
KR
2018

International Conference on Principles of
Knowledge Representation and Reasoning

Tempe, October 27th - 29th 2018

17th INTERNATIONAL WORKSHOP ON
NON-MONOTONIC REASONING

NMR 2018

Eduardo Fermé
University of Madeira

Serena Villata
Université Côte d’Azur

Preface

NMR is the premier forum for results in the area of Non-Monotonic Reasoning.
Its aim is to bring together active researchers in this broad field within knowl-
edge representation and reasoning (KR), including belief revision, uncertain rea-
soning, reasoning about actions, planning, logic programming, preferences, ar-
gumentation, causality, and many other related topics including systems and
applications.

The NMR workshop series is the premier specialized forum for researchers
in non-monotonic reasoning and related areas. This will be the 16th workshop
in these series. Its aim is to bring together active researchers in the broad area
of non-monotonic reasoning, including belief revision, reasoning about actions,
argumentation, declarative programming, preferences, non-monotonic reasoning
for ontologies, uncertainty, and other related topics.

This volume contains the papers presented at NMR-2018: 17th International
Workshop on Non-Monotonic Reasoning held on October 20-29, 2018 in Tempe.
There were 22 submissions. Each submission was reviewed by at least 2, and on
the average 3 program committee members. The committee decided to accept 20
papers. The program also includes two invited talks by João Leite by the New
University of Lisbon and Renata Wassermann by the University of São Paulo.

October 21, 2018
Tempe, Arizona

Eduardo Fermé
Serena Villata

v

Table of Contents

A Tutorial for Weighted Bipolar Argumentation with Continuous
Dynamical Systems and the Java Library Attractor 1

Nico Potyka

Measuring Disagreement among Knowledge Bases (Extended Version) . . . 11
Nico Potyka

Exploiting Treewidth for Counting Projected Answer Sets 21
Johannes K. Fichte and Markus Hecher

Lower Bound Founded Logic of Here-and-There: A Preliminary Report . . 31
Pedro Cabalar, Jorge Fandinno, Torsten Schaub and Sebastian Schell-

horn

Consistency in Justification Theory . 41
Simon Marynissen, Niko Passchyn, Bart Bogaerts and Marc Denecker

Towards a Boolean dynamical system representation into a
monmonotonic modal logic: application to genetic nerworks. 53

Pierre Siegel, Andrei Doncescu, Vincent Risch and Sylvain Sené

A critical assessment of Pollock’s work on logic-based argumentation
with suppositions . 63

Mathieu Beirlaen, Jesse Heyninck and Christian Straßer

On Iterated Contraction: syntactic characterization, representation
theorem and limitations of the Levi identity . 73

Sébastien Konieczny and Ramon Pino Perez

Splitting Epistemic Logic Programs . 81
Pedro Cabalar, Jorge Fandinno and Luis Farinas Del Cerro

Causal reasoning in a logic with possible causal process semantics 90
Marc Denecker, Bart Bogaerts and Joost Vennekens

Relating Two Dialects of Answer Set Programming . 99
Amelia Harrison and Vladimir Lifschitz

Defeasible Entailment: from Rational Closure to Lexicographic Closure
and Beyond . 109

Giovanni Casini, Thomas Meyer and Ivan Varzinczak

How to construct Remainder Sets for Paraconsistent Revisions:
Preliminary Report . 119

Rafael Testa, Eduardo Fermé, Marco Garapa and Mauŕıcio Reis

A logic of default justifications . 126
Stipe Pandžić

vi

Support Trees For Answer Set Programs . 136
Richard Watson

Manipulation of Semantic Aggregation Procedures for Propositional
Knowledge Bases and Argumentation Frameworks . 146

Adrian Haret and Johannes Wallner

Belief Revision Operators with Varying Attitudes Towards Initial Beliefs . 156
Adrian Haret and Stefan Woltran

Implementing Logic Programs with Ordered Disjunction Using asprin . . . 166
Joohyung Lee and Zhun Yang

Epistemic states, fusion and strategy-proofness . 176
Amı́lcar Mata Diaz and Ramon Pino Perez

A simple qualitative framework for resource allocation 186
Franklin Camacho, Gerardo R. Chacón and Ramon Pino Perez

vii

Program Committee

Christoph Beierle University of Hagen
Alexander Bochman Computer Science Dept., Holon Institute of Tech-

nology
Marina De Vos University of Bath
Juergen Dix Clausthal University of Technology
Wolfgang Faber Alpen-Adria-Universität Klagenfurt
Eduardo Fermé Universidade da Madeira
Martin Gebser University of Potsdam
Michael Gelfond Texas Tech University
Sven Ove Hansson Royal Institute of Technology, Stockholm
Andreas Herzig CNRS, IRIT, Univ. Toulouse
Anthony Hunter University College London
Katsumi Inoue NII
Tomi Janhunen Aalto University
Gabriele Kern-Isberner Technische Universitaet Dortmund
Sébastien Konieczny CRIL - CNRS
Thomas Lukasiewicz University of Oxford
Maria Vanina Martinez Instituto de Ciencias e Ingenieŕıa de la Computación

(CONICET - Universidad Nacional del Sur in Bahia
Blanca)

Thomas Meyer University of Cape Town and CAIR
Nir Oren University of Aberdeen
Odile Papini LSIS UMR CNRS 7296
Pavlos Peppas University of Patras
Laurent Perrussel IRIT - Universite de Toulouse
Ramon Pino Perez Universidad de Los Andes
Ken Satoh National Institute of Informatics and Sokendai
Steven Schockaert Cardi↵ University
Gerardo Simari Universidad Nacional del Sur and CONICET
Guillermo R. Simari Universidad del Sur in Bahia Blanca
Matthias Thimm Universität Koblenz-Landau
Ivan Varzinczak Univ. Artois and CNRS
Joost Vennekens Katholieke Universiteit Leuven
Serena Villata CNRS - Laboratoire d’Informatique, Signaux et

Systèmes de Sophia-Antipolis
Renata Wassermann University of São Paulo
Emil Weydert CSC, University of Luxembourg
Stefan Woltran Vienna University of Technology

viii

Additional Reviewers

B

Budan, Maximiliano
F

Fandinno, Jorge
N

Nitta, Katsumi
R

Romero, Javier
S

Saribatur, Zeynep G.
Sauerwald, Kai
T

Tojo, Satoshi

ix

A Tutorial for Weighted Bipolar Argumentation with Continuous Dynamical
Systems and the Java Library Attractor

Nico Potyka
Institute of Cognitive Science, University of Osnabrück, Germany

Abstract

Weighted bipolar argumentation frameworks allow modeling
decision problems and online discussions by defining argu-
ments and their relationships. The strength of arguments
can be computed based on an initial weight and the strength
of attacking and supporting arguments. While previous ap-
proaches assumed an acyclic argumentation graph and suc-
cessively set arguments’ strength based on the strength of
their parents, recently continuous dynamical systems have
been proposed as an alternative. Continuous models update
arguments’ strength simultaneously and continuously. While
there are currently no analytical guarantees for convergence
in general graphs, experiments show that continuous models
can converge quickly in large cyclic graphs with thousands
of arguments. Here, we focus on the high-level ideas of this
approach and explain key results and applications. We also
introduce Attractor, a Java library that can be used to solve
weighted bipolar argumentation problems. Attractor contains
implementations of several discrete and continuous models
and numerical algorithms to compute solutions. It also pro-
vides base classes that can be used to implement, to evaluate
and to compare continuous models easily.

1 Introduction
Abstract argumentation (Dung 1995) studies the accept-
ability of arguments based purely on their relationships
and abstracted from their content. The basic framework
has a two-valued semantics and allows only defining ar-
guments and an attack relation between them. This basic
setting has been extended in different directions. For ex-
ample, bipolar argumentation frameworks (Amgoud, Cay-
rol, and Lagasquie-Schiex 2004; Oren and Norman 2008;
Cayrol and Lagasquie-Schiex 2013; Polberg and Oren 2014)
take account of the fact that arguments cannot only attack
each other and add a support relation. A survey of different
approaches can be found in (Cohen et al. 2014). The clas-
sical two-valued semantics that distinguishes only between
acceptance and rejection of arguments has been extended
in various ways. Examples include probabilistic semantics
(Thimm 2012; Hunter 2013; Hunter and Potyka 2017) and
ranking semantics that can be based on fixed point equations
(Besnard and Hunter 2001; Leite and Martins 2011; Correia,

Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Cruz, and Leite 2014; Barringer, Gabbay, and Woods 2012)
or the graph structure (Cayrol and Lagasquie-Schiex 2005;
Amgoud and Ben-Naim 2013). Other recent extensions in-
clude recursive attacks on attacks (Baroni et al. 2011) and
the temporal availability of arguments (Budán et al. 2015).

Our focus here is on weighted bipolar argumentation
frameworks that allow defining attack and support rela-
tionships and an initial weight for arguments (Baroni et
al. 2015; Rago et al. 2016; Amgoud and Ben-Naim 2017;
Mossakowski and Neuhaus 2018). A strength value is com-
puted for every argument based on its initial weight and the
strength of its attackers and supporters. Examples for com-
putational models include the QuAD algorithm from (Ba-
roni et al. 2015) that was designed to evaluate the strength
of answers in decision-support systems. Soon after, the
DF-QuAD algorithm (Rago et al. 2016) was proposed as
an alternative, which avoids discontinuous behaviour of the
QuAD algorithm that can be undesirable in some applica-
tions. Some additional interesting guarantees are given by
the Euler-based semantics introduced in (Amgoud and Ben-
Naim 2017). The QuAD algorithms mainly lack these prop-
erties due to the fact that their aggregated strength values
saturate. That is, as soon, as an attacker (supporter) with
strength 1 exists, the other attackers (supporters) become ir-
relevant for the aggregated value. However, while the Euler-
based semantics avoids these problems, it has some other
drawbacks that may be undesirable. Arguments initialized
with strength 0 or 1 remain necessarily unchanged under
Euler-based semantics and the impact of attacks and sup-
ports is non-symmetrical. The quadratic energy model in-
troduced in (Potyka 2018a) avoids these problems. In par-
ticular, while the previous approaches are discrete in nature,
the quadratic energy model is a continuous model. Discrete
models often assume that the argumentation graph is acyclic,
so that the strength of arguments can be computed succes-
sively according to a topological ordering. Continuous mod-
els change arguments’ strength continuously and simultane-
ously. They can be naturally applied to cyclic graphs, but
convergence in general remains an open question.

More formally, continuous models correspond to n-
dimensional functions f(t) mapping continuous points in
time to n-dimensional state vectors whose i-th component
represents the strength of the i-th argument at time t. The
initial state f(0) is given by the initial weights and a sys-

tem of differential equations describes how the strength val-
ues evolve as time progresses. This approach, in particu-
lar, allows plotting the evolution of strength values in or-
der to better understand the final strength values of the limit
s = limt!1 f(t) or to inspect the convergence behaviour
visually. Even though convergence in general graphs is an
open question, so far no diverging example has been found
and tests with large randomly generated bipolar graphs show
that the strength values converge in many cases.

In this tutorial paper, we will review some ideas and re-
sults from (Potyka 2018a) with a stronger focus on the high-
level ideas. The goal of this paper is, in particular, to demon-
strate how results can be applied to

1. solve weighted bipolar argumentation problems with con-
tinuous models,

2. transform existing discrete models to well-defined contin-
uous models.

We also introduce Attractor, a Java library that provides ba-
sic implementations of the ideas discussed here and in (Po-
tyka 2018a). The main goals of Attractor are to

1. simplify applying continuous models to weighted bipolar
argumentation problems,

2. to improve reproducibility of the results in (Potyka
2018a),

3. to simplify implementing new continuous models and
4. to simplify comparing different models.
These goals are achieved by providing

1. implementations of some continuous models and the ran-
dom generator introduced in (Potyka 2018a),

2. implementations of base classes that solve initial value
problems with basic and advanced methods,

3. implementations of utility classes for benchmarking, plot-
ting and working with benchmark files.

We will start with an introduction to dynamical systems and
the quadratic energy model from (Potyka 2018a) in Section
2. In Section 3, we will discuss the problem of computing
solutions and explain some important algorithms. Section 4
contains some additional information on convergence guar-
antees and open questions and discusses the computational
complexity of the continuous approach. In Section 5, we
explain how discrete models can be transformed to continu-
ous models. Finally, Section 6 explains how the previously
discussed ideas can be put into practice using Attractor.

2 Dynamical Systems and The Quadratic
Energy Model

Roughly speaking, a dynamical system describes the evolu-
tion of a natural or technical system over time. If time is dis-
cretized, the system is called discrete, otherwise it is called
continuous. Formally, we describe the state of the system at
time t by a function s(t). The state is usually given as a real
vector and a system of differential equations describes how
the system evolves dependent on the current state.

In the context of weighted argumentation, a state vector
contains one component for every argument that can take

Figure 1: Illustration of dynamical system.

a strength value between 0 and 1. The strength of argu-
ments should evolve based on the initial weight, and the cur-
rent strength of attackers and supporters. Before describing
this approach in more detail, we define weighted bipolar ar-
gumentation graphs (BAGs) as introduced in (Amgoud and
Ben-Naim 2017).
Definition 1 (BAG). A BAG is a quadruple A =
(A,w,R,S), where A is a finite set of arguments, w : A!
[0, 1] is a weight function and R and S are binary relations
on A called attack and support.

In order to simplify notation, we assume that the i-th ar-
gument is called i, that is, A = {1, . . . , n}. The weight
function w defines an initial strength value between 0 and 1
for each argument. If aRb (aSb), we say that a attacks (sup-
ports) b. We let Atti = {h 2 A | hRi} denote i’s attackers
and let Supi = {h 2 A | hSi} denote i’s supporters.

We can now describe our dynamical system more pre-
cisely. A state is a vector s 2 Rn whose i-th component si
is the strength of argument i. Our state model is a function
s : R+

0 ! Rn that maps non-negative time points to strength
vectors. That is, si(t) is the strength of argument i at time
t. Initially, the strength of an argument should correspond to
its initial weight, that is, we let si(0) = w(i). The evolution
of the system should be based on three considerations:

1. Strength values are attracted by their initial weight.
2. Attackers force the strength value towards 0 proportion-

ally to their strength.
3. Supporters force the strength value towards 1 proportion-

ally to their strength.
Intuitively, there are three forces acting on the strength of
each argument as illustrated in Figure 1. In this physical
metaphor, attackers push the strength towards 0, while the
supporters push the strength towards 1. Gravity pulls the
strength back to its initial weight.

This intuition can be modeled by a system of differential
equations. If this system is designed carefully, it uniquely
defines a model sA : R+

0 ! Rn for every BAG A. We are
then interested in the long-term behaviour of the model. In-
tuitively, we expect the forces to counteract until the strength
reaches an equilibrium state where all forces are in bal-
ance. More formally, if the model converges to a state
s
⇤ = limt!1 s(t) as time progresses, we call s⇤ the equi-

librium state reached by the model.
The quadratic energy model introduced in (Potyka 2018a)

is defined as follows.

Definition 2 (The Quadratic Energy Model). Let A be a
BAG. For all j 2 A, the energy at j is defined as

Ej =
X

i2Supj

si �
X

i2Attj

si

and for all x 2 R, the impact of x is defined as

h(x) =
max{x, 0}2

1 + max{x, 0}2 .

The quadratic energy model �A : R+
0 ! Rn for A is the

unique solution of the system of differential equations

dsj
dt

= w(j)� sj + (1� w(j)) · h(Ej)

� w(j) · h(�Ej), j 2 A (1)

with initial conditions sj(0) = w(j).

Intuitively, dsj
dt (t) describes the momentary change of sj

at time t. If dsj
dt (t) > 0, the strength will increase, if

dsj
dt (t) < 0, the strength will decrease and if dsj

dt (t) = 0
the strength will remain in its current state. The definition
uses two auxiliary functions. The energy Ej at argument j
aggregates the strength of attackers and supporters in a lin-
ear fashion. This notion of energy has been first defined for
the Euler-based restricted semantics in (Amgoud and Ben-
Naim 2017). The energy is then fed into the impact function
h that is 0 for all negative arguments and then strictly in-
creases, but is bounded from above by 1. The definition of
dsj
dt can be divided into three parts that correspond to our

three considerations above.
1. The difference w(j) � sj draws the strength of an ar-

gument to its initial weight. Notice that if w(j) > sj

(w(j) < sj), this term is positive (negative) and tends to
increase (decrease) j’s strength.

2. The term�w(j) ·h(�Ej) moves the strength towards 0 if
the negative force of attackers is stronger than the positive
force of supporters.

3. Dually, the term (1 � w(j)) · h(Ej) moves the strength
towards 1 if the positive force of supporters is stronger
than the negative force of attackers.

As shown in (Potyka 2018a), the quadratic energy model is
well-defined. That is, the system has a unique solution �

A

by means of which we can simulate the evolution of strength
values over time. If �A reaches an equilibrium state, the fi-
nal strength values at every argument are completely deter-
mined by the energy at this state as explained in the follow-
ing proposition.
Proposition 1 (Strength in Equilibrium (Potyka 2018a)). If
the limit s⇤ = limt!1 �

A(t) exists, then we have

s
⇤
j =

8
<

:

w(j) if Ej = 0
w(j) + (1� w(j)) · h(Ej) if Ej > 0
w(j)� w(j) · h(�Ej). if Ej < 0

(2)

Equation 2 shows, in particular, that the strength will be
the initial weight if the energy is 0 and otherwise will go

to 1 (0) as the energy goes to 1 (�1). The quadratic
energy model satifies a collection of postulates proposed
in (Amgoud and Ben-Naim 2017). These postulates range
from very general properties like Anonymity (strength val-
ues do not depend on the identity of the argument) and In-
dependence (arguments are independent of disconnected ar-
guments) to properties tailor-made for weighted bipolar ar-
gumentation frameworks that guarantee that attacks, sup-
ports and initial weights have the intended meaning. An
interesting property that distinguishes weighted argumen-
tation frameworks from some other numerical argumenta-
tion frameworks is Directionality, which guarantees that ar-
guments influence other arguments only in direction of the
edges. This property distinguishes weighted argumentation
approaches from probabilistic approaches that usually cause
influence in both directions due to the nature of probabil-
ity theory. Please see (Amgoud and Ben-Naim 2017) and
(Potyka 2018a) for a more thorough discussion of the prop-
erties.

In the following example, we illustrate the quadratic en-
ergy model by means of a small decision problem.
Example 1. Suppose we want to decide whether to buy or to
sell stocks of an electronics company. We base our decision
on information given by different experts:

1: The development of the new phone was too expensive.
Therefore, the company has to cut down research and de-
velopment and will not stay competitive in the future.

2: The company’s new phone is innovative and will increase
the company’s profit considerably.

3: The price of the new phone is too high and there will not
be too many sales.

4: There is a large number of preorders of the new phone
already.

5: The company’s investment in research and development
is far beyond competitors’ investment and the company is
likely to become the market leader in the future.

Initially, we do not have a preference for buying or selling
stocks and set both initial weights to 0.5. In order to weigh
the expert opinions, we could use historical information
about how frequently the expert’s assessment was true or
false. If there were t true and f false assessments, we could
set the initial weight to t

t+f . In order to incorporate argu-
ments of new experts and to set an initial bias for the weight,
we could add pseudocounts to t and f . That is, we set the
initial weight to t+t0

t+t0+f+f 0 , where t
0
, f

0 2 N are pseudo-
counts that encode an initial bias. If t0 = f

0, our initial
weight is 0.5 when no historical information is available.
Setting t

0
> f

0 (t0 < f
0), the weight will initially be greater

(smaller) than 0.5. The larger t
0 + f

0 is, the more data is
needed to deviate from the bias. For instance, if t = 5,
f = 2, then we have the weight 5+1

5+1+2+1 ⇡ 0.66 for pseu-
docounts t0 = f

0 = 1, whereas we have 5+10
5+10+2+10 ⇡ 0.55

for pseudocounts t0 = f
0 = 10. Figure 2 shows a BAG for

our problem along with initial weights and the final strength
values under the quadratic energy model. One advantage of
a continuous model is that we can illustrate the evolution of

Buy : (0.5, 0.82)
--

Sell : (0.5, 0.36)
mm

2 : (0.7, 0.80)

OO

// 1 : (0.8, 0.20)

OO

3 : (0.3, 0.16)

OO

4 : (0.9, 0.9)

jj

oo 5 : (0.9, 0.9)

OO

ii

Figure 2: BAG for stock examples. Nodes show (initial
weight, final strength) under quadratic energy model.

Figure 3: Long-term behaviour of �A for BAG in Figure 2.

the strength values by drawing function graphs for selected
arguments over time. This makes it easier to explain the final
strength values. Recall that a state in our dynamical system
contains a strength value for every argument. Our exam-
ple is sufficiently small to draw all function graphs simulta-
neously without making the picture too messy. The graphs
are shown in Figure 3. For example, the blue graph start-
ing from 0.5 shows the evolution of the strength of the sell-
argument. Initially, its strength slightly increases due to the
support by argument 1 (the blue graph starting from 0.8).
However, argument 1 becomes gradually weaker due to its
attackers. At about time 0.5, the attacking buy-argument be-
comes as strong as argument 1 (the blue and yellow graphs
intersect) and the strength of the selling-argument starts de-
creasing. It actually starts decreasing slightly before that
because it is also drawn to its initial weight 0.5.

3 Numerical Computation of Solutions
Even though we know that the quadratic energy model �A is
well-defined for every BAG, we usually cannot solve for �A

analytically. This is the case for most nonlinear dynamical
systems, but is not a heavy drawback in practice since the
solution can be approximated numerically.

The intuitive idea is best illustrated by Euler’s method,
which is a simple algorithm to perform this approximation.
Recall that dsj

dt (t) describes the momentary change of sj at
time t. Hence, if we know sj(t), we can approximate sj(t+

EulerApproximation(A, �, ✏):
t 0

for i 2 A:
si w(i)

while kdsdt k1 > ✏:
for i 2 A:

s
0
i si + � · dsi

dt

s s
0

return s

Figure 4: Euler’s method for approximating the energy
model �A given a BAG A = (A,w,R,S), step size � and
convergence threshold ✏.

�) by letting ŝj(t + �) = sj(t) + � · dsj
dt (t). Formally, this

approach is justified by the fact that differentiable functions
can be approximated locally by the derivative. In particular,
as we let the step size � go to 0, the approximation error
|ŝj(t+ �)� sj(t+ �)| goes to 0 as well.

In the context of weighted bipolar argumentation, we can
initialize all strength values with the initial weights. This
gives us s(0) and we can compute dsj

dt (0) according to
Definition 2. We can then approximate �

A(�) by letting
ŝ(�) = s(0) + � · ds

dt (0). Given our approximation ŝ(�),
we can compute dŝ

dt (�) and ŝ(2 · �) ⇡ ŝ(�)+ � · dŝ
dt (�). Con-

tinuing in this way, we can compute ŝ(n · �) for arbitrary
n 2 N. Hopefully, the strength values will eventually con-
verge. This is the case if and only if the derivative dŝ

dt (t)
goes to 0. Therefore, a simple termination condition is to
demand that dŝi

dt (t) ✏ for all i 2 A and some small ✏ > 0.
Formally, this corresponds to demanding that the maximum
norm of dŝ

dt (t) is smaller than ✏, denoted as kdŝdt k1 ✏. The
complete algorithm is shown in Figure 4.

While Euler’s method is easy to understand and to imple-
ment, it does not give very strong approximation guarantees.
A better alternative that is frequently used is the family of
Runge-Kutta methods. The most prominent member is the
classical Runge-Kutta method RK4 that guarantees an ap-
proximation error in the order of O(�4). In practice, this
means that if we halve the step size � (double the number of
iterations), we usually decrease the approximation error by
a factor of 16 (Polyanin and Zaitsev 2017). Since the deriva-
tives of the quadratic energy model can never become larger
than 1, using RK4 with constant step size 0.01 should be
safe. If we want to make sure that the step size is sufficiently
small, we can run the algorithm until termination and then
repeat with a smaller step size like 0.005 and check that the
final values remain unchanged up to the desired accuracy.

4 Convergence and Complexity
The quadratic energy model �A(t) uniquely defines the evo-
lution of strength values for every BAG A over time. Our
hope is that �

A(t) converges to an equilibrium state as
t!1. This allows us to define strength values by means of

B1 : 0 //

((

++

C1 : 0

⌧⌧

B2 : 0 //oo

((

C2 : 0

⇥⇥

B3 : 0 //oo

hh

C3 : 0

uu

A : 1

ee

OO

99

Figure 5: Cycle(3) graph.

the equilibrium s
⇤ = limt!1 �

A(t). Unfortunately, conver-
gence of �A(t) for general BAGs with cycles is currently an
open question. One can show convergence for some special
cases. For example, if cycles contain only support relations,
the strength values must be monotonically increasing. They
are also bounded from above by 1 due to the nature of the
differential equations, and so they must eventually converge.
For cycles with only attacks, things are already less straight-
forward because the attraction force of the initial weight may
become stronger than the attacking force as the attackers be-
come weaker. This may let the strength oscillate between
the initial weight and the first lower peak reached. However,
since arguments’ strength can never exceed the initial weight
if there is no support, the amplitude of the oscillations must
eventually go to 0 and the strength values will converge.

If cycles contain both support and attack relations, the
strength values may oscillate more radically. In order to il-
lustrate this, Figure 5 shows a BAG from a family that we
call Cycle(k). Each member contains one argument A with
initial weight 1 that supports k arguments Bi with weight
0. Each Bi in turn supports the same k arguments Ci that
have initial weight 0 as well. Finally, each Ci attacks A.
Figure 5 shows Cycle(3) and figure 6 shows the long-term
behaviour of the quadratic energy model for Cycle(3) at the
top and for Cycle(10) at the bottom. As we may expect,
the oscillations for Cycle(k) take more time as we increase
k. However, the amplitude decreases and the strength val-
ues eventually converge. It is currently unclear if there exist
BAGs where the strength values oscillate for all time. How-
ever, experiments in (Potyka 2018a) with 3,000 randomly
generated BAGs with thousands of nodes and ten thousands
of edges demonstrate that the quadratic energy model con-
verges for many cyclic BAGs.

How can we deal with potential divergence in practice?
Since equilibrium states can usually be computed in sec-
onds, it is pragmatic to set a time limit for the quadratic en-
ergy model. Say, if the model did not converge after 30 sec-
onds, the algorithm stops. Arguments whose strength value
has not converged yet can then be detected automatically be-
cause we must have |dsjdt | > ✏ at such an argument. The evo-
lution of the strength value can then be plotted like in Figure
3 in order to see whether the strength value diverges, oscil-
lates with decreasing amplitude or just converges slowly for
other reasons. In particular, even if the strength diverges, it
may oscillate between meaningful bounds. For example, if
the strength oscillates between 0.8 and 0.9, we could still in-
fer that the argument is rather strong. Of course, this analysis
can also be performed automatically by just storing lower
and upper bounds and monitoring the derivatives (oscilla-

Figure 6: Long-term behaviour of quadratic energy model
for Cycle(3) (top) and Cycle(10) (bottom).

tions occur when the derivative changes signs repeatedly).
However, since no non-convergent example has been found
so far, we do not discuss these issues further here.

Currently, my feeling is that the quadratic energy model
always converges. This assumption is based on the idea that
the strength of every argument will reach a peak at some
point in time. After all arguments have reached their peak,
I assume that the amplitude of oscillations will necessarily
decrease similar to the observation in Figure 6. Intuitively,
the overall energy in the system increases up to one point,
but will necessarily decrease after having reached its peak.

On the bright side, while convergence for cyclic BAGs is
a difficult question, the quadratic energy model is guaran-
teed to converge for arbitrary acyclic BAGs. The equilib-
rium can be computed by numerical methods as discussed
before, but can also be computed by a discrete iteration
scheme in linear time. The key observation is that argu-
ments’ strength depends only on the initial weight and the
strength of their parents (attackers and supporters). By eval-
uating the arguments according to a topological ordering, we
can make sure that the final strength of all parents is known
in advance and we can compute the final strength values for
every argument in a single pass through the graph. This is
basically the same mechanism that is used to compute the
strength values for discrete models for weighted bipolar ar-
gumentation like in (Baroni et al. 2015; Rago et al. 2016;
Amgoud and Ben-Naim 2017). We only present the main
result here and refer to (Potyka 2018a) for more details and
the proof.
Proposition 2 (Equilibria in Acyclic BAGs (Potyka 2018a)).
Let A be an acyclic BAG. Then �

A converges and the equi-

A1 : (0.5, 0.72) A2 : (0.5, 0.66) C1 : (0.2, 0.2)oo

P1 : (0.7, 0.7)

OO

P2 : (0.5, 0.18)

gg

P3 : (0.9, 0.9)

gg

C2 : (0.2, 0.2)

77

C3 : (0.6, 0.6)

OO

C4 : (0.5, 0.5)

gg

Figure 7: BAG for e-democracy examples. Nodes show (ini-
tial weight, final strength) under quadratic energy model.

librium s
⇤ = limt!1 �

A(t) can be computed in linear time
by the following procedure:

1. Compute a topological ordering of the arguments.
2. Pick the next argument i in the order and set

si = w(i) + (1� w(i)) · h(Ei)� w(i) · h(�Ei),

where Ei is the energy at i.
3. Repeat step 2 until all strength values have been com-

puted.
Example 2. We illustrate Proposition 2 with an e-
democracy problem from (Rago et al. 2016). The question
is how to spend a portion of a council’s budget. The ar-
guments are divided into decision arguments (prefix A), pro
arguments (prefix P) and contra arguments..

A1: Build a new cycle path.
A2: Repair current infrastructure.
P1: Cyclists complain of dangerous roads.
P2: A path would enhance the councils green image.
P3: Potholes have caused several accidents recently.
C1: Significant disruptions to traffic would occur.
C2: Environmentalists are a fraction of the population.
C3: Recent policies already enhance this green image.
C4: Donors do not see the environment as a priority.
Figure 7 shows the initial weights and final strength val-
ues under the quadratic energy model. Since the authors in
(Rago et al. 2016) considered only subgraphs of this BAG,
I defined additional initial weights for C2, C3, C4. One
topological ordering of the arguments is P1, P3, C1, C2,
C3, C4, P2, A1, A2. Since only P2, A1, A2 have par-
ents, the energy at all other arguments is 0 for all time
and their final strength is just the initial weight. For P2,
the energy is then �0.2 � 0.6 � 0.5 = �1.3 and the final
strength is 0.5 � 0.5 · h(�(�1.3)) ⇡ 0.186. The energy
at A1 is approximately 0.7 + 0.186 ⇡ 0.886 and the fi-
nal strength is 0.5 + 0.5 · h(0.886) ⇡ 0.719. Finally, the
energy at A2 is 0.9 � 0.2 = 0.7 and the final strength is
0.5� 0.5 · h(0.7) ⇡ 0.664. The continuous evolution of the
quadratic energy model is shown in Figure 8. Note that it
does indeed converge to the values that we computed.

Even though we currently cannot give convergence guar-
antees for cyclic BAGs, the quadratic energy model uniquely
defines a strength value for every time point t. In particular,

Figure 8: Long-term behaviour of �A for BAG in Figure 7.

we can analyze the runtime for evaluating the quadratic en-
ergy model from time 0 to time T . Using step size �, this
can be done in time O((|A|+|R|+|S|)·T

�). The cost is basi-
cally composed of the factor O((| A | + | R | + | S |))
for the cost of evaluating the differential equations and the
factor O(T�) for the number of evaluations. While Euler’s
method needs only a single computation of the differential
equations at each time step, more sophisticated methods like
RK4 evaluate the differential equations at several points in
order to improve the approximation. While this increases the
runtime for fixed �, these methods can usually work with
significantly larger step sizes than Euler’s method and are
therefore more efficient. In our implementation, we let T
grow until kdsdt k1 < 10�4

. It is reasonable to assume that
the point of convergence T

⇤ depends on the size and com-
plexity of cycles. Experiments in (Potyka 2018a) indicate
that the overall runtime is bounded from above quadratically
by the size of the BAG.

5 From Discrete to Continuous Models
Proposition 2 basically tells us that if the BAG is acyclic,
we can transform the continuous quadratic energy model to
a discrete model similar to the ones considered in (Baroni et
al. 2015; Rago et al. 2016; Amgoud and Ben-Naim 2017).
This is interesting from a computational perspective because
it gives us a linear runtime guarantee for acyclic BAGs.

On the other hand, continuous models are computation-
ally interesting because they can improve stability in cyclic
BAGs as we explain at the end of this section. Therefore,
it is natural to ask under what conditions we can transform
discrete models like in (Baroni et al. 2015; Rago et al. 2016;
Amgoud and Ben-Naim 2017) to well-defined continuous
models. A simple sufficient criterion along with some guar-
antees is given in the following result from (Potyka 2018a).

Proposition 3 (Continuizing Iterative Schemes). Consider
an iterative scheme I that defines the strength values for
acyclic BAGs by letting

si = fI(w(i), {sj | j 2 Atti}, {sj | j 2 Supi}),

where fI is a function that depends on the initial weight
and the strength of attackers and supporters and the strength
values si are computed in topological order.

1. If fI is continuously differentiable with respect to all in-
volved strength values, then for all BAGs A, the system

dsi
dt

= fI(w(i), {sj | j 2 Atti}, {sj | j 2 Supi})� si

with initial conditions si(0) = w(i) for i = 1, . . . , n has
a unique solution �

A
I : R+

0 ! Rn.
2. If �A

I reaches an equilibrium state s
⇤ = limt!1 �

A
I(t),

then s
⇤
i = fI(w(i), {s⇤j | j 2 Atti}, {s⇤j | j 2 Supi}).

3. �
A
I reaches an equilibrium state whenever A is acyclic.

Item 1 explains how to transform the definition of a dis-
crete iteration scheme to a system of differential equations
and gives a sufficient condition under which the system has
a unique solution. We can then use this solution similar to
the quadratic energy model as we will illustrate soon.

Item 2 guarantees that if the model reaches an equilibrium
state, this state is a fixed point of the discrete update function
fI . This implies, in particular, that if the BAG is acyclic,
then the continuized model agrees with the discrete model.

Item 3 states that the continuized model is again guaran-
teed to convergence for acyclic graphs.

Continuizing Discrete Models
Let us now illustrate Proposition 3 by means of the Euler-
based restricted semantics that was introduced in (Amgoud
and Ben-Naim 2017). As explained before, the Euler-based
restricted semantics used the energy Ei =

P
i2Sup si �P

i2Att si before. Given an acyclic BAG, the weights for
every argument are then set in topological order by letting

si = 1� 1� w(i)2

1 + w(i) · exp(Ei)
. (3)

That is, fI(w(i), {sj | j 2 Atti}, {sj | j 2 Supi}) =

1 � 1�w(i)2

1+w(i)·exp(Ei)
. In order to apply item 1, we have to

check that fI is continuously differentiable with respect to
all si. Note that Ei is a linear function of the strength values
and therefore continuously differentiable. The exponential
function exp is continuously differentiable as well. There-
fore, fI is defined by combining constant and continuously
differentiable functions and is therefore itself continuously
differentiable (notice, in particular, that the denominator in
the fraction in fI is always greater than 1 because exp is a
positive function). Hence, we can apply Proposition 3.

Item 1 tells us that we obtain the differential equations for
si by subtracting si from fI . Hence, the system that defines
the continuous Euler-based semantics is

dsi
dt

= 1� 1� w(i)2

1 + w(i) · exp(Ei)
� si, i 2 A. (4)

We can now approximate the solution with Euler’s method
as described in Algorithm 4 or with faster methods like RK4.

Proposition 3 is not always applicable. For example, the
update formula for the DF-QuAD algorithm from (Rago et

al. 2016) is not continuously differentiable. The formula is
also based on some auxiliary functions. We slightly change
the notation in order to make the presentation more homo-
geneous. We define the geometric energy at argument j as

GEj =
Y

i2Attj

(1� si)�
Y

i2Supj

(1� si),

where we use the convention that the empty product equals
1. Given an acyclic BAG, the DF-QuAD algorithm sets the
weights for every argument in topological order by letting

si = w(i)+w(i) ·min{GEi, 0}+(1�w(i)) ·max{GEi, 0}.

We have fI(w(i), {sj | j 2 Atti}, {sj | j 2 Supi}) =
w(i)+w(i) ·min{GEi, 0}+(1�w(i)) ·max{GEi, 0}. The
derivative of fI is discontinuous at 0-energy states. Hence,
Proposition 3 is not applicable. However, the conditions in
Proposition 3 are sufficient and not necessary. Indeed, one
can show in another way that the system for the continuous
DF-Quad algorithm has a unique solution (Potyka 2018b).

If Proposition 3 is not applicable, we may also modify
the update formula in order to guarantee continuous differ-
entiability. For the DF-Quad algorithm, we could square the
strength values in the geometric energy. When replacing the
geometric energy with the squared geometric energy

SGEj =
Y

i2Attj

(1� s
2
i)�

Y

i2Supj

(1� s
2
i),

Proposition 3 is applicable. When using the squared geomet-
ric energy, an argument with strength 1 will have the same
influence as before, but as the strength gets closer to 0 the
influence will get gradually weaker. Implementations of all
continuizations can be found in Attractor that we describe in
the final section of this article.

Continuization and Convergence
To get an intuition for why continuizing a discrete model
may improve the convergence behaviour in cyclic graphs, it
is instructive to look at Euler’s method again. Suppose we
apply Euler’s method with (rather large) step size � = 1
to the system given in Proposition 3. Then we update each
strength value si with si si + 1 · dsi

dt in every iteration.
Hence, the update is just

si + 1 ·
�
fI(w(i), {sj | j 2 Atti}, {sj | j 2 Supi})� si

�

=fI(w(i), {sj | j 2 Atti}, {sj | j 2 Supi}).

That is, we just update all strength values simultaneously
with respect to the iterative update formula fI . Hence, ap-
plying the discrete iteration scheme can be seen as a very
coarse approximation of a continuous system. In the pres-
ence of cycles, these coarse steps may lead to divergence
even when the continuous model �A

I converges. Intuitively,
this is because a large step size like � = 1 can let us jump
from the graph of the true solution �

A
I to the graph of an-

other solution for different initial conditions. By choosing
a smaller step size, we can avoid these jumps and make the
procedure more stable. This is basically what we are doing
when continuizing I.

Figure 9: Reading a BAG from a file in Attractor.

6 The Java Library Attractor
Finally, we will discuss how the previous ideas can be put
into practice using the Java library Attractor. A download
link for the current version is given in the footnote1. The
latest code is available at sourceforge2. Attractor is work in
progress and currently provides only a programming inter-
face. However, in the future, a graphical user interface will
be added. Attractor can be used to

1. compute solutions with existing models,
2. use base classes to implement new models and
3. evaluate continuous models on benchmarks and randomly

generated BAGs.
We will discuss each use case in turn.

Computing Solutions
BAGs can be created either programmatically or, more con-
veniently, by using a file reader. The programming approach
is useful when considering families of BAGs like Cycle(k)
(c.f. Figure 5 and 6). A code example can be found in /At-
tractor/src/examples/NMR2018CycleK.java. In this tutorial,
we will focus on the file approach. Figure 9 shows an exam-
ple file on the left and the code to compute the final strength
values with RK4 and to create a plot similar to Figure 3 on
the right. Files consist of definitions of arguments, attacks
and supports. Argument definitions start with the keyword
arg and are followed by a name and an optional weight. If
no weight is provided in the definition, it is initialized with
0.5 by default. Attack and support definitions start with the
keywords att and sup and are followed by the source and the
target of the edge as usual. The file format is inspired by
the format used in ConArg3 (Bistarelli, Rossi, and Santini
2016), but adds optional weights and support relations. The
file reader in Attractor can also read the current files from
the ConArg benchmarks.

1https://www.researchgate.net/publication/326677792_

Attractor_v01
2https://sourceforge.net/projects/attractorproject/
3http://www.dmi.unipg.it/conarg/

In order to compute a solution, we first have to initialize
a model that is a subclass of the abstract class AbstractDy-
namicArgumentationSystem that we will explain in the next
section. The AbstractDynamicArgumentationSystem refer-
ence ads can also be initialized with implementations of the
continuized Euler-based semantics and DF-Quad algorithm
that we described in Section 5. By default, RK4 is used to
compute solutions. Different algorithms can be selected by
using the method setApproximator. In the example, we se-
lect PlottingRK4, which still uses RK4, but simultaneously
creates a plot for the evolution of the strength values using
JFreeChart4. The utility class BAGFileUtils is used to read
the file and the BAG object is passed to the model. After-
wards, the call of the method approximateSolution starts the
approximation and will plot graphs like in Figure 3. The
first two parameters determine the step size � and the ter-
mination accuracy ✏. The third parameter is optional and
can be used to print the final strength values to the console.
However, arguments and their strength values can also be
accessed programmatically from the BAG object.

More file and programming examples can be found
in Attractor/files and Attractor/examples. In particular,
the code example NMR2018StockExampleComparison.java
shows how to compute and plot solutions for all models in
Attractor in order to compare the different semantics.

Implementing new Models and Algorithms
New implementations of continuous models should be
derived from the abstract class AbstractDynamicArgu-
mentationSystem that can be found in the package
edu.cs.ai.weightedArgumentation.dynamicalSystems. The
package already contains implementations of the quadratic
energy model and the continuized models that we discussed
before. AbstractDynamicArgumentationSystem already pro-
vides most of the functionality, the programmer just has
to implement the abstract methods computeDerivativeAt
that basically implements the differential equations and the
method getName that just returns the name of the model (this
is used, for example, when creating plots). Figure 10 shows
the implementation of the continuous Euler-based model.
The code in Figure 10 is a straightforward translation of the
derivatives given in Equation 4 into Java code. As the code
demonstrates, preinitialized arrays can be used to access ar-
guments and their supporters and attackers efficiently. All
implementations of AbstractDynamicArgumentationSystem
can be used exactly as demonstrated in Figure 9. In particu-
lar, different approximators can be selected. Currently, there
are implementations of RK4, Euler’s method and a ploting
variant of RK4. New algorithms should be derived from the
abstract class AbstractIterativeApproximator and can then
be selected analogously.

Evaluating Models and Algorithms
Utility classes for evaluating models and algorithms can be
found in the package edu.cs.ai.weightedArgumentation.util.
The class RandomBagGenerator contains the random gen-
erator used for creating the BAGs for the benchmark from

4http://www.jfree.org/jfreechart/

Figure 10: Implementation of Continuous Euler-based
Model.

Figure 11: Generating a single random BAG (top) or a batch
of random BAGs (bottom) in Attractor.

(Potyka 2018a). The original benchmark can be downloaded
from the link given in the footnote5. Figure 11 shows how
to create a single BAG of size 100 at the top and how to
create a batch of BAGs of different sizes at the bottom.
The arguments for the method createRandomBagFiles al-
low configuring the basic size (100), the number of incre-
ments of the size (30) and the number of trials for each
size (100). In the example in Figure 11, 100 graphs of size
100, 200, 300, . . . , 3000 each will be created and stored in
the local directory ’files/Benchmark’, each file starting with
the prefix ’bag’.

The class BenchmarkUtils can be used to run benchmarks
and to plot statistics for the evaluation similar to the eval-
uation in (Potyka 2018a). Figure 12 shows how to run
the benchmark files in a directory. The method runBench-
mark assumes that the given directory contains subdirecto-
ries. Each of these subdirectories contains BAGs of a fixed
size and the name of the directory is supposed to be the size.
The passed model will then be evaluated on all benchmark

5https://www.researchgate.net/publication/326557254_

Weighted_Bipolar_Argumentation_Benchmark_KR2018

Figure 12: Running benchmarks in Attractor.

Figure 13: Runtime results for quadratic energy model
model on ConArg Barabasi benchmark.

files and the method stores minimum, mean and maximum
runtime for all sizes. Runtime results for individual files
are printed to the console. The statistics are plotted simul-
taneously as shown in Figure 13. In this case, we evalu-
ated the quadratic energy model on the Barabasi files from
the ConArg benchmark. Other implementations of the base
class AbstractDynamicArgumentationSystem can be evalu-
ated analogously. Let us note that the ConArg bench-
mark does not contain weights and supports. By default, all
weights will be set to 0.5. In order to evaluate new models
on BAGs with supports, the benchmark from (Potyka 2018a)
can be used or new benchmarks can be generated using the
class RandomBagGenerator.

7 Conclusions and Future Work
Continuous dynamical systems are an alternative to discrete
models that may give stronger convergence guarantees for
cyclic BAGs in the future. Analyzing the general conver-
gence behaviour is difficult and there are no general conver-
gence guarantees currently. However, experiments show that
continuous models converge in many cyclic BAGs and do
so quickly. There are also interesting relationships between
continuous and discrete models. For acyclic BAGs, equilib-
rium states are guaranteed to exist and can be computed by a
discrete iteration scheme. This is computationally advanta-
geous because it gives us a linear runtime guarantee. While
continuous models converge superlinearly, they converged
subquadratically in all previous experiments and the ability
to plot the continuous evolution of strength values may be
interesting to improve the explainability of the final strength
values even for acyclic graphs. Existing discrete models can

be transformed to continuous iteration schemes and contin-
uous differentiability of the update formula is a sufficient
condition for some basic guarantees.

In order to simplify the use of continuous models, Attrac-
tor provides basic implementations of the ideas discussed
here and in (Potyka 2018a). For applications, it allows com-
puting solutions for weighted argumentation problems. For
further development, it allows deriving new models and al-
gorithms from base classes that already provide basic func-
tionality. In particular, utility functions can be used to eval-
uate new models and to compare them to existing models.

One main goal of future work is to advance the under-
standing of convergence conditions in cyclic BAGs. This in-
volves trying to prove convergence in general cyclic BAGs
or finding a counterexample. Furthermore, some empirical
studies on the applicability in decision support and the anal-
ysis of Twitter discussions similar to the work in (Baroni et
al. 2015; Rago et al. 2016; Alsinet et al. 2017) shall be con-
ducted. Developing a graphical user interface for Attractor
to simplify experiments will also be part of future work.

References
Alsinet, T.; Argelich, J.; Béjar, R.; Fernández, C.; Mateu, C.;
and Planes, J. 2017. Weighted argumentation for analysis of
discussions in twitter. International Journal of Approximate
Reasoning 85:21–35.
Amgoud, L., and Ben-Naim, J. 2013. Ranking-based se-
mantics for argumentation frameworks. In Scalable Uncer-
tainty Management (SUM), 134–147. Springer.
Amgoud, L., and Ben-Naim, J. 2017. Evaluation of argu-
ments in weighted bipolar graphs. In European Conference
on Symbolic and Quantitative Approaches to Reasoning and
Uncertainty (ECSQARU), 25–35. Springer.
Amgoud, L.; Cayrol, C.; and Lagasquie-Schiex, M.-C.
2004. On the bipolarity in argumentation frameworks.
In International Workshop on Non-Monotonic Reasoning
(NMR), volume 4, 1–9.
Baroni, P.; Cerutti, F.; Giacomin, M.; and Guida, G. 2011.
Afra: Argumentation framework with recursive attacks. In-
ternational Journal of Approximate Reasoning 52(1):19–37.
Baroni, P.; Romano, M.; Toni, F.; Aurisicchio, M.; and
Bertanza, G. 2015. Automatic evaluation of design alter-
natives with quantitative argumentation. Argument & Com-
putation 6(1):24–49.
Barringer, H.; Gabbay, D. M.; and Woods, J. 2012. Tem-
poral, numerical and meta-level dynamics in argumentation
networks. Argument & Computation 3(2-3):143–202.
Besnard, P., and Hunter, A. 2001. A logic-based theory of
deductive arguments. Artificial Intelligence 128(1-2):203–
235.
Bistarelli, S.; Rossi, F.; and Santini, F. 2016. Conarg: A
tool for classical and weighted argumentation. In COMMA,
463–464.
Budán, M. C.; Lucero, M. G.; Chesñevar, C.; and Simari,
G. R. 2015. Modeling time and valuation in structured ar-
gumentation frameworks. Information Sciences 290:22–44.

Cayrol, C., and Lagasquie-Schiex, M.-C. 2005. Graduality
in argumentation. Journal of Artificial Intelligence Research
(JAIR) 23:245–297.
Cayrol, C., and Lagasquie-Schiex, M.-C. 2013. Bipolarity
in argumentation graphs: Towards a better understanding.
International Journal of Approximate Reasoning 54(7):876–
899.
Cohen, A.; Gottifredi, S.; Garcı́a, A. J.; and Simari, G. R.
2014. A survey of different approaches to support in argu-
mentation systems. Knowledge Eng. Review 29(5):513–550.
Correia, M.; Cruz, J.; and Leite, J. 2014. On the efficient
implementation of social abstract argumentation. In ECAI,
225–230.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial intelligence
77(2):321–357.
Hunter, A., and Potyka, N. 2017. Updating probabilistic
epistemic states in persuasion dialogues. In European Con-
ference on Symbolic and Quantitative Approaches to Rea-
soning with Uncertainty (ECSQARU), 46–56. Springer.
Hunter, A. 2013. A probabilistic approach to modelling
uncertain logical arguments. International Journal of Ap-
proximate Reasoning 54(1):47–81.
Leite, J., and Martins, J. 2011. Social abstract argumenta-
tion. In International Joint Conference on Artificial Intelli-
gence (IJCAI), volume 11, 2287–2292.
Mossakowski, T., and Neuhaus, F. 2018. Modular seman-
tics and characteristics for bipolar weighted argumentation
graphs. arXiv preprint arXiv:1807.06685.
Oren, N., and Norman, T. J. 2008. Semantics for evidence-
based argumentation. In Computational Models of Argument
(COMMA), volume 172, 276–284. IOS Press.
Polberg, S., and Oren, N. 2014. Revisiting support in ab-
stract argumentation systems. In Computational Models of
Argument (COMMA), 369–376.
Polyanin, A. D., and Zaitsev, V. F. 2017. Handbook of ordi-
nary differential equations. Chapman and Hall/CRC.
Potyka, N. 2018a. Continuous dynamical systems for
weighted bipolar argumentation. In 16th International Con-
ference on Principles of Knowledge Representation and
Reasoning, KR (to appear).
Potyka, N. 2018b. Convergence and open-mindedness of
discrete and continuous semantics for bipolar weighted
argumentation (technical report). arXiv preprint
arXiv:1809.07133.
Rago, A.; Toni, F.; Aurisicchio, M.; and Baroni, P. 2016.
Discontinuity-free decision support with quantitative argu-
mentation debates. In International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR), 63–
73.
Thimm, M. 2012. A probabilistic semantics for abstract
argumentation. In European Conference on Artificial Intel-
ligence (ECAI), volume 12, 750–755.

Measuring Disagreement among Knowledge Bases (Extended Version)

Nico Potyka

Institute of Cognitive Science, University of Osnabrück, Germany

Abstract

When combining beliefs from different sources, often not
only new knowledge but also conflicts arise. In this paper,
we investigate how we can measure the disagreement among
sources. We start our investigation with disagreement mea-
sures that can be induced from inconsistency measures in an
automated way. After discussing some problems with this ap-
proach, we propose a new measure that is inspired by the ⌘-
inconsistency measure. Roughly speaking, it measures how
well we can satisfy all sources simultaneously. We show that
the new measure satisfies desirable properties, scales well
with respect to the number of sources and illustrate its ap-
plicability in inconsistency-tolerant reasoning.

1 Introduction

One challenge in logical reasoning are conflicts between
given pieces of information. Therefore, a considerable
amount of work has been devoted to repairing inconsis-
tent knowledge bases (Kalyanpur et al. 2006; Lehmann
and Bühmann 2010) or performing paraconsistent reason-
ing (Benferhat, Dubois, and Prade 1997; Arieli, Avron,
and Zamansky 2011; Priest 2002). Inconsistency measures
(Knight 2002; Grant and Hunter 2006) quantify the degree
of inconsistency and help analyzing and resolving conflicts.
While work on measuring inconsistency was initially in-
spired by ideas from repairing knowledge bases and para-
consistent reasoning (Hunter and Konieczny 2005), incon-
sistency measures also inspired new repair (Thimm 2009;
Muiño 2011) and paraconsistent reasoning mechanisms (Po-
tyka 2014; Potyka and Thimm 2015).

Here, we are interested in belief profiles (1, . . . ,n)
rather than single knowledge bases . Intuitively, we can
think of each i as the set of beliefs of an agent. Our goal
is then to measure the disagreement among the agents. A
natural idea is to reduce measuring disagreement to measur-
ing inconsistency by transforming multiple knowledge bases
to a single base using multiset union or conjunction. How-
ever, both approaches have some flaws as we will discuss in
the following. This observation is similar to the insight that
merging belief profiles should be guided by other principles
than repairing single knowledge bases (Konieczny 2000).

Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We will therefore propose some new principles for measur-
ing disagreement and introduce a new measure that complies
with them.

After explaining the necessary basics in Section 2, we will
discuss the relationship between inconsistency measures and
disagreement measures in Section 3. To begin with, we
will define disagreement measures as functions with two ba-
sic properties that seem quite indisputable. We will then
show that disagreement measures induced from inconsis-
tency measures by taking the multiset union or conjunction
satisfy these basic desiderata and give us some additional
guarantees. In Section 4, we will propose some stronger
principles for measuring disagreement. One key idea is to
allow resolving conflicts by majority decisions. We will
show that many measures that are induced from inconsis-
tency measures must necessarily violate some of these prin-
ciples. In Section 5, we will then introduce a new disagree-
ment measure that is inspired by the ⌘-inconsistency mea-
sure from (Knight 2002). Intuitively, it attempts to satisfy
all agents’ beliefs as well as possible and then measures the
average dissatisfaction. We will show that the measure sat-
isfies the principles proposed in Section 4 and some other
properties that correspond to principles for measuring in-
consistency. To give additional motivation for this work, we
will sketch how the measure can be used for belief merging
and inconsistency-tolerant reasoning at the end of Section 5.
This paper is a slightly extended version of (Potyka 2018)
adding proofs and some additional comments on the content
and related work.

2 Basics

We consider a propositional logical language L built up over
a finite set A of propositional atoms using the usual connec-
tives. Satisfaction of formulas F 2 L by valuations v : A !
{0, 1} is defined as usual. A knowledge base is a non-
empty finite multiset over L. K denotes the set of all knowl-
edge bases. An n-tuple B = (1, . . . ,n) 2 Kn is called
a belief profile. We let

F
B =

Fn
i=1 i, where t denotes

multiset union. Note that using multisets is crucial to avoid
information loss when several sources contain syntactically
equal beliefs. For instance, {¬a}t {a}t {a} = {¬a, a, a}.
We let B � = (1, . . . ,n,), that is, B � is obtained
from B by adding at the end of the profile. Furthermore,
we let B �1 = B � and B �k =

�
B �k�1

�
� for

k > 1. That is, B�k is obtained from B by adding k copies
of . We call a non-contradictory formula f safe in iff f
and are built up over distinct variables from A. Intuitively,
adding a safe formula to cannot introduce any conflicts.

A model of is a valuation v that satisfies all f 2 . We
denote the set of all models of by Mod(). If Mod() 6=
;, we call consistent and inconsistent otherwise. A mini-

mal inconsistent (maximal consistent) subset of is a subset
of that is inconsistent (consistent) and minimal (maximal)
with this property. If Mod() ✓ Mod(0), we say that
entails

0 and write |=
0. If |=

0 and
0 |= , we

call and
0 equivalent and write ⌘

0. If = {f} and

0 = {g} are singletons, we just write f |= g or f ⌘ g.
An inconsistency measure I : Kn ! R+

0 maps knowl-
edge bases to non-negative degrees of inconsistency. The
most basic example is the drastic measure that yields 0 if
the knowledge base is consistent and 1 otherwise (Hunter
and Konieczny 2008). Hence, it basically performs a satisfi-
ability test. There exist various other measures, see (Thimm
2016) for a recent overview. While there is an ongoing de-
bate about what properties an inconsistency measure should
satisfy, there is general agreement that it should be consis-

tent in the sense that I() = 0 if and only if is consis-
tent. Hence, the inconsistency value is greater than zero
if and only if is inconsistent. Various other properties
of inconsistency measures have been discussed (Hunter and
Konieczny 2008; Besnard 2014; Thimm 2016). We will
present some of these later, when talking about correspond-
ing properties of disagreement measures.

3 Induced Disagreement Measures

To begin with, we define disagreement measures as func-
tions over the set of all belief profiles

S1
n=1 Kn that satisfy

two basic desiderata.
Definition 1 (Disagreement Measure). A disagreement

measure is a function D :
S1

n=1 Kn ! R+
0 such that for

all belief profiles B = (1, . . . ,n), we have
1. Consistency: D(B) = 0 iff

Fn
i=1 i is consistent.

2. Symmetry: D(B) = D(�(1), . . . ,�(n)) for each permu-
tation � of {1, . . . , n}.
Consistency generalizes the corresponding property for

inconsistency measures. Symmetry assures that the dis-
agreement value is independent of the order in which the
knowledge bases are presented. It is similar to Anonymity

in social choice theory (Zwicker 2016) and guarantees equal
treatment of different sources.

Note that each disagreement measure D induces a corre-

sponding inconsistency measure ID : K ! R+
0 defined by

ID() = D(). Conversely, we can induce disagreement
measures from inconsistency measures as we discuss next.

t-induced Disagreement Measures

It is easy to see that each inconsistency measure induces a
corresponding disagreement measure by taking the multiset
union of knowledge bases in the profile.
Proposition 1 (t-induced Measure). If I is an inconsis-

tency measure, then the function Dt
I :

S1
n=1 Kn ! R+

0

defined by Dt
I (B) = I(

F
B) for all B 2 Kn

is a disagree-

ment measure. We call Dt
I the measure t-induced by I.

Proof. Non-negativity and Consistency follow immediately
from the corresponding properties of inconsistency mea-
sures. Symmetry follows from commutativity of t.

Let us note that each inconsistency measure t-induces a
different family of disagreement measures.

Observation 1. Let I1, I2 be inconsistency measures. If

Dt
I1

= Dt
I2

, then I1 = I2.

Proof. If Dt
I1

= Dt
I2

, then we have I1() = Dt
I1
() =

Dt
I2
() = I2() for all 2 K. Hence, I1 = I2.

What can we say about the properties of t-induced mea-
sures? As we explain first, many properties for inconsis-
tency measures have a natural generalization to disagree-
ment measures that is compatible with t-induced measures
in the following sense.

Definition 2 (Corresponding Properties). Let P be a prop-
erty for inconsistency measures and let P 0 be a property for
disagreement measures. We call (P, P 0) a pair of corre-

sponding properties iff

1. if an inconsistency measure I satisfies P , then the t-
induced measure Dt

I satisfies P 0,
2. if a disagreement measure D satisfies P 0, then the corre-

sponding inconsistency measure ID satisfies P .

One big class of properties for inconsistency measures
gives guarantees about the relationship between inconsis-
tency values when we extend the knowledge bases by par-
ticular formulas. We start with a general lemma and give
some examples in the subsequent proposition.

Lemma 1 (Transfer Lemma). Let ⇠ be a binary relation on

R and let C ✓ K3
be a ternary constraint on knowledge

bases. Given a property for inconsistency measures

8, S, T 2 K, if C(, S, T) then I(t S) ⇠ I(t T),
(1)

define a property for disagreement measures as follows:

For all 1, . . . ,n, S, T 2 K, if C(
nG

i=1

i, S, T) then

D(1 t S,2, . . . ,n) ⇠ D(1 t T,2, . . . ,n). (2)

Then ((1), (2)) is a pair of corresponding properties.

Proof. First assume that I satisfies (1). Then if the con-
straint C(

Fn
i=1 i, S, T) is satisfied, the definition of Dt

I
and (1) imply that for all n 2 N, Dt

I (1 t S,2, . . . ,n) =
I(1 t S t

Fn
i=2 i) ⇠ I(1 t T t

Fn
i=2 i) = Dt

I (1 t
T,2, . . . ,n), where we used commutativity and associa-
tivity of t. Hence, Dt

I satisfies (2).
The second condition from Definition 2 follows from the

fact that (1) is just the special case of (2) for n = 1.

Remark 1. The reader may wonder why the correspond-
ing property looks only at the first argument. Note that by
symmetry of disagreement measures, the same is true for all
other arguments. For instance, we have Inc⇤(1,2 t S) =
Inc⇤(2 t S,1) ⇠ Inc⇤(2 t T,1) = Inc⇤(1,2 t T).

We now apply Lemma 1 to some basic properties for in-
consistency measures from (Hunter and Konieczny 2008)
and adjunction invariance from (Besnard 2014) that will
play an important role later.
Proposition 2. The following are pairs of corresponding

properties for inconsistency and disagreement measures:

• Monotony:
I() I(t

0)
D(1,2, . . . ,n) D(1 t

0
,2, . . . ,n)

• Dominance: For f, g 2 L such that f |= g and f 6|= ?,

I(t {f}) � I(t {g})
D(t {f},2, . . . ,n) � D(t {g},2, . . . ,n)

• Safe Formula Independence: If f 2 L is safe in , then

I(t {f}) = I()
If f 2 L is safe in

Fn
i=1 i, then

D(1 t {f},2, . . . ,n) = D(1,2, . . . ,n)
• Adjunction Invariance: For all f, g 2 L,

I([{f, g}) = I([{f ^ g})
D(1 [{f, g},2, . . .) = D(1 [{f ^ g},2, . . .)

Proof. All results follow from Lemma 1.

• Monotony: R is and C(⇤
, S, T) is true if S = ;.

• Dominance: R is � and C(⇤
, S, T) is true if S = {f}

and T = {g} are singletons such that f |= g and f 6|= ?.
• Safe Formula Independence: R is = and C(⇤

, S, T) is
true if S = {f} is a singleton, T = ; and f is safe for ⇤.

• Adjunction Invariance: R is = and C(⇤
, S, T) is true

if S = {f, g} contains two formulas and T = {f ^ g}
contains their conjunction.

Monotony demands that adding knowledge can never de-
crease the disagreement value. Dominance says that replac-
ing a claim with a (possibly weaker) implication of the orig-
inal claim can never increase the disagreement value. Safe
Formula Independence demands that a safe formula does not
affect the disagreement value. Adjunction invariance says
that it makes no difference whether two pieces of informa-
tion are presented independently or as a single formula.
Example 1. The inconsistency measure ILPm that was dis-

cussed in (Hunter and Konieczny 2010) satisfies Monotony,

Dominance, Safe Formula Independence and Adjunction In-

variance. From Proposition 2, we can conclude that the t-

induced disagreement measure InctLPm
satisfies the corre-

sponding properties for disagreement measures.

What we can take from our discussion so far is that each
inconsistency measure induces a disagreement measure with
similar properties. As it turns out, each t-induced disagree-
ment measure satisfies an additional property and, in fact,
only the t-induced measures do. We call this property par-

tition invariance. Intuitively, partition invariance means that

the disagreement value depends only on the pieces of infor-
mation in the belief profile and is independent of the distri-
bution of these pieces. In the following proposition, a par-
tition of a multiset M is a sequence of non-empty multisets
M1, . . . ,Mk such that

Fk
i=1 Mi = M .

Proposition 3 (Characterizations of Induced Families). The

following statements are equivalent:

1. D is t-induced by an inconsistency measure.

2. D is t-induced by ID.

3. D is partition invariant, that is, for all 2 K and for all

partitions
Fn1

i=1 Pi =
Fn2

i=1 P
0
i = of , we have that

D(P1, . . . , Pn1) = D(P 0
1, . . . , P

0
n2
).

Proof. 1 implies 2 because if D is t-induced by an incon-
sistency measure I, we have ID() = D() = I() for all
 2 K, i.e., I = ID.

2 implies 3 because if D is induced by ID, we
have D(P1, . . . , Pn1) = ID(

Fn1

i=1 Pi) = ID() =
ID(

Fn2

i=1 P
0
i) = D(P 0

1, . . . , P
0
n2
), so D is partition invari-

ant.
Finally, 3 implies 1 because if D is partition invari-

ant, then for all 1, . . . ,m, we have D(1, . . . ,m) =
D(

Fm
i=1 i) = ID(

Fm
i=1 i) because 1, . . . ,m andFm

i=1 i are partitions of =
Fm

i=1 i. Hence, D is t-
induced by the inconsistency measure ID.

So the t-induced disagreement measures are exactly the
partition invariant measures. However, partition variance
can be undesirable in some scenarios.
Example 2. Consider the political goals ’increase wealth

of households’ (h), ’increase wealth of firms’ (f), ’increase

wages’ (w). Suppose there are three political parties whose

positions we represent in the profile

B = ({f, w, f ! w}, {w, h,w ! h}, {f,¬w,w ! ¬f}).

In this scenario, the parties only disagree about w. We mod-

ify B by moving w ! ¬f from the third to the second party:

B0 = ({f, w, f ! w}, {w, h,w ! h,w ! ¬f}, {f,¬w}).

The conflict with respect to w remains, but party 2’s posi-

tions now imply ¬f . Since we now have an additional con-

flict with respect to f , we would expect D(B) < D(B0).

Partition invariant measures are unable to detect the dif-
ference in Example 2. Since partition invariance is an inher-
ent property of t-induced measures, we should also investi-
gate non-t-induced measures.

^-induced disagreement Measures

Instead of taking the multiset union of all knowledge bases
in the profile, we can also just replace each knowledge base
with the conjunction of the formulas that it contains in order
to induce a disagreement measure.
Proposition 4 (^-induced Measure). If I is an inconsis-

tency measure, then D^
I :

S1
n=1 Kn ! R+

0 defined by

D^
I (B) = I(

F
2B{

V
F2 F}) for B 2 Kn

is a disagree-

ment measure. We call D^
I the measure ^-induced by I.

Proof. Non-negativity follows immediately from Non-
negativity of I. Consistency follows from observing thatF

B is consistent if and only if
F

2B{
V

F2 F} is. Sym-
metry follows from commutativity of t.

By repeated application of adjunction invariance (c.f.
Proposition 2), one can show that each adjunction invari-
ant inconsistency measure satisfies I() = I({

V
f2 f}),

see (Besnard 2014), Proposition 9. We can use this result to
show that for adjunction invariant inconsistency measures,
the ^-induced and the t-induced measures are equal.

Corollary 1. If I is an adjunction invariant inconsistency

measure, then D^
I = Dt

I .

Proof. Consider an arbitrary profile B = (1, . . . ,n)
and assume that I is adjunction invariant. Applying
I() = I({

V
f2 f}) from (Besnard 2014), Proposition

9, repeatedly yields D^
I (B) = I(

Fn
i=1{

V
f2i

f}) =

I({
Vn

i=1

V
f2i

f}) = I(
Fn

i=1

F
f2i

{f}) =

I(
Fn

i=1 i) = I(
F
B) = Dt

I (B).

This is actually the only case in which the ^-induced mea-
sure can be

F
-induced.

Proposition 5. Let I be an inconsistency measure. D^
I is

t-induced if and only if I is adjunction invariant.

Proof. If I is adjunction invariant, D^
I = Dt

I according to
Corollary 1. Hence, D^

I is t-induced.
Conversely, if I is not adjunction invariant, then

we have I([{g1, g2}) 6= I([{g1 ^ g2}) for
some knowledge base and formulas g1, g2. Let =
{f1, . . . , fn}. Then D^

I ({f1}, . . . , {fn}, {g1}, {g2}) =
I({f1, . . . , fn, g1, g2}) = I([{g1, g2}) 6=
I([{g1 ^ g2}) = I({f1, . . . , fn, g1 ^ g2}) =
D^

I ({f1}, . . . , {fn}, {g1, g2}) (note that the conjunc-
tion of a one-elementary knowledge bases is just the single
formula that it contains). Hence, D^

I violates partition
invariance. Therefore it cannot be t-induced according to
Proposition 3.

The t-induced disagreement measures are characterized
by partition invariance. Adjunction invariance plays a simi-
lar role for ^-induced measures.

Proposition 6. For each inconsistency measure I, D^
I sat-

isfies adjunction invariance.

Proof. We have D^
I (1 [{g1, g2},2, . . . ,n) =

I({
V

f21[{g1,g2} f,
V

f22
f, . . . ,

V
f2n

f}) =

I({
�V

f21
f
�
^

�
g1 ^ g2

�
,
V

f22
f, . . . ,

V
f2n

f}) =
D^

I (1 [{g1 ^ g2},2, . . . ,n), where the second equality
holds because of associativity of ^.

Note that the inconsistency measure ID^
I

induced by D^
I

will also be adjunction invariant. Therefore, ID^
I
6= I if I

is not adjunction invariant. In particular, D^
I can be a rather

coarse measure if I is not adjunction invariant.

Example 3. The inconsistency measure IMI from (Hunter

and Konieczny 2010) counts the number of minimal incon-

sistent sets of a knowledge base. IMI is not adjunction in-

variant. For instance, IMI({a,¬a, a ^ b}) = 2 because

{a,¬a} and {¬a, a ^ b} are the only minimal inconsistent

sets. However, IMI({a ^ ¬a ^ a ^ b}) = 1 because the

only minimal inconsistent set is the knowledge base itself.

Furthermore, we will have D^
IMI

() = 1 whenever
V

f2 f

is inconsistent and D^
IMI

() = 0 otherwise. Hence, the in-

consistency measure corresponding to D^
IMI

is the drastic

measure.

Proposition 6 tells us that ^-induced measures are neces-
sarily adjunction invariant. Whether or not each adjunction
invariant disagreement measure is ^-induced is currently an
open question. However, we have the following result.
Proposition 7. If D satisfies adjunction invariance and

D({f1}, . . . , {fn}) = D(
nG

i=1

{fi}), (3)

then D is ^-induced by an inconsistency measure.

Proof. Adjunction invariance implies

D(1, . . . ,n) = D({
^

f21

f}, . . . , {
^

f2n

f}).

and singleton union invariance implies

D({
^

f21

f}, . . . , {
^

f2n

f}) = D(
nG

i=1

{
^

f2i

f}).

For the disagreement measure D^
ID

induced by
the inconsistency measure ID induced by D, we
have D^

ID
(1, . . . ,n) = ID(

Fn
i=1{

V
f2i

f}) =

D(
Fn

i=1{
V

f2i
f}). Hence, D is ^-induced by the

inconsistency measure ID.

We call property (3) singleton union invariance in the fol-
lowing. While adjunction invariance and singleton union
invariance are sufficient for being ^-induced, they are no
longer necessary as the following example illustrates.
Example 4. Consider again the inconsistency measure IMI

from (Hunter and Konieczny 2010) that was explained in Ex-

ample 3. We have D^
IMI

({a ^ b}, {¬a ^ b}, {a ^ ¬b}) =
IMI({a ^ b,¬a ^ b, a ^ ¬b}) = 3 by definition of the ^-

induced measure. However, D^
IMI

({a^b,¬a^b, a^¬b}) =
IMI({a ^ b ^ ¬a ^ b ^ a ^ ¬b}) = 1. Hence, D^

IMI
is not

singleton union invariant.

We close this section by showing that the set of dis-
agreement measures t-induced and ^-induced from incon-
sistency measures are neither equal nor disjoint.

To begin with, the ILPm inconsistency measure that was
discussed in (Hunter and Konieczny 2010) is adjunction in-
variant. Therefore, Dt

ILPm
= D^

ILPm
according to Corol-

lary 1. Hence, the intersection of t-induced and ^-induced
disagreement measures is non-empty.

Figure 1: Induced measures and the ⌘-disagreement mea-
sure in the space of all disagreement measures.

In order to show that there are partition invariant mea-
sures that are not adjunction invariant and vice versa, we
use the minimal inconsistent set measure IMI from (Hunter
and Konieczny 2010). As demonstrated in Example 3, IMI

is not adjunction invariant. Therefore, the Transfer Lemma
implies that Dt

IMI
is not adjunction invariant either. Hence,

Dt
IMI

cannot be ^-induced according to Proposition 6.
On the other hand, D^

IMI
is adjunction invariant because

each ^-induced measure is. However, since IMI is not ad-
junction invariant, we know from Proposition 5 that D^

IMI

is not t-induced. Hence, D^
IMI

is an example of a disagree-
ment measure that is ^-induced, but not t-induced.

Figure 1 illustrates the relationships between different
incompatibility measures. The ^-induced incompatibility
measures are a subset of the adjunction invariant measures
(Proposition 6). The fact that all measures in the intersec-
tion of partition invariant and adjunction invariant measures
are ^-induced follows from observing that partition invari-
ance implies singleton union invariance (3) and Proposition
7. The ⌘-disagreement measure D⌘ that is neither partition-
nor adjunction-invariant will be discussed in Section 5.

4 Principles for Measuring Disagreement

As illustrated in Figure 1, induced measures correspond to
disagreement measures with very specific properties. t-
induced measures are necessarily partition invariant. This
may be undesirable in certain applications as illustrated in
Example 2. If an inconsistency measure is adjunction invari-
ant, the ^-induced measure will also be partition invariant. If
it is not adjunction invariant, the ^-induced measure will not
be partition invariant, but the measure may become rather
coarse as illustrated in Example 3. This is some evidence
that it is worth investigating non-induced measures. To fur-
ther distinguish inconsistency from disagreement measures,
we will now propose some stronger principles that go be-
yond our basic desiderata from Definition 1.

To guide our intuition, we think of each knowledge base
as the belief set of an agent. We say that i contradicts j

if i [j is inconsistent. To begin with, let us consider an
agent whose beliefs do not contradict any consistent position
(its knowledge base is tautological). When adding such an
agent to a belief profile, the disagreement value should not
increase. Dually, if we add an agent that contradicts every
position (its knowledge base is inconsistent), the disagree-

ment value should not decrease. This intuition is captured
by the following principles.
Tautology Let B 2 Kn and let > 2 K be tautological.

Then D(B � >) D(B).
Contradiction Let B 2 Kn and let ? 2 K be contradic-

tory. Then D(B � ?) � D(B).
Inconsistency measures focus mainly on the existence of

conflicts. However, in a multiagent setting, conflicts can of-
ten be resolved by majority decisions. Given a belief profile
B = (1, . . . ,n) 2 Kn, we call a subset C ✓ {1, . . . , n} a
consistent coalition iff

S
i2C i is consistent. We say that j

is involved in a conflict in B iff there is a consistent coalition
C such that j [

S
i2C i is inconsistent. Our next principle

demands that conflicts can be eased by majority decisions.
Majority Let B = (1, . . . ,n) 2 Kn. If j is consistent

and involved in a conflict, then there is a k 2 N such that
D(B �k j) < D(B).

Intuitively, Majority says that we can decrease the severity of
a conflict by giving sufficient support for one of the conflict-
ing positions. It does not matter what position we choose
as long as this position is consistent. In future work, one
may look at alternative principles based on other methods to
make group decisions (Zwicker 2016), but Majority seems
to be a natural starting point.

Majority implies that we can strictly decrease the dis-
agreement value by adding copies of one consistent posi-
tion. However, this does not imply that the disagreement
value will vanish. If we keep adding copies, the disagree-
ment value will necessarily decrease but it may converge to
a value strictly greater than 0. While one may argue that
the limit should be 0 if almost all agents agree, one may
also argue that the limit should be bounded from below by
a positive constant if an unresolved conflict remains. We
therefore do not strengthen majority. Instead, we consider
an additional principle that demands that the limit is indeed
0 if the majority agrees on all non-contradictory positions.
This intuition is captured by the next principle.
Majority Agreement in the Limit Let B 2 Kn. If

M is a ⇢-maximal consistent subset of
F

B, then
limk!1 D(B �k M) = 0.

We close this section with an impossibility result:
Monotony and Partition Invariance cannot be satisfied
jointly with our majority principles. The reason is that such
measures can never decrease when receiving new informa-
tion as explained in the following proposition.
Proposition 8. If D satisfies Monotony and Partition Invari-

ance, then D(B�k) � D(B) for all B 2 Kn
, 2 K, k 2 N.

Proof. Partition invariance implies D((1, . . . ,n) �k) =
D(1 t

�Fk
i=1

�
, . . . ,n). Furthermore, Monotony im-

plies D(1 t
�Fk

i=1
�
, . . . ,n) � D(1, . . . ,n). Hence,

D((1, . . . ,n) �k) � D(1, . . . ,n).

The conditions of Proposition 8 are in particular met by
several induced measures.
Corollary 2. Every disagreement measure that is

• partition invariant and monotone or

• t-induced from a monotone inconsistency measure or

• ^-induced from a monotone and adjunction invariant in-

consistency measure

violates Majority and Majority Agreement in the Limit.

Proof. Consider the belief profile B = ({a}, {¬a}). By
Consistency, we have D(B) > 0 for all disagreement mea-
sures D. Hence, Proposition 8 implies that D(B �k) �
D(B) > 0 for all 2 K and k 2 N. This implies the first
claim. The second claim follows from the first claim with
Proposition 3 and the Transfer Lemma. The third claim fol-
lows from the first claim with Proposition 5 and the Transfer
Lemma.

5 The ⌘-disagreement Measure

We now consider a novel disagreement measures inspired by
the ⌘-inconsistency measure from (Knight 2002). Roughly
speaking, the ⌘-inconsistency measure attempts to maximize
the probability of all formulas within a knowledge base. By
subtracting this probability from 1, we get an inconsistency
value. In order to assign probabilities to formulas, we con-
sider probability distributions over the set of all valuations
⌦ = {v | v : A ! {0, 1}} of our language. Given a prob-
ability distribution ⇡ : ⌦ ! [0, 1] (

P
v2⌦ ⇡(v) = 1) and a

formula F 2 L, we let

P⇡(F) =
X

v|=F

⇡(v).

Intuitively, P⇡(F) is the probability that F is true with re-
spect to ⇡. The ⌘-inconsistency measure from (Knight 2002)
is defined by

I⌘() = 1�max{p | 9⇡ : 8F 2 : P⇡(F) � p}.

This formula describes the intuition that we explained in the
beginning. p⇤ = max{p | 9⇡ : 8F 2 : P⇡(F) � } is the
maximum probability that all formulas in can simultane-
ously take. We will have p⇤ = 1 if and only if is consistent
(Knight 2002).

Let us first look at the disagreement measures induced by
I⌘ . I⌘ satisfies Monotony (Thimm 2016). Therefore, Dt

I⌘

will violate our majority principles as explained in Corollary
2. However, I⌘ is not adjunction invariant (Thimm 2016).
Therefore, Proposition 5 implies that Dt

I⌘
6= D^

I⌘
. Still, D^

I⌘

does not satisfy our majority principles either.
Example 5. Let B = ({a}, {¬a}). Since P⇡(a) = 1 �
P⇡(¬a), we have for all n 2 N
D^

I⌘
({a}, {¬a}) = I⌘({a,¬a}) = 0.5

= I⌘({a,¬a} t
nG

i=1

{a}) = D^
I⌘
(
�
{a}, {¬a}

�
�n {a}).

However, we can modify the definition of the ⌘-
inconsistency measure in order to get a disagreement mea-
sure that satisfies our desiderata. If we think of P⇡(F) as the
degree of belief in F , then we should try to find a ⇡ such that
the beliefs of all agents are satisfied as well as possible. To

do so, we can first look at how well ⇡ satisfies the beliefs of
each agent and then look at how well ⇡ satisfies the agents’
beliefs overall. To measure satisfaction of one agent’s be-
liefs, we take the minimum of all probabilities assigned to
the formulas in the agent’s knowledge base. Formally, for
all probability distributions ⇡ and knowledge bases over
our language, we let

s⇡() = min{P⇡(F) | F 2 }.

and call s⇡() the degree of satisfaction of . In order to
measure satisfaction of a belief profile, we take the average
degree of satisfaction of the knowledge bases in the profile.
Formally, we let for all probability distributions ⇡ and belief
profiles B

S⇡(B) =
1

|B|
X

2B
s⇡()

and call S(B) the degree of satisfaction of B. We now de-
fine a new disagreement measure. Intuitively, it attempts to
maximize the degree of satisfaction of the profile. By sub-
tracting the maximum degree of satisfaction from 1, we get
a disagreement value.
Definition 3 (⌘-Disagreement Measure). The ⌘-
Disagreement Measure is defined by

D⌘(B) = 1�max{p | 9⇡ : S⇡(B) = p}.

To begin with, we note that D⌘ is a disagreement mea-
sures as defined in Definition 1 and can be computed by lin-
ear programming techniques.
Proposition 9. D⌘ is a disagreement measures and can be

computed by solving a linear optimization problem.

Proof. Linear Program: In order to give a linear program-
ming formulation, we introduce some notation. First of all,
we assume that the valuations in ⌦ are ordered in a se-
quence (v1, . . . , vk), where k = |⌦|. The order can be
arbitrary (e.g. lexicographic) and is only needed to rep-
resent probability distributions ⇡ as vectors. We identify
each ⇡ with the vector p⇡ 2 Rk whose i-th component is
⇡(vi). For a formula F , let aF 2 Rk be the vector whose
i-th component is 1 if vi |= F and 0 otherwise. Then
a
0
F p⇡ =

P
v|=F ⇡(v) = P⇡(F), where a0 denotes the trans-

pose of a.
In order to compute D⌘ , we introduce n auxiliary vari-

ables for the knowledge bases in B = (1, . . . ,n) that will
take on the minimum probability of the formulas in the base.
The linear program looks as follows:

max
(x,⌘)2Rk+n

nX

i=1

1

|B| ⌘i (4)

subject to a
0
F x � ⌘i for all i = 1, . . . , n, F 2 i

a
0
> x = 1,

x, ⌘ � 0,

Note that (4) is always feasible because (p⇡, 0) is a feasible
solution for each probability distribution ⇡. (4) corresponds
to max{p | 9⇡ : S⇡(B) = p} as we explain now. Suppose

first that ⇡⇤ is an optimal solution of the problem max{p |
9⇡ : S⇡(B) = p}. Let ⌘⇤i = s⇡⇤(i). Then (p⇡⇤ , ⌘

⇤) 2
Rk+n is a feasible solution of (4). Since

Pn
i=1

1
|B| ⌘

⇤
i =

S⇡(B), max{p | 9⇡ : S⇡(B) = p} is less-than or equal to
the optimal value of (4).

Consider now an optimal solution (x⇤
, ⌘

⇤) of (4). For all
i = 1, . . . , n, there must be some formula F 2 i such
that a0F ⇡ = ⌘i. For if a

0
F ⇡ > ⌘i for all F 2 i, we

could improve (x⇤
, ⌘

⇤) by increasing ⌘i, but this contra-
dicts optimality of (x⇤

, ⌘
⇤). Hence, ⌘i = min{P⇡x⇤ (F) |

F 2 } = s⇡x⇤ (i), where ⇡x⇤ denotes the probabil-
ity distribution corresponding to the probability vector x

⇤

(⇡x⇤(vj) = x
⇤
j). Therefore, the optimal value of (4) isPn

i=1
1
|B| s⇡x⇤ (i) = S⇡x⇤ (B) and the optimal value of

(4) must also be less-than or equal to the optimal value of
max{p | 9⇡ : S⇡(B) = p}. Hence, both values have to be
equal.

Well-definedness: The linear optimization problem is
guaranteed to be feasible and bounded from above by 1.
Therefore, the theory of linear optimization implies that the
maximum exists (Matousek and Gärtner 2007). Hence, the
disagreement value with respect to D⌘ is well-defined.

Consistency: If D⌘(B) = 0, then max{p | 9⇡ : S⇡(B) =
p} = 1. Hence, there is a ⇡ such that S⇡(B) = 1. But this
is only possible if s⇡() = 1 for all 2 B. Now s⇡() =
1 is only possible if P⇡(F) = 1 for all F 2 . Hence,
P⇡(F) = 1 for all F 2

F
2B . But then each valuation

v with ⇡(v) > 0 must satisfy all F 2
F

2B . Hence,
F 2

F
2B is consistent.

Conversely, if
F

2B is inconsistent, then we can argue
as before that S⇡(B) < 1 for all ⇡. Therefore D(B) >

1� 1 = 0.
Symmetry: Symmetry follows from observing that all in-

volved operations are commutative.

As we show next, D⌘ is neither t- nor ^-induced from
any inconsistency measure. According to Proposition 3 and
Proposition 6, it suffices to show that it is neither partition
invariant nor adjunction invariant.
Example 6. Consider again the belief profiles B and B0

from Example 2. We have D⌘(B) ⇡ 0.33 and D⌘(B) ⇡
0.44. As desired, D⌘ recognizes the increased disagreement

in the profile. In particular, D⌘ is not partition invariant.

Example 7. To see that D⌘ is not adjunction invariant, note

that D⌘({a,¬a}) = 0.5, whereas D⌘({a ^ ¬a}) = 1 (con-

tradictory formulas have probability 0 with respect to each

⇡). Hence, D⌘ is also not adjunction invariant.

D⌘ satisfies our four principles for measuring disagree-
ment as we show next. To begin with, we note that the dis-
agreement value necessarily decreases as the proportion of
agreeing agents increases.
Proposition 10. Let B 2 Kn

. If B contains a consistent

coalition of size k, then D⌘(B) 1� k
n .

Proof. Let C ✓ {1, . . . , n} be a consistent coalition of
size k. Since =

S
i2C i is consistent, there is a

model v0 of . Let ⇡ be the probability distribution with

⇡(v0) = 1 and ⇡(v) = 0 for all other valuations in ⌦. Then
s⇡(i) = 1 for all i 2 C and S⇡(B) = 1

n

�P
i2C s⇡(i) +P

i2{1,...,n}\C s⇡(i)
�

� 1
n

�P
i2C 1

�
= k

n . Hence,
D⌘(B) 1� k

n .

Proposition 10 implies, in particular, that the disagree-
ment value goes to 0 as the proportion of agreeing agents
k
n goes to 1. Therefore, D⌘ satisfies our majority principles.
Corollary 3. D⌘ satisfies Majority and Majority Agreement
in the Limit.

Proof. Assume |B| = n. We prove the claim for Major-
ity. The proof for Agreement in the Limit is similar and is
therefore left out.

B�kj contains the consistent coalition {n+1, . . . , n+k}
of size k. Hence, D⌘(B �k j) 1 � k

n+k according to
Proposition 10. Since k

n+k ! 1 as k ! 1, there must be
a natural number K such that 1 � K

n+K < D⌘(B) (recall
that D⌘(B) > 0 by assumption of Majority) and therefore
D⌘(B �K j) < D⌘(B) as desired.

Tautology and Contradiction are also satisfied and can be
strengthened slightly.
Proposition 11. D⌘ satisfies Tautology and Contradiction.

Furthermore,

• If D⌘(B) > 0, then D⌘(B � >) < D⌘(B).
• If D⌘(B) < 1, then D⌘(B � ?) > D⌘(B).

Proof. We consider only the case for >. The proof for
the case ? is similar. Since > is tautological, we have
s⇡(>) = 1 for arbitrary probability distributions ⇡ and
S⇡(B � >) =

1
|B|+1

�P
2B s⇡() + 1

�
= |B|

|B|+1S⇡(B) +
1

|B|+1 � |B|
|B|+1S⇡(B) + 1

|B|+1S⇡(B) = S⇡(B), where we
used

P
2B s⇡() = |B| ·S⇡(B) for the second equality and

1 � S⇡(B) for the inequality. Therefore,

D⌘(B) = 1�max{p | 9⇡ : S⇡(B) = p}
� 1�max{p | 9⇡ : S⇡(B � >) = p}
= D⌘(B � >).

This proves Tautology for D⌘ .

Regarding the properties corresponding to principles for
measuring inconsistency from Proposition 2, D⌘ satisfies all
of them except Adjunction Invariance (Example 7).
Proposition 12. D⌘ satisfies Monotony, Dominance and

Safe Formula Independence.

Proof. Dominance: Let B1 = (t {f},2, . . . ,n) and
B2 = (t {g},2, . . . ,n) and assume that f |= g and
f 6|= ?. Then v |= g whenever v |= f for all valuations v.
Therefore P⇡(f) P⇡(g) for all probability distributions ⇡.
Hence, S⇡(t{f}) S⇡(t{g}) and S⇡(B1) S⇡(B2).
This then implies D⌘(B1) � D⌘(B2).

Safe Formula Independence: Consider a belief profile
B = (1,2, . . . ,n) and assume that f 2 L is safe in

Fn
i=1 i. Then

Fn
i=1 i does not contain any atoms appear-

ing in f . Consider an arbitrary probability distribution ⇡. If
⇡ assigns probability 0 to all v such that v 6|= f , we have
S⇡(1) = S⇡(1 t {f}). Otherwise, construct ⇡0 from ⇡ as
follows: for all valuations v such that ⇡(v) = 0 or v |= f ,
we let ⇡0(v) = ⇡(v). For all remaining valuations v with
⇡(v) > 0 and v 6|= f , we let ⇡0(v) = 0 and modify ⇡

0 by
adding ⇡(v) to ⇡(v0), where v’ is an interpretation obtained
from v by interpreting the atoms in f such that v0 |= f . We
will then have S⇡(1) = S⇡0(1) and since ⇡0 assigns prob-
ability 0 to all v such that v 6|= f , S⇡(1) = S⇡0(1 t {f}).
Hence, for all probability distributions ⇡, there is a probabil-
ity distribution ⇡

0 such that S⇡(1) = S⇡0(1t{f}). There-
fore, D⌘(1 t {f},2, . . . ,n) = D⌘(1,2, . . . ,n).

Monotony: Consider a belief profile B =
(1,2, . . . ,n) and a knowledge base

0. Then for
all probability distributions ⇡, S⇡() = min{P⇡(F) |
F 2 } � min{P⇡(F) | F 2 t

0} = S⇡(t
0)

and therefore S⇡(B) � S⇡(1 t
0
,2, . . . ,n). Hence,

D⌘(1,2, . . . ,n) D⌘(1 t
0
,2, . . . ,n).

We already know that D⌘ yields 0 if and only if all knowl-
edge bases in the profile are consistent with each other. In
the following proposition, we explain in what cases it takes
the maximum value 1.
Proposition 13. Let B 2 Kn

. We have D⌘(B) = 1 iff all i

contain at least one contradictory formula.

Proof. If D⌘(B) = 1, then S⇡(B) = 0 for all probability
distributions ⇡. Hence, for all 2 B there must be a F 2

such that P⇡(F) = 0 for all ⇡. Again, this is only possible
if F is contradictory. Conversely, if each 2 B contains
a contradictory formula, we can conclude that S⇡(B) = 0.

Intuitively, if there is a knowledge base that does not con-
tain any contradictory formulas, then all beliefs of one agent
can be partially satisfied and the disagreement value with re-
spect to D⌘ cannot be 1. So the degree of disagreement can
only be maximal if each agent has contradictory beliefs.

In some applications, we may want to restrict to belief
profiles with consistent knowledge bases. We can rescale
D⌘ for this purpose. Proposition 10 gives us the following
upper bounds on the disagreement value.
Corollary 4. Let B = (1, . . . ,n). If some i is consistent,

then D⌘(B) 1� 1
n .

Proof. If i is consistent, {i} is a consistent coalition of size
1 and Proposition 10 implies the claim.

The bound in Corollary 4 is actually tight even if all
knowledge bases in the profile are individually consistent as
we explain in the following example.
Example 8. For n = 2 agents, we have D⌘({a}, {¬a}) =
1
2 . For n = 3, we have D⌘({a ^ b}, {¬a ^ b}, {¬b}) =
2
3 . In general, if we have n satisfiable but pairwise in-

consistent (Fi ^ Fj ⌘ ?) formulas F1, . . . , Fn, then

D⌘({F1}, . . . , {Fn}) = 1� 1
n .

Hence, if we want to restrict to consistent knowledge
bases, we can renormalize D⌘ by multiplying by n

n�1 .
The disagreement value will then be maximal whenever all
agents have pairwise inconsistent beliefs.

As explained in Proposition 9, computing D⌘(B) is a lin-
ear optimization problem. Interior-point methods can solve
these problems in polynomial time in the number of opti-
mization variables and constraints (Matousek and Gärtner
2007). While the number of optimization variables is ex-
ponential in the number of atoms |A| of our language, the
number of constraints is linear in the number of formulas in
all knowledge bases in the profile. Roughly speaking, com-
puting D⌘(B) is very sensitive to the number of atoms, but
scales well with respect to the number of agents. In the lan-
guage of parameterized complexity theory (Flum and Grohe
2006), computing D⌘(B) is fixed-parameter tractable (that
is, polynomial if we fix the number of atoms) .
Proposition 14. Computing D⌘(B) is fixed-parameter

tractable with parameter |A|.

Proof. For interior-point methods, the total number of bit
operations is bounded by O(N3 · L) per iteration, where N

is the number of optimization variables and L is the maxi-
mum bit size of coefficients in the linear program (Matousek
and Gärtner 2007). For our linear programs, N is exponen-
tial in the number of atoms, whereas L is polynomial in the
size of the belief profile (the overall number of formulas in
the belief profile). The total number of iterations is bounded
by O(

p
N · L) in the worst-case. The overall worst-case

runtime is therefore O(N3.5 · L2), which is exponential in
the number of atoms, but polynomial in the size of the belief
profile. Strictly speaking, the runtime also depends on the
desired accuracy ✏ of the solution since interior-point meth-
ods are numerical algorithms. This adds an additional factor
of O(log 1

✏) to the analysis (Matousek and Gärtner 2007).
However, the runtime is also polynomial in the accuracy.
If we choose an accuracy of ✏ = 10�a, the additional fac-
tor will be in the order of O(log 10a) = O(a). Therefore,
computing D⌘(B) is fixed-parameter tractable with parame-
ter |A|.

While interior-point methods give us a polynomial worst-
case guarantee, they are often outperformed in practice by
the simplex algorithm. The simplex algorithm has expo-
nential runtime for some artificial examples, but empirically
runs in time linear in the number of optimization variables
(exponential in |A|) and quadratic in the number of con-
straints (quadratic in the overall number of formulas in the
belief profile) (Matousek and Gärtner 2007).

In the long-term, our goal is to reason over belief profiles
that contain conflicts among agents. While we must leave
a detailed discussion for future work, we will now sketch
how the ⌘-disagreement measure can be used for this pur-
pose. The optimal solutions of the linear optimization prob-
lem corresponding to D⌘ form a topologically closed and
convex set of probability distributions. This allows us to
compute lower and upper bound on the probability (or more
intuitively, the degree of belief) of formulas with respect to
the optimal solutions that minimize disagreement. This is

similar to the probabilistic entailment problem (Hansen and
Jaumard 2000), where we compute lower and upper bounds
with respect to probability distributions that satisfy proba-
bilistic knowledge bases. If, for a belief profile B, the lower
bound of the formula F is l and the upper bound is u, we
write PB(F) = [l, u]. If l = u, we just write PB(F) = l.
We call PB the aggregated group belief.
Example 9. Suppose we have 100 reviews about a restau-

rant. While most reviewers agree that the food (f) and

the service (s) are good, two reviewers disagree about the

interior design (d) of the restaurant. Let us assume that

B = (
�
({d, f, s}, {¬d, f, s}) �95 {f, s}

�
�3 {¬f,¬s}). We

have D⌘(B) ⇡ 0.03. Intuitively, the degree of disagree-

ment among agents is low because the majority of agents

seem not to care about the interior design. The aggregated

group beliefs for the atoms in this example are PB(d) = 0.5,

PB(f) = 1, PB(s) = 1.

We can use PB to define an entailment relation. For in-
stance, we could say that B entails F iff the lower bound is
strictly greater than 0.5. Then, in Example 9, PB entails f

and s, but neither d nor ¬d. We can also use PB to shift
our focus from measuring disagreement among agents to
measuring disagreement about formulas. For instance, we
could measure the disagreement among formulas by mea-
suring how well we can bound the aggregated beliefs away
from 0.5 (the lower bound should be close to 1 or the upper
bound close to 0).

6 Related Work

The authors in (Whitworth and Felton 1999) considered the
problem of measuring disagreement in limited choice prob-
lems, where each agent can choose from a finite set of alter-
natives. The measures are basically defined by counting the
decisions and relating the counts. The authors give intuitive
justification for their measures, but do not consider general
principles. In order to transfer their approach to our setting,
one may identify atomic formulas with alternatives in their
framework, but it is not clear how this approach could be ex-
tended to knowledge bases that contain complex formulas.

Some other conflict measures have been considered in
non-classical frameworks. These measures are often closer
to distance measures because they mainly compare how
close two quantitative belief representations like probabil-
ity functions, belief functions or fuzzy membership func-
tions are (Liu 2006; Castiñeira, Cubillo, and Montilla 2010;
Jousselme and Maupin 2012). In (Thimm 2014), some com-
patibility measures for Markov logic networks have been
proposed. The measures are normalized and the maximum
degree of compatibility can be related to a notion of coher-
ence of Markov logic networks. However, this notion cannot
be transferred to classical knowledge bases easily.

As we discussed, measuring disagreement is closely re-
lated to measuring inconsistency (Knight 2002; Hunter and
Konieczny 2008; Grant and Hunter 2013) and merging
knowledge bases (Baral, Kraus, and Minker 1991; Liber-
atore and Schaerf 1998; Konieczny and Pérez 2011). See
(Thimm 2016) and (Konieczny and Pérez 2011) for a survey
of inconsistency measures and belief merging approaches,

respectively. The principles Majority and Majority Agree-

ment in the Limit from Section 4 are inspired by Major-

ity merging operators that allow that a sufficiently large
interest group can determine the merging outcome. The
⌘-disagreement measure is perhaps most closely related to
model-based operators and DA2

operators, which attempt
to minimize some notion of distance between interpretations
and the models of the knowledge bases in the profile. Sim-
ilar ideas have been considered in (Grant and Hunter 2013)
for the purpose of measuring inconsistency. In contrast, the
⌘-disagreement measure minimizes a probabilistic degree of
dissatisfaction of the belief profile. A discussion of merg-
ing probabilistic knowledge bases can be found in (Wilmers
2015).

(Grégoire, Konieczny, and Lagniez 2016) introduced
some entailment relations based on consensus in belief pro-
files. Roughly speaking, a consensus is a subset of all
agents’ beliefs that is consistent with all agents’ individual
knowledge bases. As explained in (Grégoire, Konieczny,
and Lagniez 2016), this idea goes beyond just considering
the maximal consistent subsets of the union of all knowl-
edge bases. Consensus may also be interesting to define
other incompatibility measures. We will investigate such
measures and relationships between consensus-based entail-
ment relations and entailment relations derived from the ⌘-
disagreement measure in future work.

7 Conclusions and Future Work

In this paper, we investigated approaches to measuring dis-
agreement among knowledge bases. In principle, inconsis-
tency measures can be applied for this purpose by transform-
ing belief profiles to single knowledge bases. However, we
noticed some problems with this approach. For instance,
many measures that are naively induced from inconsistency
measures violate Majority and Agreement in the Limit as ex-
plained in Corollary 2. Even though this problem does not
apply to measures ^-induced from inconsistency measures
that violate adjunction invariance, these induced measures
show another problem: they may be unable to notice that
a conflict can be resolved by giving up parts of agents’ be-
liefs. For instance, the measures D^

IMI
and D^

I⌘
cannot dis-

tinguish the profiles ({a, b}, {¬a, b}) and ({a}, {¬a}) be-
cause IMI and I⌘ cannot distinguish the knowledge bases
{a ^ b,¬a ^ b} and {a,¬a}.

The ⌘-inconsistency measure D⌘ satisfies our principles
for measuring disagreement and some other basic properties
that correspond to principles for measuring inconsistency.
Since D⌘ can perform satisfiability tests, we cannot expect
to compute disagreement values in polynomial time with re-
spect to the number of atoms. However, if our agents ar-
gue only about a moderate number of statements (we fix
the number of atoms), the worst-case runtime is polynomial
with respect to the number of agents.

In the long-term, we are in particular interested in reason-
ing over belief profiles that contain conflicts. We can use the
⌘-inconsistency measure for this purpose as we sketched at
the end of Section 5. However, the aggregated group belief
PB does not behave continuously. For instance, if we grad-

ually increase the support for ¬s in Example 9, PB(s) will
not gradually go to 0, but will jump to an undecided state
like 0.5 or will jump to 0 at some point. This is not a prin-
cipal problem for defining an entailment relation that either
says that a formula is entailed or not entailed by a profile.
However, a continuous notion of group beliefs would allow
us to shift the focus from measuring disagreement among
agents to measuring disagreement about statements (logical
formulas). We could do so by measuring how well we can
bound the aggregated beliefs about the formulas in the pro-
file away from 0.5. However, if PB does not behave con-
tinuously, this approach will give us a rather coarse measure
(basically three-valued). Therefore, an interesting question
for future research is whether we can modify D⌘ or design
other measures that give us an aggregated group belief with
a more continuous behavior.

References

Arieli, O.; Avron, A.; and Zamansky, A. 2011. What is
an ideal logic for reasoning with inconsistency?. In IJCAI

2011, 706–711.
Baral, C.; Kraus, S.; and Minker, J. 1991. Combining multi-
ple knowledge bases. IEEE transactions on knowledge and

data engineering 3(2):208–220.
Benferhat, S.; Dubois, D.; and Prade, H. 1997. Some syn-
tactic approaches to the handling of inconsistent knowledge
bases: A comparative study part 1: The flat case. Studia

Logica 58(1):17–45.
Besnard, P. 2014. Revisiting postulates for inconsistency
measures. In European Workshop on Logics in Artificial In-

telligence, 383–396. Springer.
Castiñeira, E. E.; Cubillo, S.; and Montilla, W. 2010.
Measuring incompatibility between atanassovs intuitionistic
fuzzy sets. Information Sciences 180(6):820–833.
Flum, J., and Grohe, M. 2006. Parameterized complexity

theory. Springer Science & Business Media.
Grant, J., and Hunter, A. 2006. Measuring inconsistency in
knowledgebases. Journal of Intelligent Information Systems

27(2):159–184.
Grant, J., and Hunter, A. 2013. Distance-based measures
of inconsistency. In European Conference on Symbolic

and Quantitative Approaches to Reasoning and Uncertainty,
230–241. Springer.
Grégoire, É.; Konieczny, S.; and Lagniez, J. 2016. On con-
sensus extraction. In IJCAI 2016, New York, 1095–1101.
AAAI Press.
Hansen, P., and Jaumard, B. 2000. Probabilistic satisfiabil-
ity. In Handbook of Defeasible Reasoning and Uncertainty

Management Systems. Springer. 321–367.
Hunter, A., and Konieczny, S. 2005. Approaches to mea-
suring inconsistent information. In Inconsistency tolerance.
Springer. 191–236.
Hunter, A., and Konieczny, S. 2008. Measuring inconsis-
tency through minimal inconsistent sets. KR 2008 8:358–
366.

Hunter, A., and Konieczny, S. 2010. On the measure of con-
flicts: Shapley inconsistency values. Artificial Intelligence

174(14):1007–1026.
Jousselme, A.-L., and Maupin, P. 2012. Distances in ev-
idence theory: Comprehensive survey and generalizations.
International Journal of Approximate Reasoning 53(2):118–
145.
Kalyanpur, A.; Parsia, B.; Sirin, E.; and Cuenca-Grau, B.
2006. Repairing unsatisfiable concepts in owl ontologies. In
European Semantic Web Conference, 170–184. Springer.
Knight, K. 2002. Measuring inconsistency. Journal of

Philosophical Logic 31(1):77–98.
Konieczny, S., and Pérez, R. P. 2011. Logic based merging.
Journal of Philosophical Logic 40(2):239–270.
Konieczny, S. 2000. On the difference between merging
knowledge bases and combining them. In KR, 135–144.
Lehmann, J., and Bühmann, L. 2010. Ore-a tool for repair-
ing and enriching knowledge bases. In International Seman-

tic Web Conference, 177–193. Springer.
Liberatore, P., and Schaerf, M. 1998. Arbitration (or how to
merge knowledge bases). IEEE Transactions on Knowledge

and Data Engineering 10(1):76–90.
Liu, W. 2006. Analyzing the degree of conflict among belief
functions. Artificial Intelligence 170(11):909–924.
Matousek, J., and Gärtner, B. 2007. Understanding and

Using Linear Programming. Universitext (1979). Springer.
Muiño, D. P. 2011. Measuring and repairing inconsistency
in probabilistic knowledge bases. International Journal of

Approximate Reasoning 52(6):828–840.
Potyka, N., and Thimm, M. 2015. Probabilistic reasoning
with inconsistent beliefs using inconsistency measures. In
IJCAI 2015, 3156–3163.
Potyka, N. 2014. Linear programs for measuring inconsis-
tency in probabilistic logics. In KR 2014, 568–577.
Potyka, N. 2018. Measuring disagreement among knowl-
edge bases. In Scalable Uncertainty Management - 12th In-

ternational Conference, SUM (to appear).
Priest, G. 2002. Paraconsistent logic. In Handbook of philo-

sophical logic. Springer. 287–393.
Thimm, M. 2009. Measuring inconsistency in probabilistic
knowledge bases. In UAI 2009, 530–537. AUAI Press.
Thimm, M. 2014. Coherence and compatibility of markov
logic networks. In ECAI 2014, 891–896. IOS Press.
Thimm, M. 2016. On the compliance of rationality postu-
lates for inconsistency measures: A more or less complete
picture. KI-Künstliche Intelligenz 1–9.
Whitworth, B., and Felton, R. 1999. Measuring disagree-
ment in groups facing limited-choice problems. ACM SIG-

MIS Database 30(3-4):22–33.
Wilmers, G. 2015. A foundational approach to generalising
the maximum entropy inference process to the multi-agent
context. Entropy 17(2):594–645.
Zwicker, W. 2016. Introduction to the theory of voting.
Handbook of computational social choice 23–56.

Exploiting Treewidth for Counting Projected Answer Sets⇤

Johannes K. Fichte
TU Dresden

International Center for Computational Logic
Fakultät Informatik,

01062 Dresden, Germany

Markus Hecher
TU Wien

Insitute of Logic and Computation
Favoritenstraße 9-11 / E192

1040 Vienna, Austria

Abstract
In this paper, we introduce novel algorithms to solve projected
answer set counting (#PAS). #PAS asks to count the number
of answer sets with respect to a given set of projected atoms,
where multiple answer sets that are identical when restricted
to the projected atoms count as only one projected answer set.
Our algorithms exploit small treewidth of the primal graph of
the input instance by dynamic programming (DP).
We establish a new algorithm for head-cycle-free programs
and lift very recent results from projected model counting to
#PAS when the input is restricted to head-cycle-free programs.
Further, we show how established DP algorithms for disjunc-
tive answer set programs can be extended to solve #PAS. Our
algorithms run in time double exponential for head-cycle-free
programs and triple exponential in the treewidth for disjunctive
programs and polynomial in the input size of the instance.
Finally, we take the exponential time hypothesis (ETH) into
account and establish lower bounds of bounded treewidth algo-
rithms for #PAS. In particular, one can not expect (under ETH)
to solve #PAS for head-cycle-free or disjunctive programs in
polynomial time in the instance size while being single or
double exponential in the treewidth, respectively.

Introduction
Answer Set Programming (ASP) (Brewka, Eiter, and
Truszczyński 2011) is an active research area of artificial
intelligence. It provides a logic-based declarative modelling
language and problem solving framework (Gebser et al.
2012) for hard computational problems, which has been
widely applied (Balduccini, Gelfond, and Nogueira 2006;
Niemelä, Simons, and Soininen 1999; Nogueira et al. 2001;
Guziolowski et al. 2013). In ASP, questions are encoded into
rules and constraints that form a disjunctive (logic) program
over atoms. Solutions to the program are so-called answer
sets. Lately, two computational problems of ASP have re-
ceived increasing attention, namely, #AS (Fichte et al. 2017a)
and #PAS (Aziz 2015). The problem #AS asks to output the
number of answer sets of a given disjunctive program. When
considering computational complexity #AS can be classi-
fied as #·coNP-complete (Fichte et al. 2017a), which is even

⇤The work has been supported by Austrian Science Fund (FWF)
Grant Y698 and German Science Fund (DFG) Grant HO 1294/11-1.
The authors are also affiliated with University of Potsdam, Germany.
Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

harder than counting the models of a Boolean formula. A
natural abstraction of #AS is to consider projected counting
where we ask to count the answer sets of a disjunctive pro-
gram with respect to a given set of projected atoms (#PAS).
Particularly, we consider multiple answer sets that are identi-
cal when reduced to the projected atoms as only one solution.
Under standard assumptions the problem #PAS is complete
for the class #·⌃2P . However, if we take all atoms as pro-
jected, then #PAS is again #·coNP-complete and if there are
no projected atoms then it is simply ⌃p

2-complete. But some
fragments of ASP have lower complexity. A prominent ex-
ample is the class of head-cycle-free programs (Ben-Eliyahu
and Dechter 1994), which requires the absence of cycles in a
certain graph representation of the program. There the classi-
cal complexity of deciding whether a program has an answer
set (or considering #PAS without projected atoms) is simply
NP-complete.

A way to solve computationally hard problems is to em-
ploy parameterized algorithmics (Cygan et al. 2015), which
exploits certain structural restrictions in a given input in-
stance. Because structural properties of an input instance
often allow for algorithms that solve problems in polynomial
time in the size of the input and exponential time in a mea-
sure of the structure, whereas under standard assumptions
an efficient algorithm is not possible if we consider only the
size of the input. In this paper, we consider the treewidth of a
graph representation associated with the given input program
as structural restriction, namely the treewidth of the primal
graph (Jakl, Pichler, and Woltran 2009). Generally speaking,
treewidth measures the closeness of a graph to a tree, based
on the observation that problems on trees are often easier to
solve than on arbitrary graphs.

Our results are as follows:

• We perform the classical complexity analysis of counting
projected answer sets (#PAS).

• We establish a novel algorithm that solves ASP prob-
lems by exploiting treewidth when the input program is
restricted to head-cycle-free programs in runtime single
exponential in the treewidth.

• We introduce a framework that allows for counting pro-
jected answer sets by exploiting treewidth. Therefore, we
lift recent results from projected model counting in the
domain of Boolean formulas to counting projected answer

sets. We establish algorithms that are (i) double exponen-
tial in the treewidth if the input is restricted to head-cycle-
free programs and (ii) triple exponential in the treewidth if
we allow arbitrary disjunctive programs.

• Using the exponential time hypothesis (ETH) for lower
bounds, we establish that (i) projected ASP for head-cycle-
free programs cannot be solved in time single exponential
time in the treewidth and (ii) projected ASP for arbitrary
disjunctive programs is not expected to be solved in time
double exponential in the treewidth.

Related Work. Gebser, Kaufmann, and Schaub (2009)
considered projected enumeration for ASP. Aziz (2015) intro-
duced techniques to modify modern ASP-solvers in order to
count projected answer sets. Jakl, Pichler, and Woltran (2009)
presented DP algorithms that solve ASP counting in time
double exponential in the treewidth. Pichler et al. (2014) in-
vestigated the complexity of extended programs and also
presented DP algorithms for it. We employ ideas from their
algorithms to solve head-cycle-free programs. Fichte et al.
(2017a; 2017c) presented algorithms to solve ASP counting
for the full standard syntax of modern ASP solvers (includ-
ing minimization). Recently Fichte et al. (2018) gave DP
algorithms for projected #SAT and showed lower bounds.

Preliminaries
Basics and Combinatorics. For a set X , let 2X be the
power set of X consisting of all subsets Y with ; ✓ Y ✓ X .
Let ~s be a sequence of elements of X . When we address
the i-th element of the sequence ~s for a given positive in-
teger i, we simply write ~s(i). The sequence ~s induces an
ordering <~s on the elements in X by defining the rela-
tion <~s := {(~s(i),~s(j)) | 1 i < j |~s|}. Given some
integer n and a family of finite subsets X1, X2, . . ., Xn.
Then, the generalized combinatorial inclusion-exclusion prin-
ciple (Graham, Grötschel, and Lovász 1995) states that
the number of elements in the union over all subsets is���
Sn

j=1 Xj

��� =
P

I✓{1,...,n},I 6=;
(�1)|I|�1

��T
i2I Xi

��.

Computational Complexity. We assume familiarity with
standard notions in computational complexity (Papadimitriou
1994) and use counting complexity classes as defined by Du-
rand, Hermann, and Kolaitis (2005). For parameterized com-
plexity, we refer to standard texts (Cygan et al. 2015). We
recall some basic notions. Let ⌃ and ⌃0 be some finite al-
phabets. We call I 2 ⌃⇤ an instance and kIk denotes the
size of I . Let L ✓ ⌃⇤

⇥ N and L0
✓ ⌃0⇤

⇥ N be two pa-
rameterized problems. An fpt-reduction r from L to L0 is
a many-to-one reduction from ⌃⇤

⇥ N to ⌃0⇤
⇥ N such

that for all I 2 ⌃⇤ we have (I, k) 2 L if and only if
r(I, k) = (I 0, k0) 2 L0 such that k0 g(k) for a fixed
computable function g : N ! N, and there is a com-
putable function f and a constant c such that r is computable
in time O(f(k)kIkc). If additionally g is linear, then r is
referred to as fpl-reduction. A witness function is a func-
tion W : ⌃⇤

! 2⌃
0⇤

that maps an instance I 2 ⌃⇤ to a finite

subset of ⌃0⇤. We call the set W(I) the witnesses. A param-
eterized counting problem L : ⌃⇤

⇥ N ! N0 is a function
that maps a given instance I 2 ⌃⇤ and an integer k 2 N to
the cardinality of its witnesses |W(I)|. Let C be a decision
complexity class, e.g., P. Then, # · C denotes the class of
all counting problems whose witness function W satisfies
(i) there is a function f : N0 ! N0 such that for every in-
stance I 2 ⌃⇤ and every W 2W(I) we have |W | f(kIk)
and f is computable in time O(kIkc) for some constant c
and (ii) for every instance I 2 ⌃⇤ the decision problem W(I)
belongs to the complexity class C. Then, # ·P is the complex-
ity class consisting of all counting problems associated with
decision problems in NP. Let L and L0 be counting problems
with witness functions W and W

0. A parsimonious reduction
from L to L0 is a polynomial-time reduction r : ⌃⇤

! ⌃0⇤

such that for all I 2 ⌃⇤, we have |W(I)| = |W
0(r(I))|. It is

easy to see that the counting complexity classes # · C defined
above are closed under parsimonious reductions. It is clear
for counting problems L and L0 that if L 2 # · C and there
is a parsimonious reduction from L0 to L, then L0

2 # · C.

Answer Set Programming (ASP). We follow standard
definitions of propositional disjunctive ASP. For comprehen-
sive foundations, we refer to introductory literature (Brewka,
Eiter, and Truszczyński 2011; Janhunen and Niemelä 2016).
Let `, m, n be non-negative integers such that ` m n,
a1, . . ., an be distinct propositional atoms. Moreover, we
refer by literal to an atom or the negation thereof (negation
as failure). A program ⇧ is a finite set of rules of the form
a1_· · ·_a` a`+1, . . . , am,¬am+1, . . . ,¬an. For a rule r,
we let Hr := {a1, . . . , a`}, B+

r := {a`+1, . . . , am}, and
B�

r := {am+1, . . . , an}. We denote the sets of atoms occur-
ring in a rule r or in a program ⇧ by at(r) := Hr[B+

r [B
�
r

and at(⇧) :=
S

r2⇧ at(r). Let ⇧ be a program. A pro-
gram ⇧0 is a sub-program of ⇧ if ⇧0

✓ ⇧. The program ⇧
is normal, if |Hr| 1 for every r 2 ⇧. The positive de-
pendency digraph D⇧ of ⇧ is the directed graph defined
on the set of atoms from

S
r2⇧ Hr [B+

r , where for every
rule r 2 ⇧ two atoms a 2 B+

r and b 2 Hr are joined by an
edge (a, b). A head-cycle of D⇧ is an {a, b}-cycle1 for two
distinct atoms a, b 2 Hr for some rule r 2 ⇧. The program ⇧
is head-cycle-free if D⇧ contains no head-cycle (Ben-Eliyahu
and Dechter 1994).

An interpretation I is a set of atoms. I satisfies a rule r if
(Hr [B�

r) \ I 6= ; or B+
r \I 6= ;. I is a model of ⇧ if it sat-

isfies all rules of ⇧, in symbols I |= ⇧. The Gelfond-Lifschitz
(GL) reduct of ⇧ under I is the program ⇧I obtained from ⇧
by first removing all rules r with B�

r \I 6= ; and then remov-
ing all ¬z where z 2 B�

r from the remaining rules r (Gelfond
and Lifschitz 1991). I is an answer set of a program ⇧ if I
is a minimal model of ⇧I . Deciding whether a disjunctive
program has an answer set is ⌃P

2-complete (Eiter and Gottlob
1995). The problem is called consistency of an ASP pro-
gram. If the input is restricted to normal programs, the com-
plexity drops to NP-complete (Bidoı́t and Froidevaux 1991;
Marek and Truszczyński 1991). A head-cycle-free program ⇧

1Let G = (V,E) be a digraph and W ✓ V . Then, a cycle in G
is a W -cycle if it contains all vertices from W .

can be translated into a normal program in polynomial
time (Ben-Eliyahu and Dechter 1994). The following well-
known characterization of answer sets is often invoked when
considering normal programs (Lin and Zhao 2003). Given a
model I of a normal program ⇧ and an ordering � of atoms
over I . An atom a 2 I is proven if there is a rule r 2 ⇧ with
a 2 Hr where (i) B+

r ✓ I , (ii) b <� a for every b 2 B+
r ,

and (iii) I \ B�
r = ; and I \ (Hr \ {a}) = ;. Then, I is

an answer set of ⇧ if (i) I is a model of ⇧, and (ii) every
atom a 2 I is proven. This characterization vacuously ex-
tends to head-cycle-free programs by applying the results
of Ben-Eliyahu and Dechter (1994). Given a program ⇧, an
atom a of any answer set of ⇧ has to occur in some head of a
rule of ⇧ (Baral and Gelfond 1994), which we assume in the
following.
Example 1. Consider the following program:

⇧ := {

r1z }| {
a _ b ;

r2z }| {
c _ e ;

r3z }| {
d _ e b;

r4z }| {
b e,¬d;

r5z }| {
d ¬b}.

It is easy to see that ⇧ is head-cycle-free. The set A =
{b, c, d} is an answer set of ⇧. Consider the ordering � =
hb, c, di, from which we can prove atom b by rule r1, atom c
by rule r2, and atom d by rule r3. Further answer sets are
B = {a, c, d}, C = {b, e}, and D = {a, d, e}.

Counting Projected Answer Sets. An instance is a
pair (⇧, P), where ⇧ is a program and P is a set of atoms
such that P ✓ at(⇧). We call the set P projection atoms
of ⇧. The projected answer sets count of ⇧ with respect to P
is the number of subsets I ✓ P such that I [J is an answer
set of ⇧ for some set J ✓ at(⇧) \ P . The counting projected
answer sets problem (#PAS) asks to output the projected
answer sets count of ⇧, i.e., |{I \ P | I 2 S}| where S is
the set of all answer sets of ⇧.
Example 2. Consider program ⇧ from Example 1 and its
four answer sets {a, c, d}, {b, c, d}, {b, e}, and {a, d, e}, as
well as the set P := {d, e} of projection atoms. When we
project the answer sets to the set P , we only have the three an-
swer sets {d}, {e}, and {d, e}. Hence, while ⇧ has 4 answer
sets, the projected answer set count of (⇧, P) is 3.
Proposition 1. The problem #PAS is #·⌃2P -complete when
we allow disjunctive programs as input and #·NP-complete
when the input is restricted to head-cycle-free programs.

Proof. Membership immediately holds as we can check for
a given set I ✓ P whether there is an answer set J ◆ I
of ⇧ with J \ (P \ I) = ; by checking if there is an answer
set of program ⇧ [

S
i2I{ ¬i} [

S
i2P\I{ i}. Note

that if ⇧ is head-cycle-free, this program is head-cycle-free
as well. Hardness follows by establishing a parsimonious
reduction from #9-SAT or #98-SAT2, respectively. As-
sume that the input is restricted to head-cycle-free programs.
Given an instance (Q,Z) with Q = 9X.�(X,Z). We re-
duce to the instance (R(Q), Z) of #PAS, where R(Q) is

2For quantified Boolean formulas (QBF) and its evaluation prob-
lem (Q1 . . . Qi-SAT for alternating Qi 2 {9, 8}) we refer to stan-
dard texts (Biere et al. 2009; Kleine Büning and Lettman 1999).

defined as follows. For each variable v 2 X [Z, we add
the rule v _ nv . For each clause `1 _ . . . _ `k in �(X,Z),
we add a rule ¯̀

1, . . . , ¯̀k where ¯̀
i corresponds to x

if `i = ¬x for a variable x, and ¬x otherwise. Then, a
counter c solves (Q,Z) if and only if c solves (R(Q), Z).
Assume that we allow arbitrary disjunctive programs as input.
Given an instance (Q,Z), where Q = 9X.8Y.�(X,Y, Z).
We reduce to the instance (R(Q0), Z) of #PAS, where Q0 =
9X 0.8Y.�(X,Y, Z), X 0 = X [Z, and R(Q0) is defined
exactly as by Eiter and Gottlob (1995). Then, since R is a
correct encoding of 98-SAT, the projected model count c
of (Q,Z) is the projected answer sets count of (R(Q0), Z)
and vice versa. Consequently, the proposition sustains.

Tree Decompositions (TDs)
For basic terminology on graphs and digraphs, we refer to
standard texts (Diestel 2012; Bondy and Murty 2008). For
a tree T = (N,A, n) with root n and a node t 2 N , we
let children(t, T) be the sequence of all nodes t0 in arbitrar-
ily but fixed order, which have an edge (t, t0) 2 A. Let
G = (V,E) be a graph. A tree decomposition (TD) of
graph G is a pair T = (T,�), where T = (N,A, n) is
a rooted tree, n 2 N the root, and � a mapping that as-
signs to each node t 2 N a set �(t) ✓ V , called a bag,
such that the following conditions hold: (i) V =

S
t2N �(t)

and E ✓
S

t2N{{u, v} | u, v 2 �(t)}; and (ii) for each
r, s, t, such that s lies on the path from r to t, we have
�(r)\�(t) ✓ �(s). Then, width(T) := maxt2N |�(t)|�1.
The treewidth tw(G) of G is the minimum width(T) over
all tree decompositions T of G. For arbitrary but fixed w � 1,
it is feasible in linear time to decide if a graph has treewidth
at most w and, if so, to compute a tree decomposition of
width w (Bodlaender 1996). In order to simplify case dis-
tinctions in the algorithms, we always use so-called nice
tree decompositions, which can be computed in linear time
without increasing the width (Kloks 1994) and are defined
as follows. For a node t 2 N , we say that type(t) is leaf
if children(t, T) = hi; join if children(t, T) = ht0, t00i
where �(t) = �(t0) = �(t00) 6= ;; int (“introduce”) if
children(t, T) = ht0i, �(t0) ✓ �(t) and |�(t)| = |�(t0)|+1;
rem (“removal”) if children(t, T) = ht0i, �(t0) ◆ �(t) and
|�(t0)| = |�(t)| + 1. If for every node t 2 N , type(t) 2
{leaf, join, int, rem} and bags of leaf nodes and the root are
empty, then the TD is called nice.
Example 3. Figure 1 illustrates a graph G1 and a tree de-
composition of G1 of width 2. By a basic property3 of tree
decompositions (Kloks 1994), the treewidth of G1 is 2.

Dynamic Programming on TDs
In order to use tree decompositions for ASP solving, we
need a dedicated graph representation of ASP programs (Jakl,
Pichler, and Woltran 2009). The primal graph G⇧ of pro-
gram ⇧ has the atoms of ⇧ as vertices and an edge {a, b} if
there exists a rule r 2 ⇧ and a, b 2 at(r).
Example 4. Recall program ⇧ from Example 1 and observe
that graph G1 in Figure 1 is the primal graph of ⇧.

3The vertices e,b,d that are all neighbors to each other in G1.

e

a

d

c b

{c, e}t1 {b, d, e}

t2
{a, b, e}t3

Figure 1: Graph G1 and a tree decomposition of G1.

Let T = (T,�) be a tree decomposition of primal graph G⇧

of a program ⇧. Further, let T = (N, ·, n) and t 2 N . The
bag-program is defined as ⇧t := {r | r 2 ⇧, at(r) ✓ �(t)},
the program below t as ⇧t := {r | r 2 ⇧t0 , t0 2
post-order(T, t)}, and the program strictly below t as
⇧<t := ⇧t \ ⇧t. It holds that ⇧n = ⇧<n = ⇧ (Fichte
et al. 2017a). Analogously, we define the atoms below t
by att :=

S
t02post-order(T,t) �(t

0), and the atoms strictly
below t by at<t := att \ �(t).

Algorithms that decide consistency or solve #AS (Fichte
et al. 2017a; Jakl, Pichler, and Woltran 2009) proceed by
dynamic programming along the tree decomposition (in post-
order) where at each node of the tree information is gath-
ered (Bodlaender and Kloks 1996) in a table by a (local)
algorithm A. The local algorithm is often also called table
algorithm. More generally, a table is a set of rows, where a
row ~u is a sequence of fixed length. Similar as for sequences
when addressing the i-th element, for a set U of rows (table)
we let U(i) := {~u(i) | ~u 2 U}. The actual length, content,
and meaning of the rows depend on the algorithm A. Since
we later traverse the tree decomposition repeatedly running
different algorithms, we explicitly state A-row if rows of this
type are syntactically used for algorithm A and similar A-
table for tables. In order to access tables computed at certain
nodes after a traversal as well as to provide better readability,
we attribute tree decompositions with an additional mapping
to store tables. Formally, a tabled tree decomposition (TTD)
of graph G is a triple T = (T,�, ⌧), where (T,�) is a tree
decomposition of G and ⌧ maps nodes t of T to tables. If
not specified otherwise, we assume that ⌧(t) = {} for every
node t of T . When a TTD has been computed using algo-
rithm A after traversing the entire decomposition, we call the
decomposition the A-TTD of the given input instance. Then,
the dynamic programming approach for ASP performs the
following steps for a given program ⇧:

1. Construct the primal graph of ⇧.
2. Compute a tree decomposition of the graph.
3. Run algorithm DPA (see Listing 1). It takes a tabled

tree decomposition T = (T,�, ◆) with T = (N, ·, n)
and traverses T in post-order (post-order(T, n) provides
this sequence of nodes for tree T rooted at n). At each
node t 2 N it computes a new A-table o(t) by executing
the algorithm A. The algorithm A has a “local view” on
the computation and can access only t, the atoms in the
bag �(t), the bag-program ⇧t, and child A-table o(t0) for
any child t0 of t.4

4. Output the A-tabled tree decomposition (T,�, o).
4Note that in Listing 1, A takes in addition as input the set P

and table ◆t. We will later reuse this listing. Then, P represents the
set of projected atoms and ◆t is a table at t from an earlier traversal.

Listing 1: Algorithm DPA((⇧, P), T)
Dynamic programming on TTD T , c.f., (Fichte et al. 2017a).

In: Problem instance (⇧, P), TTD T = (T,�, ◆) of G⇧ such
that n is the root of T and children(t, T) = ht1, . . . , t`i.

Out: A-TTD (T,�, o) with A-table mapping o
1 o empty mapping
2 for iterate t in post-order(T,n) do
3 o(t) A(t,�(t), ◆(t), (⇧t, P), ho(t1), . . . , o(t`)i)
4 return (T,�, o)

5. Print the result by interpreting table o(n) for root n of T .

Then, the actual computation of algorithm A is a some-
what technical case distinction of the types type(t) we
can have when considering node t. Algorithms for count-
ing answer sets of disjunctive programs (Jakl, Pichler, and
Woltran 2009) and its extensions (Fichte et al. 2017a) have
already been established. Implementations of these algo-
rithms can be useful also for solving (Fichte et al. 2017a;
2017c), but the running time is clearly double exponential
time in the treewidth in the worst case. We, however, estab-
lish an algorithm (PHC) that is restricted to head-cycle-free
programs. The runtime of our algorithm is factorial in the
treewidth and therefore faster than previous algorithms. Our
constructions are inspired by ideas used in previous dynamic
programming algorithms (Pichler et al. 2014). In the follow-
ing, we first present the (local) algorithm for the problem
of deciding whether a head-cycle-free program has an an-
swer set (consistency). In the end, this algorithm outputs a
new tabled tree decomposition, which we later reuse to solve
our actual counting problem. Note that the tree decomposi-
tion itself remains the same, but for readability, we keep the
computed tables and nodes aligned.

Consistency of Head-Cycle-Free Programs
We can use algorithm DPPHC to decide the consistency prob-
lem for head-cycle-free programs and simply specify our
new local algorithm (PHC) that “transforms” tables from
one node to another. As graph representation we use the
primal graph. The idea is to implicitly apply along the tree
decomposition the characterization of answer sets by Lin
and Zhao (2003) extended to head-cycle-free programs (Ben-
Eliyahu and Dechter 1994). To this end, we store in table o(t)
at each node t rows of the form hI,P,�i. The first position
consists of an interpretation I restricted to the bag �(t). For
a sequence ~u, we write I(~u) := ~u(1) to address the inter-
pretation part. The second position consists of a set P ✓ I
that represents atoms in I for which we know that they have
already been proven. The third position � is a sequence of
the atoms in I such that there is a super-sequence �0 of �,
which induces an ordering <�0 . Our local algorithm PHC
stores interpretation parts always restricted to bag �(t) and
ensures that an interpretation can be extended to a model of
sub-program ⇧t. More precisely, it guarantees that interpre-
tation I can be extended to a model I 0 ◆ I of ⇧t and that
the atoms in I 0 \ I (and the atoms in P ✓ I) have already
been proven, using some induced ordering <�0 where � is
a sub-sequence of �0. In the end, an interpretation I(~u) of
a row ~u of the table o(n) at the root n proves that there is a

Listing 2: Table algorithm PHC(t,�t, ·, (⇧t, ·), h⌧1, . . .i).
In: Node t, bag �t, bag-program ⇧t, h⌧1, . . .i is the sequence

of PHC-tables of children of t. Out: PHC-table ⌧t.
1 if type(t) = leaf then ⌧t {h;, ;, hii}
2 else if type(t) = int and a2�t is the introduced atom then
3 ⌧t {hJ,P [proven(J,�0,⇧t),�

0i | hI,P,�i 2 ⌧1,
J 2 {I, I+a }, J |= ⇧t, �

0 2 ords(�, {a} \ J)}
4 else if type(t) = rem and a 62 �t is the removed atom then
5 ⌧t {hI�a ,P�

a ,�⇠
a i | hI,P,�i 2 ⌧1, a 2 P [({a} \ I)}

6 else if type(t) = join then
7 ⌧t {hI,P1 [P2,�i | hI,P1,�i 2 ⌧1, hI,P2,�i 2 ⌧2}
8 return ⌧t

�⇠
�i

:=h�1, . . . ,�i�1,�i+1, . . . ,�ki where � = h�1, . . . ,�ki,
S+
e :=S [{e}, and S�

e :=S \ {e}.

; t1

{a}t2

{a, b} t3

{b} t4

;t5

{c}t6

{c, e}t7

{e}t8

{d, e}t9

{b, d, e}t10

{b, d}
t11

{b}t12

{b}t13

;

t14

T :

hI3.i, P3.i, �3.ii

h{a}, {a}, haii
h{b}, {b}, hbii
h{a, b},;, ha, bii
h{a, b},;, hb, aii

⌧3
i

1
2
3
4

hI4.i,P4.i,�4.ii

h;, ;, hii

h{b},{b}, hbii
⌧4

i

1
2

i

1
2
3
4
5

hI9.i, P9.i, �9.ii

h;, ;, hii

h{d}, ;, hdii
h{e}, {e}, heii
h{d, e},{e}, hd, eii
h{d, e},{e}, he, dii

⌧9

hI13.i,P13.i,�13.ii

h;, ;, hii

h{b}, {b}, hbii
⌧13

i

1
2

hI1.i,P1.i,�1.ii

h;, ;, hii

⌧1
i

1

hI12.i,P12.i,�12.ii

h;, ;, hii

h{b}, ;, hbii
h{b}, {b}, hbii

⌧12

hI11.i, P11.i,�11.ii

h{d}, {d}, hdii
h{b}, ;, hbii
h{b}, {b}, hbii
h{b, d},;, hd, bii
h{b, d},;, hb, dii
h{b, d},{d}, hb, dii

⌧11

i

1
2
3
4
5
6

i

1
2
3

hI10.i, P10.i, �10.ii

h{d}, {d}, hdii
h{b, d}, ;, hd, bii
h{b, d}, {d}, hb, dii
h{b, e}, {e}, hb, eii
h{b, e}, {b, e}, he, bii
h{d, e}, {d, e}, hd, eii
h{d, e}, {d, e}, he, dii
h{b, d, e},{e}, hb, d, eii
h{b, d, e},{e}, hb, e, dii
h{b, d, e},{e}, hd, b, eii
h{b, d, e},{e}, he, b, dii
h{b, d, e},{e}, hd, e, bii
h{b, d, e},{e}, he, d, bii

⌧10
i

1
2
3
4
5
6
7
8
9
10
11
12
13

Figure 2: Selected tables of ⌧ obtained by DPPHC on TD T .

superset I 0 ◆ I(~u) that is an answer set of ⇧ = ⇧n.
Listing 2 presents the algorithm PHC. Intuitively, when-

ever an atom a is introduced (int), we decide whether we
include a in the interpretation, determine bag atoms that can
be proven in consequence of this decision, and update the
sequence � accordingly. To this end, we define for a given in-
terpretation I and a sequence � the set proven(I,�,⇧t) :=S

r2⇧t,a2Hr
{a | B+

r ✓ I, I \ B�
r = ;, I \ (Hr \ {a}) =

;, B+
r <� a} where B+

r <� a holds if b <� a is true for ev-
ery b 2 B+

r . Moreover, given a sequence � = h�1, . . . ,�ki

and a set A of atoms, we compute the potential sequences
involving A. Therefore, we let ords(�, A) := {� | A =
;} [

S
a2A{ha,�1, . . . ,�ki, . . . , h�1, . . . ,�k, ai}. When re-

moving (rem) an atom a, we only keep those rows where a
has been proven (contained in P) and then restrict remain-
ing rows to the bag (not containing a). In case the node is
of type join, we combine two rows in two different child
tables, intuitively, we are enforced to agree on the interpreta-
tions I and sequences �. However, concerning the individual
proofs P , it suffices that an atom is proven in one of the rows.

Example 5. Recall program ⇧ from Example 1. Figure 2 de-
picts a TD T = (T,�) of the primal graph G1 of ⇧. Further,
the figure illustrates a snippet of tables of the TTD (T,�, ⌧),
which we obtain when running DPPHC on program ⇧ and
TD T according to Listing 2. In the following, we briefly
discuss some selected rows of those tables. Note that for sim-
plicity and space reasons, we write ⌧j instead of ⌧(tj) and
identify rows by their node and identifier i in the figure. For
example, the row ~u13.3 = hI13.3,P13.3,�13.3i 2 ⌧13 refers to
the third row of table ⌧13 for node t13. Node t1 is of type leaf.
Table ⌧1 has only one row, which consists of the empty in-
terpretation, empty set of proven atoms, and the empty se-
quence (Line 1). Node t2 is of type int and introduces atom a.
Executing Line 3 results in ⌧2 = {h;, ;, hii, h{a}, ;, haii}.
Node t3 is of type int and introduces b. Then, bag-program
at node t3 is ⇧t3 = {a _ b }. By construction (Line 3)
we ensure that interpretation I3.i is a model of ⇧t3 for every
row hI3.i,P3.i,�3.ii in ⌧3. Node t4 is of type rem. Here, we
restrict the rows such that they contain only atoms occurring
in bag �(t4) = {b}. To this end, Line 5 takes only rows ~u3.i

of table ⌧3 where atoms in I3.i are also proven, i.e., con-
tained in P3.i. In particular, every row in table ⌧4 originates
from at least one row in ⌧3 that either proves a 2 P3.i or
where a 62 I3.i. Basic conditions of a TD ensure that once an
atom is removed, it will not occur in any bag at an ancestor
node. Hence, we also encountered all rules where atom a oc-
curs. Nodes t5, t6, t7, and t8 are symmetric to nodes t1, t2, t3,
and t4. Nodes t9 and t10 again introduce atoms. Observe
that P10.4 = {e} since �10.4 does not allow to prove b using
atom e. However, P10.5 = {b, e} as the sequence �10.5 al-
lows to prove b. In particular, in row ~u10.5 atom e is used to
derive b. As a result, atom b can be proven, whereas order-
ing �10.4 = hb, ei does not serve in proving b. We proceed
similar for nodes t11 and t12. At node t13 we join tables ⌧4
and ⌧12 according to Line 7. Finally, we have ⌧14 6= ;. Hence,
⇧ has an answer set. We can construct the answer set {b, e}
by combining the interpretation parts I of the yellow marked
rows of Figure 2.

Next, we provide a notion to reconstruct answer sets
from a computed TTD, which allows for computing for a
given row its predecessor rows in the corresponding child
tables, c.f., (Fichte et al. 2018). Let ⇧ be a program,
T = (T,�, ⌧) be an A-TTD of G⇧, and t be a node of T
where children(t, T) = ht1, . . . , t`i. Given a sequence ~s =
hs1, . . . , s`i, we let h{~s}i :=h{s1}, . . . , {s`}i. For a given A-
row ~u, we define the originating A-rows of ~u in node t
by A-origins(t, ~u) :={~s | ~s 2 ⌧(t1) ⇥ · · · ⇥ ⌧(t`), ~u 2
A(t,�(t), ·, (⇧t, ·), h{~s}i)}. We extend this to an A-table ⇢
by A-origins(t, ⇢) :=

S
~u2⇢ A-origins(t, ~u).

Example 6. Consider program ⇧ and PHC-tabled tree de-
composition (T,�, ⌧) from Example 5. We focus on ~u1.1 =
h;, ;, hii of table ⌧1 of leaf t1. The row ~u1.1 has no
preceding row, since type(t1) = leaf. Hence, we have
PHC-origins(t1, ~u1.1) = {hi}. The origins of row ~u11.1

of table ⌧11 are given by PHC-origins(t11, ~u11.1), which
correspond to the preceding rows in table ⌧10 that lead to
row ~u11.1 of table ⌧11 when running algorithm PHC, i.e.,
PHC-origins(t11, ~u11.1) = {h ~u10.1i, h ~u10.6i, h ~u10.7i}. Ori-

gins of row ~u12.2 are given by PHC-origins(t12, ~u12.2) =
{h ~u11.2i, h ~u11.6i}. Note that ~u11.4 and ~u11.5 are not
among those origins, since d is not proven. Observe that
PHC-origins(tj , ~u) = ; for any row ~u 62 ⌧j . For node t13 of
type join and row ~u13.2, we obtain PHC-origins(t13, ~u13.2)
= {h ~u4.2, ~u12.2i, h ~u4.2, ~u12.3i}.

Next, we provide statements on correctness and a runtime
analysis of our algorithm.
Theorem 1 (?5). The algorithm DPPHC is correct.
In other words, given a head-cycle-free program ⇧ and
a TTD T = (T,�, ·) of G⇧ where T = (N, ·, n) with
root n. Then, algorithm DPPHC((⇧, ·), T) returns the PHC-
TTD (T,�, ⌧) such that ⇧ has an answer set if and only if
h;, ;, hii 2 ⌧(n). Further, we can construct all the answer
sets of ⇧ from transitively following the origins of ⌧(n).

Proof (Idea). For soundness, we state an invariant and es-
tablish that this invariant holds for every node t 2 N . For
each row ~u = hI,P,�i 2 ⌧(t), we have I ✓ �(t),P ✓ I ,
and � is a sequence over atoms in I . Intuitively, we ensure
that I |= ⇧t and that exactly the atoms in at<t and P

can be proven using a super-sequence �0 of �. By con-
struction, we guarantee that we can decide consistency if
row h;, ;, hii 2 ⌧(n). Further, we can even reconstruct an-
swer sets, by following PHC-origins of this single row back
to the leaves. For completeness, we show that we obtain all
the rows required to output all the answer sets of ⇧.

Theorem 2. Given a head-cycle-free program ⇧ and a tree
decomposition T = (T,�) of G⇧ of width k with g nodes.
Algorithm DPPHC runs in time O(3k · k! · g).

Proof (Sketch). Let d = k + 1 be maximum bag size of the
tree decomposition T . The table ⌧(t) has at most 3d ·d! rows,
since for a row hI,P,�i we have d! many sequences �, and
by construction of algorithm PHC, an atom can be either in I ,
both in I and P , or neither in I nor in P . In total, with the help
of efficient data structures, e.g., for nodes t with type(t) =
join, one can establish a runtime bound of O(3d · d!). Then,
we apply this to every node t of the tree decomposition, which
resulting in running time O(3d · d! · g) ✓ O(3k · k! · g).

A natural question is whether we can significantly improve
this algorithm for fixed k. To this end, we take the exponential
time hypothesis (ETH) into account, which states that there
is some real s > 0 such that we cannot decide satisfiability
of a given 3-CNF formula F in time 2s·|F |

· kFkO(1).
Proposition 2. Unless ETH fails, consistency of head-cycle-
free program ⇧ cannot be decided in time 2o(k) · k⇧ko(k)

where k is the treewidth of the primal graph of ⇧.

Proof. The result follows by a reduction from SAT to ASP
(head-cycle-free) similar to the proof of Proposition 1.

5Auxiliary content and proof of statements marked with “?” are
in an authors self-archived version (Fichte, and Hecher 2018).

6⌫ contains rows obtained by recursively following origins
of ⌧(n).

7Later we use (among others) PCNTPHC where A = PHC.

1. Build graph G of ⇧

Store results
in table ⌧t

Apply A on ⇧t

2. Create TD T of G

done?
no

yes

Visit next node t
of T in post-order

Purge non-solutions in ⌧) ⌫

3a. DP for ASP DPA

Store results
in table ⇡t

Apply PROJ to ⌫t

done?
no

yes

Visit next node t
of T in post-order

3b. DP for Projection DPPROJ

4. Output count

Figure 3: Algorithm PCNTA consists of DPA and DPPROJ.

In the construction above, we store an arbitrary but fixed
ordering on the involved atoms. We believe that we cannot
avoid these orderings in general, since we have to compensate
arbitrarily “bad” orderings induced by the decomposition,
which leads us to the following conjecture.
Conjecture 1. Unless ETH fails, consistency of a head-cycle-
free program ⇧ cannot be decided in time 2o(k·log(k))

·k⇧ko(k)

where k is the treewidth of the primal graph of ⇧.
In other words, we claim that consistency for head-cycle-

free programs is slightly superexponential. We would like to
mention that Lokshtanov, Marx, and Saurabh (2011) argue
that whenever we cannot avoid an ordering the problem is ex-
pected to be slightly superexponential. If the conjecture holds,
our algorithm is asymptotically worst-case optimal, even for
fixed treewidth k since DPPHC runs in time O(2k·log(k)

· g),
where number g of decomposition nodes is linear in the size
of the instance (Bodlaender 1996).

Dynamic Programming for #PAS
In this section, we present our dynamic programming
algorithm7 PCNTA, which allows for solving the projected
answer set counting problem (#PAS). PCNTA is based on an
approach of projected counting for Boolean formulas (Fichte
et al. 2018) where TDs are traversed multiple times. We show
that ideas from that approach can be fruitfully extended to
answer set programming. Figure 3 illustrates the steps of
PCNTA. First, we construct the primal graph G⇧ of the in-
put program ⇧ and compute a TD of ⇧. Then, we traverse
the TD a first time by running DPA (Step 3a), which outputs
a TTD Tcons = (T,�, ⌧). Afterwards, we traverse Tcons in
pre-order and remove all rows from the tables that cannot be
extended to an answer set (“Purge non-solutions”). In other
words, we keep only rows ~u of table ⌧(t) at node t, if ~u is
involved in those rows that are used to construct an answer
set of ⇧, and let the resulting TTD be Tpurged = (T,�, ⌫)6.
We refer to ⌫ as purged table mapping. In Step 3b (DPPROJ),
we traverse Tpurged to count interpretations with respect to
the projection atoms and obtain Tproj = (T,�,⇡). From the
table ⇡(n) at the root n of T , we can then read the projected
answer sets count of the input instance. In the following, we
only describe the local algorithm (PROJ), since the traversal
in DPPROJ is the same as before. For PROJ, a row at a node t
is a pair h⇢, ci 2 ⇡(t), where ⇢ ✓ ⌫(t) is an A-table and c is
a non-negative integer. In fact, integer c stores the number of
intersecting solutions (ipasc). However, we aim for the pro-

jected answer sets count (pasc), whose computation requires
a few additional definitions. Therefore, we can simply widen
definitions from very recent work (Fichte et al. 2018).

In the remainder, we assume (⇧, P) to be an instance
of #PAS, (T,�, ⌧) to be an A-TTD of G⇧ and the map-
pings ⌧ , ⌫, and ⇡ as used above. Further, let t be a node
of T with children(t, T) = ht1, . . . , t`i and let ⇢ ✓
⌫(t). The relation =P ✓ ⇢ ⇥ ⇢ considers equivalent
rows with respect to the projection of its interpretations
by =P :={(~u,~v) | ~u,~v 2 ⇢, I(~u) \ P = I(~v) \ P}.
Let bucketsP (⇢) be the set of equivalence classes induced
by =P on ⇢, i.e., bucketsP (⇢) := (⇢/=P) = {[~u]P | ~u 2 ⇢},
where [~u]P = {~v | ~v=P ~u,~v 2 ⇢} (Wilder 1965). Further,
sub-bucketsP (⇢) :={S | ; (S ✓ B,B 2 bucketsP (⇢)}.
Example 7. Consider program ⇧, set P of projection atoms,
TTD (T,�, ⌧), and table ⌧10 from Example 2 and Figure 2.
Note that during purging rows ~u10.2 and ~u10.8, . . . , ~u10.13

are removed (highlighted gray), since they are not in-
volved in any answer set, resulting in table ⌫10. Then,
~u10.4 =P ~u10.5 and ~u10.6 =P ~u10.7. The set ⌫10/=P

of equivalence classes of ⌫10 is bucketsP (⌫10) =
{{ ~u10.1}, { ~u10.3}, { ~u10.4, ~u10.5}, { ~u10.6, ~u10.7}}.

Later, we require to construct already computed projected
counts for tables of children of a given node t. Therefore,
we define the stored ipasc of a table ⇢ ✓ ⌫(t) in table ⇡(t)
by s-ipasc(⇡(t), ⇢) :=

P
h⇢,ci2⇡(t) c. We extend this to a se-

quence s = h⇡(t1), . . . ,⇡(t`)i of tables of length ` and a
set O = {h⇢1, . . . , ⇢`i, h⇢01, . . . , ⇢

0

`i, . . .} of sequences of `
tables by s-ipasc(s,O) =

Q
i2{1,...,`} s-ipasc(s(i), O(i)). In

other words, we select the i-th position of the sequence
together with sets of the i-th positions from the set of se-
quences.

Intuitively, when we are at a node t in algorithm DPPROJ we
have already computed ⇡(t0) of Tproj for every node t0 below t.
Then, we compute the projected answer sets count of ⇢ ✓
⌫(t). Therefore, we apply the inclusion-exclusion principle to
the stored projected answer sets count of origins. We define
pasc(t, ⇢, h⇡(t1), . . .i) :=

P
;(O✓A-origins(t,⇢) (�1)

(|O|�1)
·

s-ipasc(h⇡(t1), . . .i, O). Vaguely speaking, pasc determines
the A-origins of table ⇢, goes over all subsets of these origins
and looks up the stored counts (s-ipasc) in the PROJ-tables
of the children ti of t.
Example 8. Consider again program ⇧ and TD T from
Example 1 and Figure 2. First, we compute the projected
count pasc(t4, { ~u4.1}, h⇡(t3)i) for row ~u4.1 of table ⌫(t4),
where ⇡(t3) :=

�
h{ ~u3.1}, 1i, h{ ~u3.2}, 1i, h{ ~u3.1, ~u3.2}, 1i

with ~u3.1 = h;, ;, hii and ~u3.2 = h{a}, ;, haii. Note that t5
has only the child t4 and therefore the product in s-ipasc
consists of only one factor. Since PHC-origins(t4, ~u4.1) =
{h ~u3.1i}, only the value of s-ipasc for set {h ~u3.1i} is non-
zero. Hence, we obtain pasc(t4, { ~u4.1}, h⇡(t3)i) = 1. Next,
we compute pasc(t4, { ~u4.1, ~u4.2}, h⇡(t3)i). Observe that
PHC-origins(t4, { ~u4.1, ~u4.2}) = {h ~u3.1i, h ~u3.2i}. We sum
up the values of s-ipasc for sets { ~u4.1} and { ~u4.2} and
subtract the one for set { ~u4.1, ~u4.2}. Hence, we obtain
pasc(t4, { ~u4.1, ~u4.2}, h⇡(t3)i) = 1 + 1� 1 = 1.

Next, we provide a definition to compute ipasc, which

Listing 3: Table algorithm PROJ(t, ·, ⌫t, (·, P), h⇡1, . . .i) for
projected counting.

In: Node t, purged table mapping ⌫t, set P of projection atoms,
h⇡1, . . .i is the sequence of PROJ-tables of children of t.

Out: PROJ-table ⇡t consisting of pairs h⇢, ci, where ⇢ ✓ ⌫t
and c 2 N.

1 ⇡t
�
h⇢, ipasc(t, ⇢, h⇡1, . . .i)i

�� ⇢ 2 sub-bucketsP (⌫t)

2 return ⇡t

can be computed at a node t for given table ⇢ ✓

⌫(t) by computing the pasc for children ti of t using
stored ipasc values from tables ⇡(ti), subtracting and
adding ipasc values for subsets ; (' (⇢ accordingly.
Formally, ipasc(t, ⇢, s) :=1 if type(t) = leaf and other-
wise ipasc(t, ⇢, s) :=

�� pasc(t, ⇢, s) +
P

;('(⇢(�1)
|'|

·

ipasc(t,', s)
�� where s = h⇡(t1), . . .i. In other words, if a

node is of type leaf the ipasc is one, since bags of leaf nodes
are empty. Otherwise, we compute the “non-overlapping”
count of given table ⇢ ✓ ⌫(t) with respect to P , by exploit-
ing the inclusion-exclusion principle on A-origins of ⇢ such
that we count every projected answer set only once. Then
we have to subtract and add ipasc values (“all-overlapping”
counts) for strict subsets ' of ⇢, accordingly.

Finally, Listing 3 presents the local algorithm PROJ,
which stores ⇡(t) consisting of every sub-bucket of the given
table ⌫(t) together with its ipasc.
Example 9. Recall instance (⇧, P), TD T , and tables ⌧1,
. . ., ⌧14 from Examples 2, 5, and Figure 2. Figure 4 depicts
selected tables of ⇡1, . . . ,⇡14 obtained after running DPPROJ
for counting projected answer sets. We assume that row i in
table ⇡t corresponds to ~vt.i = h⇢t.i, ct.ii where ⇢t.i ✓ ⌫(t).
Recall that for some nodes t, there are rows among differ-
ent PHC-tables that are removed (highlighted gray in Fig-
ure 2) during purging. By purging we avoid to correct stored
counters (backtracking) whenever a row has no “succeeding”
row in the parent table.

Next, we discuss selected rows obtained by
DPPROJ((⇧, P), (T,�, ⌫)). Tables ⇡1, . . ., ⇡14 are
shown in Figure 4. Since type(t1) = leaf, we have
⇡1 = h{h;, ;, hii}, 1i. Intuitively, at t1 the row h;, ;, hii be-
longs to 1 bucket. Node t2 introduces atom a, which results in
table ⇡2 :=

�
h{ ~u2.1}, 1i, h{ ~u2.2}, 1i, h{ ~u2.1, ~u2.2}, 1i

,

where ~u2.1 = h;, ;, hii and ~u2.2 = h{a}, ;, haii
(derived similarly to table ⇡4 as in Example 8).
Node t10 introduces projected atom e, and
node t11 removes e. For row ~v11.1 we compute the
count ipasc(t11, { ~u11.1}, h⇡10i) by means of pasc. There-
fore, take for ' the singleton set { ~u11.1}. We simply have
ipasc(t11, { ~u11.1}, h⇡10i) = pasc(t11, { ~u11.1}, h⇡10i).
To compute pasc(t11, { ~u11.1}, h⇡10i), we take for O the
sets { ~u10.1}, { ~u10.6}, { ~u10.7}, and { ~u10.6, ~u10.7} into
account, since all other non-empty subsets of origins
of ~u11.1 in ⌫10 do not occur in ⇡10. Then, we take
the sum over the values s-ipasc(h⇡10i, { ~u10.1}) = 1,
s-ipasc(h⇡10i, { ~u10.6}) = 1, s-ipasc(h⇡10i, { ~u10.7}) = 1
and subtract s-ipasc(h⇡10i, { ~u10.6, ~u10.7}) = 1. This results
in pasc(t11, { ~u11.1}, h⇡10i) = c10.1+c10.7 + c10.8�c10.9 =
2. We proceed similarly for row v11.2, resulting in c11.2 = 1.

; t1

{a}t2

{a, b}t3

{b} t4

;t5

{c}t6

{c, e}t7

{e}t8

{d, e} t9

{b, d, e}t10

{b, d}t11

{b}t12

{b} t13

; t14T :

h⌫3.i, c3.ii

h{h{a}, {a}, haii},1i
h{h{b}, {b}, hbii}, 1i
h{h{a}, {a}, haii,

1i
h{b}, {b}, hbii},

⇡3

i
1
2

3

h⌫4.i, c4.ii

h{h;, ;, hii}, 1i
h{h{b}, {b}, hbii},1i
h{h;, ;, hii,

1i
h{b}, {b}, hbii},

⇡4

i
1
2

3

i
1
2
3
4

5

h⌫9.i, c9.ii

h{h{d}, ;, hii}, 1i
h{h{e}, {e}, heii}, 1i
h{h{d, e}, {e}, hd, eii},1i
h{h{d, e}, {e}, he, dii},1i
h{h{d, e}, {e}, hd, eii,

1i
h{d, e}, {e}, he, dii},

⇡9

i
1
2
3
4

5

h⌫13.i, c13.ii

h{h;, ;, hii}, 2i
h{h{b}, {b}, hbii},2i
h{h;, ;, hii,

1i
h{b}, {b}, hbii},

⇡13

i
1
2

3

h⌫1.i, c1.ii

h{h;, ;, hii},1i
⇡1

h⌫14.i, c14.ii

h{h;, ;, hii},3i
⇡14

i
1

i
1

h⌫12.i, c12.ii

h{h;, ;, hii}, 2i
h{h{b}, ;, hbii}, 2i
h{h{b}, {b}, hbii}, 1i
h{h;, ;, hii, h{b}, ;, hbii}, 1i
h{h;, ;, hii, h{b}, {b}, hbii}, 0i
h{h{b}, ;, hbii, h{b}, {b}, hbii},1i
h{h;, ;, hii, h{b}, ;, hbii,

0i
h{b}, {b}, hbii},

⇡12

i
1
2
3
4
5
6

7

h⌫10.i, c10.ii

h{h{d}, {d}, hdii}, 1i
h{h{b, d}, {d}, hb, dii}, 1i
h{h{d}, {d}, hdii,

1i
h{b, d}, {d}, hb, dii},

h{h{b, e}, {e}, hb, eii}, 1i
h{h{b, e}, {b, e}, he, bii}, 1i
h{h{b, e}, {e}, hb, eii,

1i
h{b, e}, {b, e}, he, bii},

h{h{d, e}, {d, e}, hd, eii},1i
h{h{d, e}, {d, e}, he, dii},1i
h{h{d, e}, {d, e}, hd, eii,

1i
h{d, e}, {d, e}, he, dii},

⇡10

h⌫11.i, c11.ii

h{h{d}, {d}, hdii}, 2i
h{h{b, d}, {d}, hb, dii}, 1i
h{h{d}, {d}, hdii,

1i
h{b, d}, {d}, hb, dii},

h{h{b}, ;, hbii}, 1i
h{h{b}, {b}, hbii}, 1i
h{h{b}, ;, hbii,

1i
h{b}, {b}, hbii},

h{h{d, e}, {d, e}, hd, eii},1i

⇡11

i
1
2

3

4
5

6

7

i
1
2

3

4
5

6

7
8

9

Figure 4: Selected tables of ⇡ obtained by DPPROJ on TD T and purged table mapping ⌫ (obtained by purging on ⌧ , c.f, Figure 2).

Then for row v11.3, ipasc(t11, { ~u11.1, ~u11.6}, h⇡10i) =
| pasc(t11, { ~u11.1, ~u11.6}, h⇡10i)�ipasc(t11, { ~u11.1}, h⇡10i)
� ipasc(t11, { ~u11.6}, h⇡10i)| = |2� c11.1 � c11.2| =
|2� 2� 1| = |�1| = 1 = c11.3. Hence, c11.3 = 1
represents the number of projected answer sets, both
rows ~u11.1 and ~u11.6 have in common. We then use it for
table t12. Node t12 removes projection atom d. For node t13
where type(t13) = join one multiplies stored s-ipasc values
for A-rows in the two children of t13 accordingly. In the
end, the projected answer sets count of ⇧ corresponds
to s-ipasc(h⇡14i, ~u14.1) = 3.

Runtime Analysis and Correctness
Next, we present asymptotic upper bounds on the runtime of
our Algorithm DPPROJ. We assume �(n) to be the number of
operations that are required to multiply two n-bit integers,
which can be achieved in time n · log n · log log n (Knuth
1998; Harvey, van der Hoeven, and Lecerf 2016). Often, even
constant-time multiplication is assumed.
Theorem 3. Given a #PAS instance (⇧, P) and a tabled
tree decomposition Tpurged = (T,�, ⌫) of G⇧ of width k with
g nodes. Then, DPPROJ runs in time O(24m · g · �(k⇧k))
where m :=max({⌫(t) | t 2 N}).

Proof. Let d = k+1 be maximum bag size of the TD T . For
each node t of T , we consider the table ⌫(t) of Tpurged. Let
TDD (T,�,⇡) be the output of DPPROJ. In worst case, we
store in ⇡(t) each subset ⇢ ✓ ⌫(t) together with exactly one
counter. Hence, we have at most 2m many rows in ⇢. In order
to compute ipasc for ⇢, we consider every subset ' ✓ ⇢ and
compute pasc. Since |⇢| m, we have at most 2m many
subsets ' of ⇢. Finally, for computing pasc, we consider
in the worst case each subset of the origins of ' for each
child table, which are at most 2m · 2m because of nodes t
with type(t) = join. In total, we obtain a runtime bound
of O(2m · 2m · 2m · 2m · �(k⇧k)) ✓ O(24m · �(k⇧k))
due to multiplication of two n-bit integers for nodes t

with type(t) = join at costs �(n). Then, we apply this to
every node of T resulting in runtime O(24m ·g ·�(k⇧k)).

Corollary 1. Given an instance (⇧, P) of #PAS where ⇧ is
head-cycle-free and has treewidth k. Then, PCNTPHC runs in
time O(23

k+1.27
·k!

· k⇧k · �(k⇧k)).

Proof. We can compute in time 2O(k3)
· kG⇧k a TD T

0

with g k⇧k nodes of width at most k (Bodlaender
1996). Then, we can simply run DPPHC, which runs in
time O(3k · k! · k⇧k) by Theorem 2 and since the num-
ber of nodes of a tree decomposition is linear in the size
of the input instance (Bodlaender 1996). Then, we again
traverse the TD for purging and output Tpurged, which runs
in time single exponential in the treewidth and linear in the
instance size. Finally, we run DPPROJ and obtain by Theo-
rem 3 that the runtime bound O(24·3

k
·k!

· k⇧k · �(k⇧k)) ✓

O(23
k+1.27

·k!
·k⇧k·�(k⇧k)). Hence, the corollary holds.

The next result establishes lower bounds.
Theorem 4. Unless ETH fails, #PAS cannot be solved in
time 22

o(k)

· k⇧ko(k) for a given instance (⇧, P), where k is
the treewidth of the primal graph of ⇧.

Proof. Assume for proof by contradiction that there is such
an algorithm. We show that this contradicts a very re-
cent result (Lampis and Mitsou 2017; Fichte et al. 2018),
which states that one cannot decide the validity of a QBF
8V1.9V2.E in time 22

o(k)

· kEko(k), where E is in CNF. Let
(8V1.9V2.E, k) be an instance of 89-SAT parameterized by
the treewidth k. Then, we reduce to an instance ((⇧, P), 2k)
of the decision version #PAS-exactly-2|V1| when parame-
terized by treewidth of G⇧ such that P = V1, the num-
ber of solutions is exactly 2|V1|, and ⇧ is as follows. For
each v 2 V1 [V2, program ⇧ contains rule v _ nv .
Each clause x1 _ . . . _ xi _ ¬xi+1 _ . . . _ ¬xj results

in one additional rule ¬x1, . . . ,¬xi, xi+1, . . . , xj . It is
easy to see that the reduction is correct and therefore in-
stance ((⇧, P), 2k) is a yes instance of #PAS-exactly-2|V1|

if and only if (8V1.9V2.E, k) is a yes instance of problem 89-
SAT. In fact, the reduction is also an fpl-reduction, since the
treewidth of ⇧ at most doubles due to duplication of atoms.
Note that we require an fpl-reduction here, as results do not
carry over from simple fpt-reductions. This concludes the
proof and establishes the theorem.

Finally, we state that indeed PCNTPHC gives the projected
answer sets count of a given head-cycle-free program ⇧.
Proposition 3 (?). Algorithm PCNTPHC is correct and out-
puts for any instance of #PAS its projected answer sets count.

Proof. Soundness follows by establishing an invariant for
any row of ⇡(t) guaranteeing that the values of ipasc indeed
capture “all-overlapping” counts of ⇧t. One can show that
the invariant is a consequence of the properties of PHC and
the additional “purging” step, which neither destroys sound-
ness nor completeness of DPPHC. Further, completeness guar-
antees that indeed all the required rows are computed.

Solving #PDAS for Disjunctive Programs
In this section, we extend our algorithm to solve the pro-
jected answer set counting problem (#PDAS) for disjunc-
tive programs. Therefore, we simply use a local algorithm
PRIM for disjunctive ASP that was introduced in the liter-
ature (Fichte et al. 2017a; Jakl, Pichler, and Woltran 2009).
Recall algorithm PCNTA illustrated in Figure 3. First, we con-
struct a graph representation and heuristically compute a tree
decomposition of this graph. Then, we run DPPRIM as first
traversal resulting in TTD (T,�, ⌧). Next, we purge rows
of ⌧ , which can not be extended to an answer set resulting
in TTD (T,�, ⌫). Finally, we compute the projected answer
sets count by DPPROJ and obtain TTD (T,�,⇡).
Proposition 4 (?). PCNTPRIM is correct, i.e., it outputs the
projected answer sets count for any instance of #PDAS.

The following corollary states the runtime results.
Corollary 2. Given an instance (⇧, P) of #PDAS where ⇧
is a disjunctive program of treewidth k. Then, PCNTPRIM runs
in time O(22

2k+3

· k⇧k · �(k⇧k)).

Proof. The first two steps follow the proof of Corollary 1.
However, DPPRIM runs in time O(22

k+2

· k⇧k) (Fichte et al.
2017a). Finally, we run DPPROJ and obtain by Theorem 3 that
O(24·2

2k+2

·k⇧k ·�(k⇧k)) ✓O(22
2k+3

·k⇧k ·�(k⇧k)).

Again, we are interested in whether we can improve the
algorithm significantly. While we obtain lower bounds from
the ETH for SAT (single-exponential) and for 89-SAT/98-
SAT (double-exponential), to our knowledge it is unproven
whether this extends to 898-SAT and 989-SAT (triple-
exponential). Since it was anticipated by Marx and Mit-
sou (2016) that it follows just by assuming ETH, we state
this as hypothesis. In particular, they claimed that alternating
quantifier alternations are the reason for large dependence on

treewidth. However, the proofs can be quite involved, trading
an additional alternation for exponential compression.
Hypothesis 1. The 898-SAT problem for a QBF Q in DNF
of treewidth k can not be decided in time 22

2o(k)

· kQko(k).
Theorem 5. Unless Hypothesis 1 fails, #PDAS for disjunc-
tive programs ⇧ cannot be solved in time 22

2o(k)

· k⇧ko(k)

for given instance (⇧, P) of treewidth k.

Proof. Assume for proof by contradiction that there is such
an algorithm. We show that this contradicts Hypothesis 1, i.e.,
we cannot decide the validity of a QBF Q = 8V1.9V2.8V3.E

in time 22
2o(k)

·kEko(k) where E is in DNF. Assume we have
given such an instance when parameterized by the treewidth k.
In the following, we employ a well-known reduction R (Eiter
and Gottlob 1995), which transforms 9V2.8V3.E into ⇧ =
R(9V2.8V3.E) and gives a yes instance ⇧ of consistency
if and only if 9V2.8V3.E is a yes instance of 98-SAT.
Then, we reduce instance (Q, k) via a reduction S to an
instance ((⇧0, V1), 2k + 2), where ⇧0 = R(9V 0

2 .8V3.E),
V 0
2 :=V1 [V2, of the decision version #PDAS-exactly-2|V1|

of #PDAS when parameterized by treewidth such that the
number of projected answer sets is exactly 2|V1|. It is easy to
see that reduction S gives a yes instance (⇧0, V1) of #PDAS-
exactly-2|V1| if and only if 8V1.9V2.8V3.E is a yes instance
of 898-SAT. However, it remains to show that the reduc-
tion S indeed increases the treewidth only linearly. There-
fore, let T = (T,�) be TD of E. We transform T into
a TD T

0 = (T,�0) of G⇧0 as follows. For each bag �(t)
of T , we add vertices for the atoms w and w0 (two ad-
ditional atoms introduced in reduction R) and in addition
we duplicate each vertex v in �(t) (due to correspond-
ing duplicate atoms introduced in reduction R). Observe
that width(T 0) 2 · width(T) + 2. By construction of R,
T

0 is then a TD of G⇧0 . Hence, S is also an fpl-reduction.

Then, the runtime of algorithm PCNTPRIM is asymptotically
worst-case optimal, depending on multiplication costs �(n).

Conclusions
We introduced novel algorithms to count the projected an-
swer sets (#PAS) of head-cycle-free or arbitrary disjunctive
programs. Our algorithms employ dynamic programming
and exploit small treewidth of the primal graph of the input
program. The second algorithm, which solves arbitrary dis-
junctive programs, is expected asymptotically optimal assum-
ing the exponential time hypothesis (ETH). More precisely,
runtime is triple exponential in the treewidth and polynomial
in the size of the input instance. When we restrict the input
to head-cycle-free programs, the runtime drops to double
exponential.

Our results extend previous work to answer set program-
ming and we believe that it can be applicable to other hard
combinatorial problems, such as circumscription (Durand,
Hermann, and Kolaitis 2005), quantified Boolean formulas
(QBF) (Charwat and Woltran 2016), or default logic (Fichte,
Hecher, and Schindler 2018).

References
Aziz, R. A. 2015. Answer Set Programming: Founded
Bounds and Model Counting. Ph.D. Thesis, Department
of Computing and Information Systems, The University of
Melbourne.
Balduccini, M.; Gelfond, M.; and Nogueira, M. 2006. An-
swer set based design of knowledge systems. AMAI 47(1-
2):183–219.
Ben-Eliyahu, R., and Dechter, R. 1994. Propositional seman-
tics for disjunctive logic programs. AMAI 12(1):53–87.
Bidoı́t, N., and Froidevaux, C. 1991. Negation by default
and unstratifiable logic programs. TCS 78(1):85–112.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2009. Handbook of Satisfiability, volume 185 of FAIA.
Bodlaender, H. L., and Kloks, T. 1996. Efficient and construc-
tive algorithms for the pathwidth and treewidth of graphs. J.
Algorithms 21(2):358–402.
Bodlaender, H. L. 1996. A linear-time algorithm for finding
tree-decompositions of small treewidth. SIAM J. Comput.
25(6):1305–1317.
Bondy, J. A., and Murty, U. S. R. 2008. Graph theory,
volume 244 of Graduate Texts in Mathematics. Springer.
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. CACM 54(12):92–103.
Charwat, G., and Woltran, S. 2016. Dynamic programming-
based QBF solving. QBF’16.
Cygan, M.; Fomin, F. V.; Kowalik, Ł.; Lokshtanov, D.;
Dániel Marx, M. P.; Pilipczuk, M.; and Saurabh, S. 2015.
Parameterized Algorithms. Springer.
Diestel, R. 2012. Graph Theory, 4th Edition, volume 173 of
Graduate Texts in Mathematics. Springer.
Durand, A.; Hermann, M.; and Kolaitis, P. G. 2005. Subtrac-
tive reductions and complete problems for counting complex-
ity classes. TCS 340(3):496–513.
Eiter, T., and Gottlob, G. 1995. On the computational cost
of disjunctive logic programming: Propositional case. AMAI.
15(3–4):289–323.
Fichte, J. K.; Hecher, M.; Morak, M.; and Woltran, S.
2017a. Answer set solving with bounded treewidth re-
visited. LPNMR’17. Springer, Extended Version: CoRR
abs/cs/arXiv:1702.02890.
Fichte, J. K.; Hecher, M.; Morak, M.; and Woltran, S. 2017c.
DynASP2.5: Dynamic programming on tree decompositions
in action. IPEC’17.
Fichte, J. K.; Hecher, M.; Morak, M.; and Woltran, S. 2018.
Exploiting treewidth for projected model counting and its
limits.. SAT’18. 10929:165–184.
Fichte, J. K.; and Hecher, M. 2018. Exploiting Treewidth in
Projected Answer Set Counting.
Fichte, J. K.; Hecher, M.; and Schindler, I. 2018. Default
Logic and Bounded Treewidth. LATA’18. Springer.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Morgan & Claypool.

Gebser, M.; Kaufmann, B.; and Schaub, T. 2009. Solu-
tion enumeration for projected boolean search problems.
CPAIOR’09. Springer.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Comput. 9(3/4):365–386.
Graham, R. L.; Grötschel, M.; and Lovász, L. 1995. Hand-
book of combinatorics, volume I. Elsevier Science Pub.
Guziolowski, C.; Videla, S.; Eduati, F.; Thiele, S.; Cokelaer,
T.; Siegel, A.; and Saez-Rodriguez, J. 2013. Exhaustively
characterizing feasible logic models of a signaling network
using answer set programming. Bioinformatics 29(18):2320–
2326. Erratum see Bioinformatics 30, 13, 1942.
Harvey, D.; van der Hoeven, J.; and Lecerf, G. 2016. Even
faster integer multiplication. J. Complexity 36:1–30.
Jakl, M.; Pichler, R.; and Woltran, S. 2009. Answer-set
programming with bounded treewidth. In IJCAI’09, 816–
822.
Janhunen, T., and Niemelä, I. 2016. The answer set program-
ming paradigm. AI Magazine 37(3):13–24.
Kleine Büning, H., and Lettman, T. 1999. Propositional
logic: deduction and algorithms. New York, CUP.
Kloks, T. 1994. Treewidth. Computations and Approxima-
tions, volume 842 of LNCS. Springer.
Knuth, D. E. 1998. How fast can we multiply? In The
Art of Computer Programming, volume 2 of Seminumerical
Algorithms. Addison-Wesley. chapter 4.3.3, 294–318.
Lampis, M., and Mitsou, V. 2017. Treewidth with a quantifier
alternation revisited. IPEC’17.
Lin, F., and Zhao, J. 2003. On tight logic programs and yet an-
other translation from normal logic programs to propositional
logic. IJCAI’03.
Lokshtanov, D.; Marx, D.; and Saurabh, S. 2011. Slightly
superexponential parameterized problems. In SODA, 760–
776. SIAM.
Baral, C., and Gelfond, M. 1994. Logic programming and
knowledge representation. The Journal of Logic Program-
ming 19-20:73–148.
Marek, W., and Truszczyński, M. 1991. Autoepistemic logic.
J. of the ACM 38(3):588–619.
Marx, D., and Mitsou, V. 2016. Double-Exponential and
Triple-Exponential Bounds for Choosability Problems Pa-
rameterized by Treewidth. ICALP’16, LIPIcs, 28:1–28:15.
Niemelä, I.; Simons, P.; and Soininen, T. 1999. Stable model
semantics of weight constraint rules. LPNMR’99.
Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.; and
Barry, M. 2001. An A-Prolog decision support system for
the Space Shuttle. PADL’01.
Papadimitriou, C. H. 1994. Computational Complexity.
Addison-Wesley.
Pichler, R.; Rümmele, S.; Szeider, S.; and Woltran, S. 2014.
Tractable answer-set programming with weight constraints:
bounded treewidth is not enough. TPLP. 14(2).
Wilder, R. L. 1965. Introduction to the Foundations of
Mathematics. John Wiley & Sons, 2nd edition edition.

Lower Bound Founded Logic of Here-and-There: A Preliminary Report

Pedro Cabalar
University of Corunna, Spain

cabalar@udc.es

Jorge Fandinno
University of Toulouse, France

jorge.fandinno@irit.fr

Torsten Schaub and Sebastian Schellhorn
University of Potsdam, Germany

{torsten, seschell}@cs.uni-potsdam.de

Abstract

A distinguishing feature of Answer Set Programming is that
all atoms belonging to a stable model must be founded. That
is, an atom must not only be true but provably true. This
can be made precise by means of the constructive logic of
Here-and-There, whose equilibrium models correspond to
stable models. One way to look at foundedness is to regard
Boolean truth values as ordered by letting true be greater than
false. Then, each Boolean variable takes the smallest truth
values that can be proven for it. This idea was generalized by
Aziz to ordered domains and applied to constraint satisfaction
problems. As before, the idea is that a, say integer, variable
gets only assigned to the smallest integer that can be justified.
In this paper, we present a logical reconstruction of Aziz’ idea
in the setting of the logic of Here-and-There. More precisely,
we start by defining the logic of Here-and-There with lower
bound founded variables along with its equilibrium models and
elaborate upon their formal properties. We then define a logic
program fragment dealing with linear constraints over integers
and analyze it in terms of concepts from logic programming.
Finally, we compare our approach with related ones and sketch
future work.

1 Motivation
A distinguishing feature of Answer Set Programming (ASP ;
Baral 2003) is that all atoms belonging to a stable model must
be founded. That is, an atom must not only be true but prov-
ably true. This can be made precise by means of the construc-
tive logic of Here-and-There (HT ; Heyting 1930), whose
equilibrium models correspond to stable models (Pearce
2006). One way to look at foundedness is to regard Boolean
truth values as ordered by letting true be greater than false.
Then, each Boolean variable takes the smallest truth value
that can be proven for it. This idea was generalized in (Aziz
2015) to ordered domains and applied to constraint satis-
faction problems. As before, the idea is that a, say integer,
variable gets only assigned to the smallest integer that can
be justified. We refer to this idea by calling it foundedness.
Note that ASP follows the rationality principle, which says
that one shall only believe in things one is forced to. In the
propositional case this principle amounts to foundedness,
whereas for rules like x � 42 there are at least two ways of

Copyright c� 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

understanding. First, one believe in any value greater or equal
than 42 for x. Second, one believe in value 42 for x if there
is nothing else forcing to believe more than this. The latter
one corresponds to our understanding of foundedness.

The literature of ASP contains several approaches deal-
ing with atoms containing variables over non-Boolean do-
mains, among them (Baselice, Bonatti, and Gelfond 2005),
(Janhunen et al. 2017) and (Cabalar et al. 2016), but these
approaches do not address foundedness in our sense. For in-
stance, Constraint ASP (CASP) approaches like (Baselice,
Bonatti, and Gelfond 2005) allow atoms with variables over
non-Boolean domains in the body of a rule only. Thus, these
atoms and the values of non-Boolean variables cannot be
founded in terms of ASP .

Approaches like (Janhunen et al. 2017) and (Cabalar et
al. 2016) allow any kind of atoms in heads and bodies. This
allows atoms with variables over non-Boolean domains to
be founded but their variables are not necessarily assigned to
the smallest value that can be justified. Since in the approach
of (Cabalar et al. 2016) atoms as well as the values of its vari-
ables are founded and defaults are possible, one could think
about to use defaults or minimization to achieve foundedness.
For instance, x = 1 ¬(x 6= 1) assigns value 1 to x by de-
fault. If we add fact x = 3, then we deactivate the default and
assign value 3 to x. Similarly, x = 0 ¬(x > 0) assigns
the value 0 by default. However, in general assigning a mini-
mal value by default cannot be done by rules as the above. To
point out the difference of foundedness and founded atoms,
the following examples illustrate that minimizing assigned
values does not restore foundedness either. Consider the rules

x � 0 y � 0 x � 42 y < 42 (1)

The approach of (Cabalar et al. 2016) leads to solutions that
assign values greater or equal than 42 to x and values greater
or equal than 0 to y or vice versa, respectively. Thus, the two
solutions with minimal values assign 42 to x and 0 to y and
the other way around. Note that only the first one respects
foundedness, since there is no reason to assign a value greater
than 0 to y. Now, consider the rules

x � 1 x � 42 ¬(x 1) (2)

We expect two solutions in terms of foundedness. One assigns
the value 1 to x and the other assigns value 42 to x, since a
value greater than 1 forces the derivation of value 42. The

rules of (2) give us no reason to derive a value greater than 42.
In contrast, the approach presented in (Cabalar et al. 2016)
yield an intuitive understanding assigning value 1 or a value
greater or equal than 42 to x. That is, the corresponding
solution with the minimal value assigned to x assigns 1 to x.
The second equally founded solution is not obtained.

The existing approach regarding foundedness of (Aziz
2015) behaves counter intuitive. For instance, consider rule
p ¬p. Then, Aziz’ approach yields a solution where p
holds instead of no solution as expected in terms of ASP .
To this end, we present in the following a logical reconstruc-
tion of Aziz’ idea of foundedness in the setting of the logic
of Here-and-There. More precisely, we start by defining the
logic of Here-and-There with lower bound founded variables,
short HTLB , along with its equilibrium models. We elaborate
upon the formal properties of HTLB regarding persistence,
negation and strong equivalence. Furthermore, we point out
the relation of HTLB to HT , and show that our approach
corresponds to a straightforward extension of Ferraris’ stable
model semantics (Ferraris 2005). We then define a logic pro-
gram fragment dealing with linear constraints over integers
and analyze it in terms of concepts from logic programming.
Finally, we compare our approach with related ones, to point
out the benefits of HTLB and sketch future work.

2 Background
Let A be the set of propositional atoms. A formula ' is a
combination of atoms by logical connectives ?, ^, _, and
 . As usual, we define > def= ? ! ? and ¬' def= '! ?. A
theory is a set of formulas.

We denote an interpretation over A by I ✓ A and an HT -
interpretation over A by hH ,T i where H ✓ T ✓ A are
interpretations. Since we want to abstract from the specific
form of atoms in the following sections, we rely upon deno-
tations for fixing their semantics. A denotation of atoms in A
is a function J · KA : A! 2A mapping atoms in A to sets of
interpretations over A. Accordingly, J p KA def= {I | p 2 I }
represents the sets of interpretations where atom p holds.

With it, we next define satisfaction of formulas in HT .

Definition 1 Let hH ,T i be an HT -interpretation over A
and ' a propositional formula over A. Then, hH ,T i satisfies

', written hH ,T i |= ', if the following conditions hold:

1. hH ,T i 6|= ?
2. hH ,T i |= p iff H 2 J p KA for propositional atom p 2 A
3. hH ,T i |= '1 ^ '2 iff hH ,T i |= '1 and hH ,T i |= '2

4. hH ,T i |= '1 _ '2 iff hH ,T i |= '1 or hH ,T i |= '2

5. hH ,T i |= '1 ! '2 iff hI ,T i 6|= '1 or hI ,T i |= '2 for

both I 2 {H ,T}
As usual, we call hH ,T i an HT -model of a theory �, if
hH ,T i |= ' for all ' in �. The usual definition of HT satis-
faction (cf. Pearce 2006) is obtained by replacing Condition 2
above by

2’. hH ,T i |= p iff p 2 H for propositional atom p 2 A
It is easy to see that both definitions of HT satisfaction
coincide.

Proposition 1 Let hH ,T i be an HT -interpretation and '
a formula over A. Then, hH ,T i |= ' iff hH ,T i |= ' by

replacing Condition 2 by 2’.

As usual, an equilibrium model of a theory � is a (total) HT -
interpretation hT ,T i such that hT ,T i |= � and there is no
H ⇢ T such that hH ,T i |= �.

3 Lower Bound Founded Logic of
Here-and-There

In what follows, we introduce the logic of Here-and-There
with lower bound founded variables, short HTLB and elab-
orate on some formal properties regarding satisfaction. We
discuss the relation of complements of atoms regarding nega-
tion and we point out the relation between HTLB and HT as
well as a straightforward extension of Ferraris’ stable model
semantics.

3.1 HTLB and its Properties
The language of HTLB is defined over a set of atoms AX
comprising variables, X , and constants over an ordered do-
main (D,⌫). For simplicity, we assume that each element
of D is uniquely represented by a constant and abuse nota-
tion by using D to refer to the set of constants. Similarly,
we identify ⌫ with its syntactic representative. The specific
syntax of atoms is left open but assumed to refer to elements
of X and D. The only requirement is that we assume that
an atom depends on a distinguished subset of variables of
X . An atoms can be understood to hold or not once all vari-
ables depending on it are substituted by domain elements.
Intuitively, variables not occurring in an atom are understood
as irrelevant for the atom evaluation. Examples of ordered
domains are ({0, 1, 2, 3},�) and (Z,�), respectively; cor-
responding atoms are x � 42 and x = y. A formula '
is a propositional combination of atoms and logical con-
nectives ?,^,_,!. As usual, we define > def= ? ! ?
and ¬' def= ' ! ?. A theory is a set of formulas. For in-
stance, ‘y < 42 ^ ¬(x = y) ! x � 42’ is a formula. Let
vars(') ✓ X be the set of variables and atoms(') ✓ AX
the atoms occurring in a formula '.

For capturing partiality, we introduce a special do-
main element u, standing for undefined, and extend (D,⌫
) to (Du,⌫u) where Du

def= D [{u} and ⌫u
def=

⌫ [{(c,u) | c 2 D}. With it, we define a (partial) valua-

tion over X ,D as a function v : X ! Du mapping each
variable to a domain value or undefined. For comparing valu-
ations by set-based means, we alternatively represent them by
subsets of X ⇥D. Basically, any function v is a set of pairs
(x, c) such that v(x) = c for c 2 D. In addition, we view a
pair (x, c) as x ⌫ c and add its downward closure (x#c) def=
{(x, d) | c, d 2 D, c ⌫ d}. Given this, a valuation v is repre-
sented by the set

S
v(x)=c,x2X (x#c).1 As an example, con-

sider variables x and y over domain ({0, 1, 2, 3}[{u},�u).
The valuation v = {x 7! 2, y 7! 0} can be represented by
v = (x # 2) [(y # 0) = {(x, 0), (x, 1), (x, 2), (y, 0)}. Then,
v
0 = {x 7! 1, y 7! u}, viz. {(x, 0), (x, 1)} in set notation,

can be regarded as “smaller” than v because v
0 ✓ v . The

1Note that (x#u) = ;, since u 62 D.

comparison of two valuations v and v
0 by their set-based

means using ✓ amounts to a twofold comparison. That is, v
and v

0 are compared regarding the occurrence of variables
and their particular values wrt ⌫. We let VX ,D stand for the
set of valuations over X and D.

We define the satisfaction of formulas over AX wrt atom

denotations over X ,D, which are functions J · KX ,D : AX !
2VX ,D mapping atoms to sets of valuations. Let a be an
atom of AX and J a KX ,D its denotation. Then, J a KX ,D is
the set of valuations v so that a holds. Since a depends
on variables vars(a) ✓ X , we have for each v 2 J a K
and valuation v

0 with v(x) = v
0(x) for x 2 vars(a) that

v
0 2 J a K. Intuitively, values of X \ vars(a) can vary freely

without changing the membership of a valuation to J a K.
For simplicity, we drop indices X ,D whenever clear from
context.

For instance, interpreting the atoms x � 42, 42 � 0 and
0 � 42 over (Z,�) yields the following denotations:

Jx � 42 K def= {v | v(x) � 42}
J 42 � 0 K def= V

J 0 � 42 K def= ;.
In particular, Jx � 42 K is the set of valuations where x is
assigned to a value greater or equal than 42 and all variables
in X \ vars(x � 42) take any value of Du, eg (x # 45)
and (x # 45) [(y # 0) for y 2 X \ vars(x � 42) are
possible valuations. Interestingly, atoms like x ⌫ x with
Jx ⌫ x K = {v | v(x) 6= u} force variables to be defined
over D per definition of ⌫. A valuation v is defined for a set
of variables Y ✓ X if v(x) 6= u for all x 2 Y .

We define an HTLB-valuation over X ,D as a pair hh, ti
of valuations over X ,D with h ✓ t . We define satisfaction
of a formula wrt an HTLB-valuation as follows.
Definition 2 Let hh, ti be an HTLB-valuation over X ,D
and ' be a formula over AX . Then, hh, ti satisfies ', written

hh, ti |= ', if the following holds:

1. hh, ti 6|= ?
2. hh, ti |= a iff v 2 J a KX ,D for atom a 2 AX and for both

v 2 {h, t}
3. hh, ti |= '1 ^ '2 iff hh, ti |= '1 and hh, ti |= '2

4. hh, ti |= '1 _ '2 iff hh, ti |= '1 or hh, ti |= '2

5. hh, ti |= '1 ! '2 iff hv , ti 6|= '1 or hv , ti |= '2 for both

v 2 {h, t}
As usual, we call hh, ti an HTLB-model of a theory �, if
hh, ti |= ' for all ' in �. For a simple example, consider
the theory containing atom x � 42 only. Then, every HTLB-
valuation hh, ti with h, t 2 Jx � 42 K is an HTLB-model of
x � 42. Note that, different to HT , satisfaction of atoms in
HTLB forces satisfaction in both h and t , instead of h only.
We discuss this in detail in Section 3.4.

Our first result shows that the characteristic properties of
persistence and negation hold as well when basing satisfac-
tion on valuations and denotations.
Proposition 2 Let hh, ti and ht , ti be HTLB-valuations

over X ,D, and ' be a formula over AX . Then,

1. hh, ti |= ' implies ht , ti |= ', and

2. hh, ti |= '! ? iff ht , ti 6|= '.

Persistence implies that all atoms satisfied by hh, ti are also
satisfied by ht , ti. To make this precise, let At(hh, ti) def=
{a 2 AX | h 2 J a K and t 2 J a K} be the set of atoms
satisfied by hh, ti.
Proposition 3 Let hh, ti and ht , ti be HTLB-valuations

over X ,D. Then, At(hh, ti) ✓ At(ht , ti)
Finally, we define an equilibrium model in HTLB .

Definition 3 An HTLB-valuation ht , ti over X ,D is an

HTLB-equilibrium model of a theory � iff ht , ti |= � and

there is no h ⇢ t such that hh, ti |= �.

We refer an HTLB-equilibrium model ht , ti of � as an HTLB-
stable model t of �. Let us reconsider the theory containing
atom x � 42 only. Then, t = (x # 42) is an HTLB-stable
model of x � 42, since t 2 Jx � 42 K and there is no h ⇢ t

with h 2 Jx � 42 K. In contrast, neither HTLB-model ht 0, t 0i
with t

0 = (x # 42) [(y # 0) nor ht 00, t 00i with t
00 = (x # 53)

are HTLB-stable models since t is a proper subset of both
and ht , t 0i |= x � 42 as well as ht , t 00i |= x � 42 holds.
Hence, HTLB-stable models make sure that each variable is
assigned to its smallest founded value and does not take any
value of possible valuations of corresponding denotations.

Note that HTLB-equilibrium models induce the non-
monotonic counterpart of the monotonic logic of HTLB . Fol-
lowing well-known patterns, we show that HTLB allows us
to decide strong equivalence wrt HTLB-equilibrium models.
Proposition 4 (Strong Equivalence) Let �1, �2 and � be

theories over AX . Then, theories �1 [� and �2 [� have

the same HTLB-stable models for every theory � iff �1 and

�2 have the same HTLB-models.

The idea is to prove the if direction by proving its con-
traposition, and the only if direction by proving its straight-
forward implication. The contraposition assumes that there
exists an HTLB-valuation that satisfies �1 but not �2 which
implies that the stable models of �1 [� and �2 [� do
not coincide. There are two cases to construct � in a way
that �1 [� has a stable model which is not a stable model
of �2 [� and the other way around, respectively. Let us
consider an example to illustrate the idea of the construc-
tion of �. Let h = (x # 0) and t = (x # 2) [(y # 0) be
HTLB-valuation over {x, y}, {0, 1, 2, 3} with hh, ti |= �1

and hh, ti 6|= �2. For the first case assume that ht , ti 6|= �2.
Since t cannot be a model of �2 [� by assumption, we con-
struct � in a way that t is a stable model of �1[�. Hence, let
� = {z ⌫ c | (z, c) 2 t} = {x ⌫ 0, x ⌫ 1, x ⌫ 2, y ⌫ 0}
be the theory with the only stable model t . By persistence of
hh, ti wrt �1 and construction of � we get that t is a stable
model of �1 [� but not of �2 [�. For the second case we
assume that ht , ti |= �2. Now we construct � in a way that
t is a stable model of �2 [� but not of �1 [�. By assump-
tion we have that hh, ti |= �1 and hh, ti 6|= �2 as well as
ht , ti |= �2, thus we want to have hh, ti and hv , v 0i with
t ✓ v ✓ v

0 as the only models of �. Hence, let � = �0 [�00

with �0 = {z ⌫ c | (z, c) 2 h} = {x ⌫ 0} the theory
that is satisfied by everything that is greater or equal than h ,
and �00 = {z ⌫ t(z) ! z0 ⌫ t(z0), z ⌫ c ! z ⌫ t(z) |
(z, c), (z, t(z)), (z0, t(z0)) 2 t \ h, z 6= z0} = {x ⌫ 2 !

y ⌫ 0, y ⌫ 0! x ⌫ 2, x ⌫ 1! x ⌫ 2, x ⌫ 2! x ⌫ 2}
the theory which derives values of t for each v

00 with
h ⇢ v

00 ⇢ t . Since hh, ti 6|= �2 and by construction of
� we get that t is a stable model of �2 [� but not of �1 [�.

3.2 Negation in HTLB

In the following, we elaborate on complements of atoms
and its relation to negation, since AX may contain atoms
like x � 42 and x < 42. Intuitively, one could expect that
the strong negation of an atom holds whenever the atom
itself does not hold. This can be easily expressed by defining
the complement of valuations of an atom denotation. More
formally, we characterize the complement a of atom a by its
denotation J a K def= 2V \ J a K.

To illustrate that the simple complement of an atom is
not sufficient to yield something similar to strong negation
let us take a closer look on propositional atoms in HTLB .
For mimicking Boolean truth values, we consider the do-
main ({t, f}, {t ⌫ f}). Then, the denotation of propositional
atoms in HTLB can be defined as follows: J p = t KA,{t,f}

def=
{v | v(p) = t} and J p = f KA,{t,f}

def= {v | v(p) = f}. Note
that p = t and p = f are regarded as strong negations of each
other, as in standard case (Gelfond and Lifschitz 1990); its
weak negations are given by ¬(p = t) and ¬(p = f), respec-
tively. For instance, the complement p = t is characterized by
denotation J p = t K = 2V\J p = t K = {v | v(p) 6= t}. Note
that this complement allows valuations v with v(p) = u,
which does not match p = f .

To this end, we define another complement to exclude as-
signing value undefined to variables of the atom. First, we de-
fine a denotation J a K of an atom a as strict if each v 2 J a K
is defined for vars(a). Then, we characterize the strict com-
plement a

s of atom a by the strict denotation J as K def=
2V \ (J a K [{v | v(x) = u for some x 2 vars(a)}). In-
formally, the strict complement of an atom holds whenever
all variables are defined and the atom itself does not hold.
That is, atoms p = f and p = t are strict complements of
each other.

More generally, an atom with strict denotation and its strict
complement can be regarded as being strongly negated to
each other. For instance, consider atom x � 42 and its strict
denotation Jx � 42 K = {v | v(x) � 42}. Then, its strict
complement x � 42

s is defined by Jx � 42
s K = {v | u 6=

v(x) < 42}. As in the Boolean case, the strict complement
x � 42

s can be seen as the strong negation of x � 42.
To make the relation of complements and negation precise,

let us define entailments. A theory (or a single formula) �
over AX entails a formula ' over AX , written � |= ', when
all HTLB-models of � are HTLB-models of '. Then, we
have the following result.
Proposition 5 Let a be an atom over AX , and a and a

s
its

complement and its strict complement over AX , respectively.

Then, a
s |= a and a |= ¬a .

This implies that the strict complement as of an atom a im-
plies its negation ¬a , just as strong negation implies weak
negation in the standard case (Pearce 2006). To illustrate that
in general the negation of an atom does not entail its com-
plement (¬a 6|= a), let us consider atom x 42 with strict

denotation Jx 42 K = {v | u 6= v(x) 42}. Then, the
complement x 42 is defined by denotation Jx 42 K =
2V \ Jx 42 K = {v | v(x) = u or v(x) > 42}. For
valuations h = (x # 42) and t = (x # 50) we have that
hh, ti |= ¬(x 42) since (x#50) 62 Jx 42 K. In contrast,
hh, ti |= x 42 does not hold, since (x # 42) 62 Jx 42 K.
Thus, the complement a of an atom a can be seen as a kind
of negation in between of strong and weak negation.

3.3 HTLB versus HT
Analogously to (Cabalar et al. 2016), we next show that HT
can be seen as a special case of HTLB .

Note that both types of denotations J p KA and J p =
t KA,{t} of a propositional atom p collect interpretations and
valuations assigning true to p, respectively. To this end, we
define a transformation ⌧ relating each propositional atom
p with corresponding atom p = t by ⌧(p) def= p = t. Let �
be a propositional theory, then ⌧(�) is obtained by substi-
tuting each p 2 atoms(�) by ⌧(p). Moreover, we extend ⌧
to interpretations I by ⌧(I) def= {(p, t) | p 2 I } to obtain a
corresponding valuation over A, {t}. The next proposition
establishes that HT can be seen as a special case of HTLB .
Proposition 6 Let � be a theory over propositional atoms

A and hH ,T i an HT -interpretation over A. Let ⌧(�) be a

theory over atoms {p = t | p 2 A} and h⌧(H), ⌧(T)i
an HTLB-valuation over A, {t}. Then, hH ,T i |= � iff

h⌧(H), ⌧(T)i |= ⌧(�).

This can be generalized to any arbitrary singleton domain
{d} and corresponding atoms p = d and the relationship still
holds.

We obtain the following results relating HTLB and HT :
Proposition 7 Let � be a theory over AX and hh, ti an

HTLB-model of � over X ,D. Then, hAt(hh, ti),At(ht , ti)i
is an HT -model of � over AX .

That is, the collected atoms satisfied by an HTLB-model of
� can be seen as an HT -model of � by interpreting AX
as propositional atoms. For instance, consider the theory
containing only atom x 6= y and its denotation Jx 6= y K def=
{v | u 6= v(x) 6= v(y) 6= u}. Let h = (x#0) [(y #4) and
t = (x#0) [(y #42) be valuations and hence At(hh, ti) =
At(ht , ti) = {x 6= y} interpretations. Then, hh, ti |= x 6= y
in HTLB and hAt(hh, ti),At(ht , ti)i |= x 6= y in HT .

Furthermore, we relate tautologies in HT and HTLB .
Proposition 8 Let ' be a tautology over A and '0

a formula

over AX obtained by replacing all atoms in ' by atoms of

AX . Then, '0
is a tautology in HTLB .

That is, tautologies in HT are independent of any form of
atoms.

3.4 HTLB-stable versus Ferraris-style stable
models

As mentioned, in Definition 2 satisfaction of atoms differs
from HT by forcing satisfaction in both h and t , instead of
h only. This is necessary to satisfy persistence in HTLB . In
fact, let HTLB-valuation hh, ti satisfy atom a in AX , and
by persistence HTLB-valuation ht , ti satisfies a as well, but

not necessarily each HTLB-valuation hv , ti with h ⇢ v ⇢ t

satisfies a . For instance, consider atom x 6= 42 with Jx 6=
42 K def= {v | u 6= v(x) 6= 42}. Let h = (x # 0) and t =
(x # 53) be valuations. Then, hh, ti |= x 6= 42 and ht , ti |=
x 6= 42, but for v = (x # 42) with h ⇢ v ⇢ t we have
hv , ti 6|= x 6= 42.

A question that arises now from the above is whether
HTLB behaves as expected in terms of stable models se-
mantics. To this end, we give a straightforward definition
of classical satisfaction and of the reduct put by Ferraris in
(Ferraris 2005) in our setting and show that equilibrium mod-
els correspond to stable models according to the resulting
Ferraris’-like stable model semantics. We define the counter-
part of classical satisfaction as follows.
Definition 4 Let t be a valuation over X ,D and ' a formula

over AX . Then, t satisfies ', written t |=cl ', if the following

holds:

1. t 6|=cl ?
2. t |=cl a iff t 2 J a KX ,D for atom a 2 AX
3. t |=cl '1 ^ '2 iff t |=cl '1 and t |=cl '2

4. t |=cl '1 _ '2 iff t |=cl '1 or t |=cl '2

5. t |=cl '1 ! '2 iff t 6|=cl '1 or t |=cl '2.

We call t a classical model of a theory �, if t |=cl ' for all
' in �. We define a Ferraris-like reduct, short F-reduct, wrt
atoms AX as follows.
Definition 5 Let ' be a formula over AX and t a valuation

over X ,D. Then, the F-reduct of ' over t , written 't
, is

given by

't def=

8
>><

>>:

? if t 6|=cl '
a if t |=cl ' and ' = a atom of AX
'1

t ⌦ '2
t

if t |=cl ' and ' = ('1 ⌦ '2)
for ⌦ 2 {^,_,!}

For theory � and HTLB-valuation t , we define �t def= {'t |
' 2 �}. Note that in case of propositional atoms the F-reduct
corresponds to Ferraris’ reduct.

We define an F-stable model as expected according to
classical satisfaction and the F-reduct above.
Definition 6 A valuation t over X ,D is an F-stable model

of theory � over AX iff t |=cl �t
and there is no h ⇢ t such

that h |=cl �t
.

The next propositions shows that models in HTLB can be
alternatively characterized in the style of Ferraris, rephrasing
(Ferraris 2005, Lemma 1):
Proposition 9 Let hh, ti be an HTLB-valuation over X ,D
and � a theory over AX . Then, h |=cl �t

iff hh, ti |= �.

As a special case, we obtain that every HTLB-stable model
corresponds to an F-stable model and vice versa.
Corollary 1 Let t be a valuation over X ,D and � a theory

over AX . Then, t is an HTLB-stable model of � iff t is an

F-stable model of �.

The last two results have shown that our logic follows well
known patterns wrt different representations of stable models.

4 Bound Founded Programs with Linear
Constraints

In this section, we focus on atoms representing linear con-
straints over integers and analyze them in terms of concepts
known from ASP . Due to space limitations, we present
proofs and some preliminaries needed for the following re-
sults in an extended version of this work. We illustrate the
modelling capabilities of this fragment of HTLB on an exam-
ple of error diagnosis.

4.1 Programs and its Properties
Reconsider the ordered domain of integers (Z,�). We define
a linear constraint atom as

mX

i=1

wixi � k

where wi, k 2 Z are constants, xi 2 X are distinct variables,
and�2 {�,, 6=,=}2 is a binary relation. By LX we denote
the set of linear constraint atoms wrt X and Z. The denotation
of a linear constraint atom is given by

J
mX

i=1

wixi � k K def= {v |
mX

i=1

wiv(xi) � k, v(xi) 6= u}.

A linear constraint atom a and its negation ¬a are called
linear constraint literals. In the following, we just say atoms
and literals.

We define logic programs as follows.

Definition 7 A formula over LX is called a rule if it is of

form

a1 _ · · · _ an l1 ^ · · · ^ ln0 (3)

where ai is an atom for 1 i n and lj is a literal for

1 j n0
both over LX .

A logic program is a theory of rules of form (3). Following
logic programming syntax, we use ‘,’ and ‘;’ as alternative
representations of ^ and _, respectively. Moreover, in this
context we write '1 '2 for '2 ! '1 for formulas '1

and '2. Examples of programs over LX are given in the
introduction.

Let r be a rule of form (3). Then, we define by head (r) def=
{ai | 1 i n} and body (r) def= {lj | 1 j n0} the set
of literals of the left and right hand side of r, respectively.
Whenever body (r) = ;, then we drop and call r fact. If
head (r) = ; we write ? l1, . . . , ln0 . Rules of latter form
are called integrity constraints; they eliminate all models sat-
isfying their body. The following result is related to integrity
constraints.

Proposition 10 Let P be a program over LX containing a

rule of form a ¬a and for each HTLB-stable model v of

P \ {a ¬a} over X ,Z we have that hv , vi 6|= a .

Then, P has no HTLB-stable model.

2As usual, w1x1,+ · · · + wnxn < k and w1x1,+ · · · +
wnxn > k can be expressed by w1x1,+ · · · + wnxn k � 1
and w1x1,+ · · ·+ wnxn � k + 1, respectively.

This proposition seems to be trivial, but we show in Section 5
that Aziz’ original approach does not satisfy this property.

In basic ASP , normal programs are of special interest,
since their stable models are subset minimal.3 In the follow-
ing, we define and study normal programs in terms of HTLB .
Similar to ASP , we force the conclusion of normal rules to be
not ambiguous, thus forbidding for instance disjunctive heads.
We restrict heads to include exactly one atom and additionally
exactly one variable as well. For instance, let P be a program
consisting of fact x + y � 42 over {x, y},Z only. Then, P
has infinitely many stable models {v | v(x) + v(y) = 42},
eg (x#0) [(y#42) and (x#42) [(y#0). Hence, P should
not be a normal program.

To illustrate that it is not enough to restrict heads for
defining normal programs, let us reconsider program P with
rules (2) of the introduction. Then, P has stable models (x#1)
and (x # 42). Let us take a closer look on how to get them.
First, we note that v1 = (x # 1) and v2 = (x # 42) are can-
didates of stable models, since both satisfy P . It is easy to
see that there is no v

0 ⇢ v1 with v
0 2 Jx � 1 K and hence

v1 is a stable model of P . Furthermore, consider valuation
v
00 ⇢ v2. Then, hv 00, v2i |= x � 42 ¬(x 1) iff either

both v
00 2 Jx � 42 K and v2 2 Jx � 42 K or v2 2 Jx 1 K

holds. This boils down to v
00 2 Jx � 42 K, which implies that

v
00 ⇢ v2 is contradicted. That is, v2 is a stable model as well

and (x#1) ⇢ (x#42) holds. Hence, the stable models of P
are not subset minimal, P should not be a normal program.

The issue shown in the previous example arises, due to the
monotonicity of atoms. We define an atom a as monotonic

(resp. anti-monotonic) wrt variable x if v 2 J a K implies v 0 2
J a K for every valuation v

0 with v ✓ v
0 (resp. v 0 ✓ v with

v
0(x) 6= u), where v(y) = v

0(y) for all y 2 vars(a) \ {x}.4
We define an atom a as monotonic (resp. anti-monotonic)
if it is monotonic (resp. anti-monotonic) wrt all variables
in vars(a), and non-monotonic otherwise. Analogously, a
program P is monotonic (resp. anti-monotonic) if all atoms
occurring in it are monotonic (resp. anti-monotonic). We
call a program P directed if no atom in it is non-monotonic.
For instance, atom x � 42 is monotonic, y < 42 is anti-
monotonic, and x � y � 42 is non-monotonic, since x is
monotonic and y is anti-monotonic, respectively.

Thus, we define normal programs as follows.

Definition 8 A rule over LX is normal if it is of form

a0 a1, . . . , an,¬an+1, . . . ,¬an0 (4)

where |vars(a0)| = 1 and each atom ai is monotonic for

n+ 1 i n0
.

A normal program is a set of rules of form (4). As the program
in (2) illustrates, programs containing rule bodies with not
monotonic atoms in the scope of negation, like ¬(x 1),
may lead to stable models which are not subset minimal. As
in ASP , we have that stable models of normal programs are
subset minimal.

3The fact that stable models are subset minimal is also known
as anti-chain property.

4Note that our definition of monotonicity of atoms differs from
Aziz’ ones (Aziz 2015), due to different concepts of valuations.

Proposition 11 Let P be a normal program over LX . Then,

each HTLB-stable model of P over X ,Z is subset minimal.

To elaborate more on the influence of atomic monotonicity
on programs, let us consider the following example. Let P
be a directed program, in which no atom occurs in the scope
of negation:

x � 0 x � 42 y < 42

y � 0 y � 42 x < 42

Then, P has the two stable models (x # 42) [(y # 0) and
(x # 0) [(y # 42). Compare this with the ASP program
{a ¬b. b ¬a.} formulating an “even loop” yielding
stable models {a} and {b}. Both programs behave similarly,
since assigning x (or y) to 42 disables the foundedness of
42 for y (or x) in the same way as assigning a (or b) to true
disables the foundedness of true for b (or a). That is, not
monotonic atoms implicitly involve negation.

The previous example motivates us to define positive pro-
grams. To this end, we first define the positive and nega-
tive body of a rule. Let r be a normal rule of form (4),
then we define the positive body of r as body

+(r) def=
{ai | 1 i n, ai monotonic} and its negative body as
body

�(r) def= body (r)\body+(r), respectively. That is, atoms
like x < 42 not occurring in the scope of negation belong to
the negative body, since they are not monotonic.

Then, we define positive programs as follows.
Definition 9 A normal rule r over LX is positive if head (r)
is monotonic and body

�(r) = ;.
A positive program is a set of positive rules.

The following result shows that a positive program has a
unique stable model, just as in ASP (Apt, Blair, and Walker
1987).
Proposition 12 Let P be a positive program over LX . Then,

P has exactly one HTLB-stable model over X ,Z.

The proof follows the well-known idea of applying a fix point
calculation using a continuous and monotonic operator.

In ASP , a program is stratified if it is free of recursion
through negation (Apt, Blair, and Walker 1987), also referred
to “negative loops”. This idea remains the same in case of
HTLB . Note that we drop in this work the preliminaries
needed for the following results, due to space limitations.
That is, we give the definitions of dependency graph, loop,
stratification and splitting set in terms of HTLB in an ex-
tended work of this version.

The next results generalize the calculation of a stable
model to stratified programs.
Proposition 13 Let P be a stratified program over LX with

monotonic heads only. Then, P has exactly one HTLB-stable

model over X ,Z.

Interestingly, allowing not monotonic atoms in the head may
eliminate stable models but it does not produce further stable
models. That is, if we drop the additional condition on heads,
then we can still apply a fix point calculation and get the
following result.
Proposition 14 Let P be a stratified program over LX . Then,

P has at most one HTLB-stable model over X ,Z.

For instance, the program consisting of facts x � 42 and
x < 42 only has no HTLB-stable model.

4.2 Modelling Capabilities
In this section, we go into an example of error diagnosis
to illustrate some modelling features of HTLB in terms of
programs. In particular, the following example illustrates
foundedness and default valuations.

Let N = {1, . . . , n} ✓ Z be an index set. We represent
events by constants ei and identify them with value i for i in
N . Consider program Perr given by

error �
X

i2X

ei
^

i2X

occur(ei) = 1 for all X ✓ N (5)

occur(e2) = 1 occur(e3) = 1, error � 4 (6)
occur(e4) = 1 temperature 42 (7)
temperature = 60 ¬temperature 6= 60 (8)

Rules of (5) express that the value of error is greater or equal
than the sum of occurred events.5 The empty sum means that
we have no error and is defined by 0. Rule (6) models the
dependency of event e2 regarding e3 and the comparison if
the value of error is beyond some threshold value 4. If the
value of temperature falls below 42 degrees, then event e4
occurs, modelled by Rule (7). Rule (8) sets the default value
of temperature to 60 degrees.

To illustrate the behaviour of Perr let us consider the spe-
cific instance Ierr containing fact occur(e3) = 1. Then, we
get the single stable model (temperature # 60) [(error #
3) [(occur(e3) # 1) of Perr [Ierr . The minimal founded
value of temperature is the default value 60. Since e3 is the
only event that occurs, by (5) we derive error � e3 and thus
the minimal founded value for error is 3.

Let us extend Ierr to I 0
err

by adding temperature � 42.
Then we get stable models (temperature # 60) [(error #
3) [(occur(e3) # 1)) and (temperature # 42) [(error #
9) [(occur(e2) # 1) [(occur(e3) # 1) [(occur(e4) # 1)
of Perr [I 0

err
. Note that for one stable model the default

valuation of temperature is founded and for the other one
not, due to non-monotonic atom temperature 6= 60 in the
scope of negation. Hence, we derive error � e3 and error �
e2 + e3 + e4, respectively.

5 Related Work
In this section, we compare HTLB to existing formalisms.

5.1 BFASP

First, let us compare HTLB to Aziz’ bound founded ASP

(BFASP ; Aziz 2015), since both share the same motivation
to generalize the idea of foundedness to ordered domains.

Let us point out some differences of both approaches. In
BFASP an arbitrary formula is called constraint and a rule
is defined as a pair of a constraint and a variable called head.
The constraint needs to be increasing wrt its head variable. A

5Note that (5) leads to exponentially many rules; it is also possi-
ble to write this in a more compact way using nested expressions,
what we not do in this work for reasons of simplicity.

constraint is increasing in one of its variables if the constraint
holds for a substitution of its variables by domain values and
it holds for each substitution where the value of the particular
variable is increased and rest stays the same as before. 6 Note
that the definition of increasing is made for constraints and
does not differentiate between the monotonicity of atoms
and logic connectives. In case of atoms Aziz’ definitions of
increasing and ours of monotonic coincide. Stable models
are defined in BFASP via a reduct depending on the mono-
tonicity of constraints wrt their variables and by applying a
fix point operation.

Both, BFASP and HTLB assign variables to their smallest
domain value per default. Interestingly, they differ in their
understanding of smallest domain values. In HTLB , the small-
est domain value is always the value undefined to capture
partiality, whereas in BFASP partiality is not considered if
the value undefined is not explicitly part of a given domain.

However, the value of the head variable is derived by the
constraint even if it contains no implication. For instance, let
Z+
0 be the variable domain of positive integers with 0 and

(x+ y � 42, x) a rule in BFASP . Then, BFASP yields one
stable model assigning x to 42 and y to 0. The value of x is
derived from the value of 42 � y, obtained by the smallest
value of y. Per default the value of y is 0, since y appears
never as an head. This is different from HTLB where the fact
x+y � 42 results in two stable models (x#0)[(y#42) and
(x#42) [(y#0). In HTLB , the variables of a fact are treated
in an equal way instead of an implicatory way by declaring
one of them as head.

Now, we show that BFASP does not satisfy the same
well-known properties as HTLB . In particular, BFASP does
not satisfying Proposition 10 in its turn. That is, in BFASP

we may get unintuitive stable models. For instance, consider
ASP rule p ¬p. This rule has no stable model in ASP and
HTLB , since if p holds then we cannot derive p any more and
if p not holds then we need to derive p. In contrast, BFASP
yields the stable model assigning p to true, since the reduct
will never replace head variables and produce the rule as it is.
Hence, BFASP yields the stable model assigning p to true,
since it is the minimal (and only) model of the rule.

5.2 HTC

Next, we compare our approach to the logic of Here-and-
There with constraints (HTC ; Cabalar et al. 2016).

First, note that both are based on HT and capture theories
over (constraint) atoms in a non-monotonic setting and can ex-
press default values. The difference is that HTLB inherently
minimizes valuations wrt foundedness. This is achieved by
additionally comparing valuations wrt the values assigned to
the variables. Hence, we represent valuations by sets of down-
ward closed tuples regarding the assignments to yield a com-
parison of values in a set based mean using standard subset
relation. For instance, consider the fact x � 42 over {x},Z
and valuations v and v

0 with v(x) = 42 and v
0(x) = 43.

Then, in HTC we have v 6= v
0, whereas in HTLB we have

v ✓ v
0. Hence, v and v

0 are stable models in HTC but only
the first one is HTLB-stable model wrt foundedness.

6For more details see (Aziz 2015).

On a first look, HTLB seems like HTC with value mini-
mization on top. However, this is insufficient, since it does
not yield foundedness. Recall program P in (2) with HTLB-
stable models (x#1) and (x#42). In contrast, the minimal
stable model in HTC assigns x to 1. This eliminates the sec-
ond HTLB-stable model. Moreover, program P in (1) has the
sole HTLB-stable model (x#42)[(y#0). Whereas in HTC ,
we get two stable models with minimal values: one assigns x
to 42 and y to 0, and the other x to 0 and y to 42.

However, both HTLB and HTC define atomic satisfaction
in terms of atom denotations. A difference is that in HTC

denotations need to be closed.7 Informally, a denotation is
closed if for each valuation of the denotation every valuation
which is a superset is in the denotation as well. For HTLB

this cannot be maintained, due to the additional comparison
of valuations regarding values. For instance, consider atom
x 6= 42 with Jx 6= 42 K = {v | u 6= v(x) 6= 42} over {x},Z.
Then, valuations v and v

0 with v(x) = 0 and v
0(x) = 99

are part of the denotation, but v 00 with v
00(x) = 42 and v ✓

v
00 ✓ v

0 is not. The reason to be closed or not is that v , v 0 and
v
00 are different in HTC but subsets in HTLB , respectively.

The closure of denotions is significant to satisfy persistence
in HTC . In contrast, in HTLB persistence is maintained by
forcing atomic satisfaction in both h and t , instead of h only
as in HTC . The corresponding benefit is that this allows us
to consider atoms in HTLB which are not allowed in HTC ,
like x .

= y with Jx .
= y K def= {v | v(x) = v(y)} which is not

closed in HTC as well.
With HTC and HTLB we have two different paradigms,

where one is maybe better suited than the other for a particular
application area. We plan to further elaborate on possible
application areas and the relation of HTC and HTLB .

5.3 Other Formalisms
ILP Let us compare Integer Linear Programming (ILP ;
Schrijver 1999) with HTLB .

Note that ILP is a monotone theory. Hence, compared to
ASP it is not intuitive to model recursion like reachability
using ILP . For instance, in (Liu, Janhunen, and Niemelä
2012) it is mentioned that it is not easy to represent loop
formulas in ILP which are needed for this purpose.

To overcome this shortcoming, approaches like HTLB and
HTC tried to integrate monotone theories as ILP in a non-
monotonic setting. In other words, these approaches can be
seen as non-monotonic counterparts of ILP which support
an intuitive modelling of reachability and thus recursion, like
in ASP . That is, the benefit of an intuitive modelling is a key
difference of HTLB to ILP .

ASP modulo Theories Let us compare HTLB to ASP

modulo Theories approaches like in (Janhunen et al. 2017).
The idea of those approaches is to integrate monotone

theories as linear programming in the non-monotonic setting
of ASP . Informally, the theories are wrapped by ASP.

These approaches extend stable model semantics (Gelfond
and Lifschitz 1991) by following the approach of lazy theory
solving (Barrett et al. 2009). The idea is that a stable model is

7Please see (Cabalar et al. 2016) for more details.

a set of atoms which needs to be valid regarding the underly-
ing theory. Technically, in (Janhunen et al. 2017) a program
over a theory is extended by rules depending on possible as-
signments wrt the theory to determine the stable models. The
assignments for variables are obtained by particular theory
solvers if the atoms are valid in the theory. It is interesting to
note that there are two ways of interpreting atoms which do
not occur in a model: one way is to assume that the opposite
needs to hold and the other way is to let it open.

Similar to HTC , the main difference of ASP modulo The-
ory approaches to HTLB is that atoms are founded but per
definition foundedness regarding values is not achieved for
its comprised variables, since stable models in ASP modulo
Theory rely on any possible valid assignment for variables.

Aggregates Aggregates are extensions of ASP allowing
us to perform set operations like counting and summing on
elements of a respective set. Aggregates can be treated by
translating them into ASP rules. For instance, sum aggre-
gates can be translated by adapting well-known techniques
translating pseudo-Boolean constraints into SAT, cf (Sinz
2005) and (Bomanson and Janhunen 2013).

The syntax of an aggregate is given by f{c1 :'1, . . . , cm :
'm} � k, where f is an aggregate symbol, ci, k constants,
'i propositional formulas also called conditions with 1
i m, and �2 {, <,>,�,=, 6=} a binary relation.

The community comes up with different semantics for
aggregates like in (Ferraris 2011; Gelfond and Zhang 2014;
Son and Pontelli 2007). Informally, a constant belongs to the
set if its condition holds. An aggregate holds if its relation
holds for all constants that belong to its set.

Obviously, (sum) aggregates are related to (linear con-
straint) atoms of HTLB . As we will show in an extended
version of this work, aggregates under Ferraris’ semantics
(Ferraris 2011) can be represented by atoms in HTLB . To
this end, we restrict conditions of aggregates to propositional
atoms. Note that this is not a very limiting restriction, since
these atoms can be seen as auxiliaries for arbitrary formulas.

This is interesting, since it means that aggregates are no
longer an extension of an existing approach, instead aggre-
gates under Ferraris’ semantics are now already integrated as
atoms of an approach. Hence, the results shown in this work
allow us to view aggregates in a new setting and give us a
possibly better way to elaborate on their properties like mono-
tonicity. Maybe the view on aggregates as atoms in context of
HTLB helps us to better understand the existing discussion
of different aggregate semantics and their properties.

6 Conclusion
We presented the idea of foundedness for minimal values
of variables over ordered domains in the setting of the logic
of Here-and-There. We elaborated on important properties
like persistence, negation and strong equivalence and showed
that they hold in our approach. Furthermore, we pointed
out that the base logic HT can be seen as a special case of
HTLB . To prove if our approach follows well-known patterns,
we showed that HTLB-stable models correspond to stable
models according to a Ferraris’-like stable model semantics.

To elaborate on our approach in terms of logic program-
ming and modelling, we isolated a fragment dealing with
linear constraints over integers. In this context, we analyzed
the influence of monotonicity of atoms on programs and
concepts like normal, stratified and positive. Moreover, we
illustrated the features of foundedness and defaults with the
example of error diagnosis.

Finally, we compared our approach to related ones and
showed that foundedness is a non-trivial key feature of HTLB .
We showed that HTLB and BFASP have the same starting
motivation but differ in their treatments of undefined and
monotonicity. Furthermore, we pointed out that HTLB can
be seen as non-monotonic counterpart of monotonic theories.
We also mentioned that HTLB offers a new view of aggre-
gates under Ferraris’ semantics as atoms with its correspond-
ing monotonic properties. Thus, aggregates are integrated in
HTLB instead of being an extension of an existing approach.

In an extended version we plan to present a fix point oper-
ator, dependency graph, (odd and even) loops, stratification,
splitting sets, and the relation to aggregates in detail.

References
Apt, K.; Blair, H.; and Walker, A. 1987. Towards a theory
of declarative knowledge. In Minker, J., ed., Foundations

of Deductive Databases and Logic Programming. Morgan
Kaufmann Publishers. chapter 2, 89–148.
Aziz, R. 2015. Answer Set Programming: Founded Bounds

and Model Counting. Ph.D. Dissertation, University of Mel-
bourne.
Baral, C. 2003. Knowledge Representation, Reasoning and

Declarative Problem Solving. Cambridge University Press.
Barrett, C.; Sebastiani, R.; Seshia, S.; and Tinelli, C. 2009.
Satisfiability modulo theories. In Biere, A.; Heule, M.; van
Maaren, H.; and Walsh, T., eds., Handbook of Satisfiabil-

ity, volume 185 of Frontiers in Artificial Intelligence and

Applications. IOS Press. chapter 26, 825–885.
Baselice, S.; Bonatti, P.; and Gelfond, M. 2005. Towards an
integration of answer set and constraint solving. In Gabbrielli,
M., and Gupta, G., eds., Proceedings of the Twenty-first In-

ternational Conference on Logic Programming (ICLP’05),
volume 3668 of Lecture Notes in Computer Science, 52–66.
Springer-Verlag.
Bomanson, J., and Janhunen, T. 2013. Normalizing car-
dinality rules using merging and sorting constructions. In
Cabalar, P., and Son, T., eds., Proceedings of the Twelfth

International Conference on Logic Programming and Non-

monotonic Reasoning (LPNMR’13), volume 8148 of Lecture

Notes in Artificial Intelligence, 187–199. Springer-Verlag.
Cabalar, P.; Kaminski, R.; Ostrowski, M.; and Schaub, T.
2016. An ASP semantics for default reasoning with con-
straints. In Kambhampati, R., ed., Proceedings of the Twenty-

fifth International Joint Conference on Artificial Intelligence

(IJCAI’16), 1015–1021. IJCAI/AAAI Press.
Ferraris, P. 2005. Answer sets for propositional theories.
In Baral, C.; Greco, G.; Leone, N.; and Terracina, G., eds.,
Proceedings of the Eighth International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR’05),

volume 3662 of Lecture Notes in Artificial Intelligence, 119–
131. Springer-Verlag.
Ferraris, P. 2011. Logic programs with propositional connec-
tives and aggregates. ACM Transactions on Computational

Logic 12(4):25.
Gelfond, M., and Lifschitz, V. 1990. Logic programs with
classical negation. In Warren, D., and Szeredi, P., eds., Pro-

ceedings of the Seventh International Conference on Logic

Programming (ICLP’90), 579–597. MIT Press.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation

Computing 9:365–385.
Gelfond, M., and Zhang, Y. 2014. Vicious circle principle
and logic programs with aggregates. Theory and Practice of

Logic Programming 14(4-5):587–601.
Heyting, A. 1930. Die formalen Regeln der intuitionistis-
chen Logik. In Sitzungsberichte der Preussischen Akademie

der Wissenschaften. Deutsche Akademie der Wissenschaften
zu Berlin. 42–56. Reprint in Logik-Texte: Kommentierte
Auswahl zur Geschichte der Modernen Logik, Akademie-
Verlag, 1986.
Janhunen, T.; Kaminski, R.; Ostrowski, M.; Schaub, T.;
Schellhorn, S.; and Wanko, P. 2017. Clingo goes linear
constraints over reals and integers. Theory and Practice of

Logic Programming 17(5-6):872–888.
Liu, G.; Janhunen, T.; and Niemelä, I. 2012. Answer set
programming via mixed integer programming. In Brewka,
G.; Eiter, T.; and McIlraith, S., eds., Proceedings of the Thir-

teenth International Conference on Principles of Knowledge

Representation and Reasoning (KR’12), 32–42. AAAI Press.
Pearce, D. 2006. Equilibrium logic. Annals of Mathematics

and Artificial Intelligence 47(1-2):3–41.
Schrijver, A. 1999. Theory of linear and integer program-

ming. Discrete mathematics and optimization. John Wiley &
sons.
Sinz, C. 2005. Towards an optimal CNF encoding of Boolean
cardinality constraints. In van Beek, P., ed., Proceedings of

the Eleventh International Conference on Principles and

Practice of Constraint Programming (CP’05), volume 3709
of Lecture Notes in Computer Science, 827–831. Springer-
Verlag.
Son, T., and Pontelli, E. 2007. A constructive semantic
characterization of aggregates in answer set programming.
Theory and Practice of Logic Programming 7(3):355–375.

Appendix of Proofs
Proof of Proposition 1 To prove that hH ,T i |= ' holds
under Definition 1 iff it holds when replacing Condition 2

by 2’ for hH ,T i HT -interpretation over A and ' a propo-
sitional formula over A, it is enough to prove equivalence
of base cases 2 and 2’, since the rest follows directly by
structural induction. Per definition of denotation we have for
propositional atom p 2 A that

H 2 J p KA , H 2 {I | p 2 I }, p 2 H

⇤

Proof of Proposition 2 It is enough to prove the propo-
sition for the base case, since the rest follows directly by
structural induction for each formula over AX . Let hh, ti an
HTLB-valuation over X ,D and a atom of AX .

First, we prove persistence, represented by 1 of the propo-
sition. We have

hh, ti |= a , h 2 J a K^t 2 J a K) t 2 J a K, ht , ti |= a

Subsequently, we prove negation, represented by 2 of the
proposition. We have
hh, ti |= a ! ?

, (hh, ti |= ? _ hh, ti 6|= a) ^ (ht , ti |= ? _ ht , ti 6|= a)
, hh, ti 6|= a ^ ht , ti 6|= a

, (h 62 J a K _ t 62 J a K) ^ (t 62 J a K)
, ht , ti 6|= a ⇤

Proof of Proposition 3 For any a 2 At(hh, ti) = {a 2
AX | h 2 J a K and t 2 J a K} we have h 2 J a K and t 2
J a K, thus we conclude a 2 At(ht , ti) = {a 2 AX | t 2
J a K}. ⇤

Proof of Proposition 4 Let �1, �2 and � be theories over
AX . First, we prove “(” of the proposition. For each HTLB-
valuation hh, ti over X ,D we have hh, ti |= �1 iff hh, ti |=
�2. This implies that hh, ti |= �1 [� iff hh, ti |= �2 [� for
any �. Hence, �1[� and �2[� have the same HTLB-stable
models for every �.

Secondly, we prove “)” by contradiction. Without loss of
generality, assume that hh, ti is HTLB-valuation over X ,D
with hh, ti |= �1 and hh, ti 6|= �2. Then, we differ two cases.

Case 1: Let ht , ti 6|= �2. We have hh, ti |= �1 and thus
by persistence (Proposition 2) ht , ti |= �1. Let � = {x ⌫
c | (x, c) 2 t}. Then, ht , ti |= �1 [� is HTLB-stable model.
But ht , ti 6|= �2 [� by assumption.

Case 2: Let ht , ti |= �2. Moreover, let � = �0 [�00 with
�0 = {x ⌫ c | (x, c) 2 h} and �00 = {x ⌫ t(x) ! y ⌫
t(y), x ⌫ c ! x ⌫ t(x) | (x, c), (x, t(x)), (y, t(y)) 2
t \ h, x 6= y}. Then, ht , ti |= �2 [� by assumption and
h ✓ t . Note there is no v ⇢ t with hv , ti |= �2 [�, since
by hh, ti 6|= �2 we get that h ⇢ v ⇢ t need to hold, and
thus there exists at least one pair a1, a2 2 atoms(�00) with
v 2 J a1 K and v 62 J a2 K. Hence, hv , ti 6|= �2 [� for h ✓
v ⇢ t . Thus, ht , ti is HTLB-stable model of �2 [�. By
assumption and construction, we have that hh, ti |= �1 and
hh, ti |= �0, respectively. Moreover, we have that hh, ti 6|= a

for every a 2 atoms(�00). Hence, hh, ti |= �00 and thus
hh, ti |= �1[�. Note that since hh, ti 6|= �2 and ht , ti |= �2

we have hh, ti 6= ht , ti, which implies that h ⇢ t . Finally,
ht , ti is no HTLB-stable model of �1 [�. ⇤

Proof of Proposition 5 Let a be an atom over AX , and a

and a
s its complement and its strict complement over AX ,

respectively.
First, we prove a

s |= a . For any HTLB-valuation hh, ti
over X ,D we have
hh, ti |= a

s

, h 2 J as K ^ t 2 J as K with J as K = 2V \ (J a K [{v |
v(x) = u for some x 2 vars(a)})

) h 2 2V \ J a K ^ t 2 2V \ J a K
, hh, ti |= a

Secondly, we prove a |= ¬a . For any HTLB-valuation
hh, ti over X ,D we have
hh, ti |= a

, h 2 J a K ^ t 2 J a K with J a K = 2V \ J a K
, h 62 J a K ^ t 62 J a K
) t 62 J a K
Proposition 2 , hh, ti |= ¬a ⇤

Proof of Proposition 6 It is enough to prove the propo-
sition for the base case, since the rest follows directly by
structural induction for each theory over A.

Let � be a theory over propositional atoms A and hH ,T i
an HT -interpretation over A. Let ⌧(�) be a theory over
atoms {p = t | p 2 A} and h⌧(H), ⌧(T)i an HTLB-
valuation over A, {t}. Then we have
hH ,T i |= p

, H 2 J p KA
H✓T , H 2 J p KA ^ T 2 J p KA
, ⌧(H) 2 J p = t KA,{t} ^ ⌧(T) 2 J p = t KA,{t}
, h⌧(H), ⌧(T)i |= p = t ⇤

Proof of Proposition 7 It is enough to prove the propo-
sition for the base case, since the rest follows directly by
structural induction for each theory over AX .

First, note that the pair hH ,T i over AX with H =
At(hh, ti) and T = At(ht , ti) is a well formed HT -
interpretation, since H ✓ T holds by h ✓ t and Propo-
sition 3. Then we have
hh, ti |= a

, h 2 J a KX ,D ^ t 2 J a KX ,D
) H 2 J a KAX ^ T 2 J a KAX
) hH ,T i |= a ⇤

Proof of Proposition 8 Let ' over A be an arbitrary tau-
tology in HT . This means that for every HT -interpretation
hH ,T i over A holds hH ,T i |= '. Thus, we conclude that
formula '0 over AX obtained by replacing atoms(') in '
by atoms of AX , is a tautology as well (for every HTLB-
valuation hh, ti over X ,D holds hh, ti |= '0), since the
semantics of the atoms may change the truth value of a single
atom but can not affect the truth of the formula itself. ⇤

Proof of Proposition 9 It is enough to prove the propo-
sition for the base case, since the rest follows directly by
structural induction for each theory over AX .

Let � be a theory over AX and hh, ti an HTLB-valuation
over X ,D. Then, we have

h |=cl a
t

, h |=cl a ^ t |=cl a

, h 2 J a K ^ t 2 J a K
, hh, ti |= a ⇤

Consistency in Justification Theory⇤

Simon Marynissen Niko Passchyn Bart Bogaerts Marc Denecker
KU Leuven, Departement of Computer Science, Leuven, Belgium

Abstract

Justification frameworks constitute a unifying theory to de-
scribe semantics of non-monotonic logics. They have appli-
cations, among others, in logic programming, abstract argu-
mentation, and nested definitions. This framework is built on
the notion of a justification. Intuitively, this is a graph that
explains the truth values of certain facts. However this intro-
duces a potential problem: the justification status of an atom
and its negation can be conflicting. So, in a well-defined se-
mantics we want that these statuses are opposite. This is cap-
tured in two axioms, which correspond to our main theorem:
when a fact, positive or negative has a good justification, its
negation should not have a good justification, and if a fact
has no good justification, then its negation should have a good
justification. We prove that this holds for completion, Kripke-
Kleene, stable and well-founded semantics. The semantics
of a justification framework is determined by what is called
a branch evaluation. We introduce dual branch evaluations,
which give rise to dual semantics, such as, co-well-founded
and co-stable semantics. This duality is similar to the dual-
ity between induction and co-induction. Moreover, justifica-
tions in dual semantics are linked to justifications in the orig-
inal one. Furthermore, we define a notion of splittable branch
evaluation and show that under such an evaluation, justifica-
tions can be “glued” together, essentially resulting in a single
justification for all true facts.

1 Introduction
In the field of Knowledge Representation (KR), novel logics
and new semantics are constantly proposed. In order to keep
an overview of the various logics, the semantics developed
for a single logic and their relationships, unifying frame-
works are developed (Denecker, Marek, and Truszczyński
2000; Denecker, Brewka, and Strass 2015). Such frame-
works provide a uniform way to determine a broad class of
semantics for all covered logics. Sometimes, this shines new
light on the formal relationship between logics (Denecker,
Marek, and Truszczyński 2011); sometimes, this gives rise
to new semantics, such as for parametric versions of logic
programs(Denecker, Brewka, and Strass 2015).

One such framework for non-monotonic logics is the jus-
tification theory from (Denecker, Brewka, and Strass 2015),

⇤This paper is also submitted to the 13th Workshop on Logical
and Semantic Frameworks with Applications (LSFA 2018).

which is built on the notion of a justification. Intuitively, this
is a graph that explains the truth values of certain facts in a
structure. Not any justification is considered “good”. A good
justification can be seen as an explanation for a fact. In order
to determine the quality of a justification, justification theory
makes use of branch evaluations. Different branch evalua-
tions give rise to different semantics. Furthermore, so-called
nesting of justification frames allows for a modular seman-
tics and greatly reduces the efforts needed to introduce new
language constructs (e.g., aggregates) into logics covered by
justification theory. KR languages covered by justification
theory include logic programs and answer set programs, ab-
stract argumentation, inductive definitions, and nested defi-
nitions.

In addition, justifications are also used for implementa-
tion purposes. They are used to compute unfounded sets in
modern ASP solvers (Gebser, Kaufmann, and Schaub 2012;
De Cat et al. 2013), can be used to check for relevance of
atoms in complete search algorithms (Jansen et al. 2016),
and recent lazy grounding algorithms are built on top of
them (De Cat et al. 2015; Bogaerts and Weinzierl 2018).

In all frameworks we know off, only truthness of atoms is
explained. However, falsity of atoms, or equivalently truth-
ness of negative literals, is not explained. This creates an
asymmetry between atoms and negative literals. This asym-
metry is resolved in justification theory by allowing justifi-
cations to also explain negative literals. However, this intro-
duces a potential problem; the justification status of an atom
and its negation can be conflicting. So, in a well-defined se-
mantics we want that these statuses are opposite. This is cap-
tured in two axioms, which correspond to our main theorem:
when a fact, positive or negative has a good justification,
its negation should not have a good justification, and if a
fact has no good justification, then its negation should have
a good justification. This is obviously a fundamental prob-
lem, without which the framework fails. We investigate this
matter in detail and positively answer this for completion,
Kripke-Kleene, stable and well-founded semantics under the
condition that the rules for a fact and its negation are related
appropriately.

Besides this consistency of having a good justification, we
introduce new concepts and prove results about these con-
cepts. The first concept is splitting an interpretation into two
sets of literals, which informally act as a lower and upper

bound on the interpretation. The two sets are each others
dual in the sense that is defined in this text. This allows to
reason on a level of sets instead of interpretations, which is
easier from a mathematical point of view. Intuitively, how-
ever, one prefers to think in terms of interpretations. Most
results are provided with an intuitive explanation in terms of
interpretations.

Apart from duality on these sets, we also introduce a du-
ality on branch evaluations, which amounts to a dual seman-
tics in justification theory. One example is the duality be-
tween co-induction and induction, where the latter is tied
with well-founded semantics. In addition, we also construct
a co-stable semantics, which has the same relation with sta-
ble semantics as in the co-well-founded and well-founded
case.

Moreover, we investigate when it is possible to “glue”
good justifications together. To study this property, splittable
and transitive branch evaluations are introduced, where the
latter is a subclass of the former. Intuitively, these evalua-
tions only depend on a start or tail of a branch. For splittable
branch evaluations, we prove that “glueing” good justifica-
tions gives good justifications.

Denecker and Deschreye already established a result sim-
ilar to our main theorem in (Denecker and De Schreye 1993)
for tree-like justifications in a three-valued setting. Denecker
et. al also use justifications for describing causal processes
in an upcoming paper (Denecker, Bogaerts, and Vennekens
2018), and as such, our results are thus applicable for causal
processes as well. The pasting of justifications introduces
an operator between justifications. Similarly, in (Cabalar,
Fandinno, and Fink 2014), an algebra of causal justifications
is introduced.

The paper is structured as follows. In the preliminaries,
we recall most of the definitions of justification theory, with
small changes to ensure greater consistency and generality.
In Section 3, we introduce complementary justification
frames, which are based on complement closure as defined
in (Denecker, Brewka, and Strass 2015). In Section 4,
we first describe the lower and upper bounds on inter-
pretations. Next, duality on these sets and dual branch
evaluations are defined. Section 5 introduces splittable
and transitive branch evaluations. In Section 6, we prove
that justifications can be “glued” for splittable branch
evaluations. We end in Section 7 by stating our main
theorem. Due to page restrictions, proofs are omitted. A full
version of this text, including most proofs, can be found at
https://bitbucket.org/simonmarynissen/
consistencyinjustificationtheorynmr2018.
The results from Section 4 onwards were partially described
in the master’s thesis of the second author, see (Passchyn
2017), except for dual semantics and the proof of the main
theorem in case of the well-founded semantics.

2 Preliminaries
In this section, we recall the basics of justification theory.
Our presentation is based on the work of Denecker et al.
(Denecker, Brewka, and Strass 2015). Small modifications
to some existing definitions are made, to ensure greater con-

sistency and generality; these changes have no major conse-
quences and are clearly indicated.

In the rest of this paper, let F be a set, referred to as a
fact space, such that L := {t, f ,u, i} ✓ F1, where t, f , u
and i have the respective meaning true, false, unknown and
inconsistent. The elements of F are called facts. The set L
is equal to the four-valued logic of Belnap (Belnap 1977)
with truth order f t u, i t t and information order u k

f , t k i. We assume that F is equipped with an involution
⇠ : F ! F (i.e. a bijection that is its own inverse) such
that ⇠t = f , ⇠u = u, ⇠i = i and ⇠x 6= x for all x 2
F \ {u, i}. The assumption that ⇠u = u and ⇠i = i differs
from (Denecker, Brewka, and Strass 2015), where a positive
and negative u and i are used. For any fact x, ⇠x is called
the complement of x. An example of a fact space F is the set
of literals over a propositional vocabulary ⌃ extended with
L where ⇠ maps a literal to its negation. For any set A we
define ⇠A to be the set containing elements of the form ⇠a
for a 2 A.

We distinguish two types of facts: defined and open facts2.
The former are accompanied by a set of rules that determine
their truth value. The truth value of the latter is not governed
by the rule system but comes from an external source or is
fixed (as is the case for logical facts).
Definition 2.1. A justification frame JF is a tuple
hF ,Fd, Ri such that
• Fd is a subset of F closed under ⇠, i.e. ⇠Fd = Fd; facts

in Fd are called defined;
• no logical fact is defined: L \ Fd = ;;
• R ✓ Fd ⇥ 2F ;
• for each x 2 Fd, (x, ;) /2 R and there is an element

(x,A) 2 R.3

The set of open facts is denoted as Fo := F \ Fd.
An element (x,A) 2 R is called a rule with head x and
body (or case) A. The set of cases of x in JF is denoted
as JF(x). Rules (x,A) are denoted as x A and if
A = {y1, . . . , yn}, we often write x y1, . . . , yn. Cases
are allowed to be infinite; as such our framework covers
also, for instance, non-ground logic programs where ground-
ing can result in infinitely long bodies (as observed, e.g., by
(Harrison, Lifschitz, and Yang 2013)).

A rule x A expresses that if all facts of A are true, then
x is true. Therefore, a case of x represents a sufficient condi-
tion for x to hold. Furthermore, the set of cases can be seen
as a necessary condition for x to hold, that is, x only holds
if there is a rule for x that can be applied. We illustrate the
rest of notions and definitions with the the following running
example.

1Denecker et al. (Denecker, Brewka, and Strass 2015) do not
require that all logical facts are present in F .

2In other literature, external, exogenous and parametric are also
used to denote open facts. Defined facts are sometimes named in-
ternal or endogenous facts.

3Due to this property, justification frames here correspond to
proper justification frames in (Denecker, Brewka, and Strass 2015).
Any set of rules can be transformed into a proper justification
frame; rules of the form x ; are replaced with x t, and
for x 2 Fd that have no rules, we introduce x f .

Example 2.2. In this example we build a justification frame
to express the transitive closure of a graph. So let V be a set
of nodes. Define Fo to be the set of elements Edge(v, w)
and ⇠Edge(v, w) with v, w 2 V and Fd to be the set of
elements Path(v, w) and ⇠Path(v, w) with v, w 2 V . De-
fine F = Fd [Fo. The facts encoding the edges of a graph
are in Fo. This means that they can freely change and thus
act as parameters, whereas the facts in Fd are constrained
rules as seen below. In section 3 we construct the rules
for ⇠Path(v, w), but for now we only define the rules for
Path(v, w):

• Path(v, w) Edge(v, w);
• Path(v, w) Path(v, x),Path(x,w);

for all v, w, x 2 V . This encodes that Path is the transitive
closure of Edge. N
Definition 2.3. Two justification frames JF = hF ,Fd, Ri
and JF 0 = hF ,Fd, R0i are equivalent if for every rule x
A 2 R, there is a rule x B 2 R0 such that B ✓ A,
and likewise for every rule x B 2 R0, there is a rule
x A 2 R such that A ✓ B.

Equivalence is defined here in a different, but equivalent4
way as in (Denecker, Brewka, and Strass 2015). A case
A 2 JF(x) so that there is a B 2 JF(x) with B ✓ A
is said to be redundant. Deleting a redundant rule results in
an equivalent justification frame if the more general rule is
kept. However, it is not always possible to remove all redun-
dant rules without losing equivalence, see e.g. (Denecker,
Brewka, and Strass 2015, Example 3).

Justifications and branch evaluations
Definition 2.4. A justification J in a justification frame
hF ,Fd, Ri is a subset of R containing at most one rule for
each x 2 Fd. If x S 2 J , we denote J(x) = S.

This notation reveals that we can view a justification J as
a partial function from Fd to 2F such that x J(x) 2 R
if x 2 dom(J), where dom(J) denotes the domain of J
viewed as a total function. We use the two representations
interchangeably.

A justification J gives a reason for facts x in its domain.
This reason depends on a case of x. If this case J(x) contains
defined facts for which J does not give a reason, then our
explanation is possibly incomplete. Therefore, we typically
want that J(x) \ Fd ✓ dom(J) for every x 2 dom(J).

Definition 2.5. A justification is locally complete5 if J(x)\
Fd ✓ dom(J) for all x 2 dom(J).

Given a justification J , we construct a directed graph GJ

with vertices

dom(J) [{y 2 F | 9x 2 dom(J) : y 2 J(x)} .

4Equivalence only holds if the derivation operator in (Denecker,
Brewka, and Strass 2015) is extended to all subsets of F in the
obvious way.

5There is also the notion of a complete justification: Fd =
dom(J). However, such a justification has a rule for any defined
fact and thus tries to explain every fact, even complementary facts.

and edges
{(x, y) | x 2 dom(J), y 2 J(x)} .

Since graphs are easily visualised, we obtain a natural and
visual way to represent justifications.
Lemma 2.6. A justification J is locally complete if and only
if GJ has no defined leaves.

Remark that the direction of the edges in GJ is opposite of
the arrow direction in rule notation. We provide an example
of how a justification could look like.
Example 2.7. Let V = {a, b, c} in the setting of Exam-
ple 2.2. Suppose that Edge(a, b) and Edge(b, c) hold. The
following locally complete justification gives an explanation
why Path(a, c) holds.

Path(a, c)

Path(a, b) Path(b, c)

Edge(a, b) Edge(b, c)

N
Definition 2.8. Let JF = hF ,Fd, Ri be a justification
frame. A JF-branch is either an infinite sequence in Fd or
a finite non-empty sequence in Fd together with an element
in Fo. For a justification J in JF , a J-branch starting in
x 2 Fd is a maximally long path (with at least one edge) in
GJ starting in x.

For instance in Example 2.7, the path
Path(a, c)! Path(a, b)! Edge(a, b)

is a finite branch of the given justification.
Remark 2.9. A finite JF-branch can be represented as a
finite sequence in F such that the last element is in Fo and
all other elements in Fd. As a consequence, a finite JF-
branch has at least two elements. Not all J-branches are JF-
branches since they can end in defined facts. However, if J
is locally complete, any J-branch is also an JF-branch by
Lemma 2.6.

We denote a branch b as
b : x0 ! x1 ! · · · .

and define ⇠b as ⇠x0 ! ⇠x1 ! · · · . A J-branch can
be seen as part of a possible explanation of a fact. Given a
rule p p, the explanation that p is true because p is true
is generally not deemed acceptable. Therefore, a qualitative
measure of branches is required.
Definition 2.10. A branch evaluation B is a mapping that
maps any JF-branch to an element in F for all justifica-
tion frames JF . A justification frame JF together with a
branch evaluation B form a justification system JS , which
is presented as a quadruple hF ,Fd, R,Bi.

We start with some particular branch evaluations.
Example 2.11. The supported (or completion (Clark 1978))
branch evaluation Bsp maps x0 ! x1 ! · · · to x1. The
Kripke-Kleene branch evaluation BKK maps finite branches
to their last node and infinite branches to u. N

The names of these branch evaluations are not arbitrary
and the correspondence with the equally named semantics
for logic programs is explained in (Denecker, Brewka, and
Strass 2015). Later, we also define well-founded and sta-
ble branch evaluations. These examples show that a branch
evaluation induces a semantics. This is manifested by fixed
points of the extended support operator defined below, which
is illustrated in (Denecker, Brewka, and Strass 2015).
Definition 2.12. Let JS = hF ,Fd, R,Bi be a justification
system, I a subset6 of F and J a locally complete justifica-
tion in JS . We say x 2 Fd is supported by J in I under B
if x 2 dom(J) and all J-branches starting in x are mapped
into I under B. The fact x is supported by JS in I if there
exists a locally complete7 justification J in JS that supports
x in I under B.

This definition is best clarified with an example.
Example 2.13. Let the setting be the same as in Example 2.7
and set I = {Edge(a, b),Edge(b, c)}. The fact Path(a, c)
is supported in I under the Kripke-Kleene branch evalua-
tion, a justification supporting Path(a, c) is already given in
Example 2.7. N

Associated with a justification system, we get the support
operator SJS : 2F ! 2Fd that maps I ✓ F to

SJS(I) := {x 2 Fd | x is supported by JS in I} .
If JS consists of a justification frame JF and a branch eval-
uation B, this operator is also denoted as SB

JF . The support
operator can be extended to return subsets of F as follows:

ŜJS : 2F ! 2F : I 7! SJS(I) [(I \ Fo).

In (Denecker, Brewka, and Strass 2015), various semantics
are linked to fixed points of this extended support operator.

We also define what it means for a defined fact to be sup-
ported by a non locally complete justification.
Definition 2.14. A fact x 2 Fd is supported by a (not neces-
sarily locally complete) justification J in I under B if every
locally complete extension of J supports x in I under B.

This definition of support is compatible with the previous
one since if J is a locally complete justification and K a
locally complete extension of J , then any K-branch start-
ing in x 2 dom(J) is also a J-branch; hence K supports
all facts that J supports. This alternative definition is useful
in proofs, but also allows to give justifications that do not
contain unnecessary information. For instance, under com-
pletion semantics, we do not need locally complete justifica-
tions, but just a single rule.

Support is invariant under equivalence of the underlying
justification frame.
Proposition 2.15. Let JF and JF 0 be two equivalent jus-
tification frames. Then SB

JF = SB
JF 0 for any branch evalua-

tion B.
6In (Denecker, Brewka, and Strass 2015), this is only defined

for subsets containing t and i and not f and u. The reason to allow
more sets is explained later in subsection 4.

7In (Denecker, Brewka, and Strass 2015), a complete justifica-
tion is required, that is, the domain is equal to Fd. This, however,
does not change the definition of support.

3 Complementary justification frames
In many applications, only one of x or⇠x has explicit rules.
For instance in logic programming (van Emden and Kowal-
ski 1976; Marek and Truszczyński 1999), only rules for
atoms are given, the rules for negative literals are left im-
plicit. On the other hand, in Dungs argumentation frame-
works (Dung 1995), only an attack relation between argu-
ments is given, which can be seen as explicit rules for falsity
of arguments, e.g., if a attacks b, then this is expressed by
the rule ⇠b a. Even in Example 2.2 we refrained from
formulating when ⇠Path(v, w) holds.

Under the assumption that x and ⇠x are complementary,
rules for ⇠x can be constructed by using rules for x. As
mentioned before, a case S of x can be seen as a sufficient
condition for x to hold. Similarly, x only holds if a case of x
holds, thus ⇠x holds if every case of x has a a fact that does
not hold.

Definition 3.1. A selection function of x 2 Fd in a justifica-
tion frame JF = hF ,Fd, Ri is a function S : JF(x)! F
such that S(A) 2 A for all A 2 JF(x).

A selection function for x selects an element of each rule
of x. In general, selection functions exists assuming the ax-
iom of choice. Given a selection function S of x, the set
⇠ Im(S) is a potential case of ⇠x, where Im(S) is the im-
age of S . This motivates the following.

Definition 3.2. Let JF = hF ,Fd, Ri be a justification
frame. Define R⇤ ✓ Fd ⇥ 2F as the set of elements of the
form

(⇠x,⇠ Im(S))
for x 2 Fd and S a selection function of x. The com-
plement of JF is defined as C(JF) := hF ,Fd, R⇤i.
The complementation of JF is defined as CC(JF) :=
hF ,Fd, R [R⇤i. A justification frame JF is complemen-
tary if it is equivalent with C(JF).

Remark 3.3. Denecker et al. (Denecker, Brewka, and Strass
2015) only defined complementation, which they called
complement closure, which is a misleading name since com-
plementation is not a closure, i.e. not idempotent. The essen-
tial properties of complementation are captured by comple-
mentary justification frames.

Complementation can also be applied to any set of rules.
Most examples will start with a set or rules that does not
form a justification frame.

Example 3.4. Take Fd = {a, b, c,⇠a,⇠b,⇠c}, Fo = L
and R = {a b; a c; b t; c t}, then the com-
plementation of R gives a complementary justification
frame JF = hF ,Fd, R [R⇤i, which adds the rules
{⇠a ⇠b,⇠c;⇠b f ;⇠c f}. For instance the rule
⇠a ⇠b,⇠c is in R since a b and a c are in R. N

Let us also check what complementation means in our
running example.

Example 3.5. In Example 2.2, we did not state the rules for
⇠Path(v, w). With complementation we get

⇠Path(v, w) {⇠Edge(v, w)} [S

with S a subset of F such that for every x 2 V , at least
⇠Path(v, x) or ⇠Path(x,w) is in S. Intuitively it says that
v and w are not connected if there is no edge between v and
w and for all x 2 V , there is no path from v to x or no path
from x to w. N

We obtain the following characterisation for complemen-
tary frames.
Proposition 3.6. Let JF = hF ,Fd, Ri be a justification
frame. Then JF is complementary if and only if for every
x 2 Fd the following hold

1. for every selection function S of x in JF , there exists an
A 2 JF(⇠x) such that A ✓ ⇠ Im(S);

2. for every A 2 JF(x), there exists a selection function S
of ⇠x in JF such that ⇠ Im(S) ✓ A.

Proof. Follows directly from writing out what equivalence
means in this context.

With complementation we can construct complementary
justification frames.
Proposition 3.7. Let F be a fact space and let Fd be a sub-
set of F closed under ⇠ that does not contain logical facts.
Let {F1,F2} be a partition of Fd such that ⇠F1 = F2. Let
R be a subset of F1 ⇥ (2F \ ;) such that for each x 2 F1,
there is an (x,A) 2 R. Then JF = hF ,Fd, R [R⇤i is
complementary.

In general, complementation of a justification frame is not
always complementary as illustrated by the following exam-
ple.
Example 3.8. Let JF = hF ,Fd, Ri with Fd =
{a,⇠a}, Fo = L and R = {a t;⇠a t}.
Then the complementation of JF has the following
rules {a t;⇠a t; a f ;⇠a f}, while the com-
plement of the complementation of JF has the rules
{a t, f ;⇠a t, f}. These two justification frames are
not equivalent; hence the complementation of JF is not
complementary. N

The following lemma illustrates that cases of a fact and its
negation are intrinsically related in a complementary justifi-
cation frame.
Lemma 3.9. If a justification frame is complementary, then
for every rule x A and rule ⇠x B, A \ ⇠B 6= ;.

Lemma 3.9 expands to justifications.
Lemma 3.10. Let JF = hF ,Fd, Ri be a complementary
justification frame and x 2 Fd. If J and K are locally com-
plete justifications with x 2 dom(J) and ⇠x 2 dom(K),
then there exists a J-branch b starting in x such that ⇠b is
a K-branch starting in ⇠x.

Even though, we have found branches that are each others
negation, in general we cannot relate the evaluation of these
branches. The following definition gives an obvious relation.
Definition 3.11. A branch evaluation B is consistent if for
all justification frames JF and all JF-branches b it holds
that B(⇠b) = ⇠B(b).

If a justification frame is complementary it means that
rules for a fact and its negation are compatible. One should
expect that in a such a frame, the justification status should
also be compatible, that is, a fact is supported in I if and
only if the negation is not supported in I . However, this is
not always the case, as illustrated in the following example.
Example 3.12. Take Fd = {a,⇠a, b,⇠b, c,⇠c} and Fo =
L, F+ = {a, b, c}, and F� = {⇠a,⇠b,⇠c}. The set of
rules is the complementation of

{a b; a c; b a; c a} .

Define the branch evaluation B as follows for infinite
branches:
• B(x0 ! x1 ! · · ·) = f if 9i0 2 N : 8i, j > i0 : xi 2

F+ and if xi = xj , then xi+1 = xj+1;
• B(x0 ! x1 ! · · ·) = t if 9i0 2 N : 8i, j > i0 : xi 2

F� and if xi = xj , then xi+1 = xj+1;
• B(x0 ! x1 ! · · ·) = u otherwise.
Finite branches are mapped to their last element. The only
connected locally complete justifications with a or ⇠a in
their domain are given below:

a

b

a

c

⇠a

⇠b ⇠c

Therefore, it is easy to see that a is not supported by JS in
any subset of F not containing f , but also ⇠a is not sup-
ported by JS in any subset of F not containing both t and
u. This means that the semantics of the branch evaluation B
is defective. The goal of the rest of the paper is to prove that
this situation cannot occur for supported, Kripke-Kleene,
stable and well-founded branch evaluations. N

4 Duality
Duality results are ubiquitous in mathematics and computer
science. Duality results of points and hyperplanes in projec-
tive geometry are famous examples. In logic, the duality be-
tween conjunctive normal form (CNF) and disjunctive nor-
mal form (DNF) is another. This duality can be explained in
terms of justification frames. Let � be a CNF formula, i.e.
it is a conjunction of clauses, of which each clause is a dis-
junction of literals. Let c1, . . . , cn be the different conjuncts
of �. For each conjunct ci, let di,1, . . . , di,mi be its disjuncts.
We can construct the following set R of rules containing

� c1, . . . , cn and ci di,j

for all 1 i n and 1 j mi. The set R corre-
sponds to the CNF formula �. The dual of � is defined as �
after swapping ^ with _ and changing literals to their nega-
tion. The complementation of the above set R forms a justifi-
cation frame if taking Fd = {�,⇠�, c1,⇠c1, . . . , cn,⇠cn}
and Fo = L [{di,j ,⇠di,j | 1 i n, 1 j mi}. The
rules for ⇠� and ⇠ci correspond with the dual of the CNF
formula �. The duality result between CNF and DNF is as
follows:
• � is satisfiable if the dual of � is not valid.

• � is valid if the dual of � is not satisfiable.
Let I be a subset of F such that exactly one of di,j and⇠di,j
is in I for all i and j. Call I a ⇤-set. It is not hard to see
that � is satisfiable if and only if � is supported in some ⇤-
set I under B with B any branch evaluation that maps finite
branches to their last element. For simplicity, suppose B =
BKK. Similarly, the dual of � is satisfiable if and only if ⇠�
is supported in some ⇤-set I under B. This means that we
have that
• � is supported in some ⇤-set I if and only if ⇠� is not

supported in some ⇤-set I .
• � is supported in all ⇤-sets I if and only if ⇠� is not sup-

ported in all ⇤-sets I .
In what follows, we investigate how this result general-

izes, i.e., we investigate the following question. If a fact x
is supported in I , will ⇠x be supported in some I 0? And
conversely, if a fact x is not supported in I , will ⇠x be sup-
ported in some I 0? We investigate this when I 0 is the dual
of I , which we define below. The duality result of CNF and
DNF formulas is also a consequence of our main theorem.

Interpretable sets
In this section we show how “subsets of F” relate to inter-
pretations as often defined in various branches of logic. In
particular, given a propositional vocabulary ⌃, a four-valued
interpretation is often defined as a mapping ⌃! L. Taking
F the set of literals over ⌃, extended with the logical facts,
this induces a map I : F ! L such that I(⇠x) = ⇠I(x)
for all x 2 F and I(`) = ` for all ` 2 L. We call such a map
an interpretation of F .

As mentioned before, our set of logical facts corresponds
to Belnap’s four-valued logic (Belnap 1977). Each value can
also be represented as a closed interval (in the truth order,
represented as a tuple) of two-valued truth values: t corre-
sponds to (t, t), f to (f , f), u to (f , t), and i to (t, f).

For each interpretation I, we can associate two sets of
facts: a lower interpretable subset I` and an upper inter-
pretable subset Iu. The set I` consists of the true and incon-
sistent facts and Iu consists of the true and unknown facts.
We can construct each type of fact. This is summarised be-
low.
• The true facts are I` \ Iu.
• The false facts are F \ (I` [Iu).
• The unknown facts are Iu \ I`.
• The inconsistent facts are I` \ Iu.
Remark 4.1. The terms lower and upper refer to which coor-
dinate should be t. For instance, the lower interpretable set
consists of the true and inconsistent facts: the only logical
facts for which the first coordinate is t in the above men-
tioned tuple notation are t and i.

Now take an arbitrary subset I of F . Let L be the set
of logical facts in I . If L = {t, i}, then I corresponds to
the lower interpretable subset of a unique interpretation II .
Similar, if L = {t,u}, then I corresponds to the upper inter-
pretable subset of a unique interpretation II . These are the
only possibilities for interpretable subsets.

The set of interpretable8 subsets of F is denoted as IF (or
by I if F is clear from the context).
Definition 4.2. An interpretable subset I of F is consistent
if II(x) = i if and only if x = i. An interpretable subset
I of F is co-consistent if II(x) = u if and only if x = u.
An interpretable subset I of F is exact if it is consistent and
co-consistent.

For a given interpretation, the lower and upper inter-
pretable subsets are related to each other by the following
duality operator.
Definition 4.3. We define the duality operator on subsets of
F as follows:

dF : 2F ! 2F : I 7! dF (I) := ⇠(F \ I) = F \⇠I.
When F is clear from the context, we just write d for

dF . For an interpretation I, we have that d(I`) = Iu and
d(Iu) = I`. In general the following holds.
Proposition 4.4. 1. The duality operator is involutive, that

is d(d(I)) = I for all I ✓ F .
2. The duality operator maps lower interpretable subsets to

upper interpretable subsets and vice versa.
3. For I interpretable, it holds that Id(I) = II .
4. The duality operator preserves consistency and co-

consistency of interpretable subsets.
5. The dual of an exact interpretable subset I differs from I

only on the logical facts.
Item (3) shows that the dual of an interpretable subset pro-

vides a different view on the same object (the same under-
lying interpretation), as is often the case with dualities in
mathematics.
Remark 4.5. We effectively split an interpretation in a lower
and upper interpretable subsets. Unfortunately, these con-
cepts are less intuitive than interpretations. On the positive
side, they simplify the arguments for proofs and enable us to
state results that are not obvious in terms of interpretations.
In order to relate to intuitions, we will rephrase most results
on interpretable sets below in terms of interpretations.

Let JS be a justification system and I and interpretation
of F .
Definition 4.6. Let JS be a justification system, x 2 F a
fact, and I an interpretation of F . If x is defined, the sup-
ported value of x in I by JS is defined as:

SVJS(I, x) :=
_

J2JJS(x)

^

b2BJ (x)

I(B(b)),

where JJS(x) is the set of locally complete justifications J
in JS with x 2 dom(J) and BJ(x) is the set of J-branches
starting in x. The meet and join are with respect to the truth
order.

If x is open, the supported value of x in I by JS is defined
as SVJS(I, x) := I(x).

8In (Denecker, Brewka, and Strass 2015), Denecker et al. only
considered lower interpretable subsets as input for the support op-
erator. They called those sets interpretations. We chose for the ter-
minology ‘interpretable’ to emphasise the difference with what is
usually called an interpretation in logic.

This value can be seen as the value of the best justification
for x. For a given justification J ,

V
b2BJ (x)

I(B(b)) can
intuitively be seen as the worst value of its branches.

It is not too difficult to see that the supported value is the
same as the following tuple of two-valued truth values

(x 2 ŜJS(I`), x 2 ŜJS(Iu)),

where the expression x 2 A is considered t if x is in A and
f if not. As stated in the introduction, we want that the sup-
ported value commutes with negation, i.e. SVJS(I, x) =
⇠ SVJS(I,⇠x). To prove this for all interpretations, this
amounts to proving that x is supported in I if and only if
⇠x is not supported in d(I) for any interpretable set I . In
algebraical terms, this is exactly

d(ŜJS(I)) = ŜJS(d(I))

for all interpretable subsets.
Remark 4.7. This rewording directly shows that our main
theorem implies the duality between CNF and DNF formu-
las as mentioned in the introduction of this section.

If the supported value commutes with negation, then the
supported value is the value of the interpretation correspond-
ing to ŜJS(I), which is well defined since ŜJS(I) is inter-
pretable since I is interpretable. In what follows we study
this property and prove it for completion, Kripke-Kleene,
stable and well-founded semantics. Moreover, we will prove
it for co-stable and co-well-founded semantics, which we
define in the next two subsections.

Signed justification frames
In many logical frameworks, there is an asymmetry between
positive and negative literals, while in justification theory,
facts and their negation are treated completely symmetri-
cally. In this section, we show how a similar distinction can
be introduced by means of a sign function. Consider for in-
stance stable semantics of logic programs (Gelfond and Lif-
schitz 1988). There, the default value for atoms is false; as
such, the default value for its negation is true. Thus, the set
of defined literals is divided into two parts, those that are de-
fault and those that are not.9 This idea is captured in signed
justification frames.
Definition 4.8. Let JF be a justification frame. A sign func-
tion on JF is a map

sgn : Fd ! {�,+}

such that sgn(x) 6= sgn(⇠x) for all x 2 Fd. We denote
F� := sgn�1({�}) and F+ := sgn�1({+}). Remark that
{F�,F+} forms a partition of Fd.

From now on, we fix a sign function on JF . This structure
is always present in a justification frame defined as in (De-
necker, Brewka, and Strass 2015) and there it is a partition of
whole F . However, it raises the question which logical facts
are positive and which are negative. To solve this, Denecker
et al. introduced a positive and negative u and i, which is an

9In some contexts, non-default literals are called deviant (De-
necker, Bogaerts, and Vennekens 2018).

ad hoc solution and deviates from Belnap’s four-valued logic
(Belnap 1977). We abstain from deciding which logical fact
is positive by only introducing it for defined facts.

The sign function is used to define new branch evalua-
tions.
Definition 4.9. The well-founded (Van Gelder, Ross, and
Schlipf 1991) branch evaluation Bwf maps finite branches to
their last element. Under Bwf , infinite branches are mapped
to t if they have a negative tail, to f if they have a positive
tail and to u otherwise.

The stable (Gelfond and Lifschitz 1988) (answer set)
branch evaluation10 Bst maps a branch x0 ! x1 ! · · ·
to the first element that has a different sign than x0 if it ex-
ists, otherwise to t if x0 is negative and f if x0 is positive.
The only exception is that a finite branch x0 ! · · · ! xn,
with x0, . . . , xn�1 having the same sign, is mapped to xn.

The correspondence with the corresponding logic pro-
gramming semantics is given in the following theorem from
(Denecker, Brewka, and Strass 2015, Theorem 1).
Theorem 4.10 (Denecker et al.). To a propositional logic
program ⇧ we can associate a complementary justification
frame JF⇧ such that
• An exact lower interpretable subset I is an exact fixed

point of ŜBsp

JF⇧
iff I is a supported model of ⇧.

• A lower interpretable subset I is a fixed point of ŜBKK
JF⇧

iff
I is the Kripke-Kleene model of ⇧.

• A lower interpretable subset I is an exact fixed point of
ŜBst
JF⇧

iff I is a stable model of ⇧.

• A lower interpretable subset I is a fixed point of ŜBwf
JF⇧

iff
I is the well-founded model of ⇧.

Dual branch evaluations
Well-founded semantics accurately captures the semantics
of inductive definitions (Denecker and Ternovska 2004; De-
necker and Vennekens 2007; Denecker and Ternovska 2008;
Denecker and Vennekens 2014). On the other hand, there are
co-inductive definitions (Gupta et al. 2007). We define a se-
mantics for co-induction by introducing a co-well-founded
branch evaluation11.
Definition 4.11. Let JF be a justification frame. Then
the co-well-founded branch evaluation Bcwf maps finite
branches to their last element, branches with a positive tail
to t, branches with a negative tail to f and all other branches
to u.

After close inspection, this is exactly Bwf , but with an in-
verted sign function. This motivates the following. If JF =
hF ,Fd, Ri is a justification frame with sign function sgnJF ,
then we denote JF to be the justification frame hF ,Fd, Ri
with sign function sgnJF := � sgnJF . Each JF-branch b

10This is different on finite branches than the stable branch eval-
uation introduced in (Denecker, Brewka, and Strass 2015); how-
ever, fixed points of the extended support operators are equal.

11Denecker et. al first described the co-well-founded branch
evaluation in (Denecker, Brewka, and Strass 2015).

is a JF-branch. To make explicit the justification frame JF
we regard a branch b in, we denote b as bJF .
Definition 4.12. Let B be a branch evaluation. The dual
branch evaluation B of B is defined as follows:

B(bJF) = B(bJF)

for any justification frame JF and JF-branch b.
We chose to call it dual semantics as induction and co-

induction are dual concepts.
Example 4.13. The well-founded and co-well-founded
branch evaluation are each others dual. N

Branch evaluations, such as Bsp and BKK, that do not de-
pend on a sign function are self-dual. Apart from the co-
well-founded branch evaluation, we constructed a new se-
mantics: the co-stable branch evaluation Bcst := Bst. It dif-
fers with Bst only on infinite branches having everywhere
the same sign. In this case, it is the negation of Bst. Where
stable semantics gives a default value of false to atoms, co-
stable semantics gives a default value of true to atoms. Co-
stable semantics could be useful in the context of stream rea-
soning (Beck, Eiter, and Folie 2017).

Justifications in dual semantics are related with justifica-
tions in the original semantics as illustrated in the following
lemma.
Lemma 4.14. Let JS be a justification system hJF ,Bi and
let JS 0 be the justification system

⌦
JF ,B

↵
. Then SJS(I) =

SJS0(I) for all subsets I of F .
While the proof of this lemma is (almost) trivial, it has a

consequence that relates commutation of negation with the
supported value between dual branch evaluations.
Corollary 4.15. For a subset I of F , the following are
equivalent.

1. Under B, x is supported in I if and only if ⇠x is not sup-
ported in d(I). (ŜB

JF (d(I)) = d(ŜB
JF (I)))

2. Under B, x is supported in I if and only if ⇠x is not sup-
ported in d(I). (ŜB

JF (d(I)) = d(ŜB
JF (I)))

Thus if we prove that the supported value commutes with
negation for stable and well-founded semantics, we auto-
matically have that the supported value of co-stable and co-
well-founded semantics commutes with negation.

5 Branch evaluation classes
In this section, we study properties of various branch evalu-
ations, in particular Bsp, BKK, Bwf , Bst, and their duals. To
do this systematically, we introduce novel classes of branch
evaluations and study properties of them. In particular, we
study so-called splittable branch evaluations. Such a branch
evaluation can evaluate any branch either by only taking
its start (first n elements) or its tail into account. Splittable
branch evaluations allow us to “glue” justifications together
and as such construct a single justification that supports
SJS(I) in I .

For a finite branch b : x0 ! x1 ! · · · ! xn, denote
`(b) = n. If b is infinite, we say `(b) = 1. Two branches

x0 ! x1 ! · · · and y0 ! y1 ! · · · are identical up to
n if for all 0 i n, we have xi = yi. We say a JF-
branch b : x0 ! x1 ! · · · is decided under B at 0 < n <
`(b) + 1 if for every JF-branch b0 identical to b up to n,
we have B(b) = B(b0). In this case, we call the JF-path
x0 ! · · · ! xn decided under B. This means to determine
the value of b under B, we only need the n+1 first elements,
so all relevant information is located at the beginning of the
branch. This allows us to extend B to paths that are decided.
On the other hand, we define b to be transitive under B at
0 n < `(b) if

B(b) = B(xn ! xn+1 ! · · ·).
Intuitively, a branch is transitive if all information needed to
evaluate it is located in the tail after n.
Definition 5.1. A branch b is called splittable under B at
0 n < `(b) + 1 if it is either decided or transitive under
B at n.

Intuitively, if a branch is splittable at n, then the informa-
tion to evaluate the branch is either in tail or start, but not in
both.
Remark 5.2. If B is clear from context, ‘under B’ is left out.
Lemma 5.3. If a branch b is decided at n, then it is also
decided at m for n m < `(b) + 1.

A branch b is called first decided at 0 < i < `(b) + 1 if
b is decided at i = 1 or b is decided at i > 1 and b is not
decided at i� 1.
Definition 5.4. We say that a branch b is totally decided if
it is decided at i for every 0 < i < `(b) + 1. Similarly, b is
totally transitive if it is transitive at i for every 0 i < `(b).
A branch b is totally splittable if it is splittable at i for every
0 i < `(b) + 1.
Definition 5.5. A branch evaluation B is called
• splittable12 if every JF-branch is totally splittable;
• transitive if every JF-branch is totally transitive;
• decided if every JF-branch is totally decided;
• parametric if B(b) 2 Fo for any JF-branch b;
for every justification frame JF .
Lemma 5.6. Any transitive or decided branch evaluation is
splittable.
Example 5.7. The branch evaluation Bsp is decided, BKK,
Bwf and Bcwf are transitive and parametric, and Bst and Bcst

are splittable. The branch evaluation Bex from Example 3.12
is transitive and parametric. N

Any branch b : x0 ! x1 ! · · · has a least initial seg-
ment b⇤ that is decided. Indeed, if b is first decided at i,
then x0 ! · · · ! xi is this segment. If b is nowhere de-
cided, then b itself is this segment. Using this segment, we
can give an equivalent characterisation of splittable.
Proposition 5.8. A branch evaluation B is splittable if and
only if for every branch b, we have that the final segment of
b⇤ is decided and has the same evaluation as b.

12The concept of splittable branch evaluations was first intro-
duced in the master’s thesis of the second author (Passchyn 2017).

Corollary 5.9. Let B be a splittable branch evaluation. If a
branch b is first decided at j. Then for all 0 i < j the
path xi ! · · ·! xj is decided and has the same evaluation
as b.

Transitive justification systems over complementary jus-
tification frames are local in some sense.
Lemma 5.10. Let B be a transitive branch evaluation such
that finite branches are mapped to their last element. Let JF
be a complementary justification frame Then for any subset
I of F and any x 2 Fd

• x 2 SB
JF (I) if and only if there is an A 2 JF(x) such

that A ✓ ŜB
JF (I);

• ⇠x /2 SB
JF (I) if and only if there is an A 2 JF(x) such

that A ✓ d(ŜB
JF (I)).

The condition on finite branches in Lemma 5.10 is neces-
sary as shown by the next example.
Example 5.11. Let Fd = {a,⇠a}, Fo = L [{b,⇠b}
and R = {a b;⇠a ⇠b}. Take the justification sys-
tem JS = hF ,Fd, R,Bi with B be a branch evaluation
over JF such that B = BKK on infinite branches and
B(b) = ⇠BKK(b) for finite branches b. This branch evalu-
ation is transitive and parametric. Take I = {t, i, b}. There
exists an A 2 JF(a) such that A ✓ ŜJS(I) = {t, i, b,⇠a},
i.e. A = {b}. However, a /2 SJS(I) = {⇠a}. N

6 Pasting justifications
In this section we define an operation that “glues” two jus-
tifications together. We investigate how branches are related
after the gluing.

If a justification J is a subset of a justification K, then
we say that K extends J or that J is a restriction of K.
The union of two justifications is not necessarily a justifica-
tion. However, the union of two justifications with disjoint
domain is a justification.
Definition 6.1. The extension of J with K is defined as

(J " K)(x) :=

⇢
J(x) if x 2 dom(J);
K(x) if x 2 dom(K) \ dom(J).

It is clear that J " K is an extension of J .
Branches of the extension of two locally completely jus-

tifications behave nicely.
Lemma 6.2. If J and K are two locally complete justifi-
cations, then J " K is locally complete. Moreover, every
(J " K)-branch either is a K-branch or is a concatenation
of a K-path with a J-branch. (K-path means a path in GK)

The next lemma illustrates the power of splittable branch
evaluations.
Lemma 6.3. Let JS = hF ,Fd, R,Bi be a splittable justi-
fication system. Take a subset I of F . Let J and K be two
locally complete justifications that support their domain in
I under JS , then J " K also supports its domain in I under
JS .

This result also holds for non locally complete justifica-
tions.

Lemma 6.4. Let JS = hF ,Fd, R,Bi be a splittable justi-
fication system. Take a subset I of F . Let J and K be arbi-
trary justifications that support their domain in I under JS ,
then J " K also supports its domain in I under JS .

A root of a graph is a node such that all other nodes can be
reached with a path starting in this root. We say a justifica-
tion J is root-supported in I if it has a root that is supported
by J in I . Transitive branch evaluations act well with root-
supported justifications.

Lemma 6.5. Let JS = hF ,Fd, R,Bi be a justification sys-
tem with B transitive. An I-root-supported justification sup-
ports its domain in I .

The following proposition allows us to paste together an
arbitrary number of justifications that support their domain
into a justification that also supports its domain.

Proposition 6.6. Let JS = hF ,Fd, R,Bi be a splittable
justification system. Take a subset I of F . Let X be a subset
of Fd such that for any x 2 X , there exists a (locally com-
plete) justification Jx that supports its domain in I . Then
there exists a (locally complete) justification J that supports
its domain dom(J) = [x2X dom(Jx) in I and for any
y 2 dom(J), it holds that J(y) = Jx(y) for some x 2 X .

Proof. The proposition is trivial if X = ;, so assume
X 6= ;. We do a proof by transfinite induction. By the
well-ordering theorem13, we can fix a well-order on X =
{xi | i �} for some ordinal �. Define

• K0 = Jx0 ;
• Ki+1 = Ki " Jxi+1 for any ordinal i < �;
• K↵ = [i<↵Ki for any limit ordinal ↵ �.

The zero case trivially supports its domain and the successor
case by Lemma 6.4. For a limit ordinal ↵ �, take a locally
complete extension L of K↵ and x 2 dom(K↵). There is
an i < ↵ such that x 2 dom(Ki). Since x is supported by
Ki in I and L is an extension of K↵ and thus also of Ki,
we have that x is supported by L in I . Because L is taken
arbitrary, x is supported by K↵ in I; hence K↵ supports its
domain in I .

The condition that for y 2 dom(Ki), it holds that
Ki(y) = Jx(y) for some x 2 X is trivial for all cases by the
definition of " and [.

The zero case is trivially locally complete, the succes-
sor case by Lemma 6.2. Suppose by contradiction that the
limit case does not preserve locally completeness. Thus,
there exist defined facts x, y such that x 2 K↵(y), but
x /2 dom(K↵). There is an i < ↵ so that K↵(y) = Ki(y).
Then this means that x is a leaf of Ki, which is a contradic-
tion, that is, the limit case preserves locally completeness.

Finally, set J = K� .

This result enables to construct a justification that support
SJS(I) in I under JS .

13This is equivalent to the axiom of choice.

Corollary 6.7. Let JS = hF ,Fd, R,Bi be a splittable jus-
tification system. For any subset I of F , there exists a jus-
tification J that supports its domain dom(J) = SJS(I) in
I . Moreover, if B is transitive, J can be taken to be locally
complete.

If B is not splittable, then such a justification as in Corol-
lary 6.7 does not necessarily exist as shown by the following
example.
Example 6.8. Let B be the branch evaluation that maps
x0 ! x1 ! x2 ! · · · to x2 if it exists and to ⇠x1

otherwise. Let Fd = {a, b,⇠a,⇠b} and Fo = L [
{c, d,⇠c,⇠d}. Let R = {a b; b c; b d}. Define
JF = hF ,Fd, R [R⇤i and take I = {t,u, c,⇠d}. Then
SB
JF (I) = {a, b}. However, the only connected justifica-

tions that contain a and b in its domain are
a

b

c

a

b

d

These justifications do not simultaneously support a and b
in I . N

If B is not transitive, then there does not necessarily ex-
ist a locally complete justification that supports its domain
dom(J) = SJS(I) in I . That is, the moreover part of Corol-
lary 6.7 does not hold for non-transitive branch evaluations.
This is illustrated in the following example.
Example 6.9. Let JS = hF ,Fd, R,Bspi be the justi-
fication system with Fd = {a,⇠a, b,⇠b}, Fo = L [
{c,⇠c} R = {a b; b c;⇠a ⇠b;⇠b ⇠c}. Take
I = {a, b,⇠c}, then SBsp

JF (I) = {a,⇠b}. Now if a locally
complete justification has a in its domain, then it has b in its
domain. Therefore there is no locally complete justification
with domain SBsp

JF (I) that supports its domain. N
However, we can still find a locally complete justification

J that supports SJS(I) in I , i.e. any locally complete exten-
sion of a justification from Corollary 6.7.

The justification found in Corollary 6.7 is a conglomer-
ated explanation for all supported facts and will prove to be
useful later on; particularly in the proof of our main theorem.

7 Consistency of supported value
A justification that supports x in I gives an explanation why
x is valid. If we have a justification for x, we expect not
to find a justification for ⇠x. Under reasonable assumptions
this holds.
Proposition 7.1. Let JS = hF ,Fd, R,Bi be a complemen-
tary justification system with B consistent. Take a subset I
of F . If x 2 Fd is supported by JS in I , then ⇠x is not
supported by JS in d(I).

If I is a lower interpretable set, then Proposition 7.1 states
that if the supported value of x is t or i, then the supported
value of ⇠x is not equal to t or u. These two statements do
not conflict each other. If I is an upper interpretable set, this
is the same but u and i swapped.

Proposition 7.1 is equivalent with

SJS(I) ✓ d(SJS(d(I))).

This in turn implies that

ŜJS(d(I)) ✓ d(ŜJS(I)).

As a consequence we get a partial result concerning sup-
ported values.
Corollary 7.2. If JS is a complementary justification sys-
tem with a consistent branch evaluation, then

SVJS(I, x) t ⇠ SVJS(I,⇠x)
for any x 2 F and interpretation I of F , and where t

denotes the truth order.
The converse of Proposition 7.1 does not always hold as

illustrated in Example 3.12. For some branch evaluations the
converse does hold.
Proposition 7.3. Let JF be a complementary justification
frame. Then for B 2 {Bsp,Bst,BKK,Bwf} it holds that if
⇠x is not supported in I , then x is supported in d(I) for all
interpretable subsets I of F .

The proof heavily depends on Corollary 6.7 and can be
found in the extended version of this text. Intuitively, if I
is a lower interpretable set, Proposition 7.3 states that if the
supported value of x is f or u, then the supported value of
⇠x is t or i. If I is an upper interpretable set, Proposition 7.3
states that if the supported value of x is f or i, then the sup-
ported values of ⇠x is t or u. Proposition 7.3 is equivalent
with

d(ŜB
JF (I)) ✓ ŜB

JF (d(I))

Combining Proposition 7.1 and Proposition 7.3, we get
that the following theorem.
Theorem 7.4. Let JF be a complementary justification
frame. Let I be an interpretable subset of F . Then x 2 Fd is
supported in I under B if and only if ⇠x is not supported in
d(I) under B for B 2 {Bsp,BKK,Bst,Bwf}. This is equiva-
lent with d(ŜB

JF (I)) = ŜB
JF (d(I)).

Corollary 7.5. For the justification systems above, the sup-
ported value commutes with negation, i.e.

SVJS(I,⇠x) = ⇠ SVJS(I, x)
for all interpretations I of F .

This means that SVJS(I, ·) is an interpretation of F . This
result is what one intuitively expects. However, it is not too
difficult to come up with an example in which this intuition
does not hold.
Example 7.6. Continuation of Example 3.12. For any in-
terpretation I of F , we have that SV(I, a) = f , while
SV(I,⇠a) = u. Therefore, SV(I, ·) is not an interpreta-
tion of F . N

The branch evaluation in this example induces a defective
semantics since it has a counter-intuitive notion of support.
Our expectation is that the supported value is always an in-
terpretation and equal to the one corresponding to ŜJS(I) as
lower bound.

A similar result is already known for tree-like justifica-
tions for three-valued completion, stable and well-founded
semantics, see (Denecker and De Schreye 1993).

By Corollary 4.15, we have that Theorem 7.4 also holds
for Bcwf and Bcst. In justification systems where the sup-
ported value commutes with negation, we have in most cases
that the extended support operator preserves consistency of
interpretable subsets.
Proposition 7.7. Let JS = hF ,Fd, R,Bi be a justifica-
tion system such that d(ŜJS(I)) = ŜJS(d(I)) for all in-
terpretable subsets I of F . Suppose B does not map JF-
branches to i. Then ŜJS preserves consistency of inter-
pretable subsets.

Remark 7.8. For a branch evaluation B that maps finite
branches to their last element, B not mapping JF-branches
to i implies that rules cannot have i in their body.

Proposition 7.7 states that if an interpretation I is three-
valued, then SVJS(I, ·) is a three-valued interpretation.

8 Conclusion
Justification theory is an abstract framework to define and
study semantics of non-monotonic logics. This includes var-
ious types of logic programs, abstract argumentation, in-
ductive and co-inductive definitions, and nested definitions.
Next to being useful to define semantics of logics, the
framework can also be used when solving practical prob-
lems, for instance for computing unfounded sets in mod-
ern ASP solvers (Gebser, Kaufmann, and Schaub 2012;
Mariën et al. 2008), relevance checking (Jansen et al. 2016),
lazy grounding algorithms (De Cat et al. 2015; Bogaerts
and Weinzierl 2018), and provenance systems for databases
(Damásio, Analyti, and Antoniou 2013).

Complementary justification frames arise naturally for a
range of formalisms, such as, abstract argumentation and the
duality between CNF and DNF formulas. In many systems,
rules are only defined for atoms, such as, in logic program-
ming, while in abstract argumentation rules are only defined
for negative literals. These rules can be transformed into a
complementary justification frame.

The introduced dual branch evaluations provide a system-
atic way to define a dual semantics in justification theory. To
the extent of our knowledge, we are the first to define such
duality. In particular, it shows the relation between inductive
and co-inductive logic programs.

By introducing splittable branch evaluations, we have
found a general class in which supporting justifications can
be pasted. An interesting question is if there is a more gen-
eral class of branch evaluations that satisfies Proposition 6.6
and Corollary 6.7.

This pasting is then used to prove that the supported value
commutes with negation for completion, Kripke-Kleene,
stable and well-founded semantics. Using our duality re-
sult, we also get it for co-stable and co-well-founded se-
mantics. A similar result was proven for tree-like justifica-
tions in a three-valued setting in (Denecker and De Schr-
eye 1993). An interesting question for future work is to find
a complete characterisation for when the supported value

commutes with negation. This would give a characterisation
which branch evaluations do not induce a defective seman-
tics.

References
Beck, H.; Eiter, T.; and Folie, C. 2017. Ticker: A system
for incremental asp-based stream reasoning. TPLP 17(5-
6):744–763.
Belnap, N. D. 1977. A useful four-valued logic. In Modern
Uses of Multiple-Valued Logic. Reidel, Dordrecht. 8–37.
Invited papers from ISMVL.
Bogaerts, B., and Weinzierl, A. 2018. Exploiting justifica-
tions for lazy grounding of answer set programs. In Pro-
ceedings of IJCAI, 1737–1745.
Cabalar, P.; Fandinno, J.; and Fink, M. 2014. Causal graph
justifications of logic programs. TPLP 14(4–5):603–618.
Clark, K. L. 1978. Negation as failure. In Logic and Data
Bases, 293–322. Plenum Press.
Damásio, C. V.; Analyti, A.; and Antoniou, G. 2013. Jus-
tifications for logic programming. In Cabalar, P., and Son,
T. C., eds., Logic Programming and Nonmonotonic Reason-
ing, 12th International Conference, LPNMR 2013, Corunna,
Spain, September 15-19, 2013. Proceedings, volume 8148 of
LNCS, 530–542. Springer.
De Cat, B.; Bogaerts, B.; Devriendt, J.; and Denecker, M.
2013. Model expansion in the presence of function sym-
bols using constraint programming. In Proceedings of IC-
TAI, 1068–1075.
De Cat, B.; Denecker, M.; Bruynooghe, M.; and Stuckey,
P. J. 2015. Lazy model expansion: Interleaving grounding
with search. J. Artif. Intell. Res. (JAIR) 52:235–286.
Denecker, M., and De Schreye, D. 1993. Justification se-
mantics: A unifying framework for the semantics of logic
programs. In Proceedings of LPNMR, 365–379.
Denecker, M., and Ternovska, E. 2004. A logic of non-
monotone inductive definitions and its modularity proper-
ties. In Lifschitz, V., and Niemelä, I., eds., LPNMR, volume
2923 of LNCS, 47–60. Springer.
Denecker, M., and Ternovska, E. 2008. A logic of non-
monotone inductive definitions. ACM Trans. Comput. Log.
9(2):14:1–14:52.
Denecker, M., and Vennekens, J. 2007. Well-founded se-
mantics and the algebraic theory of non-monotone inductive
definitions. In Proceedings of LPNMR, 84–96.
Denecker, M., and Vennekens, J. 2014. The well-founded
semantics is the principle of inductive definition, revisited.
In Proceedings of KR, 22–31.
Denecker, M.; Bogaerts, B.; and Vennekens, J. 2018. Causal
reasoning in a logic with possible causal process semantics.
under review.
Denecker, M.; Brewka, G.; and Strass, H. 2015. A formal
theory of justifications. In Proceedings of LPNMR, 250–
264.
Denecker, M.; Marek, V.; and Truszczyński, M. 2000. Ap-
proximations, stable operators, well-founded fixpoints and

applications in nonmonotonic reasoning. In Logic-Based Ar-
tificial Intelligence, Springer, volume 597, 127–144.
Denecker, M.; Marek, V.; and Truszczyński, M. 2011. Re-
iter’s default logic is a logic of autoepistemic reasoning and
a good one, too. In Nonmonotonic Reasoning – Essays Cel-
ebrating Its 30th Anniversary. College Publications. 111–
144.
Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. AIJ 77(2):321 – 357.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Conflict-
driven answer set solving: From theory to practice. AIJ
187:52–89.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Proceedings of
ICLP/SLP, 1070–1080.
Gupta, G.; Bansal, A.; Min, R.; Simon, L.; and Mallya, A.
2007. Coinductive logic programming and its applications.
In Dahl, V., and Niemelä, I., eds., ICLP, volume 4670 of
LNCS, 27–44. Springer.
Harrison, A.; Lifschitz, V.; and Yang, F. 2013. On the se-
mantics of gringo. CoRR abs/1312.6149.
Jansen, J.; Bogaerts, B.; Devriendt, J.; Janssens, G.; and De-
necker, M. 2016. Relevance for SAT(ID). In Proceedings of
IJCAI, 596–603.
Marek, V., and Truszczyński, M. 1999. Stable models and
an alternative logic programming paradigm. In The Logic
Programming Paradigm: A 25-Year Perspective. Springer-
Verlag. 375–398.
Mariën, M.; Wittocx, J.; Denecker, M.; and Bruynooghe,
M. 2008. SAT(ID): Satisfiability of propositional logic ex-
tended with inductive definitions. In Proceedings of SAT,
211–224.
Passchyn, N. 2017. Justification frames. introducing split-
table branch evaluations. Master Thesis; Denecker, Marc
(supervisor).
van Emden, M. H., and Kowalski, R. A. 1976. The seman-
tics of predicate logic as a programming language. J. ACM
23(4):733–742.
Van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991. The
well-founded semantics for general logic programs. J. ACM
38(3):620–650.

Towards a boolean dynamical system representation in a monmonotonic modal

logic

Pierre Siegel
1
, Andrei Doncescu

2
, Vincent Risch

1
, Sylvain Sené

1

1 Aix-Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
2 Université Paul Sabatier CNRS, LAAS, Toulouse, France

{pierre.siegel,vincent.risch,sylvain.sene}@univ-amu.fr, andrei.doncescu@laas.fr

Abstract

Boolean dynamical systems (BDSs) represent the evolu-
tion of interactions inside a finite network of entities taking
Boolean states over discrete time. These networks are clas-
sically used to model interactions of biological networks. In
this context, a genetic network can be represented by both
a Transition Graph (TG) and an Interaction Graph (IG). The
precise relationship between IG and TG has been studied for
many years in dynamical systems theory while still an open
question. The global purpose of this article is to further study
this relationship via a logical representation of BDSs into
a nonmonotonic modal logic called Hypothesis Logic (H).
While the dynamics of a BDS are characterized by a func-
tion f , an important part of the studies focused on the anal-
ysis of both stable configurations (i.e. fixed points of f), and
stable/unstable cycles of f . For the representation of some
genetic networks with no negative feedback circuits, results
were previously obtained with some well known nonmono-
tonic formalisms. So far however, BDSs representation by
most of these formalisms does not permit to capture cyclic
dynamical behaviors. Notably, the equivalent of a negative
circuit has no extension in default logic (DL). This is em-
barrassing because these cycles may represent real interac-
tions in living organisms like the cell cycle. This possible
lack of extensions in DL was studied in H, for which theo-
ries always have extensions while some of these, called ghost
extensions, are actually not extensions of the corresponding
theories in DL. This paper addresses to the question of a
first representation of the dynamics of BDSs with H, and
ghost extensions appear to be a powerful tool in this respect.
As we are especially concerned with cycles, it provides us
with hints of simple algorithms for computing exhaustively
both stable/unstable cycles and fixed points: distinguishing
between stable/unstable as well as enumerating all the solu-
tions in practice would be a major advance that would lead to
apprehend better inner fundamental aspects in biology.

1 Introduction

Biological networks are representations of the bioprocesses
on three levels of interactions into the biological cell: ge-
nomic, protein and metabolic level. The techniques which
are the most used in Network Modeling are boolean net-
works, bayesian belief network and metabolic network mod-
eling methods. The boolean network are well adapted for
Gene Regulatory Networks. At this level, it is considered

Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the genes are on-off switches which do not act indepen-
dently. Two genes are connected if the expression of one
gene modulates the expression of another one by activation
or inhibition. It is interesting to remark some genes control
the response of the cell to changes in the environment by
regulating other genes.

From a logical point of view, a biological system can be
considered as a set of interacting elements changing along
discrete time. Genetic networks are specific biological sys-
tems that represent how the proteins/genes in a cell interact
for the survival, reproduction, or death of this cell. These
interactions can be studied in the context of automata net-
works and Boolean dynamical systems (BDSs) as a set of
entities taking Boolean states. Founding theorems (Demon-
geot, Noual, and Sené 2012; Melliti et al. 2015; 2013; Remy
et al. 2003; Remy, Ruet, and Thieffry 2008; Richard 2010;
Richard and Comet 2007; Robert 1986; Thomas 1981) have
focused on feedback circuits (simply called circuits here-
after).

A genetic network can be represented by both a tran-
sition graph (TG) and an interaction graph (IG). The re-
lationship between TG and IG has been studied for many
years in dynamical systems theory, but remains an impor-
tant open question. This paper adresses this question with
help of a representation of BDSs via a nonmonotonic modal
logic called Hypothesis Logic (H): our logic-based ap-
proach seems to be a step toward a global clarification of
this relationship. Preliminary results were already given in
(Siegel et al. 2017).

The study of genetic networks is a source of relevant ques-
tions regarding knowledge representation. First, interactions
appear as a form of causality; as such, we expect to model
it thanks to logical inferences, but of which kind? The use
of classical logic is inadequate in this context because it
cannot deal with inconsistencies. Moreover, what we learn
arises largely from long and expensive experiments. Hence,
we know only a small part of the interactions while this
knowledge can be revisable, uncertain, contradictory and
even false. Eventually, algorithmic complexity is a crucial
issue regarding the need to provide algorithms with reason-
able calculation times in practice. These questions have been
studied in artificial intelligence since the late 1970s, espe-
cially by the use of both particular nonmonotonic logics and
techniques derived from constraint programming. In partic-
ular it is possible to use default logic (DL) (Reiter 1980) and

answer set programming formalism (ASP) (Lifschitz 1999).
The dynamics of a BDS are characterized by a function

f and an updating mode. An important part of the studies
done on BDSs focused on the analysis of both stable con-
figurations (i.e. fixed points of f), and stable/unstable cy-
cles of f . For the representation of some genetic networks
with no negative feedback circuits, results have been ob-
tained with DL (Doncescu, Siegel, and Le 2014),(Doncescu
and Siegel 2015). Representation of a BDS by whatever
DL, ASP or other nonmonotonic formalisms, enables to find
fixed points. But, these representations are not suitable for
finding cycles. Notably, the equivalent of a negative circuit
has no extensions in default logic. This is embarrassing be-
cause these cycles may represent real interactions in living
organisms like the cell cycle (Davidich and Bornholdt 2008;
Li et al. 2004), or the circadian cycle (Akman et al. 2012;
Roenneberg and Merrow 2003). This possible lack of ex-
tensions in default logic has been fully studied in the con-
text of hypothesis logic (H) (Schwind and Siegel 1994;
Siegel and Schwind 1993). In this logic, theories always
have extensions while some of these, called ghost exten-
sions, are actually not extensions of the corresponding the-
ories in default logic. Moreover, very simple and efficient
algorithms, used for solving SAT problems, can be applied
to the computation of extensions, fixed points and cycles.

The representation of the dynamics of BDSs in H aims
at making possible to discriminate between stable configu-
rations (fixed points), limit cycles and unstable cycles. We
introduce representations for both Interaction Graphs and
Asynchronous Transition Graphs in H, which allows us to
exhibit new formal results. Ghost extensions play here a key
role. This approach provides us with hints of simple algo-
rithms for distinguishing between stable/unstable as well as
enumerating all the solutions in practice. This would be a
major advance regarding better inner fundamental aspects in
biology.

In what follows, Section 2 presents basic definitions for
BDSs and Section 3 reminds the basics of nonmonotonic
and hypothesis logic. Section 4 gives a representation of IGs
into H and prove some properties related to this represen-
tation. Section 5 studies relationships between ATGs of a
BDS and H: Theorem 3 states that there exists an isomor-
phism between stable configurations and stable extensions,
and Theorem 4 states that every negative feedback circuit
admits a set of ghost extensions whose semantics is analo-
gous to BDS dynamical cycles.

2 Finite Boolean dynamical systems

A finite discrete dynamical system (DDS) describes the evo-
lution of the interactions in a network of n entities numbered
from 1 to n, over discrete time. This evolution is the dy-
namics of the system. An example of such a system is the
representation of genetic networks, namely networks rep-
resenting interactions between the genes or the proteins of
a cell (Aracena et al. 2006; Demongeot et al. 2011; 2010;
Fauré et al. 2006; Kauffman et al. 2003; Mendoza, Thi-
effry, and Alvarez-Buylla 1999). In the context of genetic
networks, an entity i 2 {1, ..., n} depicts a protein whose
concentration is denoted by xi so that there is only a finite
number of possible concentrations. In such networks, given

a protein i, a set of interactions for proteins on i gives the
conditions for this set to increase or decrease the concentra-
tion of i.

Regarding Boolean dynamical systems (BDSs) studied in
this paper, the concentrations xi are in {0, 1}. In this case,
xi = 1 denotes the presence of i and xi = 0 its absence. Yet
xi = 1 (resp. xi = 0) is the activation (resp. inhibition)
or the production (resp. destruction) of the protein.

Note that what is written xi = 0 (resp. xi = 1) in the
context of BDS corresponds logically to v(i) = 0 (resp.
v(i) = 1), where v is the standard valuation function of
propositional logic. Hence, a protein i is nothing else than
a propositional variable. Abusing the notations we autho-
rize ourselves to write either i,¬i as well as xi,¬xi depend-
ing on the context. For instance, x = (¬x1, x2,¬x3) corre-
sponds to x = (¬1, 2,¬3) or even simply (1, 2, 3).

Consider V = {1, ..., n} a set of n entities. A configu-
ration x = (x1, ..., xn) of the system is an assignment of
a truth value xi 2 {0, 1} to each element i of V . The set
of all configurations (Jacob and Monod 1978), also called
the space of configurations, is denoted by X = {0, 1}

n.
The dynamics of such a system is modeled via both a func-
tion f , called the global transition function, and an updat-
ing mode that defines how the elements of V are updated
along time. More formally, f : X ! X is such that
x = (x1, ..., xn) 7! f(x) = (f1(x), ..., fn(x)), where
each function fi : X ! {0, 1} is a local transition
function that gives the evolution of the state xi over time.
There exists an infinite number1 of updating modes among
which the parallel and the asynchonous ones remain the
most used. The parallel (or perfectly synchronous) updat-
ing mode is such that all the entities of the network are up-
dated at each time step. Conversely, the asynchronous up-
dating mode is a non-deterministic variation in which only
one entity is updated at a time. In the sequel, we restrict
our study to asynchronous dynamics (Melliti et al. 2015;
Remy, Ruet, and Thieffry 2008; Richard and Comet 2007).

2.1 Asynchronous transition graphs

Every dynamic being characterized by a function f and an
updating mode, an important part of studies done on BDSs
focused on the analysis of both stable configurations (i.e.
fixed points of f), and stable/unstable cycles of f . Regarding
the asynchronous case, this study is fulfilled via the notion
of Asynchronous Transition Graph (ATG) associated with f .

Let X = {0, 1}
n be the configuration space and con-

sider a function f : X ! X . The asynchronous dynamics
of f is given by its ATG G (f) = (X,T (f)), the digraph
whose vertex set is the configuration space and arc set is
the set of transitions: T (f) = {(x, y) 2 X

2
| x 6= y, x =

(x1, ..., xi, ..., xn), y = (x1, ..., xi�1, fi(x), xi+1, ..., xn)}

If (x, y) 2 T (f), then the Hamming distance between x

and y equals 1 (the transition is unitary). An orbit in G (f)

is a sequence of configurations (x0
, x

1
, x

2
, ...) such that ei-

ther (xt
, x

t+1
) 2 T (f) or xt+1

= x
t, if xt

= f(x
t
) (i.e.,

x
t has no successors). A cycle of length r is a sequence of

configurations (x1
, ..., x

r
, x

1
) with r � 2 whose configura-

1Infinite, because deterministic updating modes are basically
defined as infinite sequences of subsets of nodes of the network.

2

tions x
1
, ..., x

r are all different. From this, we derive what
is classically called an asynchronous attractor in dynami-
cal systems, namely a terminal strongly connected compo-
nent (SCC) of G (f), i.e. a SCC with no outward transitions.
Among attractors, in the sequel, we will pay particular at-
tention to stable configurations (fixed points) and cycles. A
stable configuration is a trivial attractor, i.e. a configura-
tion x such that 8i 2 V, xi = fi(x), which implies that
x = f(x). A stable cycle is a cyclic attractor such that, on
G (f), 8t < r, xt+1 is the unique successor of xt and x

1 is
the unique successor of xr. If an attractor is neither trivial
nor cyclic, it is called a stable oscillation. When it is pos-
sible to get out from a SCC, this SCC is called an unstable
cycle or oscillation depending on which it is cyclic or not.

An orbit that reaches a stable configuration stays there
endlessly. Similarly, if it reaches a stable cycle, it adopts
endlessly a stable oscillating behavior.
Example 1 (Boolean positive and negative circuit of size 3)

Consider V = {1, 2, 3}, X = {0, 1}
3 and the two following

functions f and g such that f(x1, x2, x3) = (¬x2,¬x3, x1)

and g(x1, x2, x3) = (¬x3, x1, x2). From the functions f

and g, it is easy to derive their related ATGs, G (f) and
G (g), pictured in Figure 1. For each arc (x, y) in G (f) and
G (g), if x 6= y then x differs from y by a single component.
There are up to 3 transitions leaving each configuration.
Here, G (f) has two stable configurations, (¬1, 2,¬3) and
(1,¬2, 3) while all the other configurations belong to an
unstable cycle pictured in bold. G (g) has a stable cycle
pictured in bold. This cycle is stable because there is only
one transition (corresponding to one arrow in the picture)
leaving from each configuration, which is not the case for
the unstable cycle of G (f).

¬1,¬2,¬3

¬1,¬2, 3

¬1, 2,¬3

¬1, 2, 3

1,¬2,¬3

1,¬2, 3

1, 2,¬3

1, 2, 3

¬1,¬2,¬3

¬1,¬2, 3

¬1, 2,¬3

¬1, 2, 3

1,¬2,¬3

1,¬2, 3

1, 2,¬3

1, 2, 3

G (f) G (g)

Figure 1: ATGs of functions f and g given in Example 1.

1 2

3

�

�+

1 2

3

+

+�

(a) (b)
Figure 2: (a) IG associated with ATG G (f) and (b) IG asso-
ciated with ATG G (g) of BDSs defined in Example 1.

2.2 Interaction graphs and circuits

A TG is an excellent tool for studying the behavior of a
function. But in practice biological data come from exper-

iments that generally yield correlations among gene expres-
sions. This information is classically modeled by interaction
graphs, exponentially more compact and more “readable”
than TGs. Contrary to TGs, these graphs only give static in-
formation about how entities act on each other.

The IG of a BDS of function f is induced by its local tran-
sition functions fi. An important line of research on BDSs
concerns what we can say about the TG of a BDS by know-
ing only its static specification, that is its function, and thus
its IG.

An IG is a signed digraph G = (V, I), where V =

{1, ..., n} is the set of vertices and I ✓ V ⇥ S ⇥ V ,
with S = {�,+}. An arc (i,+, j) (resp. (i,�, j)) 2 I

is said to be positive (resp. negative). A circuit C =

{(i1, s(1,2), i2), ..., (ik, s(k,1), i1)} of size k in terms of
graph theory is elementary if all is that compose it are dis-
tinct. A circuit is positive (resp. negative) when it contains
an even (resp. an odd) number of negative arcs. From the
BDS point of view, the presence of an arc (i, s, j) in an IG
G means that the value of i affects that of j: we say that i
regulates j.

Consider the toy example where j has only one incoming
arc, from i. In this case, the effect of the regulation is very
simple: if the arc is positive (resp. negative), the state of j
will take the value (resp. the opposite value) of that of i af-
ter one update, such that fj(x) = xi (resp. fj(x) = ¬xi).
Notice that elementary circuits are regulated this way. For
example Figure 2 pictures the IGs associated with the ATGs
of the BDSs defined from f and g in Example 1.

More generally, an IG G = (V, I) represents the exis-
tence of the interactions involved between its entities in V .
Specifying the nature of these interactions and the condi-
tions under which they occur effectively leads to relate G

to a BDS of function f , so that G becomes the IG of f

and is then denoted by G(f) = (V, I(f)). This is done
by assigning a local transition function fi to every i 2 V

so that 8j 2 V, 9x 2 {0, 1}
n
, fi(x) 6= fi(x

j
) ()

(j, s, i) 2 I(f), where, given x = (x1, ..., xn), x
j

=

(x1, ..., xj�1,¬xj , xj+1, ..., xn). We generalize this nota-
tion by x = (¬x1, ...,¬xn). Such a specification induces
the minimality of G(f) because each arc represents an ef-
fective interaction.

Note 1 Consider a BDS and its associated IG G(f), such
that arc (i, s, i) belongs to I(f). If s = + (resp s = �),
this arc makes i tending to maintain (resp. negate) its state.
It depends of course on whether i admits other in-neighbors
than itself or not and on the positive or negative influence of
these neighbors. In the case i admits no other in-neighbors,
it is trivial that i endlessly maintains (resp. negate) its state
if s = + (resp. s = �).

Let us present now the asynchronous dynamical behav-
iors of a Boolean positive circuit and of a Boolean negative
circuit of size 4 in Examples 2 and 3 below.

Example 2 (Boolean positive circuit of size 4) Consider
the BDS of function f(x1, x2, x3, x4) = (¬x4, x1,¬x2, x3).
Figure 3-a depicts the corresponding IG. This BDS admits
two stable configurations, (1, 2¬3,¬4) and (¬1,¬2, 3, 4),
and an unstable oscillation.

3

Example 3 (Boolean negative circuit of size 4) Consider
the BDS of function g(x1, x2, x3, x4) = (¬x4, x1, x2, x3).
Figure 3-b depicts the correponding IG. This BDS admits
one stable cycle of length and one unstable cycle of length 8

1 2

34

+

�

+

�

1 2

34

+

+

+

�

(a) (b)
Figure 3: (a) IG of Boolean positive circuit of size 4 (Exam-
ple 2) and (b) negative circuit of size 4 (Example 3).

2.3 General central results

By considering that BDSs are good candidates for qualita-
tively modeling genetic networks (since established by the
seminal papers of (Kauffman 1969) and (Thomas 1973)),
the presence of several attractors in their dynamical behav-
iors allows to model the cellular specialization at the level
of cells. Indeed, if a genetic network controls a phenomenon
of specialization, the cell will specialize (i.e. will acquire
a particular phenotype or a specific physiological function)
according to the attractor towards which its underlying BDS
evolves. These works and the numerous other ones using
BDSs (or, more generally, DDSs) highlighted the essential
role of studies aiming at understanding the formal relations
between IG and TG. They also clearly underlined the essen-
tial role of circuits, nowadays known as the behavioral com-
plexity engines in dynamical systems. This comes in partic-
ular from Robert who established that, if the IG G(f) of a
DDS f is acyclic, then f converges towards a unique stable
configuration (Robert 1986). Moreover, in (Thomas 1981),
Thomas conjectured that G(f) of a asynchronous DDS f

must contain a positive (resp. negative) circuit for the latter
to admit several stable configurations (resp. a non-trivial at-
tractor such as a stable cycle or a more complex one). These
two conjectures have been proven to be true under the hy-
pothesis of asynchronous updating mode (Remy et al. 2003;
Remy, Ruet, and Thieffry 2008; Richard 2010; Richard and
Comet 2007). Furthermore, notice that in (Remy et al. 2003),
the authors showed that an asynchronous positive circuit of
size n admits two attractors, namely two stable configura-
tions x and x , and that an asynchronous negative circuit ad-
mits only one attractor, namely a stable cycle of length 2n.

Note 2 While in the following we use positive and nega-
tive feedback circuits because of their central role in dy-
namic, our definitions and results hold for the full general
framework. For instance the example proposed in Figure 4
is tractable inside our framework. Due to lack of space we
do not treat here.

3 Nonmonotonic, default, hypothesis logics

Representing IGs with a logical formalism seems natural be-
cause the way an arc (i, s, j) is interpreted suggests a close
relation with what is called material implication in logic.

1

2

3

4

5

+

+

�

�

+

+

Figure 4: .

Such a representation from classical logic is not adapted be-
cause it leads to inconsistencies in most cases. A way to
manage these inconsistencies is provided by nonmonotonic
formalisms, among which default logic or ASPs (a more
tractable restriction of default logic). Default logic (DL)
(Reiter 1980) concerns standard formulas to which contex-
tual inference rules called defaults are added in order to deal
with revisable informations: a default is a local inference
rule d =

A :B
C , whose application specifically depends on

the formulas A, B, C that compound it. The intuitive mean-
ing is: “If A holds, if B is coherent/consistent with what is
known, then C holds”. The fact that a default can be trig-
gered or not depending on the context, further leads to a
notion of extensions as max-consistent sets of formulas with
respect to the trigger of the defaults used to get it. The under-
lying reasoning is nonmonotonic because adding here a new
information may invalidate previously triggered defaults.

There is clearly a connection between default extensions
and stable configurations of a BDS (Doncescu, Siegel, and
Le 2014; Doncescu and Siegel 2015). Also, recent works
have studied the connection between ASP stable models and
stable configurations. A drawback is that these connections
are limited to the representation of stable configurations only
(included odd circuits)while it tells nothing about unstable
cycles. The problem arises from the way to capture all the
dynamics.

Another drawback, actually linked to the first one, is that
in DL, some theories may simply have no extensions at all,
thus depicting a form of deep inconsistency which renders
computation more difficult. By definition, DL only com-
putes stable extensions. Such a type of extension is limited
since it appears too cheap to handle with more than stabil-
ity while we expect to capture also unstable cycles, e.g. the
simple default theory (d =

:A
¬B ,

:B
¬C ,

:C
¬B), linked to the rep-

resentation of a negative circuit, has no stable extension.
This drawback is overcome by justified DL (Lukaszewicz

1988) as well as by hypothesis logic. While justified DL ex-
clusively consists in a reformulation of the conditions by
which extensions are obtained, hypothesis logic is both a
reformulation and a generalization of DL inside the frame-
work of a normal bimodal logic. It actually generalizes jus-
tified (and hence classical) DL in the following way: while
stable extensions are a special case of justified extensions,
justified extensions are in turn a special case of the exten-
sions obtained by hypothesis logic. Besides, the specific way
hypothesis logic answers the question of the lack of exten-
sions in DL sheds a new light on the representation of the
dynamics in BDSs. In the context of a theoretical study con-
cerning BDSs, we will find in Logic the formal criterias that
help delimiting the “good” properties of a langage devoted
to such a study. This is indeed the role of Logic to state rep-

4

resentation theorems between a langage and the objects this
langage concerns. We expect hypothesis logic to be a right
candidate as such a langage because it overtakes some of the
limitations of DL (and hence ASP also).

3.1 Hypothesis Logic

Hypothesis logic H is a bi-modal logic2 with two modal op-
erators L and [H]. If f is a formula, the intuitive meaning
of Lf is f is proved/stated. The dual H of [H] is defined as
Hf = ¬[H]¬f . It was introduced in (Schwind and Siegel
1994; Siegel and Schwind 1993). The intuitive meaning of
Hf is f is a hypothesis, and hence [H]f means ¬f is not a
hypothesis.

A default A :B
C is interpreted in H by the modal formula

LA ^ HB ! LC whose intuitive meaning is: If A is stated
and B is a valid hypothesis then C is stated. The language
of H, denoted by L (H), is defined by the following rules:

• Any formula of first-order logic is in L (H).
• If f and g are in L (H) then formulas ¬f , (f ^ g),

(f _ g), (f ! g), Lf , [H]f , Hf are too.
L has the properties of the modal system T and [H] has those
of the modal system K. As a consequence, the inference
rules and axiom schemata of H are:

• All inference rules and axiom schemata of first-order
logic.

• (N[H]): ` f =) ` [H]f , the necessitation rule for [H].

• (NL): ` f =) ` Lf , the necessitation rule for L.
• (K[H]): ` [H](f ! g)) ! ([H]f ! [H]g), the distri-

bution axiom schema for [H].
• (K[L]): ` L(f ! g) ! (Lf ! Lg), the distribution

axiom schema for L.
• (TL): ` Lf ! f , the reflexivity axiom schema for T .
Unlike L, [H] has no reflexivity axiom schema and, as it

stands, there is so far no connections between L and [H]. We
make this connection by adding the following link axiom
schema:

(LI) : ` ¬(Lf ^H¬f).

This very weak axiom is one of the bases of H. It means that
it is impossible to prove f and to assume the hypothesis ¬f
at the same time. Note the following equivalences: ¬(Lf ^

H¬f) () Lf ! ¬H¬f () H¬f ! ¬Lf . The
first one means that if we prove f , we cannot assume the
hypothesis ¬f , the second that if we assume the hypothesis
¬f , we cannot prove f .

3.2 Hypothesis theories and extensions

H is a monotonic logic. In order to catch nonmonotonicity, a
notion of extension is added similarly to default logic. How-
ever, contrary to the latter, two kinds of extensions are con-
sidered here, namely stable extensions and ghost extensions.
More formally :

2For a classical lecture on modal logics, see for instance (Chel-
las 1980), among others.

Definition 1 Let H be the hypothesis logic:
• A hypothesis theory is a pair T = {HY,F}, where F is

a set of formulas of H and HY is a set of hypotheses.
• An extension E of T is a set E = Th(F [HY

0
), such

that HY
0 is a maximal subset of HY consistent with F.

• E is a stable extension if it satisfies the coherence prop-
erty: 8Hf, ¬Hf 2 E =) L¬f 2 E. Hence, given the
link axiom schema, we get: 8f,L¬f 2 E , ¬Hf 2 E

• E is a ghost extension otherwise, i.e. if it satisfies:
9Hf, ¬Hf 2 E and L¬f /2 E

Hence for a ghost extension, we only get: 8f,L¬f 2

E) ¬Hf 2 E

In other words, ghost extensions are “pre”–stable exten-
sions.

Theorems 1 and 2 below give fundamental properties of
H. Their proof are given in (Siegel and Schwind 1993;
Schwind and Siegel 1994).

Theorem 1 If F is consistent then T = {HY,F} has at
least one extension.

Theorem 2 Let � = {D,W} be an arbitrary default the-
ory. � can be translated into a hypothesis theory T (�) such
that:

1. W is consistent, T (�) admits at least one extension;
2. The set of standard extensions of � is isomorphic to the

set of stable extensions of T (�).

Thus, an extension is obtained by adding one of the largest
sets of hypotheses to F while remaining consistent. Note that
if F is consistent, then there is always an extension, which is
not the case in DL. Intuitively, E is stable if each time it is
forbidden to assume the hypothesis f , ¬f is proven. It is a
ghost extension otherwise. Stable extensions correspond to
the standard extensions of DL (and to stable models of ASP).
They represent stable configurations of BDSs. Ghost exten-
sions do not have any correspondence in DL. While default
theories may have no extensions, this is not the case in hy-
pothesis theories. Nevertheless, default theories that have no
extensions seem to contain what looks very much like stable
or unstable cycles. In the sequel, by using H, we show that
stable cycles are characterized by ghost extensions. More-
over, specific unstable cycles can also be characterized by
ghost extensions, but the generalization of this result is a
conjecture yet.

4 Representing Interaction Graphs into H

We saw previously that a genetic network modeled by a BDS
can be represented by both an ATG and an IG. As told,
an important and open question concerns the formal links
between these two representations. This section deals only
with IGs. Let G be an arbitrary IG. Such a graph is trans-
lated into a hypothesis theory T (G) and properties related
to extensions of T (G) are then proved. These properties will
be used in the next section, devoted to ATG: G will be the
IG related to an ATG, while both stable configurations and
stable cycles of the ATG are studied thanks to T (G). The-
orem 3 states that there exists an isomorphism between sta-
ble configurations of G and stable extensions of T (G) and
Theorem 4 states that every negative feedback circuit corre-
sponds to a set of equivalent ghost extensions.

5

4.1 Representation

One of the interests of hypothesis logic is that this bi-
modal logic enables us to use three kinds of informa-
tion: i, Li and Hi. This increasing of expressive power al-
lows a more precise representation of biological networks.
Hence, by combining modalities with negations, we can use
{i,Hi,H¬i,Li,L¬i}.

Given an IG G of a BDS modeling the genetic network of
a cell, and i a protein, using hypothesis logic, we define that:
• i means that i is present in the cell and ¬i means that it is

absent.
• Li means that i is produced by the cell (i is being ac-

tivated) and ¬Li means that i is not produced (i is not
being activated).

• L¬i means that i is destroyed by the cell (i is being in-
hibited) and ¬L¬i means that i is not destroyed (i is not
being inhibited).

• Hi (resp. ¬Hi) means that the cell gives (resp. does not
give) the permission for attempting to produce i. In other
words, the cell has (resp. has not) the ability to activate i.

• H¬i (resp. ¬H¬i) means that the cell gives (resp. does not
give) the permission for attempting to destroy i. In other
words, the cell has (resp. has not) the ability to inhibit i.
Regarding the use of H in this context, the role of an ex-

tension appears to gather a maximum of consistent permis-
sions. Note that even if Hi stands for the cell giving per-
mission to attempt the production of i, this production is not
mandatory. It can be carried out or not, according to the con-
text (i.e. the set of all interactions in the cell). Similarly H¬i

gives the authorization to destroy i.
Meanwhile, it is important to note that Li and L¬i are

actually actions (production or destruction of a protein). So
there is a difference between L¬i which says that i is de-
stroyed, and ¬Li which says that i is not produced, and
hence is weaker. Likewise, there is a similar distinction be-
tween H¬i and ¬Hi.

We first focus on some important properties of our trans-
lation with respect to genetic networks3.
Proposition 1 If G is the IG of a BDS modeling a genetic
network and if i is a protein, the following holds in H:

(1) Li ! i and L¬i ! ¬i (i.e. if i is produced (resp. de-
stroyed), then i is present (resp. absent).)

(2) ¬(Li^H¬i) and ¬(L¬i^Hi) (i.e. it is impossible to pro-
duce (resp. destroy) i and to give the permission to destroy
(resp. produce) i it at the same time.)

(3) ¬(Li ^ L¬i) (i.e. it is impossible to produce and destroy
i at the same time.)

4.2 Translation of an interaction graph.

An IG G = (V, I) is translated into a hypothesis theory
T (G) = {HY(G),F(G)} so that every arc (i, s, j) 2 I is
translated into a pair of implications of H. More precisely:

3Note to the rewievers: all the proofs of the original propo-
sitions and theorems given in the paper can be found at
the url https://amubox.univ-amu.fr/index.php/s/
nhwsZ5eqV8BYVv1

• A positive arc (i,+, j) is translated into: {Hi !

Lj,H¬i ! L¬j}.
• A negative arc (i,�, j) is translated into: {Hi !

L¬j,H¬i ! Lj}.
• F(G) is the union of the translations of all elements of

I .
• HY(G) is the set of all Hi and H¬i appearing in F(G).

Note 3 This translation only uses implications between two
atomic formulas. These implications could be considered as
binary clauses. Therefore only a fragment of the plain for-
malism H is used in this paper, which is enough for the
description of ”conventional” BDSs. Note that H formulas
may contain all the logical connectors (^,_,¬,!,$...)

hence full H can be used to describe other properties of bio-
logical networks, e.g. the binding (two proteins bind to give
a new protein). It is also possible to assert the proposition i

alone or Li alone or Hi alone. We can even avoid the double
implication {Hx ! Ly,H¬x ! L¬y} given for the trans-
lation of a BDS: for some functions only one involvement of
the two can be enough. This increases the expressive power
of the formalism, which in turn should increase the algorith-
mic complexity, but H is still usable however.

The following definitions and propositions, are needed for
understanding the intuition behind this representation of IGs
by H. They will especially allow us to state properties and
theorems 3 and 4 which make links between IGs and ATGs.
In H, it is usually allowed to have both Hi and H¬i. Regard-
ing the fragment of H used here, Proposition 2 below shows
that this no longer holds, because of the double logical im-
plication obtained from our translation of an arc:
Proposition 2 Let G = (V, I) an IG and i 2 V . For every
Hi of T (G), ¬(Hi ^H¬i) holds.

Definition 2 Let G = (V, I) an IG such that V = {1, .., n}.
Let T (G) = {HY(G),F(G)} the translation of G into
a hypothesis theory. Let E = {Th(F(G)) [{Hyk}}

be an extension of T (G) obtained by adding to F(G) a
maximal consistent set {Hyk} of hypotheses, with yk 2

{1, ..., n,¬1, ...,¬n}. (For lightening the reading, we sim-
ply write that E is an extension of G). We have:

1. E is complete if, for all i 2 V , Hi 2 E or H¬i 2 E.
2. A vertex i 2 V is free in E if Li /2 E and L¬i /2 E. It

is fixed otherwise.
3. The degree of freedom of E, denoted deg(E), is the

number of free vertices that compose it.
4. The mirror of E, denoted mir(E), is defined as

mir(E) = Th(F(G) [{H¬yk}).
5. The generating set of E, denoted Gen(E) is the set of

formulas (Hy ! Lz) 2 F(G) such that Hy 2 {Hyk}.
6. The graph of E, denoted by G(E), is the unsigned di-

graph of vertices {y1, ..., ym} such that:

(yi, yj) 2 G(E) () (Hyi ! Lyj) 2 Gen(E).

Proposition 3 Let G be an IG and E one of its extensions.
The mirror of E is also an extension of G.

Intuition might suggest that the notions of stable exten-
sion, complete extension, and extension of degree 0 are
equivalent. In fact this is wrong in the general case and it
is only possible to prove that a stable extension is complete.

6

But we prove that, when any vertex of the IG G has an in-
coming arc, if E is complete then E is both stable and of
degree 0; this is especially the case for circuits.

Proposition 4 Let G = (V, I) be an IG of a given BDS f

and let E be an extension of G. The following holds:
1. If E is stable, then E is complete.
Moreover, if each of the vertices of G has at least one

incoming arc:
2. If E is complete, then deg(E) = 0.
3. If E is complete, then E is stable.
4. If E is stable then deg(E) = 0.

Proposition 5 Let E = {Th(F(G))[{Hyk}} be an exten-
sion and consider Gen(E) its generating set:

1. E = {Th(Gen(E)) [{Hyk}}.
2. If Hx 2 {Hyk} then Gen(E) cannot contain both

Hx ! Ly and H¬x ! L¬y at the same time.
3. If deg(E) = 1 then an order can be chosen among the

yk with a circular permutation such that: Gen(E) = {Hi !

L(i+ 1),H(i+ 1) ! L(i+ 2), ...H(i� 2) ! L(i� 1)}.

Proposition 6 Given G = (V, I), with V = {1, ..., n}, a
negative circuit of size n, then:

1. T (G) has no extensions of degree 0.
2. T (G) has 2n extensions of degree 1. We will say that

these 2n extensions are equivalent.

The examples below serve as an illustration of the notions
introduced here.

Example 2 (continued) Consider the BDS of the function
f(x1, x2, x3, x4) = (¬x4, x1,¬x2, x3) studied in Exam-
ple 2 and Figure 3. This BDS corresponds to a positive cir-
cuit. Its admits two stable configurations, (x1, x2,¬x3,¬x4)

and (¬x1,¬x2, x3, x4) and an unstable oscillation. Let G(f)

the IG of f , depicted in Figure 3-b. By construction G(f) is
a set of four arcs:

• G(f) = {(1,+, 2), (2,�, 3), (3,+, 4), (4,�, 1)}

The positive arc (1,+, 2) is translated into H by the pair
of formulas {H1 ! L2,H¬1 ! L¬2} and the negative arc
(2,�, 3) is translated by the pair {H2 ! L¬3,H¬2 ! L3}.
The other arcs are translated in the same way, therefore the
translation of G(f) into a hypothesis theory is T (G(f)) =

{HY(G(f)),F(G(f))}, where:
•HY(G(f)) = {H1,H2,H3,H4,H¬1,H¬2,H¬1,H¬4}

• F(G(f)) = {H1 ! L2,H¬1 ! L¬2,H2 ! L¬3,

H¬2!L3,H3!L4,H¬3!L¬4,H4 ! L¬1,H¬4 ! L1}

We can show that T (G(f)) has two stable extensions:
E1 obtained by adding to F (G(f)) the set of hypoth-
esis {H1,H2,H¬3,H¬4} and E2 obtained by adding
to F (G(f)) the set of hypotheses {H¬1,H¬2,H3,H4}

4.
These extensions correspond to the two stables configura-
tions of the related BDS.

• E1 = Th(F(G(f)) [{H1,H2,H¬3,H¬4}),
• E2 = Th(F(G(f)) [{H¬1,H¬2,H3,H4}).
In the sequel, given i a proposition of propositional cal-

culus, we will consider that i, Hi,Li, ¬i, ¬Hi et ¬Li are
4This is shown by attempting to add to F(G(f)) each subset of

HY(G(f)) and keeping only those which are the maximals ones
consistent with F(G(f)).

literals of H, and that Hi ! Lj is a clause. From the deduc-
tive closure of E1 with subsumption, we obtain that these
extensions are logically equivalent to sets of literals:

•E1 = Th{H1,H2,H¬3,H¬4,¬H¬1,¬H¬2,¬H3,¬H4,

L1,L2,L¬3,L¬4,¬L¬1,¬L¬2,¬L3,¬L4, 1, 2,¬3,¬4}

•E2 = Th{H¬1,H¬2,H3,H4,¬H1,¬H2,¬H¬3,¬H¬4,

L¬1,L¬2,L3,L4,¬L1,¬L2,¬L¬3,¬L¬4,¬1,¬2, 3, 4}

For the sake of simplicity, let us assimilate any extension
Th(F(G(f)) [{H1, ...,Hn}) with the set of hypotheses
{H1, ...,Hn} associated with it. Looking at E1 we notice
that, in accordance with Definitions 1, and 2, we have:

• E1 and E2 are stable extensions because for all i,
¬Hi 2 E1 (resp E2)) L¬i 2 E1 (resp E2).

• E1 is complete because for all i, either Hi belongs to
E1 or H¬i belongs to E1.

• For all i, Li 2 E1 or L¬i 2 E1. So all vertices are
fixed, and the degree of freedom of E1 is 0.

• E2 is the mirror of E1.
• The generating set of E1, is Gen(E1) =

H1 ! L2,H2 ! L¬3,H¬3 ! L¬4,H¬4 ! L1}.
• The graph of E1, depicted in Figure 5-c, is: G(E) =

(1, 2), (2,¬3), (¬3,¬4), (¬4, 1).

From the biological side, the subset {L1,L2,L¬3,L¬4}
of E1 represents the expression pattern of each protein in
E1: 1 and 2 are produced by the cell and 3 and 4 are de-
stroyed. Moreover the subset {1, 2,¬3,¬4} of E1 (in fact
the vertices of G(E)) gives the status of each proteins: 1 and
2 are present in the cell and ¬3 and ¬4 are absent. Similarly
in E2, the subsets {¬L1,¬L2,L3,L4} and {¬1,¬2, 3, 4}

represent the expression pattern and the status of proteins.
An intuition of the computation of E1 is given by the con-

struction process described by Figure 5. Figure 5-a is the IG
of f . Figure 5-b gives the construction of E1. At first E1

is empty. We add to E1 the hypothesis H1 2 HY (G(f)).
Since (H1 ! L2) 2 F (G(f)) we get L2. The instance
(L2 ! ¬H¬2) of the axiom LI of H then tells that it is
impossible to have H¬2. Construction of E1 goes on by
adding the hypothesis H2 to E1. We get L¬3 with H2 !

L¬3 2 F (G(f). The axiom LI gives ¬H3 and we add the
hypotheses H¬3 which gives L¬4. We end up by adding
H¬4 which gives L1.

By only looking at i we have G(E1), the graph of E1

(Figure 5-c) which represents the first stable configuration of
f . In this final graph, each arc between 2 vertices denotes the
relation of causality that links the corresponding proteins:
for 1 to be present we need 4 to be absent, that is 3 to be
absent in its turn, which is involved by the presence of 2,
itself caused by the presence of 1 and so on... In a similar
way, we build the extension E2 starting from H¬1.

Example 3 (continued) Consider the BDS of the function
g(x1, x2, x3, x4) = (¬x4, x1, x2, x3) studied in Example 3.
It admits one attractor (a stable cycle of length 8). It admits
also an unstable cycle of length 8. Let be G(g) the IG of g.
By construction it is a set of four arcs:

• G(g) = {(1,+, 2), (2,+, 3), (3,+, 4), (4,�, 1)}

Following the same guidelines as above, the translation of
G(g) into a hypothesis theory is T (G(g)) gives us here eight
ghost extensions. The first one is:

7

1 2

34

+

�

+

�

L1 L2

L¬3L¬4

H1

H2

H¬3

H¬4

1 2

¬3¬4

(a) (b) (c)

Figure 5: (a) IG G(f), (b) Construction of extension E1 and
(c) G(E1) (the graph of E1) of the positive circuit defined
in Example 2.

• E1 = Th(F(G(g)) [{H1,H2,H3})

= Th({H1,H2,H3,¬H¬1,¬H¬2,¬H¬3,¬H¬4,

¬H4,L2,L3,L4,¬L¬1,¬L¬2,¬L3,¬L¬4, 2, 3, 4}).
The generator set of E1 is {H1!L2,H2!L3,H3!L4}.
The literal ¬H¬1 2 E1 characterizes E1 as a ghost ex-
tension because L1 /2 E1. The extension is not complete
because it contains neither H4 nor H¬4. Vertex 1 is free
because E1 contains neither L1 nor L¬1. This is the only
free vertex, hence E1 is a ghost extension of degree 1. For
this extension, vertices 2, 3 and 4 are fixed while nothing
is known about 1. The drawing of E1 (Figure 6-b) shows
what happens. Similary to Example 2, E1 is constructed by
adding {H1, H2, H3} to F(G(g)). The set {L2,L3,L4} is
obtained, which yields {2, 3, 4} from axiom (T). Hence it
is impossible to add H¬4 because (H¬4 ! ¬L4) from the
axiom of coherence and L4 2 E1. Also, one can not add
H4 because (H4 ! L¬1) 2 F(G(g)) and L1 2 E1, which
will imply 1 and ¬1 with axiom (T). In Figure 6-b, the place
for 1 is empty because the extension cannot contain both L1

and L¬1, and 1 is free. Indeed, in order to get L1, we should
use H¬4 ! L1, which is impossible because L4 is true and,
because from the axiom of coherence, L4 ! ¬H¬4. We
cannot have L¬1 because H1 is true and H1 ! ¬L¬1. The
graph of E1, G(E1) is depicted in Figure 6-c.

It is important to see that the notion of degree of freedom
plays a key role here. Noting that Figure 6-b (resp. Figure 6-
c) are not circuits because there is no arc between L4 (resp.
4) and the place of 1. From L4 we can then escape the in-
complete circuit. Let us indeed show how to do it. Since
E1 is an extension, E2 the mirror of E1 is also an extension
from Proposition 3 (see Figure 7). Taking into account that 1
is free in E1 and also in E2, E1 and in E2 can be connected
(E1 ⌦ E2) by binding L4 to L¬1 using H¬4 on one hand,
and L¬4 to L1 using H4 on the other hand (Figure 8-a). By
linking G(E1) and G(E2) (Figure 8-b), we then obtain a cy-
cle (1, 2, 3, 4,¬1,¬2,¬3,¬4) of length 8 such as depicted.
This cycle represents the expression pattern of each protein
over time: we turn two times in the IG until returning to the
initial state.

In this example, there are actually eight equivalent
extensions E1 = {L2,L3,L4}, its miror E2 =

{L¬2,L¬3,L¬4} and 6 other extensions which come from
permutations on i, namely:

{L3,L4,L¬1}, {L4,L¬1,L¬2}, {L¬1,L¬2,L¬3},

{L¬2,L¬3,L¬4}, {L¬3,L¬4,L1}, {L¬4,L1,L2}.
Note that each of these extensions corresponds to 3 suc-

cessive entities of the cycle above. The latter cycles con-

1 2

34

+

+

+

�

L2

L3L4

H1

H2

H3

1 2

34

(a) (b) (c)

Figure 6: (a) Interaction graph G(g), (b) Construction of ex-
tension E1 and (c) G(E1) (graph of E1) of the negative
circuit defined in Example 3 (continued).

¬1L¬2

L¬3 L¬4

H¬1

H¬2

H¬3

1 L2

L3L4

H1

H2

H3

(a) (b)

Figure 7: (a) E1 and (b) his mirror E2 of the negative circuit
defined in Example 3 (continued)

(a)

L¬1L¬2

L¬3 L¬4

L1 L2

L3L4

H¬1

H¬2

H¬3

H1

H2

H3

H¬4 H4

(b)

¬1¬2

¬3 ¬4

1 2

34

Figure 8: (a) Construction of E1 ⌦ E2 and (b) its graph
G(E1 ⌦ E2) of the negative circuit defined in Example 3

tains implicitly each of the 8 possible extensions. There is a
trick here since we actually used an update that is not asyn-
chronous, but this trick, aiming at authorizing synchronous
changes appears to be virtuous. It will be seen that these 8

extensions correspond to the stable cycle of the ATG G (g).

5 Representing Asynchronous Transition

Graphs into H

Consider an asynchronous BDS, whose its IG is G = (V, I)

and its ATG is G . Let T (G) = {HY(G),F(G)} be the hy-
pothesis theory associated with G. Up to now, we have stud-
ied the representation of IGs into hypothesis logic.

This section studies the relationship between this repre-
sentation and the ATG. It uses Kripke semantics (Kripke
1963) that has been defined for normal modal logics, i.e.,
the logics that contain at least axiom (K). We only provide
here the bases needed for our developments. A Kripke struc-
ture is a digraph K = (W,R) where W (the universe) is a
set {wk} of worlds and R ✓ W ⇥ W is a binary relation
among worlds: the accessibility relation. When wk Rw

0
k,

w
0
k is accessible from wk. A Kripke model is obtained by

8

assigning in every world a truth value to every proposition
i. A world is then mapped to a logical interpretation, and
hence implicitely to a state of a BDS. Modal formulas other
than i are assigned to worlds with the following condition:
for all f , Lf is true in a world wk if and only if f is true
in all reachable worlds from w. The different axioms that
hold in different modal logics depend on the properties of
the accessibility relations R. It is known that:

1. For the modal system K, R is any relation.
2. Axiom (T) holds if and only if R is reflexive.

Example 4 Consider the Kripke structure K such that
K = (W,R), where W = {w1, w2, w3} and R =

{(w1, w2), (w1, w1), (w2, w2), (w3, w3)}.
Consider now that a truth value is assigned to three vari-

ables in each world of the universe W such that: w1 =

{1, 2, 3}, w2 = {¬1, 2, 3}, w3 = {¬1,¬2, 3}. Let us add
modal formulas with respect to the definition of Krypke se-
mantic. For example in w1, L2 is true because 2 is in both
w1 and w2 (the worlds that are reachable from w1). For the
sake of clarity, we do not put in this schema the negations of
modal formulas. Now, consider H. If w1 was an extension,
then it would be a ghost extension of degree 1, because L2

and L3 are true while neither L1 nor L¬1 are. Similarly, for
both worlds w2 and w3, if they were extensions, they would
be stable extensions of degree 0 because for all i 2 {1, 2, 3},
either Li or L¬i is true; they would then correspond to sta-
ble configurations of a related BDS because they do not ad-
mit any outward arcs.

w3

2
3 3

¬1
2

¬1
¬2
3

1
L2

L3
L2
L¬1 L¬1

L3
L¬2

L3

w1 w2

Figure 9: Kripke universe discussed in Example 4.

We use the Kripke structure K = (W,R) whose finite set
of worlds W is the set of all interpretations (called canon-
ical universe) such that wk Rw

0
k if and only if w0

k is reach-
able from wk and differs from wk by one and only one
proposition. Under these conditions, the ATG of any BDS
is a Kripke structure. Since the modal system T is reflexive,
loops appear on every world. Given such a framework, for
any world wk and any entity x, Lx = true if and only if
x = true in every w

0
k reachable from wk.

Example 1-continued Consider the previous function
g(x1, x2, x3) = (¬x3, x1, x2) of Example 1. Similarly to
Example 3-continued, constructing the related hypothesis
theory leads the following set of formulas:

F(G(g)) = {H1 ! L2,H2 ! L3,H3 ! L¬1,

H¬1 ! L¬2,H¬2 ! L¬3,H¬3 ! L1},
which allows to obtain the following 6 equivalent exten-
sions, by focusing only on the Li and L¬i which are true:

E1 = (L2,L3), E2 = (L¬1,L3), E3 = (L¬1,L¬2),

E4 = (L¬2,L¬3), E5 = (L1,L¬3), E6 = (L1,L2).
Figure 9 is a simplified representation of the Krypke

model associated with the theory F (G(g)). The 8 vertices

are the worlds, and the arrows express the accessibility rela-
tion. There is a loop on each vertex because (T) is reflexive.
The 6 extensions E1, .., E6 are represented by the 6 vertices
whose degree of freedom is minimal (that is of degree 1).
The other two vertices {1,¬2, 3} and {¬1, 2,¬3} are not
extensions because they are not maximal. Note that these 6
extensions correspond to the 6 configurations of the stable
cycle of the corresponding ATG of function g given in ex-
ample 1 (Figure 11). Note also that the set of arrows that
represent the accessibility relation contains the set of arrows
that represent the ATG transitions of g. The missing arrows
are the loops that represent the reflexivity. By taking in ac-
count that the degree of a world is a natural generalization
of degree of an extension, we get the following results.

Proposition 7 Let K = (W,R) be a Kripke structure as-
sociated with an IG and its underlying hypothesis theory. If
wk 2 W is a world of degree �, there are exactly � worlds,
different from wk, reachable from wk

Theorem 3 Let S be an asynchronous BDS, G and G the
corresponding IG and ATGs and T (G) the hypothesis the-
ory related to G.

1. If E is a stable extension of T (G) and if {Ly1, ...,Lyn}
is the set of all Li and L¬i that are true in E, and if the xi
are the Boolean values of the yi, then {x1, ..., xn} is a stable
configuration of S .

2. {x1, ..., xn} is a stable configuration of T (G), then
there exists a stable extension E of G that contains
{Ly1, ...,Lyn}, such that yi = i (resp yi = ¬i) il xi = 1,
(resp. xi = 0).

Theorem 4 Let S be an asynchronous BDS of ATG G ,
whose IG G is a negative circuit. Let E1 be a ghost ex-
tension of T (G). The set of all extensions equivalent to E1

corresponds to a stable cycle of G .

¬1,L¬2,L¬3

L¬1,L¬2, 3

¬1, 2,¬3

L¬1, 2,L3

L1,¬2,L¬3

1,¬2, 3

L1,L2,¬3

1,L2,L3

Figure 10: Krypke representation of F(G(g)).

¬1,¬2,¬3

¬1,¬2, 3

¬1, 2,¬3

¬1, 2, 3

1,¬2,¬3

1,¬2, 3

1, 2,¬3

1, 2, 3

Figure 11: ATG of function g given Example 1.

9

Note 4 With same arguments as those used for the proof
of proposition 7, if deg(E)>1 the Kripke model gives at
least one possibility to exit from a cycle. The cycle is then
unstable.

6 Conclusion

This paper is an attempt for representing BDSs into Hypoth-
esis Logics; the difficulty is to find how to represent the dy-
namics. There is still much to study, especially regarding
a generalization of Theorem 4 to unstable cycles. Note 4
above is a hint for such a study. Another perspective is the
validation of BDS representation in H by the obtaining of
fundamental theorems. The fact that the logical representa-
tion of a positive circuit has two stable mirror extensions
and, that a negative circuit is equivalent to a single set of 2n
equivalents ghost extensions is a step towards this valida-
tion because it corresponds to the esults set in (Remy et al.
2003). The case of synchronous transitions remains under
consideration for a further study. Note that an extension is
obtained by adding a consistent maximal set of hypotheses.
Since it is possible to test whether consistency is preserved
when adding each hypothesis, the computation of extensions
is non-deterministic and constructive (which is not the case
for DL and ASP).

References

Akman, O. E.; Watterson, S.; Parton, A.; Binns, N.; Millar, A. J.;
and Ghazal, P. 2012. Digital clocks: simple Boolean models can
quantitatively describe circadian systems. Journal of The Royal
Society Interface.
Aracena, J.; González, M.; Zuñiga, A.; Mendez, M. A.; and Cam-
biazo, V. 2006. Regulatory network for cell shape changes during
Drosophila ventral furrow formation. Journal of Theoretical Biol-
ogy 239:49–62.
Chellas, B. 1980. Modal logic, an introduction. Cambridge Uni-
versity Press.
Davidich, M. I., and Bornholdt, S. 2008. Boolean network model
predicts cell cycle sequence of fission yeast. PLoS One 3:e1672.
Demongeot, J.; Goles, E.; Morvan, M.; Noual, M.; and Sené, S.
2010. Attraction basins as gauges of the robustness against bound-
ary conditions in biological complex systems. PLoS One 5:e11793
(18 pages).
Demongeot, J.; Elena, A.; Noual, M.; Sené, S.; and Thuderoz, F.
2011. ”immunetworks”, intersecting circuits and dynamics. Jour-
nal of Theoretical Biology 280:19–33.
Demongeot, J.; Noual, M.; and Sené, S. 2012. Combinatorics of
Boolean automata circuits dynamics. Discrete Applied Mathemat-
ics 160:398–415.
Doncescu, A., and Siegel, P. 2015. Emerging Trends in Com-
putational Biology, Bioinformatics, and Systems Biology. Elsevier.
chapter DNA double-strand break-based nonmonotonic logic, 409–
427.
Doncescu, A.; Siegel, P.; and Le, T. 2014. Representation and
efficient algorithms for the study of cell signaling pathways. In
Proceedings of ICAI’2014, 504–510. IEEE Computer Society.
Fauré, A.; Naldi, A.; Chaouyia, C.; and Thieffry, D. 2006. Dy-
namical analysis of a generic Boolean model for the control of the
mammalian cell cycle. Bioinformatics 22:e124–e131.
Jacob, F., and Monod, J. 1978. Genetic regulation mechanisms in
the synthesis of proteins. In Selected Papers in Molecular Biology
by J. Monod, 433–471. Academic Press.

Kauffman, S. A.; Peterson, C.; Samuelsson, B.; and Troein, C.
2003. Random Boolean network models and the yeast transcrip-
tional network. PNAS 100:14796–14799.
Kauffman, S. A. 1969. Metabolic stability and epigenesis in ran-
domy constructed nets. Journal of Theoretical Biology 22:437–
467.
Kripke, S. A. 1963. Semantical analysis of modal logic I Normal
modal propositional calculi. Mathematical Logic Quarterly 9:67–
96.
Li, F.; Long, T.; Lu, Y.; Ouyang, Q.; and Tang, C. 2004. . PNAS
101:4781–4786.
Lifschitz, V. 1999. The Logic Programming Paradigm: A 25-Year
Perspective. Springer. chapter Action languages, answer sets, and
planning, 357–373.
Lukaszewicz, W. 1988. Considerations on Default Logic – An
Alternative Approach. Computational Intelligence 4:1–16.
Melliti, T.; Regnault, D.; Richard, A.; and Sené, S. 2013. On the
convergence of Boolean automata networks without negative cy-
cles. In Proceedings of AUTOMATA’2013, volume 8155 of LNCS,
124–138. Springer.
Melliti, T.; Noual, M.; Regnault, D.; Sené, S.; and Sobieraj, J. 2015.
Asynchronous dynamics of Boolean automata double-cycles. In
Proceedings of UCNC’2015, volume 9252 of LNCS, 250–262.
Springer.
Mendoza, L.; Thieffry, D.; and Alvarez-Buylla, E. R. 1999. Ge-
netic control of flower morphogenesis in Arabidopsis thaliana.
Bioinformatics 15:593–606.
Reiter, R. 1980. A logic for default reasoning. Artificial Intelli-
gence 13:81–132.
Remy, E.; Mossé, B.; Chaouyia, C.; and Thieffry, D. 2003. A de-
scription of dynamical graphs associated to elementary regulatory
circuits. Bioinformatics 19:ii172–ii178.
Remy, E.; Ruet, P.; and Thieffry, D. 2008. Graphic requirement for
multistability and attractive cycles in a Boolean dynamical frame-
work. Advances in Applied Mathematics 41:335–350.
Richard, A., and Comet, J.-P. 2007. Necessary conditions for multi-
stationarity in discrete dynamical systems. Discrete Applied Math-
ematics 155:2403–2413.
Richard, A. 2010. Negative circuits and sustained oscillations in
asynchronous automata networks. Advances in Applied Mathemat-
ics 44:378–392.
Robert, F. 1986. Discrete Iterations: A Metric Study. Springer.
Roenneberg, T., and Merrow, M. 2003. The network of time:
understanding the molecular circadian system. Current Biology
13:R198–R207.
Schwind, C., and Siegel, P. 1994. A modal logic for hypothesis
theory. Fundamenta Informaticae 21:89–101.
Siegel, P., and Schwind, C. 1993. Modal logic based theory
for non-monotonic reasonning. Journal of Applied Non-classical
Logic 3:73–92.
Siegel, P.; Doncescu, A.; Risch, V.; and Sené, S. 2017. Vers
une représentation des systèmes dynamiques discrets en logique
des hypothèses *. Journées d’Intelligence Artificielle Fondamen-
tale, Jul. 2017, Caen, France, hal-01566164 .
Thomas, R. 1973. Boolean formalization of genetic control cir-
cuits. Journal of Theoretical Biology 42:563–585.
Thomas, R. 1981. Numerical Methods in the Study of Critical
Phenomena. Springer. chapter On the relation between the logical
structure of systems and their ability to generate multiple steady
states or sustained oscillations, 180–193.

10

A critical assessment of Pollock’s work on logic-based argumentation with
suppositions

Mathieu Beirlaen
Ghent University

mathieubeirlaen@gmail.com

Jesse Heyninck
Ruhr-University Bochum

jesse.heyninck@ruhr-uni-bochum.de

Christian Straßer
Ruhr-University Bochum

christian.strasser@ruhr-uni-bochum.de

Abstract
John Pollock’s pioneering work in logic-based argumentation
continues to serve as a source of inspiration for researchers in
the field of non-monotonic logic. In this paper we present and
assess a largely unexplored line of Pollock’s work: his system
of suppositional argumentation. Via the construction of sup-
positional arguments, Pollock was able to represent a large
additional class of important patterns of defeasible reasoning,
such as conditionalization and reasoning by cases (dilemma).
This resulted in a rich argumentation system that exceeds the
expressive power of most present-day accounts of logic-based
argumentation. In this paper, we offer three criticisms of Pol-
lock’s suppositional system, all of which relate in important
ways to other systems of non-monotonic logic. Our aim with
this contribution is to help shape the research agenda for ad-
vancing our understanding of formal aspects of suppositional
reasoning.

1 Introduction
Our point of departure is John Pollock’s pioneering work on
reasoning and argumentation (Pollock 1987; 1991b; 1991a;
1994; 1995; 2008). Pollock was among the first to offer de-
tailed accounts of the logical structure and strength of argu-
ments, the nature of argumentative defeat, and the semantics
of argument justification. His work was a clear source of
inspiration for important later developments in formal argu-
mentation, such as Dung’s account of abstract argumenta-
tion (Dung 1995) or the ASPIC+ framework for structured
or logic-based argumentation (Modgil and Prakken 2013;
2014).1

An important yet largely unexplored part of Pollock’s
work on argumentation concerns his treatment of supposi-
tional reasoning. Arguments involving suppositions or hy-
potheses are needed for representing a large class of defea-
sible inference patterns including conditionalization and rea-
soning by cases (also called “dilemma”). Consider the fol-
lowing example.
Example 1 (Kyoto protocol) There are two candidates for
an upcoming presidential election. The candidates had a de-
bate in the capital. They were asked what measures are to

Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1For an expert appreciation of Pollock’s pioneering efforts in
the field of formal argumentation, see (Prakken and Horty 2012).

be taken in order for the country to reach the Kyoto protocol
objectives for reducing greenhouse gas emissions. The first
candidate, a member of the purple party, argued that if she
wins the election, she will reach the objectives by support-
ing investments in renewable energy. The second candidate,
a member of the yellow party, argued that if she wins the
election, she will reach the objectives by supporting sustain-
able farming methods.
We have reasons to believe that, no matter which candi-
date wins the election, the Kyoto protocol objectives will
be reached. If the purple candidate wins, she will support
investments in renewable energy (p) r), which would in
turn result in meeting the Kyoto objectives (r) k). Sim-
ilarly, if the yellow candidate wins, she will support sus-
tainable farming methods (y) f), which would result in
meeting the Kyoto objectives (f) k). Since one of the two
candidates is going to win (p _ y), we can reason by cases
to conclude that the Kyoto objectives will be reached (k).
Schematically, this argument can be represented as follows:

p _ y

����
[p]) r) k
[y]) f) k

���� k (1)

In this representation, double arrows “)” represent defeasi-
ble reasons. The inference from p to r, for instance, is ra-
tionally compelling yet inconclusive. (Indeed, conditional
claims and reasons offered by politicians should be taken
with a grain of salt, and should by no means be represented
as deductive or truth-preserving.) The square brackets “[,]”
are used to introduce suppositions. If p obtains, we have a
defeasible argument for concluding k. Similarly, if y ob-
tains, we have a defeasible argument for concluding k. Since
we know that p or y, we can discharge these suppositions
and conclude that k, as represented by the squiggly arrow
“ ”.

Most present-day accounts of logic-based argumentation
lack the expressive means to represent the argument in equa-
tion (1). Pollock’s work is an exception. Already in 1987,
Pollock extended his account of logic-based argumentation
with the possibility to include suppositional arguments. He
returned to this subject throughout the late eighties and early
nineties, and offered a mature account of logic-based argu-
mentation – including suppositions – in (Pollock 1995).

In this paper, we present (Section 2) and assess (Section
3) Pollock’s 1995 account of suppositional argumentation.

We point to three problems of this account (Sections 3.1 –
3.3), and we analyze what might cause them (Section 4).
(For lack of space, we do not present a full evaluation of
Pollock’s system, including all of the good news.) With this
analysis we aim to advance our understanding of formal as-
pects suppositional reasoning, and to help shape future re-
search on the representation of suppositional reasoning in
formal argumentation and non-monotonic logic.

Notational preliminaries. ` denotes the consequence re-
lation of the propositional fragment of classical logic (CL).
To obtain the formal language L of CL, we close a denu-
merable stock p, q, r, . . . of propositional letters under the
usual CL-connectives ¬,_,^,�,⌘. We also add the verum
constant > and the falsum constant ? to L. We use lower
case Greek letters ', ,�, . . . as variables for members of
L, and upper case Greek letters �,�,⇥, . . . as variables for
subsets of L.

We will sometimes use the contrariness operator “�” as
a notational shortcut: ' = � iff (' = ¬ or = ¬').

2 Pollock on Suppositional Reasoning
Roughly, any theory of argumentation-based inference can
be defined in terms of three elements. First, a set of well-
constructed arguments has to be specified relative to a
knowledge base. Second, a relation of argumentative de-
feat determines which arguments attack one another. And
finally, a semantics specifies which arguments count as jus-
tified given a knowledge base, a set of well-constructed ar-
guments relative to this base, and a relation of argumentative
defeat. In Sections 2.1 – 2.3 below we set out how Pollock
conceived each of these three elements in 1995. In our ex-
position we will sometimes deviate from Pollock’s original
presentation, indicating and motivating our alterations along
the way.

2.1 Knowledge bases and arguments
Below we will think of a knowledge base as a pair contain-
ing a set of defeasible rules together with a set of background
facts. For didactic purposes, the sets of defeasible rules we
take into account will usually be very small, and always fi-
nite. This is slightly at odds with Pollock’s characterization
of defeasible reasons, since in practice no such knowledge
base will ever contain all of our defeasible reasons. Since our
arguments and examples below generalize in a straightfor-
ward manner to bigger and more realistic settings, we need
not worry any further about this simplification.
Definition 1 (Knowledge base) A knowledge base K is a
pair hR,Fi where R is a set of defeasible rules and where
F ✓ L is a CL-consistent2 set of facts.
The information given in Example 1, for instance, can be
represented in terms of the knowledge base K1 = h{p)
r, r) k, y) f, f) k}, {p _ y}i.

Below we represent an argument A as a pair hS;�i, where
S is A’s construction sequence and where � is the hypoth-
esis set of A, which contains the suppositions on which we

2F ✓ L is CL-consistent iff F 6` ?.

base A’s conclusion. Arguments are built relative to a given
knowledge base by means of the construction rules in Defi-
nition 2. The functions Conc(A), Hyp(A), and Sub(A) keep
track of argument A’s conclusion, A’s hypothesis set, and
A’s sub-arguments respectively.
Definition 2 (Arguments) Given a knowledge base K =
hR,Fi, the set Arg(K) of arguments for K contains all ar-
guments constructed by means of the following rules:

F: Where ' 2 F and � is any finite set of propositions,

A : h';�i

is an argument with Conc(A) = ', Hyp(A) = �, and
Sub(A) = {A}.

P: Where � is a finite set of propositions and ' 2 �,

A : h['];�i

is an argument with Conc(A) = ', Hyp(A) = �, and
Sub(A) = {A}.

Rd: If A1, . . . , An are arguments with Hyp(Ai) = � and
Conc(Ai) = 'i for every i 2 {1, . . . , n}, and
'1, . . . ,'n) 2 R, then

A : hA1, . . . , An) ;�i

is an argument with Conc(A) = , Hyp(A) = �, and
Sub(A) = Sub(A1) [. . . [Sub(An) [{A}.

Rc: If A1, . . . , An are arguments with Hyp(Ai) = � and
Conc(Ai) = 'i for every i 2 {1, . . . , n}, and
'1, . . . ,'n ` , then

A : hA1, . . . , An ! ;�i

is an argument with Conc(A) = , Hyp(A) = �, and
Sub(A) = Sub(A1) [. . . [Sub(An) [{A}.

C: If B is an argument with Hyp(B) = � [{'} and
Conc(B) = , then

A : hB ' � ;�i

is an argument with Conc(A) = ' � , Hyp(A) = �,
and Sub(A) = Sub(B) [{A}.

D: If B,C, and D are arguments with
– Hyp(B) = �, Hyp(C) = � [{'}, and Hyp(D) =
� [{ }, and

– Conc(B) = ' _ and Conc(C) = Conc(D) = �,
then

A : hB,C,D �;�i
is an argument with Conc(A) = �, Hyp(A) = �, and
Sub(A) = {A} [Sub(B) [Sub(C) [Sub(D).

A: If B is an argument with Conc(B) = ' and Hyp(B) = �,
and � ✓ �, then

A : hB;�i
is an argument with Conc(A) = ', Hyp(A) = � and
Sub(A) = {A} [Sub(B)

An argument A is hypothetical if Hyp(A) 6= ;; else it is non-
hypothetical. An argument is defeasible if Rd was applied
at least once in its construction sequence; else it is strict or
conclusive.

The argument represented in equation (1) can be encoded
as follows within Pollock’s framework, on the basis of the
knowledge base K1:

A1 : hp _ y; ;i A5 : h[y]; {y}i
A2 : h[p]; {p}i A6 : hA5) f ; {y}i
A3 : hA2) r; {p}i A7 : hA6) k; {y}i
A4 : hA3) k; {p}i A8 : hA1, A4, A7 k; ;i
A1 is obtained via F, the rule for introducing facts in our

knowledge base. A2 and A5 are obtained via the supposition
introduction rule P. A3, A4, A6, and A7 are constructed by
applications of defeasible rules in K1 via Rd. Finally, A8

applies the dilemma rule D which allows us to discharge the
suppositions p and y in A4 and A7 respectively in view of
the information provided by A1.

Alternatively, the argument represented in equation (1)
can be encoded using the conditionalization rule C and the
rule Rc for applying strict or conclusive (deductively valid)
reasons:

A9 :hA4 p � k; ;i
A10 :hA7 y � k; ;i
A11 :hA1, A9, A10 ! k; ;i

The construction of arguments A8 and A11 suggests that
there is a close correspondence between the argument con-
struction rules D and C. Indeed, in Appendix A we show that
each of these rules is admissible in the presence of the other.
The set of justified conclusions of Pollock’s 1995 system
would remain unchanged if either we drop C while keeping
D or we drop D while keeping C.

The only rule that was not applied in the construction of
A1 � A11 above is the foreign adoptions rule A. This rule
allows one to expand the hypothesis set of any argument by
any additional hypothesis. For instance, we could apply this
rule to expand Hyp(A3) with the additional hypothesis y:

A12 : hA3, {p, y}i

Note that Conc(A3) = Conc(A12) = r. The only differ-
ence between these arguments is that Hyp(A3) = {p} while
Hyp(A12) = {p, y}.

Our compact notation in Definition 2 is inspired by the
way arguments are represented in the ASPIC+ framework
for structured argumentation (Modgil and Prakken 2013;
2014). It differs considerably from Pollock’s original nota-
tion, in which arguments are represented as sequences of or-
dered quadruples. It is easily seen, however, that the rules in
Definition 2 correspond exactly to Pollock’s original rules,
with one further proviso: Pollock used a single rule R to en-
compass both our Rd and Rc. We chose to introduce sepa-
rate rules for applications of defeasible and conclusive rules,
since this leads to a more transparent characterization of ar-
gumentative defeat.

2.2 Defeat
Pollock distinguished between rebutting defeaters and un-
dercutting defeaters for arguments. Here, we focus exclu-
sively on rebutting defeaters, for two reasons. The first is
that our criticisms in Section 3 do not require the presence

of undercutting defeaters, and that these criticisms hold mu-
tatis mutandis for Pollock’s system extended with undercut-
ting defeat. The second reason is that, in the presence of
undercutting defeaters, Pollock’s 1995 system suffers from
so-called contamination problems (cfr. infra) as shown in
(Caminada 2005). Here is Pollock’s 1995 conception of (re-
butting) defeat:3

Definition 3 (Defeat) An argument A defeats an argument
B iff there are A0 2 Sub(A) and B0 2 Sub(B) such that

• Hyp(A0) ✓ Hyp(B0),
• Rd is the last rule applied in the construction of B0, and
• Conc(A0) = �Conc(B0).

Suppose that we extend the knowledge base K1 from Ex-
ample 1 with the further information that, at an earlier rally
held in the countryside, the yellow candidate promised not
to support sustainable farming methods so that the country
can preserve its traditional farming methods (y) ¬f). This
gives us the new argument

A13 : hA5) ¬f ; {y}i

By Definition 3, A6 and A13 defeat one another relative to
the extended knowledge base. Since A6 is a sub-argument
of A7, A8, A10, and A11, we also obtain that, for any Ai 2
{A7, A8, A10}, A13 and Ai defeat one another.

Example 2 Let K2 = h{p) q, q) r, s) ¬r}, {p, s}i.
The following arguments all belong to Arg(K2):

A1 : hp; ;i A6 : h[q]; {q}i
A2 : hA1) q; ;i A7 : hA6) r; {q}i
A3 : hA2) r; ;i A8 : hA7 q � r; ;i
A4 : hs; ;i A9 : hA8, A5 ! ¬q; ;i
A5 : hA4) ¬r; ;i

By Definition 3, A3 and A5 defeat one another. Since
A5 2 Sub(A9), A3 also defeats A9 and vice versa. Note
that A5 defeats A7 but not vice versa, since Hyp(A5) ⇢
Hyp(A7). A7 is a sub-argument of A8 and A9, so the latter
arguments are also defeated by A5. Since both A5 and A7

are sub-arguments of A9 the latter argument defeats itself.
Importantly, arguments can only be defeated in conclu-

sions obtained via Rd. Because of this, there is no way to
defeat A1, A4, or A6. For the same reason, A9 defeats A2

but not vice versa. The defeat relations between these argu-
ments are represented by arrows in Figure 1. The arguments
A1, A4, and A6 are omitted in the figure, since they do not
stand in any relation of argumentative defeat to any of the
other arguments mentioned.

3Definition 3 makes use of the contrariness operator “�” where
Pollock used the classical negation operator “¬”. The use of “�”
makes matters less cumbersome, while the net outcome remains
the same. For instance, two arguments A and B with Hyp(A) =
Hyp(B), with Rd as the last rule applied in their constrution, and
with Conc(B) = ¬Conc(A) defeat each other if we use “�”. If
we were to use “¬” instead, B defeats A but not vice versa, while
the argument A0 : hA ! ¬¬Conc(A); Hyp(A)i does defeat Bj .

A2

A3 A5 A7

A8A9

Figure 1: Argumentation graph for some arguments in Ex-
ample 2.

2.3 Justification
Our formulation of Pollock’s semantics is different yet
equivalent to his original formulation in (Pollock 1994) and
(Pollock 1995). We opt here for a more concise and more
transparent formulation in terms of Dung’s extensional se-
mantics (Dung 1995).4

Definition 4 (Argumentation framework) An abstract ar-
gumentation framework (AF) is a pair (Arg, Def) where
Arg is a set of arguments and Def ✓ Arg ⇥ Arg is a bi-
nary relation of argumentative defeat.
An AF can be represented as a graph with arguments as
nodes and defeats as arrows, as in Figure 1. Relative to an
AF, Dung defines a number of extensions – subsets of Arg –
on the basis of which we can evaluate arguments in Arg.
Definition 5 (Defense) A set of arguments X defends an ar-
gument A iff every defeater of A is defeated by some B 2 X .

Definition 6 (Extensions) Let (Arg, Def) be an AF. If E ✓
Arg is conflict-free, i.e. there are no A,B 2 E for which
(A,B) 2 Def, then (i) E is a complete extension iff A 2 E
whenever E defends A; (ii) E is a preferred extension iff it
is a set inclusion maximal complete extension; and (iii) E
is the grounded extension iff it is the set inclusion minimal
complete extension.

Pollock’s 1995 account of what it means for an argument
to be justified relative to a knowledge base corresponds to
Dung’s preferred skeptical semantics:
Definition 7 (Justification) An argument A 2 Arg(K) is
justified relative to the knowledge base K if it belongs to all
preferred extensions of the AF (Arg(K), Def), where Def is
the defeat relation from Definition 3.
We write K |⇠' iff there is a non-hypothetical argument
A 2 Arg(K) with Conc(A) = ' such that, for all preferred
extensions P of the AF (Arg(K), Def), A 2 P .

4The correspondence between Dung’s preferred skeptical se-
mantics (see Def. 7) and Pollock’s labeling-based semantics from
1994 and 1995 was established in (Jakobovits and Vermeir 1999,
Sec. 6.3). Our use of the term “justified” is slightly different from
Pollock’s uses of this term in 1987 and afterwards. Especially in
later work, Pollock thought of justification as a procedural, grad-
ual notion which becomes stronger with an increase in time and
means to offer additional insights into the premises. He used the
term “warrant” for arguments which are justified-in-the-limit, i.e.
justified in the ideal setting in which time and effort are of no im-
portance. We do not require a gradual notion of argument justifi-
cation for our present purposes, so we stick to the more common
term “justified” to denote arguments that, on Pollock’s view, are
“warranted” or “justified-in-the-limit”.

Applied to the original Example 1, Definition 7 delivers a
unique preferred extension containing all of A1 � A12. As
a result, each of A1 � A12 is justified relative to K1. This
changes when we extend K1 with the rule y) ¬f . In the
extended knowledge base, we obtain two preferred exten-
sions. The first contains all of A1, . . . , A12; it does not con-
tain A13. The second contains A1, . . . , A5, A9, A12, A13; it
does not contain A6 �A8, A10, A11.

Applied to Example 2, we again obtain two preferred ex-
tensions. Each of these contains the undefeated arguments
A1, A4, and A6. For the other arguments given above, the
extensions are depicted in Figure 2, where green arguments
belong to the extension in question, and red arguments do
not. Of course, the figures depict only a very small fragment
of the full AF for Example 2, since Arg(K2) contains plenty
of further arguments. Adding all further arguments to this
picture, however, would not affect the status of any of the
arguments depicted. For the sake of clarity, we confine our
illustrations to the most relevant arguments, and we safely
exclude the other arguments. The same holds true for the
other examples in the remainder of this paper.

Note that A2 is justified relative to K2 (since it belongs to
both extensions), while e.g. A3 and A5 are not, so K2 |⇠ q,
while K2 6 |⇠ r and K2 6 |⇠¬r.

A2

A3 A5

A7

A8A9

A2

A3 A5

A7

A8A9

Figure 2: Preferred extensions of K2 in Example 2.

3 A Critical Assessment of Pollock’s 1995
account

In Sections 3.1 – 3.3 we offer three criticisms of Pol-
lock’s system. The first is based on Pollock’s so-called pri-
ority principle (Section 3.1). The second and third criti-
cism are based on well-known and generally accepted pos-
tulates from the literature on conditional reasoning and non-
monotonic logic respectively (Sections 3.2 and 3.3).

3.1 The Priority Principle
Pollock believed the following principle to be a true princi-
ple of defeasible reasoning:

In general, given a rebutting defeater for the last step of
a defeasible argument, we work backwards withdraw-
ing conclusions until we get to the last defeasible step
of the argument. Defeat must extend backwards over
deductive steps, because we cannot withdraw the con-
clusion of a deductive step without withdrawing the
premise, but when we come to a defeasible step we

withdraw only the conclusion, retaining the premise
and taking the prima facie reason to be defeated. I refer
to this as the priority principle – we give priority to the
earlier defeasible steps of an argument (Pollock 1991b,
p. 387, emphasis in original)

The priority principle states that, given a chain
D1 : hD0) '1, ;i
D2 : hD1) '2, ;i

...
...

Dn : hDn�1) 'n, ;i
of applications of Rd and a defeater E with Conc(E) =
¬'n for the last link of this chain, we ‘cut off’ the chain
at the last defeasible step (assuming that there are no fur-
ther arguments which defend Dn from the defeat by E). As
a result, the argument Dn is no longer justified and, absent
further defeaters, all of D1, . . . , Dn�1 are justified. In par-
ticular, we should not be able to use E for constructing a
defeater for any of D1, . . . , Dn�1.

As illustrated above, the priority principle is respected for
Example 2, since K2 |⇠ q. Pollock himself used this example
to illustrate the priority principle for his account from Sec-
tion 2, and to point out that the principle fails for some of
his earlier accounts (Pollock 1991b, Sec. 10). We will return
to this point in Section 4.2. For now, it suffices to see that
Pollock defended the priority principle, and that he was pre-
pared to modify his account of argumentative defeat in order
to respect it. But does the priority principle hold in general
for Pollock’s account presented in Section 2? Unfortunately,
it does not, as shown in Example 3.5

Example 3 (Failure of the priority principle) Let K3 =
h{p) q, q) ¬s, q) ¬t, r) s,¬r) t}, {p}i. The
following arguments all belong to Arg(K3):

A1 :hp; ;i
A2 :hA1) q; ;i
A3 :hA2) ¬s; ;i
A4 :hA2) ¬t; ;i
A5 :hhh[r]; {r}i) s; {r}i ! s _ t; {r}i
A6 :hhh[¬r]; {¬r}i) t; {¬r}i ! s _ t; {¬r}i
A7 :hhh[q]; {q}i) ¬s; {q}i q � ¬s; ;i
A8 :hhh[q]; {q}i) ¬t; {q}i q � ¬t; ;i
A9 :hh! r _ ¬r; ;i, A5, A6 s _ t; ;i
A10 :hA7, A8, A9 ! ¬q; ;i
A11 :hA3, A9 ! t; ;i
A12 :hA4, A9 ! s; ;i

In order for the priority principle to be respected, we need
A2 to be justified relative to K3. Unfortunately, it is not. A2

is defeated by A10, and the latter argument defends itself
against its defeaters A3, A4, A11, and A12. As a result, we
obtain a preferred extension containing A10 – part of this
extension is depicted in Figure 3.

5The argument h! r _ ¬r; ;i 2 Sub(A9) applies Rc without
reference to any sub-arguments in view of the CL-valid inference
; ` r _ ¬r.

A2

A3 A4

A5 A6

A7A8

A9

A10

A11 A12

Figure 3: Sample of a preferred extension of K3.

Example 3 makes clear that, perhaps contrary to Pollock’s
own expectations, there are cases in which the priority prin-
ciple fails for his system, and in which we can let defeat ex-
tend backwards not just over deductive steps, but also over
defeasible steps. Pollock himself admitted that there are con-
traposible defeasible reasons for which this backward move
is allowed. Still, he maintained that not all defeasible reasons
are contraposible in this sense, and that the priority principle
must come out true in a theory of defeasible reasoning, see
in particular (Pollock 1991b).

Our discussion on Pollock’s priority principle finds a
close parallel in the literature on default logic. Default lo-
gicians, like Pollock, tend to reject the view that defeasible
rules are contraposible. Indeed, default rules are not con-
traposible in Reiter’s default logic (Reiter 1980), and the
priority principle is respected for Reiter’s formalism. More-
over, enrichments of Reiter’s original proposal that allow for
versions of Pollock’s dilemma (D) or conditionalization (C)
rules have been criticized for licensing contraposition of de-
fault rules (Moinard 1994; Roos 1998). It seems, then, that
most default logicians, like Pollock, believe that the priority
principle ought to be respected for defeasible reasoning.

3.2 Argumentation and the Ramsey Test
In his 1968 article “A theory of conditionals” Robert Stal-
naker set out to answer the question “How does one evalu-
ate a conditional statement?” His answer crucially turns on
a suggestion made earlier by Frank Ramsey (Ramsey 1931).
In the words of Stalnaker, Ramsey’s suggestion amounts to
a simple thought experiment. To evaluate a conditional,

add the antecedent (hypothetically) to your stock of
knowledge (or beliefs), and then consider whether or
not the consequent is true. Your belief about the condi-
tional should be the same as your hypothetical belief,
under this condition, about the consequent (Stalnaker
1968, p. 101).

This test for the acceptance or rejection of conditional state-
ments is nowadays known as the Ramsey Test. It figures
prominently in the literature on theories of conditionals – see
e.g. (Arlo-Costa and Egré 2016; Bennett 2003). The Ram-
sey test is a useful tool for assessing conditional statements

the antecedent of which is false or undetermined, and it ex-
plicitly connects the evaluation of conditionals with suppo-
sitional reasoning.

The Ramsey test is about conditionals, and not about argu-
ments. But we can easily turn the test into a device for evalu-
ating suppositional arguments. Suppose we want to evaluate
a simple suppositional argument A relative to a knowledge
base K = hR,Fi containing a rule ') :

A : hh[']; {'}i) ; {'}i
To check whether A is justified relative to K, we can add its
supposition ' to the facts in K and check whether the non-
suppositional argument B is justified relative to the resulting
extended knowledge base hR,F [{'}i:

B : hh'; ;i) ; ;i
It ought to be that B is justified relative to hR,F [{'}i
(provided that F [{'} is CL-consistent) if and only if
A is justified relative to K. This is the argumentative ana-
logue of Stalnaker’s advice for evaluating conditionals. We
refer to it as the Argumentative Ramsey Test (ART), and con-
sider this principle equally acceptable as the original Ram-
sey Test. Examples 4 and 5 illustrate the failure of the ART
for Pollock’s 1995 system in both directions.
Example 4 (Right-left failure of the ART) Let K4 =
hR4,F4i with R4 = {p) ¬q, p) s, s) q, r) ¬s}
and F4 = {r}. Note that A1 is justified relative to K4: A1

is defeated by A4, but defended by the undefeated A2:
A1 :hh[p]; {p}i) ¬q; {p}i
A2 :hhr; ;i) ¬s; ;i
A3 :hh[p]; {p}i) s; {p}i
A4 :hA3) q; {p}i

However, A0
1 is not justified relative to hR4,F4 [{p}i:

A0
1 :hhp; ;i) ¬q; ;i

A0
3 :hhp; ;i) s; ;i

A0
4 :hA0

3) q; ;i
A0

4 defeats not only A0
1; it also defeats A2 in view of the sym-

metrical defeat between A2 and A0
3. As a result, we obtain a

preferred extension P with A0
3, A

0
4 2 P and A0

1, A
0
2 62 P .

Example 5 (Left-right failure of the ART) Let K5 =
hR5, ;i with R5 = {p) ¬q,¬p) q, r) ¬p,¬r) q}.
First, note that A2 below is justified relative to hR5, {p}i:
A2 is defeated by A6, but the undefeated A1 defeats A3 and
A6, defending A2:

A1 :hp; ;i
A2 :hA1) ¬q; ;i
A3 :hh[r]; {r}i) ¬p; {r}i
A4 :hA3) q; {r}i
A5 :hh[¬r]; {¬r}i) q; {¬r}i
A6 :hh! r _ ¬r; ;i, A4, A5 q; ;i

In order for the ART to be respected, it ought to be that A0
2 is

justified relative to K5. But A0
2 cannot be defended against

the defeat by A6, since A1 62 Arg(K5) and since A0
1 does

not defeat A6. As a result, A0
2 is not justified relative to K5.

A0
1 : h[p]; {p}i A0

2 : hA0
1) ¬q; {p}i

3.3 Disjunction in the Premisses
The property of disjunction in the premisses – we borrow
the name from (Makinson 2003) – is generally regarded as a
desirable principle for disjunctive reasoning:6

If hR,F [{'}i |⇠� and hR,F [{ }i |⇠�,

then hR,F [{' _ }i |⇠�
(OR)

Unfortunately, OR fails for Pollock’s 1995 system, as our
next example shows.
Example 6 (Failure of OR) Let R6 = {p) r _ s, r)
t, t) v, s) v, q) v, r) u, u) ¬t, p) ¬u}. First,
note that A3 below is justified relative to hR6, {p}i. A3 is
defeated by A4, but the undefeated A5 defends A3:

A1 :hhh[r]; {r}i) t; {r}i) v; {r}i
A2 :hh[s]; {s}i) v; {s}i
A3 :hhhp; ;i) r _ s; ;i, A1, A2 v; ;i
A4 :hhh[r]; {r}i) u; {r}i) ¬t; {r}i
A5 :hhp; ;i) ¬u; ;i

Next, consider the knowledge base hR6, {q}i. Here, the ar-
gument A6 stands undefeated and is justified:

A6 : hhq; ;i) v; ;i
Finally, consider hR6, {p _ q}i, where we have the non-
hypothetical argument A11 for the conclusion v:

A7 :hhh[r]; {p, r}i) t; {p, r}i) v; {p, r}i
A8 :hh[s]; {p, s}i) v; {p, s}i
A9 :hhh[p]; {p}i) r _ s; {p}i, A7, A8 v; {p}i
A10 :hh[q]; {q}i) v; {q}i
A11 :hhp _ q; ;i, A9, A10 v; ;i

Note that A7, A9, and A11 are defeated by A4. There is no
defense against this defeat: A5 62 Arg(hR6, {p _ q}i), and
A12 does not defeat A4 since Hyp(A12) 6✓ Hyp(A4):

A12 : hh[p]; {p}i) ¬u; {p}i
As a result, A11 is not justified relative to hR6, {p _ q}i.
More generally, we have hR6, {p}i |⇠ v and hR6, {q}i |⇠ v,
while hR6, {p _ q}i 6 |⇠ v, in clear violation to OR.7

4 Further Analysis
The priority principle, the ART, and OR all fail for Pol-
lock’s 1995 system of logic-based argumentation with sup-
positions. We will not attempt a defense of these princi-
ples here. Instead, we offer some further insights as to what
causes their failure in Pollock’s system.

6In their influential paper on preferential models, Kraus,
Lehmann & Magidor refer to this principle by the name “OR”
(Kraus, Lehmann, and Magidor 1990).

7Note that, alternatively, we could have constructed A9 via ap-
plications of A to A1 and A2 respectively:

A0
9 : hhh[p]; {p}i) r_s; {p}i, hA1; {p, r}, hA2; {p, s}i v; {p}i

This does not affect the outcome for Example 6: A0
9 is defeated

by A4 and vice versa. So we obtain a preferred extension which
does not contain A0

9, and which does not contain the argument A0
11

which substitutes A0
9 for A9 in the construction sequence of A11.

4.1 Why Does the Priority Principle Fail?
On Pollock’s account, the rules C and D for discharging hy-
potheses can be applied without further restrictions in the
construction of arguments. We believe it is the unrestricted
use of these dischargement rules which ultimately leads to
the failure of the priority principle. More precisely, we be-
lieve greater care should be taken when we sequentially ap-
ply dischargement rules in an argument’s construction. The
following example will help us explicate this point.
Example 7 Let K7 = h{p) q, q) r, r) ¬q,¬q)
t}, ;i.

A1 : h[p]; {p}i A4 : hA3) ¬q; {p}i
A2 : hA1) q; {p}i A5 : hA4) t; {p}i
A3 : hA2) r; {p}i A6 : hA5 p � t; ;i

The defeasible rules in K7 form a chain with conflict-
ing sub-conclusions q and ¬q. As expected, the arguments
A4 � A6 in this chain are not justified in view of the defeat
between A2 and A4, which makes A4 � A6 self-defeating.
This seems desirable: we would not want to detach the con-
clusion p � t relative to K7, since it was obtained over
the conflicting sub-conclusions q and ¬q. But there is a dif-
ferent road to the same conclusion: we can ‘cut up’ the
chain [p]) q) r) ¬q) t into two separate chains
[p]) q) r and [r]) ¬q) t. Since these chains
are based on different hypotheses, no defeat arises between
them. After discharging their respective hypotheses we can
‘glue’ the chains back together, and we obtain the justified
argument A12 for the conclusion p � t.

A7 : hA3 p � r; ;i A10 : hA9) t; {r}i
A8 : h[r]; {r}i A11 : hA10 r � t; ;i
A9 : hA8) ¬q; {r}i A12 : hA7, A11 ! p � t; ;i

Figure 4 depicts part of the unique preferred extension
of K7 for the arguments constructed above. Arguments A1,
A8, A9, and A10 stand undefeated and are not included in
the picture.

A2

A3

A4

A5 A6

A7

A12

Figure 4: A sample of the unique preferred extension of
Arg(K7).

In the construction of A12 in Example 7 we were able to
‘shield off’ the conflict between A12’s sub-conclusions q
and ¬q by arriving at them on the basis of different assump-
tions. As a result, A12 is not self-defeating. This move, we

believe, is too permissive. In the construction of A12 we re-
lied on both q and ¬q just as we relied on both of these
sub-conclusions in the construction of A5. Splitting up the
reasoning chain

�
[p]) q) r) ¬q) t

�
 p � t

into two chains
�
[p]) q) r

�
 p � r and

�
[r]) ¬q) t

�
 r � t

and then ‘glueing’ these chains together as in A12’s con-
struction, should not make this argument any more accept-
able than the self-defeating argument A6. A straightforward
fix for this asymmetry between the epistemic status of A6

and A12 respectively, is to prohibit sequential applications
of the dischargement rules C and D.8 This would effectively
block the construction of A12, in which C was applied twice
in a row (first in A7, then in A11). A more fine-grained so-
lution would be to keep better track of dependencies when
sequentially discharging hypotheses in an argument’s con-
struction, so that e.g., in the construction of A12 the depen-
dency on the conflicting sub-conclusions q and ¬q would
cause self-defeat.

How does all this relate to the failure of the priority prin-
ciple? Reconsider Example 3 from Section 3.1, in which the
argument A2 ought to be justified in order for the priority
principle to be respected. We found instead that A2 is not
justified in view of its defeat by A10. A closer look reveals
that we discharged hypotheses on three different occasions
in A10’s construction sequence: we applied C in A7 and A8

respectively, and we applied D in A9. And, like in the con-
struction of A12 in Example 7, we ‘shielded off’ conflicts in
doing so, as the following schematic representation of these
sub-arguments of A10 makes clear:

�
[q]) ¬s

�
 q � ¬s (A7)

�
[q]) ¬t

�
 q � ¬t (A8)

! r _ ¬r
����
[r]) s
[¬r]) t

���� s _ t (A9)

As in Example 7, a suitable restriction on sequential ap-
plications of dischargement rules would suffice to prevent
the argument A10 from Example 3 from belonging to a pre-
ferred extension of its knowledge base. More boldly, a pro-
hibition on sequential applications of dischargement rules
would block its construction altogether. Any of these fixes
would result in A2 being justified in Example 3, and would
defuse our counter-example to Pollock’s priority principle.
Which of these fixes is most appropriate, and how it is best
spelled out, is a matter we leave for future research.

4.2 Why do the ART and OR Fail?
Pollock’s earliest account of logic-based argumentation with
suppositions dates back to 1987. The system presented there

8One may still allow for nested applications of these rules, e.g.,
when C is applied in the subargument (A;� [{�}) of (B;�) =
(A;� [{�}) (� �). In contrast to sequential applications,
when nesting these rules, we do not discharge hypotheses before
charging them in later applications of the same rules.

differs from the 1995 system in four notable ways. First, it
uses the grounded semantics (see Def. 7) as an underlying
semantical engine instead of the preferred skeptical seman-
tics. Second, it makes use of identity (Hyp(A0) = Hyp(B0))
rather than subset inclusion (Hyp(A0) ✓ Hyp(B0)) in Def. 3.
Third, it lacks the argument construction rules A and D. And
fourth, it comes with an a priori exclusion of self-defeating
arguments: self-defeaters are not considered part of the AF
relative to a given knowledge base.

In 1991 Pollock moved from identity to subset inclusion
in his account of defeat, a move to which he referred as the
subset rule. He also introduced the foreign adoptions rule A,
and pointed out that the subset rule is “closely related” to A
(Pollock 1991b, p. 389). The subset rule and foreign adop-
tions go hand-in-hand indeed: in the presence of A, we can
indirectly let an argument A defeat an argument B with a
conflicting conclusion whenever Hyp(A) ⇢ Hyp(B), even
if we replace “✓” with “=” in Def. 3 (call the resulting ac-
count =-defeat). For instance, A1 does not =-defeat A2, but
A3, which applies A to A1, does =-defeat A2:

A1 :hh[p]; {p}i) q; {p}i
A2 :hh[p]; {p, r}i, h[r]; {p, r}i) ¬q; {p, r}i
A3 :hA1; {p, r}i

In Appendix B we show that, even if we move to =-defeat,
the set of arguments justified relative to a given knowledge
base remains the same as long as we also have A around.
To obtain a system in which the identity rule holds – as in
Pollock’s 1987 system – we move to =-defeat and drop the
foreign adoptions rule.

Pollock’s main motivation for introducing the subset rule
and the foreign adoptions rule is that, without these rules,
the priority principle fails. He used Example 2 to illustrate
this point. In an account with the identity rule, the argument
A5 in this example would no longer defeat any of A7, A8, or
A9. A9 would no longer defeat itself, and we would obtain a
preferred extension which does not contain A2, in violation
to the priority principle.

Unfortunately, we saw in Section 3.1 that even in the pres-
ence of the subset rule and the foreign adoptions rule, the
priority principle fails for Pollock’s 1995 account. More-
over, a closer inspection of Examples 4, 5, and 6 shows that
it is the subset rule which is to blame for the failure of the
ART and OR for Pollock’s system.

First, consider Example 4 and suppose that we imple-
ment the identity rule by moving to =-defeat and by dis-
allowing applications of A. In the resulting system, A2 no
longer defeats A4 since Hyp(A2) 6= Hyp(A4). The argument
A0

2 : hhr; {p}i) ¬s; {p}i does defeat A4, but the defeat is
symmetrical: A4 also defeats A0

2, so we obtain a preferred
extension which contains A4, and which contains neither A0

2
nor A1. The upshot is that A1 is not justified relative to K4,
and that the example fails as a counter-example to the ART.

Next, consider Example 5 and suppose again that we im-
plement the identity rule. As with the subset rule, A2 is justi-
fied relative to hR5, {p}i: A2 is =-defeated by A6, but A6 is
defeated (in A3) by the undefeated argument hp; {r}i. For
the ART to fail for this example, A0

2 ought not be justi-
fied relative to K5. Note that A6 does not =-defeat A0

2 since

Hyp(A6) 6= Hyp(A0
2). The argument A0

6 below does =- de-
feat A0

2. However, the undefeated argument hp; {r, p}i =-
defeats A0

6 (in A0
3) and thereby defends A0

2, so that A0
2 re-

mains justified relative to K5, and so the example fails as a
counter-example to the ART.

A0
3 :hh[r]; {r, p}i) ¬p; {r, p}i

A0
4 :hA0

3) q; {r, p}i
A0

5 :hh[¬r]; {¬r, p}i) q; {¬r, p}i
A0

6 :hh! r _ ¬r; {p}i, A0
4, A

0
5 q; {p}i

Finally, consider Example 6. Here, the crucial thing to
note is that, if we move to a system with the identity rule,
the argument A3 is no longer justified relative to hR6, {p}i.
A3 is =-defeated by A4, but A5 no longer defends A3

from this defeat. Instead, A4 is =-defeated by the argument
A0

5 : hhp; {r}i) ¬u; {r}i. The =-defeat is symmetrical
(A4 also =-defeats A0

5) but still we obtain a preferred exten-
sion of hR6, {p}i that contains A4 and that contains neither
A3 nor A0

5. Thus, hR6, {p}i 6|⇠ v and the example fails as a
counter-example to OR.

We have pointed to the subset rule as the cause of the fail-
ure of the ART and OR for Pollock’s 1995 system, and we
have shown, for all relevant examples, that this failure is pre-
vented if we move from the subset rule to the identity rule.
It seems, then, that by implementing the identity rule we can
preserve OR and the ART, and avoid two out of the three
criticisms offered against Pollock’s 1995 system in Section
3. Unfortunately though, moving to the identity rule comes
with a severe additional problem: it leads to a violation of
the non-interference property, which was proposed in (Cam-
inada, Carnielli, and Dunne 2012) as a rationality postulate
for argumentation-based logics. The non-interference postu-
late demands that syntactically disjoint knowledge bases9 do
not contaminate one another in the sense that uniting these
knowledge bases ought not lead to the unacceptability of ar-
guments that are acceptable in one of the original knowledge
bases.

Example 8 Let K8 = h{p) q,¬p) ¬q, r) q,¬r)
¬q, s) t}, {p _ r,¬p _ ¬r, s}i. The argument A7 has no
atoms in common with any of A1 �A6, so one would expect
A7 to be justified relative to K8:

A1 :hh[p]; {p}i) q; {p}i
A2 :hh[r]; {r}i) q; {r}i
A3 :hhp _ r; ;i, A1, A2 q; ;i

A4 :hh[¬p]; {¬p}i) ¬q; {¬p}i
A5 :hh[¬r]; {¬r}i) ¬q; {¬r}i
A6 :hh¬p _ ¬r; ;i, A4, A5 ¬q; ;i
A7 :hhs; ;i) t; ;i

9Two knowledge bases are syntactically disjoint if they have no
atomic sub-formulas in common.

A7 is defeated by A8:

A8 : hA3, A6 ! ¬t; ;i
In Pollock’s 1995 system (with the subset rule) A8 is self-
defeating, since A3 defeats A4 � A6, and since A6 defeats
A1 �A3. Since A8 is self-defeating, A7 remains justified.

In a system with the identity rule, however, A8 is no longer
self-defeating. Indeed, no =-defeats arise between the argu-
ments A1 �A6. Moreover, all =-defeaters of A8 are in turn
=-defeated by other arguments. The argument A¬p

3 below,
for instance, mirrors the construction of A3 but adds the hy-
pothesis ¬p so that it =-defeats A4 and A6; but A¬p

3 is in
turn defeated by the undefeatable argument A9:

A¬p
1 :hh[p]; {p,¬p}i) q; {p,¬p}i

A¬p
2 :hh[r]; {r,¬p}i) q; {r,¬p}i

A¬p
3 :hhp _ r; {¬p}i, A¬p

1 , A¬p
2 q; {¬p}i

A9 :hh[p]; {p,¬p}i, h[¬p]; {p,¬p}i ! ¬q; {p,¬p}i

Analogously to the construction of A¬p
3 , we can construct

the argument A¬r
3 which mirrors the construction of A3 but

adds the hypothesis ¬r (to obtain this argument, simply re-
place all occurrences of “¬p” with “¬r” in the construction
of A¬p

3). A¬r
3 then =-defeats A5 and A6, but A10 in turn =-

defeats A¬r
3 :

A10 : hh[r]; {r,¬r}i, h[¬r]; {r,¬r}i ! ¬q; {r,¬r}i
Analogously to the construction of A¬p

3 and A¬r
3 , we can

construct the arguments Ap
6 and Ar

6, which mirror the con-
struction of A6 but add the hypothesis p, respectively r. It is
easily, seen, however, that these arguments too are in turn
defeated by the undefeatable arguments A11 and A12 re-
spectively:

A11 :hh[p]; {p,¬p}i, h[¬p]; {p,¬p}i ! q; {p,¬p}i
A12 :hh[r]; {r,¬r}i, h[¬r]; {r,¬r}i ! q; {r,¬r}i

Altogether, the undefeatible arguments A9 �A12 defend A8

against the =-defeats by A¬p
3 , A¬r

3 , Ap
6, and Ar

6. As a result,
A7 is not justified relative to K8. In fact, the seemingly inco-
herent argument A8 is justified, as it belongs to the unique
preferred extension relative to K8 – see also Figure 5.

A3A6

A7

A8

A¬p
3

A¬r
3

Ap
6

Ar
6

A9

A10

A11

A12

Figure 5: A sample of the unique preferred extension of
Arg(K8) with the identity rule.

This outcome for Example 8 is clearly counter-intuitive.
To see how it causes a violation of non-interference, par-
tition K8 into the syntactically disjoint knowledge bases

Ka
8 � h{s) t}, {s}i and Kb

8 = h{p) q,¬p) ¬q, r)
q,¬r) ¬q}, {p _ r,¬p _ ¬r}i. Note that the argument
hhs; ;i) t; ;i is justified relative to Ka

8 , while in Example
8 we showed that this argument is not justified relative to
K8, which unites Ka

8 and Kb
8.

We end with two observations. The first is that Example
8 also illustrates a violation of the non-interference postu-
late for Pollock’s 1987 system of logic-based argumentation
with suppositions. Indeed, we made use of the identity rule
in Example 8, the argument A8 is not self-defeating, and
the unique preferred extension corresponds to the unique
grounded extension for Example 8. 10

The second observation is that the subset rule poses a
dilemma for Pollock-style accounts of suppositional reason-
ing. If valid, it leads to a failure of the ART and OR. If in-
valid, it leads to a failure of the non-interference property.
Neither option seems desirable. It remains to investigate to
what extent this dilemma generalizes to other accounts of
non-monotonic reasoning in the presence of suppositions.

Acknowledgments Mathieu Beirlaen’s research was
funded by the Flemish Research Foundation (FWO-
Vlaanderen). The research of Jesse Heyninck and Christian
Straßer was sponsored by a Sofja Kovalevskaja award of
the Alexander von Humboldt Foundation, funded by the
German Ministry for Education and Research.

References
Arlo-Costa, H., and Egré, P. 2016. The logic of conditionals.
In Zalta, E. N., ed., The Stanford Encyclopedia of Philoso-
phy. Metaphysics Research Lab, Stanford University, winter
2016 edition.
Bennett, J. 2003. A Philosophical Guide to Conditionals.
Oxford University Press.
Caminada, M.; Carnielli, W.; and Dunne, P. 2012. Semi-
stable semantics. Journal of Logic and Computation
22(5):1207–1254.
Caminada, M. 2005. Collapse in formal argumentation sys-
tems. Technical report, Utrecht University.
Dung, P. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artificial Intelligence
77(2):321–357.
Jakobovits, H., and Vermeir, D. 1999. Robust semantics for
argumentation frameworks. Journal of Logic and Computa-
tion 9(2):215–261.
Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Nonmono-
tonic reasoning, preferential models and cumulative logics.
Artificial Intelligence 44:167–207.
Makinson, D. 2003. Bridges between classical and non-
monotonic logic. Logic Journal of the IGPL 11:69–96.

10We made use of the dilemma rule D in the construction of
some of the arguments in Example 8, but, as we pointed out above,
the use of this rule can be circumvented by using the conditional-
ization rule C – see also Appendix A.

Modgil, S., and Prakken, H. 2013. A general account
of argumentation with preferences. Artificial Intelligence
195:361–397.
Modgil, S., and Prakken, H. 2014. The ASPIC+ framework
for structured argumentation: a tutorial. Argument & Com-
putation 5(1):31–62.
Moinard, Y. 1994. Reasoning by cases without contrapo-
sition in default logic. In Proceedings of the 11th Euro-
pean Conference on Artificial Intelligence, ECAI’94, 381–
385. New York, NY, USA: John Wiley & Sons, Inc.
Pollock, J. 1987. Defeasible reasoning. Cognitive Science
11(4):481–518.
Pollock, J. 1991a. A theory of defeasible reasoning. Inter-
national Journal of Intelligent Systems 6:33–54.
Pollock, J. 1991b. Self-defeating arguments. Minds and
Machines 1:367–392.
Pollock, J. 1994. Justification and defeat. Artificial intelli-
gence 67:377–407.
Pollock, J. 1995. Cognitive Carpentry. A Blueprint for How
to Build a Person. MIT Press.
Pollock, J. 2008. Defeasible reasoning. In Adler, J. E., and
Rips, L. J., eds., Reasoning. Studies of Human Inference and
Its Foundations. Cambridge University Press. 451–470.
Prakken, H., and Horty, J. 2012. An appreciation of John
Pollock’s work on the computational study of argument. Ar-
gument and Computation 3:1–19.
Ramsey, F. 1931. General propositions and causality.
In Braithwaite, R., ed., The Foundations of Arithmetic and
Other Logical Essays. London: Routledge. 237–255.
Reiter, R. 1980. A logic for default reasoning. Artificial
Intelligence 13:81–132.
Roos, N. 1998. Reasoning by cases in default logic. Artifi-
cial Intelligence 99(1):165–183.
Stalnaker, R. C. 1968. A theory of conditionals. In Rescher,
N., ed., Studies in Logical Theory (American Philosophical
Quarterly supplementary monograph series). Basil Black-
well, Oxford. 98–112.

Appendix

A Conditionalization and Dilemma
The procedure ⇡ recursively transforms an argument A into
an argument A0 without occurrences of the dilemma rule D.

1. if D was not used in A’s construction, ⇡(A) = A.
2. if A = hB,C,D �;�i,
⇡(A) = h⇡(B),⇡(C) (' � �),⇡(D) (� �) !
�;�i.

3. if A = hA1, . . . , An) �;�i,
⇡(A) = h⇡(A1), . . . ,⇡(An)) �;�i.

4. if A = hA1, . . . , An ! �;�i,
⇡(A) = h⇡(A1), . . . ,⇡(An) ! �;�i.

5. if A = hB;�i, ⇡(A) = h⇡(B);�i.
6. if A = hB ' � ;�i, ⇡(A) = h⇡(B) ' � ;�i.

The procedure µ recursively transforms an argument A
into an argument A0 without occurrences of the conditional-
ization rule C. Steps 1, 3, 4, and 5 of this procedure are as
in ⇡ above, except that we replace occurrences of “⇡” with
“µ” (in 1 we also replace “D” with “C”). For steps 2 and 6,

2. if A = hB,C,D �;�i,
µ(A) = hµ(B), µ(C), µ(D) �;�i

6. if A = hB ' � ;�i,
⇡(A) = hh! _ ¬ ;�i, hµ(B) ! � �;� [{ }i,
hh[¬]; {¬ }i ! � �; {¬ }i ! � �;�i
Where ⌘ 2 {⇡, µ} it follows by an induction on the struc-

ture of ⌘(A) that (i) Conc(A) = Conc(⌘(A)) and (ii) the set
of defeaters of A and ⌘(A) is identical. Consequently, A is
justified iff ⌘(A) is justified.

B Foreign Adoptions and the Subset Rule
Let ✓-defeat be the defeat relation from Def. 3. Where † 2
{✓,=}, A directly †-defeats B iff (Hyp(A)†Hyp(B), Rd is
the last rule applied in B’s construction, and Conc(A) =
�Conc(B). Note that:

(i) If A †-defeats B, then some A0 2 Sub(A) directly †-
defeats some B0 2 Sub(B).

(ii) If A directly ✓-defeats B, then hA; Hyp(B)i directly =-
defeats B.

Let Def✓ [resp. Def=] denote the relation of ✓-defeat [resp.
=-defeat]. Let K be any knowledge base, and AF✓ =
(Arg(K), Def✓) while AF= = (Arg(K), Def=).
Theorem 1 E is a complete extension of AF✓ iff E is a
complete extension of AF=.
Proof. ()) Suppose E is a complete extension of AF✓. If
(A,B) 2 Def= then (A,B) 2 Def✓, so either A 62 E or
B 62 E . This shows that E is conflict-free in AF=. It remains
to show that (a) if A 2 E , then E defends A in AF=, and (b)
if E defends A in AF=, then A 2 E . For (a), suppose A 2 E
and (C,A) 2 Def=. Then (C,A) 2 Def✓ so there is a B 2
E such that (B,C) 2 Def✓. By (i) and (ii), there are B0 2
Sub(B) and C 0 2 Sub(C) such that D = hB0; Hyp(C 0)i
=-defeats B. Any =-defeater of D is a =-defeater of B, and
so D 2 E and A is defended in AF=. For (b), suppose
E defends A in AF= and (C,A) 2 Def✓. By (i) and (ii),
there are C 0 2 Sub(C) and A0 2 Sub(A) such that E =
hC 0; Hyp(A0)i =-defeats A. Hence there is a B 2 E such
that (B,E) 2 Def= and, by extension, (B,E) 2 Def✓.
Thus B defends A in AF✓ and A 2 E .
(() Suppose E is a complete extension of AF=. If (A,B) 2
Def✓ then, by (i) and (ii) there are A0 2 Sub(A) and B0 2
Sub(B) such that C = hA0; Hyp(B0)i =-defeats B. Thus
either C 62 E or B 62 E . C 2 E iff A0 2 E since any =-
defeater of C is a =-defeater of A0 and vice versa. Since A0 2
Sub(A), it follows that either A 62 E or B 62 E , which shows
that E is conflict-free in AF✓. It remains to show that (a’) if
A 2 E , then E defends A in AF✓, and (b’) if E defends A in
AF✓, then A 2 E . These arguments are roughly analogous
to (a) and (b) above. The details are safely left to the reader.
⌅

On Iterated Contraction: syntactic characterization, representation theorem and

limitations of the Levi identity
⇤

Sébastien Konieczny

CRIL - CNRS
Université d’Artois

Lens, France
konieczny@cril.fr

Ramón Pino Pérez
†

Facultad de Ciencias
Universidad de Los Andes

Mérida, Venezuela
pino@ula.ve

Abstract

In this paper we study iterated contraction in the epistemic
state framework, offering a counterpart of the work of Dar-
wiche and Pearl for iterated revision. We provide pure syntac-
tical postulates for iterated contraction, that is, the postulates
are expressed only in terms of the contraction operator. We
establish a representation theorem for these operators. Our
results allow to highlight the relationships between iterated
contraction and iterated revision. In particular we show that
iterated revision operators form a larger class than that of it-
erated contraction operators. As a consequence of this, in the
epistemic state framework, the Levi identity has limitations;
namely, it doesn’t allow to define all iterated revision opera-
tors.

Introduction

Belief change theory (Alchourrón, Gärdenfors, and Makin-
son 1985; Gärdenfors 1988; Katsuno and Mendelzon 1991;
1992; Hansson 1999; Fermé and Hansson 2011) aims at
modelling the evolution of the logical beliefs of an agent
according to new inputs the agent receives.

The two main classes of operators are revision operators,
which allow to correct some wrong beliefs of the agent, and
contraction operators, which allow to remove some pieces
of beliefs from the beliefs of the agent.

Contraction and revision, though being different pro-
cesses, are closely linked. Two identities allow to define con-
traction from revision and vice-versa. One can define a revi-
sion operator from a contraction operator by the Levi iden-
tity, which states that, in order to define a revision by ↵, one
can first perform a contraction by ¬↵ and then an expansion1

by ↵ (Levi 1977). Conversely, one can define a contraction
operator from a revision operator by using the Harper iden-
tity: what is true after contraction by ↵ is what is true in the

⇤
This paper has been published in the proceedings of the

11th International Conference on Scalable Uncertainty Man-

agement (SUM’17).
†Current address: Yachay Tech University, School of Math-

ematics and Computer Science, Urcuquı́, Ecuador. E-mail:
rpino@yachaytech.edu.ec
Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1See (Gärdenfors 1988) for exact definition, but one can safely
identify expansion with conjunction/union in most cases.

current state and in the result of the revision by ¬↵ (Harper
1977). To give the formal definition of these identities, let
us denote by K a theory (a deductively closed set of logical
sentences), and let ↵ be a formula. Let us denote ? a revision
operator, ÷ a contraction operator, and � the expansion:

Levi identity K ? ↵ = (K ÷ ¬↵)� ↵
Harper identity K ÷ ↵ = K \ (K ? ¬↵)
The connection obtained through these identities is very
strong, since one obtains in fact a bijection between the set
of revision operators and the set of contraction operators
(Gärdenfors 1988). So, in the AGM framework these two
classes of operators are two sides of the same coin, and one
can study either revision or contraction, depending on which
operator is chosen as more basic/natural.

Although intrinsically a dynamic process, initial works
on belief change only address the (static) one-step change
(Alchourrón, Gärdenfors, and Makinson 1985; Gärdenfors
1988; Katsuno and Mendelzon 1991), and were not able to
cope with iterated change.

After many unsuccessful attempts, a solution for mod-
elling iterated revision was provided by Darwiche and Pearl
(Darwiche and Pearl 1997). They provide additional postu-
lates to govern iterated change. These additional constraints
for iteration cannot use simple logical theories for belief rep-
resentation, as used in the one-step case. One has to shift to
a more powerful representation, epistemic states, which al-
low to encode the revision strategy of the agent, and allow
to ensure dynamic coherence of changes.

It is interesting to note that the work of Darwiche and
Pearl was dedicated to iterated revision. One could expect
that a characterization of iterated contraction could be ob-
tained safely from generalizations of the identities. In fact
this is not the case. First, until now there is no proposal for
postulates nor representation theorem for iterated contrac-
tion. There were some works on iterated contraction that we
will discuss in the related work section, but no real coun-
terpart of the work of Darwiche and Pearl for contraction
existed so far. This is what we propose in this paper.

The class of iterated contraction operators obtained is
very interesting in different respects. It allows to obtain a
better understanding of belief change theory. Actually, some
of the consequences of our representation theorem are quite
surprising.

First, when comparing the two representation theorems
(the one for iterated contraction and the one for iterated re-
vision), it is clear that they share the same class of (faithful)
assignments. This means that the difference between iterated
contraction and iterated revision is not a matter of nature,
but a matter of degree (revision being a bigger change than
contraction, not a different kind of change). This also means
that there is a deep relationship between iterated contraction
and iterated revision via the representation theorems and the
assignments. One could think that the generalization of the
Levi and Harper identities could be easily attained thanks to
these theorems. Nevertheless, it is not the case.

More surprisingly, we prove that there are more iterated
revision operators than contraction operators (oppositely to
the bijection obtained in the classical - AGM - framework).
As a consequence, one can not expect to have generaliza-
tions of the Levi identity for the iterated case: some iterated
revision operators are out of reach from iterated contraction
ones. This seems to suggest that iterated belief revision op-
erators are more basic than iterated belief contraction ones.

In the next Section we will provide the formal prelimi-
naries for this paper. Then we give the logical postulates for
modelling iterated contraction. After that we provide a rep-
resentation theorem for these contractions. Then we study
the links between iterated contraction and iterated revision.
Finally we discuss some related work.

Preliminaries

We consider a propositional language L defined from a fi-
nite set of propositional variables P and the standard con-
nectives. Let L⇤ denote the set of consistent formulae of L.

An interpretation ! is a total function from P to {0, 1}.
The set of all interpretations is denoted by W . An interpre-
tation ! is a model of a formula � 2 L if and only if it makes
it true in the usual truth functional way. [[↵]] denotes the set
of models of the formula ↵, i.e., [[↵]] = {! 2 W | ! |= ↵}.
` denotes implication between formulae, i.e. ↵ ` � means
[[↵]] ✓ [[�]].

 denotes a pre-order on W (i.e., a reflexive and transitive
relation), and < denotes the associated strict order defined
by ! < !0 if and only if ! !0 and !0 6 !. A pre-order
is total if for all !,!0 2 W , ! !0 or !0 !. If A ✓ W ,
then the set of minimal elements of A with respect to a total
pre-order , denoted by min(A,), is defined by min(A,
) = {! 2 A | @!0 2 A such that !0 < !}.

We will use epistemic states to represent the beliefs of
the agent, as usual in iterated belief revision (Darwiche and
Pearl 1997). An epistemic state represents the current be-
liefs of the agent, but also additional conditional information
guiding the revision process (usually represented by a pre-
order on interpretations, a set of conditionals, a sequence of
formulae, etc). Let E denote the set of all epistemic states.
A projection function B : E �! L⇤ associates to each epis-
temic state a consistent formula B(), that represents the
current beliefs of the agent in the epistemic state . We will
call models of the epistemic state the models of its beliefs,
i.e. [[]] = [[B()]].

A concrete and very useful representation of epistemic
states are total pre-orders over interpretations. In this rep-

resentation, if =, then B() is a propositional formula
which satisfies [[B()]] = min(W ,). We call this concrete
representation of epistemic states the canonical representa-
tion.

For simplicity purpose we will only consider in this paper
consistent epistemic states and consistent new information.
Thus, we consider change operators as functions � mapping
an epistemic state and a consistent formula into a new epis-
temic state, i.e. in symbols, � : E ⇥L⇤ �! E . The image of
a pair (,↵) under � will be denoted by � ↵.

Let us now recall Darwiche and Pearl proposal for iterated
revision (Darwiche and Pearl 1997). Darwiche and Pearl
modified the list of KM postulates (Katsuno and Mendelzon
1991) to work in the more general framework of epistemic
states:
(R*1) B(? ↵) ` ↵
(R*2) If B() ^ ↵ 0 ? then B(? ↵) ⌘ ' ^ ↵
(R*3) If ↵ 0 ? then B(? ↵) 0 ?
(R*4) If 1 = 2 and ↵1 ⌘ ↵2 then B(1 ? ↵1) ⌘ B(2 ? ↵2)

(R*5) B(? ↵) ^ ` B(? (↵ ^))
(R*6) If B(?↵)^ 0 ? then B(? (↵^)) ` B(?↵)^

For the most part, the DP list is obtained from the KM list
by replacing each ' by B() and each ' ? ↵ by B(? ↵).
The only exception to this is (R*4), which is stronger than
its simple translation.

In addition to this set of basic postulates, Darwiche and
Pearl proposed a set of postulates devoted to iteration:
(DP1) If ↵ ` µ then B((? µ) ? ↵) ⌘ B(? ↵)

(DP2) If ↵ ` ¬µ then B((? µ) ? ↵) ⌘ B(? ↵)

(DP3) If B((? ↵) ` µ then B((? µ) ? ↵) ` µ

(DP4) If B((? ↵) 0 ¬µ then B((? µ) ? ↵) 0 ¬µ
And then they give a representation theorem in terms of

pre-orders on interpretations:
Definition 1 A faithful assignment is a mapping that asso-
ciates to any epistemic state a total pre-order on in-
terpretations such that:
1. If ! |= B() and !0 |= B(), then ! ' !0

2. If ! |= B() and !0 6|= B(), then ! < !0

3. If 1 = 2, then 1= 2

Theorem 1 ((Darwiche and Pearl 1997)) An operator ?
satisfies (R*1)-(R*6) if and only if there is a faihtful assign-
ment that maps each epistemic state to a total pre-order
on interpretations such that:

[[? µ]] = min([[µ]],)
Theorem 2 ((Darwiche and Pearl 1997)) Let ? be a revi-
sion operator that satisfies (R*1)-(R*6). This operator satis-
fies (DP1)-(DP4) if and only if this operator and its faithful
assignment satisfies :
(CR1) If ! |= µ and !0 |= µ, then ! !0 , ! ?µ !0

(CR2) If ! |= ¬µ and !0 |= ¬µ,
then ! !0 , ! ?µ !0

(CR3) If ! |= µ and !0 |= ¬µ,
then ! < !0) ! < ?µ !0

(CR4) If ! |= µ and !0 |= ¬µ,
then ! !0) ! ?µ !0

The first aim of this paper is to provide a similar direct
characterization of iterated contraction. Then we will study
the links between iterated revision and iterated contraction
operators.

Iterated Contraction

Let us first give the basic postulates for contraction of
epistemic states. We use the contraction postulates given
for propositional logic formulas in (Caridroit, Konieczny,
and Marquis 2015), that are equivalent to the original AGM
ones (Alchourrón, Gärdenfors, and Makinson 1985), that
we only adapt for epistemic states:

(C1) B() ` B(� ↵)

(C2) If B() 0 ↵, then B(� ↵) ` B()

(C3) If B(� ↵) ` ↵, then ` ↵

(C4) B(� ↵) ^ ↵ ` B()

(C5) If ↵1 ⌘ ↵2 then B(� ↵1) ⌘ B(� ↵2)

(C6) B(� (↵ ^ �)) ` B(� ↵) _B(� �)

(C7) If B(�(↵^�)) 0 ↵, then B(�↵) ` B(�(↵^�))

(C1) states that contraction can just remove some infor-
mation, so the beliefs of the posterior epistemic state are
weaker than the beliefs of the prior one. (C2) says that if
the epistemic state does not imply the formula by which
one wants to contract, then the posterior epistemic state will
have the same beliefs as the prior one. (C3) is the success
postulate, it states that the only case where contraction fails
to remove a formula from the beliefs of the agent is when
this formula is a tautology. (C4) is the recovery postulate,
it states that if we do the contraction by a formula followed
by a conjunction by this formula, then we will recover the
initial beliefs. This ensures that no unnecessary information
is discarded during the contraction. (C5) is the irrelevance
of syntax postulate, that says that the syntax does not have
any impact on the result of the contraction. (C6) says that
the contraction by a conjunction implies the disjunction of
the contractions by the conjuncts. (C7) says that if ↵ is not
removed during the contraction by the conjunction by ↵^�,
then the contraction by ↵ implies the contraction by the con-
junction.

Now let us introduce the postulates for iterated contrac-
tion:

(C8) If ¬↵ ` � then B(� (↵ _ �)) ` B(� ↵)
, B(� � � (↵ _ �)) ` B(� � � ↵)

(C9) If � ` ↵ then B(� (↵ _ �)) ` B(� ↵)
, B(� � � (↵ _ �)) ` B(� � � ↵)

(C10) If ¬� ` � then B(� �� (↵_ �)) ` B(� ��↵)
) B(� (↵ _ �)) ` B(� ↵)

(C11) If � ` � then B(� � � (↵ _ �)) ` B(� � � ↵)
) B(� (↵ _ �)) ` B(� ↵)

(C8) expresses the fact that if a contraction by a disjunc-
tion implies the contraction by one of the disjuncts, then it
will be the same if we first contract by a formula that is a
consequence of the negation of that disjunct. (C9) captures
the fact that if a contraction by a disjunction implies the con-
traction by one of the disjuncts, then it will be the same if we
first contract by a formula that implies this disjunct. (C10)
expresses the fact that if a contraction by a disjunction im-
plies the contraction by one of the disjunct after a contrac-
tion by a formula that is a consequence of the negation of
the other disjunct, then it was already the case before this
contraction. (C11) captures the fact that if a contraction by a
disjunction implies the contraction by one of the disjunct af-
ter a contraction by a formula that implies the other disjunct,
then it was already the case before this contraction.

The operators satisfying (C1)-(C7) will be called contrac-
tion operators. The operators satisfying (C1)-(C11) will be
called iterated contraction operators.

Representation Theorem

Let us now provide a representation theorem for iterated
contraction operators in terms of faithful assignments. These
assignments associate to each epistemic state a total pre-
order on interpretations, this total pre-order representing the
relative plausibility of each interpretation, and the current
beliefs of the agent being the most plausible ones.

And let us now state the basic theorem for contraction
postulates in the epistemic state framework.

Theorem 3 An operator � satisfies the postulates (C1) -
(C7) if and only if there exists a faithful assignment that as-
sociates to each epistemic state a total pre-order on
interpretations such that

[[� ↵]] = [[]] [min([[¬↵]],)

We will say that the faithful assignment given by the
previous theorem represents the operator �. The proof of
this theorem follows the same lines as the proof for the
representation theorem in the propositional case (Caridroit,
Konieczny, and Marquis 2015). For space reason it will not
be included here. We concentrate our effort in proving a rep-
resentation theorem for iterated contraction operators.

Let us now state the representation theorem for iterated
contraction.

Theorem 4 Let � be a contraction operator that satisfies
(C1) - (C7). This operator satisfies (C8) - (C11) if and only
if this operator and its faifhtul assigment satisfies:
4. If !,!0 2 [[�]] then ! !0 , ! �� !0

5. If !,!0 2 [[¬�]] then ! !0 , ! �� !0

6. If ! 2 [[¬�]] and !0 2 [[�]] then ! < !0) ! < �� !0

7. If ! 2 [[¬�]] and !0 2 [[�]] then ! !0) ! �� !0

We will call a faithful assignment that satisfies properties 4
to 7 an iterated faithful assignment.

Condition 4 captures the fact that the plausibility between
the models of � is exactly the same before the contraction
and after the contraction by �. Condition 5 captures the fact
that the plausibility between the models of ¬� is exactly

the same before the contraction and after the contraction
by �. Conditions 4 and 5 will be called rigidity conditions
(called also ordered preservation conditions in (Ramachan-
dran, Nayak, and Orgun 2012)). Condition 6 captures the
fact that if a model of ¬� is strictly more plausible than a
model of � before the contraction by � then it will be the
case after the contraction by �. Condition 7 captures the
fact that the plausibility of the models of ¬� does not de-
crease with respect the models of � after contraction by �.
More precisely, if a model of ¬� is at least as plausible as
a model of � before the contraction it will be the case af-
ter the contraction by �. Conditions 6 and 7 will be called
non-worsening conditions.

Please note that the iterated faithful assignments are di-
rectly related to the ones for iterated revision (cf. Theorem
2), there are only some inversions in conditions 6 and 7
(compared to CR3 and CR4), that are due to the fact that one
can see a contraction by ¬↵ as a softer change (improvement
(Konieczny and Pino Pérez 2008)) than a revision by ↵ (see
discussion at the beginning of Section).

For space reasons we only give a sketch of the proof of
Theorem 4. An iterated contraction operator is indeed a con-
traction operator. Thus, we know by Theorem 3 that there is
a faithful assignment representing it. Thus the proof of The-
orem 4 will consist in proving that under the assumption of
the basic contraction postulates, the iteration postulates en-
tail conditions 4-7 for the faithful assignment representing
the operator. And reciprocally, that if the iterated faithful as-
signment represents the operator the postulates of the iter-
ation are satisfied. Thus, from now on, in this section we
suppose that � is a contraction operator and 7! is
the faithful assignment representing it, that is the equation
in Theorem 3 holds. Actually, we prove the following facts
which are enough to conclude:
(i) The assignment satisfies condition 4 if and only if postu-

late (C8) holds.
(ii) The assignment satisfies condition 5 if and only if pos-

tulate (C9) holds.
(iii) Suppose the contraction operator satisfies (C8). Then

the assignment satisfies condition 6 if and only if postulate
(C10) holds.

(iv) The assignment satisfies condition 7 if and only if pos-
tulate (C11) holds.

In order to give a flavor of the whole proof we give the proof
of the Fact (iii) (which is perhaps a little more complicated
than the other three facts). First we have the following ob-
servations:
Observation 1 Suppose that the assignment satisfies condi-
tion 4, then for any µ such that µ ` � we have min([[µ]],
) = min([[µ]], ��).
Observation 2 Condition 6 is equivalent to the following
condition:
6’. If ! 2 [[¬�]] and !0 2 [[�]] then !0 �� !) !0 !

Now we proceed to prove (iii). Note that, since ↵, � and
� are any formulas, using (C5), the postulate (C10) can be
rewritten as follows:

If � ` � then B((��)�¬(↵^�)) ` B((��)�¬↵))
B(� ¬(↵ ^ �)) ` B(� ¬↵)
First we prove that postulate (C10) entails condition 6 of an
iterated assignment. By Observation 2, it is enough to prove
that (C10) entails 6’. Thus, assume (C10) holds. Suppose
! 2 [[¬�]], !0 2 [[�]] and !0 �� !. We want to show that
!0 !.
Let ↵ and � be formulas such that [[↵]] = {!,!0} and
[[�]] = {!0}. Note that {!0} ✓ min([[↵]], ��) because
!0 �� !. We have also min([[↵ ^ �]], ��) = {!0}.
Then, we have [[(� �)� ¬(↵ ^ �)]] =
[[� �]] [min([[↵ ^ �]], ��); the last ex-
pression is equal to [[� �]] [{!0} which is
a subset of [[� �]] [min([[↵]], ��). But
this last expression is [[(� �)� ¬↵]]. So,
[[(� �)� ¬(↵ ^ �)]] ✓ [[(� �)� ¬↵]], that is
B((� �) � ¬(↵ ^ �)) ` B((� �) � ¬↵). Then, by
(C10), we have B(� ¬(↵ ^ �)) ` B(� ¬↵), that
is [[]] [{!0} ✓ [[]] [min({!,!0},). Therefore,
!0 2 [[]] or !0 2 min({!,!0},). In both cases we
get !0 ! (In the first case we use the fact that is a
faithful assignment, in particular [[]] = min(W ,)).

Now we prove that Condition 6 entails Postulate (C10).
Assume that � ` �. We suppose that ↵ ^ � 6` ? (the other
case is trivial because the contraction by a tautology doesn’t
change the beliefs). Suppose B((� �) � ¬(↵ ^ �)) `
B((� �)� ¬↵), that is

[[(� �)� ¬(↵ ^ �)]] ✓ [[(� �)� ¬↵]] (1)

We want to show that B(�¬(↵^ �)) ` B(�¬↵), that
is to say

[[� ¬(↵ ^ �)]] ✓ [[� ¬↵]] (2)
By Theorem 3, equation (1) and equation (2) can be rewrit-
ten, respectively, as

[[� �]] [min([[↵ ^ �]], ��)

✓ [[� �]] [min([[↵]], ��) (3)

and

[[]] [min([[↵ ^ �]],) ✓ [[]] [min([[↵]],) (4)

First we are going to prove that (3) entails

min([[↵ ^ �]], ��) ✓ min([[↵]], ��) (5)

In order to see that, take ! 2 min([[↵ ^ �]], ��). Then,
by Equation (3), we have either ! 2 [[� �]] or ! 2
min([[↵]], ��). In the first case, by the fact of having
a faithful assignment, ! 2 min(W, ��) and therefore
! 2 min([[↵]], ��). In the second case is trivial. Thus, in
any case we have 5.

Now, towards a contradiction, suppose that (4) doesn’t
hold. Thus, there exists ! 2 min([[↵ ^ �]],) such that
! 62 min([[↵]],). So there is !0 2 min([[↵]],) such
that

!0 < ! (6)
Note that ! |= �, and, by hypothesis, � ` �, thus ! |= �.
We are going to consider the following two cases: !0 |= �
and !0 |= ¬�

Suppose we are in the first case, i.e. !0 |= �. Then,
by Condition 4 (equivalent to our assumption of Postulate
(C8)), !0 < �� !. Now, suppose we are in the second case,
i.e. !0 |= ¬�. Then, because ! |= � and (6), by Condition 6,
!0 < �� !. Thus in any case we have

!0 < �� ! (7)

Since ↵ ^ � ` �, by Observation 1, ! 2
min([[↵ ^ �]], ��). Then, by (5), ! 2 min([[↵]], ��).
But this is a contradiction with (7).

Iterated Contraction vs Iterated Revision

We would like to investigate now the relationship between
iterated contraction and iterated revision.

A natural tendency would be to try to generalize Levi
and Harper Identity to the iterated case. In fact some related
works followed this path (Nayak et al. 2006; Chopra et al.
2008; Booth and Chandler 2016).

In the following we will first argue and show that it is
not so simple. We will also show that there are some prob-
lems when one follows this way for connecting iterated con-
traction and iterated revision. Actually, we will show that in
the iterated case, they are not two sides of a same coin (i.e.
two classes of operators linked by a bijection), but that they
rather are two instances of a same kind of change operators,
and that the link and difference is just a matter of degree of
change.

Identities in the General Case

Let us first recall the Levy and Harper Identities:
Levi identity ? ↵ = (÷ ¬↵)� ↵

Harper identity ÷ ↵ = u (? ¬↵)
Let us note the problems of using these identities for iterated
contraction and revision in the epistemic state framework.
First, in the AGM case, these two identities are definitional,
that means that, for instance, using Levi identity one can ob-
tain the revision operator ? that defines the theory ?↵ from
the right side of the identity using the contraction and ex-
pansion operators. But in our general framework, epistemic
states are abstract objects, which can only be apprehended
at the logical level from the projection function B. Thus, in
this general framework, we do not fully know what ÷¬↵
is, and so we can not use it to define what should be ?↵. So
using a definitional equality here is difficult. The only way
to proceed seems to be choosing a particular representation
of epistemic states to work with (such as total preorders over
the interpretations), but then the results are given on this rep-
resentation and not in the general case. Second, whereas �
and u have a clear meaning in the AGM framework, one has
to figure out a definition in the epistemic state framework.
That is by itself a non-trivial task (studying the possible def-
initions of u is one of the main aims of (Booth and Chandler
2016)).

A possibility would be to restrict these identities to the
beliefs of the epistemic states, as :

Belief Levi equivalence B(? ↵) ⌘ B(÷ ¬↵)� ↵
Belief Harper equivalence B(÷↵) ⌘ B()_B(?¬↵)

But we do not have identities anymore, but only equiva-
lences that are not definitional. So one has to first identify
two operators ? and ÷ and check that they are linked through
these equivalences.

Identities under the Canonical Representation

So to go further we have to commit to a particular repre-
sentation of epistemic states. The canonical one, using total
preorders (described in Section), can be used together with
the faithful assignment, to define completely the new epis-
temic state after contraction (or revision). Thus, suppose that
we have a faithful assignment 7! . We identify with
 , and we define �� satisfying the properties (4-7) of
Theorem 4. Then, by Theorem 4, the operator defined by
 � � = �� is an iterated contraction operator. In such a
case we say that the operator � is given by the assignment.
We can proceed, in the same way when the assignment satis-
fies the requirements of an iterated assignment (for revision
(Darwiche and Pearl 1997)) and then the operator defined by
 ? ↵ = ?↵ is an iterated revision operator.

Thus, one can restate the identities on the total pre-orders
associated to the epistemic states by the operators2:

Tpo Levi identity ?↵ = ÷¬↵ �↵
Tpo Harper identity ÷↵ = u ?¬↵

So now we can define these pre-orders using the identities
and check that we correctly obtain operators with the ex-
pected properties. The only remaining problem is to define
the operators � and u in this setting.

!7

!5

!3

!1

!8

!6

!4

!2

↵

!7

!5

!3

!1

!8

!6

!4

!2

 ÷¬↵

↵
!7

!5

!3

!1

!8

!6

!4

!2

 ÷¬↵ ?N↵

↵

Figure 1: From Contraction to Revision

As for � let us show that using Boutilier natural revi-
sion operator ?N (Boutilier 1996) is a correct option, in the
sense that using this operator as � we obtain a DP (Darwiche
and Pearl (Darwiche and Pearl 1997)) revision operator (see
Proposition 1).

Let us recall the definition of this operator on total pre-
orders, that amounts to look at the most plausible models

2Tpo means Total pre-order.

!4

!3

!2

!1

↵

!4

!3

!2

!1

↵

 ÷1¬↵

!4

!3

!2

!1

↵

 ÷2¬↵

!4

!3

!2

!1

↵

 ÷3¬↵

!4

!3

!2

!1

↵

 ?1↵

!4

!3

!2

!1

↵

 ?2↵

!4

!3

!2

!1

↵

 ?3↵

!4

!3

!2

!1

↵

 ?4↵

!4

!3

!2

!1 ↵

 ?5↵

Figure 2: All possible contractions by ¬↵ and revisions by ↵ from

of the new piece of information and define them as the new
most plausible interpretations while nothing else changes:
Let be the pre-order associated to the epistemic state
by the faithful assignment, and let ↵ be the new piece of
information, then ?N↵ (we will also use the equivalent
notation ?N↵) is defined as:
• If ! |= min([[↵]],) and !0 6|= min([[↵]],), then

! < ?N↵ !0

• In all the other cases ! ?N↵ !0 iff ! !0

Then one can show that the Tpo Levi identity holds for
the iterated case:

Proposition 1 Let ÷ be an iterated contraction operator
given by its assignment 7! . Then the assignment de-
fined by ?↵= ÷¬↵ ?N↵ satisfies properties (CR1)-
(CR4), and can be used to define a Darwiche and Pearl it-
erated revision operator in the framework of the canonical
representation of epistemic states.

This proposition implies in particular that to each iterated
contraction operator one can associate a corresponding iter-
ated revision operator. So, this means that the cardinality of
the class of iterated revision operators obtained via the Tpo
Levi identity is at least equal to the cardinality of the class
of iterated contraction operators. Note that this observation
does not depend on the interpretation of the symbol � uti-
lized.

The following example illustrates the use of our concrete
Tpo Levi identity.

Example 1 Let us consider the total pre-order repre-
sented in Figure 1. So in that figure [[]] = {!1,!2} and
[[↵]] = {!5,!6,!7,!8}. In this Figure the lower an inter-
pretation is, the more plausible it is. For instance in we

have that !1 < !3. An iterated contraction by ¬↵ is a
change that increases (improves) the plausibility of the mod-
els of ↵, with the condition that the most plausible models of
↵ in joins (become as plausible as) the most plausible
models of (We give on such possibility for ÷¬↵). The
relation between the models of ↵ doesn’t change after con-
traction and nor does the relation between the models of ¬↵.
From this, to define a revision, one can just select these most
plausible models of ↵ and take them as the most plausible
models using Boutilier’s natural revision (÷¬↵ ?N↵).

The converse process, that is, defining iterated contraction
operators starting from iterated revision operators using the
Tpo Harper identity, requires in particular to find a correct
definition for u. This problem is investigated by Booth and
Chandler (Booth and Chandler 2016), where they show that
there is not a single, canonical way to proceed.

One can see this as an additional richness of the iterated
framework. However, this richness of the epistemic state
representation has its counterparts. In fact in the iterated
case there are more revision operators than contraction ones.
More precisely we have the following result:
Theorem 5 There are more iterated revision operators than
iterated contraction operators. In particular, this entails that
it is impossible to find an interpretation of the expansion �
in the Tpo Levi identity in order to obtain all the iterated
revision operators via this identity.
Proof: The fact that there are no more contraction operators
than revision operators is a direct consequence of proposi-
tion 1. To show that they are more revision operators than
contraction operators consider and ↵ as illustrated in
Figure 2. Due to rigidity conditions for iterated contrac-
tion, there are only three possible different outputs as re-
sults of contraction of by ¬↵ (÷1¬↵, ÷2¬↵ and

 ÷3¬↵). Contrastingly there are five different possible out-
put for revision. That is due to the rigidity postulates for iter-
ated revision. Three of these possible revision outputs can be
obtained from contraction outputs using natural revision as
in the previous example (?1↵, ?2↵, ?3↵). The other
two ones are ?4↵ and ?5↵, that are not related to any
contraction result using the identity.

The previous theorem is important because it tells us that
in the iterated case the Levy identity has limitations. This
theorem is also important since it gives us a true distinction
between classical AGM framework and the iterated frame-
work. In the classical AGM framework there is a bijection
between revision and contraction operators. Contraction is
often considered as a more fundamental operator since a re-
vision can be defined, through Levi identity, as a contraction
followed by a conjunction (expansion). In the iterated case
there are more iterated revision than iterated contraction op-
erators, so the more general change operator seems to be
revision.

One can object that ?4↵ and ?5↵ could maybe be
obtained through Levi identity by using another definition of
� than Boutilier’s natural revision operator, as we used here.
But this does not change the fact that there is only three pos-
sible contraction results versus five possible revision results,
and then with any alternative, there is still no way to define a
bijection. We can just define a relation between ÷ and a cou-
ple (?,�), that is far from AGM original idea of this identity,
and that does not contradicts our cardinality argument.

As a matter of fact there is a generalization of iterated re-
vision operators, called improvement operators from which
one can obtain iterated revision operators and at the same
time iterated contraction operators. We make some brief
comments about this in the next section.

Related Works

In a previous work (Konieczny and Pino Pérez 2008;
Konieczny, Medina Grespan, and Pino Pérez 2010) improve-
ment operators are defined as a general class of iterative
change operators, that contains Darwiche and Pearl iter-
ated revision operators as special case. Actually, there is
a more general class of improvement operators called ba-
sic improvement operators (Medina Grespan and Pino Pérez
2013). The postulates characterizing these operators say that
at least a part of the new piece of information improves and
the whole new piece of information does not worsen (this
corresponds to postulates C3 and C4 of DP (Darwiche and
Pearl 1997)).

Improvement operators are defined semantically on faith-
ful assignments as an increase of plausibility of models of
the new piece of information. This increase of plausibility
can be more or less restricted, which leads to different fam-
ilies of operators (Konieczny, Medina Grespan, and Pino
Pérez 2010). But clearly the increase of plausibility of it-
erated contraction operators is limited due to the fact that
the most plausible models of the new piece of information
can not become more plausible than the models of the pre-
vious beliefs of the agent. Whereas for revision there is no
such constraint, and so much more freedom is granted for
improvement.

The following proposition says that our iterated contrac-
tion operators are also weak improvement operators (by the
negation of the input)
Proposition 2 Let ÷ be an iterated contraction operator,
then the operator ÷̂ defined as ÷̂↵ = ÷ ¬↵ is a weak
improvement operator (Konieczny and Pino Pérez 2008),
moreover it is a basic improvement operator.

Thus, the previous proposition and the fact that iterated re-
vision operators are also basic improvement operators seems
to mean that this class of operator as the most primitive op-
erators in iterated belief change.

Chopra et al. (Chopra et al. 2008) also give postulates
for iterated contraction, but they did it using iterated revi-
sion operators in their postulates, so the iterated contraction
operators are not defined independently, but as a byproduct
of iterated revision ones. Actually their starting point is a
couple of given operators ⇤ and � that satisfy the Levi and
Harper equivalences. Then, they characterize the four iter-
ated semantic properties of Definition 4 in terms of syntac-
tical postulates mixing the operators ⇤ and �. In this work
we propose a direct characterization of iterated contraction
operators (not depending of any iterated revision operator).

Booth and Chandler (Booth and Chandler 2016) inves-
tigate the problem of the definition of iterated contraction
through the Harper Identity for the concrete case of pre-
orders on interpretations. The paper shows the richness of
the question. In this paper we explain this richness by the
fact that there are much more iterated revision operators than
iterated contraction operators, so this means that several dif-
ferent iterated revision operators correspond, via the Harper
identity, to the same iterated contraction operator.

The work of Ramachadran et al. (Ramachandran, Nayak,
and Orgun 2012) is very interesting. It concerns the charac-
terization of three iterated contraction operator in the frame-
work of the canonical representation of epistemic states.
They give a pure syntactical characterization of these three
operators. However they don’t characterize the full class of
iterated contraction operators.

Conclusion

To sum up, in this paper we proposed the first direct logical
characterization of the class of iterated contraction opera-
tors having an iterated behavior similar to the one proposed
by Darwiche and Pearl for iterated revision operators. We
stated a representation theorem in terms of total pre-orders
on interpretations. We discussed the fact that there is no easy
way to generalize the Levi and Harper identity in the iterated
case, but more importantly, that this is not a primordial is-
sue, since, conversely to the classical (AGM) case, these two
classes of operators are not linked by a bijection in the iter-
ated case. There are more iterated revision operators than
iterated contraction operators, and both are special cases of
the more general class of improvement operators, where it-
erated contractions produce a smaller change than iterated
revision operators. So, these two classes of change opera-
tors are not different in nature, but in degree of change.

As future work we plan to compare our proposal with
works on iterated contraction in other (non DP) frameworks

such as (Hild and Spohn 2008; Hansson 2010; 2012).

Acknowledgments

The authors would like to thank the reviewers for their help-
ful comments.

References

Alchourrón, C. E.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet contraction and
revision functions. Journal of Symbolic Logic 50:510–530.
Booth, R., and Chandler, J. 2016. Extending the harper
identity to iterated belief change. In Kambhampati, S., ed.,
Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2016, New York, NY,
USA, 9-15 July 2016, 987–993. IJCAI/AAAI Press.
Boutilier, C. 1996. Iterated revision and minimal change
of conditional beliefs. Journal of Philosophical Logic
25(3):262–305.
Caridroit, T.; Konieczny, S.; and Marquis, P. 2015. Contrac-
tion in propositional logic. In Thirteenth European Confer-
ence on Symbolic and Quantitative Approaches to Reason-
ing with Uncertainty (ECSQARU’15), 186–196.
Chopra, S.; Ghose, A.; Meyer, T. A.; and Wong, K. 2008.
Iterated belief change and the recovery axiom. J. Philosoph-
ical Logic 37(5):501–520.
Darwiche, A., and Pearl, J. 1997. On the logic of iterated
belief revision. Artificial Intelligence 89:1–29.
Fermé, E., and Hansson, S. O. 2011. AGM 25 years. Journal
of Philosophical Logic 40(2):295–331.
Gärdenfors, P. 1988. Knowledge in flux. MIT Press.
Hansson, S. O. 1999. A Textbook of Belief Dynamics. Theory
Change and Database Updating. Kluwer.
Hansson, S. O. 2010. Multiple and iterated contraction re-
duced to single-step single-sentence contraction. Synthese
173(2):153–177.
Hansson, S. O. 2012. Global and iterated contraction and
revision: An exploration of uniform and semi-uniform ap-
proaches. Journal of Philosophical Logic 41(1):143–172.
Harper, W. L. 1977. Rational conceptual change. In PSA:
Proceedings of the Biennial Meeting of the Philosophy of
Science Association,1976, VOL 2, 462–494. East Lansing,
Mich.: Philosophy of Science Association.
Hild, M., and Spohn, W. 2008. The measurement of ranks
and the laws of iterated contraction. Artificial Intelligence
172(10):1195 – 1218.
Katsuno, H., and Mendelzon, A. O. 1991. Propositional
knowledge base revision and minimal change. Artificial In-
telligence 52:263–294.
Katsuno, H., and Mendelzon, A. O. 1992. On the difference
between updating a knowledge base and revising it. In Belief
Revision. Cambridge University Press. 183–203.
Konieczny, S., and Pino Pérez, R. 2008. Improvement oper-
ators. In Proceedings of the Eleventh International Confer-
ence on Principles of Knowledge Representation And Rea-
soning (KR 2008), 177–187.

Konieczny, S.; Medina Grespan, M.; and Pino Pérez, R.
2010. Taxonomy of improvement operators and the problem
of minimal change. In Proceedings of the Twelfth Interna-
tional Conference on Principles of Knowledge Representa-
tion And Reasoning (KR 2010), 161–170.
Levi, I. 1977. Subjunctives, dispositions and chances. Syn-
these 34:423–455.
Medina Grespan, M., and Pino Pérez, R. 2013. Representa-
tion of basic improvement operators. In Trends in Belief Re-
vision and Argumentation Dynamics. College Publications.
195–227.
Nayak, A. C.; Goebel, R.; Orgun, M. A.; and Pham, T. 2006.
Taking Levi identity seriously: A plea for iterated belief con-
traction. In Lang, J.; Lin, F.; and Wang, J., eds., Knowledge
Science, Engineering and Management, First International
Conference, KSEM 2006, Guilin, China, August 5-8, 2006,
Proceedings, volume 4092 of Lecture Notes in Computer
Science, 305–317. Springer.
Ramachandran, R.; Nayak, A. C.; and Orgun, M. A. 2012.
Three approaches to iterated belief contraction. J. Philo-
sophical Logic 41(1):115–142.

Splitting Epistemic Logic Programs

Pedro Cabalar
University of Corunna

Corunna, Spain
cabalar@udc.es

Jorge Fandinno
University of Toulouse
IRIT, CNRS, France

jorge.fandinno@irit.fr

Luis Fariñas del Cerro
University of Toulouse
IRIT, CNRS, France

farinas@irit.fr

Abstract

Epistemic logic programs constitute an extension of the

stable models semantics to deal with new constructs

called subjective literals. Informally speaking, a subjec-

tive literal allows checking whether some regular literal

is true in all stable models or in some stable model.

As it can be imagined, the associated semantics has

proved to be non-trivial, as the truth of the subjective

literal may interfere with the set of stable models it is

supposed to query. As a consequence, no clear agree-

ment has been reached and di�erent semantic propos-

als have been made in the literature. Unfortunately,

comparison among these proposals has been limited to

a study of their e�ect on individual examples, rather

than identifying general properties to be checked. In

this paper, we propose an extension of the well-known

splitting property for logic programs to the epistemic

case. To this aim, we formally define when an arbitrary

semantics satisfies the epistemic splitting property and

examine some of the consequences that can be derived

from that, including its relation to conformant planning

and to epistemic constraints. Interestingly, we prove

(through counterexamples) that most of the existing

proposals fail to fulfill the epistemic splitting property,

except the original semantics proposed by Gelfond in

1991.

Introduction
The language of epistemic specifications, proposed
by Gelfond (1991), constituted an extension of disjunc-
tive logic programming that introduced modal opera-
tors to quantify over the set of stable models (Gelfond
and Lifschitz, 1988) of a program. These new constructs
were later incorporated as an extension of the Answer
Set Programming (ASP) paradigm in di�erent solvers
and implementations – see (Lecrerc and Kahl, 2018b)
for a recent survey. The new constructs, subjective lit-
erals, have the form K l and M l and allow respectively
checking whether regular literal l is true in every stable
model (cautious consequence) or in some stable model
(brave consequence) of the program. In many cases,
these subjective literals can be seen as simple queries,
but what makes them really interesting is their use in
Copyright c• 2018, Association for the Advancement of Ar-

tificial Intelligence (www.aaai.org). All rights reserved.

rule bodies, what may obviously a�ect the set of stable
models they are meant to quantify. This feature makes
them suitable for modelling introspection but, at the
same time, easily involves cyclic specifications whose
intuitive behaviour is not always easy to define. For in-
stance, the semantics of an epistemic logic program may
yield alternative sets of stable models, each set being
called a world view. Deciding the intuitive world views
of a cyclic specification has motivated a wide debate in
the literature. In fact, in (Gelfond, 1991) original se-
mantics or in its extension (Truszczyński, 2011), some
cyclic examples manifested self-supportedness, so Gel-
fond (2011) himself and, later on, other authors (Kahl,
2014; Kahl et al., 2015; Fariñas del Cerro, Herzig, and
Su, 2015; Shen and Eiter, 2017; Son et al., 2017) pro-
posed di�erent variants trying to avoid unintended re-
sults, without reaching a clear agreement. Unfortu-
nately, comparison among these variants was limited
to studying their e�ect on a set of “test” examples.
This methodology has proven to fall short in such an
uncertain context: confidence in any proposal is always
subject to the appearance of new counterintuitive exam-
ples. A much stronger method would be defining instead
formal properties to be established, as this would cover
complete families of examples and, hopefully, could help
to reach an agreement on some language fragments.
For instance, one would expect that, at least, the exist-
ing approaches agreed on their interpretation of acyclic
specifications. Regretfully, as we will show later, this is
not the case.

In this paper we propose a candidate property, we call
epistemic splitting, that not only defines an intuitive be-
haviour for stratified epistemic specifications but also
goes further, extending the splitting theorem (Lifschitz
and Turner, 1994), well-known for standard logic pro-
grams, to the epistemic case. Informally speaking, we
say that an epistemic logic program can be split if a
part of the program (the top) only refers to the atoms
of the other part (the bottom) through subjective lit-
erals. A given semantics satisfies epistemic splitting if,
given any splitted program, it is possible to get its world
views by first obtaining the world views of the bottom
and then using the subjective literals in the top as a
“query” on the bottom part previously obtained. If epis-

temic splitting holds, the semantics immediately satis-
fies other properties. For instance, if the use of epistemic
operators is stratified, the program has a unique world
view at most. Similarly, epistemic constraints (those
only consisting of subjective literals) can be guaranteed
to be monotonic: they only rule out candidate world
views. As we will see, however, only (Gelfond, 1991)
satisfies epistemic splitting among the previously cited
approaches. So, somehow, the recent attempts to fix the
behaviour of cycles has neglected the attention on the
e�ects produced on acyclic specifications.

The rest of the paper is organized as follows. First, we
motivate the main idea through a well-known example.
After that, we recall basic definitions of (non-epistemic)
answer set programming and splitting, introduces the
language of epistemic specifications and defines (Gel-
fond, 1991) semantics. In the next section, we proceed
to define the property of epistemic splitting and study
some of its consequences. Then, we formally prove that
(Gelfond, 1991) satisfies this property while we provide
counterexamples for the other approaches, concluding
the paper after that.

Motivation
To illustrate the intuition behind our proposal, let us
consider the well-known standard example introduced
in (Gelfond, 1991).
Example 1. A given college uses the following set of
rules to decide whether a student X is eligible for a
scholarship:

eligible(X) Ω high(X) (1)
eligible(X) Ω minority(X), fair(X) (2)

≥eligible(X) Ω ≥fair(X), ≥high(X) (3)

Here, ‘≥’ stands for strong negation and high(X) and
fair(X) refer to the grades level of student X. We want
to encode the additional college criterion:

“The students whose eligibility is not determined
by the college rules should be interviewed by the
scholarship committee.”

as another rule in the program. ⇤
The problem here is that, for deciding whether
eligible(X) “can be determined,” we need to check if
it holds in all the answer sets of the program, that is,
if it is one of the cautious consequences of the latter.
For instance, if the only available information for some
student mike is the disjunction

fair(mike) ‚ high(mike) (4)

we get that program {(1) ≠ (4)} has two stable mod-
els, {fair(mike)} and {high(mike), eligible(mike)} so
eligible(mike) cannot be determined and an interview
should follow. Of course, if we just want to query cau-
tious and brave consequences of the program, we can do
it inside ASP. For instance, the addition of constraint:

‹ Ω eligible(mike)

allows us deciding if eligible(mike) is a cautious conse-
quence by just checking that the resulting program has
no answer sets. The di�culty comes from the need to
derive new information from a cautious consequence.
This is where subjective literals come into play. Rule

interview(X) Ω not K eligible(X),
not K ≥eligible(X) (5)

allows us to prove that interview(X) holds when neither
eligible(X) nor ≥eligible(X) are cautious consequences
of (1)-(4). The novel feature here is that (5) is also part
of the program, and so, it a�ects the answer sets queried
by K too, which would actually be:

{fair(mike), interview(mike)} (6)
{high(mike), eligible(mike), interview(mike)} (7)

So, there is a kind of cyclic reasoning: operators K and
M are used to query a set of stable models that, in their
turn, may depend on the application of that query. In
the general case, this cyclic reasoning is solved by re-
sorting to multiple world views, but in our particular
example, however, this does not seem to be needed. One
would expect that separating the queried part (1)-(4)
and the rule that makes the query (5) should be cor-
rect, since the first four rules do not depend on (5) and
the latter exclusively consults them without interacting
with their results. This same reasoning could be ap-
plied if we added one more level such as, for instance,
by including the rule:

appointment(X) Ω K interview(X) (8)
The two answer sets of program {(1) ≠ (5)} contain
interview(mike) and so appointment(mike) can be
added to both answer sets incrementally. This method
of analysing a program by division into independent
parts shows a strong resemblance to the splitting theo-
rem (Lifschitz and Turner, 1994), well-known in stan-
dard ASP. Splitting is applicable when the program can
be divided into two parts, the bottom and the top, in
such a way that the bottom never refers to head atoms
in the top. When this happens, we can first compute
the answer sets of the bottom and then, for each one,
simplify the top accordingly, getting new answer sets
that complete the information. We could think about
di�erent ways of extending this method for the case
of epistemic logic programs, depending on how restric-
tive we want to be on the programs where it will be
applicable. However, we will choose a very conservative
case, looking for a wider agreement on the proposed be-
haviour. The condition we will impose is that our top
program can only refer to atoms in the bottom through
epistemic operators. In this way, the top is seen as a
set of rules that derive facts from epistemic queries on
the bottom. Thus, each world view W of the bottom
will be used to replace the subjective literals in the top
by their truth value with respect to W . For the sake
of completeness, we recall next the basic definitions of
ASP and splitting, to proceed with a formalization of
epistemic splitting afterwards.

2

Background of ASP and splitting
Given a set of atoms At, a regular literal1 is either an
atom or constant, a œ At fi {€, ‹}, or its default nega-
tion, not a. A rule r is an implication of the form:

a1 ‚ · · · ‚ an Ω L1, . . . , Lm (9)

with n Ø 0 and m Ø 0, where each ai œ At is an atom
and each Lj a regular literal. The left hand disjunc-
tion of (9) is called the rule head and abbreviated as
Head(r). When n = 0, it corresponds to ‹ and r is
called a constraint. The right hand side of (9) is called
the rule body and abbreviated as Body(r). When m = 0,
the body corresponds to € and r is called a fact (in this
case, the body and the arrow symbol are usually omit-
ted). A program � is a set of rules. We write Atoms(F)
to represent the set of atoms occurring in any syntactic
construct F (a literal, head, body, rule or program). A
propositional interpretation I is a set of atoms. We as-
sume that strong negation ‘≥a’ is just another atom in
At and that the constraint:

‹ Ω a, ≥a

is implicitly included in the program. We allow the use
of variables, but understood as abbreviations of their
possible ground instances. Given any syntactic con-
struct F , we write I |= F to stand for “I satisfies F”
in classical propositional logic, where the commas cor-
respond to conjunctions, ‘not’ corresponds (under this
interpretation) to classical negation and ‘Ω’ is just a
reversed material implication. An interpretation I is a
(classical) model of a program � if it satisfies all its
rules. The reduct of a program � with respect to some
propositional interpretation I, in symbols �I , is ob-
tained by replacing in � every negative literal not a
by € if I |= not a or by ‹ otherwise. A propositional
interpretation I is a stable model of a program � i� it
is a ™-minimal model of �I . By SM[�], we denote the
set of all stable models of �.

The following is a well-known property in ASP.
Property 1 (Supraclassicality). Any stable model of a
program � is also a classical model of �.

We recall next the splitting theorem for ASP, begin-
ning with the following definition.
Definition 1 (Splitting set). A set of atoms U ™ At is
a splitting set of a program � if, for each rule r œ �,
one of the following conditions hold
i) Atoms(r) ™ U ,

ii) Atoms(Head(r)) fl U = ÿ
When this happens, we identify two disjoint subpro-
grams, the bottom and the top, respectively defined as

bU (�) def= { r œ �
-- Atoms(r) ™ U }

tU (�) def= � \ bU (�) ⇤
1
For a simpler description of program transformations,

we allow truth constants with their usual meaning.

As an example, consider program �1:
a Ω not b (10)
b Ω not a (11)

c ‚ d Ω not a (12)
d Ω a, not b (13)

It is easy to see that U = {a, b} is a splitting set that di-
vides the program into two parts: the bottom bU (�1) =
{(10), (11)} and the top tU (�1) = {(12), (13)}.

The keypoint of splitting is computing stable mod-
els of bU (�) alone and using each one, I, to simplify
tU (�) accordingly. Given a splitting set U for � and an
interpretation I ™ U , we define the program eU (�, I)
as a transformation of the top program, tU (�), where
we replace each atom a œ U from the splitting set by:
€ if a œ I or ‹ otherwise. A pair ÈIb, ItÍ is said to
be a solution of � with respect to U i� Ib is a stable
model of bU (�) and It is a stable model of eU (�, Ib).
For instance, for �1, the bottom has two answer sets
{a} and {b}, so we get the respective simplifications
eU (�1, {a}):

c ‚ d Ω not € d Ω €, not ‹

and eU (�1, {b}):
c ‚ d Ω not ‹ d Ω ‹, not €

The former has stable model {d} so È{a}, {d}Í is one
solution. The latter has stable models {c} and {d} that
yield other two solutions È{b}, {c}Í and È{b}, {d}Í.
Theorem 1 (From Lifschitz and Turner 1994). Let U
be a splitting set of program �. A propositional inter-
pretation I ™ At is a stable model of � i� there is a
solution ÈIb, ItÍ of � w.r.t U such that I = Ib fi It. ⇤

Given the three solutions we obtained before, the
splitting theorem guarantees that {a} fi {d}, {b} fi {c}
and {b}fi{d} are the three stable models of our example
program �1.

One interesting observation is that any constraint
r with Atoms(r) ™ U is now included in the bottom
bU (�) but also satisfies condition ii) in Def. 1 (it has
no head atoms at all) and could be moved to the top
tU (�) instead. Having this in mind, let us provide now
a relaxed definition of bottom and top programs in the
following way. We say that the pair Èb̂U (�), t̂U (�)Í is an
arbitrary splitting of program � with respect to split-
ting set U if: b̂U (�) fl t̂U (�) = ÿ, b̂U (�) fi t̂U (�) = �,
all rules in BU satisfy Def. 1.i) and all rules in T satisfy
Def. 1.ii). With this definition, constraints on atoms in
U can be arbitrarily placed in b̂U (�) or in t̂U (�).
Corollary 1. Theorem 1 still holds if we define bU (�)
and tU (�) to be any arbitrary splitting Èb̂U (�), t̂U (�)Í
of program � with respect to splitting set U . ⇤

Epistemic specifications
We extend now the syntax of ASP to the language of
epistemic specifications. Given a set of atoms At, we call

3

subjective literal to any expression of the form K l, M l,
not K l or not M l, for any regular literal l. We keep the
same syntax for rules as in (9) excepting that body lit-
erals Lj can also be subjective literals now. Given rule
r we define the sets Body(r)reg and Bodysub(r) respec-
tively containing the regular and the subjective literals
in Body(r). Rules or programs are regular if they do
not contain subjective literals. We say that a rule is a
subjective constraint if it is a constraint, Head(r) = ‹,
and its body exclusively consists of subjective literals,
that is Body(r) = Bodysub(r).

We can define the concept of model of a program, in
a similar way as we did for classical models in regular
ASP. A modal interpretation M = ÈW, IÍ is pair where
I is a propositional interpretation and W ™ 2At is a
non-empty set of propositional interpretations. A modal
interpretation M = ÈW, IÍ satisfies a literal L, written
ÈW, IÍ |= L, if
1. ÈW, IÍ |= €,
2. ÈW, IÍ ”|= ‹,
3. ÈW, IÍ |= a if a œ I, for any atom a œ At,
4. ÈW, IÍ |= K l if ÈW, I ÕÍ |= l for all I Õ œ W ,
5. ÈW, IÍ |= M l if ÈW, I ÕÍ |= l for some I Õ œ W , and
6. ÈW, IÍ |= not L if ÈW, IÍ ”|= L.
Since for a subjective literal L, ÈW, IÍ |= L does not de-
pend on I, we sometimes write W |= L. For a rule r of
the form (9), we write ÈW, IÍ |= r i� either ÈW, IÍ |= ai

for some 1 Æ i Æ n or ÈW, IÍ ”|= Lj for some 1 Æ j Æ m.
We say that ÈW, IÍ is a model of a program �, writ-
ten ÈW, IÍ |= �, if it satisfies all its rules. Among the
possible models of an epistemic logic program, all se-
mantic approaches agree on selecting some preferred
models called world views, each one being characterized
by the W component. These world views satisfy a simi-
lar property to that of supraclassicality (Property 1) in
non-epistemic ASP. In this case, however, rather than
talking about classical models, we resort to modal logic
S5, so all world views of a program are also S5 models
of the program. This property can be formally stated
as follows:
Property 2 (Supra-S5). A semantics satisfies supra-
S5 when for every world view W of an epistemic pro-
gram � and for every I œ W , ÈW, IÍ |= �. ⇤

To the best of our knowledge, all existing semantics
satisfy supra-S5. Another property that is shared by all
semantics is that, when � is a regular ASP program (it
has no modal epistemic operators) then it has a unique
world view containing all the stable models of �. We
will formalize this property in the following way.
Property 3 (Supra-ASP). A semantics satisfies supra-
ASP if for any regular program � either � has a unique
world view W = SM[�] , ÿ or SM[�] = ÿ and � has
no world view at all. ⇤

Originally, some semantics like (Gelfond, 1991) or
(Truszczyński, 2011), allowed empty world views W = ÿ

when the program has no stable models, rather than
leaving the program without world views. Since this
feature is not really essential, we exclusively refer to
non-empty world views in this paper.

We define next a useful transformation extending the
idea of reduct to epistemic specifications, and general-
ized for a given signature.
Definition 2 (Subjective reduct). The subjective
reduct of a program � with respect to a set of proposi-
tional interpretations W and a signature U ™ At, also
written �W

U , is obtained by replacing each subjective lit-
eral L with Atoms(L) ™ U by: € if W |= L or by ‹
otherwise. When U = At we just write �W . ⇤
We use the same notation �W as for the standard
reduct, but ambiguity is removed by the type of W (a
set of interpretations now). This subjective reduct can
be used to define (Gelfond, 1991) (G91) semantics in
the following way.
Definition 3 (G91-world view). A non-empty set of
interpretations W is a G91-world view of an epistemic
program � if W = SM[�W]. ⇤

We will not provide the formal definitions of the
rest of semantics compared in this paper, since none
of them satisfies our goal property of epistemic split-
ting. In those cases, it will su�ce with providing coun-
terexamples and the reader can check their behaviour
by resorting to the corresponding original definition.

Epistemic splitting
We proceed now to introduce our definition of the epis-
temic splitting property. To do so, we begin extending
the idea of splitting set.
Definition 4 (Epistemic splitting set). A set of atoms
U ™ At is said to be an epistemic splitting set of a pro-
gram � if for any rule r in � one of the following con-
ditions hold
i) Atoms(r) ™ U ,

ii) (Atoms(Bodyreg(r) fi Head(r))) fl U = ÿ
As before, we define an arbitrary splitting of � as a
pair ÈBU (�), TU (�)Í satisfying BU (�) fl TU (�) = ÿ,
BU (�) fi TU (�) = �, all rules in BU (�) satisfy i) and
all rules in TU (�) satisfy ii). ⇤
With respect to Definition 1, we have replaced the con-
dition for the top program, Atoms(Head(r)) fl U = ÿ,
by the new condition ii), which in other words means
that the top program may only refer to atoms U in the
bottom through epistemic operators. Note that this in-
troduces a new kind of “dependence,” so that, as hap-
pens with head atoms, regular literals in the body also
depend on atoms in subjective literals. For instance, if
U = {p, q}, the program

p ‚ q s Ω p, K q

would not be splittable due to the second rule, since
s < U and we would also need the regular literal p < U .
The reason for this restriction is to avoid imposing (to

4

a potential semantics) a fixed way of evaluating p with
respect to the world view [{p}, {q}] for the bottom.

Another observation is that we have kept the defi-
nition of BU (�) and TU (�) non-deterministic, in the
sense that some rules can be arbitrarily included in one
set or the other. In our case, these rules correspond to
subjective constraints on atoms in U , since these are
the only cases that may satisfy conditions i) and ii) si-
multaneously.

If we retake our example program �2 = {(1) ≠ (5)},
we can see that U = {high(mike), fair(mike),
eligible(mike), minority(mike)} is an epistemic split-
ting set that divides the program into the bottom
BU (�2) = {(1) ≠ (4)} and the top TU (�2) = {(5)}. As
in regular splitting, the idea is computing first the
world views of the bottom program BU (�) and for
each one, W , simplifying the corresponding subjective
literals in the top program. Given an epistemic split-
ting set U for a program � and set of interpreta-
tions W , we define EU (�, W) def= TU (�)W

U , that is, we
make the subjective reduct of the top with respect to
W and signature U . A pair ÈWb, WtÍ is said to be a
solution of � with respect to an epistemic splitting
set U if Wb is a world view of BU (�) and Wt is a
world view of EU (�, Wb). Notice that this definition
is semantic-dependent in the sense that each alterna-
tive semantics for epistemic specifications will define
its own solutions for a given U and �, since it de-
fines the selected world views for a program in a dif-
ferent way. Back to our example, notice that BU (�2) is
a regular program without epistemic operators. Thus,
any semantics satisfying supra-ASP will provide Wb =
[{fair(mike)}, {high(mike), eligible(mike)}] as unique
world view for the bottom. The corresponding simplifi-
cation of the top would be EU (�s, Wb) containing (after
grounding) the single rule:

interview(mike) Ω not ‹, not ‹
Again, this program is regular and its unique world view
would be Wt = [{interview(mike)}]. Now, in the gen-
eral case, to reconstruct the world views for the global
program we define the operation:

Wb Û Wt = { Ib fi It

-- Ib œ Wb and It œ Wt }
(remember that both the bottom and the top may pro-
duce multiple world views, depending on the program
and the semantics we choose). In our example, Wb ÛWt

would exactly contain the two stable models (6), (7) we
saw in the introduction.
Property 4 (Epistemic splitting). A semantics satis-
fies epistemic splitting if for any epistemic splitting set
U of any program �: W is a world view of � i� there
is a solution ÈWb, WtÍ of � with respect to U such that
W = Wb Û Wt. ⇤

In the example, this means that the world view we
obtained in two steps is indeed the unique world view
of the whole program, under any semantics satisfying
epistemic splitting. Uniqueness of world view was ob-
tained in this case because both the bottom program

BU (�2) and the top, after simplification, EU (�2, Wb)
were regular programs and we assumed supra-ASP. In
fact, as we see next, we can still get a unique world
view (at most) when there are no cyclic dependences
among subjective literals. This mimics the well-known
result for stratified negation in logic programming (van
Gelder, 1988; Apt, Blair, and Walker, 1988). Let us de-
fine a modal dependence relation among atoms in a
program � so that dep(a, b) is true i� there is a rule
r œ � such that a œ Atoms(Head(r) fi Bodyreg(r)) and
b œ Atoms(Bodysub(r)).
Definition 5. We say that an epistemic program � is
modally stratified if we can assign an integer mapping
⁄ : At æ N to each atom such that ⁄(a) > ⁄(b) for any
pair of atoms a, b satisfying dep(a, b). ⇤

Take, for instance, the extended program �3 =
{(1) ≠ (5), (8)}. We can assign atoms high(mike),
fair(mike), minority(mike) and eligible(mike) layer 0.
Then interview(mike) could be assigned layer 1 and, fi-
nally, appointment(mike) can be located at layer 2. So,
�3 is modally stratified.
Theorem 2. Let � be a finite, modally stratified pro-
gram. Then, any semantics satisfying supra-ASP and
epistemic splitting assigns, at most, a unique world view
to �. ⇤

The proof of the theorem just relies on multiple ap-
plications of splitting to each layer backwards and the
fact that each simplification EU (�, Wb) will be a reg-
ular program. This is very easy to see in the extended
example �3. We can split the program using as U all
atoms but appointment(mike) to get a bottom �2 and
a top {(8)}. Program �2 can be splitted in its turn
as we saw before, producing the unique world view
{(6), (7)}. Then EU (�3, {(6), (7)}) contains the single
rule appointment(mike) Ω € that is a regular program
whose unique world view is [{appointment(mike)}] and,
finally, the combination of both world views yields again
a unique world view [(6) fi {appointment(mike)}, (7) fi
{appointment(mike)}].

Another consequence of epistemic splitting is that
subjective constraints will have a monotonic behaviour.
Note first that, for a subjective constraint r, we can
abbreviate ÈW, IÍ |= r as W |= r since the I com-
ponent is irrelevant. Additionally, W |= r means that
Body(r) = Bodysub(r) is falsified, since Head(r) = ‹.
Property 5 (subjective constraint monotonicity). A
semantics satisfies subjective constraint monotonicity
if, for any epistemic program � and any subjective con-
straint r, W is a world view of � fi {r} i� both W is a
world view of � and W |= r. ⇤

Theorem 3. Epistemic splitting implies subjective con-
straint monotonicity. ⇤

Proof. Suppose we use a semantics satisfying epistemic
splitting. For any program � and any epistemic con-
straint r, we can always take the whole set of atoms
U = Atoms(� fi {r}) as epistemic splitting set for

5

�Õ = � fi {r} and take BU (�Õ) = � and TU (�Õ) = {r}.
For any world view W of BU (�Õ) two things may hap-
pen. A first possibility is W |= r, and so the body of
r has some false subjective literal in W , so EU (�Õ, W)
would be equivalent to ‹ Ω ‹. Then, the unique world
view for the top would be Wt = [ÿ] and W Û Wt = W .
A second case is W ”|= r, so all literals in the body are
satisfied and EU (�Õ, W) would be equivalent to ‹ Ω €
which has no world views. To sum up, we get exactly
those world views W of � that satisfy r. ⇤

To conclude the exploration of consequences of epis-
temic splitting, let us consider a possible application to
conformant planning. To this aim, consider the follow-
ing simple example.
Example 2. To turn on the light in a room, we can
toggle one of two lamps l1 or l2. In the initial state,
lamp l1 is plugged but we ignore the state of l2. Our
goal is finding a plan that guarantees we get light in the
room in one step.

A possible logic program that encodes this scenario
for a single transition2 could be �4:

plugged(l1)
plugged(l2) ‚ ≥plugged(l2)

light Ω toggle(L), plugged(L)
‹ Ω toggle(l1), toggle(l2)

for L œ {l1, l2}. As we can see, toggle(l1) would consti-
tute a conformant plan, since we obtain light regard-
less of the initial state, while this does not happen with
plan toggle(l2). In order to check whether a given se-
quence of actions A0, . . . , An is a valid conformant plan
one would expect that, if we added those facts to the
program, a subjective constraint should be su�cient to
check that the goal holds in all the possible outcomes.
In our example, we would just use:

‹ Ω not K light (14)
and check that the program �4 fi {toggle(L)} fi {(14)}
has some world view, varying L œ {l1, l2}. Subjective
constraint monotonicity guarantees that the addition
of this “straighforward” formalisation has the expected
meaning.

This method would only allow testing if the se-
quence of actions constitutes a conformant plan, but
does not allow generating those actions. A desirable fea-
ture would be the possibility of applying the well-known
ASP methodology of separating the program into three
sections: generate, define and test. In our case, the “de-
fine” and the “test” sections would respectively be �4
and (14), but we still miss a “generate” part, capable of
considering di�erent alternative conformant plans. The
problem in this case is that we cannot use a simple
choice:

toggle(L) ‚ ≥toggle(L)
2
For simplicity, we omit time arguments or inertia, as

they are not essential for the discussion

because this would allow a same action to be executed in
some of the stable models and not executed in others, all
inside a same world view. Let us assume that our epis-
temic semantics has some way to non-deterministically
generate a world view in which either K a or K not a
holds using a given set of rules3 Choice(a). Then, take
the program �5 consisting of rules

Choice(toggle(L)) (15)

with L œ {l1, l2} plus �4 and (14). If our semantics sat-
isfies epistemic splitting, it is safe to obtain the world
views in three steps: generate first the alternative world
views for toggle(l1) and toggle(l2) using (15), apply �4
and rule out those world views not satisfying the goal
light in all situations using (14). To fulfill the precondi-
tions for applying splitting, we would actually need to
replace regular literal toggle(L) by K toggle(L) in all
the bodies of �4, but this is safe in the current context.
Now, we take the bottom program to obtain 4 possible
world views W0 = [{toggle(l1)}], W1 = [{toggle(l2)}],
W2 = [{toggle(l1), toggle(l2)}] and W3 = [ÿ]. When we
combine them with the top �4 we obtain W Õ

0 consisting
of two stable models:

{toggle(l1), plugged(l2), light, . . . }
{toggle(l1), ≥plugged(l2), light, . . . }

and W Õ
1 consisting of other two stable models:

{toggle(l2), plugged(l2), light, . . . }
{toggle(l2), ≥plugged(l2), . . . }

where the latter does not contain light. Finally, con-
straint (14) would rule out W Õ

1.
To sum up, epistemic splitting provides a natural way

of formulating conformant planning problems by a sep-
aration into three sections: a generation part, the usual
encoding of the actions scenario and a test part con-
sisting of a subjective constraint to guarantee that the
goal is always reached.

Splitting in some existing semantics
In this section we study the property of epistemic split-
ting for the approaches mentioned in the introduction.
We will begin by proving that G91 actually satisfies
this property. To this aim, we start with some defi-
nitions and auxiliary results. Given a set of proposi-
tional interpretations W ™ 2At and a set of atoms U ,
by W|U

def= { I fl U
-- I œ U }, we denote the restriction

of W to U . Given a set of atoms U , by U , we denote its
complement At \ U .
Observation 1. Let W be a set of propositional inter-
pretations and U ™ At be a set of atoms. Then, for any
subjective literal L with Atoms(L) = {a}:
i) if a œ U , then W |= L i� W|U |= L,

3
For instance, in Gelfond (1991), this could be just the

rule a Ω not K not a. Other semantics may have alternative

ways of expressing this intended behaviour.

6

ii) if a < U , then W |= L i� W|U |= L,
Proposition 1. Let � be a program that accepts an
epistemic splitting set U ™ At and let W be a set of
propositional interpretations. Let Wb = W|U and Wt =
W|U . Then, we get

i) BU (�)W = BU (�)Wb ,
ii) TU (�)W = EU (�, Wb)Wt , and

iii) �W = BU (�)Wb fi EU (�, Wb)Wt .

Proof. First, since every rule r œ BU (�) satisfies
Atoms(Bodysub(r)) ™ U , from Observation 1, it follows
that BU (�)W = BU (�)Wb . Furthemore, for any pro-
gram �, it is easy to check that �W = (�Wb

U)Wt ,
that is, applying the reduct w.r.t W is the same than
applying it w.r.t. to its projection in U and after-
wards to the remaining part. Thus, we get TU (�)W =
(TU (�)Wb

U)Wt = EU (�, Wb)Wt . Finally, we have that
�W = (BU (�) fi TU (�))W = BU (�)W fi TU (�)W and,
thus, the result holds. ⇤

Theorem 4 (Main theorem). Semantics G91 satisfies
epistemic splitting.

Proof. Let W be some set of propositional interpreta-
tions and let Wb = W|U and Wt = W|U . By definition,
W is a world view of � if and only if W = SM[�W].
Furthermore, since U is a modal splitting set of �, it
is easy to check that U is also a regular splitting set of
the regular programa �W . Hence, from Corollary 1, we
get that W is a world view of � i� W = SM[�W] =
)

IbfiIt

-- Ib œ SM[b̂U (�W)] and It œ SM[êU (�W, Ib)]
*

for some arbitrary splitting Èb̂U (�W), t̂U (�W)Í. Note
that all rules belonging to BU (�) have all atoms
from U . Hence, we take b̂U (�W) def= BU (�)W =
BU (�)Wb (Proposition 1). Similarly, we also take
t̂U (�W) def= TU (�)W = EU (�, Wb)Wt . Then, we get

êU (�W, Ib) = êU (t̂U (�W), Ib) = êU (EU (�, Wb)Wt, Ib)

Notice also that no atom occurring in EU (�, Wb)Wt be-
longs to U , which implies that êU (EU (�, Wb)Wt, Ib) =
EU (�, Wb)Wt . Replacing above, we have that W is a
world view of � i� W is equal to

{Ib fi It | Ib œ SM[BU (�)Wb], It œ SM[EU (�, Wb)Wt]}

i�
W = {Ib fi It | Ib œ W Õ

b and It œ W Õ
t}

with W Õ
b = SM[BU (�)Wb] and W Õ

t = SM[EU (�, Wb)Wt]
i� W = W Õ

b Û W Õ
t . Hence, it only remains to be shown

that both Wb = W Õ
b and Wt = W Õ

t hold. Note that
I œ Wb = W|U i� I = I Õ fl U for some I Õ œ W i�
I = (Ib fi It) fl U for some Ib œ W Õ

b and It œ W Õ
t i�

I = (Ib fl U) fi (It fl U) for some Ib œ W Õ
b and It œ W Õ

t
i� I = Ib for some Ib œ W Õ

b. The fact Wt = W Õ
t follows

in an analogous way. ⇤

A similar proof can be developed to show that
(Truszczyński, 2011), that generalises4 (Gelfond, 1991)
from subjective literals to subjective formulas, also sat-
isfies epistemic splitting.

To illustrate the behaviour of other semantics with
respect to splitting, we will use several examples. Let
us take the program �6 consisting of {(10), (11)} and
the rule:

c ‚ d Ω not K a (16)

The set U = {a, b} splits the program into the bot-
tom, (10)-(11) and the top (16). The bottom has a
unique world view Wb = [{a}, {b}] so K a does not hold
and the top is simplified as EU (�6, Wb) containing the
unique rule:

c ‚ d Ω not ‹ (17)

This program has a unique world view
Wt = [{c}, {d}] that, combined with Wb yields
[{a, c}, {b, c}, {a, d}, {b, d}] as the unique solution for
�6, for any semantics satisfying epistemic splitting
(and so, also for G91). Let us elaborate the example a
little bit further. Suppose we add now the constraint:

‹ Ω c (18)

The top must also include this rule and has now a
unique stable model Wt = [{d}], so the world view for
the complete program would be [{a, d}, {b, d}]. Finally,
let us forbid the inclusion of atom d too:

‹ Ω d (19)

so we consider �7 = {(10), (11), (16), (18), (19)}.
This last constraint leaves the simplified top program
EU (�6, Wb) = {(17), (18), (19)} without stable models,
so epistemic splitting would yield that program �7 has
no world view at all. This is the result we obtain, in-
deed, in (Gelfond, 1991, 2011)5 and in (Truszczyński,
2011). Surprisingly, recent approaches like (Kahl et al.,
2015; Fariñas del Cerro, Herzig, and Su, 2015; Shen and
Eiter, 2017; Son et al., 2017) yield world view [{a}], vi-
olating the epistemic splitting property. For instance,
in the case of (Kahl et al., 2015), the reduct of �7 with
respect to [{a}] is the program

a Ω not b

b Ω not a

c ‚ d Ω not a

‹ Ω c

‹ Ω d

which has a unique stable model {a}.
4
In fact, Truszczyński (2011) defines several semantics

but, among them, we refer here to the epistemic stable

model semantics.
5
These two semantics actually produce empty world

views, but as we said before, we disregard them, as they

just point out that the program has no solution.

7

As a second example, take the program �8 consisting
of the same bottom program {(10), (11)} and the rule:

c Ω K a (20)

As expected, all approaches agree that �8 has a unique
world view Wb = [{a}, {b}] because K a is not satisfied
and rule (20) is not applicable. Under epistemic split-
ting, we get that EU (�8, Wb) is the rule:

c Ω ‹ (21)

whose unique world view is [ÿ], so that Wb Û [ÿ] = Wb.
But let us further elaborate the example taking �Õ

8 con-
taining �8 plus:

‹ Ω not c (22)

Under epistemic splitting, the new top EU (�Õ
8, Wb) con-

tains now (22) and (21) which have no stable mod-
els. As a result, no world view can be combined with
Wb and we obtain that �Õ

8 has no world views at all.
This is the result we obtain under (Gelfond, 1991;
Truszczyński, 2011), which agree that the program is
inconsistent. However, Gelfond (2011) joins (Kahl et
al., 2015; Fariñas del Cerro, Herzig, and Su, 2015; Shen
and Eiter, 2017; Son et al., 2017) in the group of ap-
proaches that provide the world view [{a, c}]. That is,
in all these approaches, adding a constraint intended to
remove all world views that do not satisfy c, may sur-
prisingly lead to justify c. Note that, according to (Gel-
fond, 1991; Truszczyński, 2011), the reduct of �Õ

8 with
respect to [{a, c}] is

a Ω not b (23)
b Ω not a (24)
c Ω € (25)

‹ Ω not c (26)

which has two stable models, {a, c} and {b, c}, so [{a, c}]
is not a world view. In contrast, the reduct with respect
to (Gelfond, 2011) and (Kahl et al., 2015) is

a Ω not b (27)
b Ω not a (28)
c Ω a (29)

‹ Ω not c (30)

which has a unique stable model {a, c}, so [{a, c}] is a
world view.

Conclusions
We have introduced a formal property for semantics of
epistemic specifications. This property that we call epis-
temic splitting has a strong resemblance to the splitting
theorem well-known for regular ASP programs. Epis-
temic splitting can be applied when we can divide an
epistemic logic program into a bottom part for a subset
U of atoms and a top part, that only refers to atoms in
U through subjective literals (those using modal epis-
temic operators). When this happens, the property of

splitting states that we should be able to compute the
world views of the program in two steps: first, comput-
ing the world views of the bottom and, second, using
each bottom world view W to replace subjective liter-
als for atoms in U in the top by their truth value with
respect to W .

We have studied several consequences of epistemic
splitting: for instance, if the program is stratified with
respect to subjective literals then it will have a unique
world view, at most. Another consequence is that con-
straints only consisting of subjective literals will have a
monotonic behaviour, ruling out world views that sat-
isfy the constraint body.6 We have also explored how
epistemic splitting may facilitate the simple application
of the generate-define-test methodology, well-known in
ASP, to the formalisation of conformant planning.

Our study of the main semantics in the literature has
shown that only the original semantics (Gelfond, 1991)
(G91), and its generalisation (Truszczyński, 2011), sat-
isfy epistemic splitting while the rest of approaches we
considered no, as we showed with counterexamples. We
do not mean with this, however, that G91 is always
intuitive. As it is well-known, G91 su�ers from self-
supportedness: for instance, the program consisting of
the single rule p Ω K p yields two world views [ÿ] and
[{p}] but the latter justifies p by the mere assumption
of K p without further evidence, something that seems
counterintuitive. What we claim instead is that G91
has a reasonable behaviour when subjective literals are
stratified. Unfortunately, later attempts to solve self-
supportedness on cyclic epistemic specifications have
somehow spoiled that feature.

It is also worth to mention that a di�erent notion
of splitting for epistemic logic programs was formerly
studied in (Watson, 2000). In this work, the splitting
of the program is done with respect to the objective
literals instead of the subjective ones. As a result, this
non-modal kind of splitting can be used to simply the
computation of the world views of a program in a di�er-
ent way, but it gives little insight as a means to compare
di�erent semantics.

Finally, let us mention that future work should ob-
viously involve the search for a suitable semantics that
avoids self-supportedness while preserving the epistemic
splitting property as well as other suitable properties
that allow us assert that such semantics agree with our
intuitive expectations.

References
Apt, K. R.; Blair, H. A.; and Walker, A. 1988. Towards

a theory of declarative knowledge. In Foundations of
Deductive Databases and Logic Programming. Mor-
gan Kaufmann. 89–148.

Fariñas del Cerro, L.; Herzig, A.; and Su, E. I.
2015. Epistemic equilibrium logic. In Proc. of the
6
The lack of monotonicity su�ered by epistemic con-

straints in some semantics has been recently discussed

by Lecrerc and Kahl (2018a).

8

Intl. Joint Conference on Artificial Intelligence (IJ-
CAI’15), 2964–2970. AAAI Press.

Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Proc. of the 5th
Intl. Conference on Logic Programming (ICLP’88),
1070–1080.

Gelfond, M. 1991. Strong introspection. In Dean, T. L.,
and McKeown, K., eds., Proceedings of the AAAI
Conference, volume 1, 386–391. AAAI Press/The
MIT Press.

Gelfond, M. 2011. New semantics for epistemic speci-
fications. In LPNMR, volume 6645 of Lecture Notes
in Computer Science, 260–265. Springer.

Kahl, P.; Watson, R.; Balai, E.; Gelfond, M.; and
Zhang, Y. 2015. The language of epistemic specifica-
tions (refined) including a prototype solver. Journal
of Logic and Computation.

Kahl, P. T. 2014. Refining the semantics for epistemic
logic programming. Ph.D. Dissertation.

Lecrerc, A. P., and Kahl, P. T. 2018a. Epistemic logic
programs with world view constraints. In Techni-
cal communication, 34th International Conference on
Logic Programming (ICLP’2018).

Lecrerc, A. P., and Kahl, P. T. 2018b. A survey of ad-
vances in epistemic logic program solvers. In Proc. of
the 11th Intl. Workshop on Answer Set Programming
and other Computer Paradigms (ASPOCP’18).

Lifschitz, V., and Turner, H. 1994. Splitting a logic
program. In Proc. of the Intl. Conference on Logic
Programming (ICLP’94), 23–37. MIT Press.

Shen, Y., and Eiter, T. 2017. Evaluating epistemic
negation in answer set programming (extended ab-
stract). In Proc. of the Intl. Joint Conference on
Artificial Intelligence (IJCAI’17), 5060–5064.

Son, T. C.; Le, T.; Kahl, P. T.; and Leclerc, A. P. 2017.
On computing world views of epistemic logic pro-
grams. In Proc. of the Intl. Joint Conference on Ar-
tificial Intelligence (IJCAI’15), 1269–1275. ijcai.org.

Truszczyński, M. 2011. Revisiting epistemic speci-
fications. In Logic Programming, Knowledge Rep-
resentation, and Nonmonotonic Reasoning, volume
6565 of Lecture Notes in Computer Science, 315–333.
Springer.

van Gelder, A. 1988. Negation as failure using tight
derivations for general logic programs. In Foun-
dations of Deductive Databases and Logic Program-
ming. Morgan Kaufmann. 149–176.

Watson, R. 2000. A splitting set theorem for epis-
temic specifications. CoRR: Proceedings of the 8th
International Workshop on Non-Monotonic Reason-
ing, NMR 2000 cs.AI/0003038.

9

Causal reasoning in a logic with possible causal process semantics

Marc Denecker
† and Bart Bogaerts

† and Joost Vennekens
‡

firstname.lastname@cs.kuleuven.be
† KU Leuven, Department of Computer Science, Celestijnenlaan 200A, 3001 Heverlee, Belgium

‡ KU Leuven, Department of Computer Science, Campus De Nayer, 2860 Sint-Katelijne-Waver, Belgium

Abstract

We point to several kinds of knowledge that play an impor-
tant role in controversial examples of actual causation. One
is knowledge about the causal mechanisms in the domain and
the causal processes that result from them. Another is knowl-
edge of what conditions trigger such mechanisms and under
what conditions it can be preempted.
We argue that to solve questions of actual causation, such
knowledge needs to be made explicit. To this end, we develop
a new language in the family of CP-logic, in which causal
mechanisms and causal processes are formal objects. We then
build a regularity-theoretic framework for actual causation in
which various notions of actual causation are defined. Con-
trary to counterfactual definitions, actual causes are defined
directly in terms of the (formal) causal process that causes
the possible world.

Introduction

Since the days of Hume (1739), causal reasoning has been an
active research domain in philosophy and (later) knowledge
representation. With the groundbreaking work of Lewis
(1973) and Pearl (2000), the structural equations and coun-
terfactual reasoning approach became mainstream (Halpern
and Pearl 2005; Halpern 2016a; Fenton-Glynn 2015; Ger-
stenberg et al. 2015). But the debate remains intense (Gly-
mour et al. 2010). The counterfactual approach is contested
by some (Hall 2004; Baumgartner 2013; Bochman 2018). In
many scenarios, there is no agreement of what are the actual
causes, and all definitions of actual causation have scenar-
ios where they have been criticized. It shows that the infor-
mal notion of actual causation is vague and overloaded with
many intuitions; also that many sorts of knowledge influ-
ence our judgment of actual causation. Science is not ready
yet with unraveling all this.

Of the most striking examples are those where for the
same formal causal model, different informal interpretations
can be proposed that lead to different actual causes. Such
examples are interesting since they are clear cases that some
relevant knowledge is missing in the causal model. A pow-
erful illustration is given by Halpern (2016b), who discusses
6 causal examples from the literature in which authors had

Copyright c� 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

shown (often convincingly) that the actual causation defi-
nition of Halpern and Pearl (2005), henceforth called HP,
failed to predict the actual causes. He responds by proposing
for each example an alternative informal interpretation lead-
ing to the same structural equation model but to intuitively
different actual causes which, moreover, are those derived by
HP! Halpern concludes that, as far as actual causation goes,
the structural equation models are ambiguous. As for what
knowledge is missing, he claims:

“what turns out to arguably be the best way to do the
disambiguation is to add [. . .] extra variables, which
[. . .] capture the mechanism of causality”.

That is, Halpern argues that it is necessary to make knowl-
edge of causal mechanisms explicit.

That such information is relevant for causal reasoning is
not surprising. Almost every causal scenario in the literature
comes with an informal specification of causal mechanisms
and a story specifying which mechanism are active and how
they are rigged together in a causal process. As observed
before (Glymour et al. 2010; Vennekens 2011), most of this
information is abstracted away in structural equations. We il-
lustrate to what problems this may lead with a simple exam-
ple. Consider two scenarios involving two deadly poisons,
arsenic and strychnine. In the first scenario, intake of any of
these poisons triggers a specific deadly biochemical process.
The structural equation of this scenario is:

Dead := Arsenic intake _ Strychnine intake

If both poisons are taken, this is an instance of overdetermi-
nation; HP derives the intuitively correct answer that both
poisons are actual causes of death. The second scenario is
similar, except that arsenic, in addition to poisoning the vic-
tim, also preempts the chemical process by which strychnine
poisons the victim. Now, the structural equation remains the
same (i.e., the victim dies as soon as at least one poison is
ingested) and so do the possible worlds! However, the judg-
ments of actual causation differ: when both poisons are in-
gested, only arsenic is a cause of death, since the effects of
the strychnine are preempted. The conclusion is that the
structural equation correctly predicts the possible worlds but
does not contain enough information to explain the actual
causes. The missing knowledge is what the separate causal
mechanisms are and when they are active.

The following scenario, simplified from Assassin (Hitch-

cock 2007), illustrates another relevant sort of knowledge
that is not expressed in structural equation models. An as-
sassin may kill a victim by administering deadly poison. A
bodyguard may rescue the victim by administering an anti-
dote. Consider the following structural equation.

Dead := Poison intake ^No antidote intake

While it correctly characterizes the possible worlds of this
domain, there is again a problem on the level of actual
causes. When only poison is ingested, there is a strong in-
tuition that it is the ingestion of poison that is the actual
cause of death, not the absence of antidote. After all, it is
the poison that activates the poisoning mechanism, not the
absence of antidote. Yet, by the symmetry of the formal
model, HP nor any other mathematical method can discover
this from the above structural equation. The asymmetry here
is that poison triggers the causal mechanism, while antidote
preempts it, i.e., absence of antidote is only a condition to
not preempt the mechanism. As we will argue below, this
distinction plays a role in many controversial causal exam-
ples. Such information is missing and should be added to the
causal model.

Halperns solution to the above sort of problem is to reify
the causal mechanism by an auxiliary variable representing
whether it fires, and incorporating these variables at suitable
places in the theory. While his solutions work, there is room
here for a complementary approach in which causal mech-
anisms and their triggers and preemptors are explicit in the
causal model.

We proceed as follows. We first define a formal logic to
express this knowledge. The logic gives a syntactical and
semantical account of causal mechanisms, the causal pro-
cesses to which they lead, and the possible worlds that these
processes produce. Then we define different notions of ac-
tual causation in terms of the causal process that causes
the possible worlds. We exploit the fact that a causal pro-
cess gives a precise explanation of the possible world that it
causes, from which various notions of causation can be “read
off”. This results in a framework of regularity-theoretic defi-
nitions of actual causation. Then, . . . “calculemus!”: we eval-
uate the approach in several examples.

The causal logic: syntax and informal

semantics

The logic below is propositional. To represent a causal do-
main, a vocabulary ⌃ of propositional symbols is to be de-
signed, each expressing a proposition in the domain. As
usual, literals over ⌃ are formulas of the form P or ¬P ,
with P 2 ⌃; slightly abusing notation, we use ¬L to denote
P if L = ¬P and to denote ¬P if L = P .

A causal theory consists of causal laws: abstract represen-
tations of causal mechanisms. Each mechanism has trigger-
ing conditions, which set the mechanism in operation, no-
preemption conditions, which if false, preempt the mecha-
nism, and an effect. This leads to the following definition.
Definition 1. A causal law is a statement of the form:

L T ||C

where
• is the causal operator (not material implication),
• L is a literal,
• T is a sequence of literals called triggering conditions,
• C is a sequence of literals called no-preemption condi-

tions.
Elements of T [C are called conditions of the causal law.

A causal theory � is a set of causal laws subject to two
constraints:
• � is acyclic, i.e., there exists a strict well-founded order

on symbols such that for each causal law, the symbol in
the head is strictly larger than each symbol in the body.

• � does not contain laws P . . . and ¬P . . . for the
same symbol P .

The causal logic so far serves to describe causal mecha-
nisms. We extend it to make it suitable to express observa-
tions of the world.

Definition 2. An extended causal theory is a set of causal
laws and propositional formulas over ⌃.

Example 1. Arsenic and Strychnine The two causal sce-
narios mentioned in the introduction are represented as fol-
lows: ⇢

Dead Arsenic intake ||
Dead Strychnine intake ||

�

(both rules have the empty sequence of no-preemption con-
ditions), and
⇢

Dead Arsenic intake ||
Dead Strychnine intake || ¬Arsenic intake

�

As for the last rule, strychnine poisoning is triggered by
strychnine but preempted by the presence of arsenic.

An extended causal theory is obtained by adding the for-
mula Dead expressing the observation that the victim died,
or the formula Arsenic intake _ Strychnine intake to
express that at least one poison was ingested.

As usual, we distinguish between endogenous symbols
(those in the head of laws) and exogenous symbols (the rest).
A causal theory expresses all causal mechanisms affecting
an endogenous symbol and it ignores all those of exoge-
nous symbols. The language is not designed for the epis-
temic state where only part of the causal mechanisms of an
endogenous symbol are known.

In a causal law L T ||C, T and C represent conjunc-
tions of literals. A causal mechanism that is triggered by a
disjunction of events cannot be expressed by a single causal
law, but must expressed using multiple causal laws. This is
a limitation from a KR point of view, but it was done to sim-
plify the definition of causal process.

A rule L || with empty sequences T,C expresses an
unconditional causal mechanism causing L.

Definition 3. A world W informally represents a state of af-
fairs; formally, it is a complete and consistent set of literals,
i.e., a set of literals such that for each symbol P 2 ⌃, either
P 2 W or ¬P 2 W , but not both. The exogenous state of
W is the set of its exogenous literals, denoted Exo(W).

Definition 4. A condition (i.e., a triggering condition or no-
preemption condition) K of a causal law r blocks r (or is
a blocking literal of r) in world W if ¬K 2 W . We say
that r is blocked by K in W . A causal law L A ||B is
active in world W if A ✓ W , that is, if all its triggering
conditions hold in W ; otherwise it is inactive. A causal law
is applicable in W if A [B ✓ W . A causal law is causally
preempted in W if it is active but is blocked by one of its
no-preemption conditions in W . A causal law r = L . . .

is satisfied in W if it is blocked by some condition, or if it is
applicable and its head L holds in W .

Distinguishing causal mechanisms In many causal do-
mains, properties may be affected by multiple causal mech-
anisms. E.g., a window may be shattered by one of multiple
throws and many more events. A forest fire can be ignited
by matches of campers or by lightnings, etc. The modularity
principle of knowledge representation suggests to represent
such separate objects by separate expressions and so, it is
a good thing of the logic that it supports this. Furthermore,
this distinction of mechanisms is sometimes needed for de-
termining actual causes, as argued in the introduction.

Even now, before having defined a formal semantics,
it is intuitively clear how to transform causal theories to
structural equations, namely by predicate completion (Clark
1978). E.g., the completion of the first causal theory of Ar-

senic and Strychnine is the propositional logic representa-
tion of the structural equation:

Dead := Arsenic intake _ Strychnine intake

The completion of the second theory is syntactically differ-
ent but logically equivalent.

Dead := Arsenic intake_
(Strychnine intake ^ ¬Arsenic intake)

The transformation abstracts away the causal mechanisms
and the distinction between triggering conditions and no-
preemption conditions. We return to this later.
Definition 5. An endogenous literal L is deviant in � if it is
the head of a causal law. Otherwise L is default. A symbol P
is in its deviant state in world W if its deviant literal holds
in W ; otherwise it is in its default state.

The distinction between deviant and default literal is not
made in structural equations but is found in several other
formalisms (Hall 2007). The idea is that a symbol is in its
default state unless some causal mechanism brings it in its
deviant state. A deviant literal L that holds in the world is
caused by at least one causal mechanism. A default literal
L that holds in the world has a reason, namely, that every
causal mechanism that can cause the deviant literal ¬L is
blocked. Either way, the logic implements Leibniz’s princi-
ple of sufficient reason –that nothing happens in the world
without a cause– for deviant as well as for default endoge-
nous literals (but not for exogenous literals).

In many causal domains, causal mechanisms exist that
make a property true and others that make it false. E.g., flip-
ping a switch causes the light to be on if the light was not

on (off) and vice versa. In our logic, it is not possible to ex-
press both mechanisms in the same theory. It is a limitation
that, in our opinion, is inherent to the non-temporal nature of
the logic. We argue that such combinations of mechanisms
are useful mainly in a setting where the truth of propositions
fluctuates in time. Like most languages in this area, the logic
proposed here is not equipped for modeling such situations.

Triggering conditions versus no-preemption conditions

The distinction between triggering conditions and no-
preemption conditions of causal mechanisms is a new fea-
ture of our logic. Often, a natural distinction can be made
between the conditions that set the mechanism in operation
and conditions that are necessary for the mechanism to suc-
ceed. E.g., to obtain a forest fire, at least three conditions are
needed: a forest, a spark igniting a hotbed and absence of ex-
tinction operations. It is only the spark (in the form of a light-
ning or an unsafe camp fire) that triggers the causal mecha-
nism (triggering condition). We argue that this explains the
strong intuition shared by many that it is the spark that is the
actual cause of the fire, and not the existence of the forest or
the absence of fire extinction. We find the same distinction in
many examples. The combination of presence of poison in
a coffee and drinking it activates a biochemical process that
kills the victim (triggering condition) unless blocked by an
antidote (no-preemption condition). Suzy’s throw at a win-
dow activates a process that shatters the window (triggering
condition) if her shoulder is not soar (which prevents throw-
ing hard enough), if the stone is not intercepted, if the win-
dow is still intact (no-preemption conditions). In each case,
we perceive a distinction between triggering conditions and
no-preemption conditions. This appears to affect our judg-
ment of the actual causes: in at least one view of actual cau-
sation, the triggering conditions are actual causes of the ef-
fect, while the no-preemption conditions are not. Hence, to
derive this notion of actual causation, the nature of the con-
ditions must be clear from the causal theory.

Example 2. (Drinking poisoned coffee, see (Hitchcock
2007)) Drinking poisoned coffee causes death unless an an-
tidote is administered. There are three conditions here: pres-
ence of poison in the coffee (Poison), drinking the coffee
(Drink), and absence of antidote (¬Antidote). It is clear
that ¬Antidote is a no-preemption condition but what about
Poison? The poisoning process is physically triggered by
the event of drinking; the poisoning of coffee could have
taken place long before. How could Poison be a trigger-
ing condition then? On the other hand, it is still the intake
of poison that triggers the poisoning process. This condition,
in the chosen vocabulary, is best represented by the conjunc-
tion of Drink and Poison. So, we argue for the following
representation:

¬Alive Drink, Poison || ¬Antidote

Under this representation, it will be derived that Drink and
Poison are actual causes of ¬Alive, but ¬Antidote is not.

The above example raises a subtle concern. The scientific
goal of actual causation research is to find methods to solve

actual causation problems by deriving actual causes and pre-
emptions. But in Example 2, one might get the impression
that we are directly encoding the desired solution of the ac-
tual causation problem in the causal model. However, this
is not what we do. In the above example, as in many other
causal domains, there is a strong and clear intuition of what
triggers causal mechanisms and what may preempt them.
The distinction is independent of the specific actual causa-
tion problem and is relevant in many different actual causa-
tion problems. E.g., in Drinking poisoned coffee (Ex.2), the
fact that Drink and Poison are triggering conditions and
¬Antidote a no-preemption condition is relevant not only
for determining the actual causes of death when all condi-
tions hold; it is relevant as well in the seven other exogenous
contexts. E.g., in a context where the victim drinks unpoi-
soned coffee and ingests an antidote, the common intuition
is his survival is caused by the absence of poison, not the
presence of antidote. In more complex causal models with
many variables and causal laws, the information about trig-
gering conditions or no-preemption conditions of one mech-
anism may influence actual causation of many variables in
an exponential number of exogenous states. This can be seen
in double preemption examples.

Formal semantics: causal processes and

possible worlds

The formal semantics specifies for each causal theory � its
causal processes and the world that each process leads to.
Causal processes can be formalized in multiple ways. Ven-
nekens, Denecker, and Bruynooghe (2009) formalize it as a
sequence of states in which at every state one causal laws is
applied until all causal laws are satisfied. This representation
is precise and gives an account of, e.g., the “stories” in many
causal examples. However, for explaining actual causes, it is
a bit too detailed. E.g., it fixes the order of application of
causal mechanisms which is largely irrelevant for determin-
ing actual causes. So, we opt to formalize a process as an
acyclic dependency graph of the firing causal laws.
Definition 6. A possible causal process for � is a directed
labeled graph P on a world denoted World(P). Each arc
from literal K to literal L is labeled with a rule r and is de-
noted L

r K (or K r! L). The graph satisfies the following
conditions:
• For each deviant endogenous literal L 2 World(P),

there exists a nonempty set FL of applicable rules with
head L, called the firing rules of L, such that for each
condition K of each rule r 2 FL, there is an arc L r K.
There are no other arcs to L. We call them active arcs and
distinguish between trigger arcs and no-preemption arcs
depending on the type of the condition K in r.

• For each default endogenous literal L 2 World(P), for
each rule r = ¬L . . . , the set Br of blocking condi-
tions of r in World(W) is non-empty and there is an arc
¬L r ¬K 2 P for each K 2 Br. There are no other
arcs to L. We call such arcs blocking arcs and we distin-
guish between no-trigger arcs and preemption arcs.
The leafs of a causal process are exactly the true exoge-

nous literals of the world; the non-leafs are the true endoge-
nous literals.

We observe that causal processes can have multiple “si-
multaneous” causal mechanisms causing the same deviant
literal L. That is, L’s firing set FL may contain more than
one rule. This is needed to model overdetermination.

The active arcs in a causal process reflect the conditions
that helped to trigger a causal mechanism causing a deviant
literal. The blocking arcs for a rule r reflect all conditions
that prevented a causal mechanism to be applicable. A false
deviant literal L has at least one blocking arc for every causal
mechanism that could cause L.

The difference between triggering conditions or no-
preemption conditions in a causal theory barely affects the
causal processes and is only visible in the classification of
the arcs (trigger, no-preemption, no-trigger or preemption
arcs). These labels do not play a role in determining the pos-
sible world that the process causes but they will play a key
role in the definition(s) of actual causation.
Definition 7. A causal process P realizes world W if W =
World(P). We call W a possible world of � if it is realized
by some causal process for �.

The above notions generalize naturally to extended causal
theories. A process P is a possible causal process for an ex-
tended causal theory � if it is a causal process for the set of
causal laws in � and World(P) satisfies the propositional
formulas of �.

A possible world semantics induces the notions of satisfi-
ability and entailment.
Definition 8. We say that an (extended) causal theory � is
satisfiable if it has at least one possible world. It logically
entails a propositional formula ' if ' is true in every possi-
ble world of �.
Definition 9. We say that a causal mechanism r is chrono-
logically preempted in P if it is applicable but does not be-
long to the fire set of its effect.
Example 3. (Drinking poisoned coffee, cont.) Each
of the eight exogenous states of this causal the-
ory determines a unique process. E.g., the context
{Drink, Poison,¬Antidote} is the only context in which
the victim dies. The causal law is active and fires
and ¬Alive has incoming trigger arcs from Poison

and Drink and a no-preemption arc from ¬Antidote.
In context {Drink, Poison,Antidote}, the law is ac-
tive but preempted; Alive has an incoming preemption
arc from Antidote. In {¬Drink,¬Poison,Antidote},
the rule is inactive and Alive has no-trigger arcs from
¬Drink,¬Poison and a preemption arc from Antidote.
The latter context corresponds to Bogus Prevention (Hid-
dleston 2005; Hall 2007).

In many preemption examples in the literature, the pre-
emption is due to causal mechanisms that are triggered but
fail. In our framework, this corresponds to causal preemp-
tion. Often, distinction is made between early and late pre-
emption. E.g., in case of a lightening striking forest ground,
the absence of trees (burnt by a previous fire, or cut down
by a lumber company) is an early preempter of a forest

fire, while an extinction operation is a late preempter. In our
framework, there is no general way to formally distinguish
between early and late (causal) preemption, since the pro-
cess semantics makes abstraction of the order of events.

Beside causal preemption, there is a second sort of pre-
emption. Even when a causal mechanism r with effect L is
applicable in world W , that is, all its conditions hold, it is
possible that r does not fire. Intuitively, this corresponds to
the situation when other causal mechanisms had caused L

before r got the chance. We say that r is chronologically
preempted in P .
Example 4. (Window, see (Hall 2004)) Suzy and Billy
throw rocks at a window. Each throw is a separate causal
mechanism causing the same deviant state of a broken win-
dow. We represent as follows:

⇢
Broken SuzyT ||
Broken BillyT ||

�

Assume that both throw, in which case the window will cer-
tainly break. In the overdetermination scenario, they hit the
window simultaneously. It corresponds to the causal pro-
cess in which the fire set of Broken contains both laws.
In the late preemption scenario, Suzy’s throw arrives first
and smashes the window. It corresponds to the process in
which only the first law belongs to the fire set of Broken.
It is called here a case of chronological preemption. Ob-
serve that for the resulting world, this does not matter: the
window is broken. Stated precisely, in the exogenous state
{SuzyT,BillyT}, there are multiple possible causal pro-
cesses. However, they are confluent: they lead to the same
possible world.

Adding firing information Several other sorts of knowl-
edge have been claimed to influence our judgment of ac-
tual causes, e.g., whether a proposition is normal (like the
presence of oxygen in the air), whether a proposition rep-
resents an intentional action of an agent, whether a causal
mechanism fires. Such knowledge stands orthogonal to our
approach; the language can be extended to express it. We
illustrate this for knowledge about firing. We assume that
causal laws in a theory � have a symbolic name, declared in
expressions of the kind:

(BillyBreaks :) Broken BillyT ||
An extended causal theory is then a set of named causal laws
and Boolean expressions of symbols of ⌃ and atomic for-
mulas Fires(r) with r a name of one of the causal laws.
Given a causal process P , we define P |= by the stan-
dard inductive rules for connectives and by the base rules
that P |= p if p 2 World(P) and that P |= Fires(r) if r
fires in P .
Example 5. Window, late preemption, cont. Suppose
Billy’s throw is chronologically preempted by Suzy’s. In
structural equations, it is frequent practice to encode this
information by adding auxiliary variables and changing
the structural equations (Halpern 2016b). But such knowl-
edge is independent of the workings of causal mechanisms;
it should better be expressed separately. In our logic, it

amounts to knowledge that Billy’s mechanism does not fire.
It is expressed as:

Broken ^ ¬Fires(BillyBreaks)

The causal model extended with this proposition logically
entails Fires(SuzyBreaks).

(Fundamental) properties of causal knowledge

We first establish the link with structural equations. Recall
that predicate completion (Clark 1978) transforms a causal
theory � in a set compl(�) of structural equations.
Theorem 1. The possible worlds of a causal theory � and
the solutions of the structural equation model compl(�) are
identical.

The theorem gives an indication for the success of struc-
tural equations for causal reasoning even if they do not
model informal key concepts of causation such as causal
mechanisms and causal processes: the (many) problems that
can be solved on the basis of the possible worlds of the the-
ory (and of the variant theories obtained with interventions),
can be solved using compl(�).
Proposition 1. A causal process for � is uniquely deter-
mined by the set of its exogenous literals and firing rules.
That is, two different processes differ on some exogenous lit-
eral or on the set of causal mechanisms that fire.
Theorem 2. Given a causal theory �, each exogenous state
Wexp can be uniquely extended to a possible world of �.
Thus, � is satisfiable in each exogenous state, and two dif-
ferent possible worlds of � differ on some exogenous liter-
als.
Theorem 3. All causal processes of � in exogenous state
Wexo realize the same world.

The latter is a confluence theorem. It is one of these as-
pects that are brought to the surface by making the causal
processes explicit. It tells something important about causal
information. For a given exogenous state, it does not matter
which of the rules are applied nor in what order they are ap-
plied: they will always result in the same world. This point
was made in Vennekens, Denecker, and Bruynooghe (2009).
A real world case would be that I send one friend the mes-
sage that I won the lotto, and by the end of the day, I can
be certain that all my friends know that I am rich. The pro-
cess, the details of who tells who, may vary widely and is
unknown to me; yet the outcome is predictable. It points to
a valuable property of causal information: that it allows to
derive much information about the state of the world that is
the result of a causal process, even in the absence of almost
any information on the process itself.
Proposition 2. The causal language is non-monotonic: a
world that is impossible in a causal theory � may be pos-
sible in an extension of � obtained by adding other causal
laws to it.

For a proof, consider the causal theory { P Q || }. An
impossible world is {P,¬Q}. This world is possible after
adding P ¬Q ||. The original theory entails ¬Q) ¬P
while its extension does not.

Definitions of actual causation

A causal process P realizing world W provides a precise
causal explanation of W from which different notions of
causation can be “read off”. Below it is used as a framework
to define several notions of actual causation.

Definition 10. A literal L is an influence of K in a possible
causal process P of � if there is a path from K to L in P .

The concept of influence is useful but weak. We refine it
to take the difference between triggering conditions and no-
preemption conditions into account. When a causal mech-
anism fires and causes L, only its triggering conditions are
seen as actual causes. E.g., when Drinking poisoned cof-

fee without taking an antidote, drinking poisoned coffee is
the actual cause of death, not the absence of antidote. Also,
one cannot preempt a causal mechanism that has not been
triggered, hence, when a causal mechanism to derive L re-
mains inactive by a false triggering condition, its false no-
preemption conditions are not actual causes of ¬L. E.g.,
when the victim takes the antidote but does not drink the
poisoned coffee, the actual cause for survival is the absence
of drinking, not the antidote. Only if the mechanism is ac-
tive, will a false no-preemption condition be an actual cause
of ¬L. E.g., the antidote is an actual cause of survival only
if the victim drinks poisoned coffee.

Implementing these intuitions is easy: it suffices to dis-
card all causal paths containing an arc L

r! K that is a no-
preemption arc of a firing mechanism r or that is a preemp-
tion arc of a non-active causal mechanism r.

Definition 11. A literal L is an actual P-cause of literal
K in process P if there is a path K ! . . . ! L in P
without no-preemption arcs and without preemption arcs of
non-active causal mechanisms. Such path consists of trigger
and no-trigger arcs, and preemption arcs of active causal
mechanisms.

The “P” stands for “preemption”. Our both notions of cau-
sation are defined in the context of a causal process, whereas
in most approaches actual causes are defined in the context
of a possible world. We bridge this gap.

Definition 12. A literal K is an influence (actual P-cause)
of L in a possible world W of � if there is a possible causal
process P realizing W such that K is an influence (actual
P-cause) of L in P . We call K a definite influence (actual
P-cause) of L in W if it is an influence (actual P-cause)
in every causal process realizing W . Otherwise it is called
speculative.

As pointed out by Vennekens (2011), even when we know
the world, we may not know how it was caused and there-
fore, we may not be sure about the actual causes. This uncer-
tainty is reflected in the above definition. It is illustrated by
the different possible causal processes of Window in the ex-
ogenous context where both Suzy and Billy throw. It is one
of these aspects that are brought to the surface by making
the causal processes explicit.

Proposition 3. The notions of influence and actual P-cause
in processes and worlds are anti-symmetric and transitive.

Now we turn to examples. The ones seen so far (Arsenic

and Strychnine, Drinking poisoning coffee and Window)
are modeled by simple causal theories having causal pro-
cesses of depth 1. It is straightforward to derive the possible
causal processes and the influences and actual P-causes of
the endogenous literal. Moreover, as can be seen in the dis-
cussion preceding Definition 11, the results match the intu-
itions expressed in the introduction.
Example 6. (Backup (Hitchcock 2007) (early preemption

versus switch)) A crime syndicate hires Assassin to poison
victim’s coffee who drinks it and dies. The syndicate had
hired Backup to watch Assassin and to poison the victim in
case Assassin would not poison the coffee. Backup did not
have to intervene. This scenario is a case of early preemp-
tion (of the poisoning by Backup). Three causal mechanisms
can be discerned. They are represented:

(
Dead APoison ||
Dead BPoison ||
BPoison ¬APoison ||

)

The informal scenario corresponds to the context
{APoison}, where the only actual P-cause of Dead

is APoison. This is the same answer as in (Bochman
2018) but certain counterfactual methods do not re-
turn APoison as an actual cause (Lewis 1973;
Halpern 2016a). In the context {¬APoison}, the ac-
tual P-causes of Dead are BPoison and ¬APoison. That
¬APoison is an actual P-cause is slightly disconcerting;
perhaps this has to do with the longer length of the causal
path from ¬APoison to Dead. Still, we feel it makes sense,
since the fact that Assassin does not poison, sets Backup’s
mechanism in motion to poison the victims coffee.

Now take an alternative story: the crime syndicate hires
both Assassin and Backup, with a similar task: to pickup a
poison at (the same) hidden place and poison victim. Assas-
sin is ordered to go to the hiding place on Monday, Backup
on Tuesday. The syndicate puts one potion of poison in the
location on Sunday. We argue that in this scenario, the
causal laws are the same except for:

BPoison || ¬APoison

Here backup has the plan to poison, but may be preempted to
do so if Assassin took the poison. In the context {APoison},
the causes are identical as in the previous story. But in
{¬APoison}, only BPoison is an actual P-cause and not
¬APoison. We feel this makes sense; after all, it was not
¬APoison that triggered Backup to poison the victim, so
how could it be a cause for Dead?

In both scenarios, APoison is counterfactually irrele-
vant: whether true or false, the victim dies. The first is
an early preemption scenario, the second is more like a
switch scenario, with APoison as switch. It has been a
challenge to explain the difference between early preemp-
tion and switch. This example suggests the underlying prob-
lem might be the distinction between triggering conditions
and no-preemption conditions.
Example 7. Double Preemption (Hall 2004) Double pre-
emption occurs when a potential preempter is preempted. It

occurs in the following scenario. Suzy fires a missile (SF)
to bomb target (B); enemy fires a missile (EF) to hit Suzy’s
missile (SMH) and Billy fires a missile (BF) to hit En-
emy’s missile (EMH). We see three causal mechanisms:

(
B SF || ¬SMH

SMH EF || ¬EMH

EMH BF ||

)

In the causal process of context {SF,EF,BF}, the tar-
get is bombed. We find the causal path BF ! EMH !
¬SMH ! B which in the two last edges display a double
preemption: the hit on enemy’s missile preempts enemy’s at-
tempt at preempting Suzy’s bombing.

We broaden the notion of actual P-cause to include double
preemption. In our setting, a double preemption path is a
causal path K

r! L0 ! . . .! Ln
r0! L (n � 0) such that

• K
r! L0 is a preemption arc of a causally preempted law

r. In the example, it is the arc EMH ! ¬SMH .
• The n arcs Li ! Li+1 are arcs proving that L0 is an

actual P-cause of Ln (or identical to it). In the example,
n = 0 and L0 = Ln.

• Ln
r0! L is a no-preemption arc of a firing causal law r

0.
In the example, it is the arc ¬SMH ! B.

Definition 13. The DP-causal graph of P consists of all
arcs considered for actual P-causes augmented with double
preemption arcs K) L for every double-preemption path
from K to L in P . A literal K is an actual DP-cause of
literal L in process P if there is a path from K to L in the
DP-causal graph of P .

“DP” stands for double preemption. Billy’s fire BF in
Double preemption is a actual DP-cause of B although it
is not an actual P-cause of B.
Proposition 4. The actual P-causes are actual DP-causes;
actual DP-causes are influences. The actual DP-cause rela-
tion is anti-symmetric and transitive.
Example 8. (Triple preemption) The new definition deals
with triple preemption and more. Consider Double preemp-

tion extended with Jane who fires at Billy’s missile (JF).
8
><

>:

B SF || ¬SMH

SMH EF || ¬EMH

EMH BF || ¬BMH

BMH JF

9
>=

>;

In state {SF,EF,BF, JF}, the city is not bombed. The ac-
tual DP-causes of ¬B are EF,BMH, JF . The DP-causal
graph contains the double preemption arc BMH) SMH

which is induced by the double preemption path BMH !
¬EMH ! SMH . Since Jane’s fire JF is an actual P-
cause of BMH , it is an actual DP-cause for the failed
bombing ¬B.

Counterfactual dependence

In the first causal theory of Backup, Example 6, APoison

is an actual P-cause of Dead in the exogeneous state
{APoison}. We observed that APoison was counterfac-
tually irrelevant to Dead in the sense that even if APoison

would have been false, Dead would have been true all the
same. In this section, we formally define this notion of coun-
terfactual relevance.

Ever since the seminal work of Lewis (1973), actual
causation has been analyzed using counterfactual reason-
ing. While our theory of actual causation does not rely
on counterfactual reasoning, in many applications, counter-
factual questions naturally arise. E.g., in Window “would
the window have broken had Suzy not thrown?”. Or, in
Backup, “would the victim have died if Assassin had not
poisoned him”. Below, we define the notions of counterfac-
tual (in)dependency and (ir)relevance using the concept of
intervention, as introduced by Pearl (2000). We adapt the
definition of intervention from (Vennekens, Denecker, and
Bruynooghe 2010), where it was defined in the context of
CP-logic.
Definition 14. We define the intervention of causal mech-
anism r on causal theory � (denoted �[r]) as the causal
theory obtained from � by deleting all rules with the same
head as r (if any) and adding r.

Observe that the unique possible world of � extending
exogeneous state Wexo is the unique possible world of D +
Wexo which is � extended with causal rules L || for each
L 2Wexo.
Definition 15. Let � be a causal theory without exogeneous
symbols. Given that K,L are true in the unique possible
world W of �, we define that L is counterfactually depen-
dent on K according to � if L is false in the possible world
of �[K f].

If � has exogeneous symbols and W is a possible world
of �, we define that L is counterfactually dependent on K

in W according to � if L is counterfactually dependent on
K according to �+ Exo(W).

If L counterfactually depends on K, we say also that K
is counterfactually relevant for L.
Proposition 5. If K is counterfactually relevant for L in W

according to � then K is an influence of L in W .
The inverse is not true, as can be seen in Backup.

Example 9. (Backup, cont.) The causal theory correspond-
ing to Backup in exogeneous state Wexo = {APoison} is:

8
><

>:

Dead APoison ||
Dead BPoison ||
BPoison ¬APoison ||
APoison ||

9
>=

>;

According to this theory as well as the intervention by
¬APoison ||, Dead is true. It follows that APoison

is counterfactually irrelevant for Dead. In terms of the orig-
inal theory �, APoison is a counterfactually irrelevant in-
fluence of Dead in Wexo.

It can be seen that in context {SuzyT,BillyT} of
Windows, Suzy’s throw is counterfactually irrelevant for
Broken. Still, there is difference with the Assassins poi-
soning: if Suzy does not throw, then she does not actively
contribute to breaking the window. But if Assassin does not
poison, this causes the Backup to poison the victim, and so,

either way, Assassins choice is an actual cause of the vic-
tims death. The following definition expresses this stronger
notion of irrelevance.
Definition 16. Given � without exogeneous symbols, we de-
fine that K is a strongly irrelevant actual P-cause of L ac-
cording to � if K is an actual P-cause of L in the world of �
and ¬K is an actual P-cause of L in the world of �[K f].

In general, if � has exogeneous symbols and W is a pos-
sible world of �, we define that K is a strongly irrelevant
actual P-cause of L in W according to � if K is a strongly
irrelevant actual P-cause of L according to �+ Exo(W).

We see that APoison is a strongly irrelevant actual P-
cause of Dead while SuzyT is counterfactually irrelevant
but not a strongly irrelevant actual P-cause of Broken.

We have a strong intuition not to consider strongly ir-
relevant actual P-causes such as APoison as actual causes
whereas according to our intuition, other actual P-causes
such as SuzyT are actual causes even if they are counter-
factually irrelevant.

We argue that it is an asset of our approach that it helps
distinguishing between inherently counterfactual questions
about actual causation (such as “would the window have
broken if Suzy had not thrown”), and the use of counter-
factual analysis to exhume actual causes from a modelling
that does not express the causal process.

Related work and conclusions

In the spectrum of counterfactual versus regularity-theoretic
approaches to actual causation, our method belongs to the
second category since it is based on analysis of causation in
the actual world and the actual causal process.

Counterfactual methods originated from Lewis’ idea of
interpreting “C caused E” as the statement “without C, E
would not have been”. When counterexamples kept emerg-
ing, ever more sophisticated counterfactual strategies were
developed. Present-day methods derive actual causes from
“blackbox” theories in a way that seems to mimic an empir-
ical scientist who, perhaps without knowledge of the causal
mechanisms in the domain, tries to discover actual causes by
a strategy of experiments in which the values of well-chosen
variables are varied.

Our definition of actual causes defines actual causes in
terms of the dependencies shown in the actual process. That
leads to a very different definition than the counterfactual
definitions of actual causation. Still we do not think that they
contradict with each other, but rather than that they point at
complementary aspects of the same thing.

Actual causation is an informal concept, which each of
us learns through experience and communication with other
people. It is not a concept that we acquire by receiving a def-
inition. In such cases, it is well possible that two very differ-
ent definitions of a concept cover to a large extend the same
set of phenomena. We think this is the case with the counter-
factual definitions of actual causation, and the dependency-
based definitions that we used. In fact, there is a clue to this
in the very concept of “dependency”: if A depends on B,
then we expect that if B is not, then A might not be, and this
suggests a counterfactual dependency.

It should not be easy to reconstruct the exact factual de-
pendencies using counterfactual experiments. Sometimes,
“nature” puts an effort to hide certain dependencies, and no
experiment can bring a dependency to the surface. It sug-
gests that counterfactual definitions and dependency defini-
tions do not perfectly match. Nevertheless, we expect this to
be an exception; we expect that in many cases, counterfac-
tual experiments are able to bring a dependency to the sur-
face. This raises a research question: what is the correspon-
dence between actual causes in causal theories � defined in
terms of the actual causal process, and actual causes derived
through counterfactual methods from comp(�). This is a
topic for future work.

In this framework, we studied several sorts of knowledge
that are important for actual causation but are not or not well
expressed in many causal languages: knowledge of causal
mechanisms, triggering versus preempting conditions, and
whether they fire. We proposed a causal logic suitable for
modular expression of such knowledge and equipped with
a possible causal process semantics. The explicit modeling
of causal processes brought a few fundamental aspects of
causation to the surface: e.g., the convergence of causal pro-
cesses and, paradoxically, theorems explaining why many
useful causation problems can be solved without modelling
mechanisms and processes. Using causal processes as an
explanation of the world, we provided definitions for sev-
eral notions of actual causation including double preemp-
tion. Further analysis is required to corroborate and refine
these results, but the method handles a range of problematic
examples in causal reasoning.

The aim to study actual causation in the context of causal
processes is present in neuron diagrams approaches (Lewis
1986). However, neuron diagrams do not represent individ-
ual causal mechanisms (similar to a structural equation) and
do not distinguish between triggering and preempting con-
ditions, and fall short for the sort of examples that moti-
vated this paper. The first causal reasoning study in a lan-
guage that accounts for causal mechanisms, processes and
worlds was (Vennekens, Denecker, and Bruynooghe 2009).
The language CP-logic was used for different forms of rea-
soning such as probabilistic reasoning, interventions and ac-
tual causation. The logic defined here is related in spirit to
CP-logic but differs from it quite considerably. E.g., causal
processes are formalized differently, and several sorts of
knowledge studied here cannot be expressed in CP-logic
(and vice versa). The actual causation method for CP-logic
proposed by Vennekens (2011) and refined by Beckers and
Vennekens (2012) is based on causal processes as well, but
it is intuitively and mathematically completely different. It
is a counterfactual method based on analysis of alternative
causal processes, in a way related to the approaches of Hall
(2004; 2007). The relation with our approach is not obvious
and we leave a further analysis of this for future work.

Our formalism is simple and propositional. To make it
suitable to express real-world causal domains, it needs to be
extended to the predicate case, with quantification, formu-
las in the body, the possibility to define auxiliary concepts,
non-deterministic causation, probabilities, cyclic causation,
etc. such that definitions of actual causation still work. This

is for future work. CP-logic covers already most of these ex-
tensions, so we expect this to be feasible.

Implementation

We specified the different notions of causality of this pa-
per as a first order logic theory using the knowledge
base system IDP (De Cat et al. 2016). Our model is
available at http://adams.cs.kuleuven.be/idp/
server.html?chapter=intro/11-AC. By apply-
ing model expansion inference on this specification and on
structures encoding causal theories, various notions of actual
causation are computed. The webpage contains all examples
of the paper and several others. Readers can modify these
examples or edit their own and run the system in the web
browser to solve causal questions.

Acknowledgements

We are grateful to Alexander Bochman and Sander Beckers
for many discussions and valuable feedback. Bart Bogaerts
is a postdoctoral fellow of the Research Foundation – Flan-
ders (FWO).

References

Baumgartner, M. 2013. A regularity theoretic approach to
actual causation. Erkenn 78(Suppl 1:85.
Beckers, S., and Vennekens, J. 2012. Counterfactual de-
pendency and actual causation in CP-logic and structural
models: A comparison. In Kersting, K., and Toussaint, M.,
eds., Proceedings of the Sixth Starting AI Researchers Sym-
posium, STAIRS, Montpellier, 27-28 August 2012, volume
241, 35–46.
Bochman, A. 2018. Actual causality in a logical setting. In
IJCAI.
Clark, K. L. 1978. Negation as failure. In Logic and Data
Bases, 293–322. Plenum Press.
De Cat, B.; Bogaerts, B.; Bruynooghe, M.; Janssens, G.; and
Denecker, M. 2016. Predicate logic as a modelling lan-
guage: The IDP system. CoRR abs/1401.6312v2.
Fenton-Glynn, L. 2015. A proposed probabilistic extension
of the halpern and pearl definition of ‘actual cause’. The
British Journal for the Philosophy of Science.
Gerstenberg, T.; Goodman, N. D.; Lagnado, D. A.; and
Tenenbaum, J. B. 2015. How, whether, why: Causal judg-
ments as counterfactual contrasts. In Proceedings of the 37th
Annual Conference of the Cognitive Science Society, 782–
787.
Glymour, C.; Danks, D.; Glymour, B.; Eberhardt, F.; Ram-
sey, J.; Scheines, R.; Spirtes, P.; Teng, C. M.; and Zhang,
J. 2010. Actual causation: a stone soup essay. Synthese
175(2):169–192.
Hall, N. 2004. Two concepts of causation. In Causation and
Counterfactuals.
Hall, N. 2007. Structural equations and causation. Philo-
sophical Studies 132(1):109–136.

Halpern, J., and Pearl, J. 2005. Causes and explanations: A
structural-model approach. part i: Causes. The British Jour-
nal for the Philosophy of Science 56:843–87.
Halpern, J. 2016a. Actual causality. MIT Press.
Halpern, J. Y. 2016b. Appropriate causal models and the
stability of causation. Rew. Symb. Logic 9(1):76–102.
Hiddleston, E. 2005. A causal theory of counterfactuals.
Noûs 39(4):632–657.
Hitchcock, C. 2007. Prevention, preemption, and the princi-
ple of sufficient reason. Philosophical Review 116(4):495–
532.
Hume, D. 1739. A Treatise of Human Nature. John Noon.
Lewis, D. 1973. Causation. Journal of Philosophy 70:113–
126.
Lewis, D. 1986. Postscripts to ‘causation’. In Lewis, D.,
ed., Philosophical Papers Vol. Ii. Oxford University Press.
Pearl, J. 2000. Causality: Models, Reasoning, and Inference.
Cambridge University Press.
Vennekens, J.; Denecker, M.; and Bruynooghe, M. 2009.
CP-logic: A language of causal probabilistic events and its
relation to logic programming. TPLP 9(3):245–308.
Vennekens, J.; Denecker, M.; and Bruynooghe, M. 2010.
Embracing events in causal modelling: Interventions and
counterfactuals in CP-logic. In JELIA, 313–325.
Vennekens, J. 2011. Actual causation in cp-logic. Theory
and Practice of Logic Programming 11:647–662.

Relating Two Dialects of Answer Set Programming

Amelia Harrison and Vladimir Lifschitz

University of Texas at Austin
{ameliaj,vl}@cs.utexas.edu

Abstract

The input language of the answer set solver CLINGO is based
on the definition of a stable model proposed by Paolo Ferraris.
The semantics of the ASP-Core language, developed by the
ASP Standardization Working Group, uses the approach to
stable models due to Wolfgang Faber, Nicola Leone, and Ger-
ald Pfeifer. The two languages are based on different versions
of the stable model semantics, and the ASP-Core document
requires, “for the sake of an uncontroversial semantics,” that
programs avoid the use of recursion through aggregates. In
this paper we prove that the absence of recursion through ag-
gregates does indeed guarantee the equivalence between the
two versions of the stable model semantics, and show how
that requirement can be relaxed without violating the equiva-
lence property.

Introduction

Early work on autoepistemic logic and default logic has led
to the development of the stable model semantics of logic
programs, which serves as the semantic basis of answer set
programming (ASP). The ASP-Core document1, produced
in 2012–2015 by the ASP Standardization Working Group,
was intended as a specification for the behavior of answer
set programming systems. The existence of such a specifica-
tion enables system comparisons and competitions to evalu-
ate such systems.

The semantics of ASP programs described in that docu-
ment differs from that of the input language of the widely
used answer set solver CLINGO.2 The two languages are
based on different versions of the stable model semantics:
the former on the FLP-semantics, proposed by Faber, Leone,
and Pfeifer (2004) and generalized to arbitrary propositional
formulas by Truszczynski (2010), and the latter on the ap-
proach of Ferraris (2005).

In view of this discrepancy, the ASP-Core document in-
cludes a warning: “For the sake of an uncontroversial seman-
tics, we require [the use of] aggregates to be non-recursive”
(Section 6.3 of Version 2.03c). Including this warning was

Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.mat.unical.it/aspcomp2013
/ASPStandardization.

2http://potassco.org/clingo.

apparently motivated by the belief that in the absence of re-
cursion through aggregates the functionality of CLINGO con-
forms with the ASP-Core semantics.

In this paper, that belief is turned into a theorem: for a
programming language that is essentially a large subset of
ASP-Core,3 we prove that the absence of recursion through
aggregates guarantees the equivalence between ASP-Core
and CLINGO. Our theorem is actually stronger, in two ways.
First, it shows that the view of recursion through aggregates
adopted in the ASP-Core document is unnecessarily broad
when applied to disjunctive programs (see Footnote 9). Sec-
ond, it shows that aggregates that do not contain negation as
failure can be used recursively without violating that prop-
erty. For example, the rule

val(W,0) :- gate(G,and), output(W,G),
card{W: val(W,0), input(W,G)} > 0

which describes the propagation of binary signals through
an and-gate (Gelfond and Zhang, 2014, Example 9) has the
same meaning in both languages.

A few years ago it was difficult not only to prove such
a theorem, but even to state it properly, because a mathe-
matically precise semantics of the language of CLINGO be-
came available only with the publication by Gebser et al.
(2015). The concept of a stable model for CLINGO programs
is defined in that paper in two steps: first a transformation ⌧

is introduced,4 which turns a CLINGO program into a set
of infinitary propositional formulas, and then the definition
of a stable model due to Ferraris (2005), extended to the
infinitary case by Truszczynski (2012), is invoked. Infinite
conjunctions and disjunctions are needed when the program
uses local variables. We will refer to stable models in the
sense of this two-step definition as “FT-stable.”

The semantics of ASP-Core programs is precisely defined
in Section 2 of the ASP-Core document, but that definition is
not completely satisfactory: it is not applicable to programs

3This language does not include classical negation, weak con-
straints, optimize statements, and queries, and it does not allow
multiple aggregate elements within the same aggregate atom. On
the other hand, it includes the symbols inf and sup from the
CLINGO language.

4An oversight in the definiton of ⌧ in that publi-
cation is corrected in the arXiv version of the paper,
http://arXiv.org/abs/1507.06576v2.

with local variables. The problem is that the definition of
a ground instance in Section 2.2 of the document includes
replacing the list e1; . . . ; en of aggregate elements in an ag-
gregate atom by its instantiation inst({e1; . . . ; en}); the in-
stantiation, as defined in the document, is an infinite object,
because the set of symbols that can be substituted for lo-
cal variables includes arbitrary integers and arbitrarily long
symbolic constants. So the result of the replacement is not
an ASP-Core program. Prior to addressing the main topic of
this note, we propose a way to correct this defect. We use
a two-step procedure, similar to the one employed by Geb-
ser et al. (2015): after applying a transformation ⌧1, almost
identical to ⌧ ,5 it refers to a straightforward generalization
of the definition of a stable model due to Faber, Leone, and
Pfeifer (2004) to the infinitary case. In the absence of lo-
cal variables, this semantics is consistent with the ASP-Core
document (Harrison, 2017, Chapter 12). Stable models in the
sense of this two-step definition will be called “FLP-stable.”

We start by defining the syntax of programs, two versions
of the stable model semantics of infinitary formulas, and two
versions of the semantics of programs. The main theorem
asserts that if the aggregates used in a program recursively
do not contain negation then the FLP-stable models of the
program are the same as its FT-stable models. To prove the
theorem we investigate under what conditions the models of
a set of infinitary propositional formulas that are stable in
the sense of Faber et al. are identical to the models stable in
the sense of Ferraris and Truszczynski.

Syntax of Programs

The syntax of programs is described here in an abstract fash-
ion, in the spirit of Gebser et al. (2015), so as to avoid
inessential details related to the use of ASCII characters.

We assume that three pairwise disjoint sets of symbols are
selected: numerals, symbolic constants, and variables. Fur-
ther, we assume that these sets do not contain the symbols

+ � ⇥ / (1)

inf sup (2)

= 6= < > � (3)

not ^ _ (4)

, : () { } (5)
and are different from the aggregate names count, sum, max,
min. All these symbols together form the alphabet of pro-
grams, and rules will be defined as strings over this alphabet.

We assume that a 1–1 correspondence between the set of
numerals and the set Z of integers is chosen. For every inte-
ger n, the corresponding numeral will be denoted by n.

Terms are defined recursively, as follows:
• all numerals, symbolic constants, and variables, as well as

symbols (2) are terms;
• if f is a symbolic constant and t is a non-empty tuple of

terms (separated by commas) then f(t) is a term;

5The original translation ⌧ could be used for this purpose as
well. However, the definition of ⌧1 seems more natural.

• if t1 and t2 are terms and ? is one of the symbols (1) then
(t1 ? t2) is a term.
A term, or a tuple of terms, is ground if it does not con-

tain variables. A term, or a tuple of terms, is precomputed
if it contains neither variables nor symbols (1). We assume
a total order on precomputed terms such that inf is its least
element, sup is its greatest element, and, for any integers m
and n, m n iff m n.

For each aggregate name we define a function that maps
every set of non-empty tuples of precomputed terms to a
precomputed term. Functions corresponding to each of the
aggregate names are defined below using the following ter-
minology. If the first member of a tuple t of precomputed
terms is a numeral n then we say that the integer n is the
weight of t; if t is empty or its first member is not an nu-
meral then the weight of t is 0. For any set T of tuples of
precomputed terms,
• dcount(T) is the numeral corresponding to the cardinality

of T if T is finite, and sup otherwise;
• dsum(T) is the numeral corresponding to the sum of the

weights of all tuples in T if T contains finitely many tu-
ples with non-zero weights, and 0 otherwise;

• dmin(T) is sup if T is empty, the least element of the set
consisting of the first elements of the tuples in T if T is a
finite non-empty set, and inf if T is infinite;

• dmax(T) is inf if T is empty, the greatest element of the
set consisting of the first elements of the tuples in T if T
is a finite non-empty set, and sup if T is infinite.
An atom is a string of the form p(t) where p is a symbolic

constant and t is a tuple of terms. For any atom A, the strings

A not A (6)

are symbolic literals. An arithmetic literal is a string of the
form t1 � t2 where t1, t2 are terms and � is one of the
symbols (3). A literal is a symbolic or arithmetic literal.6

An aggregate atom is a string of the form

↵{t : L} � s, (7)

where
• ↵ is an aggregate name,
• t is a tuple of terms,
• L is a tuple of literals called the “conditions” (if L is

empty then the preceding colon may be dropped),
• � is one of the symbols (3),
• and s is a term.
For any aggregate atom A, the strings (6) are aggregate lit-
erals; the former is called positive, and the latter is called
negative.

A rule is a string of the form

H1 _ · · · _ Hk B1 ^ · · · ^ Bn (8)
6In the parlance of the ASP-Core document, atoms are “classi-

cal atoms,” arithmetic literals are “built-in atoms,” and literals are
“naf-literals.”

(k, n � 0), where each Hi is an atom, and each Bj is a literal
or aggregate literal. The expression B1^· · ·^Bn is the body
of the rule, and H1 _ · · · _ Hk is the head. A program is a
finite set of rules.

About a variable we say that it is global

• in a symbolic or arithmetic literal L, if it occurs in L;

• in an aggregate atom (7) or its negation, if it occurs in s;

• in a rule (8), if it is global in at least one of the expres-
sions Hi, Bj .

A variable that is not global is called local. A literal or a rule
is closed if it has no global variables.

Stable Models of Infinitary Formulas

Formulas

Let � be a propositional signature, that is, a set of proposi-
tional atoms. The sets F0,F1, . . . are defined as follows:

• F0 = �,

• Fi+1 is obtained from Fi by adding expressions H^ and
H

_ for all subsets H of Fi, and expressions F ! G for
all F,G 2 Fi.

The elements of
S1

i=0 Fi are called (infinitary propositional)
formulas over �.

In an infinitary formula, F ^ G and F _ G are abbrevi-
ations for {F,G}

^ and {F,G}
_ respectively; > and ? are

abbreviations for ;^ and ;_; ¬F stands for F ! ?, and
F $ G stands for (F ! G) ^ (G! F). Literals over �

are atoms from � and their negations. If hF◆i◆2I is a fam-
ily of formulas from one of the sets Fi then the expressionV

◆ F◆ stands for the formula {F◆ : ◆ 2 I}
^, and

W
◆ F◆

stands for {F◆ : ◆ 2 I}
_.

Subsets of a propositional signature � will be called its
interpretations. The satisfaction relation between an inter-
pretation and a formula is defined recursively as follows:

• For every atom p from �, I |= p if p 2 I .

• I |= H
^ if for every formula F in H, I |= F .

• I |= H
_ if there is a formula F in H such that I |= F .

• I |= F ! G if I 6|= F or I |= G.

We say that an interpretation satisfies a set H of formulas,
or is a model of H, if it satisfies every formula in H. We say
that H entails a formula F if every model of H satisfies F .
Two sets of formulas are equivalent if they have the same
models.

FLP-Stable Models

Let H be a set of infinitary formulas of the form G ! H ,
where H is a disjunction of atoms from �. The FLP-reduct
FLP(H, I) of H w.r.t. an interpretation I of � is the set of
all formulas G! H from � such that I satisfies G. We say
that I is an FLP-stable model of H if it is minimal w.r.t. set
inclusion among the models of FLP(H, I).

It is clear that I satisfies FLP(H, I) iff I satisfies H. Con-
sequently every FLP-stable model of H is a model of H.

FT-Stable Models

The FT-reduct FT(F, I) of an infinitary formula F w.r.t. an
interpretation I is defined as follows:
• For any atom p from �, FT(p, I) = ? if I 6|= p; otherwise

FT(p, I) = p.
• FT(H^

, I) = {FT(G, I) | G 2 H}
^.

• FT(H_
, I) = {FT(G, I) | G 2 H}

_.
• FT(G ! H, I) = ? if I 6|= G ! H; otherwise

FT(G! H, I) = FT(G, I)! FT(H, I).
The FT-reduct FT(H, I) of a set H of formulas is defined as
the set of the reducts FT(F, I) of all formulas F from H. An
interpretation I is an FT-stable model of H if it is minimal
w.r.t. set inclusion among the models of FT(H, I).

It is easy to show by induction that I satisfies FT(F, I)
iff I satisfies F . Consequently every FT-stable model of a
set of formulas is a model of that set.

It is easy to check also that if I does not satisfy F then
FT(F, I) is equivalent to ?.

Comparison

An FLP-stable model of a set of formulas is not necessarily
FT-stable, and an FT-stable model is not necessarily FLP-
stable. For example, consider (the singleton set containing)
the formula

p _ ¬p! p. (9)
It has no FT-stable models, but the interpretation {p} is its
FLP-stable model. On the other hand, the formula

¬¬p! p (10)

has two FT-stable models, ; and {p}, but latter is not FLP-
stable.

It is clear that replacing the antecedent of an implication
by an equivalent formula within any set of formulas does not
affect its FLP-stable models. For instance, from the perspec-
tive of the FLP semantics, formula (9) has the same meaning
as > ! p, and (10) has the same meaning as p! p. On the
other hand, the FLP-stable models may change if we break
an implication of the form F _ G ! H into F ! H and
G! H . For instance, breaking (9) into p! p and ¬p! p

gives a set without FLP-stable models.
With the FT semantics, it is the other way around: it does

matter, generally, whether we write ¬¬p or p in the an-
tecedent of an implication, but breaking F _ G ! H into
two implications cannot affect the set of stable models.

Transformations of infinitary formulas that do not af-
fect their FT-stable models were studied by Harrison et al.
(2017). These authors extended, in particular, the logic of
here-and-there introduced by Heyting (1930) to infinitary
propositional formulas and showed that any two sets of in-
finitary formulas that have the same models in the infinitary
logic of here-and-there have also the same FT-stable models.

Semantics of Programs

In this section, we define two very similar translations, ⌧1
and ⌧ . Each of them transforms any program into a set of
infinitary formulas over the signature �0 consisting of all

atoms of the form p(t), where p is a symbolic constant and t
is a tuple of precomputed terms. The definition of ⌧ follows
Gebser et al. (2015), and examples of using ⌧ can be found
in that paper.

Given these translations, the two versions of the semantics
of programs are defined as follows. The FLP-stable models
of a program ⇧ are the FLP-stable models of ⌧1⇧. The FT-
stable models of ⇧ are the FT-stable models of ⌧⇧.

Semantics of Terms

The semantics of terms tells us, for every ground term t,
whether it is well-formed, and if it is, which precomputed
term is considered its value:7

• If t is a numeral, symbolic constant, or one of the symbols
inf or sup then t is well-formed, and its value val(t) is t

itself.
• If t is f(t1, . . . , tn) and the terms t1, . . . , tn are well-

formed, then t is well-formed also, and val(t) is
f(val(t1), . . . , val(tn)).

• If t is (t1 + t2) and the values of t1 and t2 are numer-
als n1, n2 then t is well-formed, and val(t) is n1 + n2;
similarly when t is (t1 � t2) or (t1 ⇥ t2).

• If t is (t1/t2), the values of t1 and t2 are numerals n1, n2,
and n2 6= 0 then t is well-formed, and val(t) is bn1/n2c.
If t is a tuple t1, . . . , tn of well-formed ground terms then

we say that t is well-formed, and its value val(t) is the tuple
val(t1), . . . , val(tn).

A closed arithmetic literal t1 � t2 is well-formed if t1

and t2 are well-formed. A closed symbolic literal p(t) or
not p(t) is well-formed if t is well-formed. A closed aggre-
gate literal E or not E, where E is (7), is well-formed if s is
well-formed.

Semantics of Arithmetic and Symbolic Literals

A well-formed arithmetic literal t1 � t2 is true if val(t1) �
val(t2), and false otherwise.

The result of applying the transformation ⌧1 to a well-
formed symbolic literal is defined as follows:

⌧1(p(t)) is p(val(t)); ⌧1(not p(t)) is ¬p(val(t)).

About a tuple of well-formed literals we say that it is non-
trivial if all arithmetic literals in it are true. If L is a non-
trivial tuple of well-formed arithmetic and symbolic literals
then ⌧1L stands for the conjunction of the formulas ⌧1L for
all symbolic literals L in L.

Semantics of Aggregate Literals

Let E be a well-formed aggregate atom (7), and let x be the
list of variables occurring in t : L. By A we denote the set
of all tuples r of precomputed terms of the same length as x
such that

(i) txr is well-formed, and

7In the input language of CLINGO, a term may contain “inter-
vals”, such as 1..3, and in that more general setting a ground term
may have several values.

(ii) Lx
r is well-formed and nontrivial.8

For any subset � of A, by val(�) we denote the set of tuples
txr for all r 2 �. We say that � justifies E if the relation �
holds between b↵(val(�)) and val(s). We define ⌧1E to be
the disjunction of formulas

^

r2�

⌧1(L
x
r) ^

^

r2A\�

¬⌧1(L
x
r) (11)

over the subsets � of A that justify E.
Assume, for example, that E is

count{X : p(X)} = 0. (12)

Then
• t is X , L is p(X), x is X , and A is the set of all precom-

puted terms, val(�) is �;
• b↵(val(�)) is the cardinality of � if � is finite and sup

otherwise;
• � justifies (12) iff � = ;;
• ⌧1E is the conjunction of the formulas ¬p(r) over all pre-

computed terms r.

The result of applying ⌧1 to a negative aggregate literal
not E is ¬⌧1E.

The definition of ⌧1L given earlier can be extended now
to nontrivial tuples that may include well-formed literals of
all three kinds: for any such tuple L, ⌧1L stands for the con-
junction of the formulas ⌧1L for all symbolic literals and
aggregate literals L in L.

Applying ⌧1 to Rules and Programs

The result of applying ⌧1 to a rule (8) is defined as the set of
all formulas of the form

⌧1((B1, . . . , Bn)
x
r)! ⌧1(H1)

x
r _ · · · _ ⌧1(Hk)

x
r (13)

where x is the list of all global variables of the rule, and r is
any tuple of precomputed terms of the same length as x such
that all literals (Hi)

x
r , (Bj)

x
r are well-formed.

For any program ⇧, ⌧1⇧ stands for the union of the
sets ⌧1R for all rules R of ⇧.

Transformation ⌧

The definition of ⌧ differs from the definition of ⌧1 in only
one place: in the treatment of aggregate atoms In the spirit
of Ferraris (2005), we define ⌧E to be the conjunction of the
implications

^

r2�

⌧(Lx
r) !

_

r2A\�

⌧(Lx
r) (14)

over the subsets � of A that do not justify E.
For example, if E is (12) then ⌧E is

^

�✓A, � 6=;

0

@
^

r2�

p(r)!
_

r2A\�

p(r)

1

A .

8Here txr stands for the result of substituting r for x in t. The
meaning of Lx

r is similar.

It is easy to show that ⌧E is equivalent to ⌧1E. Consider
the disjunction D of formulas (11) over all subsets � of A
that do not justify E. It is to see that every interpretation sat-
isfies either ⌧1E or D. On the other hand, no interpretation
satisfies both D and ⌧1E, because in every disjunctive term
of ⌧1E and every disjunctive term of D there is a pair of
conflicting conjunctive terms. It follows that D is equivalent
to ¬⌧1E. It is clear that D is also equivalent to ¬⌧E.

Since all occurrences of translations ⌧1E in implica-
tion (13) belong to its antecedent, it follows that ⌧ could be
used instead of ⌧1 in the definition of an FLP-stable model of
a program. For the definition of an FT-stable model of a pro-
gram, however, the difference between ⌧1 and ⌧ is essential.
Although the translation ⌧1 will not be used in the statement
or proof of the main theorem, we introduce it here because it
is simpler than ⌧ in the sense that it in application to aggre-
gate literals it does not produce implications. We anticipate
that for establishing other properties of FLP-stable models it
may be a useful tool.

Main Theorem

To see that the FLP and FT semantics of programs are gen-
erally not equivalent, consider the one-rule program

p count{1 : not p} < 1. (15)

The result of applying ⌧ to this program is ¬¬p ! p. The
FT-stable models are ; and {p}; the first of them is an FLP-
stable model, and the second is not.

Our main theorem gives a condition ensuring that the
FLP-stable models and FT-stable models of a program are
the same. To state it, we need to describe the precise mean-
ing of “recursion through aggregates.”

The predicate symbol of an atom p(t1, . . . , tn) is the
pair p/n. The predicate dependency graph of a program ⇧
is the directed graph that
• has the predicate symbols of atoms occurring in ⇧ as its

vertices, and
• has and edge from p/n to q/m if there is a rule R in ⇧

such that p/n is the predicate symbol of an atom occur-
ring in the head of R, and q/m is the predicate symbol of
an atom occurring in the body of R.9

We say that an occurrence of an aggregate literal L in a
rule R is recursive with respect to a program ⇧ containing R

if for some predicate symbol p/n occurring in L and some
predicate symbol q/m occurring in the head of R there ex-
ists a path from p/n to q/m in the predicate dependency
graph of ⇧.

For example, the predicate dependency graph of pro-
gram (15) has a single vertex p/0 and an edge from p/0
to itself. The aggregate literal in the body of this program is
recursive. Consider, on the other hand, the one-rule program

q not count{1 : p} < 1.

9The definition of the predicate dependency graph in the ASP-
Core document includes also edges between predicate symbols of
atoms occurring in the head of the same rule. Dropping these edges
from the graph makes the assertion of the main theorem stronger.

Its predicate dependency graph has the vertices p/0 and q/0,
and an edge from q/0 to p/0. Since there is no path from p/0
to q/0 in this graph, the aggregate literal in the body of this
rule is not recursive.

We say that an aggregate literal is positive if it is an aggre-
gate atom and all symbolic literals occurring in it are posi-
tive.
Main Theorem If every aggregate literal that is recursive

with respect to a program ⇧ is positive then the FLP-stable

models of ⇧ are the same as the FT-stable models of ⇧.

In particular, if all aggregate literals in ⇧ are positive
then ⇧ has the same FLP- and FT-stable models. For ex-
ample, consider the one-rule program

p count{1 : p} > 0.

The only aggregate literal in this program is positive; ac-
cording to the main theorem, the program has the same FLP-
and FT-stable models. Indeed, it is easy to verify that ; is the
only FLP-stable model of this program and also its only FT-
stable model.

Main Lemma

In this section we talk about infinitary formulas over an ar-
bitrary propositional signature �.

Formulas p, ¬p, ¬¬p, where p is an atom from �, will be
called extended literals. A simple disjunction is a disjunc-
tion of extended literals. A simple implication is an implica-
tion A

^
! L

_ such that its antecedent A^ is a conjunction
of atoms and its consequent L_ is a simple disjunction. A
conjunction of simple implications will be called a simple
formula. Formulas of the form G ! H , where G is a sim-
ple formula and H is a disjunction of atoms, will be called
simple rules.10

For example, (9), (10) can be rewritten as simple rules
(> ! p _ ¬p)! p, (16)
(> ! ¬¬p)! p. (17)

In the proof of Main Theorem we will show how any for-
mula obtained by applying transformation ⌧ to a program
can be transformed into a simple rule with the same mean-
ing.

A simple program is a set of simple rules.
In the statement of Main Lemma below, we refer to simple

programs that are “FT-tight” and “FLP-tight.” The lemma
asserts that if a program is FT-tight then its FLP-stable mod-
els are FT-stable; if a program is FLP-tight then its FT-stable
models are FLP-stable. To describe these two classes of sim-
ple programs we need the following preliminary definitions.

An atom p occurs strictly positively in a simple formula F
if there is a conjunctive term A

^
! L

_ in F such that p
belongs to L. An atom p occurs positively in a simple for-
mula F if there is a conjunctive term A

^
! L

_ in F such
that p or ¬¬p belongs to L.

We define the (extended positive) dependency graph of a
simple program H to be the graph that has

10Note that a simple rule is not a rule in the sense of the pro-
gramming language described above; it is an infinitary proposi-
tional formula of a special syntactic form.

• all atoms occurring in H as its vertices, and
• an edge from p to q if for some formula G ! H in H, p

is a disjunctive term in H and q occurs positively in G.
For example, the simple programs (16), (17) have the same
dependency graph: a self-loop at p.11

A simple implication A
^
! L

_ will be called positive
if L is a set of atoms, and non-positive otherwise. An edge
from p to q in the dependency graph of a simple program H

will be called FT-critical if for some formula G! H in H, p
is a disjunctive term in H and q occurs strictly positively
in some non-positive conjunctive term D of G. We call a
simple program FT-tight if its dependency graph has no path
containing infinitely many FT-critical edges.12

Consider, for example, the dependency graph of pro-
gram (16). Its only edge—the self-loop at p—is FT-critical,
because the implication > ! p _ ¬p is non-positive, and p

occurs strictly positively in it. It follows that the program is
not FT-tight: consider the path consisting of infinitely many
repetitions of this self-loop. On the other hand, in the de-
pendency graph of program (17) the same edge is not FT-
critical, because p does not occur strictly positively in the
implication > ! ¬¬p. Program (17) is FT-tight.

An edge from p to q in the dependency graph of a simple
program H will be called FLP-critical if for some simple
rule G ! H in H, p is a disjunctive term in H and, for
some conjunctive term A

^
! L

_ of G, ¬¬q belongs to L.
We call a simple program FLP-tight if its dependency graph
has no path containing infinitely many FLP-critical edges.

It is clear that if there are no extended literals of the
form ¬¬p in a simple program then there are no FLP-critical
edges in its dependency graph, so that the program is FLP-
tight. For example, (16) is a simple program of this kind.
On the other hand, in the dependency graph of program (17)
the self-loop at p is FLP-critical, so that the program is not
FLP-tight.

Main Lemma For any simple program H,

(a) if H is FT-tight then all FLP-stable models of H are FT-

stable;

(b) if H is FLP-tight then all FT-stable models of H are FLP-

stable.

Some parts of the proof of the lemma below are inspired
by results from Ferraris, Lee, and Lifschitz (2006).

Proof of Main Lemma

If F is a simple disjunction and X is a set of atoms, by F
X
?

we denote the simple disjunction obtained from F by remov-
ing all disjunctive terms that belong to X .13 If F is a simple
implication A

^
! L

_ then by F
X
? we denote F itself if

11We call the graph extended positive to emphasize the fact that
the definition reqires q to occur positively in G, but not strictly
positively.

12In the case of a finite dependency graph, this condition is
equivalent to requiring that no cycle contains an FT-critical edge.

13This notation is motivated by the fact that FX
? is the result of

substituting ? for the disjunctive members of F that belong to X ,
rewritten as a simple disjunction.

A \ X is non-empty, and A
^
! (L_)X? otherwise.14 If F

is a simple formula then F
X
? stands for the simple formula

obtained by applying this transformation to all conjunctive
terms of F . It is clear that FX

? entails F .
For any simple program H, by H

X
? we denote the simple

program obtained from H by applying this transformation
to G and H for each simple rule G! H in H.

Lemma 1 Let I be a model of a simple program H, X be a

set of atoms, and K be a subset of X such that the depen-

dency graph of H has no edges from atoms in K to atoms in

X \K. If I satisfies H
X
? , then I satisfies H

K
? .

Proof. Assume on the contrary that I does not satisfy H
K
? .

Then there is a simple rule G! H in H such that I satisfies
G

K
? but does not satisfy H

K
? . Further, since I satisfies G

K
?

and G
K
? entails G, I satisfies G as well. Then since I is a

model of H, I satisfies H . Since I satisfies H but does not
satisfy H

K
? , there is some atom p in H that is also in K.

Now, since I satisfies GK
? it must also satisfy G

X
? . Indeed, if

this were not the case, there would be some atom q occurring
positively in G and also occurring in X \ K. Then there
would be an edge from p 2 K to q 2 X \K, contradicting
the assumption of the lemma. On the other hand, I does not
satisfy H

X
? , since I does not satisfy H

K
? and K is a subset

of X . We may conclude that I does not satisfy G
X
? ! H

X
?

and therefore does not satisfy H
X
? .

Lemma 2 Let I be a model of a simple program H and let

K be a subset of I such that there are no FT-critical edges

in the subgraph of the dependency graph of H induced by

K. If I |= H
K
? then I \K satisfies the FLP-reduct of H with

respect to I .

Proof. Consider a simple rule G ! H in H such that
I |= G, so that G ! H is in the FLP-reduct of H. We will
show that I \ K satisfies G ! H . Since I |= H

K
? , either

I 6|= G
K
? or I |= H

K
? .

Case 1: I |= H
K
? . Then H has a disjunctive term that be-

longs to I but not to K, so that I \ K |= H . We conclude
that I \K |= G! H .

Case 2: I 6|= G
K
? . Consider a conjunctive term A

^
! L

_ in
G such that I 6|= (A^

! L
_)K? . Since I |= G, I |= A

^
!

L
_. It follows that A \K is empty and that I satisfies both

A
^ and L

_ but does not satisfy (L_)K? .

Case 2.1: A
^
! L

_
is positive. Then L is a set of atoms.

Since I 6|= (L_)K? , all atoms from I that are in L are also in
K. So I\K 6|= L

_. Since A\K is empty and I satisfies A^,
I \K also satisfies A^. We may conclude that I \K 6|= G

so that I \K |= G! H .

Case 2.2: A
^
! L

_
is non-positive. Since I satisfies L_ but

not (L_)K? , there is an atomic disjunctive term p in L that
belongs to I \K. Then p occurs positively in G. It follows
that no disjunctive term in H occurs in K. (If there were

14This operation is a special case of the NES operation defined
by Ferraris, Lee, and Lifschitz (2006). Distinguishing between the
two cases in the definition is crucial for Lemmas 5 and 6.

such a disjunctive term q in H then, since A^
! L

_ is non-
positive, there would be an FT-critical edge from q to p in
the subgraph of the dependency graph of H induced by K.
But the condition of the lemma stipulates that there are no
FT-critical edges in that graph.) Since I satisfies G and is a
model of the program, I satisfies H as well. Since no atoms
from K occur in H , it follows that I \K satisfies H , so that
I \K satisfies G! H .
Lemma 3 If H is an FT-tight simple program and X is a

non-empty set of atoms, then there exists a non-empty subset

K of X such that in the subgraph of the dependency graph

of H induced by X

(i) there are no edges from K to atoms in X \K, and

(ii) no atom in K has outgoing FT-critical edges.

Proof. Consider the subgraph of the dependency graph of
H induced by X . It contains some vertex b such that there
is no path starting at b that contains an FT-critical edge. (If
there were no such vertex b, then there would be a path con-
taining infinitely many FT-critical edges and H would not
be FT-tight.) Take K to be the set of all vertices reachable
from b. It is clear that condition (i) is satisfied. Furthermore,
since all atoms in K are reachable from b, and no path start-
ing at b contains an FT-critical edge, none of the atoms in
K have outgoing FT-critical edges in the subgraph of the
dependency graph of H induced by X . So condition (ii) is
satisfied as well.
Lemma 4 If H is an FT-tight simple program and I is an

FLP-stable model of H, then for every non-empty subset X

of I , I 6|= H
X
? .

Proof. Assume on the contrary that there is some non-
empty subset X of I such that I |= H

X
? . By Lemma 3, there

is a non-empty subset K of X meeting conditions (i) and
(ii). Since I |= H

X
? and K satisfies (i), by Lemma 1 we may

conclude that I |= H
K
? . Since K satisfies condition (ii) and

is a subset of X , it is clear that there are no FT-critical edges
in the subgraph of the dependency graph of H induced by
K. So by Lemma 2, I \ K satisfies the FLP-reduct of H,
contradicting the assumption that I is FLP-stable.
Lemma 5 Let G be a simple disjunction or a simple for-

mula, and let X be a set of atoms. An interpretation I satis-

fies G
X
? iff it satisfies FT (G, I)X? .

Proof. To prove the assertion for a simple disjunction, it is
sufficient to consider the case when G is a single extended
literal. If G is an atom p,
I |= p

X
? iff p 2 I and p 62 X iff I |= FT (p, I)X? .

If G is either ¬p or ¬¬p, then G
X
? is G and FT (G, I)X?

is FT (G, I). It is clear that I satisfies G iff it satisfies
FT (G, I).

To prove the assertion of the lemma for simple formu-
las, it is sufficient to consider the case when G is a sin-
gle simple implication A

^
! L

_. If I does not satisfy G

then it does not satisfy G
X
? either; on the other hand, in

this case FT (G, I) is ?, and so is FT (G, I)X? . Otherwise,
FT (G, I)X? is

(FT (A^
, I)! FT (L_

, I))
X
? . (18)

We consider two cases corresponding to whether or not A\
X \ I is empty. If A \ X \ I is empty, I does not satisfy
(18) iff

A ✓ I and I 6|= FT (L_
, I)X? ,

or equivalently,

I |= A
^ and I 6|= (L_)X? .

If on the other hand, A \ X \ I is non-empty, then (18) is
FT (G, I) and G

X
? is G.

Lemma 6 For any simple disjunction G and any interpre-

tations I and J , J |= FT (G, I) iff I |= FT (G, I)I\J? .

Proof. It is sufficient to prove the lemma for the case when
G is a single extended literal. If G is an atom p then

J |= FT (p, I) iff p 2 I and p 2 J iff I |= FT (p, I)I\J? .

If G is ¬p then both

J |= FT (G, I)

and
I |= FT (G, I)I\J?

are equivalent to p 62 I . If G is ¬¬p then both

J |= FT (G, I)

and
I |= FT (G, I)I\J?

are equivalent to p 2 I .

Lemma 7 For any simple formula G and any interpreta-

tions I and J , if I |= FT (G, I)I\J? then J |= FT (G, I).

Proof. It is sufficient to consider the case when G is a sin-
gle simple implication A

^
! L

_. If I does not satisfy G

then both FT (G, I) and FT (G, I)I\J? are ?. Assume I sat-
isfies G. Then FT (G, I) is

FT (A^
, I)! FT (L_

, I).

We consider two cases corresponding to whether or not
A \ I \ J is empty. If A \ I \ J is non-empty, then
FT (G, I)I\J? is FT (G, I). Furthermore, J does not satisfy
FT (A^

, I). Indeed, if it did, A would be a subset of both I

and J , contradicting the assumption that A \ I \ J is non-
empty. It follows that J |= FT (G, I). If, on the other hand,
A \ I \ J is empty, then FT (G, I)I\J? is

FT (A^
, I)! (FT (L_

, I))
I\J
? .

Assume that J does not satisfy FT (G, I). Then

J |= FT (A^
, I) and J 6|= FT (L_

, I).

From the first condition we may conclude that I |=
FT (A^

, I). (Indeed, if J |= FT (A^
, I) then A must be

a subset both of I and of J .) From the last condition using
Lemma 6 it follows that I 6|= FT (L_

, I)I\J? . We may con-
clude that I 6|= FT (G, I)I\J? .

Proof of Part (a) of Main Lemma. Let I be an FLP-stable
model of an FT-tight simple program H. Then I |= H, so
that I |= FT (H, I). We need to show that no proper sub-
set J of I satisfies FT (H, I). Take a proper subset J of I ,
and let X be I \ J . By Lemma 4, I does not satisfy H

X
? .

Then there is a simple rule G! H in H such that I satisfies
G

X
? and does not satisfy H

X
? . By Lemma 5, it follows that I

satisfies FT (G, I)X? and does not satisfy FT (H, I)X? . Since
X = I \ J , it follows that J satisfies FT (G, I) (Lemma 7)
but does not satisfy FT (H, I) (Lemma 6). So J does not
satisfy FT (H, I). It follows that I is FT-stable.

We turn now to the proof of part (b) of Main Lemma. If F
is a simple disjunction then by F

+ we denote the result of
replacing each extended literal ¬¬p in F by p, and similarly
for simple implications, formulas, rules, and programs.
Lemma 8 Let I be a model of a simple program H, and

let K be a set of atoms such that there are no FLP-critical

edges in the subgraph of the dependency graph of H induced

by K. If I |= (H+)K? then I \ K satisfies the FT-reduct of

H with respect to I .

Proof. We need to show that I \K satisfies the FT-reduct
of every simple rule G! H in H. Since I is a model of H,
that reduct is FT (G, I) ! FT (H, I). If I 6|= G then the
antecedent of this implication is equivalent to ?, and the
assertion that the implication is satisified by I \K is trivial.

Assume then that I |= G. Since I is a model of H, it
follows that I |= H . Since I |= (H+)K? , either I 6|= (G+)K?
or I |= H

K
? .

Case 1: I |= H
K
? . Then H has a disjunctive term p that

belongs to I but not to K. Then p is also a disjunctive term
in FT (H, I), so that I \K |= FT (H, I). We conclude that
I \K satisfies FT (G! H, I).

Case 2: I 6|= (G+)K? . Consider a conjunctive term

A
^
! L

_

in G such that I does not satisfy (A^
! (L_)+)K? . Since

I |= G, I |= A
^
! L

_. It follows that A \ K is empty
and that I satisfies A^, L_ and (L_)+ but does not satisfy
((L_)+)K? .

Case 2.1: L
_

does not contain any extended literal ¬¬p such

that p 2 K. Since I satisfies (L_)+ but not ((L_)+)K? , each
atomic disjunctive term p in (L_)+ that is in I must also be
in K. Furthermore, I cannot satisfy any literal ¬p in L. (If
it did, then that literal would also be in ((L_)+)K? , and this
disjunction would be satisfied by I .) Since L does not con-
tain any extended literal ¬¬p such that p is in K, I does not
satisfy any extended literal ¬¬p in L. (For each extended
literal ¬¬p in L, p is a disjunctive term in ((L_)+)K? . If I
satisfied some extended literal ¬¬p 2 L, then I would sat-
isfy p and therefore also satisfy ((L_)+)K? .) We conclude
that every extended literal in L that is satisfied by I is an
atom from K. It follows that FT (L_

, I) is equivalent to a
disjunction of atoms from K. So I \K 6|= FT (L_

, I). Since
I |= A

^, I |= FT (A^
, I). Since A\K is empty, I \K also

satisfies FT (A^). We may conclude that I\K 6|= FT (G, I)
so that I \K |= FT (G! H, I).

Case 2.2: L
_

contains an extended literal ¬¬p such that

p 2 K. Then no disjunctive term in H occurs in K. (If
there were such a disjunctive term q in H then there would
be an FLP-critical edge from q to p in the subgraph of the
dependency graph of H induced by K. But the condition
of the lemma stipulates that there are no FLP-critical edges
in that graph.) Since I satisfies H , I satisfies FT (H, I) as
well. Since no atoms from K occur in H , it follows that I\K
satisfies FT (H, I), so that I \K satisfies FT (G! H, I).
Lemma 9 If H is an FLP-tight simple program and X is a

non-empty set of atoms, then there exists a non-empty subset

K of X such that in the subgraph of the dependency graph

of H induced by X

(i) there are no edges from K to atoms in X \K, and

(ii) no atom in K has outgoing FLP-critical edges.

The proof is similar to the proof of Lemma 3.
Lemma 10 If H is an FLP-tight simple program and I is

an FT-stable model of H, then for every non-empty subset

X of I , I 6|= (H+)X? .

Proof. Assume on the contrary that I |= (H+)X? for some
non-empty subset X of I . Consider a non-empty subset K
of X meeting conditions (i) and (ii) from Lemma 9. Since
I |= (H+)X? and K satisfies (i), by Lemma 1 we may con-
clude that I |= (H+)K? . Since K satisfies (ii) and is a sub-
set of X , there are no FLP-critical edges in the subgraph of
the dependency graph of H induced by K. So by Lemma 8,
I \K satisfies the FT-reduct of H, contradicting the assump-
tion that I is FT-stable.
Lemma 11 Let G be a simple disjunction or a simple for-

mula. For any interpretations I and J such that J ✓ I , if

I |= (G+)I\J? then J |= G.

Proof. To prove the assertion of the lemma for simple dis-
junctions, it is sufficient to consider the case when G is a
single extended literal. If G is p or ¬¬p then (G+)I\J? is
p
I\J
? . Since I satisfies this formula, p 2 J , so that J |= G.

If G is ¬p then (G+)I\J? is ¬p. Since I |= ¬p and J ✓ I ,
J |= ¬p.

To prove the assertion of the lemma for simple formulas,
it is sufficient to consider the case when G is a single simple
implication A

^
! L

_. If A \ I \ J is non-empty then

J 6|= A
^
,

so that J |= G. If, on the other hand, A \ I \ J is empty
then (G+)I\J? is A

^
! ((L_)+)I\J? . Assume that J does

not satisfy G. Then

J |= A
^ and J 6|= L

_
.

From the first condition and the fact that J ✓ I we may con-
clude that I |= A

^. From the second condition it follows, by
the part of the lemma proved above, that I 6|= ((L_)+)I\J? .

Consequently I 6|= (G+)I\J? .

Proof of Part (b) of Main Lemma. Let I be an FT-stable
model of an FLP-tight simple program H. Then I is a model

of H, and consequently a model of the reduct FLP(H, I).
We need to show that no proper subset J of I is a model of
this reduct. Consider a proper subset J of I , and let X be
I \ J . By Lemma 10, I does not satisfy (H+)X? . Then there
is a simple rule G ! H in H such that I satisfies (G+)X?
and does not satisfy H

X
? . Since (G+)X? entails G+, and G

+

is equivalent to G, we can conclude that I satisfies G, so
that G ! H belongs to the reduct FLP(H, I). On the other
hand, by Lemma 11, J satisfies G. Since I does not satisfy
H

X
? and H is a disjunction of atoms, J does not satisfy H .

So J does not satisfy G ! H , and consequently is not a
model FLP(H, I).

Proof of Main Theorem

Consider a program ⇧ in the programming language de-
scribed at the beginning of this paper. Every formula in ⌧⇧
corresponds to one of the rules (8) of ⇧ and has the form

⌧((B1, . . . , Bn)
x
r)! ⌧(H1)

x
r _ · · · _ ⌧(Hk)

x
r (19)

where x is the list of all global variables of the rule, and r
is a tuple of precomputed terms such that all literals (Hi)

x
r ,

(Bj)
x
r are well-formed. The consequent of (19) is a disjunc-

tion of atoms over the signature �0—the set of atoms of the
form p(t), where p is a symbolic constant and t is a tuple of
precomputed terms. The antecedent of (19) is a conjunction
of formulas of three types:

(i) literals over �0—each of them is ⌧(Lx
r) for some sym-

bolic literal L from the body of the rule;

(ii) implications of form (14)—each of them is ⌧(Ex
r) for

some aggregate atom E from the body of the rule;

(iii) negations of such implications—each of them is ¬⌧(Ex
r)

for some aggregate literal not E from the body of the rule.

Each of the formulas ⌧(Lx
r) in (14) is a conjunction of lit-

erals over �0. It follows that (14) can be represented in the
form

(A1)
^
^

^

p2A2

¬p ! C
_
, (20)

where A1 and and A2 are sets of atoms from �0, and C is a
set of conjunctions of literals over �0.

Consider the simple program H obtained from ⌧⇧ by
transforming the conjunctive terms of the antecedents of its
formulas (19) as follows:

• Every literal L is replaced by the simple implication

> ! L. (21)

• Every implication (20) is replaced by the simple formula

^

�

0

@(A1)
^
!

_

p2A2

¬¬p _

_

C2C, C is non-empty

�(C)

1

A ,

(22)
where the big conjunction extends over all functions �

that map every non-empty conjunction from C to one of
its conjunctive terms.

• Every negated implication (20) is replaced by the simple
formula

^

p2A1

(> ! p) ^
^

p2A2

(> ! ¬p)^

^

C2C

_

L is a conjunctive term of C

(> ! ¬L). (23)

Each conjunctive term of the antecedent of (19) is equivalent
to the simple formula that replaces it in H. It follows that ⌧⇧
and H have the same FLP-stable models. On the other hand,
⌧⇧ and H have the same models in the infinitary logic of
here-and-there, and consequently the same FT-stable mod-
els. Consequently, the FLP-stable models of ⇧ can be char-
acterized as the FLP-stable models of H, and the FT-stable
models of ⇧ can be characterized as the FT-stable models
of H.

To derive the main theorem from the main lemma, we will
establish two claims that relate the predicate dependency
graph of ⇧ to the dependency graph of H:

Claim 1. If there is an edge from an atom p(t1, . . . , tk) to
an atom q(s1, . . . , sl) in the dependency graph of H then
there is an edge from p/k to q/l in the predicate dependency
graph of ⇧.

Claim 2. If the edge from p(t1, . . . , tk) to q(s1, . . . , sl) in
the dependency graph H is FT-critical or FLP-critical then ⇧
contains a rule (8) such that
• p/k is the predicate symbol of one of the atoms Hi, and
• q/l is the predicate symbol of an atom occurring in one of

the non-positive aggregate literals Bj .

Using these claims, we will show that if the dependency
graph of H has a path with infinitely many FT-critical edges
or infinitely many FLP-critical edges then we can find a non-
positive aggregate literal recursive with respect to ⇧. The
assertion of the theorem will immediately follow then by
Main Lemma.

Assume that p1(t1), p2(t2), . . . is a path in the depen-
dency graph of H that contains infinitely many FT-critical
edges (for FLP-critical edges, the reasoning is the same).
By Claim 1, the sequence p1/k1, p2/k2, . . . , where ki is
the length of ti, is a path in the predicate dependency graph
of ⇧. Since that graph is finite, there exists a positive in-
teger a such that all vertices pa/ka, pa+1/ka+1, . . . be-
long to the same strongly connected component. Since the
path p1(t1), p2(t2), . . . contains infinitely many FT-critical
edges, there exists a b � a such that the edge from pb(tb)
to pb+1(tb+1) is FT-critical. By Claim 2, it follows that ⇧
contains a rule (8) such that pb/kb is the predicate sym-
bol of one of the atoms Hi, and pb+1/kb+1 is the predicate
symbol of an atom occurring in one of the non-positive ag-
gregate literals Bj . Since pb/kb and pb+1/kb+1 belong to
the same strongly connected component, there exists a path
from pb+1/kb+1 to pb/kb. It follows that Bi is recursive with
respect to ⇧.

Proof of Claim 1. If there is an edge from p(t1, . . . , tk) to
q(s1, . . . , sl) in the dependency graph of H then ⇧ contains

a rule (8) such that p(t1, . . . , tk) occurs in the consequent of
one of the implications (19) corresponding to this rule, and
q(s1, . . . , sl) occurs in one of the formulas (21)–(23). Then
q(s1, . . . , sl) occurs also in the antecedent of (19). It follows
that p/k is the predicate symbol of one of the atoms occuring
in the head of the rule, and q/l is the predicate symbol of one
of the atoms occurring in its body.

Proof of Claim 2. If the edge from p(t1, . . . , tk) to
q(s1, . . . , sl) in the dependency graph of H is FT-critical
then ⇧ contains a rule (8) such that p(t1, . . . , tk) occurs in
the consequent of one of the implications (19) corresponding
to this rule, and q(s1, . . . , sl) occurs strictly positively in one
of the non-positive conjunctive terms A

^
! L

_ of one of
the simple conjunctions (21)–(23). If a formula of form (21)
is non-positive then no atoms occur in it strictly positively.
Consequently A

^
! L

_ is a conjunctive term of one of the
formulas (22) or (23), and it corresponds to an aggregate lit-
eral from the body of the rule. That aggregate literal is not
positive, because for any positive literal E no conjunctive
term of the corresponding simple conjunction (22) is non-
positive. It follows that p/k is the predicate symbol of one
of the atoms in the head of the rule, and q/l is the predicate
symbol of an atom from a non-positive aggregate literal in
the body.

For FLP-critical edges the reasoning is similar, using the
fact that formulas of form (21) do not contain double nega-
tions, and neither do formulas of form (22) corresponding to
positive aggregate literals.

Related Work

The equivalence between the FLP and FT approaches to
defining stable models for programs without aggregates was
established by Faber, Leone, and Pfeifer (2004), Theorem 3.
The fact that this equivalence is not destroyed by the use
of positive aggregates was proved by Ferraris (2005), The-
orem 3. That result is further generalized by Bartholomew,
Lee, and Meng (2011), Theorem 7.

The program

q(1),
r count{X : not p(X), q(X)} = 1

has no recursive aggregates but is not covered by any of the
results quoted above because it contains a negative literal in
the conditions of an aggregate atom.

Conclusion

An oversight in the semantics proposed in the ASP-Core
document can be corrected using a translation into the lan-
guage of infinitary propositional formulas. The main theo-
rem of this paper describes conditions when stable mod-
els in the sense of the (corrected) ASP-Core definition are
identical to stable models in the sense of the input language
of CLINGO.

The main lemma asserts that if a set of infinitary propo-
sitional formulas is FT-tight then its FLP-stable models are
FT-stable, and if it is FLP-tight then its FT-stable models are
FLP-stable.

Acknowledgements

Martin Gebser made a valuable contribution to our work by
pointing out an oversight in an earlier version of the proof
and suggesting a way to correct it. We are grateful to Wolf-
gang Faber, Jorge Fandiño, Michael Gelfond, and Yuanlin
Zhang for useful discussions related to the topic of this pa-
per, and to the anonymous referees for their comments. This
research was partially supported by the National Science
Foundation under Grant IIS-1422455.

References

Bartholomew, M.; Lee, J.; and Meng, Y. 2011. First-order
extension of the FLP stable model semantics via modified
circumscription. In Proceedings of International Joint

Conference on Artificial Intelligence (IJCAI), 724–730.
Faber, W.; Leone, N.; and Pfeifer, G. 2004. Recursive aggre-

gates in disjunctive logic programs: Semantics and com-
plexity. In Proceedings of European Conference on Log-

ics in Artificial Intelligence (JELIA).
Ferraris, P.; Lee, J.; and Lifschitz, V. 2006. A generaliza-

tion of the Lin-Zhao theorem. Annals of Mathematics and

Artificial Intelligence 47:79–101.
Ferraris, P. 2005. Answer sets for propositional theories.

In Proceedings of International Conference on Logic Pro-

gramming and Nonmonotonic Reasoning (LPNMR), 119–
131.

Gebser, M.; Harrison, A.; Kaminski, R.; Lifschitz, V.; and
Schaub, T. 2015. Abstract Gringo. Theory and Practice

of Logic Programming 15:449–463.
Gelfond, M., and Zhang, Y. 2014. Vicious circle principle

and logic programs with aggregates. Theory and Practice

of Logic Programming 14(4-5):587–601.
Harrison, A.; Lifschitz, V.; Pearce, D.; and Valverde, A.

2017. Infinitary equilibrium logic and strongly equivalent
logic programs. Arificial Intelligence 246.

Harrison, A. 2017. Formal Methods for Answer Set Pro-

gramming
15. Ph.D. Dissertation, University of Texas at

Austin.
Heyting, A. 1930. Die formalen Regeln der intuitionistis-

chen Logik. Sitzungsberichte der Preussischen Akademie

von Wissenschaften. Physikalisch-mathematische Klasse

42–56.
Truszczynski, M. 2010. Reducts of propositional theories,

satisfiability relations, and generalizations of semantics
of logic programs. Artificial Intelligence 174(16):1285
– 1306.

Truszczynski, M. 2012. Connecting first-order ASP and the
logic FO(ID) through reducts. In Erdem, E.; Lee, J.; Lier-
ler, Y.; and Pearce, D., eds., Correct Reasoning: Essays on

Logic-Based AI in Honor of Vladimir Lifschitz. Springer.
543–559.

15http://www.cs.utexas.edu/users/ameliaj/pubs
/ajh thesis.pdf

Defeasible Entailment: from Rational Closure to Lexicographic Closure and

Beyond

Giovanni Casini

CSC, Université du Luxembourg
Luxembourg

giovanni.casini@uni.lu

Thomas Meyer

CAIR & University of Cape Town
South Africa

tmeyer@cs.uct.ac.za

Ivan Varzinczak

CRIL, Univ. Artois & CNRS
France

varzinczak@cril.fr

Abstract

In this paper we present what we believe to be the first
systematic approach for extending the framework for de-
feasible entailment first presented by Kraus, Lehmann, and
Magidor—the so-called KLM approach. Drawing on the
properties for KLM, we first propose a class of basic defea-
sible entailment relations. We characterise this basic frame-
work in three ways: (i) semantically, (ii) in terms of a class
of properties, and (iii) in terms of ranks on statements in a
knowlege base. We also provide an algorithm for computing
the basic framework. These results are proved through vari-
ous representation results. We then refine this framework by
defining the class of rational defeasible entailment relations.
This refined framework is also characterised in thee ways: se-
mantically, in terms of a class of properties, and in terms of
ranks on statements. We also provide an algorithm for com-
puting the refined framework. Again, these results are proved
through various representation results.
We argue that the class of rational defeasible entail-
ment relations—a strengthening of basic defeasible entail-
ment which is itself a strengthening of the original KLM
proposal—is worthy of the term rational in the sense that
all of them can be viewed as appropriate forms of defeasi-
ble entailment. We show that the two well-known forms of
defeasible entailment, rational closure and lexicographic clo-
sure, fall within our rational defeasible framework. We show
that rational closure is the most conservative of the defeasi-
ble entailment relations within the framework (with respect
to subset inclusion), but that there are forms of defeasible en-
tailment within our framework that are more “adventurous”
than lexicographic closure.

1 Introduction

The approach by Kraus, Lehmann and Magidor (1990)
(a.k.a. KLM, or System P plus Rational Monotony) is a
well-known framework for defeasible reasoning. The KLM
properties can be viewed as constraints on appropriate forms
of defeasible entailment. Currently two are the most known
forms of defeasible entailment satisfying those properties:
rational closure (Lehmann and Magidor 1992) and lexico-
graphic closure (Lehmann 1995). Both forms of defeasible
entailment can be characterised in three ways: semantically,
in terms of ranks, and algorithmically.

Here we present what we believe to be the first systematic
approach for extending the framework for defeasible entail-

ment originally proposed by Kraus, Lehmann, and Magi-
dor. Our first proposal for doing so is referred to as basic
defeasible entailment. This framework can be obtained by
a strengthening of the KLM properties: adding additional
properties to those initially proposed by KLM. We then pro-
ceed to characterise basic defeasible entailment in two other
ways. The first is a semantic characterisation in terms of a
class of ranked interpretations. The second is a characteri-
sation in terms of a class of functions that rank propositional
(and defeasible) statements in a knowledge base according
to their level of typicality. We then provide an algorithm for
computing the framework. Given a rank function, we present
an algorithm for computing basic defeasible entailment. The
algorithm is a generalisation of one that has been proposed
for computing rational closure (Freund 1998).

Having defined basic defeasible entailment, we propose
a further strengthening via an additional property; one that
requires any defeasible entailment relation to extend ratio-
nal closure. In doing so we ensure that rational closure is
viewed as the most conservative form of defeasible entail-
ment. We refer to the resulting class of defeasible entail-
ment relations as rational and argue that the class as a whole
is worthy of further investigation. Part of this justification
is that both rational and lexicographic closure are rational
defeasible entailment relations. But while rational closure is
the most conservative form of rational defeasible entailment,
it turns out there are forms of rational defeasible entailment
that are “bolder” than lexicographic closure. We show that
rational defeasible entailment can also be characterised in
two other ways: a semantic characterisation in terms of a
further restricted class of ranked interpretations, and a char-
acterisation in terms of a further restricted class of ranks. We
also provide an algorithm for computing rational defeasible
entailment. Given one of the restricted rank functions, the
algorithm computes rational defeasible entailment.

We argue that the framework for rational defeasible en-
tailment is reminiscent of the AGM framework for belief
change (Alchourrón, Gärdenfors, and Makinson 1985) when
viewed from the semantic perspective. Rational closure is
analogous to full-meet revision (and contraction); there are
defeasible entailment relations analogous to (linear) maxi-
choice revision (and contraction), and the semantic construc-
tion of the class of rational defeasible entailment relations
bears a close resemblance to transitively relation partial-

meet revision (and contraction) (Gärdenfors 1988).

The remainder of the paper is structured as follows. Sec-
tion 2 fixes the notation and terminology we use, and con-
tains a summary of the necessary technical background:
an introduction to KLM-style defeasible implication (Sec-
tion 2.1), defeasible entailment for propositional languages
enriched with a defeasible implication connective (Sec-
tion 2.2), and an overview of rational closure (Section 2.3).
Then, in Section 3 we present and discuss our notion of basic
defeasible entailment. This is followed in Section 4 with an
investigation into rational defeasible entailment. Section 5 is
devoted to lexicographic closure and its relation to rational
defeasible entailment, while Section 6 provides an overview
of related work. Finally, in Section 7 we conclude and briefly
point to future directions for this line of research.

2 Background

Let P be a finite set of propositional atoms. We use p, q, . . .
as meta-variables for atoms. Propositional sentences are de-
noted by ↵,�, . . ., and are recursively defined in the usual
way: ↵ ::= > | ? | p | ¬↵ | (↵ ^ ↵) | (↵ _ ↵) | (↵ !

↵) | (↵ $ ↵). With L we denote the set of all propositional
sentences.

With U ⌘def {0, 1}P we denote the (finite) set of all
propositional valuations, with 1 representing truth and 0 rep-
resenting falsity. We use u, v . . . to denote valuations. When-
ever it eases the presentation, we represent valuations as se-
quences of atoms (e.g., p) and barred atoms (e.g., p), with
the understanding that the presence of a non-barred atom
indicates that the atom is true (has the value 1) in the valu-
ation, while the presence of a barred atom indicates that the
atom is false (has the value 0) in the valuation. Thus, for the
logic generated from P = {p, q}, the valuation in which p
is true and q is false will be represented as pq. Satisfaction
of a sentence ↵ 2 L by v 2 U is defined in the usual truth-
functional way and is denoted by v � ↵. The models of a set
of sentences X is defined as: JXK ⌘def {v 2 U | v � ↵ for
every ↵ 2 X}.

2.1 KLM-style defeasible implication

In the logic proposed by Kraus et al. (1990), often referred
to as the KLM approach, we are interested in defeasible im-
plications (or DIs) of the form ↵ |⇠ �, read as “typically,
if ↵, then �”. For instance, if P = {b, f, p}, where b, f and p
stand for, respectively, “being a bird”, “being able to fly”,
and “being a penguin”, the following are examples of defea-
sible implications: b |⇠ f (birds typically fly), p ^ b |⇠ ¬f
(penguins that are birds typically do not fly).

The semantics of KLM-style rational defeasible implica-
tions is given by structures referred to as ranked interpreta-
tions (Lehmann and Magidor 1992). In this work we adopt
the following alternative representation thereof:

Definition 1 A ranked interpretation R is a function from
U to N [{1} such that R(u) = 0 for some u 2 U , and
satisfying the following convexity property: for every i 2 N,
if R(v) = i, then, for every j s.t. 0 j < i, there is a
u 2 U for which R(u) = j.

In a ranked interpretation, we call R(v) the rank of v
w.r.t. R. The intuition is that valuations with a lower rank are
deemed more normal (or typical) than those with a higher
rank, while those with an infinite rank are regarded as so
atypical as to be impossible. With U R

⌘def {v 2 U |

R(v) < 1} we denote the possible valuations in R. Given
↵ 2 L, we let J↵KR

⌘def {v 2 U R
| v � ↵}. R satisfies

(is a ranked model of) ↵ (denoted R � ↵) if U R
✓ J↵KR.

Note that R generates a total preorder (a connected, tran-
sitive ordering) �R on U as follows: v �R u if and only
if R(v) R(u). Moreover, given any total preorder �

on V ✓ U , we can use its strict version � to generate a
ranked interpretation. To see how, first let the height h(v)
of v 2 V be the length of the �-path between any one of
the �-minimal elements of V and v (where the length of the
�-path between any of the �-minimal elements and a �-
minimal element is 0).

Definition 2 For V ✓ U and a total preorder � on V, the
ranked interpretation R� generated from � is defined as
follows: for every v 2 U , R�(v) = h(v) if v 2 V, and
R�(v) = 1 otherwise.

Given a ranked interpretation R and ↵,� 2 L, we say R
satisfies (is a ranked model of) the conditional ↵ |⇠ � (de-
noted R � ↵ |⇠ �) if all the �-minimal ↵-valuations also
satisfy �, i.e., if min�J↵KR

✓ J�KR. We say R satisfies a
set of conditionals K if R � ↵ |⇠ � for every ↵ |⇠ � 2 K.

Figure 1 depicts an example of a ranked interpretation for
P = {b, f, p} satisfying K = {p ! b, b |⇠ f, p |⇠ ¬f}.1

2 pbf

1 pbf pbf

0 pbf pbf pbf

Figure 1: A ranked interpretation for P = {b, f, p}.

An important property of ranked interpretations is that all
classical propositional sentences can be expressed as DIs.
More precisely, we have the following result: for every R
and every ↵ 2 L, R � ↵ if and only if R � ¬↵ |⇠ ?. The
logic of defeasible implications can therefore be viewed as
an extension of propositional logic.

2.2 Defeasible Entailment

Let a knowledge base K be a finite set of defeasible impli-
cations. One of the central questions is to determine what
entailment means in this context. That is, we aim to specify
what it means for a defeasible implication to be entailed by
a fixed knowledge K. This is the main question with which
we concern ourselves in this paper. We refer to this type of
reasoning as defeasible entailment and denote it by |⇡. It is

1For brevity, we shall omit the valuations with rank 1 in our
graphical representations of ranked interpretations.

important to note that, for the purposes of this paper, we as-
sume K to be fixed.2 Strictly speaking, we should therefore
refer to defeasible K-entailment. However, where there is no
ambiguity, we frequently drop the K prefix, and just refer to
defeasible entailment.

It is well-accepted that defeasible entailment (unlike
classical entailment) is not unique. Lehmann and Magi-
dor (1992) put forward rational closure as an appropriate
form of defeasible entailment, while Lehmann (1995) pro-
posed lexicographic closure as an alternative. We consider
both of these in more detail below.

More generally, in studying different forms of defeasible
entailment, the position advocated by Lehmann and Magi-
dor (1992), and one we adopt here as well, is to consider
a number of rationality properties, referred to as the KLM
properties, for defeasible entailment.
(Ref) K |⇡ ↵ |⇠ ↵

(LLE)
↵ ⌘ �, K |⇡ ↵ |⇠ �

K |⇡ � |⇠ �

(RW)
K |⇡ ↵ |⇠ �, � |= �

K |⇡ ↵ |⇠ �

(And)
K |⇡ ↵ |⇠ �, K |⇡ ↵ |⇠ �

K |⇡ ↵ |⇠ � ^ �

(Or)
K |⇡ ↵ |⇠ �, K |⇡ � |⇠ �

K |⇡ ↵ _ � |⇠ �

(CM)
K |⇡ ↵ |⇠ �, K |⇡ ↵ |⇠ �

K |⇡ ↵ ^ � |⇠ �

(RM)
K |⇡ ↵ |⇠ �, K 6|⇡ ↵ |⇠ ¬�

K |⇡ ↵ ^ � |⇠ �

Lehmann and Magidor argue that defeasible entailment
ought to satisfy all the above KLM properties. We refer to
this as LM-rationality.

We can refer to defeasible entailment as being generated
from single ranked interpretations.
Definition 3 A ranked interpretation R is said to generate a
defeasible K-entailment relation |⇡R by setting K |⇡R ↵ |⇠

� if and only if R � ↵ |⇠ �. (If there isn’t any ambiguity,
we drop the subscript R.)

Lehmann and Magidor proved the following useful result.
Observation 1 (Lehman & Magidor (1992)) A defeasible
entailment relation is LM-rational if and only if it can be
generated from a ranked interpretation.3

Using LM-rationality as a starting point, it is easy to see
that the most obvious attempt at defining defeasible entail-
ment does not make the grade (Lehmann and Magidor 1992,
Sect. 4.2).

2For an investigation of the case where K may vary, the reader
is invited to consult the work of Casini and Meyer (2017).

3This result was originally phrased as a representation result
about non-monotonic consequence relations on propositional state-
ments (Kraus, Lehmann, and Magidor 1990), but were subse-
quently applied to defeasible entailment relations for propositional
logic enriched with defeasible implication. Section 6 explains this
in more detail.

Definition 4 A defeasible implication ↵ |⇠ � is rank en-
tailed by a knowledge base K (denoted as K |⇡R ↵ |⇠ �) if
every ranked model of K is also a ranked model of ↵ |⇠ �.

Rank entailment is an application of the classical Tarskian
tradition of entailment to ranked interpretations, but it does
not satisfy rational monotonicity (RM) and is therefore not
rational (Lehmann and Magidor 1992, Th. 4.2). Despite this,
rank entailment plays an important part in defining accept-
able versions of defeasible entailment, since it can be viewed
as the monotonic core of any appropriate form of defeasible
entailment (Casini and Meyer 2017).

2.3 Rational Closure

The first version of defeasible entailment satisfying LM-
rationality that we consider is rational closure (Lehmann
and Magidor 1992). Given a knowledge base K, consider the
ordering �K on all ranked models of K, which is defined as
follows: R1 �K R2 if for every v 2 U , R1(v) R2(v).
Intuitively, ranked models lower down in the ordering are
more typical. It is easy to see that �K is a weak partial
order. Giordano et al. (2015) showed that there is a unique
�K-minimal element. The rational closure of K is defined in
terms of this minimum ranked model (Giordano et al. 2015,
Theorem 2).
Definition 5 Consider a knowledge base K, and let RRC

K be
the minimum element of the ordering �K on ranked models
of K. A defeasible implication ↵ |⇠ � is in the rational clo-
sure of K (denoted as K |⇡RC ↵ |⇠ �) if RRC

K � ↵ |⇠ �.
Observe that there are two levels of typicality at work for

rational closure, namely within ranked models of K, where
valuations lower down are viewed as more typical, and be-
tween ranked models of K, where ranked models lower
down in the ordering are viewed as more typical. Essentially,
the most typical ranked model RRC

K is the one in which val-
uations are as typical as K allows them to be.

Since rational closure is defined in terms of a single
ranked interpretation, it follows from Observation 1 that it
is LM-rational (it satisfies all the KLM properties).

It will prove useful to be able to refer to the possible val-
uations w.r.t. a knowledge base.
Definition 6 We refer to U K

R ⌘def U \ {u 2 U | u 2 J↵K
for some ↵ s.t. K |⇡R ¬↵ |⇠ ?} as the set of possible
valuations w.r.t. K.

Informally U K
R refers to all the valuations not in conflict

with rank entailment w.r.t. K. From results by Lehmann and
Magidor (1992) (Lemmas 24 and 30, to be precise) it follows
that the possible valuations in the minimal model RRC

K are
precisely the possible valuations w.r.t. K: U K

R = U RRC
K .

Rational closure can also be defined in terms of the base
rank of a statement w.r.t. K.4 Given a knowledge base K, a
propositional sentence ↵ is said to be exceptional w.r.t. K if
K |⇡R > |⇠ ¬↵ (i.e., ↵ is false in all the most typi-
cal valuations in every ranked model of K). Let "(K) =

4In the literature, the base rank of a sentence is just referred to
as its rank, but for reasons that will become clear we have opted for
the term base rank here.

{↵ |⇠ � | K |⇡R > |⇠ ¬↵}. Now define a sequence
of knowledge bases E

K
0 , . . . , EK

1 as follows: EK
0 ⌘def K,

E
K
i ⌘def "(EK

i�1), for 0 < i < n, and E1 ⌘def E
K
n ,

where n is the smallest k for which E
K
k = E

K
k+1 (since K

is finite, n must exist). The base rank brK(↵) of a proposi-
tional statement ↵ w.r.t. a knowledge base K is defined to
be the smallest r for which ↵ is not exceptional w.r.t. EK

r .
brK(↵) ⌘def min{r | E

K
r 6|⇡R > |⇠ ¬↵}.

Observation 2 (Lehmann and Magidor (1992)) K |⇡RC

↵ |⇠ � if and only if brK(↵) < brK(↵ ^ ¬�) or brK(↵) =
1.

It turns out that there is a fundamental connection between
the base ranks of propositional statements w.r.t. a knowledge
base K and the ranks of valuations in the minimal ranked
model RRC

K .
Observation 3 (Lehmann and Magidor (1992)) For ev-
ery knowledge base K and ↵ 2 L, brK(↵) = min{i | there
is a v 2 J↵K s.t. RRC

K (v) = i}.
From Observation 3 it also follows immediately that a

classical statement ↵ (or its defeasible representation ¬↵ |⇠

?) is in the rational closure of K if and only if the base rank
of ¬↵ w.r.t. K is 1, as intuitively expected.

The definition of base rank can be extended to defeasible
implications as follows: brK(↵ |⇠ �) ⌘def brK(↵).

Assigning base ranks to defeasible implications in this
way forms the basis of an algorithm for computing ratio-
nal closure; an algorithm that can be reduced to a number of
classical entailment checks. Define the materialisation of a
knowledge base K as

�!
K ⌘def {↵ ! � | ↵ |⇠ � 2 K}. It

can be shown (Lehmann and Magidor 1992) that a sentence
↵ is exceptional w.r.t. K if and only if

�!
K |= ¬↵. From this

we can define a procedure BaseRank which partitions the
materialisation of K into n + 1 equivalence classes accord-
ing to base rank: i = 0, . . . n�1,1, Ri ⌘def {↵ ! � | ↵ |⇠

� 2 K, brK(↵) = i}.

Algorithm 1: BaseRank
Input: A knowledge base K

Output: An ordered tuple (R0, . . . ,Rn�1,R1, n)
1 i := 0;
2 E0 :=

�!
K ;

3 repeat

4 Ei+1 := {↵ ! � 2 Ei | Ei |= ¬↵};
5 Ri := Ei \ Ei+1;
6 i := i+ 1;
7 until Ei�1 = Ei;
8 R1 := Ei�1;
9 if Ei�1 = ; then

10 n := i� 1;
11 else

12 n := i;
13 return (R0, . . . ,Rn�1,R1, n)

We can use the BaseRank procedure to define an al-
gorithm for computing rational closure. It takes as input a

knowledge base K and a DI ↵ |⇠ �, and returns true if and
only if ↵ |⇠ � is in the rational closure of K.

Algorithm 2: RationalClosure

Input: A knowledge base K and a DI ↵ |⇠ �
Output: true, if K |⇡ ↵ |⇠ �, and false, otherwise

1 (R0, . . . ,Rn�1,R1, n) := BaseRank(K);
2 i := 0;
3 R :=

Sj<n
j=0 Rj ;

4 while R1 [R |= ¬↵ and R 6= ; do

5 R := R \ Ri;
6 i := i+ 1;
7 return R1 [R |= ↵ ! �;

Informally, the algorithm keeps on removing (materiali-
sations of) defeasible implications from (the materialisation
of) K, starting with the lowest base rank, and proceeding
base rank by base rank, until it finds the first R which is clas-
sically consistent with ↵ (and therefore ↵ is not exceptional
w.r.t. the defeasible version of R). ↵ |⇠ � is then taken to be
in the rational closure of K if and only if R classically entails
the materialisation of ↵ |⇠ �.
Observation 4 (Freund (1998)) Given a knowledge
base K and a defeasible implication ↵ |⇠ �, the algo-
rithm RationalClosure returns true if and only if
K |⇡RC ↵ |⇠ �.

To conclude this section, we observe that algorithm
RationalClosure involves a number of calls to a
classical-entailment checker that is polynomial in the size
of K. Computing rational closure is therefore no harder than
checking classical entailment.

3 Basic Defeasible Entailment

As discussed in the previous section, the departure point for
defining defeasible entailment is that it ought to be LM-
rational. The central question we address in this paper is
whether LM-rationality is sufficient. That is, is it justifi-
able to regard any form of defeasible entailment that is LM-
rational as appropriate? The immediate answer to this ques-
tion is that it is not. For starters, we require |⇡ to satisfy
Inclusion and Classic Preservation.
(Inclusion) K |⇡ ↵ |⇠ � for every ↵ |⇠ � 2 K

(Classic Preservation) K |⇡ ↵ |⇠ ? if and only if K |⇡R

↵ |⇠ ?

Inclusion simply requires all elements of K to be defeasi-
bly entailed by K. Classic Preservation states that the classi-
cal defeasible implications (those corresponding to classical
sentences) defeasibly entailed by K should correspond ex-
actly to those in the monotonic core of K (i.e., those that are
rank entailed by K). An easy corollary of Classic Preserva-
tion is Classic Consistency, requiring that a knowledge base
is consistent if and only if it is consistent w.r.t. rank entail-
ment.
(Classic Consistency) K |⇡ > |⇠ ? if and only if K |⇡R

> |⇠ ?

We refer to a defeasible entailment relation satisfying
LM-rationality, Inclusion, and Classic Preservation as a ba-
sic defeasible entailment relation.

We shall see below (using Theorem 1) that rational clo-
sure is a basic defeasible entailment relation. However, since
ranked entailment does not satisfy RM, it is not LM-rational,
and is therefore not a basic defeasible entailment relation.

We now proceed with presenting our first fundamental re-
sult, a semantic characterisation of basic defeasible entail-
ment relations in which we consider a class of ranked mod-
els we refer to as K-faithful ranked.
Definition 7 A ranked model R of K is said to be K-faithful
if the possible valuations in R are precisely the possible val-
uations w.r.t. K: U R = U K

R .

Note that the minimal model RRC
K is K-faithful. This brings

us to our first representation result.
Theorem 1 Every basic defeasible K-entailment relation
can be generated from a K-faithful ranked model. Con-
versely, every K-faithful ranked model generates a defea-
sible K-entailment relation.

From this it follows immediately that basic defeasible en-
tailment satisfies the following property.
(Rank Extension) If K |⇡R ↵ |⇠ �, then K |⇡ ↵ |⇠ �

To see why, note that if K |⇡R ↵ |⇠ � then ↵ |⇠ � is satisfied
by every ranked model of K, and in particular, by the ranked
model used to generate |⇡.

Rank Extension requires |⇡ to extend its monotonic core
(i.e., it is required to extend the rank entailment of K).

We can also characterise basic defeasible entailment by
generalising the notion of base rank.
Definition 8 Let r : L �! N [{1} be a rank function
such that r(>) = 0 and satisfying the following convexity
property: for every i 2 N, if r(↵) = i then, for every j such
that 0 j < i, there is a � 2 L for which r(�) = j. r is
referred to as entailment preserving if ↵ |= � implies that
r(↵) � r(�). Given a knowledge base K, r is said to be K-
faithful if (i) it is entailment preserving; (ii) r(↵) < r(↵ ^

¬�) or r(↵) = 1, for every ↵ |⇠ � 2 K, and (iii) r(↵) =
1 if and only if K |⇡R ↵ |⇠ ?.

Observe that the base rank brK(·) is K-faithful.
Definition 9 A rank function r generates a defeasible en-
tailment relation |⇡ whenever K |⇡ ↵ |⇠ � if r(↵) <
r(↵ ^ ¬�) or r(↵) = 1.

We can now present our second representation result.
Theorem 2 Every basic defeasible K-entailment relation
can be generated by a K-faithful rank function r. Con-
versely, every K-faithful rank function r generates a basic
defeasible K-entailment relation.

Next, we present algorithm DefeasibleEntailment
that computes the defeasible entailment relation generated
by a K-faithful rank function. It is a modified version of the
RationalClosure algorithm presented earlier, differing
from that algorithm in that the call to the BaseRank al-
gorithm is replaced with a call to the Rank algorithm de-
scribed below. As for the Rank algorithm, it receives as

input, not just a knowledge base K as BaseRank does,
but also a K-faithful rank function r, and then produces as
output a sequence (R0, . . . ,Rn�1,R1, n) where the Ris are
sentences, unlike the BaseRank algorithm, which produces
sets of sentences. DefeasibleEntailment is then ad-
justed accordingly.

Algorithm 3: DefeasibleEntailment
Input: A knowledge base K, a K-faithful rank

function r, and a DI ↵ |⇠ �
Output: true, if K |⇡ ↵ |⇠ �, and false, otherwise

1 (R0, . . . ,Rn�1,R1, n) := Rank(K,r);
2 i := 0;
3 R :=

Sj<n
j=0 {Rj};

4 while {R1} [R |= ¬↵ and R 6= ; do

5 R := R \ {Ri};
6 i := i+ 1;
7 return {R1} [R |= ↵ ! �;

Like the RationalClosure algorithm, the Defea-
sibleEntailment algorithm keeps on removing state-
ments, starting with the lowest rank, and proceeding rank by
rank, until it finds the first R which is classically consistent
with ↵. ↵ |⇠ � is then taken to be defeasibly entailed by K if
and only if R classically entails the materialisation of ↵ |⇠ �.
Intuitively, the Ris correspond to classical representations of
defeasible information, with different Ris representing in-
formation with different levels of typicality, and with R1
corresponding to information that is classical, rather than de-
feasible. In fact, the set containing all the Ris is equivalent
to the materialisation of K.

For ↵ 2 L, let [↵] be a canonical representative of the
set {� | � ⌘ ↵}. The Rank algorithm receives as input
a knowledge base K and a K-faithful rank function r and,
as mentioned above, produces as output an ordered tuple of
sentences (R0, . . . ,Rn�1,R1, n).

Algorithm 4: Rank
Input: A knowledge base K and a K-faithful rank

function r
Output: An ordered tuple (R0, . . . ,Rn�1,R1, n)

1 R1 := ¬

⇣W
r([↵]=1)[↵]

⌘
;

2 n := max{i 2 N | there is an ↵ 2 L s.t. r(↵) = i};
3 if n = 0 then

4 R0 := >;n := 1;
5 else

6 for i := 0 to n� 1 do

7 Ri ⌘def ¬

⇣W
r([↵])=i+1[↵]

⌘

8 return (R0, . . . ,Rn�1,R1, n)

Note that if there is no ↵ such that r(↵) = 1, then R1
will be set to >. This corresponds to the case where all infor-
mation is defeasible. Note also that if n = 0, it corresponds

to the case where there is no defeasible information. In this
case we set n to 1 and set R0 to >. Also, as mentioned above,
the set consisting of all the Ris is equivalent to K.
Lemma 1 Let (R0, . . . ,Rn�1,R1, n) be the output ob-
tained from the Rank algorithm, given a knowledge base
K and a K-faithful ranking function r. Then {R1} [Sj<n

j=0 {Rj} ⌘
�!
K .

To get a sense of how the algorithm works, consider the
following examples.
Example 1 Let K = {p ! b, b |⇠ f, p |⇠ ¬f}. It can be
shown that there is only one ranking function r for which
r((b ! f) ! p) = 1, r(p ^ (b ! f)) = 2, and
r(¬(p ! b)) = 1. Moreover, for r it will be the case
that for every ↵ 2 L, r(↵) = 1 or r(↵) 2. Given K

and r, the Rank algorithm will output the ordered tuple
(R0,R1,R1, 2), where R1 ⌘ p ! b,

R1 ⌘ ¬(p ^ (b ! f)) ⌘ p ! (b ^ ¬f), and

R0 ⌘ ¬((b ! f) ! p) ⌘ (b ! f) ^ ¬p.

Given K, r, and (p $ b) ^ (b $ f) |⇠ ¬f, Defeasible-
Entailment will return true. It will do so by first veri-
fying that {R0,R1,R1} 6|= ¬((p $ b) ^ (b $ f)) and
then checking whether {R0,R1,R1} |= ((p $ b) ^ (b $

f)) ! ¬f (which it does). It is worth noting that, given this r,
algorithm DefeasibleEntailment computes the ratio-
nal closure of K.

Example 2 Consider again K = {p ! b, b |⇠ f, p |⇠ ¬f}.
It can be shown that there is only one ranking function r s.t.
r(f ! p) = 1, r((b _ f) ! (p ^ f)) = 2, and r(¬(p !

b)) = 1, and that r is K-faithful. Moreover, for r it will
be the case that for every ↵ 2 L, r(↵ = 1) or r(↵) 2.
Given K and r, the Rank algorithm will output the ordered
tuple (R0,R1,R1, 2) where R1 ⌘ p ! b,

R1 ⌘ ¬((b _ f) ! (p ^ f)) ⌘ (¬b ! f) ^ (p ! ¬f), and

R0 ⌘ ¬(f ! p) ⌘ f ^ ¬p.

Given K, r, and the DI (p $ b) ^ (b $ f) |⇠ ¬f, algorithm
DefeasibleEntailment will return false. It will do so
by first removing R0 (since {R0,R1,R1} |= ¬((p $ b) ^
(b $ f))), then removing R1 (since {R1,R1} |= ¬((p $

b)^ (b $ f))), and then, since {R1} 6|= ¬((p $ b)^ (b $

f)), it will check whether {R1} |= ((p $ b) ^ (b $ f)) !
¬f (which it does not).

Definition 10 Algorithm DefeasibleEntailment is
said to compute a defeasible entailment relation |⇡ for a
knowledge base K and a rank functon r whenever K |⇡ ↵ |⇠

� if DefeasibleEntailment, when presented with K,
r, and ↵ |⇠ �, returns true.

This provides us with the material for our third represen-
tation result.
Theorem 3 Given a K-faithful rank function r, the ba-
sic defeasible entailment relation generated by r is ex-
actly the defeasible entailment relation computed by the
DefeasibleEntailment algorithm when given K

and r as input.

The results obtained for basic defeasible entailment can
therefore be summarised in the following theorem.
Theorem 4 The following statements are equivalent.
• |⇡ is a basic defeasible K-entailment relation.
• There is a K-faithful ranked model R and a K-faithful

rank function r such that:
1. r(↵) = min{i | there is a v 2 J↵K s.t. R(v) = i};
2. |⇡ can be generated from R;
3. |⇡ can be generated from r;
4. |⇡ can be computed by algorithm Defeasible

Entailment, given K and r as input.
Note that point 1 in Theorem 4 establishes a connection

between R and r via a result that is a generalisation of Ob-
servation 3.

Finally, observe that DefeasibleEntailment in-
volves a number of calls to a classic entailment checker that
is linear in n times the size of K (where n is the number re-
turned by the Rank algorithm). But note also that n may be
exponential in the size of K.

4 Rational Defeasible Entailment

Having analysed basic defeasible entailment in the previous
section, we now proceed by contending that it is too permis-
sive. In particular, we first show that it does not satisfy the
following property.
(RC Extension) If K |⇡RC ↵ |⇠ �, then K |⇡ ↵ |⇠ �

RC Extension requires of |⇡ to extend the rational closure
of K. To see that basic defeasible entailment does not satisfy
RC Extension, consider the following example.
Example 3 Figure 2 depicts the (K-faithful) minimal
ranked model RRC

K of K = {p ! b, b |⇠ f, p |⇠ ¬f}.
Note that RRC

K � ¬p ^ ¬f |⇠ ¬b. From Definition 5 it then
follows that K |⇡RC ¬p ^ ¬f |⇠ ¬b. But also note that for
the K-faithful ranked model R in Figure 3 below it follows
that R 6� ¬p ^ ¬f |⇠ ¬b. And from Theorem 4 it follows
that for the basic defeasible K-entailment relation |⇡ gener-
ated from R, K 6|⇡ ¬p ^ ¬f |⇠ ¬b. So RC Extension does
not hold.

2 pbf

1 pbf pbf

0 pbf pbf pbf

Figure 2: The minimal K-faithful ranked model RRC
K

If a basic defeasible entailment relation satisfies RC Ex-
tension as well, we refer to it as rational defeasible entail-
ment. We propose the class of rational defeasible entailment
relations as those worthy of the term rational and analyse
them further in the remainder of this section.

We start by showing that rational defeasible entailment
can be characterised semantically in terms of a subset of the
K-faithful ranked models.

2 pbf

1 pbf pbf pbf

0 pbf pbf

Figure 3: The K-faithful ranked model R

Definition 11 A K-faithful ranked model R is said to be
rank preserving if the following condition holds: for all
v, u 2 U , if RRC

K (v) < RRC
K (u), then R(v) < R(u).

Informally, rank preservation requires the total preorder
�R generated from R to respect the relative positions as-
signed to valuations in the minimal model RRC

K of K.
Theorem 5 Every rational defeasible K-entailment relation
can be generated by a rank preserving K-faithful model.
Conversely, every rank preserving K-faithful model gener-
ates a rational defeasible K-entailment relation.

We can also characterise rational defeasible entailment
using a subclass of K-faithful rank functions.
Definition 12 A K-faithful rank function r is said to be
base rank preserving if the following condition holds: for
all ↵,� 2 L, if brK(↵) < brK(�), then r(↵) < r(�).

As the name indicates, base rank preserving rank func-
tions (or rather, the relations < derivable from base rank pre-
serving rank functions) respect the base rank (or rather, the
relation < derivable from the base rank).
Theorem 6 Every rational defeasible K-entailment relation
can be generated by a K-faithful base rank preserving rank
function. Conversely, every K-faithful base rank preserving
rank function generates a rational defeasible K-entailment
relation.

The following result shows that the algorithm
DefeasibleEntailment described in the previ-
ous section can also be used to compute rational defeasible
entailment, provided it receives base rank preserving rank
functions as input.
Theorem 7 The defeasible entailment relation computed
from algorithm DefeasibleEntailment, given a
knowledge base K and a K-faithful base rank pre-
serving rank function, is a rational defeasible K-
entailment relation. Conversely, every rational defeasible
K-entailment relation can be computed from algorithm
DefeasibleEntailment when given K and a K-
faithful base rank preserving rank function as input.

The results obtained for rational defeasible entailment can
therefore be summarised in the following theorem.
Theorem 8 The following statements are equivalent.
• |⇡ is a rational defeasible K-entailment relation.
• There is a rank preserving K-faithful ranked model R and

a K-faithful base rank preserving rank function r s.t.:
1. r(↵) = min{i | v 2 J↵K and R(v) = i};
2. |⇡ can be generated from R;

3. |⇡ can be generated from r;
4. |⇡ can be computed from algorithm Defeasible

Entailment, given K and r as input.
Analogous to the case for basic defeasible entailment,

Point 1 of Theorem 8 establishes a connection between R
and r via a result that is a generalisation of Observation 3.

5 Lexicographic Closure

In this section we turn our attention to lexicographic closure,
a second form of defeasible entailment, other than rational
closure, that has been studied in the literature (Lehmann
1995). Our central result is that lexicographic closure is a
rational defeasible entailment relation, confirming our con-
tention that rational defeasible entailment is a class of defea-
sible relations worth investigating. We also show that lexico-
graphic closure can be characterised in three different ways:
semantically via a rank preserving K-faithful ranked model,
in terms of a base preserving K-faithful rank function r,
and via the DefeasibleEntailment algorithm when
it is presented with r (and a knowledge base K) as input.
While the semantic construction of lexicographic closure
is known (Lehmann 1995), the other two constructions are
new. Finally, we show that there are rational defeasible en-
tailment relations that extend lexicographic closure, which
means that lexicographic closure is not the “boldest” form
of rational defeasible entailment, as has been the conjecture
in the literature.

For a knowledge base K, let CK be a function from U to N
s.t. CK(v) = #{↵ |⇠ � 2 K | v � ↵ ! �}.5 So C

K(v) is
the number of DIs in K whose materialisations are satisfied
by v. In defining lexicographic closure, the goal is to refine
the ordering on U obtained from the minimal model RRC

K
with C

K: in comparing two valuations with the same rank
w.r.t. RRC

K , the one with a higher number will be viewed as
more typical.

Given a knowledge base K, we define an ordering �
K
LC

on U as follows: v �
K
LC u if RRC

K (u) = 1, or RRC
K (v) <

RRC
K (u), or RRC

K (v) = RRC
K (u) and C

K(v) � C
K(u).

Then we let RLC
K be the ranked interpretation generated

from �
K
LC . We refer to RLC

K as the lexicographic ranked
model of K.
Definition 13 The lexicographic closure |⇡LC of K is de-
fined as follows: K |⇡LC ↵ |⇠ � if RLC

K � ↵ |⇠ �.
The next result shows that the lexicographic ranked model

of K is K-faithful and rank preserving.
Proposition 1 RLC

K is a K-faithful and rank preserving
ranked model.

From this result it follows immediately from Theorems 8
and 4 that lexicographic closure is a rational and basic de-
feasible entailment relation. In fact, Lehmann (1995, The-
orem 3) already showed that lexicographic closure satis-
fies RC Extension.

To appreciate some of the differences between rational
and lexicographic closure, consider the following example.

5#X denotes the cardinality of the set X .

Example 4 Figure 4 depicts the minimal ranked model
RRC

K of K = {p ! b, b |⇠ f, p |⇠ ¬f, b |⇠ w}, while
Figure 5 depicts the lexicographic ranked model RLC

K of K.
From these two models we can see that p |⇠ w (penguins
usually have wings) is not in the rational closure of K, but
is in the lexicographic closure of K. This is indicative of the
difference between, what Lehmann refers to as Prototypical
Reasoning and Presumptive Reasoning (1995). Presumptive
Reasoning states that properties of a class are presumed to
hold for all members of that class unless we have knowl-
edge to the contrary. So, because birds usually have wings
we assume that penguins, being birds, usually have wings
as well, since we don’t have information to the contrary.
Contrast this with Prototypical Reasoning which states that,
while typical members of a class are presumed to inherit the
properties of that class, the same does not hold for atypical
members. According to Prototypical Reasoning, since pen-
guins are atypical members of the class of birds (they usu-
ally don’t fly), they do not inherit the property of having
wings. Rational closure operates according to Prototypical
Reasoning, while lexicographic closure adheres to Presump-
tive Reasoning.

2 pbfw pbfw

1 pbfw pbfw pbfw pbfw

0 pbfw pbfw pbfw pbfw pbfw pbfw

Figure 4: The minimal model K-faithful ranked model RRC
K

5 pbfw

4 pbfw

3 pbfw pbfw

2 pbfw pbfw

1 pbfw

0 pbfw pbfw pbfw pbfw pbfw

Figure 5: The lexicographic ranked model RLC
K

We have already seen that lexicographic closure (|⇡LC)
can be generated from a K-faithful rank preserving model.
From Theorem 8 it then follows that there is a K-faithful
base rank preserving rank function r from which |⇡LC can
be generated. Furthermore, it can be generated by algorithm
DefeasibleEntailment, given K and r as input. We
now show how to construct the K-faithful base rank preserv-
ing rank function r mentioned above.
Definition 14 The lexicographic rank w.r.t. a knowledge
base K is defined as rLC

K (↵) ⌘def min{RLC
K (v) | v 2 J↵K}.

First we show that rLC
K is K-faithful and base rank pre-

serving.
Proposition 2 The lexicographic rank rLC

K w.r.t. a knowl-
edge base K is K-faithful and base rank preserving.

Next, we show that rLC
K generates the same rational de-

feasible entailment relation as RLC
K .

Proposition 3 RLC
K � ↵ |⇠ � if and only if rLC

K (↵) <
rLC
K (↵ ^ ¬�) or rLC

K (↵) = 1.
Finally, we show that the DefeasibleEntailment

algorithm computes the same (rational) defeasible entail-
ment relation as RLC

K does when given the input K and rLC
K .

Proposition 4 Given a knowledge base K and a defeasible
implication ↵ |⇠ �, the DefeasibleEntailment algo-
rithm returns true when given the input K, rLC

K , and ↵ |⇠ �
if and only if rLC

K (↵) < rLC
K (↵ ^ ¬�), or rLC

K (↵) = 1.
We conclude this section by showing that, while lexico-

graphic closure extends rational closure, it is not (always)
the “boldest” form of rational defeasible entailment. To do
so, we give an example of a knowledge base for which there
is a rational defeasible entailment relation that extends lexi-
cographic closure.
Example 5 Consider the knowledge base K in Example 4
and let a K-faithful ranked model R be as depicted in Fig-
ure 5 below. It is easy to see that R is a refinement of the lex-
icographic ranked model RLC

K in Figure 6. It can be shown
that R is rank base preserving, and therefore it generates
a rational defeasible K-entailment relation |⇡, and that |⇡
strictly extends lexicographic closure: If K |⇡LC ↵ |⇠ �,
then K |⇡ ↵ |⇠ �, and there is at least one defeasible impli-
cation ↵ |⇠ � such that K |⇡ ↵ |⇠ �, but K 6|⇡LC ↵ |⇠ �.
For example, observe that K |⇡ b ^ ¬f ^ w |⇠ ¬p, but
K 6|⇡LC b ^ ¬f ^ w |⇠ ¬p

7 pbfw

6 pbfw

5 pbfw

4 pbfw

3 pbfw

2 pbfw

1 pbfw

0 pbfw pbfw pbfw pbfw pbfw

Figure 6: The ranked model R of Example 5.

6 Related Work

The original work in the KLM style (Kraus, Lehmann, and
Magidor 1990) was inspired by the work of Shoham (1988),

and investigated a class of non-monotonic consequence re-
lations, where the defeasible implication |⇠ was viewed as
the (non-monotonic) form of entailment. This approach was
subsequently adapted by Lehmann and Magidor (1992) to
the case where |⇠ is viewed as an object-level connective
for defeasible implication, and where the focus then shifts
to defeasible entailment (i.e., |⇡) for a logic language that
extends propositional logic with the defeasible implication
connective |⇠.

When it comes to defeasible entailment, while there has
been some work in this regard (Goldszmidt and Pearl 1996;
Bezzazi, Makinson, and Perez 1997; Casini et al. 2014;
Beierle et al. 2016; Kern-Isberner 2018), we are aware of
three instances that have been studied in detail: ranked en-
tailment (Lehmann and Magidor 1992) which is not LM-
rational and is judged to be too weak, rational closure
(Lehmann and Magidor 1992) and lexicographic closure
(Lehmann 1995) which are both regarded as appropriate
forms of defeasible entailment. Of these, rational closure is
by far the best studied form of defeasible entailment (Booth
et al. 2015; Booth and Paris 1998; Giordano et al. 2015).

Despite the work mentioned above, the present paper is,
to the best of our knowledge, the first systematic attempt
to characterise appropriate classes of defeasible entailment
relations (to be distinguished from the original work by
Kraus et al. (1990), which is a study of |⇠ as a form of non-
monotonic consequence).

Our work is reminiscent of the AGM framework for be-
lief change (Alchourrón, Gärdenfors, and Makinson 1985;
Gärdenfors 1988), where belief change operators are stud-
ied. Taking the analogy further, rational closure can be
viewed as the defeasible entailment equivalent of full-meet
belief contraction or revision since, by virtue of the property
of RC Extension, it is the most conservative of those de-
feasible entailment relations we regard as appropriate. Tak-
ing it even further, the boldest forms of rational defeasible
entailment can be regarded as analogous to maxichoice be-
lief contraction and revision. To see this, observe that maxi-
choice operators are obtained by imposing a linear ordering
on the propositional valuations that are counter-models of a
belief set. Similarly, the boldest forms of rational defeasi-
ble entailment are obtained by imposing a linear ordering on
U K

R , the set of possible valuations w.r.t. a knowledge base
K and then considering the defeasible entailment relations
generated from the base rank preserving K-faithful ranked
models obtained from such linear orderings.

Studies of defeasible entailment have also started to move
beyond the propositional case, and now includes cases in-
volving versions of defeasible implication in more expres-
sive languages, most notably description logics (Bonatti
et al. 2015; Bonatti and Sauro 2017; Britz, Meyer, and
Varzinczak 2011b; Britz and Varzinczak 2018b; Casini and
Straccia 2013; Giordano et al. 2013; Quantz and Royer
1992; Pensel and Turhan 2018; Casini, Straccia, and Meyer
2018) and modal logics (Boutilier 1994; Britz, Meyer, and
Varzinczak 2011a; 2012). A slightly different type of exten-
sion is one in which defeasible implication is enriched by
either introducing an explicit notion of typicality in propo-
sitional logic (Booth, Meyer, and Varzinczak 2012; 2013;

Booth et al. 2015) or a notion of defeasible modality (Britz
and Varzinczak 2017; 2018a).

7 Conclusion

The central focus of this paper is the question of determining
what (defeasible) entailment means for propositional logic
enriched with a defeasible implication connective. The short
answer to this question provided here is that a defeasible en-
tailment relation needs to be rational in the technical sense
described in Section 4. In arriving at this conclusion we have
made a detour through the more permissive class of basic
defeasible entailment relations defined in Section 3. Both
basic and rational defeasible entailment are characterised
in four different ways, through sets of properties, semanti-
cally via ranked interpretations, in terms of ranks assigned
to (propositional and defeasible) statements, and algorithmi-
cally. While basic defeasible entailment tightens the require-
ments imposed by KLM-style defeasible entailment some-
what, rational defeasible entailment goes further by requir-
ing that the form of defeasible entailment known as rational
closure ought to be viewed as the most basic form of defea-
sible entailment. Part of the argument in favour of rational
defeasible entailment is that, as is the case for rational clo-
sure, lexicographic closure (the other well-known form of
defeasible entailment) is also rational.

There are at least three important lines of research to
which the work in this paper can lead. First on the agenda
is an analysis of concrete forms of rational defeasible entail-
ment other than rational and lexicographic closure.

Secondly, the description of both basic and rational defea-
sible entailment in this paper can be viewed as being on the
knowledge level (Gärdenfors 1988) in the sense that the syn-
tactic form of knowledge bases are, for the most part, irrele-
vant. But there is a strong case to be made for defining defea-
sible implication where syntax matters. Roughly speaking,
this is analogous to the distinction between belief change
on belief sets (sets closed under classical consequence) and
base change (Hansson 1999), where the structure of the set
of beliefs of an agent plays a role in determining how change
ought to occur. In fact, although lexicographic closure is an
instance of rational defeasible entailment, it is an example of
a form of entailment where the structure of the knowledge
base matters. Our current conjecture is that a syntax-based
class of defeasible entailment will form a strict subclass of
the class of rational defeasible entailment relations, and that
lexicographic closure will be the strongest form of syntax-
based rational defeasible entailment.

Finally, syntax-based defeasible entailment opens the
door for studying the computation of defeasible entailment
in more detail. We have presented an algorithm for comput-
ing any rational defeasible entailment relation, but the algo-
rithm depends on the provision of a knowledge base K, as
well as a function that ranks all propositional (and therefore
all defeasible implication) statements. With a syntax-based
approach, it is possible to use the structure of K to rank state-
ments, in the way that the BaseRank algorithm in Section
2.3 does in the process of computing rational closure.

Acknowledgements

The work of Giovanni Casini and Thomas Meyer have
received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 690974 (MIREL
project). The work of Thomas Meyer has been supported
in part by the National Research Foundation of South Africa
(grant No. UID 98019).

References

Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985. On
the logic of theory change: Partial meet contraction and re-
vision functions. Journal of Symbolic Logic 50:510–530.
Beierle, C.; Eichhorn, C.; Kern-Isberner, G.; and Kutsch, S.
2016. Skeptical, weakly skeptical, and credulous inference
based on preferred ranking functions. In ECAI 2016, volume
285 of Frontiers in Artificial Intelligence and Applications,
1149–1157. IOS Press.
Bezzazi, H.; Makinson, D.; and Perez, R. P. 1997. Be-
yond rational monotony: Some strong non-horn rules for
nonmonotonic inference relations. J. Logic Computat.
7(5):605–631.
Bonatti, P., and Sauro, L. 2017. On the logical properties of
the nonmonotonic description logic DLN . Artificial Intelli-
gence 248:85–111.
Bonatti, P.; Faella, M.; Petrova, I.; and Sauro, L. 2015. A
new semantics for overriding in description logics. Artificial
Intelligence 222:1–48.
Booth, R., and Paris, J. 1998. A note on the rational clo-
sure of knowledge bases with both positive and negative
knowledge. Journal of Logic, Language and Information
7(2):165–190.
Booth, R.; Casini, G.; Meyer, T.; and Varzinczak, I. 2015.
On the entailment problem for a logic of typicality. In IJCAI
2015, 2805–2811.
Booth, R.; Meyer, T.; and Varzinczak, I. 2012. PTL: A
propositional typicality logic. In Proceedings of the 13th
European Conference on Logics in Artificial Intelligence
(JELIA), number 7519 in LNCS, 107–119. Springer.
Booth, R.; Meyer, T.; and Varzinczak, I. 2013. A proposi-
tional typicality logic for extending rational consequence. In
Fermé, E.; Gabbay, D.; and Simari, G., eds., Trends in Belief
Revision and Argumentation Dynamics, volume 48 of Stud-
ies in Logic – Logic and Cognitive Systems. King’s College
Publications. 123–154.
Boutilier, C. 1994. Conditional logics of normality: A modal
approach. Artificial Intelligence 68(1):87–154.
Britz, K., and Varzinczak, I. 2017. From KLM-style con-
ditionals to defeasible modalities, and back. Journal of Ap-
plied Non-Classical Logics (JANCL).
Britz, K., and Varzinczak, I. 2018a. Preferential accessibil-
ity and preferred worlds. Journal of Logic, Language and
Information (JoLLI) 27(2):133–155.
Britz, K., and Varzinczak, I. 2018b. Rationality and context
in defeasible subsumption. In Woltran, S., and Ferrarotti, F.,
eds., FoIKS 2018, LNCS. Springer.

Britz, K.; Meyer, T.; and Varzinczak, I. 2011a. Preferential
reasoning for modal logics. Electronic Notes in Theoretical
Computer Science 278:55–69.
Britz, K.; Meyer, T.; and Varzinczak, I. 2011b. Seman-
tic foundation for preferential description logics. In Wang,
D., and Reynolds, M., eds., AI 2011, number 7106 in LNAI,
491–500. Springer.
Britz, K.; Meyer, T.; and Varzinczak, I. 2012. Normal modal
preferential consequence. In Thielscher, M., and Zhang, D.,
eds., AI 2012, number 7691 in LNAI, 505–516. Springer.
Casini, G., and Meyer, T. 2017. Belief change in a prefer-
ential non-monotonic framework. In IJCAI 2017, 929–935.
Casini, G., and Straccia, U. 2013. Defeasible inheritance-
based description logics. JAIR 48:415–473.
Casini, G.; Meyer, T.; Moodley, K.; and Nortje, R. 2014.
Relevant closure: A new form of defeasible reasoning for
description logics. In JELIA 2014, 92–106.
Casini, G.; Straccia, U.; and Meyer, T. 2018. A
polynomial time subsumption algorithm for nominal safe
ELO? under rational closure. Information Sciences,
https://doi.org/10.1016/j.ins.2018.09.037.
Freund, M. 1998. Preferential reasoning in the perspective
of Poole default logic. Artificial Intelligence 98:209–235.
Gärdenfors, P. 1988. Knowledge in Flux: Modeling the Dy-
namics of Epistemic States. MIT Press.
Giordano, L.; Gliozzi, V.; Olivetti, N.; and Pozzato, G. 2013.
A non-monotonic description logic for reasoning about typ-
icality. Artificial Intelligence 195:165–202.
Giordano, L.; Gliozzi, V.; Olivetti, N.; and Pozzato, G. 2015.
Semantic characterization of rational closure: From propo-
sitional logic to description logics. Art. Int. 226:1–33.
Goldszmidt, M., and Pearl, J. 1996. Qualitative probabilities
for default reasoning, belief revision, and causal modeling.
Artificial Intelligence 85:57–112.
Hansson, S. 1999. A Textbook of Belief Dynamics: Theory
Change and Database Updating. Kluwer.
Kern-Isberner, G. 2018. Axiomatizing a qualitative principle
of conditional preservation for iterated belief change. In KR
2018, accepted.
Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Nonmono-
tonic reasoning, preferential models and cumulative logics.
Artificial Intelligence 44:167–207.
Lehmann, D., and Magidor, M. 1992. What does a condi-
tional knowledge base entail? Art. Int. 55:1–60.
Lehmann, D. 1995. Another perspective on default reason-
ing. Annals of Math. and Art. Int. 15(1):61–82.
Pensel, M., and Turhan, A.-Y. 2018. Reasoning in the defea-
sible description logic EL? - computing standard inferences
under rational and relevant semantics. International Journal
of Approximate Reasoning 103:28 – 70.
Quantz, J., and Royer, V. 1992. A preference semantics for
defaults in terminological logics. In KR 1992, 294–305.
Shoham, Y. 1988. Reasoning about Change: Time and Cau-
sation from the Standpoint of Artificial Intelligence. MIT
Press.

How to construct Remainder Sets for Paraconsistent Revisions:
Preliminary Report

Rafael Testa1,2, Eduardo Fermé1, Marco Garapa1, Maurı́cio Reis1
1Faculty of Exact Sciences and Engineering, University of Madeira (UMa),

Funchal, Madeira, Portugal
2Centre for Logic, Epistemology and the History of Science (CLE), University of Campinas (Unicamp),

Campinas, SP, Brazil

Abstract
Revision operation is the consistent expansion of a theory
by a new belief-representing sentence. We consider that in a
paraconsistent setting this desideratum can be accomplished
in at least three distinct ways: the output of a revision op-
eration should be either non-trivial or non-contradictory (in
general or relative to the new belief). In this paper those dis-
tinctions will be explored in the constructive level by showing
how the remainder sets could be refined, capturing the key
concepts of paraconsistency in a dynamical scenario. These
are preliminaries results of a wider project on Paraconsistent
Belief Change conduced by the authors.

Introduction
In a working group at BRAON’17 (Third Madeira Work-
shop on Belief Revision, Argumentation, Ontologies, and
Norms), the very definition of revision was discussed in the
context of an inconsistent-tolerant setting: given the logi-
cal possibility of contradictory but non-trivial belief sets (a
direct consequence of considering an underlying paracon-
sistent logic), some authors propose that the revision could
be understood as a plain expansion (cf. for instance (Priest
2001; Girard and Tanaka 2016)). The questions adduced by
the referred working group were: could it still be rationally
and even logically possible for the reasoner to demand from
a revision operator a non-contradictory output in a paracon-
sistent scenario? If so, which definition of revision should
be considered? Is it really necessary to equate revision with
a plain expansion?

Paraconsistent logics are based on the study of contradic-
tory yet non-trivial theories, exposing a clear distinction be-
tween triviality and contradictoriness. As we understand it,
the classical desideratum of consistency, in a paraconsistent
setting, splits itself into two distinct ones: non-triviality and
non-contradiction. More: since contradictions are distinct,
this last concept can be considered with respect to a spe-
cific belief-representing sentence (namely, the input). In this
paper the relation between those will be constructively ex-
plored. We suggest new constructions for remainder sets that
fulfill the above desiderata and also circumvent some issues
advanced by the literature, as the failure of extensionality in
general.

Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

On AGM
AGM-style belief revision describes an idealized agent, with
a potentially infinite set of belief-representing sentences
closed under logical consequence. To express the closure,
we are going to use the consequence operator Cn: for a
given underlying logic L, K`L↵ if and only if ↵ 2 Cn(K).
Hence the criterion that K is closed under logical conse-
quence can be formally expressed by:

K = Cn(K)

The agent’s dynamics is given by operations that describe
the change from one belief set to another. These operations
are:

Expansion. An expansion occurs when new information is
simply added to the set of the beliefs of an agent. As a
result of an expansion, the belief set can become incon-
sistent. The outcome of an expansion of a belief set K by
a sentence ↵ will be denoted by K + ↵.

Contraction. A contraction occurs when information is re-
moved from the set of beliefs of an agent. The result of
a contraction of K by a sentence ↵ will be denoted by
K � ↵.

Revision: A revision occurs when new information is added
to the agent’s belief set. When performing a revision
some beliefs can be removed in order to ensure consis-
tency. Contrary to expansion, revision preserves consis-
tency (unless the new information is itself inconsistent).
The result of a revision of a belief set K by a sentence ↵
will be denoted by K ⇤ ↵.

Formally we have the following:

Definition 1. The expansion of K by ↵ (K + ↵) is given by

K + ↵ = Cn(K [{↵})

The explicit construction for contraction adopted is the
partial meet contraction, constructed as follows (the re-
sults of this section are from (Alchourrón, Gärdenfors, and
Makinson 1985)):

1. Choose some maximal subsets of K (with respect the in-
clusion) that do not entail ↵.

2. Take the intersection of such sets.

The remainder of K and ↵ is the set of all maximal sub-
sets of K that do not entail ↵. Formally the definition is the
following:
Definition 2 (Remainder). The set of all the maximal sub-
sets of K that do not entail ↵ is called the remainder set of
K by ↵ and is denoted by K?↵, that is, K 0 2 K?↵ iff:
(i) K 0 ✓ K.
(ii) ↵ 62 Cn(K 0).
(iii) If K 0 ⇢ K 00 ✓ K then ↵ 2 Cn(K 00).

Typically K?↵ may contain more than one maximal sub-
set. The main idea constructing a contraction function is to
apply a selection function � which intuitively selects the sets
in K?↵ containing the beliefs that the agent holds in higher
regard (those beliefs that are more entrenched).
Definition 3 (selection function). A selection function for K
is a function � such that, for every ↵:

1. �(K?↵) ✓ K?↵ if K?↵ 6= ;.
2. �(K?↵) = {K} otherwise.

The partial meet contraction is the intersection of the sets
of K?↵ selected by �.
Definition 4 (partial meet contraction). Let K be a belief
set, and � a selection function for K. The partial meet con-
traction on K that is generated by � is the operation ��

such that for all sentences ↵:

K �� ↵ =
\

�(K?↵).

By the Levi identity, revision K ⇤ ↵ is defined as a prior
contraction by ¬↵ followed by a expansion by ↵. As it can
be easily understood, the prior contraction assures the con-
sistency of the result.

The partial meet revision (the construction for revision de-
fined over the partial meet contraction) is defined as follows.
Definition 5 (partial meet revision). Let K be a belief set,
and � a selection function for K. The partial meet revision
on K that is generated by � is the operation ⇤� such that for
all sentences ↵:

K ⇤� ↵ =
�\

�(K? ¬↵)
�
+ ↵

An operation ⇤ on K is a partial meet revision if and only
if there is a selection function � for K such that for all sen-
tences ↵ : K ⇤ ↵ = K ⇤� ↵.

Partial meet revision is axiomatically characterized as fol-
lows:
Observation 6. The operator ⇤ is an operator of partial
meet revision for a belief set K if and only if it satisfies the
following postulates:
(K⇤1) K ⇤ ↵ = Cn(K ⇤ ↵). (Closure)
(K⇤2) ↵ 2 K ⇤ ↵. (Success)
(K⇤3) K ⇤ ↵ ✓ K + ↵. (Inclusion)
(K⇤4) If K + ↵ is consistent, then K ⇤ ↵ = K + ↵.

(Vacuity)
(K⇤5) If ↵ is consistent, then K ⇤ ↵ is consistent

(Consistency)
(K⇤6) If Cn(↵) = Cn(�), then K ⇤ ↵ = K ⇤ �.

(Extensionality)

On Paraconsistent Belief Revision
Some approachs on Paraconsistent Belief can be found, for
instance, in (Restall and Slaney 1995), (Chopra and Parikh
1999), (Tamminga 2001), (Priest 2001), (Mares 2002), (Gi-
rard and Tanaka 2016) and (Testa, Coniglio, and Ribeiro
2017). A brief overview on some of these inquiries can
be found in (Fermé and Hansson 2018). The main objec-
tive of this work is to refine some results of the so-called
AGMp system, following directly the original AGM model
(with suitable adjustments), advanced in (Testa, Coniglio,
and Ribeiro 2017). This system is designed over a class of
paraconsistent logics called LFIs to be further introduced.

Paraconsistent Logics and LFIs
The Logics of Formal Inconsistency (LFIs), advanced by
(Carnielli and Marcos 2002) and further developed mainly
in (Carnielli, Coniglio, and Marcos 2007) are a family of
paraconsistent logics that encompasses most of paraconsis-
tent systems with a supraclassical character, where it is pos-
sible to re-encode classical reasoning within it (cf. (Carnielli
and Coniglio 2016) by a comprehensive textbook).

Roughly speaking, withing LFIs it is possible to express
the notions of inconsistency and consistency inside the ob-
ject language. The sentential unary connective � of formal
consistency is the more frequently used, where the sentence
�↵ is intended to formally express the meaning that ‘↵ is
consistent’. As a consequence, contradiction does not gen-
erate triviality in general, unless the sentence involved is
consistent. In formal terms, for any logic L that is a LFI,
denoted by a consequence operator `L, the following does
not hold:
Observation 7. Explosion principle

↵,¬↵ `L �,

but a distinct form of it is always the case:
Observation 8. Gentle explosion principle

↵,¬↵, �↵ `L �.

The distinctions given by the LFIs not only separates the
notion of contradiction from deductive triviality (like every
paraconsistent logic), but also contradiction from inconsis-
tency as well non-contradiction from consistency (in the ob-
ject language level). So there is a clear distinction between
contradictions that can be accepted from those that cannot.
The idea to be captured is that no matter the nature of the
contradictions a reasoner is willing to accept, there still are
contradictions that cannot be accepted at all.
Definition 9. In order to avoid ambiguity, the following no-
tation is useful (for any logic L represented by Cn):
a. A set A is contradictory if and only if there is a sentence

� such that {�,¬�} ✓ Cn(A).
b. A set A is contradictory with respect to ↵ (or is ↵-

contradictory) if and only if, for some � equivalent to
↵ (that is, for ↵ and � such that Cn(↵) = Cn(�)),
{�,¬�} ✓ Cn(A).

c. A set A is trivial if and only ? 2 Cn(A).

d. A sentence ↵ is contradictory if and only if the set {↵} is
contradictory.

e. A sentence ↵ is trivial if and only if the set {↵} is trivial.
Definition 10. The most basic LFI in the family considered
is the propositional logic mbC. The language L of mbC is
generated by the connectives ^,_,!,¬, �.
Definition 11 (mbC (Carnielli and Marcos 2002)). The
logic mbC is defined over the language L by means of a
Hilbert system as follows:

Axioms:
(A1) ↵ ! (� ! ↵)
(A2) (↵ ! �) ! ((↵ ! (� ! �)) ! (↵ ! �))
(A3) ↵ ! (� ! (↵ ^ �))
(A4) (↵ ^ �) ! ↵
(A5) (↵ ^ �) ! �
(A6) ↵ ! (↵ _ �)
(A7) � ! (↵ _ �)
(A8) (↵ ! �) ! ((� ! �) ! ((↵ _ �) ! �))
(A9) ↵ _ (↵ ! �)
(A10) ↵ _ ¬↵
(bc1) �↵ ! (↵ ! (¬↵ ! �))

Inference Rule:
(Modus Ponens) ↵,↵ ! � ` �

It is worth of noticing that (A1)-(A9) plus Modus Ponens
constitutes an axiomatization for the classical positive logic
CPL+, so that mbC can be understood as a extension of it,
adding few constraints on negation and formal consistency
by axioms (A10) and (bc1). Further constraints can be given
by the axioms of mbC’s extensions, for instance: (ciw) �↵_
(↵ ^ ¬↵), (ci) ¬�↵ ! (↵ ^ ¬↵), (cl) ¬(↵ ^ ¬↵) ! �↵,
(cf) ¬¬↵ ! ↵, (ce) ↵ ! ¬¬↵ and (cc) ��↵. A detailed
taxonomy on LFIs can be found on the references.

Regarding implication, recall that deduction holds for any
propositional logic where (A1) and (A2) can be derived
when MP is the unique inference rule.
Observation 12 (deduction meta-theorem (Carnielli,
Coniglio, and Marcos 2007)). The mbC calculus satisfies
the following:
�,↵ `mbC � iff � `mbC ↵ ! �

Regarding paraconsistent negation, note that CPL+plus
↵ _ ¬↵ is too weak (as expected). This axiom reflects that
the truth-value of ↵ partially determines the truth-value of
¬↵: if ↵ is false, then ¬↵ must be true; but if ↵ is true, ¬↵
can be either true or false. The only axiom that deals with
the formal consistency in mbC is �↵ ! (↵ ! (¬↵ ! �)):
similarly, if both ↵ and ¬↵ are true, �↵ must be false.
Definition 13 (Valuations for mbC (Carnielli and Coniglio
2016)). A function v : L !

�
0, 1

is a valuation for mbC

if it satisfies the following clauses:
(v^) v(↵ ^ �) = 1 , v(↵) = 1 and v(�) = 1.

(Conjunction)
(v_) v(↵ _ �) = 1 , v(↵) = 1 or v(�) = 1

(Disjunction)
(v !) v(↵ ! �) = 1 , v(↵) = 0 or v(�) = 1

(Implication)

(v¬) v(¬↵) = 0) v(↵) = 1
(Paraconsistent/Weak negation)

(v�) v(�↵) = 1) v(↵) = 0 or v(¬↵) = 0
(Formal Consistency)

The semantical consequence relation associated to valua-
tions for mbC is defined as expected: X |=mbC ↵ iff, for
every mbC-valuation v, if v(�) = 1 for every � 2 X then
v(↵) = 1. The following result is well-known:
Observation 14 (Adequacy of mbC w.r.t. bivaluations
(Carnielli and Coniglio 2016)). For every set of formulas
X [{↵}: X `mbC ↵ if and only if X |=mbC ↵.
Remark 15. Despite of the fact that we are considering in
this presentation the logic mbC and extensions, it is worth
noticing that the constructions here depends on more gen-
eral restrictions, so that they can encompass a wider class
of logics.
Remark 16 (derived bottom particle and strong negation).
The falsum (or bottom) is defined in mbC by means of the
formula ?� =def � ^ ¬� ^ ��, for any formula �. From
this, the classical (or strong) negation is defined in mbC by
⇠�↵ =def (↵ ! ?�). Since ?� and ?�0 are interderivable
in mbC, for any � and �0, then ⇠�↵ and ⇠�0↵ are also in-
terderivable. Hence, the strong negation of ↵ will be denoted
simply by ⇠↵. The same applies to ?.

The following propositions may prove useful for assess-
ment of further results (they can be easily checked by valu-
ations of Definition 13).
Proposition 17 (some properties of mbC). The following
hold:
i. ? ` ↵
ii. ⇠ ↵ ` ¬↵ and so `⇠ ↵ ! ¬↵
iii. �↵ ^ ¬↵ `⇠ ↵, but ⇠ ↵ 6` �↵ ^ ¬↵
iv. ¬¬↵ 6` ↵

Remark 18. As usual, ↵ $ � is an abbreviation for (↵ !
�) ^ (� ! ↵).
Proposition 19. The following hold in mbC:

↵ $ � 6` ¬↵ $ ¬�
Since a classical negation ⇠ can be defined in mbC, that

logic can be understood as an expansion of the classical
propositional logic CPL by adding a paraconsistent negation
¬ and a consistency operator � satisfying certain axioms.

In formal terms, consider CPL defined over the language
L0 generated by the connectives ^,_,!,¬ (observe that
in L0 ¬ represents the classical negation instead of the para-
consistent negation of mbC). If Y ✓ L0 then �(Y) = {�↵ :
↵ 2 Y }. Then, the following result can be obtained:
Observation 20 (Derivability Adjustment Theorem
(Carnielli, Coniglio, and Marcos 2007)). Let X [{↵} be
a set of formulas in L0. Then X `CPL ↵ if and only if
�(Y), X `mbC ↵ for some Y ✓ L0.
Remark 21. From now on, let us assume a LFI, namely
L=hL, CnLi, such that L is an extension of mbC. Since the
context is clear, we will omit the subscript, and simply denote
the closure by Cn.

The AGMp system
Let us assume a non-trivial state K such that K = Cn(K).

Partial meet AGMp revisions In (Testa, Coniglio, and
Ribeiro 2017) it is shown that a paraconsistent revision K⇤↵
can be defined by Levi identity as in classical AGM, that is,
by a prior contraction by ¬↵ followed by a expansion by ↵
(Definition 5). It is worth of noticing that one of the focus of
that paper was showing the possibility of defining external
revision for paraconsistent closed theories, in the sense of re-
verse Levi identity as defined by Hansson for Belief Bases.
For our intends and purposes, this construction will not be
taken into consideration – nevertheless, it should be noted
that the results here advanced applies when taking into con-
sideration the proper features of that operation.

In terms of postulates, the AGMp internal revision is
characterized as the classical operation, but without the ex-
tensionality postulate, and changing consistency by non-
contradiction. It should be noticed that in (Testa, Coniglio,
and Ribeiro 2017) vacuity was replaced by relevance, since
it was proven that both postulates are equivalent in standard,
supraclassical and deductive logics). So the following holds:
Observation 22. (Testa, Coniglio, and Ribeiro 2017) The
operator ⇤ is an operator of AGMp partial meet internal
revision for a belief set K if and only if it satisfies closure,
success, inclusion, vacuity and the following:
(K⇤5’) if ↵ is non-contradictory, then K ⇤ ↵ is not contra-
dictory (non-contradiction)

The postulate of non-contradiction above is an adapta-
tion of the classical postulate of consistency. That’s exactly
the necessity of still demanding a non-contradictory out-
put for revision operation that will be further discussed.
Furthermore, AGMp presupposes that K itself is also non-
contradictory – in fact, in order to keep generality (in the
sense of taking into account a contradictory belief set as an
input), it could be said that (K⇤5’) should specifically guar-
antees that K ⇤ ↵ in not ↵-contradictory.

Extensionality lost The weakness of a paraconsistent
negation has the advantages of allowing contradictions. Nev-
ertheless, this same property come with the cost of loosing
extensionality in general. By definition 5 and the negative
results of propositions 19 and 17(iv), it is easy to check that,
given the paraconsistent negation properties, partial meet
paraconsistent revision is not extensional.

In order to restore a suitable form of extensionality, some
assumptions on the underlying logic should be made, as pro-
posed by (Testa, Coniglio, and Ribeiro 2017). We advance
a refinement in the constructions in order to preserve that
postulate in weaker LFIs (and other paraconsistent logics).

Non-contradiction vs.Triviality It is clear that AGMp as-
sumes that the output of a revision should still be non-
contradictory (with respect to the input). Despite that fact,
a non-trivial revision was suggested in that paper, defined
by the Levi identity applied to the strong negation.
Definition 23.

K ⇤� ↵ =
�\

�(K ? ⇠ ↵)
�
+ ↵

By proposition 17 iii. and definition of remainder it is
easy to check that this construction assures that the output
is not trivial, by retracting ¬↵ or �↵, as long ↵ itself is non-
trivial.

Some Refinements on the Paraconsistent
Framework

In order to restore extensionality in the paraconsistent set-
ting, as well to better capture the distinction between non-
contradictoriness and triviality, a new definition of reminder
set is advanced. It will be shown that, in classical Be-
lief Revision, this construction is equivalent to the classi-
cal reminder set. Furthermore, in the paraconsistent setting,
this construction defines a revision where the output is de-
manded to be non-trivial (denoted by ⇤̆), and suitable mod-
ifications on it defines revisions in which the output is non-
contradictory with respect to the input (denoted by ⇤̄), and
non-contradictory in general (denoted by ¯̄⇤) – those revi-
sions, when the underlying logic is CPL, are proven to be
equivalent with the classical one. Those features, as we un-
derstand, captures the results of the Derivability Adjustment
Theorem, advanced in the proposition 20.

Non-contradictory outputNon-trivial output

Consistent output
CPL
LFIs

Non-�-contradictory output

Figure 1: Relation between the revisions

Remainder sets: new constructions to revisions
Recall the definition of remainder set: for defining classical
revision K ⇤ ↵, we want to expand by ↵ the intersection
of some maximal subset of K that does not entail ¬↵ – in
logical terms, a remainder for revision is designed to be a
“¬↵-saturated” subset of K.

Non-trivial remainder We define the remainder of K
with respect to ↵ as the set of all maximal subsets of K that,
when expanded by ↵, are non-trivial (that is, do not entail
?). This modification goes in the line of the one presented
by (Delgrande 2008), advanced for Horn clause contraction
function but here understood in the general context of an op-
eration in logics without negation, as suggested by (Ribeiro
2012). We do, of course, have a negation – but given some
weak properties of it (like the loss of extensionality as ad-
vanced before) the idea is to design the remainder not relay-
ing on that.1

1There are some authors that discuss what are the necessary
and sufficient conditions for a negation to be, effectively, a nega-
tion, taking the paraconsistent one as an example. This analysis

Formally the definition is the following:
Definition 24 (non-trivial remainder). Let K be a belief set,
and let ↵ be a formula. A set X 2 K + ↵ if and only if:

(i) X ✓ K.
(ii) X [{↵} 6` ?.
(iii) If X ⇢ X 0 ✓ K then X 0 [{↵} ` ?.

K + ↵ is the non-trivial remainder of K with respect to ↵.

Remark 25. It is clear that if X 2 K + ↵, then {¬↵, �↵} 6✓
Cn(X), and that X [{↵} 6` � ^ ¬� ^ �� for all �.

Non-trivial revision A selection function for K is a � de-
fined as above. The partial meet non-trivial revision is, also,
the intersection of the sets chosen by the selection function
expanded by ↵.

Definition 26. Let K be a belief set, and � a selection func-
tion for K. The partial meet non-trivial revision on K that is
generated by � is the operation ⇤̆� such that for all sentences
↵:

K⇤̆�↵ =
\

�(K + ↵) + ↵.

An operation ⇤̆ is a partial meet non-trivial revision if and
only if there is a selection function � for K such that for all
sentences ↵ : K⇤̆↵ = K⇤̆�↵

It should be noticed that this operation does not explicitly
use the construction of a contraction operator, as it is clas-
sically done by AGM – where revision is defined by Levi
identity, alluding the contraction by the negated formula (cf.
def. 5). Instead, the sentences to be retracted in order to ac-
commodate the new belief-representing sentence are chosen
directly by the revision’s construction. The same happens
with the further revisions to be presented.

Of course contraction could still be defined by a Harper-
like identity, but that’s not our focus on this paper.

Non-contradictory remainder with respect to the input
A less permissive remainder can be defined – relative to con-
tradictions. In a nutshell, it is designed to retract ¬� from
K, for all � equivalent to the new belief-representing sen-
tence ↵ – re-encoding the characteristics of the classical one,
but now relative to a paraconsistent setting (endowed with a
weak negation).
Definition 27 (non-contradictory remainder with respect to
the input). Let K be a belief set, and let ↵ be a formula. A
set X 2 K#↵↵ if and only if:

(i) X ✓ K.
(ii) For all � ⌘ ↵, X [{↵} 6` � ^ ¬�.
(iii) If X ⇢ X 0 ✓ K then there exists a sentence � ⌘ ↵

such that X 0 [{↵} ` � ^ ¬�
K#↵↵ is the non-↵-contradictory remainder of K with re-
spect to ↵.

Remark 28. It is clear that if X 2 K#↵↵, then {¬↵} 6✓
Cn(X). More: X 6` ¬� for all � ⌘ ↵.

is of interest to Belief Revision, since much of the properties car-
ried out by the systems tacitly assumes the properties of a classical
negation.

Non-contradictory revision with respect to the input
Definition 29. Let K be a belief set, and � a selection func-
tion for K. The partial meet non-contradictory revision with
respect to ↵ on K that is generated by � is the operation ⇤̄�
such that for all sentences ↵:

K⇤̄�↵ =
\

�(K#↵↵) + ↵.

An operation ⇤̄ is a partial meet non-contradictory revision
with respect to ↵ if and only if there is a selection function �
for K such that for all sentences ↵ : K⇤̄↵ = K⇤̄�↵

Non-contradictory remainder
Definition 30 (non-contradictory remainder). Let K be a
belief set, and let ↵ be a formula. A set X 2 K # ↵ if and
only if:
(i) X ✓ K.
(ii) For all � 2 L, X [{↵} 6` � ^ ¬�.
(iii) If X ⇢ X 0 ✓ K then there exists a sentence � 2 L

such that X 0 [{↵} ` � ^ ¬�
K # ↵ is the non-contradictory remainder of K with respect
to ↵.
Remark 31. It is clear that if X 2 K#↵, then {¬↵} 6✓
Cn(X). More: X 6` � ^ ¬� for all � 2 L.

Non-contradictory revision
Definition 32. Let K be a belief set, and � a selection func-
tion for K. The partial meet non-contradictory revision on
K that is generated by � is the operation ¯̄⇤� such that for all
sentences ↵:

K¯̄⇤�↵ =
\

�(K # ↵) + ↵.

An operation ¯̄⇤ is a partial meet non-contradictory revision
if and only if there is a selection function � for K such that
for all sentences ↵ : K¯̄⇤ ↵ = K¯̄⇤�↵

Relation between the remainders
Proposition 33. The following identities hold:
i. K + ↵ = K?(↵ ! ?) = K? ⇠ ↵

ii. K?↵ = K + (↵ ! ?) = K +⇠ ↵

33.i. is an expected result, given definition 23. As it can be
perceived, 33.ii. is an intermediate result for further defining
contraction via non-trivial remainder.
Proposition 34. In general, the remainder sets K?¬↵,
K+ ↵, K# ↵ and K#↵ ↵ are different from each other.

This is a predictable feature, since the concepts of trivial-
ity and contradiction are distinct in a paraconsistent setting
and, moreover, contradictions are distinct to each other.

However, given the fact that in CPL all contradictions are
alike, and equivalent to ?, it is easy to check the following:
Proposition 35 (The classical collapse of consistency,
non-triviality, non-contradictoriness and non-↵-contradicto-
riness). When the underlying logic is CPL:

K?¬↵ = K + ↵ = K # ↵ = K #↵ ↵

From construction to postulates
In this section we will present each one of the paraconsis-
tent revision functions through a set of postulates that de-
termine the behavior of each one of these functions – estab-
lishing conditions or constrains that they must satisfy, as it
is classically done. Through the postulates, the refinement
made in the constructive level in order to capture the dis-
tinction between non-contradictoriness and triviality can be
highlighted. In the paraconsistent setting, the consistency
desideratum (classicaly captured by the consistency pos-
tulate) adduce three distinct new postulates: non-triviality,
non-↵-contradiction and non-contradiction, capturing re-
spectively the intuition that the revision output should be
non-trivial, non-contradictory relative to the new informa-
tion to be incorporated or non-contradictory in general.

Another important feature of the new constructions ad-
vanced in this paper is that the revision of a belief set by logi-
cal equivalent sentences produces the same output in general
– captured by the postulate of extensionality. Recall that this
property was not valid in general in paraconsistent systems,
as aforementioned.

Non-trivial partial meet revision
Proposition 36. If ⇤̆ is an operator of non-trivial partial
meet revision for a belief set K, then it satisfies the following
postulates:
(K⇤̆1) K⇤̆↵ = Cn(K⇤̆↵). (Closure)
(K⇤̆2) ↵ 2 K⇤̆↵. (Success)
(K⇤̆3) K⇤̆↵ ✓ K + ↵. (Inclusion)
(K⇤̆4) If K + ↵ is non-trivial, then K⇤̆↵ = K + ↵.

(Vacuity)
(K⇤̆5) If ↵ in non-trivial, then K⇤̆↵ is non-trivial.

(Non-triviality)
(K⇤̆6) If Cn(↵) = Cn(�), then K⇤̆↵ = K⇤̆�.

(Extensionality)

Example 37. Let K = Cn({¬↵, �,¬�}). It is clear that K
is non-trivial, since �� 62 K.
It can be easily checked that ¬↵ 2 K⇤̆↵, since �↵ 62 K.
Furthermore, this operation does not retract � nor ¬� from
K.
Remark 38. By the very definition of vacuity, it is clear
that in weaker paraconsistent logics where there is no primi-
tive or defined formal consistency operator (or, equivalently,
where there is no strong negation nor bottom particle), a
non-trivial revision is a plain expansion.

Non-contradictory partial meet revision with respect to
the input
Proposition 39. If ⇤̄ is an operator of non-contradictory
(with respect to the input) partial meet revision for a belief
set K, then it satisfies the following postulates:
(K⇤̄1) K⇤̄↵ = Cn(K⇤̄↵) (Closure)
(K⇤̄2) ↵ 2 K⇤̄↵ (Success)
(K⇤̄3) K⇤̄↵ ✓ K + ↵ (Inclusion)
(K⇤̄4) If K+↵ is non-↵-contradictory, then K⇤̄↵ = K+↵

(Vacuity)

(K⇤̄5) If ↵ is non-contradictory, K⇤̄↵ is non-↵-contradic-
tory (Non-↵-contradiction)
(K⇤̄6) If Cn(↵) = Cn(�), then K⇤̄↵ = K⇤̄�

(Extensionality)

Example 40. Let K be the same of Example 37. It can be
easily checked that ¬↵ 62 K⇤̄↵, but � and ¬� are still in K.

Non-contradictory partial meet revision

Proposition 41. If ¯̄⇤ is an operator of non-contradictory
partial meet revision for a belief set K, then it satisfies the
following postulates:
(K¯̄⇤1) K¯̄⇤↵ = Cn(K¯̄⇤↵) (Closure)
(K¯̄⇤2) ↵ 2 K¯̄⇤↵ (Success)
(K¯̄⇤3) K¯̄⇤↵ ✓ K + ↵ (Inclusion)
(K¯̄⇤4) If K + ↵ is non-contradictory, then K¯̄⇤↵ = K + ↵

(Vacuity)
(K¯̄⇤5) If ↵ is non-contradictory, K¯̄⇤↵ is non-contradictory

(Non-contradiction)
(K¯̄⇤6) If Cn(↵) = Cn(�), then K¯̄⇤↵ = K¯̄⇤�

(Extensionality)

Example 42. Let K be the same of Example 37. It can be
easily checked that ¬↵ 62 K¯̄⇤↵. Furthermore, this operation
also retracts � or ¬� from K.

Final Remarks and future works

In a classical setting, ensuring that the negation of the
formula to be incorporated is not in the output is neces-
sary and sufficient condition to keep the output non-trivial
and forcibly non-contradictory. In paraconsistent reasoning,
however, this condition is not necessary in order to en-
sure non-triviality (since contradictions do not entail triv-
iality in general) nor sufficient in order to ensure non-
contradictoriness (since negation is non-extensional in the
sense that logically equivalent formulas do not have equiva-
lent negated formulas in general). That asymmetry gives rise
to at least three distinct paraconsistent revisions, entailed by
more fine-tuned remainders.

Regarding the questions posed at the introduction of this
paper, it is worth of noticing that assuming that paracon-
sistent revision is equivalent with a plain expansion presup-
poses that (i) consistency is necessarily equivalent to non-
triviality in a paraconsistent setting and, furthermore, (ii)
that all paraconsistent logics do not endow a bottom particle
(primitive or defined). Both assumptions, as we’ve shown,
are not true.

Recovering the extensionality in general is the first step
for defining transitively relational partial meet paraconsis-
tent revisions: by considering transitively relational selec-
tion functions � in the remainder sets and, accordingly, by
taking into account the supplementary postulates as origi-
nally advanced by classical AGM (providing the respective
representation theorems).

Acknowledgments.
These are preliminaries results of the project on Para-
consistent Belief Revision, sponsored by FAPESP to
Testa, project number 2017/10836-0. Fermé is par-
tially supported by FCT MCTES and NOVA LINCS
UID/CEC/04516/2013 and FCT MCTES IC&DT Project
AAC 02/SAICT/2017. Garapa and Reis are supported by
FCT through projects UID/MAT/04674/2013 (CIMA) and
PTDC/CCI-COM/30990/2017. For citations, please check
the authors’ recent publications on the subject for up-to-date
results.

References
Alchourrón, C. E.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet contraction
and revision functions. The Journal of Symbolic Logic
50(2):510–530. doi: 10.2307/2274239.
Carnielli, W., and Coniglio, M. E. 2016. Paraconsistent
Logic: Consistency, Contradiction and Negation, volume 40
of Logic, Epistemology, and the Unity of Science. Springer.
doi: 10.1007/978-3-319-33205-5.
Carnielli, W., and Marcos, J. a. 2002. A taxonomy
of C-systems. In Carnielli, W. A.; Coniglio, M. E.; and
D’Ottaviano, I. M. L., eds., Paraconsistency: The Logi-
cal Way to the Inconsistent. Proceedings of the 2nd World
Congress on Paraconsistency (WCP 2000), volume 228 of
Lecture Notes in Pure and Applied Mathematics, 1–93. New
York: Marcel Dekker.
Carnielli, W.; Coniglio, M. E.; and Marcos, J. a. 2007. Log-
ics of Formal Inconsistency. In Gabbay, D. M., and Guen-
thner, F., eds., Handbook of Philosophical Logic (2nd. edi-
tion), volume 14, 1–93. Springer. doi: 10.1007/978-1-4020-
6324-4 1.
Chopra, S., and Parikh, R. 1999. An inconsistency tolerant
model for belief representation and belief revision. In Dean,
T., ed., Proceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-99), volume 1, 192–
197. Stockholm: Morgan Kaufmann.
Delgrande, J. P. 2008. Horn clause belief change: Contrac-
tion functions. Proceedings of KR-08 156–165.
Fermé, E., and Hansson, S. O. 2018. Belief Change: In-
troduction and Overview. SpringerBriefs in Intelligent Sys-
tems, Springer.
Girard, P., and Tanaka, K. 2016. Paraconsistent dynamics.
Synthese 193:1–14. doi: 10.1007/s11229-015-0740-2.
Mares, E. D. 2002. A paraconsistent theory of belief revi-
sion. Erkenntnis 56(2):229–246.
Priest, G. 2001. Paraconsistent belief revision. Theoria
67(3):214–228. doi: 10.1111/j.1755-2567.2001.tb00204.x.
Restall, G., and Slaney, J. 1995. Realistic belief revision.
In De Glas, M., and Pawlak, Z., eds., Proceedings of the
Second World Conference in the Fundamentals of Artificial
Intelligence, 367–378. Paris: Angkor.
Ribeiro, M. M. 2012. Belief Revision in Non-Classical Log-
ics. SpringerBriefs in Computer Science. Springer.

Tamminga, A. M. 2001. Belief Dynamics: (Epistemo)logical
Investigations. Ph.D. Dissertation, ILLC, University of Am-
sterdam, The Netherlands.
Testa, R. R.; Coniglio, M. E.; and Ribeiro, M. M. 2017.
Agm-like paraconsistent belief change. Log J IGPL 25(4).

A logic of default justifications

Stipe Pandžić

Department of Theoretical Philosophy, Faculty of Philosophy &
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Faculty of Science and Engineering

University of Groningen, The Netherlands
s.pandzic@rug.nl

Abstract

We define a logic of default justifications that relies on op-
erational semantics. One of the key features that is absent in
standard justification logics is the possibility to weigh differ-
ent epistemic reasons or pieces of evidence that might con-
flict with one another. To amend this inadequacy, we develop
a semantics for “defeaters”: conflicting reasons forming a ba-
sis to doubt the original conclusion or to believe an opposite
statement. Our logic is able to address interactions of normal
defaults without relying on priorities among default rules and
introduces the possibility of extension revision for normal de-
fault theories.

Introduction

Justification logics provide a formal framework to deal with
epistemic reasons. The first justification logic was developed
as a logic of arithmetic proofs (LP) by Artemov (2001).1
Possible world semantics for this logic was first proposed
by Fitting (2005a; 2005b) in order to align justification log-
ics within the family of epistemic modal logics. A distinctive
feature of justification logic is replacing belief and knowl-
edge modal operators that precede propositions (2P) by
proof terms or, in a generalized epistemic context, justifica-
tion terms and thereby forming justification assertions t : P
that read as “t is a reason that justifies P ”.

Although justification logic introduced the notions of jus-
tification and reason into epistemic logic, it does not for-
mally study the ways of defeat among reasons. The impor-
tance of defeaters is highlighted by paradigmatic examples
from classical literature on defeasible reasoning. The vari-
ants of the following example are discussed by Chisholm
(1966) and Pollock (1987). Suppose you are standing in a
room where you see red objects in front of you. This can
lead you to infer that a red-looking table in front of you is
in fact red. However, the reason that you have for your con-
clusion is defeasible. For a typical defeat scenario, suppose
you learn that the room you are standing in is illuminated
with red light. This gives you a reason to doubt your initial

Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The idea of explicit proof terms as a way to find the semantics
for provability calculus S4 dates to 1938 and K. Gödel’s lecture
published in 1995 (Gödel 1995).

reason to conclude that the table is red, though it would not
give you a reason to believe that it is not red. However, if
you were to learn, instead, that the table has been painted in
white, then you would also have a reason to believe a denial
of the claim that the table is red.

The example specifies two different ways in which rea-
sons defeat other reasons: the former is known as undercut
and the latter as rebuttal.2 Learning additional information

undercut

rebuttal
CLAIM

Figure 1: The types of defeat

about the light conditions incurs suspending the applicabil-
ity of your initial reason to believe that the table is red.
In contrast, learning that there is a separate reason to con-
sider that the table is not red will not directly compromise
your initial reason itself. The differences between undercut-
ing and rebutting reasons are illustrated in Figure 1.

Only a restricted group of epistemic reasons may be
treated as completely immune to defeaters: mathematical
proofs. However, they form only a small part of possible
reasons to accept a statement and, being a highly-idealized
group of reasons, they have rarely been referred to as rea-
sons. Fitting’s possible world semantics for justification log-
ics was meant to model not only mathematical and logical
truths, but also facts of the world or “inputs from outside
the structure” (Fitting 2009, p. 111). Yet the original intent
of the first justification logic LP to deal with mathematical
proofs, together with the fact that mathematics is cumula-
tive, reflected in its epistemic generalizations. Accordingly,
reasons that justify facts of the world were left encapsulated
within a framework for non-defeasible mathematical proofs.

Non-mathematical reasons and justifications are com-
monly held to depend on each other in acquiring their status
of “good” reasons and justifications. Still, the questions re-
lated to non-ideal reasons have only recently been raised in

2The terminology is originally Pollock’s (1987).

the justification logic literature.3 In the present paper we de-
velop a non-monotonic justification logic with justification
terms such that (1) their defeasibility can be tracked from the
term structure and (2) other justifications can defeat them by
means of an undercut or a rebuttal. Our logic combines tech-
niques from both default logic and justification logic to for-
malize conflicts of reasons produced in less-than-ideal ways.

Justification logic

The introduction of justifications into modal semantics
opened up a possibility to study formal systems for non-
defeasible epistemic reasons based on justification logic.
These systems include an explicit counterpart to the modal
Truth axiom: 2F ! F .4 Varieties of these systems have
been extensively studied and described in e.g. (Kuznets
2000) and (Fitting 2008). Syntactic objects that represent
mathematical proofs in LP are more broadly interpreted as
epistemic or doxastic reasons by Fitting (2005a; 2005b) and
Artemov and Nogina (2005). In order to introduce our sys-
tem of default reasons, we build upon the existing systems
for non-defeasible reasons. In this respect, one can see our
strategy as being analogous to the standard default logic ap-
proach (Antoniou 1997; Reiter 1980) where agents reason
from known or certain information. This section gives pre-
liminaries on one of the logics of non-defeasible reasons.

Since we assume that an agent starts to reason from inde-
feasible information, we want our underlying logic to rep-
resent “factive” or “truth inducing” reasons. However, addi-
tional constraints on the system are not necessarily needed
to introduce the system of default reasons. Therefore, we
do not assume standard axioms and operations that ensure
positive or negative introspection. Accordingly, an adequate
logical account of factive justifications is the logic JT, a
justification logic with the axiom schemes that are explicit
analogues of the axiom schemes for modal logic T.5 After
we define the underlying logic, we develop our novel non-
monotonic approach to justifications.

Syntax

Syntactically, knowledge operators take the form of justifi-
cation terms preceding formulas: t : F . Given that “t” is a
justification term and that “F ” is a formula, we write “t : F ”,

3The first proposed formalism that includes the idea of evidence
elimination specific to a multi-agent setting is by Renne (2012).
Baltag, Renne and Smets (2012; 2014) bring together ideas from
belief revision and dynamic epistemic logic and offer an account
of good and conclusive evidence. Several approaches ((Milnikel
2014), (Kokkinis et al. 2015), (Kokkinis, Ognjanović, and Studer
2016) and (Ognjanović, Savić, and Studer 2017)) start from the
idea of merging probabilistic degrees of belief with justification
logic, while (Fan and Liau 2015) and (Su, Fan, and Liau 2017)
develop a possibilistic justification logic.

4In fact, in (Fitting 2008, p. 156) we find three different truth
axiom schemes.

5Justification logic JT was first introduced by Brezhnev
(2001). Justification logics with equivalent axiom schemes to the
logic we define in this section are also defined and investigated in
(Kuznets 2000) and (Fitting 2008). In future work, adding the ax-
ioms of positive and negative introspection could be considered.

where t is informally interpreted as a reason or justification
for F . We define the set Tm that consists of exactly all jus-
tification terms, constructed from variables x1, . . . , xn, . . .

and constants c1, . . . , cn, . . . by means of operations · and
+. The grammar of justification terms is given as follows:

t ::= x | c | (t1 · t2) | (t1 + t2)

where x is a variable denoting an unspecified justification
and c is a proof constant. Proof constant c is atomic within
the system. For a justification term t, a set of subterms
Sub(t) is defined by induction on the construction of t. For-
mulas of JT are defined by the following grammar:

F ::= > | P | (F1 ! F2) | (F1_F2) | (F1^F2) | ¬F | t : F
where P 2 P and P is an enumerable set of atomic proposi-
tional formulas and t 2 Tm. The set Fm consists of exactly
all formulas.

Axioms and rules of JT
We can now define the logic of non-defeasible reasons JT.
The logic JT is the weakest logic with “truth inducing” jus-
tifications containing axiom schemes for two basic opera-
tions · and +.6 These are the axioms and rules of JT:
A0 All the instances of propositional logic tautologies from

Fm

A1 t : (F ! G) ! (u : F ! (t · u) : G) (Application)
A2 t : F ! (t+ u) : F ; u : F ! (t+ u) : F (Sum)
A3 t : F ! F (Factivity)
R0 From F and F ! G infer G (Modus ponens)
R1 If F is an axiom instance of A0-A3 and cn, cn�1 . . . , c1

proof constants, then infer cn : cn�1 . . . c1 : F (Iterated
axiom necessitation)
Proof constants are justifications of basic logic truths. In

justification logics, basic truths are taken to be justified (at
any depth) by virtue of their status within a system and their
justifications are not further analyzed. A set of instances of
such canonical formulas in justification logic is called Con-
stant Specification (CS) set.
Definition 1 (Constant specification). The Constant Speci-
fication set is the set of instances of rule R1.

CS = {cn : cn�1 . . . c1 : A | A is an axiom instance of
A0-A3, cn, cn�1, . . . , c1 are proof constants and n 2 N}

The use of constants in R1 above is unrestricted. In such for-
mat, the rule generates a set of formulas where each axiom
is justified by any constant at any depth. The set of formu-
las obtained in this way is called Total Constant Specifica-
tion (T CS). A more appropriate name for the logic above
would therefore be JTTCS. It is possible to put restrictions
on the use of constants in rule R1 in order to consider a lim-
ited class of CS-sets. We restrict the constant specification

6As Fitting (2005b; 2008) shows, we can also technically con-
sider dropping the operator + from our language. In this way we
obtain the logic that he calls LP�(T) (Fitting 2008, p. 162).

set CS following a simple intuition that each axiom instance
has its own proof constant.7

Restriction 2. CS is
• Axiomatically appropriate: for each axiom instance A,

there is a constant c such that c : A 2 CS and for each
formula cn : cn�1 . . . c1 : A 2 CS , such that n � 1,
cn+1 : cn : cn�1 . . . c1 : A 2 CS for some cn+1;

• Injective: Each proof constant c justifies at most one for-
mula.

The logic JTCS is defined by replacing the iterated axom
necessitation rule of JTTCS with the following rule depen-
dent on Restriction 2:

R1* If F is an axiom instance of A0-A3 and
cn, cn�1 . . . , c1 proof constants such that cn : cn�1 :
. . . c1 : F 2 CS , then infer cn : cn�1 : . . . c1 : F

We say that the formula F is JTCS-provable (JTCS ` F)
if F can be derived using the axioms A0-A3 and rules R0
and R1*.

Semantics

The semantics for JTCS is an adapted version of the se-
mantics for the logic of proofs (LP) given by Mkrtychev
(1997).8

Definition 3 (JTCS model). We define a function reason
assignment based on CS ⇤(·) : Tm ! 2Fm, a function
mapping each term to a set of formulas from Fm. It satisfies
the following conditions:

1. If F ! G 2 ⇤(t) and F 2 ⇤(u), then G 2 ⇤(t · u)
2. ⇤(t) [⇤(u) ✓ ⇤(t+ u)
3. If c : F 2 CS , then F 2 ⇤(c)
A truth assignment v : P ! {True, False} is a function
assigning truth values to propositional formulas in P . We
define the interpretation I as a pair (v, ⇤). For an interpreta-
tion I, |= is a truth relation on the set of formulas of JTCS.

For any formula F 2 Fm, I |= F iff
• For any P 2 P , I |= P iff v(P) = True

• I |= ¬F iff I 6|= F

• I |= F ! G iff I 6|= F or I |= G

7For example, one such constant specification is defined by
Artemov (2018, p. 31): “cn : A 2 CS iff A is an axiom and
n is the Gödel number of A”. The choice of CS is not trivial. If
we define an empty CS, that is, JT;, we eliminate logical aware-
ness for agents, while defining an infinite CS imposes logical omni-
science. To ensure that standard properties as Internalization (Arte-
mov 2001) hold, CS has to be axiomatically appropriate. Moreover,
different restrictions could affect complexity results, as discussed
in e.g. (Milnikel 2007).

8The condition for justifications of the type ’!t’ are not needed
in the JTCS semantics. Mkrtychev’s model can be thought of as
a single world justification model. Since the notion of defeasibility
introduced in the next section turns on the incompleteness of avail-
able reasons, our system eliminates worries about the trivialization
of justification assertions that otherwise arise from considering jus-
tifications as modalities in a single-world model.

• I |= F _G iff I |= F or I |= G

• I |= F ^G iff I |= F and I |= G

• I |= t : F iff F 2 ⇤(t)
The interpretation I is reflexive, which means that the truth
relation for I fulfills the following condition:

• For any term t and any formula F , if F 2 ⇤(t), then I |=
F .

Definition 4 (JTCS consequence relation). ⌃ |= F iff for
all reflexive interpretations I, if I |= B for all B 2 ⌃, then
I |= F .

Due to Restriction 2, the consequence relation for JTCS is
weaker than the JTTCS consequence relation.

Definition 5 (JTCS closure). JTCS closure is given by
Th

JTCS (�) = {F |� |= F}, for a set of formulas � ✓ Fm

and the JTCS consequence relation |= defined above.

For any closure Th
JTCS (�), it follows that CS ✓

Th
JTCS (�).

We can prove that the compactness theorem holds for the
JTCS semantics.9 Compactness turns out to be a useful re-
sult in defining the operational semantics of default reason
terms. We first say that a set of formulas � is JTCS satis-
fiable if there is an interpretation I that meets CS (via the
third condition of Def. 3) for which all the members of �
are true. A set � is JTCS-finitely satisfiable if every finite
subset �0 of � is JTCS satisfiable.

Theorem 6 (Compactness). A set of formulas is JTCS sat-
isfiable iff it is JTCS-finitely satisfiable.

Proof. See the Appendix.

A logic of default justifications

In this section, we develop a system based on JTCS in
which agents form default justifications reasoning from an
incomplete knowledge base. Justification logic JTCS is ca-
pable of representing the construction of a new piece of evi-
dence out of existing ones by application (“·”) or sum (“+”)
operation. However, to extend an incomplete JTCS theory,
we need to import reasons that are defeasible. We come up
with both a way in which such reasons are imported and a
way in which they might get defeated by introducing con-
cepts familiar from defeasible reasoning literature into justi-
fication logic.

We start from the above-defined language of the logic
JTCS and develop a new variant of justification logic JTCS

that enables us to formalize the import of reasons outside
the structure as well as to formalize defeaters or reasons that
question the plausibility of other reasons.

Our logical framework of defeasible reasons represents
both factive reasons produced via the axioms and rules of
JTCS and plausible reasons based on default assumptions

9A compactness proof for LP satisfiability in possible world
semantics is given in (Fitting 2005b).

that “usually” or “typically” hold for a restricted context.10

We follow the standard way (Reiter 1980) of formalizing
default reasoning through default theories to extend the logic
of factive reasons with defeasible reasons. Building on the
syntax of JTCS, we introduce the definition of the default
theory:
Definition 7 (Default Theory). A default theory T is defined
as a pair (W,D), where the set W is a finite set of JTCS

formulas and D is a countable set of default rules.
Each default rule is of the following form:

� =
t : F :: (u · t) : G

(u · t) : G .

The informal reading of the default � is: “If t is a reason for
F , and it is consistent to assume that (u · t) is a reason for G,
then (u · t) is a defeasible reason to believe G”. The formula
t : F is called the prerequisite and (u · t) : G is both the
consistency requirement11 and the consequent of the default
rule �. We refer to each of the respective formulas as pre(�),
req(�) and cons(�). For the set of all consequents from the
entire set of defaults D, we use cons(D). The default rule �

introduces a unique reason term u, which means that, for a
default theory T , the following holds:

1. For any formula t : F 2 Th
JTCS (W), u 6= t and

2. For any other default rule �
0 2 D such that

�
0 = t0:F 0::(u0·t0):G0

(u0·t0):G0 , if F 6= F
0 or G 6= G

0, then u 6= u
0.12

The reason term u witnesses the defeasiblity of the prima fa-
cie reason (u · t) for G. Whether a reason actually becomes
defeated or not depends on other default-reason formulas
from cons(D). Other defaults might question both the plau-
sibility of the default reason u and the plausibility of the
proposition G.

A formal way of looking at a default reason of this kind
is that (u · t) codifies the default step we apply on the ba-
sis of the known reason t. A distinctive feature of such rules
is generating justification terms as if it were the case that
cons(�) was inferred by using an instance of the applica-
tion axiom: u : (F ! G) ! (t : F ! (u · t) : G). The dif-
ference is that an agent cannot ascertain that an available
reason justifies applying the conditional F ! G without
restrictions. Still, sometimes a conclusion must be drawn
without being able to remove all of the uncertainty as to
whether the relevant conditional actually applies or not. In
such cases, an agent turns to a plausible assumption of a jus-
tified “defeasible” conditional F ! G that holds only in the

10For a logical account of typicality based on ranked models and
preferential reasoning, see Propositional Typicality Logic (PTL)
developed by Booth, Meyer, and Varzinczak (2012). In PTL, a typ-
icality operator is added to propositional logic and interpreted in
terms of ranked models to formally capture the most typical situa-
tions in which a given formula holds.

11In order to avoid any misunderstanding, we avoid the name
justification for the formula req(�) since justification logic terms
are commonly known as justifications.

12Similarly, Artemov (2018, p. 30) introduces “single-
conclusion” (or “pointed”) justifications to enable handling “jus-
tifications as objects rather than as justification assertions”.

absence of any information to the contrary. While the inter-
nal structure of the default reason (u · t) indicates that it is
formed on the basis of the formula u : (F ! G), the defea-
sibility of (u·t) lies in the fact that the formula u : (F ! G)
is not a part of the knowledge base.

One can think of our use of the operation “·” in default
rules as the same operation that is used in the axiom A1, only
being applied on an incomplete JTCS theory. Similarly, we
can follow Reiter (1980, p. 82) and Antoniou (1997, p. 21)
in thinking of a standard default rule such as A:B

B as merely
saying that an implication A ^ ¬C ^ ¬D · · · ! B holds,
provided that we can establish that a number of exceptions
C,D, . . . does not hold. However, if the rule application
context is defined sufficiently narrowly, the rule is classically
represented as an implication A ! B. Generalizing on such
interpretation of defeasibility, our defaults with justification
assertions can be represented as instantiations of the axiom
A1 applied in a sufficiently narrow application context.

Analogous to standard default theories, we take the set
of facts W to be underspecified with respect to a number
of facts that would otherwise be specified for a complete
JTCS interpretation. Besides simple facts, our underlying
logic contains justification assertions. To deal with justifica-
tion assertions, a complete JTCS interpretation would also
further specify whether a reason is acceptable as a justifica-
tion for some formula. Therefore, except the usual incom-
plete specification of known propositions, default justifica-
tion theories are also incomplete with respect to the actual
specification of the reason assignment function. For our de-
fault theory, this means that, except the valuation v, default
rules need to approximate an actual reason-assignment func-
tion ⇤(·).

In “guessing” what a true model is, every default rule in-
troduces a reason term whose structure codifies an applica-
tion operation step from an unknown justified conditional.
For example, in rule � above, we rely on the justified condi-
tional u : (F ! G). Even though this justified conditional is
not a part of the rule � itself, it is the underlying assumption
on the basis of which we are able to extend an incomplete
knowlede base. Each underlying assumption of this kind can
be made explicit by means of a function default conditional
assignment: #(·) : D ! Fm. The function maps each de-
fault rule to a specific justified conditional as follows:

#(�i) = un : (F ! G),

where �i 2 D and �i = tk:F ::(un·tk):G
(un·tk):G , for some reason

terms tk and un and some formulas F and G.
A set of all such underlying assumptions of default rules

is called Default Specification (DS) set.
Definition 8 (Default specification). For a default theory
T = (W,D), justified defeasible conditionals are given by
the Default Specification set:
DS = #[D] = {un : (F ! G) | #(�i) = un : (F ! G)

and �i 2 D}.
The use of underlying assumptions from DS is responsible
for the non-monotonic character of default reasons and con-
trasts our default rules with the standard application opera-
tion represented by the axiom A1. The extended meaning of

the application operation via default rules will be referred to
as default application. Extending the interpretation of the
application operation “·” can be formally captured by the
following definition:
Definition 9 (Default Application). For a default rule � 2
D, if u : (F ! G) = #(�) and if t : F = pre(�), then
(u · t) : G = cons(�).

Let us again consider the red-looking-table example from
the Introduction to see how prima facie reasons and their
defeaters are imported through default rules.
Example 10. Let R be the proposition “the table is red-
looking” and let T be the proposition “the table is red”.
Take ta and ua to be some specific individual justifications.
The reasoning whereby one accepts the default reason (ua ·
ta) might be described by the following default rule:

�a =
ta : R :: (ua · ta) : T

(ua · ta) : T
.

We can informally read the default as follows: “If you have a
reason to believe that a table is red looking and it is consis-
tent for you to assume that this gives you a reason support-
ing the claim that the table is red, then you have a defeasible
reason to conclude that the table is red”. Suppose you then
get to a belief that “the room you are standing in is illumi-
nated with red light”, a proposition denoted by L. For some
specific justifications tb and ub, the following rule gives you
an undercutting reason for (ua · ta):

�b =
tb : L :: (ub · tb) : ¬[ua : (R ! T)]

(ub · tb) : ¬[ua : (R ! T)]
,

where the rule is read as “If you have a reason to believe that
the lighting is red and it is consistent for you to assume that
this gives you a reason to deny your reason to conclude that
the red-looking table is red, then you have a defeasible rea-
son that denies your reason to conclude that the red-looking
table is red”. The formula cons(�b) denies the basis for the
inference that led you to conclude cons(�a), although note
that it is not directly inconsistent with it. In the next subsec-
tion we define what undercutting defeaters are semantically.

Suppose that instead of learning about the light condi-
tions in the room as in �b, you learn that the table has been
painted white. This would also prompt a rebutting defeater
- a separate reason to believe the contradicting proposi-
tion ¬T . Let W denote the proposition “the table is painted
white” and let tc and uc be some specific justifications. We
have the following rule:

�c =
tc : W :: (uc · tc) : ¬T

(uc · tc) : ¬T
.

The rule reads as “If you have a reason to believe that the
table has been painted white and it is consistent for you to
assume that this gives you a reason supporting the claim
that the table is not red, then you have a defeasible reason
to conclude that the table is not red”. Note that the formula
cons(�c) does not directly mention any of the subterms of
(ua · ta). The defeat among the reasons (ua · ta) and (uc · tc)
comes from the fact that they cannot together consistently
extend an incomplete JTCS theory.

The entire example can be described by the following de-
fault theory T0 = (W0, D0), where W0 = {ta : R, tb :
L, tc : W} and D0 = {�a, �b, �c}.
Each defeater above is itself defeasible and considered to be
a prima facie reason. The way in which prima facie reasons
interact is further specified through their role in the opera-
tional semantics.

Operational semantics of default justifications

Between the two types of defeaters, the semantics of rebut-
ting justifications is more straightforward since it rests on the
known mechanism of multiple extensions used in standard
default theories. What requires additional explanation is the
semantics of undercutting defeaters. Notice that each for-
mula #(�) has the format of a justified material conditional.
This formula is not a part of a default inference � itself, but
the default application described by � depends on assuming
a reason for that conditional and the justification assertion
cons(�) encodes this assumption in the internal structure of
the resulting reason term. This brings to attention the fol-
lowing possibility: a knowledge base may at the same time
contain justified formulas of the type t : F , (u · t) : G

and v : ¬[u : (F ! G)], without the knowledge base be-
ing inconsistent. Although the application axiom A1 does
not say that t : F and (u · t) : G together entail the for-
mula u : (F ! G), the occurrence of the formulas t : F ,
(u · t) : G and v : ¬[u : (F ! G)] together is not significant
in standard justification logic. It only becomes significant
with default application.13

The extension of the application operation to its defeasi-
ble variant opens new possibilities for a semantics of justi-
fications. In particular, it enables reasoning that is not reg-
imented by the standard axioms A1 and A2 of basic justi-
fication logic (Artemov 2008, p. 482). For instance, if a set
of JTCS formulas contains both a prima facie reason t and
its defeater u, then the set containing a conflict of justifi-
cations does not support concatenation of reasons by which
t : F ! (t+u) : F holds for any two terms t and u. In other
words, the possibility of a conflict between reasons elimi-
nates the monotonicity property of justifications assumed in
the sum axioms (A2).

The logic of default justifications we develop here relies
on the idea of operational semantics for standard default log-
ics presented in (Antoniou 1997). Here is an informal de-
scription of the key operational semantics steps. First, de-
fault reasons are taken into consideration at face value. Af-
ter the default reasons have been taken together, we check
dependencies among them in order to find out what are the
non-defeated reasons. Finally, a rational agent includes in its
knowledge base only acceptable pieces of information that
are based on those reasons that are ultimately non-defeated.

The basis of operational semantics for a default theory
T = (W,D) is the procedure of collecting new, reason-

13Notice that a (JTCS-closed) knowledge base that contains
the formulas t : F and (u · t) : G, also contains the formula
((c · t) · (u · t)) : (F ! G), assuming that the constant c justifies
the axiom F ! (G ! (F ! G)). This is so regardless of whether
u : (F ! G) is also in the knowledge base or not.

based information from the available defaults. A sequence
of default rules ⇧ = (�0, �1, . . .) is a possible order in which
a list of default rules without multiple occurrences from D

is applied (⇧ is possibly empty). Applicability of defaults is
determined in the following way: for a set of JTCS-closed
formulas � we say that a default rule � = t:F ::(u·t):G

(u·t):G is ap-
plicable to � iff

• t : F 2 � and

• ¬(u · t) : G /2 �.

Reasons are brought together in the set of JTCS formulas
that represents the current evidence base:

Definition 11. In(⇧) = Th
JTCS (W [{cons(�) |

� occurs in ⇧}).
The set In(⇧) collects reason-based information that is yet
to be determined as acceptable or unacceptable depending
on the acceptability of reasons and counter-reasons for for-
mulas.

We need to further specify sequences of defaults that are
significant for a default theory T : default processes. For a se-
quence ⇧, the initial segment of the sequence is denoted as
⇧[k], where k stands for the number of elements contained
in that segment of the sequence and where k is a minimal
number of defaults for the sequence ⇧. Any segment ⇧[k] is
also a sequence. Intuitively, the set of formulas In(⇧) repre-
sents an updated incomplete knowledge base W where the
new information is not yet taken to be granted. Using the no-
tions defined above, we can now get clear on what a default
process is:

Definition 12 (Process). A sequence of default rules ⇧ is
a process of a default theory T = (W,D) iff every k such
that �k 2 ⇧ is applicable to the set In(⇧[k]), where ⇧[k] =
(�0, . . . �k�1).

We will use default specification sets that are relativized to
default processes:

DS⇧ = {un : (F ! G) | #(�i) = un : (F ! G)

and �i 2 ⇧}.

The kind of process that we are focusing on here is called
closed process and we say that a process ⇧ is closed iff ev-
ery � 2 D that is applicable to In(⇧) is already in ⇧. For
default theories with a finite number of defaults, closure for
any process ⇧ is obviously guaranteed by the applicability
conditions. However, if a set of defaults is infinite, then this
is less-obvious.

Lemma 13 (Infinite Closed Process). For a theory T =
(W,D) and infinitely many k’s, an infinite process ⇧ is
closed iff for every default rule �k applicable to the set
In(⇧[k]), �k 2 ⇧.

Proof. From the compactness of JTCS semantics we have
that if a set In(⇧[k])[{req(�)} is satisfiable for all the finite
k’s, it is also satisfiable for infinitely many k’s. Therefore
the applicability conditions for a rule � are equivalent to the
finite case.

Besides the standard process of collecting new informa-
tion, we need to explain the way in which an agent decides
on the acceptability of reasons. We have already introduced
the extended meaning of the application operation for a de-
fault theory T . Now we show how default application is es-
sential to the operational semantics of default reasons. Ide-
ally, an agent has all the factive reasons valid under some
interpretation I. In contrast, in reasoning from an incom-
plete knowledge base W , a closure ThJTCS (W) is typically
underspecified as to whether a reason t is acceptable for a
formula F . In such context, reasoning starts from defeasible
justification assertions in DS as the only available resource
to approximate a reason assignment function that actually
holds.

Notice that DS can be an inconsistent set of JTCS formu-
las and that an agent needs to find out which reasons prevail
in a conflicting set of reasons. One way in which reasons
may conflict with each other is captured by the definition of
undercut:
Definition 14 (Undercut). A reason u undercuts reason t be-
ing a reason for a formula F in a set of JTCS-closed formu-
las � ✓ In(⇧[k]) iff

W
(v)2Sub(t) u : ¬[v : (G ! H)] 2 �

and v : (G ! H) 2 DS⇧.
For a set � such that ThJTCS (�) contains some reason u

that undercuts t we say that � undercuts t. We can think
of � as a set of reasons against which we test the reason t

being reason for the formula F . This is further elaborated
in the semantics of acceptability of reasons. We now define
conflict-free sets of formulas:14

Definition 15 (Conflict-free sets). A set of JTCS-closed
formulas � is conflict-free iff � does not contain both a for-
mula t : F with an undercut reason t and its undercutter
u : G.

As stated before, the set W contains certain informa-
tion and this means that any information from W is always
acceptable regardless of what has been collected later on.
Therefore, any set of formulas � that extends the initial in-
formation contains W . To decide whether a consequent of a
default � is acceptable, an agent looks at those sets of rea-
sons that can be defended against all the available counter-
reasons. According to that, an agent looks at finding a de-
fensible set of justified formulas among all certain informa-
tion taken together with the consequents of the applicable
defaults rules. Therefore, for a default theory T = (W,D),
an agent always considers potential extension sets of JTCS

formulas that meet the following conditions:
1. W ✓ � and
2. � ✓ {W [cons(�) | � occurs in ⇧i},
where ⇧i is a closed process of T. For any potentially accept-
able set � we define the notion of acceptability of a justified
formula t : F :

14In characterizing sets of JTCS formulas we use the terminol-
ogy of Dung’s (1995) abstract argumentation frameworks when-
ever possible. Abstract argumentation frameworks treat conflicts
between arguments and they naturally overlap with our idea of con-
flicting reasons in many ways.

Definition 16 (Acceptability). For a default theory T =
(W,D), a formula t : F 2 cons(⇧) is acceptable w.r.t. a set
of JTCS formulas � iff for each undercutting reason u for t
being a reason for F such that u : G 2 In(⇧), ThJTCS (�)
undercuts u being a reason for G.
Informally, an agent has yet to test any potential extension
against all the other available reasons before it can be con-
sidered as an admissible extension of the knowledge base.
Definition 17 (Admissible Extension). A potential exten-
sion set of JTCS formulas � is an admissible extension of
a default theory T = (W,D) iff ThJTCS (�) is conflict-free
and if each formula t : F 2 � is acceptable w.r.t. �.
After considering all the available reasons, an agent ac-
cepts only those defeasible statements that can be defended
against all the available reasons against these statements.

The two latter definitions introduce the idea of “external
stability” of knowledge bases (Dung 1995, p. 323) into de-
fault logic by taking into account all the reasons that ques-
tion the plausibility of other reasons. In addition to that, our
operational semantics prompts an implicit revision proce-
dure. Any new default rule that is applicable to the set of for-
mulas In(⇧[k]) potentially makes changes to what an agent
considered to be acceptable relying on the set of formulas
In(⇧[k � 1]). Before we show this on the formalized ex-
ample from the beginning of this section, we introduce the
idea of default extension for a default theory T . Extension is
the fundamental concept in defining logical consequence in
standard default theories. We think of preferred extensions
as maximal plausible world views based on the acceptabil-
ity of reasons:
Definition 18 (Preferred Extension). For a default theory
T = (W,D), an admissible extension set of JTCS formulas
�, ThJTCS (�) is a preferred extension of a default theory T
iff for any other admissible extension �0, � 6⇢ �0.
In other words, preferred extensions are maximal admissi-
ble extensions with respect to set inclusion. The existence of
preferred extensions is universally defined for default theo-
ries. To ensure that this result also holds for the case of an
infinite number of default rules and infinite closed processes,
we make use of Zorn’s lemma and restate it as follows:
Lemma 19 (Zorn). For every partially ordered set A, if
every chain of (totally ordered subset of) B has an upper
bound, then A has a maximal element.
Theorem 20 (Existence of Preferred Extension). Every de-
fault theory T = (W,D) has at least one preferred exten-
sion.

Proof. If W is inconsistent, then for any default �, nega-
tion of the consistency requirement req(�) is contained in
Th

JTCS (W) and the only closed process ⇧ is the empty
sequence. Therefore, the only potential and admissible ex-
tension is W itself and T has a unique preferred extension
Th

JTCS (W) containing all the formulas of JTCS.
Assume that W is consistent. In general, if there is a fi-

nite number of default rules in D, any closed process ⇧ of
T is also finite. Admissible extensions obtained from closed
processes form a complete partial order with respect to ✓.

Since there are only finitely many admissible sets, any ad-
missible set � has a maximum �0 within a totally ordered
subset of a set of all admissible sets. Therefore, � ✓ �0 and
Th

JTCS (�0) is a preferred extension of T .
For the case where D is infinite and closed processes

⇧1,⇧2, . . . are infinite, there is again a complete partial or-
der formed from a set of all admissible sets. The argument
for finite processes does not account for the case where �0,
the union of admissible sets �1,�2, . . . , could be contained
in some �00 for an ever increasing sequence �1,�2, We
first state that �0, the union of an ever increasing sequence
of admissible sets �1,�2, . . . , is also an admissible set. To
ensure this, we turn to its subsets. That is, if �0 was not ad-
missible, then some of its subsets �n for n � 1 would not be
conflict-free or would contain a formula that is not accept-
able, but this contradicts the assumption that �n is admis-
sible. Now, for the set of all admissible sets ordered by ✓,
any chain (totally ordered subset) has an upper bound, that
is, the union of its members �0 =

S1
n=1 �n. According to

Lemma 19, there exists a maximal element and, therefore a
preferred extension of T .

The semantics of defeasible reasons enables us to define
additional types of extensions that are not necessarily based
on the admissibility of reasons. One of them is stable exten-
sion familiar from formal argumentation theory:
Definition 21 (Stable Extension). For a default theory T =
(W,D) and its closed processes ⇧ and ⇧0, a stable ex-
tension is a JTCS closure of a potential extension � ⇢
In(⇧) such that (1) Th

JTCS (�) undercuts all the formulas
t : F 2 In(⇧) outside Th

JTCS (�) and (2) for any formula
u : G 2 �0 such that �0 ⇢ In(⇧0) and u : G 62 In(⇧), it
holds that � [{u : G} is JTCS inconsistent.
The intuition behind the definition is that every reason
left outside the accepted set of reasons is attacked. For
our logic, this means that for every justification assertion
outside of an extension, the extension undercuts one of
its subterms and/or it contains a justification assertion in-
consistent with it. We can check that in the red-looking-
table example, stable and prefer extension coincide. For-
mally, theory T0 has a unique stable and preferred extension
Th

JTCS (W0 [{cons(�b), cons(�c)}). Moreover, note that
the process (�a, �b) includes a revision of its respective ad-
missible extension.

Stable extensions are not universally defined for any
default theory T . Consider the following theory T1 =
(W1, D1), where W1 = {t : F} and D1 contains the de-
fault rules

�1 =
t : F :: (u · t) : G

(u · t) : G and

�2 =
(u · t) : G :: (v · (u · t)) : ¬[u : (F ! G)]

(v · (u · t)) : ¬[u : (F ! G)]
.

While T1 has a preferred extension Th
JTCS (W), it has

no stable extension. This result conforms to similar results
about preferred and stable semantics in abstract argumenta-
tion frameworks. In fact, T1 is a justification logic formal-

ization of the concept of self-defeat, which is notorious in
argumentation framworks.

In addition, we can easily add other significant notions of
extensions, analogous to those in (Dung 1995). In particu-
lar, we can define variants of Dung’s (1995, p. 329) com-
plete and grounded extension. Different extensions defini-
tions will enable us to give different corresponding charac-
terizations of logical consequence. This will lead to proofs
of additional theorems and fully establish the role of justifi-
cation logic within the study of non-monotonic reasoning.

Related and future work

The above suggested connections between default justifica-
tion logic and abstract argumentation frameworks are cur-
rently being investigated. Standard justification logics are
known for their connection to modal logics. Artemov (2001)
provided a proof of the Realization Theorem that connects
the logic of arithmetic proofs LP with the modal logic S4.
The result has been followed up by similar theorems for
many other modal logics with known “explicit” justifica-
tion counterparts.15 As it stands now, default justification
logic can be considered to provide explicit justification logic
counterparts to (a subclass of) abstract argumentation frame-
works. A proof of this conjecture is a part of the future work.

Further developments are possible starting from the ba-
sic logic of default justifications. On the technical side of
our logic, we used only the expressiveness of normal de-
fault rules and we still need to investigate how to add non-
normal default rules. In the general context of default logics,
our logic introduces some new technical properties for nor-
mal default theories that are still to be thoroughly described.
Among them are revision of extensions and interaction of
different defaults that does not rely on their preference or-
derings, as commonly done in default logic (Delgrande and
Schaub 2000). An extensive account of default reasons that
makes use of preference orderings on defaults is developed
by Horty (2012). Horty’s logic is based on a propositional
language and develops from a different notion of reasons,
which makes it incomparable to our logic where reasons are
explicitly featured in the language itself.

Our work provides a complementary addition to the study
of less-than-ideal reasons in justification logic. Among re-
lated approaches, the logic of conditional probabilities de-
veloped by Ognjanović, Savić, and Studer (2017) introduces
a way to model non-monotonic reasoning with justification
assertions. Their proposal is based on defining operators for
approximate probabilities of a justified formula given some
condition formula. Using conditional probabilities, the logic
models certain aspects of defeasibile inferences with justifi-
cation terms. Yet the system can neither encode the defea-
sibility of justification terms in their internal structure nor
model defeat among reasons, to mention only some differ-
ences from our initial desiderata.

Baltag, Renne, and Smets (2012) define a justification
logic in which an agent may hold a justified belief that
can be compromised in the face of newly received infor-
mation. The logic builds on the ideas from belief revision

15See (Fitting 2016) for a good overview of realization theorems.

and dynamic epistemic logic to model examples where epis-
temic actions cause changes to an agent’s evidence. Con-
cerning the possibility of modelling defeaters, the logic of-
fers two dynamic operations that change the availability of
evidence in a model, namely “updates” and “upgrades” (Bal-
tag, Renne, and Smets 2012, p. 183). Evidence obtained by
updates counts as “hard” or infallible, while upgrades bring
about “soft” or fallible evidence. With the use of these ac-
tions, epistemic models can represent justified beliefs being
defeated, for example, by means of an epistemic action of
update with hard evidence. In this way, however, the mech-
anism by which reasons may conflict with one another is
simply being “outsourced” to an extra-logical notion of fal-
libility and, therefore, the logic does not directly address the
ways of defeat that we formalize in this paper.

Several interesting paths could be followed in connecting
the logic of default justifications with formal argumentation
frameworks. Among frameworks with abstract arguments,
the AFRA framework (Baroni et al. 2011) with recursive at-
tacks offers a possibility of representing attacks to attacks.
This conceptual advance can be useful in connecting de-
fault reasons to abstract arguments. Our logic could be seen
as closely related to the frameworks with structured argu-
ments, which is why connections with systems such as AS-
PIC+ (Prakken 2010), DeLP (Garcı́a and Simari 2004), SG
(Hecham, Bisquert, and Croitoru 2018) and the logic-based
argumentation framework by Besnard and Hunter (2001) are
still to be explored. Since each of these frameworks elabo-
rates on the notion of defeat, a thorough comparison to our
logic would shed light on their formal connections. A differ-
ent logic-based perspective on argumentation frameworks is
given by Caminada and Gabbay (2009) and Grossi (2010).
Both papers start from the idea of studying attack graphs and
formalizing notions of extensions from abstract argumenta-
tion theory using modal logic, with the former approach be-
ing proof-theoretical and the latter model-theoretical. A fur-
ther interesting research venue in the field of argumentation
theory is the one about the logical interpretation of prima
facie justified assumptions in (Verheij 2003). The DefLog
system which is developed there is closely related to ours in
motivation, but it develops from a perspective of a sentence-
based theory of defeasible reasoning instead of a rule-based
or argument-based approach.

Ever since the concept of justification entered into epis-
temic logics, there has been a tendency to model mainstream
epistemology examples, proposed by e.g. Russell, Dretske
and Gettier, with the use of justification logic (Artemov
2008; 2018). With the introduction of default justifications,
however, we can expect a more full-blooded integration of
the formal theory of justification with the study of knowl-
edge in philosophy, since paradigmatic examples include
both incomplete specification of reasons and defeated rea-
sons. Potential benefits of a non-monotonic system of jus-
tifications in this context were anticipated by Artemov in
(2008, p. 482) where he states that “to develop a theory of
non-monotonic justifications which prompt belief revision”
stands as an “intriguing challenge”. One of many interest-
ing topics from epistemology that could be investigated with
default-justifications theory is how does accrual of justifica-

tion affect the degree of justification.16

Appendix

Proof of Theorem 6. The claim from left to right is obvious.
For the other direction, take CS to be some specific axiomat-
ically appropriate and injective constant specification. We
first show that if a set � is JTCS-finitely satisfiable, then for
all formulas F 2 Fm, it holds that �[{F} or �[{¬F} is
JTCS-finitely satisfiable. Suppose that � is JTCS-finitely
satisfiable and that � [{F} and � [{¬F} are both not
JTCS-finitely satisfiable. Then there would be finite sub-
sets �0 and �00 of � such that �0 [{F} and �00 [{¬F} are
not JTCS satisfiable. Since for no interpretation I it holds
that I |= {F,¬F}, �0 [{F,¬F} is never JTCS satisfiable.
But since for any possible interpretation I one of the formu-
las F or ¬F holds, this means that I |= �0 ✓ I |= ¬F . In
a similar way we get that I |= �00 ✓ I |= F . Therefore,
we have that I |= �0 \ I |= �00 = ; and, thus, �0 [�00

is not JTCS-satisfiable. But �0 [�00 is a finite subset of �
and this contradicts the assumption that � is JTCS-finitely
satisfiable.

The next step is proving a JTCS variant of the Linden-
baum lemma. Using the above-proven statement that for any
JTCS-finitely satisfiable set of formulas � and any formula
F , �[{F} or �[{¬F} is JTCS-finitely satisfiable together
with the fact that �[{F,¬F} is never JTCS-finitely satisfi-
able, we can construct maximally JTCS-finitely satisfiable
sets. Let F1, F2, F3, . . . be an enumeration of F 2 Fm. For
a JTCS-finitely satisfiable set � and for all i 2 N define an
increasing sequence of sets of formulas as follows:

�0 = �

�i+1 = �i[{Fi} if �i[{F1} is JTCS-finitely satisfiable,
otherwise �i+1 = �i [{¬Fi}
�0 =

S1
i=0 �i

We can prove that �0 is JTCS-finitely satisfiable by induc-
tion. The base case �0 = � holds by assumption. Then we
claim that for all i 2 N, �i is JTCS-finitely satisfiable. For
some n 2 N, take �n to be JTCS-finitely satisfiable. Then
either � [{Fn} or � [{¬Fn} is JTCS-finitely satisfiable
and, therefore, �n+1 is also JTCS-finitely satisfiable.

From the construction of the increasing sequence, we
have that for any finite set �k ✓ �0 there is a JTCS-finitely
satisfiable finite set �k+1 ✓ �0 such that �k ✓ �k+1 and,
therefore, �k is JTCS-satisfiable. Since any finite subset of
�0 is JTCS satisfiable, �0 is JTCS-finitely satisfiable. The
set �0 is maximal according to the enumeration of the set of
formulas Fm and contains exactly one of Fi or ¬Fi for all
i 2 N.

Now we define a valuation v such that v(P) = True iff
P 2 �0 and the reason assignment ⇤(t) = {F | t : F 2 �0}.
We only need to check the conditions on the reason assign-
ment function. First, we show that ⇤(·) satisfies the applica-
tion condition. Since the formula t : (F ! G) ! (u : F !
(t ·u) : G) is JTCS valid, it is contained in �0. If F ! G 2
⇤(t) and F 2 ⇤(u), then {t : (F ! G), u : F} 2 �0. Since

16The question is prominent in Pollock’s work (Pollock 2001).

� is closed under Modus ponens, we have that (t·u) : G 2 �0

and, therefore, G 2 ⇤(t · u). Similarly, since the formulas
t : F ! (t+ u) : F and u : F ! (t+ u) : F are both in �0

we can easily check that the sum condition holds for ⇤(·).
Finally, we have defined an interpretation I = (⇤, v) that

meets CS and we need to prove that truth in this interpreta-
tion is equivalent to inclusion in �0:

I |= F iff F 2 �0

The proof is by induction on the structure of F . For the base
case, suppose F is an atomic formula P : I |= P iff v(P) =
True iff P 2 �0.

For the inductive step, suppose that if the result holds for
F and G, then it also holds for ¬F , F ^G, F _G, F ! G

and t : F . For the negation case: I |= ¬F iff I 6|= F . By the
inductive hypothesis, I 6|= F iff F 62 �0. By the maximality
of �0, we have that F 62 �0 iff ¬F 2 �0.

For the conjunction case: I |= F ^ G iff I |= F and
I |= G. By the inductive hypothesis, I |= F and I |= G iff
F 2 �0 and G 2 �0 iff F ^G 2 �0. Since other connectives
are definable in terms of ¬ and ^, we skip the remaining
cases.

Finally for the justified formula case: I |= t : F iff F 2
⇤(t). By the definition of ⇤(·), it holds that F 2 ⇤(t) iff
t : F 2 �0.

Therefore, for any JTCS-finitely satisfiable set � there is
an interpretation I based on a maximal JTCS-finitely satis-
fiable extension �0 of � such that I |= �.

References

Antoniou, G. 1997. Nonmonotonic Reasoning. Cambridge,
MA: MIT Press.
Artemov, S. N., and Nogina, E. 2005. Introducing justifica-
tion into epistemic logic. Journal of Logic and Computation
15(6):1059–1073.
Artemov, S. N. 2001. Explicit provability and constructive
semantics. Bulletin of Symbolic logic 1–36.
Artemov, S. N. 2008. The logic of justification. The Review
of Symbolic Logic 1(4):477–513.
Artemov, S. N. 2018. Justification awareness models. In
Artemov, S. N., and Nerode, A., eds., International Sympo-
sium on Logical Foundations of Computer Science, volume
10703 of LNCS, 22–36. Springer.
Baltag, A.; Renne, B.; and Smets, S. 2012. The logic of
justified belief change, soft evidence and defeasible knowl-
edge. In Ong, L., and de Queiroz, R., eds., International
Workshop on Logic, Language, Information, and Computa-
tion, 168–190. Springer.
Baltag, A.; Renne, B.; and Smets, S. 2014. The logic of jus-
tified belief, explicit knowledge, and conclusive evidence.
Annals of Pure and Applied Logic 165(1):49–81.
Baroni, P.; Cerutti, F.; Giacomin, M.; and Guida, G. 2011.
Afra: Argumentation framework with recursive attacks. In-
ternational Journal of Approximate Reasoning 52(1):19–37.
Besnard, P., and Hunter, A. 2001. A logic-based theory of
deductive arguments. Artificial Intelligence 128(1-2):203–
235.

Booth, R.; Meyer, T.; and Varzinczak, I. 2012. PTL: A
propositional typicality logic. In del Cerro, L. F.; Herzig,
A.; and Mengin, J., eds., Logics in Artificial Intelligence:
Proceedings of the 13th European conference on Logics
in Artificial Intelligence, volume 7519 of LNCS, 107–119.
Springer-Verlag.
Brezhnev, V. 2001. On the logic of proofs. In Striegnitz,
K., ed., Proceedings of the Sixth ESSLLI Student Session,
Helsinki, 35–46.
Caminada, M. W., and Gabbay, D. M. 2009. A logical ac-
count of formal argumentation. Studia Logica 93(2-3):109.
Chisholm, R. M. 1966. Theory of Knowledge. Englewood
Cliffs, NJ: Prentice-Hall.
Delgrande, J. P., and Schaub, T. 2000. Expressing prefer-
ences in default logic. Artificial Intelligence 123(1-2):41–
87.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial intelligence
77(2):321–357.
Fan, T.-F., and Liau, C.-J. 2015. A logic for reasoning about
justified uncertain beliefs. In Yang, Q., and Wooldridge, M.,
eds., Proceedings of the IJCAI 2015, 2948–2954. AAAI
Press.
Fitting, M. 2005a. A logic of explicit knowledge. In
Běhounek, L., and Bı́lková, M., eds., Logica Yearbook 2004.
Prague: Filosofia. 11–22.
Fitting, M. 2005b. The logic of proofs, semantically. Annals
of Pure and Applied Logic 132(1):1–25.
Fitting, M. 2008. Justification logics, logics of knowledge,
and conservativity. Annals of Mathematics and Artificial In-
telligence 53(1-4):153–167.
Fitting, M. 2009. Reasoning with justifications. In Towards
Mathematical Philosophy. Springer. 107–123.
Fitting, M. 2016. Modal logics, justification logics, and
realization. Annals of Pure and Applied Logic 167(8):615–
648.
Garcı́a, A. J., and Simari, G. R. 2004. Defeasible logic pro-
gramming: An argumentative approach. Theory and Prac-
tice of Logic Programming 4(1+ 2):95.
Gödel, K. 1995. Vortrag bei Zilsel/Lecture at Zilsels
(1938a). In Kurt Gödel: Collected Works: Volume III: Un-
published Essays and Lectures, volume 3. Oxford University
Press. 87–114.
Grossi, D. 2010. Argumentation in the view of modal
logic. In McBurney, P.; Rahwan, I.; and Parsons, S., eds., 7th
International Workshop on Argumentation in Multi-Agent
Systems, ArgMAS 2010, volume 6614 of LNCS, 190–208.
Springer.
Hecham, A.; Bisquert, P.; and Croitoru, M. 2018. On
a flexible representation for defeasible reasoning variants.
In Dastani, M.; Sukthankar, G.; André, E.; and Koenig,
S., eds., Proceedings of the 17th International Confer-
ence on Autonomous Agents and MultiAgent Systems, AA-
MAS 2018, 1123–1131. International Foundation for Au-
tonomous Agents and Multiagent Systems.

Horty, J. F. 2012. Reasons as Defaults. Oxford University
Press.
Kokkinis, I.; Maksimović, P.; Ognjanović, Z.; and Studer,
T. 2015. First steps towards probabilistic justification logic.
Logic Journal of the IGPL 23(4):662–687.
Kokkinis, I.; Ognjanović, Z.; and Studer, T. 2016. Proba-
bilistic justification logic. In Artemov, S. N., and Nerode,
A., eds., International Symposium on Logical Foundations
of Computer Science, volume 9537 of LNCS, 174–186.
Springer.
Kuznets, R. 2000. On the complexity of explicit modal log-
ics. In Clote, P. G., and Schwichtenberg, H., eds., Computer
Science Logic: 14th International Workshop, CSL 2000, vol-
ume 1862 of LNCS, 371–383. Springer-Verlag.
Milnikel, R. S. 2007. Derivability in certain subsystems
of the logic of proofs is ⇧p

2-complete. Annals of Pure and
Applied Logic 145(3):223–239.
Milnikel, R. S. 2014. The logic of uncertain justifications.
Annals of Pure and Applied Logic 165(1):305–315.
Mkrtychev, A. 1997. Models for the logic of proofs. In
Adian, S., and Nerode, A., eds., Logical Foundations of
Computer Science, 4th International Symposium, LFCS ’97,
volume 1234 of LNCS, 266–275. Springer-Verlag.
Ognjanović, Z.; Savić, N.; and Studer, T. 2017. Justifica-
tion logic with approximate conditional probabilities. In
Baltag, A.; Seligman, J.; and Yamada, T., eds., Logic, Ra-
tionality and Interaction, 6th International Workshop, LORI
2017, volume 10455 of LNCS, 681–686. Springer.
Pollock, J. L. 1987. Defeasible reasoning. Cognitive Science
11(4):481–518.
Pollock, J. L. 2001. Defeasible reasoning with variable de-
grees of justification. Artificial intelligence 133(1-2):233–
282.
Prakken, H. 2010. An abstract framework for argumenta-
tion with structured arguments. Argument and Computation
1(2):93–124.
Reiter, R. 1980. A logic for default reasoning. Artificial
Intelligence 13(1-2):81–132.
Renne, B. 2012. Multi-agent justification logic: Communi-
cation and evidence elimination. Synthese 185(1):43–82.
Su, C.-P.; Fan, T.-F.; and Liau, C.-J. 2017. Possibilistic
justification logic: Reasoning about justified uncertain be-
liefs. ACM Transactions on Computational Logic (TOCL)
18(2):15.
Verheij, B. 2003. DefLog: On the logical interpretation
of prima facie justified assumptions. Journal of Logic and
Computation 13(3):319–346.
Zorn, M. 1935. A remark on method in transfinite algebra.
Bulletin of the American Mathematical Society 41(10):667–
670.

Support Trees For Answer Set Programs

Richard Watson

Department of Computer Science
Texas Tech University

Engineering Center, Room 316
902 Boston Ave.

Lubbock, TX. 79409
richard.watson@ttu.edu

Abstract

In 1994, Ben-Eliyahu and Dechter introduced the idea of
proofs of Answer Sets of Extended Disjunctive Logic Pro-
grams. Unfortunately, as they stated, the method only works
for programs that are head-cycle free. In this work, we present
Support Trees for Answer Set programs. We formally define
such trees. We then prove a one-to-one correspondence be-
tween certain paths of the Support Tree of a program and
the program’s Answer Sets. These paths are similar to the
proofs in the aforementioned work; however, they allow for
programs with head-cycles. In addition to the theoretical re-
sults, we compare this work to other related works and dis-
cuss several potential applications of this work.

1 Introduction

Since the introduction of the Stable Model Semantics for
logic programs (Gelfond and Lifschitz 1988) and the subse-
quent extension to the Answer Set Semantics for extended
disjunctive logic programs (Gelfond and Lifschitz 1991),
there have been great advances in the field, from the con-
stant evolution towards better, more advanced solvers to an
increase in the number and scope of applications.

One significant early work was the paper, Propositional
Semantics for Disjunctive Logic Programs (Ben-Eliyahu
and Dechter 1994). The authors of that paper studied proper-
ties of head-cycle-free extended disjunctive logic programs
(HEDLPs). Such programs are those in which the depen-
dency graph for the program does not contain directed cy-
cles through two or more literals in the head of the same rule.
The oft most used result of that paper is that, in HEDLPs, the
disjunctive rules can be replaced by non-disjunctive rules to
obtain an equivalent non-disjunctive program. Another in-
teresting idea presented in the paper, however, is that of a
proof of a literal within an answer set. Such proofs can be
seen as an explanation of at least one reason why a certain
literal is in the answer set. Furthermore, all literals in an an-
swer set must have a proof. While interesting, their method
is only applicable to HEDLPs.

In this work, we present support trees for answer set pro-
grams. As the name suggests, such trees show the support
for the rules along each path of the tree. While our research

Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

began as an attempt to provide proofs for literals in programs
with head-cycles, the resultant support trees also provide a
tree-based characterization of the semantics for answer set
programs. In addition, there are applications of the theory
to areas such as answer set solver development and query
answering routines.

We begin with an overview of answer sets in Section 2.
In Section 3, we give the formal definitions leading up to
and including that of support trees. Examples of key con-
cepts are also given. The definitions and proofs needed to
show the correlation between paths of a support tree for a
program and the answer sets of the program are given in
section 4. Section 5 provides a discussion of ways of gener-
alizing the construction of support trees in order to provide
more flexibility in their construction. In Section 6, related
works, including that of (Ben-Eliyahu and Dechter 1994),
are discussed. Areas of application of support trees and fu-
ture work are discussed in Section 7. Finally, there are some
brief acknowledgements in section 8.

2 Answer Sets

Here we present a brief overview of the syntax and seman-
tics of answer set programming as well as some other stan-
dard definitions. The syntax and semantics will be given
through a series of definitions. Due to space, no examples
will be given in this section. For a more complete overview
of answer sets see (Gelfond and Kahl 2014).
Definition 1 (Term). A term is defined as follows:

1. Any object constant or variable is a term.
2. If f is a function symbol of arity n and t1, . . . , tn are

terms, then f(t1, . . . , tn) is a term.
Definition 2 (Atom). An atom (also known as an atomic
statement) has the form

p(t1, . . . , tn)

where p is a predicate symbol of arity n and t1, . . . , tn are
terms.
Definition 3 (Literal and Extended Literal). A literal is an
atom, A, or its negation, ¬A. In addition, > and ? will de-
note distinguished literals with valuation true and false re-
spectively. If l is a literal, then not l is an extended literal.
For any literal l, l = ¬l if l is an atom and l = A if l = ¬A.

Definition 4 (Consistent). A set of literals is consistent if it
does not contain either ? or both A and ¬A for some atom
A.

Definition 5 (Rule, Program). A rule of answer set pro-
gramming is a statement of the form

l1 or . . . or lk lk+1, . . . , lm, not lm+1, . . . , not ln.

where each li is a literal. An answer set program is a collec-
tion of rules.

The intuitive reading of the rule is “if an agent believes
literals lk+1 through lm and has no reason to believe liter-
als lm+1 through ln then the agent must believe one of l1
through lk. A term, rule, or program that does not contain
variables is said to be ground. A rule that contains variables
is considered to be a shorthand for the set of rules obtained
by replacing the variables in the rule by each possible com-
bination of ground terms. For the rest of the paper, unless
otherwise indicated, all literals, rules, and programs will be
assumed to be ground.

Definition 6 (head(r), body+(r), body�(r)). If r is an ASP
rule:

• head(r) is the set of literals {l1, . . . , lk}.
• body

+(r) is the set of literals {lk+1, . . . , lm}.
• body

�(r) is the set of literals {lm+1, . . . , ln}.

Definition 7 (Satisfies). Given a set of literals, A, and a rule,
r, A satisfies:

• head(r) if head(r) \A 6= ;.
• body

+(r) if body+(r) ✓ A.
• body

�(r) if body�(r) \A = ;.
• r if whenever A satisfies body

+(r) and body
�(r) it also

satisfies head(r).

The semantics of an answer set program are based on
a rationality principle that “the agent should not believe
anything they are not forced to believe”. Furthermore, the
agent’s beliefs must be consistent and must satisfy all the
rules of the program. The formal semantics will be defined
in two steps.

Definition 8 (Answer Sets, Part 1). Given an answer set pro-
gram ⇧ which does not contain not , a consistent set of liter-
als A is an answer set of ⇧ if A satisfies all of the rules of ⇧
and no subset of A satisfies the rules of ⇧.

Definition 9 (Reduct). Given an answer set program ⇧ and
a set of literals A, the reduct of ⇧ with respect to A (denoted
by ⇧A) is the program obtained from ⇧ by:

1. removing all rules containing extended literal not l for any
literal l 2 A; and

2. removing all extended literals not l where l 62 A from the
remaining rules.

Definition 10 (Answer Sets, Part 2). Given an answer set
program ⇧, a consistent set of literal A is an answer set of ⇧
if A is an answer set of ⇧A.

3 Support Trees

We begin our discussion of support trees with a few basic
definitions. While some readers may be familiar with sev-
eral of the definitions, some other definitions will differ from
those commonly seen.
Definition 11 (Supported, Unblocked, Blocked). Let r be a
ground rule and I = hIN,OUT i be an ordered pair of sets
of literals, IN and OUT . We say
• r is supported w.r.t. I if body+(r) ✓ IN and body

�(r) ✓
OUT .

• r is unblocked w.r.t. I if body+(r) ✓ IN and body
�(r)\

IN = ;.
• r is blocked w.r.t. I if body

+(r) \ OUT 6= ; or
body

�(r) \ IN 6= ;.
As will be seen, support trees may have paths that are

transfinite in length (as will be shown in Example 6). In
such trees there are nodes other than the root that have no
immediate predecessor (no parent). Due to this, the standard
definition of tree cannot be used. Instead, we will use the fol-
lowing definitions concerning trees from (Nerode and Shore
1997). Note that, if we were to restrict ourselves to programs
in which all answer sets are finite in size, the standard defi-
nition of trees could be used.
Definition 12 (Tree). A tree is a set whose elements, called
nodes, are partially ordered by <T , and which has a unique
least element called the root. The predecessors of every node
are well ordered by <T .

Given two nodes, x and y, x is a child of y (and y is the
parent of x) if and only if y <T x and there does not exist a
node z such that y <T z and z <T x.

A path on a tree T is a maximal linearly ordered subset
of T . The path to node n on a tree T is the maximal lin-
early ordered subset of T whose greatest element is n. When
building a tree, a path is extended by adding each new node
to the tree such that the new node is greater than (w.r.t <T)
any node in the path and incomparable to any node not in
the path.

In this paper, each node of a tree will be labelled by either
an extended literal or by a rule of an answer set program.
Support trees will be formed by extending paths of the tree
by appending simpler trees. These simpler trees will corre-
spond to either supported rules or to rules that are not sup-
ported but are unblocked. Such trees will be referred to as
basic rule trees and chosen rule trees respectively. Defini-
tions and examples of each follow.
Definition 13 (Basic Rule Trees). Let r be an ASP rule
whose head is l1 or . . . or ln (where n � 0). Let ⌧ be a
tree whose root is labelled by r. If n > 0, the root has n

children, which are leaves, where the ith child is labelled by
li. If n = 0 then the root has one child, labelled by ?.
Example 1 (Basic rule trees). Given the following three
rules:
 p.

q p.

q or r or s p.

the rule trees for the rules are:

 p.

?

q p.

q

q or r or s p.

q r s

Definition 14 (Chosen Rule Tree). Let r be an ASP rule
and L be a set of literals. If {l1, . . . ln} is the set of all lit-
erals from body

�(r)\L, then the chosen rule tree for r with
respect to L is a tree with the following properties:
• The root of the tree is labelled by not l1.
• For each i < n the node labelled not li has exactly one

child node, labelled not li+1.
• The node labelled not ln has one child, the root of the

basic rule tree with root r.
Example 2 (Chosen rule tree). Given the rule

t p, not q, not r, not s.

and the set of literals L = {r}, the chosen rule tree for this
rule with respect to L is:

not q

not s

t p, not q, not r, not s.

t

The following notation will be used to refer to the literals
that appear positively or negatively on a path.
Definition 15 (lit(P), lit�(P)). Let ⌧ be a tree. If P is a
path on ⌧ then:
lit(P) = {l | there is a node labelled by literal l on path P}
lit

�(P) = {l | there is a node labelled by either l or not l on
path P}.
Definition 16 (Contradictory Path in a Tree). Let ⌧ be a tree
and P be a path in ⌧ . Path P is contradictory if lit(P) \
lit

�(P) 6= ;.
When building a tree, it will be necessary to know when a

path of a tree is compatible with an answer set of a program.
The definition below gives the precise meaning.
Definition 17 (Compatible with). Let ⌧ be a tree. If P is a
path on ⌧ and A is a set of literals then P is compatible with
A if and only if lit(P) ✓ A and lit

�(P) \A = ;.
In creating support trees for programs, to provide a nor-

mal form, we wish for the finished support tree of a given
program to be unique. To help accomplish this we provide
the following two definitions which provide orderings be-
tween either pairs of supported rules or between pairs of
rules which are unblocked, but not supported, respectively.
More general forms of support trees will be discussed in
Section 5.
Definition 18 (<Sup(⇧,I)). Let ⇧ = r1, r2, . . . be a count-
able sequence of ground ASP rules and I = hIN,OUT i be

an ordered pair of sets of literals, IN and OUT . Given two
distinct rules, ri and rj , from ⇧ which are supported w.r.t.
I , then ri <Sup(⇧,I) rj iff either:

1. |head(ri)| < |head(rj)| or
2. |head(ri)| = |head(rj)| and i < j.

Note that <Sup(⇧,I) totally orders the rules of ⇧ that are
supported w.r.t. I .
Definition 19 (<Unb(⇧,I)). Let ⇧ = r1, r2, . . . be a count-
able sequence of ground ASP rules and I = hIN,OUT i be
an ordered pair of sets of literals, IN and OUT . Given two
distinct rules, ri and rj , from ⇧ which are unblocked but not
supported w.r.t. I , then ri <Unb(⇧,I) rj iff either:

1. body
�(ri)\OUT ⇢ body

�(rj)\OUT ;
2. body

�(ri)\OUT = body
�(rj)\OUT and |head(ri)| <

|head(rj)|; or
3. body

�(ri)\OUT = body
�(rj)\OUT and |head(ri)| =

|head(rj)| and i < j.
Note that <Unb(⇧,I) partially orders the rules of ⇧ that

are unblocked but not supported w.r.t. I . As it is only a par-
tial order, as will be seen below, such unblocked rules will
be applied in parallel, using minimal choice sets, as defined
next.
Definition 20 (Minimal Choice Set). Let ⇧ = r1, r2, . . . be
a countable set of ground ASP rules and I = hIN,OUT i
be an ordered pair of sets of literals, IN and OUT .

The minimal choice set of ⇧ w.r.t. I is the minimal set of
rules of ⇧ (w.r.t.<Unb(⇧,I)) such that for each rule r in the
set:
• head(r) \ IN = ;; and
• r is unblocked but not supported w.r.t I .

Finally, the definition of a support tree is given. The defi-
nition, and the proofs in following section, use ordinal num-
bers. Those unfamiliar with ordinals can see (Nerode and
Shore 1997), If all answer sets of a program are finite, natu-
ral numbers can be used and item 3 in the following defini-
tion is not needed.
Definition 21 (Support Tree). Let ⇧ be a countable set of
ground ASP rules. Support trees for ⇧ are defined as fol-
lows:

1. The tree, ⌧(0,⇧), consisting of a single node, labelled by
> is a support tree for ⇧.

2. For any ordinal ↵, the tree ⌧(↵ + 1,⇧), formed from
⌧(↵,⇧) as follows, is a support tree for ⇧:
for each noncontradictory path P 2 ⌧(↵,⇧), let I =
hlit(P), lit�(P)i.

(a) If 9r2⇧head(r) \ lit(P) = ; and r supported by I ,
then let r0 be the least (w.r.t. <Sup(⇧,I)) such rule and
append the basic rule tree with root r0 to path P .

(b) If 2a does not apply, U is the minimal choice set of ⇧
w.r.t I , and U is not empty, then for each r 2 U , append
the chosen rule tree for r w.r.t. lit�(P) to P (creating
a new path for each r).

3. For any limit ordinal ↵, let ⌧(↵,⇧) =
S

i<↵ ⌧(i,⇧) is a
support tree for ⇧.

4 Properties of Support Trees

Now that the definition of support trees has been presented,
this section will discuss properties of such trees, leading to
the relation between certain paths of such trees and answer
sets of the related program. This will also lead to the defini-
tion of a proof of a literal within an answer set.

For use in later proofs, the following definition is given.
Definition 22 (Ldepth). Given a support tree, ⌧ , and a path,
P 2 ⌧ , the literal depth of P , denoted Ldepth(P), is the
minimum ordinal, ↵, such that P is a path in ⌧(↵,⇧). Fur-
thermore, Ldepth(⌧) = maxP2⌧Ldepth(P). If n is a node
on P labelled by literal l, then the Ldepth of that occurrence
of l (denoted Ldepth(l, P)) is the Ldepth of the subpath to
n on P .

Note that the Ldepth is only defined for literals, not ex-
tended literals.
Observation 1. Notice that, for any countable set of rules
⇧ and ordinal ↵, (2a) and (2b) from the definition of a sup-
port tree increase the Ldepth of the tree by 1 (if either is
applicable), hence Ldepth(⌧(↵,⇧)) ↵.

Next it is shown that there exists a fixed-point at which
the support tree of a program cannot be further extended.
Definition 23 (Finished). A path in a support tree is finished
if it cannot be extended by application of (2a) or (2b) from
the definition of a support tree. A support tree is finished if
all of its paths are finished.
Theorem 1. Let ⇧ be a countable set of ground ASP rules.
There exists a least ordinal, ↵, such that the support tree
⌧ =

S
i↵ ⌧(i,⇧) is finished.

Proof:
It can easily be seen from the definition of support tree that,
for any ordinal n, ⌧(n,⇧) is unique. Furthermore, it can be
seen that no path is extended using a rule whose head con-
tains a literal occurring previously on the path. Hence, no
path contains more than one node labelled by the same lit-
eral. From Observation 1, if the tree is not finished, each
extension increases the Ldepth by 1. As there are a count-
able number of literals, there cannot be any paths with an
uncountable Ldepth. Thus, if ⌦ is the first uncountable
ordinal, then ⌧(⌦,⇧) = ⌧(⌦ + 1,⇧). Since the ordinals
are well ordered, there is a smallest ordinal, ↵, such that
⌧(↵,⇧) = ⌧(↵ + 1,⇧). By definition, ⌧(↵,⇧), the least
fixed point, is finished.

Now that the existence of a unique finished support tree
has been shown, properties of paths of finished trees will be
presented. It will be shown that, a set of literals in an answer
set of a program if and only if there is a consistent finished
path in the finished support tree that corresponds to the an-
swer set. In one direction the proof is fairly straightforward.
Theorem 2. If ⇧ is an ASP program, A is an answer set of
⇧, ⌧ is a support tree for ⇧, P is a noncontradictory path
in ⌧ which is compatible with A, and lit(P) = A then P is
finished.
Proof:
If P could be extended by application of (2a) or (2b) from
the definition of a support tree then there is some rule r

whose head is not satisfied by A but is supported or un-
blocked with respect to I = hlit(P), lit�(P)i. It can eas-
ily be seen that, by definition of supported and unblocked,
A satisfies the body of rA. Hence A does not satisfy all the
rules of rules of ⇧A and therefore could not be an answer
set.

Before proving the opposite direction, several lemmas
that will help in the proof will be introduced. The first two
show the relationship between the rules on a path of a tree
which is compatible with an answer set A and the rules in
the reduct of the program with respect to A.
Lemma 3. If ⇧ is an ASP program, A is a set of literals,
⌧(↵,⇧) is a support tree for ⇧, and P is a path in ⌧(↵,⇧)
which is compatible with A, then for each rule, r 2 ⇧, ap-
pearing on P the body of rule r

A 2 ⇧A is satisfied by the
set of literals appearing on the path before the rule.
Proof:
This follows directly from the definitions of support tree,
minimal choice set, supported, unblocked, and satisfies.
Lemma 4. If ⇧ is an ASP program, ⌧ is a support tree for ⇧,
P is a noncontradictory finished path in ⌧ , and A = lit(P),
then A satisfies all of the rules of ⇧A.
Proof:
This follows directly from lemma 3 and the definition of fin-
ished.

Next, it is shown that any unfinished path compatible with
an answer set can be extended such that there is a superpath
that is compatible with the answer set.
Lemma 5. If ⇧ is an ASP program, A is an answer set of ⇧,
⌧(↵,⇧) is a support tree for ⇧, P is a path in ⌧(↵,⇧) which
is compatible with A, and lit(P) ⇢ A, then ⌧(↵,⇧) can be
extended by application of either 2a or 2b in accordance to
the definition of a support tree to create a new tree ⌧(↵ +
1,⇧) such that there is a path P

0 2 ⌧(↵ + 1,⇧) from root
to leaf such that P is a subpath of P 0 and P

0 is compatible
with A.
Proof:
Consider the following three cases:

1. Path P cannot be extended:
In this case lit(P) satisfies the rules of ⇧A, but, as
lit(P) ⇢ A, A would not be an answer set of ⇧.

2. Path P can be extended by application of 2a, but no su-
perpath of P is compatible with A:
Suppose rule r is the rule that would be used to extend P .
Therefore, the body of rA must be satisfied by lit(P) (and
hence by the literals in A). If no superpath of P is com-
patible with A it must be the case that head(r) \ A = ;,
but this would mean A does not satisfy the rules of ⇧A

and hence A could not be an answer set.
3. Path P can be extended by application of 2b, but no su-

perpath of P is compatible with A:
If I = hlit(P), lit�(P)i and U is the minimal choice set
of ⇧ w.r.t I , then there are two possibilities for this case
to be true: either no rule in U has a body satisfied by A;
or no rule in U whose body is satisfied by A has literal in
its head which is in A. The first sub-case is similar to case
1: this would mean lit(P) satisfies the rules of ⇧A and

hence A could not be an answer set. The second sub-case
is similar to case 2: A would not satisfy the rules of ⇧A

and hence A could not be an answer set.
As will be seen, some consistent paths will correspond

to answer sets. The sets of literals on other paths, however,
may not meet the minimality condition in the definition of
answer sets. This is due to the fact that programs may con-
tain head-cycles. We can eliminate such non-minimal paths
by requiring that paths have an additional property beyond
just being consistent. This property, that of a valid path, will
be defined next.
Definition 24 (Valid, Invalid). Let ⇧ be an ASP program, ⌧
be a finished support tree for ⇧, and P be a path in ⌧ . Path
P is said to be valid if:

1. P is not contradictory; and
2. for any path, P 0, to a node labelled by a disjunctive rule, r,

in ⌧ , if P 0 is compatible with lit(P), literal l 2 head(r),
and l 2 lit(P), then there is a consistent finished path
P

00 2 ⌧ which extends P
0 by the node labelled by l and

lit(P 00) = lit(P).
A path is invalid if it is not valid.
Example 3 (Valid and Invalid Paths). Given the program:

⇧ =

(
p or q.
r p, not q.
p q.

the finished support tree for the ⇧ is:

>

p or q.

p

not q

r p, not q.

r

q

p q.

p

The left path is valid as it is consistent and the only path
through a disjunctive rule that is compatible with the literals
on the path is the path itself. The right path, however, is in-
valid as the path to the node labelled by p in the left path is
compatible with the literals occurring on the right path, but
there is no finished path extending it which contains q.

The main theorems of the paper, showing the correspon-
dence between valid paths of the finished support tree and
answer sets of the program, are now presented.
Theorem 6. If ⇧ is an ASP program, A is an answer set of
⇧, and ⌧ is the finished support tree for ⇧ then there exists a
valid finished path P in ⌧ such that A = lit(P).
Proof:

First, we show that a finished path exists. By definition of
support tree, for any path, P 0, compatible with A (includ-
ing the path containing only the root), either lit(P 0) ⇢ A

and by Lemma 5 there is a path that extends P 0 and is com-
patible with A or lit(P 0) = A and, by Theorem 2, is fin-
ished. By Theorem 1 all paths are eventually finished. This
proves that at least one finished path, P , exists in ⌧ such that
A = lit(P). To show that the path must also be valid con-
sider any such path P . Since A = lit(P) and A is an answer
set of ⇧, P must be consistent. Next, by the same argument
used to prove path P exists, for any path P

0 which meets
the conditions in step 2 of the definition of valid, P 0 can be
extended to a finished path P

00 such that lit(P 00) = A and
hence P is valid.

Theorem 7. Let ⇧ be an ASP program. If ⌧ is the finished
support tree for ⇧, P is a valid path in ⌧ , and A = lit(P)
then A is an answer set of ⇧.
Proof:
By Lemma 4, A satisfies the rules of ⇧A, therefore, by the
definition of answer set, either A is an answer set of ⇧ or
there exists an A

0 ⇢ A which is closed under the rules of
⇧A. Assume such an A

0 exists. Since A
0 ⇢ A, let ↵ be the

greatest ordinal such that there exists a P↵ 2 ⌧(↵,⇧) where
P↵ is a subpath of P and lit(P↵) ✓ A

0. Consider ⌧(↵ +
1,⇧). By the definition of support tree, there must therefore
exists some rule r which occurs on path P and extends P↵

such that some literal, lP 2 head(r), is the next literal on
P . Notice that since r was either supported or unblocked,
then the rule rA is supported and therefore at least one literal
from the head of r must also be in A

0. By our choice of
↵, r must be disjunctive such that lP 62 A

0 but there exist
some lP 0 2 head(r) where lP 0 2 A

0. Let P 0 be the path
in ⌧(↵ + 1,⇧) that extends P↵ using r with lP 0 as the next
literal on the path. As A

0 ⇢ A, lP 0 2 A and therefore P
0

is also compatible with A. Notice as well that A contains at
least two literals, lp and lp0 , from head(r). Since P is valid
there must therefore exist a path P

0
1 (or paths P 0

i) that extend
P

0 such that lit(P 0
i) = A. But, since A

0 ⇢ A there must
be some greatest ordinal � > ↵+ 1 such that there is a path
P� 2 ⌧(�,⇧) where P� extends P 0, P� is a subpath of some
P

0
i , lit(P�) ⇢ A, and lit(P�) ✓ A

0. As will be shown, this
is impossible. Let r� be the rule used to extend P� on P

0
i .

As above, rA� is supported by the literals on P� hence at least
one literal from head(r�) must be in A

0. It is obvious that r�
cannot be a constraint. If head(r�) is a singleton then both
A and A

0 contain the literal in r’s head, but then � is not the
greatest ordinal satisfying the conditions above. If head(r�)
is disjunctive, A0 must contain some literal from head(r�).
As A

0 ⇢ A it must be a literal that is also in A. Because
P is valid, even if two or more literals from head(r�) are
in A, any path P�+1 2 ⌧(� + 1,⇧) which extends P� by
r� ending in a rule from A must be a subpath of some P

0
i ,

so again, � is not the greatest ordinal satisfying the above
conditions. Therefore, there is no such � and, in turn, no
such A

0. Hence A is an answer set of ⇧.

Theorem 8. Let ⇧ be an ASP program. A set of literals A
is an answer set of ⇧ iff the finished support tree ⌧ for ⇧
contains a valid path P in ⌧ such that A = lit(P).

Proof:
Follows directly from Theorems 6 and 7.

Returning to example 3, there was only one valid path in
the finished support tree for the given program ⇧. It can be
verified that the set of literals occurring on the path, A =
{q, r, s}, is the only answer set of ⇧.

Proof of a literal in an answer set

One of the original goals of this work, following that of
(Ben-Eliyahu and Dechter 1994), was to provide a proof as
to why a literal was a member of an answer set. One could
view a valid path of the finished support tree to be a proof
of all literals in the answer set. This, however, would not in-
dicate which rules were used to prove a specific literal. In
order to provide more specific explanations, the following
definitions are used.

Definition 25 (Necessary Proof Node). Given a program, ⇧,
the finished support tree, ⌧ , for ⇧, an answer set, A, of ⇧, a
literal l such that l 2 A, and a path P such that lit(P) = A,
then a node, n, of P is a necessary proof node in P w.r.t. l
iff either:

• n is labelled by l; or

• n is labelled by a rule and is the parent of a necessary
proof node in P w.r.t. l; or

• n is labelled by an extended literal l0 and l
0 occurs in the

body of a rule r such that there is a node labelled by r

which is a necessary proof node in P w.r.t. l.

Definition 26 (Proof of a Literal in an Answer Set). Given a
program, ⇧, an answer set, A, of ⇧, and a literal l 2 A, let ⌧
be the finished support tree for ⇧. An ordered sequence, S,
of nodes is a proof of l in the answer set A of ⇧ if for some
valid path P 2 ⌧ such that lit(P) = A, S is the subpath of
P containing all, and only, necessary proof nodes in P w.r.t.
l. To relate the proof to the tree, we may also refer to it as
the proof of l in the answer set A of ⇧ on path P .

The following example shows that, given an answer set of
a program, there will be at least one proof of every literal
in the answer set, however, there may exist proofs which do
not occur in the tree.

Example 4. (Proof) Given the following program:

⇧ =

8
><

>:

p.

q.

r p.

r q.

the only answer set is A = {p, q, r}. One could argue that
there are two proofs of r in A: one since p is true and p en-
tails r, and one because q is true and q also entails r. How-
ever, if the rules are ordered as listed, the finished support
tree, ⌧ , of ⇧ is as shown below, with the bold nodes showing
the only proof of r in A:

>

p.

p

q.

q

r p.

r

Often times a single proof is enough, so the fact that some
proofs may not occur in the support tree is not necessarily
problematic. Other proofs could be made possible by gen-
eralizing the construction of support trees, as discussed in
section 5.

When a proof uses a disjunctive rule and two or more lit-
erals from the head of the rule are true in the answer set, the
form of proof of a literal given above may not be convincing.
In this case one may opt for the following version of a proof
of a literal.

Definition 27 (Tree Proof of a Literal in an Answer Set).
Given a program, ⇧, an answer set, A, of ⇧, and a literal
l 2 A, let ⌧ be the finished support tree for ⇧ and S =
{S0 | S0 is a proof of l in A}. A set P ✓ S is a tree proof
of l in A if P is a nonempty, minimal (with respect to set
theoretic inclusion) subset of S such that, for any si, sj 2 S

that diverge at some disjunctive rule, if si 2 P then sj 2 P .

Notice that if the chosen path P does not contain any dis-
junctive rules with two or more literals from A in the head,
then the tree proof is simply the proof given by the previous
definition.

5 Generalized Support Trees

The definitions given in the sections above guarantee exactly
one support tree exists for any given program. While this
makes it easier to prove properties of the trees, it constrains
the choice of rules used when building the tree. By loosen-
ing the restrictions on the rules used to extend support trees
uniqueness of the tree is lost, but freedom in building such
trees is gained.

There are two fairly obvious places in which more free-
dom of choice may be allowed. The first is in clause 2a of the
definition of support trees. In this step, among the rules that
are supported and whose heads are not satisfied, the least
w.r.t <Sup(⇧,I) is chosen. While not proven here, the choice
of any rule from among those that are supported would re-
sult in finished trees with paths equivalent to those in the
definition of support tree in section 3 and hence the results
should still hold.

The second place where restrictions can be loosened in-
volves clause 2b of the definition of support trees. One
could relax the definition of <Unb(⇧,I) used in the construc-
tion of the minimal choice set. Recall that the definition of
<Unb(⇧,I) had three cases. The second and third case deter-
mine preference between rules which have the same set of
unsupported rules in the negative part of the body. Again,
allowing a choice among such rules would still produce cor-
rect results.

Note however that, if one chooses a subset of unblocked
rules, the first case from the definition of <Unb(⇧,I) cannot
be dropped. This can be seen in the following example.
Example 5 (Important property of ri <Unb(⇧,I) rj). Sup-
pose the following program is given:

⇧ =

⇢
p not r, not s.
q not p, not r, not s.

When building the support tree OUT is initially empty and
neither rule is supported. By definition, as both rules are un-
blocked but the first rule is less than the second rule w.r.t
<Unb(⇧,I), a path from the root is extended using the first
rule. At this point I = h{p}, {r, s}i and hence the second
rule is blocked. The support tree is finished and has one valid
finished path corresponding to the one answer set of this pro-
gram, {p}. Suppose however, the definition of <Unb(⇧,I)
was changed to allow one to choose which rule to use if
body

�(ri)\OUT ⇢ body
�(rj)\OUT . If the second rule

was chosen rather than the first, the resultant tree would start
with an initial path containing the chosen rule tree for the
second rule. After this step I = h{q}, {p, r, s}i and hence
the first rule is supported. However, extending the tree using
this rule results in an inconsistent path containing both p and
not p. The tree is finished but has no valid paths.

Another form of generalized support tree would be one
in which all possible rules were fired at every step. For sup-
ported rules, rather than choosing one, all such rules could
be fired in parallel, creating a separate path for each possible
choice. For unblocked rules, one would drop the use of the
minimal choice set and simply append the chosen rule trees
for each unblocked rule, in parallel, to the path. This would
result in a finished support tree that was a super-tree of the
one in our original definition and whose valid paths were
equivalent to existing paths. one benefit of such a tree is that,
for any answer set of a program, it would contain a path for
every possible ordering of the rules that would lead to that
answer set. However, using such a definition would often re-
sult in a much broader tree (possibly infinitely broader) with
many equivalent paths. Such trees, which will be referred to
as maximal choice support trees, can be of theoretical inter-
est. Their practical use is, for obvious reasons, more limited.

6 Related Work

As mentioned in the introduction, the paper that motivated
this work was (Ben-Eliyahu and Dechter 1994). In that pa-
per, its authors presented a definition of a proof of a literal
with respect to a context and a program. In their terminol-
ogy, a context was simply a set of ground literals. Given a

context, S, and a program, ⇧, a proof of a literal l was a
sequence of rules, r1, . . . , rn such that:

• only one literal from the head of each ri is a member of S
(they denote this literal as hS(ri)),

• the body of each ri is satisfied by S,

• r1 has an empty positive body,

• for each i > 1, for every literal, lj occurring in the positive
body of ri there exists a k < i such that lj = hS(rk), and

• l = hS(rn).

They go on to say that, if ⇧ is an HEDLP, a consistent con-
text S is an answer set of ⇧ iff it satisfies all rules of ⇧
and each literal in S has a proof with respect to S and ⇧.
Note that the definition of proof here differs slightly from
their original definition in that the word “positive” in our
third bullet above was missing in their definition. This was
clearly a minor oversight as, under their definition, the pro-
gram with a single rule, “p not q.”, would not have a
proof of p with respect to this program and the set {p}.

Our definition of the proof of a literal in an answer set is
similar to theirs. However, it should be noted that our defi-
nition is based on our construction of the support tree while
theirs defines what such a proof is but gives no construc-
tive means of finding them. There is an obvious tradeoff in
choosing one over the other, while ours are constructive, as
will be shown, they will often have proofs that will not occur
in our support trees (unless the tree is generalized). Another
key difference is that we have no requirement that exactly
one literal from the head of a rule in the proof be in the
answer set. As a result, we include both rules and literals
in our proof so that you know which literal was used. We
also choose to keep default negated extended literals as well.
These literals could have been dropped as they are clearly
satisfied by the answer set, but we felt they added to the use
of the proof as an explanation.

Unfortunately, if a program is a HEDLP, there is not a
definite correspondence between proofs in either direction.
Consider a program which contains two rules:

⇧ =

⇢
p.

p or q.

This program has one answer set, A = {p}. In Ben-Eliyahu
and Dechter’s, the sequence containing one rule, the second
rule listed, would constitute a proof. Under our construction
of support trees, only the first rule would be used in the tree
and hence this proof would not occur.

In the other direction, consider the program:

⇧ =

8
><

>:

p or q.
p or r q.

q or r p.

 r.

This program also has only one answer set, A = {p, q}. If
the order of the rules is the one given in the program, the
finished support tree would be

>

p or q.

p

q or r p.

q r

?

q

p or r q.

p r

?

Under our definition of proof, the literal p would have two
possible proofs, each corresponding to one of the subpaths
in the graph ending at a node labelled by p. If we consider
the sequence of rules on each such subpath, neither is a proof
under the definition in the paper by Ben-Eliyahu and Dechter
as both literals from the head of the first rule occur in the
answer set.

If we were to use maximal choice support trees however,
it would hold that, for every proof of a literal l in A w.r.t.
Ben-Eliyahu and Dechter’s paper, there would exist a path
P in the maximal choice support tree such that the proof of
l in the answer set A of ⇧ on path P would have the same
sequence of rules. As the second program above showed, the
converse would not be the case.

Another related work is presented in (Marek and Remmel
2012). First, it is important to note that their work allows dis-
junction, but no strong negation, and, as such, they use ¬ for
default negation rather than not. In their paper, they define
selector functions. Roughly speaking, the selector function
indicates which non-empty set of atoms from the head of a
rule should be chosen if the body of the rule is satisfied. Us-
ing this, they define selector stable models, which are stable
models of the program that honor a chosen selector function.
They further state that a set of atoms is a stable model iff it
is a minimal selector stable model.

Marek and Remmel next provide the definition of a form
of proof called a (D, f)-proof scheme. Given a disjunctive
propositional logic program D and a selector function f , a
(D, f)-proof scheme of length n is a sequence:

hhC1, f(C1)i, . . . , hCn, f(Cn)i, Ui

such for each Ci the positive part of the body is supported
by the set of atoms

S
j<i f(Cj) and all atoms in the negative

part of the body are in U . In comparing to our work, recall
example 3. The program, ⇧, had one answer set {p, q, r}.
Let f be the function such that f(p or q.) = q, f(p or r
q.) = r, and, as all other rules from ⇧ have singleton heads,
f returns the head for each such rule. The following would
then be the (⇧, f)-proof scheme that proves s:

hhp or q., qi, hp or r q., ri, hs r, not p., si, {p}i

This is very close to the proof of s in the support tree shown
in the example, with the only difference being the form, but

not the content, of the proof. If one were to take a proof,
with respect to our work presented in this paper, and choose
a selector function which agreed with the sections made
along the path used in our proof, then there exists an obvious
equivalent proof in terms of Marek and Remmel.

Similar to the work of Ben-Eliyahu and Dechter, while
such proofs exist, the definition is not constructive. They
will, of course, have proofs we will not get in a support tree.
Some of these proofs are somewhat strange. Consider the
following program:

⇧ =

(
p.

q.

p or q.
There is no requirement that the selector function return a
single element from the head of a rule, so we may choose f

such that, for each rule, the function selects all atoms in the
head. As a result, the proof scheme

hhp or q., {p, q}i, { }i
can be seen as a proof of both p and q. This contradicts the
standard wisdom that a disjunctive rule cannot be used to
support more than one literal in its head. Unfortunately, this
also leads to an error in their paper. Consider the program:

⇧ =

(
p or q.
r p, not q, not r.
r q, not p, not r.

There are three possible choices for a selector function. In
each, r must be selected for the second and third rules. For
the first rule, however, we can select either p or q or both p

and q. If we select either p or q the resulting program does
not have a selector stable model, however if we choose both,
the set {p, q} is a selector stable model w.r.t. that selector
function. As it is the only selector stable model, it is there-
fore a minimal selector stable model and by their theorem
should be a stable model of the program. However, it can
easily be seen that this program has no stable models. While
we have not proven so, it seems that if the selector func-
tions were restricted to selecting a single element from the
head of each rule, their theorems with respect to stable mod-
els would be correct. We have not examined what effect this
change would have on other results presented in their paper.

A third area of work that is less closely related is that of
(Schulz and Toni 2014) on the use of argumentation to jus-
tify answer sets. In their work, assumption-based argumen-
tation (ABA) is used to explain why a literal is, or is not,
contained in a given answer set. This is, of course, some-
what different than our work in that we make no attempt at
proving why something is not in an answer set. Their ABA-
based answer set justifications are quite different from our
proofs. Any connections between our proofs and their justi-
fications are not obvious. The relationships between the two
is left for future work.

A more recent related work is presented in (Oetsch,
Pührer, and Tompits 2018). In that paper, the authors present
a method for stepping through the computation of answer
set. The motivation for their work was to provide for a de-
bugging tool for answer set programming. As we only re-
cently became aware of this work, the comparison presented

here is preliminary. A first major difference is in seman-
tics. The semantics used in their work is that presented in
(Oetsch, Pührer, and Tompits 2012). Their semantics allows
for a richer class of programs which allow abstract con-
straints (which can be used to mimic choice rules and aggre-
gates allowed by many current solvers). In this work, only
the basic semantics are used and extensions to such larger
classes are left for future work. It should be noted however,
their semantics do not totally conform to those used by the
most common solvers. A second difference is that their work
seems to be restricted to the finite case. This makes sense as
their motivation was to create a practical tool for debugging
whereas our motivation was a more general theoretic result.
It is likely their work could be expanded to the infinite case
if desired. Finally, their computations are quite different than
our trees and proofs. Further work will be needed to investi-
gate the correlations between them.

Other related works are those of (Pontelli, Son, and El-
Khatib 2008), (Liu et al. 2010), and (Brochenin, Lierler, and
Maratea 2014). These works are less related, and compari-
son is omitted due to space considerations.

7 Areas of Application and Future Work

In this section we discuss possible applications of this re-
search as well as future work.

Computing Answer Sets

The construction of a support tree can be viewed as a for-
ward chaining algorithm for computing the answer sets of a
program. When encountering a disjunctive rule, for each lit-
eral in the head, one can compute the sets of literals on valid
paths which extend through that literal. If, for some such set,
the set contained two or more literals from the head of the
rule, one could then check to see if the same set of literals
was on a valid path that extended through each of those other
literals. If so, the path is valid, if not, it is not valid itself and
can be dropped. By doing so, answer sets can be computed
without the need of computing a reduct to perform a mini-
mality check.

We are currently using this approach in our implementa-
tion of the latest version of SigmaSolver (Videtich 2014),
a just-in-time grounding solver which allows for sorts and
external functions.

Answer Sets which are Infinite in Size

In answer set programming, if we allow an infinite set of
ground terms, one can easily write non-ground programs
which have infinite answer sets. In such cases, the support
trees will have infinite, or even transfinite, paths. The sup-
port trees for such programs will contain one or more infinite
sequences of rules and their consequences. In the tree, any
such infinite sequence either ends the path or is followed by
another section which starts at the next limit ordinal. Each
such infinite section may have some initial distinct rules that
can fire, but for any program with a finite non-ground rep-
resentation there must be a loop through a pattern of ground
instances within the rules in order to form the infinite se-
quence. The following is an example of this.

Example 6 (A transfinite tree). Given the following pro-
gram:

⇧ =

(
p(0).
p(X + 2) p(X).
q not p(1).

where X ranges over natural numbers, then the finished sup-
port tree, ⌧ for ⇧, is the tree:

>

p(0).

p(0)

p(2) p(0).

p(2)

p(4) p(2).

p(4))

...

q not p(1).

q

There is only one path in this tree, which is transfinite in
length (there is an infinite sequence of pairs of nodes for
each subsequent p(X) before the last two nodes and there-
fore there is no node in the tree which is a parent of the node
labelled by q not p(1).). The set of literals on the path is
A = {p(0), p(2), p(4), . . . , q} which is the answer set of ⇧.

A study of such trees may then give insight into ways of
providing finite representations of infinite answer sets. This
is an area for further research in the future.

Query Answering

As one can use support trees to construct answer sets, one
can also use the construction of support trees as a means to
answer queries. As a simplifying example, assume the query
is a single literal. Notice that, at any point in the construc-
tion of a support tree, if every consistent path contains the
query, then the query must be true in any answer set of the
program. This may allow one to show that a query is true
even if the actual answer sets of the program are infinite and
cannot be computed. Furthermore, if a valid finished path
was found that did not contain the query, then the query is
not supported.

Using the idea of a generalized support tree one could pri-
oritize rules that would result in the query being made true

on a path or in the path being shown to be inconsistent. Once
the query appeared on a path, that path could be abandoned
in favor of expanding other paths to in turn show that they
either contained the query or were inconsistent. The creation
of such a query answering system could possibly be incorpo-
rated into the work on SigmaSolver, although it is not some-
thing we are working on at this time.

Extensions of Support Trees

In the work presented here, support trees were defined for
very basic extended disjunctive logic programs. An obvious
area for future work is to expand support trees to allow for
choice rules, aggregates, and other language constructs used
by current answer set solvers. While it was beyond the scope
of this initial paper, such extensions will be needed for the
theory to be fully applicable.

We also intend to expand the theory of support trees
to cover the language of epistemic specifications (Gelfond
1994). Epistemic specifications are an extension of answer
set programming that add two model operators, K and M .
Due to unintended models in Gelfond’s original paper, there
have been several works, including (Truszczynski 2011),
(Kahl 2014), and (Shen and Eiter 2016), which propose
modified semantics for such programs. We intend to develop
an extended version of support trees in order to capture one
or more of the modified semantics. This can give more in-
sight into the different semantics and, as with answer sets,
provide an equivalent tree-based semantics. There has also
been some work on solvers for the work from Kahl’s doc-
toral dissertation (see (Kahl et al. 2015) and (Kahl, Leclerc,
and Son 2016)). As with the work on SigmaSolver, such ex-
tended support trees may provide the basis for new solvers
for epistemic specifications.

Explanations/Software Engineering Tools

As was shown in the section on related work, there have
been several approaches that provide a definition of a proof,
or other form of justification, for the occurrence of a given
literal in an answer set. Such ideas are critical in forming
software engineering tools. Support trees have a structure
that lends itself to a simple graphical representation. The fact
that they are constructive is also a benefit over some other
proof methods mentioned. Development of such tools is a
topic for future work.

8 Acknowledgments

The author would like to thank Michael Gelfond for numer-
ous discussions and feedback on this work, Nelson Rush-
ton for discussions concerning ordinals, especially the fixed-
point proof, and Patrick Kahl for helping prompt this work.
Their time and efforts helped make this work possible.

References

Ben-Eliyahu, R., and Dechter, R. 1994. Propositional se-
mantics for disjunctive logic programs. Annals of Mathe-
matics and Artificial Intelligence 12(1):53–87.
Brochenin, R.; Lierler, Y.; and Maratea, M. 2014. Ab-
stract disjunctive answer set solvers. In Proceedings of

the Twenty-first European Conference on Artificial Intelli-
gence, ECAI’14, 165–170. Amsterdam, The Netherlands,
The Netherlands: IOS Press.
Gelfond, M., and Kahl, Y. 2014. Knowledge Representa-
tion, Reasoning, and the Design of Intelligent Agents: The
Answer-Set Programming Approach. New York, NY, USA:
Cambridge University Press.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Kowalski, R., and
Bowen, K., eds., Proceeding of ICLP-88, 1070–1080. MIT
Press.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9(3-4):365–386.
Gelfond, M. 1994. Logic programming and reasoning with
incomplete information. Annals of Mathematics and Artifi-
cial Intelligence 12(1):89–116.
Kahl, P.; Watson, R.; Balai, E.; Gelfond, M.; and Zhang, Y.
2015. The language of epistemic specifications (refined) in-
cluding a prototype solver. Journal of Logic and Computa-
tion exv065.
Kahl, P. T.; Leclerc, A. P.; and Son, T. C. 2016. A parallel
memory-efficient epistemic logic program solver: Harder,
better, faster. CoRR abs/1608.06910.
Kahl, P. T. 2014. Refining the Semantics for Epistemic Logic
Programs. Ph.D. Dissertation, Texas Tech University.
Liu, L.; Pontelli, E.; Son, T.; and Truszczynski, M. 2010.
Logic programs with abstract constraint atoms: The role of
computations. Artificial Intelligence 174:295–315.
Marek, V. W., and Remmel, J. B. 2012. Disjunctive pro-
grams with set constraints. In Erdem, E.; Lee, J.; Lierler, Y.;
and Pearce, D., eds., Correct Reasoning. Berlin, Heidelberg:
Springer-Verlag. 471–486.
Nerode, A., and Shore, R. 1997. Logic for Applications.
Berlin, Heidelberg: Springer-Verlag, 2nd edition.
Oetsch, J.; Pührer, J.; and Tompits, H. 2012. An flp-style
answer-set semantics for abstract-constraint programs with
disjunctions. Leibniz International Proceedings in Informat-
ics, LIPIcs 17.
Oetsch, J.; Pührer, J.; and Tompits, H. 2018. Stepwise de-
bugging of answer-set programs. Theory and Practice of
Logic Programming 18(1):30–80.
Pontelli, E.; Son, T. C.; and El-Khatib, O. 2008. Justifica-
tions for logic programs under answer set semantics. CoRR
abs/0812.0790.
Schulz, C., and Toni, F. 2014. Justifying answer sets using
argumentation. CoRR abs/1411.5635.
Shen, Y.-D., and Eiter, T. 2016. Evaluating epistemic
negation in answer set programming. Artificial Intelligence
237:115 – 135.
Truszczynski, M. 2011. Revisiting epistemic specifications.
CoRR abs/1108.3279.
Videtich, A. 2014. A limited grounding approach for solving
answer set programs. Master’s thesis, Texas Tech University.

Manipulation of Semantic Aggregation Procedures for Propositional Knowledge
Bases and Argumentation Frameworks

Adrian Haret and Johannes P. Wallner
Institute of Logic and Computation, TU Wien, Austria

Abstract

We study the potential for manipulation of semantic aggre-
gation procedures for argumentation frameworks (AFs) and
propositional knowledge bases. The basis for our study is
a framework that investigates questions of manipulability
and strategy-proofness for logic-based merging, which pro-
vides the foundation to several operators for aggregating AFs.
We enrich a key component of this framework—the satis-
faction indices which formalize when manipulation by an
agent pays off—with two main approaches to AF reasoning:
skeptical and credulous acceptance of arguments. In propo-
sitional knowledge bases, skeptical consequences are propo-
sitions true in all models, while credulous consequences are
propositions true in at least one model. We find that, even
in restricted cases, most aggregation procedures are vulner-
able to manipulation by an agent for both (i) propositional
knowledge bases and (ii) AFs under the stable, preferred, and
grounded semantics. However, aggregation is not manipula-
ble (i.e., is strategy-proof) under one well-known operator
when the bases, or AFs, are semantically complete (i.e., have
exactly one semantical model). Finally, we provide complex-
ity results for computing our novel indices.

1 Introduction
Complex decision making often faces the challenge of ag-
gregating multiple, possibly conflicting viewpoints. While
the literature on social choice (Lang and Xia 2016; Zwicker
2016) offers a wealth of aggregation procedures, these stud-
ies also highlight an important stumbling block to their suc-
cessful implementation: participants in a deliberation pro-
cess may have an incentive to misrepresent their positions,
if doing so can bring an advantage. Effects of manipulation
of the aggregation process are various: from the possibility
that overall non-optimal results may be chosen (Faliszewski
and Procaccia 2010; Conitzer and Walsh 2016), to calling
into question the meaning of the whole process, as well as
potential societal harm that can be inflicted by malicious
agents (Brundage et al. 2018).

The field of formal argumentation in Artificial Intelli-
gence (Bench-Capon and Dunne 2007), which lends itself
naturally to (group) deliberation through collective argu-
mentation, has, in recent years, witnessed a steady increase
in research on aggregation procedures. Most of the study of
aggregation in argumentation focuses on the core formalism

of argumentation frameworks (AFs) (Dung 1995). AFs un-
derlie many approaches to formal argumentation in AI, and
can be represented as directed graphs whose vertices are ar-
guments and the directed edges represent directed conflicts
(attacks) among the arguments. Semantics of AFs, several
of which have been proposed to different effect, specify cri-
teria for selecting sets of arguments (called extensions) that
can be reasonably deemed to be jointly acceptable.

When considering argumentation in a multi-agent setting,
it is plausible that agents have different stances towards ar-
guments and disagree about where to place conflicts. Fol-
lowing up on this idea, strategies for aggregating AFs can
be distinguished among two main lines (see the recent sur-
vey by (Bodanza, Tohmé, and Auday 2017)): (i) approaches
that aggregate the graph structures, and (ii) approaches that
aggregate the semantics of the AFs (Delobelle et al. 2016),
which can be seen as a procedure for aggregating different
viewpoints that can arise in a debate. In this work we focus
on the latter, semantic approach.
Example 1. City Hall must decide if it will develop a cer-
tain area of the city. Two projects are put forward: expensive
high-rises and affordable housing. The constraint City Hall
is operating under is that either development goes through
with exactly one of the projects, or the whole thing is aban-
doned. Furthermore, City Hall wants to involve the com-
munity in the deliberative process, and four groups of in-
terest are invited. The main arguments being deliberated
upon are that the area must be developed (a), that develop-
ment should consist of high-rises (b), or affordable housing
(c). The stances of the four agents are as follows: (1) real-
estate developers argue that developing an area and build-
ing affordable housing are at odds with each other, thereby
favouring expensive high-rises (a and c mutually attack each
other); (2) residents of the adjacent neighborhoods hold the
opposite viewpoint, arguing that high-rises and development
do not go together, as expensive skyscrapers raise rent lev-
els and erode feeling of community (a and b mutually attack
each other); (3) a group of social activists holds that afford-
able housing is a necessity, and that it should take prece-
dence over ambitions of development and high-rises (c at-
tacks other arguments); (4) a businessman who happens to
own a large part of the land under consideration for develop-
ment thinks there should certainly be investment in the area,
but that investment should go neither into high-rises nor af-

fordable housing, but rather into something like office space,
as that would bring more profit (a attacks other arguments).

The differing opinions give rise to different conflicts be-
tween the three main arguments, depicted in Figure 1, with
AFs F1�4 corresponding to each of the interested parties.
Under the standard stable semantics for AFs, we get the fol-
lowing stable extensions: viewpoints of F1 are {a, b} and
{b, c}; F2 accepts {a, c} and {b, c}; F3 considers {c} ac-
ceptable; F4 chooses {a}. We aggregate these extensions
using the standard aggregation operator �dH ,⌃

µ
. Intuitively,

this operator returns extensions that minimize the sum (⌃)
of symmetric differences (dH) to the given extensions, while
being restricted to outcomes permitted by the integrity con-
straint µ, which in this case is equivalent to (¬a^¬b^¬c)_
(a ^ (b $ ¬c). Application of �dH ,⌃

µ
yields the unique ex-

tension {a, c}. But if F4 opts to, untruthfully, misrepresent
their views in a way that implies that b shall also be accepted
(e.g, by leaving out the attack from a to b), then the result
changes to two extensions: {a, b} and {a, c}.

As seen in the example, reporting untruthfully can change
the aggregated outcome: in Example 1, the effect is to intro-
duce doubt on whether c is unambiguously part of the result.
This might seem, at first glance, innocuous: but if one fo-
cuses on the skeptical consequences (a main reasoning task
in formal argumentation, looking at arguments present in all
extensions), then the skeptical consequences in Example 1
change from {a, c} to {a}: exactly what F4, the business-
man, is aiming for.

In this paper we look at semantic aggregation of AFs, to
see how the result can be influenced by one agent misrep-
resenting their viewpoint, when satisfaction with the result
is computed considering the skeptical (or credulous) con-
sequences of the aggregated outcome, i.e., by considering
arguments that are part of all (or some) extensions. Our ap-
proach to the aggregation of AFs and its manipulation fol-
lows the framework of propositional merging (Konieczny
and Pérez 2011; Everaere, Konieczny, and Marquis 2007),
where the objects of study are operators that aggregate the
semantics of propositional knowledge bases (or formulas),
rather than AFs. Hence, we are able to understand aggrega-
tion of AFs by studying propositional aggregation operators:
this is fitting, as operators for the aggregation of AFs pro-
posed by (Delobelle et al. 2016) are, at their core, distance-
based operators from propositional merging (Konieczny and
Pérez 2011). However, the framework for manipulability
of (Everaere, Konieczny, and Marquis 2007) (henceforth,
EKM) does not include the connection to argumentative rea-
soning, in particular with respect to skeptical and credulous
consequences, and can thus not be directly applied to our
setting. Our main contributions are as follows:
• We extend EKM’s framework to include the skeptical and

credulous consequences, in the form of novel satisfaction
indices, which measure the distance between an agent’s
truthful knowledge and the outcome of aggregation.

• We give the full landscape of (non-)manipulability for
aggregating in the propositional case, which extends the
reach of our contributions to not only AFs, but any se-
mantic aggregation procedure inspired by propositional

F1

b c

a

F2

b c

a

F3

b c

a

F4

b c

a

Figure 1: AFs for viewpoints in Example 1.

merging based on AF-like skeptical and credulous conse-
quences. Concretely, we show that all main aggregation
operators are manipulable wrt our new indices, except
when aggregating so-called complete bases (i.e., each for-
mula has exactly one model) without integrity constraint
and using aggregation operator �dH ,⌃

> (defined below).
• Inspired by strategy-proofness (non-manipulability) of
�dH ,⌃

> , we extend an earlier observation by (Delobelle et
al. 2016) that this operator respects certain kinds of ma-
jorities in the input, while other operators fail to do so.

• We provide complexity results for computing our novel
indices, which can be computed in polynomial time for
complete bases without integrity constraint, but are in-
tractable in other settings.

• We show that all main results of manipulability of aggre-
gating propositional bases can be imported to semantic
aggregation of AFs under the grounded, stable, and pre-
ferred AF semantics, including the strategy-proof case.

For some proofs of the results, we refer to the appendix.

2 Aggregation of Propositional Bases
We assume a finite set P of propositional atoms and L is the
set of formulas generated from P with the usual connectives.
A (knowledge) base K is a formula from L and a profile
P = (K1, . . . ,Kn) is a finite collection of bases. The uni-
verse U is the set of possible interpretations for formulas in
L. The models of a propositional formula µ are the interpre-
tations which satisfy it, and we write [µ] for the set of models
of µ. We typically write interpretations as words where let-
ters are the atoms assigned to true, e.g., {{a, b}, {b, c}} is
written as {ab, bc}. If '1,'2 2 L, we say that '1 |= '2, if
['1] ✓ ['2], and that '1 ⌘ '2, if ['1] = ['2]. A formula
' is consistent (satisfiable) if ['] 6= ;. The set of consistent
knowledge bases is Lc. By v�w we denote the symmetric
difference of atoms assigned to true between two interpreta-
tions v and w, defined as v�w = (v \ w) [(w \ v).

In the framework of logic-based merging (Konieczny and
Pérez 2011), aggregation of a profile P = (K1, . . . ,Kn) of
consistent propositional bases is achieved through an opera-
tor �d,f

µ
working on the semantic level, the main ingredients

of which are as follows: a distance d between interpretations,
an aggregation function f and an integrity constraint (a for-
mula) µ. We recall choices for d, f , and µ in the following.

If v and w are two interpretations, the drastic distance dD
is 0 iff both interpretations are identical and 1 otherwise.
The Hamming distance dH denotes the size of the symmet-
ric difference of v and w, i.e., dH(v, w) = |v�w|. If there
is no danger of ambiguity, we drop subscripts H or D from

dH and dD. We can then lift the distance notion to a dis-
tance d(v, [']) between an interpretation v and a set of in-
terpretations ['] for a formula ', by taking d(v, [']) to be
the minimum of the distances of v to each model of '.
Definition 1. If v is an interpretation, d 2 {dH , dD} is a
distance, and ' is a propositional formula, then d(v, [']) =
minw|='d(v, w).
Using an aggregation function f , we further lift the distance
notions to talk about distances between an interpretation v

and a profile P = (K1, . . . ,Kn). If X = (x1, . . . , xn) is a
tuple of non-negative integers, we use the following aggre-
gation functions:
• ⌃(X) = ⌃n

i=1xi,
• max(X) = max({xi | 1 i n}), and
• GMax(X) is X in descending order.
Definition 2. If v is an interpretation, d 2 {dH , dD} is
a distance, f 2 {⌃, max, GMax} is an aggregation func-
tion and P = (K1, . . ., Kn) is a profile, then df (v, P) =
f(d(v,K1), . . . , d(v,Kn)).

That is, df (v, P) is the result of aggregating, via f ,
the distances between v and each Ki 2 P . For f 2
{⌃, max} df (v, P) is an integer, and thus interpretations
can be ordered with respect to their distance to P . For
f = GMax, dGMax(v, P) is an n-tuple made up of the
numbers d(v,K1), . . . , d(v,Kn) ordered in descending or-
der. To rank interpretations via GMax one then uses an
order on such tuples, typically a lexicographic ordering:
(x1, . . . , xn) <lex (y1, . . . , yn) if xi < yi for the first i
where xi and yi differ from each other. We often omit for a
distance d the aggregation function f , i.e., write d instead of
df , unless not clear from the context.

An aggregation operator �d,f

µ
is then defined as follows.

Definition 3. Let P = (K1, . . . ,Kn) a profile, d a distance
between interpretations, f an aggregation function, and µ

a propositional formula (integrity constraint). The proposi-
tional aggregation operator �d,f

µ
is defined as [�d,f

µ
(P)] =

min([µ],P) = {v 2 [µ] | @w 2 [µ], w P v}, with
P defined by v P w iff df (v, P) df (w,P) for
f 2 {⌃, max} and df (v, P) lex df (w,P) for f = GMax.

In this definition, the result of aggregation of all bases in
a profile is a set of interpretations. This set consists of all
models of the integrity constraint µ which have a minimum
distance to the profile, with the distances specified via dis-
tance notion d and aggregation function f .1

Example 2. We can represent the truthful viewpoints of
the four agents in Example 1 by four propositional knowl-
edge bases K1�4 over the alphabet P = {a, b, c}, where
[K1] = {ab, bc}, [K2] = {ac, bc}, [K3] = {c} and
[K4] = {a}. To this we add knowledge base K

0
4, which

represents agent 4’s reported beliefs, where [K 0
4] = {ab}.

We write P
t = (K1,K2,K3,K4) for the truthful profile

(containing the true beliefs of agent 4), and P
m for the

manipulated profile (containing K1�3 and K
0
4 instead of

1Recall, we assume that each base in the profile is consistent.

K4). The constraint is given by the propositional formula
µ = (a ^ (b $ ¬c)) _ (¬a ^ ¬b ^ ¬c). Table 1 illustrates
the results of aggregating the profiles P t and P

m under con-
straint µ with the operator �dH ,⌃

µ
.

More concretely, the first column contains all interpre-
tations over P , the second to sixth columns show the dis-
tances (in this case, Hamming distances) between each in-
terpretation and the models of the various bases. The fi-
nal two columns show, for each interpretation, the aggre-
gated distance under ⌃. The result can be read off Ta-
ble 1 by picking, among the models of µ (highlighted in
gray), the ones with minimum aggregated distance (written
in bold font). For instance, dH(ab, [K2]) = dH(ab, [ac, bc])
= min(dH(ab, ac), dH(ab, bc)) = min(2, 2) = 2. We get
that [�dH ,⌃

µ
(P)] = {ac} and [�dH ,⌃

µ
(P 0)] = {ab, ac}, i.e.,

by reporting a different K 0
4, agent 4 has introduced a seed of

doubt as to whether c is unambiguously part of the result.

Note that �dD,⌃
µ

and �dD,GMax
µ

are equivalent, for
any profile P and constraint formula µ ([�dD,⌃

µ
(P)] =

[�dD,GMax
µ

(P)]). Thus, we will usually only specify results
for the former. The operator �dD,max

µ
delivers [

V
P ^ µ], if

consistent, and [µ] otherwise.

3 The EKM Framework for Manipulability
We recall Everaere, Konieczny, and Marquis’s (2007) frame-
work for manipulability when aggregating propositional
bases. In this framework, a satisfaction index i measures
how “satisfied” an agent is with the outcome of aggregation.
Formally, such an index is defined as follows.

Definition 4. A satisfaction index i : Lc ⇥ Lc ! N+ is
a function that maps a pair of satisfiable formulas to a non-
negative integer.

For a given profile P = (K1, . . . ,Kn), a satisfac-
tion index i formally defines each agent’s satisfaction
with the outcome of aggregation, written i(Kj ,�d,f

µ
(P)),

where Kj is an agent’s reported base. In our setting,
the lower i(Kj ,�d,f

µ
(P)) is, the better the outcome is

for Kj .2 Manipulation occurs when an agent is able
to achieve a better (lower) satisfaction index by re-
porting a different base K

0
j
. In other words, manipula-

tion occurs when i(Kj ,�d,f

µ
(Pm)) < i(Kj ,�d,f

µ
(P t)),

where P
t = (P1, . . . , Pn) is the truthful profile and

P
m = {K1, . . . ,Kj�1,K

0
j
,Kj+1, . . . ,Kn} is a (manipu-

lated) profile that is the same as P
t, except that Kj is re-

placed by K
0
j
.

Definition 5. If i is a satisfaction index, a profile P
t is

manipulable by K 2 P
t for i and an aggregation op-

erator �d,f

µ
if there is a base K

0 s.t. i(K,�d,f

µ
(Pm)) <

i(K,�d,f

µ
(P t)), with P

m = (P t \ {K}) [{K 0}.

2In the EKM framework (Everaere, Konieczny, and Marquis
2007) an agent is more satisfied when the index increases; in our
case, it is more consistent with the spirit of the indices we consider
to reverse this metric.

[K1] [K2] [K3] [K4] [K 0
4]

{ab, bc} {ac, bc} {c} {a} {ab} �dH ,⌃
µ

(P t) �dH ,⌃
µ

(Pm)

; 2 2 1 1 2 6 7
a 1 1 2 0 1 4 5
b 1 1 2 2 1 6 5
c 1 1 0 2 3 4 5

ab 0 2 3 1 0 6 5
ac 2 0 1 1 2 4 5
bc 0 0 1 3 2 4 3

abc 1 1 2 2 1 6 5

Table 1: Example of aggregation and manipulation. Gray cells denote the permitted models when integrity constraint µ =
(a ^ (b $ ¬c)) _ (¬a ^ ¬b ^ ¬c). Bold numbers indicate models with minimum distance.

We say that an operator �d,f

µ
is manipulable for index i if

there exists a profile that is manipulable for i and �d,f

µ
. An

operator �d,f

µ
is strategy-proof if there is no possibility that

an agent can report a different base than her true one and
achieve a better index. Formally, this is defined as follows.
Definition 6. Let i be a satisfaction index. An aggregation
operator �d,f

µ
is strategy-proof for i iff there is no integrity

constraint µ and profile P s.t. P is manipulable for i.

4 Satisfaction Indices for Acceptance
In this section we present our new satisfaction indices, in-
spired by an argument’s acceptance with respect to an AF.
Particularly, semantics of AFs are criteria for distinguishing
between sets of arguments that are acceptable (extensions)
and sets that are not, i.e., each AF semantics (of which sev-
eral exist) defines sets of extensions, on the basis of which
specific arguments are then selected as accepted. We dis-
cuss AF background formally in Section 8. Here we focus on
the last step, i.e., notions of credulous/skeptical acceptance,
adapted, in our case, to models of propositional formulas.
Definition 7. If M is a non-empty set of interpretations over
P , we define the following sets:
• Cred(M) =

S
v2M

v,
• Skept(M) =

T
v2M

v,
• No(M) = P \ Cred(M).

In words, for a formula ' and its set of models ['], an
atom is in Cred([']) (credulously accepted) if it is true in
at least one model; an atom is in Skept([']) (skeptically
accepted) if it is true in all models; and an atom is in No(['])
if it is true in no model. Based on these notions of acceptance
of atoms, we define the following satisfaction indices.
Definition 8. If K and K� are two propositional formulas,
we define the following indices:

iSkept(K,K�) = |Skept([K])�Skept([K�])|
iCred(K,K�) = |Cred([K])�Cred([K�])|, and
iNo(K,K�) = |No([K])�No([K�])|.

The indices represent the difference of accepted atoms
(arguments) with respect to credulous (skeptical, no) accep-
tance for an agent’s true base K and an aggregated outcome

K�. That is, an agent is fully satisfied, with regards to an in-
dex i 2 {iSkept, iCred, iNo} when the corresponding (not) ac-
cepted atoms are the same for her own base and the outcome,
in which case the index is equal to zero. Each difference in
the accepted atoms contributes one to the dissatisfaction of
an agent. For instance, if an atom a is true in all models of an
agent’s base, but not true in all models of the aggregated out-
come, then this contributes one to the skeptical index iSkept;
similarly, if a is not true in all models of an agent’s base, but
true in all models of the aggregated outcome, this, likewise,
contributes one to the skeptical index.
Example 3. Consider the two sets ['] = {ab, a} and
[] = {ab, b}. We have Cred([']) = {a, b} = Cred([]),
Skept([']) = {a}, and Skept([]) = {b}. Then the indices
are iCred(',) = 0 and iSkept(',) = 2.

It can also be the case that the credulous index is higher
than the skeptical index, witnessed by ['0] = {a, b} and
[0] = {b, c}. We have Cred(['0]) = {a, b}, Cred([0]) =
{b, c}, Skept(['0]) = ; = Skept([0]). The indices are
iCred(',) = 2 and iSkept(',) = 0.

As seen in the preceding example, indices iSkept and iCred

do not directly relate to each other, in that each may be
higher or lower than the other. On the other hand, the indices
denoting credulous acceptance and no acceptance (i.e., not
credulously accepted) coincide.
Observation 1. For any two formulas ' and , it holds that
iCred(',) = iNo(',).

5 Manipulability and Strategy-proofness
In this section we look at manipulability of propositional
merging operators under our indices. We begin with an il-
lustrative case of manipulation by reference to the, by now
familiar, running example.
Example 4. Recall the scenario in Example 1, formal-
ized using four AFs, depicted in Figure 1, and the con-
straint µ. The extensions of these AFs were aggregated
in Example 2 through the operator �dH ,⌃

µ
, with the re-

sult of aggregating the truthful profile P
t being the set

of interpretations {ac}. Notice that these extensions can
just as easily be thought of as the models of proposi-
tional formulas: for instance, agent 1 is represented by

the formula K1 = b ^ (a $ ¬c), whose models are
[K1] = {ab, bc}. Agent 4’s satisfaction with the result, if
measured according to the skeptical index, is |a�ac| =
1, since Skept([K4]) = a and Skept([�dH ,⌃

µ
(P t)]) =

Skept({ac}) = ac. However, if agent 4 submits a base
K

0
4 with [K 0

4] = {ab}, the result of aggregating the ma-
nipulated profile P

m becomes [�dH ,⌃
µ

(Pm)] = {ab, ac},
thereby bringing agent 4’s skeptical satisfaction index down
to 0, since Skept([�dH ,⌃

µ
(Pm)]) = Skept({ab, ac}) = a.

Thus, agent 4 can manipulate the aggregation result by sub-
mitting different opinions than the ones it actually holds.

As Example 4 shows, manipulation is possible in the gen-
eral case for aggregation operator �dH ,⌃

µ
. In the following,

we provide a more detailed analysis of the operators and
fragments of the propositional language for which manipu-
lation can occur. For the sake of readability, we illustrate ma-
nipulative cases mainly for the aggregation operator �dH ,⌃

µ

and the skeptical index and refer the reader to the appendix
for examples regarding the other operators (and also for fur-
ther proof details). For the example, we assume a profile
P

t = (K1, . . . ,Kn), where Kn is taken to be the manipulat-
ing agent’s true beliefs and K

0
n

its reported beliefs, when it is
advantageous for the agent to report beliefs that are different
from its true ones. Consequently, Pm = (K1, . . . ,K

0
n
) is

the manipulated profile. Note that in many of the subsequent
results, we assume that µ ⌘ >. We investigate the effect of
a different µ at the end of this section.

General Case. We first look at the full propositional lan-
guage, i.e., the given profile P may contain any Boolean
formulas. As already indicated in Example 4, manipulation
is possible in the general case when taking the Hamming
distance and the sum aggregation function. In the following
theorem we summarize our findings that all considered ag-
gregation operators are manipulable in the general case. The
proof of this theorem follows from formal statements below,
which show manipulability even in more restricted cases.
Theorem 1. Let d 2 {dH , dD} and f 2 {⌃, max, GMax}.
The operator �d,f

µ
is manipulable for the skeptical and cred-

ulous indices.

Complete Bases. A base (a Boolean formula) K is com-
plete if K has exactly one model, i.e., |[K]| = 1. Accord-
ingly, a profile is complete if each base in it is complete.

In the EKM framework (Everaere, Konieczny, and Mar-
quis 2007) strategy proofness is obtained for certain opera-
tors and indices under certain restrictions, e.g., making the
manipulating agent’s knowledge base Kn complete. Inter-
estingly, this result does not carry over for the indices we
are working with.
Proposition 2. Let d 2 {dH , dD} and f 2 {⌃, max, GMax}.
The operator �d,f

> is manipulable for the skeptical and cred-
ulous indices, even if the manipulating agent’s truthful and
changed bases are complete.

Proof for �dH ,⌃
> and iSkept. Consider [K1] = {bc, ac},

[K2] = {ab}, and [K 0
2] = {a}, with the profiles being P

t =
(K1,K2) and P

m = (K1,K
0
2). We get [�dH ,⌃

> (P t)] =

{a, b, ab, ac, bc, abc} and [�dH ,⌃
> (Pm)] = {a, ac}. The

skeptical index of K2 with respect to the manipulated profile
from the truthful profile goes from 2 to 1.

Proposition 2 tells us that, if we suspect a particular agent
of being manipulative, then requiring them to remove any
kind of uncertainty about their stance on the issues delib-
erated upon (i.e., requesting an explicit “yes” or “no” wrt
every atom), does not prevent that agent from manipulation.

Interestingly, requiring the same for all agents, that is,
requiring the whole profile to be complete, in fact implies
strategy-proofness when aggregating under the Hamming
distance and the sum aggregation function. Technically, the
result relies on the fact that the operator �dH ,⌃

> respects ma-
jorities, in the sense that a manipulative agent cannot “over-
ride” majorities wrt skeptical or credulous consequences.
Formally, we use the following definition and a lemma. The
definition states that an agent supports skeptical (credulous)
consequence of an atom if that atom follows skeptically
(credulously) from that agent’s base. The number of such
supports is defined as follows.
Definition 9. Let P be a profile and a 2 P . We define
Credsupp

P
(a) = |{K 2 P | a 2 Cred([K])}| and

Skeptsupp
P
(a) = |{K 2 P | a 2 Skept([K])}|.

Now, the following lemma gives a characterization of the
aggregation via �dH ,⌃

> when the profile is complete.
Lemma 3. Let P = {K1, . . . ,Kn} be a profile of com-
plete bases, and M = [�dH ,⌃

> (P)]. For any v 2 M ,
it holds that Skeptsupp

P
(x) >

n

2 implies x 2 v and
Skeptsupp

P
(x) < n

2 implies x /2 v.
Thus, if an interpretation v is part of the semantical out-

put, for a complete profile and when using �dH ,⌃
> , then v

must assign all atoms to true that are true in a majority of
bases, and to false whenever that atom is false in a majority
of bases. The remaining atoms, without majorities, receive
all values. With this we can show the following result.

Theorem 4. The operator �dH ,⌃
> is strategy-proof for the

skeptical and credulous indices if the profile is complete.

Proof. (sketch) This follows from Lemma 3: whenever an
agent changes the value of an atom, then majorities might
change; yet, changing an atom’s value to true cannot remove
that atom as a skeptical consequence. Analogous reasoning
shows the remaining cases.

Unfortunately, strategy proofness does not hold when
switching from the sum aggregation function to either max
or GMax aggregation functions, as stated next.

Proposition 5. The operators �dH ,GMax
> and �dH ,max

> are
manipulable for the skeptical and credulous indices, even
if the given profile is complete.

Even/Odd Number of Bases. All examples of manipula-
tion provided so far have used profiles with an even num-
ber of bases in them. Thus, one might wonder whether this
makes a difference to the manipulability of the operators
considered so far.

Proposition 6. For d 2 {dH , dD} and f 2 {⌃, max, GMax},
the operators �d,f

> are manipulable for i 2 {iSkept, iCred},
with both an odd and an even number of bases in the profile,
even if the manipulating base is complete.

Proof for �dH ,⌃
> and iSkept. Prop. 2 proves the claim for an

even number. Therefore, we show that profiles with an odd
number of bases can be manipulated. For the skeptical index
and the operators �dH ,⌃

> and �dD,⌃
> , take the profile P

t =
(K1,K2,K3), where [K1] = {ab, bc}, [K2] = {ac, bc} and
[K3] = {b}. Agent 3 manipulates with [K 0

3] = {ab}.

A particular consequence of Proposition 6 (derived from
Proposition 2) is that the operators we are working with
are manipulable even if the manipulating base is complete
and the profile contains only two bases. This is another in-
stance in which restrictions which make merging operators
strategy-proof in (Everaere, Konieczny, and Marquis 2007)
prove to be ineffectual here.

Influence of the Integrity Constraint The only strategy-
proof case identified so far is obtained when merging com-
plete bases under �dH ,⌃

µ
with µ ⌘ >. It is natural to ask,

then: what if µ 6⌘ >? The answer turns out to be that
strategy-proofness does not hold anymore when permitting
arbitrary integrity constraints.
Proposition 7. The operator �dH ,⌃

µ
is manipulable for i 2

{iSkept, iCred} for complete bases and arbitrary µ.

Proof for �dH ,⌃
µ

. Let [K1] = {abce}, and [K2] =
{e}. Define µ with [µ] = {abe, cde}. We find that
[�dH ,⌃

µ
(K1,K2)] = {abe}. When the second base is

changed to [K 0
2] = {ce}, we get [�dH ,⌃

µ
(K1,K

0
2)] =

{abe, cde}. Truthfully, the second agent’s skeptical index is
2, while with the modified base the same agent achieves a
skeptical index of 0. For the credulous index, take [K1] =
{d}, [K2] = {abcd}, and [K 0

2] = {abd}. The credulous in-
dex decreases by 2 when the second agent reports K2.

6 One Agent Influencing the Outcome
In the previous section we investigated (non-)manipulability,
and the only strategy-proof case turned out to be with com-
plete bases when aggregating under �dH ,⌃

> . The main in-
sight for why this holds is that a manipulative agent cannot
overturn certain notions of majority. In this section we con-
sider a related problem, namely whether an agent (manip-
ulative or not) can influence the outcome of aggregation in
terms of skeptical and credulous consequences.

We turn our attention again to the aggregation operator
�dH ,⌃

> . We show that, under this operator, certain forms
of majority cannot be overturned, even for non-complete
bases. In particular, in the setting of n � 1 agents, if more
than n

2 support skeptical acceptance or the credulous non-
acceptance of a proposition a, then this is also the case when
aggregating under the profile with an additional nth agent
(who may argue wrt a arbitrarily). This means that the nth
agent’s contribution to the aggregation cannot change these
kinds of majorities. Note that this is not in contrast to the

manipulability results above: while the nth agent cannot re-
move the skeptical acceptance of a, in case of a majority, the
nth agent can change skeptical consequences of propositions
that do not have a majority in their favour.

We first show in the following lemma that whenever a ma-
jority of agents do not support (as in Def. 9) the credulous
consequence of an atom, then this is reflected in the aggre-
gated outcome, as well.
Lemma 8. Let P = (K1, . . . ,Kn�1) be a profile and a 2
P . If Credsupp

P
(a) <

n

2 , then a /2 Cred([�dH ,⌃
> (P [

{Kn})]) for any base Kn.

Regarding skeptical consequences, a similar result holds,
which was presented in (Delobelle et al. 2016). Taken to-
gether, this implies the next proposition.
Proposition 9. Let P = (K1, . . . ,Kn�1) be a profile. Fur-
ther, let X = {x | Skeptsupp

P
(x) >

n

2 } and Y =
{x | Credsupp

P
(x) <

n

2 }. For any base Kn and M =

�dH ,⌃
> (P [{Kn}), it holds that

• X ✓ Skept(M), and
• Y ✓ (P \ Cred(M)).

Comparing Proposition 9 and Lemma 3, we see that the
latter is concerned with a full characterization under com-
plete bases, and the former with arbitrary bases; yet, in-
stead of Skeptsupp

P
(x) <

n

2 , this condition needs to be
strengthened to Credsupp

P
(x) < n

2 .
A similar result does not hold for operator �dH ,max

> , i.e.,
when using max instead of ⌃. Thus, for max majorities may
be overturned, as illustrated in the next example.
Example 5. Consider [K1] = {abc}, [K2] = {b}, and
[K3] = {c}. Using aggregation operator �dH ,max

> , the result
is {bc}. When the first agents reports [K 0

1] = {ab} instead
of K1, the result is {;, a, b, bc, abc}. Thus, by changing the
reported base, the first agent can get a to be true in a model
of the output, even if less than half of the agents have a as-
signed to true in some model of their base (in fact only the
first agent accepts a credulously).

7 Computational Complexity
In this section we present complexity results for computing
our new indices. We make use of the complexity classes P ,
NP , coNP , DP , FPNP , and FPNP [log n], and assume fa-
miliarity with the first three classes. A decision problem is
in DP if this problem is the intersection of a problem in NP
and a problem in coNP . A function problem is in FPNP if
the solution can be computed by a poly-time algorithm with
access to an NP oracle. If the number of calls is bounded
logarithmically, then the problem is in FPNP [log n].

First, we turn our attention to complete bases, particularly,
the case when each agent’s model is given explicitly, e.g., as
a list. We call such a profile an explicit complete profile.
Proposition 10. Computing the skeptical and credulous in-
dices for an explicit complete profile can be done in polyno-
mial time for aggregation operator �d,f

> with d = dD and
f 2 {⌃, max, GMax}, and with d = dH and f = ⌃.

However, when the integrity constraint µ 6⌘ >, the situa-
tion significantly changes: it is already intractable to decide
whether an agent is fully satisfied, as we show next.
Proposition 11. Deciding whether the skeptical index is
equal to zero for a given explicit complete profile and op-
erator �d,f

µ
is

• coNP -hard for d = dH and f = ⌃, and
• DP -complete for d = dD and f 2 {⌃, max, GMax}.

Generally, one can derive the skeptical and credulous in-
dices for an agent, and any associated profile, via an FPNP

algorithm, in case the skeptical (credulous) consequences of
that agent are given explicitly as input (i.e., input includes a
list of the agent’s skeptical or credulous consequences). The
following results use general algorithms for propositional
merging from (Konieczny, Lang, and Marquis 2002).
Proposition 12. Computing the skeptical (credulous) index
for an agent in a given profile with explicit skeptical (credu-
lous) consequences of that agent’s base is
• in FPNP [log n] for aggregation operator �dH ,f

µ
and f 2

{⌃, max}, and
• in FPNP for aggregation operator �dH ,GMax

µ
.

8 Manipulation when Aggregating AFs
In this section we import the preceding results to the case of
aggregating semantics of argumentation frameworks (Dung
1995) when using the operators defined by (Delobelle et al.
2016). We start with defining necessary preliminaries.
Definition 10. An argumentation framework (AF) is a pair
F = (A,R), where A is a finite set of arguments and R ✓
A⇥ A is the attack relation. The pair (a, b) 2 R means that
a attacks b. An argument a 2 A is defended (in F) by a set
S ✓ A if, for each b 2 A such that (b, a) 2 R, there exists a
c 2 S such that (c, b) 2 R.

Semantics for AFs are defined through a function � which
assigns to each AF F = (A,R) a set �(F) ✓ 2A of exten-
sions. We consider for � the functions adm, grd, prf, and
stb, standing for admissible, grounded, preferred, and stable
respectively. We make use of the characteristic function of
AFs, defined for an AF F = (A,R), by FF (S) = {x 2 A |
x is defended by S}. Moreover, for a set S ✓ A, the range
of S is S+

R
= S [{x | (y, x) 2 R, y 2 S}.

Definition 11. Let F = (A,R) be an AF. An S ✓ A is
conflict-free (in F), if there are no a, b 2 S, s.t. (a, b) 2 R.
We denote conflict-free sets by cf(F). For an S 2 cf(F), it
holds that S 2 stb(F) iff S+

R
= A; S 2 adm(F) iff S ✓

FF (S); S 2 grd(F) iff S is the l.f.p. of FF ; and S 2 prf(F)
iff S 2 adm(F) and there is no T 2 adm(F) with S ⇢ T .
Example 6. Let F = ({a, b, c, d}, R) be an AF with
R = {(a, b), (b, a), (a, c), (b, c), (c, d)}. We have stb(F) =
prf(F) = {ad, bd} and grd(F) = {;}.

We note that, in this work, when referring to stable se-
mantics, we assume that any AF F has at least one stable
extension, i.e., stb(F) 6= ;.

Aggregation of AFs, according to (Delobelle et al. 2016),
takes as input a profile of AFs P = (F1, . . . , Fn), where

all the Fi’s are over the same set of arguments A, and a se-
mantics �. Aggregation proceeds in two steps: (1) aggregate
(�(F1), . . . ,�(Fn)) (i.e., the semantics of the Fi’s), which
results in a set S ✓ 2A; (2) if required, an AF F

0, or a set of
AFs W = {F 0

1, . . . , F
0
m
} is constructed s.t. �(F 0) = S, or

S =
S

F
0
i
2W

�(F 0
i
). Here we focus on the semantical side

of aggregation, without concrete instantiations of AFs for
the aggregated result. In case the AFs do not share the same
set of arguments, we consider an expansion of each AF to
the “whole” set of arguments as studied in (Coste-Marquis
et al. 2007), i.e., we assume that each AF contains the same
set of arguments.

With regards to concrete operators that aggregate AFs’ se-
mantics, in the work of (Delobelle et al. 2016), the same
operators can be used as when merging semantics of propo-
sitional bases.

Definition 12. Given a profile of AFs P = (F1, . . . , Fn)
and a semantics �, define the semantics of aggregation
operator �d,f

µ
by [�d,f

µ
(P)] = [�d,f

µ
(P 0)] with P

0 =
(K1, . . . ,Kn) and [Ki] = �(Fi) for all 1 i n.

That is, the result of aggregating a profile of AFs, under
operator �d,f

µ
is the same as when aggregating propositional

bases whose semantics are the same as for the AFs under the
considered AF semantics, i.e., [Ki] = �(Fi) for all i.

Example 7. Consider the AFs from Example 2 shown in
Figure 1, the same integrity constraint µ = (a ^ (b $
¬c)) _ (¬a ^ ¬b ^ ¬c), and operator �dH ,⌃

µ
. The se-

mantical output, under stable and preferred semantics, is
shown, in detail in Table 1. More concretely, we have
[�dH ,⌃

µ
({F1, F2, F3, F4})] = {ac}.

There is one barrier to porting our results from propo-
sitional bases to AFs, under a semantics �: AF semantics
are not as expressive as the (classical) propositional logic.
In other words, for any finite set of interpretations M there
exists a propositional formula ' s.t. M = [']. However,
the same does not hold for AFs, i.e., there are sets of sets
of arguments M s.t. there is no AF F with M = �(F)
for a specific semantics � (Dunne et al. 2015). Thus, if
we give examples for manipulation in the form of a set
of models M for a base K (M = [K]), the correspond-
ing result can only be adapted to AFs if the set of models,
interpreted as a set of sets arguments, is in the signature
⌃� = {�(F) | F is an AF} for semantics �, i.e., it must
hold that M 2 ⌃� . We have chosen our examples for ma-
nipulability in such a way that if a base K is complete, then
[K] 2 ⌃� for � 2 {stb, prf, grd} and if K is not complete
then [K] 2 ⌃�0 for �0 2 {stb, prf}. That is, in this case,
there is an AF whose stable (preferred, grounded) semantics
is equal to [K] in case the base is complete, and equal to sta-
ble (preferred) if K is not complete. For complete bases, the
only problematic case is when ; is among the set of models:
then the only AF F s.t. ; 2 stb(F) is the AF with no ar-
guments. For non-complete bases there is, naturally, no AF
whose grounded semantics matches (since there is always
only one grounded extension); for stable and preferred se-
mantics we have tailored the examples accordingly. This al-
lows us to port all major results of aggregating propositional

bases directly to AFs, as we summarize in the following the-
orems. As for propositional bases, an AF F is complete, for
semantics �, if |�(F)| = 1.
Theorem 13. Let d 2 {dH , dD}, f 2 {⌃, max, GMax}, f 0 2
{max, GMax}, and i 2 {iCred, iSkept}. Aggregating a profile
of AFs is manipulable for i under

• the aggregation operator �d,f

> with semantics � 2
{prf, stb}, even if the manipulating agent’s AF and
changed AF are complete for �;

• the aggregation operator �dH ,f
0

> with semantics � 2
{prf, stb, grd}, even if the profile is complete for �; and

• the aggregation operator �dH ,⌃
µ

with semantics � 2
{prf, stb, grd}, even if the profile is complete for � and
µ is permitted to be arbitrary.

Theorem 14. Aggregating a complete profile of AFs for
� 2 {prf, stb, grd} is strategy-proof under the aggregation
operator �dH ,⌃

> .

9 Related work
Relation to the EKM framework. The EKM frame-
work (Everaere, Konieczny, and Marquis 2007) studies three
indices: strong/weak drastic, and probabilistic. For each of
these three indices and our skeptical and credulous indices,
one can find example profiles s.t. their indices are lower
(higher) than our new indices. Further, (non-)manipulability
in the EKM framework does not transfer directly to our
work: strategy-proofness for our indices holds for complete
bases and µ ⌘ >, while in the EKM framework there are
other restrictions which ensure strategy-proofness for their
indices but not for our indices.

Social Choice. Since aggregation in the belief-merging
framework typically delivers a set of interpretations, there
is an obvious parallel to be drawn with multi-winner vot-
ing and committee elections (Meir et al. 2008; Amanatidis
et al. 2015; Barrot, Lang, and Yokoo 2017; Faliszewski et al.
2017), according to which a merging operator is like a vot-
ing rule and interpretations are candidates. However, there
are certain differences between the problem as it is studied
in social choice and as we approach it: for one thing, multi-
winner elections often assume that the output is a set of can-
didates of fixed size, whereas we make no such assumption;
furthermore, the way in which we have defined the satisfac-
tion indices and the presence of constraints does not make
it immediately clear how results on manipulation of multi-
winner voting rules would apply to the scenarios we study.

Our work intersects with social choice in the special case
when the profile is complete and the number of bases is odd.
Indeed, in this case the aggregation problem corresponds
to a Judgment Aggregation problem, with the �dH ,⌃

> de-
livering the majority opinion on the atoms (considered as
issues). Our strategy-proofness result for �dH ,⌃

> dovetails
neatly with a similar result in Judgment Aggregation (En-
driss 2016; Baumeister, Rothe, and Selker 2017), though our
treatment is slightly more general, as it accommodates both
an even and an odd number of bases. That �dH ,⌃

> delivers

the majority opinion on atoms when the profile is complete
corresponds to an observation, made before, that the major-
ity opinion minimizes the sum of the Hamming distances to
voters’ approval ballots (Brams, Kilgour, and Sanver 2007).

Aggregation on Argumentation Frameworks. The
study of aggregation issues with respect to AFs was
launched in (Coste-Marquis et al. 2007). The current state
of the art is surveyed in (Bodanza, Tohmé, and Auday
2017) and (Delobelle, Konieczny, and Vesic 2018) is a
more recent contribution. It is apparent from the survey
that the operators introduced in (Delobelle et al. 2016) and
studied here are the only ones focusing on the semantic
aggregation of sets of extensions. Several further properties
have been studied, e.g., axioms and complexity (Dunne,
Marquis, and Wooldridge 2012), graph aggregation in
general (Endriss and Grandi 2017), and preservation of
semantic properties (Chen and Endriss 2017). Manipu-
lation, and strategy-proofness, was studied for a setting
of judgment aggregation of AFs (Awad et al. 2017a;
2017b; 2017c; Caminada and Booth 2016;
Booth, Awad, and Rahwan 2014) and for argumenta-
tion mechanism design (Rahwan, Larson, and Tohmé 2009).
Operators studied for judgment aggregation are different:
the input of each agent and the output is restricted to one
labelling. Argumentation mechanism design differs from
our setting in that agents put forward arguments into an
AF, from which acceptability of arguments is checked. A
very recent approach (Lisowski, Doutre, and Grandi 2018)
studies manipulation issues when aggregating orders on
values (i.e., aggregating preference orders) in a value-based
AF (Bench-Capon 2003).

Rationalizability. In (Airiau et al. 2017) a restriction on
profiles to aggregate is studied. In brief a profile is called
rationalizable whenever there exists a particular AF F

⇤ s.t.
it is possible to “recover” each AF of the profile when as-
sociating preferences over arguments of F ⇤ which discard
attacks of strictly less preferred attackers wrt the attackee
(with potentially further constraints). The examples we uti-
lize, when ported to AFs, from Proposition 2 can be adapted
to be rationalizable, implying that main results regarding
manipulability and strategy-proofness carry over to aggrega-
tion of rationalizable profiles. We think it is interesting for
future work to study under which further restrictions (non-
)manipulability remains, such as those that arise, e.g., when
using structured argumentation formalisms (e.g. (Modgil
and Prakken 2013)) and different preferences for each agent.

10 Conclusions
In this work we have looked at the potential for manipula-
tion of semantic aggregation procedures for AFs and propo-
sitional bases. Since the semantics of AFs and propositional
formulas are similar, aggregation at this level can be handled
within a single framework, namely that of logic-based merg-
ing. We modified the existing EKM framework (Everaere,
Konieczny, and Marquis 2007) by looking at new satisfac-
tion indices, defined using notions of acceptability imported
from abstract argumentation. We found that, with these in-
dices, there is a wide avenue for manipulation, even in cases

where the EKM framework found strategy-proofness. Im-
portantly, we showed that one operator (�dH ,⌃

>) resists ma-
nipulation in the case when all bases are complete, which is,
e.g., the case when aggregating AFs under the grounded se-
mantics. Further, we presented complexity results that indi-
cate tractability for computing our new indices for complete
bases, yet intractability on other settings.

Future work will aim to understand manipulability for
more operators, finding further cases of strategy-proofness,
and obtaining a general result on strategy-proofness for
merging operators, in the spirit of the Gibbard-Satterthwaite
theorem in Social Choice (Gibbard 1973; Satterthwaite
1975). An important aspect worth pursuing is an agent’s best
response, if it knows the viewpoints of other agents. Thus,
future work in this direction would focus on understanding
the manipulation task from an algorithmic perspective.

Appendix
Proof of Thm. 1 and Prop. 2. (�dH ,⌃

>) For the credulous in-
dex, take [K1] = {b, c}, [K2] = {a}, and [K 0

2] =
{ab}. We get [�dH ,⌃

> ({K1,K2})] = {;, a, b, c, ab, ac} and
[�dH ,⌃

> ({K1,K
0
2})] = {b, ab}. The credulous index of K2

wrt the manipulated profile from the truthful profile goes
from 2 to 1. (�dH ,max

µ
, �dH ,GMax

µ
) For the skeptical (cred-

ulous) index, the same knowledge bases as for �dH ,⌃
µ

with
the skeptical (credulous) index work here. (�dD,⌃

µ
, �dD,max

µ
)

For the skeptical index, take [K1] = {ab, bc}, [K2] = {abc},
and [K 0

2] = {ab}. For the credulous index, take [K1] =
{ac, bc}, [K2] = {c}, and [K 0

2] = {ac}.

Proof sketch of Lemma 3. Let X = {v | Skeptsupp
P
(x)

>
n

2) x 2 v, Skeptsupp
P
(x) <

n

2) x /2 v}. Suppose
M 6✓ X , i.e., there is a v 2 M s.t. v /2 X . This means there
is an x s.t. x /2 v and Skeptsupp

P
(x) >

n

2 , or x 2 v and
Skeptsupp

P
(x) <

n

2 . Suppose the first case (other case
symmetric). Then d(v [{x}, P) < d(v, P), since strictly
more than half models of the complete bases assign x to
true. Thus, v /2 M . Suppose X 6✓ M , i.e., there is a v 2 X

s.t. v /2 M . Thus, there is a w 2 M s.t. d(w,P) < d(v, P).
By the previous reasoning, we know that M ✓ X , and that
w 2 X . This means that for all x if strictly more than half
models of the complete bases assign x to true (false), then
x 2 w (x /2 w). Thus, x 2 v iff x 2 w for all x where there
is a strict majority, and x /2 v iff x /2 w where there is a
strict majority against. Therefore, there is a y s.t. y 2 v and
y /2 w or y /2 v and y 2 w where Skeptsupp

P
(y) = n

2 . In
this case, we have d(v, P) = d(w,P).

Proof of Proposition 5. For the skeptical index, take a pro-
file P

t = (K1, . . . ,K6), where [K1] = [K6] =
{abcd}, [K2] = {abd}, [K3] = {bcd}, [K4] = {acd},
[K5] = {d}. Agent 6 manipulates with [K 0

6] = {ab}.
If P

m = (K1, . . . ,K5,K
0
6), we get [�dH ,GMax

> (P t)] =

{abd, acd, bcd} and [�dH ,GMax
> (Pm)] = {abd}. The skep-

tical index of K6 goes from 3 to 1. The same example holds
for �dH ,max

µ
For the credulous index and �dH ,GMax

µ
, take a

profile P
t = (K1, . . . ,K6), where [K1] = [K6] = {d},

[K2] = {ad}, [K3] = {bd}, [K4] = {cd}, [K5] =
{abcd}. Agent 6 manipulates with [K 0

6] = {ad}. We get
[�dH ,GMax

> (P t)] = {ad, bd, cd} and [�dH ,GMax
> (Pm)] =

{ad}. The credulous index of K6 goes from 3 to 1. For
the credulous index and �dH ,max

µ
, take K1�6 as before and

[K 0
6] = {ab}, with the index going from 3 to 2.

Proof of Proposition 6. For �dH ,GMax
> and �dH ,max

> , take K1

and K2 as for ⌃ and [K3] = {ab}. Agent 3 manipulates
with [K 00

3] = {a}. If [K3] = {abc}, agent 3 manipulates
�dD,max

> with [K 000
3] = {bc}. For the credulous index and

�dH ,⌃
> and �dD,⌃

> , take [K1] = {a, b}, [K2] = {a, c} and
[K3] = {abc}: agent 3 manipulates with [K 0

3] = {b}. If
[K3] = {b}, agent 3 manipulates �dH ,GMax

> and �dH ,max
> with

[K 00
3] = {bc}. For �dD,max

> , take [K1] = [K2] = {ab} and
[K3] = {a}. Agent 3 manipulates with [K 000

3] = {ab}.

Proof sketch of Lemma 8. Let P 0 = (K1, . . . ,Kn�1,Kn)
for any Kn. Further, let v be an interpretation over P with
a 2 v and @v0 over P s.t. a 2 v

0 and d(v, P 0) < d(v0, P 0)
(v has minimum sum of distances to all agents wrt interpre-
tations that include a). It holds that for v \ {a} = w we have
d(v, P 0) > d(w,P 0), which follows from the observation
that strictly less than n

2 agents have a model with a true.

Proof of Proposition 10. For d = dH and f = ⌃, Lemma 3
yields the result. For d = dD and ⌃, only models of the
profile can be in the output (all others have higher distance).
For max, the output is only weakly constrained: each inter-
pretation is in the output, except when all bases agree on the
model (then the output is that model).

Proof sketch of Proposition 11. (�dH ,⌃
µ

) We show coNP
hardness via a reduction from checking whether a for-
mula ', over X is tautological. Construct profile P =
(K1,K2,K3) and integrity constraint µ. Further let D be
a set of fresh atoms with |D| > 3 · |X|. Let K1 =

V
x2P ¬x,

K2 = K3 =
V

d2D
d ^

V
x2P\D ¬x, and µ = (' !V

d2D
¬d) ^ (¬' !

V
d2D

d). It holds that ' is tautolog-
ical iff there are no skeptical consequences of �dH ,⌃

µ
(P)

(trivial if ' is tautological; otherwise non-models of ' with
D true have lower distance than models of ' and D false).
(�dD

µ
) We reduce from checking whether ' |= > and

is sat. W.l.o.g. we assume that ' is satisfiable. Construct
P = (K1) with K1 = a^¬b^¬c^¬d^

V
x2P\{a,b,c,d} ¬x,

and µ = (b 6$ c)^('! a)^(¬ ! d). It holds that iSkept
is zero iff ' |= > and is satisfiable (since |P | = 1, f is
redundant; K1^µ |= ?, thus only models of µ are relevant).
Finally, membership follows from checking µ |= a (µ 6|= a),
and whether v |= µ for base’s models v.

Acknowledgments
This work was supported by the Austrian Science Fund
(FWF): P30168-N31 and Y698.

References
Airiau, S.; Bonzon, E.; Endriss, U.; Maudet, N.; and Rossit, J.
2017. Rationalisation of profiles of abstract argumentation frame-
works: Characterisation and complexity. J. Artif. Intell. Res.
60:149–177.
Amanatidis, G.; Barrot, N.; Lang, J.; Markakis, E.; and Ries, B.
2015. Multiple referenda and multiwinner elections using ham-
ming distances: Complexity and manipulability. In Proc. AAMAS
2015, 715–723.
Awad, E.; Bonnefon, J.; Caminada, M.; Malone, T. W.; and Rah-
wan, I. 2017a. Experimental assessment of aggregation principles
in argumentation-enabled collective intelligence. ACM Trans. In-
ternet Techn. 17(3):29:1–29:21.
Awad, E.; Booth, R.; Tohmé, F.; and Rahwan, I. 2017b. Judge-
ment aggregation in multi-agent argumentation. J. Log. Comput.
27(1):227–259.
Awad, E.; Caminada, M. W. A.; Pigozzi, G.; Podlaszewski, M.;
and Rahwan, I. 2017c. Pareto optimality and strategy-proofness in
group argument evaluation. J. Log. Comput. 27(8):2581–2609.
Barrot, N.; Lang, J.; and Yokoo, M. 2017. Manipulation of
hamming-based approval voting for multiple referenda and com-
mittee elections. In Proc. AAMAS 2017, 597–605.
Baumeister, D.; Rothe, J.; and Selker, A.-K. 2017. Strategic behav-
ior in judgment aggregation. In Endriss, U., ed., Trends in Compu-
tational Social Choice. AI Access. 145–168.
Bench-Capon, T. J. M., and Dunne, P. E. 2007. Argumentation in
artificial intelligence. Artif. Intell. 171(10-15):619–641.
Bench-Capon, T. J. M. 2003. Persuasion in practical argument
using value-based argumentation frameworks. J. Log. Comput.
13(3):429–448.
Bodanza, G. A.; Tohmé, F.; and Auday, M. 2017. Collective ar-
gumentation: A survey of aggregation issues around argumentation
frameworks. Argument & Computation 8(1):1–34.
Booth, R.; Awad, E.; and Rahwan, I. 2014. Interval methods for
judgment aggregation in argumentation. In Proc. KR 2014, 594–
597.
Brams, S. J.; Kilgour, D. M.; and Sanver, M. R. 2007. A minimax
procedure for electing committees. Public Choice 132(3):401–420.
Brundage, M.; Avin, S.; Clark, J.; Toner, H.; Eckersley, P.;
Garfinkel, B.; Dafoe, A.; Scharre, P.; Zeitzoff, T.; Filar, B.; An-
derson, H. S.; Roff, H.; Allen, G. C.; Steinhardt, J.; Flynn, C.;
hÉigeartaigh, S. Ó.; Beard, S.; Belfield, H.; Farquhar, S.; Lyle, C.;
Crootof, R.; Evans, O.; Page, M.; Bryson, J.; Yampolskiy, R.; and
Amodei, D. 2018. The malicious use of artificial intelligence:
Forecasting, prevention, and mitigation. CoRR abs/1802.07228.
Caminada, M., and Booth, R. 2016. A dialectical approach for
argument-based judgment aggregation. In Proc. COMMA 2016,
volume 287 of FAIA, 179–190.
Chen, W., and Endriss, U. 2017. Preservation of semantic proper-
ties during the aggregation of abstract argumentation frameworks.
In Proc. TARK 2017, volume 251 of EPTCS, 118–133.
Conitzer, V., and Walsh, T. 2016. Barriers to manipulation in vot-
ing. In Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procaccia,
A. D., eds., Handbook of Computational Social Choice. Cambridge
University Press. 127–145.
Coste-Marquis, S.; Devred, C.; Konieczny, S.; Lagasquie-Schiex,
M.; and Marquis, P. 2007. On the merging of Dung’s argumenta-
tion systems. Artif. Intell. 171(10-15):730–753.

Delobelle, J.; Haret, A.; Konieczny, S.; Mailly, J.; Rossit, J.; and
Woltran, S. 2016. Merging of abstract argumentation frameworks.
In Proc. KR 2016, 33–42.
Delobelle, J.; Konieczny, S.; and Vesic, S. 2018. On the aggre-
gation of argumentation frameworks: operators and postulates. J.
Log. Comput. DOI: 10.1093/logcom/exy023.
Dung, P. M. 1995. On the acceptability of arguments and its fun-
damental role in nonmonotonic reasoning, logic programming and
n-person games. Artif. Intell. 77(2):321–357.
Dunne, P. E.; Dvořák, W.; Linsbichler, T.; and Woltran, S. 2015.
Characteristics of multiple viewpoints in abstract argumentation.
Artif. Intell. 228:153–178.
Dunne, P. E.; Marquis, P.; and Wooldridge, M. 2012. Argument ag-
gregation: Basic axioms and complexity results. In Proc. COMMA
2012, volume 245 of FAIA, 129–140.
Endriss, U., and Grandi, U. 2017. Graph aggregation. Artif. Intell.
245:86–114.
Endriss, U. 2016. Judgment Aggregation. In Brandt, F.; Conitzer,
V.; Endriss, U.; Lang, J.; and Procaccia, A. D., eds., Handbook of
Computational Social Choice. Cambridge University Press. 399–
426.
Everaere, P.; Konieczny, S.; and Marquis, P. 2007. The strategy-
proofness landscape of merging. J. Artif. Intell. Res. 28:49–105.
Faliszewski, P., and Procaccia, A. D. 2010. AI’s war on manipula-
tion: Are we winning? AI Magazine 31(4):53–64.
Faliszewski, P.; Skowron, P.; Slinko, A.; and Talmon, N. 2017.
Multiwinner voting: A new challenge for social choice theory. In
Endriss, U., ed., Trends in Computational Social Choice. AI Ac-
cess. 27–47.
Gibbard, A. 1973. Manipulation of voting schemes: a general
result. Econometrica: journal of the Econometric Society 587–601.
Konieczny, S., and Pérez, R. P. 2011. Logic based merging. J.
Philosophical Logic 40(2):239–270.
Konieczny, S.; Lang, J.; and Marquis, P. 2002. Distance based
merging: A general framework and some complexity results. In
Proc. KR 2002, 97–108.
Lang, J., and Xia, L. 2016. Voting in combinatorial domains. In
Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procaccia, A. D.,
eds., Handbook of Computational Social Choice. Cambridge Uni-
versity Press. 197–222.
Lisowski, G.; Doutre, S.; and Grandi, U. 2018. Preventing ma-
nipulation in aggregating audiences in value-based argumentation
frameworks. In Proc. SAFA, volume 2171 of CEUR Workshop Pro-
ceedings, 48–59.
Meir, R.; Procaccia, A. D.; Rosenschein, J. S.; and Zohar, A. 2008.
Complexity of strategic behavior in multi-winner elections. J. Artif.
Intell. Res. 33:149–178.
Modgil, S., and Prakken, H. 2013. A general account of argumen-
tation with preferences. Artif. Intell. 195:361–397.
Rahwan, I.; Larson, K.; and Tohmé, F. A. 2009. A characterisation
of strategy-proofness for grounded argumentation semantics. In
Proc. IJCAI 2009, 251–256.
Satterthwaite, M. A. 1975. Strategy-proofness and Arrow’s con-
ditions: Existence and correspondence theorems for voting proce-
dures and social welfare functions. Journal of economic theory
10(2):187–217.
Zwicker, W. S. 2016. Introduction to the theory of voting. In
Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procaccia, A. D.,
eds., Handbook of Computational Social Choice. Cambridge Uni-
versity Press. 23–56.

Belief Revision Operators with Varying Attitudes Towards Initial Beliefs

Adrian Haret and Stefan Woltran
Institute of Logic and Computation, TU Wien, Austria

Abstract

Classical axiomatizations of belief revision include a postu-
late stating that if new information is consistent with initial
beliefs, then revision amounts to simply adding the new infor-
mation to the initial knowledge base. This postulate assumes
a conservative attitude towards initial beliefs, in the sense that
an agent faced with the task of revising them will seek to
preserve initial beliefs as much as possible. In this work we
look at operators that can assume different attitudes towards
original beliefs, and make the case that these operators can
be put to use when doing revision in fragments of proposi-
tional logic. We provide axiomatizations of these operators
by varying the aforementioned postulate and obtain represen-
tation results which characterize the new types of operators in
terms of preorders on possible worlds. We also present con-
crete examples for each new type of operator, using notions
inspired from decision theory.

Introduction
Belief revision models rational changes of an agent’s epis-
temic state, triggered by the availability of new, trusted
information. In the standard logical approach, an agent’s
epistemic state is represented by propositional formulas,
while the standards of rationality that a revision opera-
tor is expected to abide by are encoded as logical ax-
ioms (Alchourrón et al. 1985; Gärdenfors 1988; Katsuno
and Mendelzon 1992b; Fermé and Hansson 2018). Remark-
ably, the classical set of revision postulates turn out to define
a class of operators that can be looked at in two ways: on the
one hand, as change, guided by logical postulates, of propo-
sitional theories in response to new data; and on the other
hand, as choice functions over possible worlds exploiting
plausibility rankings over such interpretations. This corre-
spondence tells us that an agent faced with revision of its
initial beliefs acts as if it chooses from a set of feasible pos-
sible worlds the ones that it considers most plausible.

A distinguishing feature of revision operators, as typically
axiomatized, is that they can be assumed to adopt a partic-
ular attitude towards initial beliefs, enforced through what
are called the Inclusion and Vacuity postulates in the AGM
formulation (Fermé and Hansson 2018), or through a sin-
gle postulate equivalent to their conjunction in the KM ax-
iomatization (Katsuno and Mendelzon 1992b). This attitude
spells out how the agent’s prior information behaves with re-

spect to new data: thus, in the KM axiomatization, the postu-
late in question states that if new information µ is consistent
with existing beliefs , then the result of revision is simply
^ µ. In other words, the agent retains its initial beliefs and
simply supplements them with the new item of information,
if it can do so in a consistent way. This is in line with a view
of revision where the information with which the agent
starts off represents the possible worlds the agent finds most
plausible, information not to be given up unless challenged
by conflicting new data, and spells out a conservative atti-
tude towards initial beliefs, guided by the desire to preserve
them as much as possible.

In the current work we view such a conservative attitude
as one among many that an agent can have towards its initial
beliefs. By varying the postulate responsible for enforcing
this attitude we are able to axiomatize revision operators that
embody a wider range of attitudes towards prior informa-
tion, and characterize these operators in terms of the types
of preorders they induce on the set of possible worlds. To il-
lustrate these principles we provide concrete operators, con-
structed using two ingredients: a notion of distance between
possible worlds and a comparison function that ranks possi-
ble worlds depending on the initial beliefs. We also show, in
each case, how these operators fit into the landscape of new
postulates introduced. Without the theoretical apparatus of
the new postulates, the concrete operators put forward would
be merely classified as deviant, since they do not satisfy the
traditional blend of Inclusion and Vacuity. But through the
present analysis they can be viewed as encoding distinct and
characterizable stances an agent can take towards its beliefs.

Moreover, we argue that our insights can be put to
use in the current research stream of fragment-based revi-
sion (Creignou et al. 2014; Delgrande and Peppas 2015;
Zhuang et al. 2017; Delgrande et al. 2018), which seeks to
understand belief revision in more applied formalisms. The
main motivation behind this line of research is that there
is much to be gained computationally if we assume that
an agent states its beliefs in a simpler language, e.g., a re-
stricted fragment of propositional logic, and that by revising
the agent is able to stay within this fragment. However, it
turns out that such a mild assumption (i.e., that revision re-
turns a knowledge base expressible in a certain fragment)
clashes systematically with commonly accepted properties,
including the combined version of the aforementioned In-

clusion and Vacuity postulates: their conjunction puts certain
demands on the underlying language (e.g., that the conjunc-
tion of and µ is always expressible in it), which are not met
in all scenarios that interest us. Thus, there is an unexpected
payoff in looking, as we do here, at weaker versions of the
standard postulates and their semantic characterizations.

Considering alternatives to the classical revision postu-
lates has a distinguished history, going as far back as the
original publications in the field (Gärdenfors 1988; Katsuno
and Mendelzon 1992a; Hansson 1999; Herzig and Rifi 1999;
Velázquez-Quesada 2017). However, we believe that a sys-
tematic analysis of the intuition underlying KM postulate
R2, as we perform here, sheds new light on familiar topics.

Preliminaries
We assume a finite set P of propositional atoms, from which
the set Prop of propositional formulas is generated using
the usual propositional connectives. A propositional knowl-
edge base is a finite set of propositional formulas, which
we typically identify with the conjunction of its formulas.
Thus, we think of a knowledge base as a single formula,
i.e.,

V
µ2 µ. The set of all propositional knowledge bases

is 2Prop. The universe U is the set of all possible interpreta-
tions (also called possible worlds) for formulas in Prop. The
models of a propositional formula µ are the interpretations
which satisfy it, and we write [µ] (respectively, []) for the
set of models of µ (respectively, for

T
µ2[µ]). If there is no

danger of ambiguity, we write models as words where the
letters are the atoms assigned to true, e.g., {{a, b}, {b, c}} is
written as {ab, bc}; hence, for instance, [a _ b] = {a, b, ab}.
If µ1 and µ2 are propositional formulas, we say that µ1 en-
tails µ2, written µ1 |= µ2, if [µ1] ✓ [µ2], and that they are
equivalent, written µ1 ⌘ µ2, if [µ1] = [µ2]. A formula µ (a
knowledge base) is consistent if [µ] 6= ; ([] 6= ;), and
complete if it has exactly one model. The set of consistent
knowledge bases is 2Prop

cons
. If is a propositional knowledge

base, then the dual of is obtained by replacing every
literal l appearing in with its negation. If w is an interpre-
tation, the dual interpretation w is P \ w. If W is a set of
interpretations, its dual W is defined as {w | w 2W}.
Example 1. If P = {a, b, c} and = {a, a ! b}, then
 = {¬a,¬a ! ¬b}. We have that [] = {ab, abc}, the
dual of the interpretation ab is ab = c and [] = {c, ;}.

In Example 1 we obtain that [] = []. Though we do not
provide a formal proof, we mention here that this holds more
generally, i.e., for any 2 2Prop, it holds that [] = [].

If M is a set, then Bin(M) is the set of binary relations
on M. We write < for the strict part of , i.e., x < x0 if
x x0 and x0 6 x; moreover, x ⇡ x0 if x x0 and x0 x.
The-minimal elements of M with respect to are defined
as min M = {x 2 M | @x0 2 M such that x0 < x}.
An assignment from M1 to M2 is a function ↵ : M1 !
Bin(M2). We write instead of ↵() if there is no danger
of ambiguity. If W is a set of interpretations, we denote by
'W a propositional formula such that ['W] = W . If w1 and
w2 are two interpretations, '1,2 is a propositional formula
such that ['1,2] = {w1, w2}. A renaming ⇢ is a permutation

on the set P which, applied to a formula µ, yields a formula
⇢(µ) whose atoms are replaced according to ⇢.
Example 2. If ⇢ is a renaming such that ⇢(a) = b, ⇢(b) = c
and ⇢(c) = a, then ⇢(¬a ^ (b! c)) = ¬b ^ (c! a).

Revision: axioms and characterizations
A propositional revision operator is a function � : 2Prop

cons
⇥

Prop ! Prop. The intention is that � µ encodes changes
brought to existing held beliefs such that new, trusted in-
formation µ is accepted. A sensible revision operator is ex-
pected to resolve any inconsistencies between and µ and
to satisfy other rationality criteria, presented below.

Basic postulates. If ,1,2 2 2Prop
cons

and µ, µ1, µ2 2
Prop, we first single out the following core set of axioms:

(R1) � µ |= µ.
(R2) If µ is consistent, then � µ is consistent.
(R3) If 1 ⌘ 2 and µ1 ⌘ µ2, then 1 � µ1 ⌘ 2 � µ2.
(R4) (� µ1) ^ µ2 |= � (µ1 ^ µ2).
(R5) If (� µ1) ^ µ2 is consistent, then � (µ1 ^ µ2) |=

(� µ1) ^ µ2.
(RN) ⇢(� µ) ⌘ ⇢() � ⇢(µ).
Postulates R1�5 form part of the standard set of KM pos-
tulates (Katsuno and Mendelzon 1992b), saying that a revi-
sion operator incorporates new information µ (R1), returns
a consistent output if µ is consistent (R2), performs its task
irrespective of how beliefs are written down (R3) and satis-
fies some coherence constraints when the revision formula
is varied (R4�5).1 We have found it suitable to add here a
neutrality axiom RN, requiring that a revision operator does
not favor propositional atoms based solely on their names.
This idea is expressed by requiring the revision output to be
invariant under a renaming ⇢ of atoms, and, in conjunction
with the irrelevance of syntax postulate R3, it is perhaps nat-
ural to expect it from any revision operator. The inspiration
for postulate RN is the social choice literature (see (Rothe
2015), Chapter 4) and, though it has appeared in belief
change before, under various guises (Herzig and Rifi 1999;
Marquis and Schwind 2014; Haret et al. 2016), neutrality
usually goes unstated in standard presentations of revision.

A revision operator is basic if it satisfies postulates R1�5

and neutral if it satisfies postulate RN. We will typically as-
sume that all revision operators we work with are basic.

Basic assignments. Reflection on postulates R1�5 reveals
that an operator � satisfying them chooses among models of
µ and, in doing so, behaves as if it has preferences over units
of information. Formally, this is cashed out by assigning to
each consistent knowledge base in 2Prop

cons
a binary relation

 on interpretations in U : to revise by µ, then, becomes
equivalent to choosing the best models of µ in . And, in
the same way that revision operators are expected to satisfy a
set of basic properties (postulates R1�5), rankings on U must

1Note that R2 as we show it does not coincide with KM postu-
late R2. The KM postulate shows up in the latter part of this section.

satisfy a set of properties, to be introduced in the following,
that are conducive to rational choice.

First of all, let us extend our notion of renamings to cover
interpretations. Thus, if w is an interpretation and ⇢ is a re-
naming of atoms, then ⇢(w) is an interpretation obtained by
replacing every atom p in w with ⇢(p). If M is a set of in-
terpretations, then ⇢(M) = {⇢(w) | w 2M}.
Example 3. Take M ✓ U such that M = {a, ab, bc} and a
renaming ⇢ such that ⇢(a) = b, ⇢(b) = c and ⇢(c) = a. We
get ⇢(M) = {⇢(a), ⇢(ab), ⇢(bc)} = {b, bc, ac}.
For an assignment from consistent knowledge bases in
2Prop
cons

to binary relations on U , a revision operator � and
,1,2 2 2Prop

cons
, w1, w2 2 U , we look at these properties:

(o1) is reflexive.
(o2) is transitive.
(o3) If 1 ⌘ 2, then 1=2 .
(o4) is total.
(o5) [� µ] = min [µ], for any propositional formula µ.
(oN) w1w2 iff ⇢(w1) ⇢() ⇢(w2).

An assignment is basic if it satisfies properties o1�4. No-
tice that properties o1�2 imply that is a preorder on U .
Adding property o4 makes total, and o3 adds an indepen-
dence of syntax aspect to the assignment. If, on top of this,
 satisfies o5, we say that the assignment ↵ represents the
revision operator � (and that � is represented by ↵). We call
an assignment neutral if it satisfies property oN. The over-
loading of notation (‘basic’, ‘neutral’) is intentional: prop-
erties o1�5, N define a class of rankings on interpretations
that fully characterize revision operators satisfying axioms
R1�5, N. The following results make this precise.
Theorem 1. A revision operator satisfies postulates R1�5

iff there exists an assignment from 2Prop
cons

to U representing
it such that, for any 2 2Prop

cons
, the preorder satisfies

properties o1�5.
This result follows from existing work on revision and can
be extracted, for example, from the proof of the representa-
tion result in (Katsuno and Mendelzon 1992b). Keeping in
mind that for any µ 2 Prop and renaming ⇢ it holds that
[⇢(µ)] = ⇢([µ]), we also get the following result.
Theorem 2. If � is a basic revision operator and ↵ is an
assignment representing it, then � satisfies axiom RN iff ↵
satisfies property oN.

Proof. Recall, first, that we denote by '1,2 a propositional
formula such that ['1,2] = {w1, w2}. (“)”) Take a ba-
sic revision operator � that satisfies axiom RN, and the as-
signment which represents it. Take w1 and w2 and sup-
pose, first, that w1w2. Then w1 2 [� '1,2], and hence
⇢(w1) 2 ⇢([� '1,2]). We get that ⇢(w1) 2 [⇢(� '1,2)]
and by postulate RN it follows that ⇢(w1) 2 [⇢()�⇢('1,2)].
This implies that ⇢(w1) 2 min⇢()

[⇢('1,2)], which implies
that ⇢(w1) 2 min⇢()

⇢(['1,2]). Thus, ⇢(w1) ⇢() ⇢(w2).
Conversely, suppose that ⇢(w1) ⇢() ⇢(w2). This implies
that ⇢(w1) 2 min⇢()

⇢(['1,2]). By postulate RN, we get

that w1w2. (“(”) Take an assignment that satisfies prop-
erty oN and the revision operator � represented by it. We
have that [⇢(� µ)] = ⇢([� µ]) = ⇢(min [µ]), and
[⇢() � ⇢(µ)] = min⇢()

[⇢(µ)] = min⇢()
⇢([µ]). We

show that [⇢(� µ)] = [⇢() � ⇢(µ)] by double inclusion.
Take, first, ⇢(w1) 2 ⇢(min [µ]), for w1 2 min [µ], and
⇢(w2) 2 ⇢([µ]), for w2 2 [µ]. Then w1w2 and by oN

we get that ⇢(w1) ⇢() ⇢(w2), which implies that ⇢(w1) 2
min⇢()

⇢([µ]). This shows that [⇢(� µ)] ✓ [⇢() �⇢(µ)].
Next, take ⇢(w1) 2 min⇢()

⇢([µ]), for w1 2 [µ], and
⇢(w2) 2 ⇢([µ]), for w2 2 [µ]. We get that ⇢(w1) ⇢()

⇢(w2), which by oN implies that w1w2. Thus, w1 2
min [µ] and hence ⇢(w1) 2 ⇢(min [µ]).

Theorem 1 tells us that an agent revising beliefs along the
lines of postulates R1�5 behaves as if it ranks interpreta-
tions in U in a total preorder that depends on initial
beliefs , and always picks the minimal models of µ ac-
cording to . Such an agent, then, behaves like a ratio-
nal agent, in the sense of rational choice theory (Sen 1984;
French 1988), choosing the best elements from a given menu
of options: the menu, here, would be the models of µ, i.e.,
the possible worlds the agent is allowed to believe in light of
new information, while the best elements are decided with
reference to . Thus, a revision operator can be seen as
a choice function over sets of interpretations: for instance,
postulates R5�6 are equivalent to what is known as the Weak
Axiom of Revealed Preference (WARP) and, taken together,
postulates R1�5 characterize choice functions rationaliz-
able by total preorders. Accordingly, Theorem 1 aligns with
standard choice theoretic results (Arrow 1959; Sen 1984;
Moulin 1991). That a similar mathematical formalism un-
derlies both belief revision and rational choice is, in itself,
not a new insight, the topic having been studied before un-
der various guises (Rott 2001; Bonanno 2009).

Theorem 2 adds invariance of under renamings. The
ranking is usually thought of as a plausibility ranking,
i.e., the assessment of an agent believing as to which pos-
sible worlds are more or less plausible.
Example 4. A doctor knows that the patient has been diag-
nosed with asthma (a), finds out that the patient is suffering
from shortness of breath (b) and infers that chest pain (c) is
also present (the two often go together in asthma). In other
words, the doctor has initial information = a and a plausi-
bility ranking over possible worlds, depicted in Figure 1.
The doctor then revises by µ = b and settles on a possible
state of affairs that is most plausible according to their plau-
sibility ranking , i.e., [� µ] = min [µ] = {abc}. Note
that the doctor, in this case, believes that the situation repre-
sented by a ^ b ^ c is more likely than a ^ b ^ ¬c.
One way of thinking of postulates R1�5, N is that they ax-
iomatize neutral total preorders on interpretations. These
preorders nominally depend on , but nothing in postulates
R1�5, N touches on how models of should influence these
preorders. In other words, there is as yet no information
about the attitude of an agent towards its initial epistemic
state, and postulates R1�5, N are consistent with arbitrary
attitudes towards . How should the models of stand in

abc

ab

b, bc

[]

Figure 1: Revision scenario of Example 4, showing the pre-
order on the basis of which the revision result is con-
structed: only models of µ = b are depicted; the models of
 among this set are highlighted in grey.

relation to all other interpretations? In Example 4 we catch
a glimpse of one possible answer: the agent there starts off
with some information and differentiates among the pos-
sible worlds consistent with : some of these interpretations
are, a priori, more plausible than others. Still, as a whole,
models of are more plausible than any other interpreta-
tions consistent with the new information µ—the agent is
biased towards the possible worlds consistent with , an at-
titude which fits with the idea of being the agent’s belief.
Are there, now, other ways of arranging the models of in
, ways that span the space of possible such attitudes? We
study this question through the lens of additional axioms.

Attitudes towards initial beliefs. Let ,0 2 2Prop
cons

, µ 2
Prop, and consider the following postulates:
(R6) If ^ µ is consistent, then ^ µ |= � µ.
(R7) If ^ µ is consistent, then � µ |= ^ µ.
(R8) If µ |= , then � µ ⌘ µ.
(R9) If µ 6|= , then (� µ) ^ is inconsistent.

(R10) If 0 is complete and 0 |= �µ, then 0 |= (_ 0) �
µ.

Each of these postulates encodes a particular type of attitude
towards initial beliefs, and they are intended to be thought of
in conjunction with the basic set of postulates R1�5. Some
clarification is in order. Postulate R6 models an agent that
incorporates all information in ^ µ, and possibly extends
this to cover more ground. Postulate R7 models an agent
that reserves itself the right to drop information from if
it so sees fit, even if that information is consistent with µ:
we may imagine this is done on the basis of certain prefer-
ences over the information encoded by , i.e., the agent is
partial towards certain parts of to the detriment of others.
Taken together, postulates R6�7 imply that � µ is equiva-
lent to ^µ, when ^µ is consistent. This property models
an agent who wants to preserve as much of as it can, and
does not have any bias towards either of the models of .
Postulate R6 can be equated with the Inclusion postulate in
the AGM formulation and R7 corresponds to Vacuity (Fermé
and Hansson 2018), while in the KM axiomatization R6 and
R7 are packaged together in one postulate (i.e., KM postulate
R2) and presented alongside R1�5 as the default set of ratio-
nal properties for revision (Katsuno and Mendelzon 1992b).

Postulates R8�9 focus on the dual knowledge base ob-
tained by replacing every literal in with its negated version.

If is a conjunction of literals, or if it is a complete (i.e., with
exactly one model) formula, then will be a formula whose
models are complements of the models of .

Example 5. If P = {a, b, c} and = {a^b} is a knowledge
base over the alphabet P , then = {¬a^¬b}, and we have
that [] = {ab, abc}, while [] = {;, c}
Thus, if is reasonably specific (e.g., is a conjunction of lit-
erals), then can be thought of as a point of view opposite
to that of . Of course, this analogy breaks down if is a
knowledge base such as a _ b, or a _ ¬a, where and
share models. Our point here is simply that there are situa-
tions in which it makes sense to view and as embody-
ing opposing stances, and in which one would like to place
bounds on the revision function in terms of how it treats in-
formation encoded by the opposing point of view : this is
the case if the agent has, or is required to have, a definite
opinion on every item from an agenda, as is typically the
case in Judgment Aggregation (Endriss 2016), and when
will be a complete formula; or if is a ‘vivid’ knowledge
base (Levesque 1986), or encodes something like an agent’s
preferred bundle from a set of available items, in which case
 can be required to be a conjunction of literals.

Postulate R8 says that if undergoes revision by a for-
mula µ embodying such an adverse perspective, then the
agent must adopt µ: in other words, the agent has no room
for maneuvering towards a more amenable middle ground.
Such a revision policy makes more sense when considered
alongside postulate R9, which specifies that if the agent has
the option of believing states of affairs not compatible with
, it should wholeheartedly adopt those as the most plausi-
ble stance. Taken together, postulates R8�9 inform the agent
to believe states of affairs compatible with only if it has
no other choice in the matter: the models of should be part
of a viewpoint one is willing to accept only as a last resort.
Postulate R10 is best understood through an example.

Example 6. An agent intends to go to an art museum, the
beach and a concert, i.e., = {a ^ b ^ c}. The agent then
learns that it only has time for one of these activities and
chooses the art museum, i.e., � µ ⌘ a ^ ¬b ^ ¬c. If the
agent’s initial intentions were less specific, for instance that
it would either go to all three places or only to the art mu-
seum (i.e., = {(a ^ b ^ c) _ (a ^ ¬b ^ ¬c)}), then, faced
with the same new information µ, a ^ ¬b ^ ¬c should still
feature as one of its most preferred options.

A clearer view of postulates R6�10 emerges when looking
at how they place the models of in a total preorder

(,0 2 2Prop
cons

, w1, w2, w0 2 U):

(o6) If w1 2 [], then w1w2.

(o7) If w1 2 [] and w2 /2 [], then w1<w2.

(o8) If w1 2 [], then w2w1.

(o9) If w1 2 [] and w2 /2 [], then w2<w1.

(o10) If w0w and [0] = {w0}, then w0 _0 w.

Properties o6�10 turn out to characterize axioms R6�10 on
the semantic level, as per the following representation result.

Theorem 3. If � is a revision operator satisfying postulates
R1�5 and ↵ is an assignment from 2Prop

cons
to U which satisfies

properties o1�5 then, for any 2 2Prop
cons

and µ 2 Prop, the
following equivalences hold:

(1) � satisfies axiom R6 iff satisfies property o6;
(2) � satisfies axiom R7 iff satisfies property o7;
(3) � satisfies axiom R8 iff satisfies property o8;
(4) � satisfies axiom R9 iff satisfies property o9;
(5) � satisfies axiom R10 iff satisfies property o10.

Proof. Recall that we denote by '1,2 a propositional for-
mula such that ['1,2] = {w1, w2}. For equivalence 1, we
show each direction in turn. (“)”) Take, first, an assign-
ment ↵ satisfying property o6, and the revision operator �
represented by it. Let us assume that ^µ is consistent, and
show that for any w 2 [^ µ], it holds that w 2 [� µ]
as well. By property o5, this is equivalent to showing that
w 2 min [µ]. Take an arbitrary interpretation w0 2 [µ].
Since w 2 [], we can apply property o6 to get that ww0.
Hence w 2 min [µ]. (“(”) Take a basic revision opera-
tor � satisfying R6. and the assignment ↵ which represents
it. To show that satisfies property o6, take two interpre-
tations w1 and w2 such that w1 2 []. Then, by axiom R6,
we have that ^ '1,2 |= � '1,2. By property o5, it holds
that [� '1,2] = min ['1,2] and, since w1 2 [^ '1,2], it
follows that w1 2 min ['1,2]. Thus, w1w2.

For equivalence 2, we show again each direction in turn.
(“)”) Take an assignment ↵ satisfying property o7 and the
revision operator � represented by it. Let us assume that ^µ
is consistent. Take w 2 [�µ], and suppose w /2 [^µ]. By
property o5, we have that [�µ] = min [µ], and hence w 2
[µ]. Thus, the fact that w /2 [^µ] implies that w /2 []. But,
by assumption, it holds that [^ µ] 6= ;. Thus, there exists
w0 2 [^ µ] and, by property o7, it follows that w0<w.
But we also have that w 2 min [µ], which implies that
it cannot be the case that w0<w, which is a contradiction.
(“(”) Take a basic revision operator � satisfying R7 and
the preorder that represents it. To show that satisfies
property o7, take w1 2 [] and w2 /2 []. We then have that
^'1,2 is consistent and hence, by axiom R7, that �'1,2 |=
 ^ '1,2. Since [� '1,2] is, by axioms R1�2, a non-empty
subset of ['1,2] = {w1, w2}, we have that at least one of
w1 and w2 is in [� '1,2]. Notice, now, that we cannot have
w2 2 [� '1,2], since it would follow that w2 2 [^ '1,2]
and w2 2 [], which is a contradiction. Thus, [� '1,2] =
{w1}. Since represents �, we have by property o5 that
[� '1,2] = min ['1,2]. It follows that w1<w2.

Equivalences 3 and 4 are analogous to 1 and 2, respec-
tively. For equivalence 5, assume first that axiom R10 holds,
and take interpretations w and w0 and a knowledge base 0

such that w0w and [0] = {w0}. To show that w0 _0

w, we must show that w0 2 [(_ 0) � 'w,w0], where 'w,w0

is a formula such that ['w,w0] = {w,w0}. This follows
immediately by applying axiom R10. Conversely, suppose
[0] = {w0}, and take w 2 [�µ]. Then, we get that w0w,
and we can apply property o10 to derive the conclusion.

Theorem 3 is better understood through an illustration of
how such preorders treat models of . Property o6 says that

• • • •
. . .
. . .

(a) o6

• •
• •
. . .

(b) o7

• • • •
. . .
. . .

(c) o8

• •
• •
. . .

(d) o9

 _0

•
w0

w

)
w0 •

w

(e) o10

Figure 2: Schematic view of prototypical preorders satisfy-
ing each of the properties o6�9; models of are in the light
gray area, models of are in the dark gray area.

models of are minimal elements in , i.e., the agent con-
siders possible worlds satisfying its beliefs among the most
plausible possible worlds, though possibly not uniquely so
(Figure 2-(a)). Property o7 states that there are no counter-
models of more plausible than the models of , but the
models of themselves may not be equally plausible (Fig-
ure 2-(b)). Properties o8�9 say that models of the dual
knowledge base are the least plausible interpretations in
 (Figure 2-(c,d)), while property o10 says that if w0 is
more plausible than w when the initial beliefs are , then w0

would still be more plausible than w if it were part of the
initial beliefs (Figure 2-(e)).

Together, properties o1�7 define what is more commonly
known as a faithful assignment, placing all and only models
of on the lowest level of . This corresponds to an agent
that holds its initial beliefs to be the most plausible states
of affairs (Katsuno and Mendelzon 1992b). Consequently,
Theorem 1 plus equivalences 1-2 from Theorem 3 make up
the classical representation result for belief revision opera-
tors (Katsuno and Mendelzon 1992b). Here we have opted
for a more fine-grained approach to the placement of mod-
els of in, which allows a more diverse representation of
the different types of attitudes an agent can have towards ini-
tial beliefs. Though operators that do not satisfy the classical
KM postulate R2 have been considered before (Ryan 1996;
Benferhat et al. 2005), the idea that such deviations corre-
spond to possible epistemic attitudes and can be axiomatized
is, to the best of our knowledge, new.

Indifference to already held beliefs. One particular con-
sequence of weakening the KM axiom R2 (axioms R6�7 in
the current context) is that the following property is not guar-
anteed to hold anymore:
(RIDF) � ⌘ .
This property, called here RIDF (for indifference to already
held beliefs), says that revising with information the agent
already believes does not change the agent’s epistemic state.
More generally, the KM standard set of postulates implies
that revising by any formula µ such that |= µ results in
. It quickly becomes apparent that axiom R6 implies RIDF,2
but R7 does not. Thus, if an agent is allowed to rank models
of unequally, then RIDF is not guaranteed to hold.
Example 7. Consider the knowledge base = {a _ b} and
a revision operator that satisfies axiom R7, and which orders

2The converse is not true: RIDF enforces only that models of
are equally plausible, but not where they are placed in .

a, b

ab

;

[]

Figure 3: [] = {a, b, ab}, but [�] = {a, b}

the models of as in Figure 3. We get that [�] = {a, b},
i.e., � ⌘ (a$ ¬b).
What this fact points to is a more graded view of what it
means to believe . Thus, an agent might have a certain
threshold of plausibility, along the lines of what is known in
epistemology as the Lockean thesis (Foley 1993), according
to which it calibrates its beliefs: anything above the thresh-
old counts as part of the belief and anything below counts
as disbelief. This then leaves open the possibility that the
agent assigns different degrees of plausibility to states of af-
fairs it counts as part of its belief : indeed, this is the point
of view we endorse here. This is in contrast to more stan-
dard approaches, which consider that an agent assigns equal
degrees of plausibility to all items of its belief. Thus, new
information which confirms an agent’s belief might have the
effect of reinforcing parts that are given more plausibility at
the expense of parts that are given less, and this is the kind
of phenomenon we take to be modeled by Example 7.

What would be worrying would be a revision policy that
makes an agent cycle between different viewpoints when
confronted repeatedly with the same type of information: we
will see that for revision operators satisfying R7 this con-
cern is unwarranted, but we must introduce some new no-
tation. We write i for the knowledge base obtained by re-
vising by itself an i number of times. Thus, 0 = and
i+1 = i � . Consider now the following property:
(RSTB) There is n � 1 such that m ⌘ n, for every m � n.
We say that a revision operator � is stable if it satisfies prop-
erty RSTB. Stability implies that repeated revision by ul-
timately settles (or stabilizes) on a set of models that does
not change anymore through subsequent revisions by . The
following result proves relevant to the issue of stability.
Proposition 4. If a revision operator � satisfies axioms R1

and R7, then i+1 |= i.

Proof. By axiom R1, we have that � |= , and thus 1 |=
0. Applying axiom R7, we have that (�)� |= (�)^
 |= � . Thus, 2 |= 1, and it is straightforward to see
how this argument is iterated to get the conclusion.

If the operator � also satisfies axiom R2 (which, here, says
that if the revision formula is consistent, then the revision
result is also consistent), it follows that if is consistent,
then i is consistent, for any i � 0. Thus, combining this
fact and Proposition 4, we get that repeated revision by
leads to a chain of ever more specific knowledge bases, i.e.,
; ⇢ · · · ✓ [i+1] ✓ [i] ✓ · · · ✓ [0]. Since a knowledge
base has a finite number of models, it falls out immediately

0

a

;

b, ab

[]

1

;

a

b

ab

[]

2

a

;

ab

b

[]

Figure 4: Repeated revision by ends up jumping around
from {a} to {;}.

from this that there must be a point at which further revision
by does not change anything.
Corollary 5. A basic revision operator � satisfying axiom
R7 is stable.
Unfortunately, axioms R8�9 do not guarantee stability. Since
these axioms require only that the agent places the models of
 as the least plausible interpretations, it becomes possible
that an agent’s plausibility ranking does not hold on to a core
set of interpretations through successive revisions by .
Example 8. Take a knowledge base = {¬b} and a re-
vision operator satisfying R8�9 which orders interpretations
as shown in Figure 4. We have that [0] = [] = {;, a}, and
[1] = [�] = {;} and [2] = [1 �] = {a}. By axiom
R3, we get that subsequent revisions by jump around be-
tween {a} and {;}, i.e., [3] = {;}, [4] = {a}, and so on,
therefore never settling on a stable answer.

The issue of stability suggests another dimension along
which revision operators can be analyzed, with Proposition 5
and Example 8 showing that a revision operator does not sat-
isfy it trivially. Example 8, in particular, shows that there is
interplay between the preorders and 0 , where 0 |= ,
which is relevant to the question of whether a revision oper-
ator is stable or not. This interplay is reminiscent of issues
surrounding iterated revision and kinetic consistency (Dar-
wiche and Pearl 1997; Peppas and Williams 2016) and pur-
suing it further is worthwhile, though it would take us too
far afield of the aims of the current work.

Concrete propositional revision operators
Having characterized revision operators in terms of assign-
ments on interpretations, we ask ourselves what is a natural
way to construct such assignments. The usual way of ex-
ploiting the insight afforded by Theorem 1 is to use some
type of distance d between interpretations, interpreted as a
measure of plausibility of one interpretation relative to the
other. The distance d is then used to compare interpretations
with respect to how plausible (or close) they are with respect
to the initial beliefs .

Our answer extends this method in a way reminis-
cent of techniques used to construct belief merging oper-
ators (Konieczny et al. 2004; Konieczny and Pérez 2011),
i.e., by employing two main ingredients. The first ingredient
is a distance between interpretations, defined as a function
d : U ⇥ U ! R+ such that d(w1, w2) = 0 iff w1 = w2

and d(w1, w2) = d(w2, w1). Given w 2 U and 2 2Prop
cons

such that [] = {w1, . . . , wn}, the vector of distances from
w to is d(w,) = (d(w,w1), . . . , d(w,wn)). If there is
no danger of ambiguity we omit commas and simply write
d(w,) as a string of numbers.
Example 9. If w = a, [] = {a, b, ab}, d is a distance
function such that d(a, a) = 0, d(a, b) = 2 and d(a, ab) =
1, then d(w,) = (0, 2, 1), written as d(w,) = (021).
We mention here two prominent examples of distance. The
first one, called the drastic distance dD works by the all-or-
nothing rule: dD(w1, w2) = 0 if w1 = w2, and 1 otherwise.
The second one is the Hamming distance dH, which counts
the number of atoms on which two interpretations differ.

The second ingredient is a comparison function, which
is a family of functions f : Rn ! R for n 2 N, map-
ping a distance vector d(w,) to a number and used to
compare distance vectors. We write

����!
d(w,) and

 ����
d(w,)

for the vectors of distances from w to ordered in as-
cending order and descending order, respectively. The lex-
icographic order between two vectors is denoted by lex.
Minimal and maximal elements of d(w,) are denoted
by min d(w,) and max d(w,), respectively. We defineP

d(w,) =
P

wi2[] d(w,wi). The centrality of w with
respect to is cen(w,) = max d(w,) � min d(w,).
The displacement of w with respect to is dis(w,) =
min d(w,) � min d(w⇤,), where w⇤ is an interpreta-
tion such that min d(w⇤,) is minimal among all the in-
terpretations w0 for which cen(w0,) = cen(w,). Finally,
the agreeability index of w with respect to is defined as
agr(w,) = min{min d(w,), cen(w,) + dis(w,)},
while the disagreeability index of w with respect to is
dagr(w,) = n� agr(w,), where n = |P|.

Let us now put the two ingredients together. Given a dis-
tance d and comparison function f , we write d, f

 for the
ranking generated using d and f , and �d, f for the revision
operator represented by the assignment generated using d
and f , i.e., defined by taking [�d, f µ] = mind, f

[µ].

Assuming some distance d between interpretations, we will
look at the types of rankings defined in Table 1.

w1d,min
 w2 iff min d(w1,) min d(w2,),

w1d, lmin
 w2 iff

�����!
d(w1,) lex

�����!
d(w2,),

w1d, agr
 w2 iff agr(w1,) agr(w2,),

w1d,max
 w2 iff max d(w1,) max d(w2,),

w1d, lmax
 w2 iff

 �����
d(w1,) lex

 �����
d(w2,),

w1d, dagr
 w2 iff dagr(w1,) dagr(w2,),

w1d, sum
 w2 iff

P
d(w1,)

P
d(w2,),

Table 1: Types of rankings, defined for a distance d

We illustrate these operators with the following examples.
Example 10. Take = {¬a _ ¬b _ (a ^ b ^ c)}, for
which we get that [] = {;, a, b, abc}. For the interpretation
w = ;, we get that

�����!
dH(w,) = (0113),

 �����
dH(w,) = (3110),

min dH(w,) = 0, max dH(w,) = 3 and
P

dH(w,) =
5. The distances and computed aggregation functions for

; a b abc
�����!
dH(w,)

 �����
dH(w,) min max

P

; 0 1 1 3 (0113) (3110) 0 3 5
a 1 0 2 2 (0122) (2210) 0 2 5
b 1 2 0 2 (0122) (2210) 0 2 5
c 1 2 2 2 (1222) (2221) 1 2 7
ab 2 1 1 1 (1112) (2111) 1 2 5
ac 2 1 3 1 (1123) (3211) 1 3 7
bc 2 3 1 1 (1123) (3211) 1 3 7
abc 3 2 2 0 (0223) (3220) 0 3 7

Table 2: Table of Hamming distances for from Example 10

each interpretation are depicted in Table 2. Notice how the
models of are distributed when the interpretations are
ranked according to the different comparison functions used:
we have ;⇡H,min

 a, since min dH(a,) = min dH(a,) =
0, but ;<H, lmin

 a, since (0113) lex (0122). Also, we have
that c<H,max

 abc, c<H, lmax
 abc and ab<H, sum

 abc, i.e., mod-
els of are not minimal in H,max

 , H, lmax
 and H, sum

 .
In particular, H,max

 makes the models of (i.e., abc, bc,
ac and ;) the least plausible interpretations.
The agreement and disagreement operators (�d, agr and
�d, dagr) are simpler than they appear: �d, agr works as a
scoring rule allowing interpretations other than the models
of as the minimal elements of the preorder . Notice
that the score of an interpretation in d, agr

 is 0 if it is ei-
ther a model of , or it is equidistant from every model of
 (i.e., its centrality is 0) and it is the ‘closest’ interpretation
to with this property. The disagreement operator �d, dagr
does something similar, by making models of and inter-
pretations minimally equidistant to them the least plausible
interpretations in d, dagr

 .
Example 11. Take such that [] = {a, b, c}, and notice
that dH(;,) = (111) and dH(abc,) = (222), i.e., they are
both equidistant to , hence their centrality is 0. However,
; is closer to than abc (its displacement is 0, compared
to abc’s displacement of 1), and agr(;,) = 0. Thus, what
H, agr

 does is to give a minimal score to models of and
to the minimally equidistant interpretation ;. By contrast,
H, dagr

 gives a maximal score to the models of and to the
maximally equidistant interpretation abc.
All operators proposed here generate a total preorder

over interpretations, but differ in how they arrange the mod-
els of in , corresponding to different attitudes an agent
can have towards its beliefs prior to any revision. The
operator �H,min, known as Dalal’s operator (Dalal 1988),
considers all models of as the most plausible elements in
 and is the only operator for which � µ is equivalent
to ^ µ when ^ µ is consistent. Similarly, �H, lmin also
ranks models of as more plausible than any other inter-
pretation, but discriminates among models of . The oper-
ators H,max

 and H, lmax
 work by pushing away models

of , under the assumption that they are the most implausi-
ble possible worlds. They differ as to how they arrange the
models of : H,max

 considers them equally implausible,
whereas H, lmax

 uses the more fine-grained lexicographic
approach. The operator �H, agr makes models of the most
plausible elements in but does not stop here and allows

�d, lmin �d,min �d, agr �d, lmax �d,max �d, sum

Figure 5: An arrow from x to y indicates that the output of
operator x implies output of operator y for the same input

other interpretations on that position, in particular certain in-
terpretations that are equidistant to as per Example 11. The
intuition here is that an interpretation equally distanced from
models of is something like a compromise point of view,
with good chances of being correct if it is close to . The
operator �H, dagr is the dual of �H, agr and, finally, operator
�H, sum evokes utilitarian approaches by choosing interpre-
tations that minimize the sum of the distances to each model
of , i.e., are close to on an aggregate level.

Plugging in the drastic and Hamming distances in the defi-
nition in Table 1 would seem to give us a considerable num-
ber of operators, but quick reflection shows that operators
obtained with drastic distance dD collapse into two main cat-
egories. To get a grasp on this fact, consider first the drastic
revision operator �dr defined, for 2 2Prop

cons
and µ 2 Prop,

as �drµ = ^µ, if ^µ is consistent, and µ otherwise, and
the forgetful revision operator �fg defined as �fg µ = µ.
Proposition 6. For any knowledge base and formula µ,
it holds that �D,min µ ⌘ �D, lmin µ ⌘ �D, lmax µ ⌘
 �D, sum µ ⌘ �dr µ. Moreover, �D, agr µ ⌘ �fg µ and:

 �D,max µ ⌘ �D, dagr µ ⌘
⇢
 �dr µ, if is complete,
 �fg µ, otherwise.

Proof. If is a complete knowledge base and [] = {w0},
then dD(w,) = dD(w,w0), for any interpretation w. In
other words,

�����!
dD(w,) yields (0) if w = w0 and (1)

otherwise. Thus, max dD(w,) = 0 if w = w0, and
max dD(w,) = 1, otherwise. It is then straightforward to
see that if w0 2 [µ], then [�D,maxµ] = {w0} = [^µ], and
if w0 /2 [µ], then [�D,max µ] = [µ]. If is not complete,
then
�����!
dD(w,) yields (01 . . . 1) if w 2 [], and (1 . . . 1) oth-

erwise. It is now straightforward to see that the remaining
statements of Proposition 6 hold.

With Hamming distance the landscape is more diverse, as
the different attitudes the operators assume towards models
of lead to genuinely different revision strategies. Nonethe-
less, certain relationships between the operators still hold.
Proposition 7. For any 2 2Prop

cons
and µ 2 Prop, we have

that �H, lminµ |= �H,minµ |= �H, agrµ and �H, lmaxµ |=
 �H,max µ |= �H, dagr µ.
The relationship between the different operators is depicted
in Figure 5. One can see that lexicographic operators are
the most discriminating, in the sense that they pick formulas
with fewer models (i.e., more specific formulas).

Since all operators generate total preorders over interpre-
tations, by Theorem 1 they all satisfy axioms R1�5. Satis-
faction with respect to the newly introduced postulates is
clarified by the following result.
Proposition 8. For a distance d 2 {D,H} and a comparison
function f 2 {min, lmin,max, lmax, agr, dagr, sum}, the
operators �d, f satisfy postulates R6�10 as shown in Table 3.

R6 R7 R8 R9 R10 RN RIDF RSTB

�H,min X X ⇥ ⇥ X X X X
�H, lmin ⇥ X ⇥ ⇥ X X ⇥ X
�H, agr X ⇥ ⇥ ⇥ X X X X
�H,max ⇥ ⇥ X X ⇥ X ⇥ X
�H, lmax ⇥ ⇥ ⇥ X ⇥ X ⇥ X
�H, dagr ⇥ ⇥ X ⇥ ⇥ X X X
�H, sum ⇥ ⇥ ⇥ ⇥ X X ⇥ X
�dr X X ⇥ ⇥ X X X X
�fg X ⇥ X ⇥ X X X X

Table 3: Satisfaction of axioms

Proof. It is already known that d,min
 (known as Dalal’s

operator (Dalal 1988; Katsuno and Mendelzon 1991)) satis-
fies axioms R5�6. To see why the operator �H, lmin satisfies
R7, notice that if w1 2 [] and w2 /2 [], then the first el-
ement in d(w1,) is 0, while the first element in d(w2,)

is strictly greater than 0. This implies that
�����!
d(w1,) <lex�����!

d(w2,), which in turn implies that w1<H, lmin
 w2. Hence

property o7 is satisfied, which implies that axiom R7 is sat-
isfied. Additionally, it cannot be the case that w3<H, lmin

 w1,
for any w3 /2 [], which shows that property o6 (and
hence axiom R6) is satisfied. For �H, lmin and axiom R6,
take [] = {a, b, ab} and [µ] = {a, b, ab}. We get that
[�H, lmin µ] = {a, b}. The operator �H, agr satisfies axiom
R6 because it makes all models of , and potentially other
interpretations as well (which is the reason why it does not
satisfy axiom R7), as the equally most plausible interpreta-
tions in H, agr

 . Since all these operator place the models of
 on the lowest levels of , they all satisfy axiom R10.

To see why postulates R8�9 are not satisfied by �d,min,
�d, lmin or �d, dagr, notice that these operators do not make
models of as the least plausible interpretations in .
Thus, if = a _ b, then shares some models with , yet
these models (along with all other models of a _ b) will be
among the most plausible interpretations ind,min

 ,d, lmin

and d, agr
 . The one exception is the forgetful operator �fg,

which satisfies R8 trivially.
The case for �H,max, �H, lmax and �H, dagr is analogous to

the one for �H,min, �H, lmin and �H, agr, as they can be seen
as duals of each other. For the operator �H, sum, take [] =
{a, b, c} and [µ] = {;, a, b, c}. We get that [�H, sum µ] =
{;}, as ; minimizes the sum of the Hamming distances to
the models of : this is a counter-example to axioms R6�7.
For R8�9, take [µ0] = {;, ab, ac, bc}. For �H, sum and R10,
notice that adding w0 to [] creates a new column for w0 in
the table of distances, in which the distance corresponding
to w0 is 0, i.e., the score assigned to w0 in H, sum

_0 does not
increase with respect to H, sum

 . Satisfaction of RIDF and
RSTB is straightforward, keeping in mind how the various
operators arrange the models of in the generated preorders.
The neutrality axiom RN is discussed separately.

With respect to neutrality, Table 3 shows that all operators
introduced so far satisfy postulate RN. This is guaranteed by
a property of the distances which we will, by an overload of

notation, call by the same name. Thus, a distance d is neutral
if, for any renaming ⇢ and interpretations w1 and w2, it holds
that d(w1, w2) = d(⇢(w1), ⇢(w2)). It is straightforward to
see that the drastic and Hamming distances are neutral. Fur-
thermore, if d is neutral, then d(w,) = d(⇢(w), ⇢()), for
any w 2 U , and w1d, f

 w2 iff ⇢(w1) d,f
⇢() ⇢(w2), for

all selection functions introduced so far. Thus, the preorders
d, f

 satisfy property oN and, by Theorem 2, the operators
represented by them satisfy postulate RN. It should be kept
in mind that neutrality is not guaranteed by the other pos-
tulates, but the way in which concrete operators are usually
defined (i.e., by appeal to neutral distances) indicates that
neutrality is part of our basic understanding of how a revi-
sion operator should behave. And, in general, there seems to
be no a priori reason for looking at non-neutral operators.
However, it turns out that such operators cannot be avoided
when we move to a fragment of propositional logic.

Revision of Horn theories
Discussions of stability and varying attitudes to initial be-
liefs notwithstanding, one might still question the rationale
behind giving up the KM axiom R2 (axioms R6�7 in the
present work): indeed, why fix something if it is not broken?
In response, we will use this section to argue that there are
situations where revision is warranted, but in which axioms
R6�7 cannot occur together.

Recall that a clause is called Horn if at most one of its
literals is positive, a Horn formula is a conjunction of Horn
clauses and a Horn knowledge base is a finite set of Horn for-
mulas. The set of all Horn formulas is LHorn. Horn formulas
are characterized semantically by closure under intersection,
i.e., if W is a set of interpretations then there exists a Horn
formula ' such that ['] = W iff Cl\(W) = W .

As mentioned in the introduction, there is good reason to
want to do revision on Horn knowledge bases, and to ask that
the result is still a Horn knowledge base. We thus consider
H-revision operators • : 2LHorn

cons
⇥ Prop ! LHorn, mapping

a Horn knowledge base and a propositional formula µ to
a Horn knowledge base • µ. The natural next step now
would be to adapt the regular propositional postulates to the
new setting of H-revision. Postulates R1�5 can be adapted
seamlessly, and we may denote the adapted postulates RH

1�5,
but consider what happens if we try to introduce a postulate
that is an adapted version of the standard KM postulate R2,
saying that • µ ⌘ ^ µ, if ^ µ is consistent. For ease of
reference, we split this postulate into two weaker postulates:
(RH

6) If ^ µ is consistent, then ^ µ |= • µ.
(RH

7) If ^ µ is consistent, then • µ |= ^ µ.
It turns out that postulate R

H

6 cannot be used in this context.
Example 12. Take a Horn knowledge base = {¬a _ ¬b}
and a µ = a $ ¬b. Clearly, ^ µ is satisfiable and, more-
over, ^ µ ⌘ µ. However, [^ µ] = {a, b}, which is
not equal to ClHorn([^ µ]) and thus does not represent any
Horn formula. If RH

6 were true, then with R
H

1 we would have
to conclude that [• µ] = [^ µ] = [µ], a contradiction.
Thus, it seems that H-revision operators cannot be axioma-
tized in a way that is analogous to propositional operators

satisfying axioms R1 and R6, or, equivalently: we cannot
model an agent who, when revising a Horn knowledge base
, always makes the models of equally plausible. This can
be stated as a corollary, following directly from Example 12.
Corollary 9. If an H-revision operator satisfies axiom R

H

1 ,
then it does not satisfy axiom R

H

6 .
Since we are not prepared to sacrifice axiom R1, we are left
with satisfying axiom R7. What about neutrality? It turns out
that this is also problematic for H-revision operators: since
H-revision by µ = a $ ¬b must return, by R

H

1,3, a con-
sistent result which implies µ and is a Horn formula, such
an operator must effectively choose exactly one of the in-
terpretations a and b. This leads to a clash with the adapted
neutrality postulate, which we may call RH

N
.

Proposition 10. If an H-revision operator satisfies axioms
R
H

1�3, then it does not satisfy axiom R
H

N
.

Proof. Take = a ^ b and µ = a $ ¬b. Suppose •
µ ⌘ a ^ ¬b, and take a renaming ⇢ such that ⇢(a) = b and
⇢(b) = a to get a contradiction.

The move to be explicit about neutrality and to split the stan-
dard KM postulate R2 into two distinct properties (postu-
lates R6,7), either of which can be turned off, finds additional
justification here: we can see now that properties taken for
granted in the propositional case break down when restrict-
ing the language, and a thorough analysis of what are ratio-
nal, or desirable, properties for revision must take this into
account.

Conclusion
We have looked at the classical revision axioms from the
point of view of what they assume about an agent’s attitude
towards its initial beliefs, and argued that this attitude is em-
bedded in a specific axiom (KM axiom R2), By varying this
axiom and calling attention to a commonly overlooked neu-
trality property, we were able to put forward and character-
ize a wide range of revision operators, and refine previously
entangled intuitions in the process. We also showed that this
level of analysis is needed when working in restricted frag-
ments of propositional logic, where the KM axiom R2 can-
not be satisfied and must therefore be broken down into two
separate components (axioms R6�7 in the current work).

Analysis of the new operators uncovered the principles
of indifference to already held beliefs (RIDF) and stability
(RSTB). Further work is needed to link these notions to the
other axioms, to map out the interplay between them, and to
provide them with semantic characterizations. Following the
line of reasoning initiated in the previous section, a natural
follow-up would be to consider the proposed postulates in
fragments of propositional logic and to look for characteri-
zations in terms of preorders on possible worlds. At the same
time, the more fine grained view on the types of attitudes
an agent can have towards its initial beliefs raises the ques-
tion of what these attitudes are good for, i.e., whether they
can be put to use in an area such as learning (Kelly 1998;
Baltag et al. 2011).

Acknowledgments
This work has been supported by the Austrian Science Fund
(FWF): P30168-N31, W1255-N23, Y698.

References
Carlos E. Alchourrón, Peter Gärdenfors, and David Makin-
son. On the Logic of Theory Change: Partial Meet Contrac-
tion and Revision Functions. J. Symb. Log., 50(2):510–530,
1985.
Kenneth J. Arrow. Rational choice functions and orderings.
Economica, 26(102):121–127, 1959.
Alexandru Baltag, Nina Gierasimczuk, and Sonja Smets.
Belief revision as a truth-tracking process. In Proc. of TARK
2011, pages 187–190, 2011.
Salem Benferhat, Sylvain Lagrue, and Odile Papini. Revi-
sion of Partially Ordered Information: Axiomatization, Se-
mantics and Iteration. In Proc. of IJCAI 2005, pages 376–
381, 2005.
Giacomo Bonanno. Rational choice and AGM belief revi-
sion. Artif. Intell., 173(12-13):1194–1203, 2009.
Nadia Creignou, Odile Papini, Reinhard Pichler, and Stefan
Woltran. Belief revision within fragments of propositional
logic. J. Comput. Syst. Sci., 80(2):427–449, 2014.
Mukesh Dalal. Investigations into a Theory of Knowledge
Base Revision. In Proc. of IJCAI 1988, pages 475–479,
1988.
Adnan Darwiche and Judea Pearl. On the Logic of Iterated
Belief Revision. Artif. Intell., 89(1-2):1–29, 1997.
James P. Delgrande and Pavlos Peppas. Belief revision in
Horn theories. Artif. Intell., 218:1–22, 2015.
James P. Delgrande, Pavlos Peppas, and Stefan Woltran.
General Belief Revision. J. ACM, 65(5):29:1–29:34, 2018.
Ulle Endriss. Judgment Aggregation. In Felix Brandt, Vin-
cent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Pro-
caccia, editors, Handbook of Computational Social Choice,
pages 399–426. Cambridge University Press, 2016.
Eduardo Fermé and Sven Ove Hansson. Belief Change: In-
troduction and Overview. Springer, 2018.
Richard Foley. Working Without a Net: A Study of Egocen-
tric Epistemology. Oxford University Press, 1993.
Simon French. Decision Theory: An Introduction to the
Mathematics of Rationality. Ellis Horwood Limited, 1988.
Peter Gärdenfors. Knowledge in Flux: Modelling the Dy-
namics of Epistemic States. The MIT Press, Cambridge,
MA, 1988.
Sven Ove Hansson. A Survey of non-Prioritized Belief Re-
vision. Erkenntnis, 50(2):413–427, 1999.
Adrian Haret, Andreas Pfandler, and Stefan Woltran. Be-
yond IC Postulates: Classification Criteria for Merging Op-
erators. In Proc. of ECAI 2016, pages 372–380, 2016.
Andreas Herzig and Omar Rifi. Propositional Belief Base
Update and Minimal Change. Artif. Intell., 115(1):107–138,
1999.

Hirofumi Katsuno and Alberto O. Mendelzon. On the Dif-
ference between Updating a Knowledge Base and Revising
It. In Proc. of KR 1991, pages 387–394, 1991.
Hirofumi Katsuno and Alberto O. Mendelzon. On the dif-
ference between updating a knowledge base and revising it.
In Peter Gärdenfors, editor, Belief Revision, pages 183–203.
Cambridge University Press, 1992.
Hirofumi Katsuno and Alberto O. Mendelzon. Propositional
Knowledge Base Revision and Minimal Change. Artif. In-
tell., 52(3):263–294, 1992.
Kevin T. Kelly. The Learning Power of Belief Revision. In
Proc. of TARK 1998, pages 111–124, 1998.
Sébastien Konieczny and Ramón Pino Pérez. Logic Based
Merging. J. Philosophical Logic, 40(2):239–270, 2011.
Sébastien Konieczny, Jérôme Lang, and Pierre Marquis.
DA2 merging operators. Artif. Intell., 157(1-2):49–79, 2004.
Hector J Levesque. Making believers out of computers. Ar-
tif. Intell., 30(1):81–108, 1986.
Pierre Marquis and Nicolas Schwind. Lost in translation:
Language independence in propositional logic - application
to belief change. Artif. Intell., 206:1–24, 2014.
Hervé Moulin. Axioms of cooperative decision making.
Number 15. Cambridge university press, 1991.
Pavlos Peppas and Mary-Anne Williams. Kinetic Consis-
tency and Relevance in Belief Revision. In Proc. of JELIA
2016, pages 401–414, 2016.
Jörg Rothe, editor. Economics and Computation. Springer,
2015.
Hans Rott. Change, choice and inference: A study of belief
revision and nonmonotonic reasoning. Number 42. Oxford
University Press, 2001.
Mark Ryan. Belief Revision and Ordered Theory Presen-
tations. In Logic, Action, and Information, pages 129–151,
1996.
Amartya K. Sen. Collective Choice and Social Welfare. NY:
North-Holland, 2nd edition, 1984.
Fernando R. Velázquez-Quesada. On Subtler Belief Revi-
sion Policies. In Proc. of LORI 2017, pages 314–329, 2017.
Zhiqiang Zhuang, Maurice Pagnucco, and Yan Zhang. Inter-
Definability of Horn Contraction and Horn Revision. J.
Philosophical Logic, 46(3):299–332, 2017.

Implementing Logic Programs with Ordered Disjunction Using asprin

Joohyung Lee and Zhun Yang
School of Computing, Informatics and Decision Systems Engineering

Arizona State University, Tempe, USA
{joolee, zyang90}@asu.edu

Abstract

Logic Programs with Ordered Disjunction (LPOD) is an ex-
tension of standard answer set programs to handle preference
using the high-level construct of ordered disjunction whereas
asprin is a recently proposed, general, flexible, and exten-
sible framework that provides low-level constructs for repre-
senting preference in answer set programming. We present an
encoding of LPOD in the language of asprin and the imple-
mentation LPOD2ASPRIN based on the encoding. Unlike the
known method that applies only to a fragment of LPOD via
the translation to Answer Set Optimization (ASO), our trans-
lation is general, direct, and simpler. It also leads to more
efficient computation of LPOD using asprin .1

1 Introduction
Logic Programs with Ordered Disjunction (LPOD) (Brewka
2002) is an extension of standard answer set programs to
handle preference using the high-level construct of ordered
disjunction. asprin (Brewka et al. 2015b) is a recently pro-
posed, general, flexible, and extensible framework for ex-
pressing and computing preferences in answer set program-
ming, and, as such, the preference specification in the lan-
guage of asprin is in a lower level than LPOD. Representing
high-level preference constructs in the language of asprin
could be verbose, and end-users may find it complicated
to use. To alleviate the problem, asprin provides a library
that implements several preference types, such as subset,
less(weight), and ASO. However, LPOD preference
types are not one of them.

In (Brewka, Niemelä, and Syrjänen 2004), LPOD is im-
plemented using SMODELS by interleaving the execution of
two ASP programs—a generator which produces candidate
answer sets and a tester which checks whether a given can-
didate answer set is most preferred or produces a more pre-
ferred answer set otherwise. In principle, the encodings in
(Brewka, Niemelä, and Syrjänen 2004) can be used with
asprin to implement LPOD. However, this method intro-
duces a large number of translation rules and auxiliary atoms

Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1A short version of this paper is to appear in the 16th Interna-
tional Conference on Principles of Knowledge Representation and
Reasoning KR 2018. This paper contains more details about the
system LPOD2ASPRIN and includes experimental results.

since it does not utilize the main component of asprin , pref-
erence statements.

In fact, it is known that using preference statements, some
fragment of LPOD can be succinctly represented in the lan-
guage of asprin via the translation into Answer Set Opti-
mization (ASO). Brewka, Niemelä, and Truszczynski (2003)
show how to turn LPOD under Pareto-preference into ASO
programs, and Brewka et al. (2015a) show that ASO pro-
grams can be represented in asprin . By combining the two
results, the fragment of LPOD can be represented in asprin .
It is also mentioned that LPOD under inclusion-preference
can be turned into “ranked” ASO (Brewka et al. 2015a) but
the representation appears quite complicated. Furthermore,
it is not known how the results apply to the other LPOD
preference criteria.

This paper presents a more direct and simpler transla-
tion from LPOD into the language of asprin , handling all
four preference criteria from (Brewka 2005) in a uniform
way. Based on the translation, we implemented the system
LPOD2ASPRIN, which translates LPOD programs into the
input language of asprin and internally invokes the asprin
system. Our experiments show that the system is more scal-
able than the other methods of computing LPOD.

The paper is organized as follows. Section 2 reviews
LPOD and asprin . Section 3 presents a translation that turns
LPOD into the language of asprin . Section 4 presents the
LPOD2ASPRIN system and Section 5 compares its perfor-
mance with other methods of computing LPOD. Section 6
discusses the related work. Selected proofs are given in the
appendix.

2 Review of LPOD and asprin
2.1 Review: LPOD
We review the definition of LPOD by (Brewka 2002). As in
that paper, for simplicity, we assume the underlying signa-
ture is propositional.

Syntax: A (propositional) LPOD ⇧ is ⇧reg [⇧od, where
its regular part ⇧reg consists of usual ASP rules

Head Body

and its ordered disjunction part ⇧od consists of LPOD rules
of the form

C
1 ⇥ · · ·⇥ C

n Body (1)

in which C
i are atoms, n is at least 2, and Body is a con-

junction of atoms possibly preceded by not.2 Rule (1) says
“when Body is true, if possible then C

1; if C1 is not pos-
sible then C

2; . . . ; if all of C1
, . . . , C

n�1 are not possible
then C

n.” It is not the case that none of C1
, . . . , C

n is true
when Body is true.

Semantics: For an LPOD rule (1), its i-th option (i =
1, . . . , n) is defined as

C
i Body, not C1

, . . . , not Ci�1
.

A split program of an LPOD ⇧ is obtained from ⇧ by
replacing each LPOD rule in ⇧od by one of its options. A
set S of atoms is a candidate answer set of ⇧ if it is an
answer set of a split program of ⇧.
Example 1 (From (Brewka 2002)) The following LPOD
⇧1,

a⇥ b not c
b⇥ c not d,

has four split programs:
a not c a not c
b not d c not d, not b

b not c, not a b not c, not a
b not d c not d, not b.

Each of them has the following answer sets respectively,
which are the candidate answer sets of ⇧1.

{a, b} {c}
{b} {b}, {c}.

A candidate answer set S of ⇧ is said to satisfy rule (1)
• to degree 1 if S does not satisfy Body, and
• to degree j (1 j n) if S satisfies Body and j =

min{k | Ck 2 S}.
The notion of satisfaction degrees are the basis of defining

a preference relation on the candidate answer sets of ⇧. For
a candidate answer set S, let Si(⇧) denote the set of rules in
⇧od satisfied by S to degree i. For candidate answer sets S1

and S2 of ⇧, (Brewka 2005) introduces the following four
preference criteria.
1. Cardinality-Preferred: S1 is cardinality-preferred to

S2 (S1 >
c
S2) if there is a positive integer i such that

|Si
1(⇧)| > |Si

2(⇧)|, and |Sj
1(⇧)| = |Sj

2(⇧)| for all j < i.
2. Inclusion-Preferred: S1 is inclusion-preferred to S2

(S1 >
i

S2) if there is a positive integer i such that
S
i
2(⇧) ⇢ S

i
1(⇧), and S

j
1(⇧) = S

j
2(⇧) for all j < i.

3. Pareto-Preferred: S1 is Pareto-preferred to S2 (S1 >
p

S2) if there is a rule that is satisfied to a lower degree in S1

than in S2, and there is no rule that is satisfied to a lower
degree in S2 than in S1.
2In (Brewka 2002), a usual ASP rule is viewed as a special case

of a rule with ordered disjunction when n = 1 but in this paper, we
distinguish them. This simplifies the presentation of the translation
and also allows us to consider LPOD programs that are more gen-
eral than the original definition by allowing modern ASP constructs
such as aggregates.

4. Penalty-Sum-Preferred: S1 is penalty-sum-preferred to
S2 (S1 >

ps
S2) if the sum of the satisfaction degrees of

all rules is smaller in S1 than in S2.
A candidate answer set S of ⇧ is a k-preferred (k 2

{c, i, p, ps}) answer set if there is no candidate answer set
S
0 of ⇧ such that S0

>
k
S.

When ⇧od contains m LPOD rules, the satisfaction de-
gree list of a candidate answer set S of ⇧ is (d1, . . . , dm)
where di is the degree to which S satisfies rule i in ⇧od.

Example 1 (Continued) Recall that ⇧1 has three candidate
answer sets: {a, b}, {b}, and {c}. Their satisfaction degree
lists are (1,1), (2,1), and (1,2), respectively. One can check
that {a, b} is the only preferred answer set according to any
of the four preference criteria.

The following example shows differences in preferred an-
swer sets depending on the different preference criteria.
Example 2 To illustrate the difference among the four pref-
erence criteria, consider the following LPOD ⇧2 about pick-
ing a hotel near the Grand Canyon. hotel(1) is a 2 star hotel
but is close to the Grand Canyon, hotel(2) is a 3 star hotel
and the distance is medium, and hotel(3) is a 4 star hotel
but is too far.

close⇥med⇥ far ⇥ tooFar

star4⇥ star3⇥ star2

1{hotel(X) : X = 1..3}1
? hotel(1), not close
? hotel(1), not star2
? hotel(2), not med

? hotel(2), not star3
? hotel(3), not tooFar

? hotel(3), not star4

⇧2 has 4⇥3 split programs but only the following three pro-
grams are consistent (The regular part of ⇧2 is not listed).

close

star2 not star4, not star3

med not close
star3 not star4

tooFar not close, not med, not far
star4

The candidate answer sets of ⇧2 and their satisfaction de-
gree lists are

S1 = {hotel(1), close, star2, . . . }, (1, 3)
S2 = {hotel(2),med, star3, . . . }, (2, 2)
S3 = {hotel(3), tooFar, star4, . . . }, (4, 1)

By definition, the cardinality-preferred answer set of ⇧2 is
S1, the inclusion-preferred answer sets are S1 and S3, the
Pareto-preferred answer sets are S1, S2 and S3, while the
penalty-sum-preferred answer sets are S1 and S2.

2.2 Review: asprin
asprin computes the most preferred answer sets of an ASP
program P according to a preference specification F̂s by re-
peated calls to CLINGO as in Figure 1. First, an arbitrary

Figure 1: asprin Framework

answer set of P is generated as X 0. Second, asprin tries to
find an answer set X of P that is better than (i.e., preferred
to) X 0 by running CLINGO on P [Fs[Ets[H 0

X0[RA[C,
each of which is defined below. If CLINGO finds an answer
set, which encodes the answer set X of P that is “better”
than X

0, asprin replaces X
0 by X , and repeats the second

step until CLINGO finds no answer sets, at which point X 0 is
determined to be a most preferred answer set.

1. P is the base program, which consists of usual ASP rules.
The answer sets of P are the “candidate answer sets” to
apply a preference criterion.

2. F̂s is the preference specification consisting of a single
optimization directive of the form

#optimize(s) (2)

and a single 3 preference statement of the form

#preference(s, t){e1; . . . ; en} (3)

where n � 0; and s is the name of the preference state-
ment; and t is its type (i.e., preference criterion). Each ei

is a preference element of the form

�1 >> · · · >> �m

where m � 1 and each �i is a literal (an atom possi-
bly preceded by not). 4 Intuitively, each index 1, . . . ,m
gives the rank of the corresponding literal. The preference
statement (3) declares a preference relation named s: each
preference element in {e1, . . . , en} gives a ranking of a
set of literals while preference type t determines in which
case one candidate answer set is better than another given
the rankings. The optimization directive (2) tells asprin
to restrict its reasoning mode to the preference relation
declared by the preference statement whose name is s.

3. Fs is obtained from the preference specification F̂s by
turning the optimization directive (2) into an ASP fact

optimize(s)

3asprin allows multiple preference statements in the input but
for simplicity of the presentation we assume a single preference
statement.

4In general, asprin allows for a more general syntax of prefer-
ence specification and preference element. For the purpose of this
paper, it is sufficient to consider this simple fragment.

and turning the preference statement (3) into an ASP fact

preference(s, t)

along with

preference(s, i, j, for(t�j), ())

for each j-th literal �j in the i-th preference element ei
in (3). The term t�j is defined as a if the literal �j is an
atom a, and is neg(a) if the literal �j is “not a”. 5

4. Ets is the preference encoding for ts, where ts is the type
of the preference statement named s. It defines a reserved
predicate better(s), which is true iff there exists a candi-
date answer set X that is preferred to X

0 according to
preference type ts and the facts in Fs. In Section 3.3,
we show four preference encodings Elpod(c), Elpod(i),
Elpod(p), and Elpod(ps) for each of the four preference
types (i.e., criteria) for LPOD.

5. H
0
X0 is the set of ASP facts

{holds0(a) | a 2 X
0}

which reifies the atoms in X
0 in the form of holds0(·).6

6. RA is the set of ASP rules

{holds(a) a | a is an atom in P}

which reifies the atoms in any candidate answer set X in
the form of holds(·).

7. C is a set of (domain-independent) ASP rules as follows.7

? not better(S), optimize(S). (4)
holds(neg(A)) not holds(A),

preference(, , , for(neg(A)),). (5)
holds

0(neg(A)) not holds0(A),

preference(, , , for(neg(A)),). (6)

Rule (4) instructs the asprin system to find an answer
set X that is better than X

0 according to the preference
statement S. Rule (5) is about X , which is reified in the
form of holds(·): for the literal of the form “not A” in the
preference statement (3), it says holds(neg(A)) is true if
holds(A) is false in the reified X (i.e., X 6|= A). Simi-
larly, rule (6) is about X 0, which is reified in the form of
holds

0(·).

Given a program P and a preference specification F̂s, we
say an answer set X of P is a preferred answer set of P

w.r.t. F̂s if P [Fs [Et [H 0
X [RA [C has no answer set,

where t is the type of the preference statement s declared
in F̂s.

5The last term is empty because we consider �j as a non-
weighted formula.

6Note that this is based on the definition of H 0
X , which is the

set of ASP facts {holds0(a) | a 2 X}.
7In general, C contains more rules such as the rule to define

holds(or(A,B)). They are omitted because they are not related to
our translation.

3 Representing LPOD in asprin
Let ⇧ be an LPOD where ⇧od consists of m propositional
rules as follows.

1 : C
1
1 ⇥ · · ·⇥ C

n1
1 Body1

. . . (7)

m : C
1
m ⇥ · · ·⇥ C

nm
m Bodym

where 1, . . . ,m are rule indices; ni � 2 for 1 i m.
In the following subsections, we present the component

programs of asprin that encode LPOD ⇧, namely, P , F̂s,
Ets . The other components, Fs, H 0

X , RA and C are gener-
ated as described above.

3.1 Base Program P

For the LPOD program ⇧ = ⇧reg [⇧od, the base program
P contains all rules in ⇧reg and, for each LPOD rule

C
1
i ⇥ · · ·⇥ C

ni
i Bodyi

in ⇧od, P contains

bodyi Bodyi (8)

{C1
i } bodyi (9)

. . .

{Cni�1
i } bodyi, not C1

i , . . . , not Cni�2
i (10)

C
ni
i bodyi, not C1

i , . . . , not Cni�1
i (11)

Rule (8) defines the case when the body of rule i is true.
Rules (9)–(10) say that if the body of rule i is true and each
C

j
i is false (j 2 {1, . . . , k � 1}), then C

k
i is possibly true.

Rule (11) says that if the body of rule i is true and C
j
i is false

for all j 2 {1, . . . , ni � 1}, then C
ni
i must be true.

The above method of generating candidate answer sets us-
ing choice rules is from (Cabalar 2011). It is not difficult to
check that the answer sets of this program P are the candi-
date answer sets of LPOD ⇧ (ignoring bodyi atoms).

Proposition 1 For any LPOD ⇧ and any set X of atoms
in ⇧, X is a candidate answer set of ⇧ iff X [{bodyi |
X satisfies the body of rule i in ⇧od} is an answer set of P .

Example 2 (Continued) For LPOD ⇧2, the P -component
of the asprin program is as follows.

body_1.

{close} :- body_1.

{med} :- body_1, not close.

{far} :- body_1, not close, not med.

tooFar :- body_1, not close, not med, not far.

body_2.

{star4} :- body_2.

{star3} :- body_2, not star4.

star2 :- body_2, not star4, not star3.

1{hotel(X): X=1..3}1.

:- hotel(1), not close. :- hotel(1), not star2.

:- hotel(2), not med. :- hotel(2), not star3.

:- hotel(3), not tooFar. :- hotel(3), not star4.

The answer sets of the P -component are

{hotel(1), close, star2, body1, body2}
{hotel(2), med, star3, body1, body2}
{hotel(3), tooFar, star4, body1, body2}

which are exactly the unions of the candidate answer sets of
⇧ and {body1, body2}.

3.2 Preference Specification F̂s

F̂s contains an optimization directive

#optimize(s)

and a preference statement

#preference(s, lpod(s)) {
not body1 >> C

1
1 >> · · · >> C

n1
1 ;

. . . (12)

not bodym >> C
1
m >> · · · >> C

nm
m

}
where s 2 {c, i, p, ps} denotes one of the four preference
criteria for LPOD, and each line of (12) is associated with
each LPOD rule. Intuitively, to check the satisfaction degree
of an LPOD rule i, we check the truth value of the literals
in the order specified in the i-th preference element. We first
check whether not bodyi is true. If not bodyi is true, i.e., the
body of rule i is false, the satisfaction degree must be 1 and
we do not have to check further; and if it is not the case,
check whether C1

i is true, and so on.

Example 2 (Continued) For LPOD ⇧2 which contains
LPOD rules

close⇥med⇥ far ⇥ tooFar

star4⇥ star3⇥ star2

to find its cardinality-preferred answer sets, we set the pref-
erence criterion s to c, and let F̂s be the following.

#optimize(c).

#preference(c, lpod(c)) {

not body_1 >> close >> med >> far >> tooFar ;

not body_2 >> star4 >> star3 >> star2

}.

asprin internally turns F̂s into Fs as follows.

optimize(c).

preference(c, lpod(c)).

preference(c, 1, 1, for(neg(body_1)), ()).

preference(c, 1, 2, for(close), ()).

preference(c, 1, 3, for(med), ()).

preference(c, 1, 4, for(far), ()).

preference(c, 1, 5, for(tooFar), ()).

preference(c, 2, 1, for(neg(body_2)), ()).

preference(c, 2, 2, for(star4), ()).

preference(c, 2, 3, for(star3), ()).

preference(c, 2, 4, for(star2), ()).

The facts optimize(c) and preference(c, lpod(c)) as-
sert that we optimize according to the preference state-
ment c of type lpod(c) (inclusion preference). The fact
preference(c, 2, 1, for(neg(body 2)), ()) asserts that the
first literal of the second preference element of the prefer-
ence statement c is “not body 2”.

3.3 Preference Encoding Ets

The aim of Ets is to find an answer set X (reified in the form
of holds(·)) that is better than (i.e., preferred to) the current
answer set X 0 (reified in the form of holds0(·)) with respect
to the preference type ts.

We introduce the preference encodings Ets for each ts 2
{lpod(c), lpod(i), lpod(p), lpod(ps)}. Each Ets contains
the common rules Deg as defined below.

Degree The aim of Deg is to find the satisfaction degree
to which each LPOD rule R is satisfied by X or X 0. 8

Deg consists of the following two rules.

degree(R,D) optimize(S), preference(S, lpod()),

preference(S,R, I, ,), D = #max{1; I � 1},
I = #min{J : holds(A), preference(S,R, J, for(A),)}.

(13)

degree
0(R,D) optimize(S), preference(S, lpod()),

preference(S,R, I, ,), D = #max{1; I � 1},
I = #min{J : holds0(A), preference(S,R, J, for(A),)}.

(14)
Rule (13) records the degree D to which rule R is satisfied
by X (X is reified in the form of holds(·)). It asserts that
if we want to optimize according to preference statement S
whose type is one of the four lpod(·) types, then we need
to calculate the satisfaction degree D for each rule R: D is
the maximum value of 1 and I � 1 where I is the index of
the first literal in the preference element R that is true in
X . Rule (14) is similar to rule (13) except that it finds the
satisfaction degree D of rule R for X 0.

Cardinality-Preferred Elpod(c) contains Deg and the fol-
lowing two rules:

worse2degree(S,D) optimize(S), preference(S, lpod(c)),

degree
0(, D),

#sum{ 1, R : degree(R,D);

� 1, R : degree0(R,D)} < 0. (15)
better(S) optimize(S), preference(S, lpod(c)),

degree(, D),

#sum{ 1, R : degree(R,D);

� 1, R : degree0(R,D)} > 0,

not worse2degree(S, J) : J = 1..D � 1. (16)

Rule (15) defines the case when X is worse than, i.e., less
preferred to, X 0 at degree D: X satisfies less LPOD rules
to degree D than X

0. In this case, there must be at least
8Note that each preference element denotes an LPOD rule. We

use symbol R to denote the index of the preference element in pred-
icate “preference(S,R, I, ,)” because R is also the index of the
denoted LPOD rule.

one LPOD rule that is satisfied to degree D by X
0, which

is guaranteed by degree
0(, D). Rule (16) says that X is

better than X
0 according to the preference type lpod(c) if

there exists a degree D such that X is preferred to X
0 at

degree D (i.e., X satisfies more rules to degree D than X
0)

and X is not worse than X
0 at all lower degrees. Note that

“not worse2degree(S, J) : J = 1..D � 1” is a condi-
tional literal, and is equivalent to the conjunction of literals
“not worse2degree(S, J)” for all J 2 {1, . . . , D � 1}.
Inclusion-Preferred Elpod(i) contains Deg and two rules:
prf2degree(S,D) optimize(S), preference(S, lpod(i)),

degree(, D),

#count{J : degree(J,D), not degree0(J,D)} > 0,

degree(J,D) : degree0(J,D). (17)
better(S) preference(S, lpod(i)),

prf2degree(S,D),

degree(R, J) : degree0(R, J), J < D. (18)
Rule (17) defines the case when X is preferred to X

0 at de-
gree D: (i) X satisfies at least one rule to degree D; (ii) there
is a rule J that is satisfied by X , but not by X

0, to degree D;
and (iii) all rules J that are satisfied by X

0 to degree D are
also satisfied by X to the same degree. Rule (18) says that
X is better than X

0 according to preference type lpod(i) if
there exists a degree D such that X is preferred to X

0 at
degree D, and any rule R that is satisfied by X

0 to a lower
degree than D should also be satisfied by X to the same
degree.
Pareto-Preferred Elpod(p) contains Deg and two rules:

equ(S) optimize(S), preference(S, lpod(p)),

D1 = D2 : degree(R,D1), degree0(R,D2). (19)
better(S) optimize(S), preference(S, lpod(p)),

not equ(S),

D1 D2 : degree(R,D1), degree0(R,D2). (20)
Rule (19) defines that X and X

0 are “equivalent” if they
satisfy each LPOD rule to the same degree. Rule (20) says
that X is better than X

0 according to preference type lpod(p)
if X is not “equivalent” to X

0, and X satisfies each LPOD
rule R to a degree that is the same or lower than the degree
to which X

0 satisfies R.
Penalty-Sum-Preferred Elpod(ps) contains Deg and one
rule:

better(S) optimize(S), preference(S, lpod(ps)),

#sum{D,R : degree(R,D);

�D,R : degree0(R,D)} < 0. (21)
Rule (21) says that X is better than X

0 according to pref-
erence type lpod(ps) if the sum of the degrees to which the
LPOD rules are satisfied by X is lower than the sum of the
degrees to which the LPOD rules are satisfied by X

0.
Theorem 1 For any LPOD ⇧, X is an s-preferred answer
set (s 2 {c, i, p, ps}) of ⇧ in the sense of LPOD iff X [
{bodyi | X satisfies the body of rule i in ⇧od} is a preferred
answer set of P w.r.t. F̂s in the sense of asprin , where P and
F̂s are obtained from ⇧ as above.

4 LPOD2ASPRIN System
We implement system LPOD2ASPRIN as in Figure 2. The
system first translates an LPOD program ⇧ into a base pro-
gram P and a preference specification F̂s in the language
of asprin as described in Sections 3.1 and 3.2, which are
fed into the asprin system along with other component pro-
grams. We put the encodings Elpod(c), Elpod(i), Elpod(p),
and Elpod(ps) in the asprin library. The encodings are ex-
actly the same as those in Section 3.3 except that we elimi-
nate the use of #min and #max by replacing rule (13) (and
rule (14) accordingly) with

degree(R,1) :- preference(S, lpod(_)),

preference(S,R,1,for(A),_), holds(A).

degree(R,D-1) :- preference(S, lpod(_)),

preference(S,R,D,for(A),_), holds(A), D>1,

not holds(B): preference(S,R,J,for(B),_), 0<J, J<D.

The reason for this change is because our experiments show
significant speed-up with the alternative encoding.

Finally, an s-preferred answer set of ⇧ is obtained from
the output of asprin by removing the auxiliary atoms bodyi.

Figure 2: LPOD2ASPRIN System Overview

The LPOD2ASPRIN system homepage is

http : //reasoning.eas.asu.edu/lpod2asprin/

which contains the source code, the tutorial, examples and
some experimental results.

To find an s-preferred (s 2 {c, i, p, ps}) answer set of an
LPOD ⇧, one may execute the command

python lpod2asprin.py � i input.txt � type s

where
• input.txt stores the LPOD ⇧ written in the input for-

mat of CLINGO except that the symbol >> is used to
denote the ordered disjunction symbol; and

• s is one of the preference criteria in {c, i, p, ps}.
Example 2 (Continued) In the language of LPOD2ASPRIN,
⇧2 is written as

dom(1..3).

1{hotel(X): dom(X)}1.

:- hotel(1), not close.

:- hotel(1), not star2.

:- hotel(2), not med.

:- hotel(2), not star3.

:- hotel(3), not tooFar.

:- hotel(3), not star4.

close >> med >> far >> tooFar.

star4 >> star3 >> star2.

If we save this program in file hotel.txt and want to find the
i-preferred answer set of ⇧2, we can execute

python lpod2asprin.py -i hotel.txt -type i

which outputs

Input LPOD program: hotel.txt

Type of LPOD preference criterion: i

asprin version 3.0.2

Reading from /asprin-3.0.2/asprin/lpod.lp ...

Solving...

Answer: 1

dom(1) dom(2) dom(3) hotel(3) tooFar star4

OPTIMUM FOUND

Answer: 2

dom(1) dom(2) dom(3) hotel(1) close star2

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimal : 2

The output says that asprin finds two i-preferred
answer sets of ⇧2: {hotel(1), close, star2, . . . } and
{hotel(3), tooFar, star4, . . . }, which is as expected.

5 Experiments
Since there is no benchmarks available in the existing lit-
erature for LPOD, we designed two benchmarks and com-
pare the run-time of LPOD2ASPRIN with two other methods:
PSMODELS from (Brewka, Niemelä, and Syrjänen 2004) and
using asprin via reduction to ASO (Brewka et al. 2015a).
The latter method does not have a dedicated solver for
LPOD, so we manually translate the LPOD programs into
ASO programs and then into the input language of asprin .
We only compare w.r.t. Pareto preference because it is not
known how the asprin via ASO method can be used to rep-
resent cardinality preference and penalty-sum preference,
and the representation for inclusion preference appears to
be complicated.

5.1 Benchmark: abc
This benchmark is used to test how the system
LPOD2ASPRIN performs with an increasing number of
LPOD rules.

The abc example, as shown below, contains n LPOD
rules, each of which contains two atoms in its head. The
program generates one or two a(i) and one or two c(i)
(i 2 {1, . . . , n}), and restricts that a(i) is true iff b(i) is
false for any i 2 {1, . . . , n}. There is also a preference of
a(i) over b(i) if c(i) is true.

n PSMODELS asprin via ASO LPOD2ASPRIN
(2004) (2015a)

10 1.244s 3.977s 3.432s
15 10.088s 14.282s 11.374s
20 47.689s 45.860s 34.677s
25 2m47.842s 2m6.501s 1m32.202s
30 8m12.839s 5m1.220s 3m40.439s
35 18m26.952s 10m39.620s 7m42.605s
40 42m6.830s 20m25.556s 14m41.012s

Table 1: Experiment on the abc Example

dom(1..n).

1{a(X): dom(X)}2. 1{c(X): dom(X)}2.

b(X) :- dom(X), not a(X). :- a(X), b(X).

a(X) >> b(X) :- c(X).

Table 1 shows the run-time comparison of finding Pareto-
preferred answer sets of this program with different values
of n. We compare LPOD2ASPRIN with the implementation
from (Brewka, Niemelä, and Syrjänen 2004) and the method
via ASO reduction from (Brewka et al. 2015a) as we men-
tioned earlier.

In comparison, asprin using the reduction via ASO is
more scalable than PSMODELS. However, since the seman-
tics of ASO programs is analogous to the semantics of
LPOD under Pareto preference, the reduction of LPOD into
ASO programs is only straightforward under this preference.
On the other hand, the LPOD2ASPRIN system works for any
of the four preference criteria and scales better than the other
methods.

5.2 Benchmark: n-Hotel
The n-Hotel example is about choosing a hotel from n can-
didate hotels based on the preferences over the prices, dis-
tances, and ratings of services. The input program contains
three LPOD rules, each of which has n atoms in the head.
The program is automatically generated with a parameter n,
denoting the number of candidate hotels. Below is a pro-
gram generated when n = 4 with random orders of price,
distance, and service.

1{hotel(X): dom(X)}1.

:- hotel(X), price(Y), X!=Y, dom(X), dom(Y).

:- hotel(X), distance(Y), X!=Y, dom(X), dom(Y).

:- hotel(X), service(Y), X!=Y, dom(X), dom(Y).

dom(1..4).

price(3) >> price(4) >> price(1) >> price(2).

distance(4) >> distance(3) >> distance(1) >>

distance(2).

service(2) >> service(1) >> service(3) >> service(4).

The run-time of finding the Pareto-preferred answer sets
of this program for different values of n is shown in Table 2.

n PSMODELS (2004) LPOD2ASPRIN
10 0.060s 0.438s
50 2.485s 1.961s
60 4.825s 1.788s
70 Terminate with No Result 3.147s
100 Terminate with No Result 6.730s
200 Terminate with No Result 47.868s
300 Terminate with No Result 1m45.006s

Table 2: Experiment on the n-Hotel Example

9

As we see, the LPOD2ASPRIN system is much more scal-
able than the original LPOD implementation. Besides, the
original LPOD implementation cannot find any answer set
if the number (n) of atoms in the head of an LPOD rule ex-
ceeds 70 whereas our system can find the preferred answer
set even when n = 800 (800 is not an upper bound for our
system, but is the biggest number we have tested).

In summary, the experimental results on the benchmarks
show that the LPOD2ASPRIN system is more scalable than
PSMODELS (Brewka, Niemelä, and Syrjänen 2004). In com-
parison with the method via ASO reduction, the method is
more general to cover all preference types, and the encoding
is more compact leading to more scalable computation.

6 Related Work and Conclusion
We already mentioned the method of (Brewka et al. 2015a)
works under the Pareto preference. However, the reduction
under inclusion preference requires a translation from LPOD
to “ranked” ASO programs, which further requires a more
complex reduction to asprin . Besides, the reductions from
LPOD to ASO programs under cardinality and penalty-sum
preferences were not shown. In comparison, our method re-
duces LPOD directly to asprin , which yields a simpler and
uniform method that applies to all preference criteria for
LPOD.

Asuncion et al. (2014) present a first-order semantics of
logic programs with ordered disjunction by a translation into
second-order logic.

Lee and Yang (2018) show a reduction from LPOD to an-
swer set programs, where the semantics of each preference
type is also represented by standard ASP rules. Their reduc-
tion is one-pass: the preferred answer sets are computed by
calling an answer set solver one time by generating all can-
didate answer sets to which preference criteria are applied.
The computation is not as scalable as LPOD2ASPRIN which
makes iterative calls to CLINGO.

asprin has a library of built-in preference types, but
LPOD preference is not one of them. Our preference en-
codings may be included in the asprin library to benefit the
end-users.

Acknowledgments: We are grateful to the anonymous ref-
erees for their useful comments. This work was partially

9We did not test the asprin via ASO reduction because we did
not implement a compiler for this method while a manual transla-
tion takes too much efforts.

supported by the National Science Foundation under Grants
IIS-1526301 and IIS-1815337.

References
Asuncion, V.; Zhang, Y.; and Zhang, H. 2014. Logic pro-
grams with ordered disjunction: first-order semantics and
expressiveness. In Proceedings of the Fourteenth Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning, 2–11. AAAI Press.
Brewka, G.; Delgrande, J.; Romero, J.; and Schaub, T.
2015a. Implementing preferences with asprin. In Inter-
national Conference on Logic Programming and Nonmono-
tonic Reasoning, 158–172. Springer.
Brewka, G.; Delgrande, J. P.; Romero, J.; and Schaub, T.
2015b. asprin: Customizing answer set preferences without
a headache. In AAAI, 1467–1474.
Brewka, G.; Niemelä, I.; and Syrjänen, T. 2004. Logic pro-
grams with ordered disjunction. Computational Intelligence
20(2):335–357.
Brewka, G.; Niemelä, I.; and Truszczynski, M. 2003. An-
swer set optimization. In IJCAI, volume 3, 867–872.
Brewka, G. 2002. Logic programming with ordered disjunc-
tion. In AAAI/IAAI, 100–105.
Brewka, G. 2005. Preferences in answer set programming.
In CAEPIA, volume 4177, 1–10. Springer.
Cabalar, P. 2011. A logical characterisation of ordered dis-
junction. AI Communications 24(2):165–175.
Lee, J., and Yang, Z. 2018. Translating LPOD and CR-
Prolog2 into standard answer set programs. Journal of The-
ory and Practice of Logic Programming (TPLP), 18(3–4):
589–606.

Appendix: Proof of Theorem 1
Let X be a set of atoms and let � be a signature. By X|� ,

we denote the projection of X onto �.

Lemma 1 Let ⇧ be an answer set program, let X be an
answer set of ⇧, and let constraint be a rule of the form
“? Body”. If X ✏ constraint, X is an answer set of
⇧ [{constraint}.

Lemma 2 Let ⇧ be an answer set program of signature �.
Let X be a set of atoms in �, let Body be a conjunction of
atoms (possibly preceded by not) in �, and let a be an atom
not in �. X is an answer set of ⇧ iff X [{a | X ✏ Body}
is an answer set of ⇧0 [{a Body}, where ⇧0 is obtained
from ⇧ by replacing the occurrence of Body in the body of
some (i.e., from zero to all) rules in ⇧ with a.

Theorem 1 For any LPOD ⇧ and any set X of

atoms in ⇧, X is an s-preferred answer set (s 2
{c, i, p, ps}) of ⇧ according to LPOD iff X [{bodyi |
X satisfies the body of rule i in ⇧od} is an s-preferred an-

swer set of P according to asprin , where P is the base

program obtained from ⇧. In other words, (let �(X) be

X [{bodyi | X satisfies the body of rule i in ⇧od})

(a) X is a candidate answer set of ⇧ and

(b) there is no candidate answer set X
0
of ⇧ that is s-preferred

to X according to LPOD

iff

(c) �(X) is an answer set of P and

(d) P [Fs [Ets [H
0
�(X) [RA [C has no answer set.

Proof. (!) Let ⇧ be an LPOD of signature � with m

LPOD rules. Let X be a candidate answer set of ⇧ such that
there is no candidate answer set X 0 of ⇧ that is s-preferred to
X according to LPOD. By Proposition 1, �(X) is an answer
set of P .

Assume for the sake of contradiction that P [Fs [Ets [
H

0
�(X)[RA[C has an answer set S. Let �0 be �[{bodyi |

i 2 {1, . . . ,m}}. Note that �0 is the signature of P . By the
splitting theorem, S|�0 is an answer set of P . By Proposi-
tion 1, S|� is a candidate answer set of ⇧. We will prove that
S|� is s-preferred to X , which contradicts with bullet (b).

Let a be an atom in �. Here we list some facts that will be
used in the proof.

1. By RA, S ✏ holds(a) iff S|�0 ✏ a. Since a is an atom in
�, S ✏ holds(a) iff S|� ✏ a.

2. By H
0
�(X), S ✏ holds

0(a) iff �(X) ✏ a. Since a is an
atom in �, S ✏ holds

0(a) iff X ✏ a.
3. By Fs, S satisfies optimize(s) and S satisfies

preference(s, lpod(s)).
4. By Fs, S satisfies preference(s, r, j, for(a), ()) iff the

(j � 1)-th atom (j � 2) in the head of LPOD rule r

is a; S satisfies preference(s, r, 1, for(neg(bodyr)), ())
iff ⇧ contains an LPOD rule r.

5. By rules (5) and (6) in C, for i 2 {1, . . . ,m}, S satisfies
holds(neg(bodyi)) iff S does not satisfy holds(bodyi);
S satisfies holds

0(neg(bodyi)) iff S does not satisfy
holds

0(bodyi).
6. By rule (13) in Ets , S satisfies degree(R,D) iff S|� sat-

isfies LPOD rule R to degree D. This is because for any
LPOD rule r, in case S ✏ degree(r, 1),
• S ✏ degree(r, 1)

iff (by rule (13), bullet 3, and bullet 4)
• in the case when I = 1:
– S ✏ preference(s, r, 1, for(neg(bodyr)),), and
– S ✏ holds(neg(bodyr))
• or in the case when I = 2: there exists an atom a such

that
– S ✏ preference(s, r, 2, for(a)),), and
– S ✏ holds(a), and
– S 6✏ holds(neg(bodyr))

iff (by bullets 4 and 5)
• in the case when I = 1:
– ⇧ contains an LPOD rule r, and
– S does not satisfy holds(bodyr)
• or in the case when I = 2: there exists an atom a such

that
– the 1-st atom in the head of LPOD rule r is a, and

– S ✏ holds(a), and
– S ✏ holds(bodyr)

iff (by bullet 1 and rule (8))
• in the case when I = 1:
– S|� does not satisfy the body of LPOD rule r

• or in the case when I = 2:
– S|� satisfies the first atom in the head of LPOD rule
r, and

– S|� satisfies the body of LPOD rule r

iff (by definition)
• S|� satisfies LPOD rule r to degree 1;

and in case S ✏ degree(r, d) where d is greater than 1,
• S ✏ degree(r, d), d � 2

iff (by rule (13), bullet 3, and bullet 4)
• there exists an atom a such that
– S ✏ preference(s, r, d+ 1, for(a)),), and
– S ✏ holds(a), and
• S 6✏ holds(b) for any b and d

0 such that S ✏
preference(s, r, d0 + 1, for(b)),) and d

0
< d

iff (by bullet 4)
• there exists an atom a such that
– the d-th atom in the head of LPOD rule r is a, and
– S ✏ holds(a), and
• S 6✏ holds(b) for any d

0-th atom b in the head of LPOD
rule r where d

0
< d

iff (by bullet 1)
• S|� satisfies the d-th atom in the head of LPOD rule r,

and
• S|� does not satisfy the d0-th atom in the head of LPOD

rule r for any d
0
< d

iff (by definition)
• S|� satisfies LPOD rule r to degree d.

7. Similarly, by rule (14) in Ets , S satisfies degree
0(R,D)

iff X satisfies LPOD rule R to degree D. The proof is
analogous to that in bullet 6.

Now, we will prove that S|� is s-preferred to X for
s 2 {i, p, ps}. The proof for the case when s is c (cardinally
preference) is not shown due to the limit of space.

• Inclusion-Preferred By bullet 3, S satisfies
optimize(i) and preference(i, lpod(i)). Since S

satisfies rule (4), S must satisfy better(i). Besides,
– S ✏ better(i)

iff (by rule (18))
– there exists an integer d such that
⇤ S ✏ prf2degree(i, d), and
⇤ for any LPOD rule r 2 {1, . . . ,m} and any degree
j such that j < d, if S ✏ degree

0(r, j), then S ✏
degree(r, j)

iff (by rule (17))
– there exists an integer d such that
⇤ there exists at least one LPOD rule j such that

S ✏ degree(j, d) and S 6✏ degree
0(j, d), and for

any LPOD rule j, if S ✏ degree
0(j, d), then S ✏

degree(j, d), and
⇤ for any LPOD rule r 2 {1, . . . ,m} and any degree

j such that j < d, if S ✏ degree
0(r, j), then S ✏

degree(r, j)

iff (by bullet 6 and bullet 7)
– there exists an integer d such that
⇤ the set of LPOD rules that are satisfied to degree d by

X is a proper subset of the set of LPOD rules that are
satisfied to degree d by S|� , and

⇤ for any degree j such that j < d, the set of LPOD
rules that are satisfied to degree j by X is a subset of
the set of LPOD rules that are satisfied to degree j by
S|�

iff (by definition)
– S|� is i-preferred to X according to LPOD.
So S|� is i-preferred to X according to LPOD. Contradic-
tion.

• Pareto-Preferred Since S satisfies rule (4), and satisfies
optimize(p) (in Fs), S must satisfy better(p). Besides,
– S ✏ better(p)

iff (by rule (20))
– S 6✏ equ(p), and
– for any LPOD rule r 2 {1, . . . ,m}, if S ✏
degree(r, d1) and S ✏ degree

0(r, d2) for any d1 and
d2, then d1 d2

iff (by rule (19))
– it is not the case that for all LPOD rule r 2 {1, . . . ,m},
S ✏ degree(r, d) iff S ✏ degree

0(r, d) for any d, and
– for any LPOD rule r 2 {1, . . . ,m}, if S ✏
degree(r, d1) and S ✏ degree

0(r, d2) for any d1 and
d2, then d1 d2

iff (by bullet 6)
– there is an LPOD rule that is satisfied to a lower degree

in S|� than in X , and there is no rule that is satisfied to
a lower degree in �(X) than in S|�

iff (by definition)
– S|� is p-preferred to X according to LPOD.
So S|� is p-preferred to X according to LPOD. Contra-
diction.

• Penalty-Sum-Preferred Since S satisfies rule (4), and
satisfies optimize(ps) (in Fs), S must satisfy better(ps).
Besides,
– S ✏ better(ps)

iff (by rule (21))
–
P

R:S✏degree(R,D) D <
P

R:S✏degree0(R,D) D

iff (by bullet 6)
– the sum of the satisfaction degrees of all rules is smaller

in S|� than in X

iff (by definition)
– S|� is ps-preferred to X according to LPOD.
So S|� is ps-preferred to X according to LPOD. Contra-
diction.

() Let X 0 be a set of atoms in � such that �(X 0) is an
answer set of P , and P [Fs [Ets [H 0

�(X0) [RA [C has
no answer set. By Proposition 1, X 0 is a candidate answer
set of ⇧.

Assume for the sake of contradiction that there is a can-
didate answer set X of ⇧ that is s-preferred to X

0 accord-
ing to LPOD. By Proposition 1, �(X) is an answer set of
P . We will prove that P [Fs [Ets [H

0
�(X0) [RA [C

has some answer set S, which contradicts with bullet (d).
Since �(X) is an answer set of P , it is sufficient to prove
H�(X)[Fs[Ets[H 0

�(X0)[C has some answer set S, where
H�(X) reifies the atoms in �(X) into the form of holds(·).

First, let ⇧cur be H�(X) [Fs [H
0
�(X0), and consider

the answer set of ⇧cur. Let a(H�(X)) be {holds(a) | a 2
�(X)}, let a(H 0

�(X0)) be {holds0(a) | a 2 �(X 0)}, and let
a(Fs) denote all the atoms in Fs. It is obvious that S1 =
a(H�(X)) [a(Fs) [a(H 0

�(X0)) is the only answer set of
⇧cur.

Second, let’s include rule (5) and rule (6) in C into
⇧cur. By Lemma 2, S2 = S1 [{holds(neg(bodyr)) |
r 2 {1, . . . ,m}, holds(bodyr) 62 a(H�(X))} [
{holds0(neg(bodyr)) | r 2 {1, . . . ,m}, holds0(bodyr) 62
a(H 0

�(X0))} is the only answer set of ⇧cur.
Third, let’s include Deg (i.e., rule (13) and rule (14))

into ⇧cur. By Lemma 2, S3 = S2 [{degree(R,D) |
S2 satisfies the body of rule (13)} [{degree0(R,D) |
S2 satisfies the body of rule (14)} is the only answer set of
⇧cur. Indeed, analogous to bullet 6 and bullet 7 in the pre-
vious direction (!) of the proof, S3 satisfies degree(R,D)
iff X satisfies LPOD rule R to degree D; S3 satisfies
degree

0(R,D) iff X 0 satisfies LPOD rule R to degree D.
In other words, S3 = S2[{degree(r, d) | r 2 {1, . . . ,m},
X satisfies rule r to degree d} [{degree0(r, d) | r 2
{1, . . . ,m}, X 0 satisfies rule r to degree d} is the only
answer set of ⇧cur.

Fourth, let’s include the rules in Ets (i.e., Elpod(s) in
Section 3.3) into ⇧cur for each preference criterion s 2
{i, p, ps}. The proof for the case when s is c is not shown
due to the limit of space.
• Inclusion-Preferred Let’s include the first rule (17) in

Elpod(i) into ⇧cur. Since X is i-preferred to X
0 according

to LPOD, there exists an integer d such that
– the set of LPOD rules that are satisfied to degree d by
X

0 is a proper subset of the set of LPOD rules that are
satisfied to degree d by X , and

– for any degree j such that j < d, the set of LPOD rules
that are satisfied to degree j by X

0 is a subset of the set
of LPOD rules that are satisfied to degree j by X .

In other words,there exists an integer d such that
– there exists at least one LPOD rule j that is satisfied by
X to degree d but is not satisfied by X

0 to degree d, and
for any LPOD rule j

0, if it is satisfied by X
0 to degree

d, it must be satisfied by X to degree d, and
– for any degree j such that j < d, if an LPOD rule is

satisfied by X
0 to degree j, it must by satisfied by X to

degree j.
Since S3 satisfies degree(R,D) iff X satisfies LPOD rule
R to degree D, and S3 satisfies degree0(R,D) iff X 0 sat-
isfies LPOD rule R to degree D, there exists an integer d
such that

(i) there exists at least one LPOD rule j such that S3 ✏
degree(j, d) and S3 6✏ degree

0(j, d), and for any
LPOD rule j

0, if S3 ✏ degree
0(j0, d), then S3 ✏

degree(j0, d), and
(ii) for any LPOD rule r 2 {1, . . . ,m} and any degree

j such that j < d, if S3 ✏ degree
0(r, j), then S3 ✏

degree(r, j)

Since S3 satisfies all atoms in a(Fs), according
to the translation, S3 satisfies optimize(i) an
preference(i, lpod(i)). By rule (17) and bullet (i)
above, S3 satisfies the body of rule (17) (where S is i and
D is d). By Lemma 2, S3 [{prf2degree(i, d)} is an
answer set of ⇧cur.
Let’s include the second rule (18) in Elpod(i) into ⇧cur.
By Lemma 2 and bullet (ii) above, S4 = S3 [
{prf2degree(i, d), better(i)} is an answer set of ⇧cur.
Let’s include rule (4) into ⇧cur. It is easy to see that S4

satisfies rule (4). By Lemma 1, S4 is an answer set of
H�(X) [Fs [Ets [H

0
�(X0) [C. Contradiction.

• Pareto-Preferred Let’s include the first rule (19) in
Elpod(p) into ⇧cur. Since X is p-preferred to X

0 accord-
ing to LPOD, there is an LPOD rule that is satisfied to a
lower degree in X than in X

0, and there is no rule that is
satisfied to a lower degree in X

0 than in X . By rule (19),
S3 does not satisfy the body of rule (19) (where S is p).
By Lemma 2, S3 is an answer set of ⇧cur.
Let’s include the second rule (20) in Elpod(p) into ⇧cur.
By Lemma 2, S4 = S3 [{better(p)} is an answer set of
⇧cur.
Let’s include rule (4) into ⇧cur. It is easy to see that S4

satisfies rule (4). By Lemma 1, S4 is an answer set of
H�(X) [Fs [Ets [H

0
�(X0) [C. Contradiction.

• Penalty-Sum-Preferred Let’s include Elpod(ps)

into ⇧cur. Since X is ps-preferred to X
0 accord-

ing to LPOD, the sum of the satisfaction degrees
of all rules is smaller in X than in X

0. ThusP
R:S3✏degree(R,D) D <

P
R:S3✏degree0(R,D) D. By

Lemma 2, S4 = S3 [{better(ps)} is an answer set of
⇧cur.
Let’s include rule (4) into ⇧cur. It is easy to see that S4

satisfies rule (4). By Lemma 1, S4 is an answer set of
H�(X) [Fs [Ets [H

0
�(X0) [C. Contradiction.

Epistemic states, fusion and strategy-proofness

Amílcar Mata Díaz and Ramón Pino Pérez
⇤

Departamento de Matemáticas, Facultad de Ciencias
Universidad de Los Andes. Mérida, Venezuela.

{amilcarmata, pino}@ula.ve

Abstract

In this work we study the problem of manipulability in belief
merging. We adopt the framework of logic-based merging in-
troduced by Konieczny and Pino Pérez (2002) and recently
extended by Mata Díaz and Pino Pérez (2017) considering
complex epistemic states. We state conditions under which
a merging operator of epistemic states admits a manipulator
agent, that is, an agent which can change his true beliefs in
order to obtain a result which is more convenient for him.
Our results adapt some techniques introduced by Mata Díaz
and Pino Pérez (2017) concerning representation and impos-
sibility in belief merging of complex epistemic states. These
results, together with tools of lifting preferences, allow us to
establish a general theorem of manipulability.

Introduction

The aim of belief merging (Konieczny and Pino Pérez 2002;
2011) is to give rational processes for producing a coher-
ent and pertinent piece of information when many sources,
which may be mutually in conflict, are present. This kind
of process appears naturally in many important domains, for
instance decision making, medical diagnosis, policy plan-
ning, automatic integration of data, etc. Thus, it is important
to understand well the model, its behavior and limitations
in order to develop future applications and know in which
domains this can be valid.

In the belief merging framework of Konieczny and Pino
Pérez the agents’ basic piece of information is encoded
in propositional logic and the group information is a bag.
Nevertheless, more complex representations are necessary
in many situations. This has been revealed by Darwiche
and Pearl (1997) in the case of revision operators with a
good behavior with respect to iteration. Mata Díaz and Pino
Pérez (2017) have shown the necessity of these representa-
tions. The following example illustrates a scenario in which
complex representations are very natural:
Example 1 Anne and Bob have to travel from point A to
point B. There are four paths to accomplish the travel: w1,
w2, w3 and w4. Anne thinks that the best way to carry out
the travel is w1. Actually she thinks that wi is better than

⇤Current address: School of Mathematics and Computer
Science, Yachay Tech University, Urcuquí, Ecuador. E-mail:
rpino@yachaytech.edu.ec

wi+1 for i = 1, 2, 3. Bob thinks that the best way to travel
is through w4 and the other possibilities are equally good.
A common consensual result in this situation is to take path
w1, the path that Anne prefers and which is not so bad for
Bob, whereas path w4 is very far from Anne’s preferred path.
Indeed, the consensual preference is path w1 as the first op-
tion, then path w2. The last options are indifferently paths
w3 and w4. Now suppose that Anne and Bob hate heavy
traffic. The last news about the traffic inform that there are
enormous traffic jams in the paths w1 and w4, whereas on
paths w2 and w3 there is light traffic. With this new informa-
tion, which can play the role of an integrity constraint, the
global preference should be: path w2 is the first option; the
second option is path w3, followed by path w1 and finally
w4 is the last option.

Note also that in the previous example the use of complex
integrity constraints can be useful to model the problem.
Thus, in this work we adopt this view: the basic pieces of
information are some states, called epistemic states, which
have attached a logical information, actually a propositional
formula. Moreover, the group information is vectorial (or
functional, see Section Preliminaries).

Some similarities have been pointed out between belief
merging and social choice theory (Arrow 1963; Suzumura
2002). These similarities have been established in early
works in belief merging (Konieczny and Pino Pérez 1999;
2002; 2005). As a matter of fact, the representation theorem
for belief merging operators evoques the methods for defin-
ing social choice functions.

Actually, some aspects of social choice are explored in
belief merging (Chopra, Ghose, and Meyer 2006; Everaere,
Konieczny, and Marquis 2007), mainly impossibility (Ar-
row 1963; Campbell and Kelly 2002) and strategy-proofness
(Gibbard 1973; Satterthwaite 1975). The operators consid-
ered by Chopra, Ghose, and Meyer (2006) satisfy the postu-
late (IC3) (the syntax independence postulate) of Konieczny
and Pino Pérez (2002). As a matter of fact, this postulate
implies a very strong form of anonymity and therefore it is
incompatible with the notion of dictator; for this reason they
don’t have an impossibility result. Moreover, they impose
certain conditions to their operators which force strategy-
proofness. Everaere, Konieczny, and Marquis (2007) present
some results on manipulation of some specific merging op-
erators with respect to certain indexes. Other works about

manipulation have been done in the related domain of judge-
ment aggregation by Dietrich and List (2007) [see also
(Grossi and Pigozzi 2014)]. Let us note that in judgement ag-
gregation the representation of information is simply propo-
sitional. Unlike this, in this work, we continue the study of
manipulation in the extended framework of belief merging
of epistemic states.

We have to note three important features of the frame-
work considered here. First, that the view of epistemic states
considered here is more general than the propositional view.
This abstract view of epistemic states, introduced by Ben-
ferhat et al. (2000), is indeed a formalization of the concept
established by Darwiche and Pearl (1997) [see also Mata
Díaz and Pino Pérez (2011)]. Second, the representation of
profiles will be also more general; we adopt the functional
view. Third, we enrich the set of rational postulates by in-
troducing social postulates inspired on the classical Arrow’s
postulates in social choice theory (Arrow 1963). All these
postulates are formulated in a logical setting.

We have a manipulability situation in merging informa-
tion, when an agent can change his true information in order
to obtain a result that is more convenient for him. We estab-
lish some conditions over merging operators which imply
the existence of agents who can manipulate. Our first re-
sult about manipulation concerns complete operators, that
is, operators having as output complete information. Our
second result about manipulation concerns general opera-
tors. In order to obtain it, we adapt to a logical setting, the
lifting technique introduced by Leal and Pino Pérez (2007;
2017) in the framework of social choice theory.

This work is organized as follows: the Preliminaries sec-
tion is devoted to defining the concepts used throughout the
paper. The Epistemic states merging operators section is de-
voted to state the syntactical postulates and their semantical
counterparts and then to establish the basic representation
theorem. In Social behavior of ES merging operators sec-
tion, we present the social postulates in a concise way. In this
Section we also present Impossibility results which are key
tools for obtaining the results in what follows. In Manipu-
lation of merging operators section, we introduce other new
social postulates and we establish general results of manip-
ulability – the main results of the paper. In Concrete exam-
ples and properties section, we give a constructive method
for building operators and we analyze its properties. Finally,
in Concluding remarks and perspectives section, we make
some observations about our work and give some paths for
future work. For space reasons, proofs of results are not in-
cluded in detail, but we sketch the main steps.

Preliminaries

A preorder over a set A is a binary relation ⌫ over A which
is reflexive and transitive. We define the strict relation, �
and the indifference relation, ', associated to a preorder ⌫
over A as follows: a � b iff a ⌫ b & b 6⌫ a and a ' b iff
a ⌫ b & b ⌫ a.

Given a preorder ⌫ over A and a subset C of A, we say
that c in C is a maximal element of C, with respect to ⌫, if
there is no x 2 C such that x � c. The set of maximal ele-
ments of C with respect to⌫will be denoted by max(C,⌫).

We will write max(⌫) instead of max(A,⌫) to denote the
set of maximal elements of the whole set A with respect to
⌫. We will denote by ⌫�C the restriction of ⌫ to C, and
P(A) will denote the set of preorders over a set A.

A total preorder is a binary relation over a set A which
is total (therefore reflexive) and transitive. Thus, any total
preorder over a set A is also a preorder over A. Let ⌫1 and
⌫2 be two total preorders over A. We define ⌫lex(⌫1,⌫2)

over A by putting a ⌫lex(⌫1,⌫2) b iff a �1 b or a '1 b and
a ⌫2 b.

The set of propositional formulas built over a finite set P
of atomic propositions will be denoted LP . LP

⇤ will denote
the set of non contradictory formulas in LP , while WP will
be the set of all the interpretations. Note that WP is a finite
set. If ' is a formula in LP , we denote by [[']] the set of its
models, i.e. [[']] = {w 2 WP : w |= '}. If 'i is a formula
in LP , for each i in a finite set of indexes I , then we denote
by

VV
i2I 'i the conjunction of all the formulas 'i. If I is a

nonempty set of interpretations, we denote by 'I a formula
such that [['I]] = I . When I is i{w} or {w,w0}, 'I will be
denoted 'w or 'w,w0 respectively.

An epistemic space is a triple (E , B,LP) such that E is a
nonempty set, LP is the set of propositional formulas over
P and B is a function from E into LP , such that the image
of B, modulo logical equivalence, is all the set L⇤P . The ele-
ments of E are called epistemic states, B is called the belief
function, while B(E) is called the belief base (or the most
entrenched beliefs) of E, for each E in E . Note that if I is
a finite nonempty set of interpretations, then there exists an
epistemic state E such that B(E) ⌘ 'I .

Extending a binary relation over interpretations to binary
relations over propositional formulas can be performed, via
the semantics, in a way which is similar to the extension
of an ordering over a set A to an ordering over subsets
of A [see for instance (Fishburn 1972; Gärdenfors 1976;
Kelly 1977) for manipulability issues, (Barberà, Bossert,
and Pattanaik 2004) for general properties and more recently
the works (Brandt 2011; Brandt and Brill 2011)]. We call
this kind of process liftings over formulas. More precisely, a
lifting over formulas is an application ⌫7!w⌫ which maps
any total preorder ⌫ over WP into a preorder w⌫ over LP ,
which satisfies the following: 'w w⌫ 'w0 iff w ⌫ w0, and
if ' ⌘ then ' ' (with respect to w⌫).

Given a preorder wWP
⌫ over subsets of WP , it is possible

to establish an order over LP , wLP
⌫ , as follows:

' wLP
⌫ '0 , [[']] wWP

⌫ [['0]]

Thus, through liftings over sets, like the Fishburn lifting
(Fishburn 1972), the Gärdenfors lifting (Gärdenfors 1976),
the Kelly lifting (Kelly 1977), the Possibilistic lifting intro-
duced by Dubois, Prade, and Lang (1994), and the Precise
leximax lifting1, defined by Leal and Pino Pérez (2017), it is
possible to define liftings over formulas.

Barberà, Bossert, and Pattanaik (2004) have characterized
many natural liftings through their properties. Among these

1The Precise leximax lifting is a variant of the leximax lifting
presented by Barberà, Bossert, and Pattanaik (2004).

properties we can find a couple of very basic properties that
together are called Simple dominance. We adapt these prop-
erties to liftings over formulas.
Simple Dominance 1: ⌫7!w⌫ satisfies simple dominance 1
iff for each total preorder ⌫ over WP and any pair w,w0 in
WP : w � w0) '{w,w0} A⌫ '{w0}
Simple Dominance 2: ⌫7!w⌫ satisfies simple dominance 2
iff for each total preorder ⌫ over WP and any pair w,w0 in
WP : w � w0) '{w} A⌫ '{w,w0}

These properties of companionship have a very natural in-
terpretation: simple dominance 1 means that the good com-
pany improves the group; simple dominance 2 means that
the bad company worsens the group. Its is worth noting that
all the previously cited liftings satisfy both instances of sim-
ple dominance, except the possibilistic lifting [cf. Leal and
Pino Pérez (2017)].

In order to introduce the notion of epistemic state pro-
files, from now on we consider a given epistemic space
(E , B,LP) and a well ordered set (S, <) the elements2

of which are called agents. A finite society of agents is a
finite and nonempty set N of S . F⇤(S) will denote the
set of finite societies of agents. From now on, we suppose
N = {i1, i2, . . . , in} and also assume that its elements are
disposed in increasing way, i.e. ik < im whenever k < m.
A partition of N is a finite family {N1, N2, . . . , Nk} of pair-
wise disjoint sets such that their union is N .

Given a finite society of agents N , an N -profile of epis-
temic states (also called N -profile or epistemic profile by
abuse of notation) is a function � : N �! E . We think of
�(i) as the epistemic state of the agent i, for each agent
i in N . If � is an N -profile, for each agent i in N , Ei

will denote �(i). Thus, if N = {i1, i2, . . . , in} is a fi-
nite society of agents, it can be seen as an ordered tuple:
� = (Ei1 , Ei2 , . . . , Ein). Thus, an N -profile � collects in
an ordered way the information expressed by those agents in
N . From now on, if N is a singleton, suppose N = {i}, by
abuse of notation, Ei will denote the N -profile � = (Ei).
In that case we write i-profile instead of {i}-profile. The set
of all the epistemic profiles will be denoted P (S, E).

Let N = {i1, i2, . . . , in} and M = {j1, j2, . . . , jm}
be two finite societies of agents, and consider the profiles
� = (Ei1 , Ei2 , . . . , Ein) and �0 = (E0j1 , E

0
j2 , . . . , E

0
jm).

We say that � and �0 are equivalent, denoted � ⌘ �0, if
n = m and Eik = Ejk for k = 1, . . . , n. Thus, for any
pair of agents i, j in S , if we consider an i-profile Ei and a
j-profile Ej , then Ei ⌘ Ej iff , seen as epistemic states, we
have Ei = Ej . Thus, by abuse of notation and being clear
from the context, we write Ei = Ej and Ei 6= Ej instead of
Ei ⌘ Ej and Ei 6⌘ Ej respectively.

When N and M are disjoint, � is an N -profile and �0 is
an M -profile, we define a new (N [M)-profile, the joint of
� and �0, denoted � t �0, as follows: (� t �0

�
(i) is �(i)

if i 2 N , otherwise it is �0(i). Moreover, if M ✓ N , then
��M will denote the M -profile obtained by the restriction of
� to M . Thus, if {N1, N2, . . . , Nk} is a partition of a finite
society of agents N , then we have � = ��N1 t · · ·t��Nk ,

2The set (S, <) can be identified with the set of natural numbers
N with the usual order.

for each N -profile �.
For a given epistemic state E⇤ and an N -profile �, we de-

note by �[E⇤/i] the N -profile obtained from � by replacing
Ei, the epistemic state associated with the agent i through �,
with E⇤. More precisely: �[E⇤/i](j) is �(j) if j 6= i, oth-
erwise it is E⇤.

From now on, we will suppose that N is the finite soci-
ety {i1, i2, . . . , in}, while the N -profiles � and �0 will be
denoted by (Ei1 , Ei2 , . . . , Ein) and (E0i1 , E

0
i2 , . . . , E

0
in) re-

spectively.
i

Epistemic states merging operators

Let us fix an epistemic space (E , B,LP) and a set of agents
S . An epistemic state operator is a function of the form r :
P (S, E) ⇥ E �! E , also called an ES operator for short.
r(�, E) represents the result of combining the epistemic
states in � under an integrity constraint E.

Now we establish the rationality postulates of merging
in the framework of epistemic states. Most of them are
adapted from IC merging postulates proposed by Konieczny
and Pino Pérez (1999; 2002; 2005; 2011). The postulates
in terms of epistemic states, were first proposed and widely
studied by Mata Díaz and Pino Pérez (2011; 2017). In or-
der to introduce such postulates, we consider N and M a
couple of finite societies of agents in S , an N -profile �, an
M -profile �0, and a triple of epistemic states E, E0, E00 in
E ; let j, k be a pair of agents in S , N1, N2 be any partition
of N , Ej be any j-profile, Ek be any k-profile.

(ESF1) B
�
r(�, E)

�
` B(E).

(ESF2) If � ⌘ �0 and B(E) ⌘ B(E0) then
B
�
r(�, E)

�
⌘ B

�
r(�0, E0)

�
.

(ESF3) If B(E) ⌘ B(E0) ^ B(E00), then B
�
r(�, E0)

�
^

B(E00) ` B
�
r(�, E)

�
.

(ESF4) If B(E) ⌘ B(E0) ^ B(E00) and B
�
r(�, E0)

�
^

B(E00) 6` ?, then B
�
r(�, E)

�
` B

�
r(�, E0)

�
^

B(E00).
(ESF5) If Ej 6= Ek, then there exists E0 in E such that

B
�
r(Ej , E0)

�
6⌘ B

�
r(Ek, E0)

�

(ESF6) If
VV

i2N B(Ei)^B(E) 6` ?, then B
�
r(�, E)

�
⌘VV

i2N B(Ei) ^B(E)

(ESF7) B
�
r(� �N1

, E)
�
^ B

�
r(� �N2

, E)
�
`

B
�
r(�, E)

�

(ESF8) If B
�
r(� �N1

, E)
�
^ B

�
r(� �N2

, E)
�
6` ?, then

B
�
r(�, E)

�
` B

�
r(��N1

, E)
�
^B

�
r(��N2

, E)
�

(ESF8W) If B(r(� �N1
, E))^B(r(� �N2

, E)) 6` ? then
B(r(�, E)) ` B(r(� �N1

, E)) _B(r(� �N2
, E))

The first four postulates, (ESF1)-(ESF4), called basic
merging postulates, are considered the minimal require-
ments of rationality that the operators have to satisfy. These
postulates allow us to introduce an important class of ES
operators, namely the ES basic merging operators. They

are generalizations of ICO, IC3, IC7 and IC8 respectively3.
(ESF6), (ESF7) and (ESF8) are generalizations of IC2, IC5
and IC6 respectively. (ESF8W) is a weakening of (ESF8).
(ESF5) says that the operators have a sort of injectivity for
profiles of size one. The last four postulates describe mainly
the relationships between the results of merging as a whole
society and the results of merging in its subsocieties.

The only postulate that we do not consider from the
propositional belief merging framework is IC4, the so called
fairness postulate. The reason is that IC4 imposes heavy re-
strictions over the representation of epistemic states. More-
over, there are a lot of interesting merging operators which
don’t satisfy IC4. Thus, including IC4 should lead to exclude
them.

Definition 1 An ES operator r is said to be an epistemic
state basic merging operator (ES basic merging operator for
short) if it satisfies (ESF1)-(ESF4).

We will say that an ES basic merging operator r is com-
plete if , B(r(�, E)) has a single model, for every N in
F⇤(S), each N -profile � and each epistemic state E in E .

An ES basic merging operator r is said to be a merging
operator of epistemic states (quasi-merging operator of epis-
temic states) -ES merging operator (ES quasi-merging oper-
ator) for short- if it satisfies the postulates (ESF5)-(ESF8)

((ESF5)-(ESF7) and (ESF8W)).

Now we present some semantic aspects. An assignment is
a function � 7!⌫� which maps epistemic states profiles into
total preorders over interpretations. The intended meaning
of these mappings is coding semantically, in some sense, the
group preference.

Definition 2 A basic assignment is an application � 7!⌫�

which maps each epistemic profile � into a total preorder
⌫� over WP , and it is such that ⌫�=⌫�0 , for any pair �,
�0 of equivalent epistemic profiles.

A basic assignment � 7!⌫� is said to be linear if ⌫� is
a linear order over WP , for each epistemic profile �.

A (linear) basic assignment � 7!⌫� is called a (linear)
faithful assignment if it satisfies the following properties for
any pair j, k of agents in S , any finite society of agents N ,
any partition of N , {N1, N2}, any N -profile �, any j-profile
Ej , any k-profile Ek, and any pair of interpretations w, w0
in WP :

1 If Ej 6= Ek, then ⌫Ej 6=⌫Ek

2 If
VV

i2N B(Ei) 6` ?, then [[
VV

i2N B(Ei)]] = max(⌫�)

3 If w ⌫��N1
w0 and w ⌫��N2

w0 then w ⌫� w0

4 If w ⌫��N1
w0 and w ���N2

w0, then w �� w0

A (linear) basic assignment which satisfies 1-3 plus the fol-
lowing property
4’ w ���N1

w0 & w ���N2
w0) w �� w0

is called a (linear) quasi-faithful assignment.

For any epistemic profile �, the total preorder ⌫� can be
seen as a global plausibility measure over worlds:

3The well known postulates of belief merging appearing in
(Konieczny and Pino Pérez 2002)

• If w ⌫� w0, we will say that w is at least as plausible as
w0, for the agents group in �

• If w �� w0, we will say that w is more plausible than w0,
for the agents group in �

From Property 2 follows that the most entrenched prefer-
ences represent the entrenchment beliefs of any agent. More
precisely, for any agent i in S and for each i-profile Ei,
we have straightforwardly from Property 2 that the follow-
ing equality holds, which is called maximality condition:
[[B(Ei)]] = max(⌫Ei).

Thus, any assignment which satisfies Property 2, satisfies
the maximality condition, but the converse is not true [cf.
Mata Díaz and Pino Pérez (2011; 2017)]. However, in pres-
ence of Properties 3 and 4, we have that Property 2 is equiv-
alent to the maximality condition, as was shown by Mata
Díaz and Pino Pérez (2017).

Now we present some results that help to understand the
behavior of the ES merging operators. They allow us to de-
scribe such operators at the level of the entrenched beliefs.

Theorem 1 (i) An ES operator r is an ES basic merging
operator iff there exists a unique basic assignment � 7!⌫�

such that:

[[B
�
r(�, E)

�
]] = max

�
[[B(E)]],⌫�

�
(B-Rep)

(ii) r is a complete ES basic merging operator iff the as-
signment � 7!⌫�, associated to r by (i), is a linear basic
assignment.
(iii) An ES operator r is an ES (complete) (quasi) merg-
ing operator iff there exists a unique (linear) (quasi) faithful
assignment � 7!⌫� satisfying (B-Rep).

Sketch of proof: (i) is proved by Mata Díaz and Pino
Pérez (2017). Actually they proved also (iii) without the
parts between the parentheses. (ii) follows from (i) and the
fact that completeness corresponds exactly to the fact that
the assignment is linear. Now (iii) with the parentheses
follows from (ii) and (iii) without the parts between the
parentheses.

The parts of the previous result concerning complete op-
erators are new.

Social behavior of ES merging operators

We present some properties of the merging process which
capture the following social principles appearing in the sem-
inal work of Arrow (1963): Domain Standard, Pareto Condi-
tion, Independence of Irrelevant Alternatives and Existence
of a Dictator.

In order to give a formulation of these principles in logic
terms using epistemic states, we will suppose from now on
that P has at least two propositional variables. Thus, there
will be available at least four interpretations in WP .

The first property, called Standard Domain, states some
“richness” in the set of results of the merging process.
(ESF-SD) For any agent i in S , for every triple w, w0

and w00 in WP , and each pair of epistemic states
Ew,w0 and Ew0,w00 , such that [[B(Ew,w0)]] = {w,w0} and
[[B(Ew0,w00)]] = {w0, w00}, the following conditions hold:

(i) There exists an i-profile Ei such that
B
�
r(Ei, Ew,w0)

�
⌘ 'w,w0 and B

�
r(Ei, Ew0,w00)

�
⌘

'w0

(ii) There exists an i-profile Ei such that
B
�
r(Ei, Ew,w0)

�
⌘ 'w and B

�
r(Ei, Ew0,w00)

�
⌘

'w0,w00

(iii) There exists an i-profile Ei such that
B
�
r(Ei, Ew,w0)

�
⌘ 'w and B

�
r(Ei, Ew0,w00)

�
⌘

'w0

It is worth to note that complete ES operators can only
satisfy (iii) in (ESF-SD). Thus, by abuse of notation and the
context being clear, we will say that a complete ES operator
r satisfies (ESF-SD) if r satisfies such instance. It is also
important to note the following:
Observation 1 For basic merging operators, the satisfac-
tion of this postulate is equivalent to the fact that, for any
agent i in S , any triple of interpretations w, w0 and w00 in
WP , and any total preorder ⌫ over interpretations (except
the flat order), there is an i-profile Ei such that ⌫=⌫Ei

�{w,w0,w00}.

The following property tries to capture the meaning of
the unanimity principle. It is given in terms of similarity
between the epistemic states of the agents involved in the
merging process. This is called unanimity condition:
(ESF-U) For each finite society of agents N , for every N -

profile � and for each epistemic state E, if Ei = Ej , for
any pair i, j in N , then, for each i in N , B

�
r(�, E)

�
⌘

B
�
r(Ei, E)

�
.

Any ES operator r satisfying (ESF2), (ESF7) and
(ESF8) also satisfies (ESF-U). Thus, any ES merging op-
erator satisfies unanimity condition. However, in general the
converse of this result is not true [cf. Mata Díaz and Pino
Pérez (2017)].

Now we give a syntactical formulation of the Pareto con-
dition: if all the agents reject a given information, and all the
agents have some consensus, then this information will be
rejected in the result of merging.
(ESF-P) For every finite society N in F⇤(S), any N -

profile � and any couple of epistemic states E, E0 in
E , if

VV
i2N B

�
r(Ei, E)

�
6` ? and, for all i in N ,

B
�
r(Ei, E)

�
^B(E0) ` ?, then B

�
r(�, E)

�
^B(E0) `

?.
Any ES merging operator satisfies the Pareto Condition.

This is because the satisfaction of (ESF7) and (ESF8) en-
tails that (ESF-P) holds. However, there exist some ES op-
erators showing that the converse of this result is not true [cf.
Mata Díaz and Pino Pérez (2017)].

We continue by stating the syntactical postulate aiming to
capture the principle of independence of irrelevant alterna-
tives: the merging process depends only on how the restric-
tions in the individual epistemic states are related. Our pos-
tulate, called independence condition, tries to capture this.
(ESF-I) For any finite society N in F⇤(S), for any couple

of N -profiles � and �0, for every epistemic state E in
E we have B

�
r(�, E)

�
⌘ B

�
r(�0, E)

�
, if for every

epistemic state E0 in E such that B(E0) ` B(E) we have
B
�
r(Ej , E0)

�
⌘ B

�
r(E0j , E0)

�
, for all j in N .

Next, we state the postulate related with the fourth prin-
ciple, Absence of Dictator: the group belief base, obtained
as the result of the merging process, does not depend on one
unique agent. Actually, we establish the negative form: there
is an agent that imposes his will, a dictatorial agent. This is
the postulate that the good operators should avoid.
(ESF-D) For any finite society N in F⇤(S) there exists an

agent dN in N such that, for any N -profile � and for any
epistemic state E in E , B

�
r(�, E)

�
` B

�
r(EdN , E)

�
.

Operators satisfying the previous postulate are called dic-
tatorial operators. Thus, ifr is a dictatorial operator, given
a finite society N , an agent dN testifying that (ESF-D)

holds, is called a dictator in N or simply an N -dictator for
r.

It is worth to note that the social postulates here presented
have a semantical characterization [cf. Mata Díaz and Pino
Pérez (2017)]. Actually, Observation 1 can be seen as the se-
mantical characterization of the standard domain condition.

Now we present a general result of Impossibility, simi-
lar to Arrow’s Theorem (Arrow 1963; Kelly 1978; Taylor
2005):
Theorem 2 (Main impossibility theorem) If r is an ES
basic (complete) merging operator that satisfies the proper-
ties (ESF-SD), (ESF-P) and (ESF-I), then r also satisfies
(ESF-D).

Note that the proof of this result was presented by Mata
Díaz and Pino Pérez (2017) for operators which are not com-
plete. An analysis of that proof reveals that this result is true,
even if the operator is complete.

Because of the relationships between the merging postu-
lates and the Pareto condition pointed out before, we have:
Corollary 1 (i) Any ES basic merging operator that satis-
fies (ESF-SD), (ESF7), (ESF8W) and (ESF-I), is a dicta-
torial operator.
(ii) Any ES basic merging operator that satisfies (ESF-SD),
(ESF-U) and (ESF-I), is a dictatorial operator.

Manipulation of merging operators

In this section we deal with another interesting problem
which is present in the framework of logic-based merging,
namely, manipulability of merging information processes.

We establish three new classes of ES operators, af-
ter introducing some other natural social properties: Non-
imposition , stability and strategy-proofness.

We first introduce Non-imposition property. This property
expresses that any complete information (formula) can be
obtained as the beliefs of the output if it satisfies the restric-
tion of the merging process.
(ESF-NI) For all finite society N in F⇤(S), for each epis-

temic state E and every model w of B(E), there exists an
N -profile � such that B

�
r(�, E)

�
⌘ 'w.

The following result shows that, in addition to the basic
merging postulates and the maximality condition, the Pareto
condition entails non-imposition.

Proposition 1 Let r be an ES basic merging operator and
suppose that � 7!⌫� (the basic assignment associated to
r by Theorem 1) satisfies the maximality condition. If r
satisfies (ESF-P), then r satisfies (ESF-NI).

Sketch of proof: Consider an N -profile � where, for each
agent i 2 N , we have B(Ei) = 'w for a fixed w, which is a
model of B(E). Then, applying the representation, the max-
imality and Pareto conditions, we have B(r(�, E)) = 'w.

Another natural property is given in terms of stability with
respect to changes in the pieces of information. More pre-
cisely, at level of entrenched beliefs, the stability property
expresses that if a new piece of information (epistemic state)
is “revised” with the integrity constraints and it coincides
with the result obtained from a merging process of a pro-
file and the integrity constraint, then any agent can change
its mind with this new piece of information and the result
obtained is the same as the initial result.
(ESF-St) For each finite society N in F⇤(S), every N -

profile �, any agent i in N and every couple of epistemic
states E, E⇤ in E , if B

�
r(�, E)

�
⌘ B

�
r(E⇤, E)

�
then

B
�
r(�[E⇤/i], E)

�
⌘ B

�
r(�, E)

�
.

An ES basic merging operator is manipulable by an agent
if this agent, knowing the restriction of the merging pro-
cess and the information that will be expressed by the other
agents, changes its epistemic state in order to obtain a result
that “fits” better his true beliefs. More formally:

Definition 3 (Manipulable ES operators) Let ⌫7!w⌫ be
a lifting over formulas in LP . An ES basic merging oper-
ator r is said to be manipulable with respect to ⌫7!w⌫,
if there exists a finite society of agents N in F⇤(S), an N -
profile �, an agent i in N and a couple of epistemic states
E, E⇤, such that:

B
�
r(�[E⇤/i], E)

�
A⌫Ei

B
�
r(�, E)

�

If r does not satisfy the previous statement, we will say
that r is strategy-proof with respect to the lifting ⌫7!w⌫.

An ES operator r is said to be strategy-proof if it is
strategy-proof with respect to any lifting.

The next result shows interesting links between some of
the previous properties.

Proposition 2 A complete ES basic merging operator is
strategy-proof iff it satisfies (ESF-St).

Sketch of proof: If the property (ESF-St) doesn’t hold
we have a situation of manipulability. Conversely, if we
have a situation of manipulability, then we can build a
counter-example to the property (ESF-St).

Now we introduce a variant of dictatorial ES merging
operators through a new property. These operators will be
called Weak dictatorial ES operators. As we will see, op-
erators of this type admit an agent that, in a similar way to
dictators, imposes its beliefs in the results of the merging
process, but in a weak sense. More precisely, given any com-
plete formula, the weak dictator can adopt an epistemic state
such that, independently of the epistemic states expressed by

the other agents, the complete formula will satisfy the en-
trenched beliefs resulting from the merging process. More
precisely:
(ESF-WD) For every finite society N in F⇤(S), there ex-

ists an agent dN in N such that for each interpretation
w in WP , there exists an epistemic state Ew in E where
w |= B

�
r(�[Ew/dN], E)

�
, for any N -profile � and any

epistemic state E in E , with w |= B(E).
Ifr is a weak dictatorial operator, an agent dN in a finite

society N that testifies the satisfaction of such property is
called a weak dictador in N for r, or simply a weak N -
dictator for r.

Note that the notion of weak dictator is an inclusive one:
he can force to have a world in the result under the condition
that his beliefs has this world as unique model.

The following result shows that, under some rational con-
ditions, dictatorial operators are also weak dictatorial opera-
tors.
Proposition 3 Let r be an ES basic merging operator and
suppose that � 7!⌫� (the basic assignment associated to
r by Theorem 1) satisfies the maximality condition. If r
is a dictatorial operator then r is also a weak dictatorial
operator. Moreover, for each finite society N , if dN is an
N -dictator forr, then dN is also a weak N -dictator forr.
Sketch of proof: Given w, a model of B(E), it is enough
to check that if the dictator dN has an epistemic state with
belief 'w, the output of the merging will have w among its
models.

By Theorem 2 and Proposition 3, we have that any ES ba-
sic merging operator that satisfies (ESF-SD), (ESF-P) and
(ESF-I) is a weak dictatorial operator.

Now, we present two results concerning manipulability.
The first one is similar to the result presented in social
choice theory by Gibbard (1973) and Satterthwaite (1975);
the second one is similar to that presented by Leal and
Pino Pérez (2017). Actually, that result is a weak version of
Barberà-Kelly’s Theorem (Barberà 1977; Kelly 1977) [see
(Leal and Pino Pérez 2017)].

Our first general result is a characterization of strategy-
proofness for complete and non-imposed operators: they are
exactly the dictatorial ones.
Theorem 3 (Strategy-proofness of complete operators)

Let r be a complete ES basic merging operator satisfying
(ESF-SD) and suppose that � 7!⌫�, the basic assignment
associated to r by Theorem 1, satisfies the maximality
condition, restricted to single-profiles with complete beliefs.
Then, r is a non-imposed and strategy-proof operator if,
and only if, r is a dictatorial operator.
Sketch of proof: The if part is easy. For the only if part,
we prove that non-imposed and non-manipulable complete
basic ES merging operators satisfy (ESF-P) and (ESF-I),
then we can apply Theorem 2 and conclude that there is a
dictator.

Theorem 4 (Strategy-proofness through liftings) Let r
be an ES basic merging operator satisfying (ESF-SD), such

that the basic assignment � 7!⌫�, associated to r by
Theorem 1, satisfies the maximality condition, restricted to
single-profiles with complete beliefs. Let⌫7!w⌫ be a lifting
over formulas that satisfies both instances of simple domi-
nance. If r is non-imposed and strategy-proof with respect
to ⌫7!w⌫, then r is a weak dictatorial operator.

Sketch of proof: The first step is to transform r into a
complete ES basic merging operator r0. This is done by
transforming the basic assignment � 7!⌫� associated to r
into a linear assignment via a fixed linear order over inter-
pretations. More precisely, fix �, a linear order over WP
and consider the assignment � 7!⌫�� , where w ⌫�� w0

iff w �� w0 or w '� w0 and w � w0. For each model
w in WP , consider an epistemic state Ew in E such that
[[B(Ew)]] = {w}. Then define r0 as follows:

r0(�, E) = Ew iff max([[B(E)]],⌫��) = {w}

Then we establish the following:
Claim 1. r0 satisfies (ESF-SD).
Claim 2. r0 is non-imposed.
Claim 3. r0 is strategy-proof.
Claim 4. r0 is dictatorial.
Claim 5. A dictator for r0 is a weak dictator for r.

Claim 1 follows from the fact that r satisfies (ESF-SD).
Claim 2 follows from the fact that r is non-imposed. To
prove Claim 3, we suppose thatr0 is manipulable. Then we
use the manipulation for r0 and the properties of simple
dominance to create a manipulation situation for r. Claim
4 follows from the three first claims and Theorem 3. Finally,
Claim 5 is easy to see because of definition of r0.

Concrete examples and properties

In this section, we are going to present some specific ES-
merging operators in order to illustrate manipulability situa-
tions. Moreover, the study of properties satisfied by the op-
erators summarized in Table 1 is important because it allows
to see some relations between these properties, in particular
when a given property is not entailed by a set of other prop-
erties. Unfortunately we don’t have the place to include all
the justifications. In some cases Theorems 3 and 4 are very
useful to establish some properties.

We assume that the epistemic states are total preorders
over interpretations – that is, E = P(WP) – and we have
that [[B(⌫)]] = max(⌫) for any epistemic state ⌫. Some
of the operators presented herein were introduced in (Mata
Díaz and Pino Pérez 2017), others are new.

We are going to present a class of ES basic merging
operators using aggregation functions. These operators are
called aggregation-based ES merging operators. This kind
of merging operators was introduced by Konieczny and Pino
Pérez (1999; 2002; 2005; 2011; 2013) and more formally
studied by Konieczny, Lang, and Marquis (2004) in the con-
text of belief bases. They have been extendeded to the ESF
framework by Mata Díaz and Pino Pérez (2017). Let us re-
call the definition of aggregation functions.
Definition 4 (Aggregation functions) An (symmetric) ag-
gregation function F is a total function associating a non-

negative real number to every finite tuple of nonnegative in-
tegers such that for any x1, ..., xn, x, y in Z+:

Monotony F (x1, . . . , x, . . . , xn) � F (x1, . . . , y, . . . , xn),
if x � y

Minimality F (x1, x2, . . . , xn) = 0 if and only if x1 =
x2 = · · · = xn = 0

Identity F (x) = x

Symmetry For any permutation �, F
�
x1, x2, . . . , xn

�
=

F
�
�(x1, x2, . . . , xn)

�

Two examples of aggregation functions are sum and max.
They are classical examples in the study of logic-based
merging (Konieczny and Pino Pérez 1999; 2002; 2005;
2011; 2013; Mata Díaz and Pino Pérez 2017).
sum

P
(x1, x2, · · · , xn) =

P
xi

max max(x1, x2, . . . , xn) = max{x1, x2, . . . , xn}
An aggregation function F induces a total preorder over

WP , for any profile of epistemic states in the following way:
For any N = {i1, i2, . . . , in} in F⇤(S), any N -profile

� = (⌫i1 ,⌫i2 , . . . ,⌫in), and any couple of interpretations
w,w0 in WP :

w ⌫F
� w0 iff F (ri1(w), . . . , rin(w)) � F (ri1(w

0), . . . , rin(w
0))
(3)

where ri(x) is the rank of an interpretation x in the total
preorder ⌫i, for each agent i in N .

In the context of epistemic states given by total pre-
orders over interpretations4, we will say that an assignment
� 7!⌫� is structure preserving if ⌫⌫i=⌫i for any agent i
in S and any i-profile⌫i. It is worth to note that such assign-
ments are trivially basic assignments that satisfy Property 1

in Definition 2 [cf. Mata Díaz and Pino Pérez (2017)]. Thus,
given an aggregation function F , it is possible to define an
assignment � 7!⌫F

� which is structure preserving, that is,
the identity function for profiles of size one.

From the equivalence (3) and (B-Rep), it is possible to
build an ES basic merging operator,rF , which is associated
to an aggregation function F , as follows:

rF (�,⌫) =⌫lex(⌫,⌫F
�) (4)

In particular, from the above equation it is possible to de-
fine two aggregation-based ES basic merging operators:r⌃

(sum) and rmax (max), defined after the aggregation func-
tions sum and max respectively.

Some variants of these operators can be defined. For in-
stance we present three operators derived from sum: the ⌃-
inverted ES basic merging operator, the ⌃-quasi-inverted
ES basic merging operator and the pseudo-sum ES basic
merging operator. These operators are presented for the first
time in this work.
⌃-inverted ES basic merging operator:

r
 �
⌃ (�,⌫) =⌫lex(⌫,⌫

 �
⌃
�)

where ⌫
 �
⌃
� satisfies the following: for every pair w, w0 in

WP ; w ⌫
 �
⌃
� w0 iff w0 ⌫⌃

� w.
4That is E = P(WP)

Operator Max. Cond. (ESF5) (ESF6) (ESF7) (ESF8) (ESF8W) (ESF-SD) (ESF-U) (ESF-P) (ESF-I) (ESF-D) (ESF-NI) (ESF-St) (ESF-WD) Str.-Proof

General Operators

r⌃ X X X X X X X X X x x X x x x
rmax X X X X x X X X X x x X x x x
r
 �
⌃ x x x X X X X X X x x X x x x

r
"
⌃ X X x x x x X x x x x X x x x

rP⌃ X X X X x x X X x x x X x x x
r⇡ X X x‡ X x X X X X X X X X X X
rQ⇡� X X x‡ x x X X x X X X X X X X
r⌃�P⇡ X X X x x x X X X x X X x X x
r⌃�W⇡ X X X x x x X X X x x X x X x
r �⇡ x X x X x X X X X X X X X X X
Complete Operators

r⌃� x† x x‡ X X X X X X x x X x x x
r⌃�W⇡� x† x x‡ x x x X X X x x X x X x
r⇡w⇤

� x x x X X X x X X X X x X x X

Table 1: Landscape of satisfaction of the merging properties and strategy-proofness with respect precise-leximax liftings: X
means the property holds; x means the property doesn’t hold; x† the property holds for single profiles with complete beliefs and
x‡ means that the property holds for profiles where the beliefs of each agent are complete.

Because of the fact that the sum assignment is structure
preserving, it is easy to see that the ⌃-inverted assignment is
not structure preserving.

The ⌃-pseudoinverted operator has the same behavior of
the ⌃-inverted operator for profiles with more that one com-
ponent.
⌃-pseudoinverted ES basic merging operator:

r
"
⌃(�,⌫) =⌫lex(⌫,⌫

 �
⌃
�)

where ⌫
"
⌃
�=⌫i if � is a singletone, namely � =⌫i, and

⌫
"
⌃
�=⌫

 �
⌃
� otherwise.

It is easy to see that the ⌃-pseudoinverted assignment is
structure preserving.

The pseudo-sum operator, defined below, has the same be-
havior of the sum operator when the agents have a consen-
sus, otherwise all the alternative are equally preferred.
Pseudo-sum ES basic merging operator:

rP⌃(�,⌫) =⌫lex(⌫,⌫P⌃
�)

where ⌫P⌃
� =⌫⌃

� if
VV

i2N B(⌫i) is consistent, otherwise is
', the flat order over WP .

Like the sum operator, the pseudo-sum operator is struc-
ture preserving. This is due to the fact that, for each single-
profile ⌫i, B(⌫i) is consistent.

Another class of ES operators are called projective-based
ES merging operators. Some of this kind of operators pre-
sented herein was introduced and studied by Mata Díaz and
Pino Pérez (2017) (the projective, quasiprojective and the
⌃-pseudoprojective). The remaining of them are new (the
⌃-weak-projective operator and the projective inverted oper-
ator). This class of operators is given in terms of projections
or variants of this. In order to present them, from now on,
dN denotes the maximal5 of each finite society N of agents
in S i.e. dN = max(N), for each N in F⇤(S).

5In order to define projective-based ES merging operators, we
can also suppose that dN = max(N), for each finite society of
agents N in F⇤(S).

The first projective-based operator to be presented is the
projective ES basic merging operator, r⇡ (also called pro-
jective operator for short). This is totally determined by pro-
jections over profiles of epistemic states: the output of a
merging process completely depends on the beliefs of the
agent dN and the integrity constraints.
Projective ES basic merging operator:

r⇡(�,⌫) =⌫lex(⌫,⌫dN
)

As we can see through its definition, the projective opera-
tor actually is an ES basic merging operator, being its basic
assignment the projective assignment,� 7!⌫dN , which as-
sociates each epistemic profile � to its last component⌫dN .
Thus, the projective assignment is structure preserving.

Another class of projective-based operators to be pre-
sented is the quasilinearized projective ES basic merging
operators (quasilinearized projective operators in short). In
order to define them, let us consider a fixed linear order �
over WP .
Quasilinearized projective ES basic merging operator:

rQ⇡�(�,⌫) =⌫lex(⌫,⌫
Q⇡�
�)

where ⌫Q⇡�
� =⌫i if � has a single input, namely ⌫i, and

⌫Q⇡�
� =⌫lex(⌫dN

,�) otherwise.
Quasilinearized projective operators are ES basic merg-

ing operators too. Their basic assignments, � 7!⌫Q⇡�
� , as-

sociate each epistemic profile � to a linearizing of the maxi-
mal agent’s epistemic state (preorder), excepting for single-
profiles who are preserved. Thus, Quasilinearized projective
assignments are structure preserving.

The following projective-based ES merging operator is
defined using sum and projections. This operator is called ⌃-
pseudoprojective ES merging operator (⌃-pseudoprojective
operator in short), r⌃�P⇡ .
⌃-pseudoprojective ES merging operator:

r⌃�P⇡(�,⌫) =⌫lex(⌫,⌫⌃�P⇡
�)

where ⌫⌃�P⇡
� =⌫lex(⌫dN

,⌫⌃
�).

The ⌃-pseudoprojective operator allows a very weak par-
ticipation of all agents involved in the merging process. It
is not hard to see that the ⌃-pseudoprojective assignment,
� 7!⌫⌃�P⇡

� , is structure preserving.
The next operator, called ⌃-weak-projective ES basic

merging operator (⌃-weak-projective operator in short) is
also new.
⌃-weak-projective ES basic merging operator:

r⌃�W⇡(�,⌫) =⌫lex(⌫,⌫⌃�W⇡
�)

where ⌫⌃�W⇡
� =⌫dN , if |max(⌫dN)| = 1, and

⌫⌃�W⇡
� =⌫⌃

�, otherwise.
The output of this operator is exactly that of the sum op-

erator, except when the entrenched belief of the agent dN is
complete i.e. |max(⌫dN)| = 1. In this case the output of the
merging process depends only on the epistemic states of dN
and on the integrity constraints.

Similar to the sum operator, we can define some reverse
variants of the projective operators. Some instances of such
variants are those operators which we call inverted projec-
tive ES basic merging operators (inverted projective opera-
tors in short). Such operators are new to our knowledge.
Inverted projective ES basic merging operator:

r
 �⇡ (�,⌫) =⌫lex(⌫, �⌫dN

)

where
 �⌫dN is defined as follows: w

 �⌫dNw0 iff w0 ⌫dN w.
Like the ⌃-inverted assignment, the inverted projective

assignment, � 7! �⌫dN , is not structure preserving. This
is because the reversing of the total preorders (on single-
profiles) over WP .

Now we present some families of complete merging oper-
ators built through some of merging operators defined above.
Except for the linearized projective operators, all of these
ES basic merging operators are new. In order to define them,
we will considerer a fixed linear order � over WP . Let us
note the following:
Observation 2 If � 7!⌫� is an assignment, we have that
⌫��=⌫lex(⌫�,�) is a linear order over WP , for every epis-
temic profile � in P(S, E). Thus, the new assignment
� 7!⌫�� actually is a linear assignment (that is not struc-
ture preserving). Moreover, from Theorem 1 we have that
the following is indeed a complete ES basic merging opera-
tor:

r�(�,⌫) =⌫lex(⌫,⌫��) (5)
The first family of complete operators that we present is

a linearizing of the sum operator. These operators are called
linearized sum ES basic merging operators (linearized sum
operators in short).
Linearized sum ES basic merging operator:

r⌃�(�,⌫) =⌫lex(⌫,⌫⌃�
�)

where ⌫⌃�
� =⌫lex(⌫⌃

�,�).
The operators in the following family of complete opera-

tors are called linearized projective ES basic merging opera-
tors (linearized projective operators in short). Each operator
in this class is the linearized of a projective operator.

Linearized projective ES basic merging operator:

r⇡�(�,⌫) =⌫lex(⌫,⌫�dN)

where ⌫�dN
=⌫lex(⌫dN

,�).
Other linearized variants of the sum and projective op-

erators are those obtained by forcing a fixed interpretation
in the top of the output from their linear assignment. These
operators are called impose-linearized operators, and are in-
troduced for the first time in this work. In order to define
them let us consider a fixed interpretation w⇤ in WP .

The first impose-linearized operator to be presented is the
impose-linearized sum ES basic merging operator (impose-
linearized sum operator in short).
Impose-linearized sum ES basic merging operator:

r⌃w⇤�
(�,⌫) =⌫lex(⌫,⌫⌃w⇤�

�)

where ⌫⌃w⇤�

� is defined as follows: max(⌫⌃w⇤�

�) = {w⇤}
and ⌫⌃w⇤�

� �WP\{w⇤}=⌫⌃�
� �WP\{w⇤}.

Another impose-linearized operator that we present is
the impose-linearized projective ES basic merging operator
(also called impose-linearized projective operator in short).
Impose-linearized projective ES basic merging operator:

r⇡w⇤�
(�,⌫) =⌫lex(⌫,⌫w⇤�

dN
)

where ⌫w⇤�
dN

is defined as follows: max(⌫w⇤�
dN

) = {w⇤}
and ⌫w⇤�

dN
�WP\{w⇤}=⌫�dN

�WP\{w⇤}.
Since these operators are strongly defined through their

linear assignments, namely, impose-linearized sum assign-
ments, � 7!⌫⌃w⇤�

� , and impose-linearized projective as-
signments, � 7!⌫w⇤�

dN
, these operators are actually complete

ES basic merging operators.
We leave the reader the task of extracting some interre-

lations between the properties. It is interesting to observe
that we can see in Table 1 that the converse of Theorem 4
doesn’t hold. Actually, the ⌃-pseudoprojective operator is
a weak dictatorial and non-imposed operator. However, it is
manipulable with respect to the precise-leximax lifting.

Concluding remarks and perspectives

The framework presented here is a generalization of the
propositional logic merging framework. The only postulate
that we do not consider from that framework is IC4.

We have established general results of manipulability for
ES merging operators. One very interesting feature of our
approach is that it gives interesting instantiations of the Ma-
nipulability Theorem (Theorem 4) for different representa-
tions of epistemic states. Thus, this applies to Ordinal Con-
ditional Functions, rational relations, and of course total pre-
orders. However, with the representation of epistemic states
as formulas, our results do not hold because it is impossible
to have Standard Domain in presence of a good representa-
tion of beliefs, namely the Maximality Condition [cf. Mata
Díaz and Pino Pérez (2017)]. This fact highlights the neces-
sity of using complex epistemic states if we want to have
properties like (ESF-SD).

Theorem 4 can be seen as a weak version of Barberà-
Kelly’s Theorem [cf. Leal and Pino Pérez (2017)] in the
framework of the epistemic merging. It would be interest-
ing to investigate if a complete version of Barberà-Kelly’s
Theorem holds in this epistemic framework.

An interesting open question is to give a complete char-
acterization of the operators which are strategy-proof. A fu-
ture work is to investigate, in the framework of logic based
merging, other notions of manipulability coming from So-
cial Choice Theory.

Acknowledgments

Thanks to the CDCHTA-ULA for its financial support
through the Project N� C-1855-13-05-A.

References

Arrow, K. 1963. Social choice and individual values. Yale
University Press.
Barberà, S.; Bossert, W.; and Pattanaik, P. K. 2004. Rank-
ing sets of objects, volume 2 of Handbook of Utility Theory.
Kluwer Publisher. chapter 17, 893–978.
Barberà, S. 1977. Manipulation of social decision functions.
J. Econom. Theory 15(2):266–278.
Benferhat, S.; Konieczny, S.; Papini, O.; and Pino Pérez, R.
2000. Iterated revision by epistemic states: Axioms, seman-
tics and syntax. In Horn, W., ed., ECAI, 13–17. IOS Press.
Brandt, F., and Brill, M. 2011. Necessary and sufficient con-
ditions for the strategyproofness of irresolute social choice
functions. In Proceedings of the 13th Conference on Theo-
retical Aspects of Rationality and Knowledge (TARK-2011),
Groningen, The Netherlands, July 12-14, 2011, 136–142.
Brandt, F. 2011. Group-strategyproof irresolute social
choice functions. In IJCAI 2011, Proceedings of the 22nd
International Joint Conference on Artificial Intelligence,
Barcelona, Catalonia, Spain, July 16-22, 2011, 79–84.
Campbell, D. E., and Kelly, J. S. 2002. Impossibility the-
orems in the arrovian framekork. In Arrow, K. J.; Sen,
A. K.; and Suzumura, K., eds., Handbook of Social Choice
and Welfare, Volume 1 (Handbooks in Economics). North-
Holland. 35–94.
Chopra, S.; Ghose, A. K.; and Meyer, T. A. 2006. Social
choice theory, belief merging, and strategy-proofness. In-
formation Fusion 7(1):61–79.
Darwiche, A., and Pearl, J. 1997. On the logic of iterated
belief revision. Artificial intelligence 89:1–29.
Dietrich, F., and List, C. 2007. Strategy-proof judgment
aggregation. Economics and Philosophy 23:269–300.
Dubois, D.; Prade, H.; and Lang, J. 1994. Possibilistic
logic. In D.M. Gabbay et al., ed., Handbook of Logic in
Artificial Intelligence and Logic Programming, volume 3.
Oxford, UK: Oxford University Press. 439–513.
Everaere, P.; Konieczny, S.; and Marquis, P. 2007. The
strategy-proofness landscape of merging. Journal of Arti-
ficial Intelligence Research (JAIR) 28:49–105.
Fishburn, P. C. 1972. Even-chance lotteries in social choice
theory. Theory and Decision 3(1):18–40.

Gärdenfors, P. 1976. Manipulation of social choice func-
tions. Journal of Economic Theory 13(2):217 – 228.
Gibbard, A. 1973. Manipulation of voting schemes: A gen-
eral result. Econometrica 41(4):587–601.
Grossi, D., and Pigozzi, G. 2014. Judgement Agrgregation:
A Primer. Morgan & Claypool Publishers.
Kelly, J. S. 1977. Strategy-proofness and social choice func-
tions without singlevaluedness. Econometrica 45(2):439–
446.
Kelly, J. S. 1978. Arrow impossibility theorems. New York
Academic Press.
Konieczny, S., and Pino Pérez, R. 1999. Merging with in-
tegrity constraints. In Hunter, A., and Parsons, S., eds., ESC-
QARU, volume 1638 of Lecture Notes in Computer Science,
233–244. Springer.
Konieczny, S., and Pino Pérez, R. 2002. Merging informa-
tion under constraints: A logical framework. J. Log. Comput.
12(5):773–808.
Konieczny, S., and Pino Pérez, R. 2005. Propositional belief
base merging or how to merge beliefs/goals coming from
several sources and some links with social choice theory.
European Journal of Operational Research 160(3):785–
802.
Konieczny, S., and Pino Pérez, R. 2011. Logic based merg-
ing. J. Philos. Logic 40(2):239–270.
Konieczny, S., and Pino Pérez, R. 2013. Confluence op-
erators and their relationships with revision, update and
merging. Annals of Mathematics and Artificial Intelligence
69(1):73–101.
Konieczny, S.; Lang, J.; and Marquis, P. 2004. DA2 merg-
ing operators. Artificial Intelligence 157(1-2):49–79. Non-
monotonic Reasoning.
Leal, J., and Pino Pérez, R. 2007. A notion of manipulability
based on lifting preferences. Notas de Matemáticas 3(1):73–
94.
Leal, J., and Pino Pérez, R. 2017. A weak version of
Barberà-Kelly’s theorem. Revista Colombiana de Matemáti-
cas 51(2):173–194. In press.
Mata Díaz, A., and Pino Pérez, R. 2011. Logic-based fusion
of complex epistemic states. In Liu, W., ed., ECSQARU,
volume 6717 of Lecture Notes in Computer Science, 398–
409. Springer.
Mata Díaz, A., and Pino Pérez, R. 2017. Impossibility in
belief merging. Artificial Intelligence 251:1 – 34.
Satterthwaite, M. A. 1975. Strategy-proofness and arrow’s
conditions: Existence and correspondence theorems for vot-
ing procedures and social welfare functions. Journal of Eco-
nomic Theory 10(2):187–217.
Suzumura, K. 2002. Introduction. In Arrow, K.; Sen,
A. K.; and Suzumura, K., eds., Handbook of Social Choice
and Welfare, Volume 1 (Handbooks in Economics). North-
Holland. 1–32.
Taylor, A. D. 2005. Social Choice and the Mathematics of
Manipulation (Outlooks). Cambridge University Press.

A simple qualitative framework for resource allocation
⇤

Franklin Camacho
1 and Gerardo Chacón

2 and Ramón Pino Peréz
1,3

1School of Mathematical Sciences and Information Techonology, Yachay Tech University, Urcuquí, Ecuador
2Department of Science, Technology and Mathematics, Gallaudet University, Washington DC, USA.

3Departamento de Matemáticas, Facultad de Ciencias, Universidad de Los Andes - Mérida, Venezuela.
fcamacho@yachaytech.edu.ec gerardo.chacon@gallaudet.edu pino@ula.ve

Abstract

We use an algebraic viewpoint, namely a matrix framework
to deal with the problem of resource allocation under uncer-
tainty in the context of a qualitative approach. Our basic qual-
itative data are a plausibility relation over the resources, a
hierarchical relation over the agents and, of course, the pref-
erence that the agents have over the resources. With this data
we propose a qualitative binary relation D between alloca-
tions such that F D G has the following intended meaning:
the allocation F produces more or equal social welfare than
the allocation G. We prove that there is a family of allocations
which are maximal with respect to D. We prove also that there
is a notion of simple deal such that optimal allocations can be
reached by sequences of simple deals. Finally, we introduce
some mechanism for discriminating optimal allocations.

Keywords: Resource allocation - qualitative optimal alloca-
tions - qualitative social welfare.

Introduction

The task of distribution of a divisible or indivisible set of
goods among a set of agents is an important issue at the
crossroads of many areas of knowledge. This has been stud-
ied mainly in Economics. The mathematical models of fair
distributions, in particular when the goods are divisible, have
been studied by some mathematicians and economists such
as Banach and Steinhaus (Steinhaus 1948; 1949) before
the middle of the Twentieth century and by Brams, Tay-
lor, Zwicker and others towards the end of the past century
(Brams, Taylor and Zwicker 1994; Brams and Taylor 1995;
Brams 1995; Brams, Taylor and Zwicker 1997) (for a good
survey see (Brams and Taylor 1996)). Some axiomatic anal-
ysis about resource allocation problems have been done
by Moulin, Thomson and Beviá among others(Moulin and
Thomson 1997; Thomson 2011; Beviá 1996). In more recent
years the mathematical models of satisfactory distributions
have occupied different communities of researchers besides
economists. Among them, computer scientists working in
the area of Artificial Intelligence and Multi-agent Systems,
see for instance the works of Sandholm (Sandholm 1998;
1999), Endriss et al. (Endriss et al. 2006) and Chevaleyre et

⇤The third author is supported by the Project CDCHTA-ULA
C-1855-13-05-A.

al. (Chevaleyre et al. 2007; Chevaleyre, Endriss, and Maudet
2017).

The problem concerning this paper is the distribution of
a finite set of indivisible goods (resources) into a finite set
of individuals (agents). This is known as the problem of re-
source allocation. There are many concerns about this prob-
lem. The first one is how to consider a determined allocation
satisfactory. To deal with this aspect some concepts of social
welfare are used, most of them coming from aggregation
of numerical functions of individual utility (Moulin 1988;
Endriss et al. 2006). Thus, the notion of optimal allocation
arises naturally as the one producing the maximal social wel-
fare.

Another important aspect studied is the rationality of ne-
gotiation between agents in order to reach better resource
allocations. Again here the notion of being better is closely
connected to the improvement of the social welfare (Sand-
holm 1998; Endriss et al. 2006). From the algorithmic point
of view it is important that these negotiations be simple and
that any sequence of these simple negotiations negotiation
processes end in an optimal allocation.

In this work we continue an investigation of these prob-
lems in which we don’t use numbers. That is, we propose a
qualitative notion of preference between the allocations that
is based only on the knowledge of the set of resources that
agents desire, a plausibility relation between set of resources
which encodes the uncertainty, and a hierarchical relation
between agents. Let us give an example of simple ideas we
want to capture.
Example 1 Suppose there are three research teams in a
new Artificial Intelligence Center of an University Computer
Science Department. The teams are working in Knowledge
Representation, Robotics and Natural Language Processing,
respectively. There are two candidates to realize PhD stud-
ies in this AI Center. The first one, John -a brilliant one-, has
interesting job offers in Google and in Face Book. Thus, it is
less plausible that he remains at the University for the PhD
studies. The other candidate, Peter, doesn’t like the work en-
vironment of private companies. He prefers, for sure, the
Universities scholar environment. In any case both students
are goods in the three topics developed in the center.

The Knowledge Representation Team would have Peter as
PhD student; the Robotics and the Natural Processing Lan-
guage Teams would like both students. At the moment of the

decision, the team working in Natural Language Process-
ing has 15 PhD students; the team working in Robotics has
6 PhD students and the team working in Knowledge rep-
resentation has 1 student. In a Council of the Center, in
order to create a balanced development of the teams and
the research topics, some priorities have been established.
Thus, the Knowledge Representation Team is the one hav-
ing the first priority for receiving PhD students. After that,
the Robotics Team has the second priority and in the third
place the priority is given to the Natural Processing Lan-
guage Team. All the teams agree about that.

This situation is a typical and simple problem of resource
allocation that we would like to model. There are two re-
sources r1 and r2 (Peter and John, respectively) and three
agents 1, 2 and 3 (the Knowledge Representation Team,
Robotics Team and Natural Language Processing Team, re-
spectively). There is priority relation �h between the agents:
1 �h 2 �h 3 and a plausibility relation between resources
(coding uncertainty): r1 �R r2. With the pieces of informa-
tion we have, a very "natural" resource allocation is to give
the resource r1 to agent 1 and the resource r2 to the agent
2, that is the Knowledge Representation Team (the least fa-
vored team so far) receives Peter (the student having more
chance to come) and the Robotics Team receives John (the
student having less chance to come). In this allocation the
Natural Language Team (the most developed team) will not
receive PhD students.

This work will explain in a precise way why a resource
allocation as one in previous example is good. Actually, we
will propose a notion of qualitative welfare (a relation) for
which the resource allocation of Example 1 is optimal.

In the work of Pino Pérez and colleagues (Pino Peréz,
Varela Montilva and Camacho 2016) three strong hypothesis
were made. First, it was assumed that there was a linear or-
der over the resources. Second, that the plausibility relation
between the resources was the possibilistic relation associ-
ated to this linear order. Third, it was supposed that there was
a linear order between agents encoding a hierarchy between
them. In this work we generalize these three assumptions.
We suppose now that the relation between the resources and
the relation between the agents are total preorders a more
general natural structure for encoding preferences and eve
uncertainty in a qualitative way. We suppose also that the
plausibility relation between the sets of resources is a lifting
(an extension, see (Barberà, Bossert, and Pattanaik 2004)) of
the relation between the resources with very few properties.

With these tools we use the dominance plausible rule -a
sort of qualitative expected utility introduced by Dubois et
al. (Dubois et al. 2002; Dubois, Fargier, and Perny 2003)- in
order to compare two allocations. We show with easy matri-
cial representations that there is a family of optimal alloca-
tions. We propose a notion of simple rational deal and we
prove that we can reach optimal allocations by sequences of
simple rational deals.

This work is structured as follows. Section Preliminaries
contains the basic notions. Section Classifying allocations
contains the notion of preference between allocations based
on a plausibility relation between sets of resources which

in turn is based on a qualitative notion of social welfare.
Section Simple and rational deals is devoted to the notion
of simple resource interchange guided by the relationships
between the agents. Section Good allocations is devoted to
define a class of resource allocations considered as well be-
haved and to see that they can be reached by sequences of
simple rational deals. In Section Optimal resource alloca-
tions we see that good resource allocations are, indeed, op-
timal with respect to the notion of qualitative welfare. Sec-
tion Discriminating good allocations is devoted to give a
method to discriminate optimal good allocations. We finish
with a section in which we make some concluding remarks
and present some lines of future work.

Preliminaries

In this section, we state the preliminary concepts and nota-
tions that we will use throughout the article. Fix a nonempty
set X and a binary relation ⌫ defined on X . The strict rela-
tion � associated to ⌫ is defined as

a � b , [(a ⌫ b) ^ ¬(b ⌫ a)], (1)

the indifferent relation w is defined as

a w b , [(a ⌫ b) ^ (b ⌫ a)]. (2)

If A ✓ X , we denote the maximal1 elements of A as
max(A) and analogously we denote the minimal elements
of A as min(A).

If X is finite, X = {x1, · · · , xn}, the relation ⌫ defines
a relation matrix as:

Xij =

⇢
1, ifxi ⌫ xj ;
0, otherwise. (3)

Note that the previous matrix depends upon the order of
the elements of X . But any reordering of the elements of X
has an associated relation matrix with respect to ⌫ closely
related to the first matrix. More precisely, if (Xij)n⇥n and
(Yij)n⇥n are matrices associated to ⌫ with two different or-
ders of X , then there exists a permutation P , of the identity
matrix In of orden n, such that

(Yij)n⇥n = P (Xij)n⇥n

A relation is a total pre-order on X if it is total and tran-
sitive. A relation is a linear order if it is irreflexive and tran-
sitive.

We start by the defining the two main sets to be studied.
These are the set of agents and the set of resources. We will
denote the set of agents by A which is defined as a finite,
nonempty set with |A| = q, i.e, A = {1, 2, · · · , q}. We will
assume there exists a total pre-order ⌫h defined on A. Given
two agents i, j 2 A, the symbol i ⌫h j will be interpreted
as: agent i has a higher or equal hierarchy than agent j.
The strict relation �h associated to ⌫h defined as (1) can be
thought as: agent i has greater hierarchy than agent j. The

1The maximal elements of A with respect the relation ⌫ are
defined as the set {a 2 A : 6 9b such that b � a}. Analogously, the
minimal elements of A with respect the relation ⌫ are defined as
the set {a 2 A : 6 9b such that a � b}.

indifferent relation ⇠h defined as in (2) can be interpreted
as: agent i has the same hierarchy as agent j. Sometimes we
will abuse the notation and denote by i 2 A an agent and at
the same time a natural number between 1 and q. A relation
matrix associated to ⌫h, defined as in equation (3) will be
called a hierarchy matrix and denoted by Ah = (aij)q⇥q .

The set of resources will be denoted as R =
{r1, · · · , rk}. We will assume that a total pre-order ⌫R , is
defined on R. The strict and indifferent relations �R and
'R , are defined in similar way as in equations (1) and (2),
respectively. Based on the relation ⌫R we will later define
a binary relation w on the set of subsets of R, denoted as
P(R). Such relation should be a lifting of ⌫R , in the sense
that it should preserve the order ⌫R when restricted to the
the singletons. Such relation will be understood as a ‘plausi-
bility’ relation on P(R).

Once defined the sets A and R, we will assume that each
agent is interested in some resources. This relation can be
recorded in the following matrix of request P = (Pin)q⇥k

that contains the information about the resources each agent
requests.

Pin =

⇢
1, if agent i requests the resource rn;
0, otherwise. (4)

Remark 1 Sometimes, we will refer to a resource r 2 R

without specifying the subindex. In such cases, Pir denotes
the entry of the matrix P in the i-th row and the column
associated to the resource r.

We make the assumptions that the agents either request
or do not request a resource, that this is known beforehand,
and that it is invariant. Also, we assume that an agent does
not have different levels of preference over the resources.
This is a subject that could be addressed in future research.
Under this conditions, we notice that the i�th row of P con-
tains complete information about the resources that agent i
requests, whereas the n�th column determines all the agents
that request the resource rn.

We are now ready to define the main concept of the arti-
cle. A resource allocation is a distribution of the resources
among the agents where each resource is granted to one and
only one agent. We introduce a matrix notation that will be
used throughout the rest of the article.
Definition 1 Let A and R be nonempty sets, with k = |R|

and q = |A|. A resource allocation is a matrix

F = (fin)q⇥k

such that for each 1 n k, there exists a unique 1 i
q for which fin = 1 and fjn = 0 for j 6= i.
Notice that if fin = 1 then it is understood that agent i is the
only one who was granted the resource rn.

Similarly to the notation used with the matrix of requests,
we will write fir to denote the entry of the matrix F cor-
responding to the i-th row and the column associated to the
resource r.

Sometimes we will use a set of resource allocations
F1, . . . ,Fm. In such case, we will use the notation
Fl = (f l

in)q⇥k when necessary.

Given a fixed resource r 2 R, we define a “priority rela-
tion” on A associated to r in the following way: agent i has
a higher priority than agent j if and only if agent i has equal
or grater hierarchy than agent j and agent i requests the re-
source r, or agent i does not have equal or greater hierarchy
than agent j and agent j does not request the resource r.

Definition 2 Given r 2 R, the priority matrix associated to
r, is the matrix (arij)q⇥q , where

arij = aijPir + (1� aij)(1� Pjr) (5)

Notice that each term of equation (5) is either one or zero.
If aijPir = 1 then agent i has a higher hierarchy than agent
j and agent i requests resource r. On the other hand, if (1�
aij)(1 � Pjr) = 1, then aij = 0 and Pjr = 0. This implies
agent i doest not have a higher hierarchy than agent j and
agent j does not request resource r. This definition captures
that on (Pino Peréz, Varela Montilva and Camacho 2016)
where the hierarchy order were assumed to be a linear order.

Classifying allocations

As a first step in classifying resource allocations, we want to
define an equivalence relation among allocations. Then we
will define the set where one resource allocation dominates
another.

Definition 3 Let r 2 R and let c and c⇤ be two canonical
vectors of size q. Suppose that i, j 2 A are such that the
i-th entry of c is equal to 1 and the j-th entry of c⇤ is equal
to 1. We will say that c and c⇤ are r-equivalent, denoted as
c ⌘r c⇤ if agents i and j have the same hierarchy and the
same preference over the resource r. In other words,

c ⌘r c⇤ , (aij = aji = 1) ^ (Pir = Pjr) (6)

Let F and G be two resource allocations and define the
set of all non-r-equivalent columns as

DFG = {r 2 R : cFr 6⌘r cGr } (7)

where cFr and cGr denote the columns of F and G, respec-
tively, associated to the resource r. Notice that DFG =
DGF .

We will define a set where the resource allocation F dom-
inates the resource allocation G. Roughly, this will be the
set of resources that are assigned under F to an agent with
higher priority than if assigned under G.

Definition 4 Let F = (fin) and G = (gin) be two resource
allocations. The set [F � G] where F dominates G, is de-
fined as:

[F � G] = {r 2 DFG : arij = 1, where fir = 1 and gjr = 1}
(8)

In other words, r 2 [F � G] if and only if for the unique
agents i and j such that fir = 1 and gjr = 1 it holds that
arij = 1 and the columns (fir)1iq and (gir)1iq are not
r-equivalent.

Once we have defined dominant sets as subsets of R, we
will define a way of comparing resource allocations. The
idea is to capture a notion of social welfare (Moulin 1988;

2003; Endriss et al. 2006) used to compare allocations via a
notion of qualitative welfare. The notion we use next is in-
spired of the dominance plausible rule proposed by Dubois
el al. (Dubois et al. 2002; Dubois, Fargier, and Perny 2003).

We are going to consider a relation w on the set P(R)
which is a lifting of ⌫R , that is for any resources r, r0 we
have

{r} w {r0} iff r ⌫R r0

The idea is that the relation w encodes the plausibility re-
lation overs subsets of resources given by the plausibility
relation ⌫R between resources in the same way that we can
construct a finite probability measure over events if we know
the probability on states.

Definition 5 Let w a plausibility relation on the set P(R).
We say that the resource allocation F produces more social
welfare than a resource allocation G, denoted as F D G, if

[F � G] w [G � F]. (9)

Moreover, we will say that F B G if F D G and ¬(G D F).

Notice that the previous definition depends on a binary re-
lation on P(R) that, for now, could be an arbitrary lifting of
⌫R . A similar approach was studied in (Pino Peréz, Varela
Montilva and Camacho 2016) where a strict possibilistic re-
lation was considered for the case in which ⌫R was a linear
order. Indeed our relation w will be an extension (see (Bar-
berà, Bossert, and Pattanaik 2004) for a study of the ways to
do extensions and their properties) of the relation ⌫R having
very few properties.

The relation B is capturing our notion of qualitative wel-
fare under uncertainty, the uncertainty of truly disposing of
all resources. The fact FBG has to be understood as follows:
it is more plausible that the allocation F produces more wel-
fare than the allocation G.

We are ready to define the notion of optimality among
resource allocations. Notice that such definition will depend
on the binary relation w.

Definition 6 Given a binary relation w on the set P(R),
which is a lifting of ⌫R . We will say that a resource alloca-
tion F

⇤ is optimal if F⇤ D G for every resource allocation
G.

Here it is relevant to say that optimal resource allocations
need not to be unique since the previous definition does not
distinguish among equivalent allocations.

Simple and rational deals

In order to search for an optimal resource allocation, we will
first introduce negotiation concepts. By a deal we will under-
stand a pair of allocations that are equal except for only one
column. We will define the concept in a more rigorous way
by making use of permutation matrices.

Denote as Iq the identity matrix of size q⇥ q. A permuta-
tion matrix Eij is the result of interchanging the rows i and
j of Iq . Clearly, Eij = Eji .

Definition 7 Given two resource allocations F and G such
that F 6= G, we say that the pair (F ,G) is a simple deal
if there exists a unique r 2 R and a permutation matrix

Eij 6= Iq , such that if F = [c1, · · · , cr�1, cr, cr+1 · · · ck],
where c1, . . . , ck denote the columns of F , then

G = [c1, · · · , cr�1, Eijcr, cr+1 · · · ck].

Lemma 1 If (F ,G) is a simple deal, then the permutation
matrix Eij is unique.

Proof: Suppose that F = (fin)q⇥k, and G = (gin)q⇥k are
two resource allocations such that (F ,G) is a simple deal,
then there exists a unique resource r such that F and G differ
only in the column associated to resource r. Let i 2 A and
j 2 A be such that fir = 1 and gjr = 1, then fi⇤r = 0 for
all i⇤ 6= i and gj⇤r = 0 for all j⇤ 6= j.

Now if Ei⇤j⇤ , is another permutation matrix, with i⇤ 6= i
or j⇤ 6= j, then either fi⇤r = 0 or gj⇤r = 0 and consequently
Ei⇤j⇤cr 6= Eijcr, where cr is the r-th column of F .

Using the notation of the previous lemma, we will say
that the permutation matrix Eij represents the simple deal
(F ,G) associated to the resource r 2 R.

Definition 8 Given two resource allocations F and G, we
will say that (F ,G) is a rational deal if it is a simple deal
represented by the permutation matrix Eij , and if one of the
following conditions holds.

(aji = 1) ^ (Pjr = 1) (10)
or

(aij = 1) ^ (8t, (ati = 1) Ptr = 0)) (11)

Condition (10) means that agent j has a higher or equal hi-
erarchy than i and moreover, requests resource r. Condition
(11) says that agent i has a higher or equal hierarchy than j,
that i does not request the resource r and no other agent t
with higher or equal hierarchy as i requests the resource r.

We have to note that in our setting there is not compen-
sation when a deal is realised. Thus our notion of rational
deal can be seen more as an altruistic notion, a cession: an
agent i cedes a resource r to an agent j because the agent
j needs more this resource2. As a matter of fact, the hier-
archical relation between the agents, ⌫h, tries to code this
necessity. Thus, for instance, in Example 1, the relation ⌫h

encodes this necessity. For instance, 1 �h 2 means that the
Knowledge Representation Team needs more a PhD student
than the Robotics Team.

Definition 9 A sequence of resource allocations
F1,F2, . . . ,Fm is called sequence of rational deals if
for every 1 i m � 1, the pair (Fi,Fi+1) is a rational
deal.

The following lemma and the corollary that follows will
be needed in Section Optimal resources allocation.

Lemma 2 Suppose that the permutation matrices Eij y
Ei⇤j⇤ represent, respectively, the rational deals (F1,F2)

2Of course, from an abstract point of view, the relation ⌫h

could encode a power relation and not a necessity relation. In such
a case the notion of welfare between allocations is not very fair: a
"rational deal" becomes an expropiation act and the model, instead
of altruistic becomes a rapacity model. Therefore, our model is in-
teresting when the hierarchical relation beteens agents is altruistic.

and (F2,F3) associated to the same resource r 2 R. Then
the product Eij⇤ = Ei⇤j⇤Eij also represents a rational deal
associated to r.

Proof: We will show that the matrix E = Ei⇤j⇤Eij repre-
sents the rational deal (F1,F3) associated to r. First, notice
that i⇤ = j and E = Eij⇤ .

Suppose that F1 = [c1, . . . , cr, . . . , ck], then
since (F1,F2) and (F2,F3) are simple deals, we
can write F2 = [c1, . . . , Eijcr, . . . , ck] and F3 =
[c1, . . . , Ei⇤j⇤Eijcr, . . . , ck] = [c1, . . . , Eij⇤cr, . . . , ck]. In
consequence, (F1,F3) is a simple deal.

It remains to show that one of the following conditions
hold:

(aj⇤i = 1) ^ (Pj⇤r = 1) (12)
or

(aij⇤ = 1) ^ (8t, (ati = 1) Ptr = 0)). (13)
But since (F1,F2) and (F2,F3) are rational deals, we have

1. Eij represents (F1,F2) and one of the following condi-
tions hold:

(a) (aji = 1) ^ (Pjr = 1), or
(b) (aij = 1) ^ (8t, (ati = 1) Ptr = 0)).

2. Ei⇤j⇤ represents (F2,F3) and one of the following con-
ditions hold:

(a) (aj⇤i⇤ = 1) ^ (Pj⇤r = 1), or
(b) (ai⇤j⇤ = 1) ^ (8t, (ati⇤ = 1) Ptr = 0)).

If (1a) and (2a) hold, then aji = 1 and aj⇤i⇤ = 1 and
since the relation ⌫h is transitive and i⇤ = j, then aj⇤i = 1.
Moreover, from (2a), we have that Pj⇤r = 1 and conse-
quently (12) holds.
Now suppose that (1b) and (2b) hold. Again by transitivity
of ⌫h we have that aij⇤ = 1. Moreover, condition (2b) im-
plies (13).
If (1a) and (2b) hold, then Pjr = 1 and Pi⇤r = Pjr = 0
which is a contradiction.
Similarly, if (1b) and (2a) hold, then aj⇤i = 1 and Pj⇤r = 1
and taking t = j⇤ in (2a), we have that Pj⇤r = 0. Again a
contradiction.
Hence, neither conditions (1a) and (2b) nor conditions (1b)
and (2a) occur at the same time. This finishes the proof.

The previous lemma can be generalized using mathemat-
ical induction to obtain the following result.

Corollary 1 Suppose that the permutation matri-
ces Ei1j1 , Ei2j2 , . . . , Eimjm represent consecutive
rational deals associated to the same resource r.
Then j1 = i2, j2 = i3, · · · , jm�1 = im, and
Ei1jm = Eimjm · · ·Ei2j2Ei1j1 is a permutation ma-
trix that also represents a rational deal associated to the
resource r.

Good allocations

Our goal will be to construct an algorithm to find optimal
resource allocations. Before, we will define what “good” re-
source allocations are.

Definition 10 Let F = (fin)q⇥k be a resource allocation
and fix r 2 R. Suppose i 2 A is the only agent such that
fir = 1. We will say that the column cr = (fir)1iq , asso-
ciated to the resource r, is in good position if

(Pir = 1) ^ (8t(ati = 1 ^ ait = 0)) Ptr = 0)) (14)

or
(8t(Ptr = 0)) ^ (i 2 min(A)) (15)

where min(A) = {t 2 A : ait = 1, 8i 2 A}.
We will say the F is a good resource allocation if all its

columns are in good position.
Condition (14) can be interpreted as: Agent i requests the

resource r and every other agent with higher hierarchy does
not request it. Condition (15) says that agent i has the lowest
possible hierarchy and no agents requests the resource r. A
good resource allocation will then be an allocation in which
each resource is either assigned to an agent that requests it
and has the higher hierarchy among those that request the
resource, or to an agent of the lowest hierarchy if no agent
requests the resource.

The following lemma says that a column that is in good
position cannot be further “improved” by using a rational
deal.
Lemma 3 Suppose that the r-th column cr of a resource
allocation F is in good position and that there exists a re-
source allocation G such that (F ,G) is a rational deal as-
sociated to cr, represented by the matrix Eij . Then cr and
Eijcr are equivalent.
Proof: Suppose F = [c1, . . . , cr, · · · , ck], we will prove
that aij = 1 = aji and Pir = Pjr. Since ⌫h is total we
consider the following two cases:

If aji = 1, then condition (10) holds and consequently
we have that Pjr = 1 and condition (15) does not hold.
But since cr is in good position, then (14) holds and con-
sequently Pir = 1 and aij = 1. Hence cr and Eijcr are
r-equivalent.

Condition aij = 1 and aji = 0 is impossible since if this
were the case, then condition (11) holds and consequently
Pir = 0. Moreover i /2 min(A). This two facts contra-
dict conditions (14) and (15), respectively. This finishes the
proof.

The following lemma says that if the column involved in
a simple deal turns out to be in good position, then the deal
must be rational.
Lemma 4 Suppose F and G are two resource allocations
and that (F ,G) is a simple deal that converts column cr to
Eijcr. If Eijcr is in good position and it is not equivalent to
cr, then (F ,G) is a rational deal.
Proof: We need to show that one of the conditions (10)
or (11) hold. We will use again the totality of ⌫h and
consider cases. Suppose that aji = 1, then we have that
j 62 min(A) since otherwise aij = 1 and by condition (15)
Pir = 0 = Pjr, contradicting the hypothesis that Eijcr and
cr are not equivalent. Hence, condition (14) holds and con-
sequently Pjr = 1 and (10) holds.

Now suppose that aij = 1 and aji = 0, if condition (15)
holds, then in particular we have that condition (11) holds.

If on the contrary, condition (14) holds, then Pjr = 1 and
Pir = 0 and moreover, for every t 2 A such that ati = 1
we have by transitivity that atj = 1 and ajt = 0 which, by
condition (14) implies that Ptn = 0 proving that condition
(11) holds.

Remark 2 The converse of the previous lemma is not gener-
ally true. That is, the resulting column involved in a rational
deal, needs not to be in good position.
Lemma 5 If F = [c1, · · · , cr, · · · ck] is resource allocation
such that the column cr is not good position, then there exists
a rational deal which transforms it in a good column.
Proof: Let cr the column in not good position. We want to
find a resource allocation G such that (F ,G) is a rational deal
associated to the resource in the position r and that leaves cr
in good position.
Let i 2 A be the only agent such that fir = 1. Define

Ir = {t 2 A : t 6= i ^ Ptr = 1}

If Ir = ;, let j be any element in min(A). If Ir 6= ;, let j
be any element in max(Ir).
Now, if F = (fin)q⇥k = [c1, · · · , cr · · · , ck], let’s define
the resource allocation G = [c1, · · · , Eijcr · · · , ck]. Clearly
(F ,G) is a simple deal. To show that it is actually a rational
deal, we will show that Eijcr is in good position, and since
it is not equivalent to cr, and then use lemma 4.
We will consider each case, Ir = ; and Ir 6= ;, separately:
Suppose first that Ir = ;, then 8t 2 A, t 6= i we have
that Ptr = 0. Thus Pir = 0 since otherwise condition (14)
would hold and cr would be in good position, contradicting
the hypothesis. Consequently, for every t 2 A, Ptr = 0 and
since j 2 min(A), then condition (15) holds. Hence, Eijcr
is in good position.
Now suppose that Ir 6= ;, then Pjr = 1 and j 2 max(Ir).
Consequently, if t 2 A is such that t 6= i, atj = 1 and ajt =
0, we have that j /2 Ir and therefore Ptr = 0. Moreover, it
can not happen that aij = 1 and aji = 0 and Pir = 1 since
the maximality of j will then imply that Ptr = 0 for every
t 2 A such that ati = 1 but this implies that condition (14)
holds for i reaching a contradiction. Thus, condition (14)
holds for j and hence Eijcr is in good position.

The following theorem shows that any resource allocation
can be converted into a good resource allocation by means
of a finite sequence of rational deals. The proof of the theo-
rem gives us an algorithm that will later result in an optimal
resource allocation as we will see in Corollary 2.
Theorem 1 Suppose F is not a good resource allocation
and let l be the number of columns of F that are not in
good position. Then there exists a sequence of rational deals
F1, · · · ,Fl+1 such that F1 = F and Fl+1 is a good alloca-
tion.
Proof: Let C = {cn1 , · · · , cnl}, 1 n1 < · · · < nl

k, the set of columns that are not in good position of F .
Obviously, l � 1. For cn1 , define

F1 = F = (c1, · · · , cn1 , · · · , ck).

By Lemma 5, there exists a rational deal (F1,F2) associated
to cn1 such that

F2 = (c1, · · · , Ei1j1cn1 , · · · , ck)

and Ei1j1cn1 is in a good position. If l = 1, then F2 is a
good allocation and this finishes the proof.
Now, suppose that l > 1. Using the same reasoning, con-
struct the resource allocations F3, . . . ,Fl+1 until a good re-
source allocation is reached.

Optimal resource allocations

In this subsection we will show that good resource alloca-
tions are actually optimal under the Definition 6 as long as
the relation w is positive. First we need two technical lem-
mas.

Lemma 6 Let F and G be two resource allocations, then

DFG = [F � G][[G � F] and [F � G]\[G � F] = ;

Proof: If DFG = ;, then [F � G] = ; = [G � F]. Suppose
that DFG 6= ;. It is clear that [F � G] [[G � F] ✓ DFG .
It remains to show that DFG ✓ [F � G] [[G � F]. Let
r 2 DFG and let i, j 2 A be the only agents such that
fir = 1 = gjr.

Suppose first that aij 6= aji, then from equation (5) we
have that either

arij = Pir and arji = 1� Pir

or
arij = 1� Pjr and arji = Pjr.

In any of these cases, either arij = 1 or arji = 1. Thus,
r 2 [F � G] [[G � F].
Suppose now that aij = aji. Then since r 2 DFG we have
that Pir 6= Pir. Again by equation (5) we have that either

arij = Pir and arji = Pjr

or
arij = 1� Pjr and arji = 1� Pir.

And since Pir 6= Pjr, the previous statement implies that
r 2 [F � G] or r 2 [G � F]. Hence, DFG ✓ [F �

G] [[G � F].
On the other hand, suppose that r 2 [F � G] \ [G � F].

Then r 2 DFG and there exist agents i, j 2 A such that
fir = 1 = gjr, and arij = 1 = arji.

From equation (5), exactly one of the following two pos-
sibilities happens:

aijPir = 1 = ajiPjr

or

(1� aij)(1� Pjr) = 1 = (1� aji)(1� Pir)

In both cases, aij = aji and Pir = Pjr contradicting the
hypothesis that clr 6⌘r cpr . Hence, [F � G] \ [G � F] = ;.

Proposition 1 Let F1,F1, . . . ,Fn be a sequence of rational
deals. Then for every 1 < p n, we have that D1,p =
[Fp � F1], where D1,p is an abbreviation of for DF1Fp .

Proof: Let 1 < p n be fixed. Clearly,

[Fp � F1] ⇢ D1,p

It remains to show that D1,p ⇢ [Fp � F1]. Let r 2 D1,p

and let i, j 2 A be the only agents such that f1
ir = 1 = fp

jr.
We will show that

arji = 1 = ajiPjr + (1� aji)(1� Pir)

Let l p be the number of rational deals from the
sequence F1,F2, . . . ,Fp associated to the resource r. Let
G1, G2, · · · Gl+1 be the subsequence of rational deals of
F1,F2, . . . ,Fp that involve only the resource r. G1 = F1

and Gl = Fp. Let Ei1j1 , Ei2j2 , · · · , Eiljl be the permuta-
tion matrices that represent the rational deals (G1,G2), · · · ,
(Gl,Gl+1), respectively. Notice that i = i1, j1 = i2, j2 =
i3, · · · , jl�1 = il, and jl = j. Using corollary 1, we get that

Eij = Eiljl · · ·Ei2j2Ei1j1

represents a rational deal associated to r. Thus, by Definition
8, it holds that either

ajiPjr = 1 (16)

or

(aij = 1) ^ (Pir = 0) ^ (8k(aki = 1) Pkr = 0)). (17)

If equation (16) holds, then arji = ajiPjr = 1 and conse-
quently r 2 [Fp � F1].

Let’s suppose equation (17) holds. Since c1r 6⌘r cpr then
either aij 6= aji or aij = aji and Pir 6= Pjr.

If aij 6= aji then aji = 0 and since Pir = 0, then (1 �

aji)(1� Pir) = 1 = arji.
On the other hand, if aij = aji and Pir 6= Pjr, then

aji = 1 and Pir = 1 and consequently, arji = ajiPjr = 1.
In both cases we have that r 2 [Fp � F1].

Thus D1p ⇢ [Fp � F1] and this finishes the proof.

Lemma 7 Suppose G is a good resource allocation and F

is any resource allocation. Then [G � F] = DGF

Proof: It is enough to show that DG,F ⇢ [G � F]. Let
r 2 DG,F and suppose that i, k 2 A are the only agents
such that gir = 1 and fkr = 1.

We want to show that arik = 1 where

arik = aikPir + (1� aik)(1� Pkr) (18)

Case 1: Pir = 1. Then either aik = 1 or aki = 0.
If aik = 1, then pluging in equation (18), we have that
arik = 1.
If aik = 0, then since ⌫h is total, then aki = 1. Now,
since the any column of the allocation G is in good posi-
tion, then condition and Pir = 1, then (14) holds:

(Pir = 1) ^ (8j(aji = 1 ^ aij = 0)) Pjm = 0).

Thus, aki = 1 and aik = 0 imply that Pkr = 0. Plugging
in equation (18), we conclude that arik = 1.

Case 2: Pir = 0. Again using the hypothesis that any col-
umn of G is in good position, condition (15) holds:

8j(Pjr = 0) ^ (i 2 min(A)).

In consequence, Pkr = 0 and aki = 1. Hence Pkr = Pir

and since the r columns in F and G are not equivalent,
then we must have that aik = 0. Pluging in equation 18,
we obtain arik = 1.

This finishes the proof.
The next corollary follows from Lemmas 6 and 7.

Corollary 2 Suppose G is a good resource allocation, then
for every resource allocation F we have that [F � G] = ;.

We are finally ready to prove that good resource alloca-
tions and optimal resource allocations coincide when the bi-
nary relation w is positive in the following sense:

Definition 11 Given a binary relation w defined on P(R),
we say that w is positive if ; w ; and for every set A 2

P(R), with A 6= ; we have that

A w ; ^ ; 6w A.

Theorem 2 Suppose w is positive. Then any good resource
allocation is also an optimal resource allocation and vice
versa.

Proof: Let G be a good resource allocation and F be any
resource allocation, then by Lemma 7 and Corollary 2 we
have that

[G � F] = DGF w ; = [F � G]

and consequently G D F . Thus G is optimal.
Conversely, suppose G not a good resource allocation,

then by Theorem 1 and Proposition 1, there exists a good
resource allocation F such that [F � G] = DFG , conse-
quently [F � G] = ; and by the positivity of w, we have
that F B G. Thus G is not optimal.

Remark 3 For any two optimal resource allocations F and
G it holds that F D G and G D F .

Corollary 3 Suppose w is positive, then for every resource
allocation F there exists an optimal resource allocation F

⇤

such that F⇤ D F .

The following corollary justifies the term “optimal alloca-
tion” in the sense of the relation D.

Corollary 4 Suppose w is positive. Suppose also that G is
an optimal resource allocation and F is a non-optimal re-
source allocation. Then G B F .

Discriminating good allocations

In this section we search to discriminate good allocations.
We use a criterion of local satisfaction to compare the the
good allocations the relation optimal with respect this crite-
rion will be the the allocation locally fair.

In order to understand the problems of lack of discrimina-
tion let us see the following example:

Example 2 Let A = {1, 2, 3} and R =
{r1, r2, r3, r4, r5, r6}. Suppose that all the agents have
equal hierarchy; moreover Agent 3 requests all the re-
sources except excepto r6; Agent 2 requests the resources
r1, r2, r3 and r4 but he doesn’t request r5 nor r6, whereas
agente 1, request the first 3 resources. Then the request
matrix P and the hierarchy matrix Ah are

P =

0

B@

r1 r2 r3 r4 r5 r6
1 1 1 1 0 0 0
2 1 1 1 1 0 0
3 1 1 1 1 1 0

1

CA

Ah =

1 1 1
1 1 1
1 1 1

!

Notice that we can make a partition of R in the sub-
sets {r1, r2 r3}, {r4}, {r5} and {r6}. Any good alloca-
tion distributes the resources {r1, r2, r3} among the agents
{1, 2, 3}; {r4} among the agents {2, 3}; the resource {r5}
to agent 5 and the resource {r6} among the agents {1, 2, 3}.
Now consider the following allocations:

E =

0

@
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1

1

A, F =

0

@
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

1

A,

G =

0

@
1 0 0 0 0 1
0 1 0 1 0 0
0 0 1 0 1 0

1

A, H =

0

@
1 0 0 0 0 0
0 1 0 1 0 1
0 0 1 0 1 0

1

A

Although all four allocations are good, it seems that some
are fairer than others. Indeed, E looks very unfair because
all the resources are allocated to the third agent. For exam-
ple allocation F distributes better the resources than E . If
we now focus only on the subset {r1, r2, r3}, then G and H

have a better local distribution than F . It is then natural to
think that we need a criterion to better distinguish among
good allocations. We will develop local criteria in order to
distinguish good allocations. These local criteria will be ag-
gregate in a social criterion.

Let B the set of good allocations. For each r in R, we
define

A(r) = {j 2 A : 9F = (fin) 2 B such that fjr = 1}
(19)

It is clear that A(r) 6= ;. since otherwise, B = ;. Define
R

⇤ = {s 2 R : Pis = 0, 8i 2 A}, that is, the set of
resources that nobody requests. Notice that for every r 2

R
⇤, A(r) = min(A). If r 62 R

⇤ and i, j 2 A(r) then i
and j request r, and moreover both agents have the same
hierarchy.

On R \R
⇤ we define the equivalence relation ⇠ as

r ⇠ s , A(r) = A(s).

We denote by [r] = {s 2 R \ R
⇤ : A(s) = A(r)} the

equivalence class of r on R \ R
⇤. Suppose that there are l

different classes then

R \R
⇤ = [rm1] [[rm2] [· · · [[rml] (20)

If we put R⇤ = [rml+1], then we have the partition R =
[rm1] [[rm2] · · · [rml] [[rml+1].

Let F = (fin) be an allocation and r 2 R. We will denote
as F[r] the submatrix A(r)⇥ [r] of F composed by the rows
with the agents in A(r) and the columns with the resources
in [r].

For every agent i 2 A(r), the number of resources of [r]
allocated to a i via F is

P
s2[r] fis. Consider the average of

these values:

X(F[r]) =
X

i2A(r)

X

s2[r]

fis
|A(r)|

. (21)

It is easy to see that all good allocations have the same aver-
age on the submatrix A(r)⇥ [r]. Moreover,

X(F[r]) =
|[r]|

|A(r)|
. (22)

We consider now a dispersion measure with respect to this
average denoted var(F[r]) defined as

var(F[r]) =
X

i2A(r)

X

s2[r]

(fis �XF[r]
)2

|A(r)|
, (23)

and we define the dispersion vector of F by

�(F) = (var(F[r1]), var(F[r2]), · · · , var(F[rl+1])). (24)

Using this vector we define a new relation on the set of
good allocations.
Definition 12 Let F and G good allocations. We say that F
gives more local satisfaction than G, denoted F ⌫� G, if for
all i = 1 · · · l + 1 we have (�(G))i � (�(F))i. If for every
G 2 B, we have F �� G, we say that F is locally fair.

We say that F �� G iff F ⌫� G and there exists k such
that (�(G))k > (�(F))k. Whereas F ⇠� G iff for every
i = 1 · · · l + 1 we have (�(G))i = (�(F))i. It is clear that
the relation ⌫� is not a total preorder on B. The following
example illustrates the previous concepts.
Example 3 Let’s go back to example (2) Notice that,
A(rm1) = A(r1) = A(r2) = A(r3) = {1, 2, 3}; A(rm2) =
A(r4) = {2, 3}, A(rm3) = A(r5) = {3} and A(rm4) =
A(r6) = {1, 2, 3}. It is also easy to check that [rm1] =
{r1, r2, r3}, [rm2] = [r4] = {r4}, [rm3] = [r5] = {r5}
and [rm4] = [r6] = {r6}. Using equation (22), we have that
in A(rm1) ⇥ [rm1] the average of any allocation in B is 1;
in A(rm2) ⇥ [rm2] the average is 1/2; in A(rm3) ⇥ [rm3]
the average is 1; whereas in A(rm4)⇥ [rm4] the average is
1/3.

Now by equations (23) and (24) we have the dispersion
vectors.

�(E) = (2, 1/4, 0, 2/9) �(F) = (2/3, 1/4, 0, 2/9)

�(G) = (0, 1/4, 0, 2/9) �(H) = (0, 1/4, 0, 2/9)

Now, according to Definition 12, allocations G and H give
more local satisfaction than F which in turn, gives more
local satisfaction than E . That is, G ⇠� H and F �� E .
Moreover, it can be shown that G and H are locally fair
allocations.

Although the relation �� is not total on B, we will show
that there always exists a locally fair allocation. We will need
the following technical Lemma.
Lemma 8 Let x1, x2, · · · , xn be positive integers. If
nX

i=1

xi = L, there exists a natural number � n � 1, such

that
1

n

nX

i=1

✓
xi �

L

n

◆2

�
(n� �)�

n2
(25)

Proof: For every 1 i n, xi � 1, therefore L � n.
Let ↵ and � be the unique natural numbers such that L =
nX

i=1

xi = n↵+ � with � 2 {0, · · · , n� 1}. Notice that, for

each i, xi = ↵ or xi = ↵ + 1. If xi = ↵ for every i, then
L = n↵. consequently, � = 0 and (25) holds. Now suppose
that there exist m natural numbers such that xi = ↵ + 1. If
m = n then

Pn
i=1 xi = n↵ + n 6= L. Hence, m < n. On

the other hand,

L =
mX

i=1

xi+
nX

i=m+1

xi = m(↵+1)+(n�m)↵ = n↵+m

and therefore, m = �. Now,

1

n

nX

i=1

✓
xi �

L

n

◆2

=

1

n

"
mX

i=1

⇣
↵+ 1� ↵�

m

n

⌘2
+

nX

i=m+1

⇣
↵� ↵�

m

n

⌘2
#
=

1

n

"
mX

i=1

✓
n�m

n

◆2

+
nX

i=m+1

⇣m
n

⌘2
#
=

1

n

m
(n�m)2

n2
+ (n�m)

m2

n2

�
=

m(n�m)

n2

and, since m = �, the equation (25) holds.

Theorem 3 There exists a good allocation F
⇤ that is locally

fair.
Proof: We want to find F

⇤
2 B such that �(F⇤) �(G)

for all G 2 B. Let’s consider the partition of R as in equation
(20).

For each t = 1, . . . , l+1, there exists unique nonnegative
integers ↵t and �t such that

|[rmt]| = |A(rmt)|↵t + �t (26)
with �t 2 {0, 1, . . . , |A(rmt)|� 1}.

For each t 2 {1, . . . l + 1}, choose �t agents in A(rmt).
Let’s say {j1, . . . j�t} ✓ A(rmt).

Let’s choose F
⇤ = (f⇤

in) 2 B such that for each t 2

{1, . . . l + 1},
X

s2[rmt]

f⇤
js =

⇢
↵rt + 1, if j 2 {j1, . . . j�t}

↵rt , if j 2 A(rmt) \ {j1, . . . j�t .}

Now, on each submatrix A(rmt)⇥ [rmt] we have that

X(F⇤
[rt]

) = ↵rt +
�rt

|A(rt)|
and

var(F⇤
[rt]

) = �t
|A(rt)|� �t

|A(rt)|2
.

On the other hand, for every G 2 B and t = 1, . . . , l + 1,
by equations (22) and (23) we have that

var(G[rmt]
) =

1

|A(rmt)|

|A(r)|X

i=1

0

@
X

s2[rmt]

gis �
|[rmt]|

A(rmt)

1

A
2

Finally by Lemma 8,

var(G[rmt]
) � var(F ⇤

[rmt]
)

and consequently, for all G 2 B

�(F⇤) �(G)

The following result tells us that for the good allocations,
the dispersion measure is invariant under any permutation in
the submatrix A(r) ⇥ [r]. For instance, in Example 3, the
allocations G and H are different in the column 6. But,

G[rm4]
=

0 1 0
1 0 0
0 0 1

!
H[rm4]

.

Consequently the allocation F
⇤ in the previous theorem is

not necessarily unique.

Proposition 2 Supose that R = [rm1][[rm2][· · ·[[rml][
[rml+1], where l is the number of different equivalent classes
of R \ R

⇤ and [rml+1] = R
⇤. Let F be a good allocation.

If Q1, Q2 · · ·Ql+1 are permutation matrices of the identity
I[rmi]

for every i = 1, · · · , l + 1, then

�(F) = �(G)

where G[rmi]
= Qi · F[rmi]

for every i = 1, · · · , l + 1.

Proof:

�(F) = (var(F[rm1]
), · · · , var(F[rl+1])) =

(var(Q1 · F[rmi]
), · · · , var(Ql+1 · F[rml+1

])) =
�(G)

Final Remarks

In this work we have tackled the problem of finding a good
resource allocation from a qualitative point of view. A cen-
tral idea is to use a notion of qualitative social welfare based
on the dominance plausible rule of Dubois et al. (Dubois et
al. 2002; Dubois, Fargier, and Perny 2003). One important
feature of this approach is to take into account the uncer-
tainty of resources via the qualitative relation representing
the likelihood of the resources. The use of matrix techniques
of representation for the relations involved allows us a better
organization of results and a simplification of proofs.

We have generalized the preliminary results presented by
Pino Pérez et al. (Pino Peréz, Varela Montilva and Camacho
2016) in three ways:

1. The hierarchical relation between agents can be now a to-
tal preorder instead of a linear order.

2. The likelihood relation between the resources can be now
a total preorder instead of linear order.

3. The plausibility relation between sets of resources can be
now a positive relation extending the likelihood relation
between the resources instead of only the posibilistic re-
lation considered in (Pino Peréz, Varela Montilva and Ca-
macho 2016).

Unlike the results in (Pino Peréz, Varela Montilva and Ca-
macho 2016) in which an optimal allocation is unique, here
the class of optimal allocations can contain more than one el-
ement. Examples where this situation occurs (given in Sec-
tion Discriminating good allocations) motivated the study
done in that Section where we propose the first clues for dis-
criminating optimal allocations. In this direction, we have
introduced some local techniques and give one technique to
globally compare optimal allocations. A future work is to
continue the quest of adequate techniques for discriminating
these optimal allocations.

We have to note that in this work the attitude of an agent
toward a resource is binary, that is, the agent requests or
not the resource. Thus, another natural generalization of this
work could be to consider more complex representations of
the agents’ preferences.

References

Barberà, S.; Bossert, W.; and Pattanaik, P. K. 2004. Rank-
ing sets of objects. In Barberà, S. and Hammond, P.J. and
Seidl, Eds. Volume 2 of Handbook of Utility Theory, 893–
978. Springer.
Beviá, C. 1996. Identical preferences lower bound solution
and consistency in economies with indivisible goods. Social
Choice and Welfare 13:113–126.
Brams, S. J., and Taylor, A. D. 1995. An envy-free cake divi-
sion protocol. The American Mathematical Monthly 102:9–
18.
Brams, S. J., and Taylor, A. D. 1996. Fair division - from
cake-cutting to dispute resolution. Cambridge University
Press.
Brams, S. J., Taylor, A. D. and Zwicker, W. S. 1994. Old and
new moving-knife schemes. Economic Research Reports #
94-30.
Brams, S. J., Taylor, A. D. and Zwicker, W. S. 1997. A
moving-knife solution to the four-person envy-free cake di-
vision problem. Proceedings of The American Mathematical
Society 125:547–554.
Brams, S. J. 1995. On envy-free cake division. J. Comb.
Theory, Ser. A 70(1):170–173.
Chevaleyre, Y.; Endriss, U.; Estivie, S.; and Maudet, N.
2007. Reaching envy-free states in distributed negotiation
settings. In Veloso, M. M., ed., IJCAI 2007, Proceedings of
the 20th International Joint Conference on Artificial Intelli-
gence, Hyderabad, India, January 6-12, 2007, 1239–1244.

Chevaleyre, Y.; Endriss, U.; and Maudet, N. 2017. Dis-
tributed fair allocation of indivisible goods. Artif. Intell.
242:1–22.
Dubois, D.; Fargier, H.; Prade, H.; and Perny, P. 2002. Qual-
itative decision theory: from savage’s axioms to nonmono-
tonic reasoning. J. ACM 49(4):455–495.
Dubois, D.; Fargier, H.; and Perny, P. 2003. Qualitative deci-
sion theory with preference relations and comparative uncer-
tainty: An axiomatic approach. Artif. Intell. 148(1-2):219–
260.
Endriss, U.; Maudet, N.; Sadri, F.; and Toni, F. 2006. Ne-
gotiating socially optimal allocations of resources. J. Artif.
Intell. Res. 25:315–348.
Moulin, H., and Thomson, W. 1997. Axiomatic analysis of
resource allocation problems. In Arrow, K. J., Sen, A. and
Suzumuram K., Eds., Social Choice Re-examinated, 101–
120.
Moulin, H. 1988. Axioms of Cooperative Decision Making.
Cambridge University Press.
Moulin, H. 2003. Fair division and collective welfare. MIT
Press.
Pino Peréz, R., Varela Montilva J., and Camacho, F. 2016.
Resource allocation under uncertainty: Firt steps towars a
qualitative approach. In Rivas Echeverría, F. and Arcin-
iegas Aguirre, S. Eds. Avances y aplicaciones de sis-
temas inteligentes y nuevas tecnologías. Pontifia Univer-
sidad Católica del Ecuador, sede Ibarra y Consejo de Publi-
caciones de la Universidad de Los Andes, 399–412.
Sandholm, T. W. 1998. Contract types for satisficing task
allocation: I Theoretical results. 68–75.
Sandholm, T. W. 1999. Distributed rational decision mak-
ing. 201–258.
Steinhaus, H. 1948. The problem of fair division. Econo-
metrica 16:101–104.
Steinhaus, H. 1949. Sur la division pragmatique. Econo-
metrica 17:315–319.
Thomson, W. 2011. Fair allocation rules. In Arrow, K. J.,
Sen, A. and Suzumura, K., Eds., Handbook of Social Choice
and Welfare, Volume 2, 393–506.

