoms in heads of rules and
facts. Furthermore, aggregates may be used in bodies, under
the proviso that all referenced weighted literals have non-
negative weights.8 As dlv does not deal with cardinality
and weight constraints, we exclude cardinality and weight
constraints from “DLV” normal form. (However, cardinal-
ity and weight constraints can equivalently be expressed in
terms of count and sum aggregates, respectively.) Finally,
weak constraints (Leone et al. 2006) can be represented us-
ing optimize objects. For illustration, consider program:

a | b | c.
d :- sum[a=1, b=1, c=2] >= 2.
:˜ d, not b. [1:2]

8The dlv solver requires logic programs to be “aggregate-
stratified” (Dell’Armi et al. 2003), which is not reflected herein.

:˜ a. [2:1]
:˜ not c. [1:1]

The following is a representation of this program in ASPils:
3 1 "header, language version =: 1,

normal form =: 6" 0
1 3 1 6 0 0
3 1 "a =: 1, b =: 2, c =: 3, d =: 4" 0
4 2 1 a 0
4 2 2 b 0
4 2 3 c 0
4 2 4 d 0
3 1 "(a | b | c) =: 5" 0
9 4 5 1 2 3 0
3 1 "(a | b | c.) =: 6" 0
6 2 6 5 0
3 1 "(a=1) =: 7, (b=1) =: 8, (c=2) =: 9" 0
d 3 7 1 1 0
d 3 8 2 1 0
d 3 9 3 2 0
3 1 "sum[a=1, b=1, c=2] =: 10" 0
f 4 10 7 8 9 0
3 1 "(sum[a=1, b=1, c=2] >= 2) =: 11" 0
1b 3 11 10 2 0
3 1 "(d :- sum[a=1, b=1, c=2] >= 2.)

=: 12" 0
5 3 12 4 11 0
3 1 "(d, not b) =: 13" 0
8 3 13 4 -2 0
3 1 "((d, not b)=1) =: 14, (a=2) =: 15,

(not c=1) =: 16" 0
d 3 14 13 1 0
d 3 15 1 2 0
d 3 16 -3 1 0
3 1 "sum[a=2, not c=1] =: 17" 0
f 3 17 15 16 0
3 1 "(minimize[a=2, not c=1].

minimize[(d, not b)=1].) =: 18" 0
1d 4 18 1e 14 17 0
3 1 "end of file" 0
0 0 0 .

Normal Form Conglomeration
This normal form is the most general one provided here.
It results from “CModelsExtended” and “DLV” by drop-
ping some restrictions of the latter, that is, unary opera-
tors and aggregates may occur in the heads of rules and
facts, and negative weights are allowed within weighted lit-
erals. Furthermore, we include default negation objects on
negative literals over atoms in order to account for double
negation. Though double negation is a syntactical feature
that increases neither computational complexity nor techni-
cal difficulties of ASP solving, somewhat astonishingly, it is
currently not supported by any ASP solver nor by accompa-
nying grounders. This is why default negation objects were
not permitted in previous normal forms. The following pro-
gram, comprising a single rule, uses the additional features:

sum[a=1, b=1, c=1, d=-2] == 0 :-
2[a=-1, not b=2, not c=3]3, not not d.

This program can be represented in ASPils as follows:
3 1 "header, language version =: 1,

normal form =: 7" 0
1 3 1 7 0 0
3 1 "a =: 1, b =: 2, c =: 3, d =: 4" 0

Declarative Programming Paradigms and Systems for NMR NMR-2008

157

4 2 1 a 0
4 2 2 b 0
4 2 3 c 0
4 2 4 d 0
3 1 "(a=1) =: 5, (b=1) =: 6, (c=1) =: 7,

(d=-2) =: 8" 0
d 3 5 1 1 0
d 3 6 2 1 0
d 3 7 3 1 0
d 3 8 4 -2 0
3 1 "sum[a=1, b=1, c=1, d=-2] =: 9" 0
f 5 9 5 6 7 8 0
3 1 "(sum[a=1, b=1, c=1, d=-2] == 0)

=: 10" 0
18 3 10 9 0 0
3 1 "2[a=-1, not b=2, not c=3]3 =: 11" 0
c 9 11 2 3 1 -2 -3 -1 2 3 0
3 1 "(not not d) =: 12" 0
a 2 12 -4 0
3 1 "(2[a=-1, not b=2, not c=3]3,

not not d) =: 13" 0
8 3 13 11 12 0
3 1 "(sum[a=1, b=1, c=1, d=-2] == 0 :-

2[a=-1, not b=2, not c=3]3,
not not d.) =: 14" 0

5 3 14 10 13 0
3 1 "end of file" 0
0 0 0 .

Discussion and Outlook
We have described language version 1 of ASPils (“ASP in-
termediate language standard”); full details can be found
in (Gebser et al. 2008a). The primary motivation for this
work is making a step towards a standard input language
for ASP solvers to be generated by grounders, for which we
propose ASPils. The major design goals of ASPils are gener-
ality, by supporting language constructs processed by exist-
ing ASP grounders and solvers, and extensibility, by using
an object-based approach and including version information.
For solvers, parsing a problem description in ASPils should
still be reasonably simple, thus, ASPils defines a numerical
format not intended to be manually written by users. How-
ever, ASPils also provides means to specify symbolic in-
formation, enabling the reconstruction of a human-readable
format. Beyond that, via comments and meta-information,
arbitrary contents can be included in a problem description
without disturbing solvers. The current proposal of ASPils is
a good response to the recommendations presented in (Jan-
hunen 2007) as regards extensibility and support for com-
ments as well as symbolic information.

As a proof of concept, we are currently working on a
new version of grounder gringo (Gebser, Schaub, & Thiele
2007) able to output ASPils format and also on an ASPils
front-end for solver clasp (Gebser et al. 2007a). In the
course of this, we take advantage of the generic design of
ASPils allowing us to preserve the structure of ground logic
programs. For instance, gringo can output cardinality and
weight constraints specifying both a lower and a non-trivial
upper bound, and such constraints can occur both in the bod-
ies and in the heads of rules. In contrast, in lparse’s out-
put format (Syrjänen), upper bounds (and in rule heads, also

lower bounds) have to be compiled away, introducing addi-
tional atoms and rules. Such structure-degrading transfor-
mations are performed by lparse in order to match the inter-
nal data structures of smodels (Simons, Niemelä, & Soininen
2002), and in the past, tools (Liu & Truszczyński 2005) were
particularly developed to undo such transformations. As re-
gards grounding, we think that the two tasks of a grounder
are, first, substituting constants for variables in an input pro-
gram and, second, presenting the grounding result to a solver
in some basic format that is easy to parse. Beyond these two
tasks, a grounder should keep the input program intact in
order to be solver-independent and to abolish the need of
applying structure-restoring tools. In particular, introduc-
ing additional atoms during the grounding phase ought to be
avoided, as it is very likely to spoil the desired equivalence
between the input program and the grounding result.

In long-term, we hope that our proposal of an intermedi-
ate language standard leads to the establishment of a com-
mon input format for ASP solvers, comparable to the role
of DIMACS format (DIMACS 1993) in SAT. On the one
hand, it would make ASP more user-friendly if solvers could
be interchanged without redoing problem encodings, given
that the two main input languages, the one of dlv (Leone
et al. 2006) and the one of lparse (Syrjänen), are incom-
patible with each other. A common intermediate language
would enhance the interoperability of other auxiliary tools
as well. Similarly, the assessment of ASP solvers would be
greatly facilitated, for instance, in future ASP solver com-
petitions. On the other hand, the non-availability of a stan-
dardized intermediate language (as dlv does not supply an
intermediate format and lparse’s output language is not stan-
dardized) makes ASP solvers and related tools satellites of
particular grounders, addicted to their capabilities and sup-
ported language fragments. We think that the establishment
of an extensible intermediate language standard, not dic-
tated by the capabilities of grounders, might motivate future
works on knowledge representation for applications, invent-
ing new language constructs when they are useful and then
integrating them into the standard. At the moment, incor-
porating new language features would mean hacking one of
the few available grounding tools, making the broad accep-
tance and usage of the feature rather unlikely. However, the
establishment of an intermediate language standard must be
a community effort, requiring a representative standardiza-
tion committee and developers motivated to implement the
standard in their tools. In view of these requirements, our
proposal of ASPils can serve as a starting point for future
discussions within the community.

Let us note that the establishment of ASPils or a com-
parable intermediate language standard can only be a small
step in making ASP tools more general, more interopera-
ble, and thus more user-friendly. In fact, tools are needed
to perform various useful tasks on problem descriptions in
the new language, similar to what the Helsinki collection
(Janhunen) of tools offers for lparse’s output format. Let us
give some examples. For the use in ASP system competi-
tions, solver inputs must contain neither meta-information
nor comments, thus, a (trivial to develop) tool to delete such
information would be needed. For benchmarking, a tool

Declarative Programming Paradigms and Systems for NMR NMR-2008

158

like shuffle is desirable, in particular, considering that shuf-
fling ASPils sentences requires more care than needed with
lparse’s output format as the order (Gebser et al. 2008a)
among object definitions and references has to be main-
tained. If a grounder generates ASPils output on-the-fly, it is
hard to predict the most restrictive normal form sufficient for
the input program, hence, a postprocessor calculating this
simplest normal form might be useful. As the last exam-
ple given here, a tool like lplist should be made available
for reconstructing a symbolic representation from the inter-
mediate format. Finally, we note that ASPils or any other
intermediate language cannot establish compatibility among
the input languages of grounders or integrated ASP systems
(such as dlv). Furthermore, modular (Oikarinen & Janhunen
2006), incremental (Gebser et al. 2008b), or even systems
dealing with non-ground input programs are currently out of
the scope of our proposal. However, we think that the rela-
tively simple concept of an intermediate language provides
a good basis for standardization efforts, and more sophisti-
cated matters could be addressed in the future.

Acknowledgments. We are grateful to Marcello Balduc-
cini, Martin Brain, Maarten Mariën, and Axel Polleres for
fruitful discussions and valuable ideas that contributed to
this work. Also, we would like to thank the anonymous
reviewers whose comments helped us to improve the pre-
sentation. The second author was supported by the project
#122399 “Methods for Constructing and Solving Large
Constraint Models” funded by the Academy of Finland.

References
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving.
Davis, M., and Putnam, H. 1960. A computing procedure
for quantification theory. JACM 7:201–215.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem-proving. CACM 5:394–397.
Dell’Armi, T.; Faber, W.; Ielpa, G.; Leone, N.; and Pfeifer,
G. 2003. Aggregate functions in disjunctive logic program-
ming: Semantics, complexity, and implementation in DLV.
In Proc. of IJCAI’03, 847–852.
DIMACS. 1993. Satisfiability suggested format. 9

Erdem, E., and Lifschitz, V. 2003. Tight logic programs.
TPLP 3(4-5):499–518.
Fages, F. 1994. Consistency of Clark’s completion and the
existence of stable models. JMLCS 1:51–60.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007a. clasp: A conflict-driven answer set solver. In Proc.
of LPNMR’07, 260–265.
Gebser, M.; Liu, L.; Namasivayam, G.; Neumann, A.;
Schaub, T.; and Truszczyński, M. 2007b. The first an-
swer set programming system competition. In Proc. of LP-
NMR’07, 3–17.

9ftp://dimacs.rutgers.edu/pub/challenge/
satisfiability/doc/

Gebser, M.; Janhunen, T.; Ostrowski, M.; Schaub, T.; and
Thiele, S. 2008a. A versatile intermediate language for
answer set programming: Syntax proposal. 10

Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Thiele, S. 2008b. Engineering an incre-
mental ASP solver. In Proc. of ICLP’08.
Gebser, M.; Schaub, T.; and Thiele, S. 2007. GrinGo:
A new grounder for answer set programming. In Proc. of
LPNMR’07, 266–271.
Gelfond, M., and Leone, N. 2002. Logic programming and
knowledge representation — the A-Prolog perspective. AIJ
138(1-2):3–38.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. NGC 9:365–385.
Giunchiglia, E.; Lierler, Y.; and Maratea, M. 2006. Answer
set programming based on propositional satisfiability. JAR
36(4):345–377.
Janhunen, T. The ASPTOOLS collection. 11

Janhunen, T. 2007. Intermediate languages of ASP systems
and tools. In Proc. of SEA’07, 12–25.
Lee, J. 2005. A model-theoretic counterpart of loop for-
mulas. In Proc. of IJCAI’05, 503–508.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
Perri, S.; and Scarcello, F. 2006. The DLV system
for knowledge representation and reasoning. ACM TOCL
7(3):499–562.
Lierler, Y. 2005. cmodels - SAT-based disjunctive answer
set solver. In Proc. of LPNMR’05, 447–451.
Lifschitz, V.; Tang, L.; and Turner, H. 1999. Nested ex-
pressions in logic programs. AMAI 25(3-4):369–389.
Liu, L., and Truszczyński, M. 2005. Pbmodels - software
to compute stable models by pseudoboolean solvers. In
Proc. of LPNMR’05, 410–415.
Marek, V., and Truszczyński, M. 1999. Stable models and
an alternative logic programming paradigm. In The Logic
Programming Paradigm: a 25-Year Perspective, 375–398.
Marques-Silva, J., and Sakallah, K. 1999. GRASP: A
search algorithm for propositional satisfiability. IEEE TC
48(5):506–521.
Mitchell, D. 2005. A SAT solver primer. EATCS 85:112–
133.
Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient SAT solver.
In Proc. of DAC’01, 530–535.
Niemelä, I. 1999. Logic programs with stable model
semantics as a constraint programming paradigm. AMAI
25(3-4):241–273.
Oikarinen, E., and Janhunen, T. 2006. Modular equiv-
alence for normal logic programs. In Proc. of ECAI’06,
412–416.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics. AIJ 138(1-
2):181–234.
Syrjänen, T. Lparse 1.0 user’s manual. 12

10http://www.cs.uni-potsdam.de/wv/
pdfformat/gejaosscth08a.pdf

11http://www.tcs.hut.fi/Software/asptools/
12http://www.tcs.hut.fi/Software/smodels/

lparse.ps.gz

Declarative Programming Paradigms and Systems for NMR NMR-2008

159

Engineering an Incremental ASP Solver: Preliminary Report

M. Gebser and R. Kaminski and B. Kaufmann and M. Ostrowski and T. Schaub and S. Thiele
Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, D-14482 Potsdam, Germany

Abstract

We provide the first theoretical and practical account of in-
cremental answer set solving. In fact, many real-world ap-
plications, like planning or model-checking, comprise a pa-
rameter reflecting the size of a solution. In a propositional
formalism like Answer Set Programming (ASP), such prob-
lems can only be dealt with in a bounded way, considering
one problem instance after another by gradually increasing
the bound on the solution size. We thus propose an incre-
mental approach to both grounding and solving in ASP. Our
goal is to avoid redundancy by gradually processing the ex-
tensions to a problem rather than repeatedly re-processing the
(gradually extended) entire problem. We start by furnishing
a formal framework capturing our incremental approach in
terms of module theory. In turn, we take advantage of this
framework for guiding the successive treatment of program
slices during grounding and solving. Finally, we describe the
first integrated incremental ASP system, iclingo, and provide
an experimental evaluation.

Introduction
Answer Set Programming (ASP; (Baral 2003)) faces a grow-
ing range of applications. The popularity of ASP is due to
the availability of efficient off-the-shelf ASP solvers and its
rich modeling language, jointly allowing for an easy yet effi-
cient handling of knowledge-intensive applications. Among
them, many real-world applications, as in bioinformatics,
model checking or finding, planning, etc., comprise param-
eters reflecting solution sizes. However, in the propositional
setting of ASP, such problems can only be dealt with in a
bounded way by considering in turn one problem instance
after another by gradually increasing the bound on the solu-
tion size. Such an approach can nonetheless be highly effi-
cient as demonstrated by Satisfiability (SAT) solvers in the
area of planning (Kautz and Selman 1992) and model check-
ing (Clarke et al. 2001). However, while SAT has its focus
on solving, ASP is furthermore concerned with grounding
in view of its modeling language. We thus propose an incre-
mental approach to both grounding and solving in ASP.

Our goal is to avoid redundancy by gradually process-
ing the extensions to a problem rather than repeatedly re-
processing the entire extended problem. To this end, we
express a (parametrized) domain description as a triple
(B,P,Q) of logic programs, among which P and Q con-
tain a (single) parameter k ranging over the natural num-
bers. In view of this, we sometimes denote P andQ by P [k]

and Q[k]. The base program B is meant to describe static
knowledge, independent of parameter k. The role of P is to
capture knowledge accumulating with increasing k, whereas
Q is specific for each k and aims at expressing query condi-
tions. Our goal is then to decide whether the program

R[k/i] = B ∪
⋃

1≤j≤iP [k/j] ∪Q[k/i] (1)

has an (or no) answer set for some (minimum) integer i ≥ 1.
In what follows, we write R[i] rather than R[k/i] whenever
clear from the context.

To illustrate this, consider an action description in lan-
guage C+ (Giunchiglia et al. 2004) involving an action a
and a fluent p. We complement this with a query formulated
in action query language Qn (Gelfond and Lifschitz 1998)
for expressing queries about trajectories of length n.

a causes p
exogenous a
inertial p

¬p holds at 0
p holds at n
¬a occurs at n

We translate these statements into the following domain de-
scription (following (Lifschitz and Turner 1999)):1

B =

{
p(0) ← not ¬p(0)
¬p(0) ← not p(0)

← p(0),¬p(0)

}

P [k] =

a(k) ← not ¬a(k)
¬a(k) ← not a(k)
p(k) ← a(k)
p(k) ← p(k−1),not ¬p(k)
¬p(k) ← ¬p(k−1),not p(k)

← p(k),¬p(k)
← a(k),¬a(k)

Q[k] =

{ ← not ¬p(0)
← not p(k)
← not ¬a(k)

}
(2)

This domain description induces no answer sets for R[1],
but we obtain a single one for R[2], that is, AS (R[2]) =
{{¬p(0), a(1), p(1),¬a(2), p(2)}}.

Such an answer is usually found by appeal to iterative
deepening search. That is, one first checks whether R[1]
has an answer set, if not, the same is done for R[2], and so
on. For a given i, this approach involves re-processing B
for i times and (i−j+1) times each P [j], where 1 ≤ j ≤ i,
while each Q[j] is dealt with only once.

1For admitting consistent answer sets only, we add integrity
constraints to B and P [k] accounting for classical negation.

Declarative Programming Paradigms and Systems for NMR NMR-2008

160

Unlike this, we propose to compute answers sets of (1) in
an incremental fashion, starting fromR[1] but then gradually
dealing with the program slices P [i] and Q[i] rather than the
entire program R[i] in (1). However, B and the previously
processed slices P [j] and Q[j], 1 ≤ j < i, must be taken
into account when dealing with P [i] and Q[i]. While the
rules in P [j] must be accumulated, the ones in Q[j] must
be discarded. For accomplishing this, an ASP system has
to operate in a “stateful way.” That is, it has to maintain
its previous state for processing the current program slices.
In this way, all components, B, P [j], and Q[i], of (1) are
dealt with only once, and duplicated work is avoided when
increasing i. Given that an ASP system is composed of a
grounder and a solver, our incremental approach has the fol-
lowing specific advantages over the standard approach. As
regards grounding, it reduces efforts by avoiding reproduc-
ing previously grounded rules. Regarding solving, it reduces
efforts, in particular, if a learning ASP solver is used, given
that previously gathered information on heuristics, conflicts,
or loops (cf. (Gebser et al. 2007b)), respectively, remains
available and can thus be continuously exploited.

Background
Our language is built from a set F of function symbols
(including the natural numbers), a set V of variable sym-
bols, and a set P of predicate symbols. The set T of
terms is the smallest set containing V and all expressions
of the form f(t1, . . . , tn), where f ∈ F and ti ∈ T for
1 ≤ i ≤ n. The set A of atoms contains expressions
of the form p(t1, . . . , tn), where p ∈ P and ti ∈ T for
1 ≤ i ≤ n. A literal is an atom a or its (default) negation
not a. Given a set L of literals, let L+ = {a ∈ A | a ∈ L}
and L− = {a ∈ A | not a ∈ L}.

A logic program over A is a set of rules of the form2

a← b1, . . . , bm,not cm+1, . . . ,not cn , (3)
where a, bi, cj ∈ A for 0 ≤ i ≤ m ≤ j ≤ n. For a rule r
as in (3), let head(r) = a be the head of r and the set
body(r) = {b1, . . . , bm,not cm+1, . . . ,not cn} be the body
of r. Furthermore, let atom(r) = {head(r)} ∪ body(r)+ ∪
body(r)−. For a logic program P , define head(P) =
{head(r) | r ∈ P} and atom(P) =

⋃
r∈P atom(r).

Let var(e) denote the set of all variables occurring in e ∈
T ∪ A; analogously, var(r) gives all variables in rule r.
Expression e ∈ T ∪A is ground, if var(e) = ∅. The ground
instantiation of a program P is defined as grd(P) = {rθ |
r ∈ P, θ : var(r)→ U}, where U = {t ∈ T | var(t) = ∅};
analogously, grd(A) = {a ∈ A | var(a) = ∅}.

A set X ⊆ grd(A) is an answer set of a logic program P
over A, if X is the ⊆-smallest model of {head(r) ←
body(r)+ | r ∈ grd(P), body(r)−∩X = ∅}. The set of an-
swer sets of a program P is denoted AS (P). Two programs,
P and P ′, are equivalent, P ≡ P ′, if AS (P) = AS (P ′).

In view of our goal, the variable set V contains a dis-
tinguished parameter symbol k. A rule r is parametrized,

2 The semantics of integrity constraints and choice rules is
given through program transformations. For instance, {a} ← is
a shorthand for a ← not a′, a′ ← not a and similarly ← a for
a′ ← a,not a′, for a new atom a′.

if k ∈ var(r), and non-parametrized otherwise. Accord-
ingly, a (parametrized) domain description (B,P,Q) con-
sists of a set B of non-parametrized rules and two sets P,Q
of parametrized rules.

Incremental Modularity
For the sake of compositionality, we build upon the concept
of a module developed in (Oikarinen and Janhunen 2006):
Given a ground logic program P over grd(A) and sets
I,O ⊆ grd(A) such that I ∩ O = ∅, a module P is a triple
(P, I,O) such that atom(P) ⊆ I ∪ O and head(P) ⊆ O.
The elements of I and O are called input and output atoms;
also denoted I(P) and O(P), respectively. Similarly, we re-
fer to P by P (P). We say that P is input-free, if I(P) = ∅.

For defining an incremental account of modularity, we be-
gin with associating a (non-ground) program P and a set I
of (ground) input atoms with a module P(I) imposing cer-
tain restrictions on the ground program induced by P . We
need the following auxiliary definition: For a program P
over grd(A) and a set X ⊆ grd(A), define P |X as
{head(r)←body(r)+ ∪ L | r ∈ P, body(r)+ ⊆ X,

L = {not c | c ∈ body(r)− ∩X}} .
Definition 1 Let P be a logic program over A and
I ⊆ grd(A). We define P(I) as the module

(grd(P)|Y , I , head(grd(P)|X)) ,
where X = I∪head(grd(P)) and Y = I∪head(grd(P)|X).

As a simple example, consider P [k] = {p(k) ← p(Y);
p(k) ← p(2)}. Note that grd(P [1]) is infinite. However,
when restricting our attention to X = {p(0), p(1)}, we get

grd(P [1])|X = {p(1)← p(0) p(1)← p(1)}
and head(grd(P [1])|X) = {p(1)}. Taking I = {p(0)},
note that I ∪ head(grd(P [1])) = I ∪ head(grd(P [1])|X) =
{p(0)}∪ {p(1)}=X . Thus, P[1]({p(0)}) = (grd(P [1])|X ,
{p(0)} , {p(1)}) and P (P[1](I)) = grd(P [1])|X are finite.

Syntactically, Definition 1 yields the following property.
Proposition 1 Let P be a logic program over A,
I ⊆ grd(A), and P(I) = (P ′, I, O). Then, we have
O ⊆ grd(A) and atom(P ′) ⊆ I ∪O.

Given two modules P and Q, we define the join of P
and Q, denoted by P tQ, as the module
(P (P) ∪ P (Q) , I(P) ∪ (I(Q) \O(P)) , O(P) ∪O(Q)) ,
provided that (I(P) ∪ O(P)) ∩ O(Q) = ∅. This definition
of the join is simpler than the original one in (Oikarinen and
Janhunen 2006), but also more restrictive. For instance, our
definition does not permit (negative) recursion between two
modules to be joined, which is similar to splitting (Lifschitz
and Turner 1994). Also note that the join of P and Q, as
defined above, is not commutative: Even if PtQ is defined,
Qt P might be undefined. However, (lacking) commutativ-
ity is not an issue in our incremental setting, where portions
of a domain description are always processed in order.

We make use of the join to attribute domain descriptions.
Definition 2 We define a domain description (B,P [k],Q[k])
as modular, if the modules
Pi = Pi−1 t P[i](O(Pi−1)) and Qi = Pi tQ[i](O(Pi))
are defined for i ≥ 1, where P0 = B(∅).

Declarative Programming Paradigms and Systems for NMR NMR-2008

161

This definition formalizes compositionality of modules aris-
ing from domain descriptions. In particular, the requirement
of the join being defined demands that gradually obtained
ground programs must define distinct atoms. Furthermore,
the directedness of the join, in a sense, permits an informa-
tion flow between ground programs in increasing order of
values substituted for k, but not the other way round.

As an example, consider (B,P [k], Q[k]) over A, where:

B = { dbl(0, 0)← }

P [k] =
{

n(k)←
dbl(k, Y+Y)← n(Y),not n(Y+1)

}
Q[k] = { ← dbl(Y, k−1) } .

(4)

Letting F (underlying A) be the set of natural numbers, the
above domain description induces the following modules:3

P0 = (B = {dbl(0, 0)←} , ∅ , {dbl(0, 0)}) ,

P1 = (P (P1) , ∅ , O(P0) ∪ {n(1), dbl(1, 2)})

where P (P1) = B ∪
{

n(1)←
dbl(1, 2)← n(1)

}
,

Q1 = (P (Q1) = P (P1) ∪ {← dbl(0, 0)} , ∅ , O(P1)) ,

P2 = (P (P2) , ∅ , O(P1) ∪ {n(2), dbl(2, 2), dbl(2, 4)})

where P (P2) = P (P1) ∪

{
n(2)←

dbl(2, 2)← n(1),not n(2)
dbl(2, 4)← n(2)

}
,

Q2 = (P (Q2) = P (P2) , ∅ , O(P2)) ,

P3 = (P (P3) , ∅ , O(P2) ∪
{n(3), dbl(3, 2), dbl(3, 4), dbl(3, 6)})

where P (P3) = P (P2) ∪

n(3)←

dbl(3, 2)← n(1),not n(2)
dbl(3, 4)← n(2),not n(3)
dbl(3, 6)← n(3)

 ,

Q3 = (P (Q3) , ∅ , O(P3))

where P (Q3) = P (P3) ∪

{ ← dbl(1, 2)
← dbl(2, 2)
← dbl(3, 2)

}
, etc.

Note that all of the above modules are defined (in terms
of the join) and input-free. Since this also applies to
modules Pi and Qi for every i > 3, we have that do-
main description (B,P [k], Q[k]) is modular. Given that
all Qi are defined for i ≥ 1, we can read off the re-
sults of the expressed queries from the answer sets of
each P (Qi). If i ≥ 1 is odd, we get AS (P (Qi)) =
∅. Otherwise, if i ≥ 1 is even, then AS (P (Qi)) =
{{dbl(0, 0)} ∪ {n(j), dbl(j, 2∗j) | 1 ≤ j ≤ i}}.

The composition of modules obtained from some modular
domain description has the following properties.

Proposition 2 Let (B,P [k], Q[k]) be a modular domain
description, and let (Pi)i≥0 and (Qi)i≥1 as in Definition 2.
Then, we have the following for i ≥ 1:

1. Pi and Qi are input-free;
2. atom(P (Pi)) ⊆ O(Pi) and

atom(P (Qi)) ⊆ O(Qi);

3For simplicity, we evaluate arithmetic expressions.

3. P (Pi) = P (B(∅)) ∪
⋃

1≤j≤i P (P[j](O(Pj−1))) and
P (Qi) = P (Pi) ∪ P (Q[i](O(Pi)));

4. head(P (P[i](O(Pi−1)))) ∩ atom(P (Pi−1)) = ∅ and
head(P (Q[i](O(Pi)))) ∩ atom(P (Pi)) = ∅.

The third item essentially states that the combined logic pro-
grams obtained for i ≥ 1 equal the union of subprograms
added for each 1 ≤ j ≤ i. Importantly, the fourth item ex-
presses that the head atoms of a newly added subprogram
are different from all atoms encountered before. Hence, the
sequence (O(Pi))i≥0 of output atoms amounts to a splitting
sequence (Lifschitz and Turner 1994) for

⋃
i≥0 P (Pi).

Note that we take advantage of module theory only for
establishing a well-defined formal setting for incremental
ASP solving. Our computational approach deals directly
with logic programs in order to exploit existing ASP tech-
nology. In view of this, the next result shows when the
module-guarded formation of ground logic programs coin-
cides with isolated grounding. For this, we define a domain
description (B,P [k], Q[k]) as bound, if for all i ≥ 1:

1. atom(grd(B)) ⊆ head(grd(B)) and
2. atom(grd(P [i])) ⊆ head(grd(B ∪

⋃
1≤j≤iP [j])).

The following result shows that, for bound modular do-
main descriptions, the same result is obtained when ground-
ing is done either module-wise or in a single pass.
Theorem 3 Let (B,P [k], Q[k]) be a bound modular do-
main description, and let (Pi)i≥0 and (Qi)i≥1 as in Defi-
nition 2. Then, we have the following for i ≥ 1:

1. P (Pi) ≡ grd(B ∪
⋃

1≤j≤iP [j]);
2. P (Qi) ≡ grd(B ∪

⋃
1≤j≤iP [j] ∪Q[i]).

Note that the domain description given in the introduc-
tory section is modular and bound. Likewise, the domain
description in (4) is modular, but it is not bound.

Incremental ASP Solving
The computation of answer sets of logic programs is divided
into two phases: a grounding phase aiming at a compact
ground instantiation of the original program, and a solving
phase computing the answer sets of the obtained ground pro-
gram. As mentioned in the introductory section, our incre-
mental approach is based on the idea that the grounder as
well as the solver are implemented in a stateful way. Thus,
both keep their previous states when increasing the parame-
ter k in (1). As regards grounding, at each step i, the goal is
to produce only ground rules stemming from program slices
P [i] and Q[i], without re-producing any previous ground
rules. The ground program slices are then gradually passed
to the solver that accumulates all ground rules from P [j], for
1 ≤ j ≤ i, while discarding the rules from Q[j] if j < i.

Grounding Let us now characterize the consecutive pro-
gram slices in terms of grounding logic programs. In
practice, given a program P , the goal of a grounder is
to produce a finite and compact yet equivalent represen-
tation of grd(P) by applying answer-set preserving sim-
plifications (cf. (Brass and Dix 1999; Brass et al. 2001;
Eiter et al. 2004)). In our setting, P [i] and Q[i] are not

Declarative Programming Paradigms and Systems for NMR NMR-2008

162

grounded in isolation for i ≥ 1. Rather the ground programs
obtained from previous program slices are augmented with
newly derived ground rules. We thus assume a grounder to
be stateful, where states are represented by the head atoms of
ground rules belonging to the output of previous grounding
steps.

Given a logic program P over A and I ⊆ grd(A), we
define an (incremental) grounder as a partial function

ground : (P, I) 7→ (P ′, O) ,
where P ′ is a logic program over grd(A) and O ⊆ grd(A).
Thereby, P ′ stands for the ground program obtained from P ,
where the input atoms I provide domain information used
to instantiate (non-ground) atoms in the positive bodies of
rules from P . The output atoms in O essentially correspond
to head(P ′), though some atoms in head(P ′) might actu-
ally be excluded from O (cf. Definition 3). The main use
of O is to carry state information, as it can serve as input to
subsequent grounding steps. Also note that ground is not re-
quired to be total, given that existing grounders, like lparse
(Syrjänen) and gringo (Gebser, Schaub, and Thiele 2007),
impose certain restrictions on (non-ground) programs, such
as being ω- or λ-restricted, not necessarily met by P .

The next definition formalizes adequacy of a grounder in
the context of our incremental approach.
Definition 3 We define a grounder ground as adequate, if
for every logic program P overA and I ⊆ grd(A) such that
ground(P, I) = (P ′, O) is defined, the following holds:

1.
(
P ∪ {{a} ← | a ∈ I}

)
≡
(
P ′ ∪ {{a} ← | a ∈ I}

)
,

2.
⋃
X∈AS(P∪{{a}←|a∈I})(X \I) ⊆ O ⊆ head(grd(P)|Y),

where Y = I ∪ head(grd(P)), and
3. for each r′ ∈ P ′, there is some r ∈ grd(P) such that

head(r) = head(r′) and body(r)+\(I∪O) ⊆ body(r′)+.
The first condition expresses that P and P ′, each aug-
mented with choice rules generating any combination of in-
put atoms in I ,4 should be equivalent to each other. The
second condition stipulates that all non-input atoms belong-
ing to some answer set X of P ∪ {{a} ← | a ∈ I} are
contained in O. In addition, O must not exceed the head
atoms of grd(P)|(I∪head(grd(P))) in order to suitably restrict
ground rules subsequently produced in our incremental set-
ting, thereby, using O as an input (cf. Definition 4). Finally,
the third condition forbids the introduction of rules that can-
not be obtained from grd(P) using permissible simplifica-
tions only. Beyond the requirements postulated in Defini-
tion 3, an adequate grounder ground may or may not per-
form further answer-set preserving simplifications, such as
removing the heads of facts from positive bodies or elimi-
nating rules containing them in their negative bodies.

For illustration, reconsider P [k] in (4). Given I = {n(1)},
an adequate grounder ground could, e.g., map (P [2], I)
to ground(P [2], I) = (P,O= {n(2), dbl(2, 2), dbl(2, 4)}),
where

P =

{
n(2)←

dbl(2, 2)← n(1),not n(2)
dbl(2, 4)← n(2),not n(3)

}
. (5)

4The application strategies for “modular equivalence” in
(Oikarinen and Janhunen 2006) are based upon a similar technique.

Note that AS (P∪{{n(1)} ←}) = {{n(1), n(2), dbl(2, 4)},
{n(2), dbl(2, 4)}} = AS (P [2] ∪ {{n(1)} ←}). Due to fact
n(2)←, the second rule could also be dropped from P ; sim-
ilarly, dbl(2, 2) can optionally be removed from O. Further-
more, literals n(2) and not n(3) could be dropped from the
body of the last rule, still satisfying the requirements in Def-
inition 3. Note that it is crucial to restrict the atoms in O to
head(grd(P [2])|({n(1)}∪head(grd(P [2])))) = head(P). For
instance, this forbids the inclusion of n(3) in O, permitting
further simplifications of P wrt O.

The following definition formalizes the (ground) program
slices gradually obtained from a domain description using a
(stateful) grounder.

Definition 4 Let (B,P [k], Q[k]) be a domain description,
and let ground be a grounder. We define for i ≥ 1:

(P0, O0) = (P ′0|O0 , O0) ,
where (P ′0, O0) = ground(B, ∅) ,

(Pi, Oi) = (P ′i |(S
0≤j≤i Oj), Oi) ,

where (P ′i , Oi) = ground(P [i],
⋃

0≤j<iOj) ,
(Qi, O′i) = ground(Q[i],

⋃
0≤j≤iOj) .

Note that the successively identified output atoms in Oj , for
0 ≤ j ≤ i, are used to simplify ground programs P ′i by elim-
inating either rules or negative body literals. We thus ob-
tain ground program slices Pi such that

⋃
r∈Pi

(body(r)+ ∪
body(r)−) ⊆

⋃
0≤j≤iOj . This reduction is important in

view of the compositional semantics of domain descriptions
in Definition 2. For instance, if not done by ground it-
self, literal not n(3) must a posteriori be removed from the
body of the third rule in (5), in order to obtain the intended
ground program slice. However, ground programs Qi need
not be reduced, since their rules are neither accumulated nor
reused.

The next result links the semantics of modular domain
descriptions to that of ground programs gradually produced
by an adequate grounder ground.

Theorem 4 Let (B,P [k], Q[k]) be a modular domain de-
scription, and let ground be an adequate grounder. Fur-
thermore, let (Pi)i≥0 and (Qi)i≥1 as in Definition 2, and let
(Pi, Oi)i≥0 and (Qi, O′i)i≥1 as in Definition 4. If (Pj , Oj)
is defined for all 0 ≤ j ≤ i, we have the following for i ≥ 1:

1. P (P0) ≡ P0;
2. P (Pi) ≡

⋃
0≤j≤i Pj;

3. P (Qi) ≡
⋃

0≤j≤i Pj ∪Qi, provided (Qi, O′i) is defined.

Recall that ground can be partial. In fact, existing
grounders impose further restrictions on the (non-ground)
programs of a domain description, such as being ω- or λ-
restricted, guaranteeing the finiteness of equivalent ground
programs. Assuming that such additional requirements are
met, we next detail how grounding output, i.e., Pj for j ≥ 0
and Qi for i ≥ 1, can be processed by an answer set solver.

Solving As with grounding, special care must be taken for
customizing existing ASP solving technology in an incre-
mental setting. First, we have to guarantee the composition-
ality of successive program slices. Second, a solver has to

Declarative Programming Paradigms and Systems for NMR NMR-2008

163

respect the cumulative and volatile roles of Pj and Qi, re-
spectively. And finally, we have to furnish a clear interface
between the grounding and the solving component.

For capturing the desired notion of compositionality, let
us have recourse to the Lin-Zhao theorem (Lin and Zhao
2004), characterizing the answer sets of a program P over
grd(A) by the (classical) models of its completion and loop
formulas. With respect to some Y ⊆ grd(A), we define the
completion of P , CF (P, Y), as the set of formulas
a↔

∨
r∈P,head(r)=a(

∧
b∈body(r)+b ∧

∧
c∈body(r)−¬c)

for all a ∈ Y . Furthermore, Y ⊆ grd(A) is a loop of P ,
if (Y,E = {(head(r), b) | r ∈ P, head(r) ∈ Y, b ∈ Y ∩
body(r)+}) is a strongly connected graph such that E 6= ∅.
Then, the set of loop formulas for P , LF (P), is given by∨

a∈Y a→
∨
r∈PY

(
∧
b∈body(r)+b ∧

∧
c∈body(r)−¬c)

for all loops Y of P , where PY = {r ∈ P | head(r) ∈ Y,
body(r)+ ∩ Y = ∅}. As shown in (Lin and Zhao 2004), a
set X ⊆ grd(A) is an answer set of a logic program P iff
X |= CF (P, grd(A)) ∪ LF (P).

For programs induced by modular domain descriptions,
completion and loop formulas can be sliced as follows.
Theorem 5 Let (B,P [k], Q[k]) be a modular domain de-
scription, let ground be an adequate grounder, and let
(Pi, Oi)i≥0 and (Qi, O′i)i≥1 as in Definition 4. If (Pj , Oj)
is defined for all 0 ≤ j ≤ i and if (Qi, O′i) is defined, we
have the following for i ≥ 1:5

CF (
⋃

0≤j≤iPj ∪Qi, grd(A)) ≡⋃
0≤j≤iCF (Pj , Oj) ∪ CF (Qi, grd(A) \

⋃
0≤j≤iOj) ,

LF (
⋃

0≤j≤iPj ∪Qi) ≡⋃
0≤j≤iLF (Pj) ∪ LF (Qi|head(

S
0≤j≤i Pj∪Qi)) .

The above assertions are obtained from structural properties
resulting from (incremental) module theory together with
the assumption that ground is adequate. First, the fact that
all programs Pj for j ≥ 0 and Qi|head(

S
0≤j≤i Pj∪Qi) for

i ≥ 1 have disjoint head atoms allows us to decompose the
completion of the entire program into “slice-wise” program
completions. Second, the definition of the module join guar-
antees that all circular dependencies are confined to single
program slices. As a consequence, loop formulas do not
spread over multiple programs, so that they can also be com-
bined in a “slice-wise” manner. The practical consequence
of the decomposability of program completion and loop for-
mulas is that a solver can successively build its data struc-
tures in a modular way.

When processing consecutive program slices, we have to
distinguish cumulative and volatile ones. That is, while the
ground rules in Pj are accumulated within the solver for 0 ≤
j ≤ i, the ones in Qj must be discarded for 1 ≤ j < i when
Qi is added. We accomplish this by adding to each rule in
Qj a new body atom αj , along with rules achieving that αj
holds only at step j. To this end, we define the following
set of rules for a program Q over grd(A) and a new atom
α /∈ grd(A):

Q(α) = {head(r)← body(r) ∪ {α} | r ∈ Q} .
5We abuse notation and let≡ stand for logical equivalence here.

In our incremental setting, the addition of new atoms al-
lows us to selectively (de)activate volatile program slices.

Proposition 6 Let (Pi)i≥0 and (Qi)i≥1 be sequences of
logic programs over grd(A), and let Fj = {αj←} for αj /∈
grd(A) and j ≥ 1. Then, we have the following for i ≥ 1:⋃

0≤j≤iPj ∪Qi ∪Fi ≡ P0 ∪
⋃

1≤j≤i(Pj ∪Qj(αj))∪Fi .

The addition of Fi on the left hand side is merely for estab-
lishing formal equivalence, considering that αi does not oc-
cur inQi but only inQi(αi). The fact that programsQj(αj)
behave neutrally, as long as αj is underivable, provides us
with a handle to control the effective program slices.

In addition to activating some Qj(αj) for j ≥ 1, we also
have to deactivate it in subsequent steps. Thus, a solver can-
not include αj persistently as a fact. But rather than explic-
itly deleting any fact (or rule) previously passed to the solver,
we build upon an interface supporting assumptions.6 This
trims the required solver interface to only two functions:

• add(P) incorporates a ground logic program P into the
rule database of the solver;

• solve(L) takes a set L of ground literals and computes
the answer sets X of the ground logic program comprised
in the solver that satisfy L+ ⊆ X and L− ∩X = ∅.

This simple interface is similar to the one for incremental
SAT solving given in (Eén and Sörensson 2003). The lit-
erals L passed to solve constitute assumptions, which can
semantically be viewed as the following set of integrity con-
straints: {← not a | a ∈ L+}∪{← a | a ∈ L−}. However,
as regards clasp, the crucial difference between integrity
constraints and assumptions is that the former give rise to
permanent program simplifications, while the effect of the
latter is temporary, i.e., restricted to an invocation of solve.

Let us now situate the solver in our incremental context.

Definition 5 Let (Ri)i≥0 and (Li)i≥0 be sequences of logic
programs and literals, respectively, over grd(A)∪{αi|i≥0}.
We define a solver as a pair consisting of the total functions

add : Ri 7→ Si and
solve : Li 7→ χ , where

S0 = R0|head(R0), Si = Si−1 ∪Ri|head(Si−1∪Ri) for i ≥ 1,
and χ ⊆ 2(grd(A)∪{αi|i≥0}).

Note that only add affects a solver’s state, where added pro-
grams are again subject to simplification. In fact, as with Pi
for i ≥ 0 in Definition 4, we assume that atoms not occur-
ring as the head of any rule are eliminated. Even if such an
atom becomes derivable later on when another program is
added, it can thus not interact with the rules already present.
The reason for this design decision is that, although operat-
ing in an open environment, the possible addition of knowl-
edge or program slices, respectively, should not force the
solver to continuously rebuild its existent data structures. Of
course, this necessitates program slices to be provided in an
bottom-up manner. The second function, solve, leaves the

6Within clasp (Gebser et al. 2007a), the heads of facts are sub-
ducted during preprocessing, making the later deletion of facts im-
possible. In order to support it, special treatment would be needed.

Declarative Programming Paradigms and Systems for NMR NMR-2008

164

accumulated program slices (logically) unaffected, that is,
the passed literals are only assumed locally within solve.

The objective of, once added, maintaining program slices
also motivates the following definition of soundness.
Definition 6 We define a solver as in Definition 5 as sound,
if for all sequences (Ri)i≥0 and (Li)i≥0 of logic programs
and literals, respectively, over grd(A) ∪ {αi | i ≥ 0} and
every i ≥ 0, the following holds:
X ∈ solve(Li) iff L+

i ⊆ X ⊆ atom(Si) \ L−i such
thatX |=

⋃
0≤j≤i(CF (Rj |Yj

, head(Rj |Yj
))∪LF (Rj |Yj

)),
where Y0= head(R0) and Yj= head(Sj−1∪Rj) for 1≤j≤i.
First, observe that literals passed as assumptions in Li must
be respected by solutionsX returned by a sound solver. Sec-
ond, X must satisfy the completion and loop formulas indi-
vidually for each program slice, thereby, restricting the at-
tention to the respective head atoms. This conception al-
lows the solver to build its data structures in a modular way,
without sacrificing soundness, but it also relocates the re-
sponsibility to properly partition a program away from the
solver. However, as Theorem 5 shows, modular domain
descriptions (along with an adequate grounder) permit the
construction of a program’s completion and loop formulas
locally for program slices, obtaining the same answer sets
as with the entire program.

We now define the program slices to be added to the solver
for the ground rules obtained from a domain description.
Definition 7 Let (B,P [k], Q[k]) be a domain descrip-
tion, let ground be a grounder, and let (Pi, Oi)i≥0 and
(Qi, O′i)i≥1 as in Definition 4.

If (P0, O0), (Pj , Oj), and (Qj , O′j) are defined for all 1 ≤
j ≤ i, we define a sequence (Ri)i≥0 of logic programs and
a sequence (Li)i≥0 of literals for 1 ≤ j ≤ i by:

R0 =P0 Rj =Pj ∪Qj(αj) ∪ {{αj}←} ∪ {←αj−1}
L0 = ∅ Lj = {αj} ,

where αj−1, αj /∈ grd(A).
The difference between the cumulative rules in Pj and the
volatile ones inQj is that an additional atom αj is appended
to the bodies of the latter. Moreover, choice rule {αj}←
nominally permits the unconditional inclusion of αj in an
answer set. However, upon the invocation of solve in
step j, literal αj is passed as assumption, so that answer
sets must necessarily contain αj . In contrast, in step j + 1,
integrity constraint←αj is persistently added to the solver,
forcing αj to be false. Due to this, all rules in Qj are de-
activated in later steps. Notably, clasp eliminates such false
atoms and rules with false bodies from its data structures,
thus deleting the whole obsolete program Qj .

Formally, however, no added rule is deleted later on, so
we require an additional condition.
Definition 8 We define a domain description
(B,P [k], Q[k]) as separated, if for all i ≥ 1 and
j > i, head(grd(Q[i])) ∩ head(grd(P [j] ∪Q[j])) = ∅.
Separation can easily be achieved by using distinct predi-
cates and parameter k in the heads of rules in Q[k] as well
as in respective body atoms. The domain descriptions given
in (2) and (4), trivially, are separated.

Using an adequate grounder and a sound solver, we finally
establish that our incremental solving strategy leads to the
desired outcomes for modular domain descriptions.

Theorem 7 Let (B,P [k], Q[k]) be a separated modular do-
main description, let ground be an adequate grounder, and
let (Pi, Oi)i≥0 and (Qi, O′i)i≥1 as in Definition 4. Fur-
thermore, let (add, solve) be a sound solver, (Ri)i≥0 and
(Li)i≥0 as in Definition 7, and Sj = add(Rj) for j ≥ 0
as in Definition 5. If (P0, O0), (Pj , Oj), and (Qj , O′j) are
defined for all 1 ≤ j ≤ i, we have the following for i ≥ 1:
X ∈ solve(Li) iff (X \ {αi}) ∈ AS (

⋃
0≤j≤i Pj ∪Qi).

Comparing with the third item in Theorem 4 shows that
our collective approach, comprising incremental grounding
and solving, matches exactly the semantics of (programs in-
duced by) separated modular domain descriptions (cf. Defi-
nition 2). In this context, the modularity condition allows
us to largely reuse existing ASP technology, namely, the
grounder gringo and the solver clasp, for implementing our
approach. In fact, the data structures of clasp profoundly
rely on a program’s completion and loop formulas, so that
their decomposability is a major benefit. Certainly, a more
sophisticated incremental ASP system could drop the mod-
ularity assumption, but it would be likely to require intricate
rectification work in-between incremental solving steps.

Algorithm Algorithm 1 combines our grounding and
solving functions for successively computing the an-
swer sets of programs induced by a domain descrip-
tion (B,P [k], Q[k]). To this end, isolve makes use of one
instance of a grounder, denoted by GROUNDER, and one in-
stance of a solver, viz., SOLVER. ProgramsB, P [i], andQ[i]
are then gradually grounded by means of GROUNDER, start-
ing from i = 1. Provided that GROUNDER can instantiate
the given programs, i.e., if they fulfill any additional require-
ments GROUNDER might impose, the obtained ground pro-
grams are fed into SOLVER by way of its function add. In
Line 7, 10, and 11 of Algorithm 1, cumulative and volatile
program slices are handled according to the sequences of
programs and assumptions, respectively, specified in Defi-
nition 7. Note that isolve terminates as soon as function
solve of SOLVER reports some answer set. Otherwise, if
no answer set is found in any step i ≥ 1, isolve (in theory)
loops forever.

Provided that GROUNDER is adequate and that SOLVER
is sound, for a separated modular domain descrip-
tion (B,P [k], Q[k]) such that P (Qi) (cf. Definition 2) has
an answer set for some i ≥ 1, isolve returns the answer
sets of P (Qi) for the least i ≥ 1 for which P (Qi) has some
answer set.

Theorem 8 Let (B,P [k], Q[k]) be a separated modular do-
main description, let GROUNDER be an adequate grounder,
and let SOLVER be a sound solver. Let (Pi, Oi)i≥0

and (Qi, O′i)i≥1 as in Definition 4 for ground =
GROUNDER.ground, and let (Qi)i≥1 as in Definition 2.

If (P0, O0), (Pi, Oi), and (Qi, O′i) are defined for
all i ≥ 1, we have isolve((B,P [k], Q[k])) =
AS (P (Qi)) for the least i ≥ 1 such that AS (P (Qi)) 6= ∅.
Note that the above result builds upon the assumption that

Declarative Programming Paradigms and Systems for NMR NMR-2008

165

Algorithm 1: isolve
Input : A domain description (B,P [k], Q[k]).
Output : A nonempty set of answer sets.
Internal: A grounder GROUNDER and a solver SOLVER.

(P0, O)← GROUNDER.ground(B, ∅)1
SOLVER.add(P0)2
i← 03
loop4

i← i+ 15
(Pi, Oi)← GROUNDER.ground(P [i], O)6
SOLVER.add(Pi)7
O ← O ∪Oi8
(Qi, O′i)← GROUNDER.ground(Q[i], O)9
SOLVER.add(Qi(αi) ∪ {{αi}←} ∪ {←αi−1})10
χ← SOLVER.solve({αi})11
if χ 6= ∅ then return {X \ {αi} | X ∈ χ}12

(B,P [k], Q[k]) is modular. However, modularity is not en-
forced within isolve, so it could be fed with non-modular
domain descriptions too. In such a case, if GROUNDER
is able to instantiate B, P [i], and Q[i] for all i ≥ 1, the
result of SOLVER.solve are interpretations satisfying the
“slice-wise” completion and loop formulas as required for
the soundness of a solver (cf. Definition 6). But since com-
positionality in the sense of Theorem 5 is not guaranteed,
the interpretations returned by SOLVER.solve and thus by
isolve do not necessarily match the answer sets of the
combined program accumulated within SOLVER. In order
to avoid such peculiar behavior, users should take care to
model their incremental problems in a modular way.

We next provide simple syntactic conditions under which
B, P [k], and Q[k] assemble a modular domain description.
Proposition 9 Let (B,P [k], Q[k]) be a domain descrip-
tion, and let P =

⋃
i≥1 P [i] and Q =

⋃
i≥1Q[i]. Then,

(B,P [k], Q[k]) is modular if the following conditions hold:
1. atom(grd(B)) ∩ (head(grd(P)) ∪ head(grd(Q))) = ∅,
2. atom(grd(P)) ∩ head(grd(Q)) = ∅, and
3. {head(grd(P [i])) | i≥ 1} is a partition of head(grd(P)).
Pragmatically, these conditions can be granted by using
predicates not occurring in B ∪ P [k] for the heads of rules
inQ[k] and by including 0 as a parameter in every atom ofB
as well as parameter k in the head of every rule in P [k]. Of
course, parameter 0 can also be omitted in atoms of B if the
corresponding predicates are not used in the heads of rules
in P [k]. Recalling the domain descriptions given in the in-
troductory section and (4), one can observe that the respec-
tive programs B, P [k], and Q[k] fit into this scheme. Thus,
we immediately conclude that both of them are modular.

For illustrating the proceeding of isolve, reconsider the
example given in the introduction. Figure 1 shows the ac-
cumulation of ground rules within the solver during the for-
mation of this answer set. While computing an answer set
fails for rules added in i = 0, 1, we get the previous answer
set from the entire set of rules. The other difference between
both solving steps is that the first is done assuming α1, while
the second one is accomplished under the assumption of α2.

i Rules L
0 B p(0) ← not ¬p(0)

¬p(0) ← not p(0)
← p(0),¬p(0)

1 P [1] a(1) ← not ¬a(1)
¬a(1) ← not a(1)
p(1) ← a(1)
p(1) ← p(0),not ¬p(1)
¬p(1) ← ¬p(0),not p(1)

← p(1),¬p(1)
← a(1),¬a(1)

Q[1](α1) ← not ¬p(0), α1 α1

← not p(1), α1

← not ¬a(1), α1

{α1} ←
← α0

2 P [2] a(2) ← not ¬a(2)
¬a(2) ← not a(2)
p(2) ← a(2)
p(2) ← p(1),not ¬p(2)
¬p(2) ← ¬p(1),not p(2)

← p(2),¬p(2)
← a(2),¬a(2)

Q[2](α2) ← not ¬p(0), α2 α2

← not p(2), α2

← not ¬a(2), α2

{α2} ←
← α1

Figure 1: Accumulation of ground rules within the solver.

The Incremental ASP System iclingo
We implemented our approach to incremental ASP solv-
ing within the system iclingo7,8 by building on the ASP
grounder gringo9 (Gebser, Schaub, and Thiele 2007) and
the ASP solver clasp10 (Gebser et al. 2007a). Both systems
are provided to iclingo as libraries and had to be extended
for accommodating the additional functionality needed for
supporting our incremental approach. The architecture of
iclingo is depicted in Figure 2, concentrating on the interac-
tion of gringo and clasp with Algorithm 1 (isolve).

In general, gringo accepts so-called λ-restricted pro-
grams, guaranteeing a finite equivalent ground instantiation.
The input language was extended by a declaration state-
ment of the form #parameter k, indicating that k is a
parameter. The major extension of gringo, however, was
the enhancement of gringo’s database system for dealing
with successive grounder states (indicated by the boxed O
in Figure 2). Roughly speaking, this database now main-
tains all heads of previously grounded rules; logically it cor-
responds to the content of variable O in Algorithm 1. A
major difficulty in adapting gringo to an incremental setting
was that its design is predicate-oriented and consequently
not foresees a slice-wise generation of a predicate’s ground

7http://www.cs.uni-potsdam.de/iclingo
8iclingo stands for incremental clasp and gringo.
9http://www.cs.uni-potsdam.de/gringo

10http://www.cs.uni-potsdam.de/clasp

Declarative Programming Paradigms and Systems for NMR NMR-2008

166

gringoO clasp

isolveP [k] Q[k]

-add

6
ground

6 6
solve

?

Figure 2: Architecture of iclingo.

instances. We addressed this problem in iclingo by dynam-
ically viewing all predicates as completely instantiated after
processing each program slice. Another consequence of the
underlying predicate-oriented approach is that iclingo cur-
rently stipulates that the predicate symbols appearing in the
heads of P [k] and Q[k] are disjoint (cf. the paragraph below
Proposition 9). Procedurally, iclingo uses gringo as delin-
eated in Algorithm 1. Notably, (the representations of) the
parametrized rules in P [k] and Q[k] are kept uninstantiated
in iclingo (indicated by the boxed P [k] andQ[k] in Figure 2)
and are only grounded on demand.11 When isolve makes
gringo ground a program slice, the result is automatically
channeled to clasp. Interestingly, this is done in a rule-wise
fashion instead of transferring an entire ground program (as
in Algorithm 1). Once completed, isolve launches clasp
with the appropriate assumptions and waits for the result.

As indicated in Theorem 5, the customization of clasp
conceptually affects two components, namely, the treatment
of a program’s completion and loop formulas, respectively.
While the latter is accomplished by providing an incremen-
tal construction of the positive dependency graphs needed
by the unfounded set checker, the former must exempt as-
sumptions from building corresponding completion formu-
las. To this end, the actual solver interface contains two fur-
ther functions, viz., freeze and unfreeze. Logically, they
amount to adding or removing, respectively, a choice rule, as
done in Algorithm 1 via the addition of {αi}← and←αi−1.
Note that neither of these adaptations would be necessary in
a SAT solver, since the underlying semantics does not rely
on Clark’s completion. Over time, clasp accumulates the
ground program slices and, moreover, learns further con-
straints during solving. As a matter of fact, it is equipped
with dynamic deletion and simplification techniques dispos-
ing of invalid and superfluous constraints. Hence, unfreez-
ing a former assumption αi−1 automatically results in elim-
inating all constraints containing αi−1. In this way, we are
able to exploit clasp’s inherent constraint maintenance sys-
tem for keeping only relevant information.

Experiments. We have conducted experiments on a vari-
ety of parametrized benchmark classes. We consider iclingo
(including gringo 1.0.0 and clasp 1.0.5) in four settings:
(1) keeping learned nogoods and heuristic values, (2) keep-

11We omitted the base program B in Figure 2, as it is processed
only once for providing atoms to O and rules to clasp.

ing learned nogoods only, (3) keeping heuristic values only,
and (4) keeping neither over successive solving steps. We
compare these variants with iterative deepening search us-
ing clingo, the direct combination of gringo (1.0.0) and
clasp (1.0.5) via an internal interface, gringo (1.0.0) and
clasp (1.0.5) communicating via a textual interface (using
the output language of lparse), and finally, the combination
of lparse12 (1.1.1) and smodels12 (2.32) via the same textual
interface.

The benchmarks in Table 1 consider four different
classes.13. The goal of the Blocksworld example is to recon-
struct a tower of n blocks in inverse order, requiring a plan of
length n. In the Queens example, we compute (at most) one
answer set for each value of k, iterating from 1 to n. The
Towers of Hanoi benchmarks are handmade instances, for
which (n) indicates the number of steps needed for obtain-
ing a solution. Finally, we consider a suite of Sokoban exam-
ples. Table 1 summarizes run-time results in seconds, taking
the average of three runs per instance, each run limited to
1800s on a 3.4GHz PC; the lines marked with Σ show the
sums of run-times over all instances of a benchmark class,
with timeouts taken as 1800s.

On the Blocksworld and Queens examples, iclingo out-
performs the other systems by one order of magnitude,
which is primarily due to reduced grounding overhead. In
fact, all of the considered solvers handle the Blocksworld
problems without any search. However, all systems but
iclingo need to repeat grounding and propagation in each it-
erative deepening step, working on ground programs of con-
siderable size. For example, considering the Blocksworld
problem with four blocks (viz. n = 4), gringo produces 167
ground rules for describing the first step and 234 ground
rules for each further step. While iclingo adds this num-
ber of rules in each incremental step, resulting in 167 +
(n−1) ∗ 234 = 869 ground rules for n = 4, the sys-
tems based on iterative deepening (using gringo) process
n ∗ 167 + (n ∗ (n−1)/2) ∗ 234 = 2072 ground rules be-
fore obtaining a solution. Of course, the ratio of ground rules
processed by iclingo in comparison to the other systems gets
even smaller as n increases, explaining the dramatic perfor-
mance gains on Blocksworld examples observed in Table 1.
On the Queens example, we observe a similar effect when
comparing iclingo to systems using iterative deepening, but
here the underlying solvers have to search for a solution for
n ≥ 4. Interestingly, for the smaller values of n, iclingo (1)
is the fastest system, but from n = 100, iclingo (2) and
iclingo (3) take the lead and exhibit increasingly significant
gains compared to iclingo (1). This somewhat suggests that
the strategy of iclingo (1) keeping both learned nogoods and
heuristic values in-between successive runs here tends to
bias future runs too much, which makes sense because dif-
ferent Queens instances are largely independent from each
other. Finally, note that lookahead used in smodels is likely
to be a factor for the many timeouts in the last column, as it

12http://www.tcs.hut.fi/Software/smodels
13Taken from the web sites http://asparagus.cs.

uni-potsdam.de and http://www.ne.jp/asahi/ai/
yoshio/sokoban/handmade.

Declarative Programming Paradigms and Systems for NMR NMR-2008

167

merely wastes time here.
Different from the simple Blocksworld and the combina-

torial Queens example, Towers of Hanoi and Sokoban con-
tain realistic instances, shifting the focus to search for a plan.
In fact, all systems underlie non-deterministic heuristic ef-
fects and traverse the search space differently. Though all
systems spend most of their run-time in the solving compo-
nent, the savings in grounding are still noticeable for iclingo
but smaller than with Blocksworld and Queens. Also note
that slightly inferior performance of clingo compared to
gringo|clasp is due to differences in the ordering of ground
rules between the internal and the textual interface. With
Towers of Hanoi, the differences between the systems are
rather small (except for lparse|smodels), still, iclingo (3)
keeping only heuristic values has some advantages. This
might be explained by the fact that the problem is explicitly
constrained only by the goal state, and learned nogoods de-
pending on it can only be used in the step they were discov-
ered. Finally, on Sokoban, we observe varying relative per-
formance of the considered systems on individual instances,
which is due to the elevated difficulty of the problem. Sur-
prisingly, iclingo (4) keeping neither learned nogoods nor
heuristic values exhibits the best overall performance on
Sokoban. We conjecture that this is because constraints pos-
tulated via the goal state become obsolete after only one in-
cremental step, which also makes learned nogoods derived
from them useless for the following steps. Rather than en-
coding the goal state in query program Q, we plan to in-
vestigate alternative encodings working backwards (Eén and
Sörensson 2003), that is, the starting state is part of the query
program while the goal state remains fixed.

Discussion
We presented the first theoretical and practical account of in-
cremental ASP solving. Our framework allows for tackling
bounded problems in ASP in a so far unexampled manner
paving the way for addressing more ambitious real-world
applications. Our approach is driven by the desire to mini-
mize redundancies while gradually treating program slices.
However, fixing the incremental solving process necessitied
the integration and adaption of manifold different concepts
in a globally consistent way. To this end, we developed an
incremental module theory guiding the formal setting of suc-
cessive incremental grounding and solving steps by means
of existing ASP grounders and solvers. Future work includes
more elaborate incremental wrapping algorithms, allowing
for non-elementary program slices while guaranteeing opti-
mal solutions.

References
Baral, C.; Brewka, G.; and Schlipf, J., eds. 2007. Pro-
ceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07).
Springer.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Brass, S., and Dix, J. 1999. Semantics of (disjunctive) logic

programs based on partial evaluation. Journal of Logic Pro-
gramming 40(1):1–46.
Brass, S.; Dix, J.; Freitag, B.; and Zukowski, U. 2001.
Transformation-based bottom-up computation of the well-
founded model. Theory and Practice of Logic Programming
1(5):497–538.
Clarke, E.; Biere, A.; Raimi, R.; and Zhu, Y. 2001. Bounded
model checking using satisfiability solving. Formal Methods
in System Design 19(1):7–34.
Eén, N., and Sörensson, N. 2003. Temporal induction by
incremental SAT solving. Electronic Notes in Theoretical
Computer Science 89(4).
Eiter, T.; Fink, M.; Tompits, H.; and Woltran, S. 2004. Sim-
plifying logic programs under uniform and strong equiva-
lence. In Proceedings of the Seventh International Confer-
ence on Logic Programming and Nonmonotonic Reasoning
(LPNMR’04), 87–99. Springer.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007a. clasp: A conflict-driven answer set solver. In Baral
et al. (2007), 260–265.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub,
T. 2007b. Conflict-driven answer set solving. In Veloso,
M., ed., Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI’07), 386–392.
AAAI Press/The MIT Press.
Gebser, M.; Schaub, T.; and Thiele, S. 2007. GrinGo: A new
grounder for answer set programming. In Baral et al. (2007),
266–271.
Gelfond, M., and Lifschitz, V. 1998. Action languages. Elec-
tronic Transactions on Artificial Intelligence 3(6):193–210.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2004. Nonmonotonic causal theories. Artificial
Intelligence 153(1-2):49–104.
Kautz, H., and Selman, B. 1992. Planning as satisfiability. In
Neumann, B., ed., Proceedings of the Tenth European Con-
ference on Artificial Intelligence (ECAI’92), 359–363. John
Wiley & sons.
Lifschitz, V., and Turner, H. 1994. Splitting a logic program.
In Proceedings of the Eleventh International Conference on
Logic Programming, 23–37. MIT Press.
Lifschitz, V., and Turner, H. 1999. Representing transition
systems by logic programs. In Proceedings of the Fifth Inter-
national Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’99), 92–106. Springer.
Lin, F., and Zhao, Y. 2004. ASSAT: computing answer sets
of a logic program by SAT solvers. Artificial Intelligence
157(1-2):115–137.
Oikarinen, E., and Janhunen, T. 2006. Modular equiv-
alence for normal logic programs. In Proceedings of the
Seventeenth European Conference on Artificial Intelligence
(ECAI’06), 412–416. IOS Press.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extend-
ing and implementing the stable model semantics. Artificial
Intelligence 138(1-2):181–234.
Syrjänen, T. Lparse 1.0 user’s manual.
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz.

Declarative Programming Paradigms and Systems for NMR NMR-2008

168

Name n iclingo (1) iclingo (2) iclingo (3) iclingo (4) clingo gringo|clasp lparse|smodels
Blocksworld 10 0.40 0.40 0.39 0.39 2.13 3.93 7.04

15 2.05 2.05 2.02 2.03 16.18 29.21 49.30
20 6.62 6.63 6.55 6.54 71.32 129.93 200.07
25 16.81 16.86 16.66 16.67 224.36 406.15 594.49
30 37.34 37.39 37.07 36.94 575.98 1059.71 1460.67
35 72.30 72.70 71.93 71.62 1289.58 1800 1800
Σ 135.52 136.03 134.63 134.20 2179.55 3428.94 4111.56

Queens 20 0.21 0.24 0.29 0.21 0.74 1.11 6.50
25 0.40 0.50 0.62 0.41 1.76 2.67 759.69
30 0.71 0.87 1.11 0.75 3.68 5.58 1800
50 3.73 5.28 6.72 3.78 33.71 48.27 1800
70 11.98 17.84 23.31 12.27 156.50 205.21 1800
90 32.75 50.43 64.44 77.39 496.52 643.94 1800

100 125.28 78.49 96.67 137.14 815.11 1040.30 1800
110 232.21 117.25 146.11 246.96 1282.13 1640.20 1800
120 400.26 169.85 224.14 446.24 1782.34 1800 1800

Σ 807.52 440.74 563.41 925.15 4572.48 5387.65 13366.19
Towers 33 46.08 43.62 40.19 52.06 40.06 50.12 374.88

34 71.60 54.47 44.39 34.82 69.10 52.05 1064.54
36 112.34 91.34 88.22 104.11 145.72 112.99 960.60
39 280.82 214.81 206.03 204.23 175.80 191.18 1800
41 417.67 453.71 411.37 587.90 523.94 477.59 1800
Σ 928.51 857.95 790.20 983.11 954.62 883.93 6000.03

Sokoban 17 2.39 2.68 2.82 2.83 7.12 8.64 1800
13 0.71 0.67 1.35 0.95 3.06 4.21 65.82
11 1.23 1.16 0.92 0.90 2.93 3.87 70.97
11 5.51 4.65 4.27 3.65 9.50 12.55 1800
16 478.67 579.70 503.70 716.57 896.85 593.29 1800
12 33.88 45.40 41.46 39.28 73.79 58.17 1800
12 7.40 8.38 6.70 7.02 16.16 28.25 1800
13 10.02 8.15 15.05 14.09 16.97 17.49 1800
16 183.90 183.83 383.83 363.23 388.26 377.50 1800
16 116.87 362.27 321.10 206.10 269.36 298.06 1800
18 248.70 229.07 232.10 251.47 508.48 493.03 1800
16 49.59 32.99 37.17 32.48 64.72 91.03 1800
17 1791.07 1619.40 1511.43 1067.61 1703.53 1755.63 1800
14 221.30 372.93 252.37 205.77 208.88 256.47 1800
14 108.27 65.39 98.88 118.20 108.04 103.42 1800
15 28.43 38.30 19.67 22.50 27.54 38.40 1800
18 11.54 16.34 13.41 11.49 16.85 24.44 1800
14 3.26 2.84 3.66 3.60 9.71 11.39 1800
13 7.77 14.50 11.07 15.35 30.17 24.17 1800
17 300.23 208.00 209.47 201.50 203.12 166.25 1800
14 82.18 49.29 85.25 71.79 143.30 172.59 1800
Σ 3692.90 3845.93 3755.66 3356.37 4708.33 4538.84 34348.24

ΣΣ 5564.44 5280.65 5243.09 5398.83 12414.98 14239.36 57826.02

Table 1: Benchmark results on a 3.4GHz PC under Linux; each run limited to 1800s time.

Declarative Programming Paradigms and Systems for NMR NMR-2008

169

Defeasible Knowledge and Argumentative Reasoning for 3APL Agent
Programming

Sebastian Gottifredi Alejandro J. Garcia Guillermo R. Simari
Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET)

Artificial Intelligence Research and Development Laboratory,
Department of Computer Science and Engineering - Universidad Nacional del Sur (UNS),

Bahı́a Blanca, ARGENTINA,
e-mail: {sg, ajg, grs}@cs.uns.edu.ar

Abstract

In this work we propose to integrate a defeasible argumen-
tation logic programming formalism for representing beliefs
and reasoning into 3APL thus extending its representational
capabilities. Using this formalism the agent can represent ten-
tative information in the form of weak rules. Since strong
negation is allowed in the head of these rules, contradictory
knowledge can be represented. The formalism allows the
identification of the pieces of knowledge that are in contradic-
tion and a dialectical argumentation process is used for decid-
ing which information prevails. In particular, the argumenta-
tion based definition of the inference relation makes it pos-
sible to incorporate a treatment of preferences in an elegant
way. This integration increases the capabilities of the com-
ponents for knowledge representation and reasoning, aim-
ing to the implementation of more sophisticated autonomous
agents.

Introduction
The importance of using intelligent agents based on mental
components like Beliefs, Desires, Commitments and Inten-
tions to solve complex problems is well known in the litera-
ture, especially those agents based on BDI theory (Bratman,
Israel, & Pollack). Nowadays, tools are needed to specify
and program agents in terms of these components (Fisher
et al. 2007). In particular, we are interested in agent de-
velopment tools that provide not only a declarative way to
specify agent mental components but also an argumentative
mechanism for agent reasoning.

In this work we propose to integrate a defeasible argu-
mentation logic programming formalism into 3APL. Thus,
the agent can represent tentative information in the form of
weak rules. Since strong negation is allowed in the head
of these rules, contradictory knowledge can be represented.
This formalism allows the identification of the pieces of
knowledge that are in contradiction and a dialectical argu-
mentation process is used for deciding which information
prevails. In particular, the argumentation based definition of

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Partially supported by CONICET (PIP 5050), UNS and Agen-
cia Nacional de Promocin Cientfica y Tecnolgica.

the inference relation enables to incorporate a treatment of
preferences in an elegant way.

The contribution of this work is to provide 3APL agents
with:

• a belief representation language that allows strong nega-
tion and default negation,

• an argumentative reasoning mechanism used to obtain the
inferred beliefs,

• a programmable criteria used by the argumentative mech-
anism to decide between contradictory conclusions and

• a set of agent capabilities that are combined with the ar-
gumentative mechanism.

Thus, with this approach is that the programmer can fo-
cus on the rules that represent knowledge in a declarative
way and not in the explicit interaction among these rules.
Therefore, in order to add a rule the programmer does not
need to be aware of the whole knowledge program. When
a new rule is added, its interaction with the rest of the pro-
gram is detected and handled by the argumentative inference
mechanism.

When the belief representation language allows strong
negation, contradictory information can be inferred. If con-
tradictions occur, a decision criterion is needed to determine
which information prevails. Previous approaches that in-
creased the representational capabilities of 3APL belief lan-
guage used a fixed decision criterion. Here, we propose a
mechanism were the decision criterion is based on a pro-
grammable argument comparison criterion and changed dy-
namically without changing the belief program.

Argumentation is recognized in the literature as an in-
teresting approach for reasoning with inconsistent infor-
mation, based on the construction and the comparison of
arguments (Bench-Capon & Dunne 2007; Dung 1995).
Thus, argumentation provides a different perspective to non-
monotonic and defeasible reasoning, in which a claim is ac-
cepted or withdrawn on the basis of the arguments for and
against it, and on whter these arguments can be attacked and
defeated by others. There exist previous approaches that re-
late cognitive agents (especially those that follow the BDI
theory) to argumentation frameworks (Rahwan & Amgoud
2006; Rotstein, Garcia, & Simari 2007). However, none of
these approaches propose an agent programming language.

In the area of agent programming languages, 3APL (Das-
tani, van Riemsdijk, & Meyer 2005) is an interesting ap-

Declarative Programming Paradigms and Systems for NMR NMR-2008

170

proach which allows a declarative way to implement cog-
nitive agents. 3APL provides programming constructs for
implementing an agent’s beliefs, goals, basic capabilities
such as belief updates or motor actions, and a set of prac-
tical reasoning rules through which the agent’s goals can
be updated or revised. The 3APL programs are executed
by an interpreter that implements a deliberation cycle us-
ing such constructs. 3APL combines logic programming
(for the specification of the agent mental components) and
imperative programming (for the structure of plans). From
the imperative programming viewpoint, 3APL inherits the
full range of regular programming constructs, including re-
cursive procedures and state-based computation. States of
agents in 3APL, however, are belief (or knowledge) bases,
which are different from the usual variable assignments of
imperative programming. From the computational logic per-
spective, answers to belief-base queries of a 3APL agent are
proofs in the logic programming sense (Fisher et al. 2007).

Next, a brief description of 3APL is given (for details
see (Dastani, van Riemsdijk, & Meyer 2005; Dastani et al.
2003; Hindriks et al. 1999)). This description will focus on
those issues that will be affected by the proposed approach.
To program a 3APL agent means to specify its initial be-
liefs, goals, plans, capabilities, sets of goal planning rules
and plan revision rules. The initial state of the shared envi-
ronment is specified by a set of facts. A short description of
the components of a 3APL agent is given below.
Belief Base (σ): Beliefs, represented by a first order domain
language, describe the situation the agent is in. For exam-
ple, in (Dastani, van Riemsdijk, & Meyer 2005), PROLOG is
adopted as the belief representation language.
Goals Base (γ): Goals are used to describe the situation
that the agent wants to achieve. In (Dastani, van Riemsdijk,
& Meyer 2005), a goal is implemented by a conjunction of
ground PROLOG atoms.
Reasoning Rules (PG and PR): Reasoning rules are the
mechanisms used to reason about goals and plans. These
rules are conditionalized by beliefs and can be divided into
two types: goal planning rules (PG-Rules), which are used
to generate plans in order to achieve goals and plan revision
(PR-Rules), which are used to revise a selected plan.
Capabilities (Cap): Capabilities (also known as mental ac-
tions) are rules used to update the belief base. The effect of
execution of a mental action is not a change in the world, but
a change in the belief base of the agent.
Plan base (Π): Plans are compositions of basic actions us-
ing imperative program operators (for more details see (Das-
tani, van Riemsdijk, & Meyer 2005)). These basic actions
are simple actions that can be divided into: mental actions,
which are used to update the belief base of the agent; send
actions, which are used to pass messages to other agents;
external actions, which are used to act or sense the agent ex-
ternal environment; and test actions, which are used to block
a plan if some condition is not met.

Although 3APL does not impose any particular knowl-
edge representation language, the beliefs of an agent are
expected to be formulas in some logical language. Cur-
rently, 3APL adopts PROLOG as such representation lan-
guage (Dastani, van Riemsdijk, & Meyer 2005) and this

choice implies some limitations for knowledge representa-
tion and reasoning. For example, no negative facts can be
represented and rules can only use negation as failure.

Using DeLP as the Belief Language in 3APL
In this section we will describe how to integrate Defeasi-
ble Logic Programming (DeLP) into 3APL for belief rep-
resentation and deliberation. This integration will be called
3APL-DeLP. The proposed approach will affect the agent
reasoning and the way in which knowledge is represented.

Next, we give a brief summary of DeLP (for more details
see (Garcia & Simari 2004)). The goal of this summary is
to introduce the concepts of DeLP that will be used in this
work. Then we will redefine the components of 3APL that
will be affected by our proposal. In order to do so, we will
introduce the following working example:

Example 1 Consider an agent that has to move around a
city where it can use different alternatives: bus, metro, car
or walking. The agent can perceive different elements from
its environment that it can use for taking decisions. For ex-
ample, the agent can perceive if it is snowing, or if the city
uses snow plows, or if its destination is downtown. Based on
this perceived information the agent can reason which alter-
native is more convenient for its task. For example if it is
snowing, roads may be closed and then the agent will pre-
fer to use the metro. Finally, using its preferences the agent
should be able to select one of the possible transport meth-
ods. In our case, the agent has the goal of reaching office.
It has several possible plans: go walking if the destination
is near to its current position and it is not snowing; go by
car avoiding highways in rush hour, go by car if it is not
snowing, go by bus or go by metro.

DeLP is a formalism that combines results of Logic Pro-
gramming and Defeasible Argumentation. DeLP provides
the possibility of representing information in the form of
rules in a declarative manner, and a defeasible argumenta-
tion inference mechanism for warranting the entailed con-
clusions. These rules are the key element for introducing
defeasibility and they will be used to represent a relation
between pieces of knowledge that could be defeated after
all things are considered. Using these rules, common sense
reasoning is defeasible in a way that is not explicitly pro-
grammed. Defeat should be the result of a global considera-
tion of the corpus of knowledge of the agent performing the
inference. Defeasible Argumentation provides the tools for
doing this.

In a Defeasible Logic Program (or DeLP-program for
short) knowledge can be represented using:

• Facts: ground literals representing atomic information or
the negation of atomic information using strong negation
“∼” (e. g. ∼have car, or closed roads).

• Defeasible Rules: denoted L0 —< L1, . . . , Ln, where L0

is a ground literal and {Li}i>0 is a set of ground literals.
(e. g. ∼use metro(D) —< rush hour).

A defeasible rule (d-rule) represents tentative information
that may be used if nothing could be posed against it. A
d-rule “Head —< Body” expresses that “reasons to believe

Declarative Programming Paradigms and Systems for NMR NMR-2008

171

in the antecedent Body give reasons to believe in the con-
sequent Head”. Defeasible rules are ground, however,
following the usual convention, some examples will use
“schematic rules” with variables. When required, the set of
facts is denoted Ψ and the set of defeasible-rules ∆.

Strong negation could appear in facts or in the head of
defeasible-rules and can be used to represent contradictory
knowledge. Observe that from DeLP-program contradictory
literals could be derived, however, the set Ψ (used to repre-
sent non-defeasible information) must be non-contradictory,
i. e.no pair of contradictory literals can be derived from Ψ.
Given a literal L, L represents the complement with respect
to strong negation.

As we will define below, the belief base of a 3APL-DeLP
agent is an extension of the belief base of a classical 3APL
agent. This extended belief base can contain facts for repre-
senting positive or negated information, defeasible-rules for
representing tentative information and also PROLOG clauses.

Definition 1 The belief base of a 3APL-DeLP Agent will be
a triplet Pσ=(Ψσ , ∆σ ,Prog), where Ψσ is a non contradic-
tory set of facts, ∆σ is a set of defeasible-rules and Prog is
a set of PROLOG rules.

It is important to note that given a belief base Pσ=(Ψσ ,
∆σ ,Prog), the set of atoms A that can be derived from the
PROLOG program Prog are specially considered by the de-
feasible argumentation analysis performed by DeLP. Thus
in order to avoid naming conflicts between DeLP Literals
and PROLOG atoms we will assume that both of them are
represented with separate names.

Example 2 Fig. 1 shows part of the 3APL-DeLP implemen-
tation of the agent described in Ex. 1. The agent belief
base (Ψσ1, ∆σ , Prog) contains facts, defeasible-rules and
PROLOG clauses for distance(office,5) and near/1
that succeeds if the agent is near the destination point D.
The set Ψσ1 = {∼downtown(office), have car, snow,
∼far metro station(office), snow plow}. The set ∆σ

of defeasible-rules expresses reasons for and against using
different transportation vehicles. For instance, by the first
rule, if roads are closed then there is a reason for using the
metro, and by the second rule there is a reason against us-
ing the metro when the destination point is far from a metro
station. The goal base includes only one goal where the des-
tination is office. Observe that only those elements that
are relevant to the scope of the paper are included.

Observe that the set Ψσ allows to represent positive and
negative information. Since negation is explicit, it is also
possible to represent uncertain information when neither an
atom nor its negation is included in the belief base. As it will
be explained next, for the agent of Ex. 2 the literals snow
and ∼downtown(office) will be warranted. However, the
agent will be undecided about rush hour because there will
be no warrant for rush hour nor ∼rush hour.

Using the defeasible rules of the ∆σ set, the agent can
infer tentative information. These inferences will be called
defeasible derivations and will be defined next.

Definition 2 Let Pσ = (Ψσ,∆σ, P rog) be a belief base
and L a ground literal. A defeasible derivation of L

BeliefBase
snow
snow plow
∼downtown(office)
have car
∼far metro station(office)
distance(office,5).
near(D) : −distance(D,X), X<10

use metro(D) —< closed roads
∼use metro(D) —< far metro station(D)
closed roads —< snow
∼closed roads —< ∼snow
∼closed roads —< snow, snow plow
use bus(D) —< ∼closed roads
∼use bus(D) —< traffic jam(D)
traffic jam(D) —< rush hour
∼traffic jam(D) —< rush hour, downtown(D)
∼use car(D) —< traffic jam(D)
∼use car(D) —< closed roads
use car(D) —< have car
————————————————————-
Goalbase
transport(office)
————————————————————-
PG-Rules
transport(D)← near(D),∼snow | {Walking plan(D)}
transport(D)← use car(D), not snow, rush hour |

{Car plan avoiding highways(D)}
transport(D)← use car(D), not snow | {Car plan(D)}
transport(D)← use bus(D) | {bus plan(D)}
transport(D)← use metro(D) | {metro plan(D)}
————————————————————-
Capabilities
{have car} car broken {∼have car}
{received(A, inform, X)} add preference {X}

Figure 1: 3APL-DeLP Agent

from Pσ , denoted Pσ|∼ L, consists of a finite sequence
L1, L2, . . . , Ln = L of ground literals, and each literal Li

is in the sequence because:

a) Li is a fact in Ψσ , or
b) Li is a Prolog atom derived from Prog, or
c) there exists a defeasible rule Ri in ∆σ with head Li and

body B1, B2, . . . , Bk and every literal of the body is an
element Lj of the sequence appearing before Li (j < i.)

Thus from a 3APL-DeLP agent belief base it is pos-
sible to defeasibly derive contradictory conclusions. For
instance, using the defeasible-rules of Fig. 1, since
{snow,snow plow} ⊆ Ψσ1 then both closed roads and
∼closed roads can be defeasible derived using the third and
the fifth d-rule respectively. In DeLP when contradictory lit-
erals are derived, a dialectical process is used for deciding
which literal prevails. An argument for a literal L, denoted
〈A, L〉, is a minimal non-contradictory set of defeasible-
rules A⊆ ∆σ , that allows to derive L. Next we will define
that structure

Definition 3 Let h be a literal, and Pσ = (Ψσ,∆σ, P rog)
a belief base. We say that 〈A, h〉 is an argument for h, if A
is a set of defeasible rules of ∆σ , such that:

Declarative Programming Paradigms and Systems for NMR NMR-2008

172

1. there exists a defeasible derivation for h from Pσ ,
2. the set Ψ ∪ A is non-contradictory, and
3. A is minimal: there is no proper subset A′ of A such that
A′ satisfies conditions (1) and (2).

an argument 〈B, q〉 is a sub-argument of an argument
〈A, h〉, iff B ⊆ A

For example, from the belief base of Fig.1
the following arguments can be constructed:
A1={closed roads —< snow} for closed roads,
and A2={∼closed roads —< snow, snow plow} for
∼closed roads.

In DeLP, a literal L is warranted if there exists a non-
defeated argument A supporting L. To establish if 〈A, L〉
is a non-defeated argument, defeaters for 〈A, L〉 are consid-
ered. A defeater is a counter-argument that is preferred to
〈A, L〉 by some argument comparison criterion. Counter-
arguments of 〈A, L〉 are those arguments that disagree (are
in contradiction) in some point with 〈A, L〉.
Definition 4 We say that 〈A1, h1〉 counter-argues, rebutts,
or attacks 〈A2, h2〉 at literal h, if and only if there exists
a sub-argument 〈A, h〉 of 〈A2, h2〉 such that h and h1 dis-
agree.

Following our example, A2 is a counter-argument for A1

(and viceversa) because both support contradictory conclu-
sions.

Given an argument 〈A1, h1〉 and a counter-argument
〈A2, h2〉 for 〈A1, h1〉 these two arguments can be compared
in order to decide which one prevails. This is done by the
comparison criterion that defines a partial order among the
arguments. It is important to note that in DeLP the argument
comparison criterion is modular and thus, the most appro-
priate criterion for the domain that is being represented can
be selected. The comparison criterion is defined by the fol-
lowing function

Definition 5 Let Pσ be the belief base and Args the set of
arguments that can be obtained from Pσ . The comparison
criterion ≤ ⊆ Args × Args and is any partial order on
Args

Next, we will use the comparison criterion called gener-
alized specificity (Stolzenburg et al. 2003), a criterion that
favors two aspects of an argument: it prefers (1) a more pre-
cise argument (i. e.with greater information content) or (2) a
more concise argument (i. e.with less use of rules). Thus,
following our example and using generalized specificity as
the comparison criterion we got that A1 ≤ A2 because A2

is more specific than A1. Below, in this section, we will
describe how the criterion comparison criterion can be im-
plemented.

A defeater D for an argument A using the comparison
criterion can be proper if D is preferred to A or blocking
(same strength) if neither argument is better, nor worse, than
the other.

Definition 6 Let 〈A1, h1〉 and 〈A2, h2〉 be two arguments
and ≤ the comparison criterion. 〈A1, h1〉 is a proper de-
feater for 〈A2, h2〉 at literal h, if and only if there ex-
ists a sub-argument 〈A, h〉 of 〈A2, h2〉 such that 〈A1, h1〉

counter-argues 〈A2, h2〉 at h, 〈A1, h1〉 ≤ 〈A, h〉 and 〈A, h〉
6≤ 〈A1, h1〉
Definition 7 Let 〈A1, h1〉 and 〈A2, h2〉 be two arguments
and ≤ the comparison criterion. 〈A1, h1〉 is a blocking
defeater for 〈A2, h2〉 at literal h, if and only if there ex-
ists a sub-argument 〈A, h〉 of 〈A2, h2〉 such that 〈A1, h1〉
counter-argues 〈A2, h2〉 at h, and 〈A1, h1〉 is unrelated by
the preference order to 〈A, h〉, i. e., 〈A1, h1〉 ≤ 〈A, h〉, and
〈A, h〉 ≤ 〈A1, h1〉.

In our example,A1 ≤A2 andA2 6≤ A1 sinceA2 is strictly
more specific than A1, therefore, A2 is a proper defeater for
A1. A defeater can attack the conclusion of an argument or
an inner point of it. For example, consider

A3 =
{

use metro(office) —< closed roads
closed roads —< snow

}
The argument A2 that supports ∼closed roads is a proper
defeater for A3 that supports use metro(office) because
A2 attacks an inner point of A3 (closed roads).

Since defeaters are arguments, there may exist defeaters
for them, and defeaters for these defeaters, and so on. Thus,
a sequence of arguments called argumentation line can arise.

Definition 8 Let Pσ be a belief base and 〈A0, h0〉 an argu-
ment obtained from Pσ . An argumentation line for 〈A0, h0〉
is a sequence of arguments from Pσ , denoted Λ= [〈A0, h0〉,
〈A1, h1〉, 〈A2, h2〉, 〈A3, h3〉,. . .], where each element of the
sequence 〈Ai, hi〉, i > 0, is a defeater of its predecessor
〈Ai−1, hi−1〉.

Clearly, for a particular argument there might be more
than one defeater. Therefore, many argumentation lines
could arise from one argument, leading to a tree structure
called dialectical tree (Garcia & Simari 2004). In a dialec-
tical tree, every node (except the root) is a defeater of its
parent, and leaves are non-defeated arguments.

Definition 9 Let 〈A0, h0〉 be an argument from a belief base
Pσ . A dialectical tree for 〈A0, h0〉, denoted T 〈A0, h0〉, is
defined as follows:

1. The root of the tree is labeled with 〈A0, h0〉.
2. Let N be a non-root node of the tree labeled 〈An, hn〉,

and Λ= [〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉, . . . , 〈An, hn〉]
the sequence of labels of the path from the root to
N . Let 〈B1, q1〉, 〈B2, q2〉, . . ., 〈Bk, qk〉 be all the
defeaters for 〈An, hn〉. For each defeater 〈Bi, qi〉
(1 ≤ i ≤ k), such that, the argumentation line Λ′ =
[〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉, . . . , 〈An, hn〉, 〈Bi, qi〉] is
acceptable, then the node N has a child Ni labeled
〈Bi, qi〉. If there is no defeater for 〈An, hn〉 or there is no
〈Bi, qi〉 such that Λ′ is acceptable, then N is a leaf.

A dialectical tree provides a structure for considering all
the possible acceptable argumentation lines that can be gen-
erated. In a dialectical tree every node can be marked as
defeated (D) or undefeated (U): leaves are marked as unde-
feated nodes, and inner nodes are marked as defeated when
there is at least a child marked as undefeated, or are marked
as undefeated when all its children are marked as defeated.

Definition 10 Let Pσ be a belief base of a 3APL-DeLP
agent, ≤ the comparison criterion,〈A, h〉 be an argument

Declarative Programming Paradigms and Systems for NMR NMR-2008

173

fromPσ and T ∗〈A, h〉 its associated marked dialectical tree.
The literal h is a warranted belief from Pσ using the com-
parison criterion “≤” (noted (Pσ,≤) |∼wh) iff the root of
T ∗〈A, h〉 is marked as “U”. We will say thatA is a warrant
for h.

If it is the case that the literal L is not a warranted belief
it will be noted as Pσ 6|∼wL. Observe that facts from Ψσ and
the atoms that are derived from the PROLOG program Prog
are always warranted, since no argument can attack a fact or
a PROLOG atom.

Example 3 Consider the agent of Ex. 2. From the belief
base of Fig. 1 the warranted beliefs are: use bus(office),
use car(office), ∼closed roads, distance(office, 5),
near(office) and the elements of Ψσ1. That is, in this sit-
uation using the bus or using the car are warranted options.

Example 4 Consider now that the agent of Ex. 2
is in a different situation and its set of facts is
changed to the following set Ψσ2 = { snow,
∼far metro station(office), rush hour, ∼snow plow,
have car, ∼downtown(office) }. Since the situation
has changed, the set of warranted belief differs from the
ones of Ex. 3. From the belief base (Ψσ2,∆σ ,Prog)
the warranted beliefs are: use metro(office),
∼use bus(office), near(office), distance(office, 5),
traffic jam(office), closed roads and the elements of
Ψσ2. Therefore, in this situation the agent infers that using
the metro is a warranted option.

Since the comparison criterion is modular, different war-
rants can be obtained from a belief base if the comparison
criterion is changed.

Example 5 Consider for instance a new domain dependant
comparison criterion that is based on generalized speci-
ficity but prefers arguments that use the literal have car be-
cause of a special property of the city. That is, if 〈A1, h1〉
and 〈A2, h2〉 are two conflictive arguments then this new
comparison criterion behaves as generalized specificity un-
less the literal have car is used in 〈A1, h1〉 or 〈A2, h2〉İf
have car is used in 〈A1, h1〉 then 〈A2, h2〉 leq 〈A1, h1〉.
Consider now that the agent is in the situation described in
the example 4 and the above comparison criterion is used.
Since the comparison criterion has changed, the set of war-
ranted belief differs from the ones of Ex. 4. From the be-
lief base (Ψσ2,∆σ ,Prog) the warranted beliefs with this
new criterion are: use car(office) use metro(office),
∼use bus(office), near(office), distance(office, 5),
traffic jam(office), closed roads and the elements of
Ψσ2. Therefore, in this situation the agent infers that using
the metro or using the car are warranted options.

In order to create a comparison criterion the program-
mer should implement the predicate is better than, that re-
ceives two arguments 〈A1, h1〉 and 〈A2, h2〉 returns true if
〈A1, h1〉 is better or equal than 〈A2, h2〉, or false otherwise.
This predicate will be called by the DeLP engine when the
comparison is needed.

In order to take advantage of the features of DeLP, next
we will introduce the modifications to those components of
3APL that are affected by our proposed approach.

As stated above, 3APL provides PG-rules to reason about
plans and goals. A PG-rule involves a goal, a guard and a
plan. The plan specifies the actions needed to solve the goal
and the guard is the precondition of the rule. In 3APL those
preconditions are atoms or atoms with negation as failure
that represent queries to the belief base. In our proposed ap-
proach, this guard will be a set of literals or extended literals
(i. e., a literal preceded by the symbol not).

Definition 11 A goal planning rule (or PG-rule) R is an
ordered triplet R=(κ, β, π), where: κ (header goal) is a
conjunction of atoms representing the goal, π is a plan, and
β={G1, . . . , Gn, not C1, . . . , not Cm} (n ≥ 0 and m ≥ 0)
is a guard formed by a set of literals {G1, . . . , Gn} repre-
senting preconditions for R and a set of extended Literals
{not C1, . . . , not Cm} representing restrictions for R. A
PG-rule (κ, β, π) is also denoted κ← β | {π} .

The applicability of a PG-rule depends on the status of its
guard β. The next definition indicates when β is considered
warranted in our proposed approach.

Definition 12 Let β = {p1,. . ., pk, not c1,. . .,not cs} and
Pσ a belief base. β is a warranted set from Pσ (noted Pσ

|∼w β) iff ∀pi, i = 1..k, Pσ |∼w pi and ∀ cj , j = 1..s, Pσ

6|∼w ci

Consider an agent with a belief base Pσ and a goal
base γ, a PG-rule R = (κ, β, π) will be applicable when
κ is in γ and β is a warranted set from Pσ . For in-
stance, the agent of Fig. 1 has only one applicable PG-
rule transport(D)← use bus(D) | {bus plan(D)} . This
is because transport(office) is in γ and use bus(office)
is a warranted belief from Pσ (see Ex. 3). Also, observe
that for example the first PG-rule is not applicable because
∼snow is not a warranted belief. The operational semantics
for PG-rules will be introduced in the next section. PR-Rules
can be defined analogously to PG-Rules.

In 3APL, there are two types of actions that interact with
the belief base: mental actions and test actions. Mental ac-
tion rules are used to add or remove beliefs.

Definition 13 A Mental Action rule (or MA-rule) is an or-
dered triplet Ma=(Pre, Name, Pos), where: Name is
an atom, Pre={p1,. . ., pn, not c1,. . ., not cm} (n ≥ 0
and m ≥ 0) is formed by a set of literals {p1, . . . , pn}
representing preconditions and a set of extended liter-
als {not c1, . . . , not cm} representing restrictions; Pos=
{a1,. . ., ak, not d1,. . ., not ds} (k ≥ 0 and s ≥ 0) is
formed by a set of non-contradictory literals {a1, . . . , an}
representing information to be added and a set of extended
literals {not d1, . . . , not dm} representing information to
be removed.

As in 3APL, the set Capabilities will include all
the MA-Rules of a 3APL-DeLP agent. In each MA-rule
Ma=(Pre, Name, Pos) the atom Name is used to apply
Ma in a plan. The atom Name can contain variables which
will be treated as in-mode parameters.

Consider an agent with a belief base Pσ , a MA-
rule (Pre, Name, Pos) will be applicable when
Pre is a warranted set from Pσ (Def.12). For in-
stance, the agent of Fig. 1 has one applicable MA-rule

Declarative Programming Paradigms and Systems for NMR NMR-2008

174

{have car} car broken {∼have car} . This is because
have car is a warranted belief from Pσ (see Ex. 3). When a
MA-rule is applied, its effects will modify the set Ψσ . Recall
that Ψσ should be non-contradictory. In the next section we
will describe the operational semantics of a MA-rule.

Since MA-rules can only add/remove literals, we intro-
duce a new type of basic actions called extended mental ac-
tions that will be included in Capabilities and will be
used to add and remove defeasible-rules.
Definition 14 An Extended Mental Action rule (or EMA-
rule) is a schematic ordered triplet EMa=(Pre, Name,
Pos), where Name and Pre are defined as in the MA-
rules. Here, Pos= {R1,. . ., Rk, not Rk+1,. . ., not Rs}
(k ≥ 0 and s ≥ k) is formed by a set {R1, . . . , Rk}
representing defeasible-rules to be added, and a set
{not Rk+1, . . . , not Rs} representing defeasible-rules to be
removed, each Ri may be a d-rule or a rule-variable.

EMA-Rules will be applicable when the set Pre
is warranted from the belief base (Def.12). For
instance, the agent of Fig. 1 has one EMA-rule,
{received(A, inform,X)} add preference {X} , which
is not applicable. This is because received(A, inform,X)
is not a warranted belief from Pσ (see Ex. 3). In order to
add flexibility we allow to use rule-variables. Note that in
the above rule X is a rule-variable. These variables will
be dynamically instantiated with defeasible-rules when the
EMA-rules are executed. In the next section we will give its
semantics.

In order to allow the agent to change the comparison cri-
terion dynamically we introduce a new type of basic ac-
tions called criterion change actions that will be included
in Capabilities.
Definition 15 An Criterion Change Action rule (or CCA-
rule) is a schematic ordered triplet CCa=(Pre, Name,
CC), where Name and Pre are defined as in the MA-rules
and CC can be a the name of a comparison criterion or a
variable.

CCA-Rules will be applicable when the set Pre is war-
ranted from the belief base (Def.12). If CC is a variable, it
will be dynamically instantiated with a comparison criterion
when the CCa-rule is executed. In the next section we will
give its semantics.

In 3APL, test actions are queries in the form of well
formed formulas to the belief base. In our approach, test
actions will be a set of literals or extended literals.
Definition 16 A test action is a term ?(T) where
T={G1, . . . , Gn, not C1, . . . , not Cm} is formed by a set
of literals {G1, . . . , Gn} representing preconditions and a
set of extended literals {not C1, . . . , not Cm} representing
restrictions.

Test actions are used to retrieve information or block the
plan in which they are included. The effect of applying a test
action rule will be given in the next section.

3APL-DeLP Operational Semantics
In previous sections we have described how to integrate
DeLP into the agent belief base, how to obtain warranted in-

formation from the DeLP belief base, and how to modify the
mental components in order to use that warranted informa-
tion. In this section we will introduce the operational seman-
tics of the 3APL-DeLP agents using the Transition System.

As in 3APL, to program a 3APL-DeLP agent means to
specify its initial beliefs, the comparison criterion, goals,
plans and capabilities, and to specify PG-rules and plan revi-
sion rules. The beliefs, goals, plans of individual agents and
their environment can change during the execution of the
agent, while the capabilities and the reasoning rules remain
the same. Together with a substitution component, these
changing components constitute a 3APL-DeLP agent con-
figuration.

Definition 17 A configuration of an individual 3APL-DeLP
agent is a tuple 〈ι, Pσ , ≤, γ, Π, θ, ξ〉 where ι is an agent
identifier, Pσ is the belief base, ≤ is the comparison crite-
rion, γ is the goal base, Π is the plan base, θ is a ground
substitution that binds domain variables to domain terms,
and ξ is the environment the agent interacts with, where ξ is
a set of ground atoms. For any possible goal φ of γ it holds
that φ is not a warrant belief of Pσ .

A transition is a transformation of one configuration into
another and it corresponds to a single computation step. The
transition rules can derive transitions transforming single-
agent configurations. These derivation rules specify the se-
mantics of the execution of plans and the application of rea-
soning rules. Next we will introduce derivation rules for the
elements affected by our proposal, the rest of the derivation
rules coincides with the ones presented for 3APL in (Das-
tani, van Riemsdijk, & Meyer 2005).

The first derivation rule specifies the execution of the plan
base of a 3APL agent. The plan base of the agent is a set of
plan-goal pairs. This set can be executed by executing one
of the constituent plans. The execution of a plan can change
the agent’s configuration.

Definition 18 (plan base execution) Let Π = {(π1, k1),
. . ., (πi, ki), . . ., (πn, kn)} and Π′ = {(π1, k1), . . ., (π′i, ki),
. . ., (πn, kn)} be plan bases, θ, θ′ be ground substitutions,
and ξ, ξ′ be environment specifications. Then, the derivation
rule for the execution of a set of plans is specified in terms
of the execution of individual plans as follows.

〈ι,Pσ,≤,γ,(πi,ki),θ,ξ〉→〈ι,P ′
σ,≤,γ′,(π′i,ki),θ′,ξ′〉

〈ι,Pσ,≤,γ,Π,θ,ξ〉→〈ι,P ′
σ,≤,γ′,Π′,θ′,ξ′〉

MA-rules can add or remove literals from the belief base.
Their effects are given by a function T that should preserve
consistency of the belief base. In this work we will define
this function T next:

Definition 19 Let Ma=(Pre, Name, Pos) be a MA-rule,
where Pos= {a1,. . ., ak, not d1,. . ., not ds}, θ is a ground
substitution, and the agent belief base Pσ = (Ψσ , ∆σ ,
Prog). With the literals in Pos we define Del= { a1 . . .,
ak, d1 . . ., ds }, and Add = {a1,. . ., ak}. Then the mental
action update function is: T (Ma, θ,Pσ) = ((Ψσ \ {xiθ :
xi ∈ Del}) ∪ {yiθ : yi ∈ Add}, ∆σ , Prog)

Definition 20 Let Ma=(Pre, Name, Pos) be an applica-
ble MA-rule, T be the mental action update function, and

Declarative Programming Paradigms and Systems for NMR NMR-2008

175

τ be a ground substitution, then the execution of a single
MA-rule is specified as follows:

(Pσ,≤)|∼wPreθτ & T (Ma,θτ,Pσ)=P ′
σ & γ|=k

〈ι,Pσ,≤,γ,(Ma,k),θ,ξ〉→〈ι,P ′
σ,≤,γ′,(E,k),θ,ξ〉

where γ′ = γ \ {φ ∈ γ | (P ′
σ,≤)|∼wφ}

Note that the substitution θ is first applied to Pre, and
then τ is the substitution returned by DeLP that should be
used in order to bind the free variables of Preθ. Finally, θτ
is used by the belief update function T to bind the corre-
sponding free variables of the MA-rule postcondition. Also
note that E is treated as an empty action, as it is in 3APL.

Example 6 Consider the belief base and the capabilities of
the agent of Fig. 1 (its warranted beliefs were described
in Ex. 3). Suppose that the agent applies the MA-rule
car broken (note that it is applicable because have car is
warranted), then the fact have car will be removed from the
belief base and the fact ∼have car will be introduced.

In 3APL-DeLP MA-rules allow to add or remove literals
from the belief base preserving the consistency of Ψσ , and
argumentative reasoning is used in order to determine their
applicability. Adding a new literal L to the belief base will
allow to build new arguments, but it may also disable old
arguments that are contradictory with Ψσ ∪L. Analogously,
removing a literal may introduce or disable arguments.

EMA-rules can add or remove defeasible-rules from the
belief base. Their effects are given by the function U defined
next:

Definition 21 Let EMa=(Pre, Name, Pos) be a EMA-
rule, where Pos= {R1,. . ., Rk, not Rk+1,. . ., not Rs}. Let
θ be a ground substitution, λ a set with an instantiation for
each rule-variable, and Pσ = (Ψσ , ∆σ , Prog) the agent
belief base. We define Del= { Rk+1,. . ., Rs}, and Add =
{R1,. . ., Rk}, where each Ri that is a rule-variable will be
instantiated using λ. Then, the extended mental action up-
date function is U(EMa, θ, λ,Pσ) = (Ψσ, (∆σ \ {xiθ :
xi ∈ Del}) ∪ {yiθ : yi ∈ Add}, Prog).

Remark 1: If Ri ∈ Del is a schematic rule, the function U
will remove all the rules that match with Ri.
Remark 2: The rules that will instantiate the rule-variables
of Del and Add are considered ground for the θ substitution.

Definition 22 Let EMa=(Pre, Name, Pos) be a EMA-
rule, U be the EMA-rule update function and τ be a ground
substitution. Then, the execution of a EMA-rule is:

(Pσ,≤)|∼wPreθλτ & U(Ma,θτ,λ,Pσ)=P ′
σ & γ|=k

〈ι,Pσ,≤,γ,(EMa,k),θ,ξ〉→〈ι,P ′
σ,≤,γ′,(E,k),θ,ξ〉

where γ′ = γ \ {φ ∈ γ | (P ′
σ,≤)|∼wφ}

The set of instantiations λ is used to bind those free vari-
ables of Preθ that are rule-variables in Pos. The substitu-
tion τ is used for the rest of the free variables in Preθλ.

Example 7 Consider now that the agent of
Ex. 4 receives a message received(ag1, inform,
(∼use metro(D) —< ∼downtown(D))) meaning that
the metro stations outside downtown are becoming dan-
gerous due to pick pockets. Thus, the agent will be

able to apply the EMA-rule {received(A, inform,P)}
add preference{P} because received(ag1, inform,
(∼use metro(D) —< ∼downtown(D))) is warranted
from the belief base. Note that the variable P will be
instantiated with ∼use metro(D) —< ∼downtown(D).
Then if the agent applies that EMA-rule, the d-rule
∼use metro(D) —< ∼downtown(D) will be added to the
agent belief base.

Using EMA-rules, new defeasible-rules can be added to
the belief base, hence new arguments may be built. Re-
call that warranted literals are determined by the argumen-
tation process. With new arguments, new warranted liter-
als may arise. Nevertheless, the new arguments may repre-
sent defeaters for other arguments and therefore some liter-
als may be not warranted. Thus, after applying the EMA-
rules the set of warranted beliefs may change. For instance
in the situation described in Ex.7, if the EMA-rule is ap-
plied, use metro will not be a warranted belief anymore.
Observe that defeasible-rules are simply added to the be-
lief base. This is because no revision is needed, conflicts
among defeasible-rules are solved by the DeLP argumenta-
tion mechanism.

CCA-rules can change the argumentation comparison cri-
terion. Their semantics are defined as follows:

Definition 23 Let CCa=(Pre, Name, CC) be a CCA-rule
and τ be a ground substitution. Then, the execution of a
CCA-rule is:

(Pσ,≤)|∼wPreθτ & γ|=k
〈ι,Pσ,≤,γ,(CCa,k),θ,ξ〉→〈ι,Pσ,CCθτ,γ′,(E,k),θ,ξ〉

where γ′ = γ \ {φ ∈ γ | (Pσ, CCaθτ)|∼wφ}

Note that the Comparison Criterion is not changed when
the warrants are calculated. This means that obtaining war-
rant for a literal L is an atomic operation. The CCA-Rules
allow the agent to change the argument comparison crite-
rion using an action during the execution of a plan. Thus,
for instance, the agent will be able to change the comparison
criterion to one that adapts to the environment conditions in
which is currently involved, build plans to change the way in
which the agent weights its beliefs or receive a comparison
criterion from other agent and use it.

Next, we specify the derivation rule for the execution of
a test action. A test action can bind the free variables that
occur in the test formula.

Definition 24 Let β ={p1, . . ., pn, not c1,. . ., not cm}, and
τ be a ground substitution, then the test action execution is:

(Pσ,≤)|∼wβ θτ & γ|=k
〈ι,Pσ,≤,γ,(β?,k),θ,ξ〉→〈ι,Pσ,≤,γ,(E,k),θτ,ξ〉

Composite plans containing conditions over the beliefs
base are also affected by our proposal. However, as they are
composed by test actions, they can be analogously defined
using the previous definitions (see (Dastani et al. 2003)).

Next, we will define the transition rule for the PG-rules.
A PG-rule κ← β | {π} specifies that the goal κ can be
achieved by the plan π if the guard β is a warranted set from
the belief base.

Declarative Programming Paradigms and Systems for NMR NMR-2008

176

Definition 25 Let κ← β | {π} be a PG-rule, where β
={p1, . . ., pn, not c1,. . ., not cm},and τ1 and τ2 be a ground
substitutions, then the PG-rule application is:

γ|=kτ1 & (Pσ,≤)|∼wβ τ1τ2

〈ι,Pσ,≤,γ,Π,θ,ξ〉→〈ι,γ,Pγ ,≤,{(πτ1τ2,kτ1)}∪Π,θ,ξ〉
The 3APL-DeLP PG-Rule guards are able to consult for

negative and positive literals, combined with negation as
failure. Also note that the deliberative cycle step in which
the interpreter searches for applicable PG-Rule argumenta-
tive reasoning will be used thus making the agent reasoning
capabilities more sophisticated.

Properties of 3APL-DeLP
The aim of this section is to study the properties that arise if
integration between 3APL and DeLP proposed in this work.

In this proposal 3APL-DeLP agents are able to use strong
negation, which increases the expressive power of the belief
representation languages. However, using strong negation
may lead to inconsistencies, which is an undesirable effect
for an agent. Next, we will show two propositions that shows
that the system works well with strong negation (i. e.the sys-
tem does not reach inconsistencies).

The following property shows that in the 3APL-DeLP
framework the strict knowledge always remains non-
contradictory.

Proposition 1 Given an 3APL-DeLP agent configuration
〈ι,Pσ,≤, γ,Π, θ, ξ〉 with Pσ = (∆σ,Ψσ, P rog) were Ψσ

is non-contradictory, after any of the possible transitions,
Ψσ remains non-contradictory.

Proof: Let 〈ι,Pσ,≤, γ,Π, θ, ξ〉 be the agent configuration
with Pσ = (∆σ,Ψσ, P rog) were Ψσ is non-contradictory.
If the transition does not change the belief base, Ψσ remains
non-contradictory. If the transition does change the belief
base, it may be the transition of a EMA-Rule or a MA-
Rule. If its a EMA-Rule then ∆σ is changed, however it
clear by definition 2 this does not introduce contradictions
in the strict part of the program. If the transition is MA-Rule
α then Ψσ is changed then:

• if α removes a literal L from Ψσ , then clearly Ψσ remains
non-contradictory

• if α adds a literal L to Ψσ and L 6∈ Ψσ , then clearly Ψσ

remains non-contradictory
• if α adds a literal L to Ψσ and L in Ψσ , then Ψσ remains

non-contradictory because by definition 20 L will be re-
moved from Ψσ

�
Using strong negation contradictory information can be

inferred. In order to address this issue the argumentation
mechanism will be used to decide which piece information
prevail. Next, we will show that the set of warranted beliefs
inferred by a 3APL-DeLP agent is a non-contradictory set
(ie, the agent can not warrant a literal and its complement
simultaneously).

Proposition 2 Given a belief base Pσ = (∆σ,Ψσ, P rog)
were Ψσ is consistent, the set of warranted belief Wb ob-
tained from Pσ is non-contradictory.

Proof Sketch: Let Wb be the set of warranted beliefs from
Pσ and h1 ∈ Wb thus, there exists an argument 〈A1, h1〉
for h1 which is undefeated in a dialectial process. Suppose
h2 ∈Wb and h1 and h2 are contradictory (h1 = h2). As h2

is warranted there exists an argument 〈A2, h2〉 for h2 which
is undefeated in the argumentation process As h1 and h2are
contradictory 〈A1, h1〉 is a counterargument for 〈A2, h2〉
and vice versa. Depending on the comparison criterion
used, 〈A2, h2〉 can be a proper defeat of 〈A1, h1〉(or vicev-
ersa) or 〈A2, h2〉 and 〈A1, h1〉are blocking defeaters. Since
〈A2, h2〉 is undefeated and a defeats (bloking or proper)
〈A1, h1〉, h1 is not warranted from Pσ , that contradicts our
hypothesis.�

The previous propositions shows that although the knowl-
edge language allows strong negation, if an agent starts with
a consistent Ψσ , regardless the action the agent executes
or changes in the environment, the set of inferences of the
agent will be non-contradictory. Thus, with these two prop-
erties we have shown that 3APL-DeLP agents can model
their knowledge using strong negation and be safe of incon-
sistencies.

Since the belief representation language allows strong
negation, contradictory information can be inferred. If con-
tradictions occur, a decision criterion is needed to determine
which information prevails. Previous approaches that in-
creased the representational capabilities of 3APL belief lan-
guage used a fixed decision criterion. Here, we have pro-
posed a mechanism were the decision criterion is based on a
programmable argument comparison criterion and that can
be changed dynamically without changing the belief pro-
gram. Since this criterion is programable, it adds an in-
teresting degree of flexibility for the agent programmer. In
this work for instance, we have shown two criterions. The
first one, generalized specificity, is a general criterion and
depends of the general structure of the arguments. The sec-
ond one presented in example 5 is a domain dependant cri-
terion and depend on particular domain elements that are
part of the arguments. Other general comparison criteri-
ons could involve for instance, the quantity of literals, rule
time-stamps, or rule position in the program. Other particu-
lar comparison criterions could involve for instance, prefer-
ences relations over the domain literals (Ferretti et al. 2008)
or preferences relation over the domain rules using proba-
bility labels. As we shown in example 5 criterions can be
combined to add more flexibility. The CCA-Rules allow the
agent to change the argument comparison criterion using an
action during the execution of a plan. Using these rules the
agent will able, for instance, to change the comparison cri-
terion to one that adapts to the environment conditions in
which is currently involved, build plans to change the way
in which the agent weights its beliefs or receive a compari-
son criterion from other agent and use it.

Conclusions and Related Work
In this work we have shown how to integrate a defeasible
argumentation programming language into 3APL. The pro-
posed approach allows to represent beliefs with a defeasible
logic program. Thus, tentative information is represented

Declarative Programming Paradigms and Systems for NMR NMR-2008

177

using defeasible-rules, negative information is represented
by strong negation. In addition to this, a defeasible argumen-
tation process is used to warrant the agent derived beliefs
and a programmable criteria used by this process to decide
between contradictory conclusions. DeLP features allow to
model incomplete and potentially contradictory information
thus extending representational capabilities of these agents.
The inference mechanism of DeLP allows the agent to de-
cide among contradictory conclusions, and allows to add or
remove information in a dynamic way, without the need of
changing every rule, which adds scalability and flexibility.
Since the proposed approach affects the 3APL agent reason-
ing mechanism, new definitions for the agent mental com-
ponents are given.

Thus, this approach, as a agent programming language,
contains all the advantages of 3APL plus strong negation,
argumentative reasoning, a programmable comparison cri-
terion. Our aim with this proposal is to provide a highly
declarative tool for agent programming, were the program-
mer can focus on the rules that represent knowledge in a
declarative way and not in the explicit interaction among
these rules. Therefore, in order to add a rule the programmer
does not need to be aware of the whole knowledge program,
he just add it and the argumentative mechanism solve the
inferences.

The idea of using defeasible argumentation in the reason-
ing process cognitive agents is not new, and there exist pre-
vious approaches that relate cognitive agents to argumenta-
tion frameworks (Rahwan & Amgoud 2006; Rotstein, Gar-
cia, & Simari 2007). However, none of these approaches
propose an agent programming language. In (Rotstein, Gar-
cia, & Simari 2007) a BDI agent architecture based on a
DeLP was presented. As an architecture, several decision
choices must be taken to allow the complete specification of
agents. For example, they do not provide a model to repre-
sent agent actions or plans to solve desires. In contrast with
their approach, we allow to use PROLOG rules and DeLP
rules in the knowledge representation language. Also, we
have defined a mechanism to update the agent belief base
that combines 3APL capability rules with DeLP. Finally we
give formal operational semantics in order to formally define
the programming language constructs behavior.

In (Nigam & Leite 2006), a modification of 3APL to use
Dynamic Logic Programming is introduced. There, they
mention some limitations of 3APL regarding to the belief
and goal representation language. Like us, they propose
to use a more sophisticated belief representation language.
However DLP and DeLP are different formalisms. DLP is
based in Answer-Set programming and its aim is the update
of the knowledge. DeLP is based on defeasible argumenta-
tion and its aim is to build arguments and reason with them.
Thus our aim in this work is to provide 3APL with argu-
mentative reasoning. In addition to that, in DLP the decision
criterion between contradictory information is fixed, newer
information is preferred. In DeLP a modular argument com-
parison criterion to decide between arguments that support
contradictory conclusions is used. This comparison crite-
rion is not fixed, so the agent programmer can use the best
criterion depending on the context or domain application.

For instance, the comparison criterion can be programmed
to prefer those arguments that were built using newer rules,
similar to DLP, or to prefer those arguments built from rules
that have more literals. Thus with DeLP we provide a wider
range of options to handle contradictory conclusions.

As future work, we plan to integrate the defeasible ar-
gumentation formalism into other components of a 3APL
agent. For example, the shared environment, which is a set
of atoms, can be extended to a defeasible logic program.

References
Bench-Capon, T. J. M., and Dunne, P. E. 2007. Argumenta-
tion in artificial intelligence. Artif. Intell. 171(10-15):619–
641.
Bratman, M.; Israel, D.; and Pollack, M. Plans and
resource-bounded practical reasoning. In Philosophy and
AI: Essays at the Interface.
Dastani, M.; van Riemsdijk, B.; Dignum, F.; and Meyer,
J. 2003. A programming language for cognitive agents:
Goal-directed 3apl. In First Workshop on Programming
Multiagent Systems: Languages, frameworks, techniques,
and tools (ProMAS03), Melbourne, Australia.
Dastani, M.; Governatori, G.; Rotolo, A.; and van der
Torre, L. W. N. 2005. Programming cognitive agents in
defeasible logic. In LPAR, 621–636.
Dastani, M.; van Riemsdijk, M. B.; and Meyer, J.-J. C.
2005. Programming multi-agent systems in 3apl. In Multi-
Agent Programming. 39–67.
Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artif. Intell. 77(2):321–
358.
Ferretti, E.; Errecalde, M.; Garcı́a, A.; and Simari, G. 2008.
Decision rules and arguments in defeasible decision mak-
ing. In Proceedings of the 2nd International Conference on
Computational Models of Arguments (COMMA), 171–182.
Fisher, M.; Bordini, R.; Hirsch, B.; and Torroni, P. 2007.
Computational logics and agents: A road map of current
technologies and future trends. Computational Intelligence
23(1):61–91.
Garcia, A., and Simari, G. 2004. Defeasible logic program-
ming: An argumentative approach. Theory and Practice of
Logic Programming 4(1-2):95–138.
Hindriks, K.; de Boer, F.; van der Hoek, W.; and Meyer,
J.-J. C. 1999. Agent programming in 3apl. Autonomous
Agents and Multi-Agent Systems 2(4):357–401.
Nigam, V., and Leite, J. 2006. Adding knowledge updates
to 3apl. In PROMAS, 165–181.
Rahwan, I., and Amgoud, L. 2006. An argumentation
based approach for practical reasoning. In AAMAS.
Rotstein, N. D.; Garcia, A. J.; and Simari, G. R. 2007. Rea-
soning from desires to intentions: A dialectical framework.
In 22nd. AAAI Conference on Artificial Intelligence.
Stolzenburg, F.; Garcia, A. J.; Chesnevar, C. I.; and Simari,
G. R. 2003. Computing generalized specificity. Journal of
Applied Non-Classical Logics 13(1):87–.

Declarative Programming Paradigms and Systems for NMR NMR-2008

178

Using Collaborations for Distributed Argumentation
with Defeasible Logic Programming

Matthias Thimm
Faculty of Computer Science

Technische Universität Dortmund
Germany

Gabriele Kern-Isberner
Faculty of Computer Science

Technische Universität Dortmund
Germany

Alejandro J. Garcı́a
Department of Computer Science and Engineering

Universidad Nacional del Sur, Bahı́a Blanca
Argentina

Guillermo R. Simari
Department of Computer Science and Engineering

Universidad Nacional del Sur, Bahı́a Blanca
Argentina

Abstract

In this paper, we extend previous work on distributed
argumentation using Defeasible Logic Programming.
There, several agents form a multi agent setting, in
which they are able to generate arguments for a given
query and counterarguments to the arguments of other
agents. The framework is monitored by a moderator,
which coordinates the argumentation process and can
be seen as a judge overlooking the defender and accuser
in a legal case. We extend this framework by allowing
the agents to form alliances. We introduce a notion of
cooperation for agents calledcollaborations, which al-
low the agents not only to argue with one another, but
to share their beliefs in order to jointly generate new ar-
guments. We give a declarative definition as well as an
algorithmic characterization of the argument generation
process and relate our framework with general Defeasi-
ble Logic Programming.

Introduction
Defeasible argumentation (Prakken & Vreeswijk 2002)
deals with argumentative reasoning using uncertain knowl-
edge. An instantiation of defeasible argumentation is De-
feasible Logic Programming (DeLP) by Garcı́a and Simari
(Garcı́a & Simari 2004) and is an approach for logical argu-
mentative reasoning (Rahwan & Amgoud 2006; Besnard &
Hunter 2000) based on defeasible logic. InDeLP the belief
in literals is supported by arguments and in order to handle
conflicting information a warrant procedure decides which
information has the strongest grounds to believe in.

There are many approaches to realize multi agent argu-
mentation and especially negotiation (Kraus 1997; Booth
2002) in multi agent systems. Whereas in (Amgoud, Di-
mopolous, & Moraitis 2007; Parsons, Sierra, & Jennings
1998) and especially in (Bench-Capon 2003), the focus lies
on using argumentation for persuasion, here we use argu-
mentation to reach a common conclusion of a group of

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

agents. Considering a jury court it is reasonable to assume
that there are jurors who are less competent in jurisdiction
than others. However it is the main goal to reach an agree-
ment regarding the given case rather than unifying the jurors
beliefs.

In this paper, a distributed argumentation framework for
cooperative agents is introduced in which agents may have
independent or overlapping belief bases. Here, follow-
ing (Thimm 2008; Thimm & Kern-Isberner 2008a), Defea-
sible Logic Programming is used for knowledge represen-
tation. Hence, agents belief bases will be sets of defeasi-
ble rules (Garcı́a & Simari 2004) and agents may build ar-
gument using their local rules. Similar to (Móra, Alferes,
& Schroeder 1998; de Almeida & Alferes 2006), we will
define a notion ofcollaborationand a mechanisms that al-
low agents to cooperate for building arguments will be in-
troduced.

In many different scenarios the cooperation of agents in a
multi agent setting is desirable. Suppose that in a legal dis-
pute a team of lawyers have to work together, acting as one
accuser or defender. Or imagine a dispute between political
parties, where each member tries to defend their party’s in-
terests. The simplest solution to these kinds of scenarios is
to represent each whole team or party as one single agent,
thus merging the beliefs of the members into one knowledge
base. But from a knowledge representational point of view
it is more realistic to represent each member of such a team
as an individual agent and let these agents collaborate with
each other. Another drawback of the first approach is a com-
putational one. If the knowledge of many members of a team
is joined, the computation of arguments can be expensive, as
the whole knowledge base has to be searched. If a team is
made up of many agents, each an expert in his field, the con-
struction and evaluation of arguments can be divided upon
them and only the agents, that can contribute, do so.

The framework proposed in (Thimm & Kern-Isberner
2008a) consists of several agents and a central moderator,
which coordinates the argumentation process undertaken by
the agents. The moderator accepts a query, consisting of a

Declarative Programming Paradigms and Systems for NMR NMR-2008

179

single literal, and asks the agents to argue about the warrant
status of it. That framework was motivated for modeling
situations where participating agents have opposite views of
the given query (e. g. a legal dispute, where agents take the
roles of accuser and defender). Therefore, each agent build
its own arguments using its local belief and it may attack or
defend arguments of other agents. In this paper, we extend
that framework by considering groups of agents who may
collaborate in order to build better arguments using beliefs
of other agents. A collaboration is basically a set of agents
that form an alliance for argument construction. With the
use of collaborations, we are able to derive more arguments
than in the case with no collaborations. The key idea of com-
puting collaborated arguments is similar to (Móra, Alferes,
& Schroeder 1998) but uses another concept of apartial ar-
gument. As will be described below, a partial argument is
some kind of an intermediate result when constructing an
argument in a distributed manner. Partial arguments help
collecting the rules that are necessary to derive a conclusion
from the local belief bases.

The paper is organized as follows. In the next section, a
brief introduction to Defeasible Logic Programming and the
distributed framework of (Thimm & Kern-Isberner 2008a)
is presented. We continue by introducing collaborations into
the multi agent setting, that allow the agents to jointly build
arguments. We proof soundness and completeness of the
algorithmic representation of collaborated argument genera-
tion, followed by a comparison of our approach with Defea-
sible Logic Programming and other related work. Finally,
we conclude we a summary and an outlook to further work.

Distributed Argumentation using DeLP
We give a brief introduction in the distributed argumenta-
tion frameworkArgMAS (Argumentation-based multi agent
system) proposed in (Thimm 2008; Thimm & Kern-Isberner
2008a; 2008b) adapted to our needs in this paper. The frame-
work is based uponDeLP (Defeasible Logic Programming)
(Garcı́a & Simari 2004) and consists of several agents and a
central moderator, which coordinates the argumentation pro-
cess undertaken by the agents. An overview of such a sys-
tem is depicted in figure 1. The moderator accepts a query,
consisting of a single literal, and asks the agents to argue
about the warrant status of it, i. e., whether the literal or its
negation can be supported by an ultimately undefeated ar-
gument. Agents use the global belief base of the system,
which contains strict knowledge, and their own local belief
bases consisting of defeasible knowledge to generate argu-
ments. Eventually the system returns an answer to the ques-
tioner that describes the final status of the literal based on
the agents’ individual beliefs.

We start our description of this framework by present-
ing the basic argumentative formalisms ofDeLP(Garcı́a &
Simari 2004).

Defeasible Logic Programming
The basic elements ofDeLP are facts and rules. LetL de-
note a set of ground literals, where a literalh is a ground
atomA or a negated ground atom∼A, where the symbol

moderator

global
belief base

agent

agent

agent
...

agent

argumentation

query

Figure 1: An argumentation-based multi agent system
(ArgMAS)

∼ represents the strong negation. Overlining will be used
to denote the complement of a literal with respect to strong
negation, i. e., it isp =∼p and∼p = p for a ground atomp.
A literal h ∈ L is also called afact.

The set of rules is divided into strict rules, i. e., rules en-
coding strict consequences, and defeasible rules which de-
rive uncertain or defeasible conclusions. Astrict rule is an
ordered pairh← B, whereh ∈ L andB ⊆ L. A defeasible
rule is an ordered pairh —< B, whereh ∈ L andB ⊆ L.
A defeasible rule is used to describe tentative knowledge as
in “birds fly”. We use the functionsbody/1 andhead/1 to
refer to the head resp. body of a defeasible or strict rule.
Strict and defeasible rules are ground. However, following
the usual convention (Lifschitz 1996), some examples will
use “schematic rules” with variables (denoted with an ini-
tial uppercase letter). LetDEFX resp.STRX be the set of
all defeasible resp. strict rules, that can be constructed with
literals fromX ⊆ L. We will omit the subscripts when re-
ferring to the whole set of literalsL, e. g. we writeDEF for
DEFL.

Using facts, strict and defeasible rules, one is able to de-
rive additional beliefs as in other rule-based systems. Let
X ⊆ L∪STR∪DEF be a set of facts, strict rules, defeasible
rules, and let furthermoreh ∈ L. A (defeasible) derivation
of h from X , denotedX |∼ h, consists of a finite sequence
h1, . . . , hn = h of literals (hi ∈ L) such thathi is a fact
(hi ∈ X) or there is a strict or defeasible rule inX with
headhi and bodyb1, . . . , bk, where everybl (1 ≤ l ≤ k) is
an elementhj with j < i. If the derivation of a literalh only
uses strict rules, the derivation is called astrict derivation.
A setX is contradictory, denotedX |∼ ⊥, iff there exist de-
feasible derivations of two complementary literals fromX .
In difference toDeLP, the framework ofArgMAS divides
the strict and defeasible knowledge into a global belief base
and several local belief bases which constitute the individual
beliefs of each agent.

Definition 1 (Belief bases). A global belief baseΠ ⊆ L ∪
STR is a non-contradictory set of strict rules and facts. A set
of defeasible rules∆ ⊆ DEF is called alocal belief base.

Given a set of agentsA = {A1, . . . , An} every agentAi

maintains a local belief base∆i (1 ≤ i ≤ n) which repre-
sents his own belief.

Declarative Programming Paradigms and Systems for NMR NMR-2008

180

Example 1 ((Garcı́a & Simari 2004), example 2.1). Let a
global belief baseΠ and a local belief base∆ be given by

Π =

chicken(tina)
scared(tina)
penguin(tweety)
bird(X) ← chicken(X)
bird(X) ← penguin(X)
∼flies(X) ← penguin(X)

,

∆ =

flies(X) —< bird(X)
∼flies(X) —< chicken(X)
flies(X) —< chicken(X), scared(X)
nests in trees(X) —< flies(X)

.

The global belief baseΠ contains the facts, that Tina is a
scared chicken and that Tweety is penguin. The strict rules
state that all chickens and all penguins are birds, and pen-
guins cannot fly. The defeasible rules of the local belief base
∆ express that birds normally fly, chickens normally do not
fly (except when they are scared) and something that flies
normally nests in trees.

As facts and strict rules describe strict knowledge, it is rea-
sonable to assumeΠ to be non-contradictory, i. e., there are
no derivations of complementary literals fromΠ only. But
when considering several (or just one) local belief bases
∆1, . . . ,∆n of other agents, which may have different be-
liefs, thenΠ ∪∆1 ∪ . . . ∪∆n can be contradictory.

Definition 2 (Argument, Subargument). Let h ∈ L be a
literal and letΠ resp.∆ be a global resp. local belief base.
〈A, h〉 is anargumentfor h, iff

• A ⊆ ∆,
• there exists a defeasible derivation ofh from Π ∪ A,
• the setΠ ∪ A is non-contradictory, and
• A is minimal with respect to set inclusion.

The literalh will be calledconclusionand the setA will be
calledsupportof the argument〈A, h〉. An argument〈B, q〉
is a subargumentof an argument〈A, h〉, iff B ⊆ A. Let
ARGΠ,∆ be the set of all arguments that can be built fromΠ
and∆.

Two literalsh andh1 disagreeregarding a global belief base
Π, iff the setΠ ∪ {h, h1} is contradictory. Two comple-
mentary literalsp und∼p disagree trivially, because for ev-
ery Π the setΠ ∪ {p,∼p} is contradictory. But two liter-
als which are not contradictory, can disagree as well. For
Π = {(∼h ← b), (h ← a)} the literalsa andb disagree,
becauseΠ ∪ {a, b} is contradictory.

We call an argument〈A1, h1〉 a counterargumentto an
argument〈A2, h2〉 at a literalh, iff there is a subargument
〈A, h〉 of 〈A2, h2〉 such thath andh1 disagree.

In order to deal with counterarguments to other argu-
ments, a central aspect of defeasible argumentation becomes
a formal comparison criterion among arguments. A possible
preference relation among arguments isGeneralized Speci-
ficity (Stolzenburget al. 2003). According to this criterion
an argument is preferred to another argument, iff the for-
mer one is morespecificthan the latter, i. e., (informally)
iff the former one uses more facts or less rules. For exam-
ple, 〈{c —< a, b}, c〉 is more specific than〈{∼c —< a},∼c〉.

For a formal definition and and desirable properties of pref-
erence criterions in general see (Stolzenburget al. 2003;
Garcı́a & Simari 2004). For the rest of this paper we use≻
to denote an arbitrary but fixed preference criterion among
arguments. The preference criterion is needed to decide
whether an argument defeats another or not, as disagreement
does not imply preference.

Definition 3 (Defeater). An argument〈A1, h1〉 is a de-
featerof an argument〈A2, h2〉, iff there is a subargument
〈A, h〉 of 〈A2, h2〉 such that〈A1, h1〉 is a counterargument
of 〈A2, h2〉 at literalh and either〈A1, h1〉 ≻ 〈A, h〉 (proper
defeat) or 〈A1, h1〉 ⊁ 〈A, h〉 and〈A, h〉 ⊁ 〈A1, h1〉 (block-
ing defeat).

When considering sequences of arguments, the definition of
defeat is not sufficient to describe a conclusive argumenta-
tion line. Defeat only takes an argument and its counterar-
gument into consideration, but disregards preceeding argu-
ments. But we expect also properties likenon-circularityor
concordancefrom an argumentation sequence. See (Garcı́a
& Simari 2004) for a more detailed description of acceptable
argumentation lines.

Definition 4 (Acceptable Argumentation Line). Let Π be a
global belief base. LetΛ = [〈A1, h1〉, . . . , 〈Am, hm〉] be a
sequence of some arguments.Λ is calledacceptable argu-
mentation line, iff

1. Λ is a finite sequence,
2. every argument〈Ai, hi〉 with i > 1 is a defeater of its

predecessor〈Ai−1, hi−1〉 and if 〈Ai, hi〉 is a blocking
defeater of〈Ai−1, hi−1〉 and 〈Ai+1, hi+1〉 exists, then
〈Ai+1, hi+1〉 is a proper defeater of〈Ai, hi〉,

3. Π ∪ A1 ∪ A3 ∪ . . . is non-contradictory (concordance of
supporting arguments),

4. Π ∪ A2 ∪ A4 ∪ . . . is non-contradictory (concordance of
interfering arguments), and

5. no argument〈Ak, hk〉 is a subargument of an argument
〈Ai, hi〉 with i < k.

Let SEQ denote the set of all sequences of arguments that
can be built using rules fromDEF, STR and facts fromL.

Let + denote the concatenation of argumentation lines and
arguments, e. g.[〈A1, h1〉, . . . , 〈An, hn〉]+〈B, h〉 stands for
[〈A1, h1〉, . . . , 〈An, hn〉, 〈B, h〉].

In DeLP a literalh is warranted, if there is an argument
〈A, h〉 which is non-defeated in the end. To decide whether
〈A, h〉 is defeated or not, every acceptable argumentation
line starting with〈A, h〉 has to be considered.

Definition 5 (Dialectical Tree). LetΠ be a global belief base
and∆1, . . . ,∆n be local belief bases. Let〈A0, h0〉 be an
argument. Adialectical treefor 〈A0, h0〉, denotedT〈A0,h0〉,
is defined as follows.

1. The root ofT is 〈A0, h0〉.
2. Let 〈An, hn〉 be a node in T and let Λ =

[〈A0, h0〉, . . . , 〈An, hn〉] be the sequence of nodes from
the root to〈An, hn〉. Let 〈B1, q1〉, . . . , 〈Bk, qk〉 be the
defeaters of〈An, hn〉. For every defeater〈Bi, qi〉 with
1 ≤ i ≤ k such that the argumentation lineΛ′ =

Declarative Programming Paradigms and Systems for NMR NMR-2008

181

[〈A0, h0〉, . . . , 〈An, hn〉, 〈Bi, qi〉] is acceptable, the node
〈An, hn〉 has a child〈Bi, qi〉. If there is no such〈Bi, qi〉,
the node〈An, hn〉 is a leaf.

LetDIA denote the set of all dialectical trees with arguments
that can be built using rules fromDEF, STR and facts from
L.

In order to decide whether the argument at the root of a
given dialectical tree is defeated or not, it is necessary to
perform abottom-up-analysis of the tree. Every leaf of the
tree is marked “undefeated” and every inner node is marked
“defeated”, if it has at least one child node marked “unde-
feated”. Otherwise it is marked “undefeated”. LetT ∗

〈A,h〉

denote the marked dialectical tree ofT〈A,h〉.
We call a literalh warranted, iff there is an argument
〈A, h〉 for h such that the root of the marked dialectical tree
T ∗
〈A,h〉 is marked “undefeated”. Then〈A, h〉 is awarrant for
h. Observe that, if a literalh is a fact or has a strict deriva-
tion from a the global belief baseΠ alone, thenh is also
warranted as there are no counterarguments for〈∅, h〉.

Formal Description of the Distributed Framework
We now describe the components of the distributed frame-
work, namely the moderator and the agents, using a func-
tional description of their intended behaviour. As the frame-
work of ArgMAS is flexible, many different definitions of
the functions to be presented can be thought of. But we re-
strain them on the notions ofDeLP as described above, so
we use the subscript “D” to denote theDeLP specific imple-
mentation.

When the moderator receives arguments from the agents,
he builds up several dialectical trees and finally he has to
evaluate them using the bottom-up evaluation method de-
scribed above.

Definition 6 (Analysis functionχD). The analysis func-
tion χD is a functionχD : DIA → {0, 1} such that for
every dialectical treeυ ∈ DIA it holds χD(υ) = 1 iff
the root argument ofυ is undefeated.

Furthermore the evaluation of dialectical trees makes only
sense, if the tree was built up according to the definition of
an acceptable argumentation line. Hence, the moderator and
the agents as well, have to check whether new arguments are
valid in the current argumentation line.

Definition 7 (Acceptance functionηD,≻). For a given pref-
erence relation≻ among arguments, theacceptance function
ηD,≻ is a functionηD,≻ : SEQ → {0, 1} such that for ev-
ery argument sequenceΛ ∈ SEQ it holdsηD,≻(Λ) = 1 iff
Λ is acceptable according to Definition 4.

It is possible to assume different acceptance functions for
different agents according to different definitions of an
acceptable argumentation line (Thimm & Kern-Isberner
2008b). But in our multi agent system, we assumeηD,≻

to be fixed and the same for the moderator and all agents by
convention.

At the end of the argumentation process for a queryh,
the agents have produced a set of dialectical trees with root
arguments forh orh, respectively. As we have to distinguish

several different cases, the moderator has to decide, whether
the queryh is warranted, the negation ofh is warranted, or
none of them are warranted in the framework. LetP(S)
denote the power set of a setS.

Definition 8 (Decision function µD). The deci-
sion function µD is a function µD : P(DIA) →

{YES,NO,UNDECIDED,UNKNOWN}. LetQṗ ⊆ DIA
such that all root arguments of dialectical trees inQṗ are
arguments forp or for p, thenµD is defined as

1. µD(Qṗ) = YES, if there is a dialectical treeυ ∈ Qṗ s. t.
the root ofυ is an argument forp andχD(υ) = 1.

2. µD(Qṗ) = NO, if there is a dialectical treeυ ∈ Qṗ s. t.
the root ofυ is an argument forp andχD(υ) = 1.

3. µD(Qṗ) = UNDECIDED, if χD(υ) = 0 for all υ ∈ Qṗ.

4. µD(Qṗ) = UNKNOWN, if p is not in the language (p /∈
L).

The functionµD is well-defined, as it cannot be the case that
both conditions 1. and 2. are simultaneously fulfilled, see
for example (Thimm & Kern-Isberner 2008c).

The above functions are sufficient to define the moderator
of the framework.

Definition 9 (Moderator). For a given preference relation≻
among arguments, themoderatoris a tuple(µD, χD, ηD,≻).

The agents of the framework provide two functionalities.
First, they propose initial arguments for a given literal (or
its negation) submitted by the moderator of the framework,
which will be roots of the dialectical trees to be constructed.
For a given queryh it may be necessary to examine both, all
dialectical trees with a root argument forh and all dialec-
tical trees with a root argument forh, as a query forh can
only be answered with NO if there is a warrant forh. Sec-
ond, the agents propose counterarguments to arguments of
other agents1 that are valid in the given argumentation line.
An agent is not obliged to return all his valid arguments for
a given query or all his counterarguments for a given argu-
ment. Therefore, it is possible to model different kinds of
argumentation strategies given different instantiations of the
following argument functions.

Definition 10 (Root argument function). Let Π be a global
belief base and let∆ be a local belief base. Aroot ar-
gument functionϕΠ,∆ relative toΠ and ∆ is a function
ϕΠ,∆ : L → P(ARGΠ,∆) such that for every literalh ∈ L
the setϕΠ,∆(h) is a set of arguments forh or for h fromΠ
and∆.

Definition 11 (Counterargument function). Let Π be a
global belief base and let∆ be a local belief base. Acoun-
terargument functionψΠ,∆ relative toΠ and∆ is a function
ψΠ,∆ : SEQ → P(ARGΠ,∆) such that for every argumen-
tation sequenceΛ ∈ SEQ the setψΠ,∆(Λ) is a set of at-
tacks fromΠ and∆ on the last argument ofΛ and for every
〈B, h〉 ∈ ψΠ,∆(Λ) it holds thatηD,≻(Λ + 〈B, h〉) = 1.

1Furthermore the agents can possibly propose counterargu-
ments to their own arguments, but here we will not consider this
case explicitly.

Declarative Programming Paradigms and Systems for NMR NMR-2008

182

Here we assume that the root argument and counterargument
functions of all agents are the same and especiallycomplete,
i. e, they return all possible arguments for the given situation
and do not omit one.

Given the above definitions an agent of the framework is
defined as follows.

Definition 12 (Agent). Let Π be a global belief base. An
agentrelative toΠ is a tuple(∆, ϕΠ,∆, ψΠ,∆) with a local
belief base∆ relative toΠ, a root argument functionϕΠ,∆

and a counterargument functionψΠ,∆.

Finally, the definition of an argumentation-basedmulti agent
system can be given as follows.

Definition 13 (Argumentation-based multi agent system).
An argumentation-based multi agent system(ArgMAS) is a
tuple (M,Π, {A1, . . . , An}) with a moderatorM , a global
belief baseΠ and agentsA1, . . . , An relative toΠ.

Given anArgMAS T and a queryh, the framework pro-
duces an answer toh as follows. First, the moderator of
T asks all agents for initial arguments forh and forh and
starts a dialectical tree with each of them as root arguments.
Then for each of these arguments, the moderator asks every
agent for counterarguments and incorporates them into the
corresponding dialectical trees accordingly. This process is
repeated for every new argument until no more arguments
can be constructed. Eventually the moderator analyses the
resulting dialectical trees and returns the appropriate answer
to the questioner. A dialectical tree built via this process
is called anargumentation product. The answer behaviour
of an ArgMAS is determined by the decision function of
its moderator. For a queryh ∈ L and andArgMAS T the
answerof T onh is µD({υ1, . . . , υn}), whereµD is the de-
cision function of the moderator ofT and{υ1, . . . , υn} is
the set of all argumentation products ofT for h.

We conclude this section with an example that illustrates
the above definitions.

Example 2. Suppose anArgMAS T = (M,Π, {A1, A2})
with two agentsA1, A2. The global belief baseΠ and the
local belief bases∆1 resp.∆2 of the agentsA1 resp.A2 are
given by

Π = {a, b},

∆1 = {(d —< a, c), (c —< b)},

∆2 = {(∼c —< a, b)}.

AssumeGeneralized Specificityas the preference relation
among arguments and letd be the query under considera-
tion. When the moderator passes this query to the agents,
only the root argument function ofA1 returns a non-empty
set of root arguments, namely the set that contains the one
argumentX1 = 〈{(d —< a, c), (c —< b)}, d〉. The moderator
starts the construction of one dialectical tree withX1 as its
root. Then he asks every agent for counterarguments onX1

that are acceptable after the argumentation line[X1]. There
only the counterargument function ofA2 returns the only
possible counterargument〈{(∼c —< a, b)},∼c〉. After that,
no more arguments can be constructed and the final dialec-
tical tree, i. e., the one final argumentation productυ can be
seen in Figure 2. After applying his analysis function, the

〈{(d —< a, c), (c —< b)}, d〉

〈{(∼c —< a, b)},∼c〉

Figure 2: The one argumentation productυ in Example 2.

moderator determines that the root argument ofυ is marked
“defeated” and asυ is the only argumentation product ofT
on d, the answer of the decision function of the moderator
and thus the answer of the system ond is UNDECIDED.

Collaborations
The distributed argumentation framework described above
serves well when modeling scenarios, where the agents are
involved in some kind of a dispute and have opposite views
of the given query, such as a legal dispute, where agents
take the roles of accuser and defender (Thimm 2008). But
the framework fails to model situations, in which the agents
should cooperate in order to reach a common solution, be-
cause they cannot share their beliefs in order to construct
arguments that cannot be constructed by one agent alone.

Example 3. Let T = (M,Π, {A1, A2}) be anArgMAS
with Π = {a, d} and let∆1 resp.∆2 be the local belief
bases ofA1 resp.A2 with

∆1 = {(b —< a), (b —< a, c)} and

∆2 = {(∼b —< a), (c —< d)} .

Given the queryb, T yields two argumentation products

[〈{(b —< a)}, b〉, 〈{(∼b —< a)},∼b〉] and

[〈{(∼b —< a)},∼b〉, 〈{(b —< a)}, b〉] .

As the roots of both argumentation products will be marked
“defeated”, the answer ofT onb is UNDECIDED.

Observe that there is the additional argument
〈{(b —< a, c), (c —< d)}, b〉, that could be constructed,
if both agents share their beliefs. This argument cannot be
defeated by〈{(∼b —< a)},∼b〉, as the first is more specific
than the second, and thus would be a warrant forb. So in
this case, the answer of the system for queryb should be
YES instead of UNDECIDED.

In (Móra, Alferes, & Schroeder 1998) a framework for
cooperating agents in a context very similar to that of an
ArgMAS was introduced. There – in contrast to here –
extended logic programs (Gelfond & Lifschitz 1991) were
used to model an agent’s belief. We follow the ideas of
(Móra, Alferes, & Schroeder 1998) to define the notion of
collaborationand the mechanisms that allow our agents to
cooperate in anArgMAS, but extend their framework ac-
cording to our needs.

We begin by defining acollaborationwhich describes a
coalition of several agents, like a team of lawyers or a po-
litical party. A collaboration describes a set of agents each
obliged to one another to support them with necessary infor-
mation.

Declarative Programming Paradigms and Systems for NMR NMR-2008

183

Definition 14 (Collaboration). Let T =
(M,Π, {A1, . . . , An}) be an ArgMAS. A collabora-
tionC of T is a set of agents withC ⊆ {A1, . . . , An}.

A collaboration is basically a set of agents that form an al-
liance for argument construction. With the use of collabora-
tions, we are able to derive more arguments than in the case
with no collaborations. Observe, that we do not impose any
conditions on collaborations. Although it might be appro-
priate to enforce the agents in a collaboration (for example)
to have non-conflicting beliefs, we do not restrain the above
definition to stay simple in our presentation. Furthermore,
if an agent has conflicting beliefs with its partners in a col-
laboration, this does not affect the conjoint construction of
arguments, since not all rules of each agents have to be in
conflict.

Definition 15 (Collaborated argument). LetT = (M,Π,A)
be anArgMAS andC = {A1, . . . , Al} ⊆ A a collaboration
of T . If ∆1, . . . ,∆l are the local belief bases ofA1, . . . , Al,
then an argument〈A, h〉 is a collaborated argumentof the
collaborationC iff 〈A, h〉 ∈ ARGΠ,∆1∪...∪∆l

, i. e., 〈A, h〉
is an argument regarding the global belief baseΠ with A ⊆
∆1 ∪ . . . ∪∆l.

Example 4. Consider again theArgMAS of example 3.
Suppose agentsA1 andA2 are members of a collaboration
C, i. e.,C = {A1, A2}. Then

〈{(b—<a, c), (c—<d)}, b〉

is a collaborated argument ofC.

We call〈A, h〉 a strict collaborated argument of the collab-
orationC iff it is a collaborated argument ofC and it can
not be constructed by any agent alone, i. e., it isA * ∆ for
every local belief base∆ of an agent inC. For instance,
the argument in example 4 is a strict collaborated argument.
In the upcoming algorithm, we do not intend to generate
only strict collaborated arguments. This means, that the al-
gorithm will also generate arguments, that could have been
generated by an agent alone. A modification of the algo-
rithm to suppress the generation of non-strict collaborated
arguments is straightforward, but loses simplicity and clar-
ity.

We can describe the intended behaviour of the distributed
framework including collaborations by introducing meta
agents, each representing a collaboration, and then subsum-
ing the extended case with collaborations by the simple
framework described in the last section. Without consid-
ering these meta agents, the generation of collaborated argu-
ments must be done completely autonomously by the agents
of a collaboration alone. We do not address this issue in the
present work, but leave it open for future research. For now,
assume thatϕcoll

C
resp.ψcoll

C
is a root argument resp. coun-

terargument function that generates collaborated arguments
of the collaborationC. We will give a formal definition of
these functions and an operational description of their com-
putation in the next subsection.

Definition 16 (Associated meta agent). Let T = (M,Π,A)
be an ArgMAS, C = {A1, . . . , Al} ⊆ A be a col-
laboration of T with ∆1, . . . ,∆l being the local belief

bases of agentsA1, . . . , Al ∈ A and η be an acceptance
function. The agent(∅, ϕcoll

C
, ψcoll

C
, η) is called themeta

agent associated to the collaborationC with functions
ϕcoll

C
: L → P(ARGΠ,∆1∪...∪∆l

) andψcoll

C
: SEQ →

P(ARGΠ,∆1∪...∪∆l
).

Definition 17 (Collaborative ArgMAS). A tuple T =
(M,Π, {A1, . . . , An}, {C1, . . . , Cm}) is a collaborative
ArgMAS if T ′ = (M,Π, {A1, . . . , An, AC1 , . . . , ACm

}) is
anArgMAS withACi

being the meta agent associated to the
collaborationCi (for 1 ≤ i ≤ m).

The above definition does not impose, that an agent cannot
belong to more than one collaboration, but in the following
we only consider the case, whereC1, . . . , Cm are disjoint.

Before turning to the operational aspects of computing
collaborated arguments, we give a small example to illus-
trate collaborations.

Example 5. Let Π = {(h ← a, b), c, d} and two local be-
lief bases∆1,∆2 of two agentsA1, A2 given by

∆1 = {(a —< c), (g —< d)},

∆2 = {(b —< f), (f —< g)}.

Let C = {A1, A2} be a collaboration andAC the corre-
sponding meta agent. When asked for an argument forh the
two agents aloneA1 andA2 can obviously not return any.
But when combing their beliefs, the meta agentAC is able
to generate the argument

〈{(a —< c), (b —< f), (f —< g), (g —< d)}, h〉 ,

which makes also use of the strict ruleh ← a, b.

Generating collaborated arguments
The key idea of computing collaborated arguments is similar
to (Móra, Alferes, & Schroeder 1998) but uses another char-
acterization of apartial argument. While Móra et al. impose
a partial argument to be a partial derivation with no interme-
diate rules missing, we define a partial argument declara-
tively as an argument with some additional facts missing.
For both, a partial argument is some kind of an intermediate
result when constructing an argument in a distributed man-
ner.

Definition 18 (Partial argument). Let Π be a global be-
lief base andR ⊆ DEF a set of defeasible rules. A tuple
〈A, h〉 is apartial argumentfor a literalh regardingΠ and
R, iff A ⊆ R and there is a set of literalsF ⊆ L such
that 〈A, h〉 ∈ ARGΠ∪F,R, i. e., 〈A, h〉 is an argument in
(Π∪F,R). The smallest setsF (regarding set inclusion) sat-
isfying this condition are calledfree sets. The set of all free
sets is denotedfree(〈A, h〉) for a partial argument〈A, h〉.
Let PARΠ,R be the set of all partial arguments for the global
belief baseΠ and a set of defeasible rulesR ⊆ DEF.

Example 6. Let Π = {(h← a), (h← b)}. Then〈∅, h〉 is a
partial argument (regardingDEF), since there is a set of lit-
erals, namely{a}, such that〈∅, h〉 is an argument regarding
Π′ = {(h ← a), (h ← b), a}. The same is true for the set
{b}, so the free sets of〈∅, h〉 regardingΠ are given by

free(〈∅, h〉) = {{a}, {b}} .

Declarative Programming Paradigms and Systems for NMR NMR-2008

184

Example 7. LetΠ = {(h← a, b), b} andA = {(a —< c)}.
Then 〈A, h〉 is a partial argument (regardingDEF), since
{c} is a free set of〈A, h〉 regardingΠ:

free(〈A, h〉) = {{c}}

Observe, that every argument〈A, h〉 is also a partial argu-
ment (withfree(〈A, h〉) = ∅), as well as〈∅, h〉 for anyh.

Our approach to compute collaborated arguments is a top-
down approach that starts with the empty set and iteratively
adds defeasible rules until the given conclusion can be de-
rived. For this purpose we equip every agent with a function
that extends a given partial argument as much as possible.
Definition 19 (Partial argument function). LetΠ be a global
belief base,A be an agent and∆A its local belief base. A
partial argument functionκA for agentA is a functionκA :
PARΠ,DEF → P(PARΠ,DEF) and is defined as

κA(〈A, h〉) = {〈A′, h〉 ∈ PARΠ,A∪∆A
| A

′
⊃ A}

Example 8. Let Π = {(d← e)} be a global belief base and
A be an agent with a local belief base

∆ = {(g —< c, d), (e —< f)} .

Then it is

κA(〈∅, g〉) = {〈A1, g〉, 〈A2, g〉}

with

A1 = {(g —< c, d)},

A2 = {(g —< c, d), (e —< f)}.

Furthermore it isfree(〈A1, g〉) = {{c, d}, {c, e}} and
free(〈A2, g〉) = {{c, f}}

Using the partial argument functions of the agents in a col-
laboration, the associated meta agent is able to compute
the collaborated arguments for a given literalh with Al-
gorithm 1. The algorithmCollaboratedArguments
takes as input a global belief baseΠ, a collaboration of
agents{A1, . . . , Al} and a literalh, and it returns the set of
all collaborated arguments of{A1, . . . , Al} in a backward
chaining manner.

1 CollaboratedArguments(Π,{A1, . . . , Al},h)
2 iArgs := {〈∅, h〉}
3 cArgs := ∅
4 while iArgs 6= ∅

5 remove a tuple 〈A, h〉 from iArgs
6 if free(〈A, h〉) = ∅ then
7 cArgs := cArgs ∪ 〈A, h〉
8 else
9 for i from 1 to l

10 iArgs := iArgs ∪ κAi
(〈A, h〉)

11 return cArgs

Algorithm 1: Construction of collaborated arguments

First, the algorithm initializes the set of partial arguments
iArgs with the trivial partial argument〈∅, h〉 (line 2). As
long as there are partial arguments available, the algorithm
removes one of them fromiArgs and extends it in every
possible way, i. e., by eliminating free literals from any free
set by every agents’ partial argument function. When an
argument is complete, i. e.,free(〈A, h〉) = ∅, the argument
can be added to the result set (line 6,7).

Example 9. Let Π be a global belief base with

Π = {(g ← c), (d← f), a, b}

and letA1, A2 be two agents with local belief bases∆1,∆2,
respectively, given by

∆1 = {(c —< a), (c —< h), (d —< e)} and

∆2 = {(g —< d), (e —< b)} .

Let g be a query and consider the following exemplary
execution of CollaboratedArguments on the call
CollaboratedArguments(Π,{A1, A2},g).

First, the setiArgs is initialized with the partial argu-
mentX1 = 〈∅, g〉. As free(X1) = {{g}, {c}} 6= ∅ the al-
gorithm continues at line 10. There,κA1(X1) is called yield-
ing {X2, X3} as the set of possible extensions toX1 with
X2 = 〈(c —< a), g〉 andX3 = 〈(c —< h), g〉. ThenκA2(X1)
is called yieldingX4 = 〈(g —< d), g〉 as a possible extension
toX1. So back at line 4 we haveiArgs= {X2, X3, X4}.

Let thenX3 be chosen at line 5. Asfree(X3) = {{h}}
the algorithm continues at line 10. Neither agent can ex-
tendX3 because neither has a defeasible rule with headh
nor is there a strict rule with headh, so it is κA1(X3) =
κA2(X3) = ∅. Back at line 4 we haveiArgs= {X2, X4}.

Let thenX2 be chosen at line 5. Asfree(X2) = ∅ the
algorithm continues at line 7 andX2 is added to the result
setcArgs.

Now it is iArgs= {X4} and free(X4) = {{d}}.
Continuing at line 10, κA1(X4) is called yielding
X5 = 〈(g —< d), (d —< e), g〉 and κA2(X4) is called
yielding no further extension toX4. So back at
line 4 we have iArgs= {X5} with free(X5) =
{{e}}. Finally, agentA2 completesX5 yielding X6 =
〈(g —< d), (d —< e), (e —< b), g〉 with free(X6) = ∅.

So,CollaboratedArguments(Π,{A1, A2},g) re-
turns the setcArgs= {X2, X6}.

Using theCollaboratedArguments algorithm we are
now able to define the root argument and counterargument
functions of the associated meta agents.

Definition 20 (Root argument functionϕcoll

C
). Let Π be a

global belief base,C = {A1, . . . , Al} a collaboration with
∆i being the local belief base of agentAi (1 ≤ i ≤ l) and
h a literal. The functionϕcoll

C
: L → P(ARGΠ,∆1∪...∪∆l

) is
defined as

ϕcoll

C
(h) = CollaboratedArguments(Π,C,h) ∪

CollaboratedArguments(Π,C,∼h)

Definition 21 (Counterargument functionψcoll

C
). Let Π be

a global belief base,C C = {A1, . . . , Al} a collaboration
with ∆i being the local belief base of agentAi (1 ≤ i ≤ l)
andh a literal. Letλ be an argumentation sequence. The
functionψcoll

C
: SEQ → P(ARGΠ,∆1∪...∪∆l

) is defined as

ψcoll

C
(λ) = {〈A, h〉 ∈ ARGΠ,∆1∪...∪∆l

| ∃h : 〈A, h〉 ∈

CollaboratedArguments(Π,C,h) ∧

λ+ 〈A, h〉 is acceptable}

Declarative Programming Paradigms and Systems for NMR NMR-2008

185

Example 10. We continue Example 5. So letΠ =
{(h ← a, b), c, d} and two local belief bases∆1,∆2 of two
agentsA1, A2 given by

∆1 = {(a —< c), (g —< d)},

∆2 = {(b —< f), (f —< g)}.

Let there be a collaborationC = {A1, A2} andAC the
corresponding meta agent. Given the queryh, the agent
AC would use his root argument functionϕcoll

C
and thus

the algorithmCollaboratedArguments in order to
generate a root argument for or againsth. In the algo-
rithm CollaboratedArguments for the literal h the
setiArgs is initialized with{〈∅, h〉} with free(〈∅, h〉) =
{{h}, {a, b}}. This means, that the partial argument〈∅, h〉
can be completed by either an argument forh or by argu-
ments for botha andb using the strict rule(h ← a, b). Ob-
serve that there is no possibility to complete〈∅, h〉 without
the use of the strict rule(h ← a, b), as no agent has a de-
feasible rule withh as its head.

Next, suppose, thatAC asks agentA1 to extend
the partial argument〈∅, h〉. As A1 has a defeasi-
ble rule for a, he can extend〈∅, h〉 to 〈A, h〉 with
A = {(a —< c)} and free(〈A, h〉) = {{b}}. Agent
A2 can then extend〈A, h〉 to 〈A′, h〉 with A′ =
{(a —< c), (b —< f), (f —< g)} andfree(〈A′, h〉) = {{g}}
and finally agentA1 can extend 〈A′, h〉 to 〈A′′, h〉
with A′′ = {(a —< c), (b —< f), (f —< g), (g —< d)} and
free(〈A′′, h〉) = ∅.

Observe, that the algorithm Collaborated-
Arguments generates this argument also on other
ways than the described above, e. g. by first using the partial
argument〈(b —< f), h〉 provided byA2.

Soundness and completeness
We will now show, that the algorithmCollaborated-
Arguments is sound and complete. The soundness and
completeness of the root argument functionϕcoll

C
and the

counterargument functionψcoll

C
then follow directly.

We start by showing soundness, i. e., that
every argument 〈A, h〉 that is returned by
CollaboratedArguments(Π,{A1, . . . , An},h)
is indeed a collaborated argument ofC with conclusionh.

Theorem 1(Soundness). LetΠ be a global belief base,C =
{A1, . . . , An} be a collaboration of agentsA1, . . . , An with
local belief bases∆1, . . . ,∆n respectively. Ifh is a literal
and

〈A, h′〉 ∈ CollaboratedArguments(Π,C,h),

thenh = h′ and〈A, h′〉 is a collaborated argument ofC.

Proof. It is clear due to line 7 of Algorithm 1 thath = h′.
So it remains to show, that〈A, h〉 is a collaborated argument
of C, i. e., that〈A, h〉 is an argument of(Π,∆′) with ∆′ =
∆1 ∪ . . . ∪∆n.

1. Clearly it isA ⊆ ∆′ because the partial argument func-
tion of an agentAi (1 ≤ i ≤ n) only adds defeasible rules
to the argument that belong to∆i ⊆ ∆′.

2. 〈A, h〉 defeasibly derivesh, because it isfree(〈A, h〉) =
∅ (line 6 in Algorithm 1).

3. A is non-contradictory, because the partial argument
functions of the agents only return partial arguments
due to definition. A partial argument must be non-
contradictory, as there must be an extension (possibly an
extension by∅ as in the last completion step of a partial ar-
gument) that is an argument and hence non-contradictory.

4. 〈A, h〉 is minimal using the same argumentation as above.

Furthermore our algorithm is complete in the sense, that if
〈A, h〉 is a collaborated argument of a collaborationC with
respect to a global belief baseΠ, then〈A, h〉will be returned
by the algorithmCollaboratedArguments.

Theorem 2 (Completeness). Let Π be a global belief base,
C = {A1, . . . , An} be a collaboration of agentsA1, . . . , An

with local belief bases∆1, . . . ,∆n respectively. If〈A, h〉 is
a collaborated argument ofC then it is

〈A, h〉 ∈ CollaboratedArguments(Π,C,h) .

Proof. We have to show, that〈A, h〉 is added to the set
cArgs at line 7 of Algorithm 1. Ifh can be strictly de-
rived fromΠ, i. e., it isA = ∅, then it isfree(〈A, h〉) = ∅
and〈A, h〉 is added at line 7 of Algorithm 1. Otherwise, as
〈A, h〉 is a collaborated argument ofC, there is a defeasible
rule r ∈ A with head(r) ∈ K for someK ∈ free(〈∅, h〉).
Let r ∈ ∆k for somek ∈ {1, . . . , n}, then agentAk will ex-
tend the partial argument〈∅, h〉 with at least ruler in line 10
of Algorithm 1. Inductively it follows that there is always
an extension of this argument by rules ofA. As 〈A, h〉 is an
argument, it isfree(〈A, h〉) = ∅ and so〈A, h〉 is added to
cArgs in line 7 of Algorithm 1.

Related work and comparison
In (Thimm & Kern-Isberner 2008b) it has been shown, that
the distributed framework without collaborations subsumes
ordinaryDeLP, as every defeasible logic program can be
translated into an equivalent distributed framework with the
same answer behaviour. The other way round is not always
possible, as there are distributed settings, where there is no
equivalent single defeasible logic program that models the
same situation. With the use of collaborations we are now
able to establish an equivalence between a special case of
the distributed framework with collaborations and ordinary
DeLP. For the special case of a collaborativeArgMAS with
one collaboration involving all agents, the answer behaviour
is the same as when considering a defeasible logic program
which is built upon the union of all local belief bases.

Many other proposals exist for introducing argumen-
tative capabilities into distributed systems and especially
negotiation systems, see for example (Kraus 1997; Am-
goud, Dimopolous, & Moraitis 2007; Bench-Capon 2003;
Rueda, Garcia, & Simari 2002; Karunatillakeet al. 2005).

There are especially two other approaches, that have simi-
larities with the approach proposed in this paper. The frame-
work of (Móra, Alferes, & Schroeder 1998; de Almeida &
Alferes 2006) uses extended logic programs to model an

Declarative Programming Paradigms and Systems for NMR NMR-2008

186

agent’s belief and defines a notion of distributed argumen-
tation using these extended logic programs. The framework
uses the argumentation semantics from (Prakken 1997) and
defines a notion of cooperation, that allows the agents to
share their beliefs in order to construct new arguments. As
this framework uses extended logic programs as the underly-
ing representation formalism, it has a declarative semantics
in contrast to the dialectical semantics ofDeLP used here.

Black et al. (Black 2007; Black & Hunter 2007) also use
defeasible logic programming as the underlying representa-
tion formalism to model distributed argumentation. Com-
plementary to the proposal in this paper, the focus of (Black
2007) is on modeling communication protocols and strate-
gies for successful argumentation between agents. They in-
troduce two kinds of inquiry dialogues, one to generate com-
bined arguments and one for the actual argumentation.

Conclusion

Usually, argumentation is considered as a dialectical process
which involves two parties, a proponent and an opponent
who generate arguments in order to evaluate reasons in fa-
vor of or against claims. Argumentation might even reflect
deliberations taking place within one single agent.

In this paper, we study argumentation in distributed sce-
narios in which the pro and con parties consist of several col-
laborating agents, each agent possessing its own subjective
beliefs but sharing strict knowledge with all other agents.
As a proper framework to realize such distributed argumen-
tation, we choose DeLP (Garcı́a & Simari 2004) since it al-
lows a distinction between strict, commonly known world
knowledge, on one side, and subjective and defeasible be-
liefs, on the other. Via collaborations, the agents may pro-
duce more and better arguments as any of them might bring
forward when only using its own belief base. For each col-
laboration, we introduce a meta agent that organizes the gen-
eration of arguments and counterarguments from the rule
reservoir of each agent in a dialogue. As a crucial con-
cept for handling fragments of arguments effectively to build
complete arguments, we definedpartial argumentsby mod-
ifying an idea from (Móra, Alferes, & Schroeder 1998).

For the operational part of our approach, we present an
algorithm to generate collaborated arguments, and prove its
soundness and completeness. Finally, we show that the
results in this paper generalize the approach proposed in
(Thimm & Kern-Isberner 2008a), and compare our work to
related approaches.

As part of our ongoing work, we explore different appli-
cations of our collaborative argumentation framework. One
particularly appealing scenario is to realize negotiations in
a multi-agent system under confidentiality constraints. In
such scenario, each agent tries to hide its subjective beliefs
as well as possible, while at the same time being interested in
making as much information available as necessary to reach
a good negotiation result.

AcknowledgmentsThe authors thank the reviewers for their
very helpful comments to improve the original version of
this paper.

References
Amgoud, L.; Dimopolous, Y.; and Moraitis, P. 2007. A uni-
fied and general framework for argumentation-based nego-
tiation. InProceedings of the 6th International Joint Con-
ference on Autonomous Agents and Multi-Agents Systems,
AAMAS’2007.
Bench-Capon, T. 2003. Persuasion in practical argument
using value based argumentation frameworks.Journal of
Logic and Computation13(3):429–448.
Besnard, P., and Hunter, A. 2000. Towards a logic-based
theory of argumentation. InProc. of the 17th American
Nat. Conf. on Artif. Intelligence (AAAI’2000), 411–416.
Black, E., and Hunter, A. 2007. A generative inquiry di-
alogue system. InProceedings of the Sixth International
Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS’07). IEEE Press.
Black, E. 2007. A Generative Framework for
Argumentation-Based Inquiry Dialogues. Ph.D. Disserta-
tion, University College London.
Booth, R. 2002. Social contraction and belief negotia-
tion. In Proceedings of the Eighth Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR
2002), 375–384.
de Almeida, I. C., and Alferes, J. J. 2006. An
argumentation-based negotiation for distributed extended
logic programs. InProceedings of CLIMA VII, 191–210.

Garcı́a, A., and Simari, G. 2004. Defeasible logic program-
ming: An argumentative approach.Theory and Practice of
Logic Programming4(1-2):95–138.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases.New Generation
Computing9:365–385.
Karunatillake, N. C.; Jennings, N. R.; Rahwan, I.; and Nor-
man, T. J. 2005. Argument-based negotiation in a social
context. InAAMAS ’05: Proceedings of the fourth interna-
tional joint conference on Autonomous agents and multia-
gent systems, 1331–1332. New York, NY, USA: ACM.
Kraus, S. 1997. Negotiation and cooperation in multi-agent
environments.Artificial Intelligence94(1-2):79–97.
Lifschitz, V. 1996. Foundations of logic programming.
In Principles of Knowledge Representation. CSLI Publica-
tions. 69–127.
Móra, I. A.; Alferes, J. J.; and Schroeder, M. 1998. Argu-
mentation and cooperation for distributed extended logic
programs. InNonmonotonic Reasoning Workshop’98.
Parsons, S.; Sierra, C.; and Jennings, N. 1998. Agents
that reason and negotiate by arguing.Journal of Logic and
Computation8(3):261–292.
Prakken, H., and Vreeswijk, G. 2002. Logical systems for
defeasible argumentation. In Gabbay, D., and Guenthner,
F., eds.,Handbook of Philosophical Logic, volume 4. Dor-
drecht: Kluwer Academic Publishers, 2 edition. 219–318.
Prakken, H. 1997. Dialectical proof theory for defeasi-
ble argumentation with defeasible priorities (preliminary
report). InModelAge Workshop, 202–215.

Declarative Programming Paradigms and Systems for NMR NMR-2008

187

Rahwan, I., and Amgoud, L. 2006. An argumentation-
based approach for practical reasoning. In Weiss, G., and
Stone, P., eds.,5th International Joint Conference on Au-
tonomous Agents and Multi Agent Systems, AAMAS’2006,
347–354.
Rueda, S. V.; Garcia, A.; and Simari, G. R. 2002.
Argument-based negotiation among BDI agents.Journal
of Computer Science and Technology2(7).
Stolzenburg, F.; Garcı́a, A.; Chesnevar, C. I.; and Simari,
G. 2003. Computing generalized specificity.Journal of
Non-Classical Logics13(1):87–113.
Thimm, M., and Kern-Isberner, G. 2008a. A distributed
argumentation framework using defeasible logic program-
ming. In Besnard, P.; Doutre, S.; and Hunter, A., eds.,Pro-
ceedings of the 2nd International Conference on Computa-
tional Models of Argument (COMMA’08), number 172 in
Frontiers in Artificial Intelligence and Applications, 381–
392. Toulouse, France: IOS Press.
Thimm, M., and Kern-Isberner, G. 2008b. A distributed
argumentation framework using defeasible logic program-
ming (extended version). Technical report, Technische
Universität Dortmund.
Thimm, M., and Kern-Isberner, G. 2008c. On the relation-
ship of defeasible argumentation and answer set program-
ming. In Besnard, P.; Doutre, S.; and Hunter, A., eds.,Pro-
ceedings of the 2nd International Conference on Computa-
tional Models of Argument (COMMA’08), number 172 in
Frontiers in Artificial Intelligence and Applications, 393–
404. Toulouse, France: IOS Press.
Thimm, M. 2008. Verteilte logikbasierte Argumenta-
tion: Konzeption, Implementierung und Anwendung im
Rechtswesen. VDM Verlag Dr. Müller.

Declarative Programming Paradigms and Systems for NMR NMR-2008

188

GIDL: A Grounder for FO +

Johan Wittocx∗ and Maarten Mari ën and Marc Denecker
Department of Computer Science, K.U. Leuven, Belgium

{johan,maartenm,marcd}@cs.kuleuven.be

Abstract

In this paper, we present GIDL, a grounder for FO+. FO+

is a very expressive extension of first-order logic with sev-
eral constructs such as inductive definitions, aggregates and
arithmetic. We describe the input and output language of
GIDL, and provide details about its architecture. In partic-
ular, the core grounding algorithm implemented in GIDL is
presented. We compare GIDL with other FO+ grounders and
with grounders for Answer Set Programming.

Introduction and Motivation
The ambition ofdeclarative problem solvingis, in a nutshell,
that a human expert represents his knowledge as a precise
logic specification in terms of a vocabulary formalizing rele-
vant objects and concepts of the problem domain, and solves
computational tasks within this domain by applying suitable
forms of logical inference on the logic specification. The
success of a declarative problem solving framework depends
on three main factors: the quality of the logic as a specifica-
tion language, the flexibility of the logical inference to solve
a broad class of computational problems, and the availability
of efficient solvers.

An important and flexible logical inference task is finite
(Herbrand) model generation. Indeed, in many real-life
computational problems, one searches for objects of a com-
plex nature, e.g., plans, schedules, assignments, etc. Such
objects are often represented as (finite) structures. Model
generation serves to explicitly construct such a structure,
given an implicit description of it by means of a logic the-
ory. The idea of a declarative problem solving framework
based on computing “solutions” as the models of a theory
was presented for the first time in (Marek & Truszczyński
1998) in the context of Answer Set Programming (ASP).
Earlier, SAT-solvers had been used in this spirit, for example
in Kautz and Selman’s blackbox approach to planning prob-
lems (Kautz & Selman 1996). And, as recently pointed out
in (Mitchell & Ternovska 2008), problem solving in Con-
straint Programming (CP) systems often amounts to com-
puting models of first-order logic (FO) specifications.

In (Mitchell & Ternovska 2005), a declarative framework
based onmodel expansion(MX) was presented. MX for a

∗Research assistant of theFonds voor Wetenschappelijk Onder-
zoek - Vlaanderen(FWO Vlaanderen)

logicL, denoted MX(L), extends model generation: it takes
as input not only anL-theoryT over a vocabularyΣ and
finite domainD, but also a structureIσ with domainD, in-
terpreting a subvocabularyσ ⊆ Σ. It searches to expandIσ
into aΣ-model ofT . The input interpretationIσ presents a
convenient way to storedataof a problem.

From a computational point of view, an interesting aspect
of finite model generation and MX is that its complexity re-
mains in NP for every logic for which the model checking
problem is in P. This is the case for, e.g., first-order logic
(FO) and many extensions of it, which are languages par ex-
cellence for describing many real-life computational prob-
lems. In this paper, we consider MX for such a logic, namely
full first-order logic extended with aggregates, inductive def-
initions, arithmetic, partial functions and ordered sorts. We
denote this logic by FO+. Clearly, FO+ is an expressive lan-
guage, convenient for modelling a broad class of domains.

An important result in (Mitchell & Ternovska 2005) states
that in the context of MX, FO is sufficient to solve all prob-
lems in NP. More precisely, for every NP decision problem
on finiteσ-structures, there exists a vocabularyΣ ⊇ σ and
a theoryT overΣ such that aσ-structureIσ is accepted iff
there exists a model ofT expandingIσ. Hence, the class of
problems that can berepresentedin MX(FO+) and MX(FO)
is exactly the same. In practice however, new language
primitives, such as the ones in FO+, may seriously ease
the modelling task and enlarge the class of problems that
can besolvedby practical implementations. As an exam-
ple, consider the concept ofreachability in a graph, which
is often needed to model, e.g., planning or scheduling prob-
lems. This concept can be expressed in MX(FO), but not
in a simple and natural manner: it requires a non-trivial en-
coding of an iterative fixpoint construction in FO. To allow
for a direct, natural representation, one can consider MX for
FO(ID), an extension of FO withinductive definitions(De-
necker 2000). Besides making the modelling task easier, the
resulting MX problem can be solved more efficiently, at least
by the current generation of solvers. A similar argument ap-
plies for other language primitives, such as aggregates and
arithmetic.

Currently, most model generation systems, and hence also
MX solvers, consist of two components: agrounderand a
propositional solver. The grounder transforms the input to
an equivalent propositional theory, whose models are then

Declarative Programming Paradigms and Systems for NMR NMR-2008

189

computed by the propositional solver. Several grounders
for (fragments of) MX(FO+) are being developed. MX-
IDL (Mariën, Wittocx, & Denecker 2006), the first im-
plemented MX(FO(ID)) grounder, works by translating its
input into an equivalent normal logic program, according
to the transformation described in (Mariën, Gilis, & De-
necker 2004), and then calls a (slightly adapted) grounder
for ASP. MXIDL can handle full many-sorted FO(ID), ex-
tended with arithmetic. The first native grounding algorithm
for MX(FO(ID)) was described in (Pattersonet al. 2007),
and partially implemented in theMXG system (Mitchellet
al. 2006). MXG allows function-free FO, cardinality aggre-
gates and a very restricted form of inductive definitions as
input.

In this paper, we present GIDL, a new MX grounder,
designed to handle a very expressive input language.
It is tightly coupled with the propositional solvers
M IDL (Mariën, Wittocx, & Denecker 2007) and MIN-
ISAT(ID) (Mariën et al. 2008), developed in our group.
GIDL’s input language is full FO+: full order-sorted
FO(ID), extended with cardinality, sum and product aggre-
gates, partial functions and arithmetic. We present this input
language in detail and describe GIDL’s architecture. In par-
ticular, we present the core grounding algorithm, which is
different from the one inMXG. We compare GIDL to MX-
IDL and MXG, showing that it is currently the fastest MX
grounder. We also compare GIDL to grounders for ASP and
to PSGRND (Eastet al. 2006), a grounder for the logic of
propositional schemata (East & Truszczynski 2006a).

Preliminaries
In this section, we present many-sorted FO and FO(ID)
and formally define the concepts of model expansion and
grounding. We assume the reader is familiar with standard
FO.

Many-Sorted First-Order Logic with Equality
A vocabularyΣ consists of a setΣS of sorts, and of vari-
ables, constant, predicate and function symbols. Variables
and constant symbols are denoted by lowercase letters, pred-
icate and function symbols by uppercase letters. Sets and
tuples of variables are denoted byx, y, Each variablex
and constant symbolc has an associated sorts(x), respec-
tively s(c) ∈ ΣS , each predicate symbolP with arity n an
associated tuple of sortss(P) ∈ Σn

S , and each function sym-
bol F with arity n an associated tuples(F) ∈ Σn+1

S .
A termover a vocabularyΣ is inductively defined as fol-

lows:

– A variablex of Σ is a term of sorts(x).

– A constantc of Σ is a term of sorts(c).

– If F is a function symbol of Σ with s(F) =
(s1, . . . , sn, sn+1), andt1, . . . , tn are terms overΣ of sort
respectivelys1, . . . , sn, thenF (t1, . . . , tn) is a term of
sortsn+1.

The sort of a termt is denoted bys(t). A (well-sorted) FO
formula overΣ is inductively defined by:

– If P is a predicate symbol withs(P) = (s1, . . . , sn) and
t1, . . . , tn are terms of sort respectivelys1, . . . , sn, then
P (t1, . . . , t1) is a formula.

– If t1 andt2 are two terms of the same sort, thent1 = t2 is
a formula.

– If ϕ andψ are formulas andx is a variable, then¬ϕ,ϕ∧ψ,
ϕ ∨ ψ, ∃x ϕ and∀x ϕ are formulas.

An atomis a formula of the formP (t) or t1 = t2. A literal is
an atom or the negation of an atom. An occurrence of a for-
mulaϕ as subformula in a formulaψ is positive(negative)
if it occurs in the scope of an even (odd) number of nega-
tions. For a formulaϕ, we often writeϕ[x] to indicate that
x are its free variables. The formulaϕ[x/c] is the formula
obtained by replacing inϕ all free occurrences of the vari-
ablex by the constant symbolc. This notation is extended to
tuples of variables and constant symbols of the same length.
A sentenceis a formula without free variables.

A Σ-interpretationI consists of

– a domainsI for each sorts ∈ Σ;

– a domain elementxI ∈ sI for each variablexwith s(x) =
s;

– a domain elementcI ∈ sI for each constantc with s(c) =
s;

– a relationP I ∈ sI
1 × . . . × sI

n for each predicate symbol
P with s(P) = (s1, . . . , sn);

– a functionF I : sI
1 × . . . × sI

n → sI
n+1 for each function

symbolF with s(F) = (s1, . . . , sn+1).
A Σ-structureis an interpretation of only the sorts, constant,
relation and function symbols ofΣ. The restriction of aΣ-
interpretationI to a vocabularyσ ⊆ Σ is denoted byI|σ.
For a variablex and domain elementd, I[x/d] is the inter-
pretation that assignsd tox and corresponds toI on all other
symbols. This notation is extended to variables and domain
elements of the same length.

The valuetI of a termt in an interpretationI, and the sat-
isfaction relation|= are defined as usual (see, e.g., (Enderton
1972)).

Inductive Definitions and FO(ID)
FO(ID) (Denecker 2000) is an extension of FO with induc-
tive definitions. It can be viewed as an integration of FO
with logic programming.

A definitionover a vocabularyΣ is a finite set of rules of
the form

∀x (P (t)← ϕ[y]),
whereϕ is an FO formula overΣ, y ⊆ x, P is a predicate in
Σ andt a tuple of terms such thatP (t) is well-sorted. Also,
the set of variables occurring int is a subset ofx. P (t) is
called theheadof the rule,ϕ the body. The connective←
is calleddefinitional implicationand is to be distinguished
from material implication⊃. A predicate appearing in the
head of a rule of a definition∆ is called adefinedpredi-
cate of∆, any other predicate symbol and each constant and
function symbol is called anopen symbolof ∆. The set of
open symbols of∆ is denoted byOpen(∆), the set of de-
fined predicates byDef(∆). An occurrence of a formulaϕ

Declarative Programming Paradigms and Systems for NMR NMR-2008

190

in a rule body is positive (negative) if it occurs in the scope
of an odd (even) number of negations.

A Σ-interpretationI is said to satisfy a definition∆ over
Σ, denotedI |= ∆, if I|Def(∆) is the well-founded model
of ∆ extendingI|Open(∆). The definition of well-founded
model can be found in (Van Gelder, Ross, & Schlipf 1991;
Denecker & Ternovska 2004).

An FO(ID) theoryT is a finite set of FO sentences and
definitions. An interpretation is a model ofT iff it satisfies
all sentences and definitions ofT .

Model Expansion
Model expansion for a logicL, abbreviated MX(L), was
first presented as a declarative problem solving paradigm
in (Mitchell & Ternovska 2005). For representation theo-
rems, like thecapturing NPproperty mentioned in the in-
troduction, and for a comparison with other paradigms, we
refer the reader to that paper.

Definition 1 (MX(L)). Given anL theory over a vocabulary
Σ, a vocabularyσ ⊆ Σ with the same set of sorts, and a
finite σ-structureIσ, the model expansion search problem
for input 〈Σ, T, σ, Iσ〉 is the problem of finding modelsM
of T that expandIσ, i.e.,M |σ = Iσ. TheMX(L) decision
problem is the problem of deciding whether such a model
exists.

The vocabularyσ is called theinstance vocabularyof the
problem, the vocabularyΣ\σ theexpansion vocabulary.Iσ
is called theinstance structure.

Observe that ifT is a theory over a vocabularyΣ contain-
ing no function symbols, Herbrand model generation forT
can be simulated by MX. Indeed, letσ be the set of constants
in Σ, the domain ofIσ the Herbrand universe andcIσ = c
for every constantc ∈ σ.

On the other hand, whenσ = Σ solving the MX decision
problem boils down to model checking.

The following are two examples of MX(FO(ID)) repre-
sentations of well-known computational problems.

Example 1 (Graph Colouring). The instance vocabulary
consists of two sorts,V tx andColour, representing respec-
tively the vertices of the given graph and the colours. It also
contains a predicate symbolEdge with sort (V tx, V tx),
representing the edges of the given graph. The expansion
vocabulary consists of a single function symbolColouring
of sort (V tx,Colour), representing the solution. The
only sentence in the theory is∀v1, v2 (Edge(v1, v2) ⊃
Colouring(v1) 6= Colouring(v2)).

For the instance structureIσ given byV txIσ = {a; b; c},
ColourIσ = {blue; red} and EdgeIσ = {a, b; b, c}, a
sample solution to the MX search problem is the struc-
ture M , expandingIσ with ColouringM (a) = blue,
ColouringM (b) = red andColouringM (c) = blue.

Example 2 (Hamiltonian Path). The instance vocabu-
lary contains a sortV tx, a predicate symbolEdge of sort
(V tx, V tx) and a constantStart of sort V tx, which rep-
resents the first vertex in the path. The expansion vocabu-
lary contains a predicateIn andReached, wheres(In) =
(V tx, V tx) and s(Reached) = V tx. In represents the

edges that are in the path. The theory is given by

∀v1, v2 (In(v1, v2) ⊃ Edge(v1, v2)).
∀v1, v2, v3 (In(v1, v2) ∧ In(v1, v3) ⊃ v2 = v3).
∀v1, v2, v3 (In(v1, v3) ∧ In(v2, v3) ⊃ v1 = v2).
∀v ¬In(v, Start).
∀v Reached(v).{

∀v Reached(v)← v = Start.
∀v Reached(v)← Reached(w) ∧ In(w, v).

}
Grounding
Solving the MX(FO(ID)) search or decision problem for in-
put 〈Σ, T, σ, Iσ〉 can be done by creating an “equivalent”
propositional theoryTg usingT and Iσ and subsequently
calling a model generator (in case of the search problem)
or satisfiability checker (in case of the decision problem)
for the propositional fragment of FO(ID). For solving the
MX(FO(ID)) decision problem, it suffices thatTg is satisfi-
able iff T has a model expandingIσ. For solving the search
problem, a one-to-one correspondence between the models
of Tg and the models ofT expandingIσ is required. Because
GIDL is meant to be a grounder for the search problem, we
consider the latter, stronger type of equivalence in this paper.

We now define grounding formally. Letσ be a subvo-
cabulary ofΣ with the same set of sorts and letIσ be aσ-
structure. Denote byΣIσ the vocabularyΣ, extended with
a new constant symbold for everyd ∈ sIσ , s ∈ ΣS . We
call these new constantsdomain constantsand denote the set
of all domain constants byD(Iσ). For aΣ-structureM ex-
pandingIσ, denote byMD(Iσ) the structure expandingM
to ΣIσ by interpreting everyd ∈ D(Iσ) by the correspond-
ing domain elementd. A formula is inground normal form
(GNF) if it contains no quantifiers and all its atomic subfor-
mulas are of the formP (d1, . . . ,dn), F (d1, . . . ,dn) = d,
c = d ord1 = d2, whereP ,F andc are respectively a pred-
icate, function and constant symbol ofΣ, andd1, . . . ,dn,d
are domain constants of the appropriate sorts. Observe that
a GNF formula is essentially propositional.

A rule is in GNF if its body is in GNF and its head is
of the formP (d1, . . . ,dn), whered1, . . . ,dn are domain
constants.

Definition 2 (Grounding). LetT be a theory overΣ, σ ⊆ Σ
andIσ a σ-structure. Agrounding forT with respect toIσ
is a theoryTg over ΣIσ such that all sentences and rules
occurring inTg are in GNF and for everyΣ-structureM
expandingIσ, M |= T iff MD(Iσ) |= Tg. Tg is called
reducedif it contains no symbols ofσ.

Input and Output Language
In this section, the input and output language of GIDL are
described. The input language is called FO+ and is an exten-
sion of FO(ID) with partial functions, subsorts, arithmetic
and aggregates. The concrete syntax accepted by the sys-
tem is basically anASCII version of the input language as
described below and can be found in the user manual of
the system (Wittocx & Marïen 2008). The manual also de-
scribes the output syntax.

Declarative Programming Paradigms and Systems for NMR NMR-2008

191

Basic Input
The input for GIDL reflects the input of an MX search prob-
lem. I.e., it consists of a declaration of an instance vocab-
ulary σ, a sorted expansion vocabularyΣ \ σ, a theoryT
over Σ and a finiteσ-structure. These four parts are sepa-
rated by different headers and can be placed in different files
if necessary. GIDL supports full FO(ID), i.e.,T can con-
tain arbitrary definitions, the same predicate can be defined
in multiple definitions, terms can be nested arbitrarily deep,
etc.

The variables occurring inT do not have to be declared.
Their associated sort can be specified at the moment they
are used inT . Moreover, GIDL contains a sort inference
mechanism that derives the sort of a variable automatically
if there is one and only one possibility for its sort such that
a well-sorted formula is obtained1.

The declaration of the expansion vocabulary can be split
in a set of auxiliary symbols and a set of symbols whose
interpretation is relevant to the solution of the problem. This
information is passed to the propositional solver, such that
it can report to the user only the interpretation of the latter
symbols in the models it finds.

FO+

We now describe the extensions of FO(ID) included in FO+.

Partial Functions In standard FO and FO(ID), all func-
tions are total. Besides total functions, one can also declare
and usepartial functions in GIDL. When declaring a partial
function, it is possible to specify a domain where it is total.

In general, arbitrary use of partial function symbols cre-
ates an ambiguity problem. E.g., consider the formula
P (F (t))), whereF is a partial function symbol. This for-
mula can be interpreted in two different ways, as illustrated
by the following non-ambiguous rewritings of it:

∃y (F (t) = y ∧ P (y)) (1)

∀y (F (t) = y ⊃ P (y)) (2)

Here, the atomsF (t) = y should be interpreted asGF (t, y),
whereGF denotes the graph ofF . WhenF is total, both
rewritings are equivalent, but this is not the case whenF is
partial. Indeed, for an interpretationI such thatt

I
is not in

the domain ofF I , I 6|= (1), butI |= (2).
A simple solution to this ambiguity problem is to impose

the syntax restriction that a partial function symbolF can
only occur in atoms of the formF (t1, . . . , tn) = tn+1,
wheret1, . . . , tn+1 are terms containing no partial function
symbols. For such formulas, there is no ambiguity prob-
lem. GIDL does not impose this syntax restriction. Instead,
it interprets positive occurrences of atomsP (F (t))) by (2)
and negative occurrences by (1). In other words, it assumes
the interpretation where the truth of the sentences inT is
maximized, while the truth of the rule bodies is minimized.
In case this does not reflect the intended interpretation, a

1Some of the language extensions described below allow for
situations where there is more than one possibility to obtain a well-
sorted formula.

user has to write the sentences and definitions ofT in a non-
ambiguous form.

Partial functions can be declared by the user but are re-
quired also for a logically correct treatment of functions de-
clared over subsorts and of partial arithmetic functions such
as÷ andmod.

Subsorts In the vocabulary declaration part of an input for
GIDL, one can specify that a sorts1 is a direct subsort of at
most one other sorts2. In that case, the domainsIσ

1 of s1 in
the instance structureIσ has to be a subset ofsIσ

2 . The cor-
responding hierarchy of sorts must be a collection of trees.
The root of a tree in the hierarchy is called abase sort. By
base(s), we denote the root of the tree wheres occurs, i.e.,
the base sort aboves.

In a context where subsorts are used, a formula is well
sorted if the following hold:

– for each term F (t1, . . . , tn) where s(F) =
(s1, . . . , sn+1), base(si) = base(s(ti)) for 1 ≤ i ≤ n;

– for each atomP (t1, . . . , tn) wheres(P) = (s1, . . . , sn),
base(si) = base(s(ti)) for 1 ≤ i ≤ n;

– for each atomt1 = tn, base(s(t1)) = base(s(t2)).

A rule with headP (t1, . . . , tn) ands(P) = (s1, . . . , sn) is
well-sorted if its body is well-sorted ands(ti) = s(si) for
1 ≤ i ≤ n.

A function with sort(s1, . . . , sn+1) is treated as a partial
function whenever one of the input sortss1, . . . , sn is not a
base sort. For an interpretationI and an atomP (t1, . . . , tn)
with s(P) = (s1, . . . , sn), we defineI 6|= P (t1, . . . , tn) if
for at least onei, tIi 6∈ sI

i . This fixes the semantics for inputs
with subsort declarations.

Whenever a variablex occurs in two positions with a dif-
ferent sort, e.g inP (x) and inQ(x), wheres(P) 6= s(Q),
GIDL does not automatically derive a sort forx, as this can
lead to unexpected situations. Instead, the user is then forced
to declare the sort of the variable.

Arithmetic Besides the vocabulary specified by the user,
the instance vocabularyσ of a GIDL input implicitly con-
tains a sortint and the arithmetic functions+, −, ·, ÷,
abs(·) andmod. In every instance structure overσ, int is
interpreted by the integersZ = {0, 1,−1, 2,−2, . . .}, + by
addition onZ, − by subtraction,· by multiplication,÷ by
integer division,abs by the absolute value andmod by the
remainder. Note that÷ andmod are partial functions onZ
with domainZ \ {0}. Terms of the formt1 + t2, t1 · t2, etc,
are of sortint.

To ensure that the grounding produced by GIDL is finite,
the use ofint is restricted, both in the vocabulary declara-
tion and the theory. In the input and expansion vocabulary
declaration, a sort can be declared to be a subsort ofint
and a variable may have sortint. On the other hand, predi-
cate or function declarations with sort(. . . , int, . . .) are not
allowed. If in the theory, a variablex of sort int is univer-
sally, respectively existentially quantified, it should occur as
∀x (ϕ ⊃ . . .), respectively∃x (ϕ∧. . .) whereϕ is a formula
for which there exists a finite interval such thatM [x/d] 6|= ϕ
for any modelM of the theory andd outside that interval.

Declarative Programming Paradigms and Systems for NMR NMR-2008

192

We call ϕ a bound for x. GIDL requires that the bounds
have a very simple form. E.g., an atomP (. . . , x, . . .) is a
bound. A formulat1 ≤ x ≤ t2 is a bound ift1, respectively
t2, is a term for which there exists ann1 ∈ Z, resp.n2 ∈ Z
such that for each modelM of the theoryn1 ≤ tM1 , re-
spectivelyn2 ≥ tn2 . Etc. Besides occurrences of bounds
ϕ as ∀x (ϕ ⊃ . . .) or ∃x (ϕ ∧ . . .), GIDL also accepts
syntactically equivalent forms like∀x (. . . ∨ ¬ϕ ∨ . . .) or
∃x (. . . ∧ ϕ ∧ . . .).

Aggregates Aggregates are functions that have a set as ar-
gument. GIDL supports three aggregates: cardinality, sum
and product. Concretely, the following are terms with sort
int in the input language of GIDL: card{y | ϕ[y, z]},
sum{x, y | ϕ[x, y, z]} and prod{x, y | ϕ[x, y, z]}. The
variablesz are free in the aggregate term, whilex andy are
local to the term. The sort ofx must be a subsort ofint.
Given an interpretationI, these terms are interpreted by

– (card{y | ϕ[y, z]})I is the number ofd such that
I[y/d] |= ϕ;

– (sum{x, y | ϕ[x, y, z]})I =
∑

I[x/dx,y/dy]|=ϕ dx;

– (prod{x, y | ϕ[x, y, z]})I =
∏

I[x/dx,y/dy]|=ϕ dx;

Aggregates can be used everywhere in sentences or rule bod-
ies where a term with a subsort ofint can occur. The seman-
tics for definitions containing recursion involving aggregates
is the one presented in (Pelov, Denecker, & Bruynooghe
2005)

Example 3. In a machine scheduling problem, the con-
straint that at each timepointt, the sum of the capacities
c of the machinesm that are not in maintenance must ex-
ceed 100 can be expressed by the sentence∀t (sum{c,m |
Capacity(m) = c ∧ ¬Maintenance(m, t)} ≥ 100).

Output Language
The output language of GIDL is an extension with rules
and aggregates of the CNF format for SAT solvers and is
calledextended CNF(ECNF). It is the input format for the
propositional solvers MIDL (Mariën, Wittocx, & Denecker
2007) and MINI SAT(ID) (Mariënet al. 2008). Details about
the syntax and semantics of the ECNF format is available
at www.cs.kuleuven.be/˜dtai/krr/software.
html.

Translation Information
In an ECNF file, each propositional atom has a number,
but not a name. In order to construct human readable so-
lutions, GIDL also passes atranslation tableto the propo-
sitional solver, defining a mapping from each number that
occurs in its ECNF output to a name. To avoid an exhaus-
tive table mapping each number to its corresponding name,
first all sort names and their domain elements are listed.
Then all predicates with their corresponding sorts are listed,
and are assigned a number. An atomP (d1, d2) then corre-
sponds to the numbernP + (i1 − 1) · |s2|+ (i2 − 1), where
s(P) = (s1, s2), nP is the number assigned toP , d1 the
i1th domain element of sorts1, d2 the i2th domain element
in s2 and|s2| the size of the domain ofs2. The offsetsnP

are chosen such that the numbers associated to atoms of dif-
ferent predicates do not overlap.

True and Arbitrary Atoms
Atoms that do not occur in an ECNF file are standard con-
sidered to be false by solvers. However, it is often desirable
to also leave out the atoms that are discovered to be true in
every model and the ones whose truth value can be arbitrar-
ily chosen. GIDL passes a list of left out true and arbitrary
atoms to the solver.

System Architecture
Given an input〈Σ, T, σ, Iσ〉, GIDL constructs a grounding
for T with respect toIσ in six phases. In this section, a
short description of each of the phases is given. The actual
grounding algorithm (phase 5) is described in more detail in
the next section.

Parser In the first phase, the input〈Σ, T, σ, Iσ〉 is parsed.
The parser of GIDL is implemented usingflex and bison,
which makes it easy to include future extensions of the input
language.

Rewrite and Analyze In this phase,T is transformed into
an internal normal form: negations are pushed inside until
they are directly in front of atoms,⊃ is translated in terms
of ¬ and∨, functions are brought in the formF (x) = y and
then, these atoms are replaced byGF (x, y), whereGF is a
new predicate representing the graph ofF . Constraints are
added to ensure that eachGF is a graph of a function. Also,
all definitions are merged into a single definition∆.

The dependency graph of∆ is constructed and analyzed
to discover which defined predicates do not depend on open
expansion predicates. The interpretation of these predicates
is the same in every model ofT expandingIσ and can effi-
ciently be computed. Also, a good grounding order for the
rules of∆ is computed.

Pre-grounder The pre-grounder calculates the interpreta-
tion of the defined predicates that do not depend on open
expansion predicates or on aggregates by evaluating their
rules. The evaluation algorithm is a generalized version of
the semi-naive technique (Ullman 1988) and can handle re-
cursion over negation. The predicates whose interpretation
is calculated are from then on considered to be part of the in-
stance structureσ. Iσ is extended by assigning the computed
relations to these predicates.

Approximation In this phase, anapproximationfor each
subformula inT is computed, using the anytime algorithm
described in (Wittocx, Mariën, & Denecker 2008). The
computed approximations are used to both reduce ground-
ing size and time.

Formally, an approximation for a formulaϕ[x] is a pair of
formulas(ϕct[y], ϕcf [z]) over σ such thaty ⊆ x, z ⊆ x,
T |= ∀x (ϕct ⊃ ϕ) and T |= ∀x (ϕcf ⊃ ¬ϕ). Intu-
itively, the formulaϕct provides a lower bound on the set
of instancesϕ[x/d] of ϕ that are true in every model ofT .
The grounding algorithm can then safely replace instances
ϕ[x/d] in this lower bound by>, leading to a smaller

Declarative Programming Paradigms and Systems for NMR NMR-2008

193

grounding. Vice versa,ϕcf provides a lower bound on the
set ofϕ[x/d] that are false in every model ofT . Instances
ϕ[x/d] in this lower bound can be replaced by⊥. Observe
that(⊥,⊥) is an approximation for every formula, called the
trivial approximation.

Example 2 (Continued). In the Hamiltonian path
example, (⊥, v2 = Start ∨ ¬Edge(v1, v2)) is an
approximation for the subformulaIn(v1, v2) and
(Edge(v1, v2),¬Edge(v1, v2)) is an approximation
for Edge(v1, v2).

The maximal running time of the approximation algo-
rithm, as well as the maximal size of the derived bounds can
be specified by the user. Experiments in (Wittocx, Mariën, &
Denecker 2008) showed that the default settings work well
in most cases.

In the implementation, the approximations are repre-
sented and simplified using binary decision diagrams for FO
as defined in (Goubault 1995). We extended the simplifica-
tion algorithm of that paper with rules to cope with arith-
metic. Also, parts of approximations that contain no free
variables are evaluated out using the instance structureIσ.
This evaluation is the only part of the approximation algo-
rithm that depends onIσ.

Grounder Using the computed approximations for each
subformula, an ECNF theory, equivalent to the inputT and
Iσ is constructed.

Translate Finally, the translation information and the list
of true and arbitrary atoms is written to the output.

Grounding
The actual grounding component in GIDL accomplishes
two tasks. It instantiates variables by domain elements and
at the same time transforms complex formulas and rules
into the ECNF format by applying the Tseitin transforma-
tion (Tseitin 1968). In this section, we present the ground-
ing algorithm for the FO part of the input. The algorithm for
grounding the rules is similar.

ProcedureGround gets as input a formulaϕ[x] and out-
puts a GNF theory, equivalent to the theory containing the
single sentence

∧
d ϕ[x/d]. I.e., it outputs a grounding for

the sentence∀x ϕ[x]. Here,ϕ is assumed to be in the in-
ternal normal form of GIDL, i.e., the negations are in front
of the atoms and function symbolsF only occur in atoms of
the formF (y) = z. (ϕct, ϕcf) denotes the approximation
of ϕ.

The procedureoutput writes a single ground formula or
rule to the output.

The functiongetLit implements the Tseitin transfor-
mation. It gets as input a formulaϕ[x], outputs a definition
∆ϕ in GNF and returns a literalPϕ ∈ Def(∆ϕ) such that
in every model of∆ϕ, the truth value ofPϕ equals the truth
value of

∨
d ϕ[x/d]. Our actual implementation ofgetLit

involves some bookkeeping to make sure∆ϕ is written only
once, even ifgetLit(ϕ) is called multiple times.

The purpose of line 15 of procedureGround, is to com-
pute all valuesd such that

∨
i ψi[x/d] is not certainly true,

i.e., to compute the answers of the conjunctive formula∧
i ¬(ψi)ct[x] in Iσ. GIDL uses the backjumping algorithm

of (Leone, Perri, & Scarcello 2004). The original algorithm
was designed for computing answers to conjunctions oflit-
eralsbut, since the answers of the formulas¬(ψi)ct[x] can
be easily computed as a table, it is easy to extend the algo-
rithm.

To obtain a grounding of the FO part ofT , Ground is
applied on all sentences ofT .

Procedureground(ϕ)

if ϕcf ≡ > then1

output⊥; return ;2

if ϕct ≡ > then3

output>; return ;4

Let x be the free variables ofϕ;5

switchϕ do6

caseϕ is a literal7

for all d such thatIσ 6|= ϕct[x/d] do8

if Iσ |= ϕcf [x/d] then9

output⊥; return ;10

elseoutputϕ[x/d];11

caseϕ ≡
∧

1≤i≤n ψi12

for 1 ≤ i ≤ n do ground(ψ i)13

caseϕ ≡
∨

1≤i≤n ψi14

for all d such thatIσ 6|=
∨

1≤i≤n(ψi)ct[x/d] do15

V := ∅;16

for 1 ≤ i ≤ n do17

if Iσ 6|= (ψi)cf [x/d] then18

addgetLit(ψ i[x/d]) to V ;19

output
∨

L∈V L;20

caseϕ ≡ ∀y ψ21

ground(ψ);22

caseϕ ≡ ∃y ψ23

for all d such thatIσ 6|= ϕct[x/d] do24

if Iσ[x/d] |= ϕcf then25

output⊥; return ;26

else27

V := ∅;28

for all d′ such that29

Iσ 6|= ψcf [x/d][y/d′] do
if Iσ 6|= ψct[x/d][y/d′] then30

addgetLit(ψ [x/d][y/d′]) to31

V ;

output
∨

L∈V L;32

Complexity of Ground
When all subformulas of a formulaϕ are assigned the triv-
ial approximation(⊥,⊥), applyingGround to ϕ consists

Declarative Programming Paradigms and Systems for NMR NMR-2008

194

Function getLit(ϕ)

Let x be the free variables ofϕ;1

switchϕ do2

caseϕ is a literal3

V := ∅;4

for all d such thatIσ 6|= ϕcf [x/d] do5

if Iσ 6|= ϕct[x/d] then6

addϕ[x/d] to V ;7

if V is a singleton{P} then return P ;8

else9

Let P bea new propositional atom;10

outputP ←
∨

L∈V L;11

return P ;12

caseϕ ≡ ∃y ψ13

return getLit(ψ);14

... // Other cases15

of simply substituting the variables ofϕ by all possible do-
main constants of the appropriate sorts. Hence in this case,
computingGround(ϕ) takes timeO(

∏
s∈ΣS

|s|ns), where
ns is the number of variables of sorts in ϕ and|s| the size
of the domain ofsIσ of s.

In the case arbitrary approximations are assigned to the
subformulas ofϕ, the result ofGround(ϕ) will become
smaller. On the other hand, the worst-case time complex-
ity of computingGround(ϕ) is thenO(

∏
s∈ΣS

|s|ns+ds),
whereds is the number of variables of sorts that occur
non-free in an approximation of a subformula ofϕ. This
shows that grounding in the presence of non-trivial approx-
imations may increase the complexity. In practice however,
the approximations computed by the algorithm of (Wittocx,
Mariën, & Denecker 2008) almost never slow down ground-
ing. Instead, experiments in that paper show that they often
lead to a dramatic speed-up.

Example 2 (Continued). Let ϕ be the formula¬In(x, y).
If the approximation forϕ is (⊥,⊥), thenGround(ϕ,ϕ)
takes timeO((V txIσ)2). If the approximation is(y =
Start ∨ ¬Edge(x, y),⊥), it takes only timeO(|EdgeIσ |).

Related Work
MXidL
A non-native approach to grounding MX(FO(ID)) consists
of applying the algorithm presented in (Mariën, Gilis, &
Denecker 2004) to transform an MX(FO(ID)) input into an
equivalent normal logic program under the well-founded se-
mantics. Then, a (slightly adapted) grounder for Answer
Set Programming can be used to ground the logic program.
This is the approach taken by MXIDL, the first implemented
MX(FO(ID)) grounder. MXIDL supports full many-sorted
FO(ID) and arithmetic, but no aggregates, subsorts and par-
tial functions. Experiments with MXIDL were reported on
in (Mariën, Wittocx, & Denecker 2006).

MXG

The first native grounding algorithm for MX(FO) and
MX(FO(ID)) was described in (Pattersonet al. 2006;
2007) and works on a table-by-table basis. I.e., to construct
a grounding of a sentenceϕ, it proceeds by taking joins, pro-
jections, complements,. . . of the tables in the instance struc-
ture, ending up with a full grounding ofϕ. The algorithm in
GIDL on the other hand, proceeds on a tuple-by-tuple basis.
For every variable, it tries all the (relevant) substitutions by
domain constants, and it outputs part of the grounding ofϕ
as soon as possible.

An implementation of the grounding algorithm of (Patter-
sonet al. 2006) was reported on in (Mitchellet al. 2006)
and is calledMXG. The MXG system implements only part
of FO(ID). It allows only for definitions that do not depend
on open expansion predicates and that do not involve recur-
sion over negation. It does not support functions, subsorts
or arithmetic.

Psgrnd

PSGRND (East et al. 2006) is a grounder for the ex-
tended logic of propositional schemata (East & Truszczyn-
ski 2006a). This logic is a restricted fragment of function-
free FO, extended with cardinality aggregates. Also, it has
restricted support for inductive definitions: each theory may
contain one definition, and all rule bodies must be conjunc-
tions of atoms.

PSGRND keeps the grounding in memory and performs
unit propagation each time a clause is added to the ground-
ing. As a post-processing step, it does a limited amount of
forward checking on the grounding.

Answer Set Programming

Answer Set Programming (ASP) is a framework for declar-
ative problem solving that is closely related to MX(FO+).
Answer set programs can be transformed into FO+ theories
in a modular way (East & Truszczyński 2006b). Moreover,
thestructureof ASP theories is the same as that of FO+ the-
ories and there are a lot of similarities between the method-
ology of modelling in ASP and in MX(FO+) (Mariën, Gilis,
& Denecker 2004; Marïen, Wittocx, & Denecker 2006).

On the other hand, there are several differences in the in-
put languages for GIDL and ASP systems. E.g., GIDL al-
lows for arbitrary FO+ sentences and definitions, while an
answer set program is basically one big definition, in which
rule bodies are restricted to conjunctions of literals. An FO
sentenceϕ is modelled in ASP by a rule with an empty head
and body¬ϕ, an open predicate can be modelled by defin-
ing it with a choice rule. Finally, the instance structure of
an MX(FO+) problem corresponds to a series of facts in an
answer set program.

ASP systems work by grounding and propositional solv-
ing. Three ASP grounders areLPARSE (Syrjänen 1998),
GrinGo (Gebser, Schaub, & Thiele 2007) and the grounding
component ofDLV (Dell’Armi et al. 2004). The algorithm
in LPARSEworks table-by-table, the algorithms in the other
two grounders tuple-by-tuple.

Declarative Programming Paradigms and Systems for NMR NMR-2008

195

Table 1: Impact of approximation (time)
no approx. 4/4 5/8 6/64

15puzzle 4.89 3.70 3.63 9.00
bounded spanningtree 256.93 10.88 8.41 21.21
clique 1.33 2.36 2.45 ###
blocked n-queens 22.44 3.50 3.51 3.51
algebraic groups 7.20 7.38 7.86 ###
hamiltonian path 21.37 0.04 0.03 0.19
sokoban 0.49 0.24 0.26 0.31
schur numbers 12.49 0.56 1.32 2.52
sudoku 1.00 0.70 1.08 ###

Table 2: Impact of approximation (size)
no approx. 4/4 5/8 6/64

15puzzle 1461007 1219751 1219751 1219375
bounded spanningtree 8857075 2255522 2255522 2255522
clique 353800 353800 353800 ###
blocked n-queens 923822 15822 15822 15822
alg. groups 4001420 3931659 3870081 ###
ham. path 8404074 5701 5701 5701
sokoban 95279 74878 74878 74878
schur numbers 64300 62369 51454 47733
sudoku 319795 178828 109267 ###

Experiments
In this section, we evaluate the impact of the approximation
phase and compare GIDL’s performance to other grounders.

All experiments in this section were run on a C2D 3GHz
machine with 2GB RAM. All times are in seconds and are
averaged over five runs. There was a time-out (###) of 600
seconds for each run. To measure the size of a ground theory,
we counted the number of propositional atoms in it.

When comparing to other grounders, we used the stan-
dard parameters for the approximation phase of GIDL (see
below). The times for GIDL include the time needed for
the pre-grounding and the approximation phase. More de-
tailed information, including the used problem encodings,
is available atwww.cs.kuleuven.be/˜dtai/krr/
software/gidl.html.

Impact of Approximation
Impact of different settings To evaluate the impact of the
approximation algorithm, we ran GIDL with different set-
tings. The resulting grounding times and sizes are shown in
Tables 1 and 2. In these tables, the first number of the set-
ting is the number of times an approximating formula can be
refined. The second number is a measure for the maximum
size of the approximating formulas. Increasing these num-
bers makes the approximation process more expensive and
the computed approximating formulas larger and potentially
more precise. Due to the increased precision of these for-
mulas, the subsequent grounding phase will produce smaller
groundings. This phase may be faster or slower depending
on whether the gain due to the smaller grounding dominates
the cost of evaluating the larger approximating formulas.
The default setting of GIDL is 4/4.

The tables show that the use of approximation yields (of-
ten drastically) better times and sizes, even with few refine-
ments and small formula sizes. Only in two cases, grounding
without approximation is slightly faster. As for the impact of
the size of the parameters, we observe that the most precise

Table 3: Impact of domain atoms
GIDL PSGRND GrinGo LPARSE DLV

Ham. circuit (time) 0.54 0.52 17.41 5.25 21.27
Ham. circuit (size) 1.00 1.00 30.80 26.00 24.76

Table 4: MX(FO+) problems (time)
GIDL MXG MX IDL

25-queens 0.16 0.76 0.93
50-queens 1.72 7.90 22.42
75-queens 8.03 33.39 165.71
algebraic groups (size 8) 0.86 3.11 3.27
algebraic groups (size 10) 3.40 11.65 12.12
algebraic groups (size 12) 10.94 34.96 37.48
graph colouring (64980 nodes, 4 colours) 8.82 11.84 ###
graph colouring (64980 nodes, 6 colours) 13.32 18.94 ###
tower of hanoi (8 discs) 0.87 2.26 145.37
latin square (dim 30) 3.40 9.65 8.28
social golfer (24 players, 6 groups, 8 weeks) 0.47 1.68 1.88

setting (6/64) produces a substantially smaller grounding in
only one case while it has two time-outs. These and other ex-
periments showed that GIDL’s default setting 4/4 provides a
good trade-off.
Domain Atoms In general, encoding problems for ASP
solvers involves carefully adding (semantically redundant)
domain atomsto obtain fast grounding times and small
grounding sizes. Due to the approximation algorithm, this
is not needed when encoding problems for GIDL. Instead,
adding redundant domain atoms to GIDL’s input rather in-
creases the running time. Because of its unit propagation,
the same observation holds forPSGRND. This is illustrated
by Table 3 which, in case of a Hamiltonian circuit problem,
shows the ratios of the grounding time and size for an encod-
ing without to that for an encoding with redundant domain
atoms.

Comparison to MX(FO+) grounders

In this section, we compare GIDL to the other existing
grounders for fragments of MX(FO+): MXG (version 0.16)2

and MXIDL. The ASP grounder used as back-end for MX-
IDL in the experiments is an adaption of GrinGo (version
0.0.1). The encodings of the problems in the first category
are exactly the same for each of the three systems. Most
of them were taken fromwww.cs.sfu.ca/research/
groups/mxp/examples/index.html. The ground-
ing times are shown in Table 4. GIDL consistently outper-
forms the other MX(FO+) grounders. Table 5 shows the
number of literal instances in the resulting ground files. In
general, GIDL produces the smallest groundings, MXIDL
the largest ones.

2There exists a newer version ofMXG, but it was not available
at the time of the submission deadline.

Declarative Programming Paradigms and Systems for NMR NMR-2008

196

Table 5: MX(FO+) problems (size)
GIDL MXG MX IDL

24-queens 50850 50850 52500
50-queens 411700 411700 418125
75-queens 1395050 1395050 1409375
algebraic groups (size 8) 783209 1048119 1054835
algebraic groups (size 10) 3171771 3998889 4014163
algebraic groups (size 12) 9852733 11941763 11971803
graph colouring (64980 nodes, 4 colours) 4141440 2590560 ###
graph colouring (64980 nodes, 6 colours) 6991920 4665600 ###
tower of hanoi (8 discs) 517570 610904 7152033
latin square (dim 30) 1545113 2430400 2514530
social golfer (24 players, 6 groups, 8 weeks) 366144 534144 510378

Comparison to PSGRNDand ASP grounders
In this section, we compare GIDL to PSGRND(7 jul 20053),
LPARSE(1.0.174), GrinGo (1.0.0) andDLV (11 oct 2007).

The grounding times of GIDL, PSGRND and the ASP
grounders are shown in Table 6, the sizes in Table 7. The
problems were chosen such that their encodings cover a
wide range of different formulas and language constructs.
Because the grounders take different input languages, it is
not possible to compare their performance in an entirely ob-
jective manner. To nevertheless obtain an as fair as pos-
sible comparison, the encodings are similar for the differ-
ent grounders (i.e., as far as possible, they are straightfor-
ward translations of each other) except that domain atoms
are added to the ASP encodings where needed to avoid the
excessively bad grounding times and sizes mentioned above.
Only the encoding of the sokoban puzzle differs consid-
erably among the grounders, because it involves complex
statements with alternating quantifiers which are not directly
expressible in ASP. For then-queens instances, we tried the
grounders on two different encodings. The first one contains
an explicit definition of the concept of a diagonal on a chess
board. Due to the use of arithmetic in the second encoding, it
could not easily be translated to the input language forDLV .

For each of the problems, GIDL ranks first or second in
grounding time. Only on the first version ofn-queens and
the smallest instance of the Hamiltonian circuit, one of the
ASP grounders is (slightly) faster.PSGRND outperforms
GIDL on 3 of the seven problems, being at most 7 times
faster. It is also faster on theeven/oddproblem but cannot
handle large instances of it. On the remaining 3 problems,
GIDL outperformsPSGRND. It is at least 30 times faster on
the first version of then-queens problem and on the largest
instance of the magic series.

The good results of GIDL andDLV on the first version of
n-queens is due to their pre-grounding phase using the semi-
naive evaluation technique. The other three grounders use a
combination of grounding and unit propagation to compute
the diagonals on the chess board. On theeven/oddproblems,
the semi-naive evaluation seems less efficient.

3We switched the forward checking phase ofPSGRNDoff, as
this phase is not incorporated in the other grounders. In all prob-
lems selected here, grounding with lookahead leads to slower
grounding times.

4The newest version ofLPARSE (1.1.1) appears to be a lot
slower than version 1.0.17 and exhibits the same segmentation
faults on our experiments

Table 6: Comparison toPSGRNDand ASP grounders (time)
GIDL PSGRND GrinGo LPARSE DLV

100-queens-v1 8.83 ### 16.67 15.09 9.31
125-queens-v1 19.51 ### 35.92 35.58 18.78
150-queens-v1 38.24 ### 74.61 71.96 34.37
250-queens-v2 1.38 0.21 1.46 ### -
500-queens-v2 5.66 0.82 6.93 ### -
750-queens-v2 12.78 2.03 19.78 ### -
graph col. (4 colours) 4.72 1.78 9.02 seg. fault 9.12
graph col. (6 colours) 6.14 2.50 12.28 seg. fault 15.05
graph col. (8 colours) 7.56 3.32 15.58 seg. fault 22.62
magic series (size 250) 0.62 7.02 ### ### ###
magic series (size 500) 2.49 71.45 ### ### ###
magic series (size 750) 5.73 ### ### ### ###
Ham. circuit (500 nodes) 0.67 0.80 2.69 0.55 0.83
Ham. circuit (1000 nodes) 2.19 3.99 11.80 2.20 2.53
Ham. circuit (1500 nodes) 4.88 11.11 34.45 6.51 5.67
even/odd (0..106) 9.10 3.37 10.17 seg. fault ###
even/odd (0..2· 106) 18.96 error 20.34 seg. fault ###
even/odd (0..3· 106) 29.06 error 30.23 seg. fault ###
sokoban (20 steps) 3.28 2.44 11.66 8.08 9.39
sokoban (40 steps) 7.00 5.03 23.26 16.29 19.72
sokoban (60 steps) 10.76 7.64 36.04 24.54 30.31

Table 7: Comparison toPSGRNDand ASP grounders (size)

GIDL PSGRND GrinGo LPARSE DLV

100-queens-v1 1333400 ### 1990200 2688100 2050100
125-queens-v1 2604250 ### 3890875 5241375 3984500
150-queens-v1 4500100 ### 6727800 9047150 6862650
250-queens-v2 252488 250496 250746 ### ###
500-queens-v2 1004988 1000996 1001496 ### ###
750-queens-v2 2257488 2251496 2252246 ### ###
graph col. (4 col.) 1810800 1810800 2069644 ### 3630240
graph col. (6 col.) 2716200 2716200 2975046 ### 7004880
graph col. (8 col.) 3621600 3621600 3880448 ### 11419200
magic series (250) 315005 15939253 ### ### ###
magic series (500) 1255005 126253503 ### ### ###
magic series (750) 2820005 ### ### ### ###
Ham. circ. (500) 97036 128464 121073 124573 192572
Ham. circ. (1000) 242033 320967 302067 309067 481066
Ham. circ. (1500) 483059 641441 603119 613619 961618
even/odd (0..106) 0 0 2000003 ### ###
even/odd (0..2· 106) 0 ### 4000003 ### ###
even/odd (0..3· 106) 0 ### 6000003 ### ###
sokoban (20 steps) 1940913 1153859 3155238 5679469 3085574
sokoban (40 steps) 4085433 2425099 6430318 11357089 6363194
sokoban (60 steps) 6229953 3696339 9705398 17034709 9640814

The good result of GIDL on the magic series problems
stems from its output format, which allows to define a sin-
gle ground set and use it in multiple aggregate expressions.
The other grounders write out a set for each aggregate ex-
pression, yielding cubic grounding size instead of GIDL’s
quadratic size in case of the magic series problem.

For each of the problems, eitherPSGRNDor GIDL has the
smallest grounding size. This is due to their rich output lan-
guages, enabling compact representations of, e.g., aggregate
expressions, and to, respectively, the unit propagation and
approximation algorithm. The zero grounding size in the
even/oddproblems stems from the fact that bothPSGRND
and GIDL write true atoms in the translation information,
and not in the actual grounding.

Conclusions
We presented a grounder for an extension of FO, in the con-
text of model expansion. An important contribution of the
system is that it supports a very rich input language, extend-
ing full FO with ordered sorts, inductive definitions, aggre-
gates, arithmetic and partial functions. The input language

Declarative Programming Paradigms and Systems for NMR NMR-2008

197

and core algorithm of the grounder were described. Despite
its rich language, which makes GIDL the most complete MX
grounder of the moment, our experiments show that GIDL is
the fastest MX grounder for (extensions of) FO and is more
robust and often faster compared to ASP grounders.

Acknowledgments
The input language syntax of GIDL was designed in collab-
oration with David Mitchell and Eugenia Ternovska. The
adapted version of GrinGo was written by Sven Thiele.

References
Dell’Armi, T.; Faber, W.; Ielpa, G.; Leone, N.; Perri, S.;
and Pfeifer, G. 2004. System description: Dlv with ag-
gregates. In Lifschitz, V., and Niemelä, I., eds.,LPNMR,
volume 2923 ofLecture Notes in Computer Science, 326–
330. Springer.

Denecker, M., and Ternovska, E. 2004. A logic of non-
monotone inductive definitions and its modularity proper-
ties. In Lifschitz, V., and Niemelä, I., eds.,Seventh In-
ternational Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’7).

Denecker, M. 2000. Extending classical logic with induc-
tive definitions. In Lloyd et al., J., ed.,First International
Conference on Computational Logic (CL’2000), volume
1861 ofLecture Notes in Artificial Intelligence, 703–717.
Springer.

East, D., and Truszczynski, M. 2006a. Predicate-calculus-
based logics for modeling and solving search problems.
ACM Trans. Comput. Log.7(1):38–83.

East, D., and Truszczyński, M. 2006b. Predicate-
calculus based logics for modeling and solving search
problems. ACM Transactions on Computational Logic
(TOCL)7(1):38 – 83.

East, D.; Iakhiaev, M.; Mikitiuk, A.; and Truszczynski, M.
2006. Tools for modeling and solving search problems.AI
Commun.19(4):301–312.

Enderton, H. B. 1972.A Mathematical Introduction To
Logic. Academic Press.

Gebser, M.; Schaub, T.; and Thiele, S. 2007. Gringo : A
new grounder for answer set programming. In Baral, C.;
Brewka, G.; and Schlipf, J. S., eds.,LPNMR, volume 4483
of Lecture Notes in Computer Science, 266–271. Springer.

Goubault, J. 1995. A bdd-based simplification and skolem-
ization procedure.Logic Journal of IGPL3(6):827–855.

Kautz, H. A., and Selman, B. 1996. Pushing the enve-
lope: Planning, propositional logic and stochastic search.
In AAAI/IAAI, Vol. 2, 1194–1201.

Leone, N.; Perri, S.; and Scarcello, F. 2004. Backjumping
techniques for rules instantiation in the DLV system. In
NMR, 258–266.

Marek, V. W., and Truszczýnski, M. 1998. Stable mod-
els and an alternative logic programming paradigm.CoRR
cs.LO/9809032.

Mariën, M.; Wittocx, J.; Denecker, M.; and Maurice, B.
2008. SAT(ID): Satisfiability of propositional logic ex-
tended with inductive definitions. InProceedings of the
11th conference on Theory and Applications of Satisfiabil-
ity Testing, SAT 2008, volume 4996 ofLecture Notes in
Computer Science, 211–224. Springer.
Mariën, M.; Gilis, D.; and Denecker, M. 2004. On the re-
lation between ID-Logic and Answer Set Programming. In
Alferes, J. J., and Leite, J. A., eds.,JELIA’04, volume 3229
of Lecture Notes in Computer Science, 108–120. Springer.
Mariën, M.; Wittocx, J.; and Denecker, M. 2006. The IDP
framework for declarative problem solving. InSearch and
Logic: Answer Set Programming and SAT, 19–34.
Mariën, M.; Wittocx, J.; and Denecker, M. 2007. MidL: A
SAT(ID) solver. In4th Workshop on Answer Set Program-
ming: Advances in Theory and Implementation, 303–308.
Mitchell, D., and Ternovska, E. 2005. A framework for
representing and solving NP search problems. InAAAI’05,
430–435. AAAI Press/MIT Press.
Mitchell, D. G., and Ternovska, E. 2008. Expressive power
and abstraction inESSENCE. Constraints13(3).
Mitchell, D.; Ternovska, E.; Hach, F.; and Mohebali, R.
2006. Model expansion as a framework for modelling and
solving search problems. Technical Report TR2006-24, Si-
mon Fraser University.
Patterson, M.; Liu, Y.; Ternvska, E.; and Gupta, A. 2006.
Grounding for model expansion ink-guarded formulas. In
Proceedings of 21st IEEE Symposium on Logic in Com-
puter Science (LICS06).
Patterson, M.; Liu, Y.; Ternovska, E.; and Gupta, A. 2007.
Grounding for model expansion in k-guarded formulas
with inductive definitions. In Veloso, M. M., ed.,IJCAI,
161–166.
Pelov, N.; Denecker, M.; and Bruynooghe, M. 2005. Well-
founded and stable semantics of logic programs with ag-
gregates.CoRRabs/cs/0509024.
Syrjänen, T. 1998. Implementation of local grounding for
logic programs with stable model semantics. Technical Re-
port B18, Digital Systems Laboratory, Helsinki University
of Technology.
Tseitin, G. S. 1968. On the complexity of derivation in
propositional calculus. In Slisenko, A. O., ed.,Studies in
Constructive Mathematics and Mathematical Logic II, vol-
ume 8 ofSeminars in Mathematics: Steklov Mathem. Inst.
New York: Consultants Bureau. 115–125.
Ullman, J. D. 1988. Principles of Database and
Knowledge-Base Systems, Volume I. Computer Science
Press.
Van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991. The
well-founded semantics for general logic programs.Jour-
nal of the ACM38(3):620–650.
Wittocx, J., and Marïen, M. 2008. The IDP system.
Obtainable viawww.cs.kuleuven.be/˜dtai/krr/
software.html.
Wittocx, J.; Marïen, M.; and Denecker, M. 2008. Ground-
ing with bounds. InAAAI’08, 572–577. AAAI Press.

Declarative Programming Paradigms and Systems for NMR NMR-2008

198

Special Session on Preferences

Preferences constitute a natural and effective way of resolving conflicts and choosing best solutions from a
large set of candidates. The problem of preference handling and its applications received extensive interest
in artificial intelligence, including non-monotonic reasoning, logic programming, constraint programming,
planning, and decision making.

Session Chairs

Hans Tompits, Vienna University of Technology, Austria
Kewen Wang, Griffith University, Australia

Program Committee

Ronen I. Brafman, Ben-Gurion University, Israel
Gerhard Brewka, University of Leipzig, Germany
Jan Chomicki, University at Buffalo, USA
James P. Delgrande, Simon Fraser University, Canada
Jon Doyle, North Carolina State University, USA
Judy Goldsmith, University of Kentucky, USA
Katsumi Inoue, National Institute of Informatics, Japan
Ulrich Junker, ILOG, France
Jerome Lang, IRIT, Toulouse, France
Sheila A. McIlraith, University of Toronto, Canada
Francesca Rossi, University of Padova, Italy
Torsten Schaub, University of Potsdam, Germany
Tran Cao Son, New Mexico State University, USA
Toby Walsh, University of New South Wales, Australia

NMR-2008

199

Distributed Defeasible Reasoning in Multi-Context Systems

Antonis Bikakis and Grigoris Antoniou
Institute of Computer Science, FO.R.T.H.

Vassilika Vouton, P.O. Box 1385, GR 71110, Heraklion, Greece
{bikakis,antoniou}@ics.forth.gr

Abstract
Multi-Context Systems (MCS) are logical formalizations of
distributed context theories connected through a set of map-
ping rules, which enable information flow between different
contexts. Reasoning in MCS introduces many challenges that
arise from the heterogeneity of contexts with respect to the
language and inference system that they use, and from the po-
tential conflicts that may arise from the interaction of context
theories through the mappings. This study proposes a P2P
reasoning model for MCS, which represents contexts as peer
theories in a P2P system, mapping rules as defeasible rules
(rules that can be defeated in the existence of adequate con-
trary evidence), and uses a preference relation (which, e.g.,
expresses trust information) to resolve the potential conflicts.
It also provides a reasoning algorithm for query evaluation,
analyzes its formal properties, and discusses alternative meth-
ods for conflict resolution, which differ in the type of infor-
mation that they use to resolve the conflicts.

Motivation and Background
A Multi-Context System consists of a set of contexts and a
set of inference rules (known as mapping or bridge rules)
that enable information flow between different contexts. A
context can be thought as a logical theory - a set of axioms
and inference rules - that models local context knowledge.
Different contexts are expected to use different languages
and inference systems, and although each context may be
locally consistent, global consistency cannot be required or
guaranteed. Reasoning with multiple contexts requires per-
forming two types of reasoning; (a) local reasoning, based
on the individual context theories; and (b) distributed rea-
soning, which combines the consequences of local theories
using the mappings. The most critical issues of contextual
reasoning are; (a) the heterogeneity of contexts with respect
to the language and inference system that they use; and (b)
the potential conflicts that may arise from the interaction
of the different contexts through the mappings. Our study
mainly focuses on the second issue, by modeling the differ-
ent contexts as peers in a P2P system, and performing some
type of defeasible reasoning on the distributed peer theories.

The notions of context and contextual reasoning were first
introduced in AI by McCarthy in (McCarthy 1987), as an
approach for the problem of generality. In the same paper,
he argued that the combination of non-monotonic reason-
ing and contextual reasoning would constitute an adequate

solution to this problem. Since then, two main formaliza-
tions have been proposed to formalize context: the propo-
sitional logic of context (PLC (Buvac and Mason 1993;
McCarthy and Buvač 1998)) , and the Multi-Context Sys-
tems introduced in (Giunchiglia and Serafini 1994), which
later became associated with the Local Model Semantics
proposed in (Ghidini and Giunchiglia 2001). The second
formalism was the basis of two recent studies that were
the first to deploy non-monotonic reasoning approaches in
MCS: (a) the non-monotonic rule-based MCS framework,
which supports default negation in the mapping rules al-
lowing to reason based on the absence of context informa-
tion, proposed in (Roelofsen and Serafini 2005); and (b) the
multi-context variant of Default Logic (Brewka, Roelofsen,
and Serafini 2007). The latter models the bridge relations
between different contexts as default rules, and has the ad-
ditional advantage that is closer to implementation due to
the well-studied relation between Default Logic and Logic
Programming. However, the authors do not provide specific
reasoning algorithms (e.g. for query evaluation), and their
model does not include the notion of priority, which we use
for conflict resolution.

Our study also relates to several recent studies that fo-
cus on formal models and methods for reasoning in peer
data management systems. A key issue in formalizing data-
oriented P2P systems is the semantic characterization of
mappings (bridge rules). One approach, followed in (Bern-
stein et al. 2002; Halevy et al. 2003), is the first-order
logic interpretation of P2P systems. (Calvanese et al. 2004)
identified several drawbacks with this approach, regarding
modularity, generality and decidability, and proposed new
semantics based on epistemic logic. A common problem
of both approaches is that they do not model and thus can-
not handle inconsistency. Franconi et al. in (Franconi et
al. 2003) extended the autoepistemic semantics to formalize
local inconsistency. The latter approach guarantees that a
locally inconsistent database base will not render the entire
knowledge base inconsistent. A broader extension, proposed
in (Calvanese et al. 2005), is based on non-monotonic epis-
temic logic, and enables isolating local inconsistency, while
also handling peers that may provide mutually inconsistent
data. The proposed query evaluation algorithm assumes that
all peers share a common alphabet of constants, and does
not model trust or priorities between the peers. The proposi-

Preferences NMR-2008

200

tional P2P inference system proposed in (Chatalic, Nguyen,
and Rousset 2006) deals with conflicts caused by mutually
inconsistent information sources, by detecting them and rea-
soning without them. The main problem is the same, once
again: To perform reasoning, the conflicts are not actually
resolved using some external trust or priority information;
they are rather isolated.

The reasoning model that we propose represents contexts
as peer theories in a P2P system. Specifically, it consid-
ers peers that have independent knowledge, and that interact
with existing, neighboring peers to exchange information.
The internal knowledge is expressed in terms of rules, and
knowledge is imported from other peers through mapping
rules. Even if it is assumed that the theory of each peer is
locally consistent, the same assumption will not necessar-
ily hold for the global knowledge base. The unification of
the local context theories may result in inconsistencies that
are caused by the mapping rules. For example, a context
theory A may import context knowledge from two different
contexts B and C, through two competing mapping rules.
In this case, even if the three different contexts are locally
consistent, their unification through the mappings defined
by A may contain inconsistencies. To deal with with this
type of inconsistencies (global conflicts), we follow a non-
monotonic approach; mapping rules are expressed as defea-
sible rules (rules that may be defeated in the existence of ad-
equate contrary evidence), and priorities between conflicting
rules are determined by the level of trust that each peer has
in the other system peers.

The P2P reasoning model captures the three fundamental
dimensions of contextual reasoning, as these were formu-
lated in (Benerecetti, Bouquet, and Ghidini 2000), namely
partiality, approximation, and perspective:
• Partiality. Each peer may not have immediate access to

all available information, so a peer theory can be thought
as a partial representation of the world.

• Approximation Each peer theory differs at the level of de-
tail at which a portion of the world is represented.

• Perspective Each peer theory encodes a different point of
view on the world.
Furthermore, the P2P paradigm enables us to model:

• Information flow between different contexts as message
exchange between the system peers.

• Context changes using the dynamics of a P2P system.
• Confidence on the different context theories as trust be-

tween the system peers.
The rest of the paper is structured as follows: First, we

formalize the problem. Then, we describe the reasoning al-
gorithm and study its formal properties. Finally, we discuss
three alternative approaches for conflict resolution, and con-
clude with the plans of our future work.

Our Reasoning Approach
Our approach models a multi-context framework as a P2P
system P , which is a collection of peer context theories:

P = {Pi}, i = 1, 2, ..., n

Each system peer has a proper distinct vocabulary VPi and a
unique identifier i. Each local theory is a set of rules that
contain only local literals (literals from the local vocabu-
lary). These rules are of the form:

rl
i : a1

i , a
2
i , ...a

n−1
i → an

i

where i denotes the peer identifier. Local rules express
strict (sound) knowledge and are interpreted in the classi-
cal sense: whenever the literals in the body of a local rule
(a1

i , a
2
i , ...a

n−1
i) derive as consequences of the local theory,

then so does the conclusion of the rule (an
i). Strict rules with

empty body are used to express factual knowledge.
Each peer also defines mappings that associate literals

from its own vocabulary (local literals) with literals from
the vocabulary of other peers (foreign literals). The acquain-
tances of peer Pi, ACQ(Pi) are the set of peers that at least
one of Pi’s mappings involves at least one of their local liter-
als. Mappings are modeled as defeasible rules (rules that can
be defeated in the existence of adequate contrary evidence)
of the form::

rm
i : a1

i , a
2
j , ...a

n−1
k ⇒ an

i

The above mapping rule is defined by Pi, and associates
some of its own local literals with some of the literals de-
fined by Pj , Pk and other system peers. Literal an

i is a local
literal of Pi.

Finally, each peer Pi defines a trust level order Ti, which
includes a subset of the system peers, and expresses the trust
that Pi has in the other system peers. This is of the form:

Ti = [Pk, Pl, ..., Pn]

A peer Pk is considered more trusted by Pi than peer Pl if
Pk precedes Pl in this list. The peers that are not included in
Ti are less trusted by Pi than those that are part of the list.

We assume that the context theories are locally consistent,
but this is not necessarily true for the global theory, which
derives from the unification of local theories and mappings.
The inconsistencies result from interactions between local
theories and are caused by mappings. To resolve them, we
use the available trust information from the system peers.

The P2P DR Algorithm
P2P DR is a distributed algorithm for query evaluation
in Multi-Context Systems following the model that we
described in the previous section. The specific reasoning
problem that it deals with is: Given a MCS P , and a query
about literal xi issued to peer Pi, find the truth value of xi

considering Pi’s local theory, its mappings and the context
theories of the other system peers. The algorithm may
return two different answers: (a) Ansxi = Y es means
that it has computed a positive truth value for xi, while
(b) Ansxi

= No is meant for a negative truth value. The
algorithm parameters are:

xi: the queried literal
P0: the peer that issues the query
Pi: the local peer
SSxi : the Supportive Set of xi (a set of literals that is

initially empty)

Preferences NMR-2008

201

CSxi : the Conflicting Set of xi (a set of literals that is
initially empty)

Histxi : the list of pending queries ([x1, ..., xi])
Ansxi : the answer returned for xi (initially empty)

The algorithm proceeds in four main steps. In the first
step, the algorithm determines if the queried literal, xi,
or its negation ¬xi are consequences of Pi’s local rules.
To do that it calls a local reasoning algorithm (local alg,
described later in this section), which returns a positive
answer, in case xi derives from the local rules, or a negative
answer in any other case. Below, we denote as Rs(xi) the
set of rules that support xi (as their conclusion); and as
Rc(xi), the set of rules that contradict xi (those that support
¬xi)

P2P DR(xi, P0, Pi, SSxi , CSxi , Histxi , Ansxi , Ti)

if ∃rl
i ∈ Rs(xi) then

localHistxi ← [xi]
call local alg(xi, localHistxi , localAnsxi)
if localAnsxi = Y es then

return Ansxi = localAnsxi and terminate
end if

end if
if ∃rl

i ∈ Rc(xi) then
localHistxi ← [xi]
call local alg(¬xi, localHistxi , localAns¬xi)
if localAns¬xi = Y es then

return Ansxi = ¬localAns¬xi and terminate
end if

end if

If Step 1 fails, the algorithm collects, in the second step,
the local and mapping rules that support xi. To check
which of these rules can be applied, it checks the truth
value of the literals in their body by issuing similar queries
(recursive calls of the algorithm) to Pi or to the appropriate
neighboring peers Pj ∈ ACQPi . To avoid cycles, before
each new query, it checks if the same query has been issued
before, during the same algorithm call (using Hist). For
each applicable supportive rule ri, the algorithm builds its
Supportive Set SSri

. The Supportive Set of a rule derives
from the unification of the set of the foreign literals (literals
that are defined by peers that belong in ACQ(Pi)) that are
contained in the body of ri, with the Supportive Sets of
the local literals that belong in the body of the same rule.
In the end, in case there is no applicable supportive rule
(SRxi = {}, where SRxi is the set of applicable rules that
support xi) , the algorithm returns a negative answer for xi

and terminates. Otherwise, it computes the Supportive Set
of xi, SSxi , as the strongest of the Supportive Sets of the
applicable rules that support xi, and proceeds to the next
step. The strongest Supportive Set is computed using the
Stronger function (described later in this section), which
applies the preference relation defined by Pi, Ti, on the
given sets.

SRxi ← {}
for all rlm

i ∈ Rs(xi) do
SSri ← {}
for all bt ∈ body(rlm

i) do
if bt ∈ Histxi then

stop and check the next rule
else

Histbt ← Histxi ∪ bt

call P2P DR(bt, Pi, Pt, SSbt , CSbt , Histbt , Ansbt , Tt)
if Ansbt = No then

stop and check the next rule
else if Ansbt = Y es and bt /∈ Vi then

SSri ← SSri ∪ bt

else
SSri ← SSri ∪ SSbt

end if
end if

end for
if SRxi = {} or Stronger(SSri , SSxi , Ti) = SSri then

SSxi ← SSri

end if
SRxi ← SRxi ∪ rlm

i

end for
if SRxi = {} then

return Ansxi = No and terminate
end if

In the third step, in the same way with the previous
step, the algorithm collects the rules that contradict xi and
builds the conflicting set of xi (CSxi). In case there is no
applicable rule that contradicts xi, the algorithm terminates
by returning a positive answer for xi. Otherwise, it proceeds
with the last step. Below, we denote as CRxi the set of the
applicable rules that contradict (support the negation of) xi.

CRxi ← {}
for all rlm

i ∈ Rc(xi) do
SSri ← {}
for all bt ∈ body(rlm

i) do
if bt ∈ Histxi then

stop and check the next rule
else

Histbt ← Histxi ∪ bt

call P2P DR(bt, Pi, Pt, SSbt , CSbt , Histbt , Ansbt , Tt)
if Ansbt = No then

stop and check the next rule
else if Ansbt = Y es and bt /∈ Vi then

SSri ← SSri ∪ bt

else
SSri ← SSri ∪ SSbt

end if
end if

end for
if CRxi = {} or Stronger(SSri , CSxi , Ti) = SSri then

CSxi ← SSri

end if
CRxi ← CRxi ∪ rlm

i

end for
if CRxi = {} then

return Ansxi = Y es and SSxi and terminate
end if

Preferences NMR-2008

202

In the last step, the algorithm compares SSxi and CSxi

using again the Stronger function. If SSxi is stronger, the
algorithm returns a positive answer for xi. In any other case
(including the case that there is not enough trust information
available to give priority to one of the competing rules), it
returns a negative answer.

if Stronger(SSxi , CSxi , Ti) = SSxi then
return Ansxi = Y es and SSxi

else
return Ansxi = No

end if

The local reasoning algorithm local alg is called by
P2P DR to determine whether a literal is a consequence
of the local rules of the theory. The algorithm parameters
are:

xi: the queried literal
localHistxi : the list of pending queries in Pi

localAnsxi : the local answer for xi (initially No)

local alg(xi, localHistxi , localAnsxi)
for all rl

i ∈ Rs(xi) do
if body(rl

i) = {} then
return localAnsxi = Y es and terminate

else
for all bi ∈ body(rl

i) do
if bi ∈ localHistxi then

stop and check the next rule
else

localHistbi ← localHistxi ∪ bi

call local alg(bi, localHistbi , localAnsbi)
end if

end for
if for every bi: localAnsbi = Y es then

return localAnsxi = Y es and terminate
end if

end if
end for

The Stronger(S, C, T) function is used by P2P DR to
check which of S and C sets is stronger, based on T (the
preference relation defined by the peer that the algorithm is
called by). According to T , a literal ak is considered to be
stronger than al if Pk precedes Pl in T . The strength of a
set is determined by the the weakest literal in this set.

Stronger(S,C, T)
aw ← ak ∈ S s.t. for all ai ∈ S : Pk does not precede Pi in T
bw ← al ∈ C s.t. for all bj ∈ C : Pl does not precede Pj in T
if Pk precedes Pl in T then

Stronger = S
else if Pl precedes Pk in T then

Stronger = C
else

Stronger = None
end if

Below we demonstrate how the algorithm works through

P1 P2 P3

rl
11 : a1 → x1 rl

21 : c2 → a2 rl
31 :→ a3

rm
12 : a2 ⇒ a1 rl

22 : b2 → a2

rm
13 : a3, a4 ⇒ ¬a1 rm

22 : b5 ⇒ b2

rm
24 : b6 ⇒ b2

P4 P5 P6

rl
41 :→ a4 rl

51 :→ b5 rl
61 :→ b6

Figure 1: A System of Six Context Theories

an example. In the system depicted in Figure 1, there are
six peers, each one with its local context theory, and a query
about x1 is issued to P1.

Neither x1 nor ¬x1 derive from P1’s local theory, so the
algorithm proceeds to the second step. It successively calls
rules rl

11 and rm
12, and issues a query about a2 to P2. In P2,

a2 does not derive from the local theory, and the algorithm
successively calls the two rules that support a2; rl

21 and rl
22.

c2, which is the only premise of rl
21, is not supported by

any rule, so rl
21 is not applicable. To check if rule rl

22 can
be applied, the algorithm must check literal b2. b2 is sup-
ported by two mapping rules; rm

23 and rm
24. To determine if

these rules can be applied, the algorithms queries P5 about
b5, and P6 about b6. P5 and P6 return positive answers for
b5 and b6 respectively, as these literals are consequences of
their local theories. As there is no rule in P2 that contradicts
b2 or a2, P2 returns a positive answer for b2 to P1, and P1

constructs the Supportive Set of a1, which contains literal
a2 (SSa1 = {a2}). The next step is to check the only rule
that contradicts a1, rule rm

13. Using a similar process, the
algorithm ends up with a conflicting set that contains liter-
als a3 and a4 (CSa1 = {a3, a4}). To compare SSa1 and
CSa2 , the algorithm uses the trust level order defined by P1,
T1. Assuming that T1 = [P4, P2, P6, P3, P5], a2 and a3 are
respectively the weakest elements of SSa1 and CSa1 , and
a3 is weaker than a2. Consequently, P1 computes a positive
answer for a1, and, as there is no rule that contradicts x1, it
eventually returns a positive answer for x1.

Properties of the Algorithm
In this section we describe some formal properties of
P2P DR with respect to its termination (Proposition 1),
complexity (Propositions 2-3), and the possibility to create
an equivalent unified defeasible theory from the distributed
context theories (Theorem 1). The proofs for Propositions
1-3 and Theorem 1 are available in (Bikakis 2008). Propo-
sition 1 holds as cycles are detected within the algorithm.

Proposition 1 The algorithm is guaranteed to terminate re-
turning either a positive or a negative answer for the queried
literal.

Prop. 2 is a consequence of two states that we retain for each
peer, which keep track of the incoming and outgoing queries
of the peer.

Proposition 2 The total number of messages that are ex-
changed between the system peers for the computation of a

Preferences NMR-2008

203

single query is O(n2) (in the worst case that all peers have
defined mappings with all the other system peers), where n
stands for the total number of system peers.

Proposition 3 The computational complexity of the algo-
rithm on a single peer is in the worst case O(n2×n2

l ×nr),
where n stands for the total number of system peers, nl

stands for the number of literals a peer may define, and nr

stands for the total number of (local and mapping) rules that
a peer theory may contain.

Equivalent Unified Defeasible Theory
The goal of the procedure that we describe below is to build
a global defeasible theory Tυ(P), which produces the same
results with P2P DR. The existence of such theory will
enable us to resort to centralized reasoning in cases that we
want to avoid decentralized control. The procedure consists
of the following steps:

1. The local rules of each peer theory are added as strict rules
in Tυ(P).

2. The mapping rules of each peer theory are added as de-
feasible rules in Tυ(P).

3. For each pair of conflicting rules in Tυ(P), we add a pri-
ority relation using the Prioritiesdl process that we de-
scribe below.

The role of Prioritiesdl is to augment Tυ(P) with the
required rule priorities considering the trust level orders of
the system peers. The process takes as input a literal of the
theory, say xi, the strict and defeasible rules of Tυ(P) that
support or contradict xi (R[xi], R[¬xi]), and the trust order-
ing of Pi, Ti, and returns the Supportive Set of xi (Sxi), and
augments Tυ(P) with the required priority relations. The al-
gorithm follows three main steps: In the first step, it builds
the Supportive Sets for the rules that support or contradict
xi. These sets are built in a similar way that P2P DR com-
putes the Supportive Sets of the respective rules in the dis-
tributed theories, with only one difference: If there is a lit-
eral in the body of a rule that contains w in its Supportive
Set, then the algorithm assigns {w} as the Supportive Set of
the rule, meaning that this rule is inapplicable.

In the second step, Prioritiesdl collects all the pairs of
applicable conflicting rules and adds suitable priority rela-
tions by applying the Stronger function on their Supportive
Sets (using the trust level order of the peer that defined xi,
Ti).

In the final step, the algorithm computes the Supportive
Set of xi using the following rules: (a) If there is no
applicable supportive rule, it returns {w}; (b) If there is
an applicable contradicting rule that is stronger than all
applicable supportive rules, it returns {w}; and (c) In any
other case it returns the Supportive Set of the strongest
applicable rule, using the Stronger function and Ti.

Prioritiesdl(xi,R[xi],R[¬xi], Ti, Sxi)
Sxi → {}
for all ri ∈ R[xi] ∪R[¬xi] do

Sri ← {}
for all ai ∈ body(ri) ∩ Vi do

call Prioritiesdl(ai,R[ai],R[¬ai], Ti, Sai)
Sri ← Sri ∪ Sai

end for
for all aj ∈ body(ri) \ Vi do

call Prioritiesdl(aj ,R[aj],R[¬aj], Tj , Saj)
if w ∈ Saj then

Sri ← {w}
stop and check next ri

else
Sri ← Sri ∪ aj

end if
end for

end for
for all pairs (ri ∈ R[xi], si ∈ R[¬xi]| w /∈ Sri , w /∈ Ssi) do

if Stronger(Sri , Ssi , Ti) = Sri then
add ri > si in Tυ(P)

else if Stronger(Sri , Ssi , Ti) = Ssi then
add si > ri in Tυ(P)

end if
end for
if ∃ri ∈ R[xi]|Sri = {} or
∀si ∈ R[¬xi]: w ∈ Sri or ri > si ∈ Tυ(P) and
∀ti ∈ R[xi]: Stronger(Sri , Sti , Ti) 6= Sri then

return Sxi = Sri

else
return Sxi = {w}

end if

To prove Theorem 1, which follows, we use the following
definition:

Definition 1 A MCS P is acyclic iff there is no rule r ∈ P
such that the conclusion of r may be used to prove a literal
in the body of r.

Theorem 1 The global defeasible theory Tυ(P), aug-
mented with the priority relations derived from the applica-
tion of Prioritiesdl on all literals of the theory, produces,
under the proof theory of (Antoniou et al. 2001), the same
results as the application of P2P DR on the distributed
context theories of an acyclic MCS P .

The latter property, which shows the equivalence with a
defeasible theory, enables resorting to centralized reasoning
by collecting the distributed context theories in a central en-
tity and creating an equivalent defeasible theory. The com-
plexity of Prioritiesdl used for the derivation of the equiv-
alent global theory is comparable with the complexity of
P2P DR.Via Theorem 1, P2P DR has a precise seman-
tic characterization. Defeasible Logic has a proof-theoretic
(Antoniou et al. 2001), an argumentation-based (Governa-
tori et al. 2004) and a model-theoretic semantics (Maher
2002).

Alternative Approaches for Conflict
Resolution

In the algorithm that we described, each queried peer is re-
quired to return a single positive/negative answer for the lit-
eral it is queried about. When a conflict arises, a peer uses
its trust information, to evaluate the quality of the answers it
receives. Each answer is indirectly assigned with the trust
value of the peer that returns it. This is one (and rather

Preferences NMR-2008

204

the simplest) of the many different approaches that one can
think of for conflict resolution. Below, we describe three
different approaches, which differ in the type of information
that a peer may use to evaluate the quality of the answers that
it receives, and to resolve the potential conflicting answers
that two or more different peers may return. To clarify the
differences, we use the system of peers that we described in
Figure 1.

Strict-Weak Answers

In this second approach, we attempt to associate the qual-
ity of the answer not only with the trust level of the queried
peer, but also with the confidence of the queried peer on the
answer it returns. Specifically, we define two levels of qual-
ity for each positive answer; (a) the strict answers, which
derive from the local context theories; and (b) the weak an-
swers, which derive from the combination of the local theory
with the mappings of the queried peer. In this approach the
strength of an element in a Supportive Set is determined pri-
marily by the type of answer returned for this element (strict
answers are considered stronger than weak ones), and sec-
ondly by the rank of the peer in the trust level order of the
querying peer.

In the system of peers depicted in Figure 1, P3 and P4 will
return a strict positive answer for a3 and a4 respectively,
as the two literals derive directly from their local theories,
while for a2, P2 will return a weak answer, as it cannot be
locally proved. So, in this version, SSa1 = {a2} is weaker
than CSa1 = {a3, a4}, despite the fact that P2 precedes P4

in T1, and the algorithm will compute a negative answer for
a1, and eventually for x1 as well.

Propagating Mapping Sets

Another approach is to evaluate the quality of an answer
based on the ranks of the peers that are involved in the
computation of this answer in the trust order defined by the
queried peer. To support this feature, a peer does not return
a single positive/negative answer for a literal it is queried
about, but augments this answer with the Supportive Set of
the queried literal. The peer, which receives the answer, uses
this set to evaluate the quality of the answer, but also to build
the Supportive Sets of its local literals.

In the system of peers in the example (Figure 1), P3 and
P4 return a positive answer along with an empty Support-
ive Set for a3 and a4 respectively, as the two literals de-
rive directly from their local theories. In the same way, P5

and P6 return positive answers along with empty Support-
ive Sets for literals b5 and b6 respectively to P2. To build
the Supportive Set of b2, P2 compares the Supportive Sets
of the two rules that support b2, (rm

23 and rm
24). Consid-

ering that T2 = [P1, P5, P6], P2 computes and returns to
P1, SSb2 = {b5}. The algorithm will eventually compute
SSa1 = {a2, b5} and CSa1 = {a3, a4}. Considering that
T1 = [P4, P2, P6, P3, P5], b5 is the weakest element of SSa1

and a3 is the weakest element of CSa1 , and b5 is weaker than
a3, so the algorithm will eventually return a negative answer
for a1 and x1.

Complex Mapping Sets
The main feature of the previous approach is that along with
the truth value of the queried literal, a peer also returns its
Supportive Set. This set describes the most trusted course of
reasoning that leads to the computed answer. However, trust
is subjective. The most trusted between two or more differ-
ent courses will be different considering the different trust
level orderings of two different peers. This last approach
has the distinct feature that the most trusted course is not
determined by the queried peer but by the peer that issues
the query. To support this feature, when a peer is queried
about one of its local literals, it returns its truth value along
with its Supportive Set, which in this case describes all the
different ways that can be applied to support this literal. In
this version, the Supportive Set of a literal is actually a set
of the Supportive Sets of all the rules that can be applied to
support this literal.

In the system of peers of the example (Figure 1), in order
to build SSb2 , the algorithm will use the Supportive Sets
of both rules (rm

23 and rm
24) that can be applied to support

b2. So, in this version, P2 returns SSb2 = {{b5}, {b6}},
and P1 computes SSa1 = {{a2, b5}, {a2, b6}} and CSa1 =
{{a3, a4}}. From the two different courses that lead to a
positive truth value for a1, as these are described in SSa1 , P1

computes that the one described in the second set ({a2, b6})
is stronger, as P6 precedes P5 in T1. Comparing this set
with CSa1 = {{a3, a4}}, the algorithm will determine that
CSa1 is weaker, as its weakest element, a3 is weaker than b6

according to T1. Consequently, P1 will compute and return
positive answers for a1 and eventually for x1.

Conclusion
In this study, we proposed a model for Multi-Context Sys-
tems that represents contexts as local rule theories in a P2P
system and mappings as defeasible rules, and uses context
and preference information to resolve the potential conflicts
that arise from the interaction of contexts through the map-
pings. We also described a distributed algorithm for query
evaluation in MCS and analyzed its formal properties. Fi-
nally, we informally presented three alternative strategies for
conflict resolution, which differ in the extent of context in-
formation that each local theory exploits to resolve potential
conflicts. Part of our ongoing and future work includes:

• Implementing the algorithm in Logic Programming, us-
ing the equivalence with Defeasible Logic, and the well-
studied translation of defeasible knowledge into logic pro-
grams under Well-Founded Semantics (Antoniou et al.
2006).

• Studying in more detail the three alternative strategies for
conflict resolution that we described in the previous sec-
tion. Specifically, we plan to study each different version
of the algorithm with regard to its properties (termination,
complexity, equivalent defeasible theory).

• Adding non-monotonic features in the local context theo-
ries to support uncertainty and ambiguity in the local con-
text knowledge.

Preferences NMR-2008

205

• Extending the model to support overlapping vocabularies,
which will enable different contexts to use elements of
common vocabularies (e.g. URIs).

• Studying applications in the Ambient Intelligence and Se-
mantic Web domains, where the theories may represent
ontological context knowledge (e.g. in DLP), policies and
regulations.

References
Antoniou, G.; Billington, D.; Governatori, G.; and Maher,
M. J. 2001. Representation results for defeasible logic.
ACM Transactions on Computational Logic 2(2):255–287.
Antoniou, G.; Billington, D.; Governatori, G.; and Maher,
M. J. 2006. Embedding defeasible logic into logic pro-
gramming. Theory Pract. Log. Program. 6(6):703–735.
Benerecetti, M.; Bouquet, P.; and Ghidini, C. 2000. Con-
textual reasoning distilled. JETAI 12(3):279–305.
Bernstein, P. A.; Giunchiglia, F.; Kementsietsidis, A.; My-
lopoulos, J.; Serafini, L.; and Zaihrayeu, I. 2002. Data
Management for Peer-to-Peer Computing : A Vision. In
WebDB, 89–94.
Bikakis, A. 2008. Distributed Reason-
ing with Conflicts in a Peer-to-Peer Setting.
http://www.csd.uoc.gr/∼bikakis/P2PDR.pdf.
Brewka, G.; Roelofsen, F.; and Serafini, L. 2007. Contex-
tual Default Reasoning. In IJCAI, 268–273.
Buvac, S., and Mason, I. A. 1993. Propositional Logic of
Context. In AAAI, 412–419.
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and Rosati,
R. 2004. Logical Foundations of Peer-To-Peer Data Inte-
gration. 241–251. ACM.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2005. Inconsistency Tolerance in P2P Data
Integration: an Epistemic Logic Approach. In DBPL-05,
volume 3774 of LNCS, 90–105. SV.
Chatalic, P.; Nguyen, G. H.; and Rousset, M.-C. 2006.
Reasoning with Inconsistencies in Propositional Peer-to-
Peer Inference Systems. In ECAI, 352–356.
Franconi, E.; Kuper, G. M.; Lopatenko, A.; and Serafini,
L. 2003. A Robust Logical and Computational Charac-
terisation of Peer-to-Peer Database Systems. In DBISP2P,
64–76.
Ghidini, C., and Giunchiglia, F. 2001. Local Models Se-
mantics, or contextual reasoning=locality+compatibility.
Artificial Intelligence 127(2):221–259.
Giunchiglia, F., and Serafini, L. 1994. Multilanguage hi-
erarchical logics, or: how we can do without modal logics.
Artificial Intelligence 65(1).
Governatori, G.; Maher, M. J.; Billington, D.; and Anto-
niou, G. 2004. Argumentation Semantics for Defeasible
Logics. Journal of Logic and Computation 14(5):675–702.
Halevy, A. Y.; Ives, Z. G.; Suciu, D.; and Tatarinov, I. 2003.
Schema Mediation in Peer Data Management Systems. In
ICDE, 505.

Maher, M. J. 2002. A Model-Theoretic Semantics for
Defeasible Logic. In Paraconsistent Computational Logic,
67–80.
McCarthy, J., and Buvač, S. 1998. Formalizing Context
(Expanded Notes). In Aliseda, A.; van Glabbeek, R.; and
Westerståhl, D., eds., Computing Natural Language. Stan-
ford, California: CSLI Publications. 13–50.
McCarthy, J. 1987. Generality in Artificial Intelligence.
Communications of the ACM 30(12):1030–1035.
Roelofsen, F., and Serafini, L. 2005. Minimal and Absent
Information in Contexts. In IJCAI, 558–563.

Preferences NMR-2008

206

Learning preference relations over combinatorial domains

Jérôme Lang and Jérôme Mengin
Institut de Recherche en Informatique de Toulouse

31062 Toulouse Cedex, France∗

Abstract

We address the problem of learning preference relations over
multi-attribute (or combinatorial) domains. We do so by mak-
ing hypotheses about the dependence structure between at-
tributes that the preference relation enjoys. The first hypoth-
esis we consider is the simplest one, namely, separability (no
dependences between attributes: the preference over the val-
ues of each attribute is independent of the values of other at-
tributes); then we consider the more general case where the
dependence structure takes the form of an acyclic graph. In
all cases, what we want to learn is a set of local preference re-
lations (or equivalently, a CP-net) rather than a fully specified
preference relation. We consider three forms of consistency
between a CP-net and a set of examples, and for two of them
we give an exact characterization in the case of separability,
as well as complexity results.

Introduction
In many applications, especially electronic commerce, it is
important to learn the preferences of the user on a set of
alternatives. Often, the set of alternatives has a combinato-
rial (or multiattribute) structure, that is, each alternative is a
tuple of values for each of a given number of variables (or
attributes). For instance, suppose we want to build a recom-
mender system for movies. The available data are the pref-
erences the user has expressed on the movies she has seen,
and we would like to predict her preferences on movies she
hasn’t seen yet (Perny and Zucker 2001; Miller et al. 2003).
The most obvious way of doing this is to describe movies
using various attributes, such as genre, year, film maker
etc. As another example (Viappiani, Faltings, and Pu 2006a;
2006b), one may want to build a system helping a user find-
ing a flat from a large database. A flat is described by at-
tributes such as price, location, size etc. and from the past
interactions with the user, the system has to find out what
her preferences are so that it can help us finding her ideal
flat while minimizing the number of interactions.

There is an important difference between these two ex-
amples. The latter is an instance of what is usually called
preference elicitation: the system interacts with the user by
∗Acknowledgements: many thanks to Richard Booth, Kevin

Garcia, Peter Haddawy, Mathieu Serrurier and Chattrakul Sombat-
heera for lots of helpful discussions on this topic. Anonymous ref-
erees also gave helpful comments.

asking her specific requests, until she has found her target
object or left the system (Chen and Pu 2004). The former is
an instance of passive learning: the system has in input the
whole set of preferences over films (which has been obtained
independently) and has to suggest one (or several) new ob-
ject(s), without any further interaction.

In both cases, however, the system has to learn prefer-
ences of a user (or, sometimes, a class of users) over a
set of alternatives that possesses a combinatorial structure.
Preferences over combinatorial domains have been investi-
gated in detail by researchers in multiattribute decision the-
ory (starting with Keeney and Raiffa 1976) and in artificial
intelligence. Multiattribute decision theory has focused on
modelling preferences, that is, giving axiomatic characteri-
zations of classes of preference relations or utility functions,
while artificial intelligence has focused on designing lan-
guages for representing preferences that are computation-
ally efficient (they have to express these preferences as suc-
cinctly as possible, and to come with algorithms for finding
optimal alternatives that are as fast as possible).

Classes of models and languages can be partitioned first
according to the mathematical nature of the preferences they
consider. Roughly speaking, one distinguishes between or-
dinal preferences (consisting in ranking the alternatives),
and numerical preferences (consisting of utility functions
mapping each alternative to some number). Here we focus
on ordinal preferences. They have the advantage of often
being easier to obtain from users (as it is well-known that
users are ill at ease giving numerical values, except when
these values are prices).

A key point, when dealing with ordinal preferences on
combinatorial domains, is the dependence structure between
attributes. CP-nets (Boutilier et al. 2004) are a graphi-
cal language for representing preferences that is based on
conditional preferential independence (Keeney and Raiffa
1976). A CP-net is composed of a directed graph represent-
ing the preferential dependences between variables, and a
set of conditional tables (one for each variable), expressing,
for each variable, the local preference on the values of its do-
main given the possible combination of values of its parents.
The transitive closure of these local preferences is a partial
order over the set of alternatives, which can be extended into
several total orders. This is one of the most popular prefer-
ence representation languages, and many facets of CP-nets

Preferences NMR-2008

207

have been studied, such as consistency, dominance check-
ing, and optimization (constrained and unconstrained). One
missing brick is the learning of CP-nets from a user.

Whereas learning or eliciting numerical preferences over
multiattribute domains has been considered in some places
(e.g. Ha and Haddawy 1997, Guo, Müller, and Weinhardt
2003), there have been few attempts at learning ordinal pref-
erences. Athienitou and Dimopoulos (2007) propose al-
gorithms to learn CP-nets; however, their approach suffers
from an important drawback: it searches for a CP-net, whose
associated partial order contains all the examples – we say
that it entails the examples, – while we argue that what we
intuitively look for is a CP-net whose associated partial or-
der can be extended into at least one total order that contains
the examples – we then say that the CP-net is consistent with
them. To see this, consider the following example.
Example 1 Suppose we have two binary attributes X1 and
X2 (with domains {x1, x1} and {x2, x2} respectively), and
the set of examples E = {x1x2 � x1x2, x1x2 �
x1x2, x1x2 � x1x2}. The transitive closure of E is the
complete preference relation x1x2 � x1x2 � x1x2 � x1x2.
This preference relation is separable, which means that the
agent’s preferences over the values of one attribute do not
depend on the value of the other attributes: here, the agent
unconditionally prefers x1 to x1 and x2 to x2. The fact that
x1x2 is preferred to x1x2 simply means that when asked to
choose between X1 and X2, the agent prefers to give up
X2 (think of X1 meaning “getting rich” and X2 meaning
“beautiful weather tomorrow”).

What do we expect to learn from the above set of exam-
ples E? Intuitively, since E is a separable preference rela-
tion, we expect to output a CP-net N with an empty graph
and the two unconditional preference tables x1 � x1 and
x2 � x2. However, no CP-net implies E , whatever its de-
pendence graph. The CP-net N induces a partial prefer-
ence relation in which x1x2 and x1x2 are incomparable; and
more generally, no CP-net can “explain” that x1 � x1 is “di-
rectly preferred” to x2 � x2 (i.e., with no intermediate alter-
native). Therefore, if we look for a CP-net implying each of
the examples, we will simply output ‘failure”. On the other
hand, if we look for a CP-net that is simply consistent with
the examples we will output the above CP-net.

The explanation is that when an agent expresses a CP-
net, the preference relation induced by this CP-net is not
meant to be the whole agent’s preference relation, but a sub-
set (or a lower approximation) of it. In other terms, when
an agent expresses the CP-net N , she simply expresses that
she prefers x1 to x1 ceteris paribus (i.e., for a fixed value
of X2) and similarly for the preference x2 � x1; the fact
that x1x2 and x1x2 are incomparable in N surely does not
mean that the user really sees them incomparable, but, more
technically, that CP-nets are not expressive enough for rep-
resenting the missing preference x1x2 � x1x2

1.
Another way of explaining this difference is that there are

two ways of seeing a CP-net: either we identify it with its
1If we want to do this, we have to resort to a more expressive

language such as TCP-nets (Brafman and Domshlak 2002) or con-
ditional preference theories (Wilson 2004).

induced partial preference relation, or we identify it with the
set of all complete preference relations that extend this par-
tial preference relation. With the second view, the goal of the
learning algorithm is to learn a collection of tables such that
the examples are consistent with some preference relation in
this set.

Another work on learning ordinal preferences is that of
Sachdev (2007): he proposes algorithms to learn prefer-
ence theories in the sense of Doyle, Shoham, and Wellman
(1991). The preference theory he obtains is indeed consis-
tent with the set of examples. In this work however, Sachdev
considers that one is given (or has access to) the complete set
of examples corresponding to an existing preference theory
that one is trying to induce. We do not make this strong
assumption here.

In the next section, we give some background on pref-
erences on combinatorial domains, and then we introduce
three kinds of compatibility between a CP-net and a set of
examples, namely, weak compatibility, strong compatibility
and implicative compatibility. We then focus on the simplest
case, namely separable preference relations (which extend
CP-nets with no preferential dependences): we show how
weak compatibility can be reduced to a satisfiability prob-
lem and vice versa, which allows us to show that deciding
weak compatibility is NP-complete ; we also give a way of
deciding implicative consistency. We finally go further and
show how to extend these results to the situation where the
graphical component of the CP-net is fixed but can contain
dependencies. In the last section, we conclude with some
hints about the general case where we have to learn both the
graph and the tables.

The learning problem
Multiattribute domains
We assume that we have a finite set V = {X1, . . . , Xn} of
attributes with associated finite domains D1, . . . , Dn. D =
D1× . . .×Dn is the set of all complete assignments, called
outcomes.

For any nonempty subset X of V , we let DX =
×Xi∈XDi. Elements of DX are called X -assignments (i.e.
value assignments for all attributes in X); they are denoted
using vectorial notation, e.g., ~x. For any disjoint subsets X
and Y of V , ~x ∈ DX and ~y ∈ DY then the concatenation
of ~x and ~y, ~x~y, is formally defined as ~x ∪ ~y – i.e., it is the
X ∪ Y -assignment which assigns to attributes in X (resp.
Y) the value assigned by ~x (resp. ~y).

An attribute Xi is binary if Di has two elements, which
by convention we note xi and xi.

A preference relation on a multiattribute domain D is a
weak order on D, that is, a reflexive and transitive binary re-
lation �. If furthermore � is connected, that is, if for every
~x, ~y ∈ D we have either ~x � ~y or ~y � ~x then � is a com-
plete preference relation. A strict preference relation� is an
order on D, that is, an irreflexive and transitive (thus asym-
metric) binary relation. If moreover � is connected then �
is a linear preference relation. From a preference relation �
we define a strict preference relation in the usual way: ~x � ~y
iff ~x � ~y and not (~y � ~x).

Preferences NMR-2008

208

Suppose now that we have a set of examples E , where each
example is a pair of distinct outcomes (~x, ~y) (also denoted,
equivalently, by ~x � ~y) such that ~x is preferred to ~y. We
sometimes denote such an example by ~x � ~y rather than
(~x, ~y). In the following, E denotes a finite set of examples.
In a recommender system for examples, these example may
have been recorded in the course of a user interaction with
the system.

Ideally, we would like to induce from these examples the
complete ordering of all outcomes for the user. That is, we
would like to learn how to order every unordered pair of dis-
tinct outcomes {~x, ~y}. Therefore, our target is a linear pref-
erence, or else, a complete preference relation (if we allow
for indifferences)

However, if we call O the set of total strict orders on D,
and if the n attributes have m possible values each, there are
mn outcomes, thus mn! total strict orders in O. There are
too many elements in O to represent them efficiently, so we
will have to restrict ourselves to a smaller hypothesis space.
In the next section, we briefly present CP-nets, which will
form our hypothesis space.

Ceteris paribus preferences and CP-nets
Preferences between outcomes that differ in the value of
one attribute only, all other attributes being equal (or ce-
teris paribus) are often easy to assert, and to understand.
CP-nets (Boutilier et al. 2004) are a graphical language for
representing such preferences, that is based on conditional
preferential independence (Keeney and Raiffa 1976). A CP-
net is composed of a directed graph representing the pref-
erential dependences between attributes, and a set of condi-
tional preference tables (one for each attribute), expressing,
for each attribute, the local preference on the values of its
domain given the possible combination of values of its par-
ents. This is one of the most popular preference represen-
tation languages on multiattribute domains, and many facets
of CP-nets have been studied, such as consistency, domi-
nance checking, and optimization (constrained and uncon-
strained).

Let us call a swap any pair of outcomes {~x, ~y} that dif-
fer in the value of one attribute only, and let us then call
swapped attribute the attribute that has different values in ~x
and ~y. A CP-net specifies, for every swap {~x, ~y}, which of
~x � ~y or ~y � ~x is true. This can be achieved in a com-
pact manner when there are many independencies among
attributes.

Example 2 Consider three attributes A, B and C, with re-
spective domains {a, a}, {b, b} and {c, c}, and suppose that
the four swaps on B are ordered as follows: abc � abc,
abc � abc, abc � abc, abc � abc. We can see that, irre-
spective of the value of C, if a is the case, then b is preferred
to b, whereas if a is the case, then b is preferred to b. We can
represent this ordering on the B-swaps with two conditional
preferences: a : b � b and a : b � b, and say that, given A,
B is (conditionally) preferentially independent of C.

Definition 1 Let {X ,Y,Z} be a partition of the set V and
� a linear preference relation over D. X is (conditionally)

preferentially independent of Y given Z (w.r.t. �) if and
only if for all ~x1, ~x2 ∈ DX , ~y1, ~y2 ∈ DY , ~z ∈ DZ ,

~x1~y1~z � ~x2~y1~z iff ~x1~y2~z � ~x2~y2~z

Definition 2 A CP-net over attributes V = {X1, . . . , Xn}
with domains D1, . . . , Dn is a pair N = 〈G, P 〉 where G
is a directed graph over x1, . . . , xn and P is a set of con-
ditional preference tables CPT (Xi) for each Xi ∈ V . For
attribute Xi, we denote by Par(Xi) (resp. NonPar(Xi)) the
set of parents of Xi in G (resp. V − ({Xi} ∪ Par(Xi))).
Each conditional preference table is a list of rows of the form
~u : xj

i � xk
i : it associates a total order on Di with each in-

stantiation ~u of Par(Xi), and indicates, for every possible
instantiation ~z of NonPar(Xi), that ~uxj

i~z � ~uxk
i ~z. When

all attributes of V are binary, a CP-net over V is said to be
propositional.
Example 3 A CP-net over attributes A, B and C, with re-
spective domains {a, a}, {b, b} and {c, c} is:

A

a � a

B

a : b � b
a : b � b

C

b : c � c
b : c � c

where X Y means “X is a parent of Y ”. The
associated ordering of the swaps is:

abc abc abc

abc

abc

abc abc abc

where ~x ~y means “~x is preferred to ~y”.

Although a CP-net only specifies an ordering of all swaps,
we are naturally interested in the transitive closure of this or-
dering; for a CP-net N , we note �N this transitive closure.
Note that this relation �N may not be total, and it may not
be a strict order since it may contain cycles, and thus not be
irreflexive. We know from (Boutilier et al. 2004) that if G
is acyclic, then �N is a strict order (i.e. contains no cycles).
In this case we say that N is consistent; �N may still not
be total, it can then be completed in a number of total strict
orders of O. If � is one of them, that is, if �∈ O and if
�N⊆�, we say that � is a completion of N . When �N is
not irreflexive, we say that N is inconsistent.

We recall the following property (Boutilier et al. 2004),
which will be useful later:
Proposition 1 (Boutilier et al. 2004, Th. 7 and 8) Let N
be an acyclic CP-net and ~x, ~y two outcomes. Then ~x � ~y
is implied by N if and only if there is a sequence of swaps
{~x0, ~x1}, {~x1, ~x2}, . . . , {~xk−1, ~xk} such that ~x0 = ~x, ~xk =
~y, and for every 0 ≤ i < k, ~xi � ~xi+1, that is, if Xji

is the attribute swapped between ~xi and ~xi+1, and if ~u is
the vector of values commonly assigned by ~x and ~y to the
parents of Xi, then N contains ~u : xi

ji
� xi+1

ji
;

Preferences NMR-2008

209

Different forms of compatibility between sets of
examples and CP-nets
We said earlier that the target of our learning process should
be a strict total order2 over all outcomes, but we have just
seen that a CP-netN does not in general correspond to such
an order, since the preference relation �N induced from N
is generally not complete. Actually, �N can be seen as the
set of all its completions, that is, a CP-net expresses a set of
linear preference relations.

If an example (~x, ~y) is a swap, then either ~x �N ~y or
~y �N ~x, and clearly we would like N to be in agreement
with the example, that is, for instance, such that ~x �N ~y.
But if (~x, ~y) is not a swap, there may be completions � and
�′ of �N such that ~x � ~y and ~y �′ ~x.

So we should start by discussing the possible ways of
measuring to which extent a given CP-net generalizes from
a given set of examples.

Definition 3 Let N be a CP-net over V . An example (~x, ~y)
is

• implied by N if ~x � ~y for every completion � of �N ;
• consistent with N if there is a completion� of�N such
that ~x � ~y.

Furthermore, we will say that a set of examples E is:

• implied by N if for every completion� of�N , for every
(~x, ~y) ∈ E , ~x � ~y
(that is, if every example is implied by N);
• globally (or strongly) consistent with N if there is a
completion � of �N such that, for every (~x, ~y) ∈ E ,
~x � ~y.
• weakly consistent with N if for every (~x, ~y) ∈ E , there

is a completion � of �N such that, ~x � ~y
(that is, if every example (~x, ~y) ∈ E is individually con-
sistent with N).

Clearly, strong consistency implies weak consistency,
and, if N is consistent and if E is implied by N , then it
is strongly consistent with N .

Notice that an example (~x, ~y) ∈ E is implied by N if
and only if ~x �N ~y. Also, it can be shown easily that E
is strongly consistent with N if and only if the transitive
closure of �N ∪ E contains no cycle.

(Athienitou and Dimopoulos 2007) try to learn a CP-net
that implies a given set of examples. However, there are
cases where learning such a CP-net may not be appropriate.

We have (cf. Ex. 1) that the transitive closure of a set of
examples may be a total order over the set of alternatives,
that the preferences specified by this set of examples may be
separable, although they cannot be implied by any CP-net.
Consider now a second example.

Example 4 E = {x1x2 � x1x2, x1x2 � x1x2}. This
set of examples is obtained from that of Example 1 by re-
moving the third example. Intuitively, there is no reason to

2Our methodology and results would easily carry on to the
problem of learning nonstrict preference relations (where indiffer-
ence is allowed). We stick here to strict preference relation because
the presentation is simpler.

think that the agent’s preference relation is not separable.
However, there exists no CP-net with G = 〈V, ∅〉 that im-
plies E . When allowing for the more complicated structure
G = 〈V, {X1 → X2}〉 we obtain the conditional preference
tables x1 � x1, x1 : x2 � x2, x1 : x2 � x2, whose in-
duced preference relation is x1x2 � x1x2 � x1x2 � x1x2.
Therefore, asking for a CP-net that implies E leads to a more
complicated structure than necessary (a preferential depen-
dence between X1 and X2 whereas nothing tells us there
should be one).

In both Examples 1 and 4, E is strongly (and a for-
tiori weakly) consistent with the separable CP-net {x1 �
x1, x2 � x2}. Therefore weak and strong compatibility
look like more reasonable notions when it comes to learn
CP-nets.

The difference between weak and strong compatibility
(that we could also call local and global compatibility) is
more subtle. While strong compatibility requires that the ex-
amples are all compatible with a single preference relation
extending N , weak compatibility only requires each exam-
ple to be compatible with some preference relation extend-
ing N . As a consequence, if E is inconsistent (for instance
because it contains two opposite examples ~x � ~y and ~y � ~x,
or more generally a series of examples ~x1 � ~x2, ~x2 � ~x3,
. . . , ~xp � ~x1), then there cannot be an N such that E is
strongly consistent withN , whereas it might still be the case
that there is an N such that E is weakly consistent with N ,
as it can be seen on the following example.

Example 5 E = {x1x2 � x1x2, x1x2 � x1x2}. E is
clearly inconsistent, and yet E is weakly consistent with the
separable CP-net N whose tables are {x1 � x1, x2 � x2}.
Because E is inconsistent, it is not strongly consistent with
N (nor with any other CP-net).

Note that ifN is itself inconsistent (i.e., possesses cycles),
then no set of examples can be strongly consistent with N
whereas there are sets of examples which are implied by N
(and, a fortiori, are weakly consistent with N).

If the examples all come from a single user and are reli-
able, then weak consistency is much too weak. However,
if they come from multiple users (given that we want to
learn the generic preferences of a group of users), or a sin-
gle user in different contexts, then it becomes reasonable:
for instance, we may learn that all users in the group un-
conditionally prefer x1 to x1 and x2 to x2, whereas their
preferences between x1x2 and x1x2 may differ (think as x1

and x2 as, respectively, “being invited to a fine dinner” and
“receiving a $50 award”). Moreover, weak consistency is
relevant even for a single user if we allow for errors or for
changes of mind.

In the sequel, we will focus on weak consistency, because
it is easier to characterize. The computation of strong con-
sistency is left for future research.

Definition 4 Let G = 〈V, E〉 be a graph over V and E a set
of examples. E is

• weakly G-compatible if there there exists a CP-net N
with graph G such that E is weakly consistent with N .

Preferences NMR-2008

210

• strongly G-compatible if there there exists a CP-net N
with graph G such that E is strongly consistent with N .
• implicatively G-compatible if there there exists a CP-net
N with graph G such that E is implied by N .

Observation 1 If G is acyclic then implicative G-
compatibility implies strong G-compatibility, and strong G-
compatibility implies weak G-compatibility.

This is just because if G is acyclic then any CP-net N
whose associated graph is G is consistent. We also have the
obvious fact:

Observation 2 If G ⊆ G′ and E is weakly (resp.
strongly, implicatively) G′-compatible, then E is weakly
(resp. strongly, implicatively) G-compatible.

As usual in machine learning, we have a preference for
learning simple structures: here, simplicity is measured by
the size of the tables, which is directly related to the number
of edges in the graph. In particular, the simplest CP-nets are
the separable ones (i.e., those without edges); next Section
is dedicated to this specific class of CP-nets.

Learning separable preference relations
Computing a CP-net weakly consistent with a set of
examples
We start by the simplest case of separable preference rela-
tions over binary domains, that is:

• G = ∅;
• D = {x1, x1} × {xn, xn}.

We first define the following translation from sets of ex-
amples E to sets of clauses. Let ~x � ~y be an exam-
ple. Define Diff(~x, ~y) = {xi | (~x)i = xi and (~y)i =
xi} ∪ {xi | (~x)i = xi and (~y)i = xi}.

Now, with each example ~x � ~y we associate the following
clause C~x�~y that contains xi iff xi ∈ Diff(~x, ~y) and ¬xi

iff xi ∈ Diff(~x, ~y).
For instance, if ~x = x1x2x3x4 and ~y = x1x2x3x4 then

Diff(~x, ~y) = {x1, x2, x4} and C~x�~y = x1 ∨ ¬x2 ∨ x4.
If E is a set of examples then ΦE is the set of clauses

defined by ΦE = {Ce | e ∈ E}.
Lastly, we define the following one-to-one correspon-

dence between truth assignments over {x1, . . . , xn} and
separable CP-nets over V . If M is such a truth assignment,
then theNM contains the preference table xi � xi for every
i such that M |= xi and the preference table xi � xi for ev-
ery i such that M |= ¬xi. For instance, if M(x1) = >,
M(x2) = ⊥, M(x3) = ⊥ and M(x4) = > then NM

contains the preference tables {x1 � x1, x2 � x2, x3 �
x3, x4 � x4}.

Proposition 2
M |= ΦE if and only if E is weakly consistent with NM .

Before proving Proposition 2 we establish the following
simple Lemma, which is a consequence of Proposition 1
(since it is very simple, we give its proof anyway).

Lemma 1 Let N be a CP-net with G containing no edges,
and ~y 6= ~x. Then N |= ~x � ~y if and only if N contains
xi � xi for every xi ∈ Diff(~x, ~y) and xi � xi for every
xi ∈ Diff(~x, ~y).

Proof: Without loss of generality, let ~x = x1 . . . xn

and ~y = x1 . . . xixi+1 . . . xn. If N contains
x1 � x1, . . . , xi � xi then N |= ~x � ~y. Conversely,
without loss of generality assume N does not contain
x1 � x1, which implies that it contains x1 � x1. Consider
a lexicographic preference relation � on D in which
X1 is the most important attribute. We have ~y � ~x, and
yet� extends�N , therefore we cannot haveN |= ~x � ~y. �

Now we establish Proposition 2:

Proof:
• (⇐) Let M be an interpretation and NM the CP-net
associated with N . Assume M 6|= ΦE , i.e., there ex-
ists an example ~x � ~y in E such that MN |= ¬C~x�~y .
Without loss of generality, let ~x = x1 . . . xn and ~y =
x1 . . . xixi+1 . . . xn. Then we have M |= ¬x1∧. . .∧¬xi,
therefore NM contains x1 � x1, . . . , xi � xi, which by
Lemma 1 implies that N |= ~y � ~x, therefore NM is not
consistent with ~x � ~y, and a fortiori, NM is not weakly
consistent with E .
• (⇒) Let M be an interpretation over x1, . . . , xn and
NM the CP-net associated with M . Assume that NM

is not weakly consistent with E , which means that there
exists an example ~x � ~y in E such that NM |= ~y �
~x. Without loss of generality, let ~x = x1 . . . xn and
~y = x1 . . . xixi+1 . . . xn. By Lemma 1 this implies that
NM contains x1 � x1, . . . , xi � xi}. This implies that
M |= ¬x1 ∧ . . . ∧ ¬xi, therefore M 6|= C~x�~y , and a
fortiori, M 6|= ¬ΦE .

�

Corollary 1 E is weakly 〈V, ∅〉-compatible if and only if ΦE
is satisfiable.

This correspondence between unconditional CP-nets and
interpretations over V enables us to draw the following re-
sult:

Proposition 3 Deciding whether a set of examples is weakly
〈V, ∅〉- compatible is NP-complete .

Proof: Membership is easy: given a set of examples E , guess
an unconditional CP- netN and check that E is weakly con-
sistent with N , which can be done in time O(|E|.n) using
Lemma 1. For hardness we use the following reduction from
3SAT. Let Φ = {C1, . . . , Cp} be a set of 3-clauses. For ev-
ery C = l1 ∨ l2 ∨ l3 in Φ create an example eC = (~x � ~y)
with
• ~x = ε1.x1ε2.x2 . . . εn.xn,
• ~y = ε′1.x1ε

′
2.x2 . . . ε′n.xn,

• for every i, εi.xi =

{
xi if lj = xi for some j
¬xi if lj = ¬xi for some j
xi otherwise

Preferences NMR-2008

211

• for every i, ε′i.xi =

{ ¬xi if lj = xi for some j
xi if lj = ¬xi for some j
xi otherwise

Now, let EΦ = {eC | C ∈ Φ}. For example, if
Φ = {x1 ∨ ¬x2 ∨ x3,¬x1 ∨ x2 ∨ x4, x2 ∨ x3 ∨ x4}
then EΦ = {x1x2x3x4 � x1x2x3x4, x1x2x3x4 �
x1x2x3x4, x1x2x3x4 � x1x2x3x4}. We easily check that
ΦEΦ = E , therefore, using Corollary 1 we get that Φ is
satisfiable if and only if E is weakly 〈V, ∅〉-compatible. �

The generalization to non-binary domains is not difficult.
Instead of having one propositional symbol per attribute, we
have one propositional symbol for each pair of values of
a attribute. For instance, if we have a attribute X whose
domain is {d1, d2, d3} then we have the three propositional
symbols d1 � d2, d1 � d3 and d2 � d3. The main differ-
ence with the binary case is the transitivity requirement. Let
Trans =

∧
Xi∈V TransXi be the propositional formula ex-

pressing transitivity – for instance, for D1 = {d1, d2, d3}we
have TransX1 = (d1 � d2 ∧ d2 � d3 → d1 � d3)∧ (d1 �
d3 ∧ ¬(d2 � d3) → ¬(d1 � d2) ∧ Note that Trans is
polynomially long.

The one-to-one correspondence between interpretations
and CP-nets now works only for interpretations satisfying
Trans, and Proposition 2 is generalized into:

Proposition 4 M |= ΦE ∧ Trans if and only if NM is
weakly consistent with NM .

And Corollary 1 becomes:

Corollary 2 E is weakly 〈V, ∅〉-compatible if and only if
ΦE ∧ Trans is satisfiable.

Computing a CP-net implied by a set of examples
It is easy to characterize whether there exists a CP-net that
implies E . With each example ~x � ~y we associate the fol-
lowing cube (conjunction of literals) Γ~x�~y: it contains xi

iff xi ∈ Diff(~x, ~y) and ¬xi iff xi ∈ Diff(~x, ~y). Let
ΓE =

∧
{Γe | e ∈ E}. Using Lemma 1, we get the follow-

ing result:

Proposition 5 M |= ΓE if and only if NM implies E .

Corollary 3 There exists a CP-net implying E if and only if
ΓE is satisfiable.

Corollary 4 Deciding whether there exists a CP-net imply-
ing E is in P.

Learning non-separable preference relations
over a fixed acyclic structure

We no longer assume that the preference relation is separa-
ble, but we assume that it can be represented by a CP-net
over a fixed acyclic graph (V, E): we are given a set of ex-
amples of pairwise comparisons E , and we want to generate
a set P of preference tables for the graph (V, E) such that
the CP-net N = ((V, E),P), is weakly compatible with E .
Ideally, we would be able to generalize in a simple way the
technique given from Section : that is, we translate exam-
ples into propositional clauses, the models of which would

correspond to CP-nets that are weakly consistent with the
examples. Unfortunately, this is not simple.

The following result, by (Boutilier et al. 2004), provides
a condition that ensures weak compatibility of a CP-net with
a given example ~o � ~o′ ∈ E :

Proposition 6 (Boutilier et al. 2004, Corollary 4.1) If N is
an acyclic CP-net, ~o, ~o′ are two outcomes, and if there exists
an attribute X ∈ V such that ~o and ~o′ assign the same values
to all ancestors of X in N , and such that, given the values
assigned by ~o and ~o′ to the parents of X , ~o assigns a more
preferred value to X than that assigned by ~o′ according to
the preference table of N for X , then ~o′ 6�N ~o.

Note the condition is not necessary. However, given a set
E of examples and a given structure (V, E), we can generate
propositional clauses that correspond to these conditions: if
we find a set of tables that satisfies these clauses, then we
are certain that the CP-net is weakly consistent with the set
of examples.

Let us first define the propositional literals that will be
used in the clauses. Given an acyclic graph (V, E) and an
attribute X ∈ V , let U be the set of its parents in the graph:
the table for X in a CP-net over (V, E) contains, for every
assignment u for the attributes in U , and any pair of distinct
values x, x′ in the domain of X , either u : x � x′ or u : x′ �
x. So we can define a propositional variable whose truth
value says which is the case of the two possibilities. So our
propositional language contains a propositional variable for
every pair of possible values for every attribute X ∈ V and
every assignment for the parents of X . Without explicitly
giving a name to this variable, we will simply represent the
literals for variable X and assignment u by u : x � x′ and
u : x′ � x.

Now, given a pairwise comparison of two outcomes ~o �
~o′, and a graph G = (V, E), we define a clause ΨG,~o�~o′ as
the set of the literals u : x � x′ for every variable X such
that ~o and ~o′ assign the same values to all ancestors of X in
G and the value assigned to X by ~o is x, that assigned by
~o′ is x′, and x 6= x′, and where u is the value assigned by
~o and ~o′ to the parents of X . Note that if G = (V, ∅), then
ΨG,~o�~o′ = Φ~o�~o′ . We will denote by ΨG,E the conjunction
of the clauses corresponding to all examples of E .

For example, suppose we have four binary variables A,
B, C and D, and the following graph G:

A B C D

Then ΨG,abcd�abcd = a : b � b, whereas ΨG,abcd�abcd =
a � a ∨ d � d.3

3Note that the clause Ψ~o�~o′ is never empty: assume it is, and
take any order on V (w.l.o.g., X1 � . . . � Xn) being compatible
with G (which is possible because G is acyclic); we prove by induc-
tion on k that ~o and ~o′ assign the same values to Xk. This is true
for k = 1, because Ψ~o�~o′ does not contain any literal referring to
X1, and X1 has no parents in G. Assume it is true for all j ≤ k.
Ψ~o�~o′ does not contain any literal referring to Xk+1, and the val-
ues of the parents of Xk+1 (which are contained in {X1, . . . , Xk})

Preferences NMR-2008

212

Corollary 5 If G is an acyclic graph and ΨG,E is satisfiable,
then E is weakly G-compatible.

In order to obtain strong compatibility, we can use a
stronger formula: we let, for every (~o, ~o′) ∈ E , ΛG,~o�~o′ =
ΨG,~o�~o′ ∧ ¬ΨG,~o′�~o. Then ΛG,E is the conjunction of the
formulas corresponding to all examples of E .

Proposition 7 If G is an acyclic graph and ΛG,E is satisfi-
able, then E is strongly G-compatible.

Proof: We first define two relations between outcomes:
we let ~o�N~o′ when the conditions of proposition 6 are
met: there exists a variable X ∈ V such that ~o and ~o′

assign the same values to all ancestors of X in N , and
such that, given the values assigned by ~o and ~o′ to the
parents of X , ~o assigns a more preferred value to X than
that assigned by ~o′ according to the preference table of
N for X . Let then ~o �N ~o′ if ~o�N~o′ but ~o′ 6�N ~o.
(Boutilier et al. 2004) prove that the transitive closure
of �N is irreflexive and contains �N . Now suppose
that a CP-net N satisfies ΛG,E , then �N is such that
~o �N ~o′ for every (~o, ~o′) ∈ E . Consider now a comple-
tion� of�N : it satisfies E , and it is a completion of�N . �

Note that the formula ΛG,E is very strong: in the case
where the graph has no vertex, it ensures that the resulting
CP-net implies the examples.

It is possible to define another formula, the unsatisfia-
bility of which ensures that E is not weakly G-compatible,
but at a high cost: Proposition 1 indicates that an exam-
ple (~x, ~y) is implied by a CP-net if and only if there is
a swapping sequence ~x = ~x0, ~x1, . . . , ~xn = ~y from ~x
to ~y such that xi � xi+1 for every i; so the example is
weakly consistent if an only if for every sequence of swaps
~y = ~x0, ~x1, . . . , ~xn = ~x from from ~y to ~x, xi � xi+1 holds
for at least one i. However, the translation of a set of ex-
amples into a set of clauses using this characterization does
not seem to be of practical use, since there can be too many
decreasing sequences of flips from one outcome to another.
Even if we restrict our attention to what we may call direct
sequences, ones in which no variable is flipped more that
once, there will be be |Diff(~x, ~y)|! such sequences; and by
doing so we would lose the practical usefulness of the ap-
proach.

We end up this section by briefly addressing complex-
ity issues. We know from (Domshlak and Brafman 2002)
that dominance checking in acyclic CP-nets is NP-complete.
Therefore, checking whether an acyclic CP-net implies
(resp. is weakly consistent with) a set of examples is
NP-complete (resp. coNP-complete). However, checking
whether a given set of examples is weakly or implicatively
G-compatible requires first finding the suitable CP-net; such
a CP-net is exponentially large in the maximum number of
parents in G, therefore weak and implicative G-compatibility
may well be above NP and coNP, except in the specific case
where the number of parents is bounded by a constant (in the

are the same in ~o and ~o′, therefore o and o′ must assign the same
values to Xk+1. Therefore we have ~o = ~o′, which is impossible
because examples involve distinct outcomes.

latter case, implicative G-compatibility is NP-complete and
weak G-compatibility is in Σp

2).

Conclusion
Learning a good representation of an ordering of multiat-
tribute outcomes is a difficult task because of the exponential
number of these orderings. CP-nets provide a compact, but
incomplete, representation for such an ordering. Because
not all orderings can be exactly captured by a CP-net, it
seems reasonable to learn a CP-net consistent with all exam-
ples, rather than to look for a CP-net that would imply all of
them. In the specific case of separable preference relations,
checking if a set of examples can be implied by an acyclic
CP-net can be achieved in polynomial time, but on the other
hand, we may often fail to find such a CP-net implying the
examples. Moreover, although checking if there exists a CP-
net that is consistent with each example taken individually is
NP-complete (still in the case of separable preference rela-
tions), our translation of the problem into clauses means that
a good SAT solver may be able to find such a CP-net in rea-
sonable time. As for ensuring global consistency, this seems
much more difficult: we do not even have a proof of mem-
bership to NP.

We have assumed in the paper that a structure G is given,
and that we want to learn a CP-net over that graph. In gen-
eral, we may not know the structure. In this case, the goal
of the learning problem is to learn the structure of the CP-
net as well as conditional preference tables for this graph. It
seems natural to try to learn a CP-net over a structure as sim-
ple as possible, as suggested in (Athienitou and Dimopoulos
2007). In order to achieve that, we can start with a graph
with no edge, and try to learn tables for this graph. If this
is not successful, we try to learn tables for CP-nets with one
edge. Again, if this is not successful, we can try to find ta-
bles for CP-nets with two edges and so on... Of course, enu-
merating all possible structures would not be feasible, and
would not be desirable either: it may be the case that only
a CP-net with a very complex structure is weakly consistent
with all examples; this may indicate that we are over-fitting
the data, because data is noisy or because the total ordering
that we should learn cannot be represented by a CP-net. In
order to keep the CP-net simple, rather than aiming for a CP-
net that is 100% weakly compatible with the examples, we
can compute, for each CP-net, its rate of weak compatibility
with the examples, and learn a CP-net that represents a good
tradeoff between this rate of compatibility and simplicity.

References
Athienitou, F., and Dimopoulos, Y. 2007. Learning CP-
networks: a preliminary investigation. In Proceedings of
the 3rd Multidisciplinary Workshop on Advances in Pref-
erence Handling (PREF’07).
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004. CP-nets: a tool for representing and
reasoning with conditional ceteris paribus preference state-
ments. Journal of Artificial Intelligence Research 21:135–
191.

Preferences NMR-2008

213

Brafman, R. I., and Domshlak, C. 2002. Introducing vari-
able importance tradeoffs into CP-nets. In Uncertainty in
Artificial Intelligence: Proceedings of the Eighteenth An-
nual Conference, 69–76.
Chen, L., and Pu, P. 2004. Survey of preference elicitation
methods. Technical Report 200467, Ecole Polytechnique
Fédérale de Lausane.
Domshlak, C., and Brafman, R. 2002. CP-nets—reasoning
and consistency testing. In Proceedings of KR0-2, 121–
132.
Doyle, J.; Shoham, Y.; and Wellman, M. P. 1991. A logic of
relative desire (preliminary report). In ISMIS ’91: Proceed-
ings of the 6th International Symposium on Methodologies
for Intelligent Systems, 16–31. London, UK: Springer-
Verlag.
Guo, Y.; Müller, J.; and Weinhardt, C. 2003. Learning user
preferences for multi-attribute negotiation: An evolution-
ary approach. In CEEMAS, 303–313.
Ha, V. A., and Haddawy, P. 1997. Problem-focused incre-
mental elicitation of multi-attribute utility models. In UAI,
215–222.
Keeney, R. L., and Raiffa, H. 1976. Decision with Multiple
Objectives: Preferences and Value Trade-offs. Wiley.
Miller, B. N.; Albert, I.; Lam, S. K.; Konstan, J. A.; and
Riedl, J. 2003. Movielens unplugged: Experiences with
an occasionally connected recommender system. In Pro-
ceedings of ACM 2003 Conference on Intelligent User In-
terfaces (IUI’03). Chapel Hill, North Carolina: ACM.
Perny, P., and Zucker, J.-D. 2001. Preference-based search
and machine learning for collaborative filtering: the film-
conseil movie recommender system. I3 1(1):1–40.
Sachdev, M. 2007. On learning of ceteris paribus prefer-
ence theories. Master’s thesis, Graduate Faculty of North
Carolina State University.
Viappiani, P.; Faltings, B.; and Pu, P. 2006a. Evaluating
preference-based search tools: a tale fo two approaches.
In Proceedings of the Twenty-first National Conference on
Artificial Intelligence (AAAI-06), 205–210.
Viappiani, P.; Faltings, B.; and Pu, P. 2006b. Preference-
based search using example-critiquing with suggestions.
Journal of Artificial Intelligence Research 27:465–503.
Wilson, N. 2004. Consistency and constrained optimisa-
tion for conditional preferences. In Proceedings of the 16th
European Conference on Artificial Intelligence (ECAI’04),
888–892.

Preferences NMR-2008

214

Defeasible Logic to Model n-person Argumentation Game

Duy Hoang Pham, Subhasis Thakur, Guido Governatori
School of Information Technology and Electrical Engineering

The University of Queensland, Brisbane, Australia
{pham,subhasis,guido}@itee.uq.edu.au}

Abstract

In multi-agent systems, an individual agent can pursue its
own goals, which may conflict with those hold by other
agents. To settle on a common goal for the group of agents,
the argumentation/dialogue game provides a robust and flex-
ible tool where an agent can send its explanation for its goal
in order to convince other agents. In the setting that the num-
ber of agents is greater than two and they are equally trustful,
it is not clear how to extend existing argumentation/dialogue
frameworks to tackle conflicts from many agents. We pro-
pose to use the defeasible logic to model the n-person argu-
mentation game and to use the majority rule as an additional
preference mechanism to tackle conflicts between arguments
from individual agents.

Introduction
In a group of agents, there are several situations requir-
ing agents to settle on a common goal despite that each
agent can pursue its goals which may conflict with other
agents. A simple but efficient method to tackle the prob-
lem is to give weights over the goals. However, this
method is not robust and limits the autonomy of an indi-
vidual agent. Also, the conflicts among agents are likely
to arise from a partial view and incomplete information on
working environment of individual agents. To settle con-
flicts among agents an agent can argue to convince others
about its pursued goal and provides evidences to defend
its claim. This interaction between agents can be mod-
elled as an argumentation game (Prakken & Sartor 1996;
Jennings et al. 1998; Parsons & McBurney 2003; Am-
goud, Dimopoulos, & Moraitis 2007). In an argumentation
game, an agent can propose an explanation for its pursued
goal (i.e., an argument), which can be rejected by counter-
evidences from other agents. This interaction can be iterated
until an agent (the winner) successfully argues its proposal
against other agents. The argumentation game approach of-
fers a robust and flexible tool for agents to resolve conflicts
by evaluating the status of arguments. Dung’s argumentation
semantics (Dung 1995) is widely recognised to establish re-
lationships among arguments. The key notion for a set of
arguments is whether a set of arguments is self-consistent
and provides the base to derive a conclusion. A conclusion
is justified, and thus provable, if there is a set of supporting
arguments and all counter-arguments are deficient when we

consider the arguments in the set of supporting arguments.
An argumentation game is more complicated when the

number of participants is greater than two. It is not clear how
to extend existing approaches to cover the argumentation in
groups of more than two agents, especially when agents are
equally trustful. That is arguments from individual agents
have the same weight. In this case, the problem amounts to
how to decide which argument has precedence over compet-
itive arguments. In other words, the problem is to determine
the global collective preference of a group of agents.

The main idea behind our approach is that if individual
preferences of agents are not sufficient to solve a conflict
(for example, we have several arguments without any rel-
ative preference over them), the group of agents uses the
majority rule (Lin 1996) over initial proposals to determine
the “most common” claim known as the “topic” of a dia-
logue. That is the topic preferred by the majority of the
group. An agent either supports the topic or defends its own
claim against the topic. Our majority mechanism simplifies
the complexity of the n-person argumentation and provides
a strategy for an agent to select an argument for defending
its proposal. That is an argument causing more “supporters”
to reconsider “their attitude” will be preferred by defending
agents.

Each of our agents has three types of knowledge: its
private knowledge, background knowledge, and knowledge
obtained from other agents. The background knowledge
presents the expected behaviour of a member of the group
that is commonly shared by the group. The knowledge
about other agents growing during the interactions enables
an agent to efficiently convince others about its own goal.
Essentially, the background knowledge is preferred over
other sources because it represents common expectations
and constraints of the group. Any argument violating the
background knowledge is not supported by the group.

Defeasible logic is chosen as our underlying logic for the
argumentation game due to its efficiency, simplicity in rep-
resenting incomplete and conflicting information and rela-
tionships with logic programming (Antoniou et al. 2006).
Furthermore, the logic has a powerful and flexible reasoning
mechanism (Antoniou et al. 2000; Maher et al. 2001) which
enables our agents to capture Dung’s argumentation seman-
tics by using two features of defeasible reasoning, namely
the ambiguity propagating (the preference over conflicts is

Preferences NMR-2008

215

unknown) and ambiguity blocking (the preference is given).
Our paper is structured as follows. In the second sec-

tion, we briefly introduce essential notions of defeasible log-
ics, the construction of arguments using defeasible reason-
ing with respect to (w.r.t) ambiguous information, and the
majority rule. In the third section, we introduce n-person ar-
gumentation framework using defeasible logic. We present
firstly the external model of agents’ interaction, which de-
scribes a basic procedure for an interaction between agents.
Secondly, we define the internal model, which shows how an
agent can deal with different individual knowledge sources
in order to propose and to defend its goal against the other
agents. The fourth section provides an overview of research
works related to our approach. The final section concludes
the paper.

Background
Defeasible Logic
Following the presentation in (Billington 1993), the basic
components of defeasible logic (DL) are: facts, strict rules,
defeasible rules, defeaters, and a superiority relation.

Facts are undeniable statements, which are always true.
Strict rules, similar to rules in classical logics, are rules
whose conclusions are unquestionable. Defeasible rules are
different from strict rules in the way that their conclusions
can be overridden by contrary evidences. Defeaters are rules
that cannot be used to draw any conclusion but to prevent
some conclusions from some defeasible rules by producing
evidence to the contrary. The superiority relation defines
priorities among rules. That is, one rule may override the
conclusion of another rule when we have to solve a conflict
between rules with opposite conclusions.

A defeasible theory D is a triple (F,R,>) where F is a
finite set of facts, R a finite set of rules, and > a superiority
relation on R.

The language of DL consists of a finite set of literals.
Given a literal l, we use ∼l to denote the propositional lit-
eral complementary to l, that is if l = p, then ∼l = ¬p, and
if l = ¬p, than ∼l = p.

A rule r in R is composed of an antecedent or body A(r)
and a consequent or head C(r). A(r) consists of a finite set
of literals while C(r) contains a single literal. A(r) can be
omitted from the rule if it is empty. The set of rules R can
include all three types of rules, namely Rs (strict rules), Rd
(defeasible rules), and Rd f t (defeaters). We will use Rsd for
the set of strict and defeasible rules, and R[q] for the set of
rules whose head is q.

A conclusion derived from the theory D is a tagged literal
and is categorised according to how the conclusion can be
proved:

• +∆q: q is definitely provable in D

• −∆q: q is definitely unprovable in D.

• +∂q: q is defeasibly provable in D.

• −∂q: q is defeasibly unprovable in D.

Provability is based on the concept of a derivation (or
proof) in D = (F,R,>). Informally, definite conclusions can

derive from strict rules by forward chaining, while defeasi-
ble conclusions can obtain from defeasible rules iff all pos-
sible “attacks” are rebutted due to the superiority relation or
defeater rules.

A derivation is a finite sequence P = (P(1), . . . ,P(n))
of tagged literals satisfying proof conditions (which corre-
spond to inference rules for each of the four kinds of con-
clusions). P(1..i) denotes the initial part of the sequence P
of length i. In the follows, we present the proof for definitely
and defeasibly provable conclusions1:

+∆: If P(i+1) = +∆q then
(1) q ∈ F or
(2) ∃r ∈ Rs[q] ∀a ∈ A(r) : +∆a ∈ P(1..i)

+∂ : If P(i+1) = +∂q then either
(1) +∆q ∈ P(1..i) or

(2.1) ∃r ∈ Rsd [q] ∀a ∈ A(r) : +∂a ∈ P(1..i) and
(2.2) −∆∼q ∈ P(1..i) and
(2.3) ∀s ∈ Rsd [∼q] either

(2.3.1) ∃a ∈ A(s) :−∂a ∈ P(1..i) or
(2.3.2) ∃t ∈ Rsd [q] such that t > s and

∀a ∈ A(t) : +∂a ∈ P(1..i)

The set of conclusions of a defeasible theory is finite2, and
it can be computed in linear time (Maher 2001). In addition,
several efficient implementations have been proposed (see
(Maher et al. 2001)).

Example 1 Consider the defeasible theory D has a set of
defeasible rules:

Rd = {r1 :⇒ a;r2 :⇒∼a;r3 :⇒ b;r4 : a⇒∼b}

and a superiority relation

>= {r2 > r1}

r1 and r2 have empty therefore they are applicable to derive
+∂a and +∂∼a respectively. These conclusions are clearly
ambiguous. Thanks to the superiority relation, the conclu-
sion of a is overridden. That means −∂a is in the conclu-
sions from theory D. As a result, +∂b is added to the con-
clusion set without any ambiguity. r4 is no longer applicable
due to −∂a.

Defeasible logic can be extended by an ambiguity prop-
agating variant (See (Governatori et al. 2004; Antoniou et
al. 2000)). The superiority relation is not considered in the
inference process. The inference with the ambiguity propa-
gation introduces a new tag Σ. A literal p (+Σp) means p is
supported by the defeasible theory and there is a monotonic
chain of reasoning that would lead us to conclude p in the ab-
sence of conflicts. A literal that is defeasibly provable (+∂)
is supported, but a literal may be supported even though it
is not defeasibly provable. Thus support is a weaker notion
than defeasible provability.

1 Refer to (Antoniou et al. 2001) for proof conditions for all
tagged conclusions.

2It is the Herbrand base that can be built from the literal occur-
ring in the rules and the facts of the theory

Preferences NMR-2008

216

+Σ: −Σ :
If P(i+1) = +Σq then If P(i+1) =−Σq then
∃r ∈ Rsd [q]: ∀r ∈ Rsd [q]:
∀a ∈ A(r) : +Σa ∈ P(1..i) ∃a ∈ A(r) :−Σa ∈ P(1..i)

We can achieve ambiguity propagation behaviour by making
a minor change to the inference condition for +∂AP

3

+∂AP: If P(i+1) = +∂q then either
(1) +∆q ∈ P(1..i) or

(2.1) ∃r ∈ Rsd [q] ∀a ∈ A(r) : +∂APa ∈ P(1..i) and
(2.2) −∆∼q ∈ P(1..i) and
(2.3) ∀s ∈ Rsd [∼q]

∃a ∈ A(s) :−∂APa ∈ P(1..i) or

Example 2 We modify the defeasible theory D in example
1 by removing the superiority relation:

Rd = {r1 :⇒ a;r2 :⇒∼a;r3 :⇒ b;r4 : a⇒∼b}

Without the superiority relationship, there is no means to
decide between a and ∼a due to both of r1 and r2 are ap-
plicable. In a setting where the ambiguity is blocked, b is
not ambiguous because r3 for b is applicable whilst r4 is
not since its antecedent is not provable. If the ambiguity is
propagated, we have evidence supporting all of four literals
since all of the rules is applicable. +Σa,+Σ∼a,+Σb and
+Σ∼b are included in the conclusion set. Moreover we can
derive −∂a, −∂∼a, −∂b and −∂∼b showing that the re-
sulting logic exhibits an ambiguity propagating behaviour.
In the second setting b is ambiguous, and its ambiguity de-
pends on that of a.

Argumentation by Defeasible Logic
In what follows, we briefly introduce the basic notions of an
argumentation system using defeasible logic as underlying
logical language. Moreover, we present the acceptance of
an argument w.r.t Dung’s semantics.

Definition 1 An argument A for a literal p based on a set
of rules R is a (possibly infinite) tree with nodes labelled by
literals such that the root is labelled by p and for every node
with label h:

1. If b1, . . . ,bn label the children of h then there is a rule in
R with body b1, . . . ,bn and head h.

2. If this rule is a defeater then h is the root of the argument.
3. The arcs in a proof tree are labelled by the rules used to

obtain them.

In general, arguments are defined to be proof trees (or
monotonic derivations). Defeasible logic requires a more
general notion of proof tree that admits infinite trees, there-
fore the distinction is kept between an unrefuted, but infi-
nite, chain of reasoning and a refuted chain. Depending on
the rules used, there are different types of arguments.

• A supportive argument is a finite argument in which no
defeater is used.
3The proof for −∂AP is derived from that of +∂AP using the

strong negation principle (Maher et al. 2001).

• A strict argument is an argument in which only strict rules
are used.

• An argument that is not strict, is called defeasible
Relationships between two arguments, A and B, are de-

termined by those of literals which are constituted in these
arguments. An argument A attacks a defeasible argument B
if a conclusion of A is the complement of a conclusion of B,
and that conclusion of B is not part of a strict sub-argument
of B. A set of arguments S attacks a defeasible argument B
if there is an argument A in S that attacks B.

A defeasible argument A is undercut by a set of arguments
S if S supports an argument B attacking a proper non-strict
sub-argument of A. An argument A is undercut by S means
we can show that some premises of A cannot be proved if
we accept the arguments in S .

It is noticed that the concepts of the attack and undercut
concern only defeasible arguments and sub-arguments. For
strict arguments we stipulate that they cannot be undercut or
attacked.

A defeasible argument is assessed as valid if we can show
that the premises of all arguments attacking it cannot be
proved from the valid arguments in S . The concepts of
provability depend on the methods used by the reasoning
mechanism to tackle ambiguous information. According to
the features of the defeasible reasoning, we have two defini-
tions of acceptable arguments (definition 2 and 3).

Definition 2 In case of the reasoning with the ambiguity
propagation, an argument A for p is acceptable w.r.t a set
of arguments S if A is finite, and

1. A is strict, or
2. every argument attacking A is attacked by S .

Definition 3 If the reasoning with the ambiguity blocking is
used, an argument A for p is acceptable w.r.t a set of argu-
ments S if A is finite, and

1. A is strict, or
2. every argument attacking A is undercut by S .

Due to the concept of acceptance, we can determine the
status of an argument. If an argument can resist a reasonable
refutation, this argument is justified (definition 4). If an ar-
gument can not overcome attacks from other arguments, this
argument is rejected (definition 5).

Definition 4 Let D be a defeasible theory. We define JD
i as

follows.
• JD

0 = /0
• JD

i+1 = {a ∈ ArgsD| a is acceptable w.r.t JD
i }

The set of justified arguments in a defeasible theory D is
JArgsD =

⋃
∞
i=1 JD

i .

Definition 5 Let D be a defeasible theory and T be a set of
arguments. We define RD

i (T) as follows.

• RD
0 (T) = /0

• RD
i+1(T) = {a ∈ ArgsD| a is rejected by RD

i (T) and T }.
The set of rejected arguments in a defeasible theory D w.r.t.
T is RArgsD(T) =

⋃
∞
i=1 RD

i (T).

Preferences NMR-2008

217

Majority Rule
The majority rule from (Lin 1996) retrieves a maximal
amount of consistent knowledge from a set of agents’ knowl-
edge. Conflicts between agents can be tackled by consider-
ing not only the number of agents supporting that informa-
tion but also the importance (reliability) of the agents. The
approach provides a useful and efficient method to discover
information largely held by agents. The majority knowl-
edge can be used either to reinforce the current knowledge
of an agent or to introduce new information into the agent’s
knowledge.

Due to possible conflicting information within a source,
the merging operator by majority cannot directly apply to
our framework. Instead, the majority rule pools potential
joint conclusions derived by the defeasible reasoning, which
resolves possible conflicts.

Considering the knowledge sources {T1, . . . ,Tn}, Ci de-
notes the set of tagged conclusions that can be derived by
the defeasible reasoning from the corresponding theory Ti.
The level that the theory Ti supports a literal l corresponds
to its weight represented wTi as follows:

support(l,Ti) =
{

wTi l ∈Ci

0 otherwise

The majority knowledge from the others, Tmaj, whose ele-
ments are inferred from {C1, . . . ,Cn} by the majority rule, is
determined by the formula:

Tmaj =

{
c : ∑

Ti

support(c,Ti) >
∑wTi

2

}

n-Person Argumentation Framework
In this section, we develop our framework by using the ar-
gument construction from the defeasible reasoning. In par-
ticular, we define an external model which describes inter-
actions between agents in order to achieve a goal supported
by the majority. Also, we present an internal model which
illustrates the reasoning method on knowledge from other
agents exposed during interactions.

Model Agents’ Interaction
This section describes the basic scenario where an individual
agent exchanges arguments to promote its own goal and to
reach an agreement by the majority. Consider a set of agents
A sharing a set of goals G and external constraints repre-
sented as a defeasible theory Tbg. These external constraints
are also known as background knowledge which provides
common expectations and restrictions among agents in A .
An individual agent in A can have its own view on the work-
ing environment, therefore can pursue its own goals. In this
work, we model the interactions among these agents in or-
der to establish a goal accepted by the majority of the group.
Due to the partial view and incomplete information of an
agent, we believe the argumentation game is a useful method
to tackle this problem.

Determine common goal. In order to pursue a goal, an
agent generates an argument for its goal. This goal is con-
sidered as its main claim. The process to determine the goal
supported by the group involves multiple steps in a dialogue
as follows.

1. Each agent broadcasts an argument for its goal. The sys-
tem can be viewed as an argumentation game with n play-
ers corresponding to the number of agents.

2. The group of agents determines the dialogue topic by us-
ing the majority rule over the set of claims (i.e. the goals
from players)4. The claim supported by more than a half
of the group is selected. If the group can not settle a topic,
the previous step is repeated. The dialogue terminates
early if agents fail to achieve a majority goal and they
do not have any new goal to propose.

3. An agent can rest if its claim is supported by the major-
ity. Otherwise, the agent can provide a new argument to
defend its claim against the common one. At this step,
the group creates a set of majority arguments Argsma j

i and
a set of majority premises Pma j

i where i indicates the it-
eration. An agent utilises these sets to select its new ar-
guments for subsequence steps. Also, new arguments are
required to be justified by the background knowledge.

4. A dialogue terminates when all agents pass for an iteration
(i.e., do not propose a new argument). Now, the group can
settle on the common goal and the explanation accepted
by the majority of the group.

Example 3 Suppose that there is three agents A1, A2, and
A3. A1 and A2 respectively propose ArgsA1 and ArgsA2

ArgsA1 ={⇒ e⇒ b⇒ a}
ArgsA2 ={⇒ e⇒ c⇒ a}

whilst A3 claims
ArgsA3 = {⇒ d⇒∼a}.

The topic of the dialogue accepted by the majority is a.

Identify majority arguments. Once the group success-
fully identifies the common claim, the group is divided
into two sub-groups namely “pros-group” and “cons-group”.
Agents in the pros-group support the common claim whilst
the cons-group does not. By using the majority rule the
agents in the cons-group determine their defensive argu-
ments by attacking the “most common” premise among the
arguments from the pros-group. That will force the pros-
group to reconsider their claim.

At iteration i, Gma j
i is the claim by the majority of active

agents (the agents broadcast their arguments). Argsma j
i rep-

resents the set of majority arguments which are played by
the agents to support Gma j

i .

Argsma j
i =

|A |⋃
j=0

ArgsA j |ArgsA j ` Gma j

4Note that agents in A have the same weight, therefore the ma-
jority rule is applied knowledge sources such that each source has
the weight of 1.

Preferences NMR-2008

218

where ArgsA j is the argument played by agent A j. The set of
majority premises at iteration i is

Pma j
i = {p|p ∈ Argsma j

i }

We define the preference over Pma j
i as given p1, p2 ∈ Pma j

i ,
p2 � p1 if the frequency of p1 in Argsma j

i is less than that of
p2.

Let i = 0 be the first iteration that agents in the group
reach a common claim. The topic of the dialogue is set to
Gma j

0 . Given two consecutive iterations: i and i + 1, Gma j
i

and Gma j
i+1 are incompatible claims. That is the pros-group

for Gma j
i at iteration i is attacked by the cons-group which

gives Gma j
i+1 in the next iteration as the counter-evidence.

In the case that the cons-group does not have an argument
which directly attacks Gma j

i , the cons-group uses the order
of premises in Pma j

i as a preference mechanism to select a
counter-argument. The idea is that Pma j

i eventually contains
premises which are sub-claims of Gma j

i . The higher order a
premises p in Pma j

i has, the more agents in the pros-group
support p. Consequently, if p is rebutted, the pros-group
should revise its attitude towards the claim.
Example 4 Reconsidering example 3, we have

Gma j
0 = a

Argsma j
0 = {⇒ e⇒ b⇒ a;⇒ e⇒ c⇒ a}

Pma j
0 = {a2,b1,c1,e2}

The superscript of a premise in Pma j
0 represents its fre-

quency in Argsma j
0 . Since the main claim of A3 does not pass

the majority selection, A3 can defend its proposal by attack-
ing either b or c or e in the next step. An argument against e
is likely to be a better selection compared with those against
b or c. Another alternative is that A3 proposes a new argu-
ment for ∼a stronger than any of the arguments played by
A1 and A2

Model Agent’s Internal Knowledge
The motivation, which drives an agent to participate in the
dialogue, is to promote its own goal. However, its argument
for the goal will be accepted if the argument is shared by the
majority of the group. To gain the acceptance of the major-
ity, the agent should consider common constraints and ex-
pectations of the group, governed by the background knowl-
edge, as well as the attitude of other agents when proposing a
claim. The majority rule over the knowledge obtained from
other agents enables an agent to probe a common attitude
among agents.

At the beginning of the dialogue, the majority rule de-
termines the main claim. In the follow iteration, this rule
identifies sub-claims to help an agent to effectively defend
its original claim. The idea is that an agent should launch an
argument which is likely to alter the majority opinion. The
majority rule provides a preference that is among the sup-
portive arguments for the main claim, identifying the most
common premise if an agent refutes this premise.

Knowledge representation. An agent, Ame, has three
types of knowledge including the background knowledge
Tbg, its own knowledge about working environment Tme, and
the knowledge about others:

Tother = {Tj : 1≤ j ≤ |A |& j 6= me}
Tj is obtained from agent Agj ∈A during iterations (propos-
ing arguments for individual goals). All of these knowledge
is represented in defeasible logic. Tj ∈ Tother is constructed
from an argument Ar proposed by the agent Ag j. At iter-
ation i, the theory obtained from Ag j is accumulated from
previous steps T j

i =
⋃i

k=0 T j
k .

In our framework, agents can have conflicting knowledge
due to partial view and incomplete information sources. We
assume that the defeasible theories contain only defeasible
rules and defeasible facts (rules with empty body). There-
fore, the knowledge of an agent can be rebutted by that from
other agents.

Knowledge Integration. To generate an argument, an
agent should ponder knowledge from multiple sources. In
this section, we present two simple methods to integrate
knowledge sources based on ambiguity blocking and am-
biguity propagation: given two sources of knowledge, if the
preference between these two sources is known we can per-
form the ambiguity blocking integration; Otherwise, we can
select ambiguity propagation integration.

Ambiguity blocking integration. This integration ex-
tends the standard defeasible reasoning by creating a new
superiority relation from that of the knowledge sources i.e.
given two knowledge sources as Tsp – the superior theory,
and Tin – the inferior theory we generate a new superiority
relation Rsp

d > Rin
d based on rules from two sources. The inte-

gration of the two sources denotes as TINT = Tsp B Tin. Now
the standard defeasible reasoning can be applied for TINT to
produce a set of arguments ArgsTspBTin

AB .
Example 5 Given two defeasible theories

Tbg = {Rd = {r1 : e⇒ c;r2 : g, f ⇒∼c,r3 :⇒ e};
> = {r2 > r1}}

and
Tme = {Rd = {r1 :⇒ d;r2 : d⇒∼a;r3 :⇒ g}}

The integration produces Tbg B Tme =

{Rd = {rTbg
1 : e⇒ c;r

Tbg
2 : g, f ⇒∼c,r

Tbg
3 :⇒ e;

rTme
1 :⇒ d;rTme

2 : d⇒∼a;rTme
3 :⇒ g};

> = {rTbg
2 > r

Tbg
1 }}

Ambiguity propagation integration. Given two knowl-
edge sources T1 and T2, the reasoning mechanism with am-
biguity propagation can directly apply to the combination
theory denoted as TINT = T1 + T2. There is no preference
between the two source of knowledge, therefore, there is no
method to solve the conflicts between the two sources. That
is the supportive and op-positive arguments for any premise
are removed from the final set of arguments. The set of ar-
guments obtained by this integration denotes as ArgsT1+T2

AP .

Preferences NMR-2008

219

Justification by background knowledge. Agent Ame gen-
erates the set of arguments for its goals by combining its
private knowledge Tme and the background knowledge Tbg.
The combination is denoted as T

′
me = Tbg B Tme and the set

of arguments is ArgsT
′
me . Due to the non-monotonic nature

of the underlying logics, the combination can produce argu-
ments being beyond those from individual knowledge. That
is the combination can produce arguments which are totally
new to the two sources. From Ame’s view, this can bring
more opportunities to fulfil its goals. However, Ame’s argu-
ments must be justified by the background knowledge Tbg.
In other words, Tbg governs essential behaviours (expecta-
tions) of the group. Any attack to Tbg is not supported by
members of A .

Agent Ame maintains the consistency with the background
knowledge Tbg by following procedure:

1. Create T
′

me = Tbg B Tme. The new defeasible theory is ob-
tained by replicating all rules from common constraints
Tbg into the internal knowledge Tme while maintaining the
superiority of rules in Tbg over that of Tme.

2. Use the ambiguity blocking feature to construct the set
of arguments Args

Tbg
AB from Tbg and the set of arguments

ArgsT
′
me

AB from T
′

me.

3. Remove any argument in ArgsT
′
me attacked by those in

ArgsTbg , obtaining the justified arguments by the back-
ground knowledge
JArgsT

′
me = {a∈ ArgsT

′
me and a is not attacked by Args

Tbg
AB }

Example 6 Given two defeasible theories, Tbg and Tme ,in
example 5. We have

ArgsTbg = {⇒ e;
⇒ e⇒ c}

ArgsTbgBTme = {⇒ e;
⇒ e⇒ c;
⇒ d;
⇒ g;
⇒ d⇒∼a}

In this example, there is not any attack between arguments
in ArgsTbg and ArgsTbgBTme . In other words, arguments from
ArgsTbgBTme are acceptable by those from ArgsTbg . The set of
justified argument w.r.t ArgsTbg

JArgsTbgBTme = ArgsTbgBTmee;
Pondering knowledge from the others. During the dia-
logue, an agent can exploit the knowledge that other agents
exposed in order to defend its main claims. Due to possible
conflicts in proposals from other agents, an agent can use the
sceptical semantics of the ambiguity propagation reasoning
in order to retrieve the consistent knowledge. That is given
competing arguments, the agent does not have any prefer-
ence over them and they will be rejected. The consistent
knowledge from the others allows an agent to discover “col-
lective wisdom” distributed among agents. From those ar-
guments, agent Ame should justify arguments against the set

of majority premises Pma j
i at iteration i of the dialogue. The

judgement is done by using the arguments from the back-
ground knowledge ArgsTbg . The procedure runs as follows:

1. Create a new defeasible theory
T
′′

me = Tbg B Tme +Tother.

2. Generate the set of arguments ArgsT
′′
me

AP from T
′′

me using the
feature of ambiguity propagation.

3. Justify the new set of arguments

JArgsT
′′
me = {a|a ∈ ArgsT

′′
me

AP and a is accepted by ArgsTbg .

At iteration i of the dialogue, the group determines the set
Pma j

i containing premises support by the majority. In or-
der to refute the majority claim, Ame can select an argument

from JArgsT
′
me

AB
⋃

JArgsT
′′
me

AP that attack a premise p ∈ Pma j
i .

The preference of an argument against p is determined by
the weight of p. Since the weight of p is proportional to the
number of agents supporting p. If p is attacked, the majority
can change in favour to Ame.

Example 7 Suppose that

Tbg = {Rd = {r1 : e⇒ c;r2 : g, f ⇒∼c};>= {r2 > r1}}

and the private knowledge of Ame has

Tme = {Rd = {r1 :⇒ d;r2 : d⇒∼a;r3 :⇒ g}}

Agent Ame currently plays⇒ d⇒∼a and knows about other
agents

Tother = {T1,T2}
where

T1 = {⇒ e⇒ f ⇒ b⇒ a}
and

T2 = {⇒ e⇒ c⇒ a}
and at this step the majority premises

Pma j
i = {a2,e2, f 1,b1,c1}.

The superscript of an element of Pi
m j represents the fre-

quency (weight) of this element.
The defeasible reasoning with ambiguity propagation for

the combination Tbg + Tme +Tother generates a set of argu-
ments⇒ g,⇒ e,⇒ e⇒ f ⇒ b,⇒ g, f ⇒∼c. ⇒ g, f ⇒∼c
is due to the superiority relation in Tbg. Given the current
knowledge of Ame this is only argument that Ame can play.

Related Work
Substantial work have been done on argumentation games
in the artificial intelligence and Law-field. (Prakken & Sar-
tor 1996) introduces a dialectical model of legal argument,
in the sense that arguments can be attacked with appropriate
counterarguments. In the model, the factual premises are not
arguable, they are treated as strict rules. (Lial 1998) presents
an early specification and implementation of an argumenta-
tion game based on the Toulmin argument-schema without
a specified underlying logic. (Lodder 2000) presented The

Preferences NMR-2008

220

Pleadings Game as a normative formalization and fully im-
plemented computational model, using conditional entail-
ment. The goal of the model was to identify issues in the
argumentation rather than as in our case elaborating on the
status of the main claim.

Using the defeasible logic to capture concepts of the ar-
gumentation game is supported by (Letia & Vartic 2006;
Nilsson, Lundstrøm, & Hamfelt 2005) and recently (Thakur
et al. 2007; Eriksson Lundström et al. 2008). (Letia &
Vartic 2006) focuses on persuasive dialogues for coopera-
tive interactions among agents. It includes in the process
cognitive states of agents such as knowledge and beliefs,
and presents some protocols for some types of dialogues
(e.g. information seeking, explanation, persuasion). (Nils-
son, Lundstrøm, & Hamfelt 2005) provides an extension of
defeasible logic to include the step of the adversarial dia-
logue by defining a metaprogram for an alternative computa-
tional algorithm for ambiguity propagating defeasible logic
while the logic presented here is ambiguity blocking.

We tackle the problem of evolving knowledge of an agent
during iterations, where the argument construction is an ex-
tension of (Thakur et al. 2007; Eriksson Lundström et al.
2008). In our work, we define the notion of majority ac-
ceptance and a method to weight arguments. In (Thakur et
al. 2007), the strength of unchallenged rules is upgraded
over iterations. That is the conclusions supported by these
rules are not rebutted by the current iteration, these conclu-
sions are unarguable in follow iterations. The upgrade is
applied to all participants during iterations of the argumen-
tation game. (Eriksson Lundström et al. 2008) distinguishes
participants of the argumentation game. That is one partici-
pant must provide a strong argument (i.e. a definite proof) in
order to defeat arguments from other participants. Both of
the works do not directly handle the challenge coming from
multiple participants.

We extend the protocol of a argumentation game to set-
tle on a common goal. The termination condition of our
framework is either there is no more argument to rebut or
an agent can pass its proposal at one iteration. Settling on
a common goal among agents can be seen as a negotiation
process where agents exchange information to resolve con-
flicts or to obtain missing information. The work in (Am-
goud, Dimopoulos, & Moraitis 2007) provides a unified and
general formal framework for the argumentation-based ne-
gotiation dialogue between two agents for a set of offers.
The work provides a formal connection between the status
of a argument including accepted, rejected, and undecided
with possible actions of an agent (accept, reject, and nego-
tiate respectively). One important feature of the framework
is that this representation is independent with logical lan-
guages modelling knowledge of an agent. Moreover, an
agent’s knowledge is evolved by accumulating arguments
during interactions.

We have advantages of using the defeasible logic since it
provides us an elegant tool to naturally capture the above
statuses of arguments. Accepted, rejected, undecided condi-
tions can be simulated by the proof conditions of defeasible
reasoning w.r.t ambiguity of premises. If the preference over
knowledge sources is known, the accepted and rejected ar-

guments is corresponding to (+∂ ,−∂) using the feature of
ambiguity blocking. Otherwise, three conditions of argu-
ments are derived from (+∂ ,−∂ and +Σ). These notions
correspond to the existence of a positive proof, a negative
proof, and a positive support of a premise. In addition, de-
feasible logic provides a compact representation to accom-
modate new information from other agents.

From the perspective of coordination among agents, (Par-
sons & McBurney 2003) presents an argumentation based
communication, where agents can exchange arguments for
their goals and plans to achieve the goals. The acceptance
of an argument of an agent depends on the attitudes of
this agent namely credulous, cautious, and sceptical. Also,
(Rueda, Garcia, & Simari 2002) proposes a communica-
tion mechanism based on argumentation for collaborative
BDI agents, in which agents exchange their proposals and
counter-proposals in order to reach a mutual agreement.
During the course of conversations, an agent can retrieve
missing literals (regarded as sub-goals) or fulfil its goals by
requesting collaboration from other agents. However, these
works did not clearly show how an agent can tackle con-
flicts from multiple agents, especially when the preference
over exchanged arguments is unknown.

The main difference in our framework is the external
model where more than two agents can argue to settle on a
common goal. Since there is no preference over the proposal
of individual agents, the majority rule enables the group to
identify the majority preference over individual claims. On
one hand, we present the notion of the acceptance by the ma-
jority of agents. On the other hand, this notion relaxes the
complexity of n-persons argumentation game by partitioning
agents into two sub-groups: one supports the major claim;
the other opposes it. Moreover, the majority rule allows an
agent to probe the attitudes of the group in order to dynam-
ically create a preference over its defensive arguments if its
main claim is not accepted by the majority of agents. The
strategy to defend against the topic of the dialogue is to at-
tack the most common premise among the arguments sup-
porting the topic.

In our framework, an individual agent efficiently tackle
with conflicts from multiple sources of knowledge owing to
the use of the defeasible logic as the underlying logic. The
construction of arguments requires an individual agent to in-
tegrate the background knowledge commonly shared among
agents, knowledge from other agents, and its private knowl-
edge. The background knowledge has the priority over the
other sources, therefore when integrating any conflict with
this knowledge is blocked. Since all agents are equally trust-
ful, the knowledge from other agents has the same weight.
To achieve a consensus from knowledge of other agents and
to discover “collective wisdom”, the ambiguity propagation
is applied over all knowledge sources of an individual agent.

Conclusions
This paper has presented an n-person argumentation frame-
work based on the defeasible logic. In the framework,
we propose an external model based on the argumenta-
tion/dialogue game which enables agents in a group settle
on a common goal. An agent proposes its goal including

Preferences NMR-2008

221

the explanation and argues with other agents about the goal.
At the termination, the group identifies a common goal ac-
cepted by the majority of the group and the supportive argu-
ment for the goal.

We also propose an internal model of an agent where an
individual agent can efficiently construct arguments from
multiple sources of knowledge including the background
knowledge presenting the common constraints and expecta-
tions of the group, knowledge from others which is evolved
during iterations, and its private knowledge. The back-
ground knowledge is preferred over the other sources of
knowledge. Due to the flexibility of defeasible logic in tack-
ling the ambiguous information, these types of knowledges
can be efficiently integrated with the private knowledge of
an agent (with or without a preference over the knowledge
sources) to generate and justify its arguments. The major-
ity rule relaxes the complexity of n-persons argumentation
dialogue game. This rule is used to identify the topic of
the dialogue among the claims of agents. That is the major-
ity acceptance of an argument. Also, an agent can use the
majority rule as a method to select an argument which chal-
lenges the major number of agents in order to better defend
its goal.

References
Amgoud, L.; Dimopoulos, Y.; and Moraitis, P. 2007. A uni-
fied and general framework for argumentation-based nego-
tiation. In AAMAS ’07: Proceedings of the 6th interna-
tional joint conference on Autonomous agents and multia-
gent systems, 1–8. New York, NY, USA: ACM.
Antoniou, G.; Billington, D.; Governatori, G.; and Maher,
M. J. 2000. A flexible framework for defeasible logics. In
Proc. American National Conference on Artificial Intelli-
gence (AAAI-2000), 401–405.
Antoniou, G.; Billington, D.; Governatori, G.; and Maher,
M. J. 2001. Representation results for defeasible logic.
ACM Transactions on Computational Logic 2(2):255–287.
Antoniou, G.; Billington, D.; Governatori, G.; and Maher,
M. J. 2006. Embedding defeasible logic into logic pro-
gramming. Theory and Practice of Logic Programming
6(6):703–735.
Billington, D. 1993. Defeasible logic is stable. Journal of
Logic and Computation 3:370–400.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence
77(2):321–358.
Eriksson Lundström, J.; Governatori, G.; Thakur, S.; and
Padmanabhan, V. 2008. An asymmetric protocol for ar-
gumentation games in defeasible logic. In 10 Pacific Rim
International Workshop on Multi-Agents, volume 5044.
Springer.
Governatori, G.; Maher, M. J.; Antoniou, G.; and Billing-
ton, D. 2004. Argumentation Semantics for Defeasible
Logic. J Logic Computation 14(5):675–702.
Jennings, N. R.; Parsons, S.; Noriega, P.; and Sierra, C.

1998. On argumentation-based negotiation. In Proceedings
of the International Workshop on Multi-Agent Systems.
Letia, I. A., and Vartic, R. 2006. Defeasible protocols
in persuasion dialogues. In WI-IATW ’06: Proceedings
of the 2006 IEEE/WIC/ACM international conference on
Web Intelligence and Intelligent Agent Technology, 359–
362. Washington, DC, USA: IEEE Computer Society.
Lial, T. B.-C. 1998. Specification and implementation
of toulmin dialogue game. In J.C. Hage, T.J.M. Bench-
Capon, A. K. C. d. V. M. C. G., ed., Jurix 1998: Jurix:
The Eleventh Conference, 5–20. Nijmegen: Gerard Noodt
Instituut.
Lin, J. 1996. Integration of weighted knowledge bases.
Artificial Intelligence 83:363–378.
Lodder, A. R. 2000. Thomas f. gordon, the pleadings game
- an artificial intelligence model of procedural justice. Artif.
Intell. Law 8(2/3):255–264.
Maher, M. J.; Rock, A.; Antoniou, G.; Billignton, D.;
and Miller, T. 2001. Efficient defeasible reasoning sys-
tems. International Journal of Artificial Intelligence Tools
10(4):483–501.
Maher, M. J. 2001. Propositional defeasible logic has lin-
ear complexity. Theory and Practice of Logic Program-
ming 1(6):691–711.
Nilsson, J. F.; Lundstrøm, J. E.; and Hamfelt, A. 2005.
A metalogic formalization of legal argumentation as game
trees with defeasible reasoning. In Proceedings of
ICAIL’05, International Conference on AI and Law, Pro-
ceedings of ICAIL. ACM.
Parsons, S., and McBurney, P. 2003. Argumentation-based
dialogues for agent coordination. group decision and nego-
tiation. Group Decision and Negotiation (12):415–439.
Prakken, H., and Sartor, G. 1996. A dialectical model of
assessing conflicting arguments in legal reasoning. Artifi-
cial Intelligence and Law 4:331–368.
Rueda, S. V.; Garcia, A. J.; and Simari, G. R. 2002.
Argument-based negotiation among bdi agents. Journal of
Computer Science and Technology 2(7).
Thakur, S.; Governatori, G.; Padmanabhan, V.; and Eriks-
son Lundström, J. 2007. Dialogue games in defeasible
logic. In 20th Australian Joint Conference on Artificial In-
telligence, AI 2007, volume 4830, 497–506. Springer.

Preferences NMR-2008

222

Incorporating a Qualitative Ranked Preference System into Planning

Chris L. Schmidt and James P. Delgrande
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

{cschmidt, jim}@cs.sfu.ca

Abstract

Planning is one of the fundamental problems of Artificial In-
telligence. In brief, the problem is to form a plan that will
lead from an initial state to a goal state. Typically, goals are
absolute and must be satisfied. However, realistically, a user
may have preferences along with goals. A plan that satisfies
the goals is acceptable, but one that satisfies the goals and
complies with expressed preferences is a superior alternative.
In this paper we define a system for specifying preferences.
The system is purely qualitative, specifying what is preferred
without using numbers to denote by how much one possibil-
ity is preferred to another. The system is flexible, allowing
many different kinds of preferences to be specified and could
be adapted for any application where preferences are appro-
priate. It includes a novel method to express unbounded pref-
erences that cannot be expressed in other systems. We then
do a preliminary examination of two search heuristics for pro-
ducing plans that optimally satisfy a preference specification.

Introduction
In a classical planning problem, a series of actions is gener-
ated that will lead from an initial state to a state that satisfies
a set of goal conditions. An often more realistic approach
to planning is to consider preferences along with goals. The
goals are hard conditions that must be met for a plan to be
considered successful. Preferences enable soft conditions
to be added. These conditions don’t have to be met for a
plan to be successful, but set forth what plans are preferred
when differing plans satisfy the goal conditions. If a plan-
ning problem is to drive from Vancouver to San Francisco,
the goal is simply to reach San Francisco. One preference
might be to visit Portland on the way; another may be to
avoid construction when possible.

We propose a flexible system for specifying preferences
that could be applied to virtually any field where preferences
are useful. We focus on using the system to define prefer-
ences over histories and plans. The system is strictly quali-
tative, not requiring users to attach possibly numeric values
to their preferences. This is advantageous since such val-
ues can be difficult to elicit from users. Numbers are used
as indices when describing a preference specification, how-
ever, they are used in an ordinal capacity, not to determine
by how much one option is preferred to another. The system
includes a construct for defining unbounded preferences that

would otherwise be unmanageable. The system allows the
strategy for defining preferred histories to be altered to meet
a user’s needs. We define an approach, but depending on the
circumstances a user may want to interpret the information
in a preference specification somewhat differently. We also
do some early work on examining how a planner may be
used to produce preferred plans as defined by a preference
specification. We experiment with search guided by two dif-
ferent heuristic functions. Our aim in this is to prove the
usefulness of the preference specification system as well as
the heuristics themselves.

In the next section we give some background on other
work in the field. We then go through some preliminary
definitions. Then we define the three levels of our prefer-
ence system and how they relate. After that we specify a
strategy for comparing histories with respect to a preference
specification. Following this, we look at two search strate-
gies that can be used to produce optimal histories. To finish,
we discuss our work and how it relates to other work in the
field.

Background
The research involving preferences is too extensive to prop-
erly summarize in this paper. We can only focus on work
closely related to our own. A well known preference speci-
fication scheme, CP-nets, is seen in (Boutilier et al. 2004).
Preferences are built around ceteris paribus (all else being
equal) statements such as “All else being equal, if A is true,
then B is preferred over ¬B”. These preferences are then
compiled into a graph that can be used to find the optimal
values for the system. It is simple and effective for a range
of applications, but it is restricted to relatively basic prefer-
ences.

Another proposal for preferences in general comes from
(Brewka 2004) in which Brewka proposes a qualitative
preference system that involves formulas organized into a
ranked knowledge base in which formulas’ relative impor-
tance is defined by a rank attached to each formula. This
ranking concept is utilized by our system.

Moving into the application of preferences to planning,
we first mention a use of the previous system to prioritize a
set of goals in (Feldmann, Brewka, and Wenzel 2006). The
authors apply the system to planning by employing an it-
erative strategy where they search for a solution and then

Preferences NMR-2008

223

resume, searching for solutions that are strictly better than
the best already found.

Delgrande et al. (Delgrande, Schaub, and Tompits 2006)
propose a preference language which directly defines when
one history is preferred to a second by way of formulas si-
multaneously involving elements of both histories. We’ve
used their query language with some minor adaptations
in our approach. The same authors, see also (Delgrande,
Schaub, and Tompits 2007) have proposed a language that
can define aggregate values of histories. This system can be
used to define preferences similar to the unbounded prefer-
ence orderings we employ in our system.

Finally, the work that our proposed preference specifica-
tion system is most influenced by is presented in (Son and
Pontelli 2006) and (Bienvenu, Fritz, and McIlraith 2006).
Son and Pontelli present a language for specifying prefer-
ences, PP , and then compile these preferences into an an-
swer set program that computes preferred plans. In their
paper, Bienvenu et al. propose the language LPP which
extends PP . They then use LPP in a progression planner
that makes use of an admissible optimistic heuristic to find
the most preferred plan with respect to a preference specifi-
cation. Both languages use basic desire formulas (BDFs)
which describe properties of a history. They then place
BDFs into orderings they call atomic preference formulas
(APFs) which specify which BDFs are more preferable than
others. LPP attaches values to the BDFs in an APF that
define how preferred they are relative to one another. PP
does not. The next level is that of general preference for-
mulas (GPFs) that provide methods of combining APFs. Fi-
nally, LPP includes another level of aggregated preference
formulas (AgPFs) that can relate the relative importance of
GPFs.

Preliminaries
We use the notation from (Delgrande, Schaub, and Tompits
2006) that is an adaptation of (Gelfond and Lifschitz 1998)
to define action signatures and histories.

Definition 1 An action signature Σ is a quadruple
(D,F, V,A), where D is a set of value names, F is a set
of fluent names, V : F → 2D \ ∅ assigns a domain to each
fluent and A is a set of action names.

Σ is propositional iff D = {0, 1} and is finite iff D, F ,
and A are finite. A fluent f ∈ F is propositional iff V (f) =
{0, 1}.

Similar to non-fluents in (Bienvenu, Fritz, and McIlraith
2006) we will define a subset of F , FC whose values will be
constant. FN will refer to the subset of non-constant fluents,
FN ∪ FC = F .

Definition 2 Let Σ = (D,F, V,A) be an action signature.
A history H of length n, over Σ is a sequence

(s0, a1, s1, . . . , sn−1, an, sn)
where n ≥ 0, and

• each state, si, 0 ≤ i ≤ n, is a mapping assigning each
fluent f ∈ F a value v ∈ V (f), and

• a1 . . . an ∈ A

The states of a history may be thought of as possible
worlds, and the actions take one possible world into another.
For a propositional action signature Σ = (D,F, V,A), flu-
ent f ∈ F is said to be true at state s iff s(f) = 1, otherwise
f is false at s.

The Preference System
The preference system is structured similarly to the lan-
guages PP and LPP , though different terms are attached
to the constructs used along with more significant changes.
At the lowest level we have queries which express proper-
ties of a history. The next level of preference orderings, or
simply orderings, express which queries are more desirable
to satisfy than others. The top level is a single ranked pref-
erence specification, which places orderings into a ranked
knowledge base which defines which orderings are more im-
portant than others.

Queries
Queries are the building blocks of our preference specifica-
tion system. Queries are simply formulas that when applied
to a history evaluate to true or false. They do not express
preferences in their own right. They simply define proper-
ties of a history. If planning a vacation, a user might prefer
to travel to a city that has a professional baseball team. In
this case a query needs to be written that formalizes this con-
cept, evaluating to truewhen applied to a history containing
travel to an appropriate city and false otherwise.

The preference system we propose is defined to allow dif-
ferent languages to be used at the query level. Thus, our sys-
tem can be applied to areas other than planning. Depending
on the application, different query specification languages
may be appropriate. For planning, we use a language that
describes properties of histories. Here we are going to use
the language from (Delgrande, Schaub, and Tompits 2006),
with some minor modifications.

Our language is a first order sorted language. We need to
define temporal preferences and will have time-stamp vari-
ables that can take on the values of the timepoints in a history
as well as object variables that range over the objects in a do-
main. We forgo the additional notation to identify the two
sorts as context makes it sufficiently clear. We will assume
that there is a finite set of timepoints and objects and thus
any formula involving quantified variables can be reduced
to a propositional logic formula.

Definition 3 Let Σ = (D,F, V,A) be an action signature
and n ≥ 0 a natural number.

We define the query language as follows:

1. The alphabet consists of
(a) a set V of variables,
(b) the set of integers,
(c) the arithmetic function symbols ‘+’ and ‘·’,
(d) the arithmetic relation symbol ‘<’,
(e) the equality symbol ‘=’,
(f) the setA∪F∪D of action and fluent names and values,
(g) the sentential connectives ‘¬’ and ‘⊃’,

Preferences NMR-2008

224

(h) the quantifier symbol ‘∃’, and
(i) the parentheses ‘(’ and ‘)’.

2. A time term is an arithmetic term recursively built from
V ∪ {0, . . . , n}, employing +, −, ·, and parentheses in
the usual manner.
A time atom is an arithmetic expression of form (t1 < t2)
or (t1 = t2), where t1, t2 are time terms.

3. A fluent value term is either a member of D, a member of
FC , an expression of the form f(t), where f ∈ FN and
t is a time term, or an arithmetic term recursively built
from value terms employing +, −, ·, and parentheses in
the usual manner.
A fluent value atom is an expression of the form (v1 = v2)
or (v1 < v2), where v1 and v2 are value terms.
An action atom is an expression of form a(t), where a ∈ A
and t is a time term.
The set of atoms is made up of the set of time atoms, fluent
value atoms, and action atoms. An atom containing no
variables is ground.

4. A literal is an atom, or an atom preceded by the sign ¬.
5. A formula is a Boolean combination of atoms, along with

quantifier expressions of form ∃i, for i ∈ V , formed in the
usual recursive fashion.
A formula containing no free variables is closed.

6. A query is a closed formula.

Beyond the primitive operators above, we define the op-
erators ∨ and ∧, as well as the universal quantifier ∀ in the
usual manner. Next is the definition for the semantics of the
language, defining when a query is true with respect to a
given history.

Definition 4 Let H = (s0, a1, s1, . . . , an, sn) be a history
over Σ of length n,

We interpret the language recursively as follows:

1. If Q is a ground time atom or a ground fluent value atom,
then H |=Σ Q iff Q is true according to the rules of inte-
ger arithmetic.

2. If t is a ground time term t takes its value according to the
rules of integer arithmetic.

3. If v is a ground fluent value term:
(a) if v = f ∈ FN , then v = s0(f)
(b) if v = f(t) where f ∈ FC and t is a time term, then

v = st(f) if 0 ≤ t ≤ n and is undefined otherwise.
(c) if v is an arithmetic term then v takes its value accord-

ing to the rules of arithmetic.
4. If Q = a(t) is a ground action atom, then H |=Σ Q iff
a = at, if 0 ≤ t ≤ n and is undefined otherwise.

5. If Q = ¬α, then H |=Σ Q iff H 6|=Σ α.
6. If Q = (α ⊃ β), then H |=Σ Q iff H 6|=Σ α or H |=Σ β.
7. If Q = ∃i α for a time-stamp variable α, then H |=Σ Q

iff, for some 0 ≤ m ≤ n, H |=Σ α[i/m].

A fluent value term of the form f(t) or action atom, a(t),
is considered undefined if the time term t is either nega-
tive or beyond the end of the history. If a query is written
that depends on one of these cases, producing a value of

true or false could cause unexpected behavior. We avoid
this with the undefined value. Any arithmetic that involves
an undefined value is itself undefined. Boolean operators
on undefined operands can be understood by considering
undefined to be the value 0.5 with true and false taking
their usual values of 1 and 0. Then α ∨ β = max(α, β),
α ∧ β = min(α, β), and ¬α = 1− α.

Some examples of queries in the vacation domain:

• Visit Chicago at some time.

∃t atCity(Chicago, t) (1)

• Visit Paris at some time and London at a later time.

∃t1 ∃t2 (t1 < t2) ∧
atCity (Paris, t1) ∧ atCity (London, t2) (2)

• Never visit a city in the desert.

∀x∀t¬(atCity(x, t) ∧ inDesert(x)) (3)

• Visit a city with a baseball team.

∃x∃t atCity(x, t) ∧ hasBaseballTeam(x) (4)

Preference Orderings
Now that queries can be specified, we need a structure to
specify which queries are preferred to others. For this pur-
pose we next define preference orderings. Preference order-
ings define an ordering of alternative queries, each alterna-
tive being more preferred than the next. There will be two
kinds of orderings, basic and unbounded. We begin with the
basic type.

Definition 5 A basic preference ordering o is a formula of
the form, α0 � α1 � . . . � αn where αi, 0 < i < n are
queries with n ≥ 1.

The lowest indexed, and therefore most preferred, query
that a history satisfies will be used to compare it to other
histories. If a history does not satisfy any query in a basic
ordering, then it is not comparable to other histories with
respect to that ordering.

Definition 6 History H1 is at least as preferred as H2 w.r.t.
the basic preference ordering o, α0 � α1 � . . . � αn,
written H1 ≥o H2, iff

H1 |= αi, H1 6|= αt, 0 ≤ t < i,

H2 |= αj , H2 6|= αt, 0 ≤ t < j,

i < j.

Here is an example that expresses a desire to visit New
York most, followed by Chicago, followed by Detroit.
(Queries are given names representative of their meanings
for the sake of brevity)

visitNewY ork � visitChicago� visitDetroit�
true

The true query at the least preferred position means that
the three cities mentioned are preferred to all other cities.
The true and false literals can be used as the least preferred
query to signify whether or not all plans can be compared

Preferences NMR-2008

225

w.r.t. that ordering. If the formula true is the least preferred
query then it will be satisfied by all plans and all plans will
have a value for comparison. If false is used instead, plans
that fail to satisfy all other queries in the ordering will be
incomparable with all other plans w.r.t. that ordering. The
false query can be omitted without changing the meaning
of a query. A common situation where this is useful oc-
curs with conditional preferences. If we prefer β to ¬β only
when α is satisfied, the ordering α ∧ β � α ∧ ¬β � false
is sufficient. Adding a query of true would add a preference
of α over ¬α.

A flexible aspect of the orderings is that it allows simple
construction of systems where transitivity holds or doesn’t
hold. If a system is desired where α � β and β � γ, but
α 6� γ, it can be done by creating two separate orderings,
α � β � false and β � γ � false. Otherwise, the
single ordering α� β � γ � true can be used.

A limitation of basic preference orderings is seen if we
consider a preference to maximize the number of states
when a fluent is true. Queries can be written that are satisfied
if the fluent is true 0 times, 1 time, 2 times, etc.. The prob-
lem is that a basic preference ordering such as this would
be difficult to create and compute due to its size. Such a
preference represents a theoretically unbounded preference
ordering. To deal with such preferences we present a con-
struct to formally represent them in a compact manner.
Definition 7 An unbounded preference ordering, o, takes
the form max/min (V, σ, q, opt) where V is a set of vari-
ables, σ is a time or fluent value term possibly involving
members of V , q is a query involving all variables in V and
opt is an integer or fluent value. Define Θ as the set of all
grounding substitutions for V . Given a historyH , o(H) will
represent the sum: ∑

{θ∈Θ|H|=q(θ)}

σ(θ) (5)

The value o(H) for an unbounded ordering is computed
by finding all substitutions over all variables in V that cause
q to be satisfied. This set of substitutions is applied to σ and
the resulting values are summed. The value opt defines a
cutoff beyond which all values are considered optimal. Note
that variables in V are each of a specific sort, time-stamp or
object in our query language, and Θ’s substitutions necessar-
ily follow the sorts (a time-stamp will never be substituted
in place of an object variable and vice versa).

A preference between two histories is determined by com-
paring their sum values. If both are better than the optimal
value cutoff then they are considered equally preferred w.r.t.
the unbounded ordering.
Definition 8 Given a maximizing unbounded ordering o,
H1 is at least as preferred as H2, written H1 ≥o H2, iff

o(H1) > o(H2), o(H2) < opt

Interpretation of a minimizing order is similarly defined by
reversing the inequalities.

Again thinking of the vacation domain, let’s say we want
to maximize the number of states where we are in Chicago.
We can do so with the following unbounded ordering.

max({t}, 1, atCity(Chicago, t), 4) (6)

Given a history only time-stamps for which
atCity(Chicago, t) is true will be applied to the variable
t. Since σ = 1 the preference will simply count the number
of times this occurs. The optimal value is 4, so if a history
has four or more appropriate states, then it is optimal w.r.t.
the ordering.

The inclusion of this structure will save space in defining
preferences as well as minimizing necessary computation.
To illustrate this, consider a user who wants to maximize the
number of states where the fluent f is true. With knowledge
of the longest allowed plan this could be done by creating
a query for each possible number of occurrences from 0 to
n. The formula for f being true in exactly two states is as
follows.

∃t1 ∃t2 ∀t3 (t1 6= t2 ∧ t2 6= t3 ∧ t1 6= t3) ⊃
(f(t1) ∧ f(t2) ∧ ¬f(t3)) (7)

Similar formulas can be written for any value up to n, but
quickly become unwieldy. Although we are considering a
very simply preference using a basic preference ordering to
represent it is quite difficult. However, when expressed with
the unbounded ordering structure you get a preference such
as (6) which is not only simpler to define, it is simpler com-
putationally. If the ordering were defined by writing out each
query in a basic ordering, then it becomes possible to have
to check each and every formula to evaluate a history w.r.t.
the ordering. In many examples, including this one, cal-
culating the value of the unbounded preference will require
drastically less computation than for a similar basic order-
ing. To evaluate this unbounded preference, one variable
ranges over every time-stamp. In formulas in an equivalent
basic ordering, multiple variables may have to range over all
time-stamps.

Here is a more complex unbounded preference order-
ing that aims to maximize the maximum value of a non-
propositional fluent f over a history. We have to be careful
here so that only one substitution for the variable gives the
maximum value. Therefore the equation specifies the earli-
est occurrence of this maximum value.

max({t}, f(t), ∀ t1 (t1 6= t ∧ f(t1) < f(t)) ∨
(f(t1) = f(t) ∧ t < t1)

, 1000) (8)

Now, a final example that involves more than one vari-
able. If we are in a domain that involves loading trucks for
delivery, a preference to minimize the unused space over
all of the trucks and states may be desired. If the fluent
unusedSpace(x, t) defines the amount of unused space for
truck x in state t we can use the following.

min({x, t}, unusedSpace(x, t),
unusedSpace(x, t) > 0, 0) (9)

Preferences NMR-2008

226

One preference that is commonly assumed in planning
with and without preferences is that a shorter plan is pre-
ferred. A preference for shorter plans can be defined with an
unbounded ordering. Thus we have a natural way of defin-
ing this preference instead of assuming it. We will also be
able to define the importance of this preference w.r.t. other
preferences by using the ranking system described below in-
stead of always using it as a tie-breaker in cases where the
other preferences are satisfied equally.

Unbounded orderings have been defined to maintain the
flexibility of the preference system. They will be applicable
to query languages that support first order notation, but if
the query language doesn’t support first order notation, then
unbounded orderings won’t be appropriate.

Preference orderings only define qualitative preferences
between histories. We say that one history is preferred to
another if it satisfies a more preferred query, or has a better
value with an unbounded ordering, but we don’t look to the
size of the difference to provide any meaning.

Ranked Preference Specification
We’ve now established a query language and a structure to
define preference orderings among queries. We now want to
be able to specify relative importance among orderings. One
ordering may represent a preference over which city to visit
while another represents a preference over method of travel.
It is natural for a user to think that one preference’s satis-
faction is more important than another. Maybe they prefer
travel by train to airplane, but it isn’t as important as making
it to a preferred city.

Given a group of preference orderings, relative impor-
tance between these orderings will be defined by attaching
ranks in the manner that ranks are attached to formulas in
ranked knowledge bases (RKBs) as seen in (Brewka 2004).
Orderings will have a rank assigned to them represented by
a non-negative integer, thus organizing them into a ranked
preference specification (RPS). We can consider a RPS as
a group of sets where each set consists of all orderings as-
signed a particular rank.

Definition 9 A ranked preference specification consists of a
group of sets of orderings (O0, O1, . . . On). Ordering o is
at least as important as o′ iff o ∈ Oi, o′ ∈ Oj , and i ≤ j.

If in our example there were three preference orderings
that represented preference over which city to visit, C, how
to travel, T , and what attractions to visit, A, and the city to
visit and attractions visited are most important while method
of travel is less so, an appropriate RPS would be:

O0 = {C,A}, O1 = {T}
Note that increasing ranks represent decreasing impor-

tance of the orderings at those ranks. As with the ordering
indices, these ranks represent purely qualitative difference in
importance. An ordering in a lower rank is simply consid-
ered more important, but there is no meaning in the numeric
values of the ranks beyond that.

Our system does not specifically define when one history
is preferred to another with respect to a RPS. The strategy
we use is described in the next section, but varying strategies

can be created given the information in a RPS. Depending
on the strategy used, the meaning of the ranks could change,
however, the intention in our definition is that if one history
is preferred to another w.r.t. the orderings at a given rank,
then it would be preferred irrespective of how the histories
satisfy orderings in less important ranks.

Although the system is qualitative it is possible to create
a RPS that embodies a meaning that is associated with using
quantitative values. Let’s assume a user has a choice be-
tween visiting Chicago, Montreal, and Detroit and a choice
between traveling by bus or train. If a user strongly prefers
a trip to Montreal over Chicago or Detroit they might give
Montreal a value of 8, Chicago, 4, and Detroit, 3. They
might then give travel by train a 6 and bus a 4. Traveling to
Montreal is clearly the most important and it might initially
seem difficult to use our qualitative system to express it.

However, if instead of using a single preference ordering
to represent the preference among cities, two orderings are
used, it becomes possible. The following RPS is sufficient.

O0 = {visitMontreal� true}
O1 = {visitChicago� visitDetroit� true,

rideTrain� rideBus� true}

The preference for Montreal is clearly made stronger by
moving it to a more important rank. If there are queries in
an ordering that a user considers significantly more or less
preferred than others, this can be represented by breaking an
ordering into multiple pieces as was done with this example.

Defining Preferred Histories
We now have a system by which a user can describe their
preferences. With the ranks of preference orderings and lev-
els of satisfaction within the orderings there are numerous
options on how to do this. Depending on the application
or setup of the preferences, one method of comparison may
be more appropriate than another. It may be more impor-
tant to emphasize satisfaction of the entire set of prefer-
ences at a given rank or focus more on individual prefer-
ences. It might be more important to satisfy the most pre-
ferred queries in an ordering or to strongly avoid the least
preferred queries. Some general strategies for doing this are
discussed in (Brewka 2004). They would need modification
before being applied to RPSs, but the strategies are relevant.

We will use a straightforward cardinality based approach
to compare histories. Given two histories, we will count how
many times each history is preferred to another w.r.t. the
orderings at a given rank. Whichever has more ’victories’ at
a given rank is preferred. If they tie, then the orderings at the
next rank are examined. If the histories are tied in the end,
then they are considered equally preferred.

Definition 10 Given histories H1 and H2 and RPS P , H1

is at least as preferred as H2, H1 �P H2, if for some i∣∣{o | o ∈ Oi, H1 ≥o H2}
∣∣ > ∣∣{o | o ∈ Oi, H2 ≥o H1}

∣∣
and for all j, 0 ≤ j < i,∣∣{o | o ∈ Oj , H1 ≥o H2}

∣∣ =
∣∣{o | o ∈ Oj , H2 ≥o H1}

∣∣

Preferences NMR-2008

227

Planning: Producing Preferred Histories
Now we turn to the process of producing preferred histories.
We begin by defining the problem. We will use STRIPS
style actions as originally set forth by Fikes and Nilsson
(Fikes and Nilsson 1971). Our formalization is similar to
that of (Gelfond and Lifschitz 1998).

Definition 11 A STRIPS action A is a pair (F,X) where
F is a query describing the conditions under which A is
executable and X is a set of possibly negated fluent value
terms describing the consequences of A.

A STRIPS action is executable if its precondition query
holds and the resulting state is reached by adding/removing
the positive/negative literals in X .

Definition 12 Given a STRIPS action A, (F,X), and states
s and s′ the execution of A causes a transition from s to s′
iff

s |= F ,

s′ |= v iff v ∈ X, or
s |= v and¬v /∈ X

A planning problem is defined as follows.

Definition 13 A planning problem consists of an action sig-
nature Σ, a set of STRIPS actions, an initial state s0, a goal
query G, and a RPS P .

Definition 14 Given a planning problem, a plan p is a se-
ries of STRIPS actions, a0, a1, . . . , an, that when iteratively
applied to state s0, every action is executable and conclude
with final state sn which satisfies the goal query.

We will useHp to represent the history produced by a plan
p. Plan p1 is at least as preferred as plan p2 iffHp1 �P Hp2 .
We will define optimal and k-optimal plans as was done in
(Bienvenu, Fritz, and McIlraith 2006).

Definition 15 Given a planning problem, a plan p is opti-
mal if for any other plan p′, Hp �P Hp′ . It is k-optimal if
p’s length is no greater than k and Hp �P Hp′ for all plans
of length no greater than k.

We have created a forward-chaining planner that can use
a RPS to guide its search. The aim is to quickly produce an
optimal plan. To do this the planner applies two heuristics to
partial plans to guide a best-first search strategy. The first is
an admissible optimistic heuristic that mirrors the heuristic
used by the PPLAN planner in (Bienvenu, Fritz, and McIlraith
2006). The second heuristic is a non-admissible distance
based heuristic.

For both of our heuristics, we need to define the notion
of a partial plan’s distance to satisfaction of a query. This
will put a value on how far a partial plan is from satisfying a
given query. To do this we compute the minimal number of
fluent or action terms in a query that are currently unsatisfied
that need to be satisfied for the query to be satisfied. If the
query is already satisfied, the distance is 0, and if the query
is unsatisfiable, the distance is infinity, ∞. Since we are
evaluating this value for incomplete plans we must keep in
mind that there will be at least one more state to follow the
current final state.

Definition 16 Given a query q, a partial plan’s history
of length n, H , and a maximum plan length k the value
dist(H, q) is recursively defined as follows:
• if q = true dist(H, q) = 0,
• if q = false, dist(H, q) =∞,
• if q is a time or fluent value atom, dist(H, q) = 0 if H |=
q,∞ otherwise,

• if q = forq = ¬f, f ∈ FC , dist(H, q) = 0 if H |= q,∞
otherwise,

• if q = A(t), F (t),¬A(t), or ¬F (t) and t is a time term,
– if 0 ≤ t ≤ n: dist(H, q) = 0 if H |= q,∞ otherwise,
– if n < t ≤ k: dist(H, q) = 1,
– if t < 0: dist(H, q) =∞

• if q = A(n), F (n),¬A(n), or ¬F (n), dist(H, q) = 1,
• if q = φ∨ψ, dist(H, q) = min(dist(H,φ), dist(H,ψ)),
• if q = φ ∧ ψ, dist(H, q) = dist(H,φ) + dist(H,ψ)),
• if q = ∃t ψ, dist(H, q) = min0≤i≤k(dist(H, qi/t)),
• if q = ∀t ψ,

dist(H, q) =
∑

0≤i≤min(n+1,k)

dist(H,ψi/t)

Quantified object variables can be viewed as conjunctions
or disjunctions over all substitutions. For quantified time
variables we range over timepoints, even beyond the cur-
rent endpoint. This embodies the notion that queries with
universally quantified time variables will normally never be
completely satisfied and queries with existentially quanti-
fied time variables will always have a chance to be satisfied.
Constant fluents and fluents and actions with a time-stamp
within the current history are either already satisfied, or will
never be, and thus produce distances of 0 or∞. Literals that
have a time-stamp of n (representing the last state of a his-
tory) are considered to never be satisfied since the current
final state will not be the final state of a complete plan’s his-
tory. Negation can efficiently be moved to the literal level
by use of DeMorgan’s laws and therefore we only consider
negation at that level.

Optimistic Heuristic
The optimistic heuristic follows the assumption that a node
will lead to a plan that satisfies the most preferred query in
an ordering that hasn’t become unsatisfiable. In this way
we have a heuristic that will never cause a node to be less
preferred than one of its predecessors. A pessimistic value is
also defined that assumes no query currently unsatisfied will
become satisfied. This will be used to compare histories that
are tied w.r.t. the optimistic values..

Definition 17 Given a preference ordering o and an history
H associated with a partial plan, oopt/pess(H)is defined as
follows:
• if o is a basic ordering,

– oopt(H) = i if dist(H,αi) < ∞, dist(H,αj) =
∞, 0 ≤ j < i

– opess(H) = i if dist(H,αi) = 0, dist(H,αj) >
0, 0 ≤ j < i

Preferences NMR-2008

228

• if o is an unbounded ordering,
– oopt(H) = opt,
– opess(H) = o(H)

Definition 18 Given a preference ordering o and an history
H associated with a plan, oopt(H) = opess(H) and are
equal to opessH as defined in Definition 17.

The optimistic and pessimistic values for a complete plan
are equal because the plan is complete, we know exactly how
well it will satisfy the preference orderings. When compar-
ing two plans, partial or complete, we will first compare their
optimistic satisfaction of preferences. If necessary we then
compare their pessimistic satisfaction. We use the strategy
from Definition 10 when making the comparison.

Greedy Distance Heuristic
The second heuristic function is based directly on the dis-
tance function we’ve defined. It simply chooses which par-
tial plan is preferred by how close it is to satisfying desir-
able queries. This is clearly a non-admissible heuristic as
the values for a partial plan may increase or decrease as it is
extended.

Definition 19 Given a basic preference ordering o and a
non-negative integer n and two histories, H1 and H2, H1

is preferred w.r.t. the most preferred n queries of the order-
ing, H1 ≥ogdy(n) H2, if

dist(H1, αi) < dist(H2, αi), i ≤ n
dist(H1, αj) = dist(H2, αj) 6= 0, 0 ≤ j < i

If H1 ≥ogdy(n) H2 then there is some query in the most
preferred n queries in the ordering that H1 is closer to sat-
isfying and the two histories are equally close to satisfying,
without satisfying, all more preferred queries. Therefore,
H1 ≥ogdy(0) H2 if H1 is closer to satisfying the most pre-
ferred query, H1 ≥ogdy(1) H2 if H1 ≥ogdy(0) H2 or H1 is
closer to satisfying the second query and they tie on the first.

The concept of distance to satisfaction doesn’t apply to
the unbounded preferences. For these, whichever produces
the preferred number will win. Unbounded preferences that
count occurrences, compute max and min will tend to only
increase or only decrease over time. When this is the case
this strategy should be effective.

Again using Definition 10 we will first compare two his-
tories w.r.t. ≥ogdy(0) . If no preference is found we iteratively
increase the depth until either one history is preferred, or
every ordering is considered in its entirety.

One fine point comes up when dealing with basic pref-
erence orderings that allow the possibility of a history not
satisfying any of the queries. Strategies could be devised
that try to determine when to make an effort to satisfy them
and when to ignore them. We choose to treat these prefer-
ences as all others and the search attempts to satisfy the most
preferred queries in these orderings.

Implementation and Experiments
To test our algorithms we implemented a forward chaining
planner in C++ that uses our heuristics to guide a best-first

Search Algorithm
add rootNode to frontier
while frontier is non-empty

currentNode = best node from frontier
[GRE]if currentNode can’t beat best solution
[GRE] discard currentNode
if currentNode is a solutionNode

return currentNode
if currentNode is not at maximum length
for each action executable from currentNode

create newNode
if newNode is a solution

[OPT] create solutionNode and add to frontier
[GRE] if ideal: return solution
[GRE] else: store solution

add newNode to frontier
return NULL

Figure 1: Pseudocode for search algorithm. “[GRE]” and
“[OPT]” mark lines only applicable when using the Greedy
or Optimistic heuristics. Returning a node implies returning
the plan associated with that node.

search. It maintains a frontier of nodes, each of which con-
tains a partial plan. The frontier initially only contains the
initial state. The planner then iteratively expands nodes by
creating a new node for every action that can be executed
from the node being expanded. All new nodes are then
added to the frontier sorted using the selected heuristic. If
two histories are equivalent with the currently used heuris-
tic, then the shorter plan will favored. The basic algorithm
is in figure 1.

We tested our planner using a planning domain presented
in (Bienvenu, Fritz, and McIlraith 2006) that involves plan-
ning a meal. We make use of test cases they used to test
their planner, PPLAN in that paper. Although the test cases
were presented using LPP , translation to our RPS system
is straightforward due to the similarities in the approaches.
The results for PPLAN are taken from running on preferences
specified LPP .

As was done in (Bienvenu, Fritz, and McIlraith 2006) and
(Kvarnström and Doherty 2000) we used domain-dependent
control knowledge to improve the search. For example, a
plan that includes driving to one location and immediately
driving elsewhere without doing anything there is always
undesirable. We accomplished this by simply adding two
preference orderings at their own most preferred rank that
are satisfied unless an obviously poor selection of actions
has taken place. Since they are in the most preferred rank,
any partial plan not satisfying these preferences is placed at
the bottom of the frontier and will not be considered unless
there is no goal-satisfying plan that doesn’t violate them.

When the greedy heuristic is used we are able to ignore
some nodes once a solution has been found. If the current
node cannot optimistically be preferred over the best solu-
tion currently stored, there is no reason to expand it. It is
therefore discarded.

We discovered an interesting issue when running experi-
ments on the two search methods. The file that defined the
planning domain had an unintended effect on the efficiency

Preferences NMR-2008

229

Gre Opt PP # Gre Opt PP # Gre Opt PP
1 15 14 22 21 7 7 8 41 5 11 7
2 3 3 10 22 3 3 10 42 7 23 23
3 118 122 43 23 4 4 12 43 3 10 15
4 5 4 7 24 6 5 15 44 44 43 31
5 3 2 3 25 4 4 7 45 16 317* 36
6 27 28 19 26 18 18 22 46 3 12 7
7 6 6 8 27 58 19272 19137 47 15 7659 8157
8 5 4 9 28 4/169 169 169 48 21 11 15
9 2 2 3 29 3 3 10 49 7 36 85
10 7 7 7 30 2 2 3 50 5/340 340 340
11 4 4 12 31 8 11 11 51 4 3 2
12 3 3 10 32 12/166 163 163 52 7 11 11
13 4 4 15 33 4 6 15 53 2 2 3
14 7 6 8 34 6 14 22 54 3 3 10
15 6 6 16 35 55/169 169 169 55 3 20 10
16 20 20 29 36 5 6 23 56 17 15 119
17 5 5 10 37 22 206* 37 57 5 5 22
18 8 17 19 38 7 7 15 58 15 5 21
19 3 2 3 39 17 47 54 59 3 21 10
20 12 22 19 40 47/151 151 151 60 10 5 21

Figure 2: Table of test results. Gre: Greedy Heuristic,
Opt: Optimistic Heuristic, PP: PPLAN, * marks results with a
best/worst disparity of an order of magnitude or more

of the search. The order that the actions were defined in the
file determined the order that actions were executed when
expanding a node in the search-space. When the new nodes
that are produced tie with respect to the heuristic function
being used, the order they are produced effects the order
that they end up in the frontier and thus the order they are
expanded. We found that reordering the actions in the file
could produce large differences in the number of nodes ex-
panded when the search was run. The difference between
the best and worst case can be as large as an order of mag-
nitude. This problem appears in our own planner as well as
with PPLAN. Due to this issue we have randomized the or-
der that actions are used to expand a node. We produced
our results by running the search 50 times and averaging the
results. This unexpected variance from an unforeseen and
preferably irrelevant factor is something that will need to be
monitored in any similar planning experiments.

Although this issue exists we still give our results in com-
parison to those of PPLAN. This may not be ideal, but the
variations due to action ordering are usually not serious. The
comparison still gives a general idea of success. We use the
number of nodes expanded as the basis for the comparison.
In the case of the greedy heuristic there are sometimes two
numbers. The first is the number of nodes expanded be-
fore finding the optimal solution. The second is the total
number of nodes expanded before the algorithm halted. The
numbers are different when the optimal plan doesn’t opti-
mally satisfy each and every ordering. Therefore, the plan-
ner needs to continue until it can guarantee the optimal so-
lution has been found.

The results for our tests are displayed in figure 2. It is
apparent that both of our heuristics and PPLAN often per-
form equally well. The most successful heuristic is our non-

admissible greedy function which was rarely defeated by a
significant margin and occasionally was one or more orders
of magnitude better than the optimistic heuristics. Our opti-
mistic heuristic applied to our system performs well in com-
parison to PPLAN either expanding fewer nodes or a similar
number of nodes in the majority of cases. In two cases the
best test run was an order of magnitude better than the worst
test run. In these test cases, the best run was similar to that
of PPLAN. These are marked with an asterisk.

Discussion and Related Work
We have proposed a preference specification system that can
express temporal preferences with respect to histories. It is
flexible, allowing users to alter some aspects of the system
so it can be applied to any field where preferences are desir-
able. We will now compare it with some of the preference
systems/languages mentioned earlier.

As previously demonstrated, the conditional preferences
of CP-nets (Boutilier et al. 2004) can easily be encoded in
our language. However, CP-nets are unable to represent the
complex first-order temporal preferences of our language.
The work with ranked knowledge bases from (Brewka 2004)
and (Feldmann, Brewka, and Wenzel 2006) However, it ap-
plies rankings to formulas as opposed to the orderings pro-
posed here. As such it would be extremely difficult to rep-
resent the preferences that can be defined with the orderings
proposed here.

Recall that Son and Pontelli proposed their language,PP
(Son and Pontelli 2006) and Bienvenu et al. (Bienvenu,
Fritz, and McIlraith 2006) made some additions and changes
to create their language LPP . We will compare their lan-
guages to ours level by level. At the query or BDF level,
PP and LPP use linear temporal logic (LTL) with only
LPP making use of first order logic. Such languages can
be used in place of our query language, but they lack time-
stamp variables and would thus make our unbounded or-
dering structure less functional. APFs are almost identical
to our basic preference orderings, though we don’t attach
values to queries as in LPP . Also, PP and LPP don’t
allow histories to ever be incomparable with respect to an
APF. Neither language can specify preferences similar to
our unbounded orderings. GPFs include disjunction, con-
junction, and conditional means to combine APFs. These
can be represented in our system, though conjunctions may
lead to exponential blow-up in translation. AgPFs can be
implemented in our system with a combination of the ranks
attached to orderings and adjusting the strategy for calculat-
ing preferences among histories. We believe our system of
ranks is more intuitive.

The other separation between our work and (Bienvenu,
Fritz, and McIlraith 2006) is in the strategy used for defin-
ing and producing preferred plans. Their system is generally
qualitative, but it becomes partially quantitative when they
attach numeric values to the formulas in an APF. In their
planner they use a strategy that uses these values as weights
in the comparison of plans. Our aim is to see how success-
ful a system can be without any quantitative aspects creeping
in. Though this may lead to a larger number of equivalently
preferred histories, in those cases the specification simply

Preferences NMR-2008

230

hasn’t provided the information necessary to distinguish be-
tween them.

Delgrande et al. (Delgrande, Schaub, and Tompits 2007)
(Delgrande, Schaub, and Tompits 2006) present a system
from which our query language is based. They build a pref-
erence language on top of the query language. The primary
advantage of our system is in the orderings which allow pref-
erences among several alternatives to easily by specified.
Their language also lacks a mechanism to rank the impor-
tance of preferences.

The most novel element of our RPS system is the un-
bounded ordering construct. The only proposal we are aware
of that can represent similar preferences is presented by Del-
grande et al. (Delgrande, Schaub, and Tompits 2007). Their
methodology involves defining aggregate values by means
of a recursive macro system. If this approach was added
to the preference system proposed in this paper, it would
fall into the query level. It would then still be necessary to
have a construct for creating an unbounded ordering. Since
the unbounded ordering construct allows these values to be
specified on its own, such a strategy is not needed in our
system. Also worth mentioning is PDDL3, a language used
in planning competitions, that can express a portion of those
unbounded orderings that only involve object variables in V
(Gerevini and Long 2006).

To summarize, the RPS system is flexible. It can be ap-
plied to many applications with the use of other query lan-
guages. Preference orderings can be defined that enforce
or violate transitivity and that give comparisons between all
or only a subset of all alternatives (histories in this paper).
Varying strategies for using the information in an RPS to
compare alternatives can be used to suit a user’s needs. Un-
bounded orderings allow preferences that are undefinable or
unmanageable in most other systems. Finally, the system
is purely qualitative, not relying on precise values to define
preferences or compare alternatives.

Though more experimental results need to be explored,
our results are promising. Firstly, they give evidence that the
move away from the values attached to formulas in APFs
doesn’t hurt our system in terms of efficiently finding op-
timal plans. Secondly, we showed that a non-admissible
heuristic may be the best option. The greedy heuristic
tended to find optimal solutions more quickly than the op-
timistic heuristics. If the solution is ideal it is able to imme-
diately halt, however, even when the optimal plan is not ideal
it tended to expand no more nodes than the admissible opti-
mistic heuristics. The reason for this is that we use the best
solution found to prune nodes that can’t optimistically beat
this solution. This breaks down to the same strategy the op-
timistic heuristics use for pruning non-optimal branches in
the search tree. Baier et al. (Baier, Bacchus, and McIlraith
2007) and (Baier and McIlraith 2007) have done more exten-
sive work using heuristic strategies that often calculate dis-
tance metrics to preferences and goals and experiment with
them in different combinations demonstrating strong results.

Future work needs to go into testing these and other
heuristics in a wider range of planning problems and do-
mains as well as experiments that place focus on unbounded
orderings. We were also only concerned with the efficiency

of our heuristics and did not put time into implementing our
planner in an efficient manner. Making use of strategies be-
ing used elsewhere in planning with our system should be
explored in the future.

References
Baier, J. A., and McIlraith, S. 2007. On domain-
independent heuristics for planning with qualitative prefer-
ences. In Proceedings of the 7th IJCAI International Work-
shop on Nonmonotonic Reasoning, Action and Change
(NRAC-07).
Baier, J.; Bacchus, F.; and McIlraith, S. 2007. A heuris-
tic search approach to planning with temporally extended
preferences. In Proceedings of the Twentieth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
07), 1808–1815.
Bienvenu, M.; Fritz, C.; and McIlraith, S. A. 2006. Plan-
ning with qualitative temporal preferences. In Proceed-
ings of the 10th International Conference on Principles of
Knowledge Representation and Reasoning (KR06), 134–
144. Lake District, UK: AAAI Press.
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004. Cp-nets: A tool for representing and
reasoning with conditional ceteris paribus preference state-
ments. J. Artif. Intell. Res. (JAIR) 21:135–191.
Brewka, G. 2004. A rank based description language for
qualitative preferences. In Proceedings of the 16th Eureo-
pean Conference on Artificial Intelligence (ECAI04), 303–
307. IOS Press.
Delgrande, J. P.; Schaub, T.; and Tompits, H. 2006. An ex-
tended query language for action languages (and its appli-
cation to aggregates and preferences). In Eleventh Interna-
tional Workshop on Non-Monotonic Reasoning NMR2006.
Delgrande, J. P.; Schaub, T.; and Tompits, H. 2007. A gen-
eral framework for expressing preferences in causal rea-
soning and planning. J. Log. Comput. 17(5):871–907.
Feldmann, R.; Brewka, G.; and Wenzel, S. 2006. Plan-
ning with prioritized goals. In Proceedings, Tenth Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning, 503–514. Lake District, UK: AAAI
Press.
Fikes, R., and Nilsson, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artif. Intell. 2(3/4):189–208.
Gelfond, M., and Lifschitz, V. 1998. Action languages.
Electron. Trans. Artif. Intell. 2:193–210.
Gerevini, A., and Long, D. 2006. Plan constraints and
preferences in PDDL3. In Proceedings of the ICAPS 2006
Workshop on Preferences and Soft Constraints in Planning.
Kvarnström, J., and Doherty, P. 2000. Talplanner: A tem-
poral logic based forward chaining planner. Ann. Math.
Artif. Intell. 30(1-4):119–169.
Son, T. C., and Pontelli, E. 2006. Planning with prefer-
ences using logic programming. TPLP 6(5):559–607.

Preferences NMR-2008

231

Preferred answer sets supported by arguments

Ján Šefránek
Comeniu University, Bratislava, Slovakia

e-mail: sefranek@ii.fmph.uniba.sk

Abstract

We are aiming at a semantics of prioritized logic programs
which always selects a preferred answer set, if there is a non-
empty set of (standard) answer sets of the given program.
It is shown in a seminal paper by Brewka and Eiter that the
goal mentioned above is incompatible with their second prin-
ciple and it is not satisfied in their semantics of prioritized
logic programs. Similarly, also according to other established
semantics, based on a prescriptive approach, there are prior-
itized logic programs with standard answer sets, but without
preferred answer sets.
Our solution is as follows. According to the standard pre-
scriptive approach no rule can be fired before a more pre-
ferred rule, unless the more preferred rule is blocked. This
is a rather imperative approach, in its spirit. In our approach,
rules can be blocked by more preferred rules, but the rules
which are not blocked are handled in a more declarative style,
their execution does not depend on the given preference rela-
tion on the rules.
An argumentation framework is proposed in this paper. Ar-
gumentation structures are derived from the rules of a given
program. An attack relation on argumentation structures is
defined, which is derived from attacks of more preferred rules
against the less preferred rules. Preferred answer sets corre-
spond to complete argumentation structures, which are not
attacked by another complete argumentation structures.

Keywords: extended logic program, answer set, prefer-
ence, prioritized logic program, preferred answer set, argu-
mentation structure

Introduction
Background Meaning of a nonmonotonic theory is often
characterized by a set of (alternative) belief sets. It is natural
and appropriate to select sometimes some of the belief sets
as more preferred.

We are focused in this paper on extended logic programs
with a preference relation on rules (and with a kind of an-
swer set semantics), see f.ex. (Brewka and Eiter 1999; Del-
grande, Schaub, and Tompits 2003; Schaub and Wang 2001;
Wang, Zhou, and Lin 2000). Such kind of programs is de-
noted by the term prioritized logic programs in this paper.

An investigation of basic principles which should be satis-
fied by any system which is based on prioritized defeasible
rules is of fundamental importance. This type of research

has been initialized in the seminal paper (Brewka and Eiter
1999). Two basic principles are accepted in the paper.

Problem It is natural to require that some preferred an-
swer sets can be selected from a non-empty set of standard
answer sets of a (prioritized) logic program.

Unfortunately, there are prioritized logic programs with
standard answer sets, but without preferred answer sets ac-
cording to the semantics of (Brewka and Eiter 1999) (and
also of (Delgrande, Schaub, and Tompits 2003) or (Wang,
Zhou, and Lin 2000)). This feature is a consequence of the
prescriptive (Delgrande et al. 2004) approach to preference
handling. According to that approach, the preference rela-
tion defined on the rules of the given prioritized logic pro-
gram specifies the order in which rules are to be applied.

Moreover, the second of the principles accepted by
(Brewka and Eiter 1999) is violated, if a function is assumed,
which selects a non-empty subset of preferred answer sets
from a non-empty set of all standard answer sets of a pri-
oritized logic program. See Proposition 6.1 of (Brewka and
Eiter 1999).

Goal and proposed solution We believe that the possibil-
ity to select always a preferred answer set from a non-empty
set of standard answer sets is of critical importance. This
goal requires to accept a descriptive approach to preference
handling. The approach is characterized by (Delgrande and
Schaub 2000; Delgrande et al. 2004) as follows: The order
in which rules are applied, reflects their “desirability’. We
attempt to precise in conclusions the sense in which the term
is used in this paper.

Our goal is:

1. to modify the understanding of Principles proposed by
(Brewka and Eiter 1999) in such a way that they do not
contradict a selection of a non-empty set of preferred an-
swer sets from the underlying non-empty set of standard
answer sets,

2. to introduce such a notion of preferred answer sets which
enables a selection of a preferred answer set from a non-
empty set of standard answer sets.

The proposed solution is sketched as follows. A notion
of argument and argumentation structure is introduced. The

Preferences NMR-2008

232

notions are inspired by (Garcı́a and Simari 2004), but they
are rather different. The basic argumentation structures cor-
respond to the rules. Some derivation rules are defined for
argumentation structures. The set of argumentation struc-
tures is closed w.r.t. the rules. A transfer from a preference
on rules to a preference on arguments is suggested. Attacks
of more preferred rules against the less preferred rules are
transferred via another set of derivation rules to the attacks
of more preferred arguments against the less preferred argu-
ments. Arguments attacked by more preferred arguments are
called blocked. Preferred answer sets are defined in terms of
complete and non-blocked arguments.

According to the prescriptive attitude towards prioritized
logic programs no rule can be fired before a more preferred
rule, unless the more preferred rule is blocked. This is a
rather imperative approach, in its spirit. In our approach,
rules can be blocked by more preferred rules, but the rules
which are not blocked are handled in a more declarative
style. The execution of non-blocked rules does not depend
on their order. Dependencies of more preferred rules on
less preferred rules does not prevent the execution of non-
blocked rules in our approach. Of course, this approach is
computationally more demanding than the prescriptive ap-
proach. In (Delgrande, Schaub, and Tompits 2003) a compi-
lation of prioritized programs to extended programs is pro-
posed. The standard answer sets of the “output” program are
equivalent - modulo new symbols - to the preferred answer
sets of the original prioritized program. We are not aware
of a similar result for an approach based on the descriptive
attitude.

Finally a remark – this paper is a result of a (rather unsuc-
cessful) attempt to modify approaches of (Brewka and Eiter
1999), (Delgrande, Schaub, and Tompits 2003) and (Wang,
Zhou, and Lin 2000) in a way, which enables a selection
of a preferred answer set from a non-empty set of standard
answer sets.

Main contributions Contributions of this paper are sum-
marized as follows. A modified set of principles for pre-
ferred answer sets specification is proposed. A new argu-
mentation framework is constructed, which enables a selec-
tion of preferred answer sets. Rules for derivation of ar-
gumentation structures and rules for derivation of attacks
of some argumentation structures against other argumenta-
tion structures are defined. Preferred answer sets are defined
in terms of complete and non-blocked argumentation struc-
tures. It is proven that our notion of preferred answer sets
satisfies specified principles, see Theorems 37,38,39. Fi-
nally, we emphasize that each program with a non-empty
set of answer sets has a preferred answer set.

Preliminaries
The language of extended logic programs is used in this pa-
per.

Let At be a set of atoms. The set of objective literals
is defined as Obj = At ∪ {¬ A : A ∈ At}. If L is an
objective literal then the expression of the form not L is
called default literal. Notation: Def = {not L | L ∈ Obj}.

Sets of default literals are called assumptions in this paper.
The set of literals Lit is defined as Obj∪Def . A convention:
not not L = L, ¬¬A = A, where L ∈ Obj and A ∈ At . If
X is a set of objective literals, then not X = {not L | L ∈
X}.

A rule is each expression of the form L ← L1, . . . , Lk,
where k ≥ 0, L ∈ Obj and Li ∈ Lit . If r is a rule
of the form as above, then L is denoted by head(r) and
{L1, . . . , Lk} by body(r). A finite set of rules is called ex-
tended logic program (program hereafter).

The set of conflicting literals is defined as CON =
{(L1, L2) | L1 = not L2 ∨ L1 = ¬L2}. A set of literals
S is consistent if (S × S)∩CON = ∅. An interpretation is
a consistent set of literals. A total interpretation is an inter-
pretation I such that for each objective literal L either L ∈ I
or not L ∈ I . A literal L is satisfied in an interpretation I
iff L ∈ I . A set of literals S is satisfied in I iff S ⊆ I . A
rule r is satisfied in I iff head(r) is satisfied in I whenever
body(r) is satisfied in I .

If S is a set of literals, then we denote S∩Obj by S+ and
S ∩Def by S−. Symbols body+(r) and body−(r) are used
here in that sense (notice that the usual meaning of body−(r)
is different). If X ⊆ Def then pos(X) = {L ∈ Obj |
not L ∈ X}. Hence, not pos(body−(r)) = body−(r). If r
is a rule, then the rule head(r) ← body+(r) , is denoted by
r+.

Answer set of a program can be defined as follows (only
consistent answer sets are defined).

Definition 1 A total interpretation S is an answer set of a
program P iff S+ is the least model1 of the program P+ =
{r+ | S |= body−(r)}. 2

Note that an answer set S is usually represented by S+ (this
convention is sometimes used also in this paper).

The set of all answer sets of a program P is denoted by
SM (P). A program is called coherent iff it has an answer
set.

Strict partial order is a binary relation, which is irreflex-
ive, transitive and, consequently, assymetric.

Definition 2 (Prioritized logic program) A prioritized
logic program (P,≺,N) is a program P together with a
strict partial order ≺ on rules of P and with a function N
assigning names to rules of P .

If r1 ≺ r2 it is said that r2 is more preferred than r1. 2

A remark - if a symbol r is used in this paper in order to
denote a rule, then r is considered as the name of that rule
(no different name N (r) is introduced).

Definition 3 Let a program P and an answer set S be given.
Let be R = {r ∈ P | body(r) ⊆ S}. It is said that R is the
set of all generating rules of S+. 2

1P+ is treated as definite logic program, i.e. each objective
literal of the form ¬A, where A ∈ At , is considered as a new
atom.

Preferences NMR-2008

233

Principles
Principles suggested by (Brewka and Eiter 1999) are dis-
cussed in this section. The principles relate an order on
rules with a corresponding order on answer sets. In other
words: they (partially) specify what means that an order on
answer sets corresponds to the given order on rules. The first
two principles are from (Brewka and Eiter 1999). Postulate
III reproduces an idea of Proposition 6.1 from (Brewka and
Eiter 1999).

The Principles of (Brewka and Eiter 1999) are expressed
in an abstract way for the general case of nonmonotonic
knowledge bases (prioritized defeasible rules). We restrict
the discussion (and the wording) of the Principles to the case
of logic programs and answer sets.

Principle I Let a prioritized logic program (P,≺,N) be
given. Let A1 and A2 be two answer sets of the program P .
Let R ⊂ P be a set of rules and d1, d2 6∈ R are rules. Let
A+

1 , A+
2 be generated by the rules R ∪ {d1} and R ∪ {d2},

respectively. If d1 is preferred over d2, then A2 is not a
preferred answer set of (P,≺,N). 2

Principle II Let A be a preferred answer set of a prior-
itized logic program (P,≺,N). and r be a rule such that
body+(r) 6⊆ A+. Then A is a preferred answer set of
(P ∪ {r}),≺′,N ′), whenever ≺′ agrees with ≺ on rules
in P and N ′ extends N with the name r. 2

Principle III Let a prioritized logic program (P,≺,N)
be given and B 6= ∅ be the set of all answer sets of P . Then
there is a selection function Σ s.t. Σ(B) is the set of all
preferred answer sets of (P,≺,N), where ∅ 6= Σ(B) ⊆ B.
2

It is shown in (Brewka and Eiter 1999), Proposition 6.1,
that Principle II is incompatible with Principle III, if the no-
tion of preferred answer set from (Brewka and Eiter 1999)
is accepted:

Example 4 ((Brewka and Eiter 1999)) Consider program
P , whose single standard answer set is S = {b} and the
rule (1) is preferred over the rule (2).

c ← not b (1)
b ← not a (2)

S is not a preferred answer set in the framework of (Brewka
and Eiter 1999)2; there is no BE-preferred answer set of
this (P,≺,N) and there are also many other cases of prior-
itized programs with standard answer sets, but without BE-
preferred, D-preferred or W-preferred answer sets.

Assume that S, the only standard answer set of P , is se-
lected – according to the Principle III – as the preferred an-
swer set of (P,≺,N). Let P ′ be P ∪ {a ← c} and a ← c

2We will use notation from (Delgrande, Schaub, and Tompits
2003). BE-preferred means preferred according to (Brewka and
Eiter 1999), D-preferred according to (Delgrande, Schaub, and
Tompits 2003) and W-preferred according to (Wang, Zhou, and
Lin 2000). Definitions of BE-, D- and W- preferred answer sets
are missing in this paper because of the limited space. We hope
that the main line of thoughts of this paper does not suffer from
that. A precise formal comparison of approaches mentioned above
can be found in (Schaub and Wang 2001).

be preferred over the both rules 1 and 2. P ′ has two stan-
dard answer sets, S and T = {a, c}. Note that {c} 6⊆ S+.
Hence, S should be the preferred answer set of P ′ according
to the Principle II. However, in the framework of (Brewka
and Eiter 1999) the only preferred answer set of (P ′,≺′,N ′)
is T . This selection of preferred answer set satisfies clear in-
tuitions – T is generated by the two most preferred rules.
2

Principle III is of crucial value according to our view. If
we accept a program as a representation of a domain, then
we consider its answer sets as (alternative) condensed rep-
resentations of the domain. If a preference relation is in-
troduced, some most preferred condensed representations
should be considered. The preference relation on rules and
its impact on a preference relation on answer sets should
not be totally destructive – at least one of the original con-
densed representations should be preferred. Therefore, we
are aiming at a less restrictive correspondence between or-
der on rules and order on answer sets.

In any case, there are good reasons to modify (or reject)
Principle II. Let a program P with a set of answer sets B
be given. If P is extended to P ′, we can sometimes get an
extended set of answer sets B′ ⊃ B (in contrast to standard
logical theories and their models). Hence, we select pre-
ferred answer sets of P ′ from a broader variety of possibil-
ities. Consequently, no condition satisfied by some B ∈ B
should constraint the selection of preferred answer set from
B′ (even from B′ \ B). Principle II is not accepted in this
paper. Principle II is not accepted also in (Sakama and In-
oue 2000). According to (Delgrande et al. 2004) descriptive
approaches do not satisfy this principle in general.

We propose a new principle below. The principle express
our position: the use of a preference relation should be fo-
cused on the blocking of less preferred rules and not on their
application. Moreover, the principle is useful in preventing
a problem with Rintanen’s approach, see Example 3.2 from
(Brewka and Eiter 1999). We translate the default theory
from the example into a logic program.

Example 5 Let P be

r1 b ← a,not ¬b

r2 ¬a ← not a

r3 a ← not ¬a

If i < j, then ri is more preferred than rj (in all examples
of this paper). There are two standard answer sets of P :
S1 = {¬a}, S2 = {a, b}. S2 corresponds to the preferred
extension of the corresponding default theory according to
Rintanen. This is rejected in (Brewka and Eiter 1999) be-
cause of Principle II.

We see another possibility how to prevent the selection of
S2. See Principle IV below (one of the generating rules of
S2 is blocked by a more preferred rule). 2

Let P be a program and r1, r2 ∈ P . It is said, that r1

blocks r2 iff not head(r1) ∈ body−(r2).
Principle IV.

Preferences NMR-2008

234

Let A1, A2 be answer sets of a prioritized program (P,≺
,N), r2 ≺ r1 and r1 blocks r2.

Let a set of generating rules of A1 contains r1 and let r2

be a member of each set of generating rules of A2.
Then A2 is not a preferred answer set. 2

As regards a choice of principles, we accept the position
of (Brewka and Eiter 1999): even if somebody does not ac-
cept a set of principles for preferential reasoning, those (and
similar) principles are still of interest as they may be used
for classifying different patterns of reasoning.

In order to conclude this section: we accept Principles I,
III and IV.

From programs to arguments
We intend to apply the preference relation on rules only in
order to block the less preferred rules whenever assumptions
(the sets of default literals) in their bodies are contradicted
by consequences of more preferred rules. Therefore, our
attention is focused on assumptions, consequences of as-
sumptions, negative programs and negative equivalents of
programs.

We propose to consider assumptions as arguments and to
do a transition from the preference on rules to a preference
on arguments. In this section are recapped some notions
useful for that goal (from (Dimopoulos and Torres 1996) and
(Sefranek 2006)).

Definition 6 (�P) An objective literal L depends on an as-
sumption (on a set of default literals) W with respect to
a program P (L �P W) iff there is a sequence of rules
〈r1, . . . , rk〉, k ≥ 1, ri ∈ P such that

• head(rk) = L,
• W |= body(r1),
• for each i, 1 ≤ i < k, W ∪ {head(r1), . . . , head(ri)} |=

body(ri+1).

The set {L ∈ Lit | L �P Xs} ∪ Xs is denoted by
Cn�P

(Xs).
The assumption Xs is self-consistent w.r.t. a program P

iff Cn�P
(Xs) is consistent. 2

If Z ⊆ Obj , we will use sometimes the notation
Cn�P∪Z

(Xs), assuming that the program P is extended by
the set of facts Z.

Dependencies on assumptions are expressed in (Di-
mopoulos and Torres 1996) in terms of support. Some im-
portant results on negative programs, used in our argumen-
tation framework, are based on the notion of support.

Definition 7 An assumption Xs is a support for an objective
literal L (for a set S of objective literals) in a program P iff
L ∈ Cn�P

(Xs) (S ⊂ Cn�P
(Xs)).

Let Xs be a support for L (for S) in P . Then Xs is a
minimal support for L (for S) in P iff for no Y ⊆ Xs holds
L ∈ Cn�P

(Y) (S ⊂ Cn�P
(Y)). 2

Definition 8 Let P be a program and Xs be a self-consistent
assumption.

An interpretation I is a supported interpretation of Xs iff
I = Cn�P

(Xs).
An interpretation is supported iff it is the supported inter-

pretation of some self-consistent assumption Xs . 2

Answer sets can be equivalently characterized in terms of
supported interpretations and in terms of dependencies.

Proposition 9 An interpretation S is an answer set of a pro-
gram P iff S is total and S = Cn�P

(S−).
A supported interpretation I is an answer set of P iff it is

total. 2

Definition 10 Two logic programs, P1 and P2, are support-
equivalent iff for every assumption Xs and for every objec-
tive literal L holds L ∈ Cn�P1

(Xs) iff L ∈ Cn�P2
(Xs).

2

Definition 11 If for each rule r ∈ P holds that body(r) =
body−(r), then P is a negative logic program. A nega-
tive program is reduced iff r1 = r2 whenever body(r1) ⊆
body(r2). 2

Our notion of preferred answer set is based on argumenta-
tion structures which correspond to negative equivalents of
programs. The following two propositions provide a theo-
retical background for that use of argumentation structures.

Definition 12 The negative equivalent of a given logic pro-
gram P is the negative logic program R containing exactly
every rule r, where body(r) is a minimal support (in P) of
some objective literal L and L = head(r). 2

Proposition 13 Let P be a program. Then its negative
equivalent R is reduced and support-equivalent to P and,
consequently, SM (P) = SM (R).

It is intended to apply the preference relation on rules for
blocking the less preferred rules with assumptions contra-
dicted by the consequence of a more preferred rule. There-
fore, a way how to transfer the preference relation to the
negative equivalent of the given program could be interest-
ing. However, a reasonable and straightforward transfer is
impossible – the rules of the negative equivalent do not cor-
respond to the original rules in a unique way. An attempt to
construct the transfer by means of argumentation structures
is presented in the following sections.

Argumentation structures
A descriptive approach to preferred answer sets specifica-
tion is presented in this paper. Remind that according to
(Delgrande and Schaub 2000) a descriptive approach can be
characterized by such order of applied rules which reflects
the “desirability” of rules application.

We attempt to specify “desirability” in terms of argu-
ments. Briefly, a preferred answer set is supported by a com-
plete argument, which is not blocked by a more preferred
argument. An order of rules can be reconstructed from the
argument.

Preferences NMR-2008

235

Our aim is to transfer a preference relation defined on
rules to a notion of preferred answer sets via a notion of
argument (the method is inspired by (Garcı́a and Simari
2004)). While there defeasible rules are treated as (defea-
sible) arguments, here (defeasible) assumptions, sets of de-
fault negations, are considered as arguments. Reasoning
about a logic program is here understood as a kind of argu-
mentation, rules of the program are considered as unques-
tionable truths and sets of default literals can be viewed as
defeasible arguments, which may be contradicted by conse-
quences of some applicable rules.

The preference relation on rules is used in order to ig-
nore the attacks of less preferred arguments against more
preferred arguments. The core problem is to transfer the
preference relation defined on rules to arguments.

Let us begin by an example illustrating how could a notion
of argument be used in the context of logic programs.

Example 14 ((Brewka and Eiter 1999))

r1 b ← a,not ¬b

r2 ¬b ← not b

Consider the rule r2. The literal ¬b is supported by the ar-
gument not b. If the argument is true (can be consistently
evaluated as true with respect to a program containing r2)
then also ¬b can be evaluated as true. As regards the rule r1,
default negation not ¬b can be treated as an argument for
b, if a is true. We are going to introduce a notion of argu-
mentation structure, which encodes also such “conditional
arguments”.

Of course, some arguments can be treated as counterar-
guments against other arguments. If rules r1 and r2 belong
to a program P and we accept the argument not b (with the
consequence ¬b), it can be treated as a counterargument to
not ¬b and vice versa. 2

Definition 15 (Argument) Let P be a program.
A self-consistent set of default negations X is called an

argument w.r.t. the program P for a consistent set of objec-
tive literals Y , given a set of objective literals Z iff

1. pos(X) ∩ Z = ∅,
2. Y ⊆ Cn�P∪Z

(X).

We will use the notation 〈Y ←↩ X; Z〉 and the triple denoted
by it is called an argumentation structure (w.r.t. P). 2

A remark: we do not require a minimality of arguments
(this is not an appropriate feature for answer sets specifica-
tion).

If Z = ∅ also a shortened notation 〈Y ←↩ X〉 can be
used. We will omit sometimes the phrase ”w.r.t. P ” and
speak simply about arguments (the corresponding program
is always clear from the context).

We emphasize that only self-consistent arguments for
consistent sets of objective literals are considered in this pa-
per.

Derivation of argumentation structures
Some argumentation structures can be derived from another
argumentation structures. The derivation is grounded on
the basic argumentation structures, which correspond to the
rules of the given program.

If r ∈ P is a rule, then 〈head(r)←↩ body−(r); body+(r)〉
is a basic argumentation structure (w.r.t. P).

Only the argumentation structures derived from the basic
argumentation structures using derivation rules from Defini-
tion 17 are of interest in the rest of this paper. Whenever
we use the term “argumentation structure” below, we mean
“argumentation structure derived from basic argumentation
structures using derivation rules”.

Example 16 Consider a program P – the rule r3 is added
to rules r2 and r1 from Example 14 (P is used as a running
example in next paragraphs).

r3 a ← not ¬a

The following (basic) argumentation structures correspond
to rules of P : 〈{b} ←↩ {not ¬b}; {a}〉, 〈{¬b} ←↩
{not b}〉, 〈{a} ←↩ {not ¬a}〉 (let denote them by
A1,A2,A3, respectively).

As examples of two kinds of derived argumentation struc-
tures can serve: The argumentation structure A4 = 〈{b} ←↩
{not ¬b,not ¬a}〉 can be derived (by “unfolding”) from
A1 and A3 and A5 = 〈{b, a} ←↩ {not ¬b,not ¬a}〉 from
A3 and A4 (by joining arguments and sets of literals sup-
ported by the arguments).

Unfolding is used in order to obtain sets of argumenta-
tion structures, which are equivalents of negative programs.
Joining is applied to those equivalents of negative programs
in order to compose argumentation structures corresponding
to answer sets. 2

Derivation rules R1 and R2 are motivated in Example 16.
The role of R3 is an extension of minimal arguments (as-
sumptions). This feature is necessary for a generation of
argumentation structures corresponding to answer sets.

Definition 17 (Derivation rules) Let P be a program.

R1 Let be r1, r2 ∈ P , A1 = 〈{head(r1)} ←↩ X1; Z1〉 and
A2 = 〈{head(r2)} ←↩ body−(r2); body+(r2)〉 argumen-
tation structures, head(r2) ∈ Z1 and X1 ∪ body−(r2) ∪
Z1 ∪ body+(r2) ∪ {head(r1)} be consistent.
Then also A3 = 〈head(r1) ←↩ X1 ∪ body−(r2); (Z1 \
{head(r2)})∪ body+(r2)〉 is an argumentation structure.

R2 Let A1 = 〈Y1 ←↩ X1〉 and A2 = 〈Y2 ←↩ X2〉 be argu-
mentation structures and X1∪X2∪Y1∪Y2 be consistent.
Then also A3 = 〈Y1 ∪ Y2 ←↩ X1 ∪X2〉 is an argumenta-
tion structure.

R3 Let A1 = 〈Y1 ←↩ X1〉 be an argumentation structure
and W be an assumption.
If X1 ∪ W ∪ Y1 is consistent, then also A2 = 〈Y1 ←↩
X1 ∪W 〉 is an argumentation structure.

Preferences NMR-2008

236

A derivation of A (w.r.t. P) is a sequence
〈A1,A2, . . . ,Ak〉 of argumentation structures (w.r.t. P)
such that A1 is a basic argumentation structure, A = Ak

and each Ai, 1 < i ≤ k, is either a basic argumentation
structure or it is obtained by R1 or R2 or R3 from preceding
argumentation structures.

Argumentation structures of the form 〈X ←↩ Y ; ∅〉 are of
the fundamental importance - they correspond to the nega-
tive rules. It is known from (Dimopoulos and Torres 1996)
that each answer set of a program P can be represented as
an answer set of the support equivalent negative reduced pro-
gram, see Proposition 13. We are aiming at an identification
of argumentation structures that generate answer sets and are
not blocked in the sense defined below.

The following proposition shows that the rule R1 enables
to derive argumentation structures, which are equivalents of
the support equivalent negative reduced program.

Proposition 18 Let P be a program, let be L ∈ Obj and
W ⊆ Def . If L ∈ Cn�P

(W) and W is a minimal support
for L, then either 〈{L} ←↩ W 〉 is a basic argumentation
structure or there is a derivation of 〈{L} ←↩ W 〉 and only
the rule R1 is used in the derivation.

Proof Sketch: Suppose that 〈{L} ←↩ W 〉 is not a basic
argumentation structure.

Consider a sequence of rules 〈r1, . . . , rk〉, where k > 1
and a rule ri, i > 1. The argumentation structure cor-
responding to ri is 〈head(ri) ←↩ body−(ri); body+(ri)〉.
It holds that body−(ri) ⊆ W and body+(ri) ⊆
{head(r1), . . . , head(ri−1)} = Zi−1. Hence, after at most
i−1 applications of R1 we obtain 〈head(ri)←↩ W 〉. Notice
that L = head(rk) 2

Therefore, to each rule from the negative equivalent of
the given program P exists a corresponding argumentation
structure (w.r.t. P).

On the other hand, a similar correspondence is from de-
rived argumentation structures to the rules of the negative
equivalent of P .

Proposition 19 If there is a derivation of an argumentation
structure A = 〈{L} ←↩ Xs〉 (w.r.t. P) using only R1,
then Xs is a minimal support of L and there is r ∈ R s.t.
head(r) = L and body(r) = body−(r) = Xs .

Proof Sketch: L ∈ Cn�P
(Xs), i.e. L is supported by Xs .

If only R1 is used, then the support is minimal.

Consequence 20 Let R be the negative equivalent of P . For
each r ∈ R there is a derivation (w.r.t. P) of the correspond-
ing argumentation structure 〈{head(r)} ←↩ body(r)〉.

Argumentation structures of the form 〈Y ←↩ X; Z〉, Z 6=
∅ may be derived only using R1 and they support only sin-
gletons, heads of some rules. Sets of literals, supported by
an argument are constructed only from argumentation struc-
tures of the form 〈{L} ←↩ X〉.

Consequence 21 If there is a derivation of an argumenta-
tion structure 〈Y ←↩ X; Z〉, Z 6= ∅, then Y = {L} for some
L ∈ Obj and L ∈⊆ Cn�P∪Z

(X).

Prof Sketch: The rules R2, R3 can be applied only if Z =
∅. If only R1 is used in a derivation of an argumentation
structure A1 = 〈Y1 ←↩ X1; Z1〉, then Y1 is a singleton.

Proposition 22 If there is a derivation of an argumentation
structure 〈Y ←↩ X〉, then Y ⊆ Cn�P

(X).

Proposition 23 If S is an answer set of a program P , then
there is an argumentation structure 〈S+ ←↩ S−〉 derivable
from the basic argumentation structures.

Proof Sketch: S = Cn�P
(S−) (see Proposition 9). Ac-

cording to Proposition 18 for each L ∈ S+ there is a deriva-
tion of 〈{L} ←↩ W 〉, where W ⊆ S−. The argumentation
structure 〈S+ ←↩ S−〉 is obtained using R2 and R3.

Attacks
Our approach to preferred answer sets is based on a so-
lution of conflicts between argumentation structures. We
distinguish three steps towards that goal. Contradictions
between argumentation structures represent the elementary
step. Only some contradictions are called attacks. The basic
attacks are defined only for the basic argumentation struc-
tures. Consider two basic argumentation structures A1 and
A2. If A1 contradicts A2 and corresponds to a more pre-
ferred rule, then it attacks A2. Attacks are propagated to
other argumentation structures via some derivation rules. Fi-
nally, in the case of attacks between complete argumentation
structures (corresponding to answer sets) we speak about
blocking.

Definition 24 Consider argumentation structures A =
〈Y1 ←↩ X1; Z1〉 and B = 〈Y2 ←↩ X2; Z2〉.

If there is a literal L ∈ Y1 such that not L ∈ X2, it is
said that the argument X1 contradicts the argument X2 and
the argumentation structureA contradicts the argumentation
structure B.

It is said that X1 is a counterargument to X2. 2

Two trivial observations (important for a generation of
preferred answer sets):

The basic argumentation structures corresponding to the
facts of the given program are not contradicted.

Let r1 = a ← be a fact, let r2 be more preferred than r1

and not a ∈ body−(r2). Then any assumption that contains
body−(r2) is not self-consistent and, therefore, it is not an
argument.

Example 25 In Example 16A1 contradictsA2 andA2 con-
tradicts A1. 2

Example 25 shows that only some counterarguments are
interesting: the rule r1 is more preferred than the rule r2,
therefore the counterargument of A2 against A1 should not
be “effectual”. We are going to introduce a notion of attack
in order to denote “effectual” counterarguments.

Preferences NMR-2008

237

Similarly as for the case of argumentation structures, the
basic attacks are defined first. A terminological convention:
ifA1 attacksA2, it is said that the pair (A1,A2) is an attack.

Definition 26 Let be r2 ≺ r1 and A1 = 〈{head(r1)} ←↩
body−(r1); body+(r1)〉 contradicts A2 = 〈{head(r2)} ←↩
body−(r2); body+(r2)〉.

ThenA1 attacksA2 and it is said, that this attack is basic.

Attacks of argumentation structures “inherited” (prop-
agated) from basic attacks are defined in terms of some
derivation rules. The rules of that inheritance are motivated
and defined below.

Example 27 Let us continue with Example 16.
Consider the basic argumentation structures A1 =

〈{b} ←↩ {not ¬b}; {a}〉, A2 = 〈{¬b} ←↩ {not b}〉,
A3 = 〈{a} ←↩ {not ¬a}〉 and the derived argumenta-
tion structures A4 = 〈{b} ←↩ {not ¬b,not ¬a}〉, A5 =
〈{b, a} ←↩ {not ¬b,not ¬a}〉.

(A1,A2) is the only basic attack.
A derivation of the attacks of (A4,A2) and (A5,A2)

could be motivated as follows. A4 is derived from A1 and
A3 using R1, the attack of A1 against A2 should be propa-
gated to the attack (A4,A2). Note that A3 is a neutral argu-
mentation structure with respect to attacks.

Now, A5 is derived fromA3 andA4. Again, the attack of
A4 against A2 should be inherited by (A4,A5).

To the contrary,A2 contradictsA4 andA5, but it is based
on a less preferred rule, hence those contradictions are not
considered as attacks. 2

First we define two rules, which specifies inheritance of
attacks “via unfolding”. Second, if we have two attacks
and the attacking sides are joined and also the attacked sides
are joined (and some natural conditions are satisfied), then
the former argumentation structure attacks the later. Finally,
a class of similar cases: the “attacking side” is preserved,
when both attacking and attacked argumentation structures
are joined with a “neutral member”.

A question, whether those derivation rules for attacks are
sufficient and necessary arises in a natural way. Our only
response to the question in this paper is that Principles I, III
and IV are satisfied, when we use this notion of attack.

A technical remark: Attack derivation rules are designed
in order to derive attacks from another attacks; however, if
a new argumentation structure is used in the consequent of
a rule, it is necessary to check, whether the argument of that
structure is self-consistent (and, consequently, whether it is
really an argumentation structure). Notice that GP , defined
below in Definition 29 contains all relevant argumentation
structures as vertices.

Derivation rules, which propagate attacks are defined be-
low. We introduce some conventions and shortcuts in order
to simplify the presentation. We represent more (very simi-
lar) rules by some schemes of rules.

1. u(A1,A2) denotes the result of “unfolding” of argumen-
tation structures A1 and A2 (f.ex. the result of un-
folding of A1 = 〈{head(r1)} ←↩ X1; Z1〉 by A2 =

〈{head(r2)} ←↩ body−(r2); body+(r2)〉 is u(A1,A2) =
〈{head(r1)} ←↩ X1 ∪ body−(r2); (Z1 \ {head(r2)}) ∪
body+(r2)〉). It is assumed, that consequences of argu-
mentation structures, involved in unfolding are singletons,
heads of rules.

2. A1 ∪ A2 means 〈Y1 ∪ Y2 ←↩ X1 ∪X2〉 for Ai = 〈Yi ←↩
Xi〉, i = 1, 2; in this context we consider also ”zero”-
”argumentation structures” 〈∅ ←↩ ∅〉, 〈∅ ←↩ W 〉 (only
as a notational convention for this definition). Observe
that 〈Y ←↩ ∅〉 could be a regular argumentation structure.
An occurrence of a zero-argumentation-structure should
be clear in a given context.
For example - A1 ∪ A2 may represent also 〈Y1 ←↩ X1 ∪
X2〉 or 〈Y1 ∪ Y2 ←↩ X1〉 and A1 ∪ A2 attacks A3 ∪ A4

may represent also A1 attacks 〈Y3 ←↩ X3 ∪X4〉.

Definition 28 (Attack derivation rules) Basic attacks are
attacks.

Q1 Let A1 attacks A2 = 〈{head(r2)} ←↩ X2; Z2〉, A3 =
〈{head(r3)} ←↩ X3; Z3〉 be an argumentation structure,
which does not attack A1, head(r3) ∈ Z2.
If u(A2,A3) is an argumentation structure3, then A1 at-
tacks u(A2,A3).

Q2 Let A1 = 〈{head(r1)} ←↩ X1; Z1〉 attacks A2. Let
A3 = 〈{head(r3)} ←↩ X3; Z3〉 be not attacked and
head(r3) ∈ Z1.
If u(A1,A3) is an argumentation structure, then
u(A1,A3) attacks A2.

Q3 Suppose that A1 = 〈Y1 ←↩ X1〉 attacks A2 = 〈Y2 ←↩
X2〉 and A3 = 〈Y3 ←↩ X3〉 attacks A4 = 〈Y4 ←↩ X4〉;
neither A3, nor A4 attacks A1.
ThenA1∪A3 attacksA2∪A4, if both are argumentation
structures.

Q4 Suppose that A1 = 〈Y1 ←↩ X1〉 attacks A2 = 〈Y2 ←↩
X2〉. Let Bi, i = 1, 2 be (possibly zero-) argumentation
structures of the form 〈Ui ←↩ Wi〉, both does not attack
A1 and B2 does not attack B1.
Then A1 ∪ B1 attacks A2 ∪ B2.

There are no other attacks except those specified above.

A derivation of an attack is a sequenceX1, . . . ,Xk, where
each Xi is an attack (a pair of attacking and attacked ar-
gumentation structures), X1 is a basic attack and each X i,
1 < i ≤ k is either a basic attack or it is derived from the
previous attacks using rules Q1, Q2, Q3, Q4.

We define below in Definition 29 a graph with argumen-
tation structures as vertices and attacks as edges.

Definition 29 Let (P,≺,N) be a prioritized logic program.
We define an oriented graph GP = (V,E), where vertices
V are argumentation structures derived from the basic argu-
mentation structures and edges E are attacks derived from
the basic attacks. 2

3The role of this condition – in all items of this definition – is
to ensure the consistency of arguments and their consequences.

Preferences NMR-2008

238

Preferred answer sets
Definition 30 (Complete arguments, blocked arguments)
An argumentation structure 〈Y ←↩ X〉 is called complete iff
for each literal L ∈ Obj it holds that L ∈ Y or not L ∈ X .

A complete argumentation structure A1 is blocked iff
there is a complete argumentation structure A2, which at-
tacks A1 and A2 itself is not attacked by a complete argu-
mentation structure. 2

Example 31 Consider our running example. Remind all the
relevant information: P is

r1 b ← a,not ¬b

r2 ¬b ← not b

r3 a ← not ¬a

A1 = 〈{b} ←↩ {not ¬b; {a}}〉,A2 = 〈{¬b} ←↩
{not b}〉,A3 = 〈{a} ←↩ {not ¬a}〉,A4 =
〈{b} ←↩ {not ¬b,not ¬a}〉,A5 = 〈{b, a} ←↩
{not ¬b,not ¬a}〉,A6 = 〈{¬b, a} ←↩ {not ¬a,not b}〉.
{(A1,A2), (A4,A2), (A5,A2), (A4,A6)(A5,A6)} ⊆ E.
No pair (U ,A5) such that U is derived from A2 is in E.

Hence: the complete argumentation structure A6 is
blocked, A5 is complete and not blocked.

Observe that A5 contains an argument for {a, b}, an
answer set of P , similarly A6 contains an argument for
{a,¬b}, which is another answer set of P .

We will preferA5 overA6 (the later is blocked by the for-
mer). Consequently, we will consider {a, b} as a preferred
answer set of the given prioritized logic program. 2

Definition 32 (Preferred answer set) An argumentation
structure is preferred iff it is complete and not blocked.

Y ∪X is a preferred answer set iff 〈Y ←↩ X〉 is a preferred
argumentation structure. 2

The following example shows that the argumentation
structure corresponding to the only answer set of a program
is preferred, even if it is attacked (by an argumentation struc-
ture which is not complete).

Example 33

r1 b ← not a

r2 a ← not b

r3 c ← a

r4 c ← not c

Let the basic argumentation structures are denoted by Ai,
i = 1, . . . , 4. (A1,A2), (A3,A4) are the basic attacks. A1

attacks A5 = 〈{c} ←↩ {not b}〉 according to the rule Q1
and A1 attacks A6 = 〈{c, a} ←↩ {not b}〉 according to the
rule Q4. However, the complete argumentation structureA6

is not attacked by another complete argumentation structure
(there is no such structure) and, consequently it is the pre-
ferred argumentation structure. 2

Theorem 34 If S is a preferred answer set of (P,≺,N),
then S is an answer set of P .

Proof Sketch: We assume that A = 〈S+ ←↩ S−〉 is a pre-
ferred argumentation structure. Then A is complete. Obvi-
ously, S = Cn�P

(S−). 2

Example 35 ((Brewka and Eiter 1999)) Consider the pri-
oritized logic program, where ri are names of the rules (oc-
curring in the corresponding row) and the rule ri is more
preferred than the rule rj whenever i < j.

r1 p ← not q

r2 q ← not ¬q

r3 ¬p ← not p

r4 p ← not ¬p

A3 = 〈{¬p} ←↩ {not p}〉 is attacked by A1 = 〈{p} ←↩
{not q}〉 and A4 = 〈{p} ←↩ {not ¬p}〉 is attacked by
A3 = 〈{¬p} ←↩ {not p}〉.

There are two complete argumentation structures in P :
A5 = 〈{q,¬p} ←↩ {not ¬q,not p}〉 and A6 = 〈{q, p} ←↩
{not ¬p,not ¬q}〉.

Notice that only A6 is blocked. A5 attacks A6 and A1

attacks A5, but A1 is not complete and there is no complete
argumentation structure which attacks A5. 2

Reconsider Example 4 of a prioritized program without
BE-preferred answer set.

Example 36 ((Brewka and Eiter 1999))

r1 c ← not b

r2 b ← not a

Remind that r2 ≺ r1. There is no edge in GP (there is no
basic attack, hence no attack can be inherited). The only
complete vertex is 〈{b} ←↩ {not a,not c}〉. Hence, {b} is a
preferred answer set of (P,≺,N).

If we add the most preferred rule r0 = a ← c to P , then
A0 = 〈{a} ←↩ ∅; {c}〉 attacks A2 = 〈b ←↩ not a〉 and
it can be derived that the complete argumentation structure
A4 = 〈{a, c} ←↩ {not b}〉 attacks the complete argumen-
tation structure A5 = 〈{b} ←↩ {not a,not c}〉. Moreover,
A4 is not attacked and not blocked. Hence, A4 is preferred.
Therefore. {a, c} is the preferred answer set. 2

Principle III is satisfied:

Theorem 37 Let P = (P,≺,N) be a prioritized logic pro-
gram and SM (P) 6= ∅.

Then there is a preferred answer set of P .

Proof Sketch: Assume that for each S ∈ SM (P) holds
that the complete argumentation structure 〈S+ ←↩ S−〉 is
blocked. Consider Si ∈ SM (P). If Ai = 〈S+

i ←↩ S−i 〉 is
blocked, there is a complete argumentation structure Aj =
〈S+

j ←↩ S−j 〉 which attacks Ai and itself is not attacked. A
contradiction. 2

Theorem 38 Principle I is satisfied

Preferences NMR-2008

239

Proof Sketch: Let A1 6= A2 be answer sets of a program
P . Let R ⊂ P be a set of rules and d1, d2 6∈ R are rules. Let
A+

1 , A+
2 be generated by the rules R ∪ {d1} and R ∪ {d2},

respectively.
It holds that head(d1) ∈ A1 and head(d2) ∈ A2,

A1 6|= body(d2) and A2 6|= body(d1) (otherwise A1 = A2

or either A1 or A2 is not an answer set). Suppose that
d2 ≺ d1. It means, 〈head(d1) ←↩ body−(d1); body+(d1)〉
attacks 〈head(d2)←↩ body−(d2); body+(d2)〉

If both body+(d1) and body+(d2) are empty sets, 〈A+
1 ←↩

A−1 〉 attacks 〈A+
2 ←↩ A−2 〉 according to Q4.

Otherwise, at least one argumentation structure from
B1 = 〈head(d1) ←↩ W1〉 and B2 = 〈head(d2) ←↩ W2〉
is obtained using the derivation rule R1 and B1 attacks B2.
Hence, also 〈A+

1 ←↩ A−1 〉 attacks 〈A+
2 ←↩ A−2 〉.

Therefore, A2 is not a preferred answer set. 2

Theorem 39 Principle IV is satisfied.

Proof Sketch: Let S1 and S2 be answer sets of a program P .
Suppose that r1 is a member of a generating set of S1 and
r2 is in each set of generating rules of S2. It is also assumed
thatA2 = 〈head(r2)←↩ body−(r2); body+(r2)〉 is attacked
by A1 = 〈{head(r1)} ←↩ body−(r1); body+(r1)〉.

Therefore, 〈S+
2 ←↩ S−2 〉 is blocked by 〈S+

1 ←↩ S−1 〉 and
S2 is not a preferred answer set. 2

Conclusions
Results An argumentation framework has been con-
structed, which enables to transfer attacks of rules to attacks
of argumentation structures and, consequently, to attacks of
answer sets. Preferred answer sets are not attacked by an-
other answer sets.

This construction enables a selection of a preferred an-
swer set whenever there is a non-empty set of standard an-
swer sets of a program.

We did not accept the second principle from (Brewka and
Eiter 1999), on the other hand a new principle, which re-
flects the role of blocking, has been proposed. According
to prescriptive approaches to prioritized logic programs, no
rule can be fired before a more preferred rule, unless the
more preferred rule is blocked. Programs with standard an-
swer sets and without preferred answer sets is a consequence
of that attitude. We stress the role of blocking – in our ap-
proach, rules can be blocked by more preferred rules, but
the rules which are not blocked are handled in a declarative
style.

Preferred answer set is not blocked by another answer set.
It means, that a desirable set of rules, in our approach, which
generates a preferred answer set, is such a set of rules, that
no rule of the set can be attacked by a rule from a set of
rules generating another answer set (unless that answer set
is blocked).

Open problems, future research Of course, a kind of
fine-tuning of our approach is intended.

Further, a more detailed comparison of our approach with
other approaches to prioritized logic programs is among our

plans. Also approaches not referenced in this paper are of in-
terest (f.ex. works by Zhang and his colleagues). A compar-
ison to defeasible logic programming of (Garcı́a and Simari
2004), to other defeasible logics and argumentation frame-
works is challenging for us, similarly as a comparison to
dynamic logic programming.

It is assumed that from the computational complexity
point of view our approach generate problems complete on
the second level of polynomial hierarchy. The technical re-
sult is among the plans for the future research.

References
Brewka, G., and Eiter, T. 1999. Preferred answer sets
for extended logic programs. Artificial Intelligence 109(1-
2):297–356.
Delgrande, J. P., and Schaub, T. 2000. Expressing prefer-
ences in default logic. Artificial Intelligence 123(1-2):41–
87.
Delgrande, J.; Schaub, T.; Tompits, H.; and Wang, K.
2004. A classification and survey of preference handling
approaches in nonmonotonic reasoning. Computational In-
telligence 20(2):308–334.
Delgrande, J.; Schaub, T.; and Tompits, H. 2003. A frame-
work for compiling preferences in logic programs. Theory
and Practice of Logic Programming 3(2):129–187.
Dimopoulos, Y., and Torres, A. 1996. Graph theoretical
structures in logic programs and default theories. Theor.
Comput. Sci. 170(1-2):209–244.
Garcı́a, A. J., and Simari, G. R. 2004. Defeasible logic pro-
gramming: An argumentative approach. TPLP 4(1-2):95–
138.
Sakama, C., and Inoue, K. 2000. Prioritized logic pro-
gramming and its application to commonsense reasoning.
Artificial Intelligence 123(1-2):185–222.
Schaub, T., and Wang, K. 2001. A comparative study of
logic programs with preference. In IJCAI, 597–602.
Sefranek, J. 2006. Rethinking semantics of dynamic logic
programs. In Proc. of the Workshop NMR.
Wang, K.; Zhou, L.; and Lin, F. 2000. Alternating fixpoint
theory for logic programs with priority. In Computational
Logic, 164–178.

Preferences NMR-2008

240

On Planning with Preferences in HTN∗

Shirin Sohrabi and Sheila A. McIlraith
Department of Computer Science

University of Toronto
Toronto, Canada.

{shirin,sheila}@cs.toronto.edu

Abstract

In this paper, we address the problem of generating preferred
plans by combining the procedural control knowledge speci-
fied by Hierarchical Task Networks (HTNs) with rich qualita-
tive user preferences. The outcome of our work is a language
for specifying user preferences, tailored to HTN planning,
together with a provably optimal preference-based planner,
HTNPLAN , that is implemented as an extension ofSHOP2.
To compute preferred plans, we propose an approach based
on forward-chaining heuristic search. Our heuristic uses
an admissible evaluation function measuring the satisfaction
of preferences over partial plans. Our empirical evaluation
demonstrates the effectiveness of ourHTNPLAN heuristics.
We prove our approach sound and optimal with respect to the
plans it generates by appealing to a situation calculus seman-
tics of our preference language and of HTN planning. While
our implementation builds onSHOP2, the language and tech-
niques proposed here are relevant to a broad range of HTN
planners.

1 Introduction
Hierarchical Task Network (HTN) planning is a popular
and widely used planning paradigm, and many domain-
independent HTN planners exist (e.g.,SHOP2, SIPE-2, I-X/I-
PLAN, O-PLAN) (Ghallab, Nau, and Traverso 2004). In HTN
planning, the planner is provided with a set of tasks to be
performed, possibly together with constraints on those tasks.
A plan is then formulated by repeatedly decomposing tasks
into smaller and smaller subtasks until primitive, executable
tasks are reached. A primary reason behind HTN’s success
is that its task networks capture useful procedural control
knowledge—advice on how to perform a task—described in
terms of a decomposition of subtasks. Such control knowl-
edge can significantly reduce the search space for a plan
while also ensuring that plans follow one of the stipulated
courses of action. However, while HTNs specify a family
of satisfactory plans, they are, for the most part, unable to
distinguish high-quality plans.

In this paper, we address the problem of generating pre-
ferred plans by augmenting HTN planning problems with
rich qualitative user preferences. User preferences can be

∗A shorter version of this paper appears in the Proceedings of
the Fourth Multidisciplinary Workshop on Advances in Preference
Handling (MPref 2008).

arbitrarily complex, often involving combinations of condi-
tional, interacting, and mutually exclusive preferences that
can range over multiple states of a plan. This makes finding
an optimal plan hard. There are two aspects to addressing
the problem of preference-based planning with HTNs. The
first is to propose a preference specification language that is
tailored to HTN planning. The second, is to generate pre-
ferred, and ideally optimal, plans efficiently.

To specify user preferences, we augment a rich quali-
tative preference language,LPP, proposed in (Bienvenu,
Fritz, and McIlraith 2006) with HTN-specific constructs.
LPP specifies preferences in a variant of linear temporal
logic (LTL). Among the HTN-specific properties that we
add to our language,LPH, is the ability to express pref-
erences over how tasks in our HTN are decomposed into
subtasks, preferences over the parameterizations of decom-
posed tasks, and a variety of temporal and nontemporal pref-
erences over the task networks themselves.

To compute preferred plans, we propose an approach
based on forward-chaining heuristic search. Key to our ap-
proach is a means of evaluating the (partial) satisfaction of
preferences during HTN plan generation based on progres-
sion. The optimistic evaluation of preferences yields an ad-
missible evaluation function which we use to guide search.
We implemented our planner,HTNPLAN , as an extension to
the SHOP2 HTN planner. Our empirical evaluation demon-
strates the effectiveness ofHTNPLAN heuristics in finding
high-quality plans. We provide a semantics for our prefer-
ence language in the situation calculus (Reiter 2001) and ap-
peal to this semantics to prove the soundness and optimality
of our planner with respect to the plans it generates.

In Section 2, we review HTN planning, situation calculus,
Golog, ConGolog, and provide an encoding of a preference-
based HTN planning problem. In Section 3, we provide
the syntax and the semantics for our preference language.
In Section 4, we turn our attention to computing preferred
plans describing how we evaluate the satisfaction of prefer-
ences over partial plans using progression. In Section 5, we
describe the implementation of our HTN preference-based
planner,HTNPLAN that is built on top ofSHOP2, and pro-
vide empirical results that establish the effectiveness of our
evaluation function in guiding search. We conclude with a
summary and discussion of related work.

Preferences NMR-2008

241

2 HTN Planning
In this section, we provide a brief overview of both HTN
planning, following (Ghallab, Nau, and Traverso 2004), and
our situation calculus encoding of preference-based HTN
planning.

Travel Example: Consider a simple HTN planning prob-
lem to address the task of arranging travel. This task can
be decomposed into arranging transportation, accommoda-
tions, and local transportation. Each of these tasks can again
be decomposed based on alternative modes of transportation
and accommodations, reducing eventually to primitive ac-
tions that can be executed in the world. Further constraints
can be imposed to restrict decompositions.

Definition 1 (HTN Planning Problem) An HTN planning
problem is a 3-tupleP = (s0, w,D) wheres0 is the initial
state,w is a task network called the initial task network, and
D is the HTN planning domain.P is a total-order planning
problem if w andD are totally ordered; otherwise it is said
to be partially ordered.

A taskconsists of a task symbol and a list of arguments.
A task is primitive if its task symbol is an operator name and
its parameters match, otherwise it isnonprimitive. In our
example,arrange-transand arrange-accare nonprimitive
tasks, whilebook-flightandbook-carare primitive tasks.

Definition 2 (Task Network) A task network is a pair
w=(U, C) where U is a set of task nodes and C is a set of
constraints. Each task node u∈ U contains a tasktu. If all
of the tasks are ground then w is ground; If all of the tasks
are primitive, then w is called primitive; otherwise is called
nonprimitive. Task networkw is totally ordered ifC defines
a total ordering of the nodes in U.

In our example, we could have a task network(U,C)
whereU = {u1, u2}, u1 =book-car, andu2= pay, andC is
a precedence constraint such thatu1 must occur beforeu2

and a before-constraint such that at least one car is available
for rent beforeu1.

A domain is a pairD = (O, M) whereO is a set of op-
erators andM is a set of methods. Operators are essentially
primitive actions that can be executed in the world. They
are described by a tripleo =(name(o), pre(o), eff(o)), corre-
sponding to the operator’s name, preconditions and effects.
Preconditions are restricted to a set of literals, and effects
are described as STRIPS-like Add and Delete lists. An op-
eratoro can accomplish a ground primitive task in a states
if their names match ando is applicable ins. In our exam-
ple, ignoring the parameters, operators might include:pay,
book-train, book-car, book-hotel,andbook-flight.

A method,m, is a 4-tuple (name(m), task(m),subtasks(m),
constr(m))corresponding to the method’s name, a nonprim-
itive task and the method’s task network, comprising sub-
tasks and constraints. A method istotally orderedif its task
network istotally ordered. A domain is a total-order domain
if everym ∈ M is totally ordered. Methodm is relevant for
a taskt if there is a substitutionσ such thatσ(t) =task(m).
Several different methods can be relevant to a particular non-
primitive taskt, leading to different decompositions oft. In
our example, the method withname by-flight-transcan be

used to decompose thetask arrange-transinto thesubtasks
of booking a flight and paying, with the constraint (constr)
that the booking precede payment.

Definition 3 (Solution to HTN Planning Problem)
Given HTN planning problemP = (s0, w,D), a plan
π = (o1, ..., ok) is a solution forP, depending on these two
cases: 1) if w is primitive, then there must exist a ground
instance (U′, C ′) of (U, C) and a total ordering(u1, ..., uk)
of the nodes inU ′ such that for all1 ≤ i ≤ k, name(oi)
= tui

, the planπ is executable in the states0, and all the
constraints hold, 2) if w is nonprimitive, then there must
exist a sequence of task decompositions that can be applied
to w to produce a primitive task networkw′, whereπ is a
solution forw′.

Finally, we define the HTN preference-based planning
problem. This definition appeals to two concepts that are
not yet well-defined and which we defer to later sections:
definitions of the form and content of the the formulaΦhtn

that captures user preferences for HTN planning as well as
and the precise definition ofmore preferredappears in Sec-
tion 3.

Definition 4 (Preference-based HTN Planning)An HTN
planning problem with user preferences is described as a
4-tupleP = (s0, w,D,Φhtn) whereΦhtn is a formula de-
scribing user preferences. A planπ is a solution toP if and
only if: π is a plan forP ′ = (s0, w,D) and there does not
exists a planπ′ such thatπ′ is more preferred thanπ with
respect to the preference formulaΦhtn.

2.1 Situation Calculus Specification of HTN
We now have a definition of preference-based HTN plan-
ning. Later in the paper, we propose an approach to comput-
ing preferred plans, together with a description of our im-
plementation. To prove the correctness and optimality of our
algorithm, we appeal to an existing situation calculus encod-
ing of HTN planning, which we augment and extend to pro-
vide an encoding of preference-based HTN planning. Since
the situation calculus has a well-defined semantics, we have
a semantics for our encoding which we use in our proofs. In
this section, we review the salient features of this encoding.

The Situation Calculus is a logical language for speci-
fying and reasoning about dynamical systems (Reiter 2001).
In the situation calculus, thestateof the world is expressed
in terms of functions and relations (fluents) relativized to a
particularsituations, e.g.,F (~x, s). A situations is ahistory
of the primitive actions,a ∈ A, performed from a distin-
guished initial situationS0. The functiondo(a, s) maps a
situation and an action into a new situation thus inducing a
tree of situations rooted inS0. A basic action theoryin the
situation calculusD includesdomain independent founda-
tional axioms, anddomain dependent axioms. A situations′

precedes a situations, i.e.,s′ ⊏ s, means that the sequence
s′ is a proper prefix of sequences.

Golog (Reiter 2001) is a high-level logic programming
language for the specification and execution of complex ac-
tions in dynamical domains. It builds on top of the situation

Preferences NMR-2008

242

calculus by providing Algol-inspired extralogical constructs
for assembling primitive situation calculus actions into com-
plex actions (programs)δ. Example complex actions in-
clude action sequences, if-then-else, while loops, nondeter-
ministic choice of actions and action arguments, and pro-
cedures. These complex actions serve as constraints upon
the situation tree. ConGolog (De Giacomo, Lespérance, and
Levesque 2000) is the concurrent version of Golog in which
the language can additionally deal with execution of concur-
rent processes, interrupts, prioritized concurrency, and ex-
ogenous actions.

A number of researchers have pointed out the connection
between HTN and ConGolog. Following Gabaldon (Gabal-
don 2002), we map an HTN state to a situation calculussit-
uation. Consequently, the initial HTN states0 is encoded as
the initial situation,S0. The HTN domain description maps
to a corresponding situation calculus domain description,D,
where for every operatoro there is a corresponding primi-
tive actiona, such that the preconditions and the effects ofo
are axiomatized inD. Every method and nonprimitive task
together with constraints is encoded as a ConGolog proce-
dure. For the purposes of this paper, the set of procedures in
a ConGolog domain theory is referred to asR.

We use a predicatebadSituation(s) proposed by Reiter
(Reiter 2001) to encode the constraints in a task network.
The purpose of these constraints is to prune part of a search
space similar to using temporal constraints.

To deal with partially ordered task networks, we add
two new primitive actionsstart(P (~v)), end(P (~v)), and two
new fluentsexecuting(P (~v), s) andterminated(X, s), where
P (~v) is a ConGolog procedure andX is eitherP (~v) or an
actiona ∈ A. executing(P (~v), s) states thatP (~v) is exe-
cuting in situations, terminated(X, s) states thatX has ter-
minated ins. executing(a, s) wherea ∈ A is defined to be
false. The successor state axioms for these fluents follow.
They show how the actionsstart(P (~v)), end(P (~v)) change
the truth value of these fluents:

executing(P (~v), do(a, s)) ≡ a = start(P (~v))∨
executing(P (~v), s) ∧ a 6= end(P (~v))

terminated(X, do(a, s)) ≡ X = a∨
(X ∈ R ∧ a = end(X)) ∨ terminated(X, s)

whereR is the set of ConGolog procedures in our domain.

Definition 5 (Preference-based HTN in Situation Calculus)
An HTN planning problem with user preferences described
as a 4-tupleP = (s0, w,D,Φhtn) is encoded in situation
calculus as a 5-tuple(D, C,∆, δ0,Φsc) where D is the
basic action theory,C is the set of ConGolog axioms,∆is
the sequence of procedure declarations for all ConGolog
procedures inR, δ0 is an encoding of the initial task net-
work in ConGolog, andΦsc is a mapping of the preference
formulaΦhtn in situation calculus. A plan~a is a solution to
the encoded preference-based HTN problem if and only if:

D ∪ C |= (∃s)Do(∆; δ0, S0, s) ∧ s = do(~a, S0)
∧ ¬badSituation(s) ∧ ∄s′.[Do(∆; δ0, S0, s

′)
∧ ¬badSituation(s′) ∧ pref(s′, s,Φsc)]

wherepref(s′, s,Φsc) denotes that the situations′ is pre-
ferred to situation s with respect to the preference formula

Φsc, and Do(δ, S0, do(~a, S0)) denotes that the ConGolog
programδ, starting execution inS0 will legally terminate
in situation do(~a, S0). Removing all thestart(P (~v)) and
end(P (~v)) actions from~a to obtain~b = (b1, ..., bn), a pre-
ferred plan for the original HTN planning problemP is a
planπ = (o1, ..., on) where for all1 ≤ i ≤ n, name(oi)= bi.

3 HTN Preference Specification

In this section, we describe how to specify the preference
formula Φhtn. Our preference language,LPH, modifies
and extends theLPP qualitative preference language pro-
posed in (Bienvenu, Fritz, and McIlraith 2006) to capture
HTN-specific preferences.

OurLPH language has the ability to express preferences
over certain parameterization of a task (e.g., preferring one
task grounding to another), over a certain decomposition of
nonprimitive tasks (i.e., prefer to apply a certain method
over another), and a soft version of the before, after, and in
between constraints. A soft constraint is defined via a pref-
erence formula whose evaluation determines when a plan is
more preferredthan another. However, unlike the task net-
work constraints which will prune or eliminate those plans
that have not satisfied them, not meeting a soft constraint
simplify deems a plan to be of poorer quality.

Definition 6 (Basic Desire Formula (BDF)) A basic de-
sire formula is a sentence drawn from the smallest setB
where:

1. If l is a literal, thenl ∈ B andfinal(l) ∈ B
2. If t is a task, thenocc(t) ∈ B
3. If m is a method, andn = name(m),

thenapply(n) ∈ B
4. If t1, andt2 are tasks, andl is a literal, then

before(t1, t2), holdBefore(t1, l), holdAfter(t1, l),
holdBetween(t1, l, t2) are inB.

5. If ϕ1 andϕ2 are inB, then so are¬ϕ1, ϕ1 ∧ ϕ2,
ϕ1 ∨ ϕ2,(∃x)ϕ1, (∀x)ϕ1, next(ϕ1), always(ϕ1),
eventually(ϕ1), anduntil(ϕ1, ϕ2).

final(l) states that the literall holds in the final state,occ(t)
states that the taskt occurs in the present state, andnext(ϕ1),
always(ϕ1), eventually(ϕ1), and until(ϕ 1, ϕ2) are basic LTL
constructs.apply(n) states that a method whose name isn
is applied to decompose a nonprimitive task.before(t1, t2)
states a precedence ordering between two tasks.holdBe-
fore(t1, l), holdAfter(t 1, l), holdBetween(t1, l, t2) state a soft
constraint over when the fluentl is preferred to hold. (i.e.,
holdBefore(t1, l) state thatl must be true right before the last
operator descender oft1 occurs). Combiningocc(t) with
the rest ofLPH language enables the construction of pref-
erence statements over parameterizations of tasks.

BDFs establish properties of different states within a plan.
By combining BDFs using boolean and temporal connec-
tives, we are able to express other properties of state. The

Preferences NMR-2008

243

following are a few examples from our travel domain1.

(∃c).occ′(book-car(c, Enterprise)) (P1)

apply′(by-car-local(SUV, Avis)) (P2)

before(arrange-trans, arrange-acc) (P3)

holdBefore(hotelReservation, arrange-trans) (P4)

always(¬(occ′(pay(Mastercard)))) (P5)

(∃h, r).occ′(book-hotel(h, r)) ∧ starsGE(r, 3) (P6)

(∃c).occ′(book-flight(c, Economy, Direct,WindowSeat))

∧ member(c, StarAlliance) (P7)

P1 states that at some point the user books a car with
Enterprise. P2 states that at some point, theby-car-local
method is applied to book an SUV from Avis. P3 states that
thearrange-transtask occurs before thearrange-acc task.
P4 states that the hotel is reserved before transportation is ar-
ranged. P5 states that the user never pays by Mastercard. P6
states that at some point the user books a hotel that has a rat-
ing of 3 or more. P7 states that at some point the user books
a direct economy window-seated flight with a Star Alliance
carrier.

To define a preference ordering over alternative properties
of states,Atomic Preference Formulae(APFs) are defined.
Each alternative comprises two components: the property
of the state, specified by a BDF, and avalue term which
stipulates the relative strength of the preference.

Definition 7 (Atomic Preference Formula (APF))
Let V be a totally ordered set with minimal elementvmin

and maximal elementvmax. An atomic preference formula
is a formulaϕ0[v0] ≫ ϕ1[v1] ≫ ... ≫ ϕn[vn], where each
ϕi is a BDF, eachvi ∈ V, vi < vj for i < j, and v0 =
vmin. Whenn = 0, atomic preference formulae correspond
to BDFs.

While one could letV = [0, 1], you could choose a strictly
qualitative set like{best < good < indifferent < bad <
worst} to express preferences over alternatives.

Now here are a few APF examples from the travel domain.

P2[0]≫ apply′(by-car-local(SUV, National))[0.3] (P8)

apply′(by-car-trans)[0]≫ apply′(by-flight)[0.4] (P9)

occ′(book-train)[0]≫ occ′(book-car)[0.4] (P10)

P8 states that the user prefers that theby-car-localmethod
rents an SUV and that the rental car company Avis is pre-
ferred to National. P9 states that the user prefers to de-
compose thearrange-transtask by the methodby-car-trans
rather than theby-flight method. Note that the task is im-
plicit in the definition of the method. P10 states that the user
prefers travelling by train over renting a car.

To allow the user to specify more complex preferences
and to aggregate preferences, General Preference Formulae
(GPFs) extend the language to conditional, conjunctive, and
disjunctive preferences.

1To simplify the examples many parameters have been sup-
pressed, and we abbreviateeventually(occ(ϕ)) byocc′, eventu-
ally(apply(ϕ)) by apply′ and refer to preferences by their labels.

Definition 8 (General Preference Formula (GPF))
A formulaΦ is a GPF if one of the following holds:
• Φ is an APF
• Φ is γ : Ψ, whereγ is a BDF andΨ is a GPF[Conditional]
• Φ is one of Ψ0 &Ψ1 & ...&Ψn [General Conjunction]

or Ψ0 | Ψ1 | ... | Ψn [General Disjunction]
wheren ≥ 1 and eachΨi is a GPF.

General conjunction (resp.general disjunction) refines the
ordering defined byΨ0 &Ψ1 & ... &Ψn (resp.Ψ0|Ψ1|...|Ψn)
by sorting indistinguishable states using the lexicograping
ordering. Continuing our example:

occ(arrange-trans) : (∃c).occ′(book-car(c, Avis)) (P11)

occ(arrange-local-trans) :P1 (P12)

drivable : P10[0]≫ occ′(book-flight)[0.3] (P13)

P4& P6 & P7 & P8& P9 & P10& P12 & P13 (P14)

P11 states that if inter-city transportation is being ar-
ranged then the user prefers to rent a car from Avis. P12
states that if local transportation is being arranged the user
prefers Enterprise. P13 states that if the distance between the
origin and the destination is drivable then the user prefers to
book a train over booking a car over booking a flight. P14
aggregates preferences into one formula.

Again, and only for the purpose of proving properties, we
provide an encoding of the HTN-specific terms ofLPH in
the situation calculus. As such, for any preference formula
Φhtn there is a corresponding formulaΦsc where every
HTN-specific term is replaced as follows: each literall is
mapped to a fluent or non-fluent relation in the situation cal-
culus, as appropriate; each primitive taskt is mapped to an
actiona ∈ A; and each nonprimitive taskt and each method
m is mapped to a procedureP (~v) ∈ R in ConGolog.

3.1 The Semantics

The semantics ofLPH is achieved through assigning a
weight to a situations with respect to a GPF,Φ, written
ws(Φ). This weight is a composition of its constituents. For
BDFs, a situations is assigned the valuevmin if the BDF is
satisfied ins, vmax otherwise. Similarly, given an APF, and
a situations, s is assigned the weight of the best BDF that it
satisfies within the defined APF. Finally GPF semantics fol-
low the natural semantics of boolean connectives. As such
General Conjunction yields the minimum of its constituent
GPF weights and General Disjunction yields the maximum.

Similar to (Gabaldon 2004) and followingLPP, we use
the notationϕ[s′, s] to denote thatϕ holds in the sequence
of situations starting froms′ and terminating ins. Next, we
will show how to interpret BDFs in the situation calculus.

If f is a fluent, we will writef [s′, s] = f [s′] since flu-
ents are represented in situation-suppressed form. Ifr is
a non-fluent, we will haver[s′, s] = r sincer is already
a situation calculus formula. Furthermore, we will write
final(f)[s′, s] = f [s] sincefinal(f) means that the fluent
f must hold in the final situation.

The BDFocc(X) states the occurrence ofX which can
be either an action or a procedure. written as:

Preferences NMR-2008

244

occ(X)[s′, s] =

do(X, s′) ⊑ s if X ∈ A
do(start(X), s′) ⊑ s if X ∈ R

The BDFapply(P (~v)) will be interpreted as follows:
apply(P (~v))[s′, s] = do(start(P (~v)), s′) ⊑ s

Boolean connectives and quantifiers are already part of the
situation calculus and require no further explanation here.
The LTL constructs are interpreted in the same way as in
(Gabaldon 2004). We interpret the rest of the connectives as
follows 2.

before(X1, X2)[s
′, s] = (∃s1, s2 : s′ ⊑ s1 ⊑ s2 ⊑ s)

{terminated(X1)[s1] ∧ ¬executing(X2)[s1]
∧ ¬terminated(X2)[s1] ∧ occ(X2)[s2, s]}

holdBefore(X, f)[s′, s] = (∃s1 : s′ ⊑ s1 ⊑ s)
{f [s1] ∧ occ(X)[s1, s]}

holdAfter (X, f)[s′, s] = (∃s1 : s′ ⊑ s1 ⊑ s)
{terminated(X)[s1] ∧ f [s1]}

holdBetween(X1, f, X2)[s
′, s] =

(∃s1, s2 : s′ ⊑ s1 ⊑ s2 ⊑ s)
{terminated(X1)[s1] ∧ ¬executing(X2)[s1]
∧ ¬terminated(X2)[s1] ∧ occ(X2)[s2, s]}
∧ (∀si : s1 ⊑ si ⊑ s2)f [si]

From here, the semantics follows that ofLPP.

Definition 9 (Basic Desire Satisfaction)Let D be an ac-
tion theory, and lets′ ands be situations such thats′ ⊑ s.
The situations beginning ins′ and terminating ins satisfyϕ
just in the case thatD |= ϕ[s′, s]. We definews′,s(ϕ) to be
the weight of the situations originating ins′ and ending in
s wrt BDF ϕ. ws′,s(ϕ) = vmin if ϕ is satisfied, otherwise
ws′,s(ϕ) = vmax.

Note that for readability we are going to drops′ from the
index, i.e.,ws(ϕ) = ws′,s(ϕ) in the special case ofs′ = S0.

Definition 10 (Atomic Preference Satisfaction)Lets be a
situation andΦ = ϕ0[v0] ≫ ϕ1[v1] ≫ ... ≫ ϕn[vn] be
an atomic preference formula. Thenws(Φ) = vi if i =
min j{D |= ϕj [S0, s]}, and ws(Φ) = vmax if no suchi
exists.

Definition 11 (General Preference Satisfaction)Let s be
a situation andΦ be a general preference formula. Then
ws(Φ) is defined as follows:
• ws(ϕ0 ≫ ϕ1 ≫ ...≫ ϕn) is defined above

• ws(γ : Ψ) =

vmin if ws(γ) = vmax

ws(Ψ) otherwise
• ws(Ψ0 &Ψ1 & ... &Ψn) = max{ws(Ψi) : 1 ≤ i ≤ n}
• ws(Ψ0 | Ψ1 | ... | Ψn) = min{ws(Ψi) : 1 ≤ i ≤ n}

The following definition dictates how to compare two sit-
uations (and thus two plans) with respect to a GPF. This
preference relationpref is used to compare HTN plans in
Definition 5 and provides the semantics formore preferred
in Definition 4.

Definition 12 (Preferred Situations) A situation s1 is at
least as preferred as a situations2 with respect to a GPF
Φ, writtenpref(s1, s2,Φ) if ws1

(Φ) ≤ ws2
(Φ).

2We use the following abbreviations:
(∃s1 : s′ ⊑ s1 ⊑ s)Φ = (∃s1){s

′ ⊑ s1 ∧ s1 ⊑ s ∧ Φ}
(∀s1 : s′ ⊑ s1 ⊑ s)Φ = (∀s1){[s

′ ⊑ s1 ∧ s1 ⊑ s] ⊂ Φ}

4 Computing Preferred Plan
To compute a preferred plan, we proposed a heuristic-
search, forwarding-chaining planner that searchs for the
most preferredterminating state that satisfies the HTN plan-
ning problem. The search is guided by an admissible eval-
uation function that evaluates partial plans with respect to
preference satisfaction. We useprogressionto evaluate the
preference formula satisfaction over partial plans.

4.1 Progression
Given a situation and a temporal formula, progression eval-
uates it with respect to the state of a situation to generate a
new formula representing those aspects of the formula that
remain to be satisfied. In this section, we define the progres-
sion of the constructs we added/modified fromLPP and
show that progression preserves the semantics of preference
formulae. To define the progression, similar to (Bienvenu,
Fritz, and McIlraith 2006) we add the propositional con-
stantsTRUE andFALSE to both the situation calculus and to
our set of BDFs, whereD � TRUE andD 2 FALSE for ev-
ery action theoryD. We also add the BDFoccNext(X), and
applyNext(P (~v)) to capture the progression ofocc(X) and
apply(P (~v)). Below we show the progression of the added
constructs.

Definition 13 (Progression) Let s be a situation, and letϕ
be a BDF. The progression ofϕ throughs, writtenρs(ϕ), is
given by:
• If ϕ=occ(X) then

ρs(ϕ) = occNext(X)∧eventually(terminated(X))
• If ϕ = occNext(X) , then
8

<

:

TRUE if X ∈ A ∧ D |= ∃s′.s = do(X, s′)
TRUE if X ∈ R ∧ D |= ∃s′.s = do(start(X), s′)
FALSE otherwise

• If ϕ = apply(P (~v)), then
ρs(ϕ) = applyNext(P (~v)) ∧eventually(terminated(P (~v)))
• If ϕ = applyNext(P (~v)) , then

ρs(ϕ) =

TRUE if D |= ∃s′.s = do(start(P (~v)), s′)
FALSE otherwise

• If ϕ = before(X1, X2), holdBefore(X, f), holdAfter(X, f),
or holdBetween(X1, f, X2), then

ρs(ϕ) =

TRUE if ws(ϕ) = vmin

FALSE otherwise

To see how the other constructs are progressed please re-
fer to (Bienvenu, Fritz, and McIlraith 2006).

4.2 Admissible Evaluation Function
In this section, we describe an admissible evaluation func-
tion using the notion ofoptimisticandpessimisticweights
that provide a bound on the best and worst weights of any
successor situation with respect to a GPFΦ. Optimistic
(resp. pessimistic) weights,wopt

s (Φ) (resp. wpess
s (Φ)) are

defined based on optimistic (resp. pessimistic) satisfaction
of BDFs. Optimistic satisfaction (ϕ[s′, s]opt) assumes that
any parts of the BDF not yet falsified will eventually be
satisfied. Pessimistic satisfaction (ϕ[s′, s]pess) assumes the
opposite. The following definitions highlight the key differ-
ences between this work and the definitions in (Bienvenu,
Fritz, and McIlraith 2006).

Preferences NMR-2008

245

occ(X)[s′, s]opt def
=

do(X, s′) ⊑ s ∨ s′ = s if X ∈ A
do(start(X), s′) ⊑ s ∨ s′ = s if X ∈ R

occ(X)[s′, s]pess def
=

do(X, s′) ⊑ s if X ∈ A
do(start(X), s′) ⊑ s if X ∈ R

apply(P (~v))[s′, s]opt def
= do(start(P (~v)), s′) ⊑ s ∨ s′ = s

apply(P (~v))[s′, s]pess def
= do(start(P (~v)), s′) ⊑ s

If ϕ = before(X1, X2), holdBefore(X, f), holdAfter (X, f)
holdBetween(X1, f, X2), then

ϕ[s′, s]opt def
= ϕ[s′, s]pess def

= ws′,s(ϕ)

Theorem 1 Let sn = do([a1, ..., an], S0), n ≥ 0 be a col-
lection of situations,ϕ be a BDF,Φ a general preference
formula, andwopt

s (Φ), wpess
s (Φ) be the optimistic and pes-

simistic weights ofΦ with respect tos. Then for any
0 ≤ i ≤ j ≤ k ≤ n,
1. D |= ϕ[si]

pess ⇒ D |= ϕ[sj], D 6|= ϕ[si]
opt ⇒ D 6|= ϕ[sj],

2.
“

w
opt
si

(Φ) = w
pess
si

(Φ)
”

⇒ wsj
(Φ) = w

opt
si

(Φ) = w
pess
si

(Φ),

3. wopt
si

(Φ) ≤ wopt
sj

(Φ) ≤ wsk
(Φ), wpess

si
(Φ) ≥ wpess

sj
(Φ) ≥ wsk

(Φ)

Theorem 1 states that the optimistic weight is non-
decreasing and never over-estimates the real weight. Thus,
fΦ is admissible and when used in best-first search, the
search is optimal.

Definition 14 (Evaluation function) Let s = do(~a, S0) be
a situation and letΦ be a general preference formula. Then

fΦ(s)
def
= ws(Φ) if ~a is a plan, otherwisefΦ(s)

def
= wopt

s (Φ).

5 Implementation and Results
In this section, we describe our best-first search, ordered-
task-decomposition planner. Figure 1 outlines the algorithm.
HTNPLAN takes as inputP = (s0, w,D, pref) wheres0 is
the initial state,w the initial task network,D is the HTN
planning domain, andpref the general preference formula,
and returns a sequence of ground primitive operators, i.e. a
plan, and the weight of that plan.

The frontier is a list of nodes of the form[optW, pessW,
w, partialP, s, pref], sorted by optimistic weight, pessimistic
weight, and then by plan length. The frontier is initialized to
the initial task networkw, the empty partial plan, itsoptW,
pessW, andpref corresponding to the progression and evalua-
tion of the input preference formula in the initial state.

On each iteration of thewhile loop, HTNPLAN removes
the first node from the frontier and places it incurrent. If
w is empty (i.e.,U is an empty set), the situation associated
with this node is a terminating situation. ThenHTNPLAN re-
turnscurrent’s partial plan and weight. Otherwise, it calls
the functionEXPAND with current’snode as input.

EXPAND returns a new list of nodes that need to be added
to the frontier. The new nodes are sorted byoptW,pessW,
and merged with the remainder of the frontier. Ifw is
nil then the frontier is left as is. Otherwise, it generates a
new set of nodes of the form[optW, pessW,newW,newPar-
tialP, newS,newProgPref], one for each legal ground operator
that can be reached by performingw using a partial-order
forward decomposition procedure (PFD) (Ghallab, Nau, and
Traverso 2004). CurrentlyHTNPLAN usesSHOP2 (Nau et
al. 2003) as its PFD. Hence, the current implementation of

HTNPLAN (s0, w, D, pref)
frontier← INIT FRONTIER (s0, w, pref)
while frontier 6= ∅

current← REMOVE FIRST(frontier)
% establishes values ofw, partialP, s,progPref
if w= ∅ andoptW=pessWthenreturn partialP, optW
neighbours← EXPAND(w, D, partialP, s,progPref)
frontier← SORTNMERGE (neighbours,frontier)

return [], ∞

Figure 1: A sketch of theHTNPLAN algorithm.

HTNPLAN is an implementation ofSHOP2 with user prefer-
ences. For each primitive task leading to terminating states,
EXPAND generates a node of the same form but withoptW
andpessWreplaced by the actual weight. If we reach the
empty frontier, we return the empty plan.

Theorem 2 (Soundness and Optimality)
LetP=(s0, w,D,Φ) be a HTN planning problem with user
preferences. Letπ be the plan returned byHTNPLAN from
inputP. Thenπ is a solution to the preference based HTN
problemP

Proof sketch:We prove that the algorithm terminates appeal-
ing to the fact that the PFD procedure is sound and complete.
We prove that the returned plan is optimal, by exploiting the
correctness of progression of preference formula, and ad-
missibility of our evaluation function.

5.1 Experiments
We implemented our preference-based HTN planner,HTN -
PLAN , on top of the LISP implementation ofSHOP2 (Nau
et al. 2003). All experiments were run on a Pentium 4 HT,
3GHZ CPU, and 1 GB RAM, with a time limit of 1800 sec-
onds (30 min). Since the optimality ofHTNPLAN -generated
plans was established in Theorem 2, our objective was to
evaluate the effectiveness of our heuristics in guiding search
towards the optimal plan, and to establish benchmarks for
future study, since none currently exist.

We testedHTNPLAN with ZenoTravel and Logistics do-
mains, which were adapted from the International Planning
Competition (IPC). The ZenoTravel domain involves trans-
porting people on aircrafts that can fly at two alternative
speeds between locations. In the numeric variant the planes
consume fuel at different rates according to the speed of
travel, and distances between locations vary. The simple-
time variant combines the speed of travel with the associated
costs. We used both. The Logistics domain involves trans-
porting packages to different destinations using trucks for
delivery within cities and planes for between cities. Some
of the preferences we used in the evaluations are as follows:
we prefer that the high priority packages be delivered first,
we prefer to use trucks with lower gas consumptions, and we
prefer certain truck routes to another. The problems become
harder as the number of objects and/or number of tasks in
the domain increases.

In order to evaluate the effectiveness ofHTNPLAN it
would have been appealing to evaluate our planner with a
preference-based planner that also makes use of procedural

Preferences NMR-2008

246

P SHOP2 HTNPLAN
Plan NE Time NE NC Time PL
1 12 172 0.61 78 88 1.19 22
2 155 1628 8.60 448 547 9.45 26
3 230 2234 11.15 76 97 1.05 23
4 230 2234 11.10 361 413 4.67 23
5 485 6331 74.10 240 276 8.14 38
6 487 6226 113.20 1084 1218 63.60 46
7 720 6724 50.46 211 250 4.63 31
8 720 6724 50.90 699 808 13.63 28
9 851 9152 165.22 2689 3066 142.7 40
10 2069 23200 205.10 2290 2733 91.25 34
11 2875 27022 369.20 609 704 17.20 30
12 3956 35789 275.30 304 361 5.10 22
13 >8K >104K >1800 150 167 5.64 63
14 >13K >143K >1800 2153 2922 80.01 35
15 >13K >136K >1800 1624 1910 36.02 29
16 >31K >293K >1800 1510 1848 24.80 21

(a) ZenoTravel domain

P SHOP2 HTNPLAN
Plan NE Time NE NC Time PL
1 80 1297 1.27 73 93 0.64 14
2 90 540 0.28 19 24 0.20 12
3 808 4597 4.00 301 404 2.22 18
4 1024 10665 79.95 1626 1820 49.56 42
5 1024 10665 79.95 98 115 2.30 42
6 1260 6320 4.66 130 172 1.04 14
7 2178 15104 17.20 27 32 0.22 20
8 2520 14728 12.47 29 40 0.33 16
9 21776 114548 119.1 866 1163 9.44 15
10 >28K >264K >1800 1062 1437 13.21 19
11 >28K >239K >1800 1767 2417 32.76 14
12 >30K >118K >1800 1417 1925 21.07 20
13 >42K >368K >1800 2398 2968 82.62 42
14 >54K >407K >1800 858 1088 19.26 33
15 >65K >428K >1800 37 48 0.46 24
16 >67K >376K >1800 451 618 5.14 22

(b) Logistic domain

Figure 2: Our criteria for comparisons are number of Nodes Ex-
panded (NE), number of applied operators; number of Nodes Con-
sidered (NC), the number of nodes that were added to the frontier,
and time measured in seconds. Note NC is equal to NE forSHOP2.
PL is the Plan Length and # Plan is the total number of plans.

control knowledge. But since no comparable planner exists,
and it would not have been fair to compareHTNPLAN with
a preference-based planner that does not use control knowl-
edge, we comparedHTNPLAN with SHOP2, using a brute-
force technique forSHOP2 to determine the optimal plan. In
particular, as is often done with Markov Decision Processes,
SHOP2 generated all plans that satisfied the HTN specifica-
tion and then evaluated each to find the optimal plan. Note
that the times reported forSHOP2 do not actually include
the time for posthoc preference evaluation, so they are lower
bounds on the time to compute the optimal plan.

Figure 2 reports our experimental results for ZenoTravel
and the Logistics domain. The problems varied in prefer-
ence difficulty and are shown in the order of difficulty with
respect to number of possible plans (# Plan) that satisfy the

HTN control.
The results show that, in all but the first two cases of

the ZenoTravel domain,SHOP2 required more time to find
the optimal plan, and expanded more nodes. In particular
note that in a number of problems, for example problems
13 and 14SHOP2 ran out of time (1800 seconds) whileHT-
NPLAN found the optimal plan well within the time limit.
Also note thatHTNPLAN expands far fewer nodes in com-
parison toSHOP2, illustrating the effectiveness of our eval-
uation function in guiding search.

6 Summary and Related Work
In this paper, we addressed the problem of generating pre-
ferred plans by combining the procedural control knowl-
edge of HTNs with rich qualitative user preferences. The
most significant contributions of this paper include:LPH,
a rich HTN-tailored preference specification language, de-
veloped as an extension of a previously existing language;
an approach to (preference-based) HTN planning based on
forward-chaining heuristic search, that exploits progression
to evaluate the satisfaction of preferences during planning;
a sound and optimal implementation of an ordered-task-
decomposition preference-based HTN planner; and leverag-
ing previous research, an encoding of HTN planning with
preferences in the situation calculus, that enabled us to prove
our theoretical results. While the implementation we present
here exploitsSHOP2, the language and techniques proposed
are relevant to a broad range of HTN planners.

In previous work, we addressed the problem of integrat-
ing user preferences into Web service composition (Sohrabi,
Prokoshyna, and McIlraith 2006). To that end, we devel-
oped a Golog-based composition engine that also exploits
heuristic search. It similarly uses an optimistic heuristic.
The language used in that work wasLPP and had no Web-
service or Golog-specific extensions for complex actions.
This paper’s HTN-tailored language and HTN-based plan-
ner are significantly different.

Preference-based planning has been the subject of much
interest in the last few years, spurred on by an International
Planning Competition (IPC) track on this subject. A num-
ber of planners were developed, all based on the the com-
petition’s PDDL3 language (Gerevini and Long 2005). Our
work is distinguished in that it exploitsprocedural(action-
centric) domain control knowledge in the form of an HTN,
and action-centric and state-centric preferences in the form
of LPH. In contrast, the preferences and domain control
in PDDL3 and its variants are strictly state-centric. Further,
LPH is qualitativewhereas PDDL3 is quantitative, appeal-
ing to a numeric objective function. We contend that qualita-
tive, action- or task-centric preferences are often more com-
pelling and easier to elicit that their PDDL3 counterparts.

While no other HTN planner can perform true preference-
based planning,SHOP2 (Nau et al. 2003) andEN-
QUIRER (Kuter et al. 2004) handle some simple user con-
straints. In particular the order of methods and sorted pre-
conditions in a domain description specifies a user prefer-
ence over which method is more preferred to decompose a
task. Hence users may write different versions of a domain
description to specify simple preferences. However, unlike

Preferences NMR-2008

247

HTNPLAN the user constraints are treated as hard constraints
and (partial) plans that do not meet these constraints will
be pruned from the search space. Further, there is no way
to handle temporally extended hard or soft constraints in
SHOP2. We used progression in our approach to planning
precisely to deal with these interesting preferences. Were we
limiting the expressive power of preferences toSHOP2-like
method ordering, we would have created a different planner.
Interestingly,SHOP2 method ordering can still be exploited
in our approach, but requires a mechanism that is beyond the
scope of this paper.

Finally, the ASPEN planner (Rabideau, Engelhardt, and
Chien 2000) performs a simple form of preference-based
planning, focused mainly on preferences over resources
and with far less expressivity than our preference language.
Moreover, unlike our planner ASPEN will not perform well
on problems where preferences are interacting, nested, and
not local to any specific activity. Nevertheless,ASPEN has
the ability to plan with HTN-like task decomposition, and as
such, this work is related in spirit, though not in approach to
our work.

Acknowledgements: We gratefully acknowledge funding
from the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) and the Ontario Ministry of Re-
search and Innovation Early Researcher Award.

References
Bienvenu, M.; Fritz, C.; and McIlraith, S. A. 2006. Plan-
ning with qualitative temporal preferences. InProceedings
of the 10th International Conference on Knowledge Repre-
sentation and Reasoning (KR), 134–144.
De Giacomo, G.; Lesṕerance, Y.; and Levesque, H. 2000.
ConGolog, a concurrent programming language based on
the situation calculus.Artificial Intelligence121(1–2):109–
169.
Gabaldon, A. 2002. Programming hierarchical task net-
works in the situation calculus. InAIPS’02 Workshop on
On-line Planning and Scheduling.
Gabaldon, A. 2004. Precondition control and the progres-
sion algorithm. InProceedings of the 9th International
Conference on Knowledge Representation and Reasoning
(KR), 634–643. AAAI Press.
Gerevini, A., and Long, D. 2005. Plan constraints and pref-
erences for PDDL3. Technical Report 2005-08-07, Depart-
ment of Electronics for Automation, University of Brescia,
Brescia, Italy.
Ghallab, M.; Nau, D.; and Traverso, P. 2004.Hierarchical
Task Network Planning. Automated Planning: Theory and
Practice. Morgan Kaufmann.
Kuter, U.; Sirin, E.; Nau, D. S.; Parsia, B.; and Hendler,
J. A. 2004. Information gathering during planning for web
service composition. InProceedings of the 3rd Interna-
tional Semantic Web Conference (ISWC), 335–349.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN plan-
ning system. Journal of Artificial Intelligence Research
20:379–404.

Rabideau, G.; Engelhardt, B.; and Chien, S. A. 2000.
Using generic preferences to incrementally improve plan
quality. InProceedings of the 5th International Conference
on Artificial Intelligence Planning and Scheduling (AIPS),
236–245.
Reiter, R. 2001.Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
Cambridge, MA: MIT Press.
Sohrabi, S.; Prokoshyna, N.; and McIlraith, S. A. 2006.
Web service composition via generic procedures and cus-
tomizing user preferences. InProceedings of the 5th Inter-
national Semantic Web Conference (ISWC), 597–611.

Preferences NMR-2008

248

Special Session on Foundations of NMR and Uncertainty

The abilities to handle uncertain information and to reason nonmonotonically from incomplete knowledge
are crucial features of intelligent behaviour in complex and dynamic environments. This is why reasoning
under uncertainty and nonmonotonic reasoning are major research areas in Artificial Intelligence. The
aim of this specialized workshop at NMR’2008 is to bring together researchers working in the intersection
of both fields. This subworkshop will especially welcome papers that explore the relationship between
formalisms developed within the two fields and that improve understanding and cross-fertilization between
researchers active in reasoning under uncertainty and nonmonotonic reasoning.

Session Chairs

Alberto Finzi, University of Naples “Federico II”, Italy
Frank Wolter, University of Liverpool, UK

Program Committee

Salem Benferhat, Université d’Artois, France
Marc Denecker, Katholieke Universiteit Leuven, Belgium
Lluis Godo, Institut d’Investigacó en Intelligència Artificial (IIIA), Spain
Gabriele Kern-Isberner, University of Dortmund, Germany
Thomas Lukasiewicz, Oxford University, UK
Fiora Pirri, University of Rome “La Sapienza”, Italy
Choh Man Teng, University of West Florida, USA
Leon Van der Torre, University of Luxembourg, Luxembourg
Ronald R. Yager, Iona College, USA
Emil Weydert, Luxembourg University of Applied Sciences, Luxembourg
Mary-Anne Williams, University of Technology Sydney, Australia

NMR-2008

249

Simple Generalized Default Theories

Alexander Bochman
Computer Science Department,

Holon Institute of Technology, Israel

Abstract

We single out a special class of what we call simple default
theories in generalized default logic that involve only mono-
tonic inference rules and unconditional (‘supernormal’) de-
faults. The resulting reasoning framework constitutes a gen-
eralization of an assumption-based framework for nonmono-
tonic reasoning suggested in (Bondarenko et al. 1997). On
the other hand, it will be shown that there exists a polynomial
translation of arbitrary generalized default theories to simple
default theories.

Introduction
Default logic has been born as just one of a number of al-
ternative formalizations of nonmonotonic reasoning. In the
course of its development, however, it has become increas-
ingly clear that it occupies a special place in nonmonotonic
reasoning, both with respect to its representation capabili-
ties, and in its relations to other nonmonotonic formalisms.
The main objective of this study consists in confirming and
elaborating the claim that default logic can serve as a general
formalism for nonmonotonic reasoning, sufficient to deal
with the majority of the tasks and problems posed to the
latter by AI.

The plan of the paper is as follows. First, we describe
a powerful generalization of the original, Reiter’s default
logic to disjunctive default rules that may contain, in ad-
dition, justifications in heads. Essentially, this generaliza-
tion has been suggested first in (Lin and Shoham 1992;
Lifschitz 1994) in a modal logical framework, and it sub-
sumes disjunctive default logic of (Gelfond et al. 1991).
Next, we describe a natural class of generalized default the-
ories that contain only monotonic inference rules and default
assumptions (aka supernormal defaults). By reformulating
such theories in a different language, we will demonstrate
that simple default theories constitute a principal instanti-
ation of the general assumption-based framework for non-
monotonic reasoning suggested in (Bondarenko et al. 1997).
Finally, we will show that the generalized default logic in its
full generality is polynomially reducible to the formalism of
simple default theories.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In what follows, we will invariably use upper case letters
A, B, . . . for denoting propositions, while lower case letters
a, b, . . . will denote sets of propositions.

Reiter’s Default Logic
Originally, default theory was defined in (Reiter 1980) as a
pair (W, D), where W is a set of classical propositions (the
axioms), and D a set of default rules of the form A : b/C,
where A, C are propositions and b a finite set of proposi-
tions. Very informally, a rule A : b/C was intended to state
something like: “If A is believed, and each B ∈ b can be
consistently assumed, then C should be believed”.

The default rules were intended to act as meta-rules for
extending the initial knowledge base W beyond what is
strictly known. Accordingly, the nonmonotonic semantics
of default logic was defined by determining a set of exten-
sions of a default theory. An extension was defined by a
fixed point construction: for a set u of propositions, let Γ(u)
be the least deductively closed set that includes W and sat-
isfies the following condition:

• If A : b/C is a default rule, A ∈ Γ(u) and ¬B /∈ u, for
any B ∈ b, then C ∈ Γ(u).

Then a set s is an extension of the default theory if and
only if Γ(s) = s.

As can be seen, default claims were represented in de-
fault logic as inference rules affecting our beliefs. In this
respect, Reiter’s default logic has been largely inspired by
the need to provide logical foundations for the procedural
approach to nonmonotonicity found in deductive databases,
logic programming and Doyle’s truth maintenance. This
representation avoided some of the problems arising with
formula-based interpretations of defaults (such as contrapo-
sition of default claims). On the other hand, this representa-
tion has made default logic an inherently epistemic formal-
ism. Namely, it primarily described our beliefs and knowl-
edge, unlike the extensional classical logic normally used
for a direct representation of objective facts about the world.
This epistemic understanding can be clearly discerned from
the original description given in (Reiter 1980). As Reiter put
it, default rules function as meta-rules allowing us to extend
our (incomplete) knowledge base with reasonable beliefs.
In fact, the very notation for default rules initially used by
Reiter, namely A:MB1, . . . ,MBn/C, involved a rudimen-

Foundations of NMR and Uncertainty NMR-2008

250

tary modal operator M employed for designating justifica-
tions. Actually, this operator was a ‘remnant’ of an alterna-
tive, modal approach to nonmonotonic reasoning developed
by McDermott and Doyle in (McDermott and Doyle 1980).
However, one of the main objectives of Reiter was to avoid
modal logic or any modal concepts entirely and work only
within a first order logical framework. In accordance with
this, the operator M has been dropped later as syntactically
unnecessary, though without changing the original epistemic
understanding.

(Marek and Truszczyński 1989) have suggested a more
logical description of default logic using the notion of a
context-depended proof as a way of formalizing Reiter’s op-
erator Γ. This representation has been developed in (Marek
et al. 1990) to a general theory of nonmonotonic rule sys-
tems (see also (Marek and Truszczyński 1993)).

Given a set s of propositions (the ‘context’), let us con-
sider the set D(s) of all propositions that are derivable from
W using the classical entailment and the following ordinary
inference rules that are allowed by the context:
{A ` C | A : b/C ∈ D & ¬B /∈ s, for any B ∈ b}.

Then s is an extension of the default theory if and only if
s = D(s).

It can be easily verified that the operator D coincides, in
effect, with the operator Γ. Nevertheless, the above repre-
sentation makes it vivid that a large part of reasoning in de-
fault logic involves ordinary rule-based inference, the only
distinction from traditional inference systems being that the
very set of rules allowed in the inference process is deter-
mined by the (assumptions made in the) context. In partic-
ular, an extension of a default theory can be viewed as a set
of propositions that are provable (= justified) on the basis of
taking itself as an assumption context.

As a starting point of the present study, let us point out
to a certain logical discrepancy that was present in the over-
all design of Reiter’s default logic. Namely, the monotonic,
factual information was encoded in default logic primarily
as classical propositions (included in the set W of axioms),
while the inference rules were employed solely to deal with
nonmonotonic extensions of the theory. As we will argue
below, however, inference rules are actually essential for
an adequate description of epistemic information in general,
monotonic or not (at least if we don’t want to use an explicit
modal language). Consequently, we suggest that default
logic should be re-constructed on a uniform basis of infer-
ence rules, both monotonic and nonmonotonic ones. More
precisely, instead of a pair (W, D) of propositional axioms
and default inference rules, we will begin with representing
a default theory uniformly as a set of rules A : b/C, where
b may be an empty set (in which case the default rule repre-
sents an ordinary monotonic inference rule A ` B).

Obviously, there is no loss of expressivity in this move,
since any axiom A is expressible as an inference rule ` A.
Moreover, this reformulation actually does not exceed the
expressivity of the original default logic, since monotonic
inference rules A ` B are expressible, for example, as de-
fault rules A : t/B1. The reformulation makes it clear, how-

1Or, alternatively as default rules A : /B with an empty set of

ever, that the real informational basis of default logic is not
just a set of propositions, but a set of inference rules. Actu-
ally, one of the important claims of this study is that this rule-
based character of default logic is essential for its adequate
use in applications. This shift in view allows us to explain,
for instance, why the restriction of default logic to normal
default theories (that was originally advocated by Reiter in
(Reiter 1980)) is problematic from the point of view of ex-
pressivity, not so much because of the restriction of proper
default rules to normal rules A : B/B, but rather because
monotonic rules are completely eliminated as a by-product
of this restriction. In fact, the main result of this study
will amount to showing that, once the monotonic, rule-based
background of default logic is preserved, its nonmonotonic
‘overhead’ is reducible even to super-normal defaults of the
form : A/A.

But before this, the above rule-based reformulation of de-
fault logic suggests also its natural generalization which is
based on extending its logical background from ordinary
Tarski inference rules to more expressive disjunctive infer-
ence rules described in the next section.

Disjunctive (Scott) consequence relations
We will briefly describe below a well-known generalization
of a theory of logical inference based on using disjunctive,
multiple-conclusion rules a ` b, where a and b are sets of
propositions. A generic informal interpretation of a disjunc-
tive inference rule a ` b is

If all propositions from a hold, then at least one propo-
sition from b should hold.
Thus, the conclusions of such rules are interpreted as sets

of alternatives implied by the premises. It turns out that such
a disjunctive generalization of inference rules is essential
for adequate representation of many important concepts and
problem situations.

The importance of disjunctive rules for describing logical
inference has been realized already by Gerhard Gentzen, the
father of the sequent calculus. From a logical point of view,
the main advantage of such disjunctive rules consists in pro-
viding more adequate and transparent encoding of seman-
tic descriptions, and hence of the information we may have
about the world or a problem. Indeed, taken in a negative
form, a rule a ` b says that it is impossible that all proposi-
tions from a hold, and no proposition from b holds. As can
be seen from this description, such rules allow us to express
equally well not only positive information about what holds
in the situation, but also negative information about what
does not hold. Of course, in a classical, world-oriented set-
ting, such a negative information can be reduced to a single
proposition (using the classical disjunction), and that is why
ordinary, Tarski inference rules a ` A are sufficient in such
a semantic framework for almost all purposes. Furthermore,
in such a setting we basically do not need rules at all for
representing factual information, since any rule is reducible
to the corresponding material implication. Things become
more complex, however, in epistemic contexts where the se-
mantic objects (such as belief states) are inherently partial.

justifications.

Foundations of NMR and Uncertainty NMR-2008

251

In such contexts the information that A does not hold (i.e.,
is not believed) is weaker, in general, than the assertion that
¬A holds (that is, ¬A is believed), and consequently the
inference rule A ` B expresses a weaker claim than the ma-
terial implication A ⊃ B in the sense that ` A ⊃ B implies
A ` B, but not vice versa. Moreover, A ∨ B is weaker, in
turn, than the claim that either A holds, or B holds. Conse-
quently, the classical logical language turns out to be insuf-
ficient in such contexts for making some essential semantic
distinctions, and it is here that the full expressive capabilities
of disjunctive inference rules become a necessity.

The theory of disjunctive inference is now a well-
developed part of the general logical theory. In a most
abstract setting, it is provided by a theory of Scott con-
sequence relations (see (Scott 1974) and (Gabbay 1976;
1981)), known also under the name multiple-conclusion
consequence relations (cf. (Shoesmith and Smiley 1978;
Segerberg 1982; Wojcicki 1988)).

We will restrict our description of disjunctive conse-
quence relations below to what will be strictly necessary
for what follows. Further details can be found in the
above mentioned literature, as well as in (Bochman 2001;
2005).

As a preparation, let us recall that the usual Tarski conse-
quence relation can be defined as a set of rules of the form
a ` A that satisfy the postulates
(Reflexivity) A ` A.
(Monotonicity) If a ` A and a ⊆ a′, then a′ ` A;
(Cut) If a ` A and a, A ` B, then a ` B.

A Tarski consequence relation can also be described using
the associated provability operator Cn defined as follows:
Cn(u) = {A | u ` A}. A theory of a Tarski consequence
relation is a set of propositions u such that u = Cn(u). As
is well-known, the set of theories of a Tarski consequence
relation is closed with respect to arbitrary intersections, so
any consistent set u of propositions is included in a unique
least theory Cn(u).

Now, as a starting point, we take a disjunctive rule to be an
expression of the form a ` b, where a and b are finite sets of
propositions. A set of disjunctive rules is said to form a Scott
consequence relation if it satisfies the following ‘symmetric’
generalization of the above postulates:
(Reflexivity) A ` A.
(Monotonicity) If a ` b and a ⊆ a′, b ⊆ b′, then a′ ` b′;
(Cut) If a ` b, A and a, A ` b, then a ` b.

Though defined initially only for finite sets of proposi-
tions, the notion of a disjunctive rule can be extended to in-
finite sets of premises and conclusions by requiring that, for
any sets of propositions u and v,
(Compactness) u ` v if and only if a ` b, for some finite

a ⊆ u, b ⊆ v.
This extension retains all the rules of a Scott consequence

relation. Moreover, the resulting extended consequence re-
lations could be characterized alternatively as Scott conse-
quence relations on arbitrary sets of formulas satisfying the
Compactness requirement.

In what follows, u will denote the complement of the set
u of propositions. The next definition describes the basic
notion of a theory for a Scott consequence relation.

Definition. A set u of propositions is a theory of a Scott
consequence relation if u 0 u.

Thus, theories are defined as sets of propositions that do
not imply propositions outside them. The following lemma
shows in what sense theories can also be seen as sets of
propositions that are closed with respect to the rules of a
disjunctive consequence relation.

Lemma 1. A set u is a theory of a Scott consequence rela-
tion ` if and only if, for any rule a ` b from `, if a ⊆ u, then
u ∩ b 6= ∅.

Theories of a Scott consequence relation naturally gener-
alize theories of a Tarski consequence relation, but they do
not have all the properties of the latter. Most importantly,
intersections of Scott theories are not in general theories.
Nevertheless, due to compactness, we still have existence of
inclusion minimal theories containing some set of proposi-
tions, and inclusion maximal theories disjoint from a set of
propositions:

Theorem 2. 1. If u is a theory containing a set v of propo-
sitions, then u contains a minimal theory u′ including v.

2. If u is a theory included in a set v of propositions, then u
is contained in a maximal theory u′ included in v.

As a special case, we obtain the following useful property:

Corollary 3. Any theory of ` is included in a maximal the-
ory and contains a minimal theory of `.

Any family of sets of propositions T determines a Scott
consequence relation `T defined as follows:

a `T b ≡ For any u ∈ T , if a ⊆ u, then b ∩ u 6= ∅.
(GS)

Actually, the above construction is quite general, since
any Scott consequence relation can be generated in this way
by the set of its theories – this is precisely the basic result
about Scott consequence relations, called Scott Complete-
ness Theorem in (Gabbay 1981).

Theorem 4. (Scott Completeness Theorem) If T` is the
set of all theories of a Scott consequence relation `, then `
coincides with `T` .

An important consequence of the above representation
theorem is that Scott consequence relations are uniquely de-
termined by their theories. Moreover, for more expressive
languages the above representation theorem can serve as a
basis of constructing full-fledged semantics. In this case the
set of theories of a consequence relation will serve, eventu-
ally, as its canonical model.

By a sequent theory we will mean an arbitrary set of dis-
junctive rules. Due to the ‘Horn’ form of the postulates char-
acterizing a Scott consequence relation, intersection of a set
of Scott consequence relations is again a Scott consequence
relation. This implies, in particular, the following

Lemma 5. For any sequent theory there exists a least Scott
consequence relation containing it.

Foundations of NMR and Uncertainty NMR-2008

252

The least Scott consequence relation that contains a se-
quent theory ∆ will be denoted by `∆. The latter consists
of all the disjunctive rules that can be inferred from ∆ us-
ing the postulates of Scott consequence relation. Hence, it
describes, in a sense, the logical content of ∆. Accordingly,
we will extend the notion of a theory to arbitrary sequent
theories:
Definition. A set of propositions will be called a (proposi-
tional) theory of a sequent theory ∆, if it is a theory of `∆.

The next, almost obvious, result says that propositional
theories of a sequent theory ∆ are precisely the sets of
propositions that are closed with respect to the rules from
∆.
Lemma 6. A set u of propositions is a theory of ∆ if and
only if, for any rule a ` b from ∆, if a ⊆ u, then b ∩ u 6= ∅.

Since any sequent theory determines a unique Scott con-
sequence relation, we acquire a useful tool for constructing
special consequence relations by restricting the correspond-
ing sets of generating rules. Thus, the next definition intro-
duces a class of Scott consequence relations that correspond
to usual Tarski consequence relations.
Definition. A Scott consequence relation will be called sin-
gular, if it is generated by rules of the form a ` A, where A
is a proposition.

The following lemma describes such consequence rela-
tions in terms of their theories.
Lemma 7. A Scott consequence relation is singular if and
only if the set of its theories is closed with respect to arbi-
trary intersections.

As a consequence of the above result, any singular Scott
consequence relation will always have a least theory.

Scott consequence relations provide an abstract descrip-
tion of disjunctive inference. Default logic also presupposes,
however, classical first order inference as part of its logical
machinery. In accordance with this, we should ‘upgrade’
our abstract notion of inference to consequence relations that
subsume classical entailment. Such supraclassical conse-
quence relations will turn out to be suitable for describing
the logical basis of default logic.

From now on we will consider consequence relations that
are formulated in a classical language containing the ordi-
nary classical connectives {∨,∧,¬,⊃}. As usual, � will
denote the classical entailment relation with respect to these
connectives, and Th its associated classical derivability op-
erator.
Definition. A Scott consequence relation in a classical lan-
guage will be called supraclassical, if it satisfies:
Supraclassicality If a � A, then a ` A.
Falsity f `.

By the first condition, theories of a supraclassical Scott
consequence relation should be deductively closed. Falsity
amounts, in addition, to exclusion of inconsistent theories
from consideration. Accordingly, a Scott consequence rela-
tion will be supraclassical if and only if all its theories are
consistent deductively closed sets.

Supraclassicality allows for replacement of classically
equivalent formulas in premises and conclusions of disjunc-
tive rules, as well as replacement of sets of premises by their
classical conjunctions: a ` b will be equivalent to

∧
a ` b.

Disjunctive conclusions, however, cannot be replaced in this
way by their classical disjunctions. Taking the simplest case,
a rule ` B, C is not reducible to ` B∨C; the latter says that
any theory should contain B ∨ C, while the former asserts
a stronger constraint that any theory should contain either
B or C. As a result, the disjunctive character of our in-
ference rules is not eliminated by supraclassicality. Speak-
ing more generally, supraclassical Scott consequence rela-
tions are only supra-classical, which means, in particular,
that the deduction theorem, contraposition, and disjunction
in the antecedent are in general not valid for them.

In what follows, we will be especially interested in mini-
mal theories of a disjunctive consequence relation. The fol-
lowing result provides a syntactic description of such theo-
ries.

Lemma 8. A set u of propositions is a minimal theory of
a supraclassical Scott consequence relation if and only if
u = {A | ` u, A}.

This description will be used in what follows.

Weak provability and relativization
As we already mentioned, the main formal difference be-
tween disjunctive inference and ordinary Tarski conse-
quence relations amounts to the fact that theories of a dis-
junctive consequence relation are no longer closed with re-
spect to intersections. As a consequence, we no longer have
that every consistent set of propositions always has a logical
closure - a single least theory containing it. What we have
instead is that any such set is included, in general, in a num-
ber of minimal theories (cf. Theorem 2). As a special case,
instead of a single least theory of a Tarski consequence rela-
tion (that accumulates the set of provable propositions), we
have multiple minimal theories of a disjunctive consequence
relation. This means that the very concept of provability of
propositions should be appropriately generalized, or relaxed,
to the disjunctive case.

The following notion of a weak provability provides a
starting point for the required generalization.

Definition. Proposition A is weakly derivable from a set
a of propositions (notation a |≈A) in a Scott consequence
relation ` if A belongs to some minimal theory of ` that
includes a.

The following lemma gives a syntactic description of this
notion of weak provability.

Lemma 9. a |≈A iff a ` A, b, for some finite set b such that
a 0 b.

It should be noted that the above notion of a weak deriv-
ability does not have all the properties of ordinary provabil-
ity. To begin with, this notion of derivation is credulous,
so a |≈A and a |≈B do not imply a |≈A ∧ B. This hap-
pens because A and B may well belong to different minimal
theories containing a. Thus, care should be exercised in an

Foundations of NMR and Uncertainty NMR-2008

253

attempt to extend this notion to derivability of a set of propo-
sitions:
Definition. A set v of propositions is weakly derivable from
a set u in a Scott consequence relation ` if v is included in
some minimal theory of ` that contains u.

The next lemma gives a corresponding syntactic descrip-
tion of this generalization.
Lemma 10. v is weakly derivable from u iff there exists a
set w such that u 0 w and u ` A, w, for any A ∈ v.

Note that the set w in the above description cannot be re-
stricted in general to a finite set.

As an illustration, the following result provides an alterna-
tive description of minimal theories in terms of weak deriv-
ability.
Lemma 11. A set u of propositions is a minimal theory of `
if and only if it is a maximal weakly derivable set (from ∅).

The above description can be easily generalized to mini-
mal theories containing a given set of propositions.
Corollary 12. A set u is a minimal theory of ` containing a
given set v of propositions if and only if u is a maximal set
that is weakly derivable from v.

By the above descriptions, weak derivability amounts to
ordinary derivability under a supposition that some proposi-
tions do not hold. A more systematic description of this idea
can be obtained by using the notion of a relativization, or
restriction, of a consequence relation with respect to a given
set of propositions.

Given a Scott consequence relation ` and a set u of propo-
sitions, we will define the following consequence relation
`u:

a `u b ≡ a ∩ b 6= ∅ or a ∩ u ` b, u.

It can be easily verified that `u is also a Scott consequence
relation. It will be called a restriction, or relativization, of `
with respect to u.

The effect of relativization of consequence relations
amounts to restricting the inferences to propositions from u.
Thus, the following lemma shows that only the latter propo-
sitions matter in determining theories of `u.
Lemma 13. A set v of propositions is a theory of `u if and
only if v ∩ u is a theory of `.

It should be noted that the restricted consequence relation
is not a sub-relation of the source consequence relation. In
fact, the two consequence relations are in general incompa-
rable with respect to set inclusion. The relativization can be
viewed, however, as a ‘negative’ conditionalization based on
non-acceptance of some propositions.

The above relativization can be extended to sequent the-
ories. Thus, the restriction (or relativization) of a sequent
theory ∆ with respect to a set u of propositions will be de-
fined as the following sequent theory ∆u:

∆u = {a ` b ∩ u | a ` b ∈ ∆ & a ⊆ u}.
The above relativization of a sequent theory amounts to

restricting its rules to propositions from u. Note, in particu-
lar, that u is a theory of ∆ if and only if ∆u does not contain
rules of the form a `.

The following lemma shows that the relativization of se-
quent theories agrees with our earlier definition of relativiza-
tion for consequence relations.

Lemma 14. `∆u coincides with the restriction of `∆ with
respect to u.

In view of the above lemma, ∆u provides an adequate
constructive description of relativization. In particular, we
immediately obtain that a set v is a theory of ∆u if and only
if u ∩ v is a theory of ∆.

Using the above notion of relativization, we can give a
more illuminating description of minimal theories of a con-
sequence relation. Indeed, if u is a minimal theory of `, it
will be a least theory of `u (see Lemma 13). Consequently,
we immediately obtain

Corollary 15. A theory u of a Scott consequence relation `
is minimal if and only if `u A, for any A ∈ u.

On this description, a minimal theory is a set of proposi-
tions that are provable upon the assumption that no proposi-
tion outside this set holds.

Default Logic Generalized
Now we are going to describe a generalization of default
logic grounded on a theory of disjunctive inference de-
scribed in the preceding section.

As a matter of fact, an appropriate generalization of de-
fault logic based on disjunctive inference rules has already
been proposed in (Gelfond et al. 1991), guided by the need
to provide a logical basis for disjunctive logic programming,
as well as more perspicuous ways of handling disjunctive
epistemic information2.

A disjunctive default theory is a set of disjunctive defaults,
rules of the form

a : b/c,

where a, b, c are finite sets of propositions. An informal
meaning of such rules is ‘If all propositions from a are be-
lieved, and each B ∈ b can be consistently assumed, then at
least one proposition from c should be believed’.

For a set s of propositions, let D(s) denote the set of all
minimal deductively closed theories that are closed also with
respect to the following ordinary disjunctive rules:

{a ` c | a : b/c ∈ D & ¬B /∈ s, for any B ∈ b}.

Then s is said to be an extension of a disjunctive default
theory if s ∈ D(s).

In accordance with the above description, an extension
of a disjunctive default theory is a deductively closed set u
which happens to be a minimal theory of the set of disjunc-
tive inference rules obtained by taking u itself as an assump-
tion context. It should be clear that when all the rules of the
default theory are actually singular, Tarski rules that involve
single conclusions in their heads, then the above definition
reduces to Reiter’s definition of extensions. In fact, many of
the properties of Reiter’s extensions remain valid also in the
disjunctive case (see below).

2such as Poole’s ‘broken hand’ counterexample discussed in
that paper.

Foundations of NMR and Uncertainty NMR-2008

254

Just as the original notion of an extension, also the above
construction can be viewed as a particular instantiation of
a bi-context reasoning in which the assumption context im-
poses constraints on the use of inference rules in the main
context. In this respect, the switch to disjunctive default
rules provides enhanced expressive capabilities with respect
to the main context. Still, even disjunctive default rules give
us only limited ways of expressing the assumption informa-
tion. Namely, in writing default rules we can constrain the
assumption context only negatively by saying what does not
belong to it (what is consistent to assume), but we cannot
directly state that some proposition should be assumed. For-
tunately, this last expressive shortcoming can also be fixed
by a further elaboration of the syntactic form of default rules.

Again, an appropriate final generalization of interest for
our study has already been suggested in (Lin and Shoham
1992; Lifschitz 1994) in an attempt to construct a unified
formalism for nonmonotonic reasoning and logic program-
ming. Both of these latter formal systems were formulated
in a modal framework with two modal operators. It has been
shown in (Bochman 1995), however, that this formalism can
also be expressed in a purely non-modal setting by using
rules of the form a : b/c : d, where a, b, c, d are sets of clas-
sical propositions. Such generalized default rules could be
read as follows:

If all propositions from a are believed, and each propo-
sition from b can be consistently assumed, then at least
one proposition from c should be believed, or else at
least one proposition from d can be consistently as-
sumed.

Thus, compared with the preceding generalization to dis-
junctive default rules, the new default rules are disjunctive
rules that may involve justifications not only in bodies, but
also in their heads. It should also be clear that such default
rules provide full expressivity with respect to both the main
and assumption contexts.

Below, for a set u of propositions, ¬u will denote the set
{¬A | A ∈ u}. Then, in full analogy with the preceding
constructions, the corresponding generalized default logic
can be described as follows.
Definition. A generalized default theory is a set of rules

a : b/c : d,

where a, b, c, d are sets of classical propositions.
For a set s of propositions, letD(s) denote the set of min-

imal deductively closed theories that are closed also with
respect to the rules

{a ` c | a : b/c : d ∈ D & ¬b ∩ s = ∅ & ¬d ⊆ s.}

Then s is an extension of a generalized default theory if
s ∈ D(s).

In what follows, we will use a more explicit description of
extensions for generalized default theories provided by the
next lemma.
Lemma 16. A set s of propositions is an extension of a gen-
eralized default theory D if and only if it satisfies the follow-
ing conditions:

• s is deductively closed;
• s is closed with respect to the rules of D: for any rule

a : b/c : d from D, if a ⊆ s and ¬b ∩ s = ∅, then
c ∩ s 6= ∅, or ¬d * s;

• There is no smaller deductively closed set u ⊂ s that is
closed with respect to the set of rules
{a ` c | a : b/c : d ∈ D & ¬b ∩ s = ∅ & ¬d ⊆ s.} (*)

The second condition states that s itself is closed with re-
spect to the above rules, while the third condition secures
that s is a minimal such set. Thus, the above description
is obviously equivalent to the ‘official’ definition of exten-
sions.

It turns out that generalized default logic still supports
a suitable generalization of the fact established in (Reiter
1980, Theorem 2.5) that extensions are uniquely determined
by conclusions of their generating rules.

Given an extension s, let us define the set Ds of generat-
ing rules of s as follows:
Ds = {a : b/c : d ∈ D | a ⊆ s & ¬b ∩ s = ∅ & ¬d ⊆ s}

By the above description, generating rules of an exten-
sion are default rules that are ‘active’ with respect to the ex-
tension, namely rules in which the justifications agree with
the extension, and the premises are satisfied. Then the next
lemma states that the extension is a logical closure of some
of the conclusions of such rules.
Lemma 17. If Ds is the set of generating rules of an exten-
sion s, then s = Th(sD), where

sD = {C ∈ s | a : b/c : d ∈ Ds & C ∈ c}.
Generalized default logic is of course a much more ex-

pressive formalism than the original default logic. Thus,
in addition to the already mentioned advantages of disjunc-
tive default rules, it has been shown, in effect, in (Lin and
Shoham 1992) that an autoepistemic logic is directly repre-
sentable in this formalism by using rules with justifications
in heads. In addition, it has been suggested first in (Lifschitz
and Woo 1992) that generalized rules of this kind might be
useful also in logic programming. And indeed, it has been
shown in (Inoue and Sakama 1998) that program rules of the
form

A,notA←
provide a faithful description of abducibles, so they can
be used for a formal representation of abductive logic pro-
gramming. Finally, the causal calculus of McCain-Turner-
Lifschitz (see (McCain and Turner 1997a; Bochman 2004))
is also subsumed by this formalism. More precisely, the
causal rules A⇒B of causal theories are representable as
default rules : A/B (cf. (McCain and Turner 1997b)) of
default theories augmented with an additional axiom

: A,¬A/f .
The latter axiom restrict the extensions to worlds. Moreover,
the entire formalism of default theories under this restriction
turns out to be equivalent to Turner’s logic of universal cau-
sation (UCL) from (Turner 1999).

Summing up all these developments, we can confidently
claim today that generalized default logic constitutes an im-
portant stage in constructing a general, uniform framework
for representing nonmonotonic reasoning.

Foundations of NMR and Uncertainty NMR-2008

255

Simple Default Theories
In accordance with the preceding discussion, the logical ba-
sis of default logic is formed by (disjunctive) inference rules
a ` b that are determined in each case by the appropriate
assumption context. If we take this logical basis for granted,
then a simplest ‘nonmonotonic overhead’ would consist of
most simple default rules of the form :A/A, often called su-
pernormal defaults. This naturally leads us to the following
notion of a simple default theory:

Definition. A generalized default theory will be called sim-
ple if it includes only rules of the following two kinds:

• Monotonic rules a : /c :, and
• Supernormal defaults : A/A :.

To simplify the notation, the monotonic rules a:/c: hav-
ing no justifications neither in bodies nor in heads will be
written below as ordinary inference rules a/c. Furthermore,
a supernormal default :A/A states, in effect, that the propo-
sition A can be used as a default assumption in the corre-
sponding monotonic derivation. As a result, we can get rid
of completely from the traditional notation for default rules
and identify a simple default theory as a pair (D,A), where
D is a set of monotonic rules (a sequent theory), and A a
distinguished set of propositions called assumptions. Then
the following lemma gives a straightforward reformulation
of the definition of extensions for such default theories.

Lemma 18. A set s of propositions is an extension of a sim-
ple default theory (D,A) if and only if it satisfies the follow-
ing conditions:

• s is a minimal deductively closed theory of D that con-
tains s ∩ A;
• s decides the assumption set: for any A ∈ A, either A ∈

s, or ¬A ∈ s;

The first condition in the above description combines two
requirements: (i) u is a theory of D, and (ii) there is no
smaller theory of D that includes the same assumptions
as s. This description implies that extensions of simple
default theories are determined in some (weak) sense by
their corresponding sets of assumptions. More precisely, by
Lemma 11, we have

Corollary 19. Any extension s of a simple default theory
(D,A) is a maximal set that is weakly derivable from s∩A.

Not every assumption set, however, generates an exten-
sion in this sense. The following definition gives a necessary
and sufficient condition.

Definition. A set A0 of assumptions will be called stable if
it is consistent and weakly derives ¬(A \ A0).

Then the following result shows that extensions are pre-
cisely theories that are generated by stable sets of assump-
tions.

Lemma 20. A set A0 of assumptions is stable if and only if
A0 = u ∩ A, for some extension u.

As a partial converse of the above result, an extension can
be characterized as a minimal theory s containing a stable
set of assumptions and such that it includes ¬A, for any

assumption not in s. It should be noted, however, that in
the general disjunctive case extensions are not determined
uniquely by their sets of assumptions. Indeed, even in the
extreme case when the set of assumptions A is empty, a de-
fault theory may have multiple extensions (= minimal theo-
ries).

Of course, the above descriptions can be greatly simpli-
fied for the non-disjunctive case of Tarski inference rules.
As we will see later, the original Reiter’s default theories
will be reducible to this case.

Let us define a simple Tarski default theory as a simple
default theory (D,A) such that all inference rules in D are
Tarski rules of the form a ` A. For a set u of propositions,
we will denote by CnD(u) the logical closure of u with re-
spect to D, namely the set of propositions that are provable
from u using the rules from D and the classical entailment.
Then we have
Corollary 21. If (D,A) is a simple Tarski default theory,
then
• A set A0 of assumptions is stable if and only if it is con-

sistent and refutes any assumption not in A0:

¬A ∈ CnD(A0), for any A ∈ A \ A0.

• A set s of propositions is an extension if and only if s =
CnD(A0), for some stable set of assumptions A0.
Simple default theories provide a most transparent and

natural description of default reasoning. There is an obvious
correspondence between this framework and two other gen-
eral approaches to nonmonotonic reasoning, namely Poole’s
abductive theory (Poole 1988) and the assumption-based
framework of (Bondarenko et al. 1997). In Poole’s Theorist
system a default theory is also described as a pair (T,A),
where T is a classical theory (a set of propositions), and
A a set of assumptions. In this framework, an extension is
defined as a logical closure of a maximal consistent set of
assumptions. It should be clear that Poole’s theories corre-
spond precisely to simple default theories that contain only
rules of the form ` A. Moreover, even the full version of
this system, namely theories with constraints, is subsumed
(for a finite set of constraints) by simple Tarski default the-
ories that may contain also constraints, that is, rules of the
form a ` f . Already this latter modification creates, how-
ever, a difference between extensions of default logic and
Poole’s extensions. The difference stems, ultimately, from
a logical fact that, for supraclassical consequence relations,
the inconsistency a, A ` f does not necessarily imply refu-
tation a ` ¬A. As a result, not every maximal consistent set
of assumptions will be stable, so not every Poole’s extension
will be an extension in our sense. In fact, the stability con-
dition on the set of assumptions can be seen as a hallmark
of default logic as opposed to simpler systems of nonmono-
tonic reasoning. According to this condition, a proper set
of assumptions not only should be a maximal consistent set,
it should also explain why other assumptions should not be
accepted (by refuting them).

A more general account of default reasoning has been
given in (Bondarenko et al. 1997). Bringing it closer to
our present terminology, and without loss of generality, a

Foundations of NMR and Uncertainty NMR-2008

256

default theory in this framework can also be defined as a
simple Tarski default theory (D,A), plus a mapping that as-
signs every assumption A its contrary A. Then a set A0 of
assumptions is said to attack an assumption A if it implies
its contrary: A ∈ CnD(A0). Also, a set A0 of assumptions
is closed, if A ∈ A0, for any assumption A ∈ CnD(A0).
Finally, a set of assumptions is stable, if it is closed, does
not attack itself, but attacks each assumption outside the set.

As can be seen from the above description, for the case
of Tarski rules, our constructions are a special case of the
above framework when the contrary A of an assumption A
is just ¬A. Still, it will be shown in the next section that this
simplification is nevertheless sufficient for covering the full
generalized default logic. In other words, it will be shown
that default logic can be described entirely in the standard
language of rule-based classical logical reasoning.

The reduction
We are going to describe now a translation of arbitrary de-
fault theories to simple ones. To begin with, we will extend
the source propositional language L with new propositional
atoms A◦, for any classical proposition A in L. For a set u
of propositions from L, u◦ will denote the set of new atoms
{A◦ | A ∈ u}.

Next, if D is a default theory in L, then D◦ will denote
the following set of plain disjunctive rules in the extended
language:

{a, b◦/c, d◦ | a : b/c : d ∈ D} (1)

plus the following two rules for any formula A from L that
appears as a justification in the rules from D:

¬A/¬A◦ and : A◦/A◦ (2)

Clearly, D◦ is a simple default theory. Also, it can be eas-
ily seen that the above translation is polynomial and modu-
lar. Moreover, the following theorem shows that this trans-
lation is also faithful, so it is actually a PFM translation in
the sense of (Janhunen 1999).
Theorem 22. A set u is an extension of D if and only if there
is a unique extension u0 of D◦ such that u = u0 ∩ L.

As a first consequence of the above reduction, we obtain
that justifications in heads of generalized default rules can
be eliminated, so we have
Corollary 23. Any generalized default theory is PFM-
reducible to a disjunctive default theory.

Moreover, if the source default theory is actually a Re-
iter’s default theory that contains only non-disjunctive rules,
then the above reduction produces a simple Tarski default
theory. Hence we have
Corollary 24. Any Reiter’s default theory (W, D) is PFM-
reducible to a simple Tarski default theory.

It should also be noted that the simple default theories
obtained by the above reduction have many useful special
properties that do not hold for simple theories in general.
Thus, the assumption set of such theories is a set of atoms.
Moreover, the language of assumptions is completely dis-
joint from the ‘main’ language in the sense that assumption

atoms do not occur in other formulas of the language. Hope-
fully, these additional properties might be exploited in more
elaborated results for default logic, or even in devising more
efficient computational algorithms.

As many other essential results in nonmonotonic reason-
ing, the above theorem is also not completely new and has
numerous precedents.

• From a technical side, the proof of the above result gen-
eralizes the proof of the corresponding result for disjunc-
tive logic programs with negations in heads given in (Jan-
hunen 2001).

• The first expression of this kind of reduction can be dis-
cerned from the representation of Reiter’s default logic
in terms of argument systems suggested in (Lin and
Shoham 1989). In this representation, default rules
A:B1, . . . , Bn/C were represented as monotonic rules

A,¬ab(B1), . . . ,¬ab(Bn)/C.

In addition, an argument system was required to contain
monotonic rules of the form ¬A/ab(A), plus nonmono-
tonic rules t⇒¬ab(B), the latter rules having the same
functionality as supernormal defaults

:¬ab(B)/¬ab(B).

As can be seen, for the case of Reiter’s default logic our
translation is just a notational variant of this representa-
tion.

• Our translation is also quite similar to the representa-
tion of default logic in the assumption-based framework,
described in (Bondarenko et al. 1997). On this repre-
sentation, default rules A:B1, . . . , Bn/C were translated
to monotonic rules A,MB1, . . . ,MBn/C, where propo-
sitions of the form MB were taken to be the assump-
tions, and ¬B was considered a contrary to the assump-
tion MB. In some sense, however, our reduction com-
plements these representation results by showing that de-
fault logic itself constitutes a primary logical framework
for nonmonotonic reasoning (at least if we adhere to the
stable semantics of extensions).

Conclusions
It goes without saying that the ultimate aim of nonmono-
tonic formalisms consists in providing computational tools
for solving the actual problems arising in Artificial Intelli-
gence. Nevertheless, as in many other areas of scientific re-
search, it should also be clear that our formalisms will have
a chance to fulfil this aim only to the extent they will manage
to provide an adequate, concise and versatile framework for
representing such problems. In this sense, default logic can
primarily be viewed as a framework for representing defea-
sible knowledge. The accumulated body of results on this
subject indicates that default logic constitutes, ultimately, a
proper unified framework for this task.

It is also well known that default logic is a computation-
ally difficult formalism. It seems, however, that (as in any
other honest business) this happens because we have to pay

Foundations of NMR and Uncertainty NMR-2008

257

for the ability to handle and act on the basis of additional, de-
feasible knowledge that is not available in ordinary, mono-
tonic logical reasoning. Moreover, the representation prob-
lems of nonmonotonic reasoning should to some reasonable
extent be separated from the computability questions. In
other words, we should know what ought to be expressed, or
represented, even before we know how it could be computed.
There should be no difference in attitude here between the
theory of nonmonotonic reasoning and Logic in general.

Finally, it should also be noted that default logic, even the
generalized one described in this study, still does not resolve
by itself the actual problems of AI, just as the differential
calculus does not resolve by itself the problems of physics.
In this sense default logic is only a framework for deal-
ing with nonmonotonicity, in which real and useful kinds
of nonmonotonic reasoning can hopefully be expressed and
studied. Despite obvious successes, much work still should
be done for a rigorous and adequate representation of the AI
universum in all its actual scope and diversity.

Acknowledgment. Thanks to the referees for their useful
comments and suggestions (including the new title of the
paper).

References
A. Bochman. On bimodal nonmonotonic logics and their
unimodal and non-modal equivalents. In Proc. IJCAI’95,
pages 1518–1524, 1995.
A. Bochman. A Logical Theory of Nonomonotonic Infer-
ence and Belief Change. Springer, 2001.
A. Bochman. A causal approach to nonmonotonic reason-
ing. Artificial Intelligence, 160:105–143, 2004.
A. Bochman. Explanatory Nonmonotonic Reasoning.
World Scientific, 2005.
A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni.
An abstract, argumentation-theoretic framework for default
reasoning. Artificial Intelligence, 93:63–101, 1997.
D. M. Gabbay. Investigations in Modal and Tense Logics.
D. Reidel, 1976.
D. M. Gabbay. Semantical Investigations in Heyting’s In-
tuitionistic Logic. D. Reidel, 1981.
M. Gelfond, V. Lifschitz, H. Przymusińska, and
M. Truszczyński. Disjunctive defaults. In Proc. Second Int.
Conf. on Principles of Knowledge Representation and Rea-
soning, KR’91, pages 230–237, Cambridge, Mass., 1991.
K. Inoue and C. Sakama. Negation as failure in the head.
Journal of Logic Programming, 35:39–78, 1998.
T. Janhunen. On the intertranslatability of non-monotonic
logics. Annals of Math. and Art. Intel., 27:791–828, 1999.
T. Janhunen. On the effect of default negation on the ex-
pressiveness of disjunctive rules. In T. Eiter, W. Faber, and
M. Truszczynski, editors, Proc. Int. Conf. on Logic Pro-
gramming and Nonmonotonic Reasoning, LPNMR 2001,
volume 2173 of LNAI, pages 93–106. Springer, 2001.
V. Lifschitz and T. Woo. Answer sets in general nonmono-
tonic reasoning (preliminary report). In Proc. Third Int.

Conf. on Principles of Knowledge Representation and Rea-
soning, KR‘92, pages 603–614. Morgan Kauffman, 1992.
V. Lifschitz. Minimal belief and negation as failure. Artifi-
cial Intelligence, 70:53–72, 1994.
F. Lin and Y. Shoham. Argument systems: A uniform
basis for nonmonotonic reasoning. In Proceedings of 1st
Intl. Conference on Principles of Knowledge Representa-
tion and Reasoning, pages 245–255, Stanford, CA, 1989.
F. Lin and Y. Shoham. A logic of knowledge and justified
assumptions. Artificial Intelligence, 57:271–289, 1992.
W. Marek and M. Truszczyński. Relating autoepistemic
and default logics. In Int. Conf. on Principles of Knowl-
edge Representation and Reasoning, KR’89, pages 276–
288, San Mateo, Calif., 1989. Morgan Kaufmann.
W. Marek and M. Truszczyński. Nonmonotonic Logic,
Context-Dependent Reasoning. Springer, 1993.
W. Marek, A. Nerode, and J. Remmel. A theory of non-
monotonic rule systems. Annals of Mathematics and Arti-
ficial Intelligence, 1:241–273, 1990.
N. McCain and H. Turner. Causal theories of action and
change. In Proceedings AAAI-97, pages 460–465, 1997.
N. McCain and H. Turner. On relating causal theories to
other formalisms. Unpublished ms., 1997.
D. McDermott and J. Doyle. Nonmonotonic logic. Artifi-
cial Intelligence, 13:41–72, 1980.
D. Poole. A logical framework for default reasoning. Arti-
ficial Intelligence, 36:27–47, 1988.
R. Reiter. A logic for default reasoning. Artificial Intelli-
gence, 13:81–132, 1980.
D. Scott. Completeness and axiomatizability in many-
valued logic. In Proc. Symp. In Pure Math., No. 25, pages
431–435, 1974.
K. Segerberg. Classical Propositional Operators. Claren-
don Press, 1982.
D. J. Shoesmith and T. J. Smiley. Multiple-Conclusion
Logic. Cambridge University Press, 1978.
H. Turner. A logic of universal causation. Artificial Intelli-
gence, 113:87–123, 1999.
R. Wojcicki. Theory of Logical Calculi, volume 199 of
Synthese Library. Kluwer Ac. Publ., 1988.

Foundations of NMR and Uncertainty NMR-2008

258

Specificity Principle in Querying Databases with Preferences

Souhila Kaci
Université Lille-Nord de France, Artois
CRIL, CNRS UMR 8188 - IUT de Lens

F-62307, France
kaci@cril.univ-artois.fr

Rui da Silva Neves
DSVP

5 allées A. Machado, 31058
Toulouse Cedex 0, France
neves@univ-tlse2.fr

abstract
Everybody is aware that preferences are present in many do-
mains of our daily life. Databases community has rapidly
perceived the importance of preferences in queries. As users
generally express comparative preference statements of the
form “I prefer p to q”, existing works that integrate prefer-
ences in database queries are based on this preference format
with however different semantics. We propose in this paper
a simple and unified framework to reason about preference
queries based on comparative preference statements where
different semantics may cohabit. We show that it recovers
existing works when only one semantics is considered. Our
framework is based on specificity principle which makes it
highly attractive from computational point of view.

Introduction
Preferences are present in many domains in our daily life.
As such, many works in psychology, since the pioneering
work of Kahneman and Tversky have focused on the study
of preferences in human decision making and judgment. It
has been shown for example that preferences comparisons
are intransitive (Tversky 1969; Sjoberg 1975) and a very ro-
bust preference reversal phenomena (e.g., (Lichtenstein and
Slovic 1971; Lindman 1971)). Such a phenomena has been
observed for example in choices regarding monetary out-
comes, both hypothetical and real, and in questions pertain-
ing to the loss of human lives. These findings led to a num-
ber of empirical investigations, some of which attempted to
eliminate preference reversals but instead replicated and ex-
tended them.

Databases community has rapidly perceived the impor-
tance of preferences in queries. Suppose that a user is look-
ing for a hotel in Sydney. Due to the large number of ho-
tels there, providing more knowledge about user’s prefer-
ences in the query, for e.g., hotels that are in the downtown
and cheap, will help to eliminate irrelevant hotels and rank-
order the relevant ones. Indeed preferences can be viewed
as a filter which focusses on relevant answers only and re-
turns them ranked according to their relevance. The inte-
gration of preferences in database queries comes however
with many complex issues regarding the representation of

Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

preferences and reasoning about them. Advances in this
topic started with quantitative representations (Chang 1976;
Motro 1986) which consist in associating a score to each tu-
ple expressing how much we like it. However the expressive
power of quantitative preferences has been proved to be lim-
ited (Fishburn 1999). Moreover the question where do the
numbers come from represents a serious limitation of these
approaches. Indeed different proposals have been made to
introduce qualitative preferences in database queries. The
pionner work was proposed by Börzsönyi et al. (2001) who
make use of skyline operation. Following skyline, tuples
are compared on the basis of several criteria. A tuple dom-
inates another tuple if it is as good or better w.r.t. all cri-
teria and better w.r.t. at least one criteria. Then the sky-
line is defined as the tuples which are not dominated by any
other tuple. However skyline queries are too limited in their
expressiveness and supporting user’s preferences requires
more sophisticated preference models in database queries.
Kiessling (2002) promoted this idea and proposed a prefer-
ence model in which preferences are represented by a strict
partial order. The result of a preference query is then re-
trieved using the BMO (“Best Matches Only”) query model
which returns all tuples that are the closest to user’s pref-
erences. However the elicitation of an explicit partial or-
der over tuples is not an easy task. Indeed Chomicki (2002;
2003) also used the notion of strict partial orders as prefer-
ence models in database queries but preferences are defined
in a concise way as a logical formula. Then the partial order
can be computed from the logical formula and the result of
a preference query is computed using the winnow operator
which coincides with BMO query model. In the same line of
research, Brafman and Domshlak (2004) represent the par-
tial order by a CP-net which is a graphical representation of
preferences (Boutilier et al. 1999). Although the two ap-
proaches differ on the way to reason about preferences, they
agree that preferences are generally expressed in terms of
comparative statements, for example “I prefer fish to meat”,
“I prefer cake to ice−cream”, “If fish is served then I pre-
fer white wine to red wine”, etc. However these preferences
expressed in natural language may have different interpre-
tations. Following Chomicki (2003) when I prefer fish to
meat, this means that any menu composed of fish is preferred
to any menu composed of meat, regardless what is served
with fish or meat (for example wine and dessert). This se-

Foundations of NMR and Uncertainty NMR-2008

259

mantics, rather strong when different preference statements
are expressed, has been criticized by Brafman and Domsh-
lak (2004) who proposed a weaker semantics based on ce-
teris paribus principle. Following this principle, the com-
parative preference statement “I prefer fish to meat” is inter-
preted as a menu composed of fish is preferred to a menu
composed of meat when the two menus are otherwise ex-
actly the same. While each approach argues for a unique
semantics and deals with, we believe that both semantics are
equally good and may be present together.

Moreover representing and reasoning about compar-
ative preference statements has been widely investi-
gated in Artificial Intelligence (Boutilier et al. 1999;
Benferhat, Dubois, and Prade 2001; Benferhat and
Kaci 2001; Wilson 2004; Boutilier et al. 2004;
Kaci and van der Torre 2008). Unfortunately, these
works have not been used in preference queries from
databases if we except (Brafman and Domshlak 2004).
The aim of this paper is twofolds: (i) we present a
framework for preference queries based on comparative
preference statements where two semantics cohabit, (ii) we
also show that the use of specificity principle developed in
non-monotonic reasoning (Yager 1983) in ranking alter-
natives w.r.t. preference queries has an attractive complexity.

After giving a necessary background on each approach,
we present a unified framework where both strong and ce-
teris paribus semantics can cohabit. Our framework is
based on specificity principle and runs in a polynomial time
complexity. We then show how our framework captures
Chomicki’s and Brafman&Domshlak’s approaches. Lastly
we conclude.

Compact qualitative preference models for
querying a database

Basic definitions
A relational scheme is denoted R(X), where R is the name
of the relation and X = A1, · · · , Al is a set of l attributes.
Each attribute Ai takes its values in a domain Di denoted
Dom(Ai). A tuple t over a scheme R(X) associates with
each attribute Ai in X a value taken from Di. The notation
t.Ai refers to the value given to the attribute Ai in the tuple
t. An instance r over R is a non-empty finite set of tuples
over R(X).
Preferences over R(X) are expressed in qualitative way by
specifying that a tuple t1 is preferred to a tuple t2 (Chomicki
2003; Kiessling 2002). A qualitative preference relation
(preference relation for short)� is a preorder i.e., a reflexive
and transitive binary relation over D1 × · · · ×Dl such that
t1 � t2 stands for “t1 is at least as preferred as t2”. t1 = t2
means that t1 and t2 are equally preferred (i.e., both t1 � t2
and t2 � t1 hold), and t1 ∼ t2 means that t1 and t2 are
incomparable (i.e., neither t1 � t2 nor t2 � t1 holds).
A strict preference relation � is an order i.e., an irreflexive
and transitive binary relation over D1 × · · · ×Dl such that
t1 � t2 stands for “t1 is strictly preferred to t2”1. We also

1We also say that t1 dominates t2.

write t1 ∼ t2 w.r.t. � when neither t1 � t2 nor t2 � t1
holds. Given a preference relation � on D1 × · · · ×Dl, we
derive a strict preference relation � as follows: t1 � t2 iff
t1 � t2 holds but t2 � t1 does not.
For simplicity and only when there is no ambiguity, we will
omit the term “strict” and refer to both � and � as prefer-
ence relations.
� (resp. �) is cyclic if and only if there exist t1 and t2 such
that t1 � · · · � t2 � t1. A preference relation � (resp. �)
is complete if and only if ∀t1, t2 ∈ D1 × · · · × Dl, either
t1 � t2 or t2 � t1 (resp. t1 � t2 or t2 � t1) holds.
A complete preference relation can be represented by
means of a set of ordered (non-empty) equivalence classes
(E1, · · · , En) such that:

• E1 ∪ · · · ∪ En is the set of all possible tuples,

• Ei ∩ Ej = ∅ for i 6= j.

• Tuples belonging to the same equivalence class are
equally preferred w.r.t. the associated preference relation
and ∀t1, t2 ∈ D1 × · · · ×Dl, with t1 ∈ Ei and t2 ∈ Ej

we have i < j iff t1 � t2.

Complete preference relations can be compared following
specificity principle (Yager 1983):

Definition 1 (Minimal/Maximal specificity principle)
Let � and �′ be two complete preorders represented
by ordered partitions (E1, · · · , En) and (E′

1, · · · , E′
n′)

respectively. We say that � is less specific than �′, written
as �v�′, iff ∀t ∈ D1 × · · · ×Dl, if t ∈ Ei and t ∈ E′

j then
i ≤ j. � belongs to the set of the least (resp. most) specific
preorders among a set of preorders O if there is no �′ in O
such that �′@�, i.e., �′v� holds but �v�′ (resp. �@�′)
does not.

Querying a database with logical formulas
Chomicki (2003) represents the preference relation as a
strict partial order over tuples in a compact way by means of
a first-order logical formula denoted C(t1, t2)2 and called a
preference formula. C(t1, t2) defines a preference relation
�C over R(X) in the following way:

t1 �C t2 iff C(t1, t2).

Chomicki (2003) also proposed two ways to compose
preference relations: unidimensional and multidimensional
compositions. In the former, preference relations over the
same scheme are composed producing a new preference
relation over the same scheme. In the latter, preference
relations over several schemas are composed producing a
new preference relation over the cartesian product of these
schemas. For simplicity we will consider in this paper
unidimensional composition only. Extension to multidi-
mensional composition is left for a future work. Examples
of unidimensional composition are booelan (intersection,
union and difference) and prioritized composition.

2Sometimes we write C for short.

Foundations of NMR and Uncertainty NMR-2008

260

Let �C1 and �C2 be two preference relations associated
to the preference formulas C1 and C2 respectively. The in-
tersection (resp. union, difference) of �C1 and �C2 , de-
noted �C=�C1 ∩ �C2 (resp. �C=�C1 ∪ �C2 , �C=�C1

− �C2) is defined by the formula C = C1 ∧ C2 (resp.
C = C1 ∨ C2, C = C1 ∧ ¬C2). The prioritized compo-
sition �C of �C1 and �C2 giving priority to �C1 has the
following reading: prefer according to �C2 unless �C1 is
applicable. It is defined as

t1 �C t2 iff (t1 �C1 t2) ∨ ((t1 ∼C1 t2) ∧ (t1 �C2 t2)).

Lastly the winnow operator has been defined (Chomicki
2003). It selects the set of undominated tuples given a pref-
erence relation �C derived from a preference formula C.
Formally the winnow operator, denoted WC(r), is defined
as

WC(r) = {t1|@t2 ∈ r, t2 �C t1},
where r is an instance of R(X).
Note that if WC(r) is empty then �C is necessarily cyclic
but the converse is not true as illustrated in Example 1.
Different algorithms have been proposed to compute the
result of the winnow operator (Börzsönyi, Kossmann, and
Stocker 2001; Chomicki 2003; Torlone and Ciaccia 2002).
They all share the same principle. We recall the nested-loop
algorithm (Chomicki 2003) which is the simplest algorithm
to understand but not the most efficient one. Let r be an
instance of a relational scheme R3.

Algorithm 1: Computation of WC(r).

Data: r, �C

Result: WC(r)

begin
WC(r) = ∅
1. open a scan S1 on r
2. for each tuple t1 in S1 do

a. open a scan S2 on r
b. for each tuple t2 in S2 do

if t2 �C t1 then go to 2.d

c. WC(r) = WC(r) ∪ {t1}
d. close S2

3. close S1

return WC(r).
end

Example 1 Let Meal(dish,wine) with Dom(dish) =
{meat, fish} and Dom(wine) = {red, white, rosé}. Let
r = Dom(dish) × Dom(wine) = {meat − red,meat −
white, meat − rosé, fish − red, fish − white, fish −
rosé}. Let �C1 be defined by a preference formula C1

as follows: t �C1 t′ iff ((t.dish = meat ∧ t.wine =
red ∧ t′.dish = meat ∧ t′.wine = white) ∨ (t.dish =
fish∧t.wine = white∧t′.dish = fish∧t′.wine = red)).
�C1 is depicted in Figure 1.a. An edge from t to t′ stands
for “t is preferred to t′”. We have WC1(r) = {meat −

3a scan is a copy.

fish-white

fish-rosé

fish-red meat-white

meat-red

meat-rosé

a.

fish-white fish-rosé

fish-red

meat-white

meat-red meat-rosé

b.

Figure 1: Preference relations �C1 and �C2 .

red, fish− white, meat− rosé, fish− rosé}.
Let �C2 be a binary preference relation over Meal de-
fined by a preference formula C2 as follows: t �C2 t′

iff ((t.wine = red ∧ t′.wine = white) ∨ (t.dish =
fish ∧ t.wine = white ∧ t′.dish = fish ∧ t′.wine =
rosé)∨(t.dish = fish∧t.wine = rosé∧t′.dish = fish∧
t′.wine = red)). The preference relation�C2 is depicted in
Figure 1.b. We have WC2(r) = {meat−red,meat−rosé}.
Note that WC2(r) 6= ∅ even if �C2 is cyclic.

Along this paper, we restrict ourselves to preference for-
mulas which are constructed from atomic formulas using
logical connectives ∧,∨,¬. An atomic formula has the
form A = u or A 6= u where A is an attribute and u is
a constant. This restriction is made without any loss of
generality. In fact preferences of the form “I prefer book b
to book b′ when b.price < b′.price” can be modelled in our
setting by comparing all possible prices.

Since the purpose of this paper is to combine two frame-
works, we need to standardize the notations. In Chomicki’s
approach presented in this section, preference queries are
based on a preference formula which is a first order for-
mula C such that t is preferred to t′ if and only if C(t, t′).
We know that any preference formula can be written under
the form C1 ∨ · · · ∨ Cl such that each Ci is of the form
ci,1 ∧ · · · ∧ ci,m, where ci,j is an atomic formula i.e., of the
form A = u or A 6= u, where A is an attribute and u is a
constant.

Lemma 1 Let C be a preference formula such that C =
C1 ∨ · · · ∨ Cl. Then, �C=�C1 ∪ · · · ∪ �Cl

.

Let p > q denote a comparative preference statement which
expresses a preference for p over q, where p and q are for-
mulas. The notation t |= p means that t makes the formula
p true.
Given the formula C = C1 ∨ · · · ∨ Cl, we construct a set
of comparative preference statements PC = {(s1) : p1 >
q1, · · · , (sl) : pl > ql} such that (si) is the name of the
comparative preference statement and pi (resp. qi) is the
part of Ci concerning the tuple t (resp. t′). More precisely
(si) : pi > qi is built from Ci as follows:

• Recall that Ci is a first order formula concerning two tu-
ples t and t′. Let St ⊂ {ci,1, · · · , ci,m} be the set of
atomic formulas in Ci concerning t.

Foundations of NMR and Uncertainty NMR-2008

261

• For each atomic formula ci,j in St we define f(ci,j) as
follows:

f(ci,j) =
{

uA if ci,j is of the form A = u
¬uA if ci,j is of the form A 6= u

When there is no ambiguity we omit A from uA and ¬uA.
• Then pi = f(ci,1) ∧ · · · ∧ f(ci,m).
We define qi in similar way for t′.
Lemma 2 Let C = C1 ∨ · · · ∨ Cl be a preference formula
and {(s1) : p1 > q1, · · · , (sl) : pl > ql} be the set of com-
parative preference statements constructed from C. Then,
for i = 1, · · · , l,

∀t, t′ ∈ r, t �Ci t′ iff t |= pi and t′ |= qi.

Example 2 Consider again the preference formula C1

given in Example 1. We have t �C1 t′ iff ((t.dish =
meat ∧ t.wine = red ∧ t′.dish = meat ∧ t′.wine =
white) ∨ (t.dish = fish ∧ t.wine = white ∧ t′.dish =
fish ∧ t′.wine = red)). Then C1 = C11 ∨ C12, where
C11 = (t.dish = meat) ∧ (t.wine = red) ∧ (t′.dish =
meat) ∧ (t′.wine = white) and C12 = (t.dish = fish) ∧
(t.wine = white) ∧ (t′.dish = fish) ∧ (t′.wine = red).
So PC1 = {(s1) : meat ∧ red > meat ∧ white, (s2) :
fish ∧ white > fish ∧ red}.
We can check that t �C11 t′ iff t |= meat ∧ red and
t′ |= meat ∧ white. Also t �C12 t′ iff t |= fish ∧ white
and t′ |= fish ∧ red.

The rewritting of a first order formula C as a set of compara-
tive preference statements will make discussions and results
of the next sections easier to follow.

Querying a relational database with a CP-net
The standard interpretation of preferences of the form “I
prefer p to q” in database community is “each tuple satis-
fying p is preferred to each tuple satisfying q” (Chomicki
2003). This semantics is called totalitarian in (Brafman
and Domshlak 2004), strong in (Benferhat and Kaci 2001;
Wilson 2004) and careful in (Kaci and van der Torre 2008).
In this paper, we use the terminology “totalitarian”. How-
ever, as noticed in (Benferhat and Kaci 2001; Brafman and
Domshlak 2004), such semantics is too strong as the set of
results may be empty when several comparative preference
statements are dealt with.
Example 3 (Example 1 continued)
Let �C3 be defined over Meal by a preference formula as
follows:
t �C3 t′ iff ((t.wine = red ∧ t′.wine 6= red) ∨ (t.dish =
fish ∧ t.wine = white ∧ t′.dish = fish ∧ t′.wine 6=
white)).
We have PC3 = {(s1) : red > ¬red, (s2) : fish∧white >
fish ∧ ¬white}. Then �C3=�s1 ∪ �s2 . Following (s1)
we have meat− red �s1 meat− white, meat− red �s1

meat − rosé, meat − red �s1 fish − white, meat −
red �s1 fish − rosé, fish − red �s1 meat − white,
fish − red �s1 meat − rosé, fish − red �s1 fish −
white and fish− red �s1 fish− rosé. Following (s2) we
have fish−white �s2 fish− red and fish−white �s2

fish − rosé. Since �C3=�s1 ∪ �s2 we have therefore
both fish− red �C3 fish−white and fish−white �C3

fish− red.
In order to overcome the above problem raised by the
union composition, the authors of (Brafman and Domshlak
2004) proposed a weaker preference semantics based on ce-
teris paribus semantics together with CP-nets. This seman-
tics compares two tuples which are completed in the same
way besides specified preferences. CP-nets (Boutilier et al.
2004) are graphical representation of preferences based on
ceteris paribus semantics. A CP-net N over A1, · · · , An

is a directed graph in which A1, · · · , An are nodes. A di-
rect edge from Ai to Aj means that preference over values
of Aj is conditioned on the value of Ai. Preferences are lo-
cally specified at the level of each node Ai with a conditional
preference table CPT (Ai) which associates a complete or-
der on values of Ai for each instantiation of parents of Ai.
A partial strict order, denoted �N , is associated to N re-
sulting from the application of ceteris paribus semantics on
local preferences.
Example 4 Let N be a CP-net over dish and wine de-
picted in Figure 2.a, with Dom(dish) = {fish,meat} and
Dom(wine) = {white, red, rosé}. N induces the partial

dish

wine

fish > meat

fish: white > white
meat: red > red

fish-white

fish-red

fish-rosé

meat-white

meat-red

meat-rosé

a. b.

Figure 2: A CP-net and its associated order.

order (depicted in Figure 2.b):
• fish−white � meat−white, fish−red � meat−red

and fish− rosé � meat− rosé (due to fish > meat)
• fish−white � fish−red, fish−white � fish−rosé

(due to fish : white > ¬white)
• meat−red � meat−white, meat−red � meat−rosé

(due to meat : red > ¬red)
Note however that the acyclicity of preference relations

induced by an acyclic CP-net is due to the hierarchical struc-
ture of preferences i.e., preferences over values of a child
node depend on the values of its parent nodes. The use of ce-
teris paribus semantics without being together with CP-nets
does not guarantee the acyclicity of the preference relation.
Example 5 (Example 3 continued)
Following ceteris paribus semantics, (s1) leads to fish −
red �s1 fish − white, fish − red �s1 fish − rosé,
meat−red �s1 meat−white and meat−red �s1 meat−
rosé. (s2) leads to fish − white �s2 fish − red and
fish − white �s2 fish − rosé. Therefore we have both
fish−red � fish−white and fish−white � fish−red.

While CP-nets approach guarantees acyclic preference re-
lations, the computation of the winnow operator is however

Foundations of NMR and Uncertainty NMR-2008

262

expensive from computational point of view. This is because
the winnow operator (WN (r) = {t1|@t2 ∈ r, t2 �N t1}) is
based on pairwise comparisons, called dominance queries,
between tuples which are NP-hard in CP-nets (Boutilier et
al. 2004). In order to overcome this computational lim-
itation of CP-nets, the authors of (Brafman and Domsh-
lak 2004) have weakened dominance queries into order-
ing queries. The idea consists in replacing the partial or-
der �N associated to N by a complete order �t such that
∀t1, t2 ∈ D1 × · · · ×Dl, if t1 �N t2 then t1 �t t2.

Our framework
As discussed in the previous sections, two main preference
semantics of comparative preference statements have been
defended in databases framework: totalitarian and ceteris
paribus semantics. However existing preference represen-
tations in database queries use one semantics only at time
which makes preference queries very restrictive in their ex-
pressiveness.

Example 6 Let R(dish,wine, dessert) be a rela-
tional scheme modeling menus such that Dom(dish) =
{fish,meat}, Dom(wine) = {white, red}
and Dom(dessert) = {cake, ice−cream}. Let
r = {t0, t1, t2, t3, t4, t5, t6, t7} be an instance of R with
t0 : fish−white− ice−cream, t1 : fish−white− cake,
t2 : fish − red − ice−cream, t3 : fish − red − cake,
t4 : meat−white−ice−cream, t5 : meat−white−cake,
t6 : meat− red− ice−cream, t7 : meat− red− cake.
Clara expresses three comparative preference statements
“(s1) : fish > meat”, “(s2) : red ∧ cake > white ∧
ice−cream” and “(s3) : fish ∧ white > fish ∧ red”.
Moreover we know that Clara is vegetarian so s1 should be
interpreted following totalitarian semantics i.e., any menu
composed of fish is preferred to any menu composed of meat.
Let � be the partial order associated to {(s1), (s2), (s3)}.
Using totalitarian semantics on (s1), (s2) and (s3) is too
strong and leads to cyclic preferences since we have both
t0 � t3 and t3 � t0 for example. Now using ceteris paribus
semantics on (s1), (s2) and (s3) leads to the partial order
depicted in Figure 3.a. However this semantics makes
t3 : fish − red − cake and t5 : meat − white − cake
(also t0 and t7; t2 and t4) incomparable while we would
expect that t3 is preferred to t5 since Clara is vegetarian.
In order to capture Clara’s preferences regarding fish and
meat, it is more suitable to use totalitarian semantics with
the comparative preference statement (s1). It is intuitively
arguable to apply ceteris paribus semantics to (s2) and
(s3) since no further information is given about these pref-
erences. Figure 3.b depicts the partial order associated to
(s1), (s2) and (s3) with (s1) obeying totalitarian semantics
and (s2) and (s3) obeying ceteris paribus semantics. We
have WC(r) = {t1}.

One may treat the comparative preference statement (s1)
and the fact that Clara is vegetarian by simply dropping
the tuples t4, t5, t6 and t7 as they are menus composed of
meat. However this is not the right way to deal with such
a preference since it may be the case that the restaurant
have no fish-based menus and Clara is hungry and would

t
1

t
3 t

5

t
0 t

7

t
2 t

4

t
6 a.

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

b.
Figure 3:

absolutly like to eat something. So she may accept a meat-
based menu then she eats dessert and drinks wine without
eating meat. So meat − red − cake should be preferred to
meat− white− ice−cream following (s2).

Indeed a good preference system should not use a unique
semantics for all comparative preference statements, as it
is the case in current preference-based queries systems, but
allows the user to express her preferences w.r.t. different
semantics at the same time. Such an approach is consis-
tent with psychological results. Indeed, preference rever-
sals have generated considerable theoretical attention from
psychologists (Lichtenstein and Slovic 1971). Several ri-
val psychological accounts of preference reversals have been
proposed: expression theory, change-of-process theory, etc.
According to change-of-process theory, preference reversals
are attributed to variations in the decision strategies used to
combine information. In this section we propose an algo-
rithm which handles totalitarian and ceteris paribus seman-
tics used simultaneously.

The algorithm has as an input a set of comparative pref-
erence statements of the form p > q interpreted following
totalitarian or ceteris paribus semantics or both. Unlike ex-
isting approaches the alogorithm does not compute the par-
tial order induced by the set of comparative preference state-
ments P but a completion of that order following the least
specific principle (Yager 1983) inducing a (complete) pre-
order on r which satisfies each comparative preference state-
ment in P . Let p >T q (resp. p >CP q) denote the prefer-
ence for p over q following totalitarian (resp. ceteris paribus)
semantics.

Definition 2 (Semantics) Let � be a complete preorder.
Let p and q be two formulas and r be an instance of a re-
lational scheme R.

• � satisfies p >T q iff ∀t, t′ ∈ r, t |= p ∧ ¬q, t′ |= ¬p ∧ q
we have that t � t′.

Foundations of NMR and Uncertainty NMR-2008

263

• � satisfies p >CP q iff ∀t, t′ ∈ r, t |= p∧¬q, t′ |= ¬p∧q
we have that t � t′, where t and t′ are assigned the same
values w.r.t. variables that are not involved in p and q.

� satisfies a set of comparative preference statements P if
and only if it satisfies each statement in P .

We will show that the preorder induced by our algorithm
is faithful w.r.t. preference queries since it represents an it-
erated version of the winnow operator.

The algorithm
Let P = PT ∪ PCP with PT = {(si) : pi >T qi}
and PCP = {(sj) : pj >CP qj}. PT (resp. PCP)
is the set of comparative preference statements inter-
preted following totalitarian (resp. ceteris paribus)
semantics. We associate to each comparative preference
statement (s) : p >x q, with x ∈ {T,CP}, a pair
(L(s), R(s)) such that L(s) = {t|t ∈ r, t |= p ∧ ¬q} and
R(s) = {t|t ∈ r, t |= ¬p ∧ q}. We write t Bs t′ when t is
preferred to t′ w.r.t. the comparative preference statement
(s) : p >CP q.
Let L(P) = {(L(sk), R(sk))|sk ∈ P}. Note that L(sk)
or R(sk) (or both) may be empty when r is incomplete. In
such a case, we remove the pair (L(sk), R(sk)) from L(P).
We put L(P) = L(PT) ∪ L(PCP), where
L(PT) = {(L(si), R(si))|si ∈ PT } and L(P) =
{(L(sj), R(sj))|sj ∈ PCP }.
Due also to the possible incompleteness of the database,
comparative preference statements interpreted following
ceteris paribus semantics need a pre-treatment since they are
based on pairwise comparisons between tuples t and t′. Let
(sj) : pj >CP qj . Suppose that t belongs to L(sj). Then t
is preferred to t′, with t′ ∈ R(sj), only if t Bsj

t′. Now due
to the possible incompleteness of the database, some tuples
t′ in R(sj) are not dominated by any tuple t in L(sj) and
thus should be removed from R(sj). The same reasoning
is followed when a tuple t in L(sj) does not dominate any
tuple t′ in R(sj).

Example 7 (Example 6 continued)
Let r = {t0, t2, t3, t6} with t0 = fish − white −
ice−cream, t2 : fish − red − ice−cream, t3 : fish −
red − cake and t6 : meat − red − ice−cream. Let
(s) : white >CP red. We have (L(s), R(s)) =
({t0}, {t2, t3, t6}). We have that t0 is preferred to t2 w.r.t.
white >CP red. However there is not tuple in L(s) which
is preferred to t3 and t6 w.r.t. white >CP red. So they
should be removed from R(s) since they are not dominated
w.r.t. white >CP red. Indeed (L(s), R(s)) is replaced by
({t0}, {t2}).
We suppose that such pre-treatment is done before we apply
Algorithm 2.

At each iteration of the algorithm, we first select the
set of the best tuples, those that are not dominated by any
tuple. Undominated tuples are those that do not appear in
the right hand side of any pair (L(sk), R(sk)) in L(P) (line
2). Then we update the set L(P). Comparative preference
statements (si) interpreted following totalitarian semantics
are updated by removing tuples of El from L(si). This

Algorithm 2: A preorder associated to P = PT ∪ PCP .

Data: r, P
Result: �
begin

l = 0
while r 6= ∅ do

1. l = l + 1
2. El = {t|t ∈ r, @(L(sk), R(sk)) ∈ L(P), t ∈
R(sk)}
3. if El = ∅ then

stop (inconsistent preference statements)

4. for each t in El do
replace each (L(sj), R(sj)) in L(PCP) by
(L(sj)\{t}, R(sj)\{t′}) when t ∈ L(sj), t′ ∈
R(sj) and t Bsj t′

5. replace each (L(si), R(si)) in L(PT) by
(L(si)\El, R(si))
6. remove (L(sk), R(sk)) with empty L(sk)
7. r = r\El

return �= (E1, · · · , El).
end

is done in line 5. Lastly we remove satisfied comparative
preference statements; those with an empty L(si) (line 6).

When the set of comparative preference statements P is
consistent i.e., its associated partial order is acyclic, Algo-
rithm 2 returns a complete preorder which satisfies P . Oth-
erwise it returns (E1, · · · , El) with E1∪· · ·∪El−1 ⊂ r and
El = ∅. Moreover some comparative preference statements
are not satisfied by the preorder. See Example 11.

What about the winnow operator?
Proposition 1 states that the best alternatives w.r.t. the pre-
order returned by Algorithm 2 are exactly the result of the
winnow operator.

Proposition 1 Let P = PT ∪PCP . Let �= (E1, · · · , Em)
be the preorder associated to P following Algorithm 2. Let
r be an instance of R(X1, · · · , Xn). Then,

WP(r) = E1.

Example 8 (Example 6 continued)
We have P = PT ∪ PCP with PT = {(s1) : fish >T

meat} and
PCP = {(s2) : red∧cake >CP white∧ice−cream, (s3) :
fish ∧ white >CP fish ∧ red}.
L(P) = {(L(s1), R(s1))} ∪
{(L(s2), R(s2)), (L(s3), R(s3))} =
{({t0, t1, t2, t3}, {t4, t5, t6, t7})} ∪
{({t3, t7}, {t0, t4}), ({t0, t1}, {t2, t3})}.
We have E1 = {t1}. We first run “For each” loop.
We replace (L(s3), R(s3)) by ({t0}, {t2}) since
t1 ∈ L(s3), t3 ∈ R(s3) and t1 Bs3 t3. Then we re-
place (L(s1), R(s1)) by ({t0, t2, t3}, {t4, t5, t6, t7}).
We get L(P) = {({t0, t2, t3}, {t4, t5, t6, t7})} ∪
{({t3, t7}, {t0, t4}), ({t0}, {t2})}. We repeat the
same reasoning and get E2 = {t3}, E3 = {t0},

Foundations of NMR and Uncertainty NMR-2008

264

E4 = {t2}, E5 = {t5, t6, t7} and E6 = {t4}. Indeed
�= ({t1}, {t3}, {t0}, {t2}, {t5, t6, t7}, {t4}). We can
check that WP(r) = E1 = {t1}.

The result of the winnow operator is the set of the best tu-
ples w.r.t. agent’s preferences. However it may be the case
that these tuples are no longer feasible or available and the
computation of the winnow operator should then be applied
again on the remaining tuples. Our algorithm has a nice
property; it is anytime as at each step of the algorithm it
computes the best tuples w.r.t. the current set of tuples. For-
mally we have the following result which generalizes Propo-
sition 1:

Proposition 2 Let P = PT ∪PCP . Let �= (E1, · · · , Em)
be the preorder associated to P following Algorithm 2. Let
r be an instance of R(X1, · · · , Xn). Then,

∀i = 1, · · · ,m, Ei = W i
P(r),

where W 1
P(r) = WP(r) and Wn+1

P (r) =
WP(r\

⋃
i=1,··· ,n W i

P(r)).

Indeed W 1
P(r) is the set of the best tuples, W 2

P(r) is the set
of next immediate best tuples, and so on.

Example 9 (Example 6 continued)
Let r′ = r\WP(r) = {t0, t2, t3, t4, t5, t6, t7}. We can check
that WP(r′) = W 2

P(r) = {t3} = E2. Also W 3
P(r) = E3,

W 4
P(r) = E4, W 5

P(r) = E5 and W 6
P(r) = E6.

It follows from Proposition 2 that Algorithm 2 returns a
complete preorder which is a completion of the partial or-
der induced by the set of comparative preference statements
P . There may be several complete preorders which satisfy
P . However Algorithm 2 returns a unique complete pre-
order which is called the least specific (Yager 1983) in non-
monotonic reasoning since each tuple has been put in the
highest possible equivalence class in the preorder (see Def-
inition 1). So if we move any tuple to a higher equivalence
class then the new preorder will violate some comparative
preference statements. Let us consider the preorder � com-
puted in Example 8. If we move t5 from E5 to E4 then we
get�′= ({t1}, {t3}, {t0}, {t2, t5}, {t6, t7}, {t4}) which vi-
olates fish >T meat. Algorithm 2 is an extended version
of an algorithm proposed in (Benferhat, Dubois, and Prade
2001) for handling totalitarian preferences only.

Lastly it is important to notice that the computation of the
best tuples (i.e., the winnow operator) following Algorithm
2 is highly attractive from complexity point of view.

Proposition 3 Let r be a relational database and P be
a set of comparative preference statements. Let �=
(E1, · · · , El) be the preorder associated to r and P follow-
ing Algorithm 2. The computation of � is achieved in poly-
nomial time in the size of r (i.e., the number of tuples in r)
and the number of comparative preference statements in P .

Indeed our algorithm offers better complexity than exist-
ing algorithms to compute the winnow operator (Börzsönyi,
Kossmann, and Stocker 2001; Chomicki 2003; Torlone and
Ciaccia 2002). This is because the best tuples are undomi-
nated ones and our algorithm computes them without resort-
ing to dominance queries between all pairs of tuples which
is very expensive in complexity.

Encoding database preference queries
In this section, we highlight the expressive power of our
framework and show how it recovers existing approaches
when reduced to a single semantics.

Preference queries based on CP-nets
As presented before, CP-nets are based on comparative pref-
erence statements of the form p : q > r which obey ceteris
paribus semantics i.e., t �N t′ iff t |= p ∧ q and t′ |= p ∧ r
and t, t′ are the same otherwise. Each preference statement
p : q > r is translated in our framework into p∧q >CP p∧r.
So P = PCP = {(sj) : pj ∧ qj >CP pj ∧ rj}, where
pj : qj > rj is expressed in preference tables associated
with the CP-net that we intend to encode. Since P is com-
posed of ceteris paribus preferences only, Algorithm 2 is re-
duced to Algorithm 3.

Algorithm 3: A preorder associated to PCP .

Data: r, PCP

Result: �
begin

l = 0
while r 6= ∅ do

l = l + 1
El = {t|t ∈ r, @(L(sj), R(sj)) ∈ L(PCP), t ∈
R(sj)}
if El = ∅ then

stop (inconsistent preference statements)

for each t in El do
replace each (L(sj), R(sj)) in L(PCP) by
(L(sj)\{t}, R(sj)\{t′}) when t ∈ L(sj), t′ ∈
R(sj) and t Bsj t′

- remove (L(sj), R(sj)) with empty L(sj)
- r = r\El

return �= (E1, · · · , El).
end

Then we have the following result:
Proposition 4 Let N be a CP-net and PCP be the set of
comparative preference statements built from N . Let �=
(E1, · · · , Em) be the preorder associated to PCP following
Algorithm 3. Then,

∀i = 1, · · · ,m, W i
N (r) = Ei.

Example 10 (Brafman and Domshlak 2004)
Let N be a CP-net built on three attributes dish, wine and
dessert taking their values in {fish,meat}, {white, red}
and {cake, ice−cream} respectively. The CP-netN and its
associated partial order are depicted in Figure 4. We have
PCP = {fish >CP meat, fish ∧ white >CP fish ∧
red,meat ∧ red >CP meat ∧ white, white ∧ cake >CP

white ∧ ice−cream, red ∧ ice−cream >CP red ∧ cake}.
Then L(PCP) = {({t0, t1, t2, t3}, {t4, t5, t6, t7}),
({t0, t1}, {t2, t3}), ({t6, t7}, {t4, t5}), ({t1, t5}, {t0, t4}),
({t2, t6}, {t3, t7})}. Let us now apply Algorithm 3 on PCP .
We get �= (E1, E2, E3, E4, E5, E6, E7) with E1 = {t1},
E2 = {t0}, E3 = {t2}, E4 = {t3, t6}, E5 = {t7}, E6 =
{t5} and E7 = {t4}. We can check that Ei = W i

N (r) for
i = 1, · · · , 7.

Foundations of NMR and Uncertainty NMR-2008

265

dish

wine

dessert

fish > meat

fish: white > red
meat: red > white

white: cake > ice_cream
red: ice_cream > cake

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

Figure 4: A CP-net N and its associated partial order.

Preference queries based on formulas
We first present the encoding of a unique preference relation
�C . As noticed before, comparative preference statements
are interpreted in Chomicki’s approach following totalitar-
ian semantics. So given a formula C, we construct a set of
totalitarian preferences PT = {p1 >T q1, · · · , pl >T ql} as
previously described. Since we are dealing with totalitarian
preferences only, Algorithm 2 is reduced to Algorithm 4.

Algorithm 4: A preorder associated to PT .

Data: r, PT

Result: �
begin

l = 0
while r 6= ∅ do

l = l + 1
El = {t|t ∈ r, @(L(si), R(si)) ∈ L(PT), t ∈
R(si)}
if El = ∅ then

stop (inconsistent preference statements)

- replace each (L(si), R(si)) in L(PT) by
(L(si)\El, R(si))
- remove (L(si), R(si)) with empty L(si)
- r = r\El

return �= (E1, · · · , El).
end

Proposition 5 Let r be an instance of R(X1, · · · , Xn). Let
C be a preference formula and PT be the set of totalitarian
preferences built from C. Let�= (E1, · · · , Em) be the pre-
order associated to PT following Algorithm 4. Then,

∀i = 1, · · · ,m, W i
C(r) = Ei.

Example 11 (Example 1 continued)
Let us consider �C1 . We have P1 = {meat ∧ red >T

meat ∧ white, fish ∧ white >T fish ∧ red}. Apply-
ing Algorithm 4 returns (E1, E2) with E1 = {meat −
red, fish − white, meat − rosé, fish − rosé} and E2 =
{meat − white, fish − red}. Indeed, E1 = WC1(r) and
E2 = W 2

C1
(r).

We now consider �C2 . We have P2 = {red >T

white, fish ∧ white >T fish ∧ rosé, fish ∧ rosé >T

fish∧ red}. Following Algorithm 4, P2 is inconsistent and
the associated preorder is (E1, E2) with E1 = {meat −
red,meat− rosé} and E2 = ∅. So we have WC2(r) = E1

and W 2
C2

(r) = E2.

Let us now present the encoding of the composition of
preference queries. Let C1 and C2 be two preference for-
mulas and �C1 and �C2 be two preference relations over
the same relation schema. As noticed before, we distinguish
two types of composition: boolean and prioritized. Boolean
composition is repesented by intersection, union and differ-
ence which are defined by C1 ∧C2, C1 ∨C2 and C1 ∧¬C2

respectively. Since any logical formula can be written in a
disjunctive form, we can simply use the encoding presented
above to encode boolean composition.
Let us now give the encoding of prioritized composition. Let
�p be the prioritized composition of �C1 over �C2 . Recall
that we have:

t �p t′ iff ((t �C1 t′) ∨ (t ∼C1 t′ ∧ t �C2 t′)).
Lemma 3 Let C1 and C2 be two preference formulas. Let
C be a preference formula C defined by:
C(t, t′) ≡ C1(t, t′) ∨ (¬C1(t, t′) ∧ ¬C1(t′, t) ∧ C2(t, t′)).
Let �p be the result of prioritized composition of �C1 over
�C2 . Then,

∀t, t′ ∈ r, t �p t′ iff C(t, t′).
Once C is computed we can use the encoding given in
Proposition 5 for a unique preference relation.
Example 12 Let �C4 and �C5 be two preference relations
defined by
t �C4 t′ iff (t.wine = red ∧ t′.wine 6= red)
t �C5 t′ iff ((t.dish = fish∧t.wine = white)∧(t′.dish =
fish ∧ t′.wine 6= white)).
Let �p be the prioritized composition of �C5 over �C4 .
The preference relations �C4 , �C5 and �p are depicted in
Figure 5. After simplification we have that C(t, t′) is equiv-

meat-red meat-white

meat-rosé

fish-redfish-white

fish-rosé

meat-red meat-white

meat-rosé

fish-redfish-white

fish-rosé

meat-red meat-white

meat-rosé

fish-redfish-white

fish-rosé

>
C4

>
C5

>
p

Figure 5: Preference relations �C4 , �C5 , �p.

alent to (t.dish = meat ∧ t.wine = red ∧ t′.wine 6=
red) ∨ (t.wine = red ∧ t′.dish = meat ∧ t′.wine 6=
red)∨(t.wine = red∧t′.wine = rosé)∨(t.dish = fish∧
t.wine = white ∧ t′.dish = fish ∧ t′.wine 6= white).
The set of comparative preference statements associated to
C is PT = {meat ∧ red >T ¬red, red >T meat ∧
¬red, red >T rosé, fish∧white >T fish∧¬white}. Ap-
plying Algorithm 4 returns �= (E1, E2, E3, E4) with E1 =

Foundations of NMR and Uncertainty NMR-2008

266

{meat− red}, E2 = {fish−white}, E3 = {fish− red}
and E4 = {meat − white, meat − rosé, fish − rosé}.
From Figure 5 we can check that meat−red is the most pre-
ferred tuple w.r.t. �p, fish−white is immediately less pre-
ferred, fish−red is less preferred and lastly meat−white,
meat−rosé and fish−rosé are the least preferred tuples.

Conclusion
Managing users preferences is an important problem in
database queries. After analyzing existing approaches
for the compact representation of preferences in database
queries, we proposed a unified framework where two se-
mantics of users preferences are dealt with: strong semantics
and ceteris paribus semantics. Our algorithm to handle both
semantics is based on specificity principle which makes it
very attractive from complexity point of view. More pre-
cisely, computing the best tuples is achieved in polynomial
time complexity in the number of user’s preferences and the
number of tuples in the database.

The present work can be extended in different directions.
First we expect to integrate other semantics of preferences
(Wilson 2004). Then we intend to extend this work to
handle preference queries expressed on different relational
schemas. Lastly, we will compare the use of specificity
principle in our framework and its use in (Lukasiewicz and
Schellhase 2007).

References
Benferhat, S., and Kaci, S. 2001. A possibilistic logic
handling of strong preferences. In IFSA’01, 962–967.
Benferhat, S.; Dubois, D.; and Prade, H. 2001. Towards a
possibilistic logic handling of preferences. Applied Intelli-
gence 14(3):303–317.
Börzsönyi, S.; Kossmann, D.; and Stocker, K. 2001. The
skyline operator. In ICDE, 421–430.
Boutilier, C.; Brafman, R.; Hoos, H.; and Poole, D.
1999. Reasoning with conditional ceteris paribus prefer-
ence statements. In UAI, 71–80.
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004. CP-nets: A tool for representing and
reasoning with conditional ceteris paribus preference state-
ments. JAIR 21:135–191.
Brafman, R., and Domshlak, C. 2004. Database preference
queries revisited. In Technical report.
Chang, C. 1976. Deduce – a deductive query language for
relational data base. In Pattern Recognition and AI, 108–
112.
Chomicki, J. 2002. Querying with intrinsic preferences. In
ICED, 34–51.
Chomicki, J. 2003. Preference formulas in relational
queries. ACM transactions on Database Systems 28(4):1–
40.
Fishburn, P. 1999. Preference structures and their nu-
merical representations. Theoretical Computer Science
217(2):359–383.

Kaci, S., and van der Torre, L. 2008. Reasoning with var-
ious kinds of preferences: Logic, non-monotonicity, and
algorithms. Annals of Operation Research in press.
Kiessling, W. 2002. Foundations of preferences in database
systems. In VLDB’02, 311–322.
Lichtenstein, S., and Slovic, P. 1971. Reversals of pref-
erence between bids and choices in gambling decisions.
Journal of Experimental Psychology 89(1):46–55.
Lindman, H. 1971. Inconsistent preferences among gam-
bles. Journal of Experimental Psychology 89(2):390–397.
Lukasiewicz, T., and Schellhase. 2007. Variable-strength
conditional preferences for ranking objects in ontologies.
Journal of Web Semantic 5(3):180–194.
Motro, A. 1986. Supporting goal queries in relational
database. In ICEDS’86, 85–96.
Sjoberg, L. 1975. Uncertainty of comparative judgments
and multidimensional structure. Multivariate Behavioral
Research 10(2):207–218.
Torlone, R., and Ciaccia, P. 2002. Finding the best when
it’s a matter of preference. In SEBD, 347–360.
Tversky, A. 1969. Intransitivity of preference. Psycholog-
ical Review 76:31–48.
Wilson, N. 2004. Extending cp-nets with stronger condi-
tional preference statements. In AAAI, 735–741.
Yager, R. 1983. Entropy and specificity in a mathemati-
cal theory of evidence. International Journal of General
Systems 9:249–260.

Foundations of NMR and Uncertainty NMR-2008

267

A Characterization of an Optimality Criterion for Decision Making
under Complete Ignorance

Ramzi Ben Larbi Sébastien Konieczny Pierre Marquis
CRIL - CNRS

Université d’Artois, Lens, France
{benlarbi, konieczny, marquis}@cril.fr

Abstract

In this paper we present a model for decision making under
complete ignorance, where each action is associated directly
with its set of possible consequences (especially, there is no
set of states that can be enumerated in order to compare the
actions). We present two axioms designed to encapsulate the
minimal requirements about decision making under complete
ignorance. We show that in this setting, the family of optimal-
ity criteria meeting the requirements of these axioms have a
suitable form and only take account for the extremal conse-
quences.

Introduction
The traditional framework for decision making under uncer-
tainty considers a set S of possible states of the world, a
set A on actions and a set C of potential consequences of
actions. In this setting an action a is defined as a mapping
matching a state of the world to a consequence. Every con-
sequence is associated to a utility that describes the agent
satisfaction of reaching it. The agent has to choose an ac-
tion without knowing the right state of the world in which
it is performed. This decision problem is often treated by
assuming that the agent is guided by a probability distribu-
tion p over the states of the world. This distribution can
be either objective (statistically obtained) or subjective (de-
rived from the agent beliefs). The agent then uses the ex-
pected utility theory (von Neumann & Morgenstern 1947;
Savage 1954) to evaluate her actions. The most interesting
actions are those with the highest expected utility.

The effectiveness of such an approach lies on the hy-
potheses made on the actions representation (as mappings
between states and consequences) and on the availability of
a probability distribution. Given a utility function u on the
consequences and a probability distribution p over the states
of the world, the expected utility EU of an action a is de-
fined as

EUp,u(a) =
∑
s∈S

p(s) ∗ u(a(s))

Alternative approaches referred to as qualitative ap-
proaches to decision making under uncertainty have been
developed, see (Bouyssou et al. 2006) which surveys many

Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

other works including (Dubois et al. 2002). They can be
seen as a way of overcoming some drawbacks of the ex-
pected utility approach. The data needed for adopting a
probabilistic approach may indeed be too sophisticated for
every day decisions and better suited for critical ones. Be-
sides, the use of this approach may require the handling of a
huge number of possible states of the world as it is the case
for example in the Partially Observable Markovian Process
framework (Lovejoy 1991).

In the qualitative approaches, an action is still considered
as a mapping associating each state of the world to a con-
sequence. Even if they start from the basic assumptions un-
derlying Savage axiomatic framework (Savage 1954), i.e., a
preorder over the states of the world expressing their plausi-
bility, and make the necessary changes to express ordinality,
the obtained criteria use only this preorder and do not de-
rive a probability distribution to represent it. An example
of such a qualitative model is (Boutilier 1994) where deci-
sions are made based on the most plausible states, neglecting
the others. The qualitative approaches to decision making
can lead to different settings depending on assuming com-
mensurabiltiy or not, i.e., whether the plausibility and utility
scales can be compared. However, as stated in (Bouyssou et
al. 2006), ”a fully qualitative theory of decision is a theory
which must not make use of the expressive power of num-
bers neither to model uncertainty nor to represent utility”.

Some works studied the concept of complete ignorance
(sometimes referred to as strict uncertainty) in such a set-
ting. One of the main contributions is by Arrow and Hurwicz
(Arrow & Hurwicz 1977). In decision under ignorance indi-
vidual decision makers have to choose one of a finite number
of alternatives with complete information about their con-
sequences but in the absence of any information about the
probabilities/plausibility of the various states of the world.

In (Arrow & Hurwicz 1977), the authors still make the
assumption that an action is a mapping which maps a state
of the world to a consequence and that the agent perfectly
knows this mapping. They adopt an axiomatic approach,
that is suggesting a set of properties which might character-
ize a criterion for decision-making under ignorance. They
propose a characterization of a rational optimality criterion
in this context, i.e., a defined procedure which gives for ev-
ery problem a set of best actions to be chosen.

“Ignorance” prevents from the use of the expected utility

Foundations of NMR and Uncertainty NMR-2008

268

theory. As in the work of Arrow and Hurwicz (Arrow &
Hurwicz 1977), the principle of insufficient reason (PIR) -
also called Laplace principle - (see e.g., (Jaynes 2003)) may
seem to be an intuitive solution for dealing with ignorance.
PIR states that when facing n states which are indistinguish-
able except for their names, each state should be assigned
a probability equal to 1/n. Yet, as Arrow and Hurwicz re-
mark it, this principle may not be adequate for expressing
complete ignorance. It can lead to contradictory beliefs for
the same situation only by changing the description of the
consequences associated to an action. Let us consider the
following scenario. An agent has to bet on a horse race in-
volving the horse H . If the player bets on H she will receive
0 dollars if H loses and 5 dollars otherwise. Then the PIR
will lead the agent to assign a probability of 0.5 to the con-
sequense 0 dollars. Now suppose that the agent knows she
gets 0 dollars in the case of loss and 5 dollars in coins or a
bill of 5 dollars otherwise. Then the use of PIR will lead the
agent to assign a probability 0.33 to the consequence 0 dol-
lars. This is not satisfactory since we changed nothing but
the description of consequences (and not the consequences
themselves).

In (Maskin 1979), the author extends the result of (Arrow
& Hurwicz 1977). By adding additional axioms, he shows
the unique characterisation of many decision criteria, some
of which being widely used. He further illustrates how to
obtain qualitative criteria by dropping the assumption that
preferences over consequences satisfy the von Neumann-
Morgenstern axioms.

Let us note here that all the previously cited works invari-
ably consider the same definition of an action, i.e., a maping
between states of the world and consequences and that the
uncertainty is on the right state of the world.

We address here the problem of decision making under
complete ignorance but consider a different structure for the
available information. We suppose that an action is associ-
ated directly to a set of possible consequences, i.e., the con-
sequences that can be reached when the action is performed;
thus the right correspondance between states of the world
and consequences realised by an action does not need to be
known. So this is a framework which supposes that the de-
cision maker has less information than in the ones presented
above.It offers a more realistic representation of uncertainty
when this uncertainty is about the action execution and does
not depend solely on the initial state.

In the following, we adopt a similar methodology to the
one in (Arrow & Hurwicz 1977) in order to characterize the
structure of admissible optimality criteria in this setting via a
set of axioms. Still our representation of actions is different
from their one. That induces differences in the properties
and the proofs.

We will start by introducing the framework. Then we will
present the desired properties of an optimality criterion. We
will prove some preliminary results leading to a theorem de-
limiting the family of admissible criteria. A second theorem
refining the first one will also be proven before presenting
some examples of admissible criteria.

Framework

A decision problem A is a set of actions. The problem of de-
cision making under ignorance consists in assigning a sub-
set Â to a decision problem A, called the optimal set for A.
We consider a fixed class P ∗ of decision problems, each of
which is supposed to have a non-empty optimal set.

A consequence of an action a ∈ A will not be associ-
ated to a real number. The only hypothesis made on the
consequence set C is that the agent can compare any two
alternatives c, c

′ ∈ C by means of a total preorder >, that is
a reflexive, transitive, and total (complete) relation. An ac-
tion a is associated to a non-empty subset of possible conse-
quences by the means of a result function R : A→ 2C \{∅}.

This structure of information is different from the one as-
sumed in the previously presented approaches to uncertainty.
The information about possible consequences of an action
is the minimal information an agent needs about her envi-
ronment to make a decision. In that sense, when trying to
represent complete ignorance, the structure previously used
of a mapping associating every state of the world to a con-
sequence is more informative.

Complete ignorance is expressed by the fact that given
an action a, the subset of possible results R(a) is the only
available information. Once the action executed, the realised
consequence will be an element of R(a). No probability dis-
tribution on the image of any action by R is available, which
can be interpreted as ”all the probability distributions on
consequences are possible”. In the same way, no plausibility
relation on the states of the world is available to the agent.
Thus complete ignorance also requires that the adopted ap-
proach must depart from the previously discussed qualitative
approaches.

If a1, a2 ∈ A and a1 ∈ Â, we say that a1 is preferred
or indifferent to a2 with respect to A and symbolise it by
a1(=)a2[A].

If a1, a2 ∈ A, and either a1, a2 ∈ Â or a1, a2 ∈ A \ Â,
we say that a1 and a2 are optimally equivalent with respect
to A, symbolised by a1

.= a2[A].

Similarly, if a1, a2 ∈ A, a1 ∈ Â and a2 ∈ A \ Â, a1 is
said to be preferred to a2 with respect to A; the relation is
symbolised by a1(>)a2[A].

In particular, for decision problems containing just the
actions a1, a2 and denoted by [a1, a2], we simplify the
notations as follows:
a1

.= a2 if a1
.= a2[a1, a2],

a1(=)a2 if a1(=)a2[a1, a2],
a1(>)a2 if a1(>)a2[a1, a2].

We denote minR(a) the set of minima of R(a) and
maxR(a) the set of maxima of R(a) with respect to the
preference relation on consequences, i.e., c ∈ minR(a) iff
@c

′ ∈ R(a) s.t. c > c
′
, and c ∈ maxR(a) iff @c

′ ∈ R(a)
s.t. c

′
> c.

Let [c1, · · · , cn] be an action such that R([c1, · · · , cn]) =
{c1, · · · , cn}.

Foundations of NMR and Uncertainty NMR-2008

269

Expected Properties
The class P ∗ of decision problems which have non-empty
optimal sets is assumed to satisfy the following assumptions.
Assumption (A) For every considered problem A ∈ P ∗,
Â 6= ∅.
We consider only problems containing a non-empty optimal
set.
Assumption (B) ∀A ∈ P ∗, ∀a ∈ A, minR(a) and
maxR(a) exist.

We assume that for every action, the associated set of
consequences always contains consequences that are mini-
mal and consequences that are maximal with respect to the
agent preference relation over consequences. This assump-
tion prevents us from treating cases with infinite descend-
ing/ascending chains of comparison.

These two assumptions delimitate the studied problems.
They move aside degenerate cases where an optimal set can-
not be derived.
Assumption (C) ∀C ′ ⊆ C, ∃A ∈ P ∗, ∃a ∈ A s.t. R(a) =
C ′.
This assumption expresses a density property of the set of
possible consequences. It states that for every set of con-
sequences we can envision an action whose possible con-
sequences are exactly the ones in the set. For every subset
C ′ = {c1, c2, . . .} of C, we denote by [c1, c2, . . .] an action
a of A s.t. R(a) = C ′ (the existence of such an action is
ensured by the assumption).

Finally, an optimality criterion is a rule defining Â for
every A ∈ P ∗.

We now start by presenting the desirable properties the
admissible criteria should have and then deduce the corre-
sponding form of these criteria.

Property (α) If A1 ⊆ A2 and A1 ∩ Â2 is non-empty, then
Â1 = A1 ∩ Â2.
That is, if an action is deemed optimal in a given set of alter-
natives and if subsequently the range of alternative actions
available is contracted but the optimal action is still avail-
able, then the optimal action for the larger problem is still
optimal (and no new optimal actions are added). This is a
typical property of choice functions used for example in so-
cial choice theory, belief revision, belief merging, etc. This
property requires intuitively that the agent considers opti-
mality as issued from a comparison relation.
Property (β) Let A be a decision problem, a, a′, a1, a

′
1 ∈

A such that ∀c ∈ R(a),∀c′ ∈ R(a′), c > c′ then ∀c′′ ∈ C,
if R(a1) = R(a) ∪ {c′′} and R(a′1) = R(a′) ∪ {c′′} then
a1(=)a′1.
If two actions are such that they share one common conse-
quence and if all the other consequences of the first are pre-
ferred or indifferent to all other consequences of the second
then the first action is preferred or indifferent to the second
one.

A desirable feature of this property is that it expresses the
idea of ignorance. Assuming complete ignorance, it is natu-
ral to compare actions based on the only available informa-
tion: their respective sets of consequences. This implies that

the actions leading to the same sets of consequences have to
be considered as indifferent. This can be deduced from the
properties as shown in the forthcoming Proposition 1.

Some Preliminary Results
In this section, we prove some results that are useful for
characterizing optimality criteria.

Lemma 1
1. if a1

.= a2, then a1
.= a2[A] for all A s.t. a1, a2 ∈ A.

2. if a1(=)a2[A] for some A, then a1(=)a2.
3. if a1(>)a2[A] for some A, then a1(>)a2.

Proof: Let us first prove point 1. If a1, a2 are not opti-
mally equivalent with respect to A, suppose w.l.o.g. a1 ∈ Â,
a2 ∈ A \ Â. Since {a1, a2} intersects Â, the optimal set for
{a1, a2} consists of the element a1 by Property (α). That
contradicts the hypothesis. Points 2 and 3 follow by similar
applications of Property (α). �

This lemma mainly states that the comparison between
two actions depends only of these two actions (and their con-
sequences), and not of any other available action.

Lemma 1 thus enables us, when examining a decision
problem, to add intermediary (and possibly imaginary) ac-
tions or to move aside existing ones in order to make easier
the determination of the optimal set.

The next lemma specifies in which way Property (β) en-
capsulates the idea of complete ignorance. It states that,
when considering an action and its corresponding set of con-
sequences, the only consequences that have to be taken into
account to state about the action optimality are the extremal
ones. That is the couple formed by the worst consequence
and the best consequence for the agent.

Lemma 2 Let a ∈ A. [minR(a), maxR(a)] .= a.

Proof: Define a1, an, a′1, a
′
n by R(a1) = {minR(a)},

R(an) = {maxR(a)}, R(a′1) = R(a) \ {minR(a)},
R(a′n) = R(a) \ {maxR(a)}. Then we have
∀c ∈ R(a1),∀c′ ∈ R(a′n), c′ > c. Since
R([minR(a), maxR(a)]) = R(a1) ∪ {maxR(a)} and
R(a) = R(a′n) ∪ {maxR(a)}, Property (β) together with
point 2 of Lemma 1 gives a(=)[minR(a), maxR(a)]. On
the other hand, we have ∀c ∈ R(an),∀c′ ∈ R(a′1), c > c′.
Since R([minR(a), maxR(a)]) = R(an) ∪ {minR(a)}
and R(a) = R(a′1) ∪ {minR(a)}, Property (β) together
with point 2 of Lemma 1 gives [minR(a), maxR(a)](=)a.
Finally, we can conclude a

.= [minR(a), maxR(a)]. �

Now as stated in the previous section we can easily prove
the following corollary:

Corollary 1 Let a, a
′

be in a decision problem A. If R(a) =
R(a

′
) then a

.= a
′
.

Proof: Let [minR(a), maxR(a)] be an action such that
R([minR(a), maxR(a)]) = {minR(a), maxR(a)}. By
the previous lemma, it comes directly that :

a
.= [minR(a), maxR(a)] .= a′.

Foundations of NMR and Uncertainty NMR-2008

270

�

This result mainly states that the only relevant informa-
tion for comparing two actions are their set of consequences.
So actions with the same set of consequences are undistin-
guishable. This means that actions can be identified to sets
of consequences.

Characterizing Optimality Criteria
In this section we first state and prove a theorem which
makes explicit the form of an optimality criterion meeting
the requirements of Properties (α) and (β).

Theorem 1 Under assumptions (A), (B) and (C), an opti-
mality criterion satisfies properties (α) and (β) if and only
if there exists a total preorder < on the set of consequence
pairs (m, M) with M > m such that the conditions (1) and
(2) are fulfilled:
(1) If m1 > m2 and M1 >M2

then (m1, M1) < (m2, M2).
(2) ∀A ∈ P ∗, Â = {a|(minR(a), maxR(a)) <

(minR(a′), maxR(a′)),∀a′ ∈ A}.
Proof: To prove necessity, we assume the existence of an
optimality criterion satisfying Properties (α) and (β). We
first define the ordering over the half space of ordered pairs
of consequences (m, M). Let [m, M] be an action such that
R([m, M]) = {m, M}. We define:

(m1, M1) < (m2, M2) iff [m1, M1](=)[m2, M2][A].

It must first be shown that the relation < is a total preorder.
Reflexivity comes immediately from Lemma 1 and Corol-
lary 1. As to transitivity, suppose (m1, M1) < (m2, M2)
and (m2, M2) < (m3, M3). Let A be the decision problem
with elements [m1, M1], [m2, M2], [m3, M3]. There is at
least one optimal action. Suppose that [m3, M3] is the only
optimal action, then [m3, M3](>)[m2, M2][A]. By Lemma
1, [m3, M3](>)[m2, M2], which contradicts the hypothesis
that (m2, M2) < (m3, M3). Suppose now that [m2, M2] ∈
Â but [m1, M1] /∈ Â. This also leads to a contradiction
since (m1, M1) < (m2, M2). Hence, we must conclude that
[m1, M1] ∈ Â, so that [m1, M1](=)[m3, M3][A], and there-
fore [m1, M1](=)[m3, M3], or, by definition, (m1, M1) <
(m3, M3). The relation < is therefore transitive.
Since any decision problem {[m1, M1], [m2, M2]} has at
least one optimal element, either (m1, M1) < (m2, M2)
or (m2, M2) < (m1, M1), so that the relation < is a total
preorder.
Suppose now that m1 > m2, M1 >M2. Then

[m1, M2](=)[m2, M2][A]

(since m1 > m2 and Property (β) enables us to conclude
by adding M2). Besides

[m1, M1](=)[m1, M2][A]

(since M1 >M2 and Property (β) enables us to conclude by
adding m1). Thus we finally have [m1, M1](=)[m2, M2][A]

and by definition (m1, M1) < (m2, M2). We can then con-
clude the first point of the necessity part of the theorem.

Suppose that a ∈ Â. Then a(=)a′[A] for all a′ ∈ A, and
therefore a(=)a′ for all a′ ∈ A. By Lemma 2 we have
[minR(a), maxR(a)] .= a and [minR(a′), maxR(a′)] .=
a′.
By Lemma 1 we conclude

[minR(a), maxR(a)](=)[minR(a′), maxR(a′)][A]

and by definition

(minR(a), maxR(a)) < (minR(a′), maxR(a′)) for all
a′ ∈ A.

Suppose now that a ∈ A \ Â. Let a′ be any ele-
ment of Â, we have a′(>)a. By Lemma 2 we have
[minR(a), maxR(a)] .= a and [minR(a′), maxR(a′)] .=
a′.
So we can conclude:

[minR(a′), maxR(a′)](>)[minR(a), maxR(a)][A]

and by definition

(minR(a′), maxR(a′)) � (minR(a), maxR(a)) for
some a′ ∈ A.

We thus proved the second point in the necessity part of the
theorem.
Let us now prove the sufficiency part of the theorem. Sup-
pose we have a total preorder on pairs of consequences ful-
filling the conditions (1) and (2) of the theorem. Let us verify
Property (α). Suppose that we have A1 ⊆ A2 and A1 ∩ Â2

is non-empty.

Let a ∈ A1 ∩ Â2. As a ∈ Â2 by condition
(2) of the theorem we have (minR(a), maxR(a)) <
(minR(a′), maxR(a′)),∀a′ ∈ A2. Since A1 ⊆
A2, a ∈ Â1, we have (minR(a), maxR(a)) <
(minR(a′), maxR(a′)),∀a′ ∈ A1. We have thus A1 ∩
Â2 ⊆ Â1.
Let a ∈ Â1. By condition (2) we have
(minR(a), maxR(a)) < (minR(a′), maxR(a′)),∀a′ ∈
A1 and especially for the elements of A1 ∩ Â2 which
implies a ∈ Â2 because of the transitivity of < and then
a ∈ A1 ∩ Â2. We have thus Â1 ⊆ A1 ∩ Â2.
Finally we can conclude Â1 = A1 ∩ Â2.
Now let us verify Property (β). Let a, a′ be such that ∀c ∈
R(a), c′ ∈ R(a′), c > c′. And let c′′ ∈ C. Let a1, a

′
1 such

that R(a1) = R(a) ∪ {c′′} and R(a′1) = R(a′) ∪ {c′′}.

• If c′′ > maxR(a), then minR(a1) > minR(a′1) and
maxR(a1) = maxR(a′1).
• If minR(a′) > c′′, then minR(a1) = minR(a′1) and

maxR(a1) > maxR(a′1).
• If maxR(a) > c′′ > minR(a′), then

min(c′′, minR(a1)) > minR(a′1) and maxR(a1) >
max(maxR(a′1), c′′).

Foundations of NMR and Uncertainty NMR-2008

271

We can see that in every case, adding a common con-
sequence we are again in the situation where the
condition (1) of the theorem applies. Indeed, we
have minR(a1) > minR(a′1) and maxR(a1) >
maxR(a′1), which implies by condition (1) that
(minR(a1), maxR(a1)) < (minR(a′1), maxR(a′1)). �

Remark that the theorem characterizes in fact a family of
possible criteria. This is due to condition (1) of the theorem
that is only an implication enabling further distinctions to be
made.

This theorem is interesting because the relatively simple
requirements induce a family of criteria which depend only
on the extremal consequences with respect to the agent’s
preference relation on consequences. This was already the
case in the theorem proved by (Arrow & Hurwicz 1977).
What we prove here is that their result could be extended to
the poorer informational case (w.r.t. actions) we consider.

A Refined Version with Strict Preferences
We have previously defined two axioms expressing some
basic requirements about an optimality criterion an agent
should use given her complete ignorance about the conse-
quences of an action. This theorem states that such an opti-
mality criterion only depends on the pair formed by the less
rewarding and the most rewarding consequence of each ac-
tion.

Consider the following property:

Property (β′) Let A be a decision problem, a, a′, a1, a
′
1 ∈

A such that ∀c ∈ R(a),∀c′ ∈ R(a′), c > c′ then ∀c′′ ∈ C,
if R(a1) = R(a) ∪ {c′′} and R(a

′

1) = R(a′) ∪ {c′′} then
a1(>)a′1.

We can obtain a theorem similar to Theorem 1 by adding the
Property (β′) which has as an effect to add a supplementary
condition on the preorder defined in Theorem 1.

We then obtain the following theorem:

Theorem 2 Under assumptions (A), (B) and (C), an opti-
mality criterion satisfies Properties (α), (β′) and (β) if and
only if there exists a total preorder < on the set of conse-
quence pairs (m, M) with M > m such that the conditions
(1),(2) and (3) are fulfilled:

(1) If m1 > m2 and M1 >M2

then (m1, M1) < (m2, M2).
(2) If m1 > m2 and M1 > M2 and (m1 > m2 or M1 >

M2) then (m1, M1) � (m2, M2).

(3) ∀A ∈ P ∗, Â = {a|(minR(a), maxR(a)) <
(minR(a′), maxR(a′)),∀a′ ∈ A}.

Proof: Thanks to Theorem 1, we mainly have to prove
that adding condition (2) in the theorem is ”equivalent” to
adding Property (β′).
Let [minR(a), maxR(a)] be an action such that
R([minR(a), maxR(a)]) = {minR(a), maxR(a)}.
As in Theorem 1, let us define:

(m1, M1) < (m2, M2) if and only if [m1, M1](=)[m2, M2]

We now define in the natural way the associated strict rela-
tion:

(m1, M1) � (m2, M2) if and only if [m1, M1](>)[m2, M2]

Let us first prove that adding Property (β′) implies condition
(2).

• Let m1, m2, M1, M2 be such that m1 > m2 and M1 >
M2. Then [m1, M2](>)[m2, M2] (since m1 > m2 and
Property (β′) enables us to conclude by adding M2). Be-
sides [m1, M1](=)[m1, M2] (since M1 > M2 and Prop-
erty (β) enables us to conclude by adding m1). Thus
we finally have [m1, M1](>)[m2, M2] and by definition
(m1, M1) � (m2, M2).

• Let m1, m2, M1, M2 be such that m1 > m2 and M1 >
M2. Then [m1, M2](=)[m2, M2] (since m1 > m2 and
Property (β) enables us to conclude by adding M2). Be-
sides [m1, M1](>)[m1, M2] (since M1 > M2 and Prop-
erty (β′) enables us to conclude by adding m1). Thus
we finally have [m1, M1](>)[m2, M2] and by definition
(m1, M1) � (m2, M2).

This finishes the proof of the necessity part of the theorem.
Now let us verify Property (β′). Let a, a′ be such that ∀c ∈
R(a), c′ ∈ R(a′), c > c′. And let c′′ ∈ C. Let a1, a

′
1 such

that R(a1) = R(a) ∪ {c′′} and R(a′1) = R(a′) ∪ {c′′}:

• If c′′ > maxR(a), then minR(a1) > minR(a′1) and
maxR(a1) = maxR(a′1).

• If minR(a′) > c′′, then minR(a1) = minR(a′1) and
maxR(a1) > maxR(a′1).

• If maxR(a) > c′′ > minR(a′), then
min(c∗, minR(a1)) > minR(a′1) and maxR(a1) >
max(maxR(a′1), c∗).

We can see that in every case, adding a common outcome
we are again in the situation where the condition (2) applies.
We can then conclude a1(>)a′1. �

We can see that adding Property (β′) increases the dis-
criminating power of the admissible criteria. Theorem 1 in-
volves only large comparisons over extremal consequences
to design optimal actions. Theorem 2 introduces strict com-
parisons in condition (2) and then excludes more actions
from the optimal set. An action a such that it exists another
action a′ with minR(a′) > minR(a) and maxR(a′) >
maxR(a) can still be in the optimal set of a criterion ad-
mitted by Theorem 1, even if minR(a′) > minR(a) or
maxR(a′) > maxR(a). This is no longer possible for a
criterion admitted by Theorem 2.

Examples of Optimality Criteria
In this section we introduce some simple decision criteria
and investigate whether they meet the requirements of the
theorems given in the previous sections and then satisfy the
desired properties.

A first criterion is a worst-case one, which is usual in strict
uncertainty cases.

Foundations of NMR and Uncertainty NMR-2008

272

Definition 1 (Min criterion) Consider two actions a1, a2.

a1(=min)a2 iff minR(a1) > minR(a2).

The Min criterion is in a sense the safest one in case of
complete ignorance. It is usually known as Wald criterion
(Wald 1950).

Definition 2 (Max criterion) Consider two actions a1, a2.

a1(=min)a2 iff maxR(a1) > maxR(a2).

The Max criterion is the dual of the min criterion expressing
some kind of optimistic state of mind.

It is easy to check that these two criteria define two total
preorders verifying the condition (1) of Theorem 1 and that
they satisfy properties (α) and (β).

Proposition 1 The Min and Max criteria satisfy properties
(α) and (β).

Nevertheless, we can see that none of them satisfy Prop-
erty (β′) in general. Indeed, let us consider two actions
a1, a2 such that minR(a1) > minR(a2) and maxR(a1) >
maxR(a2). It is clear that a1(

.=min)a2. This excludes the
Min criterion from the family drawn by Theorem 2 since
condition (2) in this theorem would imply in this case that
a1(>min)a2. A similar argument excludes the Max crite-
rion.

Thus, the above two criteria do not satisfy Theorem 2
which seems to have a greater discriminating power than
Theorem 1. Besides, although they satisfy Theorem 1, they
do it in a trivial way because they take account for only one
extremal consequence whereas Theorem 1 suggests that the
agent should use a criterion that takes into account both of
them. We present a criterion that makes use of this possibil-
ity.

The Min criterion can be refined into a lexicographic Min-
max, i.e., refining the Min thanks to the maximal conse-
quences.

Given n relations (≥i), i ∈ [1, n], on A, the associ-
ated lexicographic relation (lex(≥1, · · · ,≥n)) is defined by
a1 (≥lex(≥1,··· ,≥n)) a2 iff a1 (>lex(≥1,··· ,≥n)) a2 or a1

(∼lex(≥1,··· ,≥n)) a2 with:

• a1 (>lex(≥1,··· ,≥n)) a2 iff ∃j ∈ [1, n] s.t. ∀i < j (a1 ≥i

a2 and a2 ≥i a1) and a1 >j a2.

• a1 (∼lex(≥1,··· ,≥n)) a2 iff ∀i ∈ [1, n] (a1 ≥i a2 and a2

≥i a1).

Definition 3 (Minmax criterion) Consider two actions
a1, a2.

a1(=minmax)a2 iff a1(=lex(=min,=max))a2.

Proposition 2 The Minmax criterion satisfies Properties
(α), (β) and (β′).

Proof: We must prove that the conditions (1), (2) and (3)
of Theorem 2 are satisfied.
Let us define a total preorder< on the pairs of consequences
based on the Minmax criterion using condition (3) of Theo-
rem 2.

Consider two actions a1, a2 such that minR(a1) >
minR(a2) and maxR(a1) > maxR(a2). The def-
inition of the lexicographic relation implies then that
a1(=lex(=min,=max))a2 which means a1(=minmax)a2

and by definition (minR(a1), maxR(a1)) <
(minR(a2), maxR(a2)). This proves condition (1).
To prove condition (2), consider two actions a1, a2 such that
(minR(a1) > minR(a2) and maxR(a1) > maxR(a2)) or
(minR(a1) > minR(a2) and maxR(a1) > maxR(a2)).
The definition of the lexicographic relation im-
plies then that a1(>lex(=min,=max))a2 which means
a1(>)a2 and by definition (minR(a1), maxR(a1)) >
(minR(a2), maxR(a2)). This proves condition (2). �

Conclusion
When trying to describe the minimal information an agent
needs to make a sensible decision, the set consequences of
an action seems to be an appropriate candidate. Knowing
only this information seems to best encapsulate the idea of
ignorance. The representation of an action needs to match
directly an action to its consequences to be coherent with
this structure of information. One can imagine that it is a
structure too poor for decision making. We have shown here
that even when the traditional mapping state-consequence to
represent an action is given up, we can still characterize a
family of criteria that have a suitable form.

We have stated some properties that such an optimality
criterion should have. These properties express the minimal
requirements about decision making under complete igno-
rance. We have shown that the family of criteria delimited
by these properties take account for only the extremal con-
sequences of actions. We have presented some of them and
shown how they satisfy the desired properties.

The next step of our study will be to follow the steps
of (Maskin 1979) by first listing some further properties an
agent may require a decision criterion to meet and then com-
bining them with the already presented properties to charac-
terize other decision criteria.

Acknowledgements
The authors would like to thank the anonymous reviewers
for their helpful comments. They have been partly supported
by the ANR project PHAC (ANR-05-BLAN-0384).

References
Arrow, K. J., and Hurwicz, L. 1977. An optimality cri-
terion for decision-making under ignorance. In Studies in
Resource Allocation Processes, 463–471. Cambridge Uni-
versity Press.
Boutilier, C. 1994. Toward a logic for qualitative decision
theory. In KR, 75–86.
Bouyssou, D.; Dubois, D.; Pirlot, M.; and Prade, H.,
eds. 2006. Concepts et méthodes pour l’aide à la
décision - risque et incertain, volume 2 of Traité IC2.
http://www.editions-hermes.fr/: Lavoisier.

Foundations of NMR and Uncertainty NMR-2008

273

Dubois, D.; Fargier, H.; Prade, H.; and Perny, P. 2002.
Qualitative Decision Theory: From Savage’s Axioms
to Nonmonotonic Reasoning . Journal of the ACM
49(4):455–495.
Jaynes, E. T. 2003. Probability theory: The logic of sci-
ence. In Studies in Resource Allocation Processes. Cam-
bridge University Press.
Lovejoy, W. 1991. A survey of algorithmic methods for
partially observed markov decision processes. Ann. Oper.
Res. 28(1-4):47–66.
Maskin, E. 1979. Decision making under ignorance with
implications for social choice. Theory and Decision 319–
337.
Savage, L. 1954. The Foundations of Statistics. New York:
J. Wiley. second revised edition, 1972.
von Neumann, J., and Morgenstern, O. 1947. Theory of
games and economic behaviour. Princeton: Princeton Uni-
versity Press. 2nd edition.
Wald, A. 1950. Statistical Decision Functions. John Wiley.

Foundations of NMR and Uncertainty NMR-2008

274

